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P refa ce 

This book is concerned with the theory. construction and implementation 
of general linear methods for ordinary differential equations. This is a very 
general class of methods which include the classical methods such as Runge- 
Kutta, linear multistep, and predictor-corrector methods as special cases. 
Some theoretical and practical aspects related to  general linear methods are 
discussed in Numerical Methods f o r  Ordinary Dafferentzal Equataons by J.C. 
Butcher, in Solvang Ordanary Dafferentzal Equatzons I: Nonstaff Problems by 
E. Hairer. S.P. Nmrsett, and G. Wanner, and in Solvang Ordanary Dzfferentzal 
Equataons 11: Staff and Dafferential-Algebraac Problems by E. Hairer and G. 
Wanner. However, these monographs cover the entire area of numerical so- 
lution of ordinary differential equations and devote only a limited amount of 
space to the discussion of general linear methods. This monograph is an at- 
tempt to  present a complete analysis of some classes of general linear methods 
that have good potential for practical use. These classes include diagonally 
implicit multistage integration methods, two-step Runge-Kutta methods. and 
general linear methods with inherent Runge-Kutta stability. 

In Chapter 1 we present a short introduction to ordinary differential equa- 
tions. including existence and uniqueness theory, continuous dependence on 
the initial data and right-hand side, stability theory, and discussion of stiff 
differential equations and systems. Chapter 2 is an introduction to general 

xii i  
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linear methods. In particular, we discuss preconsistency, consistency, stage- 
consistency, zero-stability, convergence, order and stage order conditions, local 
discretization error. and linear stability theory, and present examples of meth- 
ods that are appropriate for nonstiff or stiff differential systems in sequential 
or parallel computing environments. We also discuss briefly algebraic stabil- 
ity, the concept of an underlying one-step method. starting procedures, and 
codes based on general linear methods. 

Chapters 3 to  8 constitute the main part of the book. In Chapters 3 and 
4 we deal with the construction and implementation of diagonally implicit 
multistage integration methods. In Chapters 5 and 6 the theory and imple- 
mentation of two-step Runge-Kutta methods is discussed. In Chapters 7 and 
8 we describe the theory and implementation of general linear methods with 
inherent Runge-Kutta stability. The topics in these chapters related to  the 
theory and construction of these methods include the derivation of order and 
stage order conditions, representation formulas for the coefficient matrices of 
these methods, construction of formulas with desirable accuracy and stabil- 
ity properties, and Nordsieck representation of these methods. The topics 
in these chapters related to implementation issues include the construction 
of appropriate starting procedures, local error estimation for small and large 
step sizes. step size and order changing strategies, construction of continuous 
interpolants of uniform high order. updating the vector of external approxi- 
mations, and the solution of nonlinear systems of equations for stiff systems by 
the modified Newton method. We also present many examples of these meth- 
ods of all types, mainly of order p and stage order q = p or q = p - 1. Many 
implementation issues are illustrated by the results of numerical experiments 
with different classes of general linear methods. 
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CHAPTER 1 

DIFFERENTIAL EQUATIONS AND 
SYSTEMS 

1.1 T H E  IN IT IAL  VALUE PROBLEM 

Many problems in science and engineering can be modeled by the initial value 
problem for systems of ordinary differential equations (ODES), which we write 
in autonomous form as follows: 

(1.1.1) 

Here f : R" .+ R" is a given function that usually satisfies some regularity 
conditions, and uo E R" is a given initial vector. Introducing the notation 

General Linear Methods for Ordinary Differential Equations. By Zdzislaw Jackiewicz 
Copyright @ 2009 John Wiley & Sons, Inc. 
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2 DIFFERENTIAL EQUATIONS AND SYSTEMS 

(1.1.1) can be written in the following scalar form: 

t E [ t o .  TI, where we have suppressed dependence on the independent variable 
t in ut and u:. i = 1 , 2 . .  . . . m. Observe that the nonautonomous equation 

(1.1.2) 

g : IR x R" -+ R", yo E IR", can always be reduced to  a system of the form 
(1.1.1) of dimension m + 1 if we define 

Systems of the form (1.1.1) or (1.1.2) can also arise in practice from the 
conversion of initial value problem for differential equations of higher order. 
Consider, for example, an autonomous form of such a problem: 

where 
dence on t .  Setting 

stands for the derivative of order i and we again suppressed depen- 

we obtain 
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which is equivalent to (1.1.1) with 

r 

In Section 1.3 we discuss the existence and uniqueness of solutions to (1.1.1) 
and (1.1.2) under various conditions on the functions f and g. In this discus- 
sion we often assume that these problems are defined not only for t E [to.T] 
but on the larger interval t E I ,  where I = { t  : It - to1 5 T}. 

1.2 EXAMPLES OF DIFFERENTIAL EQUATIONS AND SYSTEMS 

We list in this section several examples of differential equations and differ- 
ential systems. These problems are used later in our numerical experiments 
with various algorithms for numerical solution of ODES. These algorithms are 
based on some classes of general linear methods discussed herein. All equa- 
tions in this section are examples of nonstiff equations and systems. Problem 
of stiffness and stiff differential equations and systems are discussed in Sec- 
tions 1.7 and 1.8. 

SCALAR - the scalar problem [143. p. 2371: 

y’(t) = -sign(t)/l - It11 y2. t E [-2,2], 
(1.2.1) 

y(-2) = 2/3. 

The solution to this initial value problem has a discontinuity in the first deriva- 
tive y‘ at the point t = 0 and discontinuities in the second derivative y” at 
t = -1 and t = 1. 

BUBBLE - a model of cavitating bubble [200, 2571: 

= Y2, 
dyl 
ds 

- - +- (1.2.2) 
ds Y l  Yvp Y ? + l >  

Yl(0) = 1; Y2(0) = 0, 

dy2 5exp(-s/s*) - 1 - 1.5~:  ay2 + D 1 + D - - 

t E [0, TI. Here sx, a: D ,  and y are real parameters. As observed by Shampine 
[257], this problem places great demands on the precision and step size control 
strategies of numerical algorithms. 



4 DIFFERENTIAL EQUATIONS AND SYSTEMS 

AREN - Arenstorf orbit for the restricted three body problem [12, 13, 1431. 
This is an example from astronomy which describes the movement of two 
bodies of scaled masses 1 - p and p in a circular rotation in a plane and the 
movement of a third body of negligible mass (e.g., satellite or spacecraft) in 
the same plane. The equations of motion are 

t E [0, TI, where 

Di = ((yi + p)’ + Y;)~”, Dz = ((yi - 1 + p)’ + Y;)~”. 
This problem with p = 0.012277471 corresponds to the earth-moon system. 
The periodic orbits of a satellite or spacecraft moving in such a system were 
discovered by Arenstorf [12, 131 by theoretical analysis of periodicity condi- 
tions and numerical calculations. Such periodic orbits may facilitate low-cost 
space exploration and are of interest to NASA. The initial conditions for which 
the solution to (1.2.3) is periodic are, for example, 

yi(0) = 0.994, yi(0) = 0, yz(0) = 0, yh(0) = -2.001585106379, 

with the period of motion Ti given by Ti = 17.06522, or 

yi(0) = 0.994, yi(0) = 0, yz(0) = 0, yh(0) = -2.031732629557, 

with the period of motion TZ given by TZ = 11.1234. Such orbits are plotted 
in, for example, [52, Fig. 102(i) and (ii)], and [143, Fig. 0.11. 

LRNZ - the Lorenz model [209]. This is a system of three differential equa- 
tions of the form 

Y: = -0Y1 + 0Y2, 

Yi = Y1 Yz - by37 

Y: = -Y1 Y3 + ry1 - Yz, (1.2.4) 

t E [O,T]. Here b, 0, and T are positive constants. For example, for b = 8/3, 
0 = 10, and T = 28, this system has aperiodic solutions. 

EULR - Euler’s equations of rotation of a rigid body [143]. This is a system 
of three differential equations given by 
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t E [O,T]. Here y1, y2, and y3 are the coordinates of the rotation vector; 11, 
12, and 13 are the principal moments of inertia; and the third coordinate has 
an additional exterior force f ( t ) .  

PLEI - a celestial mechanics problem “the Pleiades” from [143, p. 2451. The 
equations of motion are 

(1.2.6) 

t E [0,3]; where 

The initial conditions are 

= y/l(O) = 0, for all i with the exception of 

I C ~ ( O )  = 1.75. z/?(O) = -1.5. yk(0) = -1.25, &(O)  = 1. 

This problem describes the movement of seven stars in the plane with coor- 
dinates IC,, y, and masses m, = z, i = 1 . 2 , .  . . -7 .  The trajectories of these 
stars are plotted by Hairer at  al. [143. Fig. 10.2a], and speeds x: and yi, 
z = 1 , 2 , .  . . , 7 ,  [143, Fig. 10.2bI. 

ROPE - the movement of a hanging rope of length 1 under gravitation and 
the influence of horizontal F1/(t)  and vertical F,(t) forces [143]. As explained 
by Hairer at  al. [143], the discretization of this problem leads to a system 
of differential equations of second order for the angles 6‘1 = &(t)  between the 
tangents to the rope and the vertical axis at a discrete arc length sl. This 
system takes the form 
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t E [O. TI. 1 = 1 . 2 . .  . . . n, where 

1 
2 u l k  = glrc cos(01 - 0 k ) .  blk = glk  sin(0l - &), glk = n + - - max{l, I c } .  

The horizontal force Fy( t )  acting at the point s = 0.75 is 

FY(t) = 

and the vertical force F,(t) acting at the point s = 1 is 

F,(t) = 0.4. 

This system will be solved for n = 40 with initial conditions 

& ( O )  = & ( O )  = 0. 1 = 1.2. .  . . .n, 

on the interval [O. 3.7231. 
Setting 

system (1.2.7) can be written in vector form as 

(1.2.8) 

where d2 denotes componentwise exponentiation and g ( t ,  0) is an appropri- 
ately defined vector function. The solution of (1.2.8) requires computation of 
the inverse matrix A-l. As explained by Hairer a t  al. [143. 1461 this can be 
done very efficiently in O ( n )  operations, due to the special structure of the 
matrix A. It can be verified that 

A + i B = diag(etel ~ eZez. . . . , ezen) G diag(e-"I. e-'O2 , . . . , ePen) .  

where G = [ g k l ] .  This matrix has the inverse 
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and it follows that 

( A + i B ) - '  = C + i D  

- - diag(eio1, eio2, . . . , ,ion) G-1 diag(e-201, e-ioz . .  

where C and D are tridiagonal matrices of the form 

and 

C =  

D =  

1 c12 

c2 1 2 c23 

en-1.n-2 2 Cn-l,n 

cn.n-1 3 

0 s12 

$21 0 s23 

S n - 1 . n - 2  0 S n - 1 , n  

S n , n - l  0 

. . e-i*n) , 

with 
ckl = - cos(6'k - el) .  skl = - sin(6'k - e l ) .  

Since (A + i B ) ( C  + i D )  = I ,  we have 

A C - B D = I .  A D + B C = O  

and it follows that 

or A-l = C + DC-lD.  We also have A-lB = -DC-' and system (1.2.8) 
can be written as 

6 = DC-l(b2 + Dg(t ,  6')) + Cg( t ,  Q), 

As observed by Hairer at al. [143] this suggests the following efficient algo- 
rithm for computation of the acceleration vector e .  

t E [O.  TI. 

1. Compute w = b2 + Dg(t.  6'). 

2. Solve the tridiagonal system Cu = w. 

3. Compute 6 = Du + Cg(t ,  13). 



8 DIFFERENTIAL EQUATIONS AND SYSTEMS 

BRUS - a reaction-diffusion equation (the Brusselator with diffusion) [143]. 
This is the system of partial differential equations of the form 

0 5 x 5 1, 0 5 y 5 1, t 2 0, a = 2 x 
boundary conditions 

together with the Neumann 

d U  d V  

dn dn 
= 0, - = 0, - 

where n is the normal vector to  the boundary of the region [0,1] x [ O ,  11 and 
the initial conditions 

u(x.  y. 0) = 0.5 + y. V(Z,  y, 0) = 1 + 52. 

Let N > 1 be an integer and define the grid in space variables x and y by 

Z, = (Z - l ) A x ,  y, = (j - l )Ay,  Z , J  = 1 , 2 , .  . . , N. 

where Ax = Ay = 1/(N - 1). Define also the functions 

U,, (t) = ~ ( 2 % .  y, . t). V,, (t) = w (x'. y3, t ) .  i, J = 1,2.  . . . , N. 

Discretizing (1.2.9) by the method of lines. where the space derivatives are ap- 
proximated by finite differences of second order leads to  the system of ordinary 
differential equations 

t E [O.T], Z , J  = 1 . 2 . .  . . , N, of dimension 2N2. The boundary conditions 
imply that 

UO 3 = U2,3, U N + l j  = U N - 1 , ~ -  u,,O = uz,Z, Uz,N+1 = Uz,N-1. 

%,, = v2,j. vN+1 2 = V N - l , , ,  &,O = 2 ,  &,N+1 = v, N-1, 

and the initial conditions are 

Uij(O)=O.5+yj,  V, j (O)=1+5xi ,  i , j = l , 2  , . . .  ,N .  
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1.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS 

In this section we formulate results regarding the existence and uniqueness 
of solutions to (1.1.2). We begin with the classical Peano existence theorem 
for the system (1.1.2), which assumes only that the function g is continuous 
in some domain. The proof of this result is based on the Arzela-Ascoli theo- 
rem about a family of vector-valued functions that is uniformly bounded and 
equicontinuous. Consider a family 3 of vector-valued functions y = y ( t )  de- 
fined on an interval I = { t  : It - to1 5 T } .  Define llyll := sup{lly(t)ll : t E I } ;  
where / I  . 1 1  is any norm on R". We introduce the following definitions. 

Definition 1.3.1 A family 3 of vector-valued functions y = y ( t )  is said to be 
uniformly bounded if there exists a constant M such that ( ( y ( (  5 M for every 
y E 3. 

Definition 1.3.2 A family 3 of vector-valued functions y = y ( t )  is said t o  
be equicontinuous if for every E > 0 there exists 6 > 0 such that the condition 
It - s /  < 6, t , s  E I ,  implies that I l y ( t )  - y(s)( /  < E for all functions y E 3. 

Theorem 1.3.3 (Arzela-Ascoli; see [212]) Let ~ ~ ( t ) ~  n = 1.2 ; .  . ., be a 
uniformly bounded and equicontinuous sequence of vector functions defined on 
the interval I .  Then there exists a subsequence yn, ( t ) ,  j = 1; 2 , .  . . 1  which is 
uniformly convergent on I .  

We are now ready to formulate and prove the classical existence result for 
system (1.1.2). 

Theorem 1.3.4 (Peano [235]) Assume that the function g ( t ,  y) is contin- 
uous in the domain 

(1.3.1) 

and that there exists a constant M such that 11g(t, y)II 5 M for ( t ,  y) E D .  
Then system (1.1.2) has at least one solutzon y = y ( t )  defined for 

It - to( 5 TI := min{T. K / M }  

and passing through the point ( t o ,  yo) 

Proof: It is generally agreed that the original proof of Peano [235] was 
inadequate. and a satisfactory proof was found many years later (see e.g., 
Perron [236]). Here, we follow the presentation given by Birkhoff and Rota 
[all.  We will prove the theorem for the interval [ t o .  t o  +TI]; the proof for the 
interval [to - TI, to]  is analogous. Consider the integral equation 

r t  

(1.3.2) 
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t E [ to  , t o  +TI] , which is equivalent to  (1.1.2). Define the sequence of functions 
;Yn = Y n ( t ) ,  n = 1 . 2 ,  . . .. by the formulas 

t E [ t o .  t o  + T1/n] 3 

t -T l /n  1 ::+lo g ( s . ~ n ( s ) ) d s ,  t E ( t o  + Tl/n,to +TI ] .  

y n ( t )  = 

Observe that the right-hand side of the second formula above defines y,(t) for 
t E ( t o  + Tl /n .  t o  + TI] in terms of y,(t) already defined for t E [ to .  t o  + Tl/n]. 
This sequence is well defined since 

rt-Tq ln 

5 M t - t o - -  5 M ( t - t o )  5 MT1 5 K ( 3 
and y,(t) are clearly continuous on [ t o .  to+T1]. We have II1Jn(t)il 5 //yoI/+MTl, 
which shows that the sequence y,(t) is uniformly bounded. We also have 

t2 -TI / n  

livn(t2) -gn(tl)il 5 J’ //g(s.yn(S))/lds 5 ~ 1 t 2  - t11 
tl--Tl/n 

which shows that yn(t)  is also equicontinuous. Hence, it follows from the 
Arzela-Ascoli theorem. Theorem 1.3.3. that  there exists a subsequence yn, ( t ) ,  
j = 1 , 2 , .  . ., which is uniformly convergent to  a continuous function g ( t ) :  that  
is, 

lim yn, = g. 
j+m 

This subsequence satisfies the integral equation. which we write in the form 

t t 

Yn, ( t )  = J’ (s, Yn, (s)) ds - J’ (s, Yn, (s)) 
t o  t--Tl/n, 

t t 
We have 

lim lo g ( s .  Yn, ( s ) ) d s  = g ( s , g ( s ) ) d s  
3-m lo 

since the function g ( t .  y) is uniformly continuous. We also have 

Hence, passing to the limit as j + cc in the integral equation for yn,, we 
obtain 
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which proves that y ( t )  satisfies the integral equation (1.3.2); hence it also 

A solution whose existence is guaranteed by the Peano theorem, Theo- 
rem 1.3.4, is not necessarily unique. A simple example that illustrates this is 
given by a scalar initial value problem 

satisfies (1.1.2) for t E [to, t o  +TI]. 

y' = 3y2'3, y(0) = 0, 

where D = { ( t , y )  : It1 5 1, IyI 5 1). Here the function g ( t , y )  = y2I3 is 
continuous on D ,  but the problem has solutions y l ( t )  = 0 and y2(t) = t3.  

Assume that a function g ( t , y )  is defined in some region R c R x R". To 
formulate uniqueness results for (1.1.2), we usually assume that the function 
g( t l  y) is not only continuous but satisfies some additional regularity proper- 
ties. We introduce the following definitions. 

Definition 1.3.5 A function g ( t ,  y) satisfies a Lipschitz condition in R with 
a Lipschitz constant L if 

I l S ( t , Y l )  - S ( 4 Y 2 ) I I  I L l l Y l  - Y2lI (1.3.3) 

for  all ( t ,  yl),  ( t ,  y2) E R, where / /  . 1 1  is any norm in  R". 

Definition 1.3.6 A function g ( t ,  y) satisfies a one-sided Lipschitz condition 
in R with a one-sided Lipschitz constant z/ if 

(1.3.4) 

for  all ( t , y 1 ) ,  ( t ,  y2) E R. Here / I  . / I  is the Euclidean norm in R"; that is, 

T 
( d t ,  Y1) - S ( t ,  Y2)) (Yl - Y2) I V l I Y l  - Y21I2 

l/uI/ := a for 21 E R". 

One-sided Lipschitz condition (1.3.4) plays an important role in the analysis 
of numerical methods for stiff systems of ODES (compare [log. 1461). Assume 
that the function g ( t ,  y) satisfies Lipschitz condition (1.3.3) in the Euclidean 
norm 1 1  . 1 1  with a constant L.  Then using the Schwartz inequality and (1.3.3), 
we obtain 

T 
( S ( 4  Y1) - g ( t ,  Y2)) ( Y l  - Y2) I jIg(4 Y l )  - S ( t >  1J2) l l I lY l  - Yzl l  I L I l Y 1  - ?/2Il2 

and it follows that g ( t ,  y) also satisfies one-sided Lipschitz condition (1.3.4) 
with the same constant L.  However, as observed, for example, by Dekker and 
Verwer [log], the reverse is not true. A counterexample is provided by any 
monotonically nonincreasing function g : R -+ R which has, for some value of 
g E R, an infinite slope. We then have 

( d Y 1 )  - S(Y2)) (Y1 - Y2) 5 0 

for all y1, y2 E R and it follows that g(y) satisfies (1.3.4) with v = 0. However, 
this function does not satisfy (1.3.3) in any neighborhood of 3, where the slope 
is infinite. 
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Next we formulate a local existence and uniqueness theorem. We also 
show that the solution to (1.1.2) can be obtained as a limit of a uniformly 
convergent sequence of continuous functions starting with an arbitrary initial 
function that satisfies the appropriate initial condition. 

Theorem 1.3.7 Assume that the function g( t ,  y) is continuous and satisfies 
a Lipschitz condition (1.3.3) in the domain D defined by  (1.3.1). Set 

M = max { / / g ( t ,  Y ) ( l  : ( t ,  Y) E D } .  

Then (1.1.2) has a unique solution defined on the interval 

( t  - to1 5 TI := min{T, K I M }  

passing through (to, yo). 

Proof: 
[ t o  - 7'1, to] is analogous. Define the integral operator 

First consider the interval [to,to + T I ] ;  the proof for the interval 

(1.3.5) 

t E [to,to + T I ] .  Put  Y = {y E Rm : lly - yo(( 5 K }  and denote by 
C([to, t o  + 7'11, Y )  the space of continuous functions from [ to ,  t o  + T I ]  into 
Y with a uniform norm. Observe that if y E C([to, to + T I ] ,  Y ) ,  then 

t 

I ( Z ( t )  - Yo11 I 1 I19(s,y(s))/Ids I MTl I M K / M  = K ,  
t o  

and it follows that the operator q5 takes the functions from C( [ to ,  t o  + T I ] ,  Y )  
into C([to, to  + T l ] , Y ) :  

4 :  C([tO,t" + T l ] , Y )  -+ C([to, to  + T l ] : Y ) .  

Define the sequence of functions y,(t) E C([to,to + T11,Y) by the formula 

t 

Y " + l ( i )  = O(Y"(t)) = Yo + 1 g(s ,yn(s ) )ds ,  (1.3.6) 
t o  

n = 0 , 1 , .  . ., where yo@) = yo, t E [to, t o  + 7'11. Then we have the bound 

We prove (1.3.7) by induction with respect to  n. Since 

( 1.3.7) 
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this bound is true for n = 1. Assuming now that (1.3.7) is true for n we have 

which is equivalent to (1.3.7) with n replaced by n+ 1. It follows from (1.3.7) 

and since the series on the right-hand side is uniformly convergent on the 
interval [&-,,to + T I ]  to the function M(exp(L(t - t o ) )  - l ) / L ,  we can also 
conclude that the series 

k=l 

whose nth partial sum is equal to yn(t) is also uniformly convergent on the 
interval [to, t o  + T I ] .  Denote by g ( t )  the limit of the sequence y,(t). Since 

119(~,Y"(S)) - S(S,Yn(4) 1 1  6 IIY"(S) - Y n b I l ,  

the integral Jt", g(s ,  y,(s))ds is uniformly convergent for t E [to, to +TI] .  Pass- 
ing to the limit in (1.3.6) as n + o, it follows that g ( t )  satisfies the integral 
equation 

t E [ to ,  t o  + 7'11. Hence, g ( t )  also satisfies the equivalent initial value problem 
(1.1.2) , which proves existence. 

To prove uniqueness, assume that there are two solutions z ( t )  and y ( t )  to 
(1.1.2). Define a norm / /  . in the space C([to, t o  + T l ] , Y )  by the formula 

l l y ~ l ~  := sup { e-"(t-to)lly(t)lI : t E [ t o , t o  + T I ] } ,  

where a > 0 and 1 1  . 1 1  is any norm in IR". Subtracting the integral equations 
for z ( t )  and y(t)  equivalent to (1.1.2), we obtain 
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and it follows that 

This leads to  
L 

jlX(t) - Y ( t ) l /  I -115 - Y l l a r  
e - a ( t - t o )  

a 
and since the right-hand side of this inequality is independent o f t ,  we obtain 

L 
IIX - Y l l a  I -115 - Y l l a .  a 

Choosing a such that L / a  < 1, we obtain llx - yIla = 0 or x(t) 3 y(t)l 

The proof of Theorem 1.3.7 is an illustration of the Banach contraction 
principle [212] for the metric space C([to, to+Tl], Y )  with the distance between 
x and y defined by 115 - ylla. We have 

t E [ to l  t o  + T1]. This completes the proof. 

which shows that the mapping q5 defined by (1.3.5) is contractive if cy is chosen 
so that L / o  < 1. Hence, q5 has a unique fixed point g = q5(jj)1 which is the 
limit of the sequence 

Yn+l(t) = #(Yn(t)), 

YO(t) = Yo, 

n = 11 2 , .  . . l  

t E [ t o 1  t o  + Tll. 
The successive approximations defined by (1.3.6) are called Picard-iindelof 

iterations. These iterations and more general iteration schemes based on the 
appropriate splittings of the right-hand side of (1.1.2), 

d t l  Y) = Sl(t, Y )  + g2(4 Y ) ,  

form a basis for waveform relaxation iterations: numerical techniques for large 
differential systems, which can be implemented efficiently in a parallel com- 
puting environment. The continuous version of these iterations takes the form 

t t 

Yn+l(t) = Yo + 1 91 (s, Yn+l(S))dS + 
t o  4, g2(s1 yn(s))dsl  
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n = 0 , 1 , .  . yo ( t )  = yo, and they reduce to  (1.3.6) if g1 = 0. The theoretical 
background for these techniques is given in a number of articles [213, 218. 
219. 2201 and monographs [31, 276. 2901. This approach was first proposed by 
Lelarasmee [205] and Lelarasmee et al. [206] in the engineering community as a 
practical algorithm for large differential systems modeling electrical networks. 

The existence and uniqueness of solutions to (1.1.2) to  the right of t o  can 
also be established if the function g(t ,  y )  satisfies only a one-sided Lipschitz 
condition (1.3.4). To be more precise, we have the following theorem. 

Theorem 1.3.8 A s s u m e  that the functzon g(t. y) zs contznuous and satzsfies 
one-saded Lzpschatz condztaon (1.3.4) zn the domaan D+ defined by 

l J + = { ( t ; ? / ) :  t E [ ~ o 1 ~ o + ~ I 1  l l Y - l / o l l  S K } .  

T h e n  anatzal value problem (1.1.2) has a unzque solutzon defined o n  the anterval 
[ t o .  t o  + 7'11, where 

T'1 := min{T, K / M }  and M := max { 11g(t3 y)ll : ( t ,  y) E D+} .  

Proof: The existence of a solution follows from the Peano theorem, Theo- 
rem 1.3.4. To show uniqueness. assume that there are two solutions z ( t )  and 
y ( t )  to  (1.1.2). Set 

v( t )  = l/Ic(t) - y(t)I12e-2u(t-t0). 

where v is the one-sided Lipschitz constant and / /  . 1 1  stands for the Euclidean 
norm in EX". Then 

v'(t) = 2(z'(t) - y ' ( t ) )T ( z ( t )  - y ( t ) )e -2v ( t - t o )  

- 2 4 z ( t )  - y(t)l12e-2~(t-to) 

= 2(g(t ,z( t ) )  - g(t.y(t)))'(:c(tj - y ( t ) )e -2u ( t - t 0 )  

2e-2v ( t - t0 )  < - 0. - 2+(t) - Y ( t ) l I  

Hence, the function v( t )  is nonincreasing and it follows that 

Since z(t0) = y ( t 0 )  = yo, the inequality above implies that  ~ ( t )  = y ( t ) ,  

If the function g(t. y) satisfies a one-sided Lipschitz condition (1.3.4) in the 
domain D defined by (1.3.1). the solution to  (1.1.2) is not necessarily unique 
to the left of t o .  The counterexample is provided by the initial value problem 

t E [ to ,  t o  + TI], which is our claim. 

Y' = -2sign(Y) m1 d o )  = 0. 
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where the function on the right-hand side satisfies a one-sided Lipschitz con- 
dition with constant v = 0 for all t : y  E R. This problem has two solutions, 
y(t)  = 0 and y(t)  = - t2 ,  for t 5 0. It follows from Theorem 1.3.8 that y(t)  0 
is the unique solution to this problem for t 2 0. 

1.4 CONTINUOUS DEPENDENCE O N  INITIAL VALUES AND THE 
RIGHT-HAND SIDE 

In this section we show that the solution y(t)  to (1.1.2) depends continuously 
on the initial conditions and the right-hand side g ( t , y )  of the differential 
equation. These investigations are aided by the following generalization of 
the Gronwall lemma [137]. 

Lemma 1.4.1 Assume that X , p  E C([to,cc),R), p( t )  2 0 for t L t o ,  and 

Then 

Proof: Set 
r t  

Then y( t )  5 X ( t )  + z ( t )  and 

or 
z’(t)  - P ( t ) Z ( t )  5 X ( t ) P ( t ) ,  t L t o .  

Multiplying both sides of this inequality by the integrating factor given by 
exp(- st’, p(s)ds) ,  we obtain 
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Then v'(t) - w'(t) 2 0, and since v(t0) - w(t0)  = 0, it follows that 

Hence, using the definition of w ( t ) ,  we obtain 

The conclusion of the lemma follows from the inequality y ( t )  5 X ( t )  + z ( t ) .  

We have the following continuity theorem. 

Theorem 1.4.2 Assume that x ( t )  and y ( t )  satisfy the initial value problems 

z ' ( t )  = f ( t ,  W) , 4 t o )  = 2 0 ,  (1.4.2) 

Y ' ( 4  = L l ( t ! Y ( t ) ) ,  Y( t0)  = Y o ,  ( 1.4.3) 

f o r  t E [to,to + TI, where the functions f ( t , z )  and g ( t , y )  are defined and 
continuous for t E [ t o ,  t o  + TI, z, y E Y c R". Let 

lIf(t> 2) - g(t ,z) l l  L (1.4.4) 

for t E [to, t o  + T ]  and z E Y .  Moreover, assume that f ( t ,  z) satisfies the 
Lipschitz condition 

Ilf(t,z) - f ( t : Y ) 1 I  L Lllz - YII, (1.4.5) 

t E [ t o ,  t o  + T ] ,  z, y E Y .  Then we have the inequality 

Ilz(t) - y(t)II 5 /)xo - yol\eL(t-to) + - eL(t-tO) - 1 . ( 1.4.6) 

Subtracting integral equations equivalent to  (1.4.2) and (1.4.3) we 

L Y ) 
Proof: 
obtain 

Taking norms on both sides of the equation above and taking (1.4.4) and 
(1.4.5) into account leads to the inequality 
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Hence, using Lemma 1.4.1, we obtain 

Conclusion (1.4.6) of the theorem follows after integrating by parts the in- 
equality above. w 

Observe that the function g ( t , y )  is not required to satisfy the Lipschitz 
condition. 

Estimate (1.4.6) is still valid if the function f ( t ,  y )  satisfies only one-sided 
Lipschitz condition (1.3.4)) where the constant u is not necessarily positive. 
To show this, we need the following lemmas. 

Lemma 1.4.3 (Dahlquist [98]) Assume that a vector-valued function z ( t )  
has the right-hand-side derivative z’(t+O). Then llz(t) 1 1  has a right-hand-side 
derivative, denoted by $llz(t)ll, which is equal to 

Proof: 
ence ratio is a bounded, monotonic function of h. We have 

Observe that the limit on the right-hand-side exists since the differ- 

Ilz@ + h)lI - II4t)ll - Ilz(t) + fLZ’(t + 0)II - /Iz(t)lI 
h 

I 1 1  z ( t  + h )  - z ( t )  - hz’(t + 0 )  
h 

as h + 0+, which is our claim. 

The next result is a fundamental lemma on differential inequalities. 

Lemma 1.4.4 Assume that the function u( t )  satisfies the inequality 

u’(t) I u u ( t )  + 6,  t 2. t o ,  

u(t)  I uoev(t--to) + - ev( t - to)  - 1 

u(t0) = uo, where u E R is not necessarily positive. Then 

) U € (  

i f u f 0  or 

if u = 0 .  
u ( t )  I 210 + E ( t  - t o )  

Proof: Inequality (1.4.7) is equivalent to  

w’(t) 5 ce -v ( t - to ) ,  

w 

1.4.7) 

1.4.8) 

( 1.4.9) 
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where w(t)  = e-’(t-tO)u(t). Consider the problem 

u’( t )  = Ee-u(t--to) , 4 t o )  = 0: 

t 2 t o .  whose solution is 

if u # 0 or 

if u = 0. Then w’(t) - v’(t) 5 0 and the function w( t )  - v( t )  is nonincreasing. 
Hence, 

and it follows that 

v ( t )  = E ( t  - t o )  

w(t)  - v ( t )  5 w(t0) - v ( t0 )  = uo 

1 w(t) 5 uo + - 1 - e-’(t-fo) 
U € (  

if u # 0 or 

if u = 0. Since w(t)  = e-’(t-tO)u(t), these inequalities are equivalent to (1.4.8) 

w ( t )  L uo + E ( t  - to) 

and (1.4.9). respectively. This completes the proof. 

We introduce the following definition. 

Definition 1.4.5 For any square matrix A E RmXm and matrix norm 1 1  
the limit 

1 1 ,  
111 + hAll - 1 

h 
p(A)  = Lim 

-+O+ 

is called the logarithmic norm of A. 

This limit always exists since the difference quotient is a monotonic. bounded 
function of h (compare [94, 981. and [log, Lemma 1.5.11). 

The logarithmic norm can take negative values. so it is not a norm. How- 
ever, it has many properties similar to the properties of a norm: for example. 

P(QA) = w ( A )  if Q L 0, 1P(A)l 5 !lA!l, 

P(A + B) L P(A) + CL(B). IP(A) - IL(B)l L 11-4 - Bll. 

(compare [94, 98, 1091). Another interesting property of p(A)  is given in the 
following result 

Lemma 1.4.6 Assume that 1 1  . 1 1  is an Euclidean 
is, 11x11 = &%), and denote by  the same symbol 

norm in the space R” (that 
the associated matrix norm. 

Then 
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Proof: We have 

which is our claim. 

For the three most commonly used norms, I /  . I l l !  / I  . 112, and 1 1  . l l o o ,  the 
explicit expressions for pl(A).  pz(A), and pm(A),  are given by 

again compare [94. 98, 1091. Here, A,,,(M) stands for the largest eigenvalue 
of the matrix M .  

The next result is the relationship between the one-sided Lipschitz con- 
dition for the function f ( t .  y) and the logarithmic norm of the integral of 
%(t.  r l ) .  

Lemma 1.4.7 Assume that the function f (t!  y) is continuously differentiable 
with respect to y.  Then the condition 

(x - y)T(  f ( t ,  z) - f (t! Y,) I 4 z  - Y/I2  (1.4.10) 

Proof: It follows from the mean value theorem for vector functions that 

af 
0 dY 

f ( t ,  z) - f ( t ,  y) = J’ - (t’ Qz + (1 - Q)y)dQ (. - Y) 
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(compare [229, page 711). Hence, inequality (1.4.10) implies that 

and it follows that 

zT 1 - af ( t ,  Ox + (1 - 0)y)dOz 

max 0 dY 5 u. 
Z#O llzIl2 

By Lemma 1.4.6 this inequality is equivalent to  (1.4.11). This completes the 
proof. w 

We are now ready to  formulate and prove the main result of this section. 
which is an analog of Theorem 1.4.2. 

Theorem 1.4.8 Assume that x ( t )  and y ( t )  satisfy the initial value problems 

x’(t) = f ( t ,  x ( t ) ) .  x(t0) = 2 0 :  

f o r t  E [to: to+T],  where x’(t) and y’(t) stands for the right-hand-side deriva- 
tive at t = to. Assume that the functions f ( t ;  x) and g( t ,  y) are defined and 
continuous and that 

l ( f ( t : z )  -g ( t , z ) / l  I E 

for  t E [to, to + TI, x, y E Y c R”. Assume also that the function f ( t ;  y) is 
continuously differentiable with respect to the second argument and satisfies a 
one-sided Lipschitz condition (2.4.10) for t E [to,T] and x , y  E Y .  Then we 
have the following inequality, which is an analog of (1.4.6): 

t E [ to ,T] ,  if u # 0 and 

t E [ to ,T] ,  if 1/ = 0 .  
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Set ~ ( t )  = z ( t )  - y ( t ) .  Then 

Inequalities (1.4.12) and (1.4.13) now follow from Lemma 1.4.4. 

1.5 DERIVATIVES WITH RESPECT T O  PARAMETERS AND 
INITIAL VALUES 

In this section we investigate the differentiability of solutions to differential 
systems with respect to parameters and initial values. Assume that the func- 
tion g ( t ,  y, A) is defined in some open set D and consider the initiql value 
problem 

Y' = g ( t ,  Y. Ao), y(t0) = Yo. (1.5.1) 

where (to, yo. Ao) E D c R x R" x Rs. Denote by y ( t )  = y(t: t o ,  y o .  A,) the 
solution to (1.5.1), which is defined on a compact interval J containing t o .  
We have the following theorem. 

Theorem 1.5.1 Assume that the function g ( t .  y, A) has continuous partial 
derivatives 

and - 8s = [g] 
z = 1 ,  ,m,g=l. ,s dA t=1, ,m. j= l  ,m 
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at all points ( t ,  y ( t ;  t o ,  yo, XO). XO) with t E J .  Then for all X suficiently close 
to XO, the initial value problem 

1JI = d t !  Y: A), Y ( f 0 )  = Yo, (1.5.2) 

has a unique solution y ( t )  = y ( t ; t o > y o , X )  which is defined on the interval 
J .  Moreover, for all t E J ,  the partial derivative g(t; t o ,  yo, XO) exists and 
satisfies the initial value problem for the linear differential system 

dg 
rll = - ( t .  d t ;  t o :  Yo, X o ) ,  X0)v + g (t’ y(t; to, yo, Xo), Xo) , r l ( t 0 )  = 0, 

(1 -5.3) 
17 : J + R” x RS. 

Proof: Since dg/dy and dg/dX are continuous in ( t ,  g, A) and g ( t ;  t o ,  yo, Xo) 
is continuous in t ,  there exists for each E > 0 and each s E J a corresponding 
S = 6(s, E )  > 0 such that 

if 
It - sl 5 6, lIY - y(t: t o .  yo. Ao) l l  I 6. IlX - XOII 5 6. 

Since interval J is compact, it can be covered by a finite number of intervals 
I ,  of the form I ,  = { t  : It - s(  5 6(s, E ) } .  Hence, there exists 6’ = 6’(~) 
(independent of s) such that inequalities (1.5.4) are satisfied for all ( t ,  y, X) E 
Q. where set Q is defined by 

Q = { (t .  y, A) : t E J .  ~ I Y  - y(t: t o ,  YO. Xo) 1 1  5 6’) / lX  - Xo II  5 6’). 

Set Q is closed and it follows that dg/dy and ag/dX are bounded on it; that  
is, there exist constants A and B such that 

In particular. g(t .  y. A) satisfies a Lipschitz condition with respect to  y, and. if 
11X - XO((  1. S’, it follows from Theorem 1.3.7 that initial value problem (1.5.2) 
has a unique solution y ( t ;  to. yo, Ao). We can assume without loss of generality 
that this solution stays in the region 

Q x  = { (6 Y) : (t .  Y. A) E J }  

since if this is not the case, we can always restrict the size of the interval J .  
We have 

Y l ( t : t o . Y o , X )  = g ( t . Y ( t ; t o . Y o , X ) . X ) .  
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for all y such that lly - y(t;to,yo:Xo)/l I S’, it follows from Theorem 1.4.2 
that  

where C = B(eAh - 1)/A and h is the length of the interval J .  Set 

where ~ ( t )  is the solution to (1.5.3).  Then  to; A) = 0 and 

Computing q(t)(X - A,) from (1.5.6) and substituting it into the equation 
above, we obtain 

where 
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It follows from the integral form of the mean value theorem [229] that 

Hence, using (1.5.4) and (1.5.5); we obtain 

IIEII 5 E (C + 1 ) I l A  - Aoll.  

Consider also the differential system 

which has a zero solution X(t ,  A) = 0. Applying Theorem 1.4.2 again, it follows 
that 

(Ix(trA)I/ 5 fm - Aoll, 

or using definition (1.5.6) of X(t; A), we have 

/ly(t; t o ,  Yo: - v(t;  to:lJo, Xo) - V ( t ) ( A  - Xo)l l  
5 2, 

IIX - A011 

where = (C + l ) (eAh - l ) /A .  Hence, since E can be arbitrarily small, it 
follows from the definition of differentiability that g(t: to3 yo, A,) exists and 
is equal to ~ ( t )  for all t E J .  This completes the proof. 

Consider next the system 

Y’ = g(t1 Y)! (1.5.7) 

where the function g ( t , y )  is defined in a domain D and denote by y ( t : . r ! < )  
the solution to (1.5.7) passing through the point ( T , [ )  E D.  We have the 
following theorem. 

Theorem 1.5.2 Assume that the functiong(t, y) is continuous in D .  Assume 
also that y ( t ; t o , y o ) ,  (to,yo) E D ,  exists on a compact interval J and that 
g(tl  y) has continuous partial derivative g(t,  y(t: t o ,  yo)) for all t E J .  Then 
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y ( t ;  7 ,  E) exists and i s  unique o n  J for all points  (7 ,  E) that  are near  (to, y o ) .  
Moreover,  for all t E J the  partial derivative g ( t : t o . y o )  exists and i s  equal 
t o  the  solution of t he  homogeneous l inear matrax differential s y s t e m  

7’ = -(t, d g  y ( t :  to, Y0) )V .  7(to) = 1. (1.5.8) 
8Y 

while g(t; t o .  yo) exists and 

Proof: 
transformed into the initial value problem 

Set y = 17: + E .  Then (1.5.7) with initial condition y ( 7 )  = E is 

2’ = g ( t ,  x + E )  = G(t ,  2,E) ,  x ( 7 )  = 0 ,  (1.5.10) 

where E is some parameter. Let us denote the solution to this problem by 
x ( t )  = x ( t ;  7 ,  0,  E ) .  Then 

y ( t ;  7 ,  E l  = z ( t ;  7 ;  0, E )  + t .  
It follows from Theorem 1.5.1 that d x / d [  satisfies the initial value problem 

82 
- ( t o ;  t o ,  0, YO) = 0. % 

and 
dX 

a€ % 
( t o ;  t o ,  Yo)  = - ( t o ;  t o ,  0, Yo) + 1: 

it follows that 

&l 

dY 
3 ( t ;  t o ,  Yo) = - (6 Y ( t ;  t o .  Y o ) )  

This proves that %(t ;  t o ,  yo )  satisfies (1.5.8). 
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Similarly as in the proof of Theorem 1.5.1, we can argue that a g l d y  is 
bounded in the neighborhood of ( t o , y o ) .  Hence, g satisfies a Lipschitz con- 
dition in this neighborhood. and the solution y ( t :  7 ,  () to (1.5.7) exists and 
is uniquely determined on the interval [ to .  T ]  if (7. () is sufficiently close to  
(to.90). It  also follows from Theorem 1.5.1 that this solution exists and is 
uniquely determined on J .  

Set 7 = t o  + h and define y1 by y1 = y ( t 0 ; t o  + h.yo). Then y1 + yo as 
h + 0.  Moreover, 

yl-yo = y(to:to+h.Yo)-Y(to+h:to+h,Yo) = - lr+h g(s.  y(s; t o f h .  yo))ds. 

It follows from the mean value theorem that there exists 0 < Q < 1 such that 

lr+h g(s,  ~ ( 8 ;  t o  + h,  y 0 ) ) d s  = g ( t 0  + Qh.v(to + Qh; t o  + h ,   YO))^, 

and taking into account that  g and y are continuous, we obtain 

y1 - yo = -g(to.yo)h + o(h)  as h -+ 0. 

Since the points ( t o  + h. yo) and ( t o .  y1) lie on the same solution, we obtain 

= - ( $ ( t :  t o ,  Y O )  + o( l ) )g ( to ,  yo)h + o(h)  

Hence, 

h 

and taking the limit as h + 0, we obtain (1.5.9). This completes the proof. rn 

1.6 STABILITY THEORY 

In this section we follow mainly the account of stability theory for differential 
equations as presented by Coppel [94. 951. Let y ( t )  be a solution to  the dif- 
ferential system (1.1.2). which is defined for all t 2 t o .  We have the following 
definitions. 

Definition 1.6.1 Solution y ( t )  to (1.1.2) is said to be stable ower the interval 
[ t o ,  x) if for each E > 0 there exists a 6 = b ( ~ )  > 0 such that any solution g( t )  
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to  (1.1.2) that satisfies the inequality ( l G ( t 0 )  - y ( t o ) l /  < 6 exists and satisfies 
the inequality iiF(t) - y ( t ) l /  < E f o r  all t L t o .  

Definition 1.6.2 Solution y ( t )  t o  (1.1.2) is  said t o  be asymptotically sta- 
ble if it is  stable and, in addition, lig(t) - y( t ) l l  + 0 as t ---f rn whenever 
I lF(t0)  - y(to)/l  is  su f ic ien t ly  small. 

Definition 1.6.3 Solution y ( t )  to  (1.1.2) i s  said to  be uni formly stable if f o r  
each E > 0 there exists a 6 = 6 ( ~ )  > 0 such that any  solution F(t) t o  (1.1.2) 
that satisfies the inequality Ilv(tl) - y(t1)ll < 6 f o r  some tl 2 t o  exists and 
satisfies the inequality llc(t) - y ( t ) l /  < E f o r  all t 2 t l .  

Definition 1.6.4 Solution y ( t )  t o  (1.1.2) is  said t o  be uni formly asymptoti- 
cally stable if it is  uni formly stable and, in addition, there is  a 60 > 0 ,  and 
f o r  each E > 0 a corresponding T = T ( E )  > 0 ,  such that if IlF(t1) - y ( t l ) / l  < 60 
f o r  some tl 2 t o ,  then  lIF(t) - y( t ) l l  < E f o r  all t 2 tl + T .  

Assume that y( t )  is a particular solution to (1.1.2) whose solution we are 
studying. Then by the change of variables 

2 = Y - Y ( t )  (1.6.1) 

this problem can always be reduced to  the problem of studying the stability 
of the zero solution z ( t )  = 0 of the corresponding new system 

d = G(t ,  X) := g ( t , z  + y ( t ) )  - g ( t ,  y ( t ) ) ,  t 2 t o .  (1.6.2) 

The condition i lF(t) - y( t ) l l  < 6 now takes the form lIE(t)II < 6, and the 
Condition II?J(t) - y(t)Il < E takes the form iiE(t)li < E .  Similarly, the condition 
liF(t)-y(t)ll -+ 0 as t -+ cc is now IlZ(t)ll i 0 as t i m. This implies that  the 
solution y ( t )  to  (1.1.2) is stable, asymptotically stable, uniformly stable, or 
uniformly asymptotically stable if and only if the same holds for the solution 
z ( t )  = 0 to (1.6.2). 

We discuss first the stability of solutions to the linear system 

y’ = A ( t ) Y  + q t ) ,  t 2 t o ,  (1.6.3) 

where the matrix A ( t )  and the vector b ( t )  are continuous functions of t for 
t 2 t o .  Then every solution to this system is defined for all t 2 t o .  Let y ( t )  
be a particular solution to (1.6.3). Then by making t,he substitution (1.6.1)) 
this system is transformed into the homogeneous system 

d = A( t ) x ,  t 2 t o ,  ( 1.6.4) 

which has a solution z ( t )  = 0 corresponding to  the solution y(t) .  It follows 
from the form of (1.6.4) that it is possible to express the conditions for vari- 
ous stability properties in a way independent of any particular solution y ( t )  
to (1.6.3) and the inhomogeneous term b ( t ) .  We will then say that (1.6.4) 
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possesses some stability property if the same is true for the zero solution of 
this system. 

Denote by X ( t )  a fundamental matrix of (1.6.4). i.e., the matrix with lin- 
early independent columns that satisfies the matrix differential system 

X ' ( t )  = A ( t ) X ( t ) .  t 2 t o .  

We have the following theorem. 

Theorem 1.6.5 S y s t e m  (1.6.4) as 
( a )  stable af and only af there exasts a posatave constant  K such  that  

pqt)l l 5 K for  t L to. (1.6.5) 

( a t )  unaformly stable af and only  af there exasts a posatave constant  K such  that  

~ ~ X ( t ) X - l ( s ) ~ ~  5 K for t o  5 s 5 t < oc. (1.6.6) 

( a n )  asymptotacally stable af and only  af 

IlX(t)II -+ 0 as t --+ 33. (1.6.7) 

(av) unaformly asymptotacally stable af and only af there exzst posatave constants  
K and cy such  that  

I I X ( t ) X - l ( ~ ) I l  5 Ke-"(t-s) for t o  5 s 5 t < x. (1.6.8) 

Proof: We can assume without loss of generality that X ( t 0 )  = I .  Then the 
solution to (1.6.4) with initial condition z(t0) = zo is given by 

z ( t )  = X ( t ) x o ,  t 2 to. 

Assume first that (1.6.5) holds. Then 

E 
Il4t)I/ 5 Kllzoll < if llzoll < -. K 

which shows that the zero solution to (1.6.4) is stable. Conversely, if IlX(t);coll < 
E for all zo such that I/zoII < 6. then 

which is equivalent to  (1.6.5) with K = €16. 

is 
Assume now that (1.6.6) holds. The solution to  (1.6.4) such that z(s) = E 

z ( t )  = x(t)x-l(s)E, to 5 s 5 t < oc. 
and it follows that 

Ilz(t)I( 5 KllEll < if ~ l 4 ~ ) ~ l  = IIEII < +. 
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to 5 s 5 t < co. This proves that the zero solution to (1.6.4) is uniformly 
stable. Conversely, if iiz(t)II = IlX(t)X-l(s)[ll < E for t o  5 s 5 t < 30 and 
all E such that llEll = llz(s)II < 6 then, similarly as before; 

which is equivalent to  (1.6.6) with K = €16. 

z(to) = zo satisfies 
Assume next that  (1.6.7) holds. Then any solution to  (1.6.4) such that 

II4t)ll = I/X(t)zo/l i IIx(t)lIIlzo/l -+ 0 as t -+ 30, 

which proves that the zero solution to  (1.6.4) is asymptotically stable. Con- 
versely. assume that the zero solution to  (1.6.4) is asymptotically stable. Then 
for any solution z ( t )  such that  to) = zo. l lzol l  5 6. we have llz(t)li -+ 0 as 
t -+ m. Hence, there exists To such that ( (To((  = 6 and 

This proves (1.6.7). 
Assume finally that (1.6.8) holds. Then (1.6.4) is also uniformly stable. 

Consider a solution z ( t )  to (1.6.4) such that z(s) = E ,  where liEll 5 6 = 1. 
t o  5 s 5 t < co. Then for each 0 < E < K we have 

/lz(t)ll = ~ ~ x ( t ) x - l ( s ) ~ ~ \  5 Ke-"(t-s)  < E 

for t 2 s + T ,  where T = -ln(E/K)/cr. This proves that (1.6.4) is uni- 
formly asymptotically stable. Conversely. assume now that (1.6.4) is uni- 
formly asymptotically stable and consider the solution to  (1.6.4) such that 
x ( s )  = E .  Then there exists a 6 > 0 and for each 0 < E < 6 a corresponding 
T > E such that if iiz(s)ii = i(Ei1 5 S for s 2 t o .  then 

~ ~ x ( t ) ~ ~  = / / x ( t ) ~ - l ( s ) < l /  < E for t 2 s +T 

Hence. 

(1.6.9) 

for s 2 t o .  
constant such that 

Moreover, it follows from (1.6.6) that there exists a positive 

llX(s + h)X-'(s)l( 5 I? for s 2 t o 3  0 5 h 5 T. (1.6.10) 

We will show that (1.6.9) and (1.6.10) imply (1.6.8). If t 2 s, we can write 

s $ a T <  t < s + ( n + l ) T  
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for some nonnegative integer n. Then it follows that 

. . . l / X ( s  + 2 T ) X - l ( s  + T)II IIX(s + T ) X - l ( s ) I /  

Define a constant (u by the relation 

ln(d6)  or a=---- 
6 T '  
' - e-cuT - -  

Then (u > 0, 
n+l - e-cu(n+l)T < e--CY(t--S) 

- 1 

and it follows that 

This is equivalent to (1.6.8) with K = z 6 / c .  I 

Consider next a linear homogeneous and autoiiomous system of the form 

X' = AX: t 2 t o .  (1.6.11) 

It is easy to verify that for this system! stability is equivalent to  uniform 
stability and asymptotic stability is equivalent to uniform asymptotic stability. 
We have the following theorem. 

Theorem 1.6.6 S y s t e m  (1.6.11) is stable i f  and only  i f  every eigenvalue of 
the  constant  m a t r i x  A has real part  less t h a n  o r  equal t o  zero, and those 
eigenvalues w i th  zero real parts  are simple.  T h i s  s y s t e m  i s  asymptotically 
stable if and only  if every eigenvalue of A has a negative real part .  

P r o o f :  Let T be a nonsingular matrix that transforms A into Jordan canon- 
ical form 

where 

J =  

1 

Ji 

52 

T-lAT = J1 

1 Ji = 

J ,  
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i = 1 , 2 , .  . . , v, and X i  is an eigenvalue of the matrix A corresponding to  the 
Jordan block Ji of dimension pi .  The fundamental matrix of (1.6.11) is 

X ( t )  = eA(t-to) = TeJ(t-to)T-l 

It can be verified that e J ( t - t o )  is a block diagonal matrix with blocks of the 
form 

Di = 

i = 1 , 2 , .  . . . v. Hence, lID,ll < co and, as a result. IleA(t-to)ll < m if Re(&) 5 
0 and A, is simple (i.e.. p, = 1). which is equivalent to stability. Similarly, 
lID,ll -+ 0 as t + 20, and consequently, IleA(t-to)/I + 0 as t + m if Re(&) < 0, 

The characterization of stability given in Theorem 1.6.6 is no longer possi- 
ble if matrix A in (1.6.11) depends on t .  A counterexample given by Vinograd 
[282] and reproduced by Dekker and Verwer [log] is provided by the homoge- 
neous system (1.6.4) with matrix A(t)  of the form 

which is equivalent to  asymptotic stability. I 

-1 - 9cos2(6t) + 6sin(l2t)  

-12sin2(6t) + gsin(l2t)  

12cos2(6t) + :sin(l2t) 

-1 - 9sin2(6t) - 6sin(l2t)  
A(t )  = 

The eigenvalues of this matrix are A1 = -1 and A2 = -10 for any t .  But the 
fundamental matrix corresponding to A(t)  is 

X ( t )  = 
eZt (cos(6t) + 2 sin(6t)) 

eZt(2cos(6t) - sin(6t)) 

e-13t( sin(6t) - 2 cos(6t)) 

e-13t(2 sin(6t) + cos(6t)) 

and as a result the corresponding system (1.6.4) is unstable. Other examples 
that illustrate this point are given by Coppel [95] and Hairer at al. [143]. 

We can also establish stability criteria for (1.6.4) which are based on the 
logarithmic norm p(A( t ) )  introduced in Definition 1.4.5. Some of these criteria 
are a consequence of the following result given by Coppel [94]. 
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Theorem 1.6.7 Assume that A(t)  in (1.6.4) is a continuous function o f t  
for t 2 t o .  Then for any solution x ( t )  to (1.6.4), we have the bounds 

Proof: It follows from the property Ip(A) - ,u(B)l 5 IjA - BII in Sec- 
tion 1.4 that p ( A ( t ) )  is a continuous function of t for t 2 to. It follows 
from Lemma 1.4.3 that Ilz(t)li has a right-hand-side derivative that is given 
bv 

Since 

it follows that 

or 
d+ 
-llz(t)(l dt - P(A(t)) l l~( t ) l l  5 0 .  

Multiplying both sides of this inequality by the integrating factor equal to  
exp(- st’, p(A(s))ds),  we obtain 

where 

Hence; w(t) is a nonincreasing function of t ,  and as a result, w( t )  I w(to), 
t 2 to, which is equivalent to  the upper bound in (1.6.12). The lower bound 
can be proved similarly by the change of variables t --f -t. 

This theorem implies the following stability criteria [94]. 

Corollary 1.6.8 Linear system (1.6.4) is 
(i) stable if 

p(A(s))ds < +x, 
t-m 
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( i i )  asymptotically stable if 

r t  

(iii) uni formly stable if 

(av) unaformly asymptotically stable if 

We investigate next the stability of solutions to a nonlinear system of the 

2’ = A(t)x  + f ( t , x ) ,  t 2 t o ?  ( 1.6.13) 

where A(t)  is a continuous function of t for t 2 to and f ( t .  z) is continuous in 
the region 

form 

D = ( t , x )  : t 2 t o ,  l/zll 5 M }  c IR x IWm. - {  
Then it follows from the Peano existence theorem, Theorem 1.3.4, that for any 
point (s.<) E 6. system (1.6.13) has a local solution x ( t )  such that z(s) = E .  

It is of interest to investigate under what conditions various stability prop- 
erties of homogeneous linear system (1.6.4) are inherited by the solutions to 
the “perturbed” system (1.6.13). For uniform stability and asymptotic sta- 
bility, an answer is given by the following theorem [94]. 

Theorem 1.6.9 A s s u m e  that  (1.6.4) as unaformly stable and let f ( t ,  x) satasfy 
the anequalaty 

Ilf(t,z)lj 5 r(t)IlxlI. t 2 t o .  (1.6.14) 

where y ( t )  as a contanuous nonnegatzve functzon such that 

t lo ?(s)ds 03. (1.6.15) 

( I n  particular, f ( t ,  0 )  = 0 and x = 0 is  a solution t o  (1.6.13)). T h e n  for each 
0 < E < M there exists a positive constant Q such that if tl 2 t o ,  any  solution 
x ( t )  t o  (1.6.13) for which llz(tl)ll < 6 = Q-’E is  defined and satisfies 

llx(t)ll L Qllx(t1)ll < E for all t 2 t l .  (1.6.16) 

In particular, the zero solution t o  (1.6.13) is  uni formly stable. IJ in addition, 
the zero solution t o  (1.6.4) is asymptotically stable, i.e., X ( t )  -+ 0 as t + m, 
then  x ( t )  + 0 as t + m, i e . ,  the zero solution t o  (1.6.13) is  asymptotically 
stable. 
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Proof; Assume that z ( t )  is a solution to (1.6.13). Then z ( t )  is also a solution 
to the nonhomogeneous linear system 

5' = A(t )z  + b ( t ) ,  t 2 t o ,  

where the vector function b( t )  is defined by b ( t )  = f ( t ,  z ( t ) ) .  By the variation 
of constants formula, the solution z ( t )  satisfies the relation 

t 

z ( t )  = X ( t ) X - ' ( t l ) z ( t l )  + 1 X ( t ) X - ' ( s ) f ( s , z ( s ) ) d s ,  t 2 t l ,  (1.6.17) 

where X ( t )  is the fundamental matrix of (1.6.4) such that X ( t 0 )  = I .  Since 
(1.6.4) is uniformly stable, it follows from Theorem 1.6.5 that there exists a 
positive constant K such that 

t l  

~ ~ x ( ~ ) x - ~ ( s ) ~ ~  I K for t o  5 s 5 t < m. 

Taking norms on both sides of inequality (1.6.17) and using the inequality 
above and (1.6.14); we obtain 

where 

This proves that the zero solution to (1.6.13) is uniformly stable. 
Assume next that X ( t )  --+ 0 as t -+ m. It follows from the first part of the 

theorem that if the solution z ( t )  to (1.6.13) exists for t 2 to, it is bounded, 
i.e., Ilz(t)II 5 C ,  t 2 t o  for some constant C.  It follows from the variation of 
constants formula that this solution satisfies the relation 

t 

z ( t )  = X ( t ) z ( t o )  + x(t)x-l(s)f(S,z(S))ds; t 2 t o .  Ji, 
Hence. for any tl 2 to, we obtain 

ll4t)ll I llX(t)ll l l ~ ( t O ) I l  
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It follows froni (1.6.15) that for any E > 0, we can choose sufficiently large 

Since X ( t )  + 0 as t + m, we can then choose t 2  L tl such that 

for t t 2 .  Hence, iix(t)II < E for t 2 t z .  which proves that ~ ( t )  + 0 as 
t + m. H 

For uniform asymptotic stability, an answer is given by the following result. 

Theorem 1.6.10 Assume that (1.6.4) is uniformly asymptotically stable, that 
as, 

~ ~ X ( t ) X - l ( s ) ~ ~  I K e -  a ( t - s )  . t o  5 s 5 t < m. 

for some constants K and a.  Let f ( t ,  x) satisfy the inequality 

Ilf(t,z)// I Y I I 4 .  

114to) l i  < 6 = - 

where the constant y < a / K .  Then for each 0 < E < M ,  every solution to 
(1.6.13) for which 

E 

K 
is defined for all t 2 t o  and 

l l~(t)l l  I Ke-P(t-s)IIx(s)II .  t o  I s I t < m, (1.6.18) 

where p = a - y K  > 0.  In  particular, the zero solution t o  (1.6.13) i s  uniformly 
asymptotically stable. 

Proof: Similarly as in the proof of Theorem 1.6.9, the solution z ( t )  to (1.6.13) 
also satisfies the integral equation 

or 
r t  
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where the scalar function w ( t )  is defined by 

Ilx(t) 1 1 .  w(t) = e 4 - - t l )  

Application of the Gronwall inequality implies that 

which is equivalent to (1.6.18). Assume that ~ ~ z ( s ) ~ ~  < 6 and for any 0 < E < 
K6 define T > 0 by T = - ln(c/(Kd^))/P. Then it follows from (1.6.18) that 

I /z( t ) / )  < Ke-OT6 = E for t 2 s + T .  

This proves that the zero solution to (1.6.13) is uniformly asymptotically 
stable. 

Important tools in the stability theory for differential systems (1.6.2) are 
based on the Lyapunov functions V ( t .  z). which satisfy the conditions: 
(i) V( t .  0) 3 0, 
(ii) V ( t ,  z) 2 u( llzil), where u(r )  is a continuous. monotonically increasing 
function, and u(0 )  = 0, 
(iii) V( t .  z ( t ) )  is monotonically decreasing for all solutions z ( t )  to (1.6.2) for 
which z(t0) is sufficiently small. 

It can be proved, for example, that the existence of such a function is a 
sufficient condition for stability of the zero solution to (1.6.2). This theory 
is not reviewed here. For a good account of stability theory based on this 
approach, we refer the reader to the classical book by Halanay [149]. 

1.7 STIFF DIFFERENTIAL EQUATIONS AND SYSTEMS 

In this section we discuss stiff differential equations and the phenomenon of 
stiffness. It is difficult to define stiffness in a mathematically rigorous manner; 
various more or less successful attempts at  this may be found in the literature 
on the subject. Miranker [215] observes that stiff differential equations are 
equations that are ill-conditioned in a computational sense, and that they seri- 
ously defy traditional numerical methods. Shampine in Aiken [2] and Burrage 
[31] observe that stiff equations are problems with large L(T - t o ) ,  where L is 
the Lipschitz constant of the differential equation and [to. T ]  is the interval of 
integration. Shampine and Gordon [262] state that roughly speaking, a stiff 
problem is one in which the solution components of interest are slowly varying 
but solutions with very rapidly changing components are possible. They also 
point out the difficulties of codes based on explicit methods to deal with such 
problems in an efficient manner. Similar comments are made by Dekker and 
Verwer [l09], who observe that the essence of stiffness is that the solution to 
be computed is slowly varying but that perturbations exist which are rapidly 
damped and that the presence of such perturbations complicates the numeri- 
cal computation of the slowly varying solution. This is reiterated by Butcher 
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[41], who points out that  systems whose solutions contain rapidly decaying 
components are referred to  as stiff differential equations. He adds that such 
problems are important in numerical analysis because they frequently arise 
in practical problems and because they are difficult to  solve by traditional 
numerical methods. Burrage [30] observes that stiffness is a difficult concept 
to  define since it manifests itself in so many different ways - but the crucial 
point is that while the solution to be computed is slowly changing. there exist 
perturbations that are rapidly damped but which complicate computation of 
the slowly changing solution. Lambert [195] points out that  stiffness occurs 
when stability requirements rather than those of accuracy constrain the step 
length, and that stiffness occurs when some components of the solution decay 
much more rapidly than others. Then he proposes a definition that relates 
to what we observe in practice: If a numerical method with a finite region of 
absolute stability, applied to a system with any initial conditions, is forced in 
a certain interval of integration to use a step length that is excessively small in 
relation to the smoothness of the exact solution in that interval the system is 
said to be stiff in that interval. This definition was also adopted by Quarteroni 
et al. [241]. Similar observations are made by Iserles [172], who states that  an 
ODE system is stiff if its numerical solution by some methods requires (per- 
haps in a portion of the solution interval) a significant depression of the step 
size to avoid instability. and by Moler [216], who says that a problem is stiff 
if the solution being sought varies slowly. but there are nearby solutions that 
vary rapidly, so that the numerical method must take small steps to obtain 
satisfactory results. Hairer and Wanner [146] point out that  stiff differential 
equations are problems for which explicit methods don’t work. Ascher and 
Petzold [14] observe that.  loosely speaking. the initial value problem is said 
to  be stiff if the absolute stability requirement dictates a much smaller step 
size than is needed to satisfy approximation requirements alone. They also 
remark that scientists often describe stiffness in terms of multiple time scales: 
If the problem has widely varying time scales, and the phenomena (or solution 
modes) that change on fast scales are stable. the problem is stiff. They also 
add that the concept of stiffness is best understood in qualitative rather than 
quantitative terms and that,  in general, stiffness is defined in terms of the 
behavior of an explicit difference method. LeVeque [a081 observes that the 
difficulty in integrating stiff systems arises from the fact that  many numerical 
methods. including all explicit methods, are unstable in the sense of absolute 
stability unless the time step is small relative to  the time scale of the rapid 
transient. which in a stiff problem is much smaller than the time scale of the 
solution we are trying to compute. He also adds that a stiff ODE can be 
characterized by the property that f ’ (u)  is much larger, in absolute value or 
norm, than u’(t), and that the latter quantity measures the smoothness of the 
solution u( t )  being computed. while f ’ (u)  measures how rapidly f varies as 
we move away from this particular solution. Dormand [116] observes that the 
problem is said to  be stiff if the eigenvalues of the Jacobian J = f’(u) differ 
greatly and that this can present severe problems for an integrator. 
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As observed by Shampine and Gear [259], Dekker and Verwer [log], and 
Burrage [31], considerable insight into the problem of stiffness can be obtained 
by considering the Prothero-Robinson problem [240] as solved by the (explicit) 
forward Euler and the (implicit) backward Euler methods. This is a scalar 
problem of the form 

y/ = X(y - F ( t ) )  + F ' ( t ) ,  

Y(t0)  = YO! 

t 2. t o ,  
(1.7.1) 

where Re(X) is large and negative and F ( t )  is a slowly varying function on 
the interval [ to ,  30). The exact solution to  this problem is 

y ( t )  = (yo - F(to))e+to) + F ( t ) ,  t 2 t o .  (1.7.2) 

Analysis of numerical approximations to (1.7.1) by forward and backward 
Euler methods will be aided by a linear difference equation of the first-order, 

Yn+l = a y n + c p n ,  n = O , l ; . . . ,  (1.7.3) 

whose exact solution is given by 

n-1 

yn = anyo + c an-3-1 pj. n = 0 . 1 .  . . . .  (1.7.4) 
3=0 

Consider first the forward Euler method, 

Yn+l = 1Jn + hg(tn, yn), 72 = o> 1 ; .  . . , 

for the numerical solution of (1.1.2). The local discretization error of this 
method has the form 

1 
2 
- ~ ~ y t )  + o(h3).  

where y ( t )  is the exact solution to  (1.1.2). This method applied to (1.7.1) 
takes the form 

Ynf l  = (1 + hX)yn - h(XF(t,) - F / ( t n ) ) .  72 = 0 , l . .  . . , (1.7.5) 

which is of the form (1.7.3) with 

a = 1 + hX, p n  = -h(XF(tn)  - F / ( t n ) ) .  

It follows from (1.7.4) that  the solution to  (1.7.5) is given by 

n-1 

yn = (1 + hX)"yo - h C ( 1 +  hX)n-3-1(XF(t3) - F ' ( t g ) ) ,  ( 1.7.6) 
3=0 
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n = 0 , 1 , .  . .. We analyze first the behavior of yn as n -+ 00; assuming that 
nh = t - t o  is fixed. Then 

t - t o  , tj  - t o  
n = -  j = -  

h ’  h ’  

and (1.7.6) can be written in the form 

n = 0.1, .  . .. Routine calculations yield 

t 
lim yn = ,X(t-to)yo - ex(’-“) XF s ( ( 1 - F ’ ( s ) ) d s  

n-.Co,nh=t-to Lo 
= ex(t- tO)(yo - F ( t 0 ) )  + ~ ( t ) ,  

which shows that yn is convergent to the solution (1.7.2) of (1.7.1) at  the 
point t as n + cc. A more careful analysis reveals that 

yn = e W - t o )  (Yo - W o ) )  + F ( t )  + O(h)  

as h -+ 0, which demonstrates convergence of order 1. 
We analyze next the behavior of yn given by (1.7.6) as n -+ IX but the step 

size h is fixed. Since the function F ( t )  is slowly varying, we can assume that 

lim F ( t )  = cp, lim P ( t )  = 0. 
t-m t-+w 

(1.7.7) 

These assumptions imply that for every E > 0 there exists N such that for 
j > N we have 

E X E  IW,) - cpI < 2’ 1w.J < 2’ 
or, equivalently, 

E X E  
F ( t J  = Cp + &,32.  F’(t3) = - 8 2 , q ,  ( 1.7.8) 

where (81.31 5 1 and 1Q2,31 5 1 for j > N .  For n > N ,  splitting the sum 
in (1.7.6) into two parts and substituting the above relations for F ( t 3 )  and 
F’(t3) yn. can be written in the form 

N 

yn = (1 + hX)”yo - h C ( 1 +  hX)n-J-1(XF(t3) - F’( t3) )  
3=0 

hXE n-l 
n-1 

- h~~ C (1 + h ~ ) ~ - ~ - l  - - C (1 + hX)n-3-1(e1,, + Q ~ , ~ )  
j=N+1 

2 
j=N+1 
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Since 

y, can be written in the form 

where r, is given by 

We have 

where 

and it follows that 

for n > N and 
lim y, = lim y ( t )  = cp 
12-30 t-m 

only if we impose a restriction on the step size of integration h of the form 

11 + hXI < 1. (1.7.9) 

Observe that C = 1 if X < 0 and 1 + hX > 0. Hence, the forward Euler 
method can resolve the proper behavior of the solution y(t)  given by (1.7.2) to 
problem (1.7.1) for large t only if condition (1.7.9) is satisfied. This condition 
is a severe restriction on the step size h if Re(X) is large and negative (i.e., if 
problem (1.7.1) is stiff). In contrast, as argued by Shampine and Gear [259], 
the accuracy requirement, i.e., the requirement that  the principal part of the 
local discretization error 

1 1 
2 2 
-h2y"(t) = -h2( (yo - F ( t o ) ) X W t - t o )  + F l y ) )  
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is approximately equal to the given accuracy tolerance Toll is easy to  satisfy 
except in a small initial transient for which the term (yo - F ( ~ o ) ) X ~ ~ ’ ( ~ - ~ O )  
dominates. For small t - t o  the requirement ih21y”(t)l = To1 leads to 

(1.7.10) 

and the step size needed for accuracy must be quite small to  resolve the initial 
rapid change in the solution. For large t-to the exponential term is negligible, 
i.e., 

1 1 
Zh2y”(t)  x -h2F/’( t ) :  

2 
and the requirement ;h2IF”(t)l = To1 leads to  

(1.7.11) 

so after the small initial transient the step size becomes quite large and in- 
dependent of A. For stiff problems this step size does not satisfy condition 
( 1.7.9). 

Consider next the backward Euler method for the numerical solution of 
(1.7.1). This method takes the form 

Yn+l = Yn + hg(tn+l.yn+l), 72 = 0 . 1 , .  . . , 

and its local discretization error is given by 

1 
2 

- - ~ ~ y t )  + o(h3).  

Application of this method to  (1.7.1) leads to the recurrence relation 

Yn+l = Yn + h(X(Yn+l + W n + l ) )  + F/( tn+l ) ) ,  

72 = 0 , l . .  . .. or 

This equation is of the form (1.7.3) with 

and it follows from (1.7.4) that  the solution to (1.7.12) is given by 



V

n = 0.1, .  . .. Consider first the behavior of yn given by (1.7.13) as n -+ cx 
and nh = t - t o  is held fixed. It is then easy to verify that the first term on 
the right-hand side of (1.7.13) tends to 

ex( t - to)  

and the second term on the right-hand side of (1.7.13) tends to the expression 

Hence, 
(Yo - W o ) )  + F ( t ) .  lim y, = ex(t-to) 

n-co,nh=t-to 

and it follows that gn is convergent to the solution (1.7.2) of (1.7.1). Moreover, 
similar to the case of the forward Euler method, a more careful analysis reveals 
that 

yn = e w t - t o )  (Yo - W o ) )  + F ( t )  + O(h)  
as h -+ 0, which again demonstrates convergence of order 1. 

As in the case of the forward Euler method, consider next the behavior 
of yn given by (1.7.13) as n -+ cc but with the step size h kept constant. 
We again assume (1.7.7) so that the relation (1.7.8) holds with and 92,3 

bounded in modulus by 1 for large j .  Splitting the sum in (1.7.13) into two 
parts and substituting (1.7.8) into the second part, we obtain 

Since 

(&Jn-j = &((&Jn-N - l) ,  
j=N+1 

yn can be written in the form 

n = 0,1 , .  . ., where 
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We have 

where 

for X < 0 and n > N .  As a consequence, 

lim y, = lim y(t)  = cp; 
R’OC t-im 

that is. the backward Euler method can resolve the proper behavior of the 
solution (1.7.2) to (1.7.1) for large t - t o  without any restrictions on the step 
size of integration h. Hence, the step size h can be chosen to satisfy only the 
accuracy requirement 

ih21y”(t)l = Tol, 
2 

which, similarly as in the case of the forward Euler method. leads to formula 
(1.7.10) in an initial transient when t - t o  is small and to  formula (1.7.11) 
when t - t o  is large. 

As explained in Section 2.6 condition (1.7.9) defines the region of absolute 
stability of the forward Euler method, while the condition 

iAl (1.7.14) 

defines the corresponding region of absolute stability of the backward Euler 
method. This illustrates again that for stiff equations (i.e.. equations for which 
Re(X) is large and negative) the step size h is restricted by stability (condition 
(1.7.9)) rather than accuracy in the case of the forward Euler method. In 
contrast, the step size is restricted only by accuracy in the case of the backward 
Euler method since stability condition (1.7.14) is satisfied automatically if 
Re(hX) < 0. 

We can also obtain stability conditions on the step size of numerical algo- 
rithms considering the error propagation of the forward and backward Euler 
methods (compare [259]). Define the global discretization error e, at the point 
t ,  by 

en = d t n )  - VYn, 

where y ( t )  is the solution to  (1.7.1) and yn is an approximation to y( t , ) .  For 
the forward Euler method we have 
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n = 0 , 1 , .  . ., and subtracting these equations, we obtain the error equation, 

1 
en+l - - (1 + hX)e, + ,h2y”(t,) + 0 ( h 3 ) .  (1.7.15) 

It follows from this relation that the error e,+l a t  the next grid point tn+l = 
t ,  + h consists of the error (1 + hX)e, propagated from the previous step t ,  
and the local discretization error ih2y”(t,) + O(h3) at the point tn+l. The 
propagated error is damped whenever 11 +hX( < 1, which leads to the stability 
condition (1.7.9) for the forward Euler method. In contrast, for the backward 
Euler method, we have 

Yn+l = Yn + h(X(Y,+l - F ( t n + l ) )  + F’(tn+1)), 

1 
~ ( t , + ~ )  = Y(M + h ( ~ ( g ( t , + ~ )  - ~ ( t , + ~ ) )  + F’(t,+l)) - 1h2Y’’(t,) + 0 ( h 3 ) ,  

and the error equation takes the form 

1 1 
e,+l = -en - h2y”(t,) + o(h3),  

1 -hX 2(1-hX) 
(1.7.16) 

n = 0 . 1 , .  . .. Hence, it follows that the propagated error is damped whenever 
1/11 -hXI < 1. which leads to the stability condition (1.7.14) for the backward 
Euler method. As already observed, this condition is satisfied automatically 
if Re(X) < 0, so there are no stability limitations on the method and the step 
size is restricted only by accuracy requirements. 

Additional insight into the phenomenon of stiffness can be obtained by 
considering a family of local problems 

n = 0 , l . .  . .. defined on the subintervals [tn,tn+l], whose solutions qoc(t) are 
given by 

+ F ( t ) ,  t E [tn,tn+l]. (1.7.18) A ( t - t n )  

These solutions are shown by thin lines in Fig. 1.7.1. This figure corresponds 
to t ,  = t o  + nh, h = 1/2. 6, = (-l),. n = 1 , 2 , .  . . . 19. X = -10, and the 
slowly varying function F ( t )  defined by 

YlOC(t) = 6ne 

F ( t )  = 2e-t/4 cos(t). 

We also show by a thick line the global solution to (1.7.1) corresponding to  
the initial condition y(t0) = yo = -1. 

We can observe that the perturbation 6, in (1.7.18) is rapidly damped by 
the negative exponential e x ( t - t n ) ,  and the local solutions yloC(t) to (1.7.17) are 
rapidly convergent to the global solution y(t) of ( 1 . 7 4 ,  which is approximately 
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Figure 1.7.1 
for t E [0, lo], y(0) = -1, F ( t )  = 

Global and local solutions to the Prothero-Robinson problem (1.7.1) 
cos(t),  and X = -10 

equal to F ( t )  for stiff problems, except for a short initial transient. Since the 
forward Euler method follows the slope yioc(tn) = X6, + F’(t,) of the local 
solution at the point t,, any small perturbation 6, is greatly amplified by 
X if the problem is stiff. As a result, yioc(tn) is a poor approximation to 
y’(t,) x F’(t,), which leads to instability of the forward Euler method if the 
step size is not drastically reduced. The perturbation 6,+1 = yn+1 - F(t,+l) 
propagates according to the formula 

which resembles the error equation (1.7.15), and we again obtain the stability 
restriction (1.7.9). In contrast, the backward Euler method follows the slope 
yioC(t,+l) = X6,eXh + F’(t,+l) of the local solution at  tn+l, which is a much 
better approximation to y’(t,+l) E F’(t,+l) because X6, is rapidly damped 
by the exponential e X h ,  especially if the step size is large. This is the case 
once the initial transient is resolved and the step size is selected according to 
(1.7.11). The perturbations propagate according to the formula 

which resembles error equation (1.7.16). and we again obtain the condition 
(1.7.14). which does not lead to step size restrictions. 

Following Dekker and Verwer [109]. we consider next the linear system of 
differential equations 

( 1.7.19) 
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with matrix A given by 
1 

A = [  0 -- i : ] ,  

where Id1 < 1 is a moderate constant, E > 0 is close to zero, and dE + 1 # 0. 
The solution to this problem is 

& ( t - t o )  - , - ( t - t o ) / e  
e d ( t - t o )  

d E + l  1.0, t > t o .  
I 0  e - ( t - t o ) / e  

Y( t )  = 

This solution has a rapidly varying component e-( t - tO)/E,  which dies out af- 
ter a short initial transient, and as a result the smooth component ed( t - to)  
dominates the solution for large t - t o .  This leads to stiffness. However, the 
problem is not called stiff in the transient phase, where e-(t-tO)/E is still ac- 
tive. In this phase it is then natural to use small step sizes to resolve rapidly 
changing components. 

We also have the following relationship between the solution y ( t )  to (1.7.19) 
at the points t ,  and tn+l = tn  + h: 

y( tn+ l )  = Xy(tn). 

where 

It can be verified that matrix X can be diagonalized by a similarity transfor- 
mation PXP-l ,  where the matrices P and P-l are 

Hence, it follows from [228, Theorem 1.3.81 that there exists a matrix norm 
/ /  . / /  such that p(X) = llX//, where p(X) is the spectral radius of X .  Denote 
by the same symbol, / I  . 1 1 ,  a consistent vector norm (i.e., a norm such that 
//Xwll 5 ~ ~ X ~ ~ ~ ~ Z J ~ ~ ) .  The existence of such norm was demonstrated by, for 
example, Householder [163: p. 421. Hence, 

Ily(tn+l) 1 I 5 max { edh,  e- ' lE}  I l ~ ( t n )  1 1  = edh 1 1  y( tn )  1 1 .  
It follows from this relation that the norm i ~ y ( t ) i ~  of the solution y ( t )  to (1.7.19) 
can be amplified over the interval [t,, t,+l] by a factor edh if d > 0, and it is 
damped if d < 0. 
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We now consider approximations to (1.7.9) computed by the forward and 
the backward Euler methods. The forward Euler method takes the form 

where 

We also have 

1 2 / I  
y ( L + i )  = X F E Y ( ~ )  + Th Y (in) + O(h3) ,  

and subtracting these relations we obtain the error equation, 

1 2 / I  
en+1 = XFEen + I h  Y (L )  + O(h3) .  

It can be verified that the matrix X F E  can be diagonalized by the same 
similarity transformation P X F E P - ~  as the matrix X with P and P-’ given 
by (1.7.20). Hence, there exists a matrix norm 1 1 . 1 1  such that ~ ( X F E )  = ~ ~ X F E I I  
and the corresponding consistent vector norm 1 1  . 1 1 .  and we have 

h 1 
I len+ll l 5 ma,{ 11 + hdl, 11 - ;l}llenll + ,h211Y”(tn)ll + W3). 

If d > 0, the norm llenll of the error should grow no faster than the norm of 
the solution Ily(tn)ll, which grows at most by a factor edh = 1 + hd + O(h2) .  
This leads to the condition 

/ l - - - I < l + h d ,  h 

and we obtain the step size restriction 

2E 2 
h < - < -  6 ,  1 - Ed 1 - Cod 

for E < €0, where €0 > 0 is a constant. If d < 0, the norm llenll of the error 
should be damped. This leads to the conditions 

1 
Il+hdl < 1 and 1 -  - < 1 I € 1  

and we obtain the step size restrictions 

2 
d 

h <  -- and h <  2 ~ .  
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In either case, the step size must be restricted by some constant times E and 
the forward Euler method becomes very inefficient once the initial transient 
is resolved. 

Consider next the approximation to (1.7.19) by the the backward Euler 
method. This leads to the recurrence relation 

with the matrix X B E  given by 

r i  h 
1 - dh (1 - dh)(E + h)  

E I- - E f h  

X B E  = 

We also have 

and the error equation takes the form 

1 2 If 
en+l = XBEen - -h 1J (tn) -k O(h3).  

2 

As before, it can be verified that X B E  can be diagonalized by a similarity 
transformation PXBEP- ' ,  where P and P-' are defined by (1.7.20). Hence, 

where we have again chosen a matrix norm 1 1  . 1 1  such that ~ ( X B E )  = IIXBEI/ 
and the corresponding consistent vector norm ( 1  . 1 1 .  If d > 0 and h < l / d ,  
then for any E > 0 the norm of the error llenll can grow at  most by a factor 
l / ( l - h d ) ,  which is consistent with the growth factor edh = 1/(1-hd)+O(h2) 
of the solution. If d < 0, the norm of the error llenll is always damped for any E .  

Hence, in either case, there are no restrictions on the step size, which depend 
on the stiffness parameter E even if we admit infinite stiffness as E + cc, and 
the step size of the backward Euler method can be chosen only according to 
accuracy requirements. 

We consider next the initial value problem for linear systems of differential 
equations 

(1.7.21) 

where A E RmX" is a constant matrix and y ( t )  is a time-dependent forcing 
term. Assuming that A has m distinct eigenvalues XI, Xz, . . . , A, with corre- 
sponding eigenvectors '~1,212,. . . , w,, the general solution to (1.7.21) has the 
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m 
form 

y(t) = C c , u t e x t ( t - t o )  + +(t) .  t 2 t o ,  ( 1.7.22) 

where the c, are arbitrary constants and $( t )  is a particular solution. If 
Re(A,) is large in absolute value and negative, the corresponding exponential 
term c,u,ext(t-to) in (1.7.22) is rapidly damped which indicates stiffness. This 
motivates to characterize the stiffness of (1.7.21) in terms of the conditions 
imposed on the spectrum of the matrix A. For example, Dekker and Verwer 
[log] call the problem (1.7.21) stiff if the following conditions are satisfied: 

2=1 

1. There exist eigenvalues A, of A for which Re(A,) is negative and large 
in absolute value. 

2. There exist A, of moderate size (i.e., IA,/ is small compared with the 
modulus of eigenvalues satisfying 1). 

3. There are no eigenvalues for which Re(&) is large and positive. 

4. There are no eigenvalues for which Im(A,) is large unless Re(&) is also 
large in absolute value and negative. 

It is also customary to define the stiffness ratio T,  as 

max IA,l 
i = 1 , 2 ,  ..., m ” I  

k 1 , 2  ..... m 

r ,  := 
min I A i l ’  

( 1.7.23) 

Somewhat different definitions of stiffness which appear in the literature may 
require that Re(&) < 0 for all z (compare [116. 195. 2411). 

Condition 4 in the Dekker and Verwer [log] definition was added to exclude 
highly oscillatory problems. Such problems require special treatment, and 
their numerical solution has been discussed in. e.g.. [142. 173, 174, 203. 2151. 

1.8 EXAMPLES OF STIFF DIFFERENTIAL EQUATIONS AND 
SYSTEMS 

In this section we have listed some examples of stiff differential systems that 
are used in a numerical analysis community to test and compare various codes 
for such equations. The scalar stiff differential equation (1.7.1) due to Prothero 
and Robinson [240] was already discussed in Section 1.7 to provide a simple 
introduction to the phenomenon of stiffness. What follows are examples of 
stiff differential systems of small and moderate dimension taken from the 
monograph by Hairer and Wanner [146]. 

VDPOL - the van der Pohl equation [146]. This corresponds to the differen- 
tial equation of the second order which describes oscillations in an electrical 
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circuit. This equation, written as a first-order system, takes the form 

Y: = Y2. 
(1.8.1) 

t E [0, tout], tout = 1,2 ,  3 , .  . . ,11. Here E corresponds to the stiffness param- 
eter and the typical value is E = lop6.  

ROBER - a system describing the chemical reactions of Robertson [247]. 
This is a system of three differential equations of the form 

where the interval of integration is usually chosen as t E [0, tout], tout = 40. 
However. to test the reliability of codes for stiff equations, this system is also 
solved for tout = 1,10, lo2. .  . . , lo l l .  and less reliable codes are unable to 
reach the end of the interval of integration. due to the overflow to --co of the 
component y2. 

OREGO - the Oregonator. This is a system of three ordinary differential 
equations describing the Belusov-Zhabotinskii reaction [125. 1281. This sys- 
tem takes the form 

1 
77.27 Y; = -(Y3 - (1 + Y l ) Y Z ) ,  Y2(0) = 21 (1.8.3) 

t E [0, tout], where tout = 30,60,.  . . ,360. 

HIRES - a chemical reaction that describes the growth and differentiation 
of plant tissue independent of photosynthesis at  high levels of irradiance by 
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light. This system of eight equations proposed by Schafer [248] takes the form 

t E [O,tout], where tout = 321.8122 and tout = 421.8122. 

PLATE - a boundary value problem for the partial differential equation that 
describes the movement of a rectangular plate under the load of a car passing 
across it [146]. This problem is defined by 

d2u au 
- + 0- + fYAAu = f(.; y,  t ) ,  (z: y )  E 0, at2 at t E [ O ,  tout], 

u( = 0, 
an 

AuI = 0 ,  
an 

(1.8.5) 

tout = 7, where 

Following Hairer and Wanner [146] we consider the load f ( z ,  y ;  t),  which is 
idealized by the sum of two Gaussian curves that move in the x-direction and 
reside on four wheels. This load takes the form 

if y = yz or y4. 

for all other y .  

) 200(e-5(t-Z-2)2 + e-5(t-Z-5)2 L f(X,Y,t) = 

This problem is discretized on a grid of 8 x 5 interior points 5, = ih. y j  = j h ,  
h = 2 19, where d2u f dt2 is approximated by finite differences of the second 
order, du f a t  by forward difference, and the plate operator AA is discretized 
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by the standard computational molecule, defined by 

1 

2 -8 2 

1 -8 20 -8 1 . 
2 -8 2 

1 

The friction and the stiffness parameters are w = 1000 and o = 100. T is 
leads to a linear and nonautonomous example of medium stiffness and medium 
size. The resulting system is then of dimension 80 with negative real as well 
as complex eigenvalues X that satisfy -500 5 Re(X) < 0. 

BEAM - a problem that describes the discretization of a stiff elastic beam 
clamped at  arc length s = 0 with external force acting at  the free end s = 1. 
As explained by Hairer and Wanner [146], this results in a system of a second- 
order differential equations for the angles 01 = e,(t) between the tangents to 
the beam and vertical axis at discrete arcs lengths sl, similarly to the ROPE 
problem described in Section 1.2. This system takes the form 

n n 

Cukrek = - C blkb; + n 4 ( ~ l - 1  - 2el + el+1) 
k = l  k=l 

+ nz (  cos(el)F, - sin(Bl)F,), 
(1.8.6) 

eo = -el, en+, = en! 

t E [O. T ] ,  1 = 1 , 2 , .  . . . n. where as in the ROPE problem 

1 
2 

allc = g l k  cos(8l - &)! blk = glk sin(8, - &). glk = n + - - max{L, k}! 

and the external forces F = (F,,F,) acting at the free end s = 1 take the 
form 

This system will be solved for n = 40 with initial conditions 

e l (o)  = b l (o )  = 0, i = 1, 2 , .  . . , n, 

on the interval [0,5]. As for the ROPE problem, setting 
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system (1.8.6) can be written in vector form as 

A d  = -Bd2  +v( t ,Q) ,  t E [O,T], 

O(0) = e(0) = 0, 

where Q 2  denotes componentwise exponentiation and 

(1.8.7) 

is defined by 

V L  = n4 - 281 + 81+1) + n2 ( COS(Q~)F, - sin(Ql)F,), 

1 = 1 , 2 , .  . . , n, with the relations 190 = -81. en+, = Qn (compare (1.8.6)). The 
eigenvalues of the Jacobian matrix for this problem vary between -6400i and 
6400i (compare [146]). 

The acceleration vector 0 can be computed by the algorithm already de- 
scribed in Section 1.2 for the PLATE problem. This algorithm takes the 
following form: 

1. Compute u! = DV + 8’. 
2.  Solve the tridiagonal system Cu = w. 

3. Compute 0 = cv + D U .  

Here matrices C and D are defined in the description of the PLATE problem 
in Section 1.2. 

HEAT - a system of differential equations resulting from discretization of 
the boundary-value problem for the heat equation in one dimension. This 
problem takes the form 

d U  d 2  U 
- (x , t )  = a-(x,t), 0 5 2 5 1, t 2 0, dt  at2 

u(0,t)  = u(1, t )  = 0, t 2 0, (1.8.8) 

where CT > 0 is a given constant and g(z) is a given initial function. 

mating d2u/dt2 at  the point x, by the finite difference of second order, 
Setting 5,  = iAx ,  i = 0.1 , .  . . . N + 1, where ( N  + 1)Ax = 1 and approxi- 

u(z,+1. t)  - 2u(z,, t )  + u(x,-1. t)  

(Ax), 
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leads to the initial value problem for the system of differential equations of 
the form 

(1.8.9) 

YZ(0) = g(z2): 

i = 1 , 2 , .  . . , N ,  where yo@) = 0, y ~ + l ( t )  = 0, y i ( t )  FZ u ( ~ i , t ) ,  i = 1 , 2 , .  . . , N .  
Introducing the notation 

J L L 

and 

where 

problem (1.8.9) ca 

. .  
0 0 0 * "  2 -1 

0 0 0 1 . .  -1 2 

be written in vector form a 

E RrnXrn, (1.8.10) 

Problems of this type also describe the interconnected resistor-capacitor line 
(see [202, 2041). 

To investigate the stiffness of (1.8.11), we compute first the eigenvalues of 
the matrix a ~ .  Set 

Pm(E) = det ([Im - am) 

where Im is identity matrix of dimension m and am is defined by (1.8.10), 
and define Po(<) = 1. Then PI(<) = E -  2, and expanding det(EIm -am) with 
respect to the first row it can be verified that the polynomials Pm(<) satisfy 
the triple recurrence relation 

Pm(E) - ( E  - 2)Pm-l([) + Pm-Z(E) = 0, m 2 2. 
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Set ' = < - 2 and P,(c) = P,(< - 2 )  = Pm(<). Then this recurrence relation 
can be written as 

(1.8.12) 

The characteristic polynomial of (1.8.12) takes the form 

and has real roots 

for -2 < $ < 2. It follows that 

where the constants A and B satisfy the system of equations corresponding 
to the initial conditions in (1.8.12). This system takes the form 

- 
Po(') = A + B = 1, 

- -  
PI (6) = A TI + B r2 = ', 

and its solution is 

Substituting A, B ,  r1, and 1-2 into Fm('), after some computations we obtain 

Since ' - 4- # 0 for -2 < $ < 2,  it follows that the roots of Pm(<) 
satisfy the relation 

I - 
< + 4 c 2 - 4  = exp (-) 2 ~ k i  , 
;i- J:-4 m + l  
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k = 0: 1,. . . , m. But k = 0 implies that, &' - 4 = 0, which must be ruled 

Then 

d s ( 1  f 8,) = f ( @ k  - 1) 

or 
(C2-4) ( i+8k) '  =z2(8k-1) ' ,  

Solving this equation with respect to  f ,  we obtain 

-2 (1 +8k)' 
@k 

E =  

or 

where Cpk = 2k7r/(m + 1). This relation can be simplified to  

and it follows that the roots of Fm(C) are given by 

Hence: the roots of P,(<) are 

and since Q N  = ( ~ / ( A Z ) ~ ) ~ N ,  the eigenvalues XI, of the matrix -QN take 
the form 

Since Ax = 1/(N + 1): we have 
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for large N .  Hence, the stiffness ratio r,  defined by (1.7.23) is 

and problem (1.8.11) is becoming increasingly stiff for large values of N, which 
determines the accuracy in space variable 2 .  



CHAPTER 2 

INTRODUCTION TO GENERAL LINEAR 
METHODS 

2.1 REPRESENTATION OF GENERAL LINEAR M E T H O D S  

To motivate the class of general linear methods (GLMs), we quote after 
Butcher [40]: “Following the advice of Aristotle, we look for the greatest 
good as a mean between extremes. Of the various methods devised as gener- 
alizations of the classical method of Euler, two extreme approaches are usually 
followed. One is to generalize the Euler method through the use of multistep 
methods; the other is to increase the complexity of one-step methods as in the 
Runge-Kutta methods. General linear methods are introduced as a middle 
ground between these types of generalization.” 

Consider the initial value problem for an autonomous system of differential 
equations, which we write in this chapter in the form 

(2.1.1) 
Y’(t) = f(Y(t)), t E [to:TI, 

Y( t0)  = Yo, 

f : Rm + R”, yo E R”. GLMs for (2.1.1) can be represented by the abscissa 
vector c = [q, . . . , c , ] ~ ,  and four coefficient matrices A = [a i j ] ,  U = [uij], 

General Linear Methods for Ordinary Differential Equations. By Zdzislaw Jackiewicz 
Copyright @ 2009 John Wiley & Sons, Inc. 
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B = [bb3],  and V = [wt3]. where 

A E EXsxs, U E R s x r ,  B E E X r x s .  V E RTxr  

On the uniform grid t ,  = to+&, n = 0 .1 , .  . . , N ,  N h  = T-to, these methods 
take the form 

S r y["] = h C a i j  f (kji"]) + c l " " y j  1-11 , i = 1 , 2 , .  . . , s, 

yp1 = h c bij f (?[^I) + c uijyj [,-I1 , 
S r (2.1.2) 

j=1 j=1 

i = 1, 2 ,  . . . , T ,  

j=1 j=1 

n = 0 ,1 , .  . . , AT. where s is the number of internal stages and r is the number 
of external stages. which propagate from step to step. Here. h is a step size, 
x["] is an approximation (possibly of low order) to y(t,-l + c,h), and y:nl 
is an approximation to the linear combination of the derivatives of y at  the 
point t,. This will be made more precise later. As discussed by Butcher and 
Burrage [33. 41, 521, method (2.1.2) can be represented conveniently by the 
abscissa vector c and a partitioned (s + T )  x (s + T )  matrix 

Introducing the notation 

(2.1.2) can be written in the vector form 

Here I is the identity matrix of dimension m (i.e., the dimension of the ODE 
system (2.1.1)), and the Kronecker or tensor product of two matrices A E 

and B E F P X n 2  is defined as a block matrix of the form 

A @ B =  
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(compare [197]). These methods include as special cases many known methods 
for ODES. For example, Runge-Kutta (RK) methods given by 

n = 0: 1,.  . . N ,  or by the Butcher tableaux 

can be represented as GLh4 (2.1.2) with T = 1 in the form 

For a thorough discussion of RK methods we refer readers to  the monographs 
[41, 52, 143, 146, 1991. 

Consider next the class of linear multistep methods defined by 

k k 

(2.1.4) 
j=1 j = O  

= k, k + 1, .  . . , N .  Putting YIn1 = yn and 
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method (2.1.4) for scalar ODES has a representation with T = 2k and s = 1 
of the form 

This representation was first proposed by Burrage and Butcher [33] (compare 
also [54]). More compact representation is possible for special cases of (2.1.4). 
For example, Adams methods can be represented with r = k + l  and backward 
differentiation formulas (BDFs) with T = k (compare [52, 2931). A more 
compact representation of general linear multistep formulas (2.1.4) with T = k 
and s = 1 was discovered recently by Butcher and Hill [63]. Following [63], 
we define 

k 

y/n-ll = c ( w n + k - z - J  + w J f ( 1 J n + k - t - J ) ) *  

j = k - 2 + 1  

z = 1 , 2 . .  . . , k .  This formula was previously proposed by Skeel [264], although 
not in the context of GLNs. Then method (2.1.4) can be written in the form 

k 

1Jn = hPof(Yn)  + c (%Yn-J + hPjf(Yn-3)) = hPof(Yn) + Y p - ' ] .  
J=1 

and we have 

k 

p = c (QJYn+l+k-Z-j + h P J f ( Y n + l + k - Z - J  1) 
J=k-2+1 

= Qk-%+lYn  f h P k - t + l f ( W n )  

k 

+ c ( % Y n + l + k - % - j  + h P J f ( Y n + l + k - z - j ) )  

~ = k - t + 2  

[n-11 [n-11 
= (LYk-t+lPO + P k - t + l ) h f ( Y n )  + Lyk- t+ lyk  + , 
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i = 1, 2 , .  . . , k .  This leads to the representation 

Yn 

yi"' 
Y F  
Y F  

In1 
yk-1 

QkPO + P k  

Qk-1PO + P k - 1  

Q k - z P o  + P k - 2  

Q2Po  + Pz 
Q l P O  + P1 

To simplify the error analysis for linear multistep methods (2.1.4) for stiff 
differential systems Dahlquist [loo, 1021 introduced the corresponding class 
of one-leg methods defined by 

(2.1.5) 

k 
n = k. k + 1. .  . . . N ,  a0 = 1, p = c,=o P3,  which require only one evaluation 
of the function f per step. As pointed out by Hundsdorfer and Steininger 
jlS9], compared with the corresponding linear multistep method, the one-leg 
method (2.1.5) may have stronger nonlinear stability properties, such as G- 
stability, and more robust behavior on nonuniform grids (compare [101, 2211). 
Set 

Then substituting (2.1.5) into this relation for Y[nl, we obtain 

Setting 
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method (2.1.5) for scalar ODES has a representation as GLM (2.1.2) with 
T = k and s = 1 of the form 

0 0 1 0 . . .  

(compare [41]). A different representation of one-leg method (2.1.5) as GLM 
(2.1.2), where the vector of external approximations was specified in reverse 
order and a different normalization QO # 0 and ,8 = 1 was used. was consid- 
ered by Butcher and Hill [63]. In this representation the coefficient matrix 
(A, U, B, V) for the one-leg method written as a GLM is the transpose of the 
coefficient matrix of the linear multistep method written as a GLM with k 
inputs, subject to this different normalization. 

An interesting class of extended backward differentiation formulas (EBDFs) 
suitable for the numerical solution of stiff differential systems was introduced 
by Cash [85] (see also [145. 1461). These methods involve approximations at 
future point tn+k+l and take the form 

k 

QjYn+j = h P k f n + k  + h P k + l f n + k + l ,  (2.1.6) 
j = O  

f n + k  = f (tn+k,Yn+k), f n + k + l  = f ( t n + k + l ,  Y n + k + l ) .  with COefficients aj! j = 
0,1 , .  . . , k ,  ,8k, P k + l ,  computed by solving the appropriate order conditions 
for the order p = Ic + 1 and with the normalization ~k = 1. These coefficients 
are listed in [85]. The resulting methods are A- and L-stable for k = 1, 2, 
and 3, and A(a)-stable for k = 4. 5, 6. 7. and 8. and the regions of absolute 
stability are plotted Cash [85],  and by Hairer and Wanner [145]. 

Assume that the approximate solutions yn, yn+l. .  . . , Y n + k - l  are already 
available. Then algorithm based on EBDF methods takes the following form. 
(i) Compute gn+k as the solution of the conventional BDF method 

_ _  k-I 

gn+k f GjYn+j = h P k f  n + k ,  (2.1.7) 
j=0 

- 
f n + k  = f ( t n + k , Y n + k ) .  
(ii) Compute gn+k+l as the solution of the same BDF formula advanced one 
step, that is, 

k-2 

(2.1.8) - 
Y n + k + l  + G k - l V n + k  f SjYn+j+l = h P k c f n + k + l ,  

j =u 
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cy for BDF 

cy for EBDF 

cy for MEBDF 

- 
f n + k + l  = f ( t n + k + l . Y n + k + i ) .  

(iii) Discard ;Yn+k. insert f n + k + l  into EBDF method (2.1.6); and solve for 
Yn+k:  

k-1 

Yn+k + c Q j Y n + j  = h ,Ok fn+k  + h P k + I T n + k + l .  (2.1.9) 
j = O  

90" 90" 88" 73" 51" 18" * * 
90" 90" 90" 87.61" 80.21" 67.73" 48.82" 19.98" 

90" 90" 90" 88.36" 83.07" 74.48" 61.98" 42.87" 

As observed by Cash [86] and Hairer and Wanner[l46], the disadvantage 
of the algorithm given above is that stages (i) and (ii) represent nonlinear 
systems with the same Jacobian I - h a J ,  J = a f / a y ,  but stage (iii) has 
a different Jacobian, I - h P k J ,  which requires extra LU decomposition. To 
remedy this situation, Cash [86] proposed an algorithm where the last stage 
(iii) was replaced by a modified EBDF (MEBDF) method of the form 

These methods are also A- and L-stable for k = 1, 2 ,  and 3, and A(a)-stable 
for k = 4, 5, 6, 7, and 8. with a larger angles cy than that of the corresponding 
EBDF methods. These angles for BDF. EBDF, and MEBDF methods are 
listed in [85, 86. 145, 1461, and reproduced in Table 2.1.1, where an asterisk 
indicates that the method is not A(a)-stable. The stability regions of MEBDF 
methods have been plotted by Hairer and Wanner [146]. 

Table 2.1.1 
formulas 

Angles cy of A(cu)-stability for BDF, EBDF, and MEBDF 

Substituting (2.1.7) into (2.1.8). we obtain 

(2.1.11) 



66 INTRODUCTION TO GENERAL LINEAR METHODS 

An algorithm based on formulas (2.1.7); (2.1.11). and (2.1.10) can be written 
as a GLM of the form (2.1.2) with 

and with the coefficient mat,rices A, U, B, and V given by 

A =  

. . .  -81 h h 

- Q k - l  - Q k - 2  

B =  

1 -3-1 

P k  - p k  Pk+l p k  ' 

0 0 0  

0 0 0  

0 0 0  

-Q1 -Qo 1 . . .  

, v =  

Consider next the general class of two-step Runge-Kutta (TSRK) methods 
introduced by Jackiewicz and Tracogna [183] (see also [270]). These methods 
depend on stage values at two consecutive steps and have the form 

(2.1.12) 

i = 1 , 2 ,  . . . , S ,  n = 2,3,  . . . , N ,  where Y,["] are approximations to  y(tn-l + cih) 
Method (2.1.12) can be represented by the abscissa vector c = [cl, . . . , c,IT 
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and the tableaux 

For scalar ODES these methods can be represented as GLMs (2.1.2) with 
r = s + 2 in the form 

(compare (2931). Here I is the identity matrix of dimension s and 0 is a 
zero matrix or vector of appropriate dimensions. Different representation of 
(2.1.12) as GLMs are considered in [15. 183, 189, 2701. 

Burrage [28,29] and Burrage and Sharp [36] studied multistep Runge-Kutta 
(MRK) methods defined by 

j=1 j=1 
S 

(2.1.13) 

j=1 j=1 

i = 1 . 2 , .  . . . s ,  n = k - 1, k . .  . . . N - 1. Here Y,["' is an approximation to 
y(tn + c,h). For k = 1 these methods reduce to the RK formulas (2.1.3). 
However, for k = 2 they do not reduce to the class of TSRK methods (2.1.12) 
since MRK methods (2.1.13) depend only on stage values Y,["] on the current 
step, whereas TSRK methods (2.1.12) depend on stage values Y,Inl and Y,[n-ll 
on two consecutive steps. Setting 
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MRK methods (2.1.13) for scalar ODES have the representation as GLMs 
(2.1.2) of the form 

INTRODUCTION TO GENERAL LINEAR METHODS 

all a12 . . .  als 

a21 a22 " '  azS 

Weiner and coworkers investigated various classes of peer methods first 
introduced in [250], i.e., methods in which all stages have the same properties 
and no extraordinary solution variable is used. For example, the two-step 
peer methods investigated by Weiner at al. [286, 2891, on the uniform grid 
take the form 

i = 1 , 2 , .  . . , s ,  n = 1 , 2 , .  . ., or in vector form; 

Y["] = (B I ) Y [ ~ - ~ ]  + h ( ~  8 I ) F ( Y [ ~ - ~ )  + h ( ~  g I ) F ( Y [ ~ ] ) ,  

= 1, 2 , .  . ., where 

Yln1 = y ( t ,  + czh), i = 1, 2 , .  . . s.  

(2.1.14) 

(2.1.15) 

The representation of (2.1.14) or (2.1.15) as a GLM for the scalar differential 
problem takes the form 

Variable step size variant of these methods have also been considered in which 
the matrices A = A(6), B = B(S), and R = R(6) depend on the ratio of step 
sizes 6 = 6, = h,/h,-l [286, 2891 . Different classes of peer methods have 
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also been introduced: for example, parallel peer two-step W-methods [288], 
Rosenbrock-type peer two-step methods [238], multi-implicit peer two-step W- 
methods [252], and implicit parallel peer methods for stiff systems [251]. The 
numerical experiments presented in these papers indicate that various classes 
of peer methods have a potential as building blocks of software which can 
be competitive with that currently in use based on RK or predictor-corrector 
met hods. 

Other examples of methods that can be represented as GLMs include 
predictor-corrector methods in various implementation modes (e.g., P(EC)m 
or P(EC)mE)  [194, 1951; the generalized multistep or hybrid methods of 
Butcher [37], Gear [130], and Gragg and Stetter [135]; the split linear multistep 
methods discussed by Cash [87] and Voss and Casper [283]; the cyclic compos- 
ite methods of Donelson and Hansen [115]; the pseudo Runge-Kutta methods 
of Byrne and Lambert [84] and Byrne [82]; special cases of two-step Runge- 
Kutta methods [181, 182, 190, 2441: the diagonally implicit single-eigenvalue 
methods (DIMSEMs) introduced by Enenkel and Jackson [126. 1271; and the 
Almost Runge-Kutta methods [47. 49, 761. Representation of some of these 
methods as GLMs (2.1.2) have been discussed in [41. 52, 53, 143, 146, 2931. 

2.2 P R EC 0 N S I ST E N CY, C 0 N S I S T  E N CY, STAG E- C 0 N S I S T E N CY, 
AND ZERO-STABILITY 

To identify useful GLMs (2.1.2), we have to  impose some accuracy and sta- 
bility conditions. To find some minimal accuracy conditions, we assume that 
there exist vectors q o  and ql ,  

T T 

% =  [ 41,o q2.0 f . .  G , O ]  I q1= [ 41,l q2,1 . . .  4r,l ] ' 

such that the components of the input vector y[n-l] satisfy 

p1 = qi,OY(tn-l) + qi.lhy'(t,-l) + 0 ( h 2 ) ,  i = 1 , 2 , .  . . ,T .  

We then request that the components of the stage vector Y["] and the output 
vector y[nl satisfy 

y["' = Y ( L - 1  + Cih) + 0 ( h 2 ) ,  i = 1 , 2 , .  . . ;  s ,  

and 

ypl = qz ,oy( tn)  + q2,ihy'(t,) + ~ ( h z ) ,  i = 1 ,2 . .  . . ,T .  

Observe that the condition for y[nl is more general than the condition 

= y(t,) + O(h) ,  i = 1 , 2 ; .  . . , s 
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considered in [31, 521. Substituting these relations into (2.1.2), we obtain 

r 

j = 1  

i = 1 , 2  , . . . ,  s , a n d  

i = 1, 2, .  . . , r.  Comparing O(1) and O(h) terms in these relations, we obtain 

T T 

and 
S r 

C aij + c uijq,,l = ci; i = 1,2, * * . , s, 
j=1 j=1 

Considerations above motivate the following definitions. 

Definition 2.2.1 GLM ( c ,  A, U ,  B, V )  is preconsistent if there exists a vec- 
tor q o  such that 

uqo = e, vqo = 9 0 ,  (2.2.1) 

where e = [l, . . . , 1IT E RS. The vector q o  is called the preconsistency vector. 

Definition 2.2.2 GLM ( c ,  A, U ,  B, V )  is 
with preconsistency vector q o  and there exists a vector g l  such that 

consistent if it  is preconsistent 

Be + Vq1 = 9 0  + q 1 ,  (2.2.2) 

where e = [ I , .  . . , 1IT E R‘. The vector q 1  is called the consistency vector. 

Definition 2.2.3 GLM (c ,  A, U, B, V )  is stage-consistent i f  

Ae + Uql = c .  (2.2.3) 
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It can be verified that for an s-stage RK method (2.1.3) q o  = 1, ql = 0 
and the stage-consistency and consistency conditions are equivalent to 

T A e = c ,  b e = l .  

The condition Ae = c is not necessary and RK methods that do not satisfy 
it have been investigated in [224, 2971 (see also [log]). 

In the case of linear multistep methods (2.1.4), 

and the preconsistency, consistency, and stage-consistency conditions take the 
form 

k k k 

CQj = 1: Cjaj = CPj: c = 1 (2.2.4) 
3=1 j=l 3=0 

(compare [97, 153, 194, 1951). For more compact representation of linear 
multistep methods discovered by Butcher and Hill [63] and discussed in Sec- 
tion 2.1. the components of the vector of external approximations have the 
expansions 

k k 

vI"] = C agy(tn)  + h C (p3 - ( j  - IC + i - l )a3)y ' ( tn )  + 0(h2), 

i = 1 , 2 . .  . . , k ,  and it follows that the preconsistency and consistency vectors 

j=k-t+l 3=k-2+1 

take the form 

9 0  = E Rk,  q1 = 

k k 

j=1 j=1 

E Rk. 

Similarly to a representation with 2k inputs, the preconsistency. consistency. 
and stage-consistency conditions take the form (2.2.4). 

For the class of one-leg methods (2.1.5). we have 

T 
q o = e E R h ,  q l = [  o -1 . . .  - ( k - ~ ) ]  ER', 

and the preconsistency, consistency, and stage-consistency conditions take the 
form 

1 
c = 1 - - 

k k k 

CaII = 1. CJQ3 = Cp3. 
j=1 J=1 3=0 
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For the MEBDF methods of Cash [86] discussed in Section 2.1, we have 

which have the same form as for one-leg methods (2.1.5). These expressions 
follow by expanding the vector of external approximations y["] corresponding 
to these methods around the point t n+k .  Then the preconsistency conditions 
take the form 

k-1 k-1 

1+ZGj = o ;  l+zaj = o ,  
j = O  j = O  

the consistency condition is 

k-1 

P k  + Pk+l + C(k - j).j = 0, 
j = O  

and the stage-consistency conditions are 

k-1 

j = O  

and 

For the class of TSRK methods (2.1.12), we have 

the preconsistency conditions are satisfied automatically and the consistency 
and stage-consistency and conditions take the form 

(vT + wT)e = 1 + 6, (A +B)e - u = c 

(compare [183. 2701). 
For MRK methods investigated by Burrage et al. [28. 29. 361 and written 

as GLMs in Section 2.1, the preconsistency and consistency vectors have the 
same form as for one-leg methods (2.1.5) and MEBDF methods, that is, 

T 
q o = e e P .  q 1 = [ 0  -1 . . .  - ( L - I ) ]  ER' 
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For these methods the preconsistency conditions are 

the consistency condition is 

F 

j=1 j=1  

and the stage-consistency conditions are 

s k  

g = 1  3=1 

For the two-step peer methods discussed by Weiner et al. [250] , [286], [289] 
and in Section 2.1, the preconsistency and consistency vectors are 

The preconsistency condition for this class of methods takes the form 

B e = e  

and the consistency and stage-consistency conditions reduce to  the same re- 
lation of the form 

(R + A). + B(c - e) = c. 

Next we investigate the zero-stability of GLMs. To find minimal stability 
conditions, we apply GLM (2.1.2) to the equation y' = 0, t 2 to .  This leads 
to 

4") = v Y 1-11 = V"y[OI. n = 0 , 1 . .  , , .  
and motivates the following definition. 

Definition 2.2.4 GLM (c ,A.U,B,V) is  zero-stable if there exists a con- 
stant C such that 

llv"// 5 c (2.2.5) 

for all n = 0 , 1 , .  . .. 

It is well known that condition (2.2.5) is equivalent to  the following crite- 
rion. 

Theorem 2.2.5 (compare [31, 411) GLM (c, A, U, B. V) is  zero-stable if 
the min imal  polynomial of the  coef ic ient  matr ix  V has no zeros with magni- 
tude greater than  1 and all zeros with magnitude equal t o  1 are simple. 
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We also introduce the following definition. 

Definition 2.2.6 GLM (c, A, U, B, V) is strictly zero-stable if it is zero- 
stable and the coe&cient matrix V has exactly one eigenvalue on the unit 
circle that is equal to 1.  

For RK methods (2.2.2) the minimal polynomial is ~ ( w )  = w - 1, and these 
methods are always zero-stable. It can be verified that for the linear multistep 
method (2.2.3) written as GLM with 2k or k inputs, the minimal polynomials 
are 

P ( W )  = W k P ( W )  or P ( W )  = P ( W ) l  

where 
k 

p(w) = wk - c a p - - j  
3=1 

is the first characteristic polynomial of (2.2.3). For one-leg methods the mini- 
mal polynomial is p(w) = p(w). Hence, linear multistep methods and one-leg 
methods are zero-stable if p(w) satisfies the root condition. This means that 
p(w) has no root with modulus greater than 1, and that every root with mod- 
ulus 1 is simple (compare [194, 1951). For the TSRK methods (2.1.12), the 
minimal polynomial is 

The roots of this polynomial are w = 0, w = 1, and w = -79  and it follows 
that (2.1.12) is zero-stable if and only if -1 < ~9 5 1 (compare [183, 2701). 

2.3 CONVERGENCE 

To investigate the convergence of GLM (2.1.2), following Butcher [52] we 
assume only that there exists a starting procedure 

Sh : IWm --$ R"' 

which associates with every step size h > 0 a starting vector y[O] = y['](h) E 

(2.3.1) 

for some nonzero vector qo (preconsistency vector). Here yo E Rm is the 
initial value and y is a solution to  (2.1.1). We then investigate the conditions 
under which the sequence of vectors computed using n steps of GLM 
(2.1.2) with step size h such that n h  = ? - t o  converges to  qoy(?) for any fixed 
t E [ to ,  TI. We introduce the following definition. 

Definition 2.3.1 GLM (c ,  A, U, B,  V) is convergent if for any initial value 
problem (2.1.1) satisfying the Lipschitz condition, there exists a nonzero vector 
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qo  E R' and a starting procedure s h  satisfying (2.3.1), such that the sequence 
of vectors yIn] computed using n steps of GLM (2.1.2) with y[O] = Sh(y0) and 
h = (? - t o ) / .  converges to qoy ( t )  for any t E [ t o ,  TI. Here y is a solution to 
(2.1.1). 

In the next two theorems we establish that zero-stability and consistency 
are necessary and sufficient conditions for convergence. The proofs of these 
theorems follow closely Butcher's presentation [52]. 

Theorem 2.3.2 Assume that GLM ( c ,  A, U, B, V )  is convergent. Then it is 
zero-stable and consistent. 

Proof: We show first, that convergence implies zero-stability. Suppose, on 
the contrary, that the sequence IIVnII, n = 1 , 2 , .  . ., is unbounded. Then, since 
l/Vn/I = max~~,I~=l IIVnw11, there exists a sequence of vectors w,, 1lwnll = 1, 
such that the sequence IlVnwn1l, n = 1, 2 , .  . ., is unbounded. Consider the 
solution of the initial value problem 

Y Y t )  = 0, Y ( 0 )  = 0, 

t 2 0 ,  at the point ? = 1: where n steps are taken by GLM (2.1.2) with a step 
size h = 1 / n  and with the initial vector yIOl given by 

Observe that limh+oSh(O) = 0 since the sequence I /Vnwn/I  is unbounded. 
The approximation yIn] after n steps is then given by 

Since l1Vnwn 1 1  is unbounded, there exists a monotonically increasing subse- 
quence llVn'wn, 1 1  such that limj+m IIVn3 wn3 1 1  = m and maXlszsn3 llVZwzll = 
IIVn3 w,, / I .  Hence, 

I I Y ' ~ J ~ \ I  = l lVn3S(1/n j ) ) I  = 1. 

arbitrarily often. which contradicts convergence. 

of the initial value problem 
We show next that convergence implies consistency. Consider the solution 
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t 2 0, at the point t = 1, where n steps are taken by GLM (2 .1 .2)  with step 
size h = 1/n and with the initial vector y['] given by 

y[O] = Sh(0) = qoy(0) = 0. 

The output vectors y['] are generated according to the formula 

y['] = hBe + Vy['-']. i = 1 , 2 , .  . . , n, 

which leads to 
yln] = h(I  + V + . . + V"-l)Be. 

Since Viqo = qo, i = 0 , 1 , .  . ., we have 

h(I  + V + .  . . + Vn-')qo = hnqo = 40, 

and it follows that 

y[nl - q o  = h(I  + V + . . . + Vn-')(Be - 9 0 ) .  

We have already proved in the first part of this theorem that the coefficient 
matrix V is power bounded. This implies that there exists a nonsingular 
matrix P such that 

where I is the identity matrix of dimension 'i: 5 r and 9 is power bounded 
and such that 1 $ ~ ( 9 ) .  Here ~ ( 9 )  stands for the spectrum of the matrix 9. 
Hence, 

Passing to the limit as n + m, n h  = 1, in the relation above and taking into 
account that  

lim 
n-CC,nh=l 

y[n] = qoy(1) = 9 0 ,  
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This relation implies that the vector P(Be - 9 0 )  has only zeros in its first F 
components. Since the matrix I - V is nonsingular, we can write this vector 

- 

for some vector 61 E I R p F ,  Define the vector ql E R' by 

ql = p - l [  i1 ] 
Then 

Hence, Be + Vql = q o  + q l .  which is the consistency condition with consis- 

To prove that zero-stability and consistency are also sufficient conditions 
for convergence, we need the following variant of a lemma on stable sequences. 

Lemma 2.3.3 Assume that Q E Rux" zs a stable matrax wath a bound on 

tency vector ql. This completes the proof. 

1 l Q " I I  w e n  b y  
IiQ"il 5 C1. n = 0.1,. . . . 

where CI zs a constant such that C1 2 1. Let sequences u,, w, E R" be such 
that 

n = 0.1,. . ., for constants C2 2 0 and b 2 0 .  Then 

un = QG-1 + wn. lIwnll 5 C21/~n- l / l  + 6, 

Ilunll 5 C l ( I l 4  + 726) (2 .3 .2)  

zf C2 = 0 and 

(2 .3 .3)  
6 
c2 

IlUnlI I Cl(1 f  ClC2)nIlUOII + - ( ( l+ ClC2), - 1) 

zfC2>O,n=0,1,  . . . .  

Proof: Applying the formula for u, n times, we obtain 

n 

U ,  = Qnuo + C Q"-' w'. 
'=1 
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n = 0 , l ; .  . .. Taking norms on both sides of this equation and then bounding 
IlQ"-jlI by C1 and using the inequality for llwnll leads to 

Bound (2.3.2) follows immediately for C2 = 0. For C2 > 0 we prove bound 
(2.3.3) by induction with respect to  n. Substituting the bounds for IIun-jll 
given by (2.3.3) for j = 1 , 2 , .  . . ~ n into the last inequality, we obtain 

n 

I I ~ O I I  + Cz c (Cl ( l+  C1C2)j-llluoll 
j=1 

6 
C2 

+ - ((1 + C1Cz)j-l - 1) j $-.a) 
I 

n n 

= c1(1+ ClC2 C(l + C1Cz)j-1) lluo/l + C , S C ( l +  C1Cz)j-l 
j=1 j=1 

6 
= C1(1+ C1C2)"lluoll + ((1 + ClCZ)" - 1); 

which is bound (2.3.3). This completes the proof. I 

Theorem 2.3.4 A zero-stable and consistent GLM (2.1,2) is convergent. 

Proof: Define the vectors Qln-lI. Q["] E R"'; 

by 

$ 4 1  = 42,oY(tn-1) + 42,1hy'(tn-1), Q!"] = 42 oy(tn) + 42.lhY'(tn). 

where qz,o and q2,1 are components of preconsistency and consistency vectors 
q o  and ql ,  respectively. We define vectors EZ ( h )  and hvz ( h )  as residua obtained 
by replacing yr-". y!' in (2.1.2) by Q!n-ll, Qrl and Y,'"' by y(tYL-1 + c,h); 
that is, 
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i = 1 , 2  , . . . ,  s , a n d  

p = hCbi jy ' ( t , - l  + Cjh) + c u i j ? j y  + hVi(h) 
j=1 j=1 

or 

S 

Qi.oY(tn) + Qi.lhY/(t,) = h c bijy/(t,-l + Cih) 
j=1 

r 

+ c u i j  (Qi,oY(tn-l) + Ql,lhY/(tn-l)) + hrli(h), 
j=1 

i = 1 , 2 , .  . . , T .  Expanding y(t,-l + cih) and y'(tn-l + cih) around t,-1 in 
the equations that define Ei(h), i = 1, 2 , .  . . , s, and using the preconsistency 
condition Uqo = e ,  it follows that 

&(h)  = O ( h ) ,  i = 1 , 2 , .  . . , s. 

Expanding y(t,) and y'(t,) around the point t,-l in the equations that define 
qi(h),  i = 1 , 2 , .  . . , r ,  and using the preconsistency condition Vqo = q o  and 
consistency condition Be + Vql = q o  + ql, we can conclude that 

qt(h) = O(h) ,  i = 1 , 2 , .  . . , T.  

Subtracting the equations for y p l  and $/n13 we obtain 

i = 1 , 2 , .  . . , T .  Using the notation introduced in Section 2.1, this can be 
written in vector form as 

where 

I is an identity matrix of dimension m, and q(h) E R"' is composed from 
the vectors qi(h), i = 1 , 2 , .  . . , T .  To analyze the behavior of the sequence 



80 INTRODUCTION TO GENERAL LINEAR METHODS 

yln] - 
which 114 8 111 = 11Q11 for any matrix Q, and 

we will use, for convenience, the spectral norm 1 1  - 1 1  = 1 1  . 112 for 

IIW) - F(P)l/ I - q, 
where L is the Lipschitz constant of the function f .  Introducing the notation 

where ( ( h )  E RWmr is composed from [i (h) .  Hence, 

Assume that ho is a step size such that hoLljAI1 < 1. Then for h < ho we 
have 

and substituting this inequality into the inequality for llwnll it follows that 

where D and S(h) are defined by 

Taking into account that  the norms //V"// are bounded by a constant C 
(compare Definition 2.2.4), application of Lemma 2.3.3 leads to  the follow- 
ing bounds on ilunll: 
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and J(h) = O(h).  

2.4 ORDER AND STAGE ORDER CONDITIONS 

In assessing the accuracy of GLMs (2.1.2), we identify two integers: p ,  the 
order of the method, and q ,  the stage order. To formulate order and stage 
order conditions, we assume that the components of the input vector 
for the next step satisfy 

P 

= qikhky(k)(tn-l) + O ( h p f l ) ,  i = 1 , 2 , .  . . , T ,  (2.4.1) 
k=O 
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for some real parameters q i k ,  i = 1,2 . .  . . , T ,  k = 0 ,1 , .  . . , p .  We then request 
that the components of the internal stages Y,["] be approximations of order q 
to the solution y of (2.1.1) at  the points t,-l + cih: that is. 

We also request that the components of the output vector y,["] satisfy 

P 

yI"1 = c q,kh"(k)(tn) + O(hP+l), i = 1 ,2 , .  . . , T ,  (2.4.3) 
!€=O 

for the same parameters q i k .  

The formula for yp-'] given by (2.4.1) was chosen here because this repre- 
sentation is convenient for the purpose of investigating the structure of order 
conditions. However, this representation also suggests that to sta,rt the in- 
tegration we need to compute the initial vector y[O] by a starting procedure 
Sh : Rm -+ R"' (compare Section 2.3) satisfying (2.4.1) for n = 1; that is, in 
vector notation, 

Observe that this is a stronger requirement on Sh than condition (2.3.1) which 
was required for convergence. In practice, such y[O] will usually be found from 
approximations to the solution values at  equally spaced arguments without 
direct computation of approximations to the scaled derivatives hky( !€)  ( to) .  
Moreover, we describe some families of GLMs of various orders and stage 
orders for which it will be easy to increase the order one unit at  a time. In 
such a case, in the first step of the integration a method of order p = 1 will 
be used for which computation of the required starting vector ylo] will easily 
be effected from knowledge of the initial value yo. 

The derivation of order and stage order conditions for general p and q 
is quite complicated and requires sophisticated algebraic tools developed by 
Butcher [41, 521 (see also [143, 2931). However, this analysis is quite simple 
for methods of high stage order( i.e., methods with q = p or q = p - 1). In 
these cases order and stage order conditions can be expressed conveniently 
using the theory of functions of a complex variable. 

It is convenient to collect the parameters qik in the matrix W defined by 
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We recognize q o  and q1 as preconsistency and consistency vectors, respec- 
tively. We also introduce the notation 

and define the vector w = w(z) by 

We have the following theorems. 

Theorem 2.4.1 (Butcher [44]) Assume that y[,-l] satisfies (2.4.1). Then 
the GLM (2.1.2) of orderp and stage order q = p satisfies (2.4.2) and (2.4.3) 
if and only if 

ecz = zAeCZ + Uw(z) + O(zP+l),  (2.4.5) 

ezw(z) = zBeCz + Vw(z) + O(zP+'). (2.4.6) 

Proof: Since y[nl = y(t,-l + cih) + O(hP+l), i = 1 , 2 , .  . . ~ s, it follows that 

h f (Y,'"]) = hy'(t,-1 + c,h) + O ( W 2 )  

h"("(t,_l) + O(hP+2) 
k= 1 

Furthermore, using a Taylor series expansion, (2.4.3) can be written in the 
form 

/ 

Substituting y r - l ]  defined by (2.4.1) and the relations above for f ( k T , [ " ] )  and 

y P 1 ,  into the equation (2.1.2), which define computations performed in the 
nth step, we obtain 

f: (cf - k k a " c " - l  23 3 - e k ! u i j q j k  = O(hp+') 
k=O j=1 j=1 

and 
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Equating coefficients of hky('))(t,-l)/k!, k = 0 , l . .  , . , p ,  to  zero and then 
multiplying these coefficients by z k / k !  and adding them from k = 0 to k = p, 
we obtain 

S r 

and 
S r 

e'w, - x z b t 3 e C J Z  - x u v w 3  = O(zptl). a = 1 , 2 . .  . . , r. 
3=1 3=1 

These relations are equivalent to (2.4.5) and (2.4.6). 

Theorem 2.4.2 (Butcher and Jackiewicz [ 6 5 ] )  Assume that y["-'] sat- 
asfies (2.4.1). Then GLM (2.1.2) of order p and stage order q = p -  1 satasfies 
(2.4.2) and (2.4.3) af and only a f  

This completes the 
proof. 

z p  + 0(zp+')  (2.4.7) 
AcP-l - ~ - ecr = z A e C Z  + Uw(z) + (5 ( p - l ) !  

and (2.4.6). 

Proof: Proceeding similarly as in the proof of Theorem 2.4.1: we obtain 

and 

The right-hand side of the first of the equations above is of order O(hP) only 
because the stage order q is one less than order p .  We obtain the relations 

and 

which are equivalent to (2.4.7) and (2.4.6): respectively. 

It follows from the proofs of Theorems 2.4.1 and 2.4.2 that conditions 

C' - kAckd1 - k!Uqk = 0, k = . . , p ,  (2.4 23) 

(2.4.5), (2.4.6), and (2.4.7) are equivalent to  
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and 
ck - kACkP1 - k!Uqk = 0, k = 0 , 1 , .  . . , p  - 1. (2.4.10) 

Define vectors and c[”] composed of 

d”] = qi.oy(tn) + 4i,lhY’(t,) + . . . + qz,phPy(P)(t,). 

We have the following theorem. 

Theorem 2.4.3 Assume that GLM (2.1.2) has orderp and stage order q = p 
or q = p - 1. Then 

as h ---f 0 ,  h, = t - to, provided that 

as h + 0.  Moreover, 

In1 
- y( tn- l  + c ih) / /  = O(hP)> i = 1 . 2 , .  . . , S .  

Proof: Similarly to  the proof of Theorem 2.3.4, define <i(h) and hq;(h) by 

j=1 j=1 

Expanding y(t,-l+cih), y’(t,-l+cih), and y(’)(t,), k = 0 , 1 , .  . . , p ,  appearing 
in $“I into a Taylor series around tn-l and using (2.4.8) and (2.4.9) if q = p 
or (2.4.10) and (2.4.9) if q = p -  1, it follows that & ( h )  = O(hptl) if q = p and 
&(h)  = O(hP) if q = p - 1, i = 1 , 2 , .  . . , s ,  and vi(h)  = O(hP), i = 1 , 2 , .  . . , r .  
Proceeding in the same way as in the proof of Theorem 2.3.4, we obtain 

where now 
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and D and 6(h) are defined as before. We have 6(h) = O(hp),  and the 
conclusion of the theorem follows from the application of Lemma 2.3.3 on 
stable sequences and the inequality 

which holds for hoLIIAII < 1 and h < ho. 

Next we examine conditions (2.4.8). (2.4.9), and (2.4.10) in the context of 
RK methods (2.1.3). The analysis of these conditions reveals that except for 
some special cases of low-order methods, RK methods (2.1.3) cannot have 
stage order equal to p or p - 1, where p is the order. For example, it follows 
from (2.4.9) that for RK methods with p > 2, we must have 

q 0 = 1 ,  q 1 = 0 ;  . . . ,  q , = O  

to satisfy the quadrature order conditions 

1 bTck--' = - 
k '  

k = 1 ' 2 , .  . . ' P .  

For explicit RK methods, this is in conflict, however, with (2.4.8) or (2.4.10) 
for k = 2 since 

c2 - 2Ac # 0 

if we assume that c2 # 0. The situation is somewhat better for implicit RK 
formulas, but also in this case there are no methods with q = p or q = p - 1 
for p > 3 (compare [41, 521). 

Next we apply Theorem 2.4.1 to  derive order conditions for linear multistep 
methods (2.1.4). It follows from the form of the vector of external approxi- 
mations, or from the analysis of relations (2.4.8) and (2.4.9), that  the vectors 
ql take the form 

T 
(-1)L-1 ( k  - 1)l 

1 
ql = ~ ( I  - l)! 

1 = 0 '1 , .  . . , p .  The preconsistency and consistency vectors q o  and ql were 
already determined in Section 2.2. Substituting these vectors into (2.4.8) with 
c = 1 and A = PO leads to the following order conditions for method (2.1.4): 

k k 

(-1)l  C(j - 1)lCYj + (-1y-11 C(j - 1)1-'pj = 1 - 1p0, (2.4.11) 
j=1 j = 1  

1 = 0: 1,.  . . , p .  Using more compact representation of linear multistep meth- 
ods with k inputs discovered by Butcher and Hill [63] and discussed in Sec- 
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tion 2.1, the vectors ql take the form 

0 

ql = 

(- 1)L-1 

(1 - l)! 
P k  

1 = 2 , 3 , .  . . , p ,  with the preconsistency and consistency vectors determined in 
Section 2.2. Substituting these vectors into (2.4.8) with c = 1 and appropriate 
coefficients matrices A and U corresponding to  this representation we again 
obtain order conditions (2.4.11). These conditions could be obtained directly 
by expanding local discretization error of (2.1.4), defined by 

k k 

into a Taylor series around the point t,-l and equating to zero the terms of 
order O ( h L ) ,  1 = 0 , 1 , .  . . , p .  Expanding lte(t,) around t ,  leads to  a simpler 
form of order conditions for (2.1.4), given by 

k k k 

j=1 j=1 j = O  

which are equivalent to  (2.4.11) (compare the discussion in [194, 1951). 
Theorems 2.4.1 and 2.4.2 can also be used to  obtain stage order and order 

conditions for other classes of GLMs: for example, one-leg methods, EBDFs. 
MEBDFs, TSRK methods, MRK methods, and peer methods, considered in 
Section 2.1. However, this is not developed further here. Order conditions 
for the general class of TSRK methods (2.1.12) are discussed in Chapter 5. 
These order conditions reduce to those obtained from Theorems 2.4.1 and 
2.4.2 for TSRK methods with q = p or q = p - 1. Order conditions for two- 
step peer methods using the GLM point of view have been discussed by Izzo 
and Jackiewicz [175]. 

2.5 LOCAL DISCRETIZATION ERROR OF METHODS OF HIGH 
STAGE ORDER 

Assume that the solution ;y to (2.1.1) is sufficiently smooth and that GLM 
(2.1.2) has order p and stage order q = p or q = p -  1. The local discretization 
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or truncation error lei(t,) of the i th  external stage y/"] of GLM (2.1.2) a t  the 
point t, is defined by 

S r 

(2.5.1) lei(t,) = - hC bij f (y[nl) - c v i j y j  -[,-I] , 
j=1 j = 1  

i = 1 , 2 , .  . . , r ,  where $in-'] and 2"' are defined as in Section 2.4 (before 
Theorem 2.4.3) and the are given by 

3=1 j=1 

i = 1 , 2 , .  . . , s. Denote by le(t,) E R"' the vector composed of lei(t,). We 
have the following theorem. 

Theorem 2.5.1 The local discretization error le(t,) of GLM (2.1.2) at the 
point t, is given by 

le(t,) = (pP 8 I)hP+ly(P+l)(tn-l) + o ( ~ P + ~ )  (2.5.3) 

i f q = p  and by 

le(t,) = (pP 8 I)hp+ly(p+l)(t n-1) 

if q = p - 1, where 
P+ 1 

qp+1-rC B C P  

k=l P! 
'PP = c 7 - - 

and 

(2.5.5) 

(2.5.6) 

Proof: 
We have 

First we establish the relationship between and y(t,-1 + cih). 

3=1 j=1 

where &(h) = O(hP+') if q = p and &(h)  = O(hP) if q = p - 1 (compare 
the proof of Theorem 2.4.3). Subtracting the equation above from (2.5.2), we 
obtain 
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i = 1; 2 , .  . . , s. Hence, assuming that hoLllAll < 1, where L is a Lipschitz 
constant of f ,  we have for h 5 ho 

k=O 3=1 3=1 k=O 

Expanding y('")(t,) and y'(tn-l + cjh) into a Taylor series around t,-l and 
collecting the corresponding terms, we get 

It follows from (2.4.8) that all the terms up to order O(hp) vanish, and the 
local discretization error takes the form 

which is equivalent to (2 .5 .3)  with p p  given by (2.5.5). 
Consider next the case q = p - 1. We have 

h In1 - y, - y(L-1  + c,h) + ,yz(t,-1)hP + O(hP+l). 

where yz( tn- l )  stands for the principal part of the error in stage values TI. 
Substituting this relation into ( 2 . 5 . 2 ) ,  we get 

y(tn-1 + c,h) + y,(tn-l)hP 

S P T  

j=1 k=O j=1 

Expanding y ( h - 1  f c i h )  and y'(t,-l +cih) around t,-l and comparing terms 
of order O(hP), it follows that 
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W 

Proceeding similarly as before, we obtain 

+ O(hP+Z), 

which is equivalent to (2.5.4) with pP and $ p  given by (2.5.5) and (2.5.6); 
respectively. This completes the proof. rn 

2.6 LINEAR STABILITY T H E O R Y  OF GENERAL LINEAR M E T H O D S  

In this section we investigate stability properties of GLMs (2.1.2) with respect 
to the standard linear test equation 

y' = (y. t 2 0, (2.6.1) 

where ( is a complex parameter. Applying (2.1.2) to (2.6.1), we obtain in 
vector notation 

y["] h<AY[nl + Uy[n-ll, (2.6.2) 

yIn1 = h[By[nl + Vy[n-1]. (2.6.3) 

n = 1 , 2 , .  . .. Put z = h( and assume that the matrix I - zA is nonsingular. 
Then it follows from (2.6.2) that 

yln1 = (I - zA)-lUy[n-ll. 

and substituting this relation into (2.6.3), we get 

yIn1 = M(z)y[n-ll, 
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n = 1 , 2 ; .  . ., where the matrix M(z) is defined by 

M(z) = V + zB(1- zA)-lU. (2.6.4) 

The M(z) is called the stability matrix of GLM (2.1.2). We also define the 
stability function p(w, z )  by the formula 

p ( w ,  z )  = det (wI - M(z)), (2.6.5) 

where w E C. We introduce the following standard definitions. 

Definition 2.6.1 GLM (2.1.2) is said to be absolutely stable for given z E C 
if for that z ,  all the roots wi = wi(z), i = 1 , 2 , .  . . , r ,  of stability function 
p(w,z) are inside the unit circle. 

Definition 2.6.2 Region A of absolute stability of (2.1.2) is the set of all 
z E C such that the method is absolutely stable, i.e., 

A = { z t C :  Iwi(z)l <1, i = 1 , 2  , . . . ,  r } .  

An interval Z of absolute stability is the intersection of A with a real axis 
( i e . ,  Z = A n  R). 

Definition 2.6.3 GLM (2.1.2) is said to be A-stable i f  its region of absolute 
stability A contains a negative half-plane: 

{ z  E C C :  Re(z) < 0} c A. 

Definition 2.6.4 GLM (2.1.2) is said to be L-stable if it is A-stable and, in 
addition, 

lim p(M(z)) = 0, 
z-m 

where p(M(z)) stands for  the spectral radius of stability matrix M(z) 

For RK methods (2.1.3) the stability matrix M(z)  reduces to the stability 
function 

R(z )  = 1 + zbT(I - zA)-'e. (2.6.6) 
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For linear multistep methods (2.1.4) the stability matrix M(z)  takes the 
form 

a k - 1  Qk P1 P k -  1 /3k 
~ . . .  ~ ~ - ...  ~ - 

1 - 2 / 3 0  1 -2 /30  1 1-2/30 1-2po 1-zpo 

0 0 . . .  0 

P1 2 P k - 1 2  /3kZ ___ . . .  - ~ 

1 - ZPO 1-2 /30  1-2/30 

0 0 . . .  1 

1 0 . . .  0 

1 

where we partitioned this matrix into blocks of dimension k x k. Let p(w) 
and ~ ( w )  be the first and second characteristic polynomials of (2.1.4): 

F F 

p(w) = W k  - c Qjwk-j: .(W) = C P j W " - j  
j=1 J=O 

We already encountered the polynomial p( w) when we discussed zero-stability 
of linear multistep methods in Section 2.2.  We have the following theorem. 

Theorem 2.6.5 The stability functionp(w, 2 )  = det(w1-M(z)) ofthe linear 
multistep method (2.1.4) written as GLM with 2k  inputs is given b y  

Proof: First consider the case PO = 0, which corresponds to explicit methods. 
Then the stability function p(w, z ) ,  given by 

det 
0 . . .  -1 W 

0 . . .  0 0 

-pl . . .  -/3k-1 -Pk  

0 0 . . .  0 

0 0 . . .  0 

0 . . .  -1 W 
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is linear in z .  Hence, 

aP 
p(w, 2 )  = p(w, 0) + -(w. 0 ) z .  

a z  

It can be verified that p(w,O) = wkp(w) (compare the discussion in Sec- 
tion 2 . 2 ) .  Subtracting the (k+ 1)st row from the first row of g ( w ,  0), we also 

w . . .  0 0 

-1 . . .  0 0 

have 

a P  -(w,O) = det 
a z  

0 . . .  0 0 

0 . . .  0 0 

0 . . .  -1 0 0 

0 0 I 0 . . .  -1 w 0 . . .  

and the routine computations yield 

k ? q W , O )  = &( - plw"-l - p2w"-2 - . . . - P k )  = -w .(W). 
a2 

Hence, p(w, z )  = wk((p(w) - z r ( w ) ) ,  which corresponds to  (2.6.7) with PO = 0. 
Next consider the case PO # 0, which corresponds to  implicit methods. 

Putting 

, i = 1 . 2  . . . . ,  k. Pz Pz = ~ 

1 - Poz 

- - a2 
= ~ 

1 - Roz'  

p(w, z )  takes the form 

I 

w - Z 1  . . .  -Pk -1  -& 
-1 . . .  0 0 0 0 0 . . .  

det 
0 0 0 . . .  -1 . . .  

0 0 0 ' . .  

-1 . . .  0 0 

-1 W . . .  0 
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Proceeding similarly as before, we obtain 

k k 

p (w,  2 )  = W k  (-i - c &jW"-j - z c & - j )  

j=1 j=1 
k k 1 

j=1 j=1 

which is again (2.6.7) and proves our claim. 

Using the representation of linear multistep methods with k inputs pro- 
posed by Butcher and Hill [63] discussed in Section 2.1, the stability matrix 
M(z) takes the form 

The characteristic polynomial of this matrix is described in the following re- 
sult. 

Theorem 2.6.6 The stability functionp(w, z )  = det(w1-M(z)) ofthe linear 
multistep method (2.i.4) written as GLM with k inputs is given b y  

1 
p(w, . )  = - ( P ( 4  - . 4 w , > .  (2.6.8) 

Expanding p(w,  z )  = det(w1 - M(z) )  with respect to the last row; 

1 - POZ 

Proof: 
we obtain 

k k 
Z 

p(w,  z )  = wk - x ajwk-j  - - C(QjP0 + Pj)W"-j 
j=1 1 - Po2 j=l 

z 
(.(W) - Powk) 

- P O  z 
- P ( W )  - 

which is our claim. 
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The polynomial 
T ( W ,  z) := p(w) - z o ( w )  

is called the characteristic polynomial of linear multistep method (2.1.4) (com- 
pare [194, 1951). Denote by w,(z), i = 1 , 2 , .  . . , k ,  the roots of this polynomial. 
Then it follows from Theorem 2.6.5 or from Theorem 2.6.6 that the region of 
absolute stability of (2.1.4) is given by 

kb  d = { z E @ :  Iw,(z)l <1, i = 1 , 2 ,  . . . .  

which is in agreement with the classical theory of linear multistep methods 
described by Lambert [194, 1951. 

For one-leg methods (2.1.5), the stability matrix M(z)  takes the form 

with 
Z 

r n l j ( Z )  = Q j  + - ( P o q  +&I! 
1 - Po2 

j = 1; 2 , .  . . , k ,  and it follows that the stability function p ( w ,  z) has the form 
(2.6.8) as described in Theorem 2.6.6 for linear multistep methods written as 
GLMs with k inputs. 

For TSRK methods (2.1.12), the stability matrix M(z)  takes the form 

1 - 8 + zvTS(z)(e - u) 8 + zvTS(z)ii wT + zvTS(z)B 

1 0 0 i zS(z)(e - u) zS(z)u zS(z)B 

where S(z) = (I - zA)-l. The construction of TSRK methods with appro- 
priate stability properties is discussed in Chapter 5. 

We can also analyze linear stability properties of other classes of GLMs, 
but this is not discussed further here. Stability properties of two-step peer 
methods from the GLM point of view are discussed by Izzo and Jackiewicz 
[175]. 

M(z) = 

2.7 TYPES OF GENERAL LINEAR METHODS 

The coefficient matrix A plays a role similar to the coefficient matrix A of 
RK formulas and determines the implementation costs of GLMs. Depending 
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on its structure, we divide methods (2.1.2) into four types, depending on the 
nature of the differential system to be solved and the computer architecture 
that is used to implement these methods. For GLMs of type 1 or 2, matrix 
A has the form 

A =  

X 

a21 

! (2.7.1) 

where X = 0 or X > 0, respectively. Such methods are appropriate for nonstiff 
or stiff differential systems in a sequential computing environment. For type 
3 or 4 methods, matrix A takes the form 

A = diag(X, X. .  . . ,A)  = XI, (2.7.2) 

where X = 0 or X > 0, respectively. Such methods are appropriate for nonstiff 
or stiff differential systems in a parallel computing environment. 

Type 1 RK methods correspond to explicit formulas and type 2 methods to 
singly diagonally implicit Runge-Kutta (SDIRK) formulas [9]. The concepts 
of type 3 and type 4 methods are of little relevance in the context of RK 
formulas. In the context of linear multistep methods (2.1.4), type 1 or type 
3 methods correspond to explicit formulas, and type 2 or type 4 methods 
correspond to implicit formulas. 

It will often be our goal to construct GLhIs that will have the same stability 
properties as explicit RK formulas or SDIRK methods. For this reason we 
review below some relevant facts about the stability of these RK methods. 

Applying any RK method with a step size h to the test equation 

y ' =  <y. t 2 0. y(0) = 1. 

whose exact solution is y ( t )  = exp(t), we obtain after one step y1 = R(z ) ,  
where z = he and R(z )  is the stability function defined by (2.6.6). Hence. 
assuming that the RK method has order p .  we can conclude that 

~ ( z )  = ez  + O(zP+l) as z -+ 0. 

For explicit s-stage RK methods of order p the function R(z )  is a polynomial 
of degree s of the form 

where cp+l, cp+2,. . . , c, are some constants. In particular, for explicit RK 
formulas with p = s 5 4, this function has the unique form 
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which is equal to the polynomial approximation of degree s and order p = s 
to the exponential function exp(z). Stability regions of the corresponding RK 
methods are plotted in Fig. 2.7.1.  

" 
-3 -2.5 -2 -1.5 .- 1 -0.5 0 0.5 

Re@) 

Figure 2.7.1 Stability regions of explicit RK methods with p = s 5 4 

For implicit RK methods R ( z )  is the rational function 

where P ( z )  and Q ( z )  are polynomials of degree 5 s. It follows from the 
maximum principle applied to the negative half-plane C- that the RK method 
is A-stable if and only if it is stable on the imaginary axis (I-stable): 

l ~ ( i y ) l  I 1 for all y E R, 

and R(z )  is analytic for Re(z) < 0 (i.e., Q ( z )  does not have roots with nega- 
tive or zero real parts). I-stability is equivalent to the fact that the N~rse t t  
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c1 

c2 

cs-1 

cs  

polynomial defined by 

E(y )  := lQ(ig)12 - IP(iy)I2 = Q ( i y ) Q ( - i ~ )  - P(~Y)P(-~Y)  

E(y)  2 0 for all y E R. 
satisfies 

x 
a21 x 

(2.7.4) 
US-l,l as-1.2 . . .  x 

a s 1  us2 ’ . ’  as.,-1 

(2.7.3) 

I bl b2 . . .  bs-i bs 

Assume that SDIRK method (2.7.4) has order p = s.  Then it can be demon- 
strated (compare, e.g., [146]) that its stability function takes the form 

where 
S 

L,(z) = C(-l)j (;):r - 
j = O  

(2.7.6) 

is the Laguerre polynomial of degree s and Ls”(z) stands for the kth deriva- 
tive. The Narsett polynomials, denoted by E,(y),  for SDIRK methods with 
p = s 5 4 are given below (compare [146]), where the explicit formula for 
E,(y) is also given. 

& ( Y )  = Y 2 W  - 11, 

+y6(  - ~ + p X - p X z + - - X 3 - 1 2 X 4 + 6 X 5  1 1 13 28 

E4(y) = y 6 (  72 - 3 X  + - A 2  - -A3 + 17X4 - 8X5) 

3 

1 1 17 32 
6 3 

1 1 25 13 173 76 + - A  - -A2  + -A3 - -A4 + -A5  - 22x6 + 8x7). +ys(-E 8 36 3 12 3 
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Since function (2.7.5) is analytic in @- for X > 0; it follows that A-stability 
is equivalent to E,(y) > 0 for all y E lR (compare (2.7.3)); that  is, all coeffi- 
cients of E,(y) are nonnegative. We reproduce in Table 2.7.1 the results given 
by Hairer and Wanner [146] (compare Table 6.3, p. 97) about A-stability of 
SDIRK methods of order p 2 s for s = 1, 2, . . . ,8. 

s I A-stability and p = s 1 A-stability and p = s + I 

5 

112 I X < m 

114 I X < 03 

113 I X 5 1.06857902 

0.39433757 5 X 5 1.28057976 

0.24650519 5 X 5 0.36180340 

0.42078251 5 X 5 0.47326839 

0.28406464 5 X 5 0.54090688 

~ 

0.21704974 I X I 0.26471425 

112 

(3 + &)I6 

1.06857902 

0.47326839 

__ 

Table 2.7.1 A-stability of the functions R ( z )  defined by (2.7.5) for p 2 s 

L-stability and p = s - 1 I L-stability and p = s 

(2 - &)I2 I I (2 + &)I2 

0.18042531 5 X 5 2.18560010 

0.22364780 I X I 0.57281606 

0.24799464 5 X 5 0.67604239 

0.18391465 5 X 5 0.33414237 

0.20408345 5 X 5 0.37886489 

0.15665860 5 X 5 0.23437316 

X = (2 f &)I2 

X = 0.43586652 

X = 0.57281606 

X = 0.27805384 

X = 0.33414237 

X = 0.23437316 

Table 2.7.2 L-stability of R ( z )  with P ( z )  defined by (2.7.7) for p 2 s - 1 

We conclude this section with a discussion of stiffly accurate SDIRK meth- 
ods, i.e., methods for which 

a , j = b j ,  j = 1 , 2  , . . . ,  s. 
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This property implies that the numerical approximation gn+l is equal to the 
last stage, Y,l"]. For these methods the numerator P ( z )  of the stability func- 
tion R(z )  takes the form 

(2.7.7) 

(compare [146]). This is a polynomial of degree s - 1 and it follows that 

lim R ( z )  = 0. 
z-00 

Hence, if these methods are A-stable, they are also L-stable. We reproduce in 
Table 2.7.2 the results from [146] (compare Table 6.4, p. 98) about L-stability 
of stiffly accurate SDIRK methods of order p 2 s - 1 for s = 2 ,3 , .  . . ,8.  

2.8 ILLUSTRATIVE EXAMPLES OF GENERAL LINEAR M E T H O D S  

In this section we describe the construction of GLMs of all four types of order 
p and stage order q = p - 1 and q = p with some desired stability properties. 
To illustrate various design criteria in the construction of such methods we 
restrict our attention in this section to methods with p = r = s = 2 and q = 1 
or 2. Moreover, we always assume that abscissa vector c = [0, 1IT and that 
the coefficient matrix U = I, where I is an identity matrix of dimension 2. 

2.8.1 

These methods take the form 

Type 1: p = r = s = 2 and q = 1 or 2 

a21 O 0 O I 1  0 O 1 
, 

where a21 # 0. Consider first the case p = q + 1 = r = s = 2. Solving stage 
order and order conditions with q = 1 and p = 2 given by (2.4.10) and (2.4.9) 
leads to a five-parameter family of methods depending on az1, v11, vzl ,  q 1 2 ,  

and q 2 2 .  The stability polynomial of these methods takes the form 

p(w, z )  = w2 - (PlO + pl lz  + p1zz2)w + Po0 + Po12 + p02z2 ,  

where the p i j  depend on the free parameters of the methods. As a design 
criterion we look first for methods that have the same stability properties as 
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explicit RK methods of order p = 2 with two stages. This leads to the system 
of equations 

Po0 = 0 ,  Po1 = 0,  P o 2  = 0 ,  

where p i j  are polynomials with respect to u 2 1 ,  7/21, q 1 2 ,  and q22.  The solution 
of this system leads to two families of methods, depending on ~ 1 1 .  These 
families are given by 

and 

0 O 1  

I .  
2 4 ,  +1 

2Wll 

2vf1-2W:,+2wll-1 -2w;,+2w11-1 
2 x 1  (v11-1) 2 W l  

Observe that the spectrum of the coefficient matrix V is .(V) = {1,0}, and as 
a consequence, these methods are zero-stable. It follows from Theorem 2.5.1 
that the local discretization error le(t,) of these methods takes the form 

w,) = ( p 2  8 l)y / ’ / ( tn - l )  + (g2 8 ~ ) - ( ~ ( t ~ - ~ ) ) y / / ( t ~ - ~ ) )  af ( aY 
h3 + o(h4).  

Here, for the first family of methods, 

and choosing q22 = i, the local discretization error takes a simple form, 

le(t,) = ( p 2  8 1)h~9’”(t ,-~) + O(h4) 

with p 2  = [ i, i]. The expressions for p 2  and $2 are more complicated for the 
second family of methods and are not listed here. It can be verified that for 
this family $2 = 0 if and only if q 2 2  = i and 7/11 = i. This corresponds to 
the method with stage order q = 2 discussed below. 

We would like to reiterate that by design all these methods have Runge- 
Kutta stability (RK stability) properties: that is, theirs stability polynomials 
take the form 

P ( W ,  .) = W ( W  - W )  I 
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- 
0 0 0 

- a21 0 1 ;  1 -  
- 

v11 1 - v11 
1 

a21(1- 1111) + +ll p 1 1  

$a21 - 1)(1 - vz1) &l + 3) - a21 u21 1 - v21 
1 1 

[ $1 

to guarantee zero-stability. The stability polynomial of these methods takes 
the form 

P ( W ;  2) = w2 - P l ( Z ) W  + p o ( z ) ,  

where pl(z) and p o ( z )  are polynomials in z given by 

1 1 1 
Pl(Z) = 1 + v11 - v21 + ( 5 4 1  - 2az1) + +1 + 3))z + -v11u21z2, 2 

This system has a unique solution given by a21 = 2; 2111 = v21 = i and the 
resulting GLM is 

[$ 2 0 0 1  O O 

The local discretization error of this method is 

where R(z )  = 1 +z+ i z 2  is a stability function of explicit RK method of order 
p = 2. All these methods are examples of DIn4SIMs. which are the subject of 
Chapter 3. 

Consider next the case p = q = r = s = 2. Solving stage order and order 
conditions (2.4.8) and (2.4.9) with q = 2 and p = 2 leads to a three-parameter 
family of methods, depending on a21 , 2111, and 2121. This family takes the form 
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15 
m 
p! 

10 

5 

Figure 2.8.1 Stability regions of GLMs of type 1 with p = q = T = s = 2 

- 

- - 

I 1 I I I I I 1 1 

-- I 1 

0.6 

0 5 -  

0 4 -  

03- 
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- 

d 

Figure 2.8.2 
r = s = 2  

Area of stability region versus d for GLMs of type 1 with p = q = 

0.2 I 1 I I 1 1 I I I 1 I 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

d 

Figure 2.8.3 Norm of cp2 versus d for GLMs of type 1 with p = q = T = s = 2 
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- 
0 0 

0 2490 
1943 

224 [ t 1 z ]  = 2723542 __ 
2656081 1367 

9733585 1406013 - 10624324 10624324 

We can also consider different design criteria in the construction of GLMs. 
For example. instead of searching for methods with RK stability, we may try 
to construct methods with maximal regions or intervals of absolute stability. 
In the context of methods discussed above, this can be done by a computer 
search in the parameter space a21, 2/11, and v21 subject to the constraint (2.8.1) 
to  guarantee zero-stability. Accordingly, we choose d = 2/11 - 2/21 in advance 
from the interval [-1, 1) and then search in the parameter space ( ~ 2 1 .  2/11) of 
dimension 2, for methods with maximal regions of absolute stability. Stability 
regions of the resulting methods are plotted in Fig. 2.8.1 for d = -1 + iAd, 
i = 0 , l . .  . . , N. Ad = 2/N,  N = 20, where we show by a thick solid line the 
stability region corresponding to  GLM with d = 112. The coefficients of this 
method expressed in rational format are 

- 
1 0  

0 1  

448 919 
1367 1367 

471 3205 
2734 2734 - 

- -  

For comparison, we also show by a thick solid line the stability region of two- 
stage RK methods of order p = 2. The method corresponding to  d = 1 is not 
zero-stable, and its stability region is plotted by a dashed line. In Fig. 2.8.2 
we have plotted the area of stability regions versus d ,  and in Fig. 2.8.3 the 
Euclidean norm of the vector ( ~ 2  appearing in the local discretization error 
versus d. 

2.8.2 Type 2: p = r = s = 2 and q = 1 or 2 

These methods take the form 

I X 0 1 1  0 I 

1 b21 b22 I 2/21 ~ 2 2  J 
where X # 0 and a 2 1  # 0. As before, consider first the case p = q + 1 = r = 
s = 2 .  Solving stage order and order conditions with q = 1 and p = 2 given by 
(2.4.10) and (2.4.9) leads to  a six-parameter family of methods depending on 
A, a 2 1  , 2/11, 2/21, q 1 2 ,  and q22. To analyze stability properties of these methods 
it is more convenient to work with a polynomial (1 - X ~ ) ~ p ( w , z ) ,  which we 
denote by the same symbol p(w, z) ,  than with the rational stability function, 
and we adopt this convention for methods of type 2 and 4. 
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- - 

This stability polynomial takes the form 

P(W! .) = (1 - W 2 W 2  - (PlO + P l l Z  + P l Z Z 2 ) W  + Po0  +PO12 + P 0 2 Z 2 ,  

where the p,, depend on the free parameters of the methods. Similarly as for 
type 1 methods, as a design criterion we look first for methods that have the 
same stability properties as SDIRK methods of order p = 2 with two stages. 
This leads to the system of equations 

2 V l l  1-2x ( l -wll)  l o  1 

2v;, -2x+1 
V l l ( 1  - v11) 2211 1 - z'll 

2/11 1 - z'11 

2Wl 

- b 2 l  b22 

Po0 = 0 ,  Po1 = 0,  Po2 = 0 ,  

where the pij are polynomials with respect to A; u 2 1 ,  VZI ,  q12,  and q z 2 .  The 
solution of this system leads to two families of methods, depending on X and 
2/11. These families are given by 

and 

with 

r x  O I 1  0 

For the first family of methods, vectors 9 2  and $2 in the local discretization 
error take the form 

T 

92 = [ q 2 2  - & q22 - +j ] , 

and choosing q22 = X2 - X + f leads to methods with $2 = 0. The expressions 
for cpz and $2 are more complicated for the second family of methods and are 
not listed. 
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X 0 

x 2 
1+2X 

- - 
8X3+12X2-2X+5 4(2X+1) & 4 

8X3+20X2-2X+3 -8X3-12X2+10X-1 
- 4(2X+1) 4(2X+1) 

The stability polynomial for both families of methods is independent of v11 

and takes the form 

p(w,z) = w  ( l -xZ)2w-1-(1-2X)z-  ( Z - 2 X + x 2 ) z ' ) .  1 

( 
We would like to stress again that, by design, the nonzero solution to p ( w ,  z )  = 
0 is equal to the stability function of SDIRK method of order p = 2 with two 
stages. Hence, it follows from the theory of SDIRK methods that both families 
of GLMs are A-stable if X 2 i (compare Table 2.7.1). These methods are also 
L-stable if X = (2  & 4 ) / 2  (compare Table 2.7.2). 

Next consider the case p = q = r = s = 2. Solving stage order and order 
conditions (2.4.8) and (2.4.9) with q = 2 andp = 2 and imposing RK stability, 
we obtain a one-parameter family of methods given by 

- 
1 0 

0 1 

;+x ; - A  

2 + x  $ - A  - 
1 

The vector cpz takes the form 

These methods are A-stable if X 2 i and attain order p = 3 if X = (3  + &)/6 
(compare Table 2.7.1). These methods are also L-stable for X = (2 & 4 ) / 2  
(compare Table 2.7.2). 

2.8.3 

These methods take the form 

Type 3: p = r = s = 2 and q = 1 or 2 

Consider first the case p = q + 1 = r = s = 2. Solving stage order and order 
conditions (2.4.10) and (2.4.9) with q = 1 and p = 2 leads to a four-parameter 
family of methods depending on 2/11, 2/21, q12,  and q 2 2 .  Similarly as for type 1 
formulas, the stability polynomial takes the form 

P ( W ,  z )  = w2 - (PlO + P l l Z  + P12Z2)W + Po0 + Po12 + P 0 2 Z 2 ,  
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where the p i j  depend on the free parameters of the methods. It can be verified 
that poo = 0 if 2121 = ~ 1 1  and then that pol - p02 = i. This implies that type 
3 methods with RK stability do not exist. There exists, however, a two- 
parameter family of methods depending on q12 and q22 such that $2 = 0. The 
coefficients of these methods are not listed here. 

Consider next the case p = q = r = s = 2 .  Solving stage order and order 
conditions (2.4.8) and (2.4.9) with q = 2 and p = 2 ,  we obtain a two-parameter 
family of methods of the form 

For these methods the vector p 2  appearing in the local discretization error is 

and the stability polynomial p ( w ,  2 )  takes the form 

As in Section 2.8.1, we have searched for type 3 methods with maximal 

Figure 2.8.4 Stability regions of GLMs of type 3 with p = q = T = s = 2 

regions of absolute stability. Choosing in advance the parameter d = ull - 
u21, which is equal to the eigenvalue of the coefficient matrix V, this search 
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3.5 1 4 

1 5  

I I I 1 I I 1 1 1 

-1 -0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
d 

Figure 2.8.5 
r = s = 2  

Area of stability region versus d for GLMs of type 3 with p = q = 

0.6 I I I I 1 1 1 1 1 

-1 -0.8 -0.6 -0.4 -0 2 0 0.2 0.4 0.6 0.8 1 
d 

Figure 2.8.6 Norm of 9 2  versus d for GLMs of type 3 with p = q = T = s = 2 

depends on only one parameter, w11. The results of this search are presented 
in Figs. 2.8.4, 2.8.5, and 2.8.6. In Fig. 2.8.4 we have plotted stability regions 
of the resulting methods for d = -1 +iA, i = 1 , 2 , .  . . , N ,  Ad = 2 / N ,  N = 20. 
The stability region corresponding to  d = 1/2  is shown by a thick solid line. 
The coefficients of this method in rational format are 

0 

I 2371 2371 1 2371 9951 
15160 15160 7580 7580 

13741 16579 6161 13741 1-m mI-m 7580 

As before, we have also shown by a thick line the stability region of a two- 
stage RK method of order p = 2 .  In Fig 2.8.5 we have plotted the area of 
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the region of absolute stability versus d,  and in Fig. 2.8.6 we have plotted the 
norm of the vector cpz versus d. 

- 
0 0 1 

2 

0 - 2 1 1 ;  1 - [:I:]= .TI Vll(1 - u11) 'u11 1 - 7111 

- Vll(1 +Vll) 1 -.:I 2121 1 - 2121 - 

2.8.4 

These methods take the form 

Type 4: p = r = s = 2 and q = 1 or 2 

p(w,-z) = w (  (1 - ;.)2w - (1 - ; z 2 ) ) .  1 

which has the roots w = 0 and 

1 
2 

2 

1 + --z 

2 -  1 '  

1 2  1 - --z 
4 -  w =  

(1-f.) 1 - - 2  

where X # 0. Consider first the case p = q + 1 = T = s = 2. Solving stage 
order and order conditions with q = 1 and p = 2 given by (2.4.10) and (2.4.9) 
leads to a five-parameter family of methods depending on A, v11 2121, q12, and 
q22. Next solving the system 

Po0 = 0, Po1 = 0, Po2 = 0 

with respect to 2121, q12, and X we obtain a family of type 4 methods with RK 
stability. Here poo, pol and p02 are defined as in Section 2.8.2. The coefficients 
of these methods are given by 

We have to impose the condition (2.8.1) to guarantee zero-stability. Choosing 
q22 = we have $2 = 0 and 

The stability function of these methods is 



110 INTRODUCTION T O  GENERAL LINEAR METHODS 

- 
0 

x 1 

( 3 A - l ) ( A - l )  

x 
0 

- - 

2(2X-1) 2x-1 

This corresponds to the stability function of the trapezoidal rule, 

1 
Yn+l  = Y n  + ?(f(Yn,) + f ( Y n + l ) ) ,  

' 

(2.8.2) 

and it follows that these methods are A-stable but not L-stable for any 2/11. 

For 2/11 = 0 the GLM has stage order q = 2 and it is equivalent to the 
trapezoidal rule. It can be verified that for X # f ,  methods of type 4 cannot 
have RK stability. This case is not discussed further here. 

Consider next the case p = q = r = s = 2. Solving stage order and order 
conditions (2.4.8) and (2.4.9) with q = 2 and p = 2 leads to a three-parameter 
family of methods depending on 2/11. 2/21. and A. Trying to construct methods 
that will be A- as well as L-stable, we determine the parameters 2/11 and 2/21 

from the system of equations 

Po2 = 0, P12 = 0, 

where p02 and p12 are defined as in Section 2.8.2. This leads to a family of 
methods depending on A. The coefficients of these methods are given by 

1 -5X2+10X-4 
2(2A-1) 2 2X-1  

X # f and the vector p~ takes the form 

~ x 2 - 3 x + : ]  T . 
4 

For X = we obtain the GLlLl discussed above, which is equivalent to the 
trapezoidal rule (2.8.2). The stability polynomial of the methods correspond- 
ing to x # ; is 

2(X2 - 4x + 2)(AZ - 1) 
p(w,  z )  = (1 - Xz)2w2 + W 

2 x  - 1 

2X3 - 6X2 + 6X - 2 2X2 - 6X + 3 
z -  

2 x  - 1 2 x -  1 
+ 

The eigenvalues of the coefficient matrix V are 

2X2 - 6X + 3 
1 - 2x  

01 = 1 and 02 = 

and it is easy to verify that 02 E [-1,l) if 

2 - ~ 5 5 A 5 2 + &  and X # l .  (2.8.3) 
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We will use the Schur criterion [253] (compare also [118, 194, 2141) to 
investigate for which values of X this polynomial is A-acceptable (i.e., it has 
roots w1 and w2 inside the unit circle for all z E C such that Re(z) 5 0). 
If this is the case, the corresponding GLM is A-stable. This criterion for 
a polynomial of any degree Ic can be formulated as follows. Consider the 
polynomial 

k #(w) = ckw f ck-lWk-' + ' ' '  + C1W + CO, 
where ci are complex coefficients, Ck # 0 and co # 0. 4(w) is said to be a 
Schur polynomial if all its roots w,, i = 1 ,2 , .  . . ! k ,  are inside the unit circle. 
Define 

h 

d(w) = zgwk + Elwk-' + ' '  ' f zk-lw + z k ;  

where Zt is the complex conjugate of c,. Define also the polynomial 

of degree at  most Ic - 1. We have the following theorem 

Theorem 2.8.1 (Schur [253]) Polynomial 4(w)  is a Schur polynomial if 
and only if 

I @ ) l  > / 4 ( 0 ) l  

and #1(w) is a Schur polynomial. 

To apply this criterion to the polynomial p(w,  z )  corresponding to a one- 
parameter family of GLMs of type 4 observe first that for X > 0 the roots 
w1 = w1(z) and w2 = w2(z )  are analytic functions of z for Re(z) 5 0. Hence, 
it follows from the maximum principle for analytic functions (compare, e.g., 
[119]) that these roots are inside the unit circle for Re(z) 5 0 if and only if 
they are inside the unit circle for z on the imaginary axis (i.e.! for z = i y ,  
where y E R). Hence, we can reduce the problem to an easier one, and we 
only have to investigate for which values of X the polynomial q(w,  y) defined 
by 

is a Schur polynomial for all y E R. Define 

4(w,  Y) = P ( W ,  i Y )  
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Then it follows from Theorem 2.8.1 that all roots of q(w,y) are in the unit 
circle for all y E R if and only if 

Qo(Y) > 0 and I?(O,Y)l  > 14(0>Y)l. 

A careful examination of these conditions reveals that this is again the case 
if X satisfies (2.8.3) and the corresponding methods are zero- and A-stable as 
well as L-stable. 

2.9 ALGEBRAIC STABILITY OF GENERAL LINEAR M E T H O D S  

We start this section with a brief review of the AN-, B-, BN-, and algebraic 
stability of RK methods (2.1.3). The concept of AN-stability is a general- 
ization of A-stability and is related to the scalar, linear, nonautonomous test 
equation 

(2.9.1) 

Re([@)) 5 0, where E(t) is an arbitrarily varying complex-valued function. 
Application of the RK method (2.1.3) to (2.9.1) yields 

Yn+l = (1 + bTE(I  - AE)-le)Yn, (2.9.2) 

n = 0 ,1 , .  . ., where the diagonal matrix < E Csxs is given by 

[ = diag(&, . . . ,&) = diag(h[(t, + clh),  . . . ,h((tn + c,h)). (2.9.3) 

Set 
K ( [ )  = 1 + bT[(I - A[)-’e. 

Relation (2.9.2) motivates the following definition. 

Definition 2.9.1 ([32],[249]) RK method (2.1.3) is said to be AN-stable if 
the function K(<)  satisfies 

for all [ = diag(t1. . . . , E s )  such that ti = 
Re(&) 5 0 for i = 1 , 2 , .  . . , s. 

IK(J)I 5 1  
whenever ci = c3 and such that 

Observe that for E = zI, K(<)  reduces to the stability function R(z )  defined 
by (2.6.6) of RK method (2.1.3). Hence, it follows that AN-stability implies 
A-st ability. 

Consider next the initial value problem (1.1.2) defined for t 2 0 
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g : R x Rm + Rm, where the function g satisfies the one-sided Lipschitz 
condition (1.3.4) with a one-sided Lipschitz constant u = 0: 

( g e l  Y1) - d t?  Y 2 ) ) 7 Y 1  - Y2) I 0 (2.9.5) 

for all t 2 0 and y1, y2 E Rm. Equation (2.9.4) with the function g satisfying 
(2.9.5) was first proposed by Dahlquist [loo] for the analysis of stability prop- 
erties of one-leg methods (2.1.5) for ODES. Denote by y ( t )  and c(t) solutions 
to (2.9.4) with initial conditions yo and go, respectively. Then the condition 
(2.9.5) implies that 

(2.9.6) 

for 0 I t l  5 t 2  (compare [54, 1091). Differential equations (2.9.4) with this 
property are called dissipative. 

Let {Y~}," ,~ ,  {Y[nl}F=o be the numerical solution obtained by applying to 
(2.9.4) the RK method (2.1.3), and let { Q n } ~ = o = o ,  {Y[n]}r=o be a solution ob- 
tained by perturbing (2.1.3) or by using a different initial value 1Jo. Following 
Butcher [38] and Burrage and Butcher [32], we introduce the concepts of B- 
and BN-stability. 

Definition 2.9.2 RK method (2.1.3) i s  saad t o  be B-stable  zf f o r  all au- 
tonomous problems (2.9.4) satisfying (2.9.5); that is, problems f o r  which the 
func t ion  g as independent o f t ,  we have 

- 

(2.9.7) 
- 

/IYn+l - Yn+ll/ 5 IlYn - iLY,ll; 

n = 0 ,1 , .  . ., f o r  all h > 0 .  

Definition 2.9.3 RK method (2.1.3) is  said t o  be B N - s t a b l e  if f o r  all prob- 
lems (2.9.4) with g satisfying (2.9.5) the inequality (2.9.7) holds f o r  all t 2 0 .  

Clearly; BN-stability implies B-stability. The algebraic characterization 
of B-stable methods was discovered by Butcher [38] and Crouzeix [96] and 
the characterization of BN-stability by Burrage and Butcher [32]. Consider 
the matrix M defined by 

M = BA + ATB - bTb. (2.9.8) 

where A and b are coefficients of the RK method (2.1.3) and the matrix B is 
defined by 

B = diag(b1, b l . .  . . , b s ) .  

Definition 2.9.4 RK method (2.1.3) is said t o  be algebraically stable if B 
and M are nonnegative definite. 

We recall that a matrix A E EXsxs is positive definite if xTAx > 0 for 
all nonzero vectors x E Rs. A matrix A E Rsxs  is nonnegative definite if 
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xTAx 2 0 for all x E Rs (compare [136, 2271). We write A > 0 for a positive 
definite matrix and A 2 0 for a nonnegative definite matrix. 

The significance of the definition of algebraic stability follows from the 
following theorem. 

Theorem 2.9.5 (compare [32, 38, 961) If RKmethod (2.1.3) is algebraically 
stable, it is BN-stable. 

The two-stage Gauss-Legendre formula [41: 5 2 ,  1091 

I bT 1 I ;  2 

is algebraically stable since bi > 0, i = 1, 2, and 

Other examples of algebraically stable RK methods are given in the papers 
[32, 41, 52, 1091. 

An excellent discussion of various contractivity and stability properties of 
RK methods for stiff systems and the relationships between various stability 
concepts is given by Dekker and Verwer [log]. 

We now turn our attention to the generalization of concepts of AN-, B-, 
BN-, and algebraic stability which are relevant in the context of GLMs (2.1.2). 
This is discussed by Hairer and Wanner [146, Chap. V.91, and in recent papers 
[53, 54, 1581. 

Applying GLM (2.1.2) to test equation (2.9.1), we obtain 

n = 0: 1,. . ., where 5 is defined by (2.9.3) and 

S(<) = V + B<(I - A<)-'U. 

To define AN-, B-, and BN-stability, let G = [9ij];,j=1 be a real, symmetric, 
and positive definite matrix, and for a vector y E R"', 
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consider the inner product norm 
r r  

i=l j=1  

Definition 2.9.6 ([146]) GLM (2.1.2) is said to be AN-stable if there exists 
a real, symmetric, and positive definite matrix G such that 

for  all E = diag(E1,. . . , E s )  such that E, = t j  whenever c, = c j  and such that 
Re(&) 5 0 for i = 1 ,2 . .  . . , s. 

Different variants of this definition have been considered by Butcher [41, 42, 
431. Observe that for ( = zI, S(() reduces to  the stability matrix M(z) defined 
by (2.6.4) of GLM (2.1.2). Hence, if a GLM is AN-stable it is also A-stable. 

Denote by {y["I},N_o the solution to (2.1.2) and by { y [ n ] } ~ = o  the solution 
obtained by perturbing (2.1.2) or by using a different initial value. The be- 
havior of a numerical method that inherits property (2.9.6) of the solution 
y ( t )  to (2.9.4) in the norm 1 1  * 1 1 ~  given by (2.9.9) is defined as G-stability. 
As mentioned earlier this definition was introduced by Dahlquist [loo] in the 
context of one-leg methods (2.1.5). For GLMs (2.1.2) this definition takes the 
following form. 

Definition 2.9.7 GLM (2.1.2) is said to be G-stable af there exists a real, 
symmetrzc, and positive definite matrax G E Rrxr  such that for two numerical 
solutions, {Y["I} ,N=,  and { ~ [ n ] } ~ = O ,  we have 

where 1 1  ' I I G  is the norm defined by  (2.9.9) for all step sizes h > 0 and for all 
differential equations (2.9.4) with the function g satisfying (2.9.5). 

For given G E Rrxr  and D E Rsxs, define the matrix M by the formula 

(2.9.10) 1 .  DA + ATD - BTGB I DU - BTGV 

UTD-VTGB 1 G-VTGV I M := 

We now introduce the definition of algebraic stability of GLMs. 

Definition 2.9.8 ([33, 431) GLM (2.1.2) is said to be algebraically stable 
if there exist a real, symmetric, and positive definite matrix G and a real, 
diagonal, and positive definite matrix D such that the matrix M of (2.9.10) 
is nonnegative definite. 

It has been proved by Burrage and Butcher [33] that for a preconsistent 
and algebraically stable GLM (2.1.2), matrices G and D are not independent 
but necessarily related by the equation 

De = BTGqo, 
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2 0 

2 2 1  

3 

3 3  

+ ; 1  

- i i h 0  1 

where q o  is the preconsistency vector (compare Definition 2.2.1). Moreover, 
Gqo is a left eigenvector of the coefficient matrix V corresponding to the 
eigenvalue 1 : 

(I - VT)Gqo = 0 

(compare [146], part ii) of Lemma 9.5). 
It follows from the results of Burrage and Butcher [33] that the algebraic 

stability of GLMs (2.1.2) implies G-stability. Moreover, for a large class of 
GLMs the concepts of algebraic, G-. and AN-stability are equivalent. We 
have the following theorem. 

Theorem 2.9.9 (Butcher [43]) For a preconszstent and nonconjluent GLM 
(2.1.2) (z.e., method wath dastanct absczssas c,, z = 1 ,2 . .  . . , s) ,  algebraac, G-, 
and AN-stabalaty are equzvalent. 

In general, it is quite difficult to verify if a given GLM method (2.1.2) is 
algebraically stable; that is, it is difficult to find a real, symmetric, and positive 
definite matrix G and a real. diagonal, and positive definite matrix D such 
that the matrix M defined by (2.9.10) is nonnegative definite. An interesting 
example of algebraically stable GLM was constructed by Dekker [lo81 This 
is the method of order p = 4 and stage order q = 3 whose coefficients are 
given by 

1 -; 
1. 

0 

ii 

6 

5 

Then for the matrices 

G =  
1 0  

0 1 1  
12 

the matrix M of (2.9.10) takes the form 

0 0 0  

6 
11 11 11 0 s _ _  -_  

M =  I 
6 9 

3 -  O -& 22 22 

(2.9.11) 

This matrix is real, symmetric, and nonnegative definite which proves the 
algebraic stability of GLM (2.9.11). 
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An interesting family of algebraically stable GLMs of arbitrarily high order 
was constructed by Burrage [28], where such methods were found in the class 
of MRK methods (2.1.13) of order p = 2s using an elegant extension of the 
collocation approach for RK methods. In what follows we describe these 
results following the presentation by Hairer and Wanner [146], which simplifies 
the original exposition of Burrage [28]. 

Consider the bilinear form defined by 

where W ( X )  is the step function defined on the interval [1-k, 11 by the formulas 

Assuming that 

the function W ( Z )  is nonnegative and (2.9.12) becomes an inner product in 
the space of polynomials on the real line. Denote by {p3(z)}& the set of 
polynomials orthogonal with respect to  the inner product (2.9.12). These 
polynomials depend on w1! 112) .  . . , V k ,  and can be computed from the three- 
term recurrence relation 

j = 1,2,. . . , s - 1, where 

(w), ~j = (Pj! Pj) 
Pj = 

( P j l P j )  ( P j -  1 , P j -  1) . 

This recurrence relation is well defined since the assumption (2.9.13) implies 
that ( p j , p j )  # 0 (compare [146, Lemma 9.121 or [28, Theorem 41). 

The main results of Burrage [28] can be summarized in the following the- 
orem. 
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Theorem 2.9.10 Assume that vj 2 0 ,  j = 1 , 2 , .  . . , k, and that xi=, vj = 1. 
Then M R K  method (2.1.13) with abscissas c1, c2, . . . , cs, which are the zeros 
of the polynomial ps(x) and with coeficients bi, a i j ,  and uij defined b y  

where 
s 

5 - CI 

ci - CL l=l.l#i 

has order p = 2s. Moreover, this method is G-stable, with matrix G defined 
by  

G =  d i a g ( l , v z + . . . + v k  , . . . ,  v k - l + v k . v k ) .  

In the remainder of this section we describe the important recent work of 
Hewitt and Hill [154], in which they reformulate the standard conditions for 
algebraic stability and use the concepts of method equivalence, reducibility, 
and order conditions for methods of high stage order to simplify the con- 
struction of such methods of order p and stage order q = p or q = p - 1. 
This approach is connected to a branch of control theory concerned with the 
algebraic discrete Riccati equation and to the theorem of Albert [3] on block- 
symmetric nonnegative definite matrices, and has the potential to provide a 
systematic approach to the construction of algebraically stable GLMs of high 
order and stage order. 

Following Butcher [43], we introduce the following definitions of method 
equivalence and reducibility. 

Definition 2.9.11 The GLMs defined b y  the coeficients matrices 

are equivalent if there exist a permutation matrix P and a nonsingular matrix 
Q such that 
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r1 

r2 

7-3 

Definition 2.9.12 G L M  (2.1.2) is reducible zf s = sl+s2 and r = r l + r ~ + r ~  

wi th  s 2  +r2+r3 > 0 ,  so that  t he  equivalent G L M  method has a sparsity pa t t e rn  
of t he  f o r m  

$1 s 2  r2 r3 

B11 0 V11 0 v13 ' 

B21 B 2 2  v2l v 2 2  v 2 3  

0 0 0 0 v33 - - 

All I u11 [ B11 I Vll ] 
with s1 internal  stages and r1 external stages.  T h e  method i s  said t o  be irre- 
ducible i j  it i s  n o t  reducible. 

Earlier definitions of algebraic stability [33, 421 required only that both ma- 
trices G and D be nonnegative definite. while the definition in [146] requires 
only that G is positive definite and D is nonnegative definite. In this context 
the result by Hewitt and Hill [154] is of interest. This result shows that all 
these definitions are, in fact, equivalent. We have the following theorem. 

Theorem 2.9.13 (Hewitt and Hill [154]) A s s u m e  that  for a n  irreducible 
G L M  wi th  coef ic ients  A, U, B, and V, m a t r i x  M of (2.9.10) i s  nonnegat ive  
definite for s o m e  real, s ymmet r i c ,  and nonnegat ive  definite m a t r i x  G and  a 
real, diagonal, and nonnegat ive  definite m a t r i x  D. T h e n  G and D are posit ive 
definite. 

We now describe the reformulations of algebraic stability proposed re- 
cently by Hewitt and Hill [154], which simplify somewhat the construction 
of algebraically stable GLMs. These reformulations are based on the no- 
tion of Moore-Penrose pseudo-inverse and on Albert's theorem [3] on block- 
symmetric nonnegative definite matrices. 

Suppose that A E R"'" and rank(A) = r < n. The singular value decom- 
position of A is defined by 

A = U C V T ,  

where U E RmX" and V E Rnx" are orthogonal matrices and 

C = diag(a1,. . . ,ar ,O, .  . . , O )  E R"'" 
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(compare [110, 1361). Then the Moore-Penrose pseudo-inverse of A, denoted 
A+, is defined by 

A+ = V C + U T ,  

where 

It can be verified that if rank(A) = n, then A+ = (ATA)-lAT, while if 
m = n = rank(A), then A+ = A-l. The pseudo-inverse of A can also be 
defined to  be the unique matrix X E RnXm that satisfies the Moore-Penrose 
conditions 

AXA = A: X A X  = X, (AX)T = AX, (XA)T = XA 

again see [110, 1361. We have the following theorem. 

Theorem 2.9.14 (Albert [3]) The matrix 

is nonnegative definite if and only if 

M11 2 0 and M22 - M g  M A  M12 L 0. 

We recall that  A 2 0 means that matrix A is nonnegative definite. Applying 
this theorem to matrix M of (2.9.10) and to  matrix M* defined by 

which is nonnegative definite if and only if M is nonnegative definite, we 
obtain the following reformulations of the criteria for algebraic stability. 

Reformulation 1. GLM (2.1.2) with coefficient matrices A, U,  B, and V 
is algebraically stable if there exist a real: symmetric, and positive definite 
matrix G and a real, diagonal, and positive definite matrix D such that 

DA + A ~ D  - B ~ G B  2 o 

and 

G - V ~ G V -  ( U ~ D  -V*GB) (DA+ATD - B ~ G B ) +  (DU-BTGV) 0. 

In control theory, the last condition is known as the discrete Riccati equation 
[196]. 
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Reformulation 2. GLM (2.1.2) with coefficient matrices A, U, B, and V 
is algebraically stable if there exist a real; symmetric, and positive definite 
matrix G and a real, diagonal, and positive definite matrix D such that 

G - V ~ G V  2 o 

and 

D A + A ~ D  - B ~ G B  - (DU- B ~ G V )  (G -v~Gv)+ ( U ~ D  - V ~ G B )  2 0. 

Another interesting idea of Hewitt and Hill [154] in their search for alge- 
braically stable methods is to consider the equivalent GLMs with a simple 
structure of matrix G. We have the following results. 

Lemma 2.9.15 ([154]) A s s u m e  that GLMs with coef ic ient  matrices A, U, 
B, V and i, U, B, V are equivalent (compare Definition 2.9.11). T h e n  the 
GLM defined by A, U, B, V is  algebraically stable if and only if the GLM 
defined by A, 6, B, 9 i s  algebraically stable. 

- - -  

Lemma 2.9.16 ([154]) An algebraically stable GLM with coeficients A, U, 
B, V is  equivalent t o  a n  algebraically stable method with coef ic ients  i, 6, 
B, 9 f o r  which G = I. Furthermore, i f  D > 0 is  such that matr ix  M of 
(2.9.10) satisfies M 2 0 ,  then  we have 2 0 ,  where 

Using Lemma 2.9.16 combined with reformulations 1 and 2 and with the aid 
of symbolic manipulation packages, Hewitt and Hill [154] constructed new 
algebraically stable GLMs with r = s = 2 ,  order p = 3 and stage order q = 2 ,  
and of order p = 4 and stage order q = 2 and 3. The example of method 
of order p = 3 and stage order q = 3 constructed using Lemma 2.9.16 and 
Reformulation 1 is 

+ &  8 4 - 4 m + 3 y  y3 2 7 6 - 2 0 r n - 5 1 ~  
144 2592 144 

144 2592 144 + & 
A =  [ 

2 7 6 - 2 0 a + 5 1 y  y3  8 4 - 4 m - 3  

6 

z(9-24~' -2y3)  
54 

1 
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0.2713275450 -0.03981838948 

0.5747233653 0.2356534502 

0.5161792288 -0.5361792288 

L 0.05892556058 -0.06352190785 

with c = [0, 2y/3IT, where 

y := d a ,  z := d4548 - 3 8 3 m  - 380y + 3 2 y m .  

The decimal representation of this method is 

1 0.05494949955 - 
1 -0.06352190785 

1 0 

0 0.5 

> 

with c = [0, 0.5788676600IT. The example of method of order p = 4 and stage 
order q = 3 constructed using Lemma 2.9.16 and Reformulation 2 is 

265 ; 7 9 3 ~ '  5y' 123y' 27y8 ;;; 5 2 9 9 ~ '  ~ 62;t4 I 9:'~;"~ I 18&y8 
864 576 6 64 16 576 

A = [  - 
101 463y4 I 3 8 2 1 ~ '  669y' 1 3 5 ~ '  5y4 67 I 793y' 123y6 27y' 
432 288 48 32 8 432 288 3 32 S 
- 

1 2 1 
3 3 

24 24 
1 7 ~ -  1125y3 +828y5 +1783y7+1458yg - l l y + l  125y3 -828y5 - 1782y7- 1458yg 

' B =  [ 

with 
T 

i ]  . 1 9 3 ~ 2 -  129y4-297y6-243y8 - 
c = [  0 8 

Here y = and z is one of the two positive roots of the equation 

9z5 + 33z4 + 46z3 - 1862' + 9z + 1 = 0. 

Choosing the root z = 0.1032814360 and y = m, the decimal representa- 
tion of the resulting method is 

0.3530415762 -0.0595835887 

0.6782443859 0.2477498188 

0.6666666667 0.3333333333 

-0.1598351741 0.2062215576 

1 -0.08476931053 

1 0.03037947026 

1 0 

0 0.5 
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with c = [0, 0.6432188884IT. 
Additional examples of algebraically stable GLMs with r = s = 2 and 

p = q = 2, p = 3, q = 2, and p = 4, q = 2, constructed using the algorithms 
based on results of Hewitt and Hill [154] are presented in their companion 
work [155]. 

2.10 UNDERLYING ONE-STEP METHOD 

In this section we describe briefly results of Kirchgraber [191] and Stoffer [267] 
which establish a connection of strongly zero-stable linear multistep methods 
and strongly zero-stable GLMs, respectively, with a one-step method of the 
same order. 

Let yo be the given initial value of the problem (2.1.1) and denote by 
y1, y 2 , .  . . , y k - l  the starting values of linear multistep method (2.1.4), which 
are used to generate the sequence of approximations yk, Yk+l ,  . . .. These start- 
ing values, y1,  y2 ,  . . . , yk-1,  will be referred to as supplementary initial values. 
Denote by GO, P I , .  . ., the sequence of numerical approximations to (2.1.1) gen- 
erated by some one-step method, such as: for example, RK method (2.1.3). 
We have the following theorem. 

Theorem 2.10.1 (Kirchgraber [191]) There  exists a one-step method and 
ho > 0 such  that  f o r  h E (0 ,  ho), t h e  following s ta t emen t s  are true.  
(a )  Le t  &,g2,, . . be the  sequence generated by a one-step method w i th  TO = 
yo. If t he  supplementary init ial  ualues of strongly zero-stable l inear mult is tep 
method (2.1 4)  are chosen as y1 = 

- , y2 = F 2 ,  . . ., yk-1 = Yk-1, t h e n  
- 

yz = yi,  i = k , k  + 1; 

(b) There are constants  n E ( 0 , l )  and k > 0 which do n o t  depend o n  h 
such that  if t he  supplementary init ial  ualues y1 ,  y2,  . . . , Yk-1 are prescribed 
arbitrarily, there exists go such  that  if ? J 1 ,  g 2 , .  . . i s  t he  sequence generated by 
one-step method starting f r o m  go, t h e n  

l lyi-gii l  5 ~ z ~ ( ~ ~ ! / ~ - ~ l ~ ~  + ” ‘ +  Ilyk-1 - g k - l I l ) !  i = k , k + I : .  

As observed by Kirchgraber [191], part (a) of the theorem says that for a ju- 
dicious choice of supplementary initial values, the numerical approximations 
generated by linear multistep and one-step-methods are the same. Unfortu- 
nately, this is not as interesting as it sounds, since the choice y l  = 51 assuming 
that yo = go is equivalent to construction of the associated one-step method 
whose existence is claimed in Theorem 2.10.1. However, part (b) implies that 
for any choice of supplementary initial values the difference between the ap- 
proximations generated by a linear multistep method and a one-step method 
is exponentially small as h --f 0. This associated one-step method, whose ex- 
istence is guaranteed by Theorem 2.10.1, will be referred to as the underlying 
one-step method. 



124 INTRODUCTION TO GENERAL LINEAR METHODS 

The results in Theorem 2.10.1 were generalized by Stoffer [267] to strongly 
zero-stable GLMs (2.1.2): that is, methods for which the coefficient matrix V 
has a simple eigenvalue equal to 1 and the remaining r - 1 eigenvalues inside 
the unit circle (compare Definition 2.2.6). For such methods there exists a 
nonsingular matrix T E Rrxr  such that the methods can be transformed into 
the form 

where zLn] = (T-' @ I)y["], and the coefficient matrix T-lVT assumes the 
form 

T - ~ V T ~ I =  ~ (2.10.2) [I:;], 
with p ( v )  < 1. It follows from (2.10.2) and (2.2.1) that the preconsistency 
vector for the transformed method (2.10.1) is qo = el. This implies that the 
first subvector of z["], which is denoted by yn, approximates directly y( t , ) .  

Denote by M h  : R"' + Rm' the action of the method (2.10.1) 

We have the following theorem. 

Theorem 2.10.2 (Stoffer [267]) A s s u m e  that  M h  i s  a strictly zero-stable 
GLM of order p .  T h e n  there exists a unique one-step method of order p ,  
yn+l = R h ( y n ) ,  R h  : Rm + Rm, and a unique s tart ing procedure s h  : Rm --+ 

R"' satisfying (2.4.4) such  tha t  t he  following diagram commutes :  

(2.10.3) 

(2.10.4) 

where F h  : Rmr + Rm i s  a f inishing procedure that  selects f r o m  z["] the  f irs t  
subvector yn, and Id : R" --+ R" s tands  f o r  the  iden t i t y  m a p .  
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It follows from (2.10.3) and (2.10.4) that the one-step method R h  can be 
represented by 

R h  = Fh 0 Mh ash. 
The concept of an underlying one-step method was extended by Hairer et 

al. [142] to nearly all GLMs, including weakly stable methods, i.e., methods 
for which the coefficient matrix V has, in addition to the simple eigenvalue 
equal to 1, additional simple eigenvalues with modulus 1. 

It was demonstrated by Stoffer [267] that the result in Theorem 2.10.2 may 
be used to show that some general properties of one-step methods carry over 
to GLMs. An example of such a property is the existence of a hyperbolic 
invariant closed curve of a one-step method near the orbit of the periodic 
solution, assuming that the differential equation admits such a solution [20, 
24, 1231. This result was generalized Eirola and Nevanlinna [124] to linear 
multistep methods. Another example of such a property [267] is the existence, 
for every small step size h,  of a compact, uniformly asymptotically stable set 
A(h)  containing a compact, uniformly asymptotically stable attractor A of 
the differential system, assuming again that such an attractor exists [192] and 
such that h ( h )  is convergent to A in the Hausdorff metric as h -+ 0. We refer 
to Edgar [la01 for a definition of a Hausdorff metric (distance). This result 
was generalized to linear multistep methods by Kloeden and Lorenz [193]. 

We refer to the papers [52, 75, 2931 for additional discussion of underlying 
one-step methods in the context of GLMs, and to the paper [142] for the 
discussion of the dynamics of weakly stable methods. 

2.11 STARTING PROCEDURES 

Many modern codes for the numerical solution of ODES are based on a family 
of methods which includes a method of order p = 1. Such codes usually start 
with a method of order p = 1 and adapt its step size and order automatically 
according to the smoothness of the solution. For such codes the required 
starting values, yo or yo and yh = f ( t 0 ,  yo), are readily available, and no special 
starting procedures are required. This is the case, for example, for classical 
codes based on linear multistep methods such as DIFSUB [131, 132, 1331, 
ODE/DE/STEP [262], LSODE [242]. VODE [23, 1591, VODPK [25, 831. for 
the code dim18 for nonstiff equations, which is based on a family of type 1 
DIMSIhls of order 1 5 p 5 8, and for the code diml3s for stiff differential 
systems, which is based on A- and L-stable type 2 DIMSIMs of order 1 5 
p 5 3. These codes are self-starting and require only known information. The 
codes dim18 and diml3s are discussed briefly in Section 2.12 and in more 
detail in Chapter 4. 

Codes based on RK methods of fixed order are also self-starting and re- 
quire only the initial value yo. The situation is different, however, for codes 
based on GLMs of fixed order such as DIMSIMs discussed in Chapters 3 and 
4, TSRK methods discussed in Chapters 5 and 6, and GLMs with inherent 
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Runge-Kutta stability (IRKS) discussed in Chapters 7 and 8. The codes based 
on these and other GLMs of fixed order require starting procedures to com- 
pute approximations to the starting vector of external approximations y[O] 
for GLMs (2.1.2), or stage values Y[O] and the approximation y1 at the point 
tl = t o  + ho for TSRK methods (2.1.12). 

The construction of starting procedures for GLMs of fixed order have been 
discussed by VanWieren [273, 274, 2751, 'Crlkight [291. 2931, and Huang [167]. 
VanWieren obtained starting values for his codes DIMEXz [273, 2741 for non- 
stiff equations and DIMSTIFF2 and DIMSTIFF5 [273. 2751 for stiff equations 
by computing approximations to the derivatives of the solution of sufficiently 
high order using only information available at the start of the integration. 
This is discussed in detail by VanWieren [273, 2741, and these codes are dis- 
cussed briefly in Section 2.12. Enenkel and Jackson [126, 1271 introduced the 
class of GLMs for which the vector y[O] of external approximations satisfies 
ypl x y ( t0  + d,ho), i = 1 , 2 , .  . . , T ,  where the abscissas d, are distinct. These 
methods are discussed briefly in Section 2.12. They computed the required 
starting values yr l  using variable order solver LSODE [242] with the same 
order tolerance as that specified for GLM. 

The construction of starting procedures for general TSRK methods (2.1.12) 
is discussed in Section 6.2. For reasons discussed by Hairer and Wanner [147], 
the construction of such procedures is quite complicated if the order p of TSRK 
method is at least greater by 2 than the stage order q (i.e., if q 5 p - 2). The 
starting procedures for some TSRK methods satisfying this restriction have 
been derived by Verner [277, 2781. The situation is much simpler for TSRK 
formulas such that q = p - 1 or q = p ,  and if this is the case, the required 
starting values can be computed. for example, by any continuous RK method 
of order p .  This is the approach adopted in the codes t s r k 5  [16], t s r k 2 3  
and t s r k 3 3  [91] and in the codes discussed by Bartoszewski and Jackiewicz 
[17]. These codes are discussed briefly in Section 2.12 and in more detail in 
Chapter 6. 

The construction of starting procedures for GLMs with IRKS is discussed 
in Section 8.2. In that section examples of such procedures are also given for 
methods of order p = 2, 3, and 4. The starting procedures for these methods 
are also discussed by Wright [293] and Huang [167] and the approach taken 
in these papers is discussed at the end of Section 8.2. 

2.12 CODES BASED O N  GENERAL LINEAR M E T H O D S  

Although GLMs of the form (2.1.2) for ODES were introduced in 1980 [33], the 
main progress in the theory and construction of such methods with desirable 
stability properties was obtained only recently, mainly in the last 15 years. 
Various implementation issues for these methods were also investigated, such 
as the choice of appropriate starting procedures, Nordsieck representation 
of various classes of these methods, estimation of the principal part of the 
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local discretization error, step size, and order changing strategies, construction 
of continuous interpolants, updating the vector of external approximations, 
and the efficient solution of resulting systems of nonlinear equations for stiff 
differential systems. Although significant progress on all these issues was 
obtained, the implementation aspects of GLMs are still not as well understood 
as is the case for RK, linear multistep. or predictor-corrector methods. Also, 
so far only a few codes based on some classes of GLMs have been developed 
for nonstiff and stiff differential systems. 

Probably the first such code, written in FORTRAN, is due to Cash and 
Considine [88. 891 and is based on MEBDF formulas of order 1 5 p I 9 pro- 
posed by Cash [86]. These methods are also discussed by Hairer and Wanner 
[146] and in Section 2.1 (compare equations (2.1.7), (2.1.8), and (2.1.10)). 
These formulas are not linear multistep methods and are not restricted by 
Dahlquist’s second barrier [99] for A-stable methods. MEBDF methods have 
good stability properties: they are A- and L-stable up to the order p = 4 and 
A(a)-stable up to  the order p = 9, with the angles a listed in Table 2.1.1. 
They form a class of GLMs. This is discussed in Section 2.1. where the co- 
efficient matrices A, U, B,  and V for these methods are also given. It was 
demonstrated by Cash and Considine [88, 891 as well as by Hairer and Wanner 
[146] that the code based on MEBDF methods shows good performance on 
selected examples of stiff problems, although in some cases it was beneficial 
to  restrict the maximal order for better performance. This was the case, for 
example, for the BEAM problem, where the maximal order was restricted to 
p,,, = 4 in the experiments presented by Hairer and Wanner [146]. 

Enenkel and Jackson [126, 1271 introduced a subclass of GLMs which they 
called diagonally implicit single-eigenvalue methods (DIMSEMs) for which the 
coefficient matrix A is diagonal and all components c, of the abscissa vector 
c are equal to zero or one. Moreover. the stability matrix M(z) defined by 
(2.6.4) has a single nonzero eigenvalue. They constructed A- and L-stable 
methods of order 2 I p 1. 6 and developed experimental variable step size 
codes of fixed order p = 3, p = 4, p = 5 ,  and p = 6 based on these methods. 
Although the algorithms based on these methods are not production codes, the 
results of numerical experiments presented by Enenkel and Jackson [126, 1271 
demonstrate that these methods are competitive with fixed order versions of 
the popular LSODE solver developed by Radhakrishnan and Hindmarsh [242] 
for p = 3. p = 4, and p = 5 on many practical test problems. 

VanWieren [273, 274. 2751 developed a family of research solvers based on 
explicit and implicit DIMSIMs of fixed order. The codes DIMEXx, based on 
explicit DIMSIM of fixed order z, are written as a collection of double precision 
FORTRAN 77 subroutines called by a driver that provides the interface to 
the user’s calling program. These codes are based on type 1 methods which 
have the FASAL (first approximately same as last) property which facilitates 
the efficient implementation of these methods. This property is similar to  
the FSAL (first same as last) property introduced by Dormand and Prince 
[117] in the context of RK methods (compare also [116, 257, 2601 and the 
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discussion in Section 6.3). The results of some numerical experiments with 
DIMEX2 and DIMEX5 on some DETEST problems from Hull et al. [168] 
are given by VanWieren [273, 2741. The complete code for DIMEX5 appears 
in the appendix to Part 1 of VanWieren report [274]. The prototype codes 
DIMSTIFF2 and DIMSTIFF5 for stiff differential systems were developed in 
Part 2 of the report [275]. They are based on A- and L-stable DILlSIMs 
of type 2 of order p = 2 and p = 5, where a modified Newton iteration 
with Gaussian elimination is used to solve the nonlinear systems that arise in 
calculations of the internal stages. The user is asked to provide a subroutine 
to compute a Jacobian of the problem. These codes were tested in Part 2 of 
the report [275] on the Prothero-Robinson problem (1.7.1) only for X = -2, 
X - 1000, and X = -10000. 

Butcher et al. [58] developed an experimental Matlab code dim18 for nons- 
tiff differential systems which is based on type 1 DIhlSIMs of order 1 5 p 5 8. 
This code utilizes the Nordsieck representation of DIMSIMs proposed earlier 
by Butcher et al. [57] in which the vector of external stages approximates 
the scaled derivatives of the solution. This representation facilitates a con- 
venient way of changing the step size of the method by rescaling a vector of 
external approximations. Moreover. as demonstrated in [57], the methods in 
this formulation are zero-stable for any choice of variable mesh. The code 
dim18 starts with the method of order p = 1 and adapts its step size and 
order according to the smoothness of the solution. The relevant issues related 
to the implementation of these methods are discussed by Butcher et al. [58] 
and in Sections 4.2, and 4.4-4.6 of this book. The code was tested on several 
problems, and numerical experiments demonstrate that the error estimation 
employed in this code is very reliable and the step size and order changing 
strategy is very robust (compare [58] and Section 4.9). These experiments 
also indicate that dim18 outperforms the code ode45 from Matlab ODE suite 
[263] for moderate and stringent tolerances. The DIMSIMs of type 1 employed 
in this code were derived by a number of authors [44, 66. 68, 74, 291, 2921. 
The coefficients of these methods in Nordsieck representation are also given 
by Butcher et al. [58] together with the coefficients of the estimators of the 
local discretization errors that were used in this code. 

Jackiewicz [177] developed an experimental Matlab code diml3s for stiff 
differential systems which is based on the Nordsieck representation of type 2 
DIMSIMs, so far of order 1 5 p 5 3 only. The methods employed in this 
code are A- and L-stable and were derived by Butcher [44] and Butcher and 
Jackiewicz [66]. The coefficients of these methods in Nordsieck representa- 
tion are also given by Jackiewicz [177] together with the coefficients of the 
estimators of the local discretization errors. These estimators were designed 
not only to be asymptotically correct but also to be accurate for "large" step 
sizes compared to certain characteristics of the problem using the approach 
of Shampine and Baca [258] proposed in the context of RK methods for stiff 
differential systems. Various implementation issues related to this code are 
discussed by Jackiewicz [177] and in Sections 4.2-4.6 and 4.8 of this book. 
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The numerical experiments presented by Jackiewicz [177] and in Section 4.10 
indicate that this code is especially well suited for problems whose Jacobian 
have eigenvalues close to the imaginary axis. An example of such a problem 
is the BEAM system (13.6). 

Experimental Matlab codes based on explicit TSRK methods have been 
developed by Bartoszewski and Jackiewicz [16, 171 and Chollom and Jack- 
iewicz [91]. Various issues related to the development of a new code tsrk5 
for nonstiff differential systems are discussed by Bartoszewski and Jackiewicz 
[16]. This code is based on the explicit TSRK method of order p = 5 and stage 
order q = 5 constructed in [15]. The numerical experiments presented in [16] 
on selected test problems indicate that this code is competitive with algorithm 
ode45 for all tolerances. These experiments also demonstrate that the error 
estimation used in this code is very accurate and very reliable for variable step 
sizes and that the step size changing strategy is very robust for a wide range of 
error tolerances. Some numerical experiments with the two codes tsrk23 and 
tsrk33, which are based on explicit TSRK methods of order p = 3 and stage 
order q = 2 and q = 3. respectively, are presented by Chollom and Jackiewicz 
[91]. The coefficients of these methods are listed in their article [91] and in 
Section 5.6.1. The TSRK methods employed in these codes have large regions 
of absolute stability compared with RK methods of the same order. These 
regions are plotted in [91] and in Section 5.6.1. These experiments indicate 
a high potential of explicit TSRK methods as building blocks of software for 
nonstiff differential systems. Codes based on a family of explicit TSRK formu- 
las of order p = 3 and stage order q = 3 with error constant E ,  which is given 
in advance, were developed by Bartoszewski and Jackiewicz [17]. The methods 
employed in these codes correspond to E = 1/12, 1/24, 1/48, and 1/120, and 
the coefficients of the resulting formulas are listed in their article [17] and in 
Section 6.6. We have implemented these methods in Nordsieck form derived 
in [17] and discussed in Section 6.4. This representation, as in the case of 
DIMSIMs, facilitates a convenient way of changing step size by rescaling the 
vector of external approximations. The results of numerical experiments with 
these codes, which are presented by Bartoszewski and Jackiewicz [17] and in 
Section 6.8, indicate that these codes are more efficient and in many cases also 
more accurate than the code ode23, which is based on an embedded pair of 
RK methods of order p = 2 and p = 3 constructed by Bogacki and Shampine 
[22]. These experiments also demonstrate the high quality of error estimation 
used in these codes, especially codes based on methods with moderate error 
constants (compare [17] and Section 6.8). 

Weiner and coworkers [238. 239. 251, 252. 286, 288, 2891 developed Matlab 
and FORTRAN codes based on the class of two-step peer methods mentioned 
in Section 2.1 for the numerical solution of both nonstiff [286] and stiff differ- 
ential systems [238, 239, 251, 252, 2881. Codes based on these methods have 
been implemented in Matlab by Weiner et al. [286] for nonstiff systems and 
compared with ode45 and in FORTRAN [289] and compared with DOPRI5 
and DOP853 [143]. The codes for stiff systems have been implemented in 
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FORTRAN and compared by Weiner et al. [288] with the code VODPK [83] 
and the code TSW3B based on the two-step W-method [237]. by Podhaisky 
et al. [238] with the codes based on Rosenbrock methods RODAS [146]. RO- 
DASP [266]. and ROS3P [198], by Schmift et al. [252] with the code VODPK 
[83], the ROWMAP [287], and the Runge-Kutta Chebyshev code RKC [265], 
[170], and by Schmitt et al. [239, 250, 2511 with RODAS [146]. The numerical 
experiments presented in these papers demonstrate a high potential of two- 
step peer methods for both nonstiff and stiff differential systems in sequential 
and parallel computing environments. 

Butcher and Podhaisky [77] developed an experimental Matlab code based 
on stiffly accurate GLNls with IRKS of order 1 5 p 5 4. Such methods are 
discussed in Section 7.2. The estimation of h;+'y(p+')(t,) and hK+2y(p+2)(t,) 
for these methods is discussed in their paper [77] and in Section 8.10. The 
order changing strategy for this experimental code is also discussed in [77] 
with additional implementation details given in the paper by Butcher et al. 
[64]. Some numerical experiments with this code have also been presented for 
the nonstiff Brusselator equation and for the problems HIRES, OREGO, and 
VDPOL (see [77]). 

In his Ph.D. thesis Wright [293] performed extensive numerical experiments 
with the fixed step size and variable step size implementations of explicit 
GLMs with IRKS which indicate that these methods have the potential to be 
the kernel of competitive codes for nonstiff differential systems. In her Ph.D. 
thesis Huang [167] discussed various issues related to the implementation of 
implicit GLMs with IRKS, such as the construction of starting procedures. ef- 
ficient computation of stage values. local error estimation, rescaling the Nord- 
sieck vector of external approximations. and interpolation. She has developed 
an experimental FORTRAN code based on the implicit method of order p = 4 
and stage order q = 4. The coefficients of this method and the a code listing 
are given by Huang [167]. The results of numerical experiments with this 
code on selected examples of stiff differential systems such as ROBER (1.8.2) 
and HIRES (1.8.4) indicate the high potential of this code for the numerical 
solution of stiff differential equations. 

Various software issues for ODES, including the implementation of GLMs, 
were outlined in the panel discussion held at  ANODE workshop in Auckland 
in January 2001. The record of this panel discussion is presented in [51]. 



CHAPTER 3 

DIAGONALLY I M P L I C IT M U LTI STAG E 
INTEGRATION METHODS 

3.1 REPRESENTATION OF DlMSlMS 

Diagonally implicit multistage integration methods which we referr to as DIM- 
SIMs, are a subclass of GLMs (2.1.2) that  is characterized by the following 
properties: 
1. Coefficient matrix A is lower triangular with the same element X on the 
diagonal. If X = 0. the methods are explicit. but they will still be referred to  
as DIhISIhk 
2. Coefficient matrix V is a rank 1 matrix with nonzero eigenvalue equal to 
1 to guarantee preconsistency. 
3 .  Order p ,  stage order q ,  number of external stages T .  and the number of 
internal stages s are related by p = q or p = q + 1 and T = s or T = s + 1. 

DIh4SIMs can be divided into four types according to  the classification of 
GLMs introduced in Section 2.7. In the first part of this chapter we describe 
the construction of methods of all four types with some desirable stability 
properties. We aim at RK stability for methods of type 1, large intervals or 
regions of absolute stability for methods of type 3 .  and A- and L-stability 

General Linear Methods for Ordinary DijCferential Equations. By Zdzislaw Jackiewicz 
Copyright @ 2009 John Wiley & Sons, Inc. 
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for methods of types 2 and 4. Moreover, for type 2 methods we also aim for 
SDIRK stability. 

We start the discussion assuming that p = q = r = s or p - 1 = q = r = s ,  
the matrix U = I; and the matrix V has the form V = evT, where vTe = 1. 
This leads to  the formulas 

Y["I = h ( A  @ I )F(Y["I )  + (U @ I)y["-']. 

y["] = h(B I)F(Y["I)  + (V @ I)y["-l]. 

which can be represented in the form 

(3.1.1) 

(3.1.2) 

where c,"=, vt = 1. After imposing the appropriate stage order and order 
conditions, the construction of DIhISIhIs with desirable stability properties 
leads to the solution of large systems of polynomial equations for the remain- 
ing unknown parameters of the methods. If the order of the methods is not 
too high ( p  5 4), these systems can be generated and solved using symbolic 
manipulation packages such as MATHEMATICA or MAPLE. Alternatively, 
we could generate these systems by symbolic manipulation packages and then 
solve them numerically with the aid of algorithms such as PITCON [245]. 
[246]. ALCON [114]. or HOMPACK [284] based on a continuation (homo- 
topy) approach [ lo ,  111. The advantage of the latter approach is that we can 
generate entire families of methods, depending on some parameters of the 
methods by a judicious choice of the underlying homotopy map. 

In Section 3.2 we derive the representation formula for the coefficient matrix 
B. and then in Section 3.3 we present the transformation that simplifies the 
derivation of DIMSIMs. In Sections 3.4-3.7 we discuss the construction of 
DIMSIMs of all four types and present several examples of such methods up 
to the order p 5 4. 

For higher orders ( p  2 5) it is no longer possible to generate the corre- 
sponding systems of polynomial equations in manageable form by symbolic 
manipulation packages, so a different approach is needed. We have devel- 
oped an approach based on a variant of the Fourier series method in Butcher 
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and Jackiewicz [68]. The systems that were obtained by this approach were 
then solved by state-of-the-art minimization software. Jackiewicz and Mittel- 
mann [179] were also able to exploit the structure of the resulting polynomial 
systems of equations to  speed up the search for methods of types 1 and 2 
with desirable stability properties. These developments are described in Sec- 
tions 3.8 and 3.9, and in Section 3.10 some examples of DIMSIMs of types 1 
and 2 up to  order p 5 6 are given. We refer to the articles cited above [74, 1791 
for examples of DIMSIMs up to the order p 5 8. 

In Section 3.1 1 the alternative Nordsieck representation of DIMSIMs is 
discussed which, as we demonstrate in Chapter 4, facilitates an efficient and 
robust implementation of these methods. Then in Section 3.12 we derive the 
representation formulas for the coefficient matrices P and G appearing in 
Nordsieck representation. and in Section 3.13 we present several examples of 
methods of types 1 and 2 in this representation. The chapter concludes in 
Section 3.14 with a discussion of regularity properties of DIMSIMs. 

3.2 REPRESENTATION FORMULAS FOR THE COEFFICIENT 
MATRIX B 

The order conditions derived in Theorems 2.4.1 and 2.4.2 or formulas (2.4.8). 
(2.4.9), and (2.4.10) also apply to DIMSIMs (3.1.1) with coefficients defined 
by (3.1.2) and can be utilized in the constriction of these methods with p = q 
or p = q +  1. However, for DIMSIMs with U = I, V = evT, vTe = 1, and the 
abscissa vector c = [cl ,  . . . , c , ] ~  with distinct components c,. we have a very 
convenient representation for the coefficient matrix B in terms of c. A, and 
V if q = r = s and p = q or p = q + 1. These representations are derived in 
the following theorems. 

Theorem 3.2.1 (Butcher [44]) Let r = s and U = I. Then DIMSlM 
(c, A. U, B, V) has order p and stage order q equal to q = p = r = s if and 
only if 

B = Bo - AB1 - VB2 + VA, 

where Bo, B1, and Bz are s x s matrices with elements defined by  

Here 

i = 1, 2 , .  . . ! s .  

(3.2.1) 

(3.2.2) 
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Proof: Since U = I it follows from equation (2.4.5) that  the vector 

S 

k=O 

defined in Section 2.4 takes the form 

w(z) = (I - zA)ecZ + 0 ( z p + ' )  

Substituting this relation into (2.4.6), we obtain 

ez ( I  - zA)eCZ = zBeCz + V(I - zA)eCz + O(zp+') 

or 
(B - VA)zecz = ezecz - AzeZeCZ - VeCz + O(zp+').  (3.2.3) 

Observe that by putting z = 0 in this relation we get the preconsistency 
condition Ve = e. Define the differential operators Q3(D) .  j = 1 , 2 ; .  . . s, 
D = d/dz ,  where Q3(z) are polynomials of degree s given by 

Applying @ j ( D )  to both sides of (3.2.3) and setting z = 0, we get 

(B - VA)@j(D)(ze"")I z=O = @j(D)(ezecz)~ z=O 

- A@j(D)(zeZeCz)~ z=o - V@j(D)(ecz)( z=o . 

Let us write the differential operator a3 ( D )  in the form 

a 3 ( D )  = ds, jDS + dS--1,3DS-1 + .  . . + di.,D + do.JI 

Since 
Dk(ecz)l = ck; Dk(ezecl)l = ( e +  c )  k , 

z=O z=o 

it follows that 

@j(D)(ezecz)i Z=O = @j(e + c ) .  

We also have 

(3.2.4) 

(3.2.5) 

and 
Dk(zezeCz)i = k(e + c)'-l. 

z=o 
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Hence: 

@j(D)(ze"")I = @>(c) = &(c) 

~ j ( ~ ) ( z e ' e c Z ) I  Z=O = @>(e + c) = 4j(e + c). 

2=0 

and 

Substituting the relations above into (3.2.5), we obtain 

(B - VA)&(c) = @j(e + c) - A4j(e + c) - V@j(c), 

j = 1 , 2 , .  . . , s, or in matrix form: 

(B - VA)D4 = B o  - AB1- VB2, 

and $ i ( C i )  # 0, the diagonal matrix D$ is invertible and we obtain 

- - where 
Bo = BOD;', B1 = BIDi l ,  B2 = B2Di' 

are matrices whose elements are given by (3.2.2). This completes the proof. rn 

For DIMSIMs with p = q + 1 we have the following result. 

Theorem. 3.2.2 (Butcher and Jackiewicz [ 6 5 ] )  Let r = s and U = I. 
Then the method (c. A, U, B,  V) has stage order q = r = s and order p = q+ 1 
if and only if the matrix B is given b y  (3.2.1) and there exists q, such that 
the following condition is satisfied: 

- A(  (e + c)"-' - cP-' - (p - 1)!(V - I)qp. (3.2.6) 
(e + c)P - cp 

P 
Bcp-l = 

Proof: Formula (3.2.1) for the coefficient matrix B was proved in Theo- 
rem 3.2.1. Substihting w = ~ ( z )  computed from formula (2.4.7) with U = I 
into (2.4.6), we obtain 

(B - VA)zec2 - eZeCZ + AzeZeCf + VeC2 - VbpzP + bpzPeZ = 0 ( z p + l ) ,  
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where 
c p  AcP-l 

q P .  
b 

P -  p !  ( p -  l)! 
(3.2.7) 

Formula (3.2.6) now follows by equating to zero the coefficient of zp in the 
Taylor expansion of the left-hand side of the relation above around z = 0. 
This completes the proof. 

The matrix V - I in (3.2.6) is singular and it is not clear that there exists 
qp such that this condition is satisfied. We prove in the next theorem that 
this is always the case. This theorem will also provide a simpler approach to 
the construction of GLhIs with r = s = q and p = q + 1 than that based on 
Theorem 3.2.2. This approach is based on the idea of exponential fitting. To 
be more precise. we have the following result. 

Theorem 3.2.3 (Butcher and  Jackiewicz [ 6 5 ] )  Let V be a matrzx such 
that Ve = e and such that ats characterastac polynomaal P satzsfies P'(1) # 0.  
Assume that there exast vectors 9 0 ,  ql, . . . , q, such that the DIMSIM wath 
coeficaents (c, A, U. B, V) and wath the startzng vector f [ O ]  defined by 

has stage order q and order p ,  which is at least equal to q. Suppose further 
that 

det (eZI - M(z)) = 0(zq+ ' ) ,  (3.2.8) 

where M(z) is the stability matrix defined by  (2.6.4). Then  there exist a vector 
q,+l such that this method with starting vector ylol given by 

has stage order q and order p = q + 1. 

Proof: Set 
q z )  = q o  + q1z + . . . + qqzQ. 

Since p 2 q it follows that 

ecz = zAeCZ + UW(z) + 0(zq+l )  and M(z)G(z) = 0(zq+l ) .  

We have to show that there exists a vector q,+l such that 

ecz = zAeCz + Uw(z) + O(z'J+l) (3.2.9) 

and 
M(z )w(~)  = O(zqT2), (3.2.10) 
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where 
w(z) = GG(z) + qq+1zq+1 

Denote by x and y = e the left and right eigenvectors corresponding to  the 
single eigenvalue equal to  zero of the matrix Mo = M(0) = I - V and such 
that xTy = 1. We can assume without loss of generality that q o  = y = e. 
It follows from condition (3.2.8) that we can choose constants R > 0 and 
4 > 0 such that for IzI < R the matrix e"1 - M(z) has a single eigenvalue 
X(z) = O(zq+') which satisfies IX(z)l < 4 and such that all other eigenvalues 
of this matrix have magnitude greater than A. For IzI < R. define the function 
@ ( z )  as the unique solution to  the system 

with P(0 )  = PO = 9 0 .  Since P ( z )  is a rational function of X(z) we can conclude 
that this function is analytic in the disk /zI < R. Let 

I 

D ( z )  = P ( z )  + 0 ( 2 4 + * ) .  

where 
?(z)  = P o + B l z + ~ ~ ~ + P q z q + P q + l z q + l .  

Then 
M(z)p(z) = O ( Z ' + ~ ) .  

If B, = q,, i = 1 . 2 , .  . . . q ,  we can choose q,+l = pq+l and the theorem follows. 
If Pz # q, for some 0 < i 5 q ,  let k be the smallest index such that ,6k # q k .  

We have 
ZkM(z)(qk - P,c) + O(z"'l) = O(Z'+~) .  

and it follows that M o ( q k  - p k )  = 0. Therefore. there exists Bk # 0 such that 
q k  - P k  = Bky. Consider the function 

p(z)  = (1 + BkZ")O(Z) 

Then 

where pj are coefficients in the Taylor expansion of p(z) around z = 0. Hence, 
p(z) agrees with W(z) up to the terms of order k: and this function still satisfies 
the relation 

M(z)p(z)  = 0 ( z 4 + ' ) .  
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Obviously, this process can be continued until y ( z )  agrees with W(z) up to 
the terms of order q. We can now choose qq+l = (pq+l .  and the resulting 
W(Z)  = W(z) + qq+lzqfl satisfies (3.2.9) and (3.2.10). This completes the 

We conclude this section with the representation formula for the matrix B 
if r = s = p and q = p - 1. We have the following theorem. 

Theorem 3.2.4 (Butcher and Jackiewicz [ 6 5 ] )  A s s u m e  that  T = s and 
that  U = I. T h e n  the  method (c ,  A.U.B.V) has order p = r = s and stage 
order q = p - 1 zf and only  zf 

proof. m 

B = Bo -AB1 - VB2 +VA + (V - 1)Q. 

Q = - -AcP-I - ( p  - l)!qp) eTDi1. (3.2.12) 

Here Bo, B1, and B2 are defined by (3.2.2) and t h e  ma t r zx  D4 zs defined zn 
the  proof of Theorem 3.2.1. 

Proof: 
puted from formula (2.4.7) with U = I into (2.4.6), we obtain 

(3.2.11) 

where 

(: 

Similar to the proof of Theorem 3.2.2, substituting w = ~ ( z )  com- 

(B - VA)zeCz = eteCz - AzezeCz - V e C Z  + Vb,zp - b p z P e z  + O(zP+l) ,  

where b, is defined by (3.2.7). Applying the operator aJ ( D ) ,  j = 1,2, . . . , s, 
D = d / d z ,  where Q J ( x )  is defined by (3.2.4), to both sides of this equation 
and setting z = 0, we obtain 

(B - VA)@j(D)(ze"')I = @j(D)(ezecz)I - A@j(D)(zezecz) I z=o 
t = O  t = O  

+ Vb,@j(D)zPi - bp@j(D)(zPez) . 
z=o ~ t = O  

Similarly as in the proof of Theorem 3.2.1, this leads to  the equation 

(B - VA)q$(c) = @j(e + c )  - A#Jj(e + c) - V@j(c) + ( p  - 1)!(V - I)b,. 

j = 1 , 2 , .  . . s, or in mat8rix form 

(B - VA)D4 = B o  - AB1- VBz + ( p  - 1)!(V - I)b,eT, 

where we have also used the relations 

@j(D)zpl  = ( p  - I)! and @ j ( D ) ( z p e z )  = ( p  - I)!. 
z=o 1 z=O 

Hence. it follows that 

B = BOD,' - ABlD;' - VB2D;' + ( p  - 1)!(V - I)b,eTDil, 

which is equivalent to  (3.2.11) with Q defined by (3.2.12). This completes the 
proof. rn 
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3.3 A TRANSFORMATION FOR THE ANALYSIS OF D l M S l M S  

It was demonstrated in Section 3.2 that for DIMSIMs (3.1.1) with U = I and 
p = r = s and q = p or q = p - 1 there are representation formulas for the 
coefficient matrix B in terms of the abscissa vector c and coefficient matrices 
A and V. These representation formulas are given by (3.2.1) if q = p or 
(3.2.11) if q = p -  1, where matrices Bo, B1, and B2, which depend on vector 
c ,  are defined by (3.2.2) and the matrix Q is defined by (3.2.12). 

Let T E RTxT be a nonsingular matrix and define the transformed matrices 
- - - 
A = T-lAT, B = T-lBT. V = T-lVT, 

Bo = T-lBoT, B1 = T-lBiT, B2 = T-lB2T. 
- - - 

so that (3.2.1) transform to 
- 
B = Eo - A  El- V E2 + V A 

and (3.2.11) transforms to 
- 
B=Bo-ABi  - V B z + V A + ( V - I ) Q .  

where Q = T-lQT. In this section we describe the similarity transformation 
T, first proposed by Butcher [46]. which when applied to A, B, V. Bo, B1, 
and BZ will preserve the special triangular form of A but will transform Bo, 
B1, and B2 into special form. This will result in significant simplifications 
to expressions of the stability function in terms of the free parameters of the 
method. This stability polynomial now takes the form 

p ( w ,  z )  = det (wI - M(z)) = det (wI - M(z)), 

M(z) = V + zB(1 - zA)-’ 
- where 

is the stability matrix of the transformed method. 
Define the matrix T = [tz3] E RTXT by the formula 

j > i. 

The inverse of this matrix is determined by the following result [46]. 

Lemma 3.3.1 The elements of T-’ = [t$”] are given by 

(3.3.1) 

(3.3.2) 

j > i. I O ,  
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Proof: It follows from the Newton interpolation formula that 

~ ( x )  =~[c~]+~[c~:cz](z-c~)+...s~[c~;c~, . . . ; c ~ ] ( z - c ~ ) ( x - c z )  ' . .  (x-cT-1) 

for all polynomials p(x) of degree less than or equal to  T .  Here, for any function 
f, f [c l ,  c2, . . . , ci] are divided differences defined recursively by 

This leads to the relation 

Denote by !j(x), j = 1 , 2 , .  . . , T ,  the Lagrange fundamental polynomials 

(3.3.4) 

Substituting p = 13 ,  j = 1 , 2 , .  . . , r.  into ( 3 . 3 . 3 )  and taking into account that  
k,(ck) = 6 3 k ,  where 63, = 1 if j = k and d,, = 0 if j # k ,  we can conclude 
that matrix T-l takes the form 

Then it follows from 

that 
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which implies formula (3.3.2) for 

The next result specifies the structure of transformed matrices A and v. 
Lemma 3.3.2 (Butcher [46]) The matrix A is  lower triangular and the 
ma t r i xv  has the form 

. . .  

. . .  

- 
Proof: A is clearly lower triangular as a product of three lower triangular 
matrices T-l, A, and T. To show that v has the structure above observe 
first that it follows from the form of T-' that 

r 1; i = 1, 

0, i # 1. 
Ctigl) = 

j=1 

Since V = evT, vTe = 1 (compare Section 3.1): 'ici = T-'evTT, and the first 
column of T is equal to e: the result now follows from the relations 

T 
T-'e= [ 1 0 . . .  0 1  and vTT= [ 1 v2 . . .  V, ] 

This completes the proof. m 

The next theorem determines the structure of matrices Bo, B1, and &. 

Theorem 3.3.3 (Butcher [46]) Matrices BO and B2 are upper Hessenberg 
and matrix is upper triangular. 

Proof: Observe first that it follows from (3.2.2) that the elements of ma- 
trices Bo, B1, and B2 can be written in terms of the Lagrange fundamental 
polynomials (3.3.4) as follows: 

Let pi(x),p2(z), . . . ,p,(x) be polynomials given by 
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= l'+" p,(z)dz = Pj(1 + C i ) ,  

where 

this matrix takes the form 

Pl(1 + CZ) Pz(1 + c2) . . .  P,(l+ c2) I BoT = 

1 Pl(1+ c,) P 2 ( 1 +  c,) ' .  . PT(l + c,) 

Set Q ~ ( z )  = Pi(1+ z). To compute T-lBoT, observe that 

r 

( T - ~ B ~ T ) ~ ~  = C g k [ c l , c  Z , . . . , ck]p3( i+ck)  
k=l 

where we have used formulas ( 3 . 3 . 5 )  and (3.3.6).  Hence, matrix& = T-lBoT 
takes the form 
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Because &I(.), Q ~ ( x ) , .  . . Q T ( x )  are polynomials of degrees 1 , 2 , .  . . , T ,  respec- 
tively, the divided differences Q3 [c1 , c 2 ,  . . . , c,] vanish if i > j + 1. This means 
that has an upper Hessenberg form. The results for B1 = T-lBlT and 

LT follow similarly from the observations that 

. . .  p 2  [Cl l  

1 P l [ C l , C 2  . . . . ,  c,] P 2 [ C l : C 2 ,  . . . .  c.] . . '  

This completes the proof. 

F'rom 
(i, i - 1) 
diagonal 

the formulas derived for Go, El, and Bz, it can be verified that the 
element of each Bo, and B2, is l / ( i  - 1) for i = 2,  3 , .  . . , T ,  and each 
element of El is equal to 1. 

3.4 CONSTRUCTION OF DlMSlMS OF TYPE 1 

In this section we describe various approaches to  the construction of methods 
with p = q = r = s, for which, by design, the stability function p(w, z )  defined 
by (2.6.5) with M(z)  given by (2.6.4) has the simple form 

p ( w ,  z )  = wS-l (w - R ( z ) ) .  

1 1 
2! S. 

(3.4.1) 

where 

R ( z )  = 1 + z + -2  + .  . . + :z5 (3.4.2) 

is an approximation of order p = s to the exponential function exp(z). This 
then implies that  the corresponding DIMSIM has the same region of absolute 
stability as explicit RK method of order p = s with stability function R(z )  
given by (3.4.2). 

We consider two choices for the abscissa vector c .  The first of these is to  
space out the c values uniformly in the interval [O. 11 so that 

(3.4.3) 
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in analogy to  what is done for low-order explicit RK methods. A second 
natural choice is to  space out the c values a t  step values tn-s+l. tn-s+2.. . . , t,, 
so that 

T 
c = [  - s + 2  - s + 1  . . .  0 1 ] . (3.4.4) 

The corresponding methods could then be regarded as generalizations of back- 
ward differentiation formulas. Other choices might have some advantages, but 
so far there is no evidence of this. 

It can be demonstrated that the stability function of DIhISIM of type 1 is 
a polynomial of the form 

p(w,z) = ws -pl(z)wS-l + .  . . + (-l)s-lps-l(z)w + (-l)sps(z),  

where 

p1(z) = 1 + p l l z + p l z z 2 + . . . + P l s ~ S :  

p2(z) = p21z + p22z2 + . . . + p2szS, 

In the case p = q = r = s under consideration. coefficient matrix B can be 
expressed in terms of c ,  A, and V by formula (3.2.1) in Theorem 3.2.1. As a re- 
sult, the coefficients p,, of the polynomials p%(.) depend on u,, . i = 2,3,  . . . , s ,  
j = 1 , 2 , .  . . , i  - 1. and c,, i = 1 . 2 , .  . . . s - 1 (recall that v, = 1 - zJIt w3). 
This leads to the system of ( s  - 1)(s + 2)/2 nonlinear equations 

with respect to ( s  - l ) ( s  + 2)/2 unknowns u,, and v,. 
For low orders ( p  5 4) this system can be analyzed completely with the aid 

of symbolic manipulation packages such as MATHEMATICA or MAPLE. The 
case p = 1 corresponds to the forward Euler method, and the case p = 2 was 
discussed in Section 2.8.1. To analyze the case p = 3 we use the transformation 
described in Section 3.3 and work with transformed matrices A, B, V, Bo. 
B1, and &. It can be verified (compare [46]) that for c = [0, i, 1IT, matrices 

_ - _ -  
- 

1 1 ;  

0 1 2  

0 0 1  
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0 0 0  

1 0 0  

; 1 0  

and for c = [ - l , O ,  1IT these matrices take the form 

- 
1 0 0  

0 1 0  

0 0 1  

Consider first the case c = [0, i, 1IT. Computing B from the relation 
- 
B=Bo-TiEi -fTB2+VA, 

we obtain the system of polynomial equations (3.4.5) with respect to  E21,  a31, 

& , 2 , 1 2 ,  and 8 3 ,  where a,, are coefficients of the matrix A and [l, 1 2 .  2131 is the 
first row of the matrix v. Solving first the equations p32 = 0 and p33 = 0 
with respect to E21 and E 3 1 ,  and then the equation p 2 3  = 0 with respect to 
a32 and substituting the resulting expressions into p ~ l  and p22, we obtain a 
system of two polynomial equations 

- 

PZl = 0, P22 = 0 

with respect to  1 2  and V3. This system has three solutions, given by 

(212,13) = (1. i), 
(12,213) w (0.95037130,0.097685112), 

(12,213) M (-2.01509894, -0.0078712370). 

This leads to the following methods expressed in terms of original matrices 
A, U, B, and V = evT: 

B =  

A =  

0 0 0 

0.92418548 0 0 

0.46978371 0.91532538 0 

1.30682500 0.2 1191312 0.19702172 

1.51515833 -0.45475354 0.23116957 

1.55816629 -0.37544408 0.14792854 
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T 
v = [ -0.70537237 1.51000215 0.19537022 ] 

and 

0 O 1  

" >  

0.96002505 0 

*= I -191.850709 64.8421242 0 

0.39202917 0.32262384 0.00098566065 , 
0.18369583 0.98929051 0.00267737344 I B =  I 

v = 1 5.01445541 -3.99871293 -0.015742474 ] . 

Choosing next the abscissa vector c = [-1,0, 1IT the system (3.4.5) has two 
solutions and the resulting methods are given by 

-63.4917617 192.182330 0.49368033 

T 

0 0 0 ::], 
0.8301728 2.5336861 0 

1 
12 
1 
3 

-- - 1 ,  -0.52120879 0.34886447 

B = -0.60454212 1.8048949 

-0.1878545 - 1.147975 -0.2836861 1 

T 

1 
v = [ -0.083677237 0.86694179 0.21673545 ] 

and 

1 20.32196115 -0.5371619499 0 ] 

1 
12 

3 
-: 1 1 ,  0.632221303 0.637221992 

B = 0.54888797 -2.41938325 

0.965554636 -20.3514058 2.78716195 

T 

1 
v = [ 0.96755166 0.0259586716 0.00648966791 ] . 

The case p = 4 was first analyzed successfully by Wright [291, 2921, who 
also used the transformation described in Section 3.3. For c = [0, i , $, 1IT the 
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A =  

- - 
0 0 0 0 

0.3739348246 0 0 0 

0.2949848977 0.4816828233 0 0 

- -0.6903740089 2.2712602977 -0.2257249932 0 

, 

B =  

and 

2.9444524372 -6.1678663794 4.9955647402 -1.0248304881 

2.8194524372 -5.6539774905 4.1761202957 -0.6348764238 

2.5372463716 -4.6501532283 2.9967727914 -0.2465466791 

1.1878127621 -0.2420326723 - 1.2663733375 0.7127522620 

T 
v = [ -18.3637007103 47.9911902596 -32.4937789808 3.8662894315 ] . 

We can also construct methods with p = q = r = s = 4 using a continuation 
approach. Setting 

T 
x = [ a21 a31 " '  as.s-1 ?J1 " '  ?J,-1 ] 

and 
T 

F = F ( X )  = [ P2l Pz2 . .  . Pss  ] 
we can rewrite system (3.4.5) in the compact form 

F ( X )  = 0. (3.4.6) 

This system can be generated by MATHEMATICA or MAPLE. We can com- 
pute solutions to (3.4.6) by embedding this system into a homotopy which 
depends on the parameter E E [0,1]. We considered mainly two embeddings, 
given by 

or 

which for 5 = 0 have a known solution X = Y .  Following the homotopy 
curve from [ = 0 (for which X = Y )  to  [ = 1 will then yield a solution 
to  the original system (3.4.6). Continuation packages that have been used 
experimentally and, to a large extent, successfully in our search for meth- 
ods are: (1) PCON61, version 61 of PITCON written by Rheinboldt and 
Burkardt [245, 2461: (2) ALCON2. written by Deufhard et al. [114]; and (3) 
FIXPNF, from the HOMPACK suite of subroutines written by Watson et al. 
[284]. Some examples of methods found in this way are given by Butcher and 
Jackiewicz [66]. 

H l ( X . Y , < )  = E F ( X )  + (1 - < ) ( F ( X )  - F ( Y ) )  = 0 

H z ( X , Y . [ )  = [ F ( X )  + (1 - < ) ( X  - Y )  = 0, 
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3.5 CONSTRUCTION OF DlMSlMS OF TYPE 2 

The stability function p(w,z) of the DIMSIM of type 2 is a rational func- 
tion which is more complicated to  deal with than the stability polynomial of 
methods of type 1 discussed in Section 3.4. However, substituting 

h 

z h z 
z = -  or z = -  

1 - xz 1 + A2 
and 

into the stability matrix M(z); we can work instead with the modified stability 
matrix G(2) defined by 

A = ~ + + I  or L = A - A I  

h z G(2) := M(z) = M(-) 
1 + A2 

-1 h h 

z z 
= V+--B(I-- 

1 + x2*) 
= v +%(I  - 22i-I 

1 + xz  

and the corresponding stability function 
h 

p^(w. 2) := p(w. z )  = det (wI - M(z)) = det (I - M ( 2 ) ) ,  

which is a polynomial since the matrix x is strictly lower triangular. We look 
for methods which. by design, have the same stability properties as SDIRK 
methods of the same order. These methods were reviewed in Section 2 . 7 .  This 
means that the stability function p(w .  z )  of these methods takes the form 

p ( w .  z )  = ws-l (w - R ( z ) ) ,  

where 
DI, \  
I&/ R(z )  = 

(1 - Xz)S 

is the stability function of an s-stage SDIRK method of order p = s. The 
stability function of SDIRK methods is defined by ( 2 . 7 . 5 ) .  This requirement 
can be reformulated in terms of p^(w, 2) as 

F ( W ,  2) = wS-l (w - R(z ) )  = ws-l (w - 2(2)), 
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is a polynomial of degree s with respect to 2. We recall that L,(z) are La- 
guerre polynomials defined by (2.7.6). A simpler explicit expression for this 
polynomial k(?) follows from the following lemma. 

Lemma 3.5.1 (compare [79]) Assume that X # 0 and that 121 < 1 / X .  
Then 

(3.5.1) 
n 

Making the substitutions u = A 2  and t = 1 / X ,  formula (3.5.1) is 

h 00 

= 1 + c ( - l ) ILAn- l -n  2 L n ( i ) .  / 
z 

exp (m) n=l 

Proof: 
equivalent to 

(3.5.2) 

for lui < 1. Expanding the left-hand side of this relation into a Taylor series 
around t = 0, then substituting the formula 

into the right-hand side of (3.5.2) and reversing the order of summation in 
the resulting double sum: formula (3.5.2) is transformed into 

The coefficient of t j / j !  on the left-hand side of the relation above is equal to 

The coefficient of t j / j !  on the right-hand side of (3.5.3) is 

It follows from the relation 
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that these coefficients are equal. This completes the proof. 

This lemma implies the following corollary. 

Corollary 3.5.2 (compare [79]) The polynomial g(2) corresponding to the 
type 2 DIMSIM with p = q = r = s has the form 

(3.5.4) 

We usually assume that the abscissa vector c is given by (3.4.3) or (3.4.4) 

It can be demonstrated that the stability function p^(w,2) of methods of 
as was done for DIMSIMs of type 1. 

type 2 is a polynomial of the form 

p^(w,2) = ws -p^1(2)wS-l + .  . . + (-1)S-lj?-1(2)w + (-l)sp^s(2)l 
where 

&(2) = 1+p^l12+p^122~++...+p^ls2~, 

p^2(2) = p^212+5-2222 + .  . . + p ^ 2 3 ,  

-s-2 - p^s-l(2) = PS-l,S-2Z 

&(2) 

t ps-l ,s-lP-l  +Fs-l,s2s. 

= ps s-125-1 + f f s s2s ,  

and the coefficients Ptj of the polynomials p ,̂(2) depend on iitj = az3 ,  I = 

2 , 3 . .  . . ,s, J = 1 , 2 , .  . . . s  - 1. and u,, a = 1 , 2 . .  . . . s  - 1. As in Section 3.4. 
this leads to  the system of (s - l)(s + 2)/2 nonlinear equations 

p ^ k l = O ,  k = 2 . 3  , . . .  , s ,  l = k - l , k  , . . .  , s ,  (3.5.5) 

with respect to the ( s  - l)(s + 2)/2 unknowns aZj and w,. This system also 
depends on the parameter X (the diagonal element of the matrix A), which 
is usually chosen in advance in such a way that the resulting method is A- or 
L-stable (compare Tables 2.7.1 and 2.7.2). 

As in Section 3.4. for low orders ( p  5 4) this system can be analyzed 
completely by MATHEMATICA or MAPLE. The case p = 1 corresponds to 
methods with c = X and 

X > 0. (For X = $, this method attains order p = 2 and corresponds to the 
trapezoidal rule.) These methods are A-stable for X 2 and L-stable for 
X = 1, which corresponds to  the backward Euler method. The case p = 2 
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- 
0.57281606 0 0 0 

0.15022075 0.57281606 0 0 

0.59515808 -0.26632807 0.57281606 0 

1.7717286 - 1.64234444 0.39147320 0.57281606 - 

was discussed in Section 2.8.2. The case p = 3 was analyzed by Butcher and 
Jackiewicz [66]. Choosing X x 0.43586652 (compare Table 2.7.2). which is a 
root of the polynomial 

> 

p ( X )  = X3 - 3X2 + ;A - i, 
and then solving system (3.5.5), we can obtain methods that are A- and L- 
stable. An example of such a method with c = [0, i, 1IT is given by 

1 ,  A =  1 0.25051488 0.43586652 0 

0.43586652 0 0 

-1.21 15943 1.0012746 0.43586652 

0.60625754 1.2869318 -0.47974168 

0.83379073 0.64599891 -0.31582709 

-0.30841677 3.8034216 -1.1207225 

B =  1 
An example of A-stable and L-stable method with c = [-1, 0, 1IT is 

I ,  
1 

0.43586652 0 0 

A = 1.1720924 0.43586652 0 1 1.1074469 1.0003697 0.43586652 

0.91915247 0.19260634 -0.067563751 

B = 0.83581914 0.12304716 -0.086763606 3 

0.81661928 0.16195887 -0.042199635 

T 

1 
and 

v = [ 0.78498369 0.32691525 -0.11189895 ] . 

The case p = 4 was first analyzed successfully by Wright [291, 2921. Choosing 
X x 0.57281606 and solving system (3.5.5) leads to methods that are A- and 
L-stable. An example of such a method with c = [O, $,  $ ,  1IT derived by 
Wright [292] is 

A =  
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- - 
13.153119 -25.451598 16.029984 -3.7980058 

13.600935 -27.228974 18.647436 -4.9027858 

14.289 167 - 29.534083 20.999448 - 5.483 196 1 

15.679828 -33.750697 24.407110 -5.9235938 

B =  

- - 

152 

and 

> 

T 
v = [ 15.615037 -46.967269 41.290082 -8.9378502 ] . 

Similarly as in the case of DIMSIMs of type 1, methods of type 2 can also 
be obtained using the homotopy approach described at the end of Section 3.4. 
Examples of methods derived in this way are given by Butcher and Jackiewicz 
[66]. The attractive feature of this approach is the possibility of generating en- 
tire families of formulas. depending, for example, on the parameter X or some 
of the abscissas c, by making a judicious choice of the underlying homotopy 
map. This is discussed in more detail in the paper [66]. 

3.6 CONSTRUCTION OF DlMSlMS OF TYPE 3 

A systematic approach to  the construction of DIMSILls of type 3 is described 
by Butcher [45]. It follows from the assumption that V is a rank 1 matrix 
that the stability polynomial of type 3 DIMSIM with p = q = T = s takes the 
form 

where the coefficients QO. ~ 1 ,  . . . . oS-1 and PI.  P2,  . . . , P, depend on the choice 
of the vector v appearing in the coefficient matrix V. Butcher [45] discusses 
a choice of coefficients in (3.6.1) which allow factorization of the form 

- 
p(w. z )  = ws-sij(w, z )  (3.6.2) 

for as low a value of Z as possible, since a choice based on this principle will 
make the methods close to type 1 DIMSIMs. 

It can be verified using (3.6.1) and the relation 

p ( e z ,  z )  = ~ ( z " ' ) .  z --f 0, (3.6.3) 

that  

(3.6.4) 
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where 

and 

The relation (3.6.3) also implies that the rational function ? ( z / w )  is an ap- 
proximation correct to within O ( ( Z / W ) ~ + ~ )  to the function F defined in a 
neighborhood of z = 0 by the functional equation 

e* = F(zeCZ) .  

Butcher [45] studied this function with a view of finding rational approxima- 
tions with numerator and denominator of degrees as low as possible for a given 
order of approximation. In particular, Pad6 approximations to F with degree 
m in the denominator and degree n in the numerator are studied and listed 
for 0 5 m 5 5 and 0 5 n 5 5. Unfortunately, this approach leads to stability 
polynomials and the corresponding methods with rather small regions of ab- 
solute stability, and an alternative approach is also proposed which is more 
promising [45]. In this approach the parameters a l ,  ~ 2 .  . . . .0,-1 are regarded 
as free parameters and PI ,  32, . . . , PT are chosen in terms of them to satisfy 
the conditions for order p = s. The criterion for choosing al, ~ 2 .  . . . . a,-1 is 
then based on obtaining large intervals of absolute stability [ - X ,  01 of (3.6.1). 
This is done by forcing the resulting stability polynomial p ( w ,  z )  evaluated 
at  z = - X  to have all its zeros on the unit circle lwl = 1. Using this ap- 
proach, type 3 methods with p = q = r = s = 3 and p = q = r = s = 4 
are found. The coefficients of methods of order p = 4 are also given by 
Butcher [45]. corresponding to the choices of abscissa vector c = [0, i, g ,  1IT 
and c = [-2. - 1 , O .  1IT. 

In what follows we describe a somewhat different approach which is based 
on maximizing the area of the region of absolute stability of the polynomial 
p(w,z), which corresponds to the method of order p = s. For s = 3 this 
polynomial depends on two free parameters, which are chosen as a2 and P 3 .  

We have plotted in Fig. 3.6.1 the area of the region of absolute stability of 
p(w,z) versus a2 and p3 and the corresponding contour plots. This area 
achieves its maximum value approximately equal to 1.264 for the parameter 
values 

The interval of absolute stability is [-1.21; 01. The stability polynomial takes 
the form 
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3 -  , , I , , , 1 

2 5 -  - 

Figure 3.6.1 
order p = 3 and the corresponding contour plots 

Area of the region of absolute stability of the polynomial p(w, 2 )  of 

2 -  

1.5- 

1 -  

- 
- 

0.5 

0 -  

- 

- 

Figure 3.6.2 
method of order p = 3 

Stability regions of type 3 DIMSIM of order p = 3 and a 3-stage RK 

For c = [0, i, l]', coefficients of a type 3 method corresponding to  this poly- 
nomial are 

174457 27577 14431 - -- -- B=[- 104832 -- 52416 -El ,  
296761 202297 - 
104832 52416 
- -- 
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and for c = [ - l , O ,  11, the coefficients are 

338809 45049 519005 - _- -- B = ~ -  419328 -2 52416 -L&E%] 419328 

419328 419328 ' 
478585 459427 
419328 52416 419328 
- -- 

T 

A region of absolute stability of these methods is shown in Fig. 3.6.2 (thin 
line) together with the region of absolute stability of a 3-stage RK method of 
order p = 3 (thick line). 

Figure 3.6.3 
order p = 4 and the corresponding contour plots 

Area of the region of absolute stability of the polynomial p(w,  z )  of 

For s = 4 stability polynomial p ( w ,  z )  of the form (3.6.1), which satisfies 
(3.6.3) depends on three free parameters which are chosen as 43, 03, and /34. 

We have performed a computer search trying to maximize the area of the 
region of absolute stability of p ( w ,  z ) ,  and this leads to the following values: 

317, p4 = -776. p3+; a,,=339 409 
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Figure 3.6.4 
method of order p = 4 

Stability regions of type 3 DIMSIM of order p = 4 and a 4-stage RK 

To illustrate that this area attains its maximum value, we have plotted on 
Fig. 3.6.3 the area of the region of absolute stability and the correspond- 
ing contour plots of p(w .  z )  versus p 3  and a 3  for p 4  = -%. The stability 
polynomial p(w. z )  takes the form 

1972056569 860930359 + 4758391001 
p(w,z )  = w4 - (l + 1111126210z)w3 + '( 1111126210 

- (6666757260 857 ) (317 + %')' 
6666757260z)w2 

z2 2926187477 - mz - z3 339 

For c = [0, i! $!  1IT the coefficients of the type 3 method corresponding to 
this polynomial are 

B =  

- 731642674841 338127108937 170879833211 - 898889950567 
60000815340 20000271780 20000271780 60000815340 

- 1478285553517 696810052759 102993814409 -1706111988809 
120001630680 40000543560 13333Z14520 120001630680 

- 784976732921 45224103773 73100726731 - 718887504547 
60000815340 

- 1838290445557 1141260536759 -273248690813 -852767059529 
120001630680 40000543560 40000543560 120001630680 

60000815340 2222252420 20000271780 

T 
= 1 - 231381282511 380257759451 168827831353 - I59169149502 ] 

3333378630 1666689315 666675726 1666689315 

and for c = [-2, - 1 , O ,  1IT the coefficients are 

B =  

- 43313516513 22693257667 - 16941972961 -82948747141 
40000543560 13333514520 13333514520 40000543560 

- 11245051457 1246482418 - 2429913149 - 10576929557 
10000135890 555563105 3333378630 5000067945 

- 43313516513 27137762507 278682133 - 69615232621 
40000543560 13333514520 4444504840 40000543560 

- 14578430087 5961699674 - 7985544199 2756584963 
10000135890 1666689315 3333378630 5000067945 
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= 1 - 776 23131515119 - 14853472073 16233261977 1' 
409 3333378630 1666689315 3333378630 

A region of absolute stability of these methods is shown in Fig. 3.6.4 (thin 
line) together with the region of absolute stability of a 4-stage RK method of 
order p = 4 (thick line). 

3.7 CONSTRUCTION OF DlMSlMS OF TYPE 4 

A systematic approach to the construction of DIMSIMs of type 4, which 
generalizes the approach of Butcher [45], is described by him in a subsequent 
article [48]. It follows from the assumption that V is a rank 1 matrix that the 
stability polynomial of type 4 DINISIM with p = q = T = s takes the form 

p ( w ,  z )  = (1-Xz)SwS - (a0 - plz)(l-Xz)"-lws-l 
(3.7.1) 

- Z(Q1 - p2z)( l -Xz)"2ws-2  - .  . . - zS-1(QS-1 - P,z). 

with coefficients QO, ~ 1 , .  . . , a,-1 and PI, p 2 . .  . . . PS. which depend on the 
choice of vector v in V. Observe that for X = 0. (3.7.1) reduces to (3.6.1). 

It follows from (3.7.1) and the relation 

p ( e z . z )  = ~ ( z " ' ) .  z --f 0, (3.7.2) 

that 

w f l  - xz 
\ w ( l  - - Xz) J =  ~ ( l  - XZ) = F (3.7.3) 

w(1-  Xz 

where 

The relation (3.7.3) reduces to (3.6.4) for X = 0. It follows from (3.7.2) that 
p (z / (w( l  - Xz))) is an approximation, correct to within 

to the function F defined in a neighborhood of z = 0 by the functional equa- 
tion 

(3.7.4) 



158 DIAGONALLY IMPLICIT MULTISTAGE INTEGRATION METHODS 

Rational approximations to F have been investigated by Butcher [48]. In 
this section we reproduce these results for /31 = pz = . . .  = /3, = 0, which 
corresponds to the first row of the Pad6 table for this function. 

To formulate this approximation we have to  invert the Taylor series 

wo = ~ ( z o ) ,  of an analytic function w = f ( z )  at  the point ZO, where 

This can be accomplished by the Lagrange series described in the following 
theorem. 

Theorem 3.7.1 (see [210]) Assume that the function w = f ( z )  is analytic 
at zo and single-valued in a neighborhood of wo = f (20). Then 

czz 1 dn-1 

n=l z=zg 

where the function $ ( z )  is defined b y  

Let 

(3.7.5) 

We have the following theorem. 

Theorem 3.7.2 (Butcher [48]) The function F ( w )  can be expanded in a 
neighborhood of w = 0 into the power series 

(3 .7 .6)  
A” n + l  

00 

F ( w )  = 1 + C(-l)n+l- 
n + l  

n=l 

where L,+1 ( x )  are the Laguerre polynomials defined b y  formula (2.7.6), and 
L&+i(x) = (d/dx)Ln+l(x) .  

Proof: Consider the function 

Z 
w = f ( z )  = - 

* ( z )  

where 
$ ( z )  = (1 - Xz)e” 
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Then f(0) = 0, and since f'(0) # 0 the function f ( z )  is single-valued in a 
neighborhood of wo = 0. Hence, it follows from Theorem 3.7.1 with zo = 0, 
wo = 0, that 

Using the relation (3 .7 .5 ) ,  the functional equation (3.7.4) takes the form 

and it follows that 

w F ( w )  = w+(z) = 2 .  

Hence. 

Comparing this relation with (3 .7 .3)  corresponding to  01 = pz = . . . - - P s  = 0, 
the coefficients a, are 

We also have 
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n f l  

- n f l  - -- 
(-A)" a", 

and it follows that 

an = (-1)"+l- A" n + l  
n + l  

This shows that F ( w )  satisfies (3.7.6). 

For p1 = pz = . . . = ps = 0 the stability polynomial p(w ,  z )  takes the form 

p ( w ,  2) = (1 - Az)Sw" - (1 - Az),-1ws-1 - . . . - cYs-lz"-l. (3.7.7) 

To obtain a method of order p = s we have to choose A in such a way that 
as = 0, which is equivalent to the condition 

s + l  
G + l ( T )  = 0, 

and the values ao, a1, . . . , as-l according to Theorem 3.7.2: 

(3.7.8) 

(3.7.9) 

n = 0, 1,.  . . , s - 1. Since 

it follows that if the stability polynomial of the form (3.7.7) is A-stable, it is 
also L-stable. The search €or A-stable methods can be carried out numerically. 
Since X > 0 it follows from the maximum principle that p ( w ,  z )  is A-stable if 
all roots of p(w, i y )  are in the unit circle for all y E R. This can be checked by 
plotting the roots wz(y). i = 1 , 2 . .  . . . s. as M ranges over the real values, and 
noting if Iwz(y)l 5 1. Alternatively, we could plot the boundary locus curve 

p(ezB .  z )  = o 



CONSTRUCTION OF DIMSIMS OF TYPE 4 161 

0.51554560 

1.21013832 

4.27431609 

for 8 E [0,27r], starting from the solutions zi, i = 1 , 2 , .  . . , s ,  to the polynomial 
equation 

P(1, .) = 0: 

and noting if the boundary curve stays in the right-half complex plane. If this 
is the case, the corresponding stability polynomial p(w,  z )  is A-stable. 

0.48445440 0.21915046 

-0.21013831 -0.66598020 

-3.2743 1609 6.94682974 

I ff1 I ff2 I A- and L-stability 

0.45645867 

0.87242088 

1.94428836 

6.72683210 

0.54354133 0.33897851 

0.127579 12 - 0.356 14445 

-0.94428836 -0.54260786 

-5.72683210 26.5697738 

no 

yes 

almost 

Table 3.7.1 
for s = 3 

Parameters X that satisfy (3.7.8) and cy1, C Y ~  that satisfy (3.7.9) 

I A- and L-stability I ff2 I Q3 

~ 

Table 3.7.2 
(3.7.9) for s = 4 

Parameters X that satisfy (3. 

0.17001919 

-0.41000663 

2.44399301 

-84.037339 

no 

almost 

yes 

almost 

8) and a1 , 0 2 ,  a3 that satisfy 

We have listed in Tables 3.7.1 and 3.7.2 the values of the parameter X that 
satisfy equation (3.7.8), the corresponding values of the parameters cq. 0 2  for 
s = 3 and 01. ~ 2 ,  a3 for s = 4 (a0 = 0 for any s), and whether the stability 
polynomial p ( w ,  z )  is A- and L-stable. The roots of p(w, iy) for y E IR are then 
plotted in Fig. 3.7.1 for s = 3 and in Fig. 3.7.2 for s = 4. We have also plotted 
in the right lower corner of Fig. 3.7.1 the boundary locus curve p ( e Z e ,  z )  for 
s = 3 and X = 0.51555, which confirms instability. The entry “almost” in the 
tables means that the roots of p ( w ,  iy )  corresponding to the specific values of 
the parameter X extend only slightly from the unit circle (this is not apparent 
in Figs. 3.7.1 3.7.2). so that the corresponding methods are almost A-stable 
in this sense. 

Following Butcher [48] next we derive formulas for the coefficients of the 
methods with given stability polynomials, making use of some transforma- 
tion of the coefficient matrices. The transformation proposed in [48] is more 
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1 

0.5 

- - - z o  
-0.5 

-1 

k0.51555 

-1 -0.5 0 0.5 1 
R e W  

k4.2743 

h=1.2101 

1 I 
-1 -0.5 0 0.5 1 

Re(w) 

b0.51555 
I I 1 

I 1 -6‘ I 
-1 -0.5 0 0.5 1 -1 0 1 2 

R e W  Re@) 

Figure 3.7.1 
(3.7.9) for s = 3 and a boundary locus curve for X = 0.51555 

Roots of p(w,iy) for X which satisfy (3.7.8) and ~ 1 ,  CYZ given by 

convenient than that discussed in Section 3.3 since the transformed matrices 
B and v do not depend on the abscissa vector c. Hence, we can regard the 
choice of abscissas as a separate question from the choice of coefficients, which 
is possible only for type 3 and 4 methods. We have the following theorem. 

- 

Theorem 3.7.3 (Butcher [48]) Consider a type 4 DIMSIM with abscissa 
vector c such that p = q = r = s and Ve = e. Define the matrix T b y  

T =  
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1 '  

0.5 

- - - : O -  

-0.5 

-1 

163 

. 

- 

' 

k0.45646 

1 

0.5 

- - 
- Z o  

-0.5 

-1 

-1 -0.5 0 0.5 1 
R e W  

h=l.9443 

1 .  

0.5 

- 
v - : O .  

-0.5. 

-1 

h=0.87242 

1 -  

0.5. 

- 
5 0 .  - 

-0.5. 

' -1 . 

-1 -0.5 0 0.5 1 
W w )  

h=6.7268 

I .  I 

-1 -0.5 0 0.5 1 
Re(w) 

-1 -0.5 0 0.5 1 
ReW) 

Figure 3.7.2 
(3.7.9) for s = 4 

Roots of p ( w .  iy) for X which satisfy (3.7.8) and QI; CYZ, a3 given by 

where the polynomial P(x) is defined by 

T h e n  the  transformed matrices  B and v defined by 

- 
B = T-'BT, V = T-'VT, 

satisfy 
- 
Vel = el 

and 
- 
B = E - XE + V(X1- J) ,  

(3.7.10) 

(3.7.11) 
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where 

E =  

h 

E =  

1 1  1 - 1 '  
1 3 . ' .  - (s-l)! s! 

1 1 

1 1 

1 1 1 . . .  - - 
2! ( s - 2 ) !  (s-l)!  

0 1 1 . . .  - - 
( s - 3 ) !  ( s - 2 ) !  

. . .  . . .  . .  
1 
2! 
- 0 0 0 . ' '  1 

0 0 0  

1 1 1 +! . . .  - (s-l)! 

0' 0 1 1 . . .  

0 0 1 . . .  - ( s - 3 ) !  

1 

1 

. . . .  . . .  . . .  
0 0 0 ( . '  1 

' 1  1 

[ P  : . o o  

. .  1 0  , .  0 1.: . . .  . . 

1 0  

Proof: We have 

1 - 
Vel = T-lVTel = T- Ve = T-'e = el,  

which proves (3.7.10). This relation also implies that can be partitioned as 

the last term in (3.7.11) takes the form 

- 
V(XI - J) = XV - 9. 

Eliminating vector w(z) from stage order and order conditions (2.4.5) and 
(2.4.6) in Theorem 2.4.1, we obtain 

e Z ( l  - Xz)ecz = zBeCZ + V(l  - Xz)ecz + 0 ( z s + l ) .  (3.7.12) 

Define the sequence of numbers 71% 7 2 ; .  . . , ys, and the function 4 ( z )  by 
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Also define matrices C and G and vector Z by 

C =  

1 c1 3 . . ,  3 

1 c2 ii . . .  4 

1 c3 & . . .  4 

1 c, 2 . . .  s. 

2! S !  

2! S !  

2! S !  

. .  
. . . .  . . .  . . .  

2! S !  

, G =  

Then it can be verified that 

G Z  = +(z)Z + O(z"') (3.7.13) 

and 
cz = ecz + 0(zs+l ) .  (3.7.14) 

It follows from (3.7.14) that we can substitute ecz by C Z  in (3.7.12) since this 
only affects terms of order O(z"'). Multiplying the resulting expression by 
+ ( z ) ,  the order conditions (3.7.12) can be reformulated in the equivalent form 

(3.7.15) (e"(1 - Xz) - zB - (1 - Xz)V)CGZ = O(z"'). 

It can be verified that the product CG is given by 

C G =  [ T 1 P(c)  ] = [ T 10 1 ,  
where P(c)  is evaluated componentwise. Substituting this relation into (3.7.15), 
we obtain 

(ez( l  - xz)  - ZB - (1 - x ~ ) v ) T ~  = 0 ( z s + l ) ,  (3.7.16) 

where 2 is made up from the first s components of vector Z. Multiplying 
(3.7.16) by T-l from the left. the order conditions take the form 

ez( l  - ~ z ) 2  = zB2 +?(I - ~ z ) 2  + 0(zs++l) .  (3.7.17) 

Subtracting eley2 from both sides of this relation, taking into account that 

e z 2  - eleT2 = z E 2  + 0 ( z s + l )  

and 
_A vz - .ley2 = 92, 

and dividing both sides of the resulting relation by z ,  we obtain 

Eg - XE% = BZ + 9 2  - XV2 + O ( z s ) .  (3.7.18) 
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This equation implies that 

- 
B = E - XE - 9 +AS, 

which is equivalent to (3.7.11). This completes the proof. 

We now consider the remaining question of how matrix should be chosen 
given by (3.7.11) is L-stable, that is, so that the method with matrix 

stability matrix M(z)  or, equivalently, transformed stability matrix 

- 
M(z)  = T- lM(z )T  

has a zero spectral radius as z + m. Using (3.7.11), matrix m ( z )  takes the 
form 

- 2 - -  z M(z) = V + - B = v +  - ( E - x E - ~ + x ~ )  
1 - Xz 1 - xz 

and 
1 -  1 -  

lim a ( z )  = M(m) = --(E - XE) + -V. 
f’33 x x 

Assuming that v is a rank 1 matrix, it follows from (3.7.10) that this matrix 
assumes the form 

Hence, 

and 

The conditions for matrix to have spectral radius equal to zero were found 
by Butcher [48]. This result is technically very complicated and we refer the 
reader to the original paper [48] for a proof of the theorem that follows. 

Theorem 3.7.4 (Butcher  [48]) Matrix 6? has spectral radius equal to zero 
if and only if 

and X satisfies equation (3.7.8). Here L!Gi+2) zs ’ an ( s  - i + 2)-fold derivative 
of LS+l. 

We conclude this section by listing in a rational format some examples of 
A- and L-stable DIWlSIMs of type 4 for s = 3 and s = 4 derived by Butcher 
[481. 
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B = 

- - 
3713699 13386050 4525336 
575604 954257 702095 

-- ~ -- 

10143085 9868186 7718629 . 
1360824 580773 976125 ' 

3592443 28151576 11391581 -- - -~ 
i 402940 1381639 1221028 - 

T 
= [ 8190471 20278361 2718914 , 

1881082 1848683 484227 ] 

B =  

- - 
2346473 3425188 5551958 
1639992 1093005 5176473 

-- 827713 - 6027409 ____ 2563125 
546664 1202946 1373587 ' 

2807601 3519979 285494 

-- - -- 

-- - -- - 1216682 481686 120481 - 

T 
= [ 998030 899740 

1238361 277503 '8'282'3'47Q- ] ' 

B =  

- - 
-- 294809551 ~ 628839333 - 1030246907 327992002 

907812 650200 1112646 1139573 

277481113 558142952 1133031719 450719411 
859266 581469 1238155 1594050 

16528673 590225249 382947587 232089033 ' 
52000 626947 395705 849143 

338254916 629824162 1255916163 107748367 

-~ - - 

-- ~ -- ~ 

-~ - - - 1096701 693045 1470929 416413 - 

T 
= [ 145167427 593469083 86368735 72595683 ] . 

944816 1231242 176174 445688 

B =  

- 16176817 30344282 38632409 6715194 
1365928 736427 1120034 798697 

6087649 35588036 22670041 11942577 
512223 814545 631569 1427510 

16176817 14780263 30709763 2452519 
1365928 339914 926141 360838 

5095141 48597076 7802303 1994001 
- 495935 1304729 325755 612496 

-~ - -- - 

-- ~ -- ~ 

-~ ~ -~ - 

-- - -- - 
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In all these examples V is a rank 1 matrix of the form V = evT. Butcher 
[48] also considered construction of highly stable type 4 methods for which V 
is a matrix of rank 2 .  

3.8 FOURIER SERIES APPROACH T O  T H E  CONSTRUCTION O F  
DlMSlMS O F  HIGH ORDER 

For DIMSIMs of high order ( p  2 5) it is no longer possible to generate systems 
of nonlinear equations (3.4.5) and (3.5.5) by symbolic manipulation packages, 
so a different approach to the construction of such methods is needed. In this 
section we describe an approach to generate the corresponding systems of 
nonlinear equations using some variant of the Fourier series method. Systems 
obtained in this way will then be solved by algorithms based on least-squares 
minimization. 

A Fourier series approach can be summarized as follows. Assume that w,, 
p = 1,2 . .  . . , N1, where N1 is a sufficiently large integer, are complex numbers 
distributed uniformly on the unit circle. Multiplying the relations 

p(w,,z) = w; -pl(z)w;-l + . . . +  (-l)s-lps-l(z)w, + ( - 1 y P , ( z )  

j?(w,,2) = w; -F1(2)w;-l + . ' .  + (-1)S-lFs-1(2)wp + (-l)sFs(2)> 

and 

by WE-', k = 1 , 2 . .  . . , s, and summing with respect to p. we can isolate poly- 
nomials p k  ( z )  and j?k (2). Here p (  w. z )  and j?( w. 2) are stability polynomials of 
DIMSIMs of types 1 and 2 defined in Sections 3.4 and 3.5. respectively. This 
leads to 

and . Ni 

k = 1.2 , .  . . , s.  Assume next that z,, and 2,,, u = 1 , 2 , .  . . , N z .  where N2 is a 
sufficiently large integer, are complex numbers distributed uniformly on the 
unit circle. Repeating this process again, this time multiplying 

Pk(ZU) = Pk.k-lz;-l + P k k $  + . . ' + P k s z ;  

and 

k = 2.3, .  . . , s ,  by 2;' and 2;', respectively. and summing with respect to u. 
we get 

j ? k ( z u )  = j?k,k-l%-' F k k e  + ' '  ' + j?ksz; ,  
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and 

k = 2; 3:. . . , s ,  1 = k - 1. k ,  . . . , s. We then solve numerically the systems 

Ni N7 

y w;-sz,lp(wp, 2,) = 0 (3.8.1) 
p=1 u=l 

and 
Ni N2 

w;-S%;-@(w,. ZU) = 0, (3.8.2) 

which are equivalent to (3.4.5) and (3.5.5): respectively, if the integers N1 and 
N2 are chosen sufficiently large. 

The stability polynomial p(w. z )  of DILlSIMs of type 1 will be computed 
from the equation 

(3.8.3) 

where 

p=1 u = l  

~ ( w ,  2) = det (Q(?u, z ) )  

Q(w. Z )  = ~ ( 1  - zA) - V - zBo + zABl+ z V B ~ .  (3.8.4) 

These relations follow from formula (3.2.1) and the fact that  det(1 - zA)-' 
is equal to 1. Similarly, the polynomial p^((w% 2) corresponding to  DIMSIMs of 
type 2 will be computed from the relations 

p^(w,2) = det (Q(w,Z) )?  (3.8.5) 

where 
h h 

Q(w, 2) = ~ ( 1  - 2A) - V - 2Bo + 2XB1+ 2VB2. (3.8.6) 

and matrices BO and B 2  are defined by 
h h 

Bo = Bo - XB1 and B2 = B2 - X I .  

Observe that (3.8.5) and (3.8.6) have the same form as (3.8.3) and (3.8.4), 
where z ,  A, Bo, and Bz are replaced by 2, A, Bo, and B 2 ,  respectively. 

We can use the approach described above to  construct A- and L-stable 
methods of type 2 with a stability function of the form 

h h  

p(w.  z )  = w y w  - R(z ) ) .  

It follows from Table 2.7.1 that  this is possible for p = 5 ,  p = 6, and p = 8 by 
choosing the appropriate parameter X for which the stability function R(z )  
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of the SDIRK method of the same order is A- and L-stable. However, this 
approach is not applicable for p = 7 since the stability function of the SDIRK 
method of this order cannot be A- and L-stable for any X (compare Ta- 
bles 2.7.1 and 2.7.2). For p = 7 we follow a different approach, proposed by 
Butcher et al. [74], and attempt to construct highly stable methods for which 
the stability polynomial p(w, z )  is equal to a given polynomial p*(w, z )  of the 

where p; ( z )  and p; ( z )  are polynomials of degree less than or equal to s. These 
polynomials will be chosen in such a way that p(w. z )  is an A- and L-stable 
generalized approximation of order p = s to the exponential function exp(z) 
[60]; that is, 

p* (exp(z), z )  = ~ ( z " ' ) .  (3.8.7) 

Although this approach was first motivated to deal with the case p = 7. it is 
clearly also applicable to the construction of methods of any order. Moreover, 
in contrast to the approach described at  the beginning of this section, it usu- 
ally leads to an entire interval of the parameter A. for which the corresponding 
methods are A-stable and L-stable. 

Set 
2 * s  pT(z) = 1 +p;,z +p;zz f . .  . +p,,z . 

p;(z) = p;,z + p; ,z  + . . . + p ; g .  2 

Then the order requirement (3.8.7) leads to the system of s polynomial equa- 
tions for the parameter X and the coefficients pEl of pz. Ic = l, 2. Assuming 
that 

pIl=O, 1-5 .6  , . . .  , s ,  pll=O, l z s - 3 . s - 2 ,  . . . ,  S ,  

and solving the system corresponding to (3.8.7), we can express the remaining 
coefficients pTl, 1 = 0,1 ,2 ,3 ,4 ,  and p & ,  1 = 1 , 2 , .  . . . s - 4, in terms of A. The 
parameter X can then be chosen in such a way that polynomial p*(w. z )  is 
A-stable. Once this is done, the corresponding function p*(w, z )  will also be 
L-stable since pr, = p;, = 0. 

Polynomial p" (w. z )  has a root w = 0 of multiplicity s - 2,  and to assure 
A-stability the remaining two roots, R;(z )  and R;(z) ,  should satisfy 

IRE(.)I L 1, Ic = 1 , 2 ,  (3.8.8) 

for Re(z) 5 0. This condition can be analyzed using the Schur theorem, 
Theorem 2.8.1. It can be verified, for example, that (3.8.8) is satisfied for 

0.25864444 5 X 5 0.27688498 if p = 7 

and 
0.19799408 L X 5 0.20136462 if p = 8. 
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Choosing, for example, X = 8, polynomials pr (2) and p;  corresponding to the 
generalized approximation p* (w, z )  of order p = 7 to the exponential function 
are 

1022815846 7864050101 2 21301028013 '3 - 4289969757 '4 
1708984375 ' - 68359375000 ' + 136718750000 136718750000 p ? ( z ) = l -  

and 
757102683 4 6 9 4 0 9 8 0 9 

= 3417968750' + 68359375000 " - 410156250000 
3769899337 z3 

' 

To construct appropriate methods, it is more convenient to work with the 
transformed variable 2 = z/(1 -Xz), which was introduced in Section 3.5, and 
transformed polynomial p"(wl 2). defined by 

P* (Wl') 

(1 - Xz)S . j 7 ( w , 2 )  = 

This polynomial takes the form 

S(2) = & 2 + & 2 2  + .  . . + g a 2 a " .  

It can be verified [74] that for given A, the construction of DIMSIMs for which 
transformed stability polynomial p^(w, 2) is equal to a polynomial p" (w. 2) 
given in advance leads to a system of (s - l)(s + 2)/2 polynomial equations 

u=1 v = l  

k = 3 ,4 , .  . . , s ,  for the unknown (s-l)(s+2)/2 coefficients ut3,  i = 2 ,3 , .  . . , s ,  
j = 1 , 2 , .  . . ,  i - 1. and u,, i = 1 ,2 . .  . . , s - 1, of the methods. Here, as 
before, wp, p = 1 . 2 ,  . . . , N1, and zv, v = 1 , 2 ,  . . . , N 2 .  are complex numbers 
distributed uniformly on the unit circle. 

Stability polynomials p ( w ,  z )  and C(w. 2) of DIMSIMs of types 1 and 2 
depend on coefficients aZ3 and v, of these methods. We conclude this section 
with a derivation of the exact expressions for partial derivatives dp /daL3 .  
ap /auz ,  dp^/da,, , and dp^//dv, of these polynomials. These expressions allow 
for the derivation of the formula for the Jacobian matrix of systems (3.8.1), 
(3.8.2), and (3.8.9). 



172 DIAGONALLY IMPLICIT  MULTISTAGE INTEGRATION METHODS 

Let M = [mij]&l and define the function 

f = f(mi,) = f (ml l .ml2 , .  . . .mss) = det(M). 

We need the following lemma. 

Lemma 3.8.1 Assume that matrix M is nonsingular. Then 

Proof: Expanding det(M) with respect to the ith row we obtain 

S 

k=l 

where Mik is the submatrix of M obtained by deleting row number i and 
column number k from M .  Hence, 

and the proof is complete. I 

Denote by el, e2, .  . . , e, the canonical basis in R", so that e = C t l  e,. We 
have the following theorem. 

Theorem 3.8.2 The partaal deravataves of polynomaal p(w, z )  wath respect to 
at, and v, are gaven by 

-- a' - zdet(Q)e;(Bl - wI)Q-'e,, (3.8.10) 
oat, 

i = 2 , 3  ,..., s , j = 1 , 2  ...., i - 1 , a n d  

- aP = det(Q)(e, - es)T(zB2 - I)Q-le, (3.8.11) 
av, 

2 = 1 , 2  , ' " ,  s - 1 .  

Proof: Let 

We have 
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where we note that $-lei is the i th  column of matrix Q-'. We also have 

or in matrix form, 

where we note that premultiplication of a matrix S by eT selects the j t h  row 
of matrix S. Substituting this relation into the expression for dp /da t3 ,  we 
obtain (3.8.10). 

To prove (3.8.11), observe that 

and 

or in matrix form! 

= -e' + eT + z (eTB2 - eyB2). 
k = l  

Substituting the last relation into the equation for dp ldv i ,  we find that 

which is equivalent to (3.8.11). 
A 

Replacing Q, B1. and Ba by Q. Bl, and B2 we can obtain formulas for 
dp^lda,, and dp^ldv, which are analogous to equations (3.8.10) and (3.8.11). 
These relations allow us to compute the Jacobian matrix of systems (3.8.2) 
and (3.8.9) corresponding to DIMSIMs of type 2. 

3.9 L EAST- S Q U A R E S M I N I M I Z AT I 0 N 

In Section 3.8 we derived systems of nonlinear equations that define DIMSIMs 
of types 1 and 2 with p = q = r = s. These systems have been solved by 
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minimizing the sum of squares of the objective functions defined by the right- 
hand sides of equation (3.8.1), (3.8.2), or (3.8.9). which were obtained using 
a variant of the Fourier series approach. Then the minima of this sum, which 
are equal to zero, are also solutions of the corresponding systems. For p = 5 
and p = 6 we have used for this purpose the Levenberg-Marquardt algorithm 
as implemented in the FORTRAN subroutines lrndif . f and lmder . f from 
MIYPACK. 

This algorithm was first suggested by Levenberg [207] and Marquardt [211] 
and has been nicely summarized by Dennis and Schnabel [113]. To explain 
the main idea of this algorithm, we write the minimization problem in the 
generic form 

N 

(3.9.1) 
1 1 
2 2 

j(x) = - R ~ ( ~ ) R ( ~ )  = - C r P ( x )  + min. 
2 = 1  

where 
T 

R(z) = [ ?-1(x) 7-2(z) ' . .  7 - N ( Z )  ] 
and T,(z). i = 1 , 2 . .  . . , N ,  N = (s - l)(s + 2)/2,  stands for the right-hand 
sides of equation (3.8.1), (3.8.2), or (3.8.9) and x is the vector of unknown 
parameters of the method 

T 
2 = [ 0221 a31 " '  as,s-l ?J1 " '  us-1 ] 

Denote by J(z) the Jacobian matrix of R(x) defined by 

Then we choose the next iterate. x+. in terms of the previous iterate, xc. by 
minimizing the functional 

llR(~.) + J(xc)(z+ - xc)1I2 + min 

IlZ+ - ZcI I2 I 6 c ,  

over RN subject to 

with appropriately chosen bounds 6,. As explained by Dennis and Schnabel 
[113], this leads to the formula 

x+ = 2,  - (J(.C)'J(.C) + pcI)-lJ(xc)TR(xc), (3.9.2) 

where pc  = 0 if 

S C  2 / I  (J(xc!TJ(.c))-1J(Zc)TR(xc)1/2 
and p c  > 0 otherwise. The strategy for choosing p c  has been described by 
Mod  [217]. This method reduces to the Gauss-Newton algorithm for p c  = 0. 
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However, when the Gauss-Newton step is too long. the Levenberg-Marquardt 
step (3.9.2) is close to  being in the steepest-descent direction. 

The program lmdif . f uses subroutine f cn. f supplied by the user, which 
calculates the functions. The Jacobian matrix is then calculated by a forward- 
difference approximation. The program lmder . f uses subroutine f cn. f, which 
calculates both the functions and the Jacobian matrix. This matrix can be cal- 
culated with the aid of formulas (3.8.10) and (3.8.11) for aplda,, and ap/av, 
(or analogous formulas for d$/da,, and dj?/dv,) derived in Section 3.8. 

To compute det(Q(w. z ) )  or det(Q(w. 2)) appearing in the definitions of the 
objective functions corresponding to  (3.8.1). (3.8.2), or (3.8.9), or det(Q(w, z ) )  
and Q-l(w, z )  or det(Q(w, 2)) and Q- l (w .  2) appearing in the definition of 
the corresponding Jacobian matrices, we have used subroutines zgef a .  f and 
zgedi . f from the LINPACK library. The program zgef a .  f computes the 
PLU factorization of a COMPLEX*l6 matrix which is then used by zgedi. f 
to compute the determinant, or the determinant and the inverse of the matrix. 
if desired, using the factors computed by zgef a .  f . 

We have used Nl = Nz = p + 1 in (3.8.1) and (3.8.2) to derive DIRlSIMs 
of order p = 5 and p = 6. The iteration process was continued until the 
difference between two consecutive iterates was less than or equal to 
After the solution was found. we checked using MATHEMATICA or MAPLE 
that we computed the right solution. 

We have also tried to  use the Levenberg-Marquardt algorithm, (3.9.2), to  
construct DIhlSIMs of order p = 7 and p = 8 but did not get satisfactory 
results. We have experimented with many different methods for least-squares 
minimization, and based on the experience that was gathered in this pro- 
cess, a choice was made to  use a rather sophisticated algorithm available in 
DN2G and DN2GB. These are nonlinear least-squares routines available in 
NETLIB/PORT, the public part of the PORT library [269]. They are new 
versions of the original code NL2SOL [lll. 1121. A description of the im- 
provements was provided by Bunch et al. [26]. In particular, the least-squares 
problem is considered with additional bound constraints on its variables as 
proposed by Gay [ 1291. 

The least-squares solution in NL2SOL was developed as a generalization 
and improvement of standard approaches such as the Levenberg-Marquardt 
algorithm in lmdif . f and lmder . f from MINPACK which we had used for 
p = 5 and p = 6. Specifically, Dennis et al. [lll. Sec. 81 have compared 
NL2SOL with algorithms from MINPACK. 

Algorithm DN2G (without bound constraint) and DN2GB (with bound 
constraint) utilize adaptive quadratic modeling. Special problem structure is 
exploited by maintaining a secant approximation to  the second-order part of 
the Hessian of the objective function f ( z )  defined by (3,g.l) .  The program 
switches adaptively between a Gauss-Newton and an augmented Hessian ap- 
proximation. where the Gauss-Newton steps are computed from a corrected 
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seminormal approach. The Gauss-Newton model at the iterate x, is 

1 
qF(x)  = ,R(~,)~R(zrc) + (x - X , ) ~ J ( X , ) ~ R ( ~ ~ )  

1 
2 

+ -(. - Z , ) ~ J ( X , ) ~ J ( ~ , ) ( ~  - z,). 

In NL2SOLl one adds an approximation S ,  to the difference between this and 
the standard quadratic Taylor model of the Newton method to obtain another 
model, 

q,S(x) = , R ( ~ c ) ~ R ( x k )  + (x - ~ ) ~ J ( x c ) ' R ( x c )  
1 

1 + ,(z - Z ~ ) ~ ( J ( ~ , ) * J ( Z , )  + S , > ( X  - G). 

To update S,, a straightforward modification of the Oren-Luenberger self- 
scaling technique [226] is used. Finally, the choice of which of the models 
above to use is intimately related to the trust region approach utilized to pick 
Ax, = x+ - x,, which has the form 

Ax, = (H, + p c D ? ) - l v f ( x c ) .  

Here H, is the current approximation to the Hessian V2f(z)  
N 

v 2 f ( x )  = J ( Z ) ~ J ( Z )  + CG(X)V~T,(Z).  
2=1 

D, is a diagonal scaling matrix, and pc 2 0 is chosen by the same procedure 
as in the Levenberg-hlarquardt algorithm [217]. The approximation to the 

of the function f ( x )  is computed through the following algorithm: 

for i := l(1)N do 

6 2  = 6(1 + izii); 
fl = f(x - Sxei); 

f 3  = f ( x  - 26xei); 

fs = f(x - 46xei); 

f 2  = f(x + 6xei); 

f 4  = f ( x  + 26xei); 

f e  = f ( x  + 46zei); 

s1 = ( f 2  - f1)/(26z); s2 = (f4 - f3)/(46x); 

s3 = ( f 6  - f 5 ) / ( 8 6 x ) ;  

v f i  = S 1  + 0.4(Sl - S 2 )  + (s1 - 2s2 + s3)/45; 

enddo 
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Here 6 = 0.25 eps, eps is the machine epsilon, and e, denotes the zth unit vector 
in RN. The overall code is much larger and more complex than standard least- 
squares algorithms but has proven to be very robust and at the same time, 
reasonably efficient. 

To find appropriate methods, we performed an extensive computer search 
starting with many random points distributed uniformly in the interval [-1,1]. 
We have used the Levenberg-Marquardt algorithm in case p = 5 and p = 6 
and DN2G and DN2GB algorithms in case p = 7 and p = 8. Those points that 
had small f-values and not too large components were subsequently improved. 
This way, in all cases, solutions with sufficiently small residuals could be 
derived. Examples of methods found in this way are listed by Butcher and 
Jackiewicz [68] for p = 5 and p = 6 and by Butcher et al. [74] for p = 7 and 
p = 8. These examples, up to order p = 6, are also reproduced in Section 3.10. 

The efficiency of computer searches for high order methods can be im- 
proved further by exploiting the special structure of the coefficients p k l  and 
Fkl  appearing in (3.8.1) and (3.8.2). This is investigated by Jackiewicz and 
Mittelmann [179] where the following theorem was obtained. 

Theorem 3.9.1 T h e  coeficzents pkl and &l , k = 2,3. . . . , s, 1 = k- 1, k .  . . . , s, 
of stabalzty polynomaals p ( w .  z )  and p^(w, 2) of DIMSIMs of types 1 and 2 are 
lanear wath respect t o  vz, z = 1 . 2 ,  . . . , s - 1. Moreover, f o r  methods wath c1 = 0 
and c, = 1, coeficzents p k s  and p^ks, k = 2,3 . .  . . , s, correspondang t o  w ~ - ~ z ~  
and ws-k2s are homogeneous wath respect t o  v,, z = 1 , 2 , .  . . , s - 1. 

Proof: It was demonstrated in Section 3.8 that p(w,z) and C(w,Z) can 
be computed from formulas (3.8.3) and (3.8.5), where matrices Q(w,  z )  and 
Q(w.2) are defined by (3.8.4) and (3.8.6). To show the first part of the the- 
orem we use the transformation for the analysis of DIMSIMs introduced by 
Butcher [46] and discussed in Section 3.3. Using this transformation, we work 
with the matrices 

- - 
A = T-lAT, B = T-lBT, V = T-lVT. 

where the matrix T is defined by (3.3.1). It was demonstrated in Lemma 3.3.2 
that the matrix v has the form 

Vt7= [ 1 Ez . . .  v, 3 el 

and it is easy to verify that E,, a = 2 ,3 , .  . . , s, are linear functions of v3, 
J = 1,2 . .  . . , s - 1. As in Section 3.3, set 

- - - 
Bo = T-IBoT, B1 = T-lBiT. Bz = T-lBzT, 

- 
h 

and define - 

Then 

Bo = T - ~ B ~ T ,  B~ = T - ~ B ~ T .  

p(w .  z )  = det (Q(w,  2)) = det (Q(w,  z ) ) ,  
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The first part of the theorem now follows by expanding det(&(w,z)) and 

det(G(w, 2)) with respect to the first row of &(w, z )  and Q ( w ,  2). 
To prove the second part of the theorem, we must show that for methods 

with c1 = 0 and cs = 1 we have 

- 

Observe that 

h 

Qo(w,  2) = w(I  - 2A) - VO - 560 + 2AB1+ Z V o B z ,  

and 
V O = V I  = e [  o o . . .  o 1 1 .  

u,=o 

Since c1 = 0 and c, = 1, it follows from formulas (3.2.2) for the elements of 
matrices Bo, B1, and Bz that the first row of Bo is equal to the last row of 
Bz. Moreover, the first row of B1 is equal to [ O , O . .  . . . O ,  11. Hence. it is easy 
to verify that the first rows of of Bo - VoBz and BO - VoBz are equal to zero. 
This implies that the first rows of Qo(w. z )  and Qo(w, 2) are independent of 
z and 2. Expanding det(Qo(w, 2 ) )  and det(QO(w. 2)) with respect to the first 
rows of Qo(w, z )  and Qo(w, 2). it follows that the polynomials p(w, z)jUt=o 
and ~ ( w , 2 ) l U t = o  have at  most degree s - 1 with respect to z and 2. This is 
equivalent to the second part of the theorem. 

Set ? = [ w l , .  . . , U ~ - I ] ~ .  It follows from this theorem that systems (3.8.1) 

h 

rn 

and (3.8.2) can be written in the form 

H(A)? = b(A), G(A)? = 0: (3.9.3) 

and 
i T ( i ) G  =I@), @Z)G = 0; (3.9.4) 

where H(A), e(x) and G(A), e(x) are matrices of dimensions (s - 1) x 
s(s - 1) /2  and (s - 1) x (s - l), respectively, and b(A), ;(xi) are vectors of 
dimension s ( s  - 1)/2.  Subsystems G(A)G = 0 and e(x)G = 0 in (3.9.3) and 
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(3.9.4) correspond to equations P k s  = 0 and &, = 0. k = 2,3. .  . . , s. in (3.4.5) 
and (3.5.5), or to equations 2,5,9.13, .  . . . (s - l)(s + 2)/2 in systems (3.8.1) 
and (3.8.2). For given A or i, matrices H(A) and G(A) or g(i) and e( i )  
can easily be assembled by computing p k l  or & with wt = 1, v3 = 0. j # a .  

a = 1 , 2 . .  . . . s - 1. Then the zth columns of G and G correspond to p k s  or 
&,, k = 2,3 , .  . . , s. computed with vu3 given above, and the zth columns of H 
or H correspond tz  the remaining pkl or F k l .  

If (A, G )  and (A. G )  are solutions to (3.9.3) and (3.9.4) (with c1 = 0 and 
c, = 1). the vector G necessarily belongs to the null space of matrices G(A) 
and 8( i ) .  Augmenting these systems by the equations 

det (G(A)) = 0 and d e t ( e ( i ) )  = 0, 

and applying least-squares minimization methods to these augmented sys- 
tems, we can improve the accuracy and reliability of searches for high order 
DIMSIMs. Examples of methods found in this way have been given by Jack- 
iewicz and Mittelmann [179]. 

h 

h 

3.10 EXAMPLES OF D l M S l M S  OF TYPES 1 A N D  2 

In this section we present examples of DIMSIMs of types 1 and 2 of order 
p = 5 and p = 6 with the abscissa vector c of dimension s = p given by (3.4.3). 
Coefficient matrices A, i. and V were obtained by least-squares minimization 
techniques described in Section 3.9. which were applied to systems (3.8.1), 
(3.8.2). and (3.8.9). Coefficient matrix B was then computed using formula 
(3.2.1), derived in Theorem 3.2.1. Matrices Bo. B1, and B2 in (3.2.1) are 
determined uniquely by the vector C with the aid of formulas (3.2.2). As a 
consequence, the derived methods have the required order p equal to the stage 
order q. 

We have found many solutions to systems (3.8.1). (3.8.2). and (3.8.9). In- 
specting these solutions we could see that some of them have2dvantages in 
terms of the sizes of the elements in coefficient matrices A, A. V. and B. 
Exceedingly large values are likely to cause round-off problems because of 
cancellation of significant digits. We display Below we cite examples of meth- 
ods with moderately sized coefficients. All methods of type 2 are A- and 
L-stable. 

Example 1. DIhISIM of type 1 with p = q = T = s = 5 : 

A =  

0 0 0 0 0 

1.176528 0 0 0 0 

1.980579 0.401718 0 0 0 

3.053284 0.734996 0.267236 0 0 

1.419332 2.653490 -2.277853 1.197891 0 
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A = 

T 
v = [ -0.240696 1.260495 -2.481269 1.919907 0.541563 ] . 

0.278054 0 0 0 0 

0.220452 0.278054 0 0 0 

2.294820 -0.602367 0.278054 0 0 

5.054621 -1.529876 0.097119 0.278054 0 

- - 
0 0 0 0 0 0 

-0.378732 0 0 0 0 0 

3.415475 1.075853 0 0 0 0 

3.517453 0.493910 0.483207 0 0 0 

-0.398097 -1.988293 1.043842 0.253273 0 0 

1.348865 -2.741611 1.388314 0.0327580 0.364587 0 

A =  

1 9.345168 -1.412134 -1.883402 0.782534 0.278054 1 

1 

T 
v =  [ -0.0793855 0.554318 -1.569590 2.332075 -0.237418 1 . 

- - 
0.334142 0 0 0 0 0 

0.044043 0.334142 0 0 0 0 

0.431528 -0.685118 0.334142 0 0 0 

0.108586 -0.267762 -0.383403 0.334142 0 0 

-1.833853 2.855822 -1.573479 0.039950 0.334142 0 

-5.629166 11.996111 - 10.377635 4.983245 - 1.166032 0.334142 

A =  > 

v = [ 2.134887 -9.944380 13.934564 0.329620 -14.682606 9.22792 1 . 
In the four examples above we have displayed the coefficients of A and 

v truncated to about six significant digits. We refer readers to  the papers 
[74, 1791 for examples of types 1 and 2 DIMSIMs with p = q = T = s = 7 and 
p = q = r  = s = 8.  
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3.11 NORDSIECK REPRESENTATION OF DlMSlMS 

In the representation of DIMSIhls (3.1.1), coefficient matrix U was chosen as 
identity matrix I of appropriate dimension. Since the purpose of the r vectors 
making up the input data y[”-’] and the corresponding output data ylnl is 
merely to carry information from step to step, it is possible to rearrange these 
data by taking r independent linear combinations of the r subvectors and 
using the resulting combinations instead of the subvectors themselves. This is 
equivalent to choosing a nonsingular matrix T and replacing the partitioned 
matrix that characterizes the method 

by the “transformed method” 

! *  T-lB T-lVT 

If U is square and nonsingular. transforming it back to the case U = I is 
easily achieved by the choice T = U-l .  

In this section we derive a new representation of DIMSIMs which is more 
convenient to implement in a variable step size variable order environment 
than representation (3.1.1). This representation was proposed by Nordsieck 
[222,223] in the context of Adams methods and its use was later promoted and 
used with advantage by Gear [131, 132, 1331 in the code DIFSUB for nonstiff 
and stiff differential systems. This representation in the context of DIMSIMs 
was first proposed by Butcher et al. [57]. In this Nordsieck representation 
of DIMSIMs we have p = q = s, r = s + 1, and the vector gin] of external 
approximations approximates directly the Nordsieck vector ~ ( t , ,  h),  which is 
defined by 

z ( t ,  h )  = (3.11.1) 

We demonstrate in Section 4.1 that this new representation will be zero-stable 
for any step size pattern, and changing the step size will be accomplished by 
a simple rescaling and modifying of the vector of external approximations. 

Following Butcher et al. [57], our starting point is the representation (3.1.1) 
such that p = q = r = s and with U = I. In addition to y[n] we consider an 
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approximation vIn] E Rm such that 

P 

k=O 

which has the form 

vInI = h(bT @ I)F(Y["I) + (vT @ I);y[n-lI. (3.11.2) 

Here. t k ,  k = 0 , l .  . . . , p ,  are some scalars and b E Rs, v E Rs are some vectors. 
To avoid the possibility that can be written as a linear combination of 
the output quantities y tn l ,  1 i = 1 . 2 , .  . . , s. we assume that the matrix 

is nonsingular. Define the vector 

and the matrix 

The independence of the vectors y:], i i = 1 , 2 , .  . . , s ,  and qIn] defined by 
(3.11.2) guarantees that w is nonsingular. The relationship between vectors 
t and b is given by the following result. 

Theorem 3.11.1 (Butcher et al. [ 5 7 ] )  The first component of t  is  given 
by to = 1, and for given t l ,  t 2 , .  . . , t,, vector b is equal to 

bT = lTC-I, (3.11.3) 

where C is the Vandermonde matrix 

c =  [ e c . . .  CP-1 ] 
and the vector 1 = [ 1 1 , .  . . , 1,IT is  defined by 

Proof: It follows from Theorem 2.4.1, formula (2.4.6), that 

eZE = zbTecz  + vTw(z) + 0 ( z p + ' ) ,  
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where 
P P 

5 = c t k z k  and ~ ( z )  = c q k z k .  
k=O k=O 

Expanding both sides of this equation into a Taylor series around z = 0 and 
comparing the corresponding terms, we obtain 

v T 9 0  = t o  (3.11.4) 

and 

(3.11.5) 

It follows from (3.11.4) that t o  = 1 and it can easily be verified that equation 
(3.11.5) is equivalent to (3.11.3). This completes the proof. 

and consider the method 

(3.11.6) 

n = 1 , 2 , .  . . , N ,  where 

Since 
$"I = (W @ I)z(t,; h)  + O(hP+l), 

where z( t , ,h)  is a Nordsieck vector given by (3.11.1), we define the vector 
z["] by the relation 

Q'"1 = (W @ I),["]. (3.11.7) 

Observing that 
r 1 

L J 

and substituting (3.11.7) into (3.11.6), we obtain 

(3.11.8) 
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n = 1 , 2 , .  . . , N ,  where the new coefficient matrices P, G, and Q are defined 

P = UW: G = E I B ,  Q = G-'VW. 
- Since 

(3.11.9) 

(3.11.8) is the desired Nordsieck representation of DIMSIMs. 
Next we investigate linear stability properties of the augmented method 

(3.11.8). If M(z) = V + zB(1 - zA)-lU denotes a stability matrix of a 
method (3.1.1) (this matrix is defined by (2.6.4)), the stability matrix M(z) 

*["I = (w-1 @ I)Y["] = z(t,, h )  + O(hP+l), 

of the "extended" method 
r - V 

M(z) = 

L 

(3.11.6) is given by 

1 v 1  + ~ b ~ ( I - z A ) - ~ u  0 1 ' 
As a consequence, M(z) has one more eigenvalue than matrix M(z). and this 
extra eigenvalue is equal to zero. As a result; the linear stability properties 
of method (3.1.1) remain unchanged for constant step sizes through the aug- 
mentation process (3.11.6), which leads to the Nordsieck representation of 
DIMSIMs given by (3.11.8). 

Now we derive now the formulas for the computation of the coefficient 
matrices Q and G. To simplify the matrix Q, observe that 

where el = [1, 0, . . . , O]* E Iws+'. This implies that 

The matrix G is characterized by the following result. 

Theorem 3.11.2 (Butcher et al. [57]) The matrix G is determined by the 
formula 

G = LC-l,  (3.11.10) 

where C is the Vandermonde matrix defined in Theorem 3.11.1 and L is a 
matrix with columns L k ,  given by 
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Here e,, i = 1 . 2 , .  . . , p  + 1, i s  t he  canonical basis in RP+'. In particular,  
m a t r i x  G i s  independent  of t l ,  t 2 , .  . . . t,. 

P r o o f :  It follows from Theorem 2.4.1. formula (2.4.6), that 

e"G = zGeCZ + QW(z) + O(zP+l) .  (3.11.11) 

where 
P 

W(z) = C e k + 1 z  k . 
k=O 

Expanding both sides of (3.11.11) into a Taylor series around z = 0 and 
equating the corresponding coefficients of zk  , we obtain 

Qei = ei (3.11.12) 

and 

It follows from the form of the matrix Q that condition (3.11.12) is satisfied 
automatically and (3.11.13) is equivalent to (3.11.10). This completes the 
proof. 

3.12 REPRESENTATION FORMULAS FOR COEFFICIENT 
MATRICES P AND G 

In Section 3.11 we derived the Nordsieck representation of DINISIMs by the 
augmentation process of the vector of external approximation yinl correspond- 
ing to representation (3.1.1) with coefficient matrices given by (3.1.2). In 
this section we demonstrate that we can obtain directly the representation 
formulas for coefficient matrices P and G of the Nordsieck representation 
(3.11.8). This direct approach is based on use of the modified form of the 
order and stage order conditions reformulated specifically for methods of the 
form (3.11.8) with p = q = s and T = s + 1, where the vector zin] is an 
approximation of order p to the Nordsieck vector z ( t n )  defined by (3.11.1). 

Define the matrices Kp E IR(P+')x(P+l) and E, E R(P+l)x(P+l )  by 

, Ep = exp(K,) = 
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We have the following theorem. 

Theorem 3.12.1 ([177], [293]) Assume tha t r  = s + l .  Then method (3.11.8) 
with abscissa vector c = [cl, . . , , csIT has order p = s;  that as, 

implies that 
zlnl = hi- ly( i - l ) ( tn)  + O(V+l) ,  

i = 1 , 2 , .  . . , r ,  and stage order q = p ,  

p = y(tnwl + Cih) + O(hS+l), i = 1 , 2 , .  . . , s 

if and only if 
ecz - zAeCZ - P Z  = O(zS+l)  (3.12 .1) 

and 
E,Z - zGeCZ - Q Z  = O(zS+')  (3.12.2) 

as z --f 0: where 

Proof: Expanding y(tnPl+cih) and ;y'(t,-l+cih) into a Taylor series around 
tn- l ,  we obtain 

and 

i = 1 , 2 ,  

and 

, s. We also have 

S 
1 

hky(k) ( tn- l )  + O(h3+1) - 
- k=i-1 C ( k - i + l ) !  

k=O 
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i = 1 , 2 , .  . . , s + 1. Here eij are the elements of the matrix E,. Substituting 
the relations above into (3.11.8) yields 

i = 1 ,2 , .  . . , s, and 

i = 1,2,  . . . , s + 1. Here ai j ,  p i j ,  and qij are elements of matrices A, P, and 
Q ,  respectively. Equating the coefficients of h k y ( k ) ( t n - l ) / k !  to zero and then 
multiplying these coefficients by z k / k !  and adding them from k = 0 to k = s ,  
we obtain 

S S 

j=1 k=O 

i = 1 , 2 ,  . . . ,  s, and 

S S S 

i = 1 , 2 , .  . . , s + 1. These relations are equivalent to (3.12.1) and (3.12.2), 

Since E,Z = e"Z + O(z"+') the order condition (3.12.2) can be formulated 

respectively. This completes the proof. 

in the equivalent form 

e Z Z  - zGeCz - Q Z  = O(z"') ,  

proposed by Wright [293]. 
Define matrix C ,  by 

where ci stands for componentwise exponentiation. It follows from the proof of 
Theorem 3.12.1 that coefficient matrices P and Q are determined completely 
by abscissa vector c and coefficient matrices A and G. To be more precise, 
we have the following corollary. 

Corollary 3.12.2 (compare [177], [293]) Assume that p = q = s and T = 

s + 1 in (3.11.8). Then 
P = C ,  - AC,K, (3.12.5) 

and 
Q = E ,  - GC,K,. (3.12.6) 
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Proof :  It follows from (3.12.3) and (3.12.4) that 

i = 1 , 2 . .  . . , s + 1. v = 2 .3 .  . . . , s + 1. Taking into account that 

c2 cP-1  

C,K, = [ 0 e c - 2! -1 ,  ( p  - l ) !  

these relations for pij  and qij are equivalent to (3.12.5) and (3.12.6). rn 

Constructing DIh4SIMs in Nordsieck form, we usually assume that matrix 

- -  Q has the form 

and then we are interested in expressing the coefficient matrix G in terms of 
c and Q. This can be accomplished by "inversion" of formula (3.12.6). Let 
us partition matrices G,  Q, and E, as follows: 

where gT stands for the first row of G and 0 stands for the zero vector or 
matrix of appropriate dimension. We have the following result. 

Theorem 3.12.3 ( Butcher and Jackiewica [69]) A s s u m e  that p = q = 
s and r = s + 1 in (3.11.8). A s s u m e  also that the components of the  abscissa 
vector c are distinct. T h e n  

gT = (ep--l - q)C;-, 1 (3.12.7) 

and 
G = Ep-1C;21. (3.12.8) 

Proof :  It follows from (3.12.6) and the relation C,Kp = [ 0 1 C,-1] that 
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and comparing the corresponding elements on both sides of this matrix equa- 
tion, we obtain 

- 
T -T 

ep-l - g C,-1 = q and E,-1 - GC,-1 = 0. 

It follows from the assumptions of the theorem that the matrix C,-1 is in- 
vertible and the relations above are equivalent to (3.12.7) and (3.12.8): re- 
spectively. m 

3.13 EXAMPLES O F  D lMSlMS IN NORDSIECK FORM 

In this section we list examples of types 1 and 2 DIMSIMs in Nordsieck form 
up to the order p = 3. These methods can be derived starting from represen- 
tation (3.1.1) with coefficients given by (3.1.2) using the approach described 
in Section 3.11. Alternatively, we can use representation formulas (3.12.5) for 
matrix P and (3.12.7) and (3.12.8) for matrix G and then compute coefficient 
matrices A and Q so that the resulting method has some desirable stability 
properties. As in Sections 3.4 and 3.5, we aim at RK stability for explicit 
type 1 methods and A- and L-stability for implicit type 2 formulas. This 
leads again to systems of polynomial equations for unknown coefficients uzJ 
and of the methods. These systems can be solved by symbolic manipula- 
tion packages if 1 5 p 5 4 or using the approach based on a variant of the 
Fourier series method described in Section 3.8 and least-squares minimization 
discussed in Section 3.9 if 5 < p 5 8. The coefficients of explicit methods for 
5 < p 5 8 are given by Butcher et al. [58]. 

Example 1. Type 1 method with p = q = s = 1, T = 2,  and c = c1 = 0: 

This method corresponds to the forward Euler formula 

with c = c1 = 0. 

Example 2. Type 2 method with p = q = s = 1, T = 2,  and c = c1 = 1: 
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4 4  

0 1 0  

- 1 1 0  

This method corresponds to the backward Euler formula 

5 1 1 - 1 1  

0 0  

0 0  

2 4  

with c = c1 = 1. 

Example 3. Type 1 method with p = y = s = 2, T = 3, and c = [0, 1IT: 

73-34& 2 4 z - 1  
28 4 

0 1 0  

-1 1 0  

1 0 4 - 1 9  3 - 2 d  
1 7  4 

0 0 

0 0 

This method corresponds to  the DIlClSIM of type 1 of order p = 2 with 
c = [0, 1IT given by Butcher [44] and also in Section 2.8.1. The details of the 
derivation of this method are given by Jackiewicz [178]. 

Example 4. Type 2 method with p = y = s = 2. T = 3, and c = [0, 1IT: 

0 2 2 

1 14 7 2 2 
6 + 2 4  3 ( d - 4 )  

This method corresponds to DIIClSIhl of type 2 of order p = 2 with c = [O, 1IT 
given by Butcher [44] and listed also in Section 2.8.2 for X = (2 - &)/2. The 
details of the derivation of this method are given by Jackiewicz [178]. 

Example 5. Type 1 method with p = y = s = 3, T = 4, and c = [0, i, 1IT: 
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This method corresponds to  the DIhlSIM of type 1 of order p = 3 with 
c = [O,  i. 1IT given by Butcher and Jackiewicz [66] and also in Section 3.4. 

Example 6. Type 2 method with p = q = s = 3. T = 4, and c = [ - l . O ,  1IT: 

0.43586652 0 0 

A =  [ 1.1720924 0.43586652 0 

1.1074469 1.0003697 0.43586652 

I 1 -1.43586652 0.93586652 -0.38459993 

1 -1.60795889 1.17209237 -0.58604618 , 
1 -1.54368307 1.17158037 -0.60499004 

1 1 0.83581914 1.29513953 0.34910292 

qT = 1 -1.48006158 0.98671622 -0.42579436 ] . 
This method corresponds to  the DIhlSIM of type 2 of order p = 3 with 
c = [-1,0. 1IT given in Section 3.5. 

3.14 REGULARITY PROPERTIES OF DlMSlMS 

In this section we investigate if the GLM (3.1.1) with coefficients defined by 
(3.1.2) has the same set of finite asymptotic values as the underlying differen- 
tial system (2.1.1). We follow the investigation of this question by Jackiewicz 
et al. [I881 

Setting z [ ~ - ’ ]  := cg=l ujg?-”, the GLM (3.1.1) can be written in the 
form 

S r 

n = 0.1. . . . , N .  This formulation reflects the fact that  to  compute the exter- 
nal stages y r l ,  i = 1 , 2 ,  . . . , T ,  the linear combination z [ ~ - ’ ]  of yp-’] needs to  
be propagated from the current step. tn-l, to  the next step, t,. 
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Following Hairer et al. [141] and Iserles [171]. we denote by F the set of 
all possible bounded asymptotic values of (2.1.1), that  is. 

3 = {y  E IWm : f ( y )  = o}; 

F = { (y, . * . , y) E Ed"+')" : y E F} 
- and define 

Then we consider the system 

S r 

c=hCaijf(5)+Cuijcj, i = 1 , 2  , . " ,  s ,  

gi = hC b i j f ( 5 )  + 2, 
S (3.14.2) 

j=1 j=1 

i = 1 , 2 , .  . . ; T ;  

j=1 

with 2 = 
n to infinity and setting 

v jc j ,  which is obtained formally from (3.14.1) by passing with 

assuming that these limits exist. Also define the sets 

and 

h h 

?h = { ( e l , .  . . , c T T . y 1 , . .  . ,Ps) : (e l , .  . . , c r , y 1 , .  . . ,ps) satisfy (3.14.2)). 

It will be demonstrated that 3 C 3 h  and ? C ?h for any h > 0, but in 
general, sets 3 h  - 3 and ?h - ? may be nonempty. GLM (3.14.1) is said to 
be regular if and only if Fh = F and strongly regular if and only if F h  = F 
for any h > 0. 

In the case of DIMSIhls. the motivation behind these definitions is as fol- 
lows. If y(t) -+ y* as t + m, then. necessarily, y* E F. and if y is sufficiently 
smooth, we also have y ( ' ) ( t )  + 0 as t -+ o for z = 1 . 2 , .  , . , p .  Assume now 
that ypl + cz, z = 1 , 2 , .  . . , T .  and Y,'"] + Y,, z = 1 . 2 , .  . . .s. as n + cc. Since 

yInl approximates CE=, qz&ky(k) ( t , ) ,  Y,'"' approximates y ( t n - l  + c,h). and 
qZo = 1 (this follows from U = I),  it would be desirable if all these limits would 
equal y*, which is the limit of the solution y ( t )  to  (2.1.1) as t + o. This is 
obviously the case if ?h = ?. Moreover, since for DIMSIMs we have vTe = 1, 
it follows that if y!"] + y*, then z["] + y* as n + 03, which motivates the 
weaker requirement that  3 h  = 3. 

- - 

h 
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Setting r = 1, we have U = el B = bT. V = v = 1, and (3.14.1) reduces to  
the RK method (2 .13) .  Since z [ ~ - ~ I  = yF-l1 = yn-l. regularity now means 
that the system 

s 
A h 

y. z - - y + h c a i j f ( % ) ,  2 = 1,2,  . . . , s, 
j = 1  

S 

Cbjf(5) = 0 

(3.14.3) 

j=1 

has only solutions (el P I , .  . . , Ps) such that f(c) = 0. Consequently, the RK 
method (2.1.3) is regular in the sense introduced in [141], [171], and the defi- 
nition of regularity of DIMSIMs is a generalization of the concept of regularity 
for RK methods. Strong regularity means instead that the system (3.14.3) 
has only the solution of the form (c, . . . c) E R(S+l)n such that f(F) = 0, 
which is a stronger requirement than regularity as introduced by Hairer et 
al. [141] and Iserles [171]. However, it was proved by Jackiewicz et al. [187] 
that these two concepts are equivalent for a class of essentially one stage RK 
methods with s = 2. 

To investigate regularity properties of DIMSIMs, we use vector formulation 
(3.1.1) which will be rewritten in the form 

K[nI = f (h(A @ I)KInI + (U @ I)Y[~- ']) ,  

gin] = h(B @ I)KInI + ( V  8 I)y["', 
(3.14.4) 

n = 1 , 2 ,  . . . , N .  This is analogous to the Ic-notation for RK schemes (see [log]). 
Consider also the system 

i? = f (h(A 8 I)i? + (U @ I ) c ) ,  
(3.14.5) 

~ = ~ ( B E I ) ~ ? + ( v @ I ) ~ ?  

which corresponds to  system (3.14.2) in Ic-notation with F = [y^l1. . . cTIT. Let 
J (y* )  = (a f /ay) (y*)  be the Jacobian matrix of f ( y )  and define the map 

F ( 2 )  := h(B @ I)i? + (V @ I)Q, 

where i? is defined implicitly by (3.14.5). Denote by a(A)  the spectrum of 
matrix A and by A the region of absolute stability of method (3.14.4) (compare 
Definition 2.6.2). Denote by 2 the closure of A. We have the following result, 
which is an analog of Theorem 3 in [171]. 

Theorem 3.14.1 (Jackiewicz at al. [188]) For  any step size h > 0 we 
have 3 C Fh and ? C ?h. Moreover, y* is attractive as an  asymptotic value 
of F ( [ y * ,  . . . y*IT) if a (hJ (y*) )  c A and only if a (hJ (y*) )  C 3. 
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Proof: The inclusions 3 c 3 h  and F c F h  follow from the fact that  
since Ue = e and Ve = e. system (3.14.5) obviously has the solution G = 

[y*, . . . . y*]' and K = [0, . . . , 0IT if f (y*)  = 0 and that 2 = (v' @ 1)Q = y*. 
To investigate if y* E 3 is attractive, we first establish the relation- 

ship between the spectrum of J = J (y* )  and the spectrum of dF/dG = 
(dF/dG)(y*. . . . . y*). Let d k / d g  = (dk /dG) (y * ,  . . . , y*). It can be verified 
that 

h 

aE ai? d F  -- - h ( A @ J ) - + U @ J ,  - (32 
aG 8G @? 8G 

= h(B @ 1)- + V @ I. 

Computing d k / d c  from the first of the equations above and substituting the 
result into the second equation, we obtain 

- = h(B @ I)(I - h(A @ J))- '(U @ J) + V @ I. 
d F  

8G 

where I stand for the identity matrices of appropriate dimensions. Assume 
that J x  = Ax. We will show that for any z E Rm. 

(3.14.6) 
d F  
- ( z  €3 X) = (M(hA) €3 I)(z @ x). aG 

where M(z) = V + zB(1 - zA)-lU is the stability matrix of the method 
(3.14.4). We have 

d F  
- ( z  @x) = hA(B @I)(I-  h(A@ J))-'(Uz B e )  +Vz  Be.  

It can be verified that 

(I - h(A €3 J))-'(Uz €3 x) = (I - hAA)-'Uz @ x. 

Hence, 

which proves (3.14.6). Assume now that M(hX)z = pz. Then 

d F  
- ( z  €3 x) = p(z €3 x) 
8G 
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and assuming that the eigenvalues of J are distinct and that the eigenvalues 
of M(hX) ,  X E a(J), are distinct, it follows that 

Using the perturbation arguments, it follows that these sets are also equal 
without the foregoing assumptions on the eigenvalues of J and M(hX). The 
theorem follows from this relation between the spectra of d F / d q  and J and 
the definition of the region of absolute stability A. 

The next result provides the conditions for strong regularity of the method 
(3.14.4). We have the following theorem. 

Theorem 3.14.2 (Jackiewicz et al. [ISS]) Assume that p 2 1, q 2 1, 
and that 

(A + UB)x = Ee, < E R. (3.14.7) 

for any x E S ,  where S = {x : vTBx = 0). Then method (3.14.4) zs strongly 
regular. 

Proof: Observe first that  it follows from the definition of the tensor product 
that (3.14.7) is equivalent to  

((A + UB) 8 1)z = e @ q. 77 E EX". 

for any z such that (vTB 8 1). = 0. Multiplying the second equation of 
(3.14.5) by vT @ I, it follows that 

(vT @ I)(B @ I)k = (vTB @ I)k = 0, 

and setting fl = (vT @ I)y  ̂E R". we obtain 

c = h ( B @ I ) i ? + e @ f l .  

Substituting this relation into the first equation of (3.14.5), we get 

k = f (h ( (A  + UB) 8 I)k + e 8 8). 

It follows from condition (3.14.7) that  i? has the form i? = e @ p for some 
p E R". Denote by kt,j the j t h  component of the vector kt E Rm and 
set K.,j = [Kl,,, . . . lks,J]T E Rs. Then K , J  = pJe. where pJ is the j t h  
component of the vector p. Since for DILISIM (3.14.4) we have q o  = e, 
V = evT, vTe = 1. it follows from the consistency condition Be + Vql = 

q o  + ql that vTBe = 1. Hence, 

h h h 

h pj = pjv T Be = vTBK,, = 0. 
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h h 

This implies that g , J  = 0. K = 0, Y = y ^ =  e@8,  and f(Q) = 0. which proves 
the strong regularity of (3.14.4). 

Set Q = A + UB and denote by r k ( Q )  the kth row of Q. Then it is 
easy to check that condition (3.14.7) is equivalent to the requirement that 
r k ( Q )  - rl(Q) is proportional to  vector v T B  for any pair of indices k and 1 
such that k # 1.  In what follows we show that the necessary condition for 
both regularity and strong regularity of (3.14.4) is the existence of two distinct 
indices k and l such that r k ( Q )  - rl(Q) is proportional to vTB. 

Consider the system 

h ( ~  B qk + (U g I)Q = 8. 
(3.14.8) 

((I - V) @ I)y^-- h(B @ 1)g = 0, 

where 

A h  

and y î, E, and gi are vectors from R". The solution (Q, Y ,  K )  to (3.14.8) is 
said to  be admissible if gi = gj whenever % = g .  We have bhe following 
result. 

Lemma 3.14.3 (Jackiewicz et  al. [188]) Method (3.14.4) is regular if and 
only if for every m 2 1 and h > 0 every admissible solution to (3.14.8) admits 
an  index v such that K ,  = 0 and Y, = 2, where 2 = xi=l ujy^j. 

Proof: The sufficiency is obvious. The necessity follows from the f2ct that-we 
can construct a continuous function f ( z )  such that f (2) # 0 and Ki = f ( y Z ) !  

h h 

i = 1 , 2 , .  . . ! s, whenever the assumptions of the lemma do not hold. w 

The next lemma provides a characterization of strong regularity. The 
straightforward proof of this result is omitted. 

Lemma 3.14.4 (Jackiewicz et al. [188]) Method (3.14.4) is strongly reg- 
ular af and only if for every m > 1 and h > 0 ,  system (3.14.8) has an  admis- 
sible solution only i j %  = 6 for all i ,  j = 1 , 2 , .  . . , s, and for all such solutions 
we have Qi = Qj) i , j  = 1 3 2 , .  . . , r ,  and Ki = 0 ,  i = 1 , 2  , . . . ,  s. 

For the remaining part of this section we consider only the scalar case 
m = 1 to simplify the presentation of the results about regularity and strong 
regularity of DIMSIMs. These results can easily be generalized to  the vector 
case m > 1 by using the tensor product notation. 

We introduce first the generalization to DIMSIMs of the concept of es- 
sentially one stage (EOS) RK methods which was introduced by Hairer et 
al. [141]. A DIMSIM (3.14.4) is said to  be EOS if there exists an index 
v E { 1 , 2 , .  . . s} such that 

h 

r,(U)B = vTB = e:, r,(A) = cue:, 
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for some c, E R. It is easy to  verify that whenever ru(U)y[o] = vTy[OI, for an 
EOS method the quantity zIn] is propagated by using one stage according to  
the formulas 

whereas the other stages are nonessential. For technical reasons we must 
also consider a wider class of methods for which there exists an index u E 
{ 1, 2 , .  . . , s} such that 

T T v B = e , .  T,(U)B + r , (A)  = rue:, 

for some y, E R. Observe that as n + cc. such DIMSIMs have an EOS 
structure, and for this reason they will be called asymptotically essentially 
one stage (AEOS) methods. Clearly, the EOS method is also AEOS. We have 
the following lemma. 

Lemma 3.14.5 (Jackiewicz et al. [188]) An AEOS method zs regular. 

Proof: Since method (3.14.4) is AEOS, multiplying the second equation of 
(3.14.8) by r,(U) and then by vT, we get ru(U)c = hr,(U)Bk + 2. where 
2 =  vTc. and k = 0. Substituting this into the first equation of (3.14.8). we 
obtain 

p, = h(r,(A) + r ,(U)B)k + 2 =  2, 

and the conclusion follows from Lemma 3.14.3. H 

AEOS methods are clearly exceptional and not very interesting. The next 
theorem gives a necessary condition for the regularity of DIMSINIS that are 
not AEOS. 

Theorem 3.14.6 (Jackiewicz et al. [lSS]) Assume that method (3.14.4) 
zs not AEOS and regular. Then there exzsts dzstznct k and 1 ,  1 5 k ,  1 5 s,  
such that rk(Q) - rl(Q) zs proportzonal to vTB, where Q = A + UB, and 
rk(&) stands for the kth row of Q .  

Proof: The proof of this theorem is based on the ideas of the proof of 
Theorem 3 in Hairer et al. [141]. Assume first that  BTv # ek for all k = 
1 . 2 . .  . . ,s. Then there exists a set H = {[ E R" : c r ( l ) [ l  > 0, 1 = 1 , 2 , .  . . .s }  
with a(1) = zt1 such that H *  = H n (BTv)' # 0. Here. (BTv)I  is the 
orthogonal complement of BTv in EX". We will prove that 

hQH* c U {Y  E Rs : = q} ,  (3.14.9) 
z f 3  

where QH* = {QE : E E H * } .  Assume to the contrary that (3.14.9) is 
false. Then there exists K E H* such that Y = hQK has pairwise distinct 
components. Since K E (BTv) l ,  it follows that y = hBK is a solution to  
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(I - V ) y  = hBK. Hence, Y = hAK + U y  = hQK and we can conclude that 
Y,  # % for all distinct i and j .  Thus, ( y ,  Y. K )  is an admissible solution to 
(3.14.8). Moreover. since K E H * ,  it follows from Lemma 3.14.3 that method 
(3.14.4) is not regular, contradicting our assumption and thus proving (3.14.9). 

Since (3.14.9) is valid. it follows from the convexity of QH* that  there exist 
distinct k and 1 such that hQH* c {Y E R" : Yk = x}. Similarly as in Hairer 
et al. [141], this implies that rk(Q) - rl(Q) is proportional to  v T B .  

Assume next that BTv  = el.  Since the method (3.14.4) is not AEOS, it 
follows that q ( Q )  # ye1 and H1 = {< E R" : [I = 0,  n(Q)[ > 0 }  # 0. 
Moreover. we can find a set HZ = {[ E R" : [ I  = 0,  (-l)"(')'Et > 0, i = 
2.3. .  . . , s} with a( i )  = kl  such that H = HI n H2 # 0. Similarly as before. 
we can prove that 

hQH c u {Y 6 R" : Y,  = Y , } .  (3.14.10) 
i#j 

Indeed, assuming that (3.14.10) is false, there exists K E H such that Y = 
hQK has pairwise distinct components. Since K E ef (i.e.. K1 = O ) ,  it 
follows that y = hBK is a solution to  the system (I - V ) y  = hBK. Hence, 
Y = hAK + U y  = hQK and it follows that ( y ,  Y, K )  is an admissible solution 
to (3.14.8), which contradicts the regularity of (3.14.4) since 

T K1 = 0,  Y1 = hrl(Q)K > 0, v y = hvTBK = 0,  

and K ,  # 0, v = 2 , 3 , .  . . , s. 
This establishes (3.14.10); and the rest of the proof is the same as in the 

case of B T v  not being a coordinate vector. 

This theorem gives, in particular, the necessary condition for strong regu- 
larity of DIMSIMs (3.14.4). We formulate this as the following corollary. 

Corollary 3.14.7 (Jackiewicz et al. [ISS]) A s s u m e  that method (3.14.4) 
is strongly regular. T h e n  there exist distinct Ic and 1 ,  1 I k , l  I s, such that 
rk(Q) - Q ( Q )  is proportional t o  v T B .  

It is also possible to  prove this result in a much simpler way than the proof 
of Theorem 3.14.6. This direct proof is given by Jackiewicz et al. [188]. 

The next theorem illustrates that  it is possible to reduce the question of 
regularity or strong regularity of the original method (3.14.4) with s internal 
stages and r external stages to the question of regularity or strong regularity 
of the folded method with s - 1 internal stages and T - 1 external stages. 
Following Hairer et al. [141], the coefficient matrices of the folded method are 
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defined by 

(3.14.11) 

where I stands for the identity matrix of dimension s - 1. We have the 
following theorem. 

Theorem 3.14.8 (Jackiewicz et al. [188]) Assume that r k (Q)  - r l (Q)  = 
<vTB for some [ E R and distinct k and 1 ,  1 5 k ,  1 5 s. After reordering the 
coeficient matrices so that k + 1 and 1 + s ,  we have that method (3.14.4) is 
regular or strongly regular i f  and only if folded method (3.i4.11) is regular or 
strongly regular. 

Proof: We can assume, without loss of generality, that k =, 1 and 1 = s.  
Consider system (3.14.8), whose solution is given by 9 = hBK + Xe, X E R, 
where k satisfies the system 

vTBk  = 0, 

h Q k  = ? - Xe. 

Consider also the system corresponding to folded method (3.14.11) 

hA*K* + U*y* = Y * ,  

(I - V * ) y *  - hB'K* = 0. 

(3.14.12) 

(3.14.13) 

Using the same arguments as in the case of the original method (3.14.4), the 
solution to (3.14.13) is y* = hB*K*+X*e, for some A* E R, where K* satisfies 
the system 

vTB*K* = 0, 

hQ*K* = Y* - X*e, 

with 

= [ I  O ] ( A + U B )  [::I 
+ [ I  O ] U B  

(3.14.14) 
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Since r I ( Q ) - r , ( Q )  = [vTB it follows that system (3.14.12) can have solutions 
only if YI = Y,. Setting K1 = K,, K," = K,. i = 1 , 2 , .  . . , s - 1, and y,* = K q  
i = 1 , 2 , .  . . , s - 1, it is easy to  see that system (3.14.12) is equivalent to  
(3.14.14). Thus. Lemmas 3.14.3 and 3.14.4 imply that the original method 
(3.14.4) is regular or strongly regular if and only if folded method (3.14.11) is 

Theorems 3.14.2 and 3.14.6 provide a complete characterization of regular 
and strongly regular DIhISIMs (3.14.4) with two stages. We formulate this as 
the following corollary. 

Corollary 3.14.9 (Jackiewicz et al. [lSS]) Method (3.14.4) wzth s = 2 
p 2 1 and q 2 1, whzch as not AEOS, zs regular af and only zf 

h h  h h h h 

regular or strongly regular, and the proof is complete. rn 

n(Q) - r2(Q) = [vrB (3.14.15) 

for some < E R. Condztaon (3.14.15) zs also suficzent and necessary for strong 
regularaty of such methods. 

Corollary 3.14.9 was used by Jackiewicz et al. [188] to  describe DIMSIMs 
(3.14.4) of type 1, 2, 3, and 4 with s = r = q = 2 and p 2 2, and we refer 
readers to  that paper for details. 



CHAPTER 4 

IMPLEMENTATION OF DIMSIMS 

4.1 VARIABLE STEP SIZE FORMULATION OF DIMSIMS 

In this chapter we discuss various practical issues related to the implementa- 
tion of DIMSIMs, such as variable step size formulation, the choice of initial 
step size and initial order of integration, error propagation and estimation of 
the principal part of the local discretization errors for small and large step 
sizes, construction of continuous interpolants, step size and order changing 
strategies using the Nordsieck representation derived in Section 3.11, updat- 
ing vectors of external approximations, step-control stability, and the solution 
of nonlinear systems of equations resulting in implicit formulas by some vari- 
ants of Newton method. We also describe the codes for nonstiff and stiff 
differential systems, which are based on DIMSIMs of types 1 and 2 ,  respec- 
tively, constructed in Chapter 3. We conclude the chapter with the results of 
numerical experiments with these codes and comparison with codes from the 
Matlab ODE suite [263]. 

On a nonuniform grid 

t o  < tl < ‘ ’ ’  < t N :  t N  2 T ,  

General Linear Methods for Ordinary Differential Equations. By Zdzislaw Jackiewicz 
Copyright 0 2009 John Wiley & Sons, Inc. 
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the Nordsieck representation of DIMSIMs (3.11.8) takes the form 

Y["I = h,(A 8 I)F(YlnI) + (P 8 I)$"-'], 

z["] = h,(G @ I)F(Y["I) + (Q @I)$"-'], 

n = 1 , 2 , .  . . , N ,  where h, = t, -t,-l, and dn-l] is an approximation of order 
p to  the vector 

(4.1.1) 

(4.1.2) 

where 6, = h,/h,-l, the vector 2["-1] appearing in (4.1.1) is defined by the 
formula 

-n z [  -11 = ( D (6,) c3 I)z[n--l], (4.1.3) 

where D(6) is the rescaling matrix given by 

D(6) = diag(l ,6: .  . . , S P ) .  (4.1.4) 

It follows from (4.1.1) and (4.1.3) that  the zero-stability properties of method 
(4.1.1) are determined by the eigenvalues of the matrix QD(6,) c3 I. Since 
the matrix QD(6,) has a simple eigenvalue equal to  1 and eigenvalue zero 
of multiplicity p for any step size ratio 6,, it follows that the method (4.1.1) 
is zero-stable for any variable step size pattern. This is in contrast to  the 
strategy proposed before by Butcher and Jackiewicz [67] for DIMSIMs of the 
form (3.1,1), where the desirable zero-stability properties were enforced by a 
suitable choice of some free parameters associated with a matrix that affects 
the computation of some rescaled quantities corresponding to the input vector 

Substituting (4.1.3) with D(6,) defined by (4.1.4) into (4.1.1), we obtain 
$-lI. 

the following representation of DIMSIMs: 

Y["] = h,(A 8 I)F(Y["]) + (PD(6,) @ I)z["-'], 
f4.1.5) 
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n = 1 . 2  , ' " ,  N .  
Butcher et al. [57] and Butcher and Jackiewicz [67] (see also Section 2.5) 

defined the local discretization error r(t,) of method (4.1.5) at  the grid point 
t, by 

r(t,) = Z(t,, h,) - L ( G  8 I)F(P'["') - (QD(6,) @ I ) Z ( L - l ,  L), 

where 
PIn] = h,(A @ I)F(P["I) + (PD(6,) @ I)Z(t,-i. h,), 

and z(t,, h,) and z( tn- l r  h,) are Nordsieck vectors defined by (3.11.1). It 
was demonstrated [57, 671 that r(t,) is given by 

r(t,) = 6g+%;?l,(cpp @ I)Y(p+l)(t,-l) + o(h;++"), 

where 

and a =  ~ 1 1 . . .  - l I T .  [ ( p +  l)! p! 2! 
GcP 

p p = a - -  
P !  

Here cp = [g . .  . . , ~ $ 1 ~ .  Since (QD(6,)81)~[~- ' ]  propagates to the next step, 
we have tried to estimate and control the quantity 

6E+1 hp,+_l, qT cppy(p+l) (tn- 1). 

where qT stands for the first row of Q. This quantity was estimated [57] by 

where the vectors ,!?(S,) and y(6,) were computed from a system of equations 
resulting from expanding both sides of the relation above into a Taylor series 
around the point t,-1 and comparing the coefficients of corresponding powers 
of h,-l up to the order p +  1. In [58, 671 r(t,) was estimated by formula that 
is more convenient in a variable order setting, 

,jg+lhP+l ,- ,q T cppY(p+l) (tn-1) 

= S,h,-l(P*(G,) @ I)F(Y[,]) + (rT(6,) @ I)z["-ll + O(hK+2), 

where P(6,) and y(6,) again satisfy the appropriate system of equations. It 
was demonstrated [57, 58, 671 that these formulas are quite accurate and 
reliable if the step size ratio 6, is not too large. However, for large values of 
6,, the accuracy of these formulas deteriorates significantly (see the graphs 
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in [57, 58, 671). In the next section we describe an approach, first proposed 
by Butcher and Jackiewicz [69], which is very accurate and very reliable for 
any step size pattern. This approach is based on isolating and controlling the 
error of the first component zP1 only of the vector of external approximations 

4.2 LOCAL ERROR ESTIMATION 

As in Section 3.12, denote by gT and qT the first rows of the coefficient 
matrices G and Q ,  respectively. Then 

zp-l' = hn-l(gT @ I )F(Y[" - ' ] )  + (qTD(6,-1) @ I)z["-'] 

and 

(el 8 1)z?-l1 = hn-l(elgT @ I )F(Y[" - ' ] )  + ( Q D ( ~ , - ~ )  8 ~ ) z p - ' ]  

since Q = elqT. Computing (&D(dn-1) 8 I)Z["-~] from this relation and 
substituting it into z [ ~ - ' ] .  we obtain 

Z!n-ll = h,-l((G - e l g T )  8 I ) F ( Y [ n - l ] )  + (el @ I ) zP- ' ] .  (4.2.1) 

We also have 

z?] = hn(gT @ I ) F ( Y [ " ] )  + (q*D(d,) 8 I)z["-l]. 

Substituting into this relation the formula for z [ ~ - ' ]  obtained above and taking 
into account that qTD(6,)e1 = 1 yields 

$1 - - hn(gT 8 I ) F ( Y [ n l )  

(4.2.2) 
+ hn-l (qTD(6,)(G - e l g T )  8 I )F(Y!"- ' I )  + z P - ~ ] .  

We define a local discretization error le(t,) of the first component of zln] as 
the residual obtained by replacing in (4.2.2) zp l  by y( tn) ,  z r - ' ]  by y( tn- l ) .  
F(YIn])  by g'( tn- l  f ch , )  and F(Y[" - l ] )  by y'(t,-l+ (c -e)hn- l ) .  This leads 
to 

le(t7L) = y( tn)  - ! / ( in-1)  - hn(gT @ I ) F ( Y [ " ] )  
(4.2.3) 

+ h,-l (qTD(Sn) (G  - e l g T )  8 I )F(Yln- ' ] ) .  

We have the following theorem. 

Theorem 4.2.1 (Butcher  and Jackiewicz [69]) Assume that the function 
f appearing in (21.1) is suficiently smooth. Then the local discretization er- 
ror le(t,) of method (4 .1 .5)  takes the form 

le(t,) = 6(6,)hp,+ly(p+')(tn-l) + o(~P,+')). (4.2.4) 
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where the error constant f l P ( 6 )  is  given by 

___ 1 ( 1 - ( p + l ) g T c p - - q  P + l  T D ( 6 ) ( G - e l g T ) ( c - e ) P ) .  (4.2.5) 
= ( p  + I ) !  6 P + l  

Proof: Expanding y ( t n ) ,  y'(t,-1 + ch,), and y ' ( tn- l  + (c  - e)hn-l)  into a 
Taylor series around tn-l, we obtain 

k P+l 
le(t,) = ( 1  - kgTc"' - - q T D ( 6 , ) ( G  - e l g T ) ( c  - e)lC-' 

k=l 6k 

x y ( k ) ( t n - l ) -  hk + O(hP,+2). 
k !  

Since method (4.2.5) has order p and stage order q = p ,  the terms corre- 
sponding to k = 1 , 2 , .  . . , p  are equal to zero and we obtain formula (4.2.4) 
with error constant d p ( S n )  given by (4 .2 .5) .  This completes the proof. rn 

Observe that the error constant f lP(bn)  and, as a result, the principal part 
of the local discretization error le(t,) depend on the ratio of step sizes 6,. 
This is in contrast to  the quantity hp,+'qT~,y(P+')(t,-1), whose estimates 
were used in [57,  58, 671 to  control the step size of the underlying numerical 
methods. This makes possible the reliable estimation of le(t,) for any step 
size pattern. 

The scaled derivative hK+ly(P+')(t,-l) appearing in le(t,) given by (4.2.4) 
can be estimated by formulas that depend on F ( Y [ " ] )  and F(Y["- l l )  or 
F(Y'"1) and z [ ~ - ' ] ,  respectively. As noted in Section 4.1. an estimate that 
depends on F ( Y [ " ] )  and z [ ~ - ~ I  is more convenient in a variable order setting. 
This estimate of hP,+'y(P+') ( tn-l)  is given in the following result. 

Theorem 4.2.2 (Butcher a n d  J a c k i e w i c z  [69]) A s s u m e  that  the functzon 
f appearang zn (2.1.1) zs suficaently smooth. T h e n  

(4.2.6) 

where 
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Here vector a i s  defined in Sect ion 4.1, t he  rescaling m a t r i x  D(6,) i s  defined 
by (4.1.4), and matrices  C,, K,, E, and 

P r o o f :  
a function v( t )  such that 

are defined in Sect ion 3.12. 

Since method (4.1.5) has order p and stage order q = p ,  there exists 

Y[,] = y(t,-1+ ch,) + v(t,-1 + ch,)hP, + O(hL+l) 

h,F(Y["I) = h,Y/(t,_l + ch,) + -(y(t,-1 + ch,))v(t,-1 + Ch,)hK+l 

as h, + 0 (compare [57, Theorem lo]).  Hence, 

8.f 
8 Y  

+ O(hp,+2). 

Expanding y'(t,-1 +ch,) into a Taylor series around the point tn-l, we obtain 

~ , F ( Y [ ~ ] )  = h, (e 8 y'(t,-I)) + hk (c 8 y/'(t,-l)) + * * * 

This relation can be written in a more compact form as 

Substituting the relations above for hnF(YinI), 2(tn-1, hn), and z [~ - ' ]  into 
(4.2.6) and taking into account that 

g(P+l) (tn-1) = y(P+l)(tn-z) + O(hn-l), 
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and 

we obtain 

Comparing the corresponding terms in the relation above we obtain the fol- 
lowing system of equations: 

It is easy to verify that yl(6,) = 0. Since Q with the first row omitted is 
equal to the zero matrix and 

yT(Sn)G = T T ( & ) G ,  

the system above is equivalent to (4.2.7). This completes the proof. 

It follows from Theorem 3.12.3 that the matrix depends only on the 
abscissa vector c .  As a result, vectors P(6 )  and y(6) also depend only on 
vector c .  

For explicit and implicit formulas of order p = 1 listed in Examples 1 
and 2 in Section 3.13, the error constants are Sl(6) = and &(6) = - 5 ,  
respectively (independent of 6). Solving the first two equations of system 
(4.2.7), we obtain 

1 

T 
P(6)  = 6, $6) = [ 0 4 ] 

for the explicit method, and 



208 IMPLEMENTATION OF DIMSIMS 

for the implicit method. For both methods the third equation of (4.2.7) now 
takes the form 

6'(1 - 6) = 0 

and is satisfied only for 6 = 1 (i.e., if the step size of integration is kept 
constant). However, in practice, these methods are only used to start or 
restart the variable order codes where 6 is usually close to 1, and as a result, 
this does not have a large impact on the reliability of error estimation. 

For the explicit and implicit methods listed in Examples 3 and 4 in Sec- 
tion 3.13, the error constants are 

9 + 76 - 6fi(1+ 6) 
246 

and &(6) = 
3+6 

6'(6) = - 
246 

1 

respectively. For both methods, c = [0, 1IT: and solving the system (4.2.7) we 
obtain 

For the explicit and implicit methods listed in Examples 5 and 6 in Sec- 
tion 3.13, the error constants are 

d2 + 36 + 2 0.1227866' - 0.4257946 + 0.328905 
62 '3(6) = 14462 , d3(4 = 

respectively. Solving system (4.2.7) with c = [0, i l  1IT, we obtain 

24d4 + 73(76' + 96 + 2) 
363(1 + 6) 

' 

4(12d4 + y3(26' + 36 + 1)) 
3d3(1 + 6) 

3d3(1 + 6) 

- 

24d4 + y3(6' + 36 + 2) 

0 

0 

73 

- 1 2 ~ ~  + y3(s2 - 1) 
6(1+ 6) 

for the explicit method, where 73 is a free parameter that may depend on 6. 
Similarly, solving (4.2.7) with c = [-ll 0, 1IT leads to 

1 6S4 + y3(6' + 36 + 2) 
6S3 

1 664 + y3(6' - 36 + 2) 
663 

I 0 

0 

Y3 I 
6S4 + 73(J2 + 2) - 

6 
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for the implicit method. 

estimators that depend on free parameters 73, . . . , ~ j , .  The choice 
In general, for p > 2 the solution to  system (4.2.7) leads to  a family of error 

y 3 = " '  = y p = o  

leads to the estimate of h:+'y(p+')(t,-l) described in the following result. 

Theorem 4.2.3 Assume that p > 2 and 7 3  = . . ' = -yp = 0.  Then 

[.I where z ~ + ~  is subvector number p + 1 of vector ~ 1 ~ 1 .  

proof: 
of h:+'y(P+')(t,-l) takes the form 

It follows from the assumption 7 3  = . . . = "iP = 0 that the estimate 

P 

hp,+lY(P+l) (in-1) = h, CP&Jn) f (p) + 7P+1(6n)Z~;11 + o(hp,+2). 
i=l 

Since ~2;" = O(hP,), the same must be true for the term 

P 

i= I 

and, accordingly. the only choice for this is a scalar multiple of the Same 
expression as that used as the value of zzl. Hence, the approximation to 

h:+'y(P+l)(tn-l) that we need to  use has the form 0~2~ - ~'22;'I for Some 
constants o and a'. Because 

[,I - P 1,-11 + O(hk+l),  
ZP+l - d n Z p + l  

a' must be chosen as @a. To find the correct choice for a,  we note that for 
p > 2 we have 

h:+' 
= hP,y(P)(t,-l) + -y(p+l) 2 

ZP+l - hp,-ly(qtn-l)  - *y(p+l) 2 

(tn-1) + 0(hp,f2) 

and similarly, that 

In-11 - 
hP+ 

(tn-1) + O(h",+_:). 

hp,+ly(p+1)(tn-1) + O(hp,+", 

Hence, 
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and it follows that CY should be chosen as 26,/( 
proof. 

It follows from Theorems 4.2.1 and 4.2.2 that 
le(tn) can be estimated by the formula 

+ d n ) .  This completes the 
H 

he local discretization error 

est(tn) =8p(dn)(hn(pT(dn) @ I ) F ( Y [ ~ I )  + (YT(6n)  811)Z[n - l ]  ),  (4.2.9) 

where the error constant dp(dn)  is given by (4.2.5) and the vectors P(&)  and 
y(dn) are defined by (4.2.7). It follows from Theorem 4.2.3 that for p > 2 the 
estimate corresponding to 73 = . . . = "iP is given by 

(4.2.10) 

Figure 4.2.1 
given in Example 5 in Section 3.13 

Ratios le(&)/est(b,) versus t for the type 1 method of order p = 3 

To illustrate the quality of these estimators we use the standard test prob- 
lem 

y'(t) = A(y - e p ' )  + pep', t E [to, TI, 
(4.2.11) 

Y( t0 )  = Yo, 

A, p E R, which was used elsewhere [57, 69, 70, 71, 731. We test these estimates 
under quite demanding conditions, where the step size pattern changes rapidly 
according to  the formula 

( - l ) n  sin(4.rrn/(T-to))h 
hn+l = P n ,  

n = 0 , 1 , .  . . , N - 1, with ho = (T - to) /N.  t o  = 0, T = 20, yo = 1, N = 1000, 
and p = 2 or p = 4. This step size pattern is more demanding than that 
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Figure 4.2.2 
given in Example 6 in Section 3.13 

Ratios le(b,)/est(b,) versus t for the type 2 method of order p = 3 

usually encountered in real codes, and we believe that satisfactory behavior 
of error estimators in such extreme conditions should be a good indicator of 
the quality of these estimators. 

We have plotted in Figures 4.2.1 and 4.2.2 the ratios 

for the type 1 and 2 methods of order p = 3 given in Examples 5 and 6 in 
Section 3.13 for X = -0.1 and p = 0.1. These figures indicate that the error 
estimators are quite accurate and reliable under very demanding conditions 
imposed on the step size pattern. The error estimate stays within less than 
1% of true local discretization error for the explicit method and with a few 
exceptions within less than 2% of the true local discretization error for the 
implicit method. The quality of error estimators for implicit methods for stiff 
systems of differential equations can be improved further by the technique of 
filtering error estimators. This is discussed in the next section. 

4.3 LOCAL ERROR ESTIMATION FOR LARGE STEP SIZES 

In this section we follow Jackiewicz [177] to derive error estimates for implicit 
methods suitable for the numerical solution of stiff differential systems. As in 
the case of explicit methods for nonstiff differential equations, it is necessary 
that these estimates be asymptotically correct as h, + 0. However, this is 
not sufficient in the stiff case, where as pointed out by Shampine and Baca 
[258]. one must work with step sizes that are large compared to certain char- 
acteristics of the problem. To assess the quality of error estimators for large 
h, they proposed. as in the classical theory of absolute stability, considering a 
restricted class of problems of the form y’ = J y .  where J is a constant matrix 
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that can be diagonalized by a similarity transformation. Then it is sufficient 
to consider the scalar problem 

(4.3.1) 

J E @, where J is the eigenvalue of J and C stands for the set of complex 
numbers. In this section we adopt this approach to the case of error estimation 
for type 2 DIMSIMs. 

The local discretization error le(t,) of method (4.1.5) is defined by (4.2.3). 
Replacing y(tn) and y(t,-1) in this formula by eEtn and eEtn-l, where y(t) = 
eEt is the solution to (4.3.1), and taking into account that 

y ln l  = eE(tn-l+chn) + ~ ( h ~ + l  
n )  

and 
y[,-11 = eE(tn-i+(c-e)hn-l) + O(hE+l), 

we obtain 

Here z = &-I[, 

tuting (4.2.1) into (4.2.9), we obtain 
We now develop a similar expression for the error estimate est(t,). Substi- 

est(tn) = 6,(6,) h,(PT(Sn) @ I ) F ( Y [ , ] )  ( 
+ (rT(6,) BI)(L-~((G - elgT) B I ) F ( Y [ ~ - ~ ~ )  + (el B I ) ~  

Assume that $'I = ectn- l .  Proceeding as earlier; we obtain 
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where we have taken into account that yT(6,)el = 0. To investigate the be- 
havior of error estimates for large z = h,-l<, we define the functions Rle(z, 6) 
and Rest ( z  , 6) by the formulas 

Rle(z, 6) := e*’ - 1 - 6zgTeCGz - zqTD(6)(G - e lgT)e (c -e )Z  

and 

Rest(z, 6) := d p ( 6 ) ( z 6 ~ * ( 6 ) e c S ”  + zyT(6)(G - eIg)e(c-e)”  1, 
corresponding to le(t,) and est(t,). To assess the quality of est(t,) for large 
step sizes, we examine the ratio 

(4.3.2) 

If 
r ( z ,  6) - const z p  

for Re(z) < 0 as Izi + cc with a positive integer p,  the error is grossly 
overestimated for large z .  To compensate for this, Shampine and Baca [258] 
suggested, in the context of RK methods, premultiplying est(t,) by the fil- 
ter matrix, which damps the large, stiff error components. This new error 
estimate est*(t,) is defined according to the formula 

est*(t,) = (I - h,XJ(t,))-’lest@,), (4.3.3) 

where X is the diagonal element of the coefficient matrix A and J ( tn )  is an 
approximation to the Jacobian of problem (2.1.1) at the point t,. We also 
follow this approach in the context of DIMSIMs. Since the behavior of (4.3.3) 
is described by the function 

it follows that the modified estimate est*(t,) is asymptotically correct as 
z -+ 0 and also corrects the order as 121 -+ m, Re(z) < 0. 

We illustrate this process for the type 2 DIMSIMs listed in Section 3.13. 
For the method of order p = 1 given in Example 2 of Section 3.13, the function 
~ ( z ,  6) defined by (4.3.2) takes the form 

This implies that 

/z1 -+ cc, Re(z) < 0, 
6 

r ( z ,  6) N -5 2, 
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and it is recommended that the estimate 

est*(t,) = (I - h,J(t,))-'est(t,) 

be used instead of est(t,) for large step sizes. 

function ~ ( z ,  6) takes the form 
For the method of order p = 2 given in Example 4 in Section 3.13, the 

with 
P ( z ,  6) = 6(9 + 76 - 6&(6 + 1)) (6 - e z ( l  + 6) + e('-t6)z)z 

and 

Q ( z , 6 )  = 3(1+ 6)(4ez(esi - 1) + (3d2 - 6e2(5 + 36) + 6e('f"!")) 

- 3 4 ( 1  + 6) (2d2 - 26e"(l + 6) + 26e('+')' 

This implies that 

9 + 76 - 6 f i ( 1 +  6) , IzI + 20, Re(z) < 0, T ( z l  
3(3 - 2 4 ) ( 1  + 6) 

and we define est*(t,) = est(t,). 
For the method of order p = 3 given in Example 6 in Section 3.13: the 

ratio ~ ( z ,  6) is quite complicated and is not reproduced here. Assuming that 
7 3  = 0, we have 

3.96382 - 5.13148 6 + 1.47976 d2 
5.94572 - 5.13148 6 , IzI + m1 Re(z) < 0: 4z16)  

for 6 E (0 ,2) ,  and this suggests that we use the original estimate est(t,) for all 
step gzes. However, the denominator of the expression above has a positive 
root 6 x 1.15868 and we have verified experimentally that, in most cases, the 
estimate 

est*(t,) = (I - Xh,J(t,))-'est(t,) 

is more reliable than est(t,) and leads to a smaller number of rejected steps 
in actual implementations of this method. 

A different approach to error estimation for implicit RK methods, which 
is based on construction of implicit error estimators, has been proposed by 
Swart and Soderlind [268]. 
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4.4 CONSTRUCTION OF CONTINUOUS INTERPOLANTS 

Continuous interpolants for DIMSIhls have been investigated by Butcher and 
Jackiewicz [67] and Jackiewicz [177]. Define the vectors 

where ~ ( 0 )  = 1, and 

We consider the following variable step size continuous DIMSIMs in Nordsieck 
form: 

0 E [0,1]. We say that method (4.4.1) has uniform order p if 

Z["-ll = hi-1 @l) 
z n-1 (tn-1) + O(hp,+') 

implies that 

uniformly with respect to  0 E [O :  11. We have the following theorem. 

Theorem 4.4.1 (Jackiewicz [177]) Method (4.4.1) satisfying order condi- 
tions (3.12.1) and (3.12.2) for 0 = 1 has a uniform order p = s if and only 

E1(B)Z - zG1(0)ecZ - q(0)Z = O(z"') (4.4.2) 
if 

as z + 0 ,  where 

1 - 0 . . .  ", 0E[O,1] ,  
E l ( Q )  = [ 

S !  

and Z and ecz are defined as in Theorem 3.12.1. 
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Proof: 
tn- l ,  we obtain 

Expanding $I (tn-l + Qh,) into a Taylor series around the point 

h, + 0. Substituting the relations for zpl( t , - l  + Oh,), zjn-ll, and 

i = 1, 2 , .  . . , s (compare the proof of Theorem 3.12.1) into a second equation 
of (4.4.1) yields 

Equating the coefficients of h h y ( k )  ( t , - l ) / k !  to zero and then multiplying these 
coefficients by z k / k !  and adding them from k = 0 to k = s leads to 

which is equivalent to (4.4.2). This completes the proof. 

Relation (4.4.2) leads to s equations for the unknown functions gl j (O) ,  
j = 1 , 2 ,  . . . s, and qj ( O ) ,  j = 2,3, . . . , s + 1. These equations have the form 

(4.4.3) 

Ic = 1 , 2 , .  . . . s (the constant term in (4.4.2) is equal to zero). Assuming that 
q j ( e )  = q J ,  j = 2 ,3 , .  . . , s + 1, where qj are coefficients of the underlying 
discrete method. and solving the system (4.4.3) for gl,(O). j = 1 . 2 , .  . . , s, 
we obtain the following examples of continuous DIMSIMs in Nordsieck form, 
corresponding to the methods of order p = 1, p = 2, and p = 3 given in 
Section 3.13. 

Continuous weights for types 1 and 2 methods of order p = 1 given in 
Examples 1 and 2 in Section 3.13: 

g i i ( 0 )  = 0. Q E [O, 11 

Continuous weights for the type 1 method of order p = 2 given in Example 3: 

3 + 4 0  - 2 0' 202-1  , g12(0) = ~ 0 E [O! 11. 
4 g l l ( 0 )  = 
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Continuous weights for the type 2 method of order p = 2 given in Example 4: 

59 - 3 4 4 +  1 4 2  - e) e 
28 

2 4  - 3 + 2 O2 
4 

, 0 E [O, 11. ! g12(Q) = gll(e) = 

Continuous weights for the type 1 method of order p = 3 given in Example 5: 

13 + 128 - 1802 + 8 e 3  1 - 602 + 483 
> g12(Q) = - gll(0) = > 3 12 

(48 - 3) 82 
gl3(e) = , e E [O, 11 

Continuous weights for the the type 2 method of order p = 3 given in Exam- 
ple 6: 

02  e 3  e3  

gl@) = -0.0675638 + - + -, e E [o, 11 

gll(0) = 0.919152 - - + -. g,2(r9) = 0.628473 + 8 - -, 
4 6  3 

82 8 3  

4 6  

Observe that glg (1) = gl3. j = 1 . 2 , .  . . , s, as should be the case. 

polants of DIMSIh'Is has been given by Jackiewicz et al. [186]. 
A somewhat different approach to  the construction of continuous inter- 

4.5 STEP SIZE A N D  ORDER CHANGING STRATEGY 

In the implementation of explicit and implicit DIhiISIMs we follow closely 
approaches developed in the classical codes for nonstiff and stiff differential 
systems. such as STEP due to Shampine and Gordon [262], and RADAU5 
and RADAU due to  Hairer and Wanner [146, 1481. The code STEP [262] for 
nonstiff systems is based on the family of Adams-Bashforth Adams-Moulton 
methods in predictor-corrector mode with variable step size and variable order, 
ranging between p = 1 and p = 12. The fixed order code RADAU5 [146] 
for stiff systems is based on the A- and L-stable RadauIIA process of Ehle 
[121,122] with s = 3 stages and order p = 5. The variable order code RADAU 
[148] is based on the A- and L-stable RadauIIA methods [121. 1221 with s = 3, 
s = 5, and s = 7 stages of orders p = 5, p = 9. and p = 13. We adopt a 
similar approach in the implementation of DIMSIMs. 

The initial order pl  will be chosen to  be equal to  1. The initial step size 
hl is computed using a modification of the approach taken by Gladwell et al. 
[134] (compare [143, p. 1691 and [257. p. 3791). This approach consists of the 
following. Set 

sc, = Atol, + Iy,(to)IRtol,. i = 1 . 2 . .  . . , m, 

where Atol, and Rtol, are absolute and relative error tolerances corresponding 
to  the zth component of the solution y,(t) to  (2.1.1) and, following Hairer et 
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al. [143], define the norm 1 1  . I ~ S C  by 

The initial local discretization errors lei(t0) of type 1 or 2 methods of order 
p = 1 given in Examples 1 and 2 of Section 3.13 are 

respectively, and this suggests the formula 

where dz is an approximation to  the second derivative y"(t0). We compute 
this approximation from the formula 

f (Yo + hof(Y0)) - f (Yo) d2 = 
h0 

1 

where the step size ho corresponds to the method of order zero, yn = yn-i, 
and is given by 

1 
ho = 

l l f ~ ~ ~ ~ l l s c ~  

We start the integration with the input vector z[O] defined by 

To describe step size and order changing strategy, assume that we have 
completed a step from t,-l to t ,  with a step size h, and order p ,  which 
resulted in the computation of quantities Yinl and zln\. We then compute 
the estimate of the local discretization error (4.2.9) or (4.3.3). which is now 
denoted by est(t,,p,) or est*(t,,p,), to indicate their dependence on the 
current order p,. We also compute the measure err(t,,p,) or err*(tn,pn) of 
the local discretization error by 

err(t,,p,) = ~lest(tn.pn)llsc 
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z = 1 . 2 , .  . . , m, where z(1 : m) stands for the first m components of the vector 
z ,  and compare it to 1 to find an optimal step size for the next step. This 
optimal step size is computed according to the formula 

hopt = h, . rapt with rapt = 
ll(Pn + I )  1 

L t , . P , )  1 
If 

err(t,.p,) 5 1 or err*(t,,p,) 5 1, 

the step is accepted and the new step size hn+l is computed from the formula 

1 h,+l = h, . min facmax. fac . rapt { 
(compare [143]). Here facmax and fac are safety factors build into a code to 
prevent the step from increasing too rapidly and, thus to  avoid an excessive 
number of rejected steps. We have chosen facmax = 2 and fac = 0.9. 

The choice of the new order p,+l is based on monitoring est(t,,p,) or 
est*(t,,p,) as well as the estimate est(t,,p,-l) or est*(t,.p,-1) (for p ,  > l), 
which correspond to the method of order p ,  - 1. For p ,  = 1 we compare the 
error estimate with the error estimated in the order zero result defined by 
y, = ~ ~ - 1 .  Since the last m components zln] (p,m + 1 : (p ,  + 1)m) of vector 
z[,] approximate hpy(pn)( tn) .  this estimate can easily be obtained from the 
expression 

est(t,.p, - 1) = 6,,(6,) ~ [ ~ l ( p , m  + 1 : ( p ,  + 1)m). 

where dp,(bn)  is the error constant defined by (4.2.5) of method (4.1.5) of 
order p ,  - 1 if p ,  > 1 and 60(6,) = 1 if p ,  = 1. The decision about the new 
order p,+l is then based on the ratio or ratio* defined by 

1 1  est* ( t n ,  P n )  1 1  
I/est*(tn,pn - 1)11. 

or ratio* = 
IIest(t,.pn)I1 

I/est(t,,p, - 1)1/ 
ratio = 

If 
ratio < rmln or ratio* < Tmln. p ,  < p m a x ,  

and the previous step was not rejected, the new order is chosen as pn+l = 

ratio > T,,, or ratio* > T,,,. p ,  > 1, 

the new order is p,+l = p ,  - 1. Otherwise, the order is not changed. We have 
chosen rmln = 0.9 and Tmax = 1.1. 

p ,  + 1. If 

If 
err(t,.p,) > 1 or err*(tn.pn) > 1, 

- the step is rejected and the computations are repeated with a new step size 
h, chosen according to the formula 

facmin, fac . rapt 



220 IMPLEMENTATION OF DlMSlMS 

where facmin is a safety factor built into a code to prevent the step size from 
decreasing too rapidly. We have chosen facmin = 0.5. 

After a rejected step a new order P, is never increased and it is chosen 
according to the following rules. After the first rejection the order is not 
changed. After the second rejection the order is reduced by 1 (if p ,  > 1). 
After the third rejection the order is dropped to & = 1. 

4.6 UPDATING THE VECTOR OF EXTERNAL APPROXIMATIONS 

After a successful step from t,-1 to t ,  is completed, we have to update the 
vector z[n] = z["](p,) of external approximations so that it corresponds to 
the new order, p,+l. If p,+l = p ,  the updated vector ~ [ ~ I ( p , + l )  is equal to 
z [  nl (p,). Ifp,+i = p ,  + 1, ~ [ ~ ] ( p , + l )  is computed according to the formula 

where est(tn,p,)/dPn(6,) or est*(tn,pn)/8p,(6n) is an approximation to the 
scaled derivative h ~ ~ ~ y ( p + l ) ( t n )  and 6,, (6,) is the error constant defined 
by (4.2.5) of method (4.1.5) of order p,. In this case we also want to find 
constants €1, € 2 , .  . . , e p ,  so that it is appropriate to add corrections of order 
O(h;+') to the vector z[,] when the order is increased, resulting in a modified 
vector: 

where z/"(p,+l) stands for the (i - 1)rn + 1 : irn components of the vector 
Z[nl(p,+l). w e  choose Ek so that 

Pn 

&+l,jhny'(t, + ( C j  - l)h,) +€khp,+ly(p"+1) (t,) = h;y("(t,)+O(hp,+2), 
j=1 

k = 1, 2, . . . ,p,. If y is a polynomial of degree p ,  + 1, the two sides of this 
equation will be equal with the O ( ~ L ? + ~ )  term missing. Hence, substituting 
~ ' ( t ,  + vhn) = p(v), where p(v) is a polynomial of degree p,, we find that 

j=1 
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Choosing 

3=1 

so that the g terms vanish, it follows that 

( p - 1 )  ( 0 )  
Ek = 

P !  

It is convenient to calculate E k ,  k = 1 . 2 , .  . . ,p,, from the coefficients in the 
expansion of ~ ( 7 ) :  

P n  

n(7 + 1 - c3)  = 7P"  + apn7p-1 + . . . + a277 + a11 
3=1 

and we find that 
(k - l)!a!$ 

P n  ! 
If the order is reduced by 1 (i.e.> pn+l = p ,  - 1 2 l) ,  the new vector 

€ k  = 

&I = Z b I  (pn+l)  is given by 

z[n](p,+1) = z["l(l : p,m). 

If the step from - tn-1 to t ,  is rejected, the computations are repeated with a 
new step size h, defined in Section 4.5 and a new order P, equal to 17, = p,. 
p ,  = p ,  - 1, or p ,  = 1. The vector z["-'](&) is then updated as follows: 
- - 

z["-ll(&) = zb-ll  if Fn =pn, 

z[n-ll (5,) = z[n-l] (1 : prim) if P, = p ,  - 1, 

if p ,  = 1. 
or - 

~ [ ~ - ~ ] ( j j , )  = z [ " - l l (~  : am) 

4.7 STEP-CONTROL STABILITY OF DlMSlMS 

Step-control stability of RK methods was investigated by Hall [150, 1511 and 
by Hall and Higham [152, 1571. A very nice summary of these results can 
be found in the book by Hairer and Wanner [146]. In this section we follow 
Jackiewicz [176] and extend these ideas to DIMSIXiIs (4.1.5). 

Assume that the step size of method (4.1.5) of order p is chosen according 

(4.7.1) 

where 0 is a safety parameter build into the scheme to reduce the number 
of rejected steps, To1 is a given error tolerance, and est(t,) is an estimate 
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of local discretization error discussed in Section 4.2 (compare (4.2.9)). This 
strategy is equivalent, in principle, to the step size changing strategy discussed 
in Section 4.5. To study the behavior of (4.7.1), we again use the basic test 
equation 

y ' =  Ey; t 2 0, (4.7.2) 

where ( is a complex parameter. Applying (4.1.5) to (4.7.2), then eliminating 
Y["] from the resulting equations, we obtain the following dynamical system: 

z["l = (Q + ~ , [G( I  - ~ , , E A ) - ' P ) D ( ~ , ) ~ [ " - ~ I ,  

(4.7.3) 

with 

fl(h,E,6,) := rT@,) + MPT(6,)(I - MA)-1PD(6,). 

(*In-11. z,, &-I) --f (z[n], z,+1, z,) 

This dynamical system defines a map 

from @ s + 3  to  @ s + 3 ,  z ,  = h,J. Its fixed points for 6, = 1. h, = h. satisfy the 
system 

(Q + zG(I+ zA)-lP)P = F. 

ldP( l ) (yr ( l )  + zPT( l ) ( I  - zA)-~P)FI = QTol, 

z = ht.  Z E We recognize M(z) = Q + zG(1- zA)-lP as the stability 
matrix of (4.1.5). This matrix, in the case of DIMSIMs of type 1, have one 
eigenvalue w1(z) equal to  the stability function R ( z )  of the explicit RK method 
of the same order with remaining eigenvalues w,(z), i = 2 , 3 . .  . . . s + 1. equal 
to  zero. 

It follows from the first relation of (4.7.4) that  (Z. z )  is a fixed point of 
(4.7.3) only if Z is an eigenvector of M(z) corresponding to the eigenvalue 
equal to 1. This is always the case for a discrete number of points z on 
the boundary d A  of the region of absolute stability A of method (4.1.5)> in 
particular for z = 0. To extend the analysis to all values of z E dd .  we have 
to  relax the condition given by the first relation of (4.7.4) and consider the 
eigenvalues of M(z) of modulus equal to  1: 

(4.7.4) 

and 
w i ( ~ ) = O ,  i = 2 , 3  , . . . ,  ~ + 1 .  (4.7.6) 
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(In fact, this was also done in the case of RK methods examined by Hairer 
and Wanner [146], where system (2.28) was replaced by (2.30)). Let S ( z )  be 
a nonsingular matrix such that 

We consider now instead of the first relation of (4.7.4) the system 

~ ~ l ( ~ ) ~ l v l l  = Ihll. 
T (4.7.7) 

M ( 4  [ 772 . ' .  vs+1 I T  = [ 772 . . . 77s+l > 

where 77 = S-l(z)Z. For z E dd it follows from (4.7.5) that  the first relation is 
satisfied automatically, and since (4.7.6) implies that p ( M ( z ) )  = 0. the second 
relation of (4.7.7) reduces to  

q t = 0 ,  i = 2 , 3  . . . .  , s + l .  (4.7.8) 

System (4.7.8) can be used together with the second relation of (4.7.4) to 
determine Z for z E dd. 

Since the stability of the map defined by (4.7.3) at the fixed point (3, z )  de- 
fined as described above depends on the spectral radius of the Jacobian matrix 
Jsc(Z, z )  of this map computed at the fixed point (F. z ) .  we can conclude that 
the step size control mechanism based on (4.7.1) with error estimate est(t,) 
given by (4.2.9) is stable if 

P ( J S C ( W )  < 1. 

In such a case method (4.1.5) is said to  be SC-stable for this value of z E d d .  
We also define the region of SC-stability as a subset of dd given be 

d d ~ c  = { z  E dd : p(Jsc(Z.  z ) )  < l}. 

To illustrate the theory discussed above consider the type 1 method of order 
p = 2 given in Example 3 in Section 3.13. For this method the error constant 
is given by 192(6) = (3 + b ) / ( 2 4 6 ) ,  and the vectors P(b)  and y(6) appearing in 
(4.2.9) are 

(compare Section 4.2). We have applied this method t,o the system considered 
by Hairer and Wanner [146]: 

y: = -2000( cos(t)yl + sin(t)yz + I ) ,  y1(0) = 1, 

YL = -2OOO( - sin(t)yl + cos(t)y2 + I ) ,  y2(o) = 0: 
(4.7.9) 
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M(z) = 

Figure 4.7.1 (a) Step sizes versus t for the method of order p = 2 applied to (4.7.2) 
with To1 = lo-’ and 6 = 5/6 with step size changing strategy given by (4.7.1). (b) 
Region of absolute stability and SC-stability of the method of order p = 2 

2 + 3 z + z 2  2 + z  2 + 2  

z ( l + 2 2 )  -2 

2z2 -2 

_- - 
2 4 8 

2 

2 

z - 

z - - 

whose eigenvalues move on the circle from -2000 to -2000 f 2000 i as t goes 
from 0 to rr/2. The resulting step size pattern for To1 = and 8 = 5/6 is 
plotted in Fig. 4.7.la, where we have marked by the symbol “ x ”  all rejected 
steps. There were 835 steps rejected out of the total number of 1877. 

To explain this behavior we have plotted in Fig. 4.7.lb the region of absolute 
stability of the method used to generate this step size pattern with the region 
of %-stability represented by the thick line. For this method stability matrix 
M(z) takes the form 

S-l(z)M(z)S(z) = 
- 2 + 2 z + z 2  2 I 0  O 

0 0 1  

0 - 

and it can be reduced to the Jordan canonical form 
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S ( 2 )  = 

with - 
1 - (2+2) (2+22+22)  _ _  

4 9 ( 1  + 2 )  22 

2 + 32 + 222 
2 4 1  + 2 )  2 22 

1 2 + 2  . - -- 

1 1 1 - 

The solution to this system is given by 

- 
21 = 

- 6 8 To1 (2 + 32 + 22') - 12 8 To1 
22 = , 23 = 

38To1(2 + 2)(2 + 22 + 2') 

2 2 ( 1  + 4 2 ( 2  +.)I , 

12(2 + .)I ' 2 ( 1 +  2)12(2 +.)I 
We can observe that the smooth behavior of the step size changing mechanism 
for t greater than about 1.25 corresponds to the region of SC-stability plotted 
in Fig. 4.7.lb as predicted approximately by this theory. 

Figure 4.7.2 (a) Step sizes versus t for the method of order p = 2 applied to (4.7.2) 
with To1 = lo-' and 6 = 5/6 with textrmPI step size control. (b) Region of absolute 
stability and PISC-stability of the method of order p = 2 

It can be verified that the system to determine fixed points of (4.7.3) consisting 
of (4.7.8) and the second equation of (4.7.4) now takes the form 

4z2(4 + 62 + 3 Z 2 ) 2 1  - 22(4 + 82 + 6z2 + Z 3 ) &  

-(8 + 122 + 8z2 + 2z3 + z4)23 = 0, 

4221 - 2(2 + 2 ) 2 2  + (2 + 2 ) 2 3  = 0, 

/4z221 - 2222 - (2 - 2)?31 = 120T01. 
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It was demonstrated by Gustafson et al. [140] that the instability of the 
step size changing strategy based on (4.7.1) can usually be resolved in the case 
of RK methods by using PI  step size control motivated by the concepts from 
control theory instead of (4.7.1). To analyze this algorithm in the context of 
DIMSIMs, we again apply (4.1.5) to (4.7.2) and replace (4.7.1) by PI  step size 
control to obtain the dynamical system: 

Z[n] = (Q + ~ , C G ( I  - ~ , ~ ~ ) - l ~ ) ~ ( 6 , , ) ~ [ ~ - l l ,  

(4.7.10) 

with n(h,[,S,) defined as in formula (4.7.3). Here cy and p are constants. 
Observe that (4.7.10) now defines a map 

(Z[~-ll,Z,,Z~~-2~,Z,-1,Z,-2) + ( Z ~ ~ l , Z , + l , Z [ ~ - l l , Z , ,  

from @25+5 to @2s+5. since est(t,-l) depends on 6,-1 = hn-l/hn-2 = 
z,-I/z,-~. The fixed points of (4.7.10) satisfy system (4.7.4), where. as 
before, the first equation of (4.7.4) can be replaced by (4.7.8). Denote by 
Jp~sc(Z, z )  the Jacobian of the map (4.7.10) at  the fixed point (2, z )  defined 
by (4.7.4). Method (4.1.5) is said to be PISC-stable at z E d d  if 

P(JPISC(F4)) < 1. 

We also define the region of PISC-stability as a subset of ad given by 

ddpISC = z E d d  : ~(JPISC(Z.Z)) < l}. 

To illustrate the new approach we have applied the method given in Ex- 
ample 3 in Section 3.13 to the system (4.7.9), where we have replaced the 
step size control given by (4.7.1) by PI  step size control defined by the sec- 
ond equation of (4.7.10). We have plotted in Fig. 4.7.2a the resulting step 
size pattern for To1 = lo-' and 8 = 5/6 for the parameters Q = 0.175 and 
p = 0.089, where we have again marked all rejected steps by the symbol " x " .  
There were now 391 rejected steps out of total number of 1806. We have 
also plotted in Fig. 4.7.2b the region of PISC-stability of this method and we 
can observe that the actual behavior of the PI  step size control mechanism is 
somewhat better than that predicted by this region. Fig. 4.7.2a suggests that 
this region of PISC-stability should contain another segment of the boundary 
of the region of absolute stability d d  somewhere between -2 < Re(z) < -1, 
which was not detected by this analysis. The possible explanation of this is 
that the Jacobian matrix JPISC of the map (4.7.10) controls the behavior of 
all components of the vector z["] of external approximations, while only the 
quantity QD(S,)Z[~]  propagates to the next step. 

{ 
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The step-control stability of DIMSIMs for estimators of local discretiza- 
tion error different from those examined in this section was investigated by 
Jackiewicz [ 1761. 

4.8 SIMPLIFIED NEWTON ITERATIONS FOR IMPLICIT METHODS 

If the function f appearing in (2.1.1) is nonlinear, system (4.1.5) for Y["] 
has to  be solved iteratively. In the context of stiff differential systems it is 
advantageous to  use for this purpose some variant of the Newton method. This 
method will not be applied directly to (4.1.5), but to  reduce the influence of 
round-off errors we adopt the suggestion of Hairer and Wanner [146], which 
was made in the context of implicit RK methods, and introduce the quantities 

vlnI = YlnI - (PD(6,) @ I)z[~- '] ,  

which are, in general, smaller than Y[,]. Then method (4.1.5) reformulated 
in terms of vln] becomes 

$"I = h,(A 8 I)F(vLnl + (PD(6,) @ I)zI"-'I), 

zIn] = h,(G @ I)F(T$~] + (PD(6,) 8 I)z["-']) (4.8.1) 

+ (QD(s,) @ I)z["-~],  

n = 1, 2, . . . , N .  Since the coefficient matrix A corresponding to type 2 DIM- 
SIMs is nonsingular, we have 

hnF(v["I + (PD(6,) @ I)z["-'l) = (Ap1 @ I)q[,] (4.8.2) 

and method (4.8.1) can be reformulated further as follows: 

n = 1, 2 , .  . . , N .  As observed by Shampine [254], again in the context of 
implicit RK methods, this formulation does not amplify iteration errors that  
affect the computation of ~ 1 ~ 1 .  

Using (4.8.2), we can also reformulate the error estimate (4.2.9) of the local 
discretization error. This leads to  the formula 

est(t,,p,) = (PT(L)Ap1 8 I)v["] + ( ~ ~ ( 8 , )  8 I ) z [ ~ - ' ] ,  (4.8.4) 

where we again indicated the dependence of the error estimate on the order 
of the method p,. 
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The vector qIn] will be computed by simplified Newton iterations. Setting 
q = qln] and denoting by X the diagonal element of the coefficient matrix A, 
the first relation of (4.8.3) can be written as 

i = 1 , 2 , .  . . , s. The Newton iterations take the form 

i- 1 , s+l 
(4.8.5) 

u = 0 , 1 , .  . ., i = 1 , 2 , .  . . , s, where q! is the given initial guess and J i  is an 
approximation to the Jacobian matrix 

Since 

we define 

i = 1 , 2 , .  . . , s. To simplify the iteration process (4.8.5) further and to make 
computations more efficient, we replace all Jacobians Ji, i = 1 , 2 , .  . . . s, by 
the matrix 

where ? is defined by 

S 
i=l 

Then the matrix I - h,XJ is the same for all iterations 
all stages i = 1 , 2 , .  . . , s, and its LU decomposition has to 

u = 0 , 1 , . .  ., and 
be computed only 
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once. This matrix will also be used to compute the modified error estimates 
est*(t,,p,) defined by (4.3.3) and discussed in Section 4.3. Since 

s+1 

k= 1 

we define the initial guess to start the iterations as 

i = 1 , 2 , .  . . , s. Following Hairer and Wanner [146], we stop the simplified 
Newton iterations when 

where 

v 2 1, K = 0.01, where / I  llsc is the norm defined in Section 4.5. For v = 0 
we define 

where Pold is the last pv from the preceding step and eps is the machine 
epsilon. If there is no convergence of simplified Newton iterations, we restart 
the computations with the halved step size h, = hn/2. Other variants of 
stopping criteria are discussed by Hairer and Wanner [146] and by Shampine 
[254]. 

4.9 NUMERICAL EXPERIMENTS WITH T Y P E  1 D l M S l M S  

To test type 1 DIMSIMs we have written a variable step size variable order 
experimental code dim18 based on explicit methods of order 1 I p I 8 in 
Nordsieck representation. The coefficients of these methods of order 1 5 p I 3 
are given in Section 3.13, and the coefficients of methods of order 4 5 p 5 8 
are given by Butcher et al. [58]. The implementation details are discussed 
in Sections 4.2,  4.4, 4.5, and 4.6 as well as by Butcher et al. [58]. The local 
discretization error of these methods was estimated by the formula (4.2.9) for 
p = 1 and p = 2 and by the formula (4.2.10) for 3 5 p 5 8. These estimates 
differ from the error estimates employed in the earlier version of this code, 
discussed by Butcher et al. [58]. This code was applied to many problems 
to test its accuracy, efficiency, the reliability of the local error estimation, 
and robustness of step size and order changing strategy. We present in this 
section a selection of numerical results on the problems SCALAR (1.2.1), 
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I I I I I 

-2 -1 5 -1 -0.5 0 0.5 1 1.5 2 
t 

Figure 4.9.1 
problem (1.2.1) 

Local errors and local error estimates versus t for the SCALAR 

1 oo 
a 

lo-* 

.c 

1 o - ~  

1 o-6 
-2 -1 5 -1 -0.5 0 0.5 1 1.5 2 

t 

b 
I I 

R 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
t 

Figure 4.9.2 (a) Step size versus t and (b) order versus t for the SCALAR problem 
(1.2.1) 
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AREN (1.2.3), LRNZ (1.2.4), ROPE defined by (1.2.7) or (1.2.8), and BRUS 
(1.2.10). These problems are presented in Section 1.2. 

As observed in Section 1.2, the solution to the SCALAR problem (1.2.1) has 
a discontinuity in the first derivative yl at the point t = 0 and discontinuities 
in the second derivative y" at t = -1 and t = 1, and the step size and 
order changing mechanism adjusts its step size and order accordingly in their 
neighborhoods so that the approximation to the solution is computed to a 
sufficient accuracy. We have plotted in Fig. 4.9.1 the local errors and the local 
error estimates for Atol = Rtol = To1 = (solid line, downward triangle), 
l op6  (dashed line, diamond), and lo-' (dashed-dotted line, upward triangle). 
The corresponding step size and order patterns are plotted in Fig. 4.9.2, where 
we have used a solid line, a dashed line, and a dashed-dotted line and the 
symbols "+", five-pointed star, and "x"  to indicate rejected steps for To1 = 
lop3,  To1 = and To1 = lo-', respectively. 

3 '.i 

Figure 4.9.3 
AREN problem (1.2.2) 

Number of function evaluations nfe versus global error ge for the 

The AREN problem (1.2.3) was solved for p = 0.012277471 and the initial 
conditions 

y i (0)  = 0.994, yi(0) = 0, yyz(0) = 0, yh(0) = -2.001585106379. 

As remarked in Section 1.2, this corresponds to the periodic solution of the 
earth-moon system with the period of motion TI given by Ti = 17.06522. 
This problem was solved on the interval [O,Tl], and a selection of numerical 
results is presented in Fig. 4.9.3. On this figure we have plotted nfe, the 
number of evaluations of the function f, versus ge, the global error at  the 
end of the interval of integration for our experimental code dim18 based on 
explicit DIMSIMs of order 1 5 p 5 p,,, = 8, and for the ode45 code from 
the Matlab ODE suite [263]. This code is based on explicit RK pair DOPRI5 
of order 4 and 5 constructed by Dormand and Prince [117]. This code uses 
local extrapolation, so it is effectively of order p = 5. For this reason we have 
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lo4- 
I .  

c -  

lo3 
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+ dim18 

1 o3 
1 o - ~  1 o-2 10.- 1 oo 1 o1 1 o2 

!3e 

c 

+ dim18 

Figure 4.9.4 
LRNZ problem (1.2.3) 

Number of function evaluations nfe versus global error ge for the 

also plotted for comparison the numerical results obtained for diml5, which 
correspond to  our DIMSIM code where the maximum order is restricted to 
Pmax = 5 .  

10-l0 lo-* 1 o-6 1 o - ~  1 o-2 1 oo 1 o2 
w 

Figure 4.9.5 
ROPE problem defined by (1.2.7) or (1.2.8) 

Number of function evaluations nfe versus global error ge for the 

The LRNZ problem (1.2.4) was solved on the interval [0,16] for the param- 
eters b = 813, o = 10, and r = 28, which correspond to  aperiodic solution 
and the initial values given by 

~ i ( 0 )  = -8, yz(0) = 8, Y3(0) = 27.  

This solution is very sensitive to round-off errors: and it is very difficult to  
compute accurate approximations (compare the discussion of this topic in 
[143]). As t --+ cc the solution approaches the famous Lorenz strange attrac- 
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Figure 4.9.6 
BRUS problem (1.2.10) 

Number of function evaluations nfe versus global error ge for the 

tor. A selection of the results of numerical experiments with diml8, ode45, 
and dim15 is given in Fig. 4.9.4. 

The results of numerical experiments on the ROPE problem defined by 
(1.2.7) or (1.2.8) are presented in Fig. 4.9.5. 

The BRUS (1.2.10) was solved for N = 21. so the dimension of the system is 
882. This problem was solved on the interval [0,7.5].  The results of numerical 
experiments are presented in Fig. 4.9.6. 

These work-precision graphs presented in Figs. 4.9.3-4.9.6 clearly indicate 
the advantage of high order DIhlSIMs of type 1 and illustrate the high poten- 
tial of these methods. The code dim18 based on explicit DIMSIMs of order 
1 5 p 5 p,,, = 8 is more efficient than both dim15 and ode45 for mod- 
erate and stringent tolerances. We can also observe that the code dim15 is 
somewhat less efficient than ode45. 

4.10 NUMERICAL EXPERIMENTS WITH TYPE 2 DlMSlMS 

Although A- and L-stable DIMSIMs up to order p = 8 have already been 
constructed in the literature (compare [66, 68, 74, 1791, and Sections 3.10 and 
3.13), so far only methods of order p = 1. 2, and 3 have been implemented 
in the experimental variable step size variable order Matlab code diml3s for 
the numerical solution of stiff differential systems. This code is described by 
Jackiewicz [177]. and various implementation issues related to this code are 
also discussed in this chapter. One reason for this is that the development 
of the code based on methods of higher orders requires, among other things, 
the derivation of suitable error estimators for small and large step sizes as 
described in Sections 4.2 and 4.3. This work. which requires a significant 
power of symbolic manipulation packages, has not yet been undertaken for 
type 2 DIMSIMs of order p 2 4. 
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lop6 

lo-' 

lo-'' 

The numerical evidence to date indicates that the code diml3s is not as 
effective as the code odel5s from the Matlab ODE suite [263], even if the 
maximal order of odel5s is restricted to p = 3. However, there is a restricted 
class of problems for which the eigenvalues of the Jacobian matrix are purely 
imaginary, for which diml3s outperforms odel5s by a few orders of magni- 
tude. An example of such problem is BEAM [146], which is also reproduced 
in Section 1.8. 

In what follows we present the results of numerical experiments on two 
problems: the PLATE problem (1.8.5)) and the BEAM problem (1.8.6). These 
problems are described by Hairer and Wanner [146] and in Section 1.8. They 
were solved by the experimental code diml3s described by Jackiewicz [177]. 
The selection of numerical results for the PLATE problem is given in Ta- 
ble 4.10.1 and for the BEAM problem in Table 4.10.2. For comparison we 
have also presented in Tables 4.10.3 and 4.10.4 the numerical results obtained 
by the code odel5s with the order restricted to p = 3. This code will be 
referred to as odel3s. In these tables To1 is the required tolerance, ns is 
the number of steps. nrs is the number of rejected steps, nfe is the number 
of functions evaluations, npd is the number of partial derivatives, nlu is the 
number of LU decompositions, nls is the number of linear solves. and ge is the 
global error at the end of the interval of integration. The selection of numer- 
ical results is also presented in Figs. 4.10.1 and 4.10.2. where we have listed 
nfe versus ge, and where in addition to the results corresponding to diml3s 
and odel3s, we have also plotted the results corresponding to odel5s. 

30 

108 

391 

1315 

nrs nfe 

432 

834 

2377 

7349 

nlu 

29 

54 

178 

527 

nls 

154 

479 

1739 

5787 

Table 4.10.1 Numerical results for the PLATE problem solved by diml3s 

Comparing the results presented in Tables 4.10.1 and 4.10.3 and in Fig. 4.10.1 
we can see that diml3s is not competitive with odel3s for the PLATE prob- 
lem. This can be explained by the fact that the eigenvalues of the Jacobian 
of this problem lie in the sector 

S, = ( 2  E c : larg(-z)l < a }  

for a x 71" (compare [146, p. 1461). Hence, they fall easily into the region 
of absolute stability of the Klopfenstein-Shampine numerical differentiation 
formula of order p = 3, NDF3, employed in odel3s when scaled by any step 
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1 

1 

1 

1 

To1 

1 0 - ~  

10-6 

10-l0 

18 115 

38 310 

64 762 

120 2063 

ns 

89 

406 

2079 

11315 

54 

157 

465 

1429 

nrs 

6 

13 

21 

26 

15 

47 

85 

24 

1 18504 

1 14079 

1 12649 

1 12522 

nfe 

5286 

7418 

16703 

68161 

210783 1.02. 10'' 

312331 6.02. 10-1 

330353 8.01 . lop3  

473436 8.96. 

56 

55 

43 

26 

165160 

295464 

315169 

314672 

nlu 

5567 

2787 

2501 

2446 

115 

276 

785 

1692 

nls 

667 

2540 

11100 

54770 

ge 

5.64 lo-' 

i . 3 8 . 1 0 - ~  

i . 7 1 . 1 0 - ~  

5.22. 

Table 4.10.2 Numerical results for the BEAM problem solved by diml3s 

To1 I ns I nrs I nfe 1 npd I nlu 1 nls 1 ge 

1 0 - ~  

10-l0 

197 

392 

844 

2145 

i . 8 4 . 1 0 - ~  

3.45 ' 10-6 

3.42.10-~ 

9.33. 

Table 4.10.3 Numerical results for the PLATE problem solved by odel3s 

1 0 - ~  

10-8 

10-'0 

210865 

312413 

330435 

473518 

Table 4.10.4 Numerical results for the BEAM problem solved by odel3s 

size h. This formula is A(a)-stable for a = 80" (compare [263]). The code 
diml3s requires a smaller number of steps than does odel3s for this prob- 
lem. However, all numerical differentiation methods require only one function 
evaluation per step, whereas the DIMSIM of order p requires p function eval- 
uations per step, and this leads to a higher overall cost for diml3s than for 
ode 13s. 

Comparing the results in Tables 4.10.2 and 4.10.4 and in Fig. 4.10.2, we 
can see, however, that diml3s outperforms odel3s on the BEAM problem 
by a few orders of magnitude. This can be explained by the fact that the 
eigenvalues of the Jacobian matrix for this problem are purely imaginary and 
vary between -64002 and 6400i for n = 40 (compare [146, p 2011). As a result, 
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1 I 

Figure 4.10.1 
discretization of the PLATE problem (1.8.5) 

Number of function evaluations nfe versus global error ge for the 
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ge 

Figure 4.10.2 
BEAM problem (1.8.6) 

Number of function evaluations nfe versus global error ge for the 

they never fall into the region of absolute stability of the NDF3 method when 
scaled by any step size h. On the other hand, since the DIMSIM method 
of order p = 3 employed in diml3s is A-stable, these eigenvalues fall into 
the region of absolute stability when scaled by any h. We can also observe 
that the diml3s code is more accurate for this problem than odel3s for all 
tolerances listed in Tables 4.10.2 and 4.10.4. Moreover. the error for odel3s 
corresponding to  To1 = 

So far no codes have been implemented based on DIMSIMs of type 3 dis- 
cussed in Section 3.6 or type 4 discussed in Section 3.7 for nonstiff and stiff 
differential systems in a parallel computing environment, but this is the sub- 
ject of current work. 

is very large. 



CHAPTER 5 

TWO-STEP RUNGE-KUTTA METHODS 

5.1 REPRESENTATION OF TWO-STEP RUNGE-KUTTA METHODS 

In this chapter we discuss the general class of two-step Runge-Kutta (TSRK) 
methods, which depend on stage values at two consecutive steps. These meth- 
ods were introduced by Jackiewicz and Tracogna [183] (compare also [270]), 
and were mentioned in Section 2.1, formula (2.1.12), as an example of GLMs. 
This formula is reproduced below: 

(5.1.1) 

General Linear Methods for Ordinary Dafferential Equations. By Zdzislaw Jackiewicz 
Copyright @ 2009 John Wiley & Sons, Inc. 

237 
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u1 

u + l B  - ! 
- 

u, 

i = 1, 2 , .  . . , s ,  n = 2 ,3 , .  . . , N .  Here the stage values Y,'"' are approximations 
to y( tn- l  + cih), i = 1,2 , .  . . , s ,  where y ( t )  is the solution to (2.1.1). 

Introducing the standard notation as in Section 2.1, 

a11 . * '  als b l l  . . *  bl, 

. .  . .  . .  . .  
(5.1.3) 

u,l . . .  ass b,l . . .  b,, 

these methods can be written in the following vector form: 

(5.1.2) 

the form 

A =  

X 

a21 

. .  

where X = 0 or X > 0, respectively. Such methods are appropriate for nonstiff 
or stiff differential systems in a sequential computing environment. For type 3 
or 4 methods. the matrix A takes the form 

A = diag(X, A,.  . . A) = X I ,  

Consistent with the classification of GLMs introduced in Section 2.7, TSRK 
methods can be divided into four types depending on the nature of the problem 
to be solved (nonstiff or stiff) and the type of computer architecture at  hand 
(sequential or parallel). For type 1 or 2 methods, the coefficient matrix A has 
. "  

i = 1 , 2 , .  . . , s, TI = 2 , 3 , .  . . , N, e = [I, 1, .  . . 1IT E R'. These methods can be 
represented by the abscissa vector c = [Q,. . . , c , ] ~  and the following tableaux 
of its coefficients: 
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where X = 0 or X > 0, respectively. Such methods are appropriate for nonstiff 
or stiff differential systems in a parallel computing environment. 

The TSRK methods (5.1.1) generalize special cases of TSRK methods in- 
vestigated by Byrne and Lambert [84], Byrne [82], Caira et al. [go], Renaut 
[243, 2441. and Jackiewicz et al. [181, 1821. For example, the methods inves- 
tigated by Jackiewicz et al. [181] have the form 

i = 1 . 2 ,  . . . . s, n = 2,3. . . . , N, which corresponds to (5.1.1) with B = 0 and 
u = 0. Verwer [279, 280, 2811 considered two- and three-step explicit RK 
methods for the numerical integration of differential systems resulting from 
parabolic partial differential equations by applying the method of lines. We 
refer also to van der Houwen and Sommeijer [165, 1661, and van der Houwen 
[164] for related results concerning explicit Ic-step rn-stage RK methods. Jack- 
iewicz and Zennaro [190] investigated variable step size TSRK of the form 
(5.1.4) and demonstrated that these methods can be used to estimate the lo- 
cal discretization error of continuous RK methods without extra evaluations 
of the right-hand side of the differential equation. Their approach is based on 
the construction of embedded pairs of continuous RK methods of order p and 
variable step size TSRK methods of order p + 1, and Jackiewicz and Zennaro 
[190] give examples of such pairs up to the order p = 4. Bellen et al. [19] 
used a similar approach to construct embedded pairs of singly-implicit RK 
(SIRK) methods used in the differential equation solver STRIDE (see [34]) 
and variable step size TSRK formulas. Pan [234] constructed embedded pairs 
of multi-implicit RK methods investigated by Ore1 [225] and TSRK formulas. 

The presence of extra parameters in (5.1.1) as compared to (5.1.4) and RK 
methods makes it possible to construct high order methods with relatively 
few stages. For example, as demonstrated later in the chapter, there exists 
explicit TSRK method (5.1.1) with stage order q = 2 and order p = 3 with 
s = 1 only, and stage order q = 4 and order p = 5 with s = 2 only. This big 
gain in efficiency makes these methods very attractive for the solution of large 
systems of ODES and for Volterra integral and integro-differential equations, 
where there is a need to evaluate the kernel at many points of the interval of 
integration. 

5.2 ORDER CONDITIONS FOR TSRK METHODS 

In this section we follow the presentation by Jackiewicz and Tracogna [183] and 
Tkacogna [270] to derive the order conditions for the general class of TSRK 
methods (5.1.1). This approach is based on the ideas of Albrecht for RK 
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methods [5, 71 and for composite and linear cyclic methods [6, 81. A readable 
summary of this approach for RK methods is given by Lambert [195]. This 
approach was also used by Hosea [161] to compute truncation error coefficients 
of RK methods and by Hosea and Shampine [162] for efficiency comparisons 
of methods for numerical solution of ODES. 

In what follows we derive order conditions for the scalar case (i.e.; where 
m = 1 in (2.1.1)). The general case of order conditions for systems of equations 
is technically more complicated and is discussed by Jackiewicz and Tracogna 
[183]. 

Let A and B be (am + 2) x (am + 2) matrices defined by 

A 0 0  

T o 1 0  0 1  

where 0 stands for the zero vector or the zero matrix of appropriate dimensions 
and I stands for the m-dimensional identity matrix. Also define 

Zn = , 2 1  = 

0 

y"1 

Yo 

Y 1  

, 

n = 2,3. .  . . , N ,  where YI1] is obtained by some starting procedure. Starting 
procedures for TSRK methods (5.1.1) are discussed in Section 5.6. Then 
method (5.1.1) can be represented in the following form of an A-method as 
defined by Albrecht [4]: 

n = 2.3, . . . , N .  Since the matrix A has eigenvalues 1 and -19 and eigenvalue 
0 of multiplicity 2m, this method is zero-stable if and only if -1 < t9 5 1 
(compare with [181, 2851). 

Assume that the stage values Y,["' are approximations (possibly of low 
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Y(L-2 + ch) 1 

We will always require that at  least y(t,-l+cjh) = I$]+O(h), j = 1 , 2 , .  . . , s, 
as h -+ 0. Then using (5.1.1), this leads to the stage-consistency condition 

c = ( A + B ) e - u  

discussed in Section 2.2. 
We define the local discretization error hd(t,) of method (5.1.1) as the 

residual obtained by replacing 2, by ~ ( t , ) ,  Zn-l by z(t,-l), and F(2,)  by 
F ( z ( t , ) )  in (5.2.1): 

z ( t n )  = Az(t,-1) + hBF(z( t , ) )  + hd(t,), (5.2.2) 

n = 2,3, .  . . , N ,  where z ( t1 )  = [ O T ,  y(to + ~ h ) ~ ,  y(to), y(t1)lT. Partitioning 
the vector hd(t,) as 

hd(t,) = h 

we obtain 

h 

Expanding y(tn-2), y(tn): y(L-1 +ch), y’(t,-l + ( c - e ) h ) ,  and y’(t,-1 +ch) 
into a Taylor series around t,-1 leads to 
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where the error vectors C, and error constants Ev are defined by 

Ac”-l B(c - e),-l 
(5.2.3) c” (-1IUu C” := - - - 

U !  U !  ( v -  l ) !  ( v -  l)! ’ 

VTCu-l  wT(c - e),-l 
(5.2.4) 

where cv indicates componentwise multiplication. Observe that C1 = 0 is 
equivalent to the stage-consistency condition 

- 1 (-l)”lg C, := - - - 
v! v! (v - l)! (v - l)! ’ 

c =  ( A + B ) e - u  

obtained before: and 21 = 0 is equivalent to the consistency condition 

(v* + wT)e = 1 + 8 
obtained in Section 2.2. 

Subtracting (5.2.1) from (5.2.2): we obtain the linear recurrence relation 

q(tn) = Aq(tn-1) + hay(&)  + hd(tn): (5.2.5) 

n = 2 , 3 : .  . . : N ,  where 

and 
=I 

The solution to (5.2.5) is 

n-1 

0 

y(to + ch) - Y[11 

Y(t0) - Yo 

Y(t1) - Y1 

n-I 
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n = 2 , 3 , .  . . , N .  It can be verified that matrices d p  for p 2 2 have the form 

where the vectors a g )  E R" and the scalars Pg) are uniformly bounded if 
method (5 .1 .1)  is zero-stable. For n 2 3 we have 

4 ( t n )  = dn-'4(t1) + h d ( t n )  + hdd(tn-1) 

n-3 

(5.2.7) 
+ h C dn-'-'d(tl+i) + hBr( tn)  + hdBr(tn-1)  

1=1 

n-3 

+ h c A"-l-%r(tl+l). 
k 1  

Rewriting the equation (5.2.7) componentwise leads to the relations 

= (n-l)$) n-1)?$2) + hdi? + hd,-, (2) 
Q11 
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where to  simplify the notation we have written q1(”), $”), r1(”), e”), a ] ! ” ) ,  and 
8”) instead of q ( V ) ( t l ) ,  $”)(tl), dV)( t l ) ,  $V)( t l ) ,  dv ) ( t l ) ,  and d^(”)(tl). 

Assume that the starting values have order p ,  that  is, 

t$l) = O(hP) ,  g2) = O(hP), h + 0, 

and that the last two stages of the method (5.2.1) have order of consistency 
p ,  that  is, 

ijl) = O(hP), G2) = O(hP). h + 0 

(in fact, for this method, = 0). Recall also that a] ! ’ )  = 0. Then 

n-3 

4:) = ha]:? + h~ rt? + h~ rF? + h oi;-l-l) (w~rj:)l + ~ ~ 1 ( ; ) ~ )  + o ( ~ P )  , 
1=1 

qi2) = hdh 2)  + hB rn (1) + hA ri2) + h(e - u)wTrtJ1 + h(e - u)v T rn-] (2) 

Taking into account that  q i l )  = qFjl and rill = rF?, , it follows that 

(5.2.8) 
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+ h(1 - 6)w T r,_z ( 2 )  + h ( l  - 1 9 ) v ~ r F ? ~  
(5.2.9) 

n-3 

(2) ( 2 )  4 2 )  ( 2 )  In what follows we write r,, qnl qnl dnl and d n  instead of rn , qn d ,  , 
and $:), respectively. Then formulas (5.2.8) and (5.2.9) lead to the following 
theorem. 

h 
h 

qn 

Theorem 5.2.1 ([183, 2701) Assume that the TSRK method (5.2.1) is zero- 
stable and that dl = O(hP), 1 = 1 ,2 , .  . . , N ,  as h -+ 0.  Then 

h 

if and only if 

WTrl + vTrl+i = O ( h P ) ,  h --f 0, (5.2.10) 

1 = 1 , 2 , .  . . , N - 1. Moreover, the errors qn of stage values YLn! are given by  

with the error vectors C, defined b y  (5.2.3). 

The condition dl = O ( h p )  and equation (5.2.10) represent the general form 
of order conditions for TSRK methods (5.2.1). It follows from this theorem 
that if the method is zero-stable and satisfies dl = O(hP) and (5.2.10), the 
last stage is convergent with order p (i.e., yn - y ( t n )  = O(hP)) and the errors 
y(t,-l + ch)  - Y[.] of the stages Yin] are given by (5.2.11). 

To reformulate (5.2.10) in a more convenient form, we first need to express 
r,  in terms of qn. Denoting by rj,n and qj,n the j t h  components of r, and 
q,, respectively, we obtain 

P- 1 (5‘”’ - !/(t,-i + cjh))” 
= - D;f(Y(t,-i + c jh) )  v! + O ( h p )  

u=l 
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where Dy” is a differential operator of order u with respect to  y .  Define the 
functions g U ( L 1  + c3h) by 

(- l ) U + l  

gu(t,-1 + C,h) := ~ v! Dy”f(Y(tn-1 + c,h)). 

Then 
cy h p  

P- 1 

gu(t,-1 + c,h) = c g:qtn-l 17 + O(hP) ,  
p=O 

where g?) stands for the derivative of order p. Setting 

Gu = diag(g,(t,-i + clh).g,(t,-l + czh). . . . ,gu(tn-l + c,h)). 

we obtain 

with the diagonal matrix rc defined by 

rc = diag(c1, cz . .  . . , cs) .  

Using the foregoing notation r,,,, can be written in the form 

P- 1 

T3.n = C g u ( t n - l +  c j h ) ( ~ j , n ) ~  + o ( ~ P )  
u=l 

or 
r,  = Gly, + G2(qn)’ + G3(q,)3 + . . . + O(hP)  (5.2.12) 

as h -+ 0. Following Albrecht [5. 71 we can argue using the implicit function 
theorem [212] that  the functions r, = r,(h) and yn = yn(h) are unique 
in a neighborhood of h = 0 and that they have the following Taylor series 
expansions: 

Yn = &(tn-i)h2 + b(tn-1)h3 + . . . + &-i(t,-1)hP-’ + O ( h p ) ,  (5.2.13) 

r,  = q2(t,-1)h2 + q3(t,-l)h3 + . . . + qp-1(tn-l)hP-’ + o ( ~ P ) ,  (5.2.14) 

h -+ 0. We can generate the functions [,(tn-l) and q3(tn-1) by recursively 
substituting (5.2.13) and (5.2.14) into (5.2.11) and (5.2.12). This leads to  the 
following theorem. 

Theorem 5.2.2 ([183, 2701) The functzons c3 ( tn- l )  and q3 ( tn- l )  satzsfy 
the relatzons 
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and 

+ c g!’( tn- l ) (EP(tn- l )  . Eu( tn -1 ) )  

+ c 
p,u22,p+v=j-l 

g3 ( 1 )  ( t T L - l ) ( E f i ( t T L - l )  ’ E U ( t n - l )  ’ [ T ( t n - l ) )  + * ” )  
p,U,T22,P+V+T=j-l 

f o r  j = 2 , 3 , .  . . , p  - 1 ,  n = 1 , 2 , .  . ., with ql( tn- l )  = 0 .  Here “.” denotes 
componentwise products. 

Proof: 
series around t,-l, we obtain 

Using (5.2.11) and (5.2.13) and expanding qu(tn-2) into a Taylor 

A comparison of the hJ terms yields 

which is the formula required for the function & ( tn- l ) .  
Define 

4n = sj(tn-1) + O ( h j ) ,  
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A comparison of the hJ terms in the expression above yields 

+ . . . .  
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Hence, 

+ c g f ) ( t n - l ) ( & L ( t n - l )  . E&n-1,) 

p,u>2,/L+u=j--l 

+ c g!’(tn- l ) ( tp( tn- l )  . Eu(tn-1) . E&-l))  + . . . ) ,  
p,u,T>2.p+U+r=3-1 

which is the formula required for q j ( tn - l ) .  This completes the proof. 

It follows from Theorem 5.2.1 and formula (5.2.13) that method (5.2.1) has 
order p if 

for q = 1 , 2 , .  . . , p ,  where cq are defined by (5.2.4),  and if 

c, = 0 

w T qq(tn-2) + v T qq(tn--1) = 0 (5.2.15) 

for q = 2 , 3 , .  . . , p  - 1, where the functions qq can be generated using Theo- 
rem 5.2.2. 

Condition (5.2.15) is still difficult to apply since it involves the values of 
the functions qq at two consecutive points t,-2 and tn- l .  However, the more 
convenient form of this condition is given by the following result. 

Theorem 5.2.3 ([183, 2701) Zero-stable method (5.2.1) has order p if and 
only if C, = 0, q = 1 , 2 , .  . . , p ,  and 

A 

q--2 

(VT + wT)qq( tn - l )  + WT c -qq-&-l) ( u )  = 0,  (5.2.16) 
U !  

u=l 

q = 2 , 3  , ‘ ” )  p - l , n = 1 , 2  , . . . .  

Proof: Condition (5.2.15) is equivalent to 

v- 1 

h + 0,  or 

Substituting p = q - u and changing the order of summation in the resulting 
double sum, we obtain 
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which is equivalent to (5.2.16). This completes the proof. 

In this section we were striving at self-contained derivation of general order 
conditions for TSRK methods (5.2.1), and this resulted in a rather lengthy 
presentation leading to Theorems 5.2.1, 5.2.2, and 5.2.3. The reader familiar 
with the theory of B-series [143] can find much shorter derivation of order 
conditions for TSRK methods (5.1.1) in the work of Hairer and Wanner [147] 
and Tracogna and Welfert [272]. The order conditions for TSRK methods 
(5.1.1) were also obtained by Butcher and Tracogna [78] using the algebraic 
approach of Butcher [41] and by Jackiewicz and Vermiglio [185] using the 
theory of GLMs with external stages of different orders. The order conditions 
for these methods can be also derived using a suitable modification of the 
approach by Burrage and Moss [35] and Burrage [29]. 

5.3 DERIVATION OF ORDER CONDITIONS UP TO ORDER 6 

We illustrate the application of Theorems 5.2.2 and 5.2.3 by the derivation 
of order conditions for TSRK method (5.2.1) (equivalent to (5.1.1)) of order 
p = 6. These order conditions are 

h 

C,=O, q = 1 , 2 ,  . . . ,  6, 

and 

(vT + wT)772(tn-1) = 0, 

(vT + wT)773(tn-1) - w 772 (tn-1) = 0, T (1) 

(vT + wT)775(tn-1) - wT(77!1)(tn-1) - 573 (2) (tn-1) + 6772 ( 3 )  (tn-,,) = 0. 

The expressions above contain various combinations of gLp) = g$"(tn- l )  and 
y(p) = y(p)(tn-l), and we obtain order conditions for TSRK methods (5.1.1) 
by equating the coefficients of these combinations to zero. These combinations 
play the role of elementary differentials in the theory of RK methods and are 
given by 

p = 3: 

p = 4: 
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p =  1: 

p = 2 :  

p = 3: 

h c1 = 0; 

A c, = 0; 

h 

c3 = 0, 

(9 + WT)C, = 0; 

p = 4: 
h 

c4 = 0, 

(vT + wT)(A + B)Cz = 0, 

(VT + W’)C3 - WTCZ = 0, 

(9 + WT)rcc2 - W T ~ 2  = 0; 

p = 5 :  
h cs = 0, 

2(VT + WT)C4 + WT(C2 - 2c3)  = 0, 

(v’ + W’>((A + B)rCC2 - BC2) - wT(A + B)C2 = 0 ,  

(vT + wT)((A + B)C3 - BC2) - wT(A + B)Cz = 0, 

(v’ + w’)(A + B)’C2 = 0, 

(v’ + wT)rCc3 + wT(c2 - c3 - rccz) = 0, 

(v* + WT)r%c2 + wT(c2 - 2rcc2) = 0, 

(VT + W’)C,” = 0; 

(v’ + WT)rC(A + B)C2 - wT(A + B)C2 = 0, 

The order conditions up to  p = 6 are listed below, where we always assume 
the stage-consistency condition 

C1 = c + u -  ( A + B ) e  = 0, 

and the error vectors C, and error constants e, are defined by (5.2.3) and 
(5.2.4),  respectively. 
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p = 6: 
h 

C6 = 0. 

6(vT + w')C~ - w'(CZ - 3C3 + 6C4) = 0, 

(v' + w')(B(Cz - 2rCCz) + (A + B)rzCz) 

+wT ((A + B)(C2 - 2rcCz) + 2BC2) = 0, 

(v' + w')(B(C~ - C3 - rcCz) + (A + B)rcC3) 

+&((A+ B)(C2 - C3 - l?,Cz) + 2BCz) = 0 

(v' + w')(A(CZ - 2c3)  + 2(A + B)C4) 

+w'((A + B)(Cz - 2c3)  + 2BCz) = 0. 

(v' + w')((A + B)rc  - B)(A + B)C2 - w'(A + B)'Cz = 0. 

(vT + wT)((A + B)((A -t B)rcCz - BCz) - B(A + B)Cz) 

-w'(A + B)'CZ = 0, 

(vT + w') ((A + B)'C3 - B(A + B)Cz - (A + B)BCz) 

(vT + wT)(A + B)3Cz = 0, 

2(vT + WT)rcc4 - wT(cZ - 2 c 3  - rcc2 + 2c4  + 2rCc3) = 0, 

-w'(A + B)'Cz = 0, 

(v' + w')((A + B)Ci + Cz(A + B)Cz) = 0, 

(v' + WT)(rc(A + B)rcC2 - rcBCz) 

+wT((A + B)(Cz - rcCz) + BCz - rC(A + B)Cz) = 0, 

(v' + WT)(rc(A + B)C3 - rcBC2) 

+w'((A + B)(C2 - C3) + BCz - rc(A + B)Cz) = 0, 

(v' + WT)rc(A + B)'C2 - w'(A + B)'Cz = 0, 

(v' + WT)r;c3 - W T ( ~ z  - 2rccz - c3 + 2rcc3 + r$,) = 0. 

(9 + WT)r3,cz - wT(c2 - 3rcc2 + 3r2,c2) = 0, 

(V' + W')CZC3 - w'c; = 0, 

(v' + W')rz(A + B)Cz + w'((A + B)C2 - 2rc(A + B)C2) = 0. 

(v' + wT)(A + B)C; = 0, 

(vT + WT)rcc,2 - wTc,Z = 0. 

Setting B = 0, the equations above reduce to the order conditions obtained 
by Jackiewicz et al. [181, 1821 using the approach of Hairer and Wanner [144]. 

These order conditions in the scalar case m = 1 are sufficient but not 
necessary since some elementary differentials are equal to each other. For 
example, for p = 5 ,  glgl y" = g1 g1y" and the conditions corresponding to (1) (1) 



ANALYSIS OF TSRK METHODS WITH ONE STAGE 253 

these elementary differentials could be replaced by one condition. However, 
in vector case m > 1; G1(Gil)(y”)) # G$’)(G1(y”)), where G1 and GI1) are 
vector analogs of g1 and g1 , and these conditions are also necessary. We 
refer to Jackiewicz and Tracogna [183] for a derivation of order conditions in 
the vector case. 

It follows from Theorems 5.2.1 and 5.2.2 (compare also the structure of 
order conditions displayed above) that TSRK method (5.1.2) has order p and 
stage order q = p - 1 if 

(1) 

c,=o, u = 1 , 2  , ’ ” ,  p - 1 ,  (5.3.1) 

h 
and 

c,=o, u = 1 , 2  , ’ “  , p ,  (5.3.2) 

where C, and e, are given by (5.2.3) and (5.2.4). These conditions imply 
that method (5.1.2) is convergent with order p ;  that is, 

sup { Ily(t,) - Yn/l : 0 5 n L N }  = O(hP)  

as h + 0. If, in addition to (5.3.1) and (5.3.2), we have 

c, = 0; (5.3.3) 

then the TSRK method has order p and stage order q = p .  
In the next three sections we illustrate the solution of order conditions for 

TSRK methods with s = 1, s = 2, and s = 3 stages. We are interested 
primarily in methods of order p and stage order q = p - 1 or q = p .  

5.4 ANALYSIS OF TSRK METHODS WITH ONE STAGE 

5.4.1 

Explicit TSRK methods with s = 1 are given by the abscissa c and the table 
of coefficients 

u l o l  (5.4.1) 

Explicit TSRK methods: s = 1, p = 2 or 3 

+Iw 
where u, 29, b,  v, and w are real parameters. These methods have been in- 
vestigated by Chollom and Jackiewicz [91]. Solving the system of order and 
stage order conditions C1 = 0, Cz = 0. and C1 = 0 with respect to b,  v, and 
w, we obtain a three parameter family of methods of order p = 2 and stage 
order q = 1. The coefficients of these methods are given by 

h h 

3 + ?9 - 2c( l+  6) 6 - 1 + 2c( l+  6) 
2 

. w =  
2 

b = c + u ,  V =  
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Figure 5.4.1 Stability regions of TSRK methods with s = 1 and p = q+ 1 = 2 and 
RK method of order 2 (thick line). Stability regions of TSRK methods correspond to 
the values of 29 = -1 (dashed line), and 6 = -0.9 + O . l ( i  - l),  i = 1 , 2 , .  . . ,20 (thin 
lines, from left to right) 

Figure 5.4.2 
and contours corresponding to areas equal to 1, 1.5, 2, 2.5, 3, 3.5, and 4 

Area of stability regions of TSRK methods with s = 1 and p = q = 2 
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- 0 1 1 - u  u b -  

u 1 - 6  6 w 

0 1 0 0  

1 0  0 0  - - 

-v Y 

-091 I I , I , I 
-1 

0 5  1 1 5  2 2 5  3 3 5  4 
C 

Figure 5.4.3 
s = 1, p = 3, and q = 2 

Stability interval versus c for c E [1/2,4] for TSRK methods with 

To analyze the stability properties of (5.4.1)! these methods are first refor- 
mulated as GLMs with coefficients given by 

(compare Section 2.1). It follows from the linear stability theory of GLMs 
(compare Section 2.6) that the stability function p(ql z )  of (5.4.1) is given by 
(2.6.5) that is, 

P(% .) = det (771 - M ( 4 )  1 

where the stability matrix M(z) is defined by (2.6.4). It can be verified that 
stability polynomial p ( q ,  z )  of these methods is 

P ( V !  2) = v3 - P2(Z)V2 + Pl(Z)V - PO(Z)! (5.4.2) 

and 

1 - 6 - 4c8 - 2u + 4cu - 2621 + 4c8u 
2 Zl Pl(Z) = -6 + 

2cu - 2c8 - u - 6u + 2c8u 
2 

z .  P o ( Z )  = 

For fixed values of 6; -1 < 8 5 1, we have performed a numerical search 
in the parameter space (clu)  trying to maximize the area of the region of 
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absolute stability A of the corresponding TSRK methods. These stability 
regions are plotted in Fig. 5.4.1 for 6 = -1 (dashed line), 6 = -0.9+O.l(i-l),  
i = 1 , 2 , .  . . , 20  (thin lines). For comparison, we also shown, by a thick line, 
the stability region of RK_method_ of order p = 2 with s = 2. 

Solving in addition to C1 = 0, C2 = 0, and C1 = 0 the stage order condition 
C2 = 0 with respect to u, we obtain a two-parameter family of TSRK methods 

(5.4.3) 

where v and w are defined as before. The area of the region of absolute 
stability of these methods is plotted in Fig. 5.4.2 for -1 5 c 5 1 and -1 5 
6 5 1 together with the contours corresponding to the areas equal to 1, 1.5, 
2, 2.5, 3, 3.5, and 4. 

Solvingjn addition to the previous order and stage order conditions the 
equation Cs = 0 with respect to 6, we obtain a one-parameter family of 
TSRK methods of order p = 3 and stage order q = 2. The coefficients of these 
methods are 

2(2 - 6c + 32)  

c # *&/6, with u and b defined as before. We have to impose the condition 
-1 < 6 5 1 for zero-stability, which corresponds to c > 112. The stability 
polynomial of these methods is given by (5.4.2) with p 2 ( z ) ,  p l ( z ) ,  and p o ( z )  
defined by 

2(1- 3 2 )  
(5.4 * 4) 

6c2 - 12c + 5 
6 =  , v =  , w =  

1 - 6c2 1 - 6c2 1 - 6 c 2  ’ 

4 - 12c + 1 2 2  - (4 - 5c - 9c2)z 
P z ( z )  = , 6c2 - 1 

5 - 12c + 6c2 + 2(1 - 4c + 6c2)z 
Pl(2) = 6c2 - 1 > 

and 

c # 1 k 6 / 6 .  We can verify using the Schur criterion given in Theorem 2.8.1 
that the interval of absolute stability of these methods is 

4(1 - 3c + 3 2 )  [ 1 + 2 c - l 2 c 2  4 .  
The left-hand side of this interval is plotted in Fig. 5.4.3 versus c for c E 
[1/2,4]. For c + 1/2 and c + m the interval of absolute stability attains its 
maximum size [ - 1, 01 . However, for these values of c we have 6 = - 1, which 
violates the zero-stability condition of the method. The choice c = 1 leads to 
the method of the form 

1 1 0 1 2  
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which has the interval of absolute stability [-4/9,0]. 
Solving instead the equation c s  = 0 with respect to c, we obtain a one- 

parameter family of TSRK methods of order p = 3 and stage order q = 2 with 
coefficients of the form 

6 i J6(d2 - 479 + 1) 

6(1+ 6) 
1 (5.4.5) C =  

3(5 - 36) F 5J6(SZ - 46 + 1) 

6(1+ 6) 

3(7 - 379) f 4J6(OZ - 48 + 1) 
6(1+ 79) 

U =  , 

b =  

and 
3( 1 + 29) F J6(G2 - 46 + 1) 

6 
v =  1 

3(1+ 6) 5 J6(P - 46 + 1) 

6 
W =  

(5.4.6) 

(5.4.7) 

We have to assume that 79 E (-1,2 - & I ,  so that the coefficients of these 
methods are real. The choice 6 = 0 leads to methods with c = (6 k &)/6 
and coefficients u, b,  u, and w given by 

5(3Ff i )  1 0 I Z l y 3  
6 

0 & 
6 

with an interval of absolute stability equal to [-6/11,0]. 

5.4.2 

Implicit TSRK methods with s = 1 are given by the abscissa c and the table 
of coefficients 

4 4  (5.4.8) 

where u, 79, A, b, v, and w are real parameters. These methods have been 
investigated in [91]. Solving C1 = 0 and order conditions up to p = 3 with 
respect to u, b, 6, u, and w, we obtain a two-parameter family of methods of 
order p = 3 with respect to c and A. The coefficients of these methods are 
given by 

Implicit TSRK methods: s = 1, p = 2 or 3 

+ l w ’  

2c - c2 - 2x c + c2 - x - 2cx 1 
U =  , b =  , C f , ,  2c-  1 2c- 1 

with 79, u, and w defined by (5.4.4). Observe that for X = 0 the coefficients u 
and b reduce to those defined by (5.4.3). It can be verified that these methods 
are necessarily of stage order q = 2 (i.e., CZ = 0). 



258 TWO-STEP RUNGE-KUTTA METHODS 

To investigate the stability properties of these methods, it is more conve- 
nient to reformulate the formulas for the coefficients of these methods in terms 
of 6 and X instead of c and A. In such a case, the abscissa c is given by the 
formula (5.4.5) with the coefficients u and b taking the form 

3(5 - 36) 52/6(19~ - 46 + 1) 2(3(1 - 6) J6(1 - 46 + 6”) 
A, - U =  

6 ( 1 +  19) 1 + 6  

3(7 - 319) 4J6(fi2 - 46 + 1) 7 - 66 22/6(1- 46 + d 2 )  

and u and w given by (5.4.7). For X = 0 the formulas for u and b reduce to 
(5.4.6). It is also more convenient to work with the polynomial 

A, b =  - 

6(1 +I?) 1 + 6  

871 2) = (1 - X Z ) P ( r l ,  2) 

instead of p ( v ,  z ) ,  where p ( v , z )  = det(z1- M(z)) is the stability function of 
method (5.4.8) and M(z) is the stability matrix. It can be verified that F(v, z )  
takes the form 

with 
23 - 36 X + 5 6 

1 2  z1 52(z) = 1 - 6 + 
1 - 9X - 26 

3 
5 - 12X - 6 

2, Fo(z) = 12 2 .  Fl(Z) = -19 + 
We demonstrate first that there are no A-stable methods in the class of meth- 
ods (5.4.8) of order p = 3 and stage order q = 2. This follows from the 
following arguments. We must have X > 0 and it follows from the maxi- 
mum principle that the method is A-stable if and only if I)3(qr z )  is a Schur 
polynomial with respect to 17 for all y E R, where &(3(77, y) := F(v, iy).  Let 

F 3 ( % Y )  = V 3 F 3 ( 1 / V !  -Y), 

F 2 ( % Y )  = (F3(3(o,Y)53(%Y) - 5 3 ( 0 , Y ) F 3 ( v , Y ) ) / v ,  F2(77,Y) = v2P2(1/v. -Y), 

F l ( % Y )  = (F2(O,Y)FZ(rl1Y) - F 2 ( 0 1 Y ) F 2 ( v , Y ) ) / v ,  F l ( V , Y )  = vF1(1/v, -Y), 

and 
F o ( Y )  = ( F d O ,  Y)F1(77, Y)  - Fl(0, Y)Fl((rll y))/v. 

Fo(Y)  > 0, 113^3(O,Y)l - lP3(O,Y) /  > 0, and l F 2 ( 0 , Y ) l  - / F 2 ( 0 ; Y ) /  > 0 

It follows from the Schur criterion (see Theorem 2.8.1) that &(v,y) has all 
roots rj inside the unit disk for all y E R if and only if 

for all y E R. These conditions take the form 

qo(~ ,6)y4  + ql(X, 6)y6 + q 2 ( ~ ,  @)Y* > 0, 1 + q 3 ( ~ ,  6)y2 > 0, 
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and 

where q i ( X ,  6), i = 1,2, . . . ,6, are polynomials in X and 6. These polynomials 
are not reproduced here. It can be verified that the conditions above are 
satisfied for all y E R if and only if 

q4(X, 6) + q 5 ( X ,  8)Y2 + q 6 ( X ,  6)Y4 > 0, 

q 2 ( X , 6 ) > 0 ,  i = 1 , 2  , . . . .  6. 

This in turn implies, among other things, the inequalities 

2 4 X + 6  - 9 < 0, 2 4 + 6  - 5 > 0, 2 4 X + 6  - 11 > 0, 

which cannot be satisfied simultaneously for any X and 6.  This justifies our 
claim that there are no A-stable methods (5.4.8) with p = 3 and q = 2. 

Next we investigate the existence of methods of the form (5.4.8) that are 
Ao-stable (i.e., stable on the negative real axis). To this end we have to verify 
that F3(77,z )  is a Schur polynomial with respect to 77 for all z E R, z < 0, 
where we now define 53(77, z) := F(r(rl, z). Let 

P^3(77,z) = V 3 F 3 ( ~ / 7 7 , 4 >  

Fz(77,z) = (P^3(0,4F3(3(17:4 - F 3 ( 0 , 4 P ^ 3 ( 7 7 , ~ ) ) / 7 7 ,  p̂ 2(77,z) = 772P’(l/77,4, 
Fl(771.) = (P^2(01z)Fz(77,~) -F2(0,z)P^z(77,4)/77, P^l(rl,Z) = 77F1(1/77,z), 

and 
Foe(.) = (Fl(0, .IF1 (77 ,  .) - Fl (0, Z)P^l (77, 4) / 7 7 .  

It follows again from the Schur criterion that F3(77,2)  has all roots 77 inside 
the unit disk for z E R, z < 0, if and only if 

Fo(z) > 0, lP^3(O,z)1 - l P 3 ( o 1 z ) 1  > 0, and lp^2(0,2)/ - lP2(01z)I > 0 

for z E R, 2 < 0. Careful analysis reveals that this is the case if and only if 
all nonzero roots of the polynomial Fo(z) are real and positive. These roots 
are 

6(6 - 1) 12 12 
T1 = 7-2 = - 7-3 = - 

11 - 24X - 6 ’  5 - 6 ,  5 - 24X - 6 ’  
and 

11 - 26 - 6’ zk a 
15 - 24X + 26 - 24x6 - O2 ’ 7-4,s = T6,7 = 

where 

A(& 6) := -239 + 576X - 4526 + 1151x6 - 426’ + 576x8’ + 28d3 + 794. 

It is clear that for -1 < 6 5 1 (the condition required for zero-stability) these 
roots are real and positive if and only if 

f i (X,S) := 11 - 24X - 6 < 0, f ~ ( X , 6 )  := 5 - 24X - 19 < 0, 
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Figure 5.4.4 Ao-stable methods (5.4.8) of order p = 3 and stage order q = 2 

f3(X,6) := 15 - 24X + 2 6  - 24X6 - f 1 2  > 0 and A(X,6) > 0. 

We have plotted in Fig. 5.4.4 the curves f i (X,S) = 0 for i = 1,2,3, and 
A(X, 6) = 0. Methods (5.4.8) are Ao-stable for the values of (A, 6) belonging 
to the region bounded by the curves fl(X,6) = 0 and f3(X,6) = 0 (above 
f l ( X , 2 9 )  = 0 and below f3(X,19) = 0 ) .  Observe that this conclusion differs 
somewhat from the results of Jackiewicz and Tracogna [183] and Tracogna 
[270]. 

Setting X = 1/2, 6 = 0, we have c = (6 & & ) / 6 ,  and this leads to the Ao- 
stable TSRK methods of order p = 3 and stage order q = 2 with coefficients 
given by 

- 1  $ I & $  
0 
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The stability polynomial of this method is 

1 5 1 1 
j?(q,z) = (1 - 2 2 ) q 3  - (1 + & - p+ 12"' 

Figure 5.4.5 A-stable methods (5.4.10) of order p = 2 and stage order q = 2 

We conclude this section by investigating A-stable methods of the form 
(5.4.8) with p = q = 2. Solving the system of order and stage order conditions 

h 0 c1 = 0. c2 =o ,  c1 = 0: c2 = o ,  

we obtain a three-parameter family of methods depending on c, A, and '19, 
with coefficients given by 

2c-cz-2x I c+c=-x-2cx 
2c-1 A I 2c-1 

1 3-2c+:-2c* I 2c+8-2-1 ' 

(5.4.10) 
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c # 112. The stability polynomial F(v, z )  takes the form (5.4.9) with 

3 + 2c - c2 - 6X - 6 - 226 
2 z ,  & ( z )  = 1 - 6 + 

FI(Z) = -6 + 1 + 4c - 2c2 - 6X - 6 - 2c26 
2 z :  

and 
2c - c2 - 2X - c26 

2 
z .  Fo(z )  = 

We have performed an extensive computer search in the three-dimensional 
space (A, c, 6) looking for A-stable methods using the Schur criterion in The- 
orem 2.8.1 [183, 2701. Selection of the results of this search in the plane (c, 6) 
is displayed in Fig. 5.4.5 for selected values of the parameter X equal to 11/20, 
518, 314, 718, 1, 514, 312, 2, and 4. 

It can be verified that for the parameters (q6) inside the shaded regions 
on Fig 5.4.5, all roots of the polynomial 

have modulus less than 1. 

5.5 ANALYSIS OF TSRK M E T H O D S  WITH T W O  STAGES 

5.5.1 

This section closely follows the presentation by Chollom and Jackiewicz [91]. 
Explicit TSRK methods with two stages are specified by the abscissa vector 
c = [cl, c2]* and the table of coefficients 

Explicit TSRK methods: s = 2, p = 2, q = 1 or 2 

u1 bii b i z  

u/A(B = 212 1 a21 1 b21 bzz , (5.5.1) 
6 I VT I WT 

6 I v1 ,uz I w1 wz 

where U I ,  U Z ,  6, a21, bll, blz, bz1, b22, vl ,  112, w1, and w2 are real parameters. 
Assuming that c = [0, 1IT1 6 = 0, and solving the system of order conditions 
C1 = 0, CZ = 0, with respect to w1 and w2, and stage order condition C1 = 0 
with respect to bll and b21, we obtain a seven-parameter family of TSRK 
methods (5.5.1) of order p = 2 and stage order q = 1. The coefficients of 
these methods are given by 

h h 
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0.911557 

0.601892 0.730872 

We choose these free parameters of the method trying to maximize the area 
of the intersection of the region of absolute stability of the TSRK method 
with a negative half-plane. This area can be approximated using numerical 
integration in polar coordinates. The resulting objective function for the 
“negative area” is then minimized using the subroutine fminsearch from 
Matlab, starting from some random initial guesses. This computer search 
leads to the method with coefficients 

0.692385 0.219172 

0.635887 0.235132 

The stability region of this method is shown by a thin line in Fig. 5.5.1. 

” 
-6 -5 -4 -3 -2 -1 0 

Re@) 

Figure 5.5.1 Stability region of TSRK method with s = 2 and p = q+ 1 = 2 (thin 
line), TSRK method with s = 2 and p = q = 2 (thin dashed line), and RK method of 
order 2 (thick line) 

Next we look for methods with p = q = 2. Assuming again that c = [0, 1IT, 
19 = 0, and solving the order and stage order conditions C1 = 0, CZ = 0, 
C1 = 0, and C2 = 0, we obtain a five-parameter family of TSRK methods 
(5.5.1) depending on u1, u2, a21, 211, and v2. The coefficients of these methods 
are given by 

h h 



264 TWO-STEP RUNGE-KUTTA METHODS 

0.308343 

-0.113988 

A computer search in the parameter space u1, u 2 ,  uq1, w1, and wq leads to a 
method with coefficients 

1.43462 

0.154172 0.1541 72 

-0.556994 0.00838564 

0 I 1.47417 -0.0264581 I -0.526458 0.0787465 

for which the region of absolute stability is plotted in Fig. 5.5.1 by a thin 
dashed line. 

n*C \ 
-- - - - _ _  - - - - . - 

/ , -... / 
/ 

0 I I I 

-2.5 -2 -1.5 -1 -0.5 0 

Figure 5.5.2 Stability region of TSRK methods of type 3 with s = 2 and p = 
q + 1 = 2 (thin line), TSRK method with s = 2 and p = q = 2 (thin dashed line): and 
RK method of order 2 (thick line) 

We consider next type 3 methods with p = 2 and q = 1 (i.e., methods for 
which = 0). Assuming as before that c = [0, 1IT and 6 = 0, a computer 
search for methods with a large region of absolute stability leads to the formula 
with coefficients 

0.860064 

-1.14359 

-0.177218 1.03728 

0.206108 -0.349695 . 

0 10.20866 0.366951 I -0.133049 0.557438 

This search was performed in a parameter space ul ,  u 2 ,  b 1 2 ,  b 2 2 ,  v1, and wq.  

The stability region of this formula is plotted in Fig. 5.5.2 by a thin line. 
Assuming again that 

c = [0, 1IT and 6 = 0, a computer search in a parameter space u1, uq, w 1 ,  and 
Consider next type 3 methods with p = q = 2. 
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0.30346 1 

0.2 1082 1 

0.151731 0.151731 

-0.394589 1.60541 

0 10.123103 -0.763431 I -1.26343 2.90376 

whose region of absolute stability is shown by a thin dashed line in Fig 5.5.2. 

5.5.2 

Implicit TSRK methods of type 2 with two stages are specified by the abscissa 
vector c = [cl, c2IT and the table of coefficients 

Implicit TSRK methods: s = 2, p = 2, q = 1 or 2 

whereul,  u ~ ,  6, A, u21, b l l ,  b12, b21, b22 ,  v1, v2, w1, and w2 arereal parameters. 
Assume that c = [O,  1IT, 79 = 0, and u = [0, 0IT. As in Section 5.5.1, solving 
the system of order conditions C1 = 0, C2 = 0 with respect to w1 and wz 
and stage order condition C1 = 0 with respect to b l l  and b21, we obtain a 
six-parameter family of formulas (5.5.2) of order p = 2 and stage order q = 1. 
The coefficients of these methods are not listed here. Solving next the stage 
order condition Cz = 0 with respect to  b12 and b22, we obtain a four-parameter 
family of methods of order p = 2 and stage order q = 2 which depend on the 
parameters A, a21, v1, and w2. The coefficients of these methods are 

h h 

o x  0 -A 
0 1 a21 A ~ -1;ZX 3-2az1-4X 

2 

-1+2Uz 3 - 2 U i - 4 V z  
01 v1 " 2 1 7  2 

To analyze the stability properties of the resulting methods, as in Section 5.4.2 
we work with the polynomial 

F((rl1.) = (1 - W2P((rl, z)3 

where p((rl, z )  is the stability function. It can be verified that this polynomial 
takes the form 

F((rl,z) = ((1 - W 2 V 3  -F2(z)(r12 + F l ( Z ) r l  -Fo(z,)(rl, (5.5.3) 

with 

F z ( z )  = F z o  +F21z+F22zZ1 Fl(.) =F11z+F12z2, Fo(.) =Fozz2. 
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Next we solve the equationjjo~ = 0 with respect to u 1 2 ,  and the system jj11 = 0 
and 5 2  = 0 with respect to v1 and 212. This leads to a one-parameter family 
of TSRK methods with coefficients given by 

X 0 -A 
-1+2X -1+2X-8X2 

X I T  2(1+2X) 

5-2X+12X2+8X3 1+4X-4X2 1+4xL4X2 I 4(1+2X) 4 
5-2X+12X2+8X3 I 4(1+2X) 

The stability polynomial of these formulas takes the form 

‘1 j j(q,z) = ((1 - Xz)277 - 1 - (1 - 2X)z - -(1- 4X + 2X ) z  773. 
1 
2 

Observe that the only nonzero root of jj(q, z )  is equal to the stability function 
of SDIRK method of order p = 2. As a consequence, it follows from Section 2.7 
that these methods are A-stable if and only if X 2 and L-stable if and only 
if X = (2 f &‘)/2. The coefficients of these A- and L-stable TSRK methods 
are given by 

- 2 7 6  
2 

2 ( 3 F 6 )  ziJ”i 
2 1 4  . 

I 7 3 1 3 4 6  - 1 T 2 6  I - 3 2 2 6  - 1 7 2 f P 6 4  
28  4 

Finally, consider type 4 methods, which correspond to a 2 1  = 0. There is 
a three-parameter family of such methods with c = [0, 1IT, 29 = 0, and u = 
[0, OlT of order p = 2 and stage order q = 2 which depend on 211, 212, and A. The 
stability polynomial of this family has the form (5.5.3). Solving the system 
5 0 2  = 0 and 5 1 2  = 0 with respect to 211 and 212, we obtain a one-parameter 
family of TSRK methods of the form 

X 0 - A  
0 O I  X 1 -  2 3-4x  2 > 

~ 

X 2 X - l ) ( 2 X + l )  - X(4X2-8X+5) 4X3-16X2+17X-6 I ( 4(X-1) 4(X-1) 4(X-1) 

X # 1. The stability polynomial of this family of formulas assumes the form 

with 

3 - 8X + 4X2 X(3 - 6X + 2X2) - 2 X -  1 
z2, P l ( Z )  = ~ z +  2 ( X - 1 )  2(X - l)z* 

j52(z) = 1 - 
2(X - 1) 
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It can be verified using the Schur criterion (Theorem 2.8.1) that these methods 
are A-stable if and only if 3 I: X 5 or X 2 i. These methods are L-stable 
if and only if X = (3 f &)/2! which are the roots of the equation 5 2 2  = 0. 
The coefficients of these A- and L-stable methods are 

O i  0 + 
- 3 F d  

2 

5.5.3 

In this and the following sections we demonstrate that it is possible to con- 
struct methods of order p = 4 and p = 5 with only two stages. This sec- 
tion closely follows the presentation by Jackiewicz and Tracogna [183] and 
Tracogna [270]. It will usually be assumed that 19 = 0 and u1 = u2 = 0. We 
will look for methods of stage order q equal to at  least 3, that is, methods 
which satisfy the stage order conditions 

Explicit TSRK methods: s = 2, p = 4 or 5 

Ci = 0, i = 1,2 ,3 .  (5.5.4) 

Solving in addition to (5.5.4) the order conditions 

h ci = 0, i = 1.2,3,4;  (5.5.5) 

we obtain two one-parameter families of methods depending on c2 or c1 of 
order p = 4 and stage order q = 3. The coefficients of the first family of 
methods that depend on c2 are 

C2(3 - C2) c2(3 + 2c2) 
6 ( ~ 2  - 1) ’ b21 = , b22 = 

17 - 3 8 ~ 2  + 1 8 ~ ;  17 - 1 0 ~ 2  
1 2 C Z ( l +  c2)) 211 = 1 212 = 12c2(1 - c2) 

(5.5.6) 

-7 + 14C2 - 6 ~ ;  7 - l0cz 
w1 = w2 = 

12c2(1+ c2) ! 1 2 4 1  - c2). 
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The coefficients of the second family of methods that depend on the parameter 
c1 are 

c: - 6 
3 ( C l  - 2) 

2 ( ~ :  - S)(C: - 3Cl + 3)(2~:  - 1 2 ~ 1  + 15) 
27Cl(Cl - 2)’(2C1 - 3) 

c2 = a21 = ’ 

(6 - ~:) (72  - 162cl + 156~: - 63~:  + 8 4 )  
108(2 - C1)’(3 - 3Cl + c:) b2l = 1 

(c: - 6)(180 - 486~1 + 49%: - 225~; + 38~:) 
3 6 ~ 1 ( ~ 1  - 2)(2cl - 3)(3 - 3 C l  + c:) b22 = ’ 

36 - 4 8 ~ 1  - 31~:  + 6 8 ~ ;  - 30~;‘ + 4~5 
8 ~ 1 ( 3  - 2c1)(3 - 3 C l  + c:) v1 = ’ 

(2  - C1)(42 - 135cl + 160~: - 78~:  + 1 2 4 )  
8(3 - 3Cl + c1)(12 - 9cl + 2c:) 

v2 = 

12 - 24cl - C? + 44~: - 26~;‘ + 4 ~ 5  
8(3 - 3Cl + ~ : ) ( 1 2  - 9 ~ 1  + 2~:) 

w1 = ’ 

( ~ 1  - 2)(18 - 39cl - 16~ :  + 4 2 ~ ;  - 1 2 4 )  
8 ~ 1 ( 3  - 2C1)(3 - 3Cl + c:) w2 = 

The stability polynomial of these methods is given by 

(5.5.7) 

(5.5.8) 
+ ( 3(8P2- l) 96I* - 7 z z )  - I* .z) 77, z+12 

where 
Cz(12 - 17C2 - 2cz) 
72(1 - cz) ( l  + ~ 2 )  

I *= 

for methods (5.5.6) and 

(3 - 3Cl + ~:)(126 - 315Cl + 261~: - 754  + 4 4 )  
54C1(2 - ~ 1 ) ( 2 ~ 1  - 3)(12 - 9 ~ 1  + 2~:) I*= 

for methods (5.5.7). We have plotted in Fig. 5.5.3 the left-hand side of the 
interval of absolute stability of the polynomial p ( ~ ,  z )  given by (5.5.8) versus p 
for p E [0,0.4]. This polynomial has the maximal interval of absolute stability 
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-2.5 ' I I I I 1 1 1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
U 

Figure 5.5.3 
versus the parameter ,LL for ,LL E [0,0.4] 

Interval of absolute stability of the polynomial p ( 7 ,  z )  given by (5.5.8) 

approximately equal to (-2.307,O) as p approaches approximately 0.1305 from 
below. There is also a discontinuity of this stability interval at  p 0.2414. 
The abscissa vector c and the parameters of methods corresponding to p = 
0.13 are 

O 1  
0 12.87785 

l o  0 

1 -7.01513 -1.0216 

0 I 1.8152 0.266403 1 -0.927937 -0.153665 

with c = [0, -5.15889IT; 

O I  
0 I 2.87785 

2.12016 0.031664 

-4.89497 -0.989938 

0 1 -0.304963 0.234739 I 1.19223 -0.122001 

with c = [2.15183, -3.00706IT; and 

0 1 2.87785 

3.10518 5.48132 

-3.90995 4.45972 . 

0 I -1.28998 -5.21492 I 2.17725 5.32766 

with c = [8.5865, 3.42762IT. We have plotted in Fig.5.5.4 the stability regions 
of the polynomialp(q, z )  defined by (5.5.8) for selected values of the parameter 
b. 
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-2 

p=o. 1 p0.13 

:a3 

p0.14 

-1 
' 

-1.5 -1 -0.5 0 0.5 -2 -1 0 

1.1=0.18 p0.215 

-1 :.a . 

- 2 0 2 4 6  

p=0.2414 

-1 0 1 

I I 
- 1 0 1 2  

-1 ::I 
-3 -2 -1 0 

bZ0.22 

1 1 

- 1 0 1 2  

p0.3 

-1 ~l-@ 
-2 -1 0 1 

Figure 5.5.4 
values of the parameter p 

Stability regions of the polynomial p ( q ,  2) given by (5 .5 .8)  for selected 

Putting a 2 1  = 0 in (5.5.6) or (5.5.7); we obtain methods of type 3. The 
coefficients of these methods corresponding to (5.5.6) are 

O I  0 

0 0 
-21.45 M 

2 2 

522 103& 1 6 2 7 7 7 6  -3423=127& 18&53& I :60 360 I 360 360 

with c = [0, & v % ] ~ .  The coefficients of these methods corresponding to (5.5.7) 
are 

O I  0 
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-0.548071 

6.97276 

0 

0 

-3.2631 

- 2 k d  
2 

2€Y3 
2 

0 0 

162 77& 5 2 2 7 1 0 3 d  I 18*53& - 3 4 2 T 1 2 7 d  I :60 360 360 360 

with c = [&&: O l T .  The stability polynomial of all these methods corresponds 
to p = 17/60 and is given by 

and the interval of absolute stability is 

( 2 y g -  72, o) x ( - 0.53,O). 

We conclude this section with the construction of TSRK methods of order 
p = 5 and stage order q = 4. Soiving the system of stage order and order 
conditions Ci = 0, i = 1 , 2 , 3 , 4 ,  C, = 0, i = 1 , 2 , 3 , 4 , 5 ,  leads to families of 
such methods which depend on the parameter 8. We have tried to choose 19 
to obtain methods with large interval of absolute stability. The method with 
coefficients 

2.30708 -0.0113337 

6.43125 -0.829075 
~~~~~~~ ~~ 

-0.6 1 -0.189159 -0.0947644 1 0.635485 0.0484391 

seems to be close to be optimal in this respect. For this method the abscissa 
vector c = [2.84382, -4.63369IT, and the interval of absolute stability is ap- 
proximately equal to (-1.23,O). We have also found TSRK methods of type 3 
with p = 5 and q = 4. The coefficients of such a method are 

-0.210299 

-0.0995138 

1.97944 0.0387917 

2.5617 2.3738 

-0.186912 I -0.812426 -0.0761097 I 1.45338 0.248242 

with c = [2.22853. 5.03502IT, and the interval of absolute stability is approx- 
imately equal to (-0.486,O). This method is unique in the class of type 3 
zero-stable two-stage TSRK methods of order p = 5 and stage order q = 4. 
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3 - 
4 

5.5.4 

In this section we consider implicit TSRK methods with two stages specified 
by the abscissa vector c = [c1,c2IT and the table of coefficients (5.5.2) with 
X > 0. Similarly as in Section 5.4.2, we work with the polynomial F((r7, z )  
defined by 

Implicit TSRK methods: s = 2, p = 4 or 5 

F((rl1.) = (1 - W 2 p ( v , z ) ,  

where p ( q ,  2 )  is the stability function. Assuming that u1 = u2 = 0, and 8 = 0 
and solving the system of order and stage order conditions (5.5.4) and (5.5.5) 
corresponding to (5.5.2), we obtain a family of TSRK methods of order p = 4 
and stage order q = 3, depending on the parameters c1 and A. The coefficients 
of these methods are not listed here; they are reduced to (5.5.7) for X = 0. 
The stability polynomial of these methods takes the form (5.5.3) with 

24p - 1 + 16X - 24X2 
2 

17 - 60p - 96X + 96X2 
12 

- 2 2 ,  z +  Pz ( z )  = 1 + 

Fll(2) = 
24p - 3 + 20X - 24X2 

2 
96p - 7 + 48X - 60X2 

12 , Z S  

and 

Po(.) = PZ, 

where p = p(c1, A) depends on the unknown coefficients of the method. This 
can also be verified directly from the exponential fitting condition 

i j (ez ,  z )  = 0 ( z 5 )  

3 3 
16 16 

3 15 
16 16 . 

_ -_  

_ _  _ _  

(compare with Theorem 3.2.3). 
We have performed an extensive computer search looking for TSRK meth- 

ods of the form (5.5.2) with p = 4 and q = 3. which are A-stable. The results 
of this search in the parameter space (el. A) are presented in Fig. 5.5.5. The 
results of the search in the parameter space (A, p)  are given by Jackiewicz and 
Tracogna [183] and Tracogna [270]. It can be verified that inside the shaded 
regions in Fig. 5.5.5 the roots of the polynomial 

have modulus less than 1. Choosing, for example c1 = 314 and X = 314, we 
have c2 = 914, and the coefficients of the A-stable TSRK method are 

107 43 161 23 
01720 -1441 144 720 
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Figure 5.5.5 
stage order q = 3 with u1 = u2 = 29 = 0 

A-stable methods of the form ( 5 . 5 . 2 )  of type 2 of order p = 4 and 

For the method above the roots of the polynomial p(q) are 771 = 0, 772 x 
0.568756, 773 x -0.414087, and 774 x -0.431542. Other examples of A-stable 
methods of order p = 4 and stage order q = 3 with X = 314 and p = 0 are 
presented in [183, 2701. 

We demonstrate next that there are no A-stable TSRK methods of type 4 
in the class of methods above with p = 4. q = 3: and u1 = u2 = 19 = 0, for the 
range of parameters displayed in Fig 5.5.5. Imposing the additional condition 
a21 = 0 leads to the relations 

where 
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and Xi(c l ) ,  i = 2 , 3 , 4 ,  are solutions to the polynomial equation 

These solutions are shown in Fig. 5.5.5 by solid lines and they do not intersect 
the region of A-stability. 

A somewhat different' argument for the non-existence of type 4 methods in 
this class is presented in [183, 2701. 

Figure 5.5.6 
stage order q = 3 

A-stable methods of the form ( 5 . 5 . 2 )  of type 2 of order p = 4 and 

We consider next TSRK methods (5.5.2) of order p = 4 and stage order 
q = 3, where we removed the restrictions on the parameters u1! u2, and 6. 
Solving the system of order and stage order conditions (5.5.4) and (5.5.5), we 
obtain a four-parameter family of methods depending on c1, c2, X and 8. The 
polynomial that determines the stability properties of these methods takes 
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u1 

212 a21 

u3 a31 a32 

u 1 A 1 B - - 

the form 

8% z )  = (1 - W 2 q 4  - F3(z)v3 + F2(z)712 - Fl(Z)V + F o ( z ) ,  

with 
53(z) =p30 +p31z +p32z2, 

2 
5 2 ( z )  =pZO+pZlz fp22z2, 

&(z) = p11z +plzz , and Fo(z) = p 0 z z 2 .  

We have performed an extensive computer search looking for methods that 
are A-stable, where we have assumed that one root of the polynomial F(q, z )  is 
77 = 0 (i.e., that p20 = 0). This condition was used to eliminate the parameter 
6, and the search was performed in the three-dimensional space (c1, c2, A). The 
results of this search are presented in Fig. 5.5.6 for X = 415, 9/10, 1, 11/10, 
615, 13/10, and 4 5 cl,c2 5 8, and for X = 715, 312, 815, and 2 5 c1 5 6, 
215 5 c2 5 315. An example of the method with X = 715, c1 = 712, and 
c2 = 112 is 

24 
476 
5 
118 2899 
5 

- 

-- 

41 1607 15 -- 379 -61 1 -- 
490 11760 1680 1 784 3920 

An example of the method with X = 1, c1 = 5 and c2 = 7 is presented in 
[183, 2701. 

We have also investigated TSRK methods (5.5.2) of order p = 5 and stage 
order q = 4. Solving the corresponding system of order and stage order con- 
ditions leads in this case to the two-parameter family of methods depending 
on c1 and c2. The computer search that we performed for -6 5 cl, c2 5 6 did 
not reveal A-stable methods in this class. 

bll bl2 b13 

b2l b22 b23 

b31 b32 b33 ' 

(5.6.1) 

5.6 ANALYSIS OF TSRK METHODS WITH THREE STAGES 

5.6.1 Explicit TSRK methods: s = 3, p = 3, q = 2 or 3 

In this section we are concerned primarily with methods of high stage order. 
We will consider explicit methods given by the abscissa vector c = [cl, c2, c3IT 

and the table of coefficients 

Following Chollom and Jackiewicz [91], we assume that c = [0, i, 1IT and 
19 = 0. Solving stage order and order conditions (5.3.1) and (5.3.2) corre- 
sponding to p = 3 and q = 2,  we obtain a twelve-parameter family of methods 
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depending on ~ 1 %  u2. us, a21r a31. a32. b13, b23, b33, wl1 112, and u3. The 
coefficients of these methods are given by 

We choose these free parameters of the method trying to maximize the area of 
the intersection of the region of absolute stability of TSRK method with the 
negative half-plane. As in Section 5.5.1, this area can be approximated using 
numerical integration in polar coordinates. The resulting objective function 
for the “negative area” is then minimized using the subroutine fminsearch 
from Matlab starting from some random initial guesses. This computer search 
leads to a method with coefficients 

T 
u =  [ 0.0213802 0.0991119 0.3534371 , 

0 0 

0 

0.582927 0.262283 0 

0.264446 -0.5075 12 0.264446 

0.240292 -0.631471 0.597963 

0.0969341 -0.578148 0.98944 

T 
v = [ 0.0867149 0.621047 0.115883 ] 

T 
w = [ 0.197972 -0.543131 0.521515 ] . 

whose stability region is shown by a thin line in Fig. 5.6.1. 
Solving in addition to (5.3.1) and (5.3.2) stage order condition (5.3.3), we 

obtain a nine-parameter family of TSRK methods depending on u1, uz, u3, 
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" 
-8 -7 -6 -5 -4 -3 -2 -1 0 1 

W z )  

Figure 5.6.1 Stability region of TSRK methods of type 1 with s = 3 and p = 
q+ 1 = 3 (thin line), TSRK method with s = 3 and p = q = 3 (thin dashed line), and 
RK method of order 3 (thick line) 

u21, a31, a32, v1, v2, and v3. The coefficients of these methods are 

7 - 6a32 + u3 9U32 + 2U3 - 10 
3 

, w 1 =  

, b32 = b31 = I 6 

19 - 6 ~ 3 1  - 18~32 + ~3 

6 

9112 + 24V3 - 10 
3 

7 - 6 ~ 2  - l8w3 
6 b33 = , 

19 - 6vl - l8v2 - 36v3 
6 

; w3 = w2 = 

A computer search in this nine-parameter space leads to a method with coef- 
ficient s 

u =  [ 0.149831 -0.0104229 0.0542442 ] , 
T 

1 1.03838 0.556873 0 ] 
0.0249718 0.0998873 0.0249718 1 B = 0.206596 -0.673615 0.248254 1 

0.618834 - 1.62655 0.466708 

T 

i 
v =  [ 1.40014 0.122363 0.141148 ] , 
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T 
w = [ 0.620859 -1.83706 0.552552 ] , 

whose stability region is shown by a thin dashed line in Fig. 5.6.1. 

251 2 

Figure 5.6.2 Stability region of TSRK methods of type 3 with s = 3 and p = 
q+ 1 = 3 (thin line), TSRK method with s = 3 and p = q = 3 (thin dashed line), and 
RK method of order 3 (thick line) 

We consider next type 3 methods with p = 3 and q = 2 (i.e., methods for 
which a21 = a31 = a32 = 0). Assuming as before that c = [0, i, 1IT and 6 = 0, 
a computer search for methods with a large region of absolute stability leads 
to a formula of the form 

0.774352 

2.89678 

6.18955 

-5.25807 11.2905 -5.25807 

-7.12077 16.8883 -6.37077 

-9.88612 24.9618 -7.88612 

0 I0.407808 -0.700253 1.05397 I -1.29498 2.99765 -1.46419 

This search was performed in a parameter space u1, u2, u3, b13, b23, b33, wl, 
w2, and w3. The stability region of this formula is shown by a thin line in 
Fig. 5.6.2. 

Assuming again that 
c = [0, i, 1IT and 19 = 0, a computer search in a parameter space u1, u2. us, 
w1, w2, and w3 leads to a TSRK formula with coefficients given by 

Consider next type 3 methods with p = q = 3. 

0.258133 

0.382867 

0.417524 

0 0.27882 2.10743 -3.70769 

0.0430222 0.17089 0.0430222 

0.272144 -0.411422 1.02214 

1.23625 -3.05498 3.23625 

10.1823 -26.6726 18.8116 
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0 

0 

whose region of absolute stability is shown by a thin dashed line in Fig 5.6.2. 
Observe that these regions are much smaller than the corresponding regions 
of type 1 methods. 

o x  0 0 -A 

5-24X -2+9X 23-24a21-72X 
a 2 1  24 3 24 

a31 a32 
7-6a32-18X -10+9a32+24X 19-6a31-18a32-36X ' 

6 3 6 

5.6.2 

Implicit TSRK methods of type 2 with three stages are specified by the ab- 
scissa vector c = [el, c2 ,  c3IT and the table of coefficients 

Implicit TSRK methods: s = 3, p = 3, q = 2 or 3 

7 - 6 ~  - 1 8 ~ g  -10+9~2+24V$ 1 9 - 6 ~ l - l S ~ 2 - 3 6 ~ g  
0 I v1 212 'u3 I ; 3 6 

Similarly as in Sections 5.4.2 and 5.5.2, to analyze stability properties of the 
resulting methods we work with the polynomial 

F(rl,z) = (1 - W3P(rl, z ) ,  

where p ( 7 ,  z )  is the stability function. It can be verified that this polynomial 
takes the form 

211 

+ I B  212 
- - 

u 3  

A bii b12 bi3 

a21 A b2l b22 b23 
(5.6.2) 

a31 a32 A b3i b32 b33 ' 

where u i ,  u 2 ,  ~ 3 ,  6 ,  A, a 2 1 ,  ~ 3 1 .  a32, bii, b12, bi3, b21, b22, bz3, b31, b32, b33, 

v 1 ,  212, v 3 ,  w 1 ,  w 2 ,  and w 3  are real parameters. We assume throughout this 
section that c = [0, i, 1IT, 8 = 0, and u = [ O , O ,  O I T .  As in Section 5.6.1,  
solving the system of order conditions (5.3.1) and (5.3.2) corresponding to 
p = 3 and q = 2 with respect to w 1 ,  w 2 ,  w 3 ,  b l l ,  b21, b31, b12, b22, and b32, 
we obtain a ten-parameter family of formulas (5.6.2) of order p = 3 and stage 
order q = 2.  The coefficients of these methods are not given here, and in what 
follows we restrict our attention to methods of stage order q = 3.  Solving the 
stage order condition C 3  = 0 with respect to b13, b23, and b33, we obtain a 
seven-parameter family of methods of order p = 3 and stage order q = 3 which 
depend on the parameters A, u 2 1 ,  ~ 3 1 ,  ~ 3 2 ,  q ,  v2 ,  and v3. The coefficients of 
these methods are 
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0 

0 

0 

1 0 0 -1 

0 1 -0.791667 2.33333 -2.04167 

-2.07846 1.34863 1 -3.18196 8.71255 -4.80076 

0 1 3.17415 0.428068 -0.468128 I 2.14298 -5.79415 1.51708 

0 

and 

0 1  0 0 -1 

0 0  1 -0.791667 2.33333 -2.04167 

1.30253 -2.40364 1 0.570305 -2.54425 3.07505 ' 

A = I ), - 

- 

0 I 7.43253 -15.7509 3.5766 I 6.18771 -21.9731 21.5271 

It can be verified using the Schur criterion (Theorem 2.8.1) that these methods 
are A-stable. Since they satisfy (5.6.6); they are also L-stable. 

Finally, consider type 4 methods corresponding to a 2 1  = a 3 1  = a32 = 0. 
Again solving system (5.6.4) with respect to q ,  w2, and w3, we obtain a one- 
parameter family of TSRK formulas depending on A, with coefficients given 
bv 

0 0 -A 

B = I - -2+9X 23-72X 
3 24 

7-18X 2(-5+12X) 19-36X 
6 3 6 

Next we solve the system of polynomial equations 

5 1 2  = 0, 513 = 0, 5 0 3  = 0 (5.6.4) 

This leads to a four-parameter family of with respect to w l ,  212, and 213. 

formulas for which the stability polynomial F(q, z )  takes the form 

~ ( q , . )  = ((1 - x.1~77~ - +ij2(2))v3. (5.6.5) 

In our search for highly stable methods, we impose the conditions 

513 = 0, 503 = 0, (5.6.6) 

which are solved with respect to a31 and ~ 3 2 .  This results in a two-parameter 
family of TSRK formulas with respect to X and u21. Choosing X = 1 and 
a21 = 0, we obtain TSRK methods with coefficients given by 
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I T  , 1+3X)(1-6X+12X2) (l+6X)(-1+6X-12X2) -2+39X-114X2+108X3 
18( 1 -2X) 9(1-2X) 18( 1 - 2X) 

v = [  ( 

I T  , = 1 29-159X+294Xz-180X3 -41+216X-384Xz+216X3 74-345X+546X2-252X3 
18( 1 -2X) 9 (  1 -2X) 18( 1-2X) 

X # i. The stability polynomial F(q, z )  of these methods has the form (5.6.5), 
where &(z) and & ( z )  are cubic polynomials with respect to z .  It can be 
verified using the Schur criterion (Theorem 2.8.1) that these methods are A- 
stable if X > 0.783491. It can also be verified that these methods are not 
L-stable. 

5.7 TWO-STEP COLLOCATION METHODS 

We examine in this section a class of continuous two-step methods for the 
numerical solution of the initial value problem (2.1.1), which is based on the 
collocation approach proposed by D'Ambrosio et al. [104]. We consider a 
class of methods defined by 

Yn = P(tn) ,  

n = 2 , 3 , .  . . . N ,  O E (0.11. t ,  = t o  + nh, N h  = T - t o .  Here P ( t )  is a 
continuous approximation to the solution y ( t )  of (2.1.1), c = [c l , .  . . , csIT is 
the abscissa vector, and cpo(O) ,  (pl(0), xJ(0), and + J ( 0 ) ,  j = 1,2 , .  . . , s, are 
polynomials that define the method. Observe that this method requires a 
starting procedure to compute an approximation P(t0 + Oh) to y( to  + Oh) for 
O E [0,1], which corresponds to the initial interval [ t o ,  t l ]. For this purpose 
we generally use for this purpose starting procedures for TSRK methods, 
which are discussed in Section 6.2. These starting procedures are based on 
continuous RK methods constructed by Owren and Zenanro [231, 232, 2331 
(see also [230]). 

Setting 

y["l = P(t,-1 + c,h), yln--l1 = P ( t n - 2  + c,h), i = 1 , 2 , .  . . . s, 

method (5.7.1) corresponding to 0 = c,, i = 1 . 2 , .  . . , s, can be written as a 
TSRK method of the form 



282 TWO-STEP RUNGE-KUTTA METHODS 

- A 1 6  u B -  

VT 2? 6 W T  

0 1 0  0 

I 0 0  0 - - 

i = 1 , 2  ! . . . !  s , n = 2 , 3  , . . . ,  N,wi th  

T T 
v =  [ v1 ’ . ’  v , ]  ! w =  [ w1 . . .  w, ] , 

method (5.7.2) can be written as a GLM with coefficients given by 

(compare Section 2.1). 
Next we derive the continuous order conditions for method (5.7.1) assuming 

that P(t,-l+ Oh) is an approximation of uniform order p to y( tn- l  +Oh) for 
0 E [0,1]. As a result, the stage values P(t,-l + cih), i = 1 , 2 , .  . . , s, have 
stage order q = p .  To derive these order conditions we investigate the local 
discretization error le(t,-l + Oh) of method (5.7.1), which similarly as for 
the TSRK methods (5.1.1), is defined as the residuum obtained by replacing 
P(h-1 +Oh) by y(t,-l+ Oh), P(t,-l + cjh) by y(t,-i + cjh) ,  P(tn-2 + cjh) 
by y(h-2  + cjh) ,  yn-i by y(t,-i), and yn-2 by y(t,-2), where y ( t )  is the 
solution to (2.1.1). This leads to 

le(t,-l + Oh) = ~ ( t , - ~  +Oh) - pl(0)y( t , - l )  - po(0)Y(t,-l - h)  

n = 2 ,3 , .  . . , N ;  O E (0,1]. We have the following theorem. 

Theorem 5.7.1 (D’Ambrosio et al. [104]) Assume that the function f ( y )  
is suficiently smooth. Then method (5.7.1) has uniform order p if the follow- 
ing conditions are satisfied: 

Vl(4 + Po(Q) = 1, 
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8 E [0,1], k = 1 , 2 , .  . . , p .  Moreover, the local discretization error (5.7.3) of 
method (5.7.1) of uniform order p takes the form 

l e ( L - 1  + Qh) = hp+1Cp(8)y(p+1)(t,-l) + O(hp+’), (5.7.5) 

as h + 0 ,  where the error function Cp(Q)  is defined by 

m 
QP+l (++I ( C j  - 1 ) P  

Cp(Q) = ~ - ~ 

j=1 ( p  + l ) !  ( p  + l)! 

Proof; Expanding the expressions y(t,-l+ 8h), y(tn-l - h ) ,  y’(t,-l+ cjh) ,  
and y’(t,-l + (cj - 1)h) into a Taylor series around the point and col- 
lecting terms with the same powers of h, we obtain 

le(tn-1 + Qh) = (1 - PI(@) - Po(Q))y(t,-l) 

+ O(hP+2). 

Equating to  zero the terms of order k ,  k = 0 , l . .  . . , p .  we obtain order con- 
ditions (5.7.4). Comparing the terms of order p + 1, we obtain (5.7.5) with 
error function Cp(Q)  defined by (5.7.6). 

The condition 
pi(Q) + ~ o ( 8 )  = 1, Q E [O, 11, 

is the generalization of preconsistency conditions for TSRK methods (5.7.2). 
It follows from the Definition 2.2.1 that this condition takes the form 

where 

and 

q o =  [ 1 1 10 . . .  0 I T E R ’ + 2  

(compare Section 2.2). It is easy to  verify that these conditions imply that 

G . ? + + U j = l ,  j = 1 , 2 >  . . . ,  s, Z+t9=11.  
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We are interested primarily in methods corresponding to p = s + r ,  where 
r = 1 , 2 , .  . . , s + 1, and the next theorem examines the solvability of the linear 
systems of equations (5.7.4) corresponding to these orders. 

Theorem 5.7.2 (D’Ambrosio et al. [104]) Assume that ci # cj and that 
ci # cj - 1 for i # j .  Then  the system of continuous order conditions (5.7.4) 
corresponding to p = s + r ,  where r = 1 , 2 : .  . . , s ,  has a unique solution cpl(8)) 
$j(8), j = 1, 2 , .  . . ,m, and xj(8), j = s - r + 1,s - r + 2 , .  . . , s, f o r  any 
given polynomials po(8) and xj(O), j = 1 , 2 , .  . . , s - r .  System (5.7.4) corre- 
sponding t o p  = 2 s  + 1 has a unique solution cpo(8), pl(8), $j(8), and x3(8), 
j = 1 , 2 : .  . . , s, which are polynomials of degree 5 2 s  + 1. 

Proof: Observe that the polynomial pl(8) is determined uniquely from the 
first equation of (7.5.4). The proof of the first part of the theorem for p = s+r, 
r = 1, 2 , .  . . s, follows from the fact that the matrices of the systems (5.7.4) 
corresponding to xj(Q), j = s - r + 1, s - r + 2 , .  . . , s, are Vandermonde 
matrices. The second part of the theorem, corresponding to p = 2 s  + 1, is 
technically more complicated and the details are given by D’Ambrosio [103]. 

The next result shows that the polynomials pl(8), Po(@, $j(8), and xj(8), 
j = 1, 2 , .  . . , s, corresponding to the methods of order p = 2s + 1 satisfy some 
interpolation and collocation conditions. 

Theorem 5.7.3 (D’Ambrosio et al. [104]) Assume that pl(8), po(8)) 
+j(8), and xj(8), j = 1 , 2 , .  . . , s, satisfy (5.7.4) for p = 2s + 1. Then these 
polynomials satisfy the interpolation conditions 

and the collocation conditions 

c p ’ l ( C 2 )  = 0: pb(ci) = 0 ,  $ i ( C i )  = 6ij, X i ( C i )  = 0 ,  

cp:(cz - 1) = 0, c p b ( C i  - 1) = 0, $ i ( C i  - 1) = 0, X’.(Cz 3 - 1) = 6ij; 
(5.7.8) 

i , j  = 1 , 2 , .  . . , s. Here 6i j  is the Kronecker delta (i.e., Sii = 1 and 6ij = 0 for  
i # j ) .  

Proof: Conditions (5.7.7) follow immediately by substituting 8 = 0 and 
8 = -1 into (5.7.4) corresponding to p = 2 s  + 1. To show (5.7.8) we differen- 
tiate (5.7.4) to get 
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k = 1 , 2 , .  . . ,2s + 1. Substituting 0 = ci and 0 = ci - 1, i = 1 , 2 , .  . . , s ,  into 

It follows from (5.7.7) and (5.7.8) that the polynomial P ( t )  defined by 

(5.7.9) we obtain (5.7.8). This completes the proof. H 

(5.7.1) satisfies the interpolation conditions 

P(tn-1) = Yn-1, w i n - 2 )  = yn-2 

and the collocation conditions 

P’(tn-l + Cih) = f (P(tn- l  + Cih)), P’(t,-z + Cih) = f (P(tn-2 + czh)), 

i = 1 , 2 , .  . . , s. It also follows from (5.7.7) that the error constant of the 
methods described in Theorem 5.7.3 satisfy the conditions Cp(-1) = 0 and 

For methods of order p = s + r ,  r = 1 , 2 , .  . . , s ,  we choose cpo(6) and 
xj(e), j = 1 , 2 , .  . . , s - r ,  as polynomials of degree 5 s + r which satisfy the 
interpolation conditions 

CP(O) = 0. 

cpo(0) = 0, Xj(0) = 0, j = 1 , 2 , .  . . , s - r (5.7.10) 

and t.he collocation conditions 

cp&) = 0, XS(Ci) = 0, j = 1 , 2 , .  . . , s  - r. (5.7.11) 

This leads to the polynomials cpo(8) and xj(e), j = 1 ,2 , .  . . , s - r ,  of the form 

V 0 ( q  = e(qo + qle + . . . + q s + r - l e S + T - l ) ,  

xj(e) = e(rj,o + rj,le + . . . + Tj,s+r-l @ s + T - l ) l  

j = 1 , 2 , .  . . , s - r ,  where 

s+r-1 - qo + 2q1ci + . . . + (s + r)qs+,-lci 
rj,o + 2TjJCi + . . . + (s + r)rj,,+,-lCi 

- 0, 

s+r-1 - 
- 0, 

j = 1, 2 , .  . . , s - r ,  i = 1 , 2 , .  . . , s. The methods obtained in this way satisfy 
some of the interpolation and collocation conditions (5.7.7) and (5.7.8). We 
have the following theorem. 

Theorem 5.7.4 (D’Ambrosio et al. [104]) Assume that cpo(e) and xj(e), 
j = 1 , 2 , .  . . , s - r ,  satisfy (5.7.10) and (5.7.11). Then the solution cpl(e), 
$j ( (e) ,  j = 1 , 2 , .  . . , s ,  and xj(Q), j = s - r + 1,s - T + 2 , .  . . , S  satisfy the 
interpolation conditions 

p1(0) = 1, $ j ( O )  = 0, j = 1 , 2 , .  . . , s ,  

Xj(0) = 0, j = s - r + 1,s - r + 2:. . .,s, 
(5.7.12) 
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and the collocation conditions 

C p i ( C i )  = 0,  @ $ ( C i )  = 6 i j ,  j = 1 , 2 , .  . . , s ,  
(5.7.13) 

X $ ( C i )  = 0 ,  j = s - r + 1,s - r + 2 , .  . . , s ,  

i = 1 , 2  , . ” )  s. 

Proof: Substituting I9 = 0 into (5.7.4) corresponding to p = s + r ,  r = 
1 , 2 , .  . . , s ,  and taking into account that the solution to (5.7.4) is unique, con- 
dition (5.7.12) follows. Differentiating (5.7.4) with respect to 0 and substitut- 
ing s = ci, i = 1 , 2 , .  . . , s, into the resulting relations for k = 1 , 2 , .  . . , s + r ,  

The formulas obtained by imposing conditions (5.7.10) and (5.7.11) will 
then be called almost two-step collocation methods. It follows from Theo- 
rem 5.7.4 that the polynomial P ( t )  defined by method (5.7.1) of order p = 
s + r ,  r = 1 , 2 , .  . . , s, satisfies the interpolation condition 

we obtain (5.7.13). This completes the proof. 

P(tn-1) = Yn-1 

and the collocation conditions at the points c,; that is, 

P’(t,-l+ cih) = f ( P ( t n - l  + cih)),  i = 1 ~ 2 , .  . . , s. 

However, in general, these methods do not satisfy the interpolation condition 

P(tn-2) = ~ n - 2  

and the collocation conditions 

P’(tn-2 + cih) = f (P(tn-2 + cih)),  i = 1 ~ 2 , .  . . , s. 

5.8 LINEAR STABILITY ANALYSIS OF TWO-STEP COLLOCATION 
METHODS 

Applying method (5.7.1) to the standard test equation 

Y‘ = EY,  t L 0 ,  

and computing the resulting expression at  the points I9 = ci, i = 1 , 2 , .  . . , s, 
and I9 = 1, we obtain 

j = 1  
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i = 1,2, .  . . , s, n = 2,3,. . . , N .  Introducing the notation z = h<, 

and 

(compare Section 5.7 for the definition of A, B, v, and w), relation (5.8.1) 
can be written in the vector form 

P(tn-1 + ch) = pl(c)Yn-l + po(c)yn-2 

+ z(AP(tn-l + ch) + BP(tn-z + ch)), 
(5.8.2) 

Yn = pl(1)Yn-l + po(l)yn-2 

+z (VTP(t,_l + ch) + wTP(tn-2 + ch)), 

n = 2,3,. . . , N .  Hence, 

P(tn-i + ch) = (I - zA)-l (pl(c)yn-i + po(c)y,-z + zBP(tn-z + ch)), 

(5.8.3) 
and substituting this relation into the equation for yn leads to  

Yn = (pl(1) + zvT(I - zA)-'p1(C))yn-l 

+ (Po(1) + Z V T ( I  - zA)-lpo(c))yn-z (5.8.4) 

+ Z ( W ~  + . Z V ~ ( I  - Z A ) - ~ B ) P ( ~ , - ~  + ch). 

Relations (5.8.3) and (5.8.4) are equivalent to 

Yn Mll(z) MlZ(z) M13(2) Yn-1 

0 

P(h-1 + ch) Q ~ i ( c )  Q ~ o ( c )  zQB P(t,-z + ch) 

(5.8.5) 
where 

Mll(z) = pi(1) + zVTQpi (C) ,  

Miz(z) = po(1) + zv*Qpo(c), 

M13(z) = Z(WT + ZVTQB), 
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and 
Q = (I - zA)-’ E Csxs,  

As in Section 2.6, the matrix appearing in (5.8.5) is called the stability matrix 
of method (5.7.1) and is denoted by M(z). We have M(z) E C(s+2)x(s+2). 
We also define the stability function of method (5.7.1) as 

P ( V ,  2) = det (VI - M ( 4 ) .  (5.8.6) 

We are interested mainly in methods that are A-stable. This means that all 
the roots w1, w2, . . . , w,+2 of the polynomial p ( q ,  z )  defined by (5.8.6) are in 
the unit circle for all z E C such that Re(z) 5 0. By the maximum principle 
this will be the case if the denominator of p ( q ,  z )  does not have poles in the 
negative half-plane C- and if the roots of p(q,iy) are in the unit circle for 
all y E R. This last condition will be investigated using the Schur criterion 
(Theorem 2.8.1). 

We are also interested in two-step collocation methods (5.7.1) that are 
L-stable, i.e., methods that are A-stable and all the roots of the stability 
function p ( q ,  z )  given by (5.8.6) are equal to zero as z + -m. Examples of 
such methods are given in Sections 5.9 and 5.10. 

5.9 TWO-STEP COLLOCATION METHODS W I T H  ONE STAGE 

In this section we analyze the two-step collocation methods (5.7.1) with s = 1. 
Consider first methods (5.7.1) of order p = 2s + 1 = 3 .  Solving the order con- 
ditions (5.7.4) corresponding to s = 1 and p = 3 ,  we obtain a one-parameter 
family of two-step methods depending on the abscissa c. The coefficients of 
these methods are 

(1 + O)(6c2 - 1 + (1 - 6c)O + 28’) 
1 - 6c2 Pl(6) = > 

Po(8) = 

N O )  = > 

x ( 4  = 

e ( 6 ~ ( ~  - 1) + 3(i  - 2c)e + 28’) 

e ( i + e ) ( i - 4 c + 3 c 2 + ( i - 2 c ) 8 )  

e ( i  + e )  (2c + 3c2 - (1 + a c p >  

1 - 6c2 

1 - 6c2 

1 - 6c2 
and the error constant C3(l) is given by 

1 - 3c - 3 2  + 12c3 - 6c* 
6(1 - 6c2) C3(1) = 

c # k 4 / 6 .  To investigate the stability properties of (5.7.1). it is more con- 
venient to work with the polynomial obtained by multiplying the stability 
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function (5.8.6) by its denominator. The resulting polynomial, which is de- 
noted by the same symbol p ( q ,  z ) ,  for this family of methods takes the form 

where the polynomials pi(z), i = 0,1 ,2 ,3 ,  assume the form 

2 2  p o ( z )  = -(c- 1) c z ,  

p l ( z )  = 5 - 1 2 ~  + 6c2 + (2 - 5~ + 6c2 - 6c3 + 3c4)2, 
p z ( ~ )  = -4 + 1 2 ~  - 12c2 + (4 - 8~ - 3c2 + 6c3 - 3c4)z, 

and 
p3(~) = -1 + 6c2 + (1 - 2~ - 2c2 + C’)CZ. 

Next we investigate if there exist A-stable methods in this class of two-step 
formulas of order p = 3. Let 

3 7 ,  Y) := P(V1 iY)l 

where p ( ~ ,  z )  is the stability polynomial (5.9.1). Next we compute the con- 
stant polynomial with respect to 7 ,  which we denote by Po(y), using the 
recursive procedure described in Section 2.8, leading to the Schur theorem 
(Theorem 2.8.1). This polynomial takes the form 

where cu(c), P(c ) ,  and y(c) are polynomials with respect to the abscissa c. It 
follows from the Schur criterion that the condition 

f?,o(y) 2 0 for all y 2 0 

is the necessary condition for A-stability. However, it can be verified that the 
polynomials a(c) ,  P(c) ,  and y(c) are not simultaneously greater or equal to 
zero for any c. This proves that A-stable methods do not exist in this class of 
methods of order p = 3. 

Consider next methods (5.7.1) of order p = 2s = 2. We choose the poly- 
nomial cpo(0) of degree less than or equal to 2 that satisfies the interpolation 
condition (5.7.10) and collocation condition (5.7.11): 

cpo(0) = 0 and pb(c) = 0. 

This leads to a polynomial cpo(0) of the form 

(5.9.2) 
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where qo is a real parameter. Solving the order conditions (5.7.4) correspond- 
ing to s = 1 and p = 2 ,  where cpo(8) is given by (5.9.2), we obtain a two- 
parameter family of two-step methods depending on qo and abscissa c. The 
coefficients of these formulas are given by 

x (Q)  = ( c + f + cqo) 8 - ( f + $ + z )  Q 2 ,  

and the error constant Cz(1) takes the form 

IOC - 2 4 2  + 12c3 + qo - 2qOc - 6q0c2 + 12qOc3 
G(1) = 1 

24c 

c # 0. The stability polynomial of this family of methods is 

P(771 z )  = 77(Pz(z )V2 +Pl(Z)V + P O ( Z ) ) ,  (5.9.3) 

where polynomials po ( z ) ,  p l  ( z )  and pa ( z )  are now given by 

= 2q0 - 4qoC + (2c - 4c2 + 2 2  + 4o - 2q0c - qoc2 + 2q0c3)z, 

 PI(^) = -4c - 240 + 4qoC - ( 6 ~  - 8c2 + 4c3 - qo + 2qoc - 2q0c2 + 4qoc3)z, 

and 
p z ( z )  = 4c - c2(4 - 2c + qo - 2qoc)z. 

We have performed a computer search based on the Schur criterion using 
the polynomial p ( 7 ,  z )  given by (5.9.3) with PO(.), p l ( z ) ,  and p 2 ( z )  defined 
above. This search was performed in the parameter space (q0,c) and the 
results are presented in Fig. 5.9.1 for -3 5 qo 5 1 and 0 5 c 5 2, where the 
shaded region corresponds to the A-stable formulas. Choosing, for example, 
qo = -1 and c = i, we obtain the A-stable two-step method with coefficients 
given by 

3 + 38 - 2Q2 (28 - 3)Q 
cpl(Q) = > cpo(Q> = > 

@ ( Q )  = > x(Q) = . 
( 5  * 9.4) 

(28 + 3)Q 

For this method the stability polynomial p ( ~ ,  z )  is given by 

(28 - 3)Q 

P(77: .) = 77 ( (3 - ; 2 )  772 - (4 + .) 77 + (1 + 2 ) )  1 

and the error constant is C2 (1) = - 6. 
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Figure 5.9.1 
(5.7.1) with m = 1 and p = 2 

Region of A-stability in the (qo?c)-plane for the two-step methods 

We look next for L-stable methods, that is, methods for which all roots 
of the polynomial p(7 :  z)/p~(z)), where p ( q ,  z )  is given by (5.9.3), are equal 
to zero as z --t -w. Such methods correspond to solutions of the nonlinear 
system of equations 

PO(') - 0, lim PI(') ___ - - 0, lim - - 
z-->--m p z ( z )  z-->-c= p z ( z )  

It can be verified that for methods with stability polynomial (5.9.3), this 
system takes the form 

( c  - 1)(2c - 2c2 + qo - qoc - 2q0.2) = 0, 

6c - 8c2 + 4c3 - 40 + 2qoc - 2q0c2 + 4qoc3 = 0, 

and has solutions 

2 4 
3 '  9:  

C =  1 and qo = -- c = 2 .  qo = -- 
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The coefficients of the method corresponding to  the first set of the parameters 
above are 

(5.9.5) 

and the error constant is C2 (1) = - g .  The coefficients of the method corre- 
sponding to the second set of the parameters qo and c are 

O(0 - 4) 
Pl(0) = , Po(0) = - 9 ’  

2(0 - 4)e 

9 + 40 - O 2  

(0 - 1)O 
(5.9.6) 

= 9, x ( 0 )  = ! 

and the error constant is, as before, Cz(1) = -;. It can be verified that for 
0 = 1, methods (5.9.5) and (5.9.6) both reduce to  the backward differentiation 
method of order p = 2 (compare [52, 1941). 

5.10 TWO-STEP COLLOCATION METHODS W I T H  T W O  STAGES 

We consider first methods (5.7.1) of order p = 2s + 1 = 5. Solving order 
conditions (5.7.4) corresponding to s = 2 and p = 5, we obtain a family of 
methods depending on the components of the abscissa vector c,  c1 and c2. We 
have plotted in Fig. 5.10.1 the contour plots of error constant Cs(1) of these 
formulas for 0 5 c1 5 1 and 0 5 c2 5 1. Choosing, for example, c1 = and 
c2 = 1, we obtain a two-step formula of uniform order p = 5 with coefficients 
given by 

(1 + 0)(29 - 290 + 4402 - 5403 + 2404) 
29 Pl(0) = I 

cPo(0) = - 1 

1Cll(O) = , 
02(1+ 8)(7 - 20 - 1202) 

$ z ( O )  = - ! 

0 2 ( i  + 0)(89 - i87e + 9602) x l (q  = - ! 

x2(6 )  = 

(15 - 100 - 300’ + 2403)0’ 
29 

02(1 + 0)(19 + 70 - 1602) 
29 

87 

87 
O(l+ 0)(29 - 310 - 1602 + 20d3) 

29 

The stability polynomial of this two-parameter family of methods takes the 

113 The error constant of this method is Cs(1) = 83520. 

form 
drl! 2 )  = P4(4rl4 + P 3 ( 4 V 3  +P2(4r12 + Pl(Z)rl+ P O ( Z ) ,  
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Figure 5.10.1 Contour plots of error constant C,=,(1) for 0 5 c1 5 1 and 0 5 c2 5 1 

where pi(z), i = 0,1 ,2 ,3 ,4  are quadratic polynomials with respect to z .  These 
polynomials also depend on c1 and c2. We have performed an extensive com- 
puter search based on the Schur criterion in the two-dimensional space (Q, c2) 
looking for methods with good stability properties, but so far we have not been 
able to find methods that are A-stable. We suspect that such methods do not 
exist in this class of formulas with s = 2 and p = 5. 

We consider next methods of order p = 2s = 4. We choose the polyno- 
mial cpO(O) ,  which satisfies the interpolation condition (5.7.10) and collocation 
conditions (5.7.11) : 

cpo(0) = 0 and cpb(ci) = 0, i = 1 : 2 .  

This leads to a polynomial of the form 

~ ~ ( 8 )  = e(qo + qle + q2e2 + q3e3), 

where q2 and q3 are given by 

740 + 6ql 
q2 = - 3 q 3 =  

3q0 + 2ql 
2 '  
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Choosing, for example, c1 = 5 ,  c2 = 1, 40 = 41 = -1, we obtain the method 
with coefficients given by 

27 + 278 + 278’ - 79Q3 + 39Q4 
27 

s(27 + 278 - 798’ + 39Q3) 
27 

28(27 + 188 - 978’ + 57Q3) 
27 

Pl(Q) = 

Po(Q) = - 

h ( Q )  = - > 

& ( Q )  = 1 

Xl(Q) = - 1 

xz(Q) = 

~ ( 8 3 7  + 5948 - 28818’ + 1857Q3) 
810 

28(783 + 10268 - 26698’ + 1293Q3) 
405 

Q(783 + 7568 - 2249Q2 + 1113Q3) 
162 

(5.10.1) 

1085 The error constant of this method is C4(1) = -. 

p = 4 takes the form 
The stability polynomial of the four-parameter family of methods of order 

where p t ( z ) ,  i = 0 ,1 ,2 ,3  are quadratic polynomials with respect to z .  These 
polynomials also depend on the parameters 40, 41 , c1, and c2. We have per- 
formed an extensive computer search based on the Schur criterion in the four- 
dimensional space (40, 41, c l ,  C Z ) ,  but so far we were not able to find methods 
that are A-stable. We suspect again that such methods do not exist in this 
class of formulas with s = 2 and p = 4. 

Finally, consider methods of order p = 2s - 1 = 3. We choose the polyno- 
mials cpo(8) and x l (8 )  of degree less than or equal to 3 that satisfy conditions 
(5.7.10) and (5.7.11): 

yo(0) = 0, Xl(0) = 0, p&) = 0, Xi(Ci) = 0, i = 1,2.  

These polynomials take the form 

where 
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Figure 5.10.2 
(5.7.1) with s = 2 and p = 3 

Region of A-stability in the (go, ro)-plane for the two-step methods 

Solving order conditions (5.7.4) corresponding to s = 2 and p = 3, we obtain 
a four parameter family of methods (5.7.1) depending on 40, T O ,  c1, and c2. 

The stability polynomial of this family of methods is given by 

where pi(.), i = 0,1,2,  are polynomials of degree less than or equal to 2 
with respect to z .  These polynomials also depend on 40, T O ,  c1, and c2. We 
have performed again an extensive computer search looking for methods that 
are A-stable. We have found such methods only if both components of the 
abscissa vector are outside the interval [0,1]. The results of this search for 
c1 = 4 and c2 = 4 are presented in Fig. 5.10.2 for -0.4 5 40 5 0.1 and 
0 5 TO 5 1, where the shaded region corresponds to A-stable methods. The 
coefficients of the resulting methods with s = 2 and p = 3 and c = [g, ; I T  are 



296 TWO-STEP RUNGE-KUTTA METHODS 

q"Q(135 - 428 + 48') 
135 

63 241 
8 24 

-+-qO-3ro 

(5.10.2) 

1 241 

35 145 

1 29 

(135 + 18190 - 36r0)(135 - 428 + 4Q2)Q - 
1620 

The error constant C3(l) is 

4494825 + 601972390 - 1229184ro 
77760 C3(1) = 

We have also found methods in this class that are L-stable. Such methods 
correspond to solutions of the nonlinear system 

One such solution is 

113887980 NN 0.698405, 
163068619 

M -0.273364, r o  NN 
21225899 
77647080 40 " - 

the error constant is C3(l) E 25.6016, and the resulting method is A- and 
L-stable. 

5.11 TSRK METHODS W I T H  QUADRATIC STABILITY FUNCTIONS 

In this section, which follows the presentation by Conte et al. [92], we ana- 
lyze a special class of implicit TSRK methods (5.1.1) for which the stability 
function has only two nonzero roots. In this analysis it will be convenient 
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- y[nI - - A l e - u  u B - 

- VT 1-?9 29 WT 

- hf (Yln])  - - I 0  0 0  

- Yn 

Yn-1 0 1 0 0  

to use the representation of TSRK methods as GLMs, which was introduced 
in Section 2.1. For easy reference, this representation, corresponding to the 
problem (2.1.1) with m = 1, which is relevant in linear stability analysis, is 
reproduced below: 

- hf (Y[nl )  - 

Yn- 1 . (5.11.1) 
Yn-2 

hf(Y["-ll)  

We also define the coefficients matrices A, U, P, and V of the corresponding 
GLM according to the representation 

The stability properties of (5.11.1) with respect to the linear test equation 
y' = { y ,  t 2 0,  where E @, are determined by the stability function 

277, 2) = det (771 - M k ) )  , (5.11.3) 

where M(z) is the stability matrix defined by M(z) = V + zP(1-  zA)-'U 
(compare Section 2.6). Here A, U, P, and V are the coefficient matrices of 
the GLM defined by (5.11.2). The function F ( q , z )  defined by (5.11.3) is a 
polynomial of degree s + 2 with respect to 77 whose coefficients are rational 
functions with respect to z .  In this section we are only interested in methods 
for which the coefficient matrix A has a one-point spectrum of the form 

a(A) = {A} ,  X > 0. (5.11.4) 

This feature would allow for efficient implementation of these methods, sim- 
ilarly as in the case of SIRK methods considered by Burrage [27], Butcher 
[39], and Burrage et al. [34] (see also [41, 521). 

To analyze the stability properties of such methods, it is more convenient 
to work with the function p ( 7 ,  z )  defined by 

P ( 7 7 , Z )  = (1 - Az)sF(77, z> ,  (5.1 1.5) 

since the coefficients of qi, i = 0 , 1 , .  . . , s + 2, are polynomials of degree s with 
respect to z instead of rational functions, as is the case for (5.11.3). We are 
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interested in TSRK methods (5.11.1) of order p = s and stage order g = p ,  
for which the stability polynomial p ( ~ ,  z )  takes a simple form, 

P(Q1Z) = QS(P - WSQ2 - P 1 ( 4 Q + P o ( Z ) ) ,  (5.11.6) 

where pl(z) and p o ( z )  are polynomials of degree s with respect to z .  Methods 
for which this is the case are said to possess quadratic stability (QS). In what 
follows we present a characterization of such methods which was inspired by 
recent work of Butcher and Wright [79, 80,811 and Wright [293, 2941 on GLMs 
with inherent Runge-Kutta stability. This work of Butcher and Wright is also 
described in detail in Chapter 7. 

We derive first the stage order and order conditions of TSRK methods 
(5.11.1) using the order theory of GLMs presented in Section 2.4. The GLM 
with coefficients given by (5.11.2) takes the form 

S 9+2 

, i = l , 2 , , . , , s l  Y,'"] = h C aij f ( Jfn1 ) + C uij  y j  In-11 

j=1  j=1  

n = 1 , 2 , .  . . , N ,  where Y,'"] are defined as in (5.11.1) and yIn] and y[n-l] are 
given by 

Yn Yn-1 

y [ n l =  1 Yn-1 1 , y [ n - l l =  1 yn-2 ) 1 . 
h F ( Y [ " ] )  hF (Y b-'] 

It follows from Theorem 2.4.1 that GLM (5.11.7) has order p = s and stage 
order q = p if and only if the relations (2.4.5) and (2.4.6) are satisfied (with B 

with T = s + 2. Expanding ecr and er in (2.4.5) and (2.4.6) into power series 
around z = 0 and comparing constant terms in the resulting expressions, 
we obtain the preconsistency conditions Uqo = e and V q o  = q o  (i.e., the 
conditions (2.2.1)). Comparing the terms of order zk for k = 1 , 2 , .  . . , s, in 
the resulting expressions the stage order and order conditions (2.4.5) and 
(2.4.6) can be written in the form (2.4.8) and (2.4.9) or, equivalently, 

replaced by P), where we recall ~ ( z )  = ~~.o qkz  k and q k  = [qlk, . . . , grkIT 

(5.11.8) 

and 

(5.11.9) 
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We determine now the vectors q k ;  k = 1,2 . .  . . , s, appearing in (5.11.8) and 
(5.11.9). We have 

and expanding y(tn - h)  and y’(t, + (c - e)h) into a Taylor series around the 
point tn, we obtain 

Comparing this expression with (2.4.3) in Section 2.4 leads to the following 
formulas for the vector q k :  

0 

(-Ilk 

- ( k  - l)! 

k !  
(c - e)k-l 

, k = l , 2 ,  . . .  

where 0 in q o  stands for a zero vector of dimension s. The vector qo is 
called the preconsistency vector. It can be verified, using the representation 
(5.11.2), that the preconsistency conditions (2.2.1) are satisfied automatically 
for TSRK method (5.11.1). The vector ql is called a consistency vector and 
conditions corresponding to k = 1 in (5.11.8) and (5.11.9) are called consis- 
tency and stage-consistency conditions. These conditions take the form 

Pe + Vql = qo + ql ,  

which corresponds to (2.2.2) and (2.2.3). 
It is convenient to express the stage order and order conditions (5.11.8) 

and (5.11.9) directly in terms of coefficients c, 6, u ,  v, w, A,  and B of the 
original TSRK method (5.1.2). We have the following theorem. 

Theorem 5.11.1 (Conte et al. [92]) Assume that the TSRK method (5.1.2) 
or (5.11.1) has order p = s and stage order q = p .  Then the stage order and 
order conditions take the form 

Ae + Uql = c. 

Ac”l B(c - e)k-l 
= 0, (5.11.10) Ck ( - I lku  Ck := - - - 

k !  k !  (k - l)! ( k  - l)! 
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k = 1 , 2  , . . . ,  s, and 

wT(c - e)k-l  
c k  := - - - = 0, (5.1 1.11) 

k !  k !  ( k  - l)! ( k  - l)! 

k = 1 , 2 , .  . . s, where c' := [c';, . . . , c:IT. 

Proof: To reformulate (5.11.8) and (5.11.9) in terms of the coefficients of 
TSRK method (5.1.2), we use the representation of matrices A, U, P, and V 
in (5.11.2). The stage order conditions (5.11.10) follow directly from (5.11.8). 
To reformulate (5.11.9), observe that 

1 
k !  
- 

(-1s 
k 

c ( k  - l ) ! l !  
1=0 

k 
(c - e)' c ( k  - 1 - l ) ! l !  . 1=0 

Since 
k k 

( -1) l  1 

1=0 

and 

C k - l  
1 k- l  k - 1  1 

k-1  

c ( k  - 1 - l ) ! l !  - -z( (k - l)! =- ( k  - l ) ! '  
(c - e)l 

- 

1 =o 

it follows that the last s + 1 components of the left-hand side of (5.11.9) are 
automatically equal to zero, and comparing the first components of (5.11.9)1 

The vectors c k  and constants t?k were introduced in Section 5.2 as equa- 
tions (5 .2 .3)  and (5.2.4). For easy reference they are reproduced in the for- 
mulation of Theorem 5.11.1 in formulas (5.11.8) and (5.11.9). 

Setting k = 1 in (5.11.10) and (5.11.11), the stage-consistency and consis- 
tency conditions take the form 

we obtain order conditions (5.11.11). This completes the proof. 

(A + B)e - u = c ,  (vT + w')e = 1 + 6. 

These relations were obtained in Section 2.2. 
We now turn out attention to the main topic of this section: TSRK methods 

with quadratic stability functions. To investigate such methods it is conve- 
nient to introduce some equivalence relation between matrices of the same 
dimensions. We say that the two matrices D and E are equivalent, which we 
denote by D = E if they are equal except for the first two rows. 
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This relation has several useful properties that will aid in the derivation of 
TSRK methods with appropriate stability properties. It can be verified that 
if F E R(”+2)x(”+2) is a matrix partitioned as 

where F11 E R Z x 2 ,  F12 E RZx”, Fzl E R u X 2 ,  F 2 2  E Rvx”, and if F21 = 0, 
then 

D = E implies that FD = FE. 

Moreover, for any matrix F we also have 

D f E implies that DF E EF 

In general, it is a very complicated task to construct TSRK methods (5.11.1) 
that possess QS, especially for methods with a large number of stages s, since 
this requires the solution of large systems of polynomial equations of high 
degree for the unknown coefficients of the methods. However, if we restrict 
the class of methods, it is possible to find interrelations between the coefficient 
matrices A, U, P, and V defined by (5.11.2), which ensure that this is the case 
(i.e., that TSRK method (5.11.1) possesses QS). For GLMs with RK stability 
such conditions were discovered recently by Butcher and Wright [80, 2931 (see 
also Theorem 7.2.4). They take a similar form for TSRK methods with QS. 
This is formalized in the following definition. 

Definition 5.11.2 TSRK method (5.11.1) with coeficients A, U, P, and 
V defined by  (5.11.2) has inherent quadratic stability (IQS) if there exasts a 
matrix X E R(S+2)X(Sf2)  such that 

PA 3 X P  (5.11.12) 

and 
P U  = xv - vx. (5.11.13) 

The significance of this definition follows from the following theorem. 

Theorem 5.11.3 (Conte et al. [92]) Assume that TSRK method (5.11.1) 
has IQS. Then its stability function F(w, 2) defined b y  (5.11.3) assumes the 
form 

F(v, 2 )  = rls (v2 - Fl k ) v +  F o ( 4 )  , (5.11.14) 

where Fl(z) and Fo(z)  are rational functions with respect to z .  

Proof: The proof of this theorem follows along the lines of the corresponding 
result for GLMs with IRKS [80, 2931 (compare also Theorem 7.2.4). IQS 
relation (5.11.12) is equivalent to 

P(I - zA) ii (I - zX)P, 
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and assuming that I - zA is nonsingular, it follows that 

P 3 (I - zX)P(I - zA)-'. (5.11.15) 

To investigate characteristic polynomial of the stability matrix M(z) it is more 
convenient to consider the matrix related to M(z) by similarity transforma- 
tion. Using (5.11.13) and (5.11.15) and assuming that I - zX is nonsingular, 
we have 

(I - zX)M(z)(I - zX)-' 

= (I - ZX)(V + ZP(I - ZA)-~U) ( I  - zx)-l 

3 (V - zxv + zPU)(I - zX)-] 

3 (v - zxv + z(XV - VX))(I - zX)-l 

3 (V - zVX)(I - zX)-l. 

= (V - zXV + z(1-  zX)P(I - zA)-lU)(I - zX)-' 

Hence, 
(I - zX)M(z)(I - zX)-' = V. (5.11.16) 

It follows from the structure of the matrix V and relation (5.11.16) that the 
matrix (I - zX)M(z)(I - zX)-' can be partitioned as 

where Ml l ( z )  E R Z x 2 ,  M12(z) E R Z x s ,  and 0 stands for a zero matrix of 
dimension s x 2 and s x s, respectively. This relation implies that the charac- 
teristic polynomial F(q, z )  of the matrix (I - zX)M(z)(I - zX)-' and M(z) 

To express IQS conditions (5.11.12) and (5.11.13) in terms ofthe coefficients 

assumes the form (5.11.14). This concludes the proof. 

19, u, v, w, A, and B of TSRK method (5.11.1), we partition matrix X as 

x11 I Xl2 
(5.11.18) 

x =  [ x21 1 x 2 2  ] ' 
where X11 6 R Z X 2 ,  X12 E R Z x s ,  X21 E Rsx2 ,  X22 E R"'. We also partition 
accordingly matrices P, U, and V: 
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where Pi1 E R2xs ,  U11 E RSX2,  V11 E R2x2, V12 E Raxs are given by 

I is the identity matrix of dimension s x s ,  and 0 in V stands for zero matrices 
of dimension s x 2 and s x s ,  respectively. Then it is easy to verify that IQS 
conditions (5.11.12) and (5.11.13) are equivalent to 

A = X2lPll + x22 (5.11.19) 

and 
Uii = X21Vi1, B = X21V12. (5.11.20) 

Set 
X21 = [ a p ] E Rsx2 ,  

where a , p  E RS. Since 

X2lPll = avT, X21Vll = [ (1 - ,)a + p ,a ] . x21v12 = awT. 

[ e - u  . I = [  ( i - , ) a + p  fla I ,  B = a w T .  

conditions (5.11.19) and (5.11.20) take the form 

A = avT + X* (5.11.21) 

and 

where we have written X* instead of X22. 

simplified to 
The conditions above can be 

e = a + p ,  u=fla,  B = a w  T . (5.11.22) 

Summing up the discussion above. TSRK method (5.11.1) has IQS if there 
exist vectors a ,  p E Rs and a matrix X* E R s X s  such that conditions (5.11.21) 
and (5.11.22) are satisfied. The construction of TSRK methods that satisfy 
these conditions is described in the next section. 

5.12 CONSTRUCTION OF TSRK METHODS WITH INHERENT 
Q U A D RAT I C STAB I L I T Y  

In this section we describe an algorithm, proposed by Conte et al. [92], for the 
construction of TSRK methods with IQS and such that the coefficient matrix 
A has a one-point spectrum (5.11.4). In this algorithm we first compute the 
coefficient matrix B and the vector w from stage order and order conditions 
(5.11.10) and (5.11.11). Introducing the notation 

( s  - l)! cs-l 1 ' c = [  
- C2 . . .  "]: c!=[ e - C . . .  - 
2 !  S !  l !  
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c - e  (c - e)”-l 
l! ( s  - l)! 

E = [ e  - . . .  

conditions (5.11.10) and (5.11.11) are equivalent to 

BE = C - udT - A e  

Hence, assuming that E is nonsingular, we obtain 

B = (C - udT - AE)EP1 (5.12.1) 

and 
wT = (gT - 6dT - vTE)E-l. (5.12.2) 

To obtain TSRK methods with IQS, we compute the matrix X* from the 
condition (5.11.21) : 

X* = A - avT, 

and the vectors p and u from the first two conditions of (5.11.22): 

P = e - a ,  u = 6 a .  

Then we enforce the condition B = awT in (5.11.22) using the representations 
of B and w given by (5.12.1) and (5.12.2). This leads to 

C - UdT - AE = agT - dadT - avTC 

and using the condition u = 6a and assuming that C is nonsingular, we 
obtain 

A = (C - a(gT - V*C))E-~. (5.12.3) 

Computing matrix A from (5.12.3) and then matrix B from (5.12.1), where 
u = 6a, and vector w from (5.12.2), we obtain a family of TSRK methods 
(5.11.1) of order p = s and stage order q = p :  which depends on the param- 
eters 29, a, c, and v. By construction, these methods satisfy IQS conditions 
(5.11.21) and (5.11.22). Next we impose the condition (5.11.4): that matrix 
A has a one-point spectrum a(A) = {A}, where A will be chosen in such 
a way that the resulting method is A- and L-stable. The condition that A 
has a one-point spectrum (5.11.4) is equivalent to the requirement that the 
characteristic polynomial of A assumes the simple form 

- 

det(q1- A) = (7 - A)” 
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Since 
S 

det(q1- A) = bk$-', 

where bo = 1, bk = bk(29, a ,  c, v), k = 1 , 2 , .  . . , s, and 

k=O 

this is equivalent to the system of equations 

bk(9,a,c, v) = (;) ( - l ) ' A k ,  k = 1 , 2 , .  . . , s.  (5.12.4) 

Since it follows from (5.12.3) that 

A = (C - agT)ZI-' + a?, 

system (5.12.4) is linear with respect to v, and its solution leads to methods 
for which stability polynomial p ( q ,  z )  takes the form (5.11.6): 

P(% 2) = rls ((1 - wsr12 - Pl(Z)rl + PO(4) 

The polynomials PI(.) and p o ( z )  appearing in p ( q ,  z )  take the form 

Pl(Z) =p10 + P l l Z + . . .  +p1,s-1zS-l +PISZS, 

P O ( Z )  =Po0 + P o l z + ~ " + P o . s - l ~ s - l  + P o d S .  

We have 

Pl(0) = PlO = 1 - 79, P o ( 0 )  = Po0 = -79. (5.12.5) 

= e" For a TSRK method of order p = s ,  the stability polynomial p ( q ,  z )  for 
satisfies the condition 

p ( e t ,  z )  = O(z"+l), z --f 0. (5.12.6) 

Expanding (5.12.6) into a power series around z = 0 it follows from (5.12.5) 
that the constant term vanishes, and comparing to zero terms of order z', 
k = 1 , 2 ,  . . . , s, we obtain a system of s linear equations for the 2s coefficients 
p l j ,  p o j ,  j = 1,2 ,  . . . , s, of the polynomials p l ( z )  and p o ( z ) .  This system has a 
family of solutions depending on A, 79, and s additional parameters which may 
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be chosen from plj and p o j .  These free parameters will be chosen in such a way 
that the resulting stability polynomials p ( v ,  z )  are A-stable and, if possible, 
also L-stable. Assuming A-stability, the latter requirement is equivalent to 

which leads to the system of equations 

Pls = 0, Pos = 0. (5.12.7) 

To formulate the system of equations consisting of (5.12.7) and additional re- 
strictions on the parameters plj and p ~ ,  we compute the stability polynomial 
F(q, z )  of TSRK method (5.11.1) from the relation 

- 
g v ,  2) = vs det (71 - Mll(Z)), (5.12.8) 

where I is the identity matrix of dimension 2 and Ml l ( z )  E R2x2 is the 
matrix appearing in (5.11.17). Since IQS conditions (5.11.21) and (5.11.22) 
do not depend on the blocks XI1 and X12 of the matrix X in (5.11.8), we can 
assume without loss of generality that X11 = 0 and Xl2 = 0. Partitioning 
the stability matrix M(z) as 

where Mll(z) E RZx2, Mlz(z) E RZxs: Mzl(z) E R s x 2 ,  and Mzz(z) E Rsxs, 
it follows from (5.11.17) that 

I I I  I 

Hence, 

Mii(z) = Mii(z)  - zM12(z)Xzi: Miz(z) = Miz(z)(I  - zxzz),  

which, taking into account that Xzl = [a P] and X22 = X*, leads to the 
following formula for the matrix Mll(z): 

- 
Mii(z) = Mii(z) + zM12(z)(I - zX*)-’[ Q p 1. (5.12.9) 
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System (5.12.7) and additional restrictions on parameters p l ,  and po, can 
be satisfied for specific values of the parameter vector a.  This process is 
illustrated in Section 5.13 for methods of order p = s and stage order q = p 
for s = 1. 2. 3, and 4. 

The construction of highly stable TSRK methods (5.11.1) with IQS prop- 
erties and coefficient matrix A with a one-point spectrum o(A) = { A }  can be 
summarized in the following algorithm: 

1. Choose abscissa vector c with distinct components and such that matrix 
E defined at  the beginning of this section is nonsingular. 

2. Choose parameters 29 and A > 0 and free parameters among pl, and pol 
so that the stability polynomial p ( q ,  2 )  is A-stable and, if possible, also 
L-stable. 

3. Compute coefficient matrix A from formula (5.12.3). This matrix de- 
pends on vectors cr and v. 

4. Compute vectors p and u from the first two conditions of (5.11.22): 
D = e - a and u = 79a. 

5. Compute coefficient matrix B from (5.12.1) and vector w from (5.12.2). 

6. Solve system (5.12.4) with respect to v. This leads to a family of meth- 
ods with IQS for which matrix A has a one-point spectrum a(A) = {A}.  

7. Compute matrix G l ~ ( . z )  from relation (5.12.9) and stability polynomial 
F(q. z )  from (5.12.8) and formulate a system consisting of (5.12.7) and 
additional restrictions on p l ,  and po, consistent with the choice made 
in point 2. 

They depend on a and v. 

8. Solve the system obtained in point 7 with respect to parameter vector a. 
Then the stability polynomial of the resulting TSRK method (5.11.1) 
corresponds to polynomial p ( q , z )  in point 2. 

5.13 EXAMPLES OF HIGHLY STABLE QUADRATIC POLYNOMIALS 
AND TSRK METHODS 

In this section we apply the algorithm described in Section 5.12 to derive 
quadratic polynomials that are A- and L-stable and the corresponding TSRK 
methods with IQS properties for s = 1, 2 ,  3, and 4. 

For s = 1, the stability polynomial (5.11.6) takes the form 

P ( V , Z )  = v( (1  - Wrl2 -Pl(477+Po(4);  

Pl(2) = 1 - 79 +p112, p o ( z )  = -79 +POP. 
with 
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The solution of the equation corresponding to  (5.12.6) with s = 1 is 

Assuming that pol = 0, it can be verified using the Schur criterion [194, 2531 
in Theorem 2.8.1 that p ( q ,  z )  is A-stable if and only if 

2 X + 6 > 1 ,  2 X - 6 1 1 ,  and X 5 2 .  

Moreover, p l l  = 0 leads to 6 = X - 1, and the resulting polynomial is L-stable 
if and only if $ 5 X 5 2. This is illustrated in Fig. 5.13.1, where the range 
of parameters (6, A) for which p ( q ,  z )  is A-stable corresponds to  the shaded 
region and the range of (6, A) for which p ( q ,  z )  is L-stable is plotted by a thick 
line. 

Figure 5.13.1 
p = s = l  

Regions of A- and L-stability in the (19, A)-plane for p ( 7 ,  z )  with 
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The coefficients of the TSRK method corresponding to X = 1, 6 = 0, and 
abscissa c are given by 

u l A l B  - 01 1 ( c - 1  
- 

6 l v I w  0 1 2 - c l c - 1  

The stability polynomial p ( q ,  2) of this family of methods is 

P(V,  .) = V((1 - - 1) 

for any c. In particular, for c = 1 this method is equivalent to the backward 
Euler method. 

For s = 2 the stability polynomial (5.11.6) takes the form 

P ( V ,  .I = V 2 ( ( 1  - Xz)2V2 - Pl(Z)V +PO(Z)), 

with 

Pl(2) = 1-6+p11z+p1zz2.  PO(Z) = -6+Po1zfPozz2. 

The system of equations corresponding to (5.12.6) with s = 2 takes the form 

p11 - pol = 1 - 2X + 6, 2Pll - 2p02 + 2p12 = 3 - 8X + 2x2 + 6, 

and assuming that poz = 0 and p12 = 0 for L-stability, the unique solution to 
this system is given by 

3 - 8X + 2X6 + 6 1 - 4X + 2X2 - 6 
2 . Po1 = 2 Pll = 

The range of parameters (6, A) for which the p ( v ,  z )  is A-stable, and since 
p12 = 0 and p02 = 0, also L-stable, is plotted in Fig. 5.13.2 by the shaded 
region. 

The coefficients of the TSRK method corresponding to X = 2 ,  6 = 0, and 
abscissa vector c = [0, 1IT are given by 

The stability polynomial p ( q ,  z )  of this method is 

For s = 3, stability polynomial (5.11.6) takes the form 

P(V,  .) = q3 ((1 - W 3 V 2  - Pl ( Z ) V  + P O M )  , 
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Figure 5.13.2 
p = s = 2  

Regions of A- and L-stability in the (6,X)-plane for p ( 7 , z )  with 

with 

Pi(z) = 1 - 29+PiiZ+pi2Z2 +Pi3Z3, p o ( Z )  = -fl+P0iZ+P02Z2 +P03z3. 

The system of equations corresponding to (5.12.6) with s = 3 takes the form 

3Pii + 6p12 + 6p13 - 6 ~ 0 3  = 7 - 36X + 36X2 - 6X3 + 29, 

and assuming that p13 = 0, po3 = 0 for L-stability, and in addition that 
p02 = 0, the unique solution to this system is given by 

2 ( 1 -  9x2 + 3x3 + 29) 5 - 36x + 54x2 - 12x3 - 29 
6 

, P12 = Pll = 1 
3 

1 - 9 X +  18X2 - 6X3 +29 
3 

Po1 = 
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0 

Figure 5.13.3 
p = s = 3  

Regions of A- and L-stability in the (8,X)-plane for p ( v , z )  with 

573724 253229 1371718 1349029 598537 3955778 - - - ___ - ___ - - Omm- 492365 1575340 2008359 610487 334774 

4717083 3938351 307583 1996151 3899713 4599017 
411104 1455396 814540 1120476 676582 986185 

6683188 3272705 472108 2289675 2640065 4106281 ' 
O -  1193527 741259 1145977 408409 785118 

The range of parameters (8, A) for which the p ( 7 ,  z )  is A-stable, and since 
pi3 = 0 and po3 = 0, also L-stable is shown by the shaded region in Fig. 5.13.3. 

The coefficients (u, A, B,  8, vT, wT) of the method corresponding to X = i, 
6 = 0, and abscissa vector c = [0, i, 1]* are given by 
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Figure 5.13.4 
p = s = 4  

Regions of A- and L-stability in the @,A)-plane for p ( q . z )  with 

Finally, consider the case 8 = 4. The stability polynomial (5.11.6) now 
takes the form 

with 

Pl(2) = 1 - '8 d- PiiZ + P12Z2 +P13Z3 + p14Z4, 

P o ( Z )  = -fi + Poi2 f P 0 2 Z 2  + + po4Z4. 

The system of equations corresponding to  (5.12.6) with s = 4 takes the form 
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and assuming that p14 = 0, PO4 = 0 for L-stability, and in addition that 
pi3 = 0 and po3 = 0, the unique solution to this system is given by 

1 - 32X + 144X2 - 144X3 + 24X4 - 6 
2 Pll = > 

17 - 192X + 576X2 - 480X3 + 72X4 - 6 
12 P12 = 1 

3 - 40X + 144X2 - 144X3 + 24X4 + 6 
2 Po1 = , 

7 - 96X + 360X2 - 384X3 + 72X4 + 6 
12 Po2 = 

The range of parameters (6, A) for which the p(q, z )  is A-stable and. since 
p14 = 0 and PO4 = 0, also L-stable is shown by the shaded region in Fig. 5.13.4. 
The regions for s = 2 ,  3, and 4 were obtained by computer searches in the 
parameter space (6, A) using the Schur criterion [194, 2531. 

The coefficients of the method corresponding to X = $, 19 = 0, and abscissa 
vector c = [0, i, $, 1IT are given by 

A =  

B =  

47158 20658 16548 
1102905 230377 733283 1 

2053468 173881 337517 - 86197 
392523 1660851 836884 880374 

13765224 119918 387828 214966 
1684843 620675 932779 1621163 

8694859 - 68987 198815 90358 
954168 727614 935168 331129 

73571 316790 383309 1102057 
418565 450193 370547 1459404 

324116 3108022 2008351 1905671 
495273 1186313 621461 677809 

813738 4021146 6409321 6349415 
787901 972541 1054477 1430988 

426460 4154204 12185608 6621076 
370257 900915 1797671 1338039 

-- - -- -- 

-- - -- -- 

-- - _- -- 

-- - -- -- 

- T  

1 

8694859 68987 198815 90358 , 

T 
= [ 426460 4154204 12185608 

370257 900915 1797671 

The stability polynomial p ( q ,  z )  of this method is 

with 
241021 198226 z z .  
765596 1427227 

and po(z) = -- z - -  
744347 2965 z2 

1148421 320219 
p1(z) = 1 - - z + -  
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CHAPTER 6 

IMPLEMENTATION OF TSRK METHODS 

6.1 VARIABLE STEP SIZE FORMULATION OF TSRK METHODS 

Much of this chapter follows the presentation by Bartoszewski and Jackiewicz 
[17]. For the numerical integration of initial value problem (2.1.1), we consider 
the class of variable step size TSRK methods defined on the nonuniform grid 

t Q < t l < " ' < t N .  t N > T ,  

by the formulas: 

yzb! - - (1 - U2)Yn-1 + UiV,-* 

(6.1.1) 

General Linear Methods for Ordinary Differential Equations. By Zdzislaw Jackiewicz 
Copyright @ 2009 John Wiley & Sons, Inc. 
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i = 1 , 2 , .  . . ,s,  n = 2,3 , .  . . , N .  Here [to,T] is the interval of integration. 
In these formulas h, = t ,  - n = 1 ,2 , .  . . , N ,  y,, ~ ~ - 1 ,  and LnV2 are 

approximations to y(t,), y(tn-l) ,  and y(t,-l - h,), and ?["I, Y j  are 
approximations to y( tn - l  + cjh,), y(t,-l + (cj - l)h,). Observe that, in 
general, t,-1 - h, does not coincide with grid point, and tn-l + (c j  - l)h,, 
j = 1 , 2 , .  . . , s, do not coincide with points at which stage values are computed. 

Similarly as in Sections 2.1 and 5.1 by introducing the standard notation 

-[n-1] 

these methods can 

ybl = 

Yn = 

+ 

be written in the vector form 

i = 1 , 2 , .  . . ,s, n = 2 ,3 , .  . . , N ,  where u, A, B, v, and w are defined as in 
(5.1.3) and e = [l, 1,. . . , 1IT E Rs. 

The definition of the algorithm for the numerical solution of (2.1.1) is not 
yet complete, and we have to specify in addition to (6.1.1) or (6.1.2) the 
starting procedure to advance the step from t o  to tl with initial step size h l  and 

the procedure for computing approximations and Y j  to y(t,-l- hn) 
and y(tn-1+(cj-1)h,), n = 2 , 3 , .  . . , N ,  j = 1 , 2 , .  . . , s. These approximations 
are expressed in terms of approximation Z(tn,  h,) to the Nordsieck vector 
~ ( t , ,  h,), defined by 

-[,-I] 

(6.1.3) 

Observe that this is the same definition as that given in (3.11.1). The starting 
procedure based on continuous RK methods are described in Section 6.2. In 
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Section 6.3 we discuss error propagation for TSRK methods (6.1.2) which will 
lead to order conditions for variable step size TSRK methods and formulas for 
error constant and a vector of error constants of stage values. Computation 
of the approximation to the Nordsieck vector and to hK+ly(p+')(t,) which is 
needed for local error estima ion is then discussed in Section 6.4. The com- 
putation of vn-2 and h,F(Y ) in discussed in Section 6.5. In Section 6.6 
we describe the construction of TSRK methods with error constant given in 
advance and large regions of absolute stability. We also discuss the assess- 
ment of local error estimation for the resulting formulas. In Section 6.7 we 
describe construction of continuous extensions of TSRK methods. In Sec- 
tion 6.8 we present the results of numerical experiments with the variable 
step size implementation of the methods constructed in Section 6.6. In Sec- 
tion 6.9 we describe the local error estimation of two-step collocation methods 
introduced in Section 5.7 .  Finally, in Section 6.10 some recent work related 
to two-step collocation methods is described. 

-fn-l] 

6.2 STARTING PROCEDURES FOR TSRK METHODS 

TSRK methods of the form (6.1.1) or (6.1.2) require a starting procedure 

to compute y1 x y ( t l ) ,  FF1 x y(t1 + (c3 - l )h2 ) ,  j = 1 . 2 , .  . . . s, and go x 
y(tl - h2) using the given initial value yo. It was observed by Hairer and 
Wanner [147] and reiterated recently by Verner [277, 2781 that if the order 
p of a TSRK formula is at  least greater by 2 than its stage order q ,  special 
starting values are necessary for the first step, which must be compatible with 
the TSRK method. This means that the terms of order up to p - 1 in the B- 
series corresponding to Y['] computed by this starting procedure must coincide 
with the corresponding terms in the TSRK formula (compare 1147, 2721; for 
the B-series concept we refer the reader to the book by Hairer et al. [143]). 
The construction of starting procedures that satisfy these requirements was 
undertaken by Verner for TSRK of order p = 6 and stage order q = 3 [277] and 
for TSRK methods of stage order p -  3 [278]. Such methods were investigated 
by Jackiewicz and Verner [189]. 

It was pointed out by Hairer and Wanner [147] and Tracogna and Welfert 
[272] that the situation is much simpler for TSRK methods of order p and 
stage order q = p or q = p - 1. In such a case it is possible to choose as a 
starting procedure any continuous RK method of uniform order p ,  or to use 
repeatedly a discrete RK method of order p with step sizes hl + (c3 - l )h2,  

j = 1 , 2 , . .  . .s.  h2 5 h l ,  to compute Ti']. and with a step size h l  - hz to 
compute Do. 

In the reminder of this section we concentrate on the approach based on a 
continuous RK method. Following this approach, the first step from to to tl  
with a step size hl will be computed by an explicit continuous RK method 
of uniform order p with abscissa vector E = [El ,  . . . , & I T ,  coefficients &, and 
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4 
5 
- - - 

continuous weights &(Q). These methods are given by 

68 368 
375 375 

_ _  - 

i-1 

4 
5 

C l  A - - - 

- 
Here yi are approximations to y(z0 + E i h l ) ,  i = 1 , 2 , .  . . , s, and yh(t0 + Qhl) is 
an approximation to  y(t0 + Ohl), 0 E [0,1].  Such methods were investigated 
by Zennaro [295, 2961, Owren [230], and Owren and Zennaro [231, 232, 2331. 
Following Shampine [257], we define initial step size hl by the formula 

hl = min { IT - to~,Tol l i (pt l ) I /S(~o)~/- l} ,  

where p is the order of the method and To1 is a given accuracy tolerance. 

start TSRK method (6.1.1) from the formulas 
Assuming that h2 5 hl ,  we can compute go and Y:'], which are needed to  

68 368 
375 375 

_ _  - 

where 62 = h 2 / h l  and y h  is defined by (6.2.1). In particular, if h2 = h l ,  then 
- -PI 
yo = yo and Yi = yh(t0 + c i h l ) ,  i = 1 , 2 , .  . . , s. 

Owren and Zennaro [232] constructed efficient continuous RK methods by 
minimizing the_ contin3ous coefficients of the local discretization error. The 
coefficients C, A, and b(0) of the resulting methods of order p = 3, p = 4, and 
p = 5 with S =  4, s = 6, and S =  8, respectively, are given below. 

Example 1. Continuous RK method with p = 3 and S =  4: 

I 

12 
_ I  7 
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0 

L 
6 

Example 2. Continuous RK method with p = 4 and S = 6: 

1 
6 

- 11 - 37 

11 
17 
- E l  A 

- - 

44 363 
1369 1369 

3388 8349 - 8140 
4913 4913 4913 
- -- 

bz (8  = 0, 

- 1230867904 217807933 ~ 861101 8 2  
b3(Q) = 5072320 380424 

b4(Q) = -10144640 5325936 293440 ! 

b5(0)  = -217984 190736 762944 ' 

b6(8 )  = - 131 

230560 

7816583 8 4  I 624442383 63869 8 2  
- 

62437584 I 98212583 152212502 
- 
- 

29684 - 46183 + mQ2, 
131 131 

50653 299693 3375 
116160 1626240 11648 
--- 1697 

18876 1 -  

Example 3. Continuous RK method (E, A, G'(8)) with p = 5 and S = 8: 

0 
1 
6 

1 
4 

I 
2 

1 
6 

3 1 
16 16 

3 1 
4 4 

- - 

1 -- 
I 

2 
1 

- 9 
14 

7 
8 
- 

1 
4 4 -3 2 

15 - 3 - _  

369 243 1485 __ 297 297 
1372 343 343 9604 4802 

133 - 1113 7945 12845 315 156065 
4512 6016 16544 24064 24064 198528 

2401 6016 41 
945 O 825 180 36 38610 20475 

- - - -- 

-- 

I s 3  - - 1 - -  - 248 
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- 
59605 496904 ~ 1789303 329202 

bl(6) = 315 819 2457 819 +’, 
- 
b2(6 )  = 0, 
- 

198465 I 134404 4356803 j 511262. 
b3(6) = -275 65 2145 715 ’ 

b 4 ( 4  = 15 78 234 , 
- 

11865 146504 I 316103 - g o 2  

- 
b5(d) = 205 - go4 + 234 106103 - ~ 0 2 ,  

- 
960405 240164 I 6002503 4081702 

b6(0) = -6435 1521 50193 33462 

b7(6)  = -6825 5915 53235 5915 ’ 
b 8 ( O )  = 405 - 13 

- 
4812865 I 9625634 63769663 I lS048/~2  

- 
10964 + 7 5 6 3  - 1 8 0 2 .  

13 13 

Owren and Zennaro [232] also constructed embedded discrete RK methods of 
order p - 1 which can be used for error estimation and control over the first 
step. These methods take the form 

- 
S 

$1 = Yo + hl  c;Jf(y3). (6.2.3) 
j=1 

h - 
where 5 ,  j = 1 , 2 , .  . . , s, are given by (6.2.1) and the coefficient vector b = 

[ b l ,  . . . , bzlT is given by 
h h 

for the method with p = 3 and Z = 4 in Example 1, 

T 
b = 101 0 1369 11849 [ 363 14520 14520 ] 

for the method with p = 4 and Z = 6 in Example 2, and 

for the method with p = 5 and Z = 8 in Example 3. 

by the Richardson extrapolation 
Alternatively, error estimate after the first step est(t1) can be computed 

(6.2.4) 

where y;t(tl) is an approximation to y(t1) computed by a continuous RK 
method (6.2.1) over two steps of size h1/2. This estimate is usually very 
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reliable, and although its cost is quite high, it is used only on the first step of 
the integration, so its contribution to the overall cost of the algorithm is not 
significant. 

Local error estimation for subsequent steps taken with TSRK methods 
(6.1.1) is discussed in the next section. 

6.3 ERROR PROPAGATION, ORDER CONDITIONS, AND ERROR 
CONSTANT 

In this section we consider only TSRK methods of order p and stage order 
q = p .  We demonstrate that for these variable step size methods (6.1.1) or 
(6.1.2), the stage order and order conditions take the form 

c,=o, v = 1 , 2 ,  . . . , p ,  (6.3.1) 

h 

and 
c,=o, v = 1 , 2  ) . " ,  p ,  (6.3.2) 

where C, and E, are defined by (5.1.3) and (5.1.4), respectively. To justify 
(6.3.1) and (6.3.2), we investigate error propagation of TSRK methods defined 
by (6.1.1) or (6.1.2) on the interval [tn-l , tn].  Similarly as in the work by 
Butcher and Jackiewicz [69, 70, 711, we determine the error constant E = Ep 
and the vector of error constants E = [&, . . . , & I T  of stage values such that 
the localizing assumptions 

imply that 

We recall that in the formulas above y ( t  + ch) stands for 

This analysis will also lead to stage order and order conditions. We have the 
following theorem. 
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Theorem 6.3.1 ( B a r t o s z e w s k i  a n d  Jack iewicz  [17]) The method defined 
by  (6.1.2) or (6.1.2) has order p and stage order q = p if and only if (6.3.1) 
and (6.3.2) are satisfied. Moreover, the error constant E = Ep and vector of 
error constants of stage values [ are given by  

V ~ C P  + W'(C - e ) p  1 
E = E  

- ( P +  l ) !  p ! ( l -  ( - l ) P + l f l  I (6.3.5) 

and 

Proof: It follows from (6.3.3) and (6.3.4) that 

and 

h, f (Y["l) = h,y'(t,-1 + ch,) + O(hP,+'). 

Substituting (6.3.3), (6.3.4), and the relations above into (6.1.1), we obtain 

and 
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Expanding y(t,-i + ch,), y(t,-i - h,), y(t,-1 + h,), y'(t,-l+ ( c  - e)h,), 
and y'(t,-l + ch,) into a Taylor series around t,-l leads to 

+ (A c3 I) (cj-1 ( j  - l)! @ I) hjny(j) (tn-l) 
j=1 

and 

Comparing terms of order j ,  j = 1 , 2 , .  . . , p ,  in the relations above we obtain 
stage order and order conditions (6.3.1) and (6.3.2). Comparing terms of 

It follows from (6.3.3) and (6.3.4) that the local discretization error le(t,) 
of method (6.1.1) of order p and stage order q = p at the point t ,  has the 
form 

le(t,) := y(t,) - yn = EhK+'y(p+l)(t,) + ~(hp,").  

The computable estimate of the principal part of this error is be derived 
in the next section. For methods with c1 = 0 and c, = 1, high stage or- 
der has the additional advantage of reducing the number of evaluations of 
the function f since we can approximate f ( Y p l )  by f(Ys["-']) computed 
in the preceding step. This is similar to the idea of FSAL (first same as 
last) introduced by Dormand and Prince [117] in the context of RK meth- 
ods (see also [116, 257, 2601). In the context of DIMSIMs this property was 

order p + 1, we obtain (6.3.5) and (6.3.6). This completes the proof. 
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referred to as FASAL (first approximately same as last) by VanWieren [273, 
274, 2751. However, such implementation may affect the properties of the 
resulting formulas, and the effects of this modification on stability properties 
of the overall numerical algorithm require further study. 

6.4 COMPUTATION OF APPROXIMATIONS TO T H E  NORDSIECK 
VECTOR AND LOCAL ERROR ESTIMATION 

To implement the method defined by (6.1.1) or (6.1.2) in a variable step size 
environment, we need to compute approximations 

after the step from t,-l to t ,  is completed. Here h,+l is a new step size from 
tn to tn+l chosen according to some step size changing strategy. These approx- 
imations are expressed in terms of approximation Z( tn ,  h,) to the Nordsieck 
vector z(t,, hn) defined by (6.1.3), which is derived in this section. 

We look for the approximation E(tn ,  h,) to z(t,,  h,) of the form 

where 

Yo s Yo1 Yo2 . ' .  

7 1 1  7 1 2  . . .  Y l s  

. .  * .  

Ypl Y p 2  * . '  Yps 

(6.4.1) 

The representation (6.4.1) is more convenient in a variable step size environ- 
ment than the representation considered by nacogna [271], which depends 
on stage values at two consecutive steps. 

The coefficients a,  0, and r are computed by requiring that 

- 
Z ( t n ,  h,) = Z(tn.3 hn)+ o(hP,+')); 

where it is assumed that y n - l ,  y,, and YIn] satisfy (6.3.3) and (6.3.4). This 
leads to the following theorem. 

Theorem 6.4.1 (Bartoszewski and Jackiewicz [I"]) A s s u m e  that  func-  
t ion  y is  suf ic ient ly  smooth and that  y,, yn+l ,  and Y["l satisfy (6.3.3) and 
(6.3.4). T h e n  
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where a ,  p, and r satisfy the system of equations 

a tT + p eT + r 6 = 

(6.4.3) 
= 0. ( - 1 ) P + l a  - Ep + r(c - ‘)” 

(P  + I)! P !  

Here el = [l, 0, . . . , OIT E RPs-’, Ip+l is the identity matrix of dimension p + l ,  
and 

Proof: Since yn-l ,  y,, and YIn] satisfy (6.3.3) and (6.3.4), relation (6.4.2) is 
equivalent to 

Expanding y ( t ,  - h,) and y’(t, + (c  - e)h,) into a Taylor series around t,, 
we obtain 

+ ( ( -a -EP+ ( c  P !  - e l”)  @ I )  jg+ly(p+l) ( t n )  

and implies (6.4.3). 



326 IMPLEMENTATION OF TSRK METHODS 

The quantity h:+ly(Pf1)(tn) can be estimated in a similar way. We look 
for an estimate of the form 

(6.4.4) 
+ (Yp+l c3 I) h,F(Y["]) + o(hp,+2)1 

where ap+l PP+l E R and 

Y P + l  = [ Yp+l,l  yp+1,2 . . .  Y P + l , S  ] E RS. 

We have the following theorem. 

Theorem 6.4.2 (Bartoszewski and Jackiewicz [17]) Assume that func- 
tion y is suficiently smooth and that y n - l ,  y,, and Y["] satisfy (6.3.3) and 
(6.3.4). Then (6.4.4) holds where cyP+ll & + I ,  and yP+l satisfy the system of 
equations 

I 

aP+l tT + PP+l eT + yP+l c = 0, 

(- l)P+l (c  - e)* (6.4.5) 
= 1, P,+1+ Y P + l  ~ ( p  + l)! %+l - P! 

where t ,  e l ,  and C are defined as in Theorem 6.4.1. 

Proof: It follows from (6.3.3) and (6.3.4) that (6.4.4) is equivalent to 

hpn+lY(P+l) ( t n )  = @p+l  ~ ( t n  - hn) + P p + i  ( ~ ( t , )  - EhP,+lZ/(P+')(tn)) 

+ (yP+i 8 I) hny'(tn + (c  - e)h,) + o ( h ~ + ~ ) .  

Expanding y(tn - hn) and y ' ( t ,  + (c  - e)h,) into a Taylor series around the 
point t,, we get 
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and comparing the corresponding terms, we obtain (6.4.5). 

A different approach to the computation of approximations to z(t,, h,) and 
hE+ly(p+')(tn) is presented by Tracogna [271], where the quantities F ( Y [ " ] )  
and F(Y["-")  are utilized. 

It follows from (6.4.4) that the local discretization error of TSRK method 
defined by (6.1.1) or (6.1.2) can be estimated by the formula 

where E is the error constant given by (6.3.5) and 7(tn7 hn) is defined by 

rl(tn; hn) = Qp+l Yn-1 + Pp+l yn + (YP+l €3 I) h,F(Y["]). (6.4.6) 

6.5 COMPUTATION OF APPROXIMATIONS TO THE SOLUTION 
AND STAGE VALUES BETWEEN GRID POINTS 

In this section we describe the efficient computation of the quantities jjn-l 

and h,+lF(Y'"]), which are needed to advance the step from t ,  to tn+l with 
the method (6.1.1) or (6.1.2) with a new step size h,+l. To derive the formula 
for YnP1, observe that 

Note also that if hn+l = h,, then gn-l = y ( t n - l )  = yn-l, which is consistent 
with (6.3.3). On the other hand, if h,+l = 0, then YnPl approximates the 
quantity y(t,) - E hK+ly(p+l)(tn) up to terms of order O(!L:+~). 

Set 6,+1 = h,+l/h, and as in Section 4.1, denote by D(6) the rescaling 
matrix defined by 

D(6) = diag(l,S,. . . : S P ) .  

In actual implementation of TSRK methods, the ratios 6 will be restricted by 
the requirement 

bmin F 6 F dmax, (6.5.2) 

where &in and dmaX are the minimum and maximum ratios permitted in a 
code. 

Expanding y ( t ,  - h,+l) in (6.5.1) into a Taylor series around t,, we obtain 

- 
Yn-1 = 

+ 
+ 
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where the vector t is as defined in Theorem 6.4.1. This suggests the following 
formula for Ln-l: 

where Z ( t n ,  h,) is defined by (6.4.1) and ~ ( t , ,  h,) is defined by (6.4.6). 

To arrive at  the formula for h,+lF($"]), we start with the relation 

Expanding y'(t, + ( c  - e)h,+l) into a Taylor series around t,, we obtain 

where the matrix 
suggests the following formula for hn+lF(y 'n l ) :  

is defined as in Theorem 6.4.1. Similarly as before, this 

Observe that (6.5.3) and (6.5.4) can be computed without any extra evalua- 
tions of the right-hand side of equation (2.1.1). 

6.6 CONSTRUCTION OF TSRK METHODS WITH A GIVEN ERROR 
CONSTANT AND ASSESSMENT OF LOCAL ERROR 
EST I MAT I0 N 

In this section we describe the construction of TSRK formulas given by (6.1.1) 
or (6.1.2) with error constants E given in advance and with large regions of 
absolute stability. We illustrate our approach in the case of methods with 
p = q = s = 3. Assuming that 6 = 0 and c = [0,1/2, 1IT and solving stage 
order and order conditions (6.3.1) and (6.3.2) with respect to B, w, and 213, 
we obtain an eight-parameter family of methods depending on UI,  u2, u3, u 2 1 ,  

~ 3 1 ,  ~ 3 2 ,  w1, and 212. It follows from Jackiewicz and Tracogna [183] that the 
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local discretization error of these methods has the form 

le(t,) = E hAy(4) (tn-l) 

+ F ~ ( ~ ) ( t , - ~ )  + (v + w ) ~ G -  af (y(tn-1))y(4)(tn-1)) hk ( dY 
(6.6.1) 

+ O(h6,)l 

where E = E4 and F = Es are defined by (6.3.5) with p = 3 and p = 4, 
respectively, and G is given by 

G = - - - - - -  c4 u Ac3 B ( c - ~ ) ~  
24 24 6 6 (6.6.2) 

Striving for reliable estimation of the local discretization error, we then enforce 
the condition 

(V + w ) ~ G  = 0, (6.6.3) 

which is solved with respect to u2. Although this is desirable, it is not neces- 
sary and there are implementations of Adams methods in PECE mode [143] 
and general linear methods [67] where this condition is not met. This leads 
to methods with B, 212, u3, and w given by 

38 - 15U32 - 9(64 - 47U32)E - 3(1+ 6 ~ 3 2 ) ~ l  
3(42U32 - 47) 

203 = 1 

and local discretization error (6.6.1) now takes the form 

le(t,) = E h : ~ ( ~ ) ( t ~ - l )  + F h ; ~ ( ~ ) ( t , - l )  + O(h:), (6.6.4) 
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Table 6.6.1 Coefficients of TSRK formulas with p = q = s = 3 
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Figure 6.6.1 Stability regions of RK method of order 3 (thick solid line) and TSRK 
methods with E = 1/12 (solid line), E = 1/24 (dashed line), E = 1/48 (dashed-dotted 
line), and E = 1/120 (dotted line) 

where F = (120E - 1)/480. The remaining free parameters u 1 ,  u 2 ,  u3, 

a21, ~ 3 1 ,  ~ 3 2 ,  and v 1  are then computed trying to maximize the area of the 
intersection of the region of absolute stability with the negative half-plane 
using the procedure described in Sections 5.5.1 and 5.6.1. For E = 1/12, 
1/24, 1/48, and 1/120, this leads to methods whose coefficients are listed 
in Table 6.6.1. Coefficients of these methods up to about sixteen significant 
digits are given by Bartoszewski and Jackiewicz [17]. The regions of absolute 
stability of the resulting methods are plotted in Fig. 6.6.1. We can see that 
there is an apparent trade-off between accuracy and stability - the region of 
absolute stability is becoming smaller as the accuracy of the method increases 
or the error constant E decreases. 

To better assess the quality of local error estimation, we also investigate 
terms of order 6 in (6.6.4). It follows from Jackiewicz and Tracogna [183] that 
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the principal part of O ( h i )  is a linear combination of elementary differentials 

af (y(tn-1))y(5) ( ~ - 1 1 ,  
dY 

Y@) (tn-11, 

with weights PI = E5, 

Pz = ( v + w ) ~ Q - v ~ G ,  P3 = ( v + w ) ~ ( A + B ) G ,  P4= (v+w)*I',G-vTG, 

where E5 is defined by (6.3.5) with p = 5, G is defined by (6.6.2), Q is defined 

Q = - + - - - -  (6.6.5) 

bY 
c5 u Ac4 B(c -e )4  

120 120 24 24 ' 
and rc = diag(c1, cz, c3). We then define 

T = (Pi1 + ( p 2 1  + + (P4( 

and compute the ratios FIE and T I E ,  which in addition to the size of the error 
constant E ,  should give some indication of the quality of error estimation. 
These ratios are given in Table 6.6.2 for the methods in Table 6.6.1. 

Table 6.6.2 Ratios FIE  and T I E  for the TSRK formulas in Table 6.6.1 

We can see that as the error constant E gets smaller (or the TSRK method 
becomes more accurate) the ratio F I E  also decreases slowly which should 
have a positive effect on the quality of error estimation. However, higher 
order terms also play a role, and the ratio TIE  shows an opposite trend (they 
increase rather fast). The overall effect of smaller E ,  smaller F I E ,  and much 
larger TIE  is a deterioration of the quality of the local error estimation for 
methods with smaller error constants. This is confirmed by the numerical 
experiments presented in Section 6.8. 

6.7 CONTINUOUS EXTENSIONS OF TSRK METHODS 

Continuous extensions of TSRK methods have been investigated by Bar- 
toszewski and Jackiewicz [ 181, Jackiewicz and Tracogna [ 1841, and Tracogna 
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[271]. We consider variable step size continuous TSRK methods of the form 

Yh(tn-1 + Oh,) = (1 - 0) ynpl + 
(6.7.1) 

-[,-I] 
i = 1,2, .  . . , s, n = 2 , 3 , .  . . , N ,  O E [0,1], where ynv2 and Y j  have the same 
meaning as in Section 6.1. In (6.7.1), yh(tn-l + Oh,) is an approximation to  
the solution y(t,-l + Oh,) defined on the subinterval [tn-l, t,], and 

are continuous weights. It will always be assumed that v(0) = 0 and w(0) = 0 
to assure the continuity of the interpolant yh(t,-l + Oh,) and that v(1) = v 
and w(1) = w, where v and w are coefficients of the underlying discrete 
TSRK method corresponding to O = 1, so that yh(tn-l + h,) = y,. 

Set 

w(e)(C - e)’-l 
- (6.7.2) 

.. 8” (-quO - V(6)TCv-1 c,(e) = - - - 
v! v! (v - l ) !  ( v -  l ) !  , 

v = 1 , 2 , .  . .. To derive continuous order conditions for (6.7.1) we follow an 
approach similar to that adopted in Section 6.3. We determine continuous 
error constant E(O) = Ep(0)  and vector of error constants E of stage values 
so that the localizing assumptions (6.3.3) with E = E(1) ,  imposed on yn-l, 

yn-2 and y[n-ll, imply that 

We have the following theorem. 

Theorem 6.7.1 Continuous TSRK method (6.7.1) has uniform order p and 
stage order q = p if (6.3.1) is satisfied and 

&(e)  = 0, v = 1,2, .  . . , p ,  (6.7.4) 
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where cY(0) is defined by  (6.7.2). Moreover, the continuous error constant 
E ( 0 )  = Ep(0) is given by  

(6.7.5) 
gP+l V T ( e ) C p  + w*(e)(c - e)” 

E ( 0 )  = Ep(0) = - - 
(P + I)! p !  (1 - (- 1)p+119) ’ 

and the vector of error constants < of stage values is given by  (6.3.6) with 
E = E(1). 

Proof: 
Theorem 6.3.1 and is therefore omitted. 

Somewhat different representation and proof of continuous order conditions 
is given by Tracogna [271] (compare also [184]). 

In what follows we apply Theorem 6.7.1 to the construction of continuous 
extensions of TSRK methods with p = q = s = 3 with a given error con- 
stant, which were considered in Section 6.6. We look for methods (6.7.1) with 
continuous weights of the form 

The proof of this theorem follows along the lines of the proof of 

for which v(0) = 0 and w(0) = 0. Solving the continuous order conditions 
(6.7.4) corresponding to p = 3 with respect to wij,  i , j  = 1,2,3, and then the 
conditions v(1) = v, w(1) = w with respect to v i , ~ ,  i = 1,2,3, we obtain a 
six-parameter family of continuous TSRK methods (6.7.1) depending on vij, 
i = 1,2,3, j = 1,2. We then determine the parameters v12 and ~ 1 3  to enforce 
the continuous analog of the condition (6.6.3), that is, 

( ~ ( 0 )  + w(0))TG = 0, (6.7.6) 

where G is defined by (6.6.2). As a result, the continuous local discretization 
error le(t,-l + Qh,) takes the form 

0 E [0,1], where E ( 0 )  = E4(0) and F ( 8 )  = E5(0),  are defined by (6.7.5) 
for p = 3 and p = 4. The remaining parameters 2122, 2123, 2132, and 2133 are 
then determined so that the continuous error constant E4(0) is monotonic for 
0 E [0,1], or deviate from the @-axis as little as possible, finally reaching error 
constant E for 0 = 1. Coefficients v(0) and w(0) of continuous extensions 
of TSRK methods with coefficients listed in Table 6.6.1 and error constants 
E = L  L I a n d 1  120 are listed below. 

12’  24 ’  48’  
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Figure 6.7.1 
with coefficients listed in Table 6.6.1 with error constants E = &, &, A, and &j 

Continuous error constants E ( 0 )  corresponding to  TSRK methods 

4 2  

Continuous extension of TSRK method with E = &, and E(0)  = & + &: 

1.73881 e + 1.06271 e2 - 1.0418 e3 
-0.562812 e + 0.666667%~ I v(e) = 

1 0.140703 8 J 

1 0.105412 e + 0.437295 02  - 0.29153 83 1 
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Continuous extension of TSRK method with E = & and E(8) = $: 

1.80976 e + 0.337391 e 2  - 1.00811 e3 

-0.641559 e + 0.333333 e 2  + 0.666667 e3 v(e) = I 0.16039 e 

0.16039e + 0.1666678~ 

-0.641559 e - e 2  + 0.666667 e3 

0.152581 e + 0.162609 e2 - 0.325219 e3 r w(e) = 

4 3  
Continuous extension of TSRK method with E = & and E(8) = & - &: 

1.474078 + 0.222908 e2 - 1.00206 e3 
-0.516009 e + 0.333333 e 2  + 0.833333 e3 v(e) = r 0.129002 e 

0.129002e + 0.166667e2 - 0.166667e3 

-0.516009 e - e2 + 1.666678~ I 0.299944 e + 0.277092 e2 - 0.831277 e3 
w(e) = 

4 3  
Continuous extension of TSRK method with E = and E(0) = & - &: 

I 2.74802 e + 0.355711 e2 - 1.61389 e3 
-1.13714 e + 0.333333 e 2  + 0.933333 e3 

0.331785 e 
, 

0.331785 e + 0.166667 e2 - 0.266678~ 

-1.32714e - e 2  + 1.146667e3 

0.242691 e + 0.144289 e 2  - 0.519441 e3 

w(e) = 

The conditions given in Theorem 6.7.1 are sufficient but not necessary for 
uniform convergence of order p of continuous TSRK methods (6.7.1). It has 
been demonstrated [18, 1841, that these conditions can be relaxed to 

c,=o, v = 1 , 2  ) . ' . ,  p - 1 ,  (6.7.8) 
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A 
and 

We have the following theorem. 

Theorem 6.7.2 Assume that yo = O(hp),  y1 = O(hP), go = O(hP), and 
-PI 
Y j  = O(hP), j = 1 , 2 ,  . . . , s. Assume also that conditions (6.7.8) and (6.7.9) 
are satisfied. Then TSRK method (6.7.1) is uniformly convergent with order 

&(el  = 0, v = 1 , 2 , .  . . l p  - 1, c,(i) = 0. (6.7.9) 

P (i.e., llYh - Y/I[ to ,T]  = O(hP)  as h = max{hn} + 0). Here llYll[to,T] = 
SUP{IlY(S)ll : s E [to,TI}. 

Proof: This theorem follows from Jackiewicz and Tracogna [184, Theorem 31 
(compare also [18]). The discrete version of this theorem follows from Theo- 
rem 2.4.3. 

Assuming in addition to (6.7.8) that C, = 0 leads to methods for which 
the local discretization error takes the convenient form 

with E = E,; that is, the principal part of the error depends on y(pfl)(t ,- l)  
but is independent of (y(t,-l))y(P)(t,-l). This is the case for many meth- 
ods discussed in Sections 5.4, 5.5, 5.6, and 6.6. 

The construction of continuous extensions of TSRK methods that satisfy 
conditions (6.7.8) and (6.7.9) and such that C, = 0 is described by Bar- 
toszewski and Jackiewicz [18] for TSRK formulas with p = q = s = 3 consid- 
ered in Section 6.6. 

6.8 NUMERICAL EXPERIMENTS 

The methods constructed in Section 6.6 were implemented in a variable step 
size environment with the standard step size changing strategy described for 
DIMSIMs in Section 4.5 (compare also [143]). This strategy is based on the 
estimate est(t,) = Eq(t,.h,) of the local discretization error, with error 
constant E defined by (6.3.5) and q(tnr  h,) defined by (6.4.6). This estimate 
was made to satisfy 

lestz(tn)l I Rtol. max { Iyn-l ,z / l  I Y ~ , ~ ~ }  + Atol. (6.8.1) 

where Rtol and Atol are given relative and absolute error tolerances and ~ ~ - 1 , ~  

and yn,z stand for the i th component of the vectors yn-2 and yn-l  and estz(tn) 
stands for the i th component of est(t,). In our numerical experiments we 

have used Rtol = Atol = Tol. The required starting values go and TI'], 
i = 1,2,3,4,  were computed by formula (6.2.2) using continuous RK method 
(6.2.1) presented in Example 1 in Section 6.2. 

It is known (compare [156, 255, 2561) that the maximum global error result- 
ing from the step size selection based on (6.8.1) is proportional to  TO^^'(^+^), 
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Figure 6.8.1 
of the interval of integration for BUBBLE (1.2.1) 

Number of functions evaluations nfe versus global error ge at the end 

Figure 6.8.2 
of the interval of integration for EULR (1.2.5) 

Number of functions evaluations nfe versus global error ge at the end 

where p is the order of a numerical scheme. To obtain proportionality be- 
tween To1 and global error, we follow Shampine [256] and inside the code use 
a smaller tolerance Tol' defined by 

To]' = C . Tol(p+')/p (6.8.2) 

where C is a constant that is problem dependent. This constant was chosen 
so that global errors obtained by ode23 are comparable to the global errors 
obtained by codes based on TSRK methods defined by (6.1.1) or (6.1.2), and 
we have found that a choice C = 7 works quite well for the test problems we 
experimented with. These are BUBBLE defined by (1.2.2), EULR defined by 
(1.2.5), and ROPE defined by (1.2.7) or (1.2.8). The selection of numerical 
results is displayed in Figs. 6.8.1, 6.8.2, and 6.8.3 (see also Tables 6.8.1, 6.8.2, 
and 6.8.3). We can observe that this choice of a constant C leads to similar 
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ns 201 169 142 231 

nr 1 1 1 7 

nfe 421 357 303 490 

ge 3 .6 .  2 .9 .  lo-' 2.5 . lo-' 1.6 . lo-' 

1 o6 

1 o5 

g lo4 

82 

1 

250 

1.4 . lo-' 

10' 
lo2'  ' " , . ' ' , '  ' ' ' 1 1 1 ' "  ' ' ' , , , , , '  ' " " " "  ' " " " "  ' " 1 1 1 1 ' '  ' ' ' , , J  

1 bS 1 V5 1 Q - ~  1 Q - ~  1 6' 1 0-1 1 0' 

ge 

Figure 6.8.3 
of the interval of integration for ROPE defined by (1.2.7) or (1.2.8) 

Number of functions evaluations nfe versus global error ge at the end 

To illustrate the potential of the new TSRK formulas, we compared the 
variable step size implementation of these methods with state-of-the-art ode23 
code from the Matlab ODE suite [263]. This code is based on an embedded 
pair of RK formulas of order 3 and 2 constructed by Bogacki and Shampine 
[22] and uses local extrapolation. In Figs. 6.8.1, 6.8.2, and 6.8.3, we have plot- 
ted the number of function calls versus global error at the end of the interval 
of integration for the BUBBLE, EULR, and ROPE problems corresponding 
to To1 = k = 2,3 , .  . . , 8, with the tolerance Tol' used inside the code 
defined by (6.8.2). Observe that all these codes exhibit quite good tolerance 
proportionality for small enough tolerances. The more precise cost and ac- 
curacy statistics are given in Tables 6.8.1, 6.8.2, and 6.8.3 for To1 = lop4, 

accuracy for the BUBBLE and EULR problems and to results that are more 
accurate by about half to one decimal digit than the results obtained by ode23 
for the ROPE problem. As observed in Section 1.2, the BUBBLE problem 
places a great demand on the precision and step size control and leads to a 
considerable range in step sizes. 

Table 6.8.1 
for To1 = 

Cost statistics and global error for the BUBBLE problem (1.2.1) 
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ns 

nr 

nfe 

ge 

code I E = 1/12 I E = 1/24 I E = 1/48 I E = 1/120 I ode23 

327 254 214 208 199 

4 0 0 0 0 

676 522 442 430 598 

3.9. 3 .4 .  2.9.  5.6.  3.0. 

Table 6.8.2 Cost statistics and global error for the EULR problem (1.2.5) for 
~ o i  = 10-4 

where ns is the number of steps, nr is the number of rejected steps, nfe is the 
number of functions calls, and ge is the global error. 

E=1/48 E=1/120 
1.2 

1.1 

1 

0.9 

0- 3 
0 1 2 3 0 1 2 

Figure 6.8.4 
Table 6.6.1 applied to the PLEI problem (1.2.6) with Tol’ = 
scales on the vertical axes 

Ratios between llle(tn) 11 and /lest (tn) ( 1  versus t for methods listed in 
Note the different 
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ns 

nr 

nfe 

ge 

2718 2289 1927 1819 1534 

6 5 5 12 11 

5475 4612 3888 3686 4636 

2 . 0 .  lo-' 1.7. lo-' 1.4. lop2 1.2 . lo-' 7.8 . lo-' 

Table 6.8.3 
(1.2.8) for To1 = lop4 

Cost statistics and global error for the ROPE problem (1.2.7) or 

We can observe that the codes based on TSRK formulas with E = 1/24, 
E = 1/48, and E = 1/120 are more efficient (except for BUBBLE) and in 
most cases also more accurate than the ode23. We can also see that com- 
pared with other formulas, the quality of the method with the smallest error 
constant ( E  = 1/120) deteriorates for large tolerances. In general, ode23 is 
taking fewer steps, but its formula involves more function evaluations per step 
than the new TSRK formulas (except for E = 1/12). We expect even bigger 
gains in accuracy and efficiency for TSRK methods of higher order, as indi- 
cated by our preliminary experiments with TSRK methods of order p = 5. 
However, the construction of such methods leads to very large and difficult 
optimization problems and requires very time consuming and sophisticated 
computer searches. This work will be described elsewhere. 

To test numerically the quality of error estimation proposed here we have 
applied these methods to various test problems discussed in [143] and in Sec- 
tion 1.2. We have observed that there is a trade-off between the accuracy of 
the methods and the quality of error estimation and that this quality tends to 
be higher for TSRK methods with larger error constants E.  This is illustrated 
in Fig. 6.8.4, where we have plotted the ratio between the norm of the local 
discretization error Ille(t,)i/ and the norm of error estimate Ilest(t,)ll versus t 
for the methods in Table 6.6.1 with error constants E = 1/12, 1/24, 1/48, and 
1/120, applied to PLEI problem (1.2.6) with Tol' = Note that there 
are different scales on the vertical axes. In practice, we would recommend 
using methods in the middle of the range of error constant E considered in 
Table 6.6.1: for example, formulas with E = 1/24 or E = 1/48. 

6.9 LOCAL ERROR ESTIMATION OF TWO-STEP COLLOCATION 
METHODS 

It was demonstrated in Section 5.7 that the local discretization error le(t,) of 
two-step collocation method (5.7.1) takes the form 

le(t,) = h p + l ~ ~ ( l ) y ( p + l ) ( t ~ - ~ )  + o(/P+~), (6.9.1) 
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which corresponds to (5.7.5) for 8 = 1. Here y(t)  is the solution to (2.1.1), 
and CP(l) is the error constant of the method of order p .  This error constant 
is defined by (5.7.6) corresponding to 8 = 1. Observe that we are using a 
different notation for the error constant than in Section 6.3, where the error 
%onstant was denoted by E .  We also consider a different variant of local error 
le(t,) defined by 

i;t(t,) = CP(l )hp+lp+l ) ( tn- l )  + O(hP+2), (6.9.2) 

where %(t) is the local solution, that is, the solution to the initial value problem 

(6.9.3) 

We make the standard assumption that the function f ( y )  appearing in (2.1.1) 
and (6.9.3) satisfies a Lipschitz condition of the form 

/lf(d - f(4(/ 5 L I I Y  - 4, 
with a constant L 2 0. Subtracting the integral forms of (2.1.1) and (6.9.3), 
we obtain 

t 

( l Y ( t )  - m/) I IIY(tn-1) - Yn-lj/ + ./ I l Y ( 4  - %(s)/lds, 
tn-1 

t E [t,-1, tn] .  Using Gronwall’s lemma 1.4.1 (compare also [137, 2571) yields 

(ly(t) - $t)/I 5 [Iy(tn-1) - Yn-l/ leL(t-t- l) .  

Hence, 

Assuming that the function f ( y )  is sufficiently smooth, we have a similar 
relation for the derivatives of y ( t )  and g( t ) :  

Ily(t) - %(t)II = O(hP), t E [tn-1,tnIs 

/Iy(i)(t) - p ( t ) l l  = O(hP), t E [tn-l,tn] i = 1 , 2 , .  . . , 

(compare [201, 2621). Therefore, we can conclude that the principal parts 
(i.e., terms of order p + 1) of the local discretization error le(t,) (6.9.1) and 
the local error @tn) (6.9.2) are the same. 

In the remainder of this section we look for estimates of hp+’$p+’)(t,-l) 
of the form 
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where al, 00, Pj, rj , j = 1 ,2 ,  . . . , s, are some constants. We have the following 
theorem. 

Theorem 6.9.1 (D'Ambrosio et al. [104]) Assume that the solution g( t )  
t o  (6.9.3) is suficiently smooth. Then the constants al, ao, /3j, and 'yj, 
j = 1 , 2 , ,  . . , s, appearing in (6.9.4) satisfy the system of equations 

( C j  - 1 ) k - 1  

(k - l)! ) =0, j=1 k! 

k = 1 , 2 , . .  , , p ,  
(6.9.5) 

(- l ) P + l  f? ( C j  - l)P 
Cp(-l))ao + f: (Pj$ +'yj p! ) = l .  (m- j=1 

Proof: 
have 

Since method (5.7.1) is of order p ,  it is locally of order p + 1 and we 

I 

Y n - 2  = ~ ( 4 - z )  - C,(- l )hPfl~(p+l)( tn- l )  + O(ILP+~). 

We also have 

- Substituting these relations and yn-l = y(t,-1) into (6.9.4): we obtain 

Expanding c(tn-l - h ) ,  f ( tn - l  + cjh), and f ( tn - l  + (c j  - 1)h) into a Taylor 
series around the point t,-l and comparing the terms of order O(hk)  for 

Observe that (6.9.5) constitutes a system of p + 2 equations with respect 
to 2s + 2 unknown coefficients a1 , QO, a2 , Pj , and ~j , j = 1 ,2 ,  . . . , s. We have 
the following theorem. 

Theorem 6.9.2 (D'Ambrosio et al. [104]) Assume that ci # c j  and c, # 
cj - 1 for i # j .  Then system (6.9.5) corresponding t o  p = s + r ,  where 
r = 1 , 2 , .  . . , s, has a family of solutions depending on s - r free parameters 
which may be chosen as, for  example, Pri-2,  . . . , Ps or yr+l, ~ r + 2 r  . . . , yS. 
In particular, if r = s, the solution to the system (6.9.5) is unique. This 
system does not have solutions if r = s + 1.  

k = 0 ,1 ,  . . . , p  + 1 leads to system (6.9.5). 



LOCAL ERROR ESTIMATION OF TWO-STEP COLLOCATION METHODS 343 

Proof: The proof is similar to that of Theorem 5.7.2 and is therefore omitted. 
The interested reader can find complete details in D’Ambrosio’s thesis [103]. rn 

Choices of free parameters other than those indicated in Theorem 6.9.2 are 
also possible. For example, if r = s - 1 2 1, there is one free parameter, which 
may be chosen as a1; if r = s - 2 2 1, there are two free parameters, which 
may be chosen as a1 and ao; if r = s - 3 2 1, there are three free parameters, 
which may be chosen as 01, 00, and or 71; and if r = s - k 2 1, k > 3, 
there are k free parameters, which may be chosen as a l ,  QO, and P3 or y3, 
j =  1 , 2 ,  . . . ,  k - 2 .  

For method (5.7.1) with s = 1, p = 2s = 2, and the polynomials yl(O), 
Po(@), $ ( O ) ,  and x(O) defined by (5.9.4), the constants 0 1 ,  ao, /3 = PI, and 
y = y1 appearing in the estimator of h35(3)(t,-l) are unique. They corre- 
spond to the solution of system (6.9.5) with s = 1 and p = 2 and are given 
by 

288 72 72 
a()=--  p = -  y=-- 

95 ’ 95’ 19‘ 
288 

a1 = - 
95 ’ 

Similarly, for the method with coefficients PI(@). cpo(O) ,  $ ( O ) ,  and x(O) given 
by (5.9.5), the constants ~ 1 ,  QO, P = PI, and y = y1 assume the form 

and for the method with coefficients pl(O), c p o ( O ) ,  $ ( O ) ,  and x(O) given by 
(5.9.6), the constants a1, 00, P = PI, and y = y1 have the form 

108 108 162 54 
115’ 115’ 115’ 23’ 

a1=- ( y o = - -  p = -  y=-- 

Consider next the methods (5.7.1) with s = 2 and p = 2s = 4. For the 
methods with coefficients pl(O), cpo(O) ,  $I(@), $2(O), xl(O), and xz(O) given 
by (5.10.1), the unique solution a l ,  ao, PI, P 2 ,  71, and y2 is given by 

1244 160 
a0 = ~ 

21127 ’ 21127 ’ 
2488320 1285632 

1244160 
c y 1 =  -- 

pl=- 2 = - -  
21127 ’ 21127 ’ 

and 
4810752 4769280 

21127 ’ 
21127 > 7 2  = -- 71 = - 

For a family of methods with s = 2 and p = 2s - 1 = 3 with coefficients 
cpl(e), cpo(O), $l(O), $ z ( O ) ,  xl(O), and xZ(Q) given by (5.10.2) there is a 
one-parameter family of solutions to system (6.9.5) corresponding to s = 2 
and p = 3. Assuming that PI = P 2 ,  the solution a l ,  ( V O ,  PI, P 2 ,  71, and y2 is 
given by 

77760 
9019485 + 11232679qo - 2293632ro’ 

a1 = -(yo = - 
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314280 
9019485 + 112326791~0 - 2293632ro’ P1 = P 2  = 

155520 
9019485 + 112326791~0 - 2 2 9 3 6 3 2 ~ ’  Y1 = 

and 
706320 

9019485 + 11232679qo - 2293632ro’ 7 2  = - 

Here qo and ro are free parameters that appear in (5.10.2). 

6.10 RECENT WORK ON TWO-STEP COLLOCATION METHODS 

Work is in progress on the construction and implementation of a family of 
two-step collocation methods of order p and stage order q = p = s, where s 
is the number of stages, for 1 5 s 5 8, with desirable accuracy and stability 
properties. We are aiming at methods that are A- and L-stable with small 
error constants and favorable error propagation, including terms of order p+2. 
Preliminary numerical experiments with methods of order up to 4 indicate 
that local error estimation is very accurate and reliable for small and large 
step sizes for stiff systems of differential equations. We are now working on 
implementation of these methods of order 1 5 p 5 8 in a variable step size 
variable order environment in a Matlab code intended for stiff differential 
systems [103, 105, 1061. 

We are also working on the construction and implementation of TSRK 
methods of high order with quadratic stability functions. This work, which is 
a continuation of work by Conte et al. [92], is reported by Conte et al. [93] 
and D’Ambrosio [ 1031. 



CHAPTER 7 

GENERAL LINEAR METHODS WITH 
I N H ERE N T R U N G E- K U TTA STAB I L I TY 

7.1 REPRESENTATION OF METHODS AND ORDER CONDITIONS 

In this chapter we investigate GLMs that possess inherent Runge-Kutta sta- 
bility (IRKS). These are methods which have the property that the stability 
matrix has only one nonzero eigenvalue, which is an approximation of order 
p to exponential function exp(z). As a consequence, the stability behavior of 
such methods is similar to that of RK methods of the same order, and it is 
said that they possess RK stability. This and IRKS will be made more precise 
later in the chapter. In general, it is a very nontrivial task to find GLMs that 
satisfy this property. In the case of the DIMSIMs discussed in Chapters 3 and 
4, and the TSRK methods discussed in Chapters 5 and 6, after satisfying the 
appropriate order and stage order conditions, the RK stability requirement 
leads to large systems of nonlinear equations of high degree which are very 
difficult to solve. In view of this, it is quite remarkable that choosing the 
appropriate values of the parameters p ,  4 ,  T ,  and s (i.e., the order, the stage 
order, the number of external approximations, and the number of internal ap- 
proximations), and assuming that the vector y[n] of external approximations 
approximates the Nordsieck vector ~ ( t , ,  hn),  it is possible to characterize all 

General Linear Methods for Ordinary Digerential Equations. By Zdzisiaw Jackiewicz 345 
Copyright 0 2009 John Wiley & Sons, Inc. 
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explicit and diagonally-implicit GLMs with RK stability. This characteriza- 
tion was discovered recently by Butcher [50, 531, Butcher and Wright [79, 801, 
and Wright [293, 2941. Practical algorithms for the construction of both ex- 
plicit and implicit methods of this type which use only linear operations were 
also reported [80, 293, 2941. A special variant of the algorithm presented by 
Butcher and Wright [80] was then used by Butcher and Jackiewicz to construct 
GLMs with RK stability which achieve good balance between accuracy and 
stability [72], and to construct GLMs of this type which are unconditionally 
stable for any step size pattern [73]. 

Following Butcher and Wright [80] and Wright [293], it is assumed through- 
out this chapter that p = q and T = s = p + 1. As observed in [so], methods 
characterized in this way seem to have considerable potential as the basis of 
good solvers for initial value problems. We consider GLMs of the form 

n = 1 ,2 , .  . . , N ,  where all the coefficient matrices have the same dimension 
(i.e., A, U ,  B, V E RSx"). We also assume that y["-'] and y["] are approxima- 
tions to the Nordsieck vectors z ( t , -~ ,  h)  and ~ ( t , ,  h ) ,  where z ( t ,  h )  is defined 
by (3.11.1). For easy reference this definition is repeated here: 

(7.1.2) 

Observe that the notation for (7.1.1) differs from that adopted for (3.11.8) in 
Section 3.11, where the coefficient matrices were denoted by A, P, G, and Q, 
and they are not of the same dimension. 

As in the proof of Theorem 3.12.1 and the comments following it, it can be 
demonstrated that the order conditions for (7.1.1) take the form 

ecz = zAeCZ + U Z  + 0 ( z p + ' ) ,  

e"Z = zBeCZ + V Z  + O(zp+') ,  

(7.1.3) 

(7.1.4) 

where the vector Z is defined by 

(7.1.5) 

We consider only type 1 or 2 methods: formulas for which the coefficient 
matrix A has the form (2.7.1) with X = 0 or X > 0, respectively. We also 
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assume that GLM (7.1.1) is zero-stable (i.e., the coefficient matrix V satisfies 
(2.2.5) and the conditions given in Theorem 2.2.5). 

Let J and K be shifting matrices of dimension p + 1 defined by 

J =  

0 0 . . .  0 0 

1 0 . . '  0 0 

0 1 :  0 0  
. . .  . .  
. .  . . .  . .  . . .  

0 0 . . .  1 0  

, K =  

0 1 0 . . .  0 

0 0 1 . . .  0 

. . .  . . . . .  . .  
0 0 0 1 . .  1 

0 0 0 ' . .  0 

Observe that the matrix K was already defined in Section 3.12. Let Q E 
R(p+l)x(p+l) be a matrix that is partitioned into column and row vectors as 
follows: 

Then it is easy to verify that the effects of multiplying this matrix by J and 
K from the right and the left are 

[ c1 c2 . . .  Cp+l  ] J = [ c2 . . .  C p + l  0 ] i 

and 

We have demonstrated in Corollary 3.12.2 that in the case of DIMSIMs 
with p = q = s and T = s + 1, the coefficient matrices P and Q in (3.11.8) are 
determined completely by the abscissa vector c and the coefficient matrices 
A and G .  The same is true in the case of GLMs (7.1.1) with p = q and 
T = s = p + 1 (i.e., the matrices U and V are completely determined by c ,  
A, and B). We justify this below using arguments by Butcher and Wright 
[80, 2931 which differ slightly from that used in the proof of Corollary 3.12.2. 
Observe first that 

ec+ = c z + o(zP+l) ,  
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ez  2 = E Z + 0 ( z P + ' ) ,  

where the scaled Vandermonde matrix C is given by 

and the special Toeplitz matrix E is given by 

E = exp(K) = 

1 

1 

- 
P! 

1 1 + ' * '  

0 1 1 . . .  (p-l)r 
1 0 0 1 . . .  - 

(P-a)! 
. . . .  . . .  . . . .  
0 0 0 . . .  1 

This matrix was already defined in Section 3.12. Using the relations above 
for ecz and ezZ, the order and stage order conditions (7.1.3) and (7.1.4) can 
be reformulated as 

C Z = z A C  Z + U Z  + 0(zpf1) ,  

E z = B c z + v z + o ( z P + ~ ) .  

c z = A c K z + u z + o ( z P + ~ ) ,  

E Z  = B C K Z  + V Z  + o(~p+l), 

Since zZ = K Z  + O(zPfl), it follows that 

and comparing the coefficients of zo,  zl,. , . , z p ,  we obtain representation for- 
mulas for U and V of the form 

U = C - A C K  (7.1.6) 

and 
V = E - B CK.  (7.1.7) 

Formula (7.1.6) was first derived by Butcher and Jackiewicz [69] in the context 
of Nordsieck representation of DIMSIMs. 

7.2 I N H ERE N T R U N G E- K U TTA STAB I L I TY 

We now turn our attention to stability. As discussed in Section 2.6, linear 
stability properties of method (7.1.1) are determined by the stability matrix 
M(z), defined by (2.6.4): that is, 

M(z) = V + z B(I - z A)-'U. (7.2.1) 
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It turns out that the principal eigenvalue and the corresponding eigenvector 
of this matrix have special forms given in the following lemma. 

Lemma 7.2.1 (Butcher  and Wright  [80, 2931) Stability matria:M(z) de- 
fined b y  (7.2.1) of the GLM an Nordsieck form (7.1.1) withp = q has principal 
eigenvalue exp(z)+O(zP+') and corresponding eigenvector Z+O(zp+'), where 
Z is defined by  (7.1.5). 

Proof: It follows from (7.1.3) that 

ecz = ( I  - z A ) - l U Z  + O(zp+'), 

where I E IR(P+l)x(P+l) is the identity matrix. Substituting this relation into 
(7.1.4), we obtain 

e"Z = (V + zB(1- z A ) - ~ U ) Z  + O(zP+'), 

so that 
M ( z )  Z = e"Z + zp+l@(z) (7.2.2) 

for a vector-valued power series a(.). Since M ( z )  --t V and Z -+ el as z ---f 0, 
we have 

Vel =e l .  

This is one of the preconsistency conditions given in (2.2.1) with preconsis- 
tency vector equal to el. Denote by X(z) the principal eigenvalue of M ( z ) :  
the one that tends to 1 as z -+ 0, and let the corresponding eigenvector be 
v ( z ) .  Since M(0)el = el, we can assume that the first component of V ( Z )  is 
equal to 1. Suppose that 

e" = X(z) + e(z)zm,  

where e(0) # 0, and that 

z = V(2)  + Q ( Z ) Z n ,  

where Q ( z )  # 0 and Ql(z) = 0. Here Q1(z) stands for the first component of 
Q ( z ) .  We have to show that m, n 2 p + 1. This will be done in two steps by 
proving that (i) if m < p +  1, then n 5 m, and (ii) it is impossible that n 5 m 
and that n < p +  1. 

To prove (i), observe that 

z " ( M ( z )  - e Z I ) Q ( z )  - z V ( z ) v ( z )  

= ( M ( z )  - e Z I )  ( Z  - v ( z ) )  + (X(z) - e z ) v ( z )  

= ( M ( z )  - e"1)Z - (M(z) - X ( z ) I ) v ( z ) ,  

and since ( M ( z )  - X(z ) I ) v ( z )  = 0 using (7.2.2), we obtain 

z"(M(z) - e"I )Q(z)  - z"e(z )v(z )  = zp+l@(z). (7.2.3) 
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Hence, if m < p + 1, then necessarily n 5 m, which proves (i). 

z --+ 0. Then 
To show (ii), divide equation (7.2.3) by zn  and then compute the limit as 

(7.2.4) (V - I ) Q ( O )  = 0 

(7.2.5) 

if m = n. Since Vel = el and Ql(0) = 0, the matrix V and the vector Q(0) 
can be partitioned as follows: 

Hence, it follows from (7.2.4) or (7.2.5) and the fact that v(0) = el that 

(V - I)+(O) = 0. 

Here I is the identity matrix of dimension p .  It follows from zero-stability of 
GLM (7.1.1) that V - I is a nonsingular matrix which implies that + ( O )  = 0. 
However, this is impossible since Q(0) # 0 and Ql(0) = 0. This proves (ii). 

Lemma 7.2.1 characterizes the principal eigenvalue and the correspond- 
ing eigenvector of the stability matrix M(z) given by (7.2.1). If this eigen- 
value is the only nonzero eigenvalue of M(z), the stability properties of the 
corresponding GLMs (7.1.1) are very similar to that of RK methods. This 
observation motivates the following definition. 

Definition 7.2.2 If t he  characterist ic polynomial  p ( w ,  z )  of t he  stability m a -  
trix M(z) given by (7.2.1) has  t h e  special f o r m  

p ( w , z )  = det (wI - M(z)) = wp(w - R ( z ) ) ,  (7.2.6) 

t he  GLM (7.1.1) i s  said t o  possess RK stability. 

If GLM possesses RK stability, then the rational function R(z)  in (7.2.6) 
plays the same role as the stability function of the RK method of the same 
order. Since RK methods have stability properties which are far superior, for 
example, to that of linear multistep methods, it is desirable to find GLMs 
with RK stability. The characterization of such methods is the goal of this 
chapter. 

We introduce next some equivalence relation between matrices and column 
vectors, denoted by %’, which will be useful to define the property of inher- 
ent Runge-Kutta stability (IRKS). We say that two matrices A and B are 
equivalent, written as A = B, if and only if they are identical except possibly 
their first rows. 
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This relation has several useful properties which will aid in the stability 
analysis of GLMs. For example, if Fel = Xel, then 

D = E implies that F D  5 FE. 

Moreover, if can be easily verified that for any matrix G we have 

D = E implies that D G G E G. 

We also have 
z J Z G Z ,  (7.2.7) 

where J is the shifting matrix defined in Section 7.1 and Z is the column 
vector given by (7.1.5). 

It is a complicated task to find conditions which ensure that GLMs (7.1.1) 
possess RK stability. However, it is possible to find interrelations between the 
coefficients matrices which ensure that this is the case. Such conditions were 
discovered by Butcher and Wright [80, 2931 and formulated as IRKS. This is 
formalized in the following definition. 

Definition 7.2.3 GLM (7.1.1) satisfying preconsistency condition V el = el 
has an IRKS property if 

BA = XB, (7.2.8) 

BU 5 XV - VX, (7.2.9) 

for some matrix X, and 

det(w1- V) = wp(w - 1). (7.2.10) 

The importance of this property follows from the following theorem. 

Theorem 7.2.4 (Butcher and Wright [80, 2931) Assume that GLM de-  
fined by  (7.1.1) has IRKS. Then its stability funct ionp(w,  z )  = det(w1-M(z)) 
takes the f o r m  

p ( w ,  2) = w"(w - R(z ) ) .  

Moreover, R ( z )  has the form 

R(z )  = .:(I - zX)M(z)(I - zX)-'el. 

Proof: Relation (7.2.8) is equivalent to 

B(I - zA) 5 (I - 2X)B, 

and it follows that 
B = (I - zX)B(I - zA)-l. 

(7.2.11) 

(7.2.12) 
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To investigate a characteristic polynomial of the stability matrix M(z) it is 
more convenient to consider the matrix related to M(z) by similarity trans- 
formation. Using (7.2.9) and (7.2.12), it follows that 

(I - zX)M(Z)(I - zX)-' 

= (V - zXV + z(1- zX)B(I - zA)-lU) (I - zX)-' 

(V - zXV + zBU)(I - zX)-' 

= (v - z x  + z(XV - VX)) (I - zX)-l 

= (V - zVX)(I - zX)-l. 

Hence, 

(I - zX)M(z)(I - zX)-' = V. (7.2.13) 

It follows from the condition Vel = el and the relation (7.2.13) that the 
matrix (I - zX)M(z)(I - zX)-' can be partitioned as follows 

where V is the p x p matrix obtained from V by deleting the first row and 
column and r is some vector. Since condition (7.2.10) and Vel = el ensures 
that V has only zero eigenvalues, it follows that (I - zX)M(z)(I - zX)-' 
and M(z) has only one nonzero eigenvalue R ( z ) ,  which is the (1,l) element 
in (7.2.14). This leads to formula (7.2.11). Observe also that R(z )  -+ 1, the 

Definition 7.2.3 and the proof of Theorem 7.2.4 make no reference to any 
special form of the matrix X. However, it turns out that this matrix must 
have a very special form for GLMs (7.1.1) of order p = q. This is formulated 
in the next theorem. 

eigenvalue of V, as z + 0. w 

Theorem 7.2.5 (Butcher and Wright [80, 2931) For GLM (7.1.1) with 
p = q,  the most general form of the matrix X appearing in conditions (7.2.8) 
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and (7.2.9) of Definition 7.2.3 is of doubly companion form: 

X =  

-0p-1 --Lyp -@p+l - Pp+l -01 - 0 2  - 0 3  . * .  
1 0 0 . . .  0 0 - P P  

0 1 0 1 ' .  0 0 -Pp--l 

0 0 0 * . .  0 0 - P 3  

0 0 0 1 . .  1 0 -P2  

0 0 0 . * .  0 1 -P1 

. .  . (7.2.15) 

Proof: Multiplying (7.2.8) by z B  and (7.2.9) by I - z X  and then adding the 
resulting relations, we obtain 

e"(1 - zX)Z = z2(BA - XB)e"" + z (BU - XV)Z + VZ + O(zPfl) 

= z2(BA - XB)e"" + z ( B U  - XV + V X ) Z  + V(I - zX)Z + O(zP"). 

Using (7.2.8) and (7.2.9), the equation above leads to the equivalence relation 

eZ(I  - zX)Z = V(I - ZX)Z + O(zP+l) 

and it follows that 

(eZI - V)(I - ZX)Z = o(z~+ ' ) .  (7.2.16) 

Set 2 = (I - zX)Z and partition the matrix e"1 - V and the vector 5 as 
follows: 

e Z I  - V 

where 51 stands for the first component of the vector 2. Then (7.2.16) takes 
the form 

Since the matrix I - V is nonsingular, there exists E > 0 such that e"I  - V is 
also nonsingular for lz/  < E .  Multiplying (7.2.17) by the matrix 
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and taking into account that Fel = el, we obtain [ (ez - 1); + VT,E ] 
= O ( Z P + l ) ,  

which is equivalent to 

Using (7.2.7), this relation simplifies to 

(I - zX)Z ?z O ( Z P + l ) .  

(J - X)Z 0 ( z p ) .  

(7.2.18) 

It is easy to verify that this relation implies that all elements of J - X must 
be zero except for the first row and the last column. Therefore, X must be of 
the form (7.2.15). This concludes the proof. 

The doubly companion matrix (7.2.15) is the most general matrix satisfying 
condition (7.2.18), and the conclusion of the theorem follows also directly 
from this condition. This can be verified by comparing the coefficients of 
z ,  z2 ,  . . . , z p  on the last p rows of the relation 

zxz = z + O ( Z P + l ) ,  

which is equivalent to relation (7.2.18). 
To provide additional motivation for conditions (7.2.8) and (7.2.9) in Defi- 

nition 7.2.3 and the role of the doubly companion matrix X given by (7.2.15), 
we reformulate the stage order and order conditions (7.1.3) and (7.1.4) as- 
suming that relation (7.2.18), which defines such a matrix X, is satisfied. 
Substituting (7.1.3) into (7.1.4), it follows that 

e"Z = z2BAeCZ + (zBU + V)Z + O(zP+'), 

and using (7.2.18) we obtain 

e"Z ?z z2BAeC" + z(BU + VX)Z + O(zP+l) .  (7.2.19) 

Multiplying (7.1.4) on the left by zX leads to 

ze"XZ = z2XBeCZ + zXVZ + O(zpfl) 

and again using (7.2.18) yields 

e"Z = z2XBeC" +zXVZ+O(zpfl). (7.2.20) 

We can now observe that (7.2.19) and (7.2.20) are equivalent if we assume 
that conditions (7.2.8) and (7.2.9) are satisfied. 

Theorem 7.2.5 and the discussion above give some indication that doubly 
companion matrices (7.2.15) will play an important role in the analysis of 
GLMs with IRKS. Such matrices were introduced in the study of effective 
order singly-implicit Runge-Kutta (ESIRK) methods by Butcher and Chartier 
[55, 561. In the next section we review some of the properties of doubly 
companion matrices following the presentation by Butcher and Wright [80] 
and Wright [293]. 



DOUBLY COMPANION MATRICES 355 

7.3 DOUBLY COMPANION MATRICES 

Consider the set IT of polynomials of degree less than or equal to p + 1 which 
map 0 to 1 (i.e., if cp E IT, then cp(0) = 1). Examples of such polynomials 
related to the doubly companion matrix X defined by (7.2.15) are 

a(w) = 1 + a1w + . .  . + apwP + ap+lwp+l, (7.3.1) 

P(w) = 1 + P l W  + . . . + PpwP + Pp+lwp+l. (7.3.2) 

The set IT becomes a group if we define the product y = a@ of a,  P E II to be 
a polynomial y E IT such that 

y(w) = a(w)P(w) + o(wp+2) .  

The identity of this group is the constant polynomial e(w) = 1, and the inverse 
element a-l E IT of a E TI is defined so that 

a-'(w)a(w) = 1 + O(WP+2).  

We denote by X(a, p) the doubly companion matrix given by (7.2.15), where 
the elements in the first row and last column of this matrix are the coefficients 
of the polynomials a,P E IT given by (7.3.1) and (7.3.2). When there is no 
possibility of confusion, we write X instead of X(a, P) .  

We first consider the characteristic polynomial $(w) = det(w1-X(a, P ) )  of 
the matrix X = X(a, 0) given by (7.2.15). It is known that in the special cases 
p1 = p2 = ...  = Pp+l = 0 or a1 = a2 = . . .  = ap+l = 0, the characteristic 
polynomials are given by 

det (wI - X ( a ,  1)) = wPfl + a1wP + . . . + apw + aP+l, 

det (wI - X(l ,  P ) )  = wP+l + P1?uP + . . . + Ppw + PP+l, 

respectively (compare [160, 197, 2281). Here 1 stands for the identity in the 
group TI. 

To determine the characteristic polynomial of X ( a ,  P )  in the general case, 
let X be an eigenvalue of this matrix and x(X) the corresponding eigenvector. 
It is easy to verify that the last component of x(X) cannot be zero. Hence, we 
can assume without loss of generality that this eigenvector has the form 

We have the following lemma. 

Lemma 7.3.1 (Butcher and Chartier[56], see also [293]) The character- 
istic polynomial $(w) of the matrix X(a,P) given by  (7.2.15) assumes the 
f o m  

P+ 1 

N w )  = ZP+l (W)  + c QkZp+l-k(W), (7.3.3) 
k= 1 
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wherexp+l(w) = w z ~ ( w ) + / ~ ~ + ~ ,  andzk (w) ,  k = p , p - 1 ,  . . . ,  1, are thefirst 
p components of the vector x ( w )  obtained from the eigenvector .(A) by  setting 
X = w and xo(X) = 1. 

Proof: Comparing components p + 1, p, . . . , 2 ,  of the equation 

X(a, P)x(X) = W X )  (7.3.4) 

which define eigenvalue X and the corresponding eigenvector x(X), we obtain 

Z l ( X )  = + P 1 ,  

52(X) = X Z l ( X )  + P 2  = X2 + PlX + P 2 ,  

X p - 1 ( X )  = X Z , - 2 ( X ) + p p - 1  = Xp-l + P 1 X p - 2 + ’ ~ ’ + P p - 2 X + P p - l ,  

Zp(X) = X Z p - l  + p p  = x p  + P 1 X P - 1  + . . . + P p - 1 X  + P p .  

This can be written more compactly as 

Z k ( X )  = XZk-l(X) + P k ,  k = 1 , 2 , .  . . , p ,  

where Q(X) = 1, or in expanded form as 

k 

Zk(X) = Xk + C & X k - j ,  k = O , l , .  . . , p .  
j = 1  

We also define zP+l (A) by the same formulas; that is, 

P+ 1 

ZP+l(X) = XZp(X) + pp+l  = X P + l  + c p j X p + l - j .  

j=1 

Comparing the first components of equation (7.3.4) and using the relation 
zP+l(X) = XxP(X) + p p + l ,  we obtain 

P+ 1 

ZP+l(X) + c Q k Z p + l - k ( X )  = 0. (7.3.5) 
k=l  

Consider the polynomial +(w)  defined by (7.3.3). Then deg($) = p + 1, its 
leading coefficient is equal to 1, and it follows from (7.3.5) that $(A) = 0 if X 
is an eigenvalue of X ( a ,  P).  Hence? ~ ( w )  has to be equal to the characteristic 
polynomial of X ( a ,  p) ,  that is, 

+(w)  = det ( W I  - X(a, P I ) ,  



DOUBLY COMPANION MATRICES 357 

which concludes the proof. 

The next lemma provides a more convenient way to compute $(w) .  

Lemma 7.3.2 (Butcher and Wright [80, 2931) The characteristic poly- 
nomial $J(w)  of doubly companion matrix X ( a ,  p) given by (7.2.15) consists 
of terms with nonnegative degree in the expansion of the product 

,-(P+l) (w  P+l + a1wp + .  . . + ap+l) (WP+l + PlWP + . . . + Pp+l) .  

Proof: We have 

In the formulas above O(w-')  stands for terms with negative degrees in w. 
Using (7.3.5), the last relation is equal to $(w)  + O(w-')  and the conclusion 
of the lemma follows. 

Observe that the statement of the lemma can be reformulated as 

(WP+l + a l W p + . " + a p + l ) ( W P + l  + P l W P + ' .  ' + p p + l )  = wP+l$(w)+O(wP), 

where O(wP) stands for the terms of degree less than or equal to p .  This 
observation can be used to compute an alternative form of the characteristic 
polynomial of X defined by 

$(w)  = det(1 - w X ) .  

We have 
&(w) = wP+l det(G1- X )  = wP+'$J(G), 

where G = l / w .  This polynomial can be computed from the relation 
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where Q and p are polynomials defined by (7.3.1) and (7.3.2) and ap is the 
product in the group II. This follows from the relations 

.(w)P(w) = (l+alw+'~.+ap+lwp+l)(l +plw+~-+pp+lWP+') 

= W2(P+1) (GP+l + QIGP + . . . + Qp+l) (GP+l + p 1 w p  + .  . . + PP+l) 
- - W2(P+l) (GP+l$(G) + O(GP)) 
= WP+1$@j) + O(G-(P+2)) 

= J(w) + O(WP+2). 
In applications of doubly companion matrices to the construction of GLMs 
which are of interest here, the eigenvalues of the matrix X(Q, p)  and the PIC, 
k = 1 , 2 , .  . . , p  + 1, are free parameters to obtain specific properties of the 
method. Once they are determined, the parameters Q k ,  Ic = 1 , 2 , .  . . , p  + 1, 
can be computed from the relation 

Q(W) = &w)p-l(w) + O(WP+2) = (i$-1)(w)+ ( 7.3.6) 

where Q and p are given by (7.3.1) and (7.3.2) and p-l is the inverse of ,B in 
group II. 

In deriving GLMs (7.1.1) with IRKS it will be necessary to find decompo- 
sitions of X(a, p). We are interested in type 1 and 2 methods for which the 
coefficient matrix A has the form (2.7.1) with X = 0 or X > 0, respectively. In 
particular, A has a one-point spectrum, a(A) = {A},  and it will be demon- 
strated later that this is equivalent to the matrix X(Q, p)  having a one-point 
spectrum, o ( X ( a , p ) )  = {A} ,  where X is the diagonal element of A. In this 
case the decomposition of X(Q, p) reduces to Jordan canonical form. To de- 
scribe this decomposition, we also need a left eigenvector y(X) corresponding 
to the eigenvalue X of X(Q, p) ,  which is defined by 

yT(X)X(a,P) = XYT(X).  (7.3.7) 

It is easy to verify that the first component of y(X) is nonzero and we can 
assume without loss of generality that y(X) has the form 

Similarly as in the case of the (right) eigenvector x(X), the components of 
y(X) can be found from the recurrence relations 

or, in expanded form, from 

k. 

Yk(X) = X k + C a j X k - j :  I c = O , l ,  . . . , p ,  
j=1 
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where yo(X) = 1. Assuming that X(cy,p) has a one-point spectrum {A}, the 
factorization of this matrix is described by the following lemma. 

Lemma 7.3.3 (see [56, 80, 2931) Given the (right) eigenvector x(X) and 
left eigenvector y(X), the doubly companion matrix X given by  (7.2.15) has a 
characteristic polynomial of the form 

$(w) = (w - X)P+l 

if X can be factorized as 

X = Q(J + XI)Q-l, 

where the unit upper triangular matrices Q and Q-l are given by  

(7.3.8) 

Proof: 
can be differentiated up to p times and we obtain 

Since X is an eigenvalue of X of multiplicity p + 1, relation (7.3.4) 

X(k'(X) x("(X) x(k-l)(X) 
( k  - l)! ' x-==- + 

k !  k! 

k = 0 , 1 , .  . . , p ,  where x(-l)(X) = 0, x(O)(X) = x(X). Hence, the sequence 
x('))lk!, k = 0,1 , .  . . , p ,  is a Jordan chain of length p + 1 associated with A, 
and it is linearly independent (compare [197]). Writing the relation above in 
vector form, it follows that 

which is equivalent t80 (7.3.8). The representation for the matrix 9-l can be 
proved in a similar way by differentiating up to p times relation (7.3.7). 

There are two slight variants of the nilpotent matrix K that will be used 
in the representation of the matrices 9 and 9-l appearing in (7.3.8), when 
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- 
0 1  

0 0  

0 0  
* .  . .  * .  

0 0  

0 0  

0 0  

the matrix X given by (7.2.15) has a one-point spectrum o(X) = {A}. These 
are denoted by K+ and K- and are defined by 

K? aJ = id .  a + l , j ,  K i j = ( p + l - i ) & + i , j ,  i , j = 1 , 2 , . . . , ~ + 1 ,  

where bij is the Kronecker delta. That is, 

K - =  . . .  . . . .  * . . .  : : 

0 0 0 . ' .  0 2 0 

0 0 0 . "  0 0 1  

0 0 0 ' " 0  0 0 

. .  

- - 

* . .  
. . .  

. . .  

. . .  

. .  

P - 1  

0 

0 

1 0 p 0 . ' *  0 0 0 

0 0 p - 1  e . 1  0 0 0 

0 0 0 * ( ' O  0 0 I 

9 = P(K) exp(AK-), 9-1 = exp(AK+)a(K), (7.3.9) 

where a ( K )  and P(K) are m a t r i x  polynomials  w i th  (Y and ,B defined by (7.3.1) 
and (7.3.2). 

Proof: Consider first the formula for 9. Define the matrix @(w) by 

The columns of 9 are generalized (right) eigenvectors, and the columns of 
(9-1)T are generalized left eigenvectors. Matrices 9 and 9-' can be factor- 
ized into the product of two matrices, as shown in the following corollary. 

Corollary 7.3.4 (Butcher and Wright [80, 2931) Matrices 9 and 9-1 
can be factorized in the form 



DOUBLY COMPANION MATRICES 361 

(i.e., by substituting X = w in 9). It can be verified by direct computations 
that 

9 ( 0 )  = 

. . . . . .  1 p1 Pp-2 Pp-1 Pp 

0 1 p1 Pp-2 Pp-1 

: 0 1 p1 . . ’  Pp-2 

. . . . . .  

. . .  
* * .  . .  . .  
0 :  

. . . . . .  0 0 0 1 P1 
. . . . . .  0 0 0 0 1 

= 1 + P1K + p2K2 + . . .  + PpKP, 

and since KP+’ = 0, we obtain 

@(O) = PW). 
Observe that the coefficient PP+l does not affect the value of P(K). We also 
have 

1 1 
-x(P) (w) ---.-x(P--l) (w) . . .  x’(w) x(w) ] K- 

= [ p !  (P - I)! 

= @(w)K-. 

Hence, 
@’(w) exp(-wK-) - @(w)K- exp(-wK-) = 0 

- d (@(w) exp(-wK-)) = 0. 
dw 

Integrating this relation from 0 to X and taking into account that @(O)  = P(K) 
we obtain 9 = @(A) = P(K)exp(XK-), which is the formula required for @. 

or 

The formula for 9-1 can be proved in a similar way. 

It may be more convenient to compute 9-1 from the relation 

9-1 = exp(XK-)-lP(K)-l = exp(-XK-)P(K)-l (7.3.10) 

since this avoids the computation of matrix polynomial a(K),  leaving every- 
thing in terms of P(K) only. Observe that for any P k ,  Ic = 1 , 2 , .  . .  , p ,  and the 
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given value of A, we can always choose the coefficients a k ,  k = 1 ,2 , .  . . , p + l ,  so 
that the doubly companion matrix X has a one-point spectrum o ( X )  = (A). 
This can be done using relation (7.3.6) with &(w) given by 

&(w) = WP+1$(--) 1 = (1 - 
W 

XW)P+l 

We can then compute Q and 9-l using (7.3.9) or the first equation of (7.3.9) 
and (7.3.10) and matrix X from (7.3.8). Observe also that the parameter PP+l 
is redundant since it does not affect the values of P ( X ) .  This parameter enters 
the definition of the matrix X only through the combination -ap+l - Pp+l, 
and without loss of generality we can assume that /?,+I = 0. 

The next corollary corresponds to the special case when X = 0, which is 
relevant, for example, to (explicit) type 1 methods. 

Corollary 7.3.5 (Butcher and Wright [80, 2931) Assume that the poly- 
nomials a ,p  E II are such that (ap)(w) = 1. Then the corresponding doubly 
companion matrix X ( a ,  P )  has a one-point spectrum o ( X ( a ,  P ) )  = ( 0 )  and 
the following factorization holds: 

X ( a ,  P )  = P(K) J a(K) = P(K) J P(K1-l. (7.3.11) 

Proof: It follows from the relation (7.3.6) that &(w) = (a@)(w) = 1. Hence, 
+(w) = wP+l@(w) = wP+l and, as a consequence, X(cr,P) has a one-point 
spectrum o ( X ( a ,  p))  = (0). The factorization (7.3.11) is now a direct conse- 
quence of Lemma 7.3.3, Corollary 7.3.4, and formula (7.3.10) with X = 0. 

It is useful to extend this result so that the polynomials a ( w )  or P(w) could 
be multiplied by a further polynomial ~ ( w ) .  We have the following result. 

Corollary 7.3.6 (Butcher and Wright [80, 2931) Assume that a,P,r E 
II and (aPr)(w) = 1. Then the doubly companion matrices defined b y X ( a y ,  P )  
and X ( a ,  -yP) have a one-point spectrum (0). Moreover, 

- 

and 

X ( a ,  rP) = r w  X ( a ,  PI.  

directly from Corollary 7.3.5. 
Proof: Since (ar)(w)P(w) = 1 and a(w)(-yP)(w) = 1, the conclusions follow 

The result from Corollary 7.3.5 can be extended so that it is applicable for 
X > 0 by choosing a ( w )  and p(w) so that aP = 4, where &(w) = (1 - Xw)P+'. 
We have the following lemma. 

Lemma 7.3.7 (Butcher and Wright [80, 2931) Assume that a (w)P(w)  = 

&(w) + O(WP+~) ,  where the characteristic function o f X ( a , p )  takes the form 
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G(w) = (1 - A w ) P + l .  T h e n  X(a,P) has a one-point spectrum .(X(a,P)) = 
{ A }  and the following factorization holds: 

X(al P )  = P(K) X(.P, 1) P - W .  (7.3.12) 

Here X ( a p ,  1) is  the companion matrix  corresponding t o  aP. 

Proof: We have 

- 1  
$(w) = wp+1zC'(-) = (w - X)P+l 

W 

and it follows that o(X(a,P)) = {A}.  Let y = ap; that is, 

P+ 1 

y(w) = 1 + -&iWi = (1 - AW)P+l  + 0 ( w P + 2 ) .  

i=l 

For convenience, we also introduce the notation 
cients P1, Pz I . . . , Pp+l. Using the relations 

= P-l where has coefi- - -  - 

T k -  T Kiel = 0, i > 0, ej K - ej+k, 

where by convention e j + k  = 0 if j + k > p + 1, we also have 

P P + l  P + l  P 

k=l j=1 j=1 k = l  

W w w  

+ C B ~ K ~ J  + x P i D k K i J K k  

i= 1 i=l k=l  

It can be verified that 

Ki-1- ep+2-ie;f+l, i > 0, IC = 0, 

i ] j  > 0. 

Using these relations and observing that K P  = ele;f+l and K j  = 0 for j > p ,  
we obtain 

P+l  P+ l  

k= 1 j=1 j=1 k = l  

P + l  P + l  
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Since a = 7P1 that is, 

(1 + y1w + ' ' ' + ypwP + "Ip+1wP+1)(1 + p l w  + * ' * + P P W P  + pP+lwP+l) 

= 1 + a1w + .  . . + apwP + ap+lwp+l  + O(WP+2), 

it follows that 

j=1 k= 1 j=1 k = l  i= 1 

Similarly, since p(w)a(w)  = 1 + O(wpf2),  all coefficients of pp are equal to 
zero and we have 

P+l  P + l  P+l 

i= 1 k = l  i=l k = l  k = l  

Hence, 

7.4 TRANSFORMATIONS BETWEEN M E T H O D  ARRAYS 

In this section we describe transformations between the coefficient matrices 
of methods that will enable us to find GLMs with IRKS property. The trans- 
formed methods and the transformed IRKS conditions will be derived. We 
assume that the coefficient matrix A has the form (2.7.1) with X = 0 or X > 0, 
respectively, which corresponds to GLMs (7.1.1) of type 1 or 2. 

We first present two results that will aid in the process of deriving GLMs 
with IRKS. The first considers a special connection between lower triangular 
matrices. 

Lemma 7.4.1 (Butcher and Wright [80, 2931) Assume that L E R"'" 
is a strictly lower triangular matrix, with n = p + 1, satisfying 

ML = JM. 

Then M is lower triangular. 

Proof: We prove this result by induction. The lemma is clearly true for 
n = 1. Assume that it is true for p = n - 1 and let M, J , L  E Rnxn.  Since 
JM = ML implies that JMe,+l = MLe,+l and we have Le,+l = 0, it 
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follows that the first p components of Me,+l are equal to zero, so that the 
last column of M is a multiple of ep+l. Let us partition M, J, and L as 
follows: 

where M ,  J ,  L E R(n-l)x(rL-l)  and m, 1 E RnP1. Then JM = ML implies 
that M L  = J M ,  which, by the induction hypothesis, implies that M ,  and 

The second result shows that the first of the IRKS conditions (7.2.8) can 
be strengthened to equality between matrices. We have the following lemma. 

Lemma 7.4.2 (Butcher and Wright [80, 2931) Given  the coe&cients 
PI, Pz, . . . , p p  and the real parameter A, choose coef lc ients  a1, QZ, . . . , ap+17 

so that the characteristic polynomial $(w) = det(w1- X(a, p))  i s  of the  f o r m  
$(w) = (w - A),+'. T h e n  the condition BA = XB implies that 

therefore M, is lower triangular. rn 

BA = XB. (7.4.1) 

It follows from Lemma 7.3.3 that X = 9(J + XI)@-', so that the Proof :  
condition BA E XB takes the form 

BA = @(J + XI)QI-lB. 

Since @Ir-l is unit upper triangular, we have @-'el = el, and it follows that 

V I B A  E (J + XI)@-'B. 

This can be rearranged in the form 

Q - ~ B ( A  - XI) = J Q - ~ B .  (7.4.2) 

Since A - XI is strictly lower triangular, it follows from Lemma 7.4.1 that 
9-lB is lower triangular, which implies further that the left- and right-hand 
sides of (7.4.2) are equal. This is equivalent to (7.4.1), which completes the 

The results of this section are also applicable in a somewhat more general 
case, where the coefficient matrix A is not necessarily of the form (2.7.1), 
but it is only assumed to have a one-point spectrum a(A) = {A}. Then it 
follows from real Schur decomposition [136] that this matrix can be reduced 
to a matrix A of diagonally implicit form (2.7.1) by an orthogonal similarity 
transformation 

proof. W 

- 
A = W ~ A W .  
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If W = I, then A = and the method reduces to  GLM of type 1 or 2. 
However, by allowing W # I, more general methods, such as, for exam- 
ple, ESIRK considered by Butcher et al. [55, 56, 591 or diagonally extended 
singly-implicit Runge-Kutta effective order (DESIRE) methods considered by 
Butcher and Diamantakis [61], can be derived. This is discussed in detail by 
Butcher and Wright [81, 2931, where new ESIRK and DESIRE methods are 
also constructed. 

The significance of Lemma 7.4.2 consists of the fact that relation (7.4.1) 
can be used to find A given that we know B. Clearly, 

A = B-lXB 

if B is nonsingular. However, the relation (7.4.1) can be used to find A even if 
B is singular, although in some cases A may not be unique [293]. Once A and 
B are known, the remaining coefficient matrices U and V can be determined 
from relations (7.1.6) and (7.1.7), which follow from stage order and order 
conditions. Therefore, the method is determined once we know B, and it is 
crucial to  find a convenient way to  represent this matrix. The transformation 
is used to represent B in such a way that the remaining conditions (7.2.9) and 
(7.2.10) for IRKS are satisfied automatically. 

Denote by M the original method and by G the transformed method, 

and assume that both methodshave the same abscissa vector c = E. To con- 
struct M, we first construct M with some appropriate properties, and then 
back transform to find the original method M. This approach was proposed 
by Butcher and Wright [79] in a somewhat more restricted setting, where the 
definition of IRKS property was less general and where the matrix J instead of 
X was used (compare [79, Definition 2.21). We now use Lemma 7.3.3 to trans- 
form method M and the IRKS conditions (7.4.1) and (7.2.9). Substituting 
(7.3.8) into (7.4.1) and rearranging terms, we obtain 

PB(A - XI) = JPB. 

This can be written in the form 

BX = JB, ( 7.4.3) 

- - where 
A = A - XI, B = Q-lB. 

Since is strictly lower triangular, it follows from Lemma 7.4.1 that B is 
lower triangular. Substituting (7.3.8) into (7.2.9) and simplifying, we obtain 

BU = QJQ-lV - V9JQ-l.  
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Using the properties of the equivalence relation E listed in Section 7.1, this 
can be rewritten in the form 

Biv = ~t - t ~ ,  (7.4.4) 

where 
6 = UQ, t = QI-lVQ. 

Consider next IRKS condition (7.2.10) in Definition 7.2.3. Since Q-l and 6 
are unit upper triangular matrices and Vel = el, we have 

tq = Q-lVQel = Q-lve l  = @-'el = el, 

which is the preconsistency condition for the transformed method G. We also 
have 

det(w1 -- 9) = det(w1- Q-lVQ) = det(w1- V), 

so that the transformed condition (7.2.10) takes the form 

det(w1- t) = wp(w - 1). (7.4.5) 

Next we express conditions (7.1.6) and (7.1.7) in terms of the transformed 
method G. Postmultiplying (7.1.6) by Q and rearranging terms, we obtain 

UQ = CQ - ACKQ = CQ - ACKQ - XCKQ. 

Hence, 
6 = C(I - XK)Q - XCKQ.  (7.4.6) 

Similarly, premultiplying (7.1.7) by 9-' and postmultiplying by Q, we get 

Q-lVQ = Q-lEQ - BCK6 

Using the formula for + in (7.3.9) and the formula for Q-' in (7.3.10), this 
can be written in the form 

t = exp(-XK-)P-l(K)EP(K) exp(XK-') - BCKQ.  

It is easy to verify that the upper triangular Toeplitz matrices E and P(K) 
commute and it follows that 

t = F - BCKQ, (7.4.7) 

where 
F = exp(-AK-)Eexp(AK-) 

The structure of this matrix is described by the following lemma. 
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Lemma 7.4.3 (Butcher a n d  Wright [80, 2931) Let X be a real number 
and K-l ,  E ,  and K be the matrices defined in Sections 7.1 and 7.3. Then 

exp(-XK-)Eexp(XK-) = exp (K(I+  XK)-l). (7.4.8) 

Proof: Observe first that it follows from the Leibnitz rule for the i-fold 
derivative applied to the product of x and x-'f(x), where f (x )  is a sufficiently 
smooth function. that 

or 
(i-1) 

- ( f ( X ) y i )  1 
= (--) f (XI  ( 2 )  + ; (T) f(.) 

X 
(7.4.9) 

This formula will be used when f(.) is a polynomial of degree p :  

T f (x)  = xp + a lxP- l+ .  . . + up-lx + up = a E ,  

where 

and we will be interested in terms with nonnegative powers of x. It can be 
verified by induction with respect to i that 

1 
- ( f ( ~ ) ) ( ~ )  = aT(K-)2K[ + O(x-l); 
X 

(4 (9) = aTK(K-)i[ + O(x-'), 

X (%) 
(2-1) 

= iaTK(K-)K[ + O(x-'), 

(7.4.10) 

where O(x-') stands for terms with negative powers of x. We illustrate the 
proof of the first of the formulas above, which is rewritten as 

(f(x))(Z) = xaT(K-)iK[ + O(l ) ,  

where 0(1) includes constant terms and terms with a negative power of x. 
Since aT[ and xaTKJ differ by a constant, this formula is satisfied for i = 0. 
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Assuming that it is true for i, we have 

(f(z))(z+') = aT(K-) iK(< + z<') + O(1) 

T 
= aT(K-) 'K [ ( p +  1)xp pzp-l . . .  2 2  1 ] +O(1)  

= aT(K-)' [ p2p-l ( p -  I ) Z P - ~  . . .  2 2  1 0 1  +0(1) 

= aT(K-) 'K- [ XP 2P-1 . . .  z 1 I T  +O(1)  

T 

= aT(K-)%+lK [ xP+1 zp . .  . 2 2  2 I T  + O(1) 

= zaT(K-) '+lK< + O(1). 

which is the same formula as that corresponding to i + 1. 

powers of 2,  we obtain 
Substituting (7.4.10) into (7.4.9) and comparing terms with nonnegative 

aT ((K-)'K - K(K-) '  - iK(K-)'-'K)< = 0. 

Since this relation holds for any value of x and any choice of the components 
of a. it follows that 

( K - ) Z K  - K ( K - ) Z  - ~ K ( K - ) ~ - ~ K  = 0. 

Multiplying this equation by Xi/i! and summing for i = 0 , l : .  . ., we obtain 

exp(XK-)K = Kexp(XK-)(I + XK): 

or, what is equivalent] 

exp(-XK-)K exp(XK-) = K(I - XK)-l. 

This relation implies that 

exp(-XK-)K3 exp(XK-) = (K(1-  AK)-')', 

j = O , l , . .  ., and multiplying this by l/j! and summing over j ,  we obtain 

The next results analyze the structure of the matrix exp(S(1 + XS)-l), 
where S satisfies the condition p(XS) < 1. Here p(A) stands for the spectral 
radius of the matrix A. This condition is clearly satisfied for any X if S = K. 
Although the structure of this matrix could be concluded from Lemma 3.5.1 
with S playing the role of z1 in what follows we describe it in a somewhat 
different way following Wright [293]. The reason for this is that it is more 
convenient to use somewhat different notation in the context of GLNs with 

equation (7.4.8). This completes the proof. 
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IRKS than that corresponding to the case of DIMSIMs of types 1 and 2 
discussed in Sections 3.4 and 3.5. We first need the following lemma. 

Lemma 7.4.4 (Wright [293]) For any integer 1 2 1 and a complex number 
w such that Iw/ < 1, we have 

(7.4.11) 
1 

(1 - w)1' 
k=O k=O 

Proof: The result is clearly true for 1 = 1. Assuming that it is true for 1 > 1, 
it follows that 

Setting k = m + n and rearranging the double sum, we obtain 

m k=O k=O m=O 

It can be verified by induction with respect to k that 

k + l  

m m=O 

Hence, 

k + l  

k=O k=O 

which corresponds to (7.4.11) with 1 replaced by 1 + 1. This completes the 

We are now ready to describe the structure of exp(S(I+ X3- l ) .  We have 

proof. 

the following lemma. 

Lemma 7.4.5 (Butcher and Wright [80, 2931) For any real numberX and 
the matrix S such that p(XS) < 1, we have the following representation: 

cc 

exp (S(I + X S ) - ~ )  = I + E N ~ ( x ) s ~ ,  (7.4.12) 
i=l 

where 
2-1 

k=O 

(7.4.13) 
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Proof: Expanding exp(S(1 + XS)-l) into a Taylor series, we obtain 

Since p(XS) < 1, it follows from Lemma 7.4.4 that the negative binomial 
expansion of (I + AS)-' is given by 

) (-AS)k. 
3c) k + l - 1  

(I + As)-' = c ( 
k k=O 

Substituting this relation into the expansion of exp(S(1 .t XS)-l), we get 

0 ° 1  O0 k + l - 1  

'=1 k=O 

Setting i = 1 + k and rearranging the double sum, it follows that 

This is equivalent to (7.4.12) with N,(A) defined by (7.4.13), and the proof is 
complete. 

The polynomials N,(X) are listed in Table 7.4.1 for i = 1 , 2 , .  . . , 6. 

Table 7.4.1 Polynomials Ni ( A )  for i = 1 , 2 ,  . . . , 6  

Next we analyze further IRKS condition (7.4.4), which will aid in the 
derivation of the coefficient matrix B of the transformed method G. Substi- 
tuting (7.4.6) and (7.4.7) into (7.4.4), we obtain 

BC(I - X K ) ~  - BACKQ = J(F - BCKQ) - (F - BCKQ)J, 
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0 a2 

1 0 0 . . .  0 a1 

0 0 . . .  

and using IRKS condition (7.4.3) it follows that 

Bc((I - AK)Q - KQJ) = JF - FJ. 

Since 

(I - AK)Q - K@J = 9 - K@(J + AI)Q-'Q = (I - KX)Q. 

using (7.3.8) we obtain 

BC(1- KX)Q = JF - FJ. (7.4.14) 

Since Q is unit upper triangular (compare Lemma 7.3.3) it can be verified by 
direct computations that the matrix (I - KX)9 appearing on the left-hand 
side of (7.4.14) takes the simple form 

(1 - KX)Q = P(K)eP+ie,T+,, (7.4.15) 

which has only the nonzero last column equal t o  

Here ,8 is defined by (7.3.2). The next result is useful to  describe the structure 
of the matrix JF - FJ appearing on the right-hand side of (7.4.14). 

Lemma 7.4.6 (Butcher and Wright [80, 2931) Given the polynomial 

f(w) = 1 + a lw  + .  . + up-1wP-' + apwp,  

it follows that f (K)  is an upper triangular Toeplitz matrix that satisfies the 
relation 

J P W  - f (K)J  = . .  
. .  

p-i+l 

JKi = c ej+le,T+i: i = 1 , 2 , .  . . > p .  
j=1 

p-i+l 

JKi = c ej+le,T+i: i = 1 , 2 , .  . . > p .  
j=1 

Similarly, partitioning Ki into columns and J into rows, we get 

P--2 

K ~ J  = Cej+ le j+ i ,  T i = 1,2 . .  . . > p .  
j = O  

Proof: 
multiplication! we obtain 

Partitioning J into columns and Ki into rows and performing block 
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Hence, subtracting these relations it follows that 

T 
J K Z  - K ~ J  = ep-i+2ep+l - el.?; i = 1 , 2 , .  , , , p .  

Multiplying the equation above by ai and summing for i = 1 ,2 , .  . . , p ,  leads 
to 

W W 

a=1 2 = 1  

which is equivalent to the statement of the lemma. 

Since p(AK) = 0 for any A, it follows from Lemmas 7.4.3 and 7.4.5 and the 
fact that Kz = 0 for i 2 p + 1 that 

P 

F = exp (K(I + ~ ~ 1 - l )  = I + C N,(A)K~. 
2= 1 

Hence, applying Lemma 7.4.6 to the function f(w) defined by 

we obtain 

JF - FJ = . (7.4.16) 

Taking (7.4.15) into account, relation (7.4.14) can be written in the form 
- 
BC/3(K)e,+le;+l = JF - FJ, (7.4.17) 

where JF - FJ satisfies (7.4.16). Observe that the matrix on the left-hand 
side of (7.4.17) is zero except for the last column, and the matrix on the 
right-hand side is zero except for the first row and the last column. Hence, 
the equivalence relation (7.4.17) is automatically satisfied except for the last 
column, and it can be written in the form 

BCP(K)e,+l = (JF - FJ)e,+l. (7.4.18) 

This relation leads only to p additional conditions for the ( p  + l ) (p  + 2)/2 
coefficients of the lower triangular matrix B. The determination of this matrix 
is discussed further in Section 7.7. 



374 GENERAL LINEAR METHODS WITH INHERENT RUNGE-KUTTA STABILITY 

7.5 TRANSFORMATIONS BETWEEN STABILITY FUNCTIONS 

In this section we investigate the relationship between the stability matrices of 
the original and the transformed method to determine the connection between 
their stability functions. The stability matrix M(z) of the original method is 
given by formula (2.6.4), and we have 

-1 z z 
= v+- 

Setting I - z z 
z = -  or z = -  

1 - x z  1 + XZ' 

where we recall that X = A - XI. Denote by M(z) the stability matrix of the 
transformed method; that is, 

M(z) = G + zB(1-  zX)-'V. 
It turns out that there is a direct connection between stability matrices of the 
original and transformed methods. This connection is given by a similarity 
transformation between matrices M(Z/(l - XZ)) and M(Z): that is, 

- 
Q-lM(')Y 1 + AZ = 

(7.5.1) 

We have demonstrated in Section 7.4 that the transformed method satisfies 
the preconsistency condition 9e l  = el and the transformed IRKS conditions 
(7.4.3), (7.4.4), and (7.4.5); which correspond to IRKS conditions (7.2.8), 
(7.2.9), and (7.2.10) of the original method M. This means that Defini- 
tion 7.2.3 holds for the transformed method, with A, B. U, V, and X re- 
placed by X, B> U, V: and J. Using the same arguments as in the proof of 
Theorem 7.2.4, we can establish a similarity equivalence relation 

(I - ZJ)M(Z)(I - 2 - l  = G. 

- -  

(7.5.2) 
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This relation implies that G(q has a single nonzero eigenvalue which will be 
denoted by E(Z) and referred to  as the stability function of the transformed 
method G. It follows from (7.5.1) that  the stability function E(q of the 
transformed method is related to the stability function R(z )  of the original 
method through the relation 

(7.5.3) 

To express E(Z) in terms of the coefficient matrices of the transformed method, 
observe that similarly as for the original method, it follows from the precon- 
sistency condition qq = el and the equivalence similarity relation (7.5.2) 
that the matrix (I - ZJ)G(Z)(I - ZJ)-l can be partitioned as 

where is the p x p matrix obtained from 9 by deleting the first row and 
column, and F is a vector. Hence, the stability function k(Z) is the (1,l) 
element of the matrix above; that  is, 

E(Z) = .:(I- ZJ)G(Z)(I - ZJ)-'el, 

To simplify the expression above observe that .?(I- ZJ) = ey and denote by 
I 

Z the vector 

- 
Z =  [ 

Then 

orl componentwise, 

- - (I - zJ)Z = el, 

- 
21 = 1, --El +Z2 = o :  . . .  , -Ep + ZP+l = 0, 

which implies that 
2. 2 -  - 2-1 , i = l , 2 ,  . . . , p +  1. 

Hence, 
k(q = e:(q -%(I - zX)-'~)Z, 

where 2 takes the form 
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To further simplify this exjression, observe that is strictly lower triangular - 
and it follows that (I - Z A ) - l  is unit lower triangular. Moreover, since B is 
lower triangular, it can be verified that eTB(1- FA)-' = eTB. Hence, the 
stability function E(Z) of the transformed method 

- 
takes a simple form, 

- -  - E(z )  = eT(V + ZBU)Z. (7.5.5) 

If the original method is explicit, the remaining free parameters in the stability 
function can be used to control the error constant and the size of the region 
of absolute stability. This is discussed in Section 7.8. If the original method 
is implicit, the parameter X will be chosen to guarantee A-stability, and the 
free parameters in the numerator of the stability function can be used to 
guarantee L-stability. To achieve these goals it is convenient to reformulate 
various conditions on the original method as corresponding conditions on the 
transformed method. Consider first the stability function R(z )  of the original 
method as the rational approximation of order p to the exponential function 
exp(z) with error constant denoted by E .  Since A is lower triangular with X 
on the diagonal] this function takes the form 

where P ( z )  is a polynomial of degree p + 1. Then it follows from (7.5.3) that 
the stability function Z(Z) satisfies the relation 

where F(Z) is a polynomial of degree p + 1. Since 

E(Z) can be written as 

I 

E(z)  = F ( z )  = exp ( &F) - E PP+l + O(2p+2) .  (7.5.7) 

To derive explicit expressions for P ( z )  and F(Z) ,  we have to introduce some 
definitions and notation. For integers m and n, m 2 n; define the polynomials 
Mn,rn(x) as 

(7.5.8) 

These polynomials can be expressed in terms of the generalized Laguerre 
polynomials Ln,a(x) ,  [l, 1071. These are polynomials orthogonal with respect 
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to the weight function ~ ( x )  = xa exp(x), a > -1, on the interval [0, m), with 
an explicit expression of the form 

n + a  

2=o n - a  2 .  
L,.a(x) = 2 ( ,)V. 

For integers m 2 0, they satisfy the relations 

Ln.o(z) = Ln(x ) .  L,,m(z) = (-qmLi:?&) (7.5.9) 

(compare [l]), where L,(z) are Laguerre polynomials defined by (2.7.6) in 
Section 2.7 and LimLm)(z) stands for an m-fold derivative of L,(z). Observe 
that we do not use the notation L p ) ( z )  for generalized Laguerre polynomials 
which is employed in [l, 1071, since for integer and nonnegative m, the notation 
Lim)(x) is reserved for an m-fold derivative of Ln(x) .  

For X = 0 and any m,  we have 

and for X # 0 and m 2 n, we have 

Hence, it follows that 

Mn,m(X) = (-W%,m-n (t), # 0. (7.5.10) 

To determine exact expression for the polynomial P ( z ) ,  we use the relation 

(7.5.11) 

which, since z p + ' ( l - X ~ ) P + ~  = z P + ' + O ( Z P + ~ ) ,  is equivalent to (7.5.6). Denote 
by (z" ,  f ( z ) )  the coefficient of zn  in a Taylor series expansion of the function 
f ( z )  about z = 0. We have the following result. 

Lemma 7.5.1 (Butcher and Wright [go, 2931) For integers m andn, m 2 
n, the following relation holds: 

~ ( z )  = (1 - ~ z ) p + '  exp(z) - EZP+' + o ( z P + ~ ) ,  

( z " ,  (1 - Xz)" exp(4)  = Mn,m(A) ,  (7.5.12) 
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n = 0 , 1 ,  . . . ,  m. 

Proof: We have 

Putting TL = i + j and then rearranging the double sum and using (7.5.8), we 
obtain 

which implies (7.5.12). 

It follows from this lemma with m = p + 1 that 

W 

P+ 1 

(1 - XZ)P+' exp(z) = C ~ ~ , ~ + l ( ~ ) z ~  + o(zP+'). 

and comparing this with (7.5.11) and observing that P ( z )  is a polynomial of 
degree p + 1, we obtain 

n=O 

P 

P ( z )  = C Mn,,+l(X)z" + E Z P + l ,  (7.5.13) 
n=O 

where 

= Mp+l,p+l(X)  - E .  (7.5.14) 

The error constant E is presented in Table 7.5.1 for orders p up to 6. 

S replaced by 2 in formula (7.4.12). It follows that 
Exact expression for F(Z)  in (7.5.7) can be derived using Lemma 7.4.5 with 

(7.5.15) 

where the polynomials Ni(X) are defined by (7.4.13). Substituting this relation 
into (7.5.7) and t,aking into account that F(Z)  is a polynomial of degree p +  1, 
we obtain 

F(q = 1 + c Ni(A)2 +z;sp+l, (7.5.16) 
P 

i=l 

where 
(7.5.17) 

- 
E = NP+l(X) - E .  
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P I  E 

Table 7.5.1 Error constant E = Mp+l,p.+l (A) - E for p = 1 , 2 , .  . . 6 

Alternativelyl we can express p(2) in terms of the polynomials Mn,m(X) de- 
fined by (7.5.8). Denote by ( Z n , T ( Z ) )  the coefficient of Zn in a Taylor series 
expansion of T(2) about Z = 0. We have the following lemma. 

Lemma 7.5.2 (Butcher and Wright [80, 2931) For integers m and n such 
that m 2 n, the following relation holds: 

(7.5.18) 

n = 0,1,. . . , m, with the convention that h!f-l,-l(A) = 0 .  

Proof: Substituting Z = z / ( l  - Xz) into (7.5.15), we obtain 

Multiplying both sides of this equation by (1 - Xz)"-' yields 

Since the terms with 
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are polynomials of degree less than n for i = 0 , 1 , .  . . ? n - 1, we obtain 

where the last equality follows from Lemma 7.5.1. This completes the proof 
of (7.5.18). m 

This lemma implies that 

N"(A)  = Mn,n(A) + AMn-l,n-l(A), (7.5.19) 

where Nn(A) is defined by (7.4.13) and M n , m ( A )  by (7.5.8). This equation 
can also be verified by direct computations using the relations 

(;) - ( n - l )  i - 1  = 

if i < n, and 

if i = n. 

and ?defined by (7.5.17) is 
Using (7.5.19), it follows that the relation between E defined by (7.5.14) 

?= E + AMP,#(X). (7.5.20) 

The constants Eand E can also be expressed in terms of the (1,l) element bll of 
the transformed matrix B, the parameter A, and the parameters PI, P 2 , .  . . ? ,Bp 
of the doubly companion matrix X. It follows from (7.5.16), (7.5.5), and the 
definition of the vector 2 that 

- -  - 
E =  (.F+', R ( 3 )  = (.F+', eT(T + ZBU)Z) = eTE6eP+l. 

Substituting 6' = UQ with U given by (7.1.6) and Q given by (7.3.9); we 
obtain 

E = eTB(C - ACK),B(K) exp(XK-)e,+l. 
- 
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Since B and A are lower triangular, we have 

el T -  B = - blleT, eTBA = bllXeT, 

which leads to 
- 
E = blleTC(1- XK)P(K) exp(XK-)e,+l. 

It can be verified using the expansion 

3cI xi P xi 

2!  
exp(XK-) = T(K-)i = -(K-)i 

i=o 2 .  i=O 

that exp(XK-)e,+l = A ,  where the vector A is defined by 

Also taking into account that the matrices K and P(K) commute, the equation 
for Z can be written in the form 

Z =  blleyCP(K)(I  - XK)A. 

This can be simplified further observing that (I - XK)A = ep+l. Hence, 

- 
E = &leTCP(K)e,+l. 

This equation and (7.5.20) lead to the condition 
- 
blleTCP(K)ep+l = E + X M p , p ( X ) .  

Observe that the vector P(K)e,+l has the simple form 

(7.5.21) 

7.6 LOWER TRIANGULAR MATRICES A N D  CHARACTERIZATION 
OF MATRICES WITH ZERO SPECTRAL RADIUS 

IRKS condition (7.2.10) for the original method M and the corresponding 
condition (7.4.5) for the transformed method require that the characteristic 
polynomials of V and t have the form 

det(w1- V)  = det(w1- ?) = wp(w - 1). 

Since Vel = el and ve1 = el, these matrices can be partitioned as 
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and it follows that conditions (7.2.10) and (7.4.5) are equivalent to  the re- 
quirement that  matrices V and v have zero spectral radii. In this section we 
discuss the characterization of such matrices which was discovered by Butcher 
and Wright [80, 2931. 

Denote by C, the set of n x n lower triangular matrices and by U, the 
corresponding set of upper triangular matrices. For a square matrix R we 
denote by A(R) the lower triangular part of the matrix. We also use the 
notation C(R) and U(R) for unit lower triangular matrix and upper triangular 
matrix, respectively, such that 

R = C(R)U(R),  

assuming that this LU decomposition exists. 

ces and the lower triangular part of a matrix. 

Lemma 7.6.1 (Butcher and Wright [80, 2931) ([BO], [293]). Given ma- 
trices U1,Uz € &, and a matrix H E R"'", the following relation holds: 

The next result shows the connection between two upper triangular matri- 

A(UiA(H)U2) = A(UiHU2) 

Proof: The lemma is clearly true for n = 1. Assume that it is true for n - 1 
and partition the matrices U1,Uz E Un, H E R"'", A(H) E C, as follows: 

The lemma follows since by induction assumption we have A(UlA(H)U2) = 

A (Ul HU2 ) * rn 

where u ~ , u z , ~  E R, u1,uz:r:c E Rn-', U1.U2 E 24-1, H E R(n-l)x(n-l) ,  
and A(H) E C,-1. It can be verified by direct computations that 

- 7 

I OT 
A / T T  A / U \ T T  \ - 



LOWER TRIANGULAR MATRICES AND CHARACTERIZATION OF MATRICES WITH ZERO SPECTRAL RADIUS 383 

The next lemma investigates the inverse of some mapping between the 
lower triangular matrices. This result is essential in the derivation of GLMs 
with IRKS. 

Lemma 7.6.2 (Butcher and Wright [80, 2931) Assume that H E Cn, and 
G I ,  G2 E Rnxn, and define the mapping f : C, ---f Cn by the formula 

f (H)  = A(GiHG2). 

Then the inverse mapping f - '  : C n  ---t C n ,  if it exists, is defined by 

f - ' (F) = C( G ' ) A (U (G r ' ) FU (G2)-') C( G2)-'. 

Proof: Given that 

GY' = C(G;')U(Gr'), G2 = C(G2)U(G2), 

we have 
f (H) = A (ZA( G, ' ) -'C( G, ')-' HC( Gz)U( G2)). 

Multiplying this equation on the left by U(G,')  and on the right byU(G2)-', 
we obtain 

U(G, ' ) f (H)U(G- l  

= U(G,')A(U(G,l)-lC(G,l)-lHC(G~)U(G~))U(Gz)-'. 

Hence, taking lower triangular parts of both sides and applying Lemma 7.6.1 
to the resulting right-hand side we get 

A(U(G,')f(H)U(G2)-') = A(C(G,')-'HC(Gz)). 

Since the matrix C(GT1)-'HC(G2) is already lower triangular, we have 

C(GI1)-lHC(G2) = A(U(G,')f(H)U(G2)-'), 

and it follows that 

H = C(G,')A(U(G,')f(H)U(G2)-1)C(G2)-1. 

Substituting F for f (H)  yields the required result. 

It follows from the proof of this lemma that the inverse of the mapping 
f : C n  + C, exists if G1 and G2 are nonsingular and the matrices GT' and 
G2 admit LU factorizations. It is demonstrated in the following sections that 
these conditions will often be satisfied in applications of this lemma to the 
construction of GLMs with IRKS. 

The next lemma describes the characterization of matrices with zero spec- 
tral radius. 
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Lemma 7.6.3 (Butcher and Wright [80, 2931) A matrix R E RnXn has 
spectral radius equal to zero if and only if there exists a permutation matrix 
P and a unit lower triangular nonsingular matrix L such that 

~ ( L - ~ P ~ R P L )  = o 
Proof: Then R is similar to a 
strictly upper triangular matrix and it follows that its spectral radius is zero. 
Assume next that the spectral radius of R is equal to zero, and denote by T 
a nonsingular matrix that transforms R to the Jordan canonical form 

Assume first that A(L-lPTRPL) = 0. 

T - ~ R T  = s. 

Since T is nonsingular, there exists LU decomposition with partial pivoting 
of this matrix, 

T = P L R ,  

where P is a permutation matrix, L is unit lower triangular, and R is upper 
triangular. Hence, 

R - ~ L - ~ P ~ R P L R  = s 
or 

L - ~ P ~ R P L  = RSR-I 

The result now follows since RSR-l is strictly upper triangular. 

7.7 CANONICAL FORMS OF METHODS 

In this section we describe an approach to generating GLMs with IRKS, which 
will lead to the constructive algorithm for the derivation of such methods of 
any order using only linear operations. First. for easy reference, we collect 
all assumptions on the class of methods we are interested in. and recall some 
of the formulas that were derived in previous sections. We are interested in 
GLMs of the form (7.1.1) with the abscissa vector c and coefficient matrices 
A. U, B, and V, with the following properties: 

0 The stage order and order of the method are each equal to p .  

0 The number of external stages r and the number of internal stages s are 
equal to r = s = p + 1. 

0 The method is nonconfluent (i.e., the abscissa vector c = [cl, . . . , c , ] ~  
satisfies ci # c j  for i # j ) .  

0 A is a lower triangular matrix with diagonal elements each equal to 
x 2 0. 
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0 The method has RK stability with stability function given by 

where 

P 

P ( Z )  = exp(z)(l-Xz)p+l -E~~+’+o(zP+’  ) = c Mn,,+1(X)Zn+€zn+l 
n=O 

and E = M,+l.,+l(X) - E (compare (7.5.11. (7.5.13), and (7.5.14)). 

0 The coefficient matrix V satisfies the preconsistency condition Vel = el. 

0 The method has IRKS. This means that the following conditions are 
satisfied: 

BA = XB, 

BU XV - VX, 

det(w1- V) = wp(w - 1) 

(compare (7.2.8), (7.2.9), (7.2.10). andLemma7.4.2). HereX = X(a,p)  
is a doubly companion matrix such that o(X) = {A}  and X is the diag- 
onal element of A. The first row of this matrix, which corresponds to 
a ,  is defined once the coefficient X and the last p elements of the last 
column, which corresponds to p. are chosen. 

To determine GLMs with IRKS, we start with the construction of the 
coefficient matrix B of the transformed method G. It was demonstrated in 
Section 7.4 that the transformed IRKS condition (7.4.4) led to  the equivalence 
relation (7.4.18). It was also demonstrated in Section 7.5 that the stability 
function g(Z) of the transformed method G takes the form (7.5.16), which 
leads to the condition (7.5.21) with E defined by (7.5.14). We can combine 
(7.4.18) and (7.5.21) into one condition. Let b = [ b l . .  . . , b,+lIT be the vector 
defined by 

- -  - 

= BCp(K)e,+l. 

Then it follows from (7.4.16) that equation (7.4.18) can be written in the form 

and equation (7.5.21) takes the form 

Hence, these two equations can be combined into one condition, 
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where the vector S is defined by 

S =  [ E+XMp,p(X) NP(X) . . .  Nl(X) I T .  
We examine next the transformed IRKS condition (7.4.5), where the matrix 

v is defined by (7.4.7). To analyze this condition it is convenient to introduce 
some matrices that will be used to remove the first row or the first column of 
a matrix or to insert an additional first row or first column of zeros to a given 
matrix. These p x ( p  + 1) and ( p  + 1) x p matrices are defined by 

I , =  [ 0 I I ] = 

1 0 . . .  0 0 

0 1 . . .  0 0 
. .  . .  . . .  . . .  

. .  . . .  

0 0 . . .  1 0  

0 0 ” ’  0 1  

where I is the identity matrix of dimension p x p .  Then, for example, if A is a 
( p  + 1) x ( p  + 1) matrix, it follows that IcAI, is a p x p matrix obtained from 
A by removing the first row and the first column. Similarly, if A is a p x p 
matrix. then I,AIc is a ( p  + 1) x ( p  + 1) matrix obtained from A by adding 
an additional first row and first column of zeros. 

defined by (7.4.7) can be written in 
the form 

It follows from Lemma 7.6.3 that this condition is equivalent to 

Condition (7.4.5) with the matrix 

~(I ,VI , )  = p ( ~ , ( ~  - BCKQ)I,) = 0. 

A(T-~I , (F  - BCKQ)I,T) = 0 ,  (7.7.2) 

where T E R P x P  is the product of a permutation matrix P and a unit lower 
triangular matrix L.  Assuming that the permutation matrix is equal to iden- 
tity (i.e.. T = L ) ,  conditions (7.7.1) and (7.7.2) can be combined into one 
condition. Let L be the matrix defined by 
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We can rewrite equation (7.7.1) in matrix form, 

BCP(K)e,+leT = hey, 

where the last p columns on both sides of this relation are equal to zero. This 
relation is equivalent to 

L-'BCP(K)e,+leTL = SL-leTL, 

and since L is lower triangular, the last p columns of the matrices on both 
sides of this equation are again equal to zero. Hence, this relation is equivalent 
to 

A(L-'(BCP(K)e,+leT - GeT)L) = 0. 

A(L-~I,I,(F - BCKQ)I,I~L) = 0, 

(7.7.3) 

We can also rewrite equation (7.7.2) in the equivalent form 

(7.7.4) 

since the multiplication by I, from the left and by I, from the right introduce 
only the additional first row and first column of zeros. Equations (7.7.3) and 
(7.7.4) can be combined into one relation, 

A(L-l(BCP(K)e,+leT + I ,IcBCKWJc)L) = A(L~l ( ITIcFI , I c  + Se1)L). 

This can be simplified further observing that 

KQI,Ic = K Q  

and that the (1,l) element of the matrix I,IcB is equal to zero. This leads 
to the relation 

A(L-lBRL) = A(L- l rL) ,  (7.7.5) 

where the matrices R and r are defined by 

R = C(P(K)e,+leT + KQ) 

r = I~IcFI,Ic + h e l .  

It follows from Lemma 7.6.2 that equation (7.7.5) has a solution if RL is 
nonsingular and admits LU decomposition RL = C(RL)U(RL), where C(RL) 
is unit lower triangular and U(RL) is upper triangular. Moreover, if this 
solution exists, it is given by 

and 

B = LA (A (L-'rL)U (RL)-') C (RL)-'. 

Using Lemma 7.6.1 the equation above reduces to 

B = LA(L-'rLU(RL)-l)C(RL)-l (7.7.6) 
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We now summarize the derivation of GLMs with IRKS by collecting all nec- 
essary information that is required in this process. This leads to the following 
practical algorithm, which we describe step by step. 

1. Choose the order p and the vector c of distinct abscissas c1, c2, . . . , c,, 
where s = p + 1. It is usually assumed that 0 5 ci 5 1, i = 1 , 2 , .  . . , s.  
The typical choice are abscissas uniformly distributed in the interval 
[ O ,  11 (i.e., ci = (i - l) /(s - l), i = 1 , 2 , .  . . , s). 

2. Choose the diagonal element X 2 0 of the coefficient matrix A. If X > 0, 
which corresponds to implicit GLMs, X is usually chosen to achieve A- 
stability of the resulting method. 

3. Choose the zp+l coefficient E of the numerator P ( z )  given by (7.5.13) 
of the stability function R(z )  (7.5.6). This is usually done to achieve 
some balance between accuracy and stability for explicit methods and 
to ensure L-stability for implicit methods. 

4. Choose the parameters PI ,  /32, . . . , Pp appearing in the doubly compan- 
ion matrix X = X ( a ,  /3) defined by (7.2.15). The appropriate choice of 
these parameters is discussed in Sections 7.9 and 7.11. 

5. Compute the matrices 

Q = P(K) exp(XK-), 

X = Q(J + XI)Q-', 

F = exp(-XK-)Eexp(XK-), 

= C(P(K)ep+le;r + KQ), 

r = IJCFITIc + dey. 

The alternative computation of the matrix r is discussed in Section 7.10. 

6. Choose a unit lower triangular matrix L and compute the LU decom- 
position of the matrix RL: 

RL = L(RL) U(RL). 

7. Compute the coefficient matrix B of the transformed method from for- 
mula (7.7.6): 

B = La(L-lrLU(RL)-l)C(RL)-l. 
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8. Compute the coefficient matrices B, A, U, and V of the original method 
from the formulas 

B = QB, 

A = BXB.  

U = C - ACK,  

V = E - BCK. 

These formulas for B and A were derived in Section 7.4, and the for- 
mulas for U and V were derived in Section 7.1. 

This algorithm will fail if RL is singular or does not admit LU decompo- 
sition, or if the matrix B, and as a result the matrix B, is singular. If B is 
singular, the matrix A can still be determined on a case-by-case basis from 
the relation 

BA = XB, 

although, in general, A is not unique in such cases. However. it will be demon- 
strated in Sections 7.9 and 7.11, that the overall algorithm can be carried out 
successfully for many choices of the abscissa vector c ,  the parameter A, the 
coefficient E ,  parameters P I ,  ,&. . . . , Ps.  and the unit lower triangular matrix 
L, for both explicit and implicit GLMs. 

7.8 CONSTRUCTION OF EXPLICIT METHODS W I T H  IRKS AND 
GOOD BALANCE BETWEEN ACCURACY AND STABILITY 

This and the following section follow the presentation by Butcher and Jack- 
iewicz [72]. In this section we describe the construction of explicit GLMs with 
IRKS, which achieve a good balance between accuracy, measured by the size 
of the error constant E of the method, and stability, measured by the size 
of region or interval of absolute stability. Since for explicit methods, X = 0, 
it follows from (7.5.6) that the stability polynomial of the method of order p 
satisfies the relation 

R ( z )  = exp(z) - E z p f l  + O ( Z ~ + ~  1. (7.8.1) 

where E is the error constant. It also follows from (7.5.13) and the relation 
Mn,m(0) = 1/72!, where Mn,m(A) is defined by (7.5.8), that this polynomial 
takes the form 

ZP ZP+l 
(7.8.2) 

Z 2  

2! p !  ( p + l ) ! ’  
R ( z )  = R p ( ~ ;  7 )  := 1 + z + - + . . . + - + 7 ____ 

where, for convenience, we introduced the scaled constant rj = ( p  + l)!e. We 
will write Rp(z)  instead of RP(z; 0). Observe that R,(Z; 1) = R,+l(z). It 
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follows from (7.5.14) with X = 0 that the relationship between E and E is 

or, in terms of the scaled constant q,  

(7.8.3) 

Denote by 

A =  { z :  l R p ( z ; q ) l  < 1) 

the region of absolute stability of R p ( z ;  Q )  (see also Definition 2.6.2).  The next 
two theorems are concerned with the stability properties of Rp(z;  q ) .  The first 
theorem examines the intersection of the region of absolute stability with the 
real axis. 

Theorem 7.8.1 (Butcher and Jackiewicz [72]) The boundary d A  of the 
region of absolute stability A of R , ( ~ ; Q )  intersects itself at z = Z for  q = 7, 
where z and 7 satisfy the sys tem of equations 

(7.8.4) 
R p ( Z ; 7 )  = (-1)p. 

Moreover, this value of 7j corresponds t o  the maximal  interval of absolute 
stability ( E , O )  c A, where E is  a negative real root of the equation 

Rp(E;q) = ( - l ) P + l .  (7.8.5) 

Proof:  We show first that for any p 2 0; 

R2p(z )  > 0. ( 7.8.6) 

This inequality is clearly satisfied for p = 0. Assume that (7.8.6) holds for p .  
Since 

the function R a p + l ( z )  is increasing for all real values of z .  We also have 

lim R2,+1(z) = -cc and Rlp+l(0) = 1. 
z---oc, 

Hence, there exists exactly one point < < 0 such that R2*+1(<) = 0. Since 

R2(p+l)(4 = 1 + 
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it follows that the polynomial RqP+l)(z) is decreasing for z E (--oc,(). in- 
creasing for z E (<, cc), and attains its minimum value for z = (. Hence, 

R2(P+l)(4 2 R2(p+l)(E) = 1 + 

which completes the proof of (7.8.6). Consider next the function y = R,(z: 7 )  

2 

1 

=-0 

-1 

-3 - 
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 

z 

Figure 7.8.1 
RB ( z ;  q ) ,  Rq ( z ;  q )  for q = 7 versus z 

The functions R l ( z ) ,  Rz(z). R~(z), R~(z). and R l ( z ; q ) ,  R z ( z ; q ) ,  

for 7 > 0. Since RP(z; 7 )  -+ cc as z + -cc if p is odd and R,(z; 7 )  + -cc as 
z -+ -cc if p is even, there exists 7 < 0 such that the graph of this function is 
tangent to the line y = 1 or y = -1 at the point z = z. This is illustrated in 
Fig. 7.8.1. These values of z and 7 are characterized by system (7.8.4). At the 
point z = z the boundary d A  of the region of absolute stability intersects itself 
and the maximal interval of absolute stability (Z, 0) c A can be determined 
from equation (7.8.5) (see also Fig. 7.8.1). This completes the proof. 

It is easy to verify that the solution Z to (7.8.4) satisfies the polynomial 
equation 

p -  z 2  + p e 2 3  + .  . .  + - z P  1 = 0 2 ( p  + 1) + p z  + - 
2 !  3! P !  

if p is odd, and 

if p is even. The solution 7j to (7.8.4) is then given by 
- 

P- 1 7 = -p!z-PR 
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for any p 2 1. 
The next theorem examines the intersection of the region of absolute sta- 

bility with the imaginary axis. 

Theorem 7.8.2 (Butcher and Jackiewicz [72]) A s s u m e  that  p = 2 r  - 1. 
T h e n  t h e  max imal  7j a t  which the boundary of t he  region of absolute stabili ty 
of Rp(z;  7 )  intersects  t h e  posit ive part  of t h e  imag inary  axis i s  t he  posit ive real 
root of t he  equation 

(7.8.7) 

and the  corresponding ii can  be determined f r o m  the  relation 

= o  1 - - Y 2  + . . . + (-1)r-l Y2r-2 Y2r 
2! ( 2 r  - 211 + 

(7.8.8) 

Similarly,  if p = 2 r ,  t h e  max imal  7j a t  which the  boundary of t he  region of 
absolute stability of Rp(z;  q )  intersects  t h e  posit ive part  of t h e  imag inary  axis 
i s  t he  posit ive real root of t he  equation 

(7.8.9) 

and the  corresponding 7 can be determined f r o m  t h e  relation 

y2r-1 y 2 r + l  

(27- - I)! + '(-')' (274 + I ) !  
= 0. (7.8.10) + ( - 1 ) T - 1  

y - - + . . .  Y 3  
3! 

Proo f :  Assume first that p = 2r  - 1. Put z = i y and consider the equation 
2 + (-1)r-l Y2r-2 

( 2 r  - 2)! 

+ ( - 1 ) T - l  

(7.8.11) 
This relation defines implicitly the function y = y(q) and we are interested 
in the values of q for which y attains its maximum value (i.e., y ' ( q )  = 0). 
Differentiating equation (7.8.11) with respect to 7 and assuming that y'(q) = 0 
leads to relation (7.8.8). The maximal value of y can then be determined 
from the equation IRp(i y ;  q)I2 = 1. which taking into account (7.8.8) and 
assuming that y is positive leads to (7.8.7). The proof of (7.8.9) and (7.8.10) 

After finding values of L and 7 satisfying (7.8.7) and (7.8.8) or (7.8.9) and 

corresponding to p = 2 r  is similar and is therefore omitted. 

(7.8.10), we have to verify if 

( R p ( i y ; i i ) (  < 1, 

for all y E (0, j j) .  This is discussed further for specific examples in Section 7.9. 
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7.9 EXAMPLES OF EXPLICIT METHODS WITH IRKS 

In this section we apply the algorithm described at the end of Section 7.7 to 
construct specific examples of explicit GLMs with IRKS of order p = 1, 2, 3, 
and 4, with good accuracy and stability properties. The components of the 
abscissa vector c are chosen as 

i = 1 , 2 ,  . . . ,  s, (7.9.1) 

s = p + 1. The parameters PI, P 2 ,  . . . , Pp,  are chosen as follows: 

p1 =pz = .. .  = P p  = E ,  (7.9.2) 

where E is the error constant of the method, which is related to the parameter 
q by equation (7.8.3). This choice of the parameters ,&, i = 1 , 2 ,  . . . . p ,  is 
motivated by a result discovered by Wright [293]: that under some conditions 

i = 2 ,3 , .  . . , p +  1, where z ( t ,  h)  is the Nordsieck vector defined by (7.1.2). We 
also have 

$1 = y(tn) - hP+1EY(P+') ( t n )  + O(hp+'). (7.9.4) 

This is discussed further in Chapter 8. This result means that the param- 
eters PP+2--i correspond to the errors of the external stages of the method 
$I, i = 2, 3 , .  . . , p  + 1. Therefore, it seems to be reasonable to choose them 
according to (7.9.2) so that they have the same order of magnitude as the 
error constant E ,  which corresponds to the errcr in the first component of 
zIn]. The matrix L appearing in the formula for B is chosen as L = I, so that 
the formula for B simplifies to 

B = A(174(Q)-1)L(Q)-1. (7.9.5) 

7.9.1 

To guide selection of the appropriate parameter q, we have plotted in Fig. 7.9.1 
the left end of the interval of absolute stability ( a ,  0) c A, corresponding to 

Methods with p = q = 1 and s = 2 

2 2  
R 1 ( z ; q ) =  l + z + q - ,  

2 

versus q for 0 5 q 5 1. The boundary of the stability region of R l ( z ; q )  
intersects itself at z = -4 (the root of 4+2), which corresponds to q = $. This 
region corresponds to the stabilized RK method with Rl(z;  i) = Tz(1 + i), 
where Tz(z) = 22' - 1 is the Chebyshev polynomial of degree 2 (compare 
[146]). The boundary of this region is shown by a thick solid line in Fig. 7.9.2, 
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0 0 1 02 0.3 0.4 0 5 0 6 0 7 0.8 0.9 1 
v 

Figure 7.9.1 
polynomial & ( z ;  11) = 1 + z + 17 z 2 / 2  

Left end of the interval of absolute stability versus 11 for the 

Figure 7.9.2 
values of the parameter 

Regions of absolute stability of R l ( z ;  v) = 1 + z + 7 z 2 / 2  for selected 

together with regions of absolute stability corresponding to q = t - &, 
k = 3 , 4 , .  . . , 10 (thin dashed-dotted lines), and q = + &, k = 1 , 2 , .  . . ,8 
(thin solid lines). We also show by thick solid lines the stability regions of 
the RK method of order 1 which corresponds to q = 0, and of order 2, which 
corresponds to q = 1. 

There is a trade-off between the size of the error constant E = (l-q)/2 and 
the size of the region of absolute stability. For example, v = corresponds 
to the maximal interval of absolute stability (-8,O) and quite large error 
constant E = b .  As q increases from 2 to 1, the interval of absolute stability 
decreases from (-8,0) to (-2,0), and the error constant decreases from E = 3 
to E = 0: which corresponds to the method of order 2. Choosing c = [0,1] , 
v = $, and = i leads to the method with E = i and stability interval 

?s 
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(-4,O). The coefficients of this method are given by 

7.9.2 

The stability function of methods with p = q = 2 and s = 3 with IRKS takes 
the form p ( w ,  2 )  = w2(w - Rz(z; q ) ) ,  where 

Methods with p = q = 2 and s = 3 

22 23 

2 6 
R ~ ( z ;  17) = 1 + z + - + q -, 

q E R, and the error constant is 

E = -  1 - 7  
6 ’  

We have plotted in Fig. 7.9.3 the left end of the interval of absolute sta- 

- 1 ,  I 1 I I I I I I 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
II 

Figure 7.9.3 
polynomial & ( z ;  q) = 1 + z + z 2 / 2  + q z 3 / 6  

Left end of the interval of absolute stability versus q for the 

bility (a,O) C A versus q for 0 5 q 5 1. The boundary of the stability 
region intersects itself at z = -4 (the root of 2 + i z ) ,  which corresponds 
to q = g and the interval of absolute stability is (-6.2608,O). This region 
is shown by a thick solid line in Fig. 7.9.4, together with stability regions 
corresponding to q = - $, k = 5 : .  . . , 1 2  (thin dashed-dotted lines) and 
q = + &, k = 4,. . . , 11 (thin solid lines). We also show by thick solid lines 
stability regions of the RK method of order 2 which corresponds to q = 0,  
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0 0 0 

0 0 279 
5 74 
- 

81 - 1968 
14105 2015 

Figure 7.9.4 
selected values of the parameter 7 

Regions of absolute stability of R 2 ( z ;  77)  = 1 + z + z 2 / 2  + 77 z 3 / 6  for 

1 0  0 

4 1 
1 2 8 5  8 

8 -  47 
455 4030 

and the RK method of order 3 which corresponds to  7 = 1. The method 
with 7 = A achieves a good balance between accuracy (the error constant 
is E = &) and stability (the interval of absolute stability is (-4.0)), and 
choosing c = [0, i, 1IT and p 1  = p 2  = E = &, the coefficients of this method 
are 

608663 2009 - 455 
499968 35712 2304 

113815 85567 455 
71424 35712 2304 

- _- 

-- 

65 
24 
- 41 17 

24 12 
-- - 

241 41 
-672 124 

0 1177 O -2976 

0 O O 

7.9.3 

The stability function of methods with p = q = 3 and s = 4 with IRKS takes 
the form p(w ,  z )  = w3(w - R ~ ( z ;  q)) ,  where 

Methods with p = q = 3 and s = 4 

2 2  2 3  z4 
R 3 ( ~ ; 7 )  = 1 + z +  - + - $77724' 

2 6  

7 E R, and the error constant is 

E = -  1-77 
24 ' 

We have plotted in Fig. 7.9.5 the left end of the interval of absolute stability 
versus 7 for 0 5 7 5 1. The boundary of the stability region intersects itself a t  
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
rl 

Figure 7.9.5 
polynomial & ( z ;  q )  = 1 + z + z 2 / 2  + z 3 / 6  + qz4/24 

Left end of the interval of absolute stability versus q for the 

Figure 7.9.6 
for selected values of the parameter q 

Regions of absolute stability of R3(z;  q )  = l+z+z2/2+z3/6+q z4/24 

z = -4.39035, which corresponds to  ;ii = 0.442937, and the maximal interval 
of absolute stability is (-6.02726,O). This region is shown in Fig. 7.9.6 by a 
thick solid line together with stability regions corresponding to 7 = 7 - $, 
k = 7,8 , .  . . ,14 (thin dashed-dotted lines) and stability regions corresponding 
to 7 = ;ii + g ,  k = 6 , 7 , .  . . ,13  (thin solid lines). We also show by thick solid 
lines in Fig. 7.9.6 stabi1it.y regions corresponding to 7 = 0, which corresponds 
to the RK method of order 3, and 7 = 1, which corresponds to the RK method 
of order 4. The method with 7 = achieves a good balance between accuracy 
(the error constant is E = &) and stability properties (the interval of absolute 
stability is (-4.1709,O)) and choosing c = [0, $, i, 1IT and /31 = ,!?2 = /33 = 
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31 1027 53117 - 
60 2460 464940 

0 -7301 _- 4649 
2460 23247 

1903 
3780 0 -- 0 

0 0 0 - 

E = &, the coefficients of this method are 

O O l  
l o  0 

U =  

B =  

884267971 195810716 4990 1 -603213156 150803289 7371 1 
1 0 0 0 

1 - 1 - 67 
324 18 162 
- 

10018 -- 1 14606 ___  20318 

1 343643 5517035 _ 151762489 
700596 14362218 2714459202 

40419 184131 1657179 

1368599 
1033200 

11208301 
1033200 

-_.__ 

73403 
8400 

171 
20 

_- 

0 

0 

v =  1 0 
7.9.4 

The stability function of methods with p = q = 4 and s = 5 with IRKS takes 
the form p(w, z )  = w4(w - R ~ ( z ;  q ) ) ,  where 

Methods with p = q = 4 and s = 5 

2 z3 z4 z5 
R 4 ( ~ ; q ) = l + z + - + - + - + q - ,  2 6 24 120 

q E R, and the error constant is 

We show in Fig. 7.9.7 the left end of the interval of absolute stability versus 
q for 0 5 q 5 1. The boundary of the stability region intersects itself at 
z = -4.68878, which corresponds to  7 = 0.490435, and the maximal interval 
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.- 2. 
-3 

m 
4- 

I I 

I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
11 

Figure 7.9.7 
polynomial & ( z ;  q )  = 1 + z + z 2 / 2  + z 3 / 6  + z4/24 + 77 z5/120 

Left end of the interval of absolute stability versus 77 for the 

Figure 7.9.8 
z4/24 + 77 z5/120 for selected values of the parameter 77 

Regions of absolute stability of R~(z; 77)  = 1 + z + z 2 / 2  + z 3 / 6  + 

of absolute stability is (-6.06060,O). This region is shown in Fig. 7.9.8 by a 
thick solid line together with stability regions corresponding to 77 = 7 - 9. 
k = 9,10 , .  . . ,16 (thin dashed-dotted lines), and stability regions correspond- 
ing to 77 = 17 + 9, k = 9.10,.  . . ,16 (thin solid lines). We also show by 
thick solid lines in Fig. 7.9.8 stability regions corresponding to  77 = 0, which 
corresponds to  the RK method of order 4, and 77 = 1, which corresponds to  
& ( z ;  1) = R~(z). The method with 77 = achieves a good balance between 
accuracy (the error constant is E = &) and stability properties (the inter- 
val of absolute stability is (-4.6568,0)), and choosing c = [0, :! +, $. 1IT and 



- 
0 0 0 0 0  

0 0 0 0  511 
11776 

0 0 0 ,  - 3101781017 5166720 
7028858144 9550079 

0 0  - 83353109372729587 - 1001725806316 4242403 
145067197462387200 12318885654075 5159700 

- 41921552692643159297 -6767984667820805501 696338101127 165375 
- 191921635567777915800 4172209468864737300 436876958700 338684 

B =  

7.9.5 

- - 
1 0  0 0 0 

1 - 1 - 1 2433 - l i i m  32 384 6144 

1 -  76400632 458403792 3667230336 
783361 1799999 4383359 -- 5505879 

6294407001 - 73807449337 - 47184261087409 - 94210576904551 
10784001536 673853574240 1576817363721600 25229077819545600 

1 47665961355 - 8094188961413 - 17528291232939607 - 5780449858046290723 
- 62850508952 31418422898940 147038219167039200 267021406007343187200 

172958424193 - 28218803078 202394939 2106322 - 2984 
101787367500 25446841875 99596250 1276875 5625 

- 1692541208191 848483163322 202394939 2106322 2984 
50893683750 25446841875 99596250 1276875 5628 

689424962 1090797904 2106322 - 2984 996053384 
16599375 5533125 16599375 1276875 5625 

78390032 254922728 91332664 96787928 2984 
1276875 1276875 425625 1276875 5625 

33344 19072 42944 11936 

-- 

-~ 

-- -- 7136 - 
75 75 25 75 75 

v =  

- 
1 -151 71723 52375073 2425799989 

300 153300 358722000 81429894000 

0 0 1172011 214263247 5298687019 
153300 358722000 81429894000 

2196853 9131 
2925 4249440 

-- -- 0 0 0 

0 0  0 0 

0 0  0 0 0 

63679 
136200 

-- 

- 

Methods with large intervals of absolute stability on imaginary 
axis 

In what follows we determine the coefficients of methods of order p = 1, 
2, 3, and 4 with maximal intervals of absolute stability on the imaginary 

400 

pi = p2 = p3 = p4 = E = &j> the coefficient matrix A is 

GENERAL LINEAR METHODS WITH INHERENT RUNGE-KUTTA STABILITY 
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-- 47 -- 7 -- 

55 133 _ _  
18 36 18 

18 158 9 
-- 

axis. Consider first the method of order 1. It follows from (7.8.7) and (7.8.8) 
with r = 1 ( p  = 1) that the maximal 7J at  which the boundary of the stability 
region of Rl(z;  77) intersects the positive part of the imaginary axis is at  7J = 1, 
which corresponds to 7 = 2 (compare [146, p. 371, where optimal stability for 
hyperbolic problems is discussed). We can also verify that (Rl(iy;7j)( 5 1 for 
all y E [-1,1]. The error constant of this method is E = -+, and choosing 
c = [0, 1IT and p1 = E = --+! the coefficients of this method are 

5 1 4 9 -  7 
12 8 

29 
-E 

[ $1 
The region of absolute stability of the method above is plotted in Fig. 7.9.9. 

Consider next the method of order 2. It follows from (7.8.9) and (7.8.10) 
with r = 1 ( p  = 2) that the maximal 5 at which the boundary of the stability 
region of &(a;  7) intersects the positive part of the imaginary axis is at  ?j = 2, 
which corresponds to 7j = $. We can also verify that IRz(iy; 7)l 5 1 for all 
y E [-2,2]. The error constant of this method is E = --&! and choosing 
c = [0, ?j, 1IT and p1 = p2 = E = -&, the coefficients of this method are 

The region of absolute stability of this method is plotted in Fig. 7.9.9. 
Consider now the method of order 3. It follows from (7.8.7) and (7.8.8) with 

r = 2 ( p  = 3) that the maximal 7J at  which the boundary of the stability region 
of R3(z;  77) intersects the positive part of the imaginary axis is at  = 2.84732, 
which corresponds to 7 = 1.11501. We can also verify that I&(iy;7)1 5 1 for 
y E [-7J, -0.740081 U [0.74008,7J], but lR3(iy;7)1 is slightly greater than 1 for 
y E [-0.74008,0.74008]. In fact, lR3(iy;7)\ attains its maximum value 1.0002 
for y = k0.60187. The error constant of this method is E = -0.00479208, and 
choosing c = [0, i; $, 1IT and p1 = p2 = p3 = E ,  the coefficients (A, U, B, V) 
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Figure 7.9.9 
with maximal intervals of absolute stability on the imaginary axis 

Regions of absolute stability of methods of order p = 1, 2 ,  3; and 4 
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B =  

The region of absolute stability of this method is plotted in Fig. 7.9.9. 
Finally, consider the method of order 4. It follows from (7.8.9) and (7.8.10) 

with T = 2 ( p  = 4) that the maximal 7J at which the boundary of the stabil- 
ity region of R 4 ( z ; q )  intersects the positive part of the imaginary axis is at 
jj = 2 &, which corresponds to 7 = E ,  We can also verify that I&(iy; 7)l 5 1 
for all y E [-y, Y]. The error constant of this method is E = & , and choosing 
c = [0, i, i) %, 1IT and = p 2  = p3 = p 4  = E ,  the coefficients of this method 

358 _ _  206 __ 449 
299 2025 

12207 -3755 __ 7034 -- 206 - 449 

16908 12583 13329 5674 449 
73 2025 

9324 17301 - _- 
131 241 419 

188 28 101 299 2025 ’ 
_- 

are 

A =  

U =  

0 0 0 0 0  

- 385 0 0 0 0 
5568 

1037 1245 0 0 0 
1151 1186 

1187 1387 293 0 0 
634 1126 334 

1702 840 1242 998 0 
651 1249 697 2029 

-- - 

-- - - 

1 0  0 0 0 

1 4 9 5  

1 5 9 6  -163 -15 -- 1 

11288 -793 -3199 -11807 

1 
6144 
- 1 - 1 

2737 32 384 

1697 1186 1253 7719 

661 369 249 98 

- 

1 463 -2423 606 -- 130 
693 2611 2813 4089 

206 449 
299 2025 I 773 - 358 _ _  - 5027 -- 

998 1828 419 

i 

V =  

4304 20096 11488 25856 7184 
45 45 1 - -- 

45 45 15 

2881 1099 314 __ 137 
-720 2321 2013 3758 

123 
290 434 4625 

628 517 
0 0  183 876 

320 

0 0 -4953 -767 -- 

0 _- _- 

0 -669 0 0  0 

0 0  0 0 0 

The region of absolute stability of this method is plotted Fig. 7.9.9. 
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7.10 CONSTRUCTION OF A- AND L-STABLE METHODS W I T H  
IRKS 

In this section we describe the construction of A- and L-stable GLMs (7.1.1) 
with IRKS. We recall from Section 7.5 that stability function R(z )  of GLM 
of order p with IRKS satisfies the relation 

(compare (7.5.6)), where 

P 

P(2)  = c Mn,,+l(X)zn + €ZP+l 
n=O 

(compare (7.5.13)), and the polynomials Mn,m(X) are defined by (7.5.8). As- 
suming that = 0, it follows that 

lim R(z )  = 0, 
z - - m  

so that if the corresponding method is A-stable, it is automatically also 
L-stable. It also follows from (7.5.14) that the error constant E of the re- 
sulting method is given by 

E = MP+l#+l(X). 

To investigate A-stability, we reformulate P ( z )  in terms of Laguerre polyno- 
mials. Using (7.5.10), we obtain 

and substituting s = p + 1, it follows from property (7.5.9) of generalized 
Laguerre polynomials that 

Observe that this expression is equivalent to  the polynomial P ( z )  defined 
by formula (2.7.5). Hence, we can conclude that stability properties of the 
resulting GLMs with IRKS are the same as those of stiffly accurate SDIRK 
methods of order p = s - 1. In particular, the resulting methods are A-stable 
for values of the parameter X listed in the second column of Table 2.7.2. 

To construct specific examples of A- and L-stable methods with IRKS, we 
again use the algorithm described at  the end of Section 7.5. In this algorithm 
the matrix r can be computed more conveniently without the need to utilize 
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matrices I, and I,. 
replaced by K: that the matrix F = exp(K(1 + XK)-') takes the form 

It follows from formulas (7.4.8) and (7.4.12); with S 

F =  

Hence. the matrix r = IJcFI,I, + 6ey takes the form 

r =  

It can be verified using (7.4.16) that 

. . .  1 . . .  
-N1(X) -&(A) 

0 0 

and it follows that I?* := F + (JF - FJ)(K + e,+leT) is equal to r except for 
the (1,l) element. As a result, we can compute r from the formula 

E + XM,,,(X), i = j = 1, { "i&' otherwise. 
"ii j  = 

Here "iij and are elements of r and F*, respectively. This alternative way 
to compute r is also applicable in the case of explicit methods (Lee, if X = 0). 
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- 
4 1 0 

_ _  123 4 
770 

-- 1496 1391 
1987 1631 

1376 315 68 
1157 269 1277 

1572 938 483 
1093 531 719 

55 103 151 
- 48 24 48 

- - 
-- 

-- 

[:::I 
- -- - 

7.11 EXAMPLES OF A- AND L-STABLE METHODS WITH IRKS 

- 
0 1 - +  0 

1 0 1 6 3 1  1540 0 
756 690 
1163 -3911 

1 1297 140 
1344 1009 

0 560 

0 0 

O -1009 

0 

In this section we present coefficient matrices A, U, B, and V of GLMs with 
IRKS of order p = 1, 2, 3, and 4. The abscissa vector c is chosen according 
to (7.9.1) and the parameter X so that the resulting method is A-stable. The 
ranges of parameters X for which this is the case for particular orders are 
given in Table 2.7.2. We always choose E = 0 so that the resulting methods 
are also L-stable. As in Section 7.9, the coefficients p1 , p2, . . . , ,Bp are chosen 
according to (7.9.2), which can again be justified by (7.9.3) and (7.9.4). The I 
unit lower triangular matrix L is chosen as L = I, so that the formula for B 
again simplifies to (7.9.5). 

Method with p = q = 1, s = 2, c = [0, 1IT, X = i, E = 0, and 

Method with p = q = 2, s = 3, c = [0, i, 1]*, X = i, E = 0, and 

Method with p = q = 3, s = 4, c = [0, i, $, 1IT, X = i, E = 0, and 

/32 = p 3  = E = 1. 
256 
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0 0 0 1 
4 1 -a 0 0 1 

556 427 1 
311 804 4 
- _- 

1253 1048 __ 598 1 
393 571 1767 
- -- 

Method with p = q = 4, s = 5 ,  c = [0, $; i! 9 ,  1IT, X = i, E = 0, and 

187 - 85 -% 804 3643 

-699 481 8374 
658 - 306 - 573 

A =  

2412 3329 - 339 __ 775 - -- 
1927 966 1391 2087 

3517 3161 - -  101 1084 
682 585 2479 899 

800 587 9685 1722 
1003 11358 1831 379 

- -- 

- -- -_. - 

_- 2277 9135 11439 - 4581 
256 256 256 256 

U =  

1 1981 - 980 __ 379 
768 879 3204 

0 0 2909 253 1855 1344 

0 0 403 

0 0 

O -4312 

0 0 

B =  

- 
0 0 0 0  1 

2 

- 365 - 1 0 0 0  8177 2 

49 409 1 
14306 4768 2 

10823 1519 17638 
127 9 211 

36065 22593 24179 89 1 
117 37 80 10395 2 

0 O !  -- 

4 0  - _- - 

- -- - -- - 

- 
-- 11225 36677 10124 -2774 311 

77 121 69 225 96 

7607 23873 22201 8666 - 1211 
51 85 239 167 86 

10968 69590 2971 15939 __ 7153 
131 667 40 122 zoo 
- 10431 _- 9664 43573 25580 9575 

158 37 108 89 121 

4016 8992 2488 1528 

_- 

-- 

7072 - -- - - -- 
15 15 5 15 15 - 

0 0 0 1 1 -3 

1 - 4 5 6  -414 -71 -43 

5 7 
384 6144 

5537 2827 1601 5351 

443 1327 1553 
1364 1455 253 1173 

645 2291 3347 
1 %  418 122 705 

293 - _- -- 

- -- -- 49 

! 

, 
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167 1525 ! ' 
1 - 3 l 3 3 4 8 1 2 6 8 8 2 7 2 3  

0 0 7 5 3 3 6 1 5 3 1 8  
599 851 247 1033 

364 332 119 

v = o  0 0 - -  1222 2907 r lo 0 0 0 ,,I 
0 0 0 0 0  

The methods above are just examples of A- and L-stable GLMs, and we are 
not claiming that they are "optimal" in any other sense. Additional examples 
of such methods can be found in the literature [50, 77, 80, 81, 167, 2931. The 
construction of optimal GLMs with IRKS is the main challenge ahead. 

7.12 STIFFLY ACCURATE METHODS WITH IRKS 

This section follows the presentation by Wright [293]. The GLM (7.1.1) writ- 
ten componentwise takes the form 

i = 1 ,2 , .  . . , s, s = p + 1, n = 1 , 2 , .  . . , N .  Assuming that 

a p + l , j  = h j ,  up;l,j = W l j ;  j = 1 , 2 ; .  . . , p  + 1, (7.12.2) 

it follows that the last internal stage Yp[!Il is equal to the first external stage 

y l"] : 
y["l - ["I 

p + l  - Y1 . (7.12.3) 

Since for method (7.12.1) of order p and stage order q = p such that ylol = 
z( to ,  h)  + O(hp),  we have 

y["l = Y ( L - 1  + Cp+lh) + O(hP) p+l 

and 
?p = y(t,) + O(hP)  

$@ = hy'(tn) + O(hP) = hf(y(t,)) + O ( V )  = hf(Y;:ll) + O(hP), 

(compare Theorem 2.4.3), condition (7.12.3) necessarily implies that the last 
component of the vector c is cp+l = 1. Again assuming (7.12.3) we also have 
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and to enforce that this condition is satisfied exactly, that is, that 

&I = hf(y,I:ll), (7.12.4) 

we assume that 

bz j  = 6p+l,j, ~ z j  = 0, j = 1 ,2 , .  . . , p  + 1, (7.12.5) 

where bP+l,j is the Kronecker delta. To analyze conditions (7.12.2) and 
(7.12.5) further it is convenient to partition the matrices A, U, B; and V 
into rows as follows 

Then these conditions take the vector form 

(7.12.6) 

(7.12.7) 

Assuming that GLM (7.12.1) has IRKS and given that cp+1 = 1, it follows 
from (7.1.6) and (7.1.7) that 

= tF+l - aF+,CK, vT = tF+l - bTCK, 

where 

[ l !  2! P!  I T  1 1  tp+l = 1 - - . . .  - 

is the last row of the matrix C (recall that cp+l = 1) and the first row of 
the matrix E = exp(K). These matrices are defined in Section 7.1. These 
relations imply that it is sufficient to impose only the first condition of (7.12.6) 
since the second condition is then satisfied automatically. Comparing the 
second rows of (7.1.7), we also have 

VT = t; - bTCK, 

where t: is the second row of El which is given by 

Assuming that b: = eF+l, it follows that 
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Hence, similarly as before, the first condition of (7.12.7) implies that  the 
second condition is satisfied automatically. We show next that  for GLMs 
with IRKS, the condition b; = e,T1 and the additional condition Pp = 0 
implies the first condition of (7.12.6). Indeed, comparing the second rows of 
the IRKS relation BA = XB, we obtain 

Hence, if bT = eF+l, then = e?+,A = b;A, and it follows that 
= by. The considerations above motivate the following definition. 

Definition 7.12.1 GLM (7.12.1) wath IRKS has stract staff accuracy af the 
followang condataons are satasfied: 

c,+l = 1. b; =eF1,. and DP = 0.  

The following lemma will aid the description of GLMs with IRKS and strict 
stiff accuracy. 

Lemma 7.12.2 (Wright [293]) Gwen the shaftzng matraces J and K de-  
fined an Sectaon 7.1 and the matrax K- defined an Sectaon 7.2, we have the 
relatzon 

Kexp(XK-)Jexp(-XK-) = I - XK - ep+leF+l. (7.12.8) 

Proof: It follows from Lemma 7.3.3 that 

X(a,  P) = Q ( J  + XI)Q-', 

and using formula (7.3.9) for Q and (7.3.10) for Q-', we obtain 

X(a,p) = P(K)exp(XK-)(J  + XI)exp(-XK-)P-l(K). 

Multiplying this relation by P-l(K) from the left and by P(K) from the right 
yields 

P-l(K)X(a, P)P(K) = exp(XK-)J exp(-XK-) + XI. 

Using Lemma 7.3.7, we have 

X(Q, P )  = P(K)X(aP, V - l  (K),  

where X(aP, 1) is the companion matrix corresponding to a@. Hence, 

X(aP. 1) - XI = exp(XK-)Jexp(-XK-). 

Multiplying this equation from the left by the matrix K and taking into 
account that 

KX(aP, 1) = I - ep+leT+l. 

formula (7.12.8) follows. This completes the proof. 
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Let the unit lower triangular matrix L-l appearing in formula (7.7.6) for 
the matrix B be represented by 

0 

0 

0 

0 1  0 . . .  0 0  

T2,l 1 . . .  0 0  

Tp-l,l Tp-l,2 . . ' 1 0  

Tp,l Tp,2 . . . Tp,p-l 1 

The characterization of GLMs with IRKS and strict stiff accuracy is given in 
the following result. 

Theorem 7.12.3 (Wright [293]) Assume that cp+l = 1 and PP = 0 .  Then  
GLM (7.1.1) with IRKS has strict staff accuracy for any parameters rij, 
i = 2,3, .  . . , p  - 1, j = 1 ,2 , .  . . , p  - 2 ,  z f  the last row L& of the matrix L-l 
is given by 

eTP(K) exp(XK-). (7.12.9) 

It follows from B = QB and (7.7.6) that the coefficient matrix B 

1 L-l = e m w  P+ 1 

Proof: 
takes the form 

B = QLA(L-lrLU(RL)-l)C(RL)-l, 

and we have to show that 

bT = eTB = eTSLA(L-lrLU(RL)-l)C(RL)-l = eT+l. 

We first compute eT\IrL. Using (7.3.9) and (7.12.9), we have 

eTSL = eTP(K) exp(XK-) = (e;P(K)A)L;;,L, 

and since L;il = e:+,L, it follows that 

eTP(K) exp(XK-)L = (eTP(K)A)e;+,. (7.12.10) 

This formula implies that only the last row of 

A (L-lrLU( RL)-l) C( RL)-l 

needs to be considered. This row is equal to 

eT+l A (L- ' rLU (RL)-l) C (RL) - = ep'+ L- l r L  (RL)-l = epT+l L-l rn-l, 
and the condition BT = e,T1 takes the form 

(ezP(K)A)eF+lL-lrR-l = eT P+ 1 
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or 
(eTP( K)A)eT+l L- I- = ep'+ R . 

Using equation (7.12.10), the preceding relation can be rewritten in the form 

e;P(K) exp(XK-)r = eF+,R. (7.12.11) 

TO prove (7.12.11), we consider the right and left sides of this equation sep- 
arately. Substituting the formula for R and then the formula for Q, the 
right-hand side of (7.12.11) takes the form 

Since c,+l = 1, we have e,TIC = eyE and exchanging the order of K and 
P(K), we obtain 

eF+,R = eyEP(K)e,+leT + eTEP(K)K exp(XK-). (7.12.12) 

We now consider the left-hand side of (7.12.11). Since P(K) and exp(XK-) 
are upper triangular, the first element of the vector e;,B(K) exp(XK-) is equal 
to zero. This implies that the left-hand side of (7.12.11) is not affected by the 
first row of the matrix I?. We have 

r = IcITFIJc + bey = F + be: 
It can be verified that JFe,+l = 6; compare the explicit expression for F in 
Section 7.10, which implies that JFe,+leT = 6eT. Hence, also substituting 
the formula for F, we obtain the following equivalence relation for the matrix 

r E exp(-XK-)Eexp(XK-) + Jexp(-XK-)Eexp(XK-)e,+ley. 

Taking into account that exp(XK-)e,+, = A ,  where the vector A is defined 
in Section 7.5, we get 

r: 

r = exp(-XK-)Eexp(XK-) + Jexp(-XK-)EAeT. (7.12.13) 

Since the left-hand side of (7.12.11) does not depend on the first row of I?, we 
can substitute the equivalence relation (7.12.13) for r which leads to 

eTP(K) exp(XK-)I? = eTP(K)Eexp(-XK-) 

+ e;,B(K) exp(XK-)J exp(-XK-)EAeT. 

We have e; = e r K ,  and exchanging the order of matrices K, E, and P(K) 
the preceding relation can be written in the form 

eTP(K) exp(XK-)r = eTEP(K)Kexp(-XK-) 

+ eTP(K)K exp(XK-)J exp(-XK-)EAeT. 
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- 
1 4 0 
- 1591 z 1 
9516 

Using Lemma 7.12.2, it follows that 

eTP(K) exp(XK-)r = eTEP(K)K exp(-XK-) 

+ eTP(K)(I - XK)EAey - eTP(K)ep+le~+,EAeT. 

It can be verified using the relation A - AKA = ep+l that 

eTP(K)(I - XK)EAeT = eTP(K)E(h - XKA)eT = eTP(K)Ee,+le:. 

We also have 

Hence, the left-hand side of (7.12.11) can be written as 
eTP(K)e,+1 = P p  = 0. 

eTP(K) exp(XK-) = eTEP(K)Kexp(XK-) + e:EP(K)e,+leT. (7.12.14) 

Comparing (7.12.12) and (7.12.14), equation (7.12.11) follows. This completes 
the proof. 

These methods can be generated using the algorithm described at the end 
of Section 7.7, where the last row L;:l of a unit lower triangular matrix L-l 
is computed according to (7.12.9). The examples of such methods of order 
p = 1, 2, 3, and 4 are listed below. 

Method  wi th  p = q = 1, s = 2, c = [i, 1IT, X = $, E = 0, and 

P 1 = 0 ,  E = - - - .  7 
50 

- O l i  0 

0 1 % &  

0 0 1 0 0  0 

599 3052 192 -- -- - - 492 738 41 f% - 
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Method with p = q = 3 ,  s = 4, c = [ q ,  2 , ~ ’  1IT, X = 2, E = 0, and 
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1 1 3  

- 
13 3 

239 40 83 

3 -- 2 -- -- 
-lo 25 1500 5000 

1 126 -- -- -- 
1447 2894 1563 20661 

69 89 
4562 6517 9947 

1-1875 -3028 -- 85 -- 229 
754 20705 29057 15970 

5785 - 423 1028 
l m  303 788 25015 

691 _- -- 

0 0 0 

0 0 

1 
4 

345 1 
292 4 

1795 347 
669 826 

770 695 1987 4 

- 

1 
T o  - -- 

951 961 664 - 1 

951 961 664 - 1 

0 0 0 1 

- - -- 

- - -- 
770 695 1987 4 

5477 4142 _ _  731 - 260 
201 337 164 69 

-- 2378 6515 28557 1024 

-- 

23 96 770 69 

’ 

Method with p = q = 

A =  

1 1 -_ 
192 0 -- 32 

345 193 
1168 4077 

1 1592 -509 495 
903 1387 15797 

’ 1819 1542 2429 

1 

1025 589 - 199 

1025 - 589 199 

0 0  0 0 

’ 1819 1542 2429 

9623 1228 506 
O m  989 1605 

0 3252 1228 
665 989 

1IT, X = i! E = 0, and 

U =  

0 0  0 0  1 
2 

-- 1919 359 ; o  0 0  

- 3403 -- 3831 - 683 $ 0  

0 0  549 1427 1 
881 3395 2 

593 1111 1376 

- -- - 

-73 2734 2581 -1883 1 
77 891 416 2 
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4283 414 
378 337 54 99 163 

4261 36328 19093 28065 916 
50 69 36 178 163 

-- 35635 - 33584 -- 47656 12825 1920 

- -  15391 32605 7181 - - -- 

-- - -- 

46 17 29 29 163 

1883 
416 1 2581 

891 
2734 - -- 

' 
0 l l  0 0 

v = 

0 0 0 0 0 

0 13930 1455 1267 - 198 
277 454 999 2303 ' 

91340 _ _  1942 - 421 
O -1231 11 697 2108 

3007 6837 1863 __ 75 1 
- 460 319 1794 

78 - 

0 -260 -- 

5785 691 _ _  423 1028 1 
303 788 25015 

In all the examples above we have chosen the parameter X so that the result- 
ing methods are A-stable. Since we have also chosen E = 0, all these methods 
are also L-stable. Other examples of A- and L-stable GLMs with IRKS and 
strict stiff accuracy are available in the literature [77, 81, 2931. Preliminary 
tests of methods with strict stiff accuracy indicate that they perform extremely 
well compared with RK or linear multistep methods. The design of efficient 
software based on such methods is a subject of current work. 
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CHAPTER 8 

IMPLEMENTATION OF GLMS WITH IRKS 

8.1 VARIABLE STEP SIZE FORMULATION OF GLMS 

To formulate GLICls (7.1.1) on the nonuniform grid 

t o  < tl < . ' .  < tiy, t N  2 T ,  

and to investigate error propagation of these methods, it is convenient to 
partition the coefficient matrices A, U, B, and V as follows: 

(8.1.1) 

where e = [ l , .  . . , 1IT E IF'+', b E 21 E R P ,  and 

A E R ( P + l ) X ( P + l )  , ,'J E R ( P f l ) x P ,  B E R P x ( P + l ) ,  V E R P X P ,  

We also denote by c = [q, . . . , cp+l]* the abscissa vector of the method. It 
is also convenient to partition correspondingly the vector yIn-'] of external 
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z ( t ,  h )  := 

approximat ions 

y[n-ll = [ yn-l ] , 
21,-11 

where z [ ~ - ' ]  is now an approximation to the Nordsieck vector z(t,-1, hn ) ,  
h, = t ,  - tn-l, defined by 

hY'(t) 
h y " ( t ) 

- hPy(P) ( t )  

(8.1.2) 

Observe that this definition of the Nordsieck vector differs from that given 
by (7.1.2), since (8.1.2) does not include the solution component y ( t ) .  The 
resulting GLM now takes the form 

n = 1 , 2 , .  . . , N ,  where dn] is an approximation to the Nordsieck vector 
z(t,, h,) and I is the identity matrix of dimension m. We recall that as 
in Section 2.1, the vectors Y[,], F ( Y [ " ] ) ,  and zIn-'l are defined by 

s = p + 1. The de-Ation of GLM given by ( 1.3) is not yet complete and 
we have to prescribe how to compute an approximation zlnl to the Nordsieck 
vector z(t,, h,+l), corresponding to a new step size h,+l from t ,  to tn+l. This 
will be done using the rescale and modify strategy introduced by Butcher and 
Jackiewicz [71] and later refined by Butcher et al. [75]. This strategy is 
described in Section 8.5. 

The solution component y ,  of method (8.1.3) acts quite differently from 
the remaining components ? I n ]  or z[,], which approximate Nordsieck vectors 
z(t,, h,) or z(t,, h,+l), respectively. As a result, partitioning the method as 
in (8.1.3) makes it considerably more convenient to understand error prop- 
agation and to discuss various implementation issues related to GLMs with 
IRKS. Error propagation of GLMs (8.1.3) is discussed in Section 8.3. 
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8.2 STARTING PROCEDURES 

General-purpose codes based on GLMs will usually change the step size au- 
tomatically as well as the order of the method as the integration progresses 
from step to step, adjusting the step size and increasing or decreasing the 
order according to the smoothness of the right-hand side of the differential 
system. The integration usually starts with the formula of order 1, for which 
the required approximations to the initial value y(t0) and initial derivative 
y'(t0) are readily available from the initial condition yo and the relation 

Y'(t0) = f(Y(t0)) = f ( Y 0 ) .  

However, one may also wish to design codes based on GLMs of fixed order, in 
which case starting procedures are required to compute an approximation z[O] 
to the Nordsieck vector z ( t 0 ,  h l ) ,  to start the integration with an initial step 
size hl. Starting procedures are also required if one wants to compare a par- 
ticular GLM of fixed order with currently available code based, for example, 
on an RK or DIMSIM of the same order. 

Starting procedures for DIMSIMs of fixed order, discussed in Chapters 3 
and 4, were developed by VanWieren [273, 274. 2751. In this section we 
describe the construction of starting procedures for GLMs (8.1.3). 

For GLMs (8.1.3) of order p with initial step size hl = h, we have to 
determine the starting vector z[O] such that 

This vector will be computed from the formulas 

j=1 
(8.2.1) 

j=1 

i = 1 ,2 , .  . . , p ,  where 2 = [ E i j ]  E RPXP and 
by requiring that 

= [&I E R P x P  are determined 

(8.2.2) 

i = 1, 2 , .  . . , p ,  where E = [El ,  . . . , EPIT E IWP is a given abscissa vector of 
the starting procedure (8.2.1). This starting procedure can be specified by a 
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partitioned matrix 

Substituting yo = y ( t 0 )  and (8.2.2) into (8.2.1), we obtain 

P 

Y(t0 + G h )  = Y(t0)  + hCE,,y ' ( to  +Z:,h) + O(hPf1); 
J=1 

P 

h2y(')(to) = hC&,y ' ( to  + z J h )  + O(hp+l), 
J=1 

i = 1,2 . .  . . , p .  Expanding y ( to  + Z,h) and y'(t0 + zJh )  into a Taylor series 
around to and collecting terms with the same powers of h, it follows that 

i, k = 1; 2 ,  . . . , p .  These relations lead to the following systems of equations 
for the coefficients Zij and 6,j: 

i, k = 1 , 2 , .  . . , p .  Setting 

(8.2.3) can be rewritten in vector form as 

-- 
AC = CJ,  
_ _  
B C = I .  

(8.2.3) 

(8.2.4) 

Here J is a shifting matrix of dimension p defined as in Section 7.1, and I is 
the identity matrix of dimension p .  Assuming that the abscissa vector C has 
distinct components, the unique solution to (8.2.4) is given by 

1 -  1 - - _ -  
A = C J C  , B = C - .  
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- 

0 

1 - 

Starting procedures of order p = 2,  3, and 4 obtained in this way are given 
below. 

Starting procedure of order p = 2: 

- 
1 0 0  

1 1 0  

1 0  

-1 1 - 

[$I = 

Starting procedure of order p = 3: 

Starting procedure of order p = 4: 

Starting procedures for GLMs of order p were also considered by Wright 
[293] and Huang [167]. Wright’s approach [293] requests; in effect, that the 
starting vector z[O] satisfies a stronger condition than that required for the 
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method of order p ;  that is; 

The starting procedure takes the form 

v+ 1 

(8.2.5) 

into (8.2.5); expanding y(t0 +Zih) and y'(t0 +Zjh) into a Taylor series around 
t o ,  and collecting terms of oLder hi for i = 1 , 2 ,  . . . , p  + 1, leads to systems of 
linear equations for 2ij and bij of the form 

and 

These systems can be written in vector form, 

xi3 = eJ 
and 

where 10 = [ 11 01 E R P X ( P + l ) ,  the matrix 6 is defined by 

Be = 10, 

and the matrix J is defined as in Section 7.1. Assuming that the abscissa 
vector i? has distinct components, the unique solution to these systems is 
given by 
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The examples of starting procedures obtained in this way are given by Wright 
[293]. Observe that, in general, starting methods obtained using the approach 
presented in this section or the approach by Wright [293] are implicit. Huang 
[167] proposed an approach to the construction of starting procedures, in 
which the coefficient matrix corresponding to or is lower triangular, 
with the parameter X on the diagonal, which is equal to the corresponding 
parameter of the main method. 

8.3 ERROR PROPAGATION FOR GLMS 

In this section we investigate error propagation of GLMs (8.1.3) up to terms of 
order p + 2. Error propagation of GLMs including only terms up to the order 
p + 1 was discussed before by Butcher and Jackiewicz [71, 721 and Wright 
[293]. 

Following Butcher et al. [75], assume that the input quantities yn-l and 
z[,-l] to the current step from t,-1 to t ,  = t,-l + h, satisfy the relations 

Yn-1 = y(tn-1), 

(8.3.1) 

where y ( t )  is the solution to the differential system; p, y, and S are some 
vectors; and I is the identity matrix of dimension m, the dimension of the 
differential system (2.1.1). We then try to determine an error constant E and 
constants F and G such that the output quantities yn and computed in 
the step satisfy 

(8.3.2) 
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for the same vectors p, y, and 6, and the Nordsieck vector F(t,,h,) corre- 
sponding to the solution g( t )  of the initial value problem 

g’(t) = f (W) ,  t E [tn,tn+11, 
- 
y ( t n )  = Y n ,  

tn+l = t ,  + h,+l. Here hn+l is a new step size. 
The error constant E was introduced in Section 7.5 as a term of order p +  1 

in the approximation of the exponential function exp(z) by the stability func- 
tion R(z )  of GLM (7.1.1) (compare equation (7.5.6)). Later in this section we 
demonstrate that the two concepts of the error constant E - the one intro- 
duced in (7.5.6) and the one introduced in (8.3.2) - are equivalent. We also 
demonstrate that the vector p appearing in (8.3.1) and (8.3.2) is composed of 
the coefficients P p ,  P p - l , .  . . ! p1 of the doubly companion matrix X = X ( a ,  p).  

Recall that the abscissa vector of the method is c = [e l , .  . . , cP+1lT, and let 
c’ = [ cy , .  . . , c , ” + ~ ] ~ .  We have the following theorem. 

Theorem 8.3.1 (Butcher et al. [75]) Assume that method (8.1.3) has or- 
der p and stage order q = p .  Then the error constant E and the constants F 
and G appearing in (8.3.2) are given by  

and 
G = bT< + vT6, 

where E is the vector of stage errors defined by  

cP+ 1 CP 
<=-- A- + U P .  

( p +  l ) !  p !  

(8.3.3) 

(8.3.4) 

(8.3.5) 

(8.3.6) 

Moreover, the vectors p, y, and 6 appearing in (8.3.1) and (8.3.2) are given 
b y  

(8.3.7) 

(8.3.8) 

and 
6 =  ( I - V ) - ’ ( B < - E e l ) ,  (8.3.9) 

with el = [l! 0 , .  . . , 0IT E RP, E and E given b y  (8.3.3) and (8.3.6), and the 
vectors t ,  and rp defined b y  

T 
. . .  1 ] 1 - 1 . . .  L I T ,  i ,=[  - 1 1 

t p  = [ p! ( p -  l)! l! ( p +  l)! 3 2! 
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and 
h:V(k)(tn) = h; ~ ( ~ ) ( t , )  + O(hE+3), k = 2 , 3 , .  . . , p  + 1, 

h,F(Y[”]) = hny’(tn-l + chn) 

Substituting (8.3.1), (8.3.2), (8.3.10), (8.3.11), and (8.3.12) into (8.1.3), we 
obtain 

(in-1) y(tn-1 + ch,) - ( E  @ I)h”,+l y(p+l) 

It follows from the assumption that the stage order q is equal to the order p 
that there exists a vector E E RP+' of stage errors such that 

y'"' = y(t,-l + ch,) - ( c  @ 1) hE+ly(P+l)(t,-l) + O(/Z:+~). (8.3.11) 

This relation implies that 
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and 

and 

Since method (8.1.3) has order p and stage order q = p ,  all terms up to 
order p in the expressions above cancel out and comparing terms of order 
p + 1 corresponding to h:+ly(P+l)(t,-~) and of order p + 2 corresponding to 
h”,+2 y (P+2) (tn-l) and h:+2~(y(t,L-l))y(P+1)(tn--l), we obtain (8.3.3), (8.3.4), 
(8.3.5), and (8.3.6). To obtain expressions for the vectors p, y, and 6 we need 

(8.3.15) 
Expanding y(L-1 +ch,) and y(tn)  in (8.3.13) and (8.3.14) into a Taylor series 
around t,-l leads to 
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T p =  

the following relationship between z(t,, h,) and z(t,-l, h,): 

- 1 1 + f . .  

0 1 1 . . .  

0 0 1 . . .  
. . . .  . . .  . . . .  
0 0 0 ' . '  - 

where 

(This matrix was denoted by E in Section 7.1). This relationship can be 
verified by expanding hty(j)(t,) appearing in z(t,,h,) into a Taylor series 
around the point t,-1. Substituting (8.3.16) into (8.3.15), we obtain 

+ 0(hp,+3). 

As before, terms up to the order p cancel out, and comparing terms of order 
p + 1 corresponding to hg+ly(P+l)(t,-l) and of order p + 2 corresponding to 
hp,+2 y(P+2) &-I) and i lp ,+2~(y(t , - l ) )y(Pi ' ) ( tn-1) ;  we obtain (8.3.7), (8.3.8), 
and (8.3.9) with E and 6 given by (8.3.3) and (8.3.6). This completes the 
proof. 
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Observe that in formula (8.3.3) for the error constant E of the method, the 
term l / ( p  + l)! - bTcp/p! corresponds to the error generated by the method 
itself in the current step from t,-l to t,, and w T P  corresponds to the error 
inherited from previous steps. 

The next result investigates the relationship between the error constant E 
defined by (8.3.3) and the error constant E defined by the relation (7.5.6) in 
Section 7.5. We have the following theorem. 

Theorem 8.3.2 (compare [72]) Assume that GLM (8.1.3) has orderp and 
stage order q = p .  Then the error constant E defined b y  (8.3.3) is equal to 
the error constant E defined b y  (7.5.6). 

Proof: Denote the error constant defined by (8.3.3) by E .  We will show that 
E = E ,  where E is defined by (7.5.6). Consider method (8.1.3) with constant 
step size h, = h. Applying method (8.1.3) with h, = h to the linear test 
equation 

we obtain 

n = 1 , 2 , .  . ., where M(z) = V + zB(1 - z A ) - l U  is the stability matrix and 
z = hE. Assuming that yn-l  and z [ ~ - ' ]  satisfy (8.3.1) and that y, and y[,] 
satisfy (8.3.2) with E = E ,  we obtain 

Y' = E Y ,  t L 0, 

y[n] = M ( ~ ) y [ ~ - l l ,  

Since the solution of the test equation is given by y(t)  = e@y(O), it can be 
verified that this relation can be written in the form 

where the vector Z is defined by 

and I is the identity matrix of dimension p+ l .  The equation (8.3.17) simplifies 
to 

1 1 
M(z) [ ] - (1 - EzP+l)ez 

z - pzp+' 
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and taking into account that 

where W ( z )  = 2 - pzP+l. It follows from Theorem 7.2.4 that the stability 
matrix M(z) of the GLM (8.1.3) has only one nonzero eigenvalue R(z ) ,  given 
by formula (7.2.11). As in the proof of Lemma 7.2.1, we can assume without 
loss of generality that the eigenvector of M(z) corresponding to this eigenvalue 
R(z )  can be scaled so that its first component is equal to 1. This leads to the 
relation 

It follows from the discussion in Section 7.5 that this stability function R(z )  
of GLM (8.1.3) also satisfies (7.5.6), and substituting this equation into the 
relation above, we obtain 

I 

Set 

Clearly, 

and we will show that this implies that 

PE(z) = e z  - EzP+l,  PE(E)  = e z  - E z  P+ 1 . 

PE(Z) - PE(Z) = 0(zP+l)  

P&) - PE(Z) = O ( Z P + 2 ) .  

The idea of the proof of this fact is based on the application of the power 
method for computing eigenvalues and eigenvectors, where in each iteration, 
one more power of z is gained. We have 

1 1 1 + z b T ( I  - zA)- 'e uT + zbT(I  - zA)- lU 
- - 

1 z B ( I  - zA)- le  V + z B ( I  - zA)- lU 1 
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and it follows from (8.3.18) and (8.3.19) that 

M11(z) - P&) - M12(z)W(z)  = O ( Z P + Z ) ,  

M2l(Z) + (M22(.) - P g ( z ) I ) W ( z )  = O(zp+2) 

and 

(8.3.20) 

(8.3.21) 

Here I is an identity matrix of dimension p .  Subtracting the first equations 
of (8.3.20) and (8.3.21), we obtain 

P g ( z )  - PE(Z) = MIZ(Z)(W(Z) - W ( z ) )  + O(ZP+2). (8.3.22) 

Similarly, subtracting the second equations of (8.3.20) and (8.3.21), after some 
computations we obtain 

It follows from PE(z)-PE(z) = O(zP+l), w ( z )  = O ( z ) ,  and equation (8.3.23) 
that W ( z )  - W ( z )  = O ( Z ~ + ~ ) .  Substituting this into equation (8.3.22), we 
obtain PE(z) - & ( z )  = O ( Z ~ + ~ ) .  This implies that = E ,  which is our 
claim. 

The next result describes the structure of the vector /? appearing in (8.3.1) 
and (8.3.2). 

Theorem 8.3.3 (Wright [293]) For GLM (8.1.3) of orderp and stage or- 
der q = p and with IRKS, the vector ,B appearing in (8.3.1) and (8.3.2) is 
given b y  

T 

P = [ Pp Pp-1 . . .  P1 ] ; 

where &, &-I, . . . , 01 are free parameters of the doubly companion matrix 
x = X(a, P ) .  

Proof: 
U and V into the relation BA = XV - VX, we obtain 

Substituting formulas (7.1.6) and (7.1.7) for the coefficient matrices 

B(C - ACK) X(E - BCK) - VX. 

It follows from Lemma 7.4.2 that BA = XB and the relation above simplifies 
to 

BC G XE - VX. 
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Comparing the last columns of this relation, we obtain 

BCep+l = XEep+l - VXep+l. (8.3.24) 

It can be verified that 

and partitioning the matrices B, X, and V appropriately, relation (8.3.24) 
can be written in the form 

where 

+ "  o v  V T  

r 

1 ,  QP+l + Pp+l 

P 

1T 
Q =  1 Q1 Q2 . . .  & P I  ' 

Comparing the last p components in this equivalence relation, we obtain the 
equation 

CP 
B - = t p - p + V P ,  
P! 

which is equivalent to (8.3.7). This completes the proof. 8 

It follows from Theorems 8.3.2 and 8.3.3 that the free parameters of GLMs 
(8.1.3) with IRKS are directly related to the accuracy of the resulting formulas. 
In the algorithm for construction of these methods presented a t  the-end of 
Section 7.5, the free parameter E is related to the error constant E = E 
through equation (7.5.14), that is, 

E = ~P+l, ,+l(X) - E ,  

and the parameters PP, Pp-l,. . . , 
approximations Z"] through the relation 

are related to the errors of the external 

Zbl - - - Z(t,, h,) - (P  (8 I)hp,+ly(p+l)(t,) + O(hp,+2) 

(compare (8.3.2) and Theorem 8.3.3). As a result, these parameters control 
directly the accuracy of the resulting methods. The corresponding effects on 
the stability of these formulas are discussed in Sections 7.8 and 7.9 for the 
explicit methods and in Sections 7.10, 7.11, and 7.12 for the implicit methods. 
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8.4 ESTIMATION OF LOCAL DISCRETIZATION ERROR AND 
ESTIMATION OF HIGHER ORDER TERMS 

It follows from (8.3.2) that  the local discretization error of GLM (8.1.3) at  
the point t ,  is given by 

where the error constant E is defined by (8.3.3). We look for the estimate of 
the quantity h",+'y(P+')(t,), which corresponds to  the principal part of le(t,), 
in the form 

where p E RPtl and 1c, E RP are some vectors. To compute accurately the 
input vector z["] for the next step corresponding to  the new step size, we will 
also have to investigate terms of order p+2 in the expression above. Therefore, 
we consider a more precise estimate of h:+ly(p+l)(t,), which is of the form 

(8.4.2) 

where C1 and C2 are constants. We have the following result 

Theorem 8.4.1 (compare [75]) For GLM (8.1.3) of order p and stage or- 
der q = p ,  the vectors p and $ satisfy the system of  equations 

(8.4.3) 

Here t/jj stands for the j t h  component of $. Furthermore, the constants C1 
and C2 are given by  

(8.4.4) 
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Proof: Substituting (8.3.12) and (8.3.1) into (8.4.2) and expanding y(p+l)(t ,) ,  
y’(t,-l + ch,) into a Taylor series around tn-l, we obtain 

Comparing terms up to order p + 1 leads to the system of equations (8.4.3). 
Comparing terms of order p + 2 corresponding to 

hp,+l y (P+2)  ( G - 1 )  and hEfl af ( y ( t , - l ) ) y ( p + l ) ( t n - ~ ) ,  
dY 

we obtain the expressions (8.4.4) for the constants C1 and C2. 

We can also compute an estimate of h”,+’y(p+l) (t,) in terms of ~ , F ( Y  [“I) 
and dnl, that is, an estimate of the form 

h;+ 1 y (P+ 1 1 ( tn )  = (pT @ I)h,F(Y[“l) + (3’ @ I)zrn] 

+ G h ” , + 2 Y ( p + 2 ) ( t n )  + C2hp,+2C)S(Y(tn))y(P+1)(tn) dY (8.4.5) 

+ o(hp,+3), 

- 
where F E IWP+’, I) E I W p ,  and ??I and ??2 are constants. We have the following 
result. 

Theorem 8.4.2 For GLM (8.1.3) of order p and stage order q = p ,  the 
vectors F and 3 satisfy the system of equations 
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Here qj stands for the j t h  component of 3. Furthermore, the constants 
and c2 are given by 

(8.4.7) 
- 
c2 = 7 p q  + q1 + qTs. 

Proof: Substituting 

h n F ( y [ n l )  = h,y'(t, + (c- e)h,) - (E , l )h;" ,C22 (y(t,))y(P+l)(t,) + o(l~P,+~) 

and formula (8.3.2) for dn], then taking (8.3.10) into account, and expanding 
y'(t ,  + (c - e)h,) into a Taylor series around t,, we obtain 

8Y 

- - $1hp,+2- af (y(t,))y(p+l)(t,) - qT,Ohfl+ly(p+l)(tn) 

af (y(t,))y(P+l)(t,) 

8Y 

- -T TJ yhp,+2 y ( P + 2 )  ( in) - $T&p,++'- 

+ Clhp,+2y(P+2)(tn) +c'zhp,+2-(y(t,))y(p+l)(tn) + O(hp,+3) 

dY 

af 
dY 

- 

Comparing terms up to order p + 1, we obtain system (8.4.6). Comparing 

Observe that systems (8.4.3) and (8.4.6) of p + 1 equations with 2p + 1 
unknowns cp3,  TJ3 or pj. qJ are always solvable with respect to cp or (p for any 
choice of the vectors TJ or q if the abscissa vector c has distinct components. 

terms of order p + 2, we obtain (8.4.7). This completes the proof. H 

Next we will look for the estimates of the quantities of order p + 2: 

af 
dY 

hP,+2y(P+2) (t,) and h"nf2 - (y ( t,)) y(P+l) ( t,). 

in the form 

hP,+2y(P+2) (in) = ($- 8 I ) ~ L , F ( Y [ ~ ] )  + (GT 8 I)z["- l]  + O(/XP,+~) (8.4.8) 
and 
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where Cp, @ E RP+l and q, G E RP. We have the following theorem. 

Theorem 8.4.3 (compare [75]) For GLM (8.1.3) of order p and stage or- 
der q = p ,  the vectors @, @ and +, + satisfy the systems of equations 

- -  
+i-1 - 
( j  - l)! 

+ + j = o ,  j = 1 1 2 ,  . . . , p ,  

and 
@Tcj-l 

( j  - l ) !  
+ + j = o ,  j = 1 , 2  , " ' ,  p ,  

(8.4.10) 

(8.4.11) 

@TE + $2 = -1. 

P r o o f :  The proof of this theorem is similar to  the proof of Theorem 8.4.1 
and is therefore omitted. 

Observe that (8.4.10) and (8.4.11) are systems of p + 3 equations in 2 p  + 1 
unknowns, which usually have solutions for p 2 2. The solution corresponding 
to the method of order p = q = 2 constructed in Section 7.9 is given in 
Section 8.6. 

We could also derive, if desired, estimates of the quantities 

in terms of F ( Y [ " ] )  and as was done in the case of the estimate of the 
quantity hpnf1y(P+l)(tn) in formula (8.4.5). However, we do not pursue this 
topic further. 

8.5 COMPUTING THE INPUT VECTOR OF EXTERNAL 
APPROXIMATIONS FOR THE NEXT STEP 

After the step from tn-l to t ,  is accepted, we have computed y ,  and the 
vector dn] such that 
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and 

where the error constant E and vectors p, y, and 6 are given by (8.3.3), (8.3.7), 
(8.3.8), and (8.3.9). We also have available estimates of 

As explained in Section 8.4, these estimates, which are denoted by &(t,), 
ha(&), and 6 3 ( t n ) ,  take the form 

6,(t,) = ((pT €3 I)h,F(Y["l) + ($* €3 I)z["-1], (8.5.3) 

62(tn) = ($- 8 I)hnF(Y[" l )  + (7p 8 I)z[n--l],  (8.5.4) 

6,(t,) = (p €3 I)h,F(Y["l) + (p- 9 1 ) 2 [ 7 1 - 1 1 ,  (8.5.5) 

where cp, $ satisfy (8.4.3), Cp, 4 satisfy (8.4.10), and @, 4 satisfy (8.4.11). To 
proceed with integration from t ,  to tn+l = t ,  + hn+lr where hn+l is a new 
step size chosen according to some step size changing strategy, we have to 
compute a new input vector ,In] such that 

and 

- 

The presence of the term involving Eel can be justified by formula (8.3.10). 
Such a vector will be computed by rescaling and modifying the vector dn] 
according to the formula 

z [ n l  = (D(T,) 8 I)z["] + ( e l ( T , )  8 1)6~( t , )  
(8.5.7) 

+ ( @ 2 ( 4  @ 1)62( t , )  + ( @ 3 M  €3 1 ) 6 3 ( t n ) ,  

where T, = h,+l/h,, D ( r )  is the rescaling matrix defined by 

D ( T )  = diag(r, r 2 , .  . . , r P ) ,  
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- (y @ I)rp,+2hK++2y(p+2)(tn) 

8.f 
- ((6 + E e l )  @ r)r~+2hK+2-(y(t ,))Y(P+1)(tn) + O ( / L ~ , + ~ ) .  

dY 
We have 

( w - n )  @ +(tn,  hn) = Z(t,, h,+l), 

and comparing terms of order p + 1 corresponding to h:+ly(P+l)(tn) and of 
order p + 2 corresponding to 

we obtain 
(8.5.8) 

and Q , ( r ) ,  Qz(r) ,  and & ( T )  are appropriate vectors that are determined by 
comparing (8.5.6) with (8.5.7). Observe that the ratio of step sizes is now 
denoted by r,, which differs from the notation in Chapters 4 and 5, where 
this ratio was denoted by 6,. Using formula (8.5.2) and the relations 

h1 (in) = h”,+’ y(P+l) ( tn)  - C1 hP+2 n Y (P+2) (in) 

S 2 ( t n )  = hp,+* y(p+2) ( tn)  + ~(hp,+~)): 

and 
6 3 ( t n )  = h, P+2 af ( y ( t n ) ) d P + ’ ) ( t n )  + O(h;+’), 

aY 
where the constants C1 and CZ are defined by (8.4.4), this leads to 
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02(r) = ( D ( r )  - ~ ' ' ~ r ) ?  + Ci &( r ) ,  (8.5.9) 

e3(4 = ( ~ ( r )  - ~ p + ~ ~ ) ( b  + E e l )  + c2 o1(r).  (8.5.10) 

As mentioned in Section 8.1, the formula (8.5.7) with & ( r ) ,  & ( r ) ,  and & ( r )  
defined by (8.5.8), (8.5.9), and (8.5.10), respectively, is the integral part of 
GLM (8.1.3). 

and 

8.6 Z E R 0-STA B I L I TY A N A LY S IS 

In this section we analyze the zero-stability properties of the method (8.1.3) 
with zln] defined by (8.5.7), &(t,), 62(t ,) ,  &(t,) defined by (8.5.3), (8.5.4), 
(8.5.5), and &(r,), &(r,), 83(r,) defined by (8.5.8). (8.5.9) and (8.5.10), 
respectively. Applying this method to the test equation 

Y' = 0, 

Y(0) = 1, 

t 2 0, 

on the nonuniform grid {t,}, we obtain 

n = 1 , 2 , .  . ., where the amplification matrix M ( r )  is defined by 

M ( T )  = D(T)V + e l ( r )gT  + e2(+jT + e3(r )47 .  (8.6.2) 

Hence, 

and it follows that the zero-stability of method (8.1.3), (8.5.7) is equivalent 
to the uniform boundedness of the product of matrices: 

,["I = M(r,)M(r,-1) . . ' M(r1)z[O] 

M(T,)M(Tn-l) . . . M(r1). 

To find the conditions under which this is the case, we follow the approach 
proposed by Guglielmi and Zennaro [138, 1391. This approach is based on 
the theory of the joint spectral radius and the notion of a polytope norm of 
a family of matrices. According to this theory the zero-stability of (8.1.3), 
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- 
0 0 0 

0 0 279 
574 
- 

81 - 0 1968 
14105 2015 1 1 1 = - 608663 -- 2009 - 455 

499968 35712 2304 

-- 113815 85567 455 
71424 35712 2304 

65 
- 24 12  24 

- 41 -- 17 - 

1 0  0 

4 1 
l 2 8 i  8 

8 -  47 
455 4030 

241 41 
-672 124 

1177 
-2976 

0 O O 

(8.5.7) would follow if we can construct a polytope norm 1 1  . I I *  in IRP such that 
for the induced matrix norm denoted by the same symbol, we have 

(8.6.3) 

for T E [0, T*] for some T * .  These polytope norms are defined by their unit 
balls in RP. Set 

T* = max { r  : p ( ~ ( r ) )  5 I}, 

where p ( M )  is the spectral radius of the matrix M .  As explained by Guglielmi 
and Zennaro [138], in many cases these polytope norms 1 1  . / I *  can be found by 
successively applying the matrix M ( T * )  to the set of vectors 

where ei are canonical basis vectors in RP. If 

A!P((T)P, P E s, j = 1 . 2  . . . . ,  

are contained in a common convex hull, symmetric with respect to the origin, 
of some points in IWP for T E [O,r*],  this convex hull defines the unit ball of 
the polytope norm 1 1  . I / *  satisfying (8.6.3). This process was illustrated by 
Guglielmi and Zennaro 11391 for the variable step size three-step backward 
differentiation method, by Butcher and Jackiewicz [71] for some GLMs of 
order p = 2. and by Jackiewicz et al. [180] for some two-step W-methods 
of order p = 2. In a recent paper by Butcher et al. [75] this process was 
illustrated for the composition of Adams-Bashforth methods of order 2 and 3 
over two steps of size h/2, and then using PECE scheme with the composite 
Adams-Bashforth method as a predictor and the Adams-Moulton method of 
appropriate order as a corrector, and for GLMs with IRKS of order 2 and 
3. In what follows we illustrate this process for explicit and implicit methods 
with p = q = 2 and s = 3. We consider first the explicit method derived by 
Butcher and Jackiewicz [72], whose coefficients are presented in Section 7.9. 
For this method the abscissa vector c = [0, i, 1IT, and for easy reference, the 
coefficients are given again below. 
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It can be verified using (8.3.3) :  (8 .3 .7) ,  ( 8 . 3 . 8 ) ,  and (8.3.9) that the error 
constant is E = & and the vectors p, y, and 6 are 

2177 

96 64 9216 

We choose the vector + as + = [0, - ~ 1 1 / @ 1 ] ~ .  This choice will be motivated 
in Section 8.8, where the construction of unconditionally stable methods is 

#.4.11), we obtain discussed. Then solvi 

c p =  

and 

113815 
5208 

85567 
2604 

1849 
168 

-- 

- 

; (8 .4 .3) ,  ( 8 . 4 . 1 0 ) ,  and 

916034185 
46171524 

33566249 
3297966 

1262495 
212772 

-- 513580145 
6595932 

29738735 
471138 

429065 
30396 

2989248 511680 

464258 1369810 
549661 78523 

The amplification matrix M ( T )  given by formula (8 .6 .2)  takes the form 

llr(r-1) ( 104304+104304r+182149r2) 
851088 1 r(294867408+39150823r2 -477122599r3) 

361833984 

1 '  r2 (r-l)(9156768+3162703r) r2(r-1)(54138249S+815438257r) 
5957616 2532837888 

Applying the procedure described above, it can be verified that condition 
( 8 . 6 . 3 )  is satisfied for T E [O:T*],  T* x 1.11366, for the polytope norm 1 1  * I I *  
whose unit ball with vertices PI, P z ,  P3, P 4 ,  P5 ,  P 6 ;  9, and P8 is plotted in 
Fig. 8.6.1. The coordinates of the points Pi are 

For comparison we have also analyzed zero-stability properties of the method 
(8 .6 .4)  with the vector zIn] of external approximations given by 

,["I = D ( T n)- ,["I + Q,(rn)61(t,).  ( 8 . 6 . 5 )  

where & ( r )  is defined by (8 .5 .8)  and 61(tn) is defined by (8.5.3). Th' is cor- 
responds to the rescale and modify approach introduced in [71]. It can be 
verified that for the method ( 8 . 1 , 3 ) ,  (8 .6 .5)  the amplification matrix %(T) is 
given by 

M(T) = D(T)V + e1(T)@, 
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Figure 8.6.1 
(8.6.4); (8.6.5) 

Unit balls in the polytope norms for methods (8.6.4), (8.5.7) and 

which for the method (8.6.4) with zIn] defined by (8.6.5) takes the form 

1 1 7 7 ~ ~  -- 

%(TI = [ 1 ,,:;;-,, ] ' 
It follows that the condition (8.6.3) is satisfied for T E [0, T * ] $  T *  = 1.7895 for 
the polytope norm whose unit ball with vertices Q1, Qz, Q3, and Q4 is also 
plotted in Fig. 8.6.1. The coordinates of the points Qt are 

T Q1 = -Q3 = [O. -lIT, Q2 = -Q4 = [2.2664,1] . 

We can observe that for the specific method (8.6.4), the rescale and modify 
approach of Butcher and Jackiewicz [71] leads to  better zero-stability proper- 
ties than does the approach described in this section. However, this happens 
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2 4 4  

- 1 1 1  _ -  

- -- 

0 - 2  2 

at  the expense of losing the ability of estimating the higher order terms of the 
form 

hp,+2y(P+2) (t,) and il~+'df(y(t,))yiP+l)(t,).  

The construction of highly stable methods (possibly unconditionally stable) 
which also allow for the estimation of terms of order p + 2 is the subject of 
current work. 

We consider next the implicit A- and L-stable method with simple coef- 
ficients derived by Wright [293]. For this method c = [0, $, 1IT, X = :, and 
E = 0. The coefficients of this method are given by 

dY 

L L L I O L  
8 

1 
2 8 2 1 i %  

; ; l o o :  
0 0 0 

(8.6.6) 

It can be verified using (8.3.3): (8.3.7), (8.3.8), and (8.3.9) that the error 
constant is E = -6 and the vectors p, 7, and 6 are 

We again choose 1c, = [0, -wl1/ /31lT.  

also obtain 
Solving (8.4.3), (8.4.10), and (8.4.11), we 

The amplification matrix M ( T )  given by formula (8.6.2) takes the form 

- r ( r - 1 ) ( ~ ' - 8 ~ - 8 )  r(7r3-12r2+8) 
9 12 

2rz(r-1)(8r+7) - r2(r-1)(7~+19) 
9 6 

M ( r )  = 
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-1.5' , I 
I I 

Figure 8.6.2 
(8.6.6), (8.6.5) 

Unit balls in the polytope norms for methods (8.6.6), (8.5.7) and 

Applying the procedure described above, it can be verified that the condition 
(8.6.3) is satisfied for T E [ O , T * ] ,  T *  x 1.13614, for the polytope norm 1 1  . I I +  
whose unit ball with vertices P I ,  P2, P3, P4, P5, P6, P7, and Ps is plotted in 
Fig. 8.6.2. The coordinates of the points Pi are 

For comparison we have also analyzed zero-stability properties of method 
(8.6.6) with the vector zIn] of external approximations given by (8.6.5), where 
again & ( T )  is defined by (8.5.8) and 61(t,) is defined by (8.5.3). It can be 
verified that for the method (8.1.3), (8.6.5) the amplification matrix given by 
E(T) = D(r)V + &(r)$T for the method (8.6.6) with z["] defined by (8.6.5) 
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takes the form 

It follows that condition (8.6.3) is satisfied for T E [0, T * ] ,  T*  M 1.69562 for the 
polytope norm whose unit ball with vertices Q1, Q2, Q3, Q4, Qj .  and Qs is 
also plotted in Fig. 8.6.2. The coordinates of the points Qt are 

T 
Qi = -Q4 = [0, -11 , Qz = -Qj = [1.2188, 1IT, Q3 = -Qs = [0, 1IT. 

As before, we can observe that for the specific method (8.6.6) the rescale and 
modify approach of Butcher and Jackiewicz [71] leads to better zero-stability 
properties than does the approach described in this section. 

The refinement of the technique of Guglielmi and Zennaro [138. 1391 was 
proposed by Butcher and Heard [62] in the context of backward differentiation 
methods for ODES. 

8.7 TESTING THE RELIABILITY OF ERROR ESTIMATION AND 
ESTIMATION OF HIGHER ORDER TERMS 

In this section we test experimentally the reliability of the estimates of 

hp,+lY(P+l) (t,), hK+2y(p+2)(tn), and hp,+2- 8.f (y(t,))y(p+l)(tn) 
8Y 

derived in Section 8.4 in a variable step size environment. These experiments 
were performed for explicit GLM (8.6.4) derived by Butcher and Jackiewicz 
[72] and given in Section 7.9. This method was applied to the van der Pohl 
equation 

Y; = Y2,  Yl(0) = 2. 

Y: = (1 - Y 3 Y 2  - Y l .  Y2(0) = 0, 

t E [0,8], with the standard step size changing strategy based on the formula 

0.5 To1 l'(P+l) 
h,. ( l/est(p. tn )  1, ) 

p = 2, without any limiters or exceptions (compare. e.g., [143. 257, 2611). 
Here To1 is a given accuracy tolerance and est(p.t,) is the estimate of the 
local discretization error given by 

est(p, t n )  = E 61 (t,), 

where E is the error constant of the method and &(t,) is defined by (8.5.3). 
We have plotted in the top graph of Fig. 8.7.1 ~ ~ l e ( p , t , ) ~ ~ ,  and Ilest(p,t,)II, 
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Figure 8.7.1 
(symbol “.”) versus t for To1 = 
ratio(p, tn)  versus t 

Top graph: the quantities Ille(p, (symbol “ 0 ” )  and (lest(p, 
every fifth point is plotted. Bottom graph: 

where le(p,t,) is the local error of the method. This local error was com- 
puted using the code ode45 from the Matlab ODE suite [263] on the interval 
[tn-l, tn] with RelTol = AbsTol = 0.01 . To1 following a suggestion by Hull 
et al. [168]. We have also plotted in the bottom graph of Fig. 8.7.1 the 
ratio(p, tn )  defined by 

We have plotted in the top graph of Fig. 8.7.2 hp,+2((y(p+2)(tn)l( and ~ ~ c 5 2 ( t n ) ~ ~ ,  

where &(t,) is given by (8.5.4). We have plotted in the bottom graph of 
Fig. 8.7.2 the ratio of these quantities. Similarly, we have plotted in the top 
graph of Fig. 8.7.3 h ” , + ’ / 1 ~ ( 1 ~ ( t , ) ) y ( P + ~ ) ( t ~ ) l l  and \lc53(tn)ll, where S 3 ( t n )  is 
defined by (8.5.5). We have plotted in the bottom graph of Fig. 8.7.3 the ratio 
of these quantities. The quantities 
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1 I 1 1 I I I I 
0 1 2 3 4 5 6 7 8 
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t 

Figure 8.7.2 Top graph: the quantities h$?,+211y(p+2)(tn)ll (symbol “0”) and 
I l6z(tn)i I  (symbol ”,”) versus t for To1 = lop6:  every fifth point is plotted. Bottom 
graph: the ratio of these quantities versus t 

obtained by successive differentiation of the van der Pohl equation (1.8.1) and 
the relation 
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Figure 8.7.3 

and 1163(tn)il (symbol ".") versus t for To1 = 
graph: the ratio of these quantities versus t 

Top graph: the quantities ~ L P , + ~ I I  g ( v ( t n ) ) y ( P f l ) ( t n ) I I  (symbol 'd') 
every fifth point is plotted. Bottom 

I I 
-0 1 2 3 4 5 6 7 8 
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Figure 8.7.4 
der Pohl equation with adaptive step size control for To1 = 10T6 

Step size pattern for the method of order p = 2 applied to the van 

All these figures correspond to the step size pattern displayed in Fig. 8.7.4 
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Examining these figures we can observe that the quality of the estimation 
of the local discretization error for the method of order p = 2 is exceptionally 
good. The quality of the estimators for the higher order terms of the form 

8.8 UNCONDITIONAL STABILITY ON NONUNIFORM MESHES 

This section follows the presentation by Butcher and Jackiewicz [73].  As 
observed in Section 8.6, for GLMs (8.1.3) with the input vector zln] for the 
next step from t ,  to tn+l defined by 

z[nl = (qm) @ I ) z [ ~ ]  + (qr,) @ I)d(t ,) ,  

where O ( T )  = & ( r )  is defined by (8.5.8) and d(t)  = &(t)  is defined by (8.5.3)) 
that is, 

6(t,) = ((pT 63 I)h,F(Y[,]) + ($T 63 I )z[n- ' l ,  

the requirement of zero-stability usually leads to some restrictions on the ratio 
of step sizes T, = h,+l/h,. Similarly, some restrictions on T, usually also 
hold if d( t )  = S ( t ) ,  where 6( t )  is defined in terms of F ( Y [ " ] )  and Z["] by the 
formula 

- 
d(t,) = ((pT @ I )h ,F(Y["])  + ($- c3 I)Z["], 

with and satisfying system (8.4.6). In this section we adopt a different 
approach and try to construct GLMs with reliable error estimates and with 
an appropriately defined input vector zln] for the next step from t ,  to tn+l, so 
that the overall numerical algorithm consisting of (8.1.3) and the formula for 
zln] is unconditionally stable for any step size pattern. This approach is based 
on constructing the vector of external approximations zi"] by making different 
corrections to the components of the vector d"] in such a way that the errors 
in these components are asymptotically constant. To be more specific, the 
components zknl of z["] are defined by 

i = 1 , 2 , .  . . , p ,  where di(t,) is the family of the estimators to hz+ly(p+')(t n !  ) 
and Pi are the components of the vector p. This relation can be written in 
the vector form 

zIn] = (D(r,) 8 I ) d n ]  + ( (D(T,) - ~;+',l)Dp @ I )  A@,), (8.8.1) 
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where 
61 ( t n )  

Dp = diag(P1,. . . , P p )  and A(t,) = I dp(tn) 1 . 
Similarly to (8.4.2) and (8.4.5), we will look for &(t,) in the form 

or 
d,(t,) = (Cp? €3 I ) h n F ( Y [ n ] )  + ($T €3 I)Z[nl, (8.8.3) 

where pz,v'z E RP+' and +,,qz E RP. However, in contrast to the algorithm 
for the computation of ,["I described in Section 8.5 (compare also [71]), it will 
be possible to choose +, or $, to accomplish unconditional stability. This is 
explained in the remainder of this section. 

It can be verified that the application of (8.1.3) and (8.8.1) to the test 
equation y' = 0, t 2 0, y(0) = 1, leads to the relation 

z [ ~ ]  = (D(yn)V + (D(r,) - rP,+'I Do9  z [ ~ - ' ]  ) )  
if the &(in) are defined by (8.8.2) or 

,["I = ( D ( r n )  + ( D ( r n )  - rP,+'I 

if the d,(t,) are defined by (8.8.3). Here 

The unconditional stability would then follow if we could choose a scalar 
function ( ( T )  and the matrices Q or 3 such that 

D(r,)V + (D(r,) - r:+'I) Dp9  = E(rn)V 

or 

This can be accomplished clearly if we define ( ( r )  = rP+l and if Q or 
satisfies the equation 

D p Q = = V  (8.8.4) 

or 
D p T V  = -V. (8.8.5) 
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Assuming that Dp is nonsingular, this leads to  

Q = - D i l V  ( 8  3.6) 

(8.8.7) 

Observe that (8.8.4) and (8.8.5) may still have solutions even if the matrix 
Do is singular. Once the matrices Q or are chosen, the vector pi or qi can 
be determined so that 

d,(t,) = hp,+ly(p+l)(t,) + O(hp,+". 
i = 1 . 2  , " . ,  p .  

We now describe the construction of the family of error estimators d,(t,), 
i = 1 , 2 , .  . . , p .  We can argue as in Section 8.4 that hK+'y(p+l)(t,) can be 
estimated by (8.8.2) or (8.8.3) if the vectors p,, $I,, or F t ,  $,,, i = 1 . 2 , .  . . . p ,  
satisfy systems of linear equations of the form (8.4.3) or (8.4.6). Introducing 
the matrices Cp and cp of dimension (p + 1) x p defined by 

IT , - (c - e)2 (c - e)p-' c,= [ e c - e  ~ . . .  
2 !  ( P  - I)! 

the linear systems corresponding to (8.4.3) and (8.4.6) can be written in a 
more compact form as 

i = 1 , 2 , .  . . , p .  Setting 

- a =  , a =  

the systems above can be written in the vector form 

or 

(8.8.8) 

(8.8.9) 
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where e E RP. Solving (8.8.8) or (8.8.9) for Cp or 5, we obtain 

[ -Q I Qa+e  IC;:, (8.8.10) 

or 
1 

- a =  [ -Q - I  U a + e  ] Ep-1. (8.8.11) 

It was already demonstrated in this section that if Q or satisfies (8.8.4) or 
(8.8.5), then GLM (8.1.3) combined with (8.8.1) is unconditionally stable for 
any step size pattern. Moreover, assuming that the matrix Dp is nonsingular, 
this leads to formulas (8.8.6) and (8.8.7). Substituting these into (8.8.10) 
or (8.8.11), respectively, and taking into account that DP1p = e ,  we obtain 
closed-form expressions for matrix @ or 5: 

@ = [ DplV 1 DplVP-te ] Ci:l 

a =  [ D- p 1  I o ]c;L 
whose rows represent the vectors cp? or ?$, i = 1,2 . .  . . . p ,  appearing in (8.8.2) 
or (8.8.3). 

Summing up the discussion above, GLM (8.1.3) combined with (8.8.1) is 
unconditionally stable if 6,(t,), i = 1 , 2 , .  . . , p ,  are defined by (8.8.2) or (8.8.3), 
that is, if A(&) is given by 

or - 

A@,) = (Cp @ I )h ,F(Y[nI)  + (Q I ) z [ ~ - ' ]  

or 
A(t,) = (5 @ I)h,F(Y["I) + (U @ 

The local discretization error 

le(t,) = E h~+ly(p+l)(t,) + o(h;f2) 

of method (8.1.3) can be estimated by the quantities 

est(t,) = E6i(t,), i = 1 , 2 , .  . . , p ,  

where E is the error constant of the method. These estimates are asymptoti- 
cally correct as h + 0. However, this is not sufficient for implicit methods for 
stiff systems, whose efficient implementation requires the construction of error 
estimates that are also accurate and reliable for "large" step sizes compared 
with certain characteristics of the problem. This is a difficult problem which 
is not discussed here since its solution requires techniques that differ from 
those employed in this section. This problem was discussed in the context of 
DIMSIMs in Section 4.3 (compare also [177]), where we used the approach 
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by Shampine and Baca [258]. This approach is based on the design of the 
"filtered" error estimates of the form 

est*(t,) = ( I  - h,XJ)-pest(t,), 

where X is the diagonal element of the coefficient matrix A, J is the Jacobian 
of problem (2.1.1), and p is an appropriate integer. Another approach to 
error estimation for implicit RK methods for stiff systems has been proposed 
by Swart and Soderlind [268]. 

given by 
It can be verified that for method (8.6.. 

113815 85567 1849 
2604 168 

4 -8 4 

and 

, the matrices @ >  Q, 5, and F are 

Similarly, for method (8.6.6) these matrices take the form 

and 

Observe that for both methods 

@='; I ;+qB and Q=TV. 

We would like to  stress again that the overall numerical algorithms consisting 
of (8.6.4) or (8.6.6) combined with the formula for ,["I defined by (8.8.1) with 
6,(t,). i = 1,2.  given by (8.8.2) or (8.8.3) are unconditionally zero-stable for 
any step size pattern. 

8.9 NUMERICAL EXPERIMENTS 

Methods (8.6.4) and (8.6.6) implemented as described in Section 8.8 are un- 
conditionally stable for arbitrary nonuniform meshes. This property also has 
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a desirable effect on the quality of local error estimation. To illustrate this 
point: these methods with zIn] defined by (8.8.1) were applied first to the 
well-known variant of the Prothero-Robinson test problem 

with X = - p  = -0.1, to = 0, T = 20, which was used by Butcher and 
Jackiewicz [70, 711 in the context of a more general class of Nordsieck methods. 

Figure 8.9.1 The ratio(t,) := Ile(t,)I/lE&(?,)l versus t for the explicit method 
(8.6.4) with vector of external approximations dnJ defined by (8.8.1) applied to (8.9.1) 
for sz(t,) = cp; / L , F ( Y [ ~ ] )  + $,Tg["l 

To estimate the local discretization error le(t,), we can choose &(t,) de- 
- fined in terms of (PI. $1 or Cpl, &, or &(t,) defined in terms of 92, $12 or Cp2, 
$ 2 .  These vectors are given in Section 8.8. We have verified numerically that 
the estimates b2(tn) are somewhat more accurate than those based on &(t,). 
These methods were implemented for a quite demanding, periodic step size 
pattern chosen according to the formula 

n = 0,1 , .  . . , N - 1, where 

/ 1 for n = 0 or 1 mod(4), 
k =  

( 2 for n = 2 or 3 mod(4). 
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Figure 8.9.2 The ratio(&) := ile(t,)l/IEbz(t,)l versus t for the implicit method 
(8.6.6) with vector of external approximations dnl defined by (8.8.1) applied to (8.9.1) 
for 62( t , )  = cp: /L,F(Y[,]) + + F T ‘ ~ !  

loo I 
c 

I 10-2 

d - 

1 o - ~  

1 o-6 
0 0.5 1 1 5  2 2.5 3 3 5  

t 

Figure 8.9.3 The norm of the local discretization error ille(t,)Il (symbol “0”) and 
the norm of the local error estimate lIE62(tn)ll (symbol “.”) versus z for method 
(8.6.6) with zIn1 defined by (8.8.1) applied to the problem ROPE with a step size 
pattern defined by (8.9.2) for p = 2 

and p = 2 or p = 4. This choice of k ensures that the step size is increased 
twice successively, then decreased twice over the interval of integration, and 
that the step size oscillates around an approximately constant value. In 
Fig. 8.9.1 we have plotted the ratio between the norm of the exact local 
error ile(t,)i and the norm of the local error estimates lE&(t,)I with the 9 2  

and $2 given in Section 8.8 for method (8.6.4). For this figure the ranges of 
lle(t,)l are 

1.894. 10-l’ 5 ]le(t,)] 5 4.683 lo-’, 2.747. 10-l’ I lle(t,)l 5 2.371. 
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for p = 2 and p = 4, respectively. In Fig. 8.9.2 we present the corresponding 
results for the method (8.6.6). For this figure the ranges of ile(t,)l are 

9.504. 5 Ile(t,)l 5 2.360. 1.376. 5 Ile(t,)l 5 1.199. 

for p = 2 and p = 4, respectively. For both figures the ranges of h, are 

1.272. l o p 2  5 h, 5 4.778. lo-’, 6.056. 5 h, 5 9.068 1 lo-’ 

for p = 2 and p = 4, respectively. 
These figures confirm a very high quality of the error estimators 62(t,). For 

explicit methods with p = 2, the estimator differs by less than 0.2% from the 
local discretization error. For more rapidly changing step sizes, corresponding 
to p = 4, the difference can be as high as 1%, but this can be judged to be 
satisfactory from the point of view of a possible step size control algorithm. 
For a similar experiment performed for implicit methods with p = 2, the 
estimator understates the local truncation error by less than 1%. Even for 
p = 4, the understatement is less than 2%. It can also be verified that the 
quality of local error estimation is much higher than that previously reported 
[70, 711 for the class of Nordsieck methods with p = q = T - 1 = s. 

0 0.5 1 1.5 2 2.5 3 3.5 
t 

Figure 8.9.4 The norm of the local discretization error lile(t,)II (symbol “ 0 ” )  and 
the norm of the local error estimate llESz(tn)li (symbol *’”’) versus t for method (8.8.4) 
applied to the problem ROPE with adaptive step size control for To1 = lop3 

In Fig. 8.9.3 we present the results of numerical experiments for the same 
step size pattern with p = 2 for method (8.6.6) applied to the problem ROPE 
defined in Section 1.2. On this figure we have plotted at  every fifth step the 
norm of the local discretization error Ille(t,)Il using the symbol “0” and the 
norm of the local error estimate ~ ~ E & ( z , ) ~ ~  using the symbol “.” versus z. In 
Fig. 8.9.4 we present Ille(t,)il and llE62(tn)/l versus z, and in Fig. 8.9.5 we 
present the step size pattern for the ROPE problem, where the step size is 
chosen adaptively according to the formula 
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Figure 8.9.5 
with adaptive step size control for To1 = lop3 

Step size pattern for method (8.6.4) applied to the problem ROPE 

without limiters or exceptions. Here To1 is a given error tolerance. The results 
on these figures correspond to  To1 = where in Fig. 8.9.4 we have plotted 
every eighth step. We again observe very good agreement between local errors 
and local error estimates. 

As discussed in Section 8.8, error estimation and control for stiff differen- 
tial systems require the construction of error estimates which are not only 
asymptotically correct as h -+ 0, but which are also accurate and reliable for 
"large" step sizes. The construction of such error estimators for DIMSILls is 
discussed in Section 4.3. The construction of such estimators for GLMs with 
IRKS is the topic of current work. 

8.10 LOCAL ERROR ESTIMATION FOR STIFFLY ACCURATE 
METHODS 

In this section we describe the approach proposed by Butcher and Podhaisky 
[77] to the estimation of h;+ly(p+l)(t,) and hP,+2y(p+2) (t,) for strictly stiffly 
accurate GLLls with IRKS discussed in Section 7.12. 

It follows from the localizing assumptions (8.3.1) discussed in Section 8.3 
that Y["] and h,F(Y[n]) satisfy (8.3.11) and (8.3.12), which, for convenience, 
are reproduced here: 

(8.10.1) Y["l = y(h -1  + ch,) - ( ( @ I )  hp,+ly(p+l)(fn-l) + O(hp,+2), 

h , F ( Y [ q  = h,y'(t,-1 + ch,) 
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Here the vector c depends on the method and does not change from step 
to step. This vector is given by formula (8.3.6) with the vector p given by 
(8.3.7). We also recall that strictly stiffly accurate GLMs with IRKS satisfy 
conditions (7.12.6) and (7.12.7) and that ep+l = 1. It can be verified that 
these conditions imply that the first components P I ,  71, and 61 of the vectors 
P, y, and S defined by (8.3.7), (8.3.8), and (8.3.9) are equal to zero. Hence, 
it follows from (8.3.1) that the second component of the vector y[n-l] or the 
first component of the vector zLn-’] satisfies the relation 

$-l] = hnyytn-l)  + o(h;+3). (8.10.3) 

Following Butcher and Podhaisky [77], we consider the estimation of scaled 
derivatives hp,f’y(P+l) ( tn)  and hP,+2y(P+2) ( tn) ,  or the quantities related to 
these, using linear combinations of the form 

q(tn) = yOzp-’l + ( y T  63 I )hnF(Y[nl) ,  (8.10.4) 

where yo E Rand p E RP+l. Substituting (8.10.2) into (8.10.4) and expanding 
y’(t,-l + ehn) into a Taylor series around t,-l, we obtain 

rl(tn) = (Yo + (YT 63 I)(e @ q h L Y ’ ( L 1 )  

Assume first that 

rl(tn) = ?j(tn) = hL+ly(”+l)(t,) 
(8.10.6) 

= hP,+lY(P+l) (tn-l)  + h p , f 2 y ( p + 2 ) ( t  n-l) + o(hp,+3) 

and define @O and @ as the solution to the linear system 

GO + $e = 0, 

(8.10.7) 
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This system was obtained by comparing the terms h:y(j)(t,-l) on both sides 
of (8.10.5) with q(tn) = T(t,) defined by (8.10.6). Assume next that  

q( tn)  = q(tn) = hp,+2y(p+2)(tn) = hp,+2y(p+2)(tn-1) + O(hP,+3) (8.10.8) 

and define Go and (p as the solution to the linear system 

- = o ,  j = 1 , 2  ) . . . ,  p ,  
F C j  

j !  (8.10.9) 

As before: this system was obtained by comparing the terms of order h i  on 
both sides of (8.10.5) with q(t,) = Fj(tn) defined by (8.10.8). 

Systems (8.10.7) and (8.10.9) for @ and @ can be written more compactly 

Assuming that the abscissa vector c has distinct components. the matrix on 
the left-hand side of the relation above is nonsingular. and this system has a 
unique solution @ and G. The scalars @o and are then defined by 

,., 4- h cpo = -GTe. cpo = -p e .  

We compute next the expressions FT[ and F[ appearing on the right-hand 
side of (8.10.5) and distinguish two cases: F e  = 0 and F e  # 0. If F e  = 0 
we can estimate hp,+'y(Pi1)(tn) using (8.10.4) with q(tn)  = T( tn)  - I9 q(tn) for 
any 6' E R: that  is, 

hp,+ly(p+l) ( tnP1)  + (1 - e)hp,+2y(p+2) (tnV1) 

which can also be written in the form 
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and choose Q to eliminate in (8.10.5) with q(t,) = Fj(t,) - QT(tn) the contri- 
bution from the term 

This leads to GT[ - 6 y [  = 0, or 

Q = FT[/F[. 
Similarly to the previous case, the estimated quantity q(t,) takes the form 

+ 0 ( 4 + 3 )  (8.10.10) 

To estimate hp,+2y(p+2)(tn) we use the difference between q(t,) and a suit- 
ably scaled value of q(tn-1) computed in the preceding step from t n -2  to t,-l. 
It follows from (8.10.10) that 

where rn-l = hn/hn-l ,  and we have 

Hence, the estimate of hP,+2y(P+2) ( tn)  is given by 

Butcher and Podhaisky [77] implemented in Matlab a family of stiffly ac- 
curate GLMs with IRKS of order 1 5 p 5 4, which were derived in [77] 
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in a variable step size variable order environment, where the step size and 
order were chosen using the estimates of h;+l y(ptl) ( tn)  and hp,t2y(pt2) ( tn)  
discussed in this section. The order changing strategy for this experimental 
code is discussed by Butcher and Podhaisky [77, Section 41 and additional 
implementation details are described by Butcher et al. [64]. Butcher and 
Podhaisky report in [77] that the observed relative errors 

on the Prothero-Robinson problem (1.7.1) are almost always less than lop4  
for the p + 1 derivative and less than lop2 for the p + 2 derivative, and rarely, 
and only after order increases, relative errors as large as 10-1 were observed. 

8.11 SOME REMARKS ON RECENT WORK ON GLMS 

GLMs with IRKS examined in Chapters 7 and 8 have many desirable prop- 
erties that are not shared by other classes of methods. They have the same 
stability properties as RK methods of the same order, and this allows the 
construction of explicit methods with large regions of absolute stability and 
implicit methods that are A- and L-stable. They allow for accurate, efficient, 
and reliable estimation of local discretization errors and can achieve uncondi- 
tional stability for any step size pattern. Moreover, they can be constructed 
using only linear operations, which makes it possible to examine vast collec- 
tions of methods trying to identify formulas that are optimal in some sense. 

However, the definition of optimal formulas and their construction within 
the class of GLMs with IRKS or within other classes of GLMs are the main 
challenges ahead and these are topics of recent work. Recent work is also 
related to efficient implementation of various methods in variable step size, 
variable order environments using sophisticated controllers for step size and 
order selection. This should lead to high quality codes for both nonstiff and 
stiff differential systems. The design and testing of such software based on 
various classes of GLMs is the subject of current work. 

Recent work in this area is also related to the construction of various classes 
of GLMs with stability properties stronger than A- or L-stability: namely, 
methods that are algebraically stable. Various stability concepts for GLMs 
are reviewed in Section 2.9. So far this problem has been solved for MRK 
methods (see [28, 1451 and Section 2.9). A promising new approach to in- 
vestigating the algebraic stability of GLMs was proposed recently by Hewitt 
and Hill [154, 1551. This approach was also reviewed in Section 2.9, and its 
applicability to special cases of GLMs, such as DIMSIMs, TSRK methods, 
peer methods, and GLMs with IRKS, is currently under investigation. 
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