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Preface

The name of coustellation has been suggested to me by my friend and colleague Alexander
Grossmanu to denote a concept I introduced in 1974, ignoring at that time that Ettore
Majorana was a precursor; in fact, in 1932, this great physicist published an article in
the Nuowvo Cimento [22] where he studied the evolution of the spin of a particle in a
homogencous magnetic field. He showed that, for a particle of spin s, the spin state
was described by a sct of 2s (not necessarily distinct) points on a sphere. Grossmann
noted that such a set reminds the notion of a constellation of stars in the celestial sphere
since it takes into account the possibility of stars to be in coincidence (double or multiple
stars). Majoraua demonstrated, in his paper, that the state evolutes in precessing regularly
around a diameter parallel to the magnetic ficld. Constellations arc now well-defined
geometrical objects with nice propertics.

My point of view was slightly different of Majorana’s one; the problem 1 wanted to
solve was to derive a classification of the states of a particle of spin s according to the
symmetry of the constellation they form, with respect to the spin rotation group. The
states which have the maximal synunetry are those which are eigenstates of a component
of the spiu operator (S,, for instancc), with an eigenvalue m. They have an SO(2,R)
symmetry except when m = 0 (with s an integer). In that case this symmetry is slightly
higher; it becomes O(2,IR). All the other states have a finite symmetry described by some
subgroup of the rotation group, the generic state having no symmetry at all. That means
that its symmetry group is trivial: it reduces to the identity transformation.

Independently, in 1976, Ronald Shaw used the constellation concept in order to give
a nice derivation of Petrov’s classification of Einstein spacctimes and a description of the
Wigner 3j-symbols. He used, for that, a spinor description of states.

Later on, 1 discovered new and various applications of constellations: 1 made evident
their link with the spin coherent states, with the electromagnetic field, with the generators
of the Lorentz group, with the minimum uncertainty states for angular momentum, with
the Clebsch-Gordan series of the rotation group. Before this abundance of matter and,
thanks to Joshua Zak, 1 had the opportunity to teach constellations at the Technion in
Haifa and I became tempted to devote a whole book on the subject. I nst add that, in
Haifa, I learnt, from Asher Peres, that the “Majorana representation” was also used by
Roger Penrose in the context of the Bell inequalitics.

[ must say a few words about the precise way everything started for me. 1 was teaching
quantum mechanics to undergraduate students, and in order to present the axioms of
this theory, 1 decided to treat abstractly the casc of a two-dimensional Hilbert space.
Obviously, in discarding the phase of the vectors, [ arrived at the sphere S, as the space
of states. This sphere has a simple physical geometrical meaning when the Hilbert space
is the onc of the clectron spin states. In other cases, usually referred to as quasi spin
states, the sphicre is only an abstract one. Then the following question came to my
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mind: does exist a simple geometrical way to describe the set of states associated with
a Hilbert space of any dimension, for instance the set of states of any spin? I succeeded
and I arrived at a classification of the (pure) states associated with an arbitrary spin
s. Progressively, 1 became aware of the fact that constellations were not necessarily
related with the only rotation group. They can be associated with the Lorentz group
and other larger Lie groups, the projective orthogonal and symplectic complex groups
in an arbitrary dimension. In all these cases, the sphere S, plays a particular role and
that explains why mathematical physicists are referring to various spheres, namely the
Riemann sphere, the celestial sphere, the Poincaré sphere, the sphere of spin electron
states and the Bloch sphere. Behind that, Klein’s ideas on geometry became visible, but
from that point of view, there is only one sphere. This proves that mathematical physics
must be distinguished from concrete physics. In an analogous way, from au abstract point
of view there exists only one three-dimensional rotation group. However, mathematically,
one must distinguish in the Euclidean group the rotation groups around different points
and the class of all those subgroups. Klein’s ideas are also needed in spinor theory. Spinors
do not define a given geometry. In order to define a geometry, one must precise which
group is acting on the set of spinors. It could be the SU(2) group or the SL(2,C) group
or some other group. Even on the set of ray-spinors, we could make the rotation or the
Lorentz group acting, defining in this way two distinct geometries.

As I learnt from René Thom, all manifolds of dimension two have a nice property in
common, which explains the interest of constellations defined on the sphere S;. Given a
manifold M, one may consider the symmetrized product of n copies of M. The necessary
and sufficient condition for the product to be a manifold is that M is of dimension two.
This was an invitation for looking for generalizations of constellations to other manifolds
than the sphere Sz, namely, the real plane, the projective real plane and the torus. Some
informations are given about that in the present book.



Chapter 1

Group theory and geometry

Historically, the link between group theory and geometry was cmphasized in the famous
Erlangen’s program proposed in the XIXth century by the German mathematician Felix
Klein. The presentation of this program is considered generally as an important event
in the history of mathematics. However, although the program is often mentioned in
geometry textbooks, its content is not really taken into account, if we except books on
projective geometry. A possible explanation of this fact is that, nowadays, geometry
became a much richer domain: since it includes differential geometry, with a lot of modern
notions such that fiber bundles, connections, cte. Morcover, gcometry is to-day nothing
else than the “trivial part” of the noncominutative geometry, a concept introduced by the
French mathematician Connes. However, for our purpose we only need Klein’s ideas.

1.1 The old definition of a group

In 1872, which is the year where the Erlangen program was introduced!, a group was not
defined as an abstract structure, but as a set of “transformations” (permutations) of some
“space” (set) M satisfying the following properties:

e the group contains the identity transformation Id(M), which maps every element of
M on itself.

e if g and ¢’ arc transformations of the group, the transformation g followed by the
transformation ¢ is also a trausformation of the group denoted g'.g

e if g is a transformation, its inverse g~!, defined by ¢g7l.g = g.¢7' = Id, is also a
transformation of the group.

As an example, the set S(M) of all permutations of M is a group. In fact, the first group
explicitly studied as such in the mathematical literature was the group of permutations of
the roots of an equation, the so-called Galois group. It permits the French mathematician
Galois to say when a polynomial equation is solvable: it is when the Galois group is itself
solvable, a term which will be explained later on. In the case where M has 1, 2, 3, or
4 distinct elements, the group S(M) is solvable. This term comes from the fact that
equations of degrees one, two, three and four are said to be solvable.

'For a detailed version of the program. it is better to consult the French translation Le programme
d’Erlangen (21
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In giving such an importance of group theory in geometry, Klein made real improve-
ments. He permitted to classify the set of theorems and properties of Euclidean geometry
according to their symmetry group, separating, for instance, the definition of a triangle
from the definition of a right angled triangle. One of the main concepts he introduced was
the one of subordinate geometry, which permitted him to discover the exact link between
projective geometry and Euclidean geometry. It is well known that this last geometry is
derived from projective geometry in supposing fixed the straightline (in the case of di-
mension two) at infinity. Klein insisted on the fact that such a derivation corresponds to
a change of group. This new point of view makes clear that, in projective geometry, all
straightlines are equivalent (there exists a projective transformation which maps a given
straightline on another given straightline) and the choice of the one “at infinity” is not
essential.

In the present introduction, we are not much concerned in history of mathematics, our
next task is to present the Erlangen program in a modern language.

1.2 The modern definition of a group

A group (G,.) is a set G endowed with an inner binary composition law, denoted by a
dot, and satisfying the following properties:

e the law is associative: (g.9').9" = g.(¢'.¢")

e there is a neutral element denoted by e, that is an element satisfying e.g = ge=g
for any g

e each element g has an inverse belonging to the group and denoted g~!. This inverse

is such that g.g7! = g7!.g = e. This element is not necessarily distinct from g itself.

We note that e is its own inverse. Any other element with this property is called an

involution.

As it is easily checked, these axioms are direct consequences of the properties of trans-
formations which were presented above. In particular, the set S(M) has a group structure.
More generally, any old fashioned group is a group.

From now on, we decide, for convenience, to denote by the letter G the set as well as
the group itself.

Although the modern approach makes a sharp distinction between a group and the way
it acts on a space, we must recognize that, in mathematical literature, a group appears
generally as a group which acts on some space M. It seems, at first sight, that if we give
ourselves a (modern) group G and a space on which it acts, the two definitions would
coincide. This is not exactly true, essentially because, in the “action” of a group, there
are perhaps many elements which act in the same way. If this is not the case, the group
is said to act effectively We will examine this point later on.

If the group has a finite number of elements, this finite number is called the order of
the group and the group is said to be a finite group.

A group is said to be Abelian? if any two elements g and h commute: g.h = h.g.

2From the name of the Norwegian mathematician Niels Henrik Abel.
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1.3 Subgroup

Any subset H of a group G which has the structure of a group, with respect to the same
composition law, is said to be a subgroup of G. As an example, if N is a subset of M,
S(N) can be considered as a subgroup of S(M), in supposing that each element of M — N
is invariant under S(N). We write H < G or G > H to express that H is a subgroup of
G. 1If H is distinct from G, we write H < G or G > H.

A subgroup H of G is said to be invariant or normal if, for any g € G, g.H = H.g. In
that case, the equivalence relation in G

g~yg, iff gH=gH

has an iteresting consequence: the set of equivalence classes form a group called the
quotient group G/H. Note that G is an invariant subgroup of G itself. We note, in
particular, that the quotient group G/G has only one elcinent.

We also note that any subgroup of an Abelian group is invariant.

Each group has two invariaut subgroups called improper subgroups: first, the group G
itself, second, the trivial group {e}.

1.4 Homomorphism, isomorphism, automorphism

If there exists a mapping ¢ of a group G into a group G’ which preserves the group law
(i.e. such that the image of a product is the product of the images and the image of
an inverse is the inverse of the image), ¢ is called a homomorphism. The kernel of a
homomorphism (i.e. the set of elements which are mapped on the neutral element of G”)
is a normal subgroup Ker(¢). The proof of that property is left to the reader. If ¢ is
bijective, the homomorphism is called an isomorphism. The kernel of a isomorphism is
the trivial subgroup {e}. In the general case, the image ¢(G) is isomorphic to the quotient
group G/ Ker(d).
By definition, an automorphism is an isomorphism of a group into itself.

Remark Usually, when one refers to a given group G, one means the class of all groups
isomorphic to G. For instance, the rotation group denotes the class of groups isomorphic
to SO(3,R), the group of 3 x 3 orthogonal real matrices of determinant one, with the
standard multiplication of matrices as an internal law. However, the physicist must be
more prudent. He has, for instance, to make a distinction between 1) the rotation group
around a given point in space, 2) the quotient group E(3, R)/T(3), where E(3,R) denotes
the real Euclidean group in three dimensions, and 7'(3) denotes the three-dimensional
translation group. As we already remarked, coucrete physics is richer than mathematics.

Example The cyclic group C,, of order n is the group composed of plane rotations of
angles 2rk/n , where k = 0,1,...,n — 1. Let w be a complex number such that n is the
lowest integer such w™ = 1. In that case, w is called a n** primitive root of one. The
set {1,w,w? ..., w" 1} has a group structure with respect to the multiplication law. It is
isomorphic to the cyclic group C,. Let m be a divisor of n. The subset {1,w™, w?™,...}
is a subgroup of C,,. This subgroup is isomorphic to the cyclic group Cy,/p,. Note that the
cyclic groups are all Abelian.
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1.5 Simple group, solvable group

We write H < G to signify that H is an invariant subgroup of G which is not contained in
another invariant subgroup of G, except G itself. Suppose that we may write a composition
series, that is a relation of the form:

{e} < HH« H; < ...« H, < G. (1.1)

The quotient groups @; = H;41/H; are known as the prime quotient groups. We note
that a given group may have many distinct composition series. However, the set of Q;’s
does not depend on the composition series (Jordan and Hoelder theorem)3.

A finite group G is said to be simple if it possesses the (unique) composition series
{e} < G. In other words, the only invariant subgroups of G are G itself and {e}. In
particular, the cyclic group C,, for p prime, is simple.

A group G is said to be solvable if all the @; 's are cyclic.

1.6 Action of a group on a set

We say that a group G acts on a set M if there exists a homomorphism ¢ from G in
S(M). We already said that the kernel Ker(¢) (the set of elements which are mapped on
Id(M)) form a normal subgroup. Any element k of Ker(¢) acts as e and any element of
type kg or gk acts as g.

If e is the only element which is mapped on Id(M), one says that G acts on M
effectively. When it is not the case, one can verify that it is the quotient group G/ Ker(¢)
which acts effectively. As we shall see, the notion of effective action plays a fundamental
role in relating the old and the modern definition of groups.

Example Consider the group SL(2,C), that is the group of complex 2 x 2 matrices
with determinant one?. One can make this group acting on the complete Cauchy plane,
that is the Cauchy plane with the point at infinity.

(‘CI Z)z_,i:z (1.2)
We intend to show that this group does not act effectively. Indeed, there is an element of
SL(2,C), other than the unit matrix, which acts as the unit matrix. This element is such
that z = ::fiz’ whatever is z. It is such that ¢ = 0, d = a, and b = 0. One obtains, apart
the unit matrix 1, the matrix -1. One verifies that these two elements form an invariant
subgroup, denoted Z,. Since the elements g and -g act the same way, the group which
acts effectively is the quotient group SL(2, C)/Z,.

Let us mention another definition. A group G is said to act freely on a set M if M
has no fixed point (G is “free” to move any point of M). As an example, the reader will
verify that the rotation group SO(3,R) acts freely on the sphere. It means that given an
arbitrary point on this sphere, there exists a rotation which moves it. This is not the case
for the subgroup of plane rotations SO(2, IR) acting on the sphere. Two antipodal points
are invariant.

3The analogy with the decomposition of natural integers into prime factors is evident.
4The letter L stands for linear, the letter S for special (determinant equal to one).
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1.7 Action of a group on itself
The mathematicians consider the three following ways for a group to act on itself:
e left action: g transforins ¢’ into g.¢’

e right action: g transforms ¢’ into g'.g7*

e conjugation action: g transforms g’ into ¢(g)g’ = g.¢’.g~*.
The fact that the left and right actions define subgroups of the permutation group S(G)
is known, for finite groups, as the Cayley theoremn. It is a simple matter to show that they
are cffective actions.®

Let us denote by C(G) the set of elements of G which commute with every element
of G. This set is a subgroup called the center of G. The conjugation action is effective if
and ouly if C is trivial (C' = {e}). If it is not the casc, it is the quotient group G/C which
act cffectively.®

1.8 Orbits and strata

A group acts transitively on M if for any couple of points z,y € M, there exists a
transformation mapping z on y. As examples, the rotation group acts trausitively on
the sphere and the Euclidean group acts transitively on the three-dimensional real space.

Wlhen a group acts trausitively on a space M, this space is said to be a homogeneous
space of the group.

We note that the action of a group on itsclf by left or right translations is transitive.
It follows that a group is a homogeneous space of itself in two ways (the left and the
right ones). The word homogeneous seems unappropriate in this case since there is a
distinguished clement, namely the neutral clement. Section 1.16 will permit to clarify this
apparent, contradiction.

In a more general case, we have to define orbits. Two poiuts x and y belong to the
same orbil if there is a transformation which maps z on y. Each orbit is a homogeneous
space. The set of orbits form a partition of the space M (the union of orbits is M itsclf and
the intersection of two arbitrary orbits is empty). When the action is transitive, M is the
unique orbit. For two points, to belong to a given orbit is an equivalence relation; an orbit
is an cquivalence class. One checks that homogeneity of a space M means equivalence of
all points of AL.

Example The action of plane rotations around the point O of IR? divides the real plane
in orbits which are labelled by a positive number R, the radius of a given circular orbit
(R = 0 corresponds to a trivial orbit {O}).

The action of G on itself by conjugation is neither transitive since the element e is
always mapped on itself (fixed point). In this peculiar action, the orbits have a special
name; they are called conjugacy classes. {e} is the trivial conjugacy class. Two subsets
or two elements which belong to the same orbit are said to be conjugate.

°In those actions, there is no fixed point. The group acts freely.
S1f C = G, the group G is Abclian.
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The set of elements which map a given point z on itself is a subgroup G, called the
stability subgroup of . Other names are stabilizer, isotropy subgroup and little group.

Two points  and y which lie on a same orbit have conjugate stability subgroups. It
means that there exists an element g such that g.G,.g™! = G,. The proof is easy. Since
z and y lie on the same orbit, there exists an element g of G such that ¢(g)r = y. From
¢(Gy)x = x, one gets #(9)o(G.)d(g~ )y = y.

By definition, two points which have conjugate stability subgroups lie on a same stra-
turn.” The points of a given stratum are said to be of the same type. It is clear that a
stratum is a union of orbits of the same type. In the last example of plane rotations, we
have two strata: first, the point O, second the plane minus the point O. Every physicist
knows another example, the one concerning the action of the connected Lorentz group on
the four-momentum space. The strata are six in number:

e the zero four-momentum,

e the set of all future time-like four-momenta,

the set of all past time-like four-momenta,

the set of future light-like four-momenta,
e the set of all past light-like four-momenta,
e the set of all space-like four-momenta.

It is important to note that the action of the connected Poincaré group on this space
leads to the same strata. This is due to the fact that trauslations do not act (the Poincaré
group does not act effectively on the four-momentum space; it is its quotient by the
translation subgroup which acts effectively; this quotient is isomorphic to the connected
Lorentz group). Note also that the Poincaré group acts transitively on the Minkowski
space-time. This is a good reason to conclude that, geometrically, the four-momentum
space cannot be confused with the Minkowski space-time.

1.9 Geometries

The main idea of Erlangen’s program can be stated in the following way. A geometry
is a system (G, M, ¢), where ¢ is an isomorphism from G to some subgroup of S(M).
The group G is supposed to act effectively and transitively on the set M. The set M is
called the geometrical space. Abusively, when G does not act effectively (that is when ¢
has a non trivial kernel) one can say that the system (G, M, ¢) still defines a geometry.
However, usually this is an accepted definition only when there exists an orbit of G which
is dense in M. To be more precise, we will refer to an elementary geometry cach time the
group G acts effectively and transitively on the set M.

Generally, for the sake of simplicity, the elements of M are called points.

We now have two problems to examine. The first problem consists in determining
when two systems define the same geometry, the second one in studying the possible
relationships between distinct geometries.

“The concept of stratum is due to the French mathematician René Thom. It was popularized with the
present meaning by the French physicist Louis Michel.
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For the moment, we only give the answer to the first question. It is quite simmple. Two
geometries (G, M, ¢) and (G', M’, ¢') arc identical if and only if 1) G and G’ are isomor-
phic, 2) the groups S(M) and S’(M’) are isomorphic, 3) ¢(G) and ¢'(G’) are conjugate
subgroups of S(M).

Let us examine briefly some examples of geometries in physics. When we speak of the
geometry of the Minkowski space, we have in mind either the Lorentz group as the group
associated with it or the Poincaré gronp. These geometries are distinct. In the same way,
the two-dimensional spinor space does not define a unique geometry. We have to know
which group (the group SU(2) or the group SL(2,C)) is concerned. Conversely, given a
group, say the Lorentz group, many distinet geomectries may be constructed, depending
ol the space on which the group is acting. It could be the Minkowski space, but also
the four-inomentun space, the two-dimensional or the four-dimensional spinor space, the
celestial sphere, the set of all clectromagnetic fields, ete. In all these examples the role of
the group and the role of the space are clear. But what about ¢? Let us examine a case
wlere ¢ must be necessarily fixed in order to know the geometry we are concerned. The
SL(2,C) group acts in the two following ways on a spinor space:

A€ SL(2,C). v €C? v — Ay or ¥ — A, (1.3)

Usually these geometries are said to apply on two kinds of spinors.

1.10 Figures

We adopt the standard following simple definition: A figure is a subset of M. However,
there arc objects which are sometimes called figures and which do not satisfy that def-
inition; we can give, as examples, the case of an oriented circle and the case of a cube
(as a set of cight vertices, twelve sides, and six faces) in Euclidean geometry. We have
also in mind other objects, namely the constellations. We will group these objects and
the ordinary figures under the name of generalized figures. The only requirement for an
object to be a gencralized figurc is that we can make the group G acting on it, the action
being deduced froin the action on M.

Two gencralized figures F' and F” arc said to be congruent if there exists au clement
g € G which maps F on F’. Tt is not difficult to check that the congruence relation is an
cquivalence relation. Let us give some simple examples of generalized figures.

e The simplest generalized figure after the point is a couple of two (not necessarily
distinet) points (in a given order). The set of all couples is the Cartesian product
M? = M x M. If the group G acts transitively on M?, we say that the action of G
is 2-transitive on M. Similarly, we could define the sct of triples (resp. quadruples,
ete.) we would demote by M3 = M x M x M (resp. M* = M x M x M x M,
ete.) and define correspondingly the 3-transitive (resp. 4-transitive, ete.) action.
As an example, one has the oriented triangles (including the degencrate ones) in
planc Euclidean geometry.

o Another simple set of figures is the set M#? of pairs of (distinct) points. A pair is
different. from a couple in that its clements are distinct and not ordered. The two
couples (z,y) and (y, z), where z # y, correspond to the unique pair {z,y}. There
is no difficulty to introduce the sets M#*" for n > 2. A figurc of M*™ is a subset
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of n (distinct) points. We may mention, as an example, the set of nondegenerate®
triangles in plane Euclidean geometry.

e The next set of generalized figures we want to introduce is not classical, but quite
convenient. It is the set Co(M) = M X M of pairs of not necessarily distinct points.
This set is called the set of constellations of order two on space M or the ciel’ of order
two. It is a simple matter to generalize this definition and introduce the cieux of
order three, four, etc., that is C3(M) = M X M x M, Cy(M) =M x M x M x M,
etc. Obviously, the ciel of order one C;(M) can be identified with M itself and the
ciel of order zero Cy( M) with the empty set. The choice of these words is induced by
the idea of constellations of the celestial sphere (constellations may involve multiple
stars). The celestial sphere, which will be defined later, is an example of a manifold
satisfying an interesting property mentioned in the preface: it is a two-dimensional
manifold and the necessary and sufficient condition for the cieux built on M to
be manifolds is that M is of dimension two. That is why we will be interested in
constellations on two-dimensional manifolds and, especially, on the sphere Ss.

According to what we have said about the Erlangen program, if we want to study the
geometry of Sy, we are obliged to decide which group is acting transitively on it. A possible
obvious choice is the rotation group but one could prefer a larger group, for instance one
of the Lorentz groups. There also exist intermediate choices. We will see the relationship
between all these geometries and the spinor geometries.

1.11 Simply related geometries

We introduce the three following definitions.

Definition 1.1 (Derived geometry) Let (G, M) be a geometry'®, F a generalized figure
and GF the congruence class of F'. The geometry (G, GF) will be called a derived geometry
of the geometry (G, M).

As an example, if G is the Euclidean group, M the real 3-dimensional affine space, and F
a circle, the geometry (G, GF) is the geometry where the space is the set of all circles of
M.

Definition 1.2 (Subordinate geometry) Let (G, M) be a geometry, H a subgroup of
G. Let us consider the action of H on M. If H does not act transitively on M, the
space M splits into orbits of H and every system (H, M'), where M' is an orbit, is a new
geometry. Such a geometry will be called a subordinate geometry.

The most interesting case is when M contains a dense orbit of H. Then we speak of a
strict subordinate geometry .

Example G is the three-dimensional rotation group and M the ordinary sphere S;. The
action is effective since any nontrivial rotation moves at least one point. It is transitive

8Triangles with angles equal to 180° and 0° are not discarded.
9 Ciel means sky in French (pronunciation: sjel). The plural of ciel is cieuz.
01n order to simplify the text, we decide to omit the letter ¢ in the system defining a geowmetry.
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since one can map ainy point on any other point with the aid of a rotation. The system
(G, S2) defines a geometry. Consider the stability subgroup H of a point, say the North
pole {the Earth language is used for convenience). H is the one-dimensional rotation group
around the pole axis. The sphere S5 is a union of orbits (the parallels). These parallels are
circles except the North and the South poles which are just points. The system (H, S2)
decotnposes into subordinate geometries of two types: (H,C) and (H, P), where H is the
one-dimensional rotation group, C' a circle and P a point.!! Obviously, (H, P) has no
interest. The group H acts ceffectively and freely ou C.

Example of a strict subordinate geometry Consider the case studied in Section 1.6,
nauicly the group SL(2, €) acting on the complete Cauchy plane. The subgroup which
leaves invariant the point at infinity is made of the transformations of the type:

z—az+b.

This defines a four-dimensional subgroup of SL(2,C) which has the Cauchy plane as a
homogeneous space. The Cauchy plaue is dense in the complete Cauchy plane.

Definition 1.3 (Subgeometry) A subordinate geometry is called a subgeonetry when
the corresponding subgroup H acts transitively on M.

Example G is the proper real similitude group in two dimensions S.(2,R), that is the
group of matrices of the form

ccosgp —csing a

csing ccos¢g b with a, b, ¢ real and ¢ > 0. (1.4)
0 0 1

The space M is the real plane IR?. The action is described by the matrix multiplication:

ccos¢p —csing a x c(xcosd — ysing) +a
csing ccos¢ b y | = | clzsing +ycosgp)+b (1.5)
0 0 1 1 1

It is a simple matter to check the effectiveness and the transitivity of the action. The
proper Euclidean subgroup H = E, (2, R) is made of those matrices for which ¢ = L. Its
action is also effective and transitive. We have two distinct geometries (G, M) and (H, M)
with the same space M. The geometry (H, M) is a subgeometry of (G, M)).

Where docs the difference between those two geometries lie? Clearly not in the action
on M itself. Let us examine the action on figures in the general case. It is clcar that
if two figures are congruent under H, they are congruent under G. Generally, a class of
G-congruent figures split into subclasses in the geometry (H, AM). In our example, let us
consider the set of circles. The similitude group acts transitively on this set. That is
why we can say that in this geometry there is only one category of circles. In Euclidean
geomnetry, this set splits into subsets, each subset contains circles of a given radius.

"The two poles are fized points in the action of H on M.
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1.12 A strict subordinate geometry

Let us give an alternative definition of a strict subordinate geometry. Consider a figure F'
in the geometry (G, M). Let H be the stability subgroup of F. It could happen that H
acts transitively on the set M’ = M — F, where M’ is dense in M. In that case, one says
that F' is the absolute which permits to go from the geometry (G, M) to the geometry
(H, M’). This last geometry is said to be a strict subordinate of the geometry (G, M).

Before giving a historical example of such a situation, let us give the definition of a
geometrical invariant. It is a property of a figure, which is invariant under the group
action. This implies that all congruent figures have this property in common. Care! it
does not follow that an invariant characterizes the congruence class.

We intend to illustrate all the notions we have introduced with the classical example of
the two-dimensional real projective geometry (the reader will generalize without difficulty
the following discussion to the n-dimensional case). The space of this geometry is the
projective real plane P»(R) and the group is PGL(3,R). The elements of P(R) are
equivalence classes of elements of R® — {(0,0,0)} defined by the relation

T ax T 0
y | ~| ay with | ¥y [#] O (1.6)
z az 2 0

where a is any non zero real number. A convenient known notation for the equivalence
x
classof | v [isz:y:z
z
For almost all elements, one has z # 0 and the equivalence relation

X Zz T
y |~ | 27
z 1

defines a map of this set of elements on the plane IR%. This proves that Py(IR) is “a little
bit more than” R2.

The elements of the group PGL(3,R) are the non singular 3 x 3 real matrices with
the equivalence relation

g1 12 Gi3 agin agi2 agig
g1 Go2 G23 ~ ago1 agz2 agas (1.7)
931 932 933 ags1 ags2 agss

where a is any non zero real number. The action of the group is the one defined by matrix
multiplication (left action). The space Py(IR) is a two-dimensional manifold and the group
PGL(3,R) is an eight-dimensional continuous group.

Let us consider some sets of figures. We start with the set of straightlines. A straight-
line is the set of points defined by an equation of the type mz + ny + pz = 0, with m,n,p
not all zero. One checks that this definition is compatible with the equivalence relation
(1.2). There is an interesting fact. Since a straightline is defined by a triple (m,n, p), i.e.
a row matrix, and since (m n p) and (am an ap) define the same straightline, we sce that
the set of straightlines also defines a projective real plane, called the dual. The group
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PGL(3,R) acts on the dual on the right. This duality is a basic property of projective
geometry.

The space Py(R) is a homogencous space of PGL(3,R) and its dual is also a homo-
gencous space. We know that the stabilizers of two elements of a homogencous space are
conjugate subgroups. Let us look for the stabilizer of the straightline (0 0 1). We have to
solve the matrix equation

0 g1 G122 13 0
0 g g2 ¢g23 = 0
1 931 932 ¢33 a

with a # 0. Onc obtains gs) = ggo = 0 and ¢33 # 0. The stabilizer is the set of matrices

g G2 i3
g1 G22 G23
0 0 gss

Due to Eq. (1.3), this set of matrices is isomorphic to the group of non singular matrices

g g1z g3
g21 Go2 g2 |, Wwith giigee — gr12gn # 0 (1.8)
0o 0 1
Duality permiits us to give an alternative description of this fact. The equation of the
T
straightline (0 0 1) is z = 0. This straightline is the subset of points of type | vy |. We
0

check that the subgroup of matrices (1.8) acts transitively on this subset.
Let us call the straightline z = 0 the absolute and consider the space obtained in taking
x
away the absolute from P5(IR). This new space contains all points of the type | y
z
with z # 0. We alrcady saw that the equivalence relation (1.2) permits us to write any
clement of this space in a unique way in the form. We arrive at a new geometry where the
group is the onc defined by Eq. (1.8) (the one which preserves the absolute). The action
is defined by the matrix multiplication

g1 912 913 T gnx + goy + 132
g21 g22 gas y | = | 9212+ goay + G232 (1.9)
0 0 1 1 1

One recognizes the two-dimensional real affine geometry, thie group of which is the affine
group in two dimensions.

Let us give a résumé of our results. We have stated algebraic definitions of two geome-
tries. They arc

e The two-dimensional real projective geometry.
Group: PGL(3,R) Space: the projective real plane Pr(IR)

e The two-dimensional affine real geometry.
Group: Aff(2,R) Space: the real plane IR?.
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The group Aff(2,IR) is a six-dimensional subgroup of PGL(3,R) and the real
plane IR? is obtained from the projective real plane Py(IR) in throwing away a given
straightline. Aff(2,R) is the stabilizer of this straightline. We note that if we
had chosen another straightline than the absolute, we would arrive at a conjugate
subgroup of Aff(2,IR).

We can give an interpretation of these results in ordinary geometry where the absolute
is called the straightline at infinity of the real plane. This interpretation is related with the
theory of perspective. In fact, projective geometry came from the theory of perspective.!?

Let us consider the image of a landscape given by a dark room. To simplify the
description, we suppose that this dark room is a quite large opaque cubic house. The
vertical wall W in front of the landscape has a small hole at its midpoint O. An observer
standing in the dark room would see the reversed image of the landscape on the opposite
wall W’. To simplify the geometrical description, we will suppose these two walls infinitely
large. For the observer, the state of a point A’ of W' is the image of some point A lying
on the line A which goes through the points A" and O. Since he is ignoring what is going
outside, it is better, for him, to say that A’ is the image of the whole line A.*®* The
problem is to know if the mapping of W’ on the set of straightlines containing O is a
one-to-one mapping (a bijection). The answer is no. Every straightline which contains O
cuts the plane W’ in a single point except the straightlines which belong to W. Because
mathematicians do not like exceptions, they prefer to invent the points at infinity in order
to have a general statement and say that “every straightline which contains O cuts the
plane W’ in a single point (the image); in particular, if the straightline belongs to W, the
image is a point at infinity”.

We note that the straightlines which belong to a given plane have their images on a
straightline of W'. It follows that the set of points at infinity form a straightline at infinity.
With these extra points at infinity added, the plane W’ is said to be complete. It is the
projective plane P;(R).The bijection which exists between the complete plane and the
set S of straightlines through O permits to identify these two sets. Clearly, the group
GL(3,R) acts on S. Then it acts on W’. The systems (GL(3,R),S) and (GL(3,R), W)
are equivalent and seem to define a given geometry. However, the group GL(3,1R) does not
act ef fectively. This means that it has superfluous elements, namely elements which act
as the identity operator. We already say that these superfluous elements of a group G (in a
given action) form a normal subgroup H and that it is the quotient group G/H which acts
effectively. Here the superfluous elements are the diagonal matrices of GL(3,R). They
form a subgroup isomorphic to R* (the multiplicative group of nonzero real numbers).
The group which acts effectively is the quotient group GL(3,IR)/IR". This quotient group
can be used as a definition of the so-called projective group PGL(3, R).

The group PGL(3,R) has an element which maps a given straightline of S on any
other straightline, even a straightline of W. It is equivalent to say that this group may
map any point of W’ on any other point, even at infinity. We know that the affine group
Aff(2,R) cannot do it. It maps the straightline at infinity onto itself. This straightline
is the corresponding absolute figure.

'2The exact link between projective geometry and the theory of perspective is presented in details in
H. Bacry, La symétrie dans tous ses états, chapter 4, Paris, Vuibert, 2000.

13We are concerned with mathematics. Obviously, the observer knows that A cannot lie anywhere on
A; it lies on a half-line having O as an origin.
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Groups PGL(3,R) | Aff(2,R) S (2,R) | E;(2,R)
Spaces P(R) Aff(2,R) S(2,R) E2,R)
Name of the geometry projective | affine proper proper
(two-dimensional real) group group similitude | Euclidean

group group
Invariants:
Distance 10 no no yes
Angle 10 no yes yes
Ratio of two scgiments no no ves yes
Collincarity of three points | yes yes yes yes
Ratio of two collinear
segrents 10 yes yes ves
Cross ratio of four
collincar points yes ves yes yes
Excentricity of a conic 10 no yes yes
Parallelism of straightlines | no yes yes yes
Non degencrate conics one class three classes: | infinite infinite
ellipses number number
hyperbolas, of classes | of classes
parabolas

Table 1.1: Some related geometries

There arc other interesting figures in the real plane, namely the conics. A conic in W’
is the image of a quadratic cone in S. The group PGL(3,R) may map any quadratic cone
onto any other one. Tt follows that it may map any conic in W’ onto any other one. The
group Af f(2,R) cannot do it. It maps ellipses on ellipses, hyperbolas on hyperbolas and
parabolas on parabolas. Why? Because an cllipsc docs not cut the straightline at infinity,
a hyperbola cuts it in two points and a parabola is tangent to it. One deduces that there
is ouly one kind of conic in the real projective plane geometry, but there are three kiuds
of conics iu the real affine plane geometry. We verify here a general fact: when the group
becomes smaller, a congruence class 1nay split into subclasses.

To conclude this section, we put in a table a set of informations about four of the
groups we have considered, namely the groups of the chain PGL(3,R) > Aff(2,R) >
S+(2,R) > E,(2,R). The first group acts on the projective real plane P>(IR), the three
other ones on the real plane IR?. We will note that the “no” is more frequent on the left
handside. More generally, the number of invariants increases when the group is smaller
and smaller.

1.13 Classification of all elementary geometries asso-
ciated with a group
In order to classify the clementary geometries associated with a given group G, we have

to exainine more carefully the notion of homogeneous space. We recall the reader that a
homogencous space is a sct on which the group acts trausitively.
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Two elements g and g’ are said to be H-equivalent if g~'.¢’ belongs to a given subgroup
H. This relation is reflexive since g~'.g = e belongs to H; moreover it is also symmetric
since g7'.¢' € H implies (g7 '.¢')"! = ¢'l.g € H; and transitive since the conditions
g ' € Hand ¢"1.¢g” € H imply g7'.¢’.¢"'.g" = g~'.g" € H. The classes of the
partition defined by this equivalence relation are called left cosets because, as we shall see,
they are related with the left action of G on itself. (Another equivalence relation will lead
to the definition of right cosets. It is the one we obtain in replacing the product ¢ ~1.¢’ by
g.g’~! in the definition).

Let us show that the left cosets are the subsets g.H. First, if & and k" are elements of
g.H, one has k = g.h and k' = g.h’ where h and b’ belong to H. Therefore k~1.k' = h=1.4’
belongs to H and k and k' are equivalent. Conversely, suppose k~1.k" € H, k belonging
to some subset g.H (say k = g.h). This implies that we have h~1.g71.¥ € H or k' € g.H.
We have proved in this way that the subsets g.H are the equivalence classes.

We now examine the set G/H of all left cosets. The group G is acting on this set
by left translations in a transitive way. The stabilizer of the coset H is H itself. The
stabilizer of the coset g.H is the conjugate subgroup g.H.g~'. One sees, in this way, that
each class of conjugate subgroups defines a geometry associated with G. Conversely, if
(G, M) is a geometry and H the stabilizer of the point z, the stabilizer of the point g.x
is g.H.g'. We arrive at the conclusion that a geometry is uniquely described by a group
G and a class of conjugate subgroups of G. In order to illustrate these notions, we will
consider the case of two finite groups, namely the groups O, and Ss .

1.14 The group O,

Let us examine the group O, of the 24 rotations which leave invariant a cube, considered
either as the set of its eight vertices or as the set of its six faces. It is clear that this group
acts transitively on the cube. Each of the 24 rotations belongs to one of the following five
conjugacy classes.

Figure 1.1: The 24 rotations of the cubic group O,

e Class 1. The neutral element (null rotation)
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Class 2. Six rotations of 90° (around an arrow like 1 on Figure 1.14)

Class 3. Three rotations of 180° (arrow 1)

Class 4. Eight rotations of 120° (arrow 2)

e Class 5. Six rotations of 180° (arrow 3)

The stabilizer of the vertex A is the cyclie group Cj generated by a rotation of 120°
around the axis 2. It follows that the set of vertices is the homogeneous space Oy /Cj.
The stabilizer of a face is the cyclic group Cy generated by a rotation of 90° around the
axis 1. It follows that the set of faces is the homogeneous space O, /Cy. We define in this
way two geometries. The first one has a space really made of points. If, for the second
one, we hesitate to call points the six faces of the cube, we could replace the cube by its
“dual” polyledrum, nainely the octahedron, the vertices of which are the midpoints of
the faces. We will not do it.

Let us find the congruence classes of pairs of points (segments) in both geometries.

o Geometry (O4, 04 /C4): the space has 8 points and there are % = 28 scgments.
If the edges of the cube have length one, the set of 28 segments is made of three
congrucnce classes: ¢) 12 seginents of length onc (the edges), i) 12 segiments of length
V2, and #i1) 4 segments of length /3. We check that the length is an invariant, a

property which characterizes the rotation group.

e Geometry (O, 04/Cy): the space has 6 clements (the faces) and there are £ = 15

pairs of faces. This set decomposes in iv) a congruence class of 12 pairs of adjaceut
faces (or, equivalently, 12 edges) and v) a congruence class of 3 pairs of parallel faces.
1 y g

Each congruence class among the five ones we have derived can be used to define a
geometry. All of them are new but two of them are identical (i and iv). The reader is
invited to examine these geometrics and to build other ones by himself. He could also
study the geometry of the regular tetrahedron defined by the four vertices A, B, C, D of
Figure 1.14.

1.15 The group 53

Let ns now examine our sccond example, namely S, the permutation group!* of three
objeets. This group has the following geometrical interpretation. Consider a regular
triangle with vertices denoted 1, 2, 3. This triangle is invariant uuder the syminetries
with respect to cach height of the triangle and the three rotations (angles 0, 120°, and
240°) around the center of mass of the three vertices. The group Sj is of order six (3! = 6).
Its elements arc e (the ncutral clement), the transpositions (12), (23), (31) (where (12)
permute the vertices 1 and 2 and lcaves the vertex 3 fixed), and the two cyclic permutations
(123) (it maps vertex 1 onto vertex 2, vertex 2 onto vertex 3 and vertex 3 onto vertex 1)
and its inverse (132). The group S3 has six subgroups of order 6, 3, 2 and 1 (the order

4We use the decomposition of a permutation in independent cycles. As an example (245)(16) means
that the object 2 is mapped on the object 4, which is mapped on the object 5, and the object 5 is mapped
on the object 2, the objects 1 and G are exchanged. The cycles of order one are omitted (the object 3 is
mapped on itself).
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of a subgroup is always a divisor of the order of the group). The set of all subgroups of
a group has a lattice structure in relation with the inclusion relation. In our case, this
structure is described in Figure 1.15. It is easy to check that the three subgroups of order

e, (123), (132)

|( e, (12) ‘ Le,(23) ‘ ‘ e, (31) ||

Figure 1.2: The lattice of subgroups of the group S;. The three subgroups
of order two are conjugate. (If we put these three conjugate subgroups in a
unique case, we check that the lattice is still a lattice. However, this is not a
general property.)

three are conjugate. It follows that there are four geometries associated with the group
S3. The geometry associated with the coset space S3/S3 has only one point. It is a very
poor geometry! the only figure is this point itself. The geometry associated with the coset
space S3/As, where Aj; is the alternate subgroup {e, (123), (132)}, is also poor since
there are only two points. This means however that figures exist: apart the two points,
say = and y, which are trivial figures, we have the two couples (z,y) and (y,z) and the
pair {z,y} (the whole space). The geometry associated with S3/{e, (12)} is the “natural”
geometry attached with the group Ss3. Its space has three points and the group S; acts in
permuting these three points. Let us denote these points by the letters z, y, z. The main
figures are the three points, the three pairs, the six couples, the unique subset of order
three (the whole space). But we have more complex figures as pairs of couples, the figures
composed of a point and a pair, and so on.

The richest geometry is the one associated with the coset space S3/{e}. It is the
geometry described by the system (Ss, S3) with S3 acting on itself by left translations.
The simplest figures are, apart the six points, the thirty couples, the fifteen pairs (sub-
sets of order two), etc. It is a simple exercise to prove that the fifteen pairs form four
distinct congruence classes, three with three elements each and one with six elements. A
congruence class with three elements is such that the uuion of the three elements is the
whole space. The twenty subsets of order three (triangles) form three congruence classes
with six elements and one of two elements. The two last triangles are complementary in
that their union is the whole space. Each other congruence class is made of three pairs of
complementary triangles. All these results can be obtained in setting x; = e, z, = (12),
x3 = (23), x4 = (31), z5 = (123) and xg = (132). The action of the group is described
by Table 1.15. One readily verifies on this table that the two triangles {z), x5, zs} and
{2, 3,74} form a single congruence class.

We must underline that, although the construction of the six points space was made
with the aid of the elements of the group which has a privileged element (the unit element),
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‘ e (12) (23) (31) (123) (1.‘52)
Ty | T T2 T3 Iy Ty TG
T | T2 &y To Is Ty Ty
T3 | I3 T Iy Zg ) Iy
Ty | Ty Tg Ts I I3 T2
Ts | Tn T3 Ty T2 Tg T
Ts | Tg Tq T2 T3 T Ty

Table 1.2: Action of S5 on itsclf

the space is homogeneous. This scems to be a paradoxal situation. Homogeneity means
that we cannot distinguish between the six points as we cannot distinguish between the
elements of any congruence class. Since we are in the case where the group is acting on
itself, it is interesting to define the geometry in the opposite way, that is in giving an
axiomatic definition of the space first and deduce the group action. A space defined with
the aid of these new axioms will be called a generalized affine space (g.a.5.)?®, a notion we
arc going to introduce in the next scetion. We will show in Chapter 3 why this notion is
more physical than the one of a group.

1.16 Generalized affine space

A generalized affine space is a set endowed with an inner ternary law
(a,b,c) — abc

satisfying the two following conditions:

aab = baa = b, (axiom 1)
ab(cde) = (abc)de = a(dcb)e. (axiom 2)

The group which acts on this space is defined with the aid of couples (left trauslations'®)
—
written as ab. The point b is the origin and the point a the cnd of the couple. Two
— —
translations ab and cd arc cquivalent if Vz, abz = cdx. A translation is cquivatent to a
unique translation with a given origin o. Indeed abr = ab(oox) = (abo)ox implies that ab
P
is equivalent to (abo)o. The translations, up to an equivalence, is the group we arce looking
for. The neutral clement is 0o. The inverse of ao is oa, which is cquivalent to (oco)o.
The product of translations boao equals (boa)o, which is a very simple result. Oue verifies
easily the associativity of this product.

The expression generalized affine space comes from the following property. In the case
of an ordinary affine space, the product abe is the point d such that abed is a parallelogran.
The ordinary affine space is commutative. Left and right translatious are equivalent:

— —
zab = bax.

15Such an idea arose in 1978 during a discussion with the Freneh physicist Alexander Grossmann. This
work is unpublished.
1The right translations can be defined with the aid of couples of the type applied on the right handside.
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1.17 Geometry and automorphisms

Geometries are usually defined in introducing first the space M and providing it with
some structure. In doing so, we introduce in an implicit way the group Aut(M) of all
automorphisms, that is the group of transformations which preserve that structure. A
geometry (G, M) will be then defined with the aid of a mapping f: G — Aut(M). Let
us give examples:

Structure of the space M | Name of an automorphism
Topological space homeomorphism

Differentiable manifold diffeomorphism

Metric space isometry

Vector space automorphism (bijective endomorphism)
Complex Hilbert space unitary operator

Real Hilbert space real orthogonal operator

Symplectic manifold symplectomorphism

Table 1.3: Names of automorphisms for each type of space
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Exercises

1. Prove that, if g, ¢', h are elements of a group G, the equality g.h = ¢’.h implies g = ¢'.
2. Prove that a group has only one neutral element.

3. Prove that (g7!)~! = g and that (g.h) ' =L tg7L

4. Prove the following theorem: a subset H of a group G is a subgroup of G if and only
if, for any two clements h and b’ of H, h.h'~! bclongs to H.

5. If ¢ is a homoworphism of a group G in a group G', the element ¢(e) is he neutral
clement of G'.

6. Let ¢ be a homomorphisin of a group G in a group G’. Verify that Ker(¢) is an
invariant subgroup.

7. Check that the quotient group G/{e} is isomorphic to G itsclf.

8. Prove that every cyclic group is solvable. Relate this property with the factorization
of the polynomial 2" — 1.

9. Prove that the group S, is solvable if n = 1, 2 or 3.

10. What is the Galois group of the equation z® — 42% + 5z — 2 = 07

11. Show that any group G acts freely on itself by left or right translations.

12. Find a fixed point in the conjugation action of G on itself. Show that the set of fixed
points in this action is the center of G. Show that the center of an Abelian group is the
group itsclf.

13. Prove that, for two arbitrary elements z, y of a group G, xy is conjugate of yz.

14. Find the orbits of the group SL(2,€) when it acts on the space €2 (Hint: find how
it acts on the uull spinor and on the spinor).

15. Find the orbits of the group S, (2, R) on the plane R?

16. Check that the tetrahedron ABCD in Fig. 1.14 is regular. Call T, the subgroup
of Oy composed of those rotations which leaves this tetrahedron invariant. How many
subgroups are conjugate to 7,7 Which are they?

17. Join the centers of adjacent faces in Fig. 1.14. Count the number of faces, edges
and vertices of the polyhedron obtained in this way (octahedron). How these numbers are
they related to the ones of the cube? Do the same for the regular tetrahedron.

18. Counstruct the lattice of subgroups of the group Sy.

19. Study the lattice of subgroups for the symmetry group H of a rcgular hexagonal.
Show that the lattice of subgroups of Ss is a sublattice of it.

20. Find the five g.a.s. with onc, two, three and four elements.

21. One wants to draw a circle in perspective. Show that it could be represented by an
cllipse, a hyperbola or a parabola, depending on the position of the circle.

22. Examinc the one-dimensional camera and define the space Pi(IR), the real one-
dimensional projective space and the group PGL(2,IR). Show that it is homeomorphic to
the circle Sy.

23. Show that the set of straighthlines of the real two-dimensional affine space is home-
omorphic to an open Mobius strip. Hint: consider the space parametrized by the co-
ordinates a, b, ¢ of the straightline ax + by + ¢ = 0, where (a,b) # (0,0) and (a,b,c) is
equivalent to (Aa, Ab, Ac) for A #0 .

Show that adding the straightline at infinity compactifies the Mébius strip in identifying
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all points of its border.
24. Find the main differences between projective geometry and perspective theory (Hint:
think of a machine permitting the resolution of perspective).



Chapter 2

On some Lie groups

Here, we intend to give general informations concerning some Lie groups, more pre-
cisely the groups O(n, C), Sp(n, C), and some subgroups of the similitude group S(n, R),
namely the Euclidean group F(n, R), the orthogonal group O(n, R}, and the Thales group
Thin, R).

2.1 The orthogonal complex group O(n, C)

Let 4 be a vector of C", with compouents ¥*. We define on €" a scalar product as follows:
(,0) = > ¥"o". (2.1)
a=1

A transformation O is said to be orthogonal if it preserves the scalar product, i.e. if, for
arbitrary v and ¢, one has
(0%,00) = (¢, ), (2.2)
that is
070 = 1d, (2.3)

where the symbol T denotes the transposed operator and Id is the identity operator.
Instead of the canonical basis of €", which satisfies (eq, €5) = g5, we may prefer an
arbitrary onc f,. One sets

(fa’ fb) = Gab, (24)

where gq, = gre- Then, instead of (2.3), we get
0T¢0 = g. (2.5)

Conversely, given an arbitrary symmetric tensor g, Eq. (2.5) defines a group isomorphic
to O(n, C), provided the equation

Det(g — Ald) =0 (2.6)

has only non-zero roots (g non-degenerate).

If we impose the condition
Det(0) =1, (2.7)

29
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we arrive at a subgroup of O(n, C), namely the group SO(n,C), known as the special
complex orthogonal group.

We note the following interesting case where the tensor g is of an antidiagonal kind,
with alternate values +1. It is clear that, for g to be symmetric, this corresponds to an
odd value of n.

2.2 Real forms of the group O(n, C)

Suppose that we impose the tensor g and the operators O to be real. We arrive at a
subgroup of O(n, C). These subgroups are not all isomorphic. The class the corresponding
group belongs to depends on the roots of Eq. (2.6). Suppose that this equation has p
positive and g negative roots; if pg # 0, the group we arrive at is denoted by O(p,q). We
note that O(p, q) is isomorphic to O(g,p). Whenever p or ¢ is zero, the group is denoted
by O(n,IR) and is called the real orthogonal group. Whenever p or ¢ equals one, and
n > 2, the group is called the generalized Lorentz group (the Lorentz group corresponds
ton = 4). For pg # 0, and n = 5, the two corresponding non isomorphic groups are
known as the de Sitter groups.

Obviously, one may again impose the restriction Det(O) = 1. Then we define the
groups SO(p, q) and SO(n,R). This last group is known as the real rotation group in n
dimensions.

The topology of these groups is the following one. The group O(n,R) is two-sheeted.
The connected component (i.e. the set of elements connected with the identity transforma-
tion) is the group SO(n,R). The other sheet may be obtained by multiplying all elcments
of SO(n, R) by a diagonal matrix with n — 1 — 2k times the value 1 and 2k + 1 times the
value -1 (k has an arbitrary value). This matrix is referred as a parity transformation.
When 7 is odd, this matrix is usually chosen as the operator - Id.

As it will be shown for the Lorentz group, the group O(n — 1,1) is four-sheeted, and
its subgroup SO(n — 1,1) is two-sheeted. For more information, the reader is referred to
the chapter devoted to the Lorentz group.

2.3 The symplectic groups

Let o be a non-degenerate antisymetric tensor of dimension n and of order two. The set
of complex matrices S satisfying the condition

ST6S =0 (2.8)

form a group called the complex symplectic group Sp(n,C). The antisymmetric nature
of o implies that n is even. More precisely, the groups associated with different o’s are all
isomorphic. Two interesting facts must be underlined:

e all the matrices of this group have determinant equal to one,

e supposing that the matrices S are real defines a unique subgroup called the rcal
symplectic group and denoted Sp(n,R).

We may impose ¢ to be antidiagonal with alternate values £1. We have shown that,
for n odd, the group is the orthogonal group O(n,C). We see that, for n even, it is the
symplectic group Sp(n, C).
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2.4 The homothesis, translation, and Thales groups

Let A a non-zero complex number. The matrices A Id acting on C* form a group called
the complex homothesis group H(n, C). It is isomorphic to the multiplicative group of
non-zero complex numbers, a group of real dimension two. If we imposc A to be real, we
define the one-dimensional real homothesis group H(n, R}, a subgroup of H(n,C).

The translation group T'(n, C) associated with C" can be defined in the following way.
Consider all elements of C**! of the form

Py
Py

e=(Y)-1] (2:9)

that is clements with the (n + 1)th coordinate equal to one. The group 7'(n, €) is the set
of matrices of the form
_(1d ¢
T, = ( o ) (2.10)

It acts on ¥ as follows:
Top = ( ¢’“1L¢>. (2.11)

Clearly, this group is the translation group of C".
We note that the homothesis group H(n, C) can be defined alternatively in the follow-

ing way
Ad 0
H, = ( 0 1 ) (2.12)

The group gencrated by the translation and the homothesis groups will be called the
Thales group and will be denoted Th(n,C). (The notation Th may recall that T is for
translations and A for homothesis). It is a group of n + 1 complex dimension. When the
translations aud the homothesis are real, we arrive at the real Thales subgroup Th(n, R),
a group of recal dimension n + 1.

2.5 The Euclidean and the similitude groups

What we have written for the homothesis group as a sct of (n+ 1) x (n+ 1) matrices can
be done for the orthogonal groups O(n,C), SO(n,C), O(n,R) aud SO(n, R). Then, the
following groups can be defined:

e The complex Euelidean group F(n, C), generated by O(n, C) and T'(n, C)
e The special complex Euclidean group SE(n, C), generated by SO(n, €) and T'(n, C).
e The real Euclidean group E(n,R), generated by O(n,R) and T'(n,R).

e The proper Euclidean group SE(n,R), generated by SO(n,R) and T(n,R).
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e The complex similitude group S(n, C), generated by E(n,C) and H(n, C), equiva-
lently generated by Th(n,C) and O(n,C), equivalently generated by Th(n,C) and
SO0(n, C).

e The real similitude group S(n, R), generated by E(n,R) and H(n, R), equivalently
generated by Th(n,R) and O(n, R). If n is odd, this group is equivalently generated
by Thi(n,R) and SO(n, R).
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Exercises

1. Find the real forms of the group defined by an antidiagonal tensor g with alternate
values £1.
2. Prove the last proposition of scetion 2.5.






Chapter 3

The rotation group SO(3,1R)

We do not intend to present to the reader a mathematical definition of this group. It is
more interesting to define it from concrete physics, that is from pure kinematical arguments
coucerning the movement of a rigid body. As we will sec, the set of possible movements
of such a body is intiinately related to the connected Euclidean group in three dimensions
SE(3,R), hereafter denoted £, (3, R). If we fix a point of our rigid body, we are left
with a rotation subgroup of E,(3,R). If, instead of that point, we fix another point,
we arrive at a coujugate subgroup. The conjugacy class of these subgroups can be seen
as describing the possible orientations of the body. This conjugacy class is nothing else
than the quotient group E, (3,R)/T(3, R), where T'(3,R) is the translation subgroup. In
order to analyze these links, we need to have at our disposal convenient paramnetrizations
of these groups. Before giving a description of the usual parametrizations of the rotation
group, we want to give a qualitative description of the two following unusual sets: the set,
of possible positions of a rigid body, and the set of possible ways, for a rigid body, to go
froin onc position to another. We will present the groups which are related with these
sets.

3.1 The Euclidean group and its covering

Let us start with the simplest case where the position of a very small rigid body is only
described by the point where it lies, ignoring its dimensions and its orientation There
is an infinite nummber of paths from an initial position A to a final one B. Such a path
is conveniently described by a function M(t) where ¢ runs from 0 to 1 and M(0) = A,
M (1) = B.Two paths M (t) and N(¢) can be considered as equivalent if M(0) = N(0) = A
and M(1) = N(1) = B. The corresponding equivalence class is described by the couple
(A, B), often written AB. Note that the two paths M (¢) and N (¢} have the property that
they can be deformed one into the other in a contimﬂfs way. One can define the following
equivalence relation between the couples: AB and A'B are said to be equivalent if ABB'A’
is a parallclogram. The new equivalence classes are called translations. They are elements
of a three-dimensional vector space and the group of translations is an Abelian group
T(3).

Note that we started with the notion of the set of positions of a small body, the affine
space, a set in which there is no privileged point, and we arrived at a set of vectors which
has a group structure with a neutral element, the null vector. In modern mathematics,

35
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one prefers to define first the vector space, then the affine space. One sees that physics
privileges the opposite way. In fact, there is a way to reconcile mathematics and physics.
For this purpose, we proceed as follows.

We start with the affine space. Let A, B, C be three arbitrary (not necessarily distinct)
points. By definition, the product ABC is the point D such that ABCD is a parallelogram.
We readily verify by a simple geometrical construction the axioms of what we call a
generalized affine space (g.a.s.):

AAB=BAA=B (condensation axiom) (3.1)

AB(CDE)= A(DCB)E = (ABC)DE  (skew-associativity axiom). (3.2)

This g.a.s. is said to be commutative; by that, we mean: f&ﬁc = CBA. T_he) lef‘f_an(i
right actions of the translation group are identical: ABC = CBA implies = BC = CB.

We have thus related the homogeneous space of all positions of a small body to the
translation group in three dimensions T'(3). Formally, we have derived a group from a
g.a.s. We intend to do a similar construction for the set of positions of an extended rigid
body and derive the connected Euclidean group F,(3). It is important to underline the
two main differences between the two cases. First, we are loosing the commutativity
property. The non commutativity is shown on Fig. 3.1, where the initial position is
represented by a frame Ozyz. Two rotations of 90°, namely R, and R,, are performed, in
the first case in the order R,, R, and in the second case in the opposite order. We check
that the resulting rotations are different.

Figure 3.1: The frame Ozyz becomes Oz'y’z’ under the first rotation (R, on

the left, R, on the right), then Oz"y"2" under the second one (R, on the left,
R, on the right).

The other difference is a topological one (homotopy). Let us consider the set of continuous
trajectories from an initial position to a final position of the rigid body. We can choose
two distinct equivalence relations which will lead us to two distinct groups instead of one
in the previous case.

e Two continuous paths are equivalent if they have the same initial position A and the
same final position B. An equivalence class is written AB and is called a Euclidean
motion. In that case, we obtain the connected Euclidean group E, (3). The quotient
group E_.(3)/T(3) is isomorphic to the rotation group SO(3,R), the group of real
orthogonal 3 x 3 matrices of determinant one.
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¢ Two continuous paths are equivalent if they have the same initial and final positions
and they can be continuously transformed one into each other. This condition splits

the class ZB in two subclasses; the group we obtain is the double covering of E, (3).
The quotient group E, (3)/7°(3) is isomorphic to the group SU(2), itself the double
covering of SO(3, R).

To prove this property rigorously we need parametrizations of the Euclidean group and
the rotation group. However, there is an experimental way of checking that. Perform a
continuous orientation change of angle 27 of a rigid body; it means that you perform a
rotation in ignoring a possible translation motion; at the end, tlic body is brought to its
initial position. To be wmore coucrete, put, for instance, a book on your right. hand, your
arur standing liorizontally, the thumb in the back direction. Perform a 27 rotation around
a vertical axis, iguoring a possible translation motion of the hand. It is clear that your
arm is 1ot back to its initial position. This mecans that this final position is not in the
neighbourhood of the initial position. Now, if you iterate the same rotation you arc back
to the initial situation. A rotation of 47 is equivalent to the null rotation! We are going
to obtain that result with the aid of a more mathematical argument. For that, we need a
parametrization of the rotation group.

3.2 First parametrization of the rotation group

For a physicist, a rotation is defited by an oriented axis or a unit vector u and an angle
¢ satisfying, say, 0<¢<w. If we denote such a rotation by R, (¢), we readily see that we
have to identify Ry(7) with R_,(7). The rotation Ry(¢) acts on a vector r as follows

Ru(@)r =r+singu xr+ (1 —cosp)u x {(u xr). (3.3)

It is easy to check this forinula in choosing successively r collinear then orthogonal to u.
If we decide that u defines the z direction and if we sct r = (z,y, 2), we sce that the
rotation R, (¢) is described by the matrix

cos¢d —sing 0
sing cos¢ O (3.4)
0 0 1

This proves, in particular, that the trace of Ry(¢) is a function of ¢. It is 1 4+ 2cos ¢.

Our parametrization by u and ¢ shows us that the set of rotations is a ball B of radius
m, in which antipodal points arc identified. If, instead of ¢, we choose the variable tan %,
we get, instead of a ball, the whole space, including the points at infinity. We see, in
this way, that the rotation group is isomorphic, as a manifold, to the projective space
P3(R). The surface of the ball has been mapped, by the change of variable, on the plane
at infinity.!

The parametrization of the rotation group by ¢ and u proves that the group is con-
nected (there is no proper subset which is both open and closed). It is clear that the
space we just described is also the set of positions of a rigid body which has a fixed point.
A motion like the one we have spoken about (the book on a hand) is represented by a

!'We know that it is a plane. In fact, the curvature of the sphere is going to zero.
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closed path in P5(R) or B . Now we can check that there are two distinct classes of closed
paths. The first (resp. second) one is made of paths which “cross” an even (resp. odd)
number of times the plane at infinity. A small closed path in a neighbourhood of O is
equivalent to the trivial path described by the point O alone. The 2w-rotation of the hand
is described by a diameter of B, with end points identified (topology of a circle). It is,
for instance, the closed path AOA’. Without cutting the circle, it. is impossible to map it
continuously on the trivial closed path O. If we perform a second rotation of angle 2m,
the “total” path AOA’'BOB’ can be transformed continuously into the path AOA’A'OA,
which is equivalent to the trivial path. Because it has two distinct classes of closed paths,
the rotation group is said to be 2-connected. It is clear that we can compose closed paths.

o .
B - B
%A\<_/

Figure 3.2: The path C is a trivial path. The path OAA’OBB’O is also trivial.
To show it, move B towards A’ (B’ towards A)

The path Az A followed by the path AyA gives the path AzAyA. If we call 0 the class
of trivial closed paths and by 1 the other class, we arrive at a group structure, with the
composition law:

0+0=0, 0+1=140=1, 14+1=0. (3.5)
This group is isomorphic to the additive group of relative integers modulo 2 (replace 0 by
even and 1 by odd). This group is, by definition, the first homotopy group of the rotation
group.

3.3 Matrices

The isomorphism between the rotation group and the group SO(3,R) (S for special, O
for orthogonal) is well known. We are going to make this group acting on the space S of
2 x 2 Hermitian? traceless matrices. This set is isomorphic to IR® since such a matrix can
be written, with the aid of Pauli matrices, in the form

. _ z T — 1y
or =0, + Yo, + 20, = ( iy  —z ) (3.6)

Let us consider the group SU(2). It is the group of unitary matrices of determinant one,
i.e. matrices of the form

U= ( _‘Z* : ) with Det(U) = |a|* + |b]> = 1. (3.7)

2From the name of Hermite.
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If we set @ = € + in and b = ¢ + 47, we sce that the group SU(2) is homeomorphic to the
real sphere S® of oquation €2 + n? + 2+ 7% = L.

We intend to make the group SU(2) acting on S as follows. Denote by U an element
of SU(2) and H an clement of S. We have

U: H—UHU". (3.8)
We check that it is an action on S. Indeed, U HU™* is Hermitian
(UHU** =UHU™,
and traceless
Tr(UHU*) =Tv(U'UH) = Tv(H) = 0.

It prescrves the quadratic forin z2 + y? + 22 = ~Det(H). It follows that this trans-
formation is orthogonal. Because the unit matrix / cannot be transformed in its oppo-
sitc —/, we arc sure that this transformation is a rotation. Moreover, all rotations are
implemented since the unit vector (0,0,1) can be mapped on an arbitrary unit vector
(sin @ cos ¢, sin G sin ¢, cos 0); indeed,

cos ge*"’/z sin g 1 0 cos gei¢/2 —sin g
—sin g cos gel‘W 0 -1 sin % cos ge’“”/Q

B cosf —sinfe @
sin fe*® —cos 0

We have proved the homomorphism
SU(2) — SO(3,R). (3.9)

The kernal is composed of the matrices /d and —Id. Denoting the group {/d, —Id} by
Zy, we have proved the following isomorphism

SU(2)/Zs~SO(3, R), (3.10)

which implies that the matrices U and —U act in the same way on S. This property has
a topological description. The matrices U and —U lie on the same diameter of the sphere
S3. Note that these two points define a straightline going through the center of the sphere.
We learnt in Chapter 1 that the set of thesc straightlines define the projective real space
Py(R). We verify in this way that the group SO(3,R) has the topology of P3(IR).

Remarks

1) The group SU(2) is simply connected. It means that all closed paths in it are trivial
or, in other words, that its first homotopy group is trivial.®

2) When two connected groups G and G’ are related by a homomorphism such that
G — @', and G/H~G', one says that G is a covering of G’. If G is simply connected,
it is called the universal covering. In that case, H is the first homotopy group of G'.
Eq. 3.10 provides us with an example of this property.

3The sphere S™ has a trivial first homotopy group for any n > 2. The only spheres which have a group
structure arc S! (the group U(1)) and S? ( the group SU(2)).
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3.4 The density matrix and the Hilbert space of states
of dimension two

Let us show that the space of states associated with a Hilbert space of dimension two is

a sphere Sy. Let 1) = ( ¥

wl ) be a normalized spinor (|11]? + |¢2|> = 1). Since the state
2

_ —id/2
is defined up to a phase, one can set 1) = e ( lﬁjlrei“’/? ), (where 0<¢ < 27), which
2
. . lwl Ie“i"’/z . .
is equivalent to e ) Now, one can set || = cos8/2 and |¢5| = sin§/2, with
2

0<8<w. One verifies that the angles 6 and ¢ parametrize the sphere S3. It is not difficult
to prove that the Cartesian coordinates of this sphere are

X=9Toy, Y =vyTon, Z=y os, (3.11)

where the o;’s are the Pauli matrices.

In fact, each point of the ball associated with this sphere has a physical interpretation.
It represents a density matrix state. We know that such a state is described by a positive
matrix of trace equal to one. One may write it as

1 1+2 z—1y
_§<x+iy ]—z) (3.12)
The positivity condition implies that
Tr(p*)<1, (3.13)

the equal sign corresponding to the case of a pure state. This condition reads
2+t + 22, (3.14)

which proves our affirmation.

3.5 The plane rotation group

It is the group of matrices , where ¢ runs from 0 to 2w. We have R(0) = R(27). It is
isomorphic to the group U(1) of complex numbers of modulus one. The corresponding
manifold is the unit circle.

All these matrices are simultaneously diagonalized by the complex transformation
defined by -\}—2 < 1 i ) . They become R'(¢) = ( eo"’ eg¢

The universal covering group of U(1) is the additive group of real numbers. The
homomorphism is described by

FiR—-U(l), f(x)=x—2r [23] (3.15)
i
where [ | means “integral part”. The kernel of this homomorphism is the group of numbers
of the form 27n, where n is an integer. This group is isomorphic to the group of integers,
the group ZZ.
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According to what we have said in Section 3.3, we must expect that the first homotopy
group of U(1) is isomorphic to ZZ. The proof of that fact is left to the reader. We underline
the peculiar property that the group U(1) is its own covering. Indeed, the homomorphism

oxp(7d)) — exp(i’mqb),

where m is an integer has the cyclic group Z,, as a kernel. It is an isomorphism if and
ouly if m = £1.
3.6 Generators (infinitesimal rotations)

Eq. (3.3) can be written in a matrix way in using the fact that multiplication by u, namely
the operator (ux) is described by the matrix

0 —u, wu
A = U, 0 —uy
—Uy Uy 0
00 0 0 01 0 -1 0
= u | 00 -1 | +u, 0 00 |+u, | 1 0 0]. (3.16)
01 0 -1 00 0 0

1t is a simple exercise to derive the matrix associated witli Ry(¢). 1t is
Ry(#) =~ T +singA + (1 — cos ¢) A% (3.17)

Let us examine the case where ¢ is small. If we neglect the terms of order higher than
one for ¢, we get the matrix

100 00 0 0 01 0 -1 0
01 0 +¢|u] 00 =1 | 4u, 0 00 |+u, | 1 0 O
0 0 1 01 0 -1 0 0 0 0 0
It follows that one can write, as physicists do,
Ry(¢) = Id — i¢p(u.L) (3.18)

where the “scalar product” u.L represents the expression u,L, + u,L, + u,L,, the oper-
ators L., L,, L, being represented by the Hermitian matrices

00 0 0 0 1 0 —2 0
00 —2 |, o 00 ], 1 0 0 |. (3.19)
0 : O -1 0 0 0 0 O

The operators L, L,, L, are called the generators of the rotation group associated with
the orthogonal axes Oz, Oy, Oz. We verify the following commutation rclations

[Le, L)) =4iL,, |L,,L,)=1L,, |[L,,L,]=:iL;. (3.20)

We note that the set of operators -ig(u.L) is represented by the (real) vector space of real
antisymmetric matrices. We have

[—ig(uL), —i¢' (0. L)] = —ig¢'((u x u').L).
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The commutator of two real antisymmetric matrices is a real antisymmetric matrix. The
commutator defines a Lie algebra structure, characterized by the properties

[X,Y]=—-[V,X] (antisymmetry) (3.21)
(X, [V, Z]| + Y, [Z, X]| + |Z,[X,Y]] =0  (Jacobi identity).* (3.22)

The matrix A of Eq. (3.16) has a nice property: for n a positive integer, one has
A2n+1 — (_)nA’ A2n+2 — (_)nA2- (323)

It follows that Eq. (3.17) reads

R,(p) ~ I+<¢Aﬁ—?+¢—5—...>A+<¢—2—¢—4+...>A2

5! 214!
= (¢4)°+ wﬁ)l + (¢$)2 + (¢;)3 +...=eth (3.24)
One deduces, from (3.16),
Ru(¢) = exp(—ig(u.L)). (3.25)

We have to check the convergence of the series. It is a simple matter to show that the
convergence of the standard series of cos¢ and sin¢ for any value of ¢ guarantees this
convergence. Eq. (3.25) proves that there is a mapping from the Lie algebra of the rotation
group and the rotation group itself. This mapping is known as the exponential mapping.
Its image is the group itself.

Let us add a word about notation. The rotation group being isomorphic to the group
SO(3,R), the corresponding Lie algebra is usually denoted by so(3, R).

3.7 The canonical generators of SO(3)

We can always choose an orthonormal basis in such a way that a given rotation of angle
¢ is described by the matrix of Eq. (3.4). For ¢ # 0, it is a simple matter to check that
the only eigenvectors are the ones collinear to u , with eigenvalue 1 (the axis of a rotation
is fixed). However, if we complexify the space, we get three orthogonal eigendirections

x
associated with the eigenvalues exp(—i¢), 1 and exp(¢¢). These directions are , | iz |,
0
0 T
0 | and | —iz |, respectively. According to Eq. (3.25), the matrix associated with
z 0

R,(¢) and u.LL for u in the z direction are

exp(—i¢) 0 0 10 0
Ru(p)~ 0 1 0 and uL=L.~| 0 0 0
0 0 exp(ig) 00 -1
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a —ia 0
The unitary matrix 0 0 —1 |, where A = 1/v/2 realizes this transformation
—-a —ta O

which maps the expressions (3.19) into

1 0 10 L [0 =0 L [1 00
Lim—| -1 01|, L~~—=1|1¢ 0 —i |, L~~—=]00 0
V2N g 10 V2 o i o V2V 0 0 -1

The matrices Ly = L, +iL,, L. = L, —iL, and L, arc called (impropcrly) the canonical
generators of the rotation group SO(3).

3.8 The generators of SU(2)

Egs (3.16) and (3.18) permit to verify that a rotation of angle ¢ (0<¢<w) around the unit
vector u is described by one of the two unitary matrices

Ut — 4 (?98% - z"uz sing  —i(u, — fuy) ising—g (3.26)
u —i(u, + tuy) sin % cos % + tu, sin §

If we enlarge the range of the values taken by ¢ (namely 0<¢<27), we can suppress the
sign & but we have to give a meaning to the matrices Uy () for ¢ = 27 whatever is u.
Let us introduce the Pauli matrices

0 1 0 —2 1 0
OT_(IO)’O”_<1 O)’Jz_<0—1>' (3.27)

one can write these matrices in a form similar to (3.18), namely

Uu(®) = cos gl — i(o.u) sin g (3.28)

Remarks

1) When ¢ is small, we get U,(¢) = 1 — i(o.u). The Pauli matrices form a basis for
the Lie algebra of SU(2). If we divide them by two, they obey the commutation
relations (3.20). It follows that the Lie algebras su(2) and so(3,R) of SU(2) and
SO(3,R) are isomorphic.

2) The exponential mapping cxp(—i(o.u)%) maps the Lie algcbra on the group SU(2).

3) We have Tr(Uy(¢)) = 2cos & = % Note that we have obtained earlier, for a

s

. 3¢

. . sin =~
rotation, the relation Tr(Ry(¢)) = 1 +2cos¢ = 4 cos? %’ —-1= snl.é . These formulas

sin 3

. D¢

. 51 == . . .
arc special cases of the general formula —2- where D is the dimension of the
sin 3

Dl)

irreducible representation (representation of spin =5=).
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3.9 The Cayley mapping

Let C be a 3 x 3 antisymmetric real matrix (C' = —C). Then the matrix R = };—(CJ, where
1 denotes the identity matrix, is orthogonal. Indeed

- 1-Cl1-C 1+C1-C

RR = S (3.29)

T1iC01+C 1-Ci+4C

Since 1 + C and 1 — C are transposed matrices, they have the same determinant and
Det(R) = 1. Thercfore, R is a rotation. This mapping is known as the Cayley mapping.

Conversely, given a rotation R, the matrix C = %, whenever it makes sense, is
antisymmetric. C is not defined iff R has -1 as an eigenvalue, that is iff R is a rotation of
angle 7. It follows that the Cayley mapping maps the Lie algebra of the rotation group
on the set of rotations of angle less than w. This set is represented by the open ball of
Fig. 3.2, a set which is obviously homeomorphic to the three-dimensional real space.

A similar calculation can be made for the group SU(2). Suppose K is a traceless
antiHermitian matrix, that is K* = —K and Tr(K) = 0. Let us prove that U = %;—f
belongs to SU(2). It is easy to check that U is unitary:

1-K*'1-K 1+K1-K

e s (3.30)
In order to prove that Det(U) = 1, we use the Cayley-Hamilton formula
X? — Tr(X)X + Det(X)1 =0, (3.31)
for the two matrices 1£K. Since Tr(1+K) = Tr(1)+Tr(K) = 2,
(1£K)? — 2(1+K) + Det(1+K)1 = 0.
Therefore Det(1+K)1 = 1 — K? and Det(1 + K) = Det(1 — K) from which we get
Det(1 — K
Det(U) = ﬁ =
Conversely, let us give ourselves a matrix U of SU(2). We have
(1—U>*: 1-U* _ 1-U! _ U-1 :_l—U
1+U 1+U* 1+Ut U+1 14U
This is an antiHermitian matrix. Moreover, we have
1-U 1-U*\" 1-U
= (i77) -2 (5w) - (i5p) -0
We have to look for the meaning of the expressions 75 and L’r—g In order to determine

it, we consider the case where K and U are diagonal. The only diagonal traccless anti-

Hermitian matrices are + ( (Z) BZ ) The matrix :—ﬁ is always defined. According to

Eq. (3.7), the only diagonal unitary matrix of determinant one with eigenvalue —1 is the
matrix —1. Tt follows that the mapping maps the Lie algebra su(2) on SU(2) — {—1}.
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3.10 SO(3,R) as the quotient U(2)/U(1)
One can make the group U(2) acting on the space S of Hermitian 2 x 2 matrices as follows.
VeU@2) :H—-VHV". (3.32)

The matrix V satisfics the relation V*V = 1. Tt follows that Det(V) is of modulus one,
say exp(ig¢). This permits us to set V = +exp(i¢/2)U, where U is of determinant one.
We may write:

V = texpli¢/2) ( j;)* ;* ) , with |a)® + |8* = 1. (3.33)

It acts as the identity if it leaves unchanged the three Pauli matrices. It is a sirnple matter
to prove that, in that case, V' is of the formn

V =+ exp(io/2)1d.

These matrices form a group isomorphic to U(1). It follows that SO(3,IR) is isomorphic
to the quotient U(2)/U(1).

3.11 The geometry on the sphere 5,

According to the definition of a geometry, the expressioun “gecometry of the sphere” is
unprecised except if we say which group is acting on the sphere and how it acts. Here
we want to make the rotation group SO(3,R) acting in the ordinary way. We may call
this geometry [SO(3,R),S,]. We already know that the rotation group acts transitively
and cffectively on the sphere. What we want to examine is the action of the group on
sowme figures. First, circles, then oriented circles, and finally figures made of two points
(couples, turns and chords).

Circles Obviously two circles are congruent if they have the same radius r. The radius
takes all the values between zero and R, the radius of the sphere. For » = 0, we get
points of Sy; for r = R, we get geodesics (great circles). Let us first consider the generic
case corresponding to a circle of radius r» with 0<r<R. Choosing a circle of radius r is
cquivalent to indicating its center. Consider the orbit of circles of radius . Since the sct
of centers is the sphere of radius V R? — r2, we sce that the geometry is still the spherical
geometry. The set of such centers can be interpreted as the set of rotations of angle 8,
with 0 < 6 < 7 (small circles). For r = 0, we get Sy itself as an orbit, and again the
spherical geometry. For r = R, we get the great circles which have the same center O (the
center of the sphere). Let us find the stabilizer of a great circle, say the equator. Clearly,
this stabilizer contains the rotation group SO(2, R) around the poles, but it contains also
all rotations of angle 7 around a diameter of the equator. This proves that there exists a
subgroup of SO(3, R) which contains SO(2, R). In the matrix form, these transformations
are
cosf —sinf 0
sinf cosf O
0 0 1
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d=0|de]0,nR| d=7R
52 X Sz SQ P3(IR) 52
Orbits of couples
B(R) Sy So P(R)
Orbits of turns (or circles)
SQ X S;_) Sg 50(3, ]R)/Cz P:_)(]R)
Orbits of chords
OI‘bitS Sg Sz Sz
of oriented circles

Table 3.1: Orbits of circles, oriented circles, couples, turns, and chords.

and
cosf —sinf 0 1 0 0 cosf —sinf 0
—sinf —cosf O =10 -1 O sinf cosf 0
0 0 -1 0 0 -1 0 0 1

A look on the effect of the 7 rotation on the equator shows that this group is isomorphic
to O(2, R). We will see later on that the orbit SO(3,1R)/O(2, R) is isomorphic to the real
projective plane P»(IR). We obtain, in this way, the geometry [SO(3, R), Po(R)].

Oriented circles Let us first consider a small oriented circle (even of zero radius). We
can associate with it both its center and a unit vector to indicate the orientation. The
orbit is a sphere. Let us now find the stabilizer of an oriented great circle, say the oriented
equator. Clearly, it is a subgroup of the stabilizer of the equator itself, that is, according
to what we have just proved, a subgroup of O(2,R). It is not difficult to verify that this
stabilizer is SO(2,R). We will now show that the orbit SO(3, R)/SO(2,R) is isomorphic
to the sphere Sy; it follows that every geometry is of the type [SO(3, R), S].

Couples Let us consider the action of the rotation group on the direct product & =
S x Sy, that is the set of ordered pairs of points (couples) on S,. It is a four-dimensional
manifold. In general, there is a unique geodesic (great circle) which links the two points
of a couple (generic case). The exceptions are when the two points are the same (null
couples) or the ends of a diameter (diameter couples). Let us denote by &* the subset
of ¥ made of all generic couples. It is easy to see that the stabilizer of a generic couple
is trivial. Each orbit of £* is of the type SO(3,R), that is P3(IR). Let us call length of
a couple the shortest geodesic distance between the head and the tail of it. This length
is an invariant. It is a number d lying in the interval ]0, 7R[. The set £* is the union of
orbits parametrized by d.

A null couple (d = 0) corresponds to a single point of Sy; it has, as a stabilizer, the
corresponding SO(2, R) subgroup. The associated orbit is of the type SO(3, R)/SO(2, R).
We prove, in this way that SO(3, R)/SO(2,R) is isomorphic to S,.

In the same way, one can prove that a diameter couple (d = 7 R) has the same type of
orbit. We conclude that ¥ = S; x S; has the decomposition given in Table 3.11:

Turns® Let us consider a generic couple, say an equatorial couple (M, N); there is a
rotation of angle # around the poles which maps the head M on the tail N; such a rotation

5For more details, consult the book by L. C. Biedenharn and J. D. Louck.
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can be represented by an axial vector OK of length §R/m, this vector pointing towards
the pole P defined by the fact that the triplet OM, ON, OP is direct. We note that the
point K describes not only the couple (M, N} but also any other equatorial couple which
can be deduced from it by a rotation around the poles (sliding along the geodesics). We
say that two couples are cquivalent in that case and that they define a single turn. It is
clear that to any rotation of angle 8, with 0 < € < 7 corresponds a unique generic turn.
We see that the set of generic turns is identical to the set of rotations of angle different
from zero or w. This sct is equivalent to the set of small circles (see above). By continuity,
we identify the set of turns with the rotation group itself. We already saw that this set can
be described by the interior of the sphere and the sphere itself where two diametrically
opposite points have to be identified. It follows that two distinct diameter couples are not
equivalent (except if they are opposite), in contradiction with the fact that they can be
transformed one into the other through a rotation along a geodesic®.

We just show that the action of SO(3,R) on turns is an action of the rotation group
on itself. Since this action transforins a rotation into a rotation of the same angle, we got
a way of visualizing the conjugation action.

Let us examine the stabilizers of turns. The generic turn OK has the group SO(2, R)
as a stabilizer. Its orbit is a sphere; the invariant of such an orbit is the length d. A null
turn lies on a point of Sy. Its orbit is also a sphere (the sphere Sy itself); it corresponds
to the value d = 0. A diamecter turn is identical to its opposite. Its stabilizer is the group
O(2,R) and the corresponding orbit (d = wR) is isomorphic to P>(IR). We get, therefore,
the decomposition of the space of turns Ps(IR) indicated in Table 3.11.

Chords The sct of chords is the set of constellations of order two on Sy,that is Sy X S,.
Null chords coincide with points of Ss; therefore they lie on an orbit isomorphic to Ss.
Diameters coincide with diameter turns; therefore they lic on an orbit isomorphic to
P(R). We only have to study the generic case. It is clear (make a drawing) that such a
chord is invariant under a group Cs with two elements generated by a w-rotation around
the diameter orthogonal to the chord. All results about couples, turns and chords are
indicated in Table 3.11.

SThis is a departure from what is made in the Biedenharn and Louck book. For us, there are many
“scalar” turns, each scalar turn being associated with a diameter.
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Exercises

1. Consider a regular n- polygonal of vertices Aq, Aa,..., A, and a matter point which
can only have the A;’s as positions. Construct the corresponding g.a.s. and deduce from
it the cyclic group C,.
2. With the aid of Eq. (3.28), prove the relation

Uu(¢)U-rUu(¢)_l 0.[Ru(o)r]

= or+singuxr+ (I —cos¢)u x (uxr).

Problem

We define a set of transformations T'(ag, a) on a three-dimensional real space S, where ag
is real and a a vector of S, such that a% +a? # 0. The action is as follows:

r —r' = (a} —a®)r + 2apa x r + 2(a.r)a

a. What is the action of T(ag,a) on a? on a vector orthogonal to a? Show that T'(a,a)
is a rotation followed by a positive dilatation. Find the parameters and the axis of the
transformation.

b. Verify that the T'(ag,a)’s form a group G. Does it act effectively? If not, find the
group G’ which acts effectively.

c. We now define the group I" as the group of 2 x 2 complex matrices A acting on a spinor
space and leaving the scalar product invariant up to a nonzero factor A.

< AYlA@ >= X < ¢p|¢ >, for arbitrary |¢p > and |¢ > .

Compute ATA and show that A cannot take an arbitrary value.
d. Prove that A is of the form

A = exp(iy) , with 0<y < 27.

e. One makes T acting on S as follows. One associates with each vector r the matrix o.r.
The action of the group I' is given by

or — A(o.r)AT

Verify that it is an action. Does I' act effectively? If not, find the group I'" which does.
f. Prove that there exists a homomorphism

| ey

and find its kernel.



Chapter 4

The subgroups of SO(2,IR) and
SO(3,IR), polygonals and polyhedrons

4.1 Finite subgroups of SO(2,IR)

Since the group SO(2,R) is Abelian, each of its elements forms a single conjugacy class.
This means that every subgroup has no other conjugate subgroup cxcept itself.
For a shorthand, we will denote by 6 the rotation of angle 8, with

0<0 < 2.
The group law (called the sum) will be denoted by the sign #. 1t is defined by the relation

01+92}27r

s

91#92 = 01 +92 — Int |: (41)

where the symbol Int [...] means “integral part”. More generally,

m+&+%+m+m]
2.
27

01#02#93# BN #07, = 01 + 02 + 93 +...+ 07,, — Int [

We will denote by nf the sum of n elements equal to 6:

n0 = OH0404...46. (4.2)

Let G be a finite subgroup of SO(2,R) and denote by 8 its smallest element. The order

of 8 will be the smallest integer n such that nf = 0. It is easy to prove that : § = 2;

Let us now show that the subgroup G only contains as elements the rotations 0, 0, 26,
30, ..., (n— 1)f. In fact, suppose that it contains some element 8’ such that

kO < 0" < (k+1)6.
Since G is a group, #' — k6 must also belong to G, that is
0<0 —ko<9,

which is impossible since 8 denotes the smallest rotation of G.

49
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We just have shown that any finite subgroup of SO(2,IR) is defined by some positive
integer n. The corresponding subgroup is called the cyclic group C,, and its order is equal
ton:

cn:{o,Q—”,22—",...,(n—1)2—"}A (4.3)

n’ n n

The group SO(2,R) can also be considered as the multiplicative group of all complex
numbers of modulus one. The group C, is isomorphic to the subgroup of SO(2, R) which
contains the n complex numbers z such that 2™ = 1. These numbers can be written
exp(27wik/n), where k = 1,2, ...,n. Among them, there are, by definition, ¢(n) primitive
roots of unity. Each primitive root is a generator of the group and corresponds to a unique
oriented polygonal in the unit circle of the Cauchy plane. The function ¢(n) is known as
the Euler totient function. It is the number of numbers less than n and prime to n. One
has

o(1) = ¢(2)=1

$(3) = o) =¢(6) =2
¢(5) = 4

#(7) = 6, etc...

For p prime, ¢(p) = p—1. As a consequence, there exists four oriented regular pentagonals
in the unit circle |z| = 1. The proofs of the following propositions are left to the reader.

OO

Figure 4.1: The four oriented regular pentagonals.

Proposition 4.1 C, contains C,,, as a subgroup if and only if m divides n.
Proposition 4.2 C, has no proper subgroup if and only if n is prime.

Proposition 4.3 The mapping z — 2™ is an automorphism of C, if and only if m is
relatively prime to n.

Proposition 4.4 ¢(n) is even, except forn =1 and 2.

4.2 Subgroups of SO(3,IR)

Our intention is not to give the way one can construct the subgroups of SO(3,R). There
are quite good books where the reader could find inforination on that subject. We prefer
to present here a rational description of the list of these subgroups. If we except the trivial
subgroup {e}, each subgroup is the symmetry group of some figure. These figures can be
classified in seven categories.

1. The regular pyramidals (the cyclic groups C,, n =2, 3,4, 5, ...).
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2. The circular cone (the group SO(2, R)).

3. The regular prisms (the dihedral groups D,, n =2, 3,4, 5, ...).

4. The circular cylinder (the group Oy(R)).

5. The regular tetrahedron (the group T).

6. The cube (the regular hexahedron) or the regular octahedron (the group O4).
7. The regular dodecahedron or the regular icosahedron (the group Y, ).

1 and 2. The c¢yclic group C), is composed of the n rotations which leave invariant the
regular n-pyramidal, that is a right pyramidal with a regular n-polygonal as a base. The
case n = 2 corresponds to a degencrate pyramidal (an isoceles triangle). The n-pyramidal
has n + 1 faces (n isoceles triangles and the polygonal basc), 2n sides (n of a given length
and n of another given length), and n + 1 vertices. In the limit where n goes to infinity,
the group becomes the SO(2,R) group, namely the rotation group in one dimension. This
group could also be denoted Cy. All these groups are Abelian. We note that if m divides
n, C,, is a subgroup of C,.

Jdand 4. The regular n-prism has n + 2 faces (n rectangles and two regular n-polygonals
as bases), 3n sides, and 2n vertices. The dihedral group D,, has 2n elements and has C,
as a subgroup. The other elements are rotations of angle m which permute the two bases.
[n the case n = 2, the prism is degenerate in a rectangle. The only group which is Abelian
is Dy. When n goes to infinity, one gets the group D, which is isomorphic to the group
O(2,R). The group D,, has two generators: a generator of C,, and a w-rotation permuting
the two bases of the prism.

5 to 7. The other subgroups are associated with one of the five Platon regular convex
polyhedrons, namely the tetrahedron (four triangular faces, six sides, four vertices), the
hexahedron or cube (six square faces, twelve sides, eight vertices), the octahedron (eight
triangular faces, twelve sides, six vertices), the dodecahedron (twelve pentagonal faces,
thirty sides, twenty vertices), and the icosahedron (twenty triangular faces, thirty sides,
twelve vertices).

We note that each pyramidal, prism or Platon polyhedron obeys the following Euler
rule: F4+V — S5 = 2, where F,V, S are the number of faces, of vertices, and of sides,
respectively. This rule is a general one; it is valid for any convex! polyhedron in our
three-dimensional space.

The Platon solids have the following property: if we join the centers of faces, we get
again a Platon solid with the same symmetry. The number of sides is unchanged; the
number of faces becomes the number of vertices and the number of vertices the number
of faces. Under such a transformation, the tetrahedron becomes a tetrahedron; the cube
gives rise to an octahedron and the octahedron to a cube; the dodecahedron gives risc to
an icosahedron and an icosahedron to a dodecahedron. That is why the five Platon solids
correspond to three groups only.

The group T has 12 elements. Among the twenty-four permutations of the four vertices,
only twelve are rotations (the identical rotation, cight rotations of angle 120°, and three
rotations of 180°). They are the twelve even permutations of the four vertices. Note that
the other twelve permutations - the odd ones - are not orthogonal transformations. The

LA polyhedron is said to be convex if given any face, it is located entirely on one side.
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group T contains four subgroups isomorphic to C(3) associated with each vertex, and
three subgroups isomorphic to C(2) associated with each pair of opposite (orthogonal)
sides.

Figure 4.2: Cube, tetrahedron and octahedron.

The group O, (the symmetry group of the cube and the octahedron) has 24 elements.
It is a subgroup of O, the complete symmetry group of the cube, that is the group with
forty-eight elements we examine in a previous chapter. The other 24 elements are improper
rotations (orthogonal transformations of determinant -1). There are four subgroups of O,
isomorphic to T' (as shown on Fig. 4.2, each diagonal of the cube corresponds to two
tetrahedrons with the same symmetry). This permits to see that O, contains 8 rotations
around a diagonal of angle 120°. To each set of parallel faces corresponds a subgroup
isomorphic to C(4), which means that we have 3 x 2 = 6 rotations of angle 90° and 3
rotations of angle 180°. To each pair of opposite sides corresponds a subgroup isomorphic
to C(2), that is 6 rotations of angle 180°. If we add the identical rotation, we check that
the number of elements of O, equals 8 + 6+ 3 +6+ 1 = 24.

The group Y, (the symmetry group of the icosahedron and the dodecahedron) has 60
elements. It is a subgroup of the group Y, a group of order 120, which includes improper
rotations. Let us consider a icosahedron. To each pair of parallel faces corresponds a
subgroup isomorphic to C(3), that is 10 x 2 = 20 rotations of angle 120°. To each pair of
opposite vertices corresponds a subgroup isomorphic to C(5), that is 6 x 2 = 12 rotations
of 72° and 6 x 2 = 12 rotations of 144°. To each pair of opposite sides corresponds a
subgroup isomorphic to C(2), that is 15 rotations of angle 180°. If we add the identical
rotation, we arrive at a total of 20 + 12 4+ 12 4+ 15 + 1 = 60 clements.

Some relations s: length of a side, r: radius of the inscribed sphere, R: radius of the
circonscribed sphere.
2rtan(n/n) = stan(3/2)
2R = stan(3/2) tan(r/m)
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Tetrahedron | Cube | Octahedron | Dodecahedron | Icosahedron
Numnber of
vertices (V) 4 8 6 20 12
Numiber of
faces (F) 4 6 8 12 20
Number of
sides (5) 6 12 12 30 30
Sides converg.
to a vertex (m) 3 3 4 3 5
tan(m/m) V3 V3 1 V3 V5 —2v5
Sides of a
face (n) 3 4 3 5 3
tan(r/n) V3 1 V3 5—2v/5 V3
Angle of two
adj. sides (o) 120° 90° 120° 108° 120°
cos 0.5 0 0.5 LB 0.5
tan(c/2) \/L? 1 % 1+ % %
5
(angle adj. faces) 70°32 90° 109°28' 116°34’ 138°11
cos 3 3 0 ¥§ _ % _ §
tan(3/2) % 1 V2 ”2‘/3 3+T‘/F’

Table 4.1: Some general properties
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Exercises

1. The group C, is isomorphic to the additive group of integers modulo 7.
2. Find a geometrical proof of the fact that ¢(n) is even for n > 3.

3. Prove the identity:
n=Y_¢(d),

where the sum is taken on all divisors of 7.

4. Show that, if n and m are relatively prime, the totient Euler function verifies ¢(n)¢(m) =
¢(nm). Any function satisfying this property is called an arithmetical function. De-
duce from that property that, for n = p®¢®r¢, where p,q,r are prime numbers, ¢(n) =
n(1-1/p)1—1/q) (1 —1/7)

5. Show that the homogeneous space SO(2,R)/C, is a group isomorphic to SO(2, R).
In the case where n = 2, this homogeneous space is isomorphic to P;(IR).

6. Make SO(2,R) acting on the set of chords of a circle. Classify the orbits and find the
strata (they are two in number).

7. Answer the same question by considering, instead of he chords, the set of all inscribed
triangles.

8. Draw the part of the lattice of subgroups of SO(3,R) which implies the group C, for
n =1 to 13. This can be drawn without intersecting lines.

9. Show that a rotation of a cube is an even permutation of the vertices.

10. Prove that the group O, is isomorphic to the permutation group S, (Hint: make the
group acting on the set of diagonals of the cube.

11. The even permutations of S, is, by definition the alternate group A,, of n elements.
Show that T is isomorphic to Az.

12. Prove that C, is the invariance group of a regular oriented n-gonal and that D, is
the invariance group of a regular n-gonal.

13. Proof of a Legendre theorem. Consider an arbitrary convex polyhedron; denote by
F,, the number of faces with n sides. We have: FF = F3+ Fy+ F5 + ...

a. Prove that 25 = 3F3 + 4F, + 5F5 + ... ; deduce that F; + F5 + F7y + ... is even.

b. Use the Euler identity in order to prove the inequalities:

F 3

¢. Prove that 25 > 3V.
d. Prove the inequality

3Fy + 2F, + Fy > 12+ (Fy + 2Fs + 3Fy +...).

Deduce that every polyhedron has necessarily faces which are either triangular, quadri-
lateral or pentagonal.

e. Count the number of hexagonals and pentagonals of a football. Compute the number
of faces, vertices and sides. Check the Euler identity and the last inequality.

14. Construct the snub cube described in the figure 4.2. Its invariance group is not O,
but onlyO,. It has F = 36 faces: Fy = 6, and F3 = 32. It follows, from the preceding
exercise that S = 60. The Euler formula gives V = § — F 4+ 2 = 24. Show that the 24
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vertices lic on a single orbit of the cubic group O, that the square faces form an orbit
of the type O4/Cy, and that the 32 regular triangles form two orbits: the trivial orbit
(triangles named B) and, for the cight triangles named A, the orbit O, /Cjs. Verify the
inequalities of Excrcise 12.

Check that the opposite face of a squarc is a square. Compare to the cube case.

Figure 4.3: The snub cube.






Chapter 5

The Mobius group

5.1 The projective complex line P;(C)

The complex line € is of complex dimension one, but because it is of real dimension two,
the complex line is commonly referred to as the complex plane!’ It is better to call it the
Cauchy plane.

If we add the point at infinity to the complex line, we get the extended Cauchy plane
which is, in fact, homeomorphic to a sphere, the Riemann sphere. A rigorous way of
21
22
of €2, that is a nonzero spinor?. We introduce an equivalence relation between the set of
110117CT0 SpINors:

constructing the extended Cauchy plane is the following. Let ) be a nonzero element

!

P = ( il ) is equivalent to ¢’ = ( z} ) if there exists a complex number X such that
2 2
P = M.

The projective complex line P(C) is, by definition, the set of equivalence classes of
spinors. This set is isomorphic to € and to the Riemann sphere. Let us show it. Consider

the class of the spinor 1 ) . If 25 # 0, a representative of its class can be obtained in
2
. L 1., z . _ .
multiplying this spinor by z;!; it is ( 1 ) with 2z = 25 '2;. These classes are parametrized
. . . . 1
by a complex number z. Note that this spinor is also equivalent to ( 51 ) When z

(l) ) , the point at infinity oo which compactifies the plane and

transforms it into € = CU{oo}.

We are interested in two ways of constructing the Riemann sphere. We start in de-
scribing the algebraic method whichh makes use of the Pauli matrices. For that purpose,

tends to zero, it becomes (

'f we do want to associate in a rigorous way the words compler and plane to denote it, we can use
the expressionthe real plane of complex numbers.

2The word “spinor” is not, well defined since it is associated with various geometries: there are rotation
spinors, Lorentz spinors, Dirac spinors.
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one decides to express the spinor v in another way. We define:

|21 + |z2]* = 0%,

z2/z1 = tan(0/2) exp(ip),

with 0 < <7 and ¢ runs from zero to 2.
One is led to write

z1 = pcos(8/2)expl(—i¢ +ia)/2], (5.1)
20 = psin(8/2)exp|(i¢ + 1a)/2]. (5.2)
Two spinors with the same values of § and ¢ are equivalent. Then one associates with the

spinor @ the three-vector:

R =4y 0y.

The components of this vector are
X =psinfcosp, Y =psinfsing, Z = pcosh. (5.3)

Since p is arbitrary, one may set p = 1. We obtain the spherical coordinates of the
Riemann sphere.

Let us now turn to an important geometrical construction, the so-called stereographic
projection. We counsider a sphere of radius one and center Q. We define on this sphere
a North pole N and we identify the equatorial plane with the Cauchy plane. The real
and the imaginary axes are called the X-axis and the Y-axis, respectively; the vector ON
defines the Z-axis. These three axes define spherical coordinates on the sphere. Let z be
a point of the Cauchy complex plane. The straightline joining z to N cuts the sphere at
the point of coordinates 8, ¢ such that

z = cot(6/2) exp(i¢). (5.4)

We note that the South pole (resp. North pole) corresponds to z = 0 (resp. z = 00).
The link between the algebraic and the geometrical approaches is given by

z=z1/7. (5.5)

5.2 The homographic transformations

Let ( (Z z ) an invertible 2 X 2 complex matrix, that is an element of the group GL(2, C),

the general linear group (ad — bc # 0). One can make this group acting on the Riemann
sphere € or P (C) as follows:

a b ) az+b .

(c d) rEo (5.6)

az+b
cz+d’

Let us examine if the action is effective. The equation z = whatever is z, implies

c=0,a=d, b=0.
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These conditions define the group C* of invertible diagonal scalar complex matrices

3. a

group which could also be denoted® G Lgio, (1, €) (it is the center of the group GL(2,C)/C*).
It follows that the group which acts effectively is GL(2,C)/C™.

Remarks

1)

It is convenient sometimes to define homographic transformations in replacing
GL(2,C) by SL(2,€) (sce Section 1.6). Because Zy < C*, oue arrives at the iso-
morphisms:

GL(2,0)/C*~SL(2,C)/2Zy or,
GL(2,C)/GLdiag(1, C)~SL(2, €)/SLaiag(1, C)

This group is known as the Mobius group. Since it will be shown to be isomorphic
to the conuected Lorentz group, we will also denote it by L.

A Mabius transformation of € is a bijection.
The group GL(2,C) is of dimension four, the group SL(2,C) of dimension three.

The Mobius group acts transitively on . Therefore the sphere is a hormogeneous
space of the Mdbius group. We arc going to prove that

C=L/S(2,R)

where S(2,IR) is the real similitude group S(2,R), generated by translations, rota-
tions and dilatations.

The subgroup of GL(2, C) which leaves invariant the point at the infinity is the

group of transformations 2’ = az+b (a # 0). Hint: writc (5.6) in the form 1 = %’Zﬁ
IMfweset z =z +iy, 2 =2 +4y, a=ay + iaz, b = by + iby, one obtains
¥ = ayz—ay+b (5.7)
¥y = ax+ay+b

The matrices of SL(2,C) corresponding to these transformations arc of the form
L Va b/va
0 1/va )

The subgroup of GL(2,C) which leaves invariant an arbitrary point is conjugate,
therefore isomorphic, to the group S(2, R).

The most general bijection of on which is conform and direct is a Mdbius transfor-

mation®.

3C* is put for € — {0}.

4The index “diag” avoids a confusion with other isomorphic subgroups such as the ones which transform
z into az or into 1/ez.

5For a proof, see L. R. Ford, Automorphic Functions, page 3.
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5.3 Fixed points of a Mobius transformation
Generally, this problem is presented as follows. The point z is a fixed point if
cz*—(a-d)z—b=0.
e If ¢ # 0 and (a — d)? + 4bc # 0, we have two fixed points.

If ¢ # 0 and (a — d)* + 4bc = 0, we have one fixed point.

If c =0 and a — d # 0, there are two fixed points and, among them z = oo.

e If c=0 and a — d = 0, there is one fixed point: z = oc.

Ifc=A—d=b=0, all points are fixed (identity transformation). If we except this
last case, the number of fixed points is either one or two.

These results can be simplified if we remember that C is the Riemann sphere. Instead of
speaking of fixed points, it is more natural to claim that any Mobius transformation leaves
a chord (or a constellation of order two) invariant. After all, from the group theoretical
point of view, the Riemann sphere is a homogeneous space and the point at infinity has
no privileged role®: whatever is the point we discard from a sphere, we are left with a set
which has the topology of the plane. Then, we have the following simplified statement.

Theorem 5.1 Any Mdébius transformation leaves a constellation of order two invariant.

5.4 The real similitude group S(2,1R)

The relationship between S(2, R) and L is of the same type as that between the Euclidean
and the projective group. In both cases, the subgroup is derived in fixing a figure as an
absolute. It is the point at infinity in the Mdbius case, the straightline at infinity in the
projective case. This is not surprising since we have shown that the M&bius group was
also a projective group.

We can decide to find the subgroup of 5(2,R) which leaves a point of € fixed. We are
free to choose the point and we take z = 0. The condition

0=a0+b

gives b= 0. Eqgs (5.7) tell us that the group is the one of 2 x 2 real matrices of the form
ar —as \ _ [, 5 [ cosf —sinf
( as @ ) =Vata ( sinf@ cos@ )
This is the direct product of the dilatation group D(1, R) by the rotation group SO(2, R).We
deduce from that result that the set of couples of a sphere S5 is the homogeneous space
L/[D(1,R) x SO(2, R)].

There is an interesting subgroup of S(2,R), namely the Euclidean group E(2,R)
defined by the transformations

2 =az+b, with |a| =1.

80bviously, in the framework of functions of a complex variable, the point of view is different.
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It has the property of acting on € x C in preserving the distance |21 — z2|. The similitude
group acts on € x € x € in preserving the 3-points ratio:

21 — 23

V(ZI,ZQ,Z;}) = (58)

z2 — 23"

21—23

that is the ratio of lengths and the angle arg V = arg (z; — 23) — arg (2, — z3). Note

that if two of the three points arc identical, the 3-point ratio takes one of the three values
1, oo, 0.

Application We readily see that a necessary and sufficient, condition for three points
to lic on a straightline is that V' is real. One deduces that the equation of a straightline

joining z; and z is given by
-z =2
_— o
21 — 22 Z) — %9
or
iz — 25)z — i(z1 — z9)2" + (iz125 —i222]) = 0.

It means that a straightline is given by an equation of the form
B*z+ Bz*4+C =0, with C real. (5.9)

We intend to show that a permutation of the threec numbers 21, 25, 23 affects gencrally the
valuc of the three point ratio. It is not difficult to get the following results:

e V(Zl,ZQ,Zg) = A
(12) V(z.21,23) = 3
(23) V(Zl,Z],Zg) = 1-=A

1
(13) Vizmoz) = 54 (5.10)
(]- ) ( 22, %3, % 1) = l_i
(182) V(2 21,2) = 2

It follows that a nondegencrate triangle does not define uniquely the 3-point ratio; in-
stead, one can associate with any nondegenerate triangle a set of six points (a hexagonal)
contained in € where the points 0 and 1 are discarded. The knowledge of onc of these six
points implics the knowledge of the other ones. We note that this set of six points can be
reduced to a sct of three or two points in three cases:

e One of the three zl is the midpoint of the two other ones. The set reduces to the
three nunbers: -1, 1 7 2.

e The z;’s form a regular triangle. The set reduces to two numbers: #

e If two of the z; arc equal, the six numbers reduce to three, namely 0, 1, co.

Application the geometrical construction of the hexagonal. We know that the 3-point
ratio V(21, 29, 23) is invariant by a similitude. Since there exists a similitude which maps
(21,22, 23) on (z,1,0), we construct this oriented triangle. This determines uniquely the
number z. But V(zy, 29, 235) = V(2,1,0) = z. We are left with the construction of the
points 1/2,1 — 2, 2/(z — 1), 1 = 1/z and 1/(1 — z).
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5.5 The cross ratio (or biratio)

We come back to the homographic transformations. We have the following lemma.

Lemma 5.1 Given two nondegenerate oriented triangles T = (21, 20, 23) and T' = (21, 2b, 23);
there is a unique homographic transformation which maps T on T".

Proof Let us first prove that there is at most one such transformation. Suppose that
they are two in number, say g and ¢’. One would have ¢'"lg(z;) = 2;. According to
Section 3.3, the only transformation which has more than two fixed points is the identity
transformation. It follows that g = ¢'.

Now, the transformation defined by the following equality

(& —21)(z —2) _ (2= z1)(22 — 23)
T === (5.11)
2 — ) (2] — 24) z— z9)(21 — 23)
maps trivially each z; on 2, even if one of them equals oco. ]

By definition, the cross ratio of four complex numbers is given by the formula

21— 23 21— 24

W(21,22,23724) = (512)

22—23.22*»24

Theorem 5.2 If each of the quartets (21, 22, 23, 24) and (21, 25, 24, z4) are made of four
distinct numbers and if

! g ’ !
W21, 22, 23, 24) = W21, 23, 23, %),
there exists a unique Mobius transformation which maps each z; on the corresponding 2.

Proof The transformation (5.11) maps (21,22, 23) on (2], 23, 24) and conserves the cross
ratio. ]

Consequence Any W(zi, 29, 23,24) is equal to some W (2], 2}, 24, 00) = V(2,2 23).
This implies that under a permutation of the four numbers z; , the cross ratio takes the
six values mentioned above (Eq. (5.10)). The only problem is to classify the permutations
of the permutation group S;. The calculation gives the following results:

A toe (12)(34) (13)(24) (14)(23)
1/X D (12)  (34) (1423)  (1324)
1—X :(23)  (2431)  (2134) (14) (5.13
MO—1) ¢ (13) (1432)  (24)  (1234) 13)
1-1/x  : (123) (243)  (142)  (134)
1/(1—X) : (132) (143) (342) (124)

5.6 Harmonic conjugation

The value A = —1 plays a peculiar role. When it takes this value, the numbers z;, 27,

z3, 24 are said to be harmonically conjugate. We see that this value of the cross section
is obviously invariant under a subgroup of S of order eight; this subgroup contains the
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permutations of the first two rows of Eq. (5.13). This subgroup has two generators,
nainely (12) and (1423) since

e = (12)(12)

(12)(34) = (1423)(1423)
(13)(24) = (1423)(12)
(14)(23) = (12)(1423)

(12) = (12)

(34) = (12)(1423)(1423)
(1423) = (1423)

(1324) = (1423)(1423)(1423)

The harmonic conjugation condition can be written in an alternative way:

2123 21— 24
Perm =0,
2y — 23 X — 2y

where Perm denotes the permanent of the matrix?. Note that the permancnt of the most
geueral 2 x 2 matrix is invariant under the only following six permutations of the entries
(among 4! = 24):

- I: identical transformation,
- P.: permutation of the rows,
- P.: permutation of the columns,

- Py syminetry with respect to the main diagonal (rows replaced by columns and
vice versa),

- P, symmetry with respect to the other diagonal,
- P.P. = P, P,,: symmetry with respect to both diagonals.

Moreover, when this permanent is null) it is invariant under eight changes of signs of
entrics (among 24 = 16):

- C: no ehange of signs
- C,;: change of signs of the " row cntries,

- C,: change of signs of the it*

column entries,
- Ci = Cy,C,, = C,,C,,: change of signs of all entries,

- Cy, = C},C,,: change of signs of the main diagonal entries,

- Cy, = C,,C,,: change of signs of the second diagonal entries.

“The permanent of a matrix is defined in the same way the determinant is defined, except that instead
of alternate signs, all signs are plus signs.
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In combining these transformations (i.e. in taking the direct product), we get a group of
6 x 8 = 48 transformations {(among a total of 24 x 16 = 384). Let us now express the
elements of the group of order eight in terms of the permutations and changes of signs.

e = IC
(12)(34) = P.F.
(13)(24) = Py, Cin
(14) (23) = szctot
(12) = B

(34) = P
(1423) = Py, P.Cin
(1324) = Py PCix

5.7 Geometrical interpretation of the harmonic con-
jugation
The number arg W in Definition (5.12) is easily interpreted. One has
ArgW = arg (21 — 23) — arg (22 — 23) — arg (z1 — z4) + arg (22 — 24).
It is the angle 85 — 6, of Fig. 5.1. When W takes the value —1, this difference is equal
to 7, which implies that the quadrilateral (zy, 23, 22, 24) is inscribable in a circle (see Fig.
5.1). Such a quadrilateral is said to be harmonic. Moreover, we have:

|31 - zaHZz - Z4| = |22 - Z3H31 - Z4|

This is a well known property of harmonic quadrilaterals: the products of the lengths of

23 Z]

‘ 03

<J

4
Figure 5.1: ArgW =65 — 0,

opposite sides are equal.
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5.8 Harmonic conjugation and constellation language

The constellation language is more appropriate whenever the harmonic conjugation prop-
erty is concerned. Indeed, if the cross product equals minus one, we may write

21 T &3 21T %
Perm ( =0,

S 23 22— 24

it is simpler to say that the constellations of order two {21, 22} and {23, 24} are harmonically
conjugate or orthogonal. We write, in that case:

Perm ({21, 20}, {22, 24}) = 0.

This property will be generalized later on to constellations of arbitrary order.

5.9 Circles of P(C)
The equation of the circle of center zy and radius R in € is of the form
|z — 20)* = R,

that is
alzP+ B2+ 8z +y=0 (5.14)

with a # 0, o and 7 real, azy + 8 =0, o*R? = |3]> — ay.
In order to extend the notion of circle to P1{C), we have to define a circle going through
the point at infinity. We note that Eq. (5.14) can be written

a+B/z+08/z+~/|z]>=0. (5.15)

For z = oo, this equation imposes a = 0. According to Eq. (5.9), Eq. (5.14) describes
an arbitrary straightline in €. It becomes, by definition a circle by adjoining to this
straightline the poiut at infinity. Such a generalized circle will be called a “circle”, with
inverted commas.

Theorem 5.3 The Mdbius group acts transitively on the set of “circles” of P1{C).
Proof The proof can be obtained in replacing z in Eq. (5.14) by (az + b)/{(cz+d). 1
One can also use the following lemma:
Lemma 5.2 Any element of the Mobius group can be written as the product
g = shs
where s and §' are similitudes and h is the transformation mapping z on 1/z (inversion).

Proof 'The lemma is proved by the identity

([bc—oad)/c a{c)((ll (I))((C) ‘Ii):(? Z) {5.16)

Since similitudes transform circles into circles and since the inversion docs transform a
circle into a circle or a straightline, the theorem is proved. |
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The space of “circles” is of dimension three. Let us find the stabilizer of the straight
“circle” Im (z) = 0, that is z = z*. It is obtained in setting

(az + b)(cz + d)* = (cz + d)(az + b)*

It follows that ac*, ad* + bc*, and bd* are real numbers. Let us decompose all entries in
real and pure imaginary parts as follows

a=dad+id", b=b+ib", c=+id, d=d +id".
Omne obtains the conditions
" =X, =X, V=w, d=pud, (A-p)dd -¥d)=0.

Because the determinant ad — bc is not zero, we are sure that a’d’ — b'¢’ does not vanish.
Therefore A = p. We conclude that the subgroup of G L(2, C) which stabilizes this “circle”
is composed of all matrices of the form

. Py
(1 +ZA) ( (Cl/ d! >

We can suppose that 1 + ¢\ is of modulus one. The stabilizer is the direct product
U(1) x GL(2,R) and the set of “circles” I" is

I~GL(2,C)/U(1) x GL(2, R). (5.17)

We verify that this set is of dimension three (3 = the order of the group GL(2,C), that
is 8, - the order of the group U(1) x GL(2,R), that is 5).
If, instead of GL(2,C), we start with SL(2,C), we arrive at a similar result:

I'~SL(2,C)/SL(2, R). (5.18)

5.10 Circles of the Riemann sphere

We are going to show that the stereographic projection maps circles on “circles”. This
has an important consequence: the Mobius group may be defined as the group acting on
the Riemann sphere in transforming circles into circles.

Let up be a unit vector of coordinates (6, ¢). A circle having ug as an axis is of the
form u.ug = C (constant), that is

sin @ sin By (cos ¢ cos ¢ + sin ¢ sin ¢g) + cosf cos by = C. (5.19)
Let |z — 20|? = R? be a circle in the Cauchy plane. Using Eq. (5.4), this equation becomes
[cot(8/2) exp(id) — 2] [cot(8/2) exp(—i¢) — 2] = R>. (5.20)

One can identify Eqgs (5.19) and (5.20) in setting

sin 8,
C — cos &y

Zp = exp(ido),

and )
B — 1-C
(C — cos p)?’

which proves our assertion.
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Exercises

1. Verify that T'~SL(2, C)/SL(2, R).

2. Find the subgroup of SU(2, C) which stabilizes the unit circle |z|2 = 1. Show that it is
the group of 2 x 2 unimomndular matrices U verifying U*qU = g, where g = ( (l) 701 ) .
This group is denoted SU(1,1). Deduce that

T~SL(2,C)/SU(1, 1)

and thie isomorphisin of SL(2,R) and SU(1, 1).
3. Prove that for an isoceles triangle, the 3-point ratio is of modulus one.






Chapter 6

The Lorentz group and the celestial
sphere

6.1 The celestial sphere and the map of the sky

We propose to make a distinction between the celestial sphere, a pure geometrical object
where points are undistinguishable and the map of the sky, which corresponds to the
celestial sphere where stars are represented. Such a distinction is necessary: as we will
show, the celestial sphere is constructed from the light cone alone but the map of the
sky involves the light emitted by the stars; its geometrical construction involves their
worldlines in relation with the past light cone, the summit of which being the lens of a
camera at a given time (an cvent).
In fact we introduce the three following maps:

e The instantaneous map: it is the picture of the sky taken at a given time by a
terrestrial obscrver.

e The instantaneous Foucault map: it is the picture of the sky taken at a given time
by a terrcstrial observer confortably seated on a Foucault pendulun.

e The standard map of fixed stars. It will be defined later on.

6.2 The instantaneous map

At a given time, a terrestrial observer can be considered as associated with a Lorentz
frame. In such a frame, an cvent in space-time has four coordinates, namely ¢, z, y, 2.
Suppose that our terrestrial observer takes a picture of the sky and that the optical center
of his camera is at the origin O of the Lorentz frame. The film is supposed to be itself
spherical, of center O. For convenience, the figure is made in a simplified three-dimensional
space-time. We consider the worldlines D and D’ of two stars. They cut the past light
cone at events M and M’ . If OM and OM’ lie on the same light-like straightline, the
images of the stars are superposed (double star). Note that we always take pictures in
the past (retarded waves).

69
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6.3 The instantaneous Foucault map and the stan-
dard map

The map is now supposed to be taken from an observer seated on a Foucault pendulum. ln
such a map, the daily rotation of the earth has no effect. Let us take the word instantaneous
with an approximative sense; this means that we observe the stars during, say a few
minutes. The sun, the moon, and the planets are not represented. Their movement is too
complicated compared to the one of the stars. In a good approximation, our observer has
the feeling that stars are fixed on the celestial sphere. In fact, this is not strictly true for
two reasons. The first one is that the earth is moving around the sun; the second is that
stars are not rigorously fixed one with respect to each other; however their movement is
imperceptible for almost all of them, especially those which are very far from the earth.
They are called the fized stars. We restrict ourselves to these stars and examine the
problem of the earth movement. Let us denote by F one of the Lorentz frames associated
with the fixed stars. In this frame, all stars worldlines are straight and parallel. In a good
approximation, the worldline of the sun is parallel to them. The map constructed in F is
the standard map.

Figure 6.1: The stars corresponding to wordlines D abd D’ seem to be super-
posed (O, M, M’ on the same light-like straightline).

It is clear that in such a frame the earth is not fixed, its worldline is not a straightline
but a helix around the straight worldline of the sun!, with the year as a period. This
fact explains why the instantaneous Foucault map of the celestial sphere differs from the
standard map. The helicoidal wordline is responsible of two effects. First, the earth has
not the same position at two different times of the year, say ¢; and to; however, because
the path covered by the earth is small compared to the distance of the stars, only the
positions of the closest stars are perturbed; it is the parallax phenomenon, a phenomenon
which does not affect the fixed stars. Second, at each time, the worldline of the carth has

'Tn order to get a better approximation, one can choose the straightworldline of the center of mass of
the solar system.
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a different direction in space-time. At time ¢q, the earth can be considered as a Galilean
frame different from what it is at time to. The corresponding boost B(t), £5) describes the
plienomenon known as the aberration of fixed stars: cach fixed distant star seems to have
a small clliptic apparent trajectory with the year as a period (the boost B(¢;,%3) is the
identity transformation for |t; — ts| an integral number of years. The ellipse would be a
circle for a polar star, a straight segment for equatorial ones. The apparent diameter of
the major axis is the sanie for all stars and only depends of the ratio v/c (speed of the
carth divided by the speed of light). This small phenomenon was used by Bradley in 1727
to evaluate the speed of light?.

The things can be said in other words, we mean group theoretical words: the boosts
B(ty,ts) form a continnous set of Lorentz transformations one can make acting on the
instantaneous Foucault map. If our obscrver left his seat on the Foucault pendulum and
sits on an ordinary chair, these boosts must be combined with rotations. We are making
a (non I)OI'i()di(‘.) continuous set of Lorentz transformations acting on the instantaneous
map. Group theorctical transformations are involved just by wait and see!

6.4 The celestial sphere

Up to now, we were coucerned with maps, that is with camera pictures. These are physical
objects. Strictly speaking, if we perform a Lorentz transforination on the map, the map
will change drastically, for the same reason that two photographies of a given landscape
taken at the same time from two different places are not related by a Euclidean transfor-
mation. Indeed, in a landscape, a bird leg can be hidden behind a tree on one picturce and
visible on the other one. However we alrcady saw that, if we discard optical phenomena,
we may define a geometrical object, namely the projective space, on which the Euclidean
group acts. The same may be donc here.

The natural mathematical object we have to introduce involves the Lorentz group
action on the light cone. Stars worldlines are ignored. This object is the celestial sphere
defined as the set of light-like straight worldlines. As in projective geometry, we do not
care of the sense of propagation of light; the future and the past half-cones play the same
role. It is clear that one can make the Lorentz group acting on the celestial sphere.

Our aim is to show that the Lorentz group is isomorphic to the Mébius group and that
its action on the celestial sphere is equivalent to the action of the Mdbius group on the
Riemann sphere. Since we know that the Lorentz group acts also on the instantaneous
map of fixed stars, on such a map, the isomorphism of the Mobius and the Lorentz groups
has the following consequence: if four distant fixed stars lie on a given circle at time t,
they will lie also on a circle at any time ¢'.

2The aberration of fixed stars is a purely relativistic effect; it would vanish if ¢ was infinite; Bradley
uses the propagation of light in the sether to explain it.
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6.5 The Lorentz group and the circles of the celestial
sphere

The events M and M’ have coordinates (¢, z,y, z) and (¢',2',y’, 2’) with the properties

tl Z, y/ Zl

t2 _ I2 _ yz _ 22 — t/2 _ Il? __ yIZ _ Z/Q = 0. (6.2)
The last equation can be written
1-X?-Y*-2?=0. (6.3)

where X (resp. Y, Z) denotes either the ratio =/t (resp. y/t, z/t) or the ratio z’/t’ (resp.
Y/t 2 ).

Our camera description of the light cone is the relativistic counterpart of what we have
done in defining projective geometry. The difference between the two approaches is that
we have taken now into account the fact that light propagates at a finite speed. When
¢ tends to infinity, the past and the future half light cones become not distinguishable
and light rays are just straightlines in the z,y,z space. Eq. (6.3) defines the celestial
sphere. If we are able to prove that the Lorentz group conserves the circles of it, this
would prove that the Mdbius group is isomorphic to the Lorentz group. Since the Lorentz
group conserves the sphere, it is enough to verify that it conserves planes in order to prove
that it maps circles on circles.

Note that the equivalence relation Eq. (6.1) can be used for any direction in space-
time. It is easy to check that the sets of time-like, light-like, space-like directions are
represented by

time-like directions: X2+ Y2+ 22 <1,
light-like directions: X2 +Y?+ 22=1, (6.4)

space-like directions: X2 +Y?% 4+ Z%2 > 1.
Let aX + bY + ¢Z + d = 0 the equation of a plane. In homogeneous coordinates, this
equation reads ax + by + ¢z + dt = 0. We know that Lorentz transformations are linear;
therefore they transform the equation az + by + cz + dt = 0 into an equation of the form
dx +by+ dz+dt =0, that is a plane into a plane. Since the Lorentz group acts on
R? in preserving planes and the celestial sphere, a Lorentz transformation is a Mdbius
transformation. The problem is to know if we get in this way all M&bius transformations.
1t is well known that the complete Lorentz group is the union of four continuous sheets:

° Llr : the connected Lorentz group,

e L' : the connected Lorentz group X parity,

. Lﬁr : the connected Lorentz group X time reversal,

e L' : the connected Lorentz group X parity X time reversal.

The subgroups of the complete Lorentz group which contain the connected subgroup as a
subgroup are:
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® Leomp = LLULLULi UL' | the complete Lorentz group,
o LT = LLULT_., the orthochronous Lorentz group,
® Linimod = LLUL#, the enantiochronous Lorentz group,

L, = LLULl, , the unirnodular Lorentz group,

. LIr, the connected Lorentz group.

By continuity arguments, it is clear that the Mobius group contains the connected Lorentz
group and, therefore, is isomorphic to one of those five groups.

6.6 Spinors and light rays

Let v = zl be a nonzero spinor and ¢+ = (z} z3) be its adjoint. We can associate
2

with 4 the 2 x 2 Hermitian matrix of zero determinant and positive trace:

w1 a _( T+Z X -iY .
H = L/M/) - ( Ziklg |ZQ|2 ) B ( X+ZY T-Z ’ (60)
DetH =T? - X? —-Y?-22=0, (6.6)

TrH = 2T > 0. (6.7)

Let A be an SL(2, C) matrix. The matrix AHA™" is also Hermitian and of null determinant.
This proves that the group SL(2,C) acts on the set of 2 x 2 Hermitian matrices of null
determinant, or the set of future lght-like four-vectors.

Instead of a nonzero spinor we can use a ray-spinor, that is a spinor defined up to a
complex factor (¢ equivalent to Ay, with A # 0). We would make the group SL(2,C)
acting on the set of future light-like four-vectors up to a positive factor, that is on the
celestial sphere. Let us examine if it acts effectively on it. We have to look for those
SL(2,C) matrices which transform every ray-spinor into itself. We have to solve the
cquation

Ay = Ay, for all 4.

If A= ( Z z ), this equation reads

azy + bz = Az), cz1+ dzo = Az,

that is
azyzs + bz;‘ = czf + dz1 29, whatever are z7 and 2z,

or
b=c=0, a=d.

One conclude that the group which acts effectively is SL(2,C)/Z,. This proves that this
group is isomorphic to the Mdébius group. In order to know which of the five Lorentz
groups we arc coucerned with, we have to sce if parity II, time reversal © and IO are
implemented.
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Suppose IT = ( (Z Z ) . One must have

a b T+2Z X-—3iY\ T-Z -X+1 - —c (6.8)
c d X+iY T—2Z ) \ -X+iY¥ T+2Z =b* o )’ ’
whatever are T, X, Y, Z. It is easy to check that this implies a = b = ¢ = d = 0, which

is incompatible with 12 = Id.
Analogous calculations for © and 10 gives

O does not exist, 110 = — ( (]) (1) ) . (6.9)

I16 leaves all ray-spinors invariant. It follows that the group which acts effectively on
the celestial sphere is the connected Lorentz group Lﬁr . Then we have proved that the
Moébius group is isomorphic to Ll , a fact which could be related to the connectedness of
the Mdbius group.

6.7 The isomorphism of SL(2,C) and Sp(2,C)

Let us introduce the alternate form of the determinant on €2, that is the antisymmetric
tensor €45, with components

€12 = —€21 =1, €11 = €2 =0.
This tensor induces a symplectic product on C? as follows:
¥, 9) = —(6,9) = ()¢ = eary)’0".
We define the covariant components of a spinor by the relation:
Yo = et (6.10)
It follows that
Y =%, Py = -t (6.11)
We may write:
(¥, 8) = Yad” = 19" +126” = V¢! — V" = —th12 + U
Let A be an Sp(2,C) transformation, that is a transformation satisfying
(AY, Ag) = (1,). (6.12)

We have:
(AY, Ao) = (eA)"Ap = v ATe"Ap = "¢ ¢,

This relation must be verified whatever are the spinors ¥ and ¢. One gets the condition
ATeTA = €7 (6.13)

It is easy to verify that this relation is equivalent to Det(A) = 1. This proves the isomor-
phism of Sp(2,C) and SU(2, C).
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6.8 The Lorentz group and the set of oriented circles
of the celestial sphere

Let us consider the oriented unit circle defined by the points (—1,4,1) in the extended

Cauchy plane, that is by the spinors ( ;1 ) ( 11 ), ( 1 ), given in this order, and let

us find the transformation ( ch Z ), of SL(2,C) which maps it into the opposite circle
(1,4,—1). Onc obtains
—a+b=—-c+d, ia+b=1ilic+d) a+b=—-c—-d (6.14)

T+Z X -iY
X+ T-2 )

0 -1 T+7Z X-iY 0 1Yy T-7 —-X+1iY

1 0 X+ T-2Z7 -1 0/ \-X-3iY¥ T+4+2Z
one recognizes the action of the parity operator II. We deduce that the Lorentz group
which acts effectively on the set of oriented circles is the group L.

thatisa =0,b = —1, ¢ = 1, d = 0. This transforms the four-vector (

into

6.9 The polar decomposition of an SL(n,C) matrix

Let A be a matrix of SL(n,C); it is casy to check that the matrix AA* is Hermitian with
positive cigenvalues (positive matrix). AA* can be diagonalized with the aid of a matrix
X; its positive square root H is uniquely defined as follows:

AN = H?, XH?’X'=H} H=X'HX.
Let us set.
U= HA, (6.15)

The matrix U is unitary since UU* = H'AAH ! = Id.

The relation A = HU is called the polar decomposition because it generalizes the polar
decomposition of a complex number (take n = 1). Now, consider the matrix A*A. For
analogous reasons, it is the square of a Hermitian matrix K. We have

AA'A = H2A = AK?,

that is
K?*=A"'H?A = (KA)'HZXA

and K is uniquely determined by
K=A'X""HoXA=A"'HA=U"H'HA.
This provides us with a second polar decomposition
A=UK. (6.16)

which has the same unitary part as the first one. We note that H and K have the same
spectrum.
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6.10 The group SO(3,C)

In the present section, we intend to show the isomorphism of the Lorentz group and the
complex group SO(3,C). This isomorphism is obtained as follows. Let F be a 2 x 2
complex matrix of zero trace. We can write
_ z r—1iy \
F = (:c-H'y . ) = zo1 + Yo, + 203 (6.17)

where z, y, z are complex numbers.

A matrix g of SL(2,C) transforms F into gFg™!, another 2 x 2 complex traceless
matrix with the same determinant —z? — y? — 22. This defines an action of SL(2,C) on
€>. Tt is easy to prove that the group which acts effectively is the group SL(2,€)/Z,. In

fact:
(ZS)(?[I)) :<(1)(1))<(i3)implies:d,b:c
(ZZ)(? Bz) = (? _Oi)<22)impliesb:0,
a 0
Det(Da)

Note that the transformation

Il

1 implies a = £1.

FF = F-invxF—[y}/(1 +9)]vx (vxF)
= AF —iyv x F — [/3/(1 + )|(v.F)v, (6.18)
where v is a real vector such that v2<1 and v = (1 — v?)"/2, preserves F2. This proves
that this transformation is a complex rotation (compare it to Formula (2.1)). Let us define
the real and imaginary parts of the vector F in setting F = B — iE. The transformation
reads
B = B-ywxE—[y?/(1+7)]v x (v xB)
= YB-yw xE-[¥*/(1+7)](v.B)v (6.19)

E/

E+yw xB—-[?/(1+9)]v x (vxE)
= AE4+w xB - [y*/(1 +Y)|(v.E)v (6.20)

One recognizes the way the magnetic and the electric vectors transform under a boost of
speed v. The link with the usual notation F*¥ is the following

B =1/2¢7*Fy,, E' =F” (6.21)
The SO(3,C) invariant F2 decomposes into the two Lorentz invariants:
A(F) =B? - E* =1/2F*"F,, (6.22)

O(F) = 2B.E = 1/4¢,, \F* F* (6.23)
uvp
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The action of SO(3,C) on €* decomposes into actions on complex spheres F2 = constant.
If F? is not zero, the group which acts on the complex sphere is SO(3, €)/SO(2, C); since
S0(2,C) is of real dimension two, the corresponding complex sphere is of real dimension
(2) (2) , which
corresponds to B = (1,0,0) and E = (0,—1,0). The stabilizer is still a subgroup of
complex dimension one; it is the subgroup of SO(3, C) matrices of the form

four. We are left with the case where F?2 = 0. Take, for instance, F =

1+2f%  2if?  -2if
2if2  1-2f2 2f |. (6.24)
2if —2f 1

This corresponds to triangular matrices of SL(2, €C):

+1 b
0 =1
a b 0 2 0 2 a b S
(c d)(? 0)=(2 O)(c d) implies a =d, ¢ = 0.

6.11 The Lie algebra of SL(2,C)

Indeed:

We have shown that a transformation of SU(2) may always be written as the exponential
of a lincar real combination of Pauli matrices. We could think that, since the group
SL(2,C) is the complex form of SU(2), an arbitrary clement of SL(2,C) could be written
as the exponential of a linear complex combination of Pauli matrices. Such a property

. . . . a b
would mean that given an arbitrary complex unimodular matrix: g = ( e d ), there

z

would exist a F = ( .
T+y

:c:;y ) such that g = exp(F). Let us compute exp(F).

n!

> Fm
exp(F) = Z
n=0

e T @n=1R
sinh R

o R?n R+l P
- 3| |

n=0

= cosh R+ F

cosh R+ zsinh(R)/R  sinh(R)(z — iy)/R (6.25)

sinh(R)(z +iy)/R  cosh R —sinh(R)z/R )’ 0

where R? = 22 + 3% + 2% We readily check that Det(exp(F)) = 1. Since R is a complex
number, we can state R = R, + iRy, and

exp(Ry + tRy) + exp (—(Ry + iR2))

2
cosli( R, ) cos(Rs) + isinh(Ry) sin(R,).

coshR =

il
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Similarly,
sinh R = sinh(R;) cos(Rz) + ¢ cosh(R;) sin(Ry).

It is not difficult to check that any element of SL(2,C) can be put in the form of some
exp(F).

6.12 The Poynting vector
The Poynting vector P reads, in terms of F and F*, as the vector product
P= %F x F*. (6.26)
It is related to the electromagnetic energy density
p= %FF ~ F'F. (6.27)

We have the following lemma:

Lemma 6.1 There exists a Lorentz frame in which the Poynting vector is zero if and only
if F2 #£0.
Proof Suppose that P # 0. It is easy to prove that, under a boost of speed v in the P
direction, P and p are transformed as follows:

P’ = (272 — )P — 24%pv,

P =2y —1)p-2¢*Pv.

This proves that P conserves the same direction. Let P be the length of P, v the algebraic
value of v. Expressing v in terms of the speed, we get the following condition for P’ to
vanish.

Pv? —2pv+ P =0.

This is an equation with v as an unknown. It has a physical solution if it has a root v
such that |v| < 1. The two roots have a positive sum (p and P are positive) and a product
equal to one. It follows that the two roots are positive. If they are distinct, one of them is
less than one and it is possible to make P’ vanishing. If they are equal, they are equal to
one, it is impossible to make P’ vanishing. Let us examine this peculiar case. If § denotes
the angle between the magnetic and electric field, the last equation reads

B? —2FBsinf + E2 =0.

This equation has a real solution if and only if # = #n/2 and F = B. This situation
corresponds to F2 = 0. The lemma is proved. We note that, if F2 = ), a boost in the
Poynting direction leaves P and p unchanged. Moreover P = p. |

Remark Define the vector U as the vector U = P/p. If U is not a unit vector, there
exists a Lorentz frame such that its transform U’ vanishes. One has:

_(1+vHU-2v

U= ogy =% (6.28)
We deduce that
ure (A2 S0 (6.29)
T\ +v2 )

Then we have the following corollary.
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Corollary 6.1 The vector U = P/p obeys the inequality U?<1, the equality occuring
when and only when F? = (.
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Exercises

1. Prove that

0 p 0 .
6¢a 671/)0
2. Define the inverse of the tensor e. Find its (contravariant) components.
3. Show that the formula ATe” A=¢T proves that the representation of SL(2,€) on C? is
equivalent to its contragredient.
4. Find the orbits of SL(2,C) on C2. Give the stabilizers.
5. Find the orbits on the set of nonzero spinors defined up to a phase. Prove that the
stabilizer is unique and isomorphic to the Thales group Th(2,R), i.e. the group generated
by the translations and homotheties in IR2.
6. A Dirac spinor is an element of C*. The group SL(2,€) acts reducibly on this space,
according to the sum A@(A+)~!. Show that there are two invariants associated with a
given spinor 9. They can be written ¥ vyy% and ¢+ ~yyy51), where vy and 75 are two square
matrices satisfying 72 = —+2 = 1. Show that the stabilizer of a spinor for which the two
invariants are zero (are both different of zero)is isomorphic to R? (is trivial).
7. Show that the stabilizer of the Lorentz group acting on the projective Dirac space is
isomorphic to the Thales group Th(2,IR), i.e. the group generated by the translations
and homotheties in R2.

d)a

Problem
We consider the group SL{n,C) of all n X n complex matrices of determinant one and its
action on M, the set of all n x n Hermitian matrices, defined as follows:

A€ SL(n,C), He M,, H— AHAY

a. Check that the group acts. Does it act effectively? transitively? freely?

b. Use the property that every Hermitian matrix is diagonizable by a unitary matrix and
the polar decomposition to find the orbits and the strata of M.

c. We choose n = 2. What are the elements of M which describe a density matrix? Find
the interpretation of the orbits on such matrices.



Chapter 7

Axiomatics of spherical
constellations

The spherical constellations are those defined on the sphere S2. The geometry depends
on the group which is chosen to act on them. Such a group could be a one which acts on
S? itself. Among those possible groups, there are the Lorentz group, the group O(3), the
rotation group SO(3).

Definition 7.1 (Constellation) f is called a constellation if il is a mapping of the two-
ditnensional real sphere So in IN such that f~1(IN*) is a finite set. Here, IN* stands for
IN — {0}. The trivial constellation e is the zero mapping.

Definition 7.2 Let u be an element of Sa; f(u) is called the multiplicity of u.

Definition 7.3 The order of a constellation f is the number

w(f)=>_ fw) (7.1)

me Sy

Definition 7.4 The apparent order of a constellation is defined as

(f) = Card[f~1(IV")]. (7.2)
Obviously
W' (f)<w(f). (7.3)
Definition 7.5 The degree of degeneracy of a constellation is defined as
A(f) = w(f) — (). (7.4)

If A(f) = 0, the constellation is said to be non degenerate.

Definition 7.6 (Ciel) The set of all constellations of order n is called the ciel of order
n and is denoted C,,. The ciel of order zero is called the empty ciel. Note that C; can be
identified with the sphere itself.

The union of all C,’s, from n = 0 to oo is called the united ciel and denoted by C.

Definition 7.7 (Star) A star is a constellation of apparent order one. A star is said to
be simple, double triple,..., or of multiplicity n if its apparent order equals 1, 2, 3, ..., n.

81
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Proposition 7.1 There exists a partial ordering on the united ciel defined by

f<g iff Vue S, flu)<g(u). (7.5)
This relation defines on the united ciel a lattice structure.

Definition 7.8 Given two constellations f and g, one defines the union by the relation
(fug)(w) = f(u) +g(u) (7.6)
Proposition 7.2 The union defines an Abelian semi-group structure on the united ciel
Vf,geC,3fug eC. (7.7)
The neutral element is the trivial constellation e.

Definition 7.9 One can associate with a given constellation f a Young diagram in classi-
fying the maltiplicities in the decreasing order. The number of squares is given by the order
w(f), the number of rows by the apparent order w'(f). A one-column diagram corresponds
to a nondegenerate constellation, a one-row diagram to a star. A Young diagram defines
a class of constellations. A constellation of order 4 belongs to one of the five following
classes.

LT [ ]

Figure 7.1: Classes of constellations of order 4

Proposition 7.3 Let G be a group acting on the real sphere. We can make it acting on
the united ciel as follows

VfeC, Yu€ Sy, VgeG [o(g)fl(v) = flg 'u) (7.8)

1t is a simple matter to verify that the group leaves the classes invariant. FEquivalently,
the classes are subsets of orbits.

Theorem 7.1 The ciel of order n can be identified, as a manifold

1) with the symmetrized product S3/S, , where S, is the symmetric group with n ele-
ments,

2) with the set of ray-polynomials of degree <n, homogeneous with one complez variable,
3) with the set of ray-polynomials of degree n , homogeneous in two complex variables,
4) with the projective space C"*')C*, where C* = C — {0},

5) with the symetric space SU(n + 1)/U(n),
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6) with the set of all oriented ellipses of IR™™, centered at the origin, having a given
value of a® + 6% (sum of the squares of the azes).

Proof of Theoremn 7.1 - 1) 'The space S%/S(n) is composed of “sets” {uy,ua,...,un},
where the u;’s are not necessarily distinet. The identification readily follows. |

Proof of Theorem 7.1 - 2) Cousider a polynomial of degrec <n. It can be written in the

following way:

1

pn(z) = (L()Zn + a) 2T 4+ Ap. (79)

Suppose its degree is n. Then it can be factorized as follows:

pl(z) = aplz —z1)™M (2 — z2)™ ... (2 — 2)™, (7.10)
with
k
> nj=n. (7.11)
i=1

Suppose, for instance, that n = 8, k =4, and n; = 3, ng = 2, ng = 1, ng = 2. We can
associate with it the “set” {z), 21, 21, 22, 22, 23, 24, 24 }, which characterizes a constellation
by a stereographic projection on the complex line (Riemann sphere). Its order is 8 and its
apparent order is 4.

Whenever the degree of the polynomial is less than n, say n'/, our factorization is still
valid in replacing n — n’ roots by oo. Conversely, given a constellation of order n, onc can
associate a polynomial of degree less than or equal to n, up to a factor, since p,(z) and
Apn(z) have the same roots.

Remark Although C, is the set of ray-polynomials in one variable of degree less than
or equal to n, it is not true that C is the set of all ray-polynomials. |

Proof of Theorem 7.1 - 3) Alternatively, let us consider a homogeneous polynomial of
degree one with two complex variables, namely az; + bzg. Suppose it is defined up to a
factor. Onc can associate with it a complex number in the extended complex line. This
complex number is b/a (if a is zero, it is infinite).
Any homogeneous polynomial of degree n reads:

pn(z1, 22) = ap2f + alz?_lzg +...anzy. (7.12)

Because it is defined up to a factor, it can be factorized in a unique way in homogeneous
polynomials of degree one up to a factor:

]),,,(21,22) = aplanz1 + aez2)(Br21 + Boz2)(mz1 + veze) ... (A121 + Agza). (7.13)

It follows that the set of homogencous polynomials defined up to a factor can be identified
with S3/S,,. |
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Proof of Theorem 7.1 - 4) Any element of € "*! has the sequence form (ag, a1, as, . . . ,an),
with which we associate the polynomial p,(2) = agz™ + a;(2)" ! + ... + a,,. The corre-
spondance is one-to-one. It is also one-to-one for the classes of GJ“H/C* (ray space or
projective space)

Ae €, (ag,a1,82,...,an)~(Aag, a1, Aag, ..., Aap) (7.14)
and the classes of polynomials

apz" + a12" 7 4+ an~A(ap™ + a1z 4L+ ag). (7.15)

Proof of Theorem 7.1 - 5)  Let us make the group SU(n+1) acting on €**!. Let us show
that this group acts transitively on €**1/€*. To prove it, it is sufficient to show that,
given two unit vectors |a; > and |b; >, there exists a unitary transformation mapping
|ay > on |by >. Let us construct an orthonormal basis |a; > (i =1, 2,..., n) with |a; >
as the first vector, and an orthonormal basis |b; > with |b; > as the first vector. It is easy
to check that the operator
U= Zaiﬂbj >< (lil
ij

is unitary and maps |a; > on |b; >.

Let us look for the stabilizer of an element of C*!/C*, say the element 0 |, which
0
we decide to write shortly ( (1) ) . It is a simple matter to see that the stabilizer is of the

a B
formU-(O D

matrix. The matrix U belonging to SU(n) obeys

>, where B is a row matrix with n elements and D a square n X n

la? =1, B=0, DD = Id,* = DetD.
This proves that the stabilizer is isomorphic to U(n). It follows that

™ /@ ~Cy~SU(n + 1)/U(n). (7.16)

We deduce the following corollaries:

Corollary 7.1 SUn + 1) acts transitively on C,.

Corollary 7.2 C, is a symplectic manifold. This property is a consequence of the Kostant-
Souriau theorem according to which each coadjoint orbit of a Lie group has a canonical
symplectic structure. Since the group SUi{n + 1) is semi-simple, we may identify adjoint
and coadjoint orbits. Adjoint orbits are the ones associated with the action of the group
on its Lie algebra. The Lie algebra of SU(n+1) s the set of Hermitian traceless (n+1) x
(n + 1)-matrices. Let H be the diagonal Hermitian matriz with n times the eigenvalue a,
namely,

-na O
H:( 0 a]d)
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Proof of Corollary Consider the adjoint action of a matrix U

+ _(a B —na 0 a* C*
H—UHU ‘(C D)( 0 a1d>(3+ Dt

The unitary character of U implies that

la|> + BBT =1,
DB*
C=- :

o*

The condition UHU = H implies
B =0, |o] =1, and DDT =1Id.

It follows that the stabilizer is isomorphic to U(n). |

Proof of Theorem 7.1 - 6) Let us consider the Hamiltonian of the » + 1 dimensional
harmonic isotropic oscillator

_pitp g teitad 4 any, pP4x?

H 7.17
2 2 (7.17)
The differential equation of the movement is
d*x
the solution of which is
x = Acost + Bsint = Re[(A + iB) exp(—it)], (7.19)

where A and B arc vectors of IR®. The corresponding trajectory is an ellipse of equation
x? + 4% = 1 in the basis A, B. Bach solution is uniquely defined by a complex vector
of €1, Tt follows that there is a one-to-onc mapping between the set of solutions and
®n+1.

We have 4
p= d—)f( = —Asint + Bcost.
It follows that the energy is given by
2 2
P=P 1% A7 B = |jA+iBl.

We readily sce that changing the energy corresponds to changing the norm of the vector
A +4B. Changing the phase of this vector is equivalent to multiplying the vector A + B
by exp(it), that is to time translating. It follows that multiplying the vector A +iB by a
factor is equivalent to changing both energy and time beginning of the motion. Now fixing
the encrgy of the movement and leaving undetermined the time beginning defines uniquely
the elliptic trajectory. If we choose the vectors A and B along the axes of the ellipse, we
arrive at the conclusion that the space C, = €' /C* can be interpreted as the set of
ellipses in IR™*!, centered at the origin and obeying the relation A2 + B2 = constant. W






Chapter 8

Ray-polynomials and constellations

8.1 Ray-polynomials of degree two

Let us consider an clement a : b : ¢ of P(C) and an arbitrary element x : y of Pi(C). One
may associate with them what we call a ray-polynomial of degree two, namely:

Pla:b:c,z:y)=az® +bry + cy’. (8.1)

We call roots of this ray-polynomial the elements z : y of P,(C) which makes P(a:b: ¢,z :
y) vanishing. If we fix the values of a, b, ¢, we see that this is a homogeneous polynomial
of degree two.

We note that the discriminant A = b? — 4ac of the ray-polynomial is a projective
quantity (i.c. defined up to a factor). If A = 0, we have z = y as a root, that is
z:y=1:1. IfA#0, wehaver:y =2x: %x. We do not say that a ray-polynomial
has two roots, we prefer to state that a ray-polynomial has a constellation of order two
as a root, the apparent order being one whenever A = 0. If we remind that P;(C) can
be identified with a sphere of radius one, we sece that a ray-polynomial of degree two is
associated with a chord of that sphere, the length d of this chord satisfying: 0<d<2.

Coustellations of order two can also be considered as a special casc of a complex
projective quadric. Such a quadric in P,,_,(C) is defined by the equation:

a; Q2 ... Qi T
az1 Q2 ... Q2 T2

(21 22 ... =) =0, (8.2)
any Ap2 ... Qanp Ty

where, clearly, the square matrix is an clement of a projective space of dimension n? — 1.
In such a language, constellations of order two appear as complex projective quadrics of
dimension zero.

More generally, constellations of any order d can be called alternatively either complex
projective surfaces of dimension zero and of degree d or ray-polynomials of degree d with
two complex variables (or on P(C)).

8.2 Geometries of constellations of order two

We alrcady saw that one can make the rotation group and the Lorentz group acting on
the sphere. According to the Erlangen program, the geometry depends on which group is
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Length | Stability subgroup | Stratum | Dimension of the stratum
d=20 SO(2,R) So~P;(C) 2

0<d<2 Cs 4
d=2 O(2,R) P(R) 2

acting. Let us start with the rotation group SO(3,IR). It is clear that the length of the
chord is an invariant. When the chord is of zero length (say the North pole), the stability
subgroup is isomorphic to SO(2,R) (the rotation group around the poles). When the
chord is a diameter (say the North-South diameter), the stability subgroup is isomorphic
to O(2,IR). This subgroup contains the rotation subgroup SO(2,R) and any 7-rotation
around an arbitrary equatorial diameter. In the generic case (that is, for instance, a
chord orthogonal to the North-South axis of length d # 0, 2), the stability subgroup
is isomorphic to the cyclic subgroup Cy of order two around the North-South axis. We
conclude that the four-dimensional space contains three strata: We see that the diameters
can be considered as real constellations of order two. Each stratum is a union of orbits,
as described in Section 3.11.

Let us now examine the case where the group is the SO(3,C) group. We intend to
show that the action of this group on S, x S; can be deduced from the one on C? as
follows. Let F be an element of €3 defined by

F=( ? x—w) (8.3)

Ty —z

where z, y, z are complex numbers. Let us denote by F the class of vectors F defined up
to a complex factor. F is an element of Py(C)~C3/C. Clearly, the group SO(3,C) acts
on P,(C), as it was shown in Section 6.10.

Now, on can associate with any element I a constellation of order two {z1, 22} as

follows: )
£ 21+ 22 -
= 4
F ( 22122 —(Zl + Zg) ) (8 )

provided x — iy is not zero. We note that

F(;):@rﬁﬂ(;) (8.5)
13‘(212):(22—21)(212) (8.6)

1t follows that the constellation is invariant under the action of F.
Let us examine the commutator of two elements:

R I IV, Z1+ Zy -2
BF =20 +a-4- 5 557 o 87)
where Z; and Z, are the roots of the following polynomial:
(21 + 20 — 25 — 25)Z% — 22129 — 2125)Z + (2 + 2b)z122 — (21 + 22)2) 2, (8.8)

lor, in our language, {Z1, Z2} is the constellation root of this polynomial.
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that is

0 — 2l + _ o — 7
Zig = 2122 — %1% \/("51 21) (22 — 1) (21 — ) (20 — 23) (8.9)

2+ 2 — 2 — 2

The constellation {Z), Z2} has a very simple geometrical interpretation, due to the prop-
orties: 7 , ,
(Zr—a)Ze—2) _(Dh—2)(Bo—z) (8.10)
Zy— )2y —n) Ty — 2)(Z2 — z)
This means that the constellation {Z), Z,} is harmonically conjugate to the constellations
{z1,22} and {21,25}. It is a simple matter to prove that thosc two conditions uniquely
defines the coustellation {Z), Z,}. We arrive at a simple connection between commutators
and harmonically conjugate constellations.
Let us now examine the following peculiar cases:

o The constellations {21, z2} and {2{, 25} are non degenerate (i.e. of apparent order
two). Since the cross ratios of Eq. (8.10) are equal, we know that there exists a
homographic transformation which maps the points 7, Z,, 2, 2z on the poiuts 77,
Zy, 2y, zh, respectively. This is equivalent to say that there exists a transformation
mapping the constellation {21, 20} on the constellation {z},z,} generated by the
coustellation {73, Z>} (that is, with {Z1, Z;} as a fixed constellation).

e Let us now suppose that {z1, 22} and {2z}, 23} arc real constellations, that is they
correspoud to diameters of the Riemann sphere (2125 + 1 = 2{2" +1 = 0). The
commutator of these two constellations is the diamneter perpendicular to the given
diameters. This corresponds to the vector product in the three-dimensional real
space.

e Onc of the two coustellations, say {21, 25} is degenerate; this means that we may
write 2] = 25 = z’. Onc obtains:

{21, 25} :{

’
22122 — (Zl + ZQ)Z Z/
2420 — 220

e Both constellations are degenerate. One can set: z; = 20 = z and 2§ = 2z, = 2.

Then
{21, 22} = {27} (8.12)

o Suppose that z; = 25. The comumutator of {21, 22} and {z{, 22} is just {z3, 22}

e Whenever 21 + 2o = 2] + 25, Eq. (8.8) is of degree one. Since we are working with
projective spaces, we must say that one of the two roots is infinite. The commutator
of {z1, 20} and {2}, 25} is {00, (21 + 22)/2}.

We can make the following statement;:

Proposition 8.1 With each ray of the complex Lie algebra of SL(2, C) can be associated
a constellation of order two denoted {z1,22}. The constellation {Z,, Z,} associated with
the commutator [{z1, 22}, {21, 24}] is the one given by the cross product conditions:

Perm ({21, 22},{Z1, Z2}) = Permn ({21, Z2}, {21, 25}) = 0, (8.13)
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where Perm represents the permanent of the matriz:
2 —2Zy 21— Zy
( 29 — Z1 Z9 — Zg ) (814)
Let us precise that a permanent is computed as a determinant, except that all signs are
plus signs. It is symmetric with respect to the z;’s and with respect to the Z;'s. As
we are going to show, our proposition generalizes the concept of harmonically conjugate

constellations to an arbitrary order. It shows also that this concept is intimately associated
with the notion of constellations.

8.3 Geometry of constellations of arbitrary order
Let us consider two constellations of order n, namely
{21,22,...,271} and {Z],Zg,...,Zn}. (815)

They will be said to be harmonically conjugate (h.c.) if their permanent product, defined
as

2v—24y 21— 4o ... 21— 2y
(:,2) = (-)(2,2) = Perm | 277 2= H o mm (8.16)
Zn— 21 Zpn— Do ... Zn— Zy
with
Perm (2, — Z;) = Z (21— Zo) )22 — Zgy) o« (20 — Zo)s (8.17)

permut
with the summation extending to all permutations o of the 2/, is zero.

It is clear that the permanent product is symmetric with respect to the 2;’s and with
respect to the Z;’s. It follows that the permanent product is of the form

(Z, Z) = Z )\ksk(zh 22y 000y Zn)Sn—k(Zla Zyy -y Zn), (8~18)
k=0
where Sk(z1, 22, - . ., z,) denotes the symmetric function of order k, namely
Sk(zl,zz,.“,z,,):szzo,‘,.,.zgk, (8.19)

and the A, are constants to be determined. It is easy to obtain them in supposing all 2;
equal to z and allZ; equal to Z. We get

(,2y=(2—-2)" = i(_)k ( Z ) Sk gm—k

k=0

Since

Sk(Z], 22y .+ '7211,) = ( Z ) Zk and Sn—k(Zh ZQ, o .,Zn) = ( Z ) Z"—k7
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one obtains

Ap = (=) . (8.20)

Remarks

1) Two constellations of order n which have more than n/2 stars in common are trivially
h.c. (This readily follows from the fact that more than a quarter of the matrix would
be composed of zeroes).

2) Two constellations of order one are h.c. if and only if they are cqual.

3) Any constellation of odd order is self h.c. This property follows fromn the fact that
any antisymmetric matrix of odd dimension has a null permanent.

4) Missing star property: Given two constellatious z = {z1, 22,..., z,}, of order n and
the other Z = {2y, Zs, ..., Z,_1} of order n — 1, there exists a unique star Z,, such
that

({Zl, 29y ..y Z,,,}, {ZI7 ZQ, ey Z,,_l, Zn}) =0.

This follows froin the fact that this equation is of degree one in Z,.



92 CHAPTER 8 RAY-POLYNOMIALS AND CONSTELLATIONS
Exercise

1. A constellation {a, b, ¢, d} of order 4 can be considered as the union of two constellations
of order 2 in six ways. Show that if z denotes the value of the cross-ratio of one pair, the
other cross-ratios have the values 1—x, 1/z,1-1/z,1/(1—z), and 1-1/(1—x). Show that
these values are distinct except when z takes one of the values —1, 2, or —1/2 (harmonic
constellations) or one of the two values —1+i1/3/2 (antiharmonic constellations). Show
that the function

(2 —z+1)3 1
1) = o =1 73
characterizes the constellation of order 4. Check that
f@)= {lla-bb-c)c—d)(d-a)® +[(a-c)c—b)b-d)(d—a)’+
[(a =b)(b—d)(d—c)c—a)’ } / [(a—b)(a—c)a—d)b—c)b—d)(c—d)

Express f(x) in terms of the variable u = z + 1/z.



Chapter 9

Projective classical groups

We may consider that we have defined in Chapter 8 the permancnt product of two con-
stellations on €. Whenever this product is zero, we say that the constellations are har-
monically conjugate. Then, we have shown that the notion of harmonic conjugation may
be extended to constellations on the extended plane, that is on P (€). We will see that
the sky of constellations of order n is isomorphic to P,(C). The harmonic conjugation
defines a symmetric or antisyminetric scalar product on the projective space, according
to the parity of n. This permits to define the projective groups PO(n + 1, C) if n is even
and PSp(n +1,C) if n is odd. These two groups have the Lorentz group and the rotation
group SO(3,IR) as subgroups. Sowe applications are obtained about the Clebsch-Gordan
products of constellations.

9.1 Harmonic conjugation of constellations on C* ~
P1(C)

Let 4 be an clement of P,(€) represented by a nonzero complex column of €+

Qg Aag

A= a) ~ /\(11

(9.1)
an Ay,
where A is a nonzero complex number.
We associate with A the constellation Z = [z1, 29, . ... 2,], where the z are the roots
of the polyuomial

2" — malzﬂl + \/@azzﬂ — 4 (5)an. (9.2)

That constellation is defined on P(C) since whenever ag = a; = ... = a5 = 0 with
ags1 # 0, k+ 1 of those roots are infinite.

The relatiouship between P,(C) and constellations on Pi(C) defines a bijection be-
tween P,(C) and the sky C, of constellations of order n on P;(C). Then we can write
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We must interpret the harmonic conjugation in P,(C). For this purpose, we introduce
the following (n + 1) x (n + 1)-antidiagonal matrix g:

0 0 0 ... 0 1
0 0 0 ... -1
0 0 0 ... 0 0
g: e DRI e ... « .. PEEERY (9‘4)
0 —(=™ 0 ... 0 0
(< 0 0 ... 0 0

and the bilinear form (A’, A) = A’*gA associated with it. It is now a simple matter to
prove that

(A A) = Zaoa{)(—)k’Sk(zl,ZQ, ooy Z0) Sk (2], 2y 20)] ( Z ) , (9.5)
k=0

which is simply

(A, A) = apay(Z', Z). (9.6)
We see that orthogonality defined by the matrix g is equivalent to harmonic conjugation. It
follows that the groups which preserve the harmonic conjugation in P, (C) is identical with
the lincar group on €**' which preserves the bilinear from g. This group is isomorphic
to PO(n+ 1,C) if n is even and to PSP(n+ 1,C) if n is odd. They are the projective
complex orthogonal group and the projective complex symplectic group, respectively.

9.2 The Mobius (Lorentz) group

The connected M6bius group is the group of homographic transformations

az +b
cz+d’
that is the projective linear group PGL(2, C)~PSp(2, C)~PO(3,C) acting on P;(C).

The full M6bius group is two-sheeted. It contains homographic and antihomographic
transformations:

zZ —

(9.7)

az" +b
ezt +d’
where 2* is the complex conjugate of z. The full Mobius group is the group of all holo-
morphic and antiholomorphic mappings which map the set of circles and straightlines
into itself. It is easy to verify that the Lorentz group including parity or time-reversal is
isomorphic to the full Mébius group.

Any Mobius transformation may be considered as a sequence of transformations of the
following kinds:

zZ —

(9.8)

e translations z—z+«o
o dilations z— Az
e inversion z—1/z

and, eventually,
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e a complex conjugation  z — 2*
It is a very siinple matter to verify that such transformations on constellations preserve
the harmonic conjugation. It follows that the homographic transformations of the Maébius
group form a subgroup of PO(n+1,€) or PSP(n+1,C). The represeutation is irreducible
as it follows frow the classical work by Bargmann on the rotation group and polynomials.
This representation is often denoted by Dy, with n = 27.

Clearly the antihomographic transfromations act antilinearly on P, (C). It follows that
we can consider Dj, as a corepresentation’

9.3 The projective unitary group PU(n + 1) and the
rotation group SO(3)

Let us consider a Hilbert space H of dimension n + 1. The pure states associated with
it arc not vectors but rays. They form the projective space P(H) isomorphic to P, (C).
The canonical transformations of H are the unitary opcrators; they form a group U(H)
isomorphic to U(n + 1). It is the group of lincar transformations which preserves the
Heruiitian sacalar product < 1|y > up to a phase, that is which preserves the expression
| < |he > | or, equivalently, the quantity

| < e > |

V< Uiy >< gy >

(9.9)

The group action of U(H) on H (or of U(n + 1) on €"*') induces an action on the set of
states P,(C). The group which acts on P,(C) is usually denoted PU(n + 1). It can be
defined cither as the group preserving the vanishing of the permanent product or as the
one preserving the orthogonality of states.

This last definition invites us to express the orthogonality of states in terms of con-
stellation language. For this purpose, we introduce the notion of antipodal constellation.

Definition 9.1 The antipodal constellation of |21, 22, . . ., za] is the constellation [—zf_l
*—1 *—1
— T =2

The expression antipodal is justified by the stereographic projection relating Py (€) and the
Ricmann sphere S%2. Two constellations are antipodal if they are symmetric with respect
to the center of the sphere.

Definition 9.2 A constellation will be said to be real if it is equal to its antipodal.

This denomination follows from the following property. If we identify antipodal poiuts
on S%, we get the projective space Pa(IR). Then, any real constellation of order 2n will
appear as a constellation of order on Pp(R). In other words Py, (IR) is the sky of order n
of P(IR).

We now have the following proposition.

'A corepresentation is a representation where some elements of the group are represented antilinearly.



96 CHAPTER 9. PROJECTIVE CLASSICAL GROUPS

Theorem 9.1 Two constellations Z and Z' of order n are associated with orthogonal
states if and only if Z' is harmonically conjugate of Z , where Z denotes the antipodal
constellation of Z.

Proof Let |1) > be a representative of Z in €**! and |1/’ > a representative of Z’.

ag ag
=1 |, =]
an al,
According to Eq. (9.5), we have
mn n
Zaoaﬁ(—)"*kSn_k(zl,zg, ceey zn)Sk(zi, Z’z, . ,Z;L)/ ( k ) =0 (9.10)
k=0
Since
Sk(zia zév s ,z;) = (')n_ksn—k(_‘z;*’ _Zé*a Ty “Z;*)zixzé* s z:l*‘
The theorem follows |
Remarks

1) In the case where n = 1, harmonic conjugation is equivalent to equality. It follows
that orthogonality coincides with antipodality, as it is well known for spin 1/2 states
and for polarisaion states of the photon on the Poincaré sphere.

2) The orthogonality relation may be written in the permanent form as follows

< Z|Z' >=0~Perm 1+ 2{"2;] =0

3) The group which preserves both harmonic conjugation and orthogonality is the in-
tersection of PU(n + 1) with PO(n+ 1,C) or PSp(n + 1,C). It is isomorphic to
PO(n+1,R) or PSp(n+ 1, R).

Let us examine the SO(3,R) subgroup of the Lorentz group. It is the group of
homographic transformations of the form

az+b

z— —
—b*z +a*

By performing that transformation on Z and Z’, the permanent of 1+ 2/"z2; is simply
multiplied by a factor. It follows that SO(3, R) preserves the orthogonality property
and that D, is a unitary representation of SO(3,R).

4) When n is even, that is when states are those of integral spins, the representation
of SO(3, R) is real since SO(3, R)CcPO(n + 1,R). We note that real constellations
only appear in those representations.

5) We have the following corollary. Two real constellations of order two are harmonic
conjugate if and only if their corresponding diameters are perpendicular.



Chapter 10

The spherical rotation constellations

10.1 Irreps of SO(2,IR) ~ U(1)

Strictly speaking, the group SO(2,IR) is the group of all rcal unimodular orthogonal
2 x 2-matrices, that is the matrices of the formn:

R(¢) = ( cosg ~sing > (10.1)

sing cos¢@

where 0<¢ < 27.
These matrices are irreducible on the real field of numbers, but they can be reduced
on the complex nunber field. In fact, a change of basis puts them in the forin

exp(i¢) 0
( ) o) ) (10.2)

This proves that the group SO(2, R) is isomorphic to the group U(1).

U(1) is an Abclian group. We know that such a group has only irreducible represen-
tations (irreps) of dimension one. It is, moreover, a compact group. It follows that all
its irreps are unitary. These two conditions show that the element exp(i¢) is represented
by a nmumber of modulus one, say exp[im(¢)], where m is a function to be defined. The
ncutral element correspond to ¢ = 0. We must have

explim(0)] explim(¢)] = explim(¢)], for any valuc of ¢.

This implics that
explim(0)] = 1, that is m(0) = 0. (10.3)

The function m{¢) must satisfy the condition
m(¢) + m(¢) = m(é+ ¢'),

which means that for ¢’ infinitesimal,

dm
m(6) + m(do) = () + 0 ag,
Let us choose ¢ = 0. We get
dm(0) . dm(e)
m(0) + 3 do = o d¢

97
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Since m(0) = 0, one gets d’gf) = constant. Let us denote this constant by m. We obtain
in integrating:
m(¢) = m¢ + constant. (10.4)

The constant is zero (take ¢ = 0). It follows that the element exp(i¢) is represented by
exp(img).

Since the element ¢ = 27 must have the same representative than the one for which
¢ = 0, the exponential exp(2imn) equals 1, which means that m is an integer.

An irrep of U(1) is then characterized by the choice of an integer m. We will call such a
representation D,,. We already saw that the group U(1) has two faithful irreps associated
with the values m = 1 and —1. For them, the kernel of the representation contains one
element, the neutral one. If m = 0, we get the trivial representation. Its kernel is the
group itself. For another integral value m, the kernel of the representation contains m
elements, namely the elements ¢ = 0, 2"’1’ ‘::, ey m:"—l)

If we except the trivial representation, all the irreps are complex representations. In
order to obtain the irreducible real representations, we have to take the direct sum of the
irreps D,,, and D_,,. We get the set of matrices
cosme — sinme )

sinm¢ cosme (10.5)

D,.+D_,,: R((p) — (

10.2 Irreps of SU(2)

Here we follow the paper by Bargmann on this subject. The group SU(2) acts on the
space C2. Let ¢ and ¢’ two vectors of €2, with components &, 7 and £’,1, respectively.
The inner product is

¢ =8¢+, (10.6)
Let U be a matrix of SU(2). It satisfies

UTU =1d, that is U"! = U™, and DetU = 1.

The inverse matrix of the unimodular matrix U = ( Z Z ) is ( _dc :lb ) Its adjoint

s ( e ¢ ) It follows that a matrix of SU(2) is of the form

b+ da*
U= ( _(2,_ :* ) , with |a|* = [b|*> = 1. (10.7)

We may set
a = cos(¢/2) — ibssin(¢/2), b= —i(by + iby) sin(¢/2), (10.8)

where by, by, by are Teal quantities satisfying b? + b3 + b2 = 1, and ¢ runs from 0 to 47.
For b = by = 0, b3 = 1, the matrix U may be written

_{ exp(—ig/2) 0
0= (G o ) (109)

corresponding to the subgroup U(1) with ¢ running from 0 to 4=.
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Let us introduce the Hilbert space H of entire analytic functions f(¢), with the fol-
lowing inner product:

(.9 = [ 67210 0(O) exp(~¢ C)u(0) (10.10)
where
du(¢) = d(Re&)d(Im &)d(Ren)d(Imn). (10.11)

Let us find the expression of the inner product of f and g in the expansion cocfficients of
their power serics. For that, we compute the inner product (€97, €¥5Y) and we introduce
polar coordinates £ = rexp(ia), n = sexp(if). We have

du(¢) = rsdrdsdadp,

and
(&-anb’ fa’nb') — / ﬂ.72r(1+a’+1SI)+I/+1ei(a’~a)0+1',(b’—17)1367(7'2+52]drd8dadﬂ
0, ifa#ad orb#¥
alb!, if a =a’ and b= b’ (10.12)
[t follows that an orthonormal complete set is given by the set of inonomials . %
If we write the expansion -
g(l,r]b
= ab——— 10.13
FQ) = fas N/ (10.13)

ab

one obtains:

(£, )= |fapl® (10.14)
a.b

Note that the function f belongs to H if and only if this sum is finite.
The sets H; of all homogeneous polynomials of degree 25 (7 =0,1/2,1,3/2,...) form
orthogonal subspaces. A polynomial of H; satisfies

o 0 . i
( 3—£+778—77)f=23f. (10.15)

Coherent states They arc labelled by elements of C2. Let z be an element of C%. We
associate with it the following function of H:

e.(C) = exp(2*¢). (10.16)
It is a simple matter to verify that coherent states belong to H. We have
(s, €x) = exp(2’™.2). (10.17)
Creation and annihilation operators We consider the polynomial basis in H and
the four following operators acting on them:

e creation operators: €, i : multiplication by &, by 71 ;
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e annihilation operators: a%’ a% (partial derivations).

They satisfy the commutation rules:

all other commutators being zero.
Let us show that £ and a% are adjoint operators.

(& een”) = (€. €M) = albuwna
0 f o o b
(iganba §a nb ) = a(g lnbvg nb = a'(a - 1)!611—1,(1,’
We check that these two inner products are equal.

Unitary operators 7;; One can associate with each unitary operator U on C?, a unitary
operator Ty, on H, as follows

(Tu £)(C) = fFIUTC) (10.19)

Because the measure in (10.8) is invariant under U, the operators Ty provide a unitary
representation of the group SU(2).

It is easy to check that the subspace H; of homogeneous polynomials of degree 2j is
invariant under the transformations 7Ty and that the restrictions to the H; ’s subspaces,
being of different dimensions are inequivalent. Now, an orthonormal basis of H; is provided
by the functions

£j+mnjfm
(7 +m)i(j —m)!
This representation of SU(2) will be denoted by D;. We will admit the irreducibility of

those representations and their completeness.
Note that if U is given by (10.7), one obtains

Td — (06 =B E 4 @y
mT VG EmG - m)

We saw that if b= 0, U has the form (10.9) corresponding to a subgroup U(1). One gets

J —
vy, =

,m=jiji—1,—-2...,—j (10.20)

(10.21)

Tyv), = exp(—ime)vl,. (10.22)

10.3 The irreps of SO(3)

In Chapter 3 we have proved the isomorphism (Eq. (3.9))
SU(2)/Zy~S0(3,R).

It follows that not all irreps of SU(2) are irreps of SO(3,R). For an irrep of SU(2) to be
an irrep of SO(3,R), it is necessary that the matrices /d and —Id are represented by the
identity operator. We have, from Eq. (10.21),

§j+m7rj——m
(G +m)i(g —m)!

Tyavl, =

)



10.4. SPIN STATES AND VILENKIN REPRESENTATION 101

and
(-gpm (np

T v}, = . ,
(7 +mN(G —m)!

= (=)*Travy,.

We see that we obtain an irrep of SO(3) provided 2j is an cven integer, that is j is an
integer.

10.4 Spin states and Vilenkin representation

We remind the reader that a state in quantum mechanics is a ray of the Hilbert space of
states. It follows that a state of spin j is represented by a homogencous polynomial of
degree 25 in two complex variables up to a factor, that is by a ray-polynomial. A ray-
polynomnial is uniquely defined by its 27 complex roots, those roots being possibly infinite.
Using a stercographic projection, we see that a state of spin j is represented by a spherical
constellation of order 2j.

We readily note that this description creates a close relationship between the rotation
group aud spin states, even when spin is half an integer. Said in another way, the rotation
group acts effectively on spin states, although it does not act ceffectively on spinors.

In the Bargmann representation, the Lie algebra has as a basis the following values

0 0 0 0 1.0 0

Sy = 5% + g Jy = —zsa—n + 5 Jy = 5(55 - n%)- (10.23)

Vilenkin considers a homogeneous polynomial of degree 27, say f(£,n) as a polynomial of
degree loss than or equal to 27, in sctting it €% f(1,1/€). Denoting the variable n/€ by z
and f(1,z) by ®(z), the basis (10.23) becomes:

) d . d
%(1 + Zz)@ +ijz, J3=7— z—. (10.24)

1 d )
‘]1 = 5(1 — 22)7 +]Z, JQ = — dz

dz

The scalar product becomes

(0(2), B'(2)) = (jSl)! / (1+T;;);¢‘;Tz)2j+2dxdy, (10.25)

where z = x + 1y.
The orthonornal basis is given by the monomials

SJj—m
Uy = E = 5 3 m:jv‘]*l\.]_Zv:_] (1026)
G +m)l(j —m)!

The corresponding states! are usually denoted [jm >. They are known as the canonical
states. The associated constellation is composed of 25 stars, 2m stars on the North pole
(z =0), 27 — 2m stars on the South pole( z = 00).

IStates arc normalized vectors up to a phase factor.
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10.5 The projective complex Lie algebra and constel-
lations

Let us introduce the following basis in the complex Lie algebra:

. d . d ) d )
Jg :j—ZE, J+:J1+ZJ2= E’ J_ = J] —ZJ2=—ZZd—Z +2]Z. (1027)
Note the action of these operators on the canonical basis

J5lgm >=m|jm >, (10.28)

Jilim>=+/(G—mG+m+1)|jm+1>, (10.29
J|jj >=0, (10.30
Joljm >=/(G+M)G-m+1)jm—1>, (10.31
J_lj—j>=0 (10.32

)
)
)
)

The state |jm > is unchanged under the operator Js, as it is unchanged under any operator
of the form exp(—i¢J;), that is under rotations around the third axis. This property has
a trivial geometrical interpretation. Obviously, the stabilizer of this state is isomorphic to
SO(2,IR) except in one case: the state |jj/2 >, when j is an integer; such a state is also
invariant under any rotation of angle m around an equatorial axis; then, its stabilizer is
isomorphic to the group O(2,R).

The operator J, transfers a star from the South to the North pole, the operator J_
does the converse. Obviously, whenever there is no star to be transferred, the action is
impossible and the result is zero, namely the constellation of order zero.

These results can be generalized. First, we note that to be an eigenstate of J3 is
a projective property in the sense that an eigenstate of Js is also an eigenstate of any
operator of the type AJs, where X is an arbitrary complex number. Two linear complex
combinations of the form aJ; +bJy +¢J3 and A(aJ; +bJs + ¢J3) have common eigenstates.
We may associate with such a three-dimensional complex ray F a constellation of order
two. We do it as follows. We take as matrices 2J;, 2J, 2J3 their representatives in spin
1/2 representation, that is the Pauli matrices. Then, we write

o(F) = ( afib “’:Cib ) . (10.33)
We associate with it the constellation {z; 22} as follows:
a—1ib=—-2, a+1ib= 2212, c= 21 + 22.
Then,
0(F) = (21 4+ 22)03+ 21200_ — 04 = ( Zé;;zz —(zl_i 2) ) (10.34)
We note that Det[o(F)] = —(21 — 22)? is zero if and only if the constellation is degenerate.

We also note that its eigenvalues are +(z; — 25). They are distinct if and only if the
constellation is not degenerate.
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The ray F will be said to be real if one of its representative is real. It is easy to
show that, in such a case, 21 # 23. A real ray satisfics the condition: o(F)T = Ao (F)
(Hermitian up to a complex factor A). Let us prove that, in that case, the constellation
lics on a diameter. Take the Hermitian conjugate of (10.34).

o(F)Y = (2f +25)o3 + 2230, —0_
o1 1
= nalm+5losto,———o-.
1 A ~17%2

By comparaison with Eq. (10.34), we get. the conditions for o(F) to be Hermitian up to
a factor:
1 1
zZ1 + 2o = — —* + = |
1 *2

2122 = T -
ziz3
It is a simple matter to prove that they are equivalent to the unique condition:

2125 +1=0, (10.35)

which means that the stars {z,} and {25} are orthogonal, i.e. diamectrally opposite on the
sphere. We arrive at the following theorem.

Theorem 10.1 The constellation of order two associated with a complex ray F lies
1) on a poini, if o(F) is degenerate, that is if Detlo(F)] =0,
2) on a chord, if o(F) is non degenerate,

3) on a diameter, if o(F) is Hermitian up to a factor. In this last case, the constellation
18 said to be real.

Let us state another theorem.
Theorem 10.2 The following assertions hold
1) The constellations associated with the eigenstates of o(F) are {z,} and {z}, if o(F)
is non degenerate and associated with the constellation (z1,20). These eigenstates

are orthogonal (and their associated constellations diametrally opposite) if and only
if (z1,220) is real (z125 +1 = 0).

2) The constellation associated with the eigenstate of o(F) is (2) if o(F) is degenerate
and associated with the constellation (z, 2).

These two results can be stated in the following way:

The eigenconstellations of (21, z9) are those of order one which can be defined with
the aid of the stars (z1) or (29)
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Proof The proof of this theorem is quite simple.

1 AR I ) -2 1 _ 1
U(F) 21 - 22129 —(21 + 22) 21 - (22 Zl) 21
1 (st -2 1 B 1
o(F) z ) 22129 —(21 + 22) 2z ) (21— 22) 2

If 21 # 29, we get two distinct eigenstates. If z; = 29, one cannot distinguish between the
two equations, the unique eigenvalue is zero. |

Let us examine the three following cases. For that purpose, we write

1/ 142/22 —2/2,
o(F) = B ( 9% (142 /2) ) . (10.36)

1) 21 21,22:—1, U(F):Ul,
2) zZ1 = i, 29 = —i, O'(F) = 02,
3) 21 =0, 20 =00, o(F)=o03,

In Fig. 10.5 we see the geometrical interpretation of those formulas. To be an eigenstate
of the matrix o; means to be invariant under rotations around the i** axis.

7=00

X1

Figure 10.1: Geometrical interpretation of the eigenstates of the Pauli matri-
ces. The stereographic projection is taken from the South pole on the equato-
rial plane.

10.6 Eigenconstellations of J(F') in representation of
spin j

The above results can be generalized in replacing the spin 1/2 representation o(F) by the
representation J(F) of spin 7. The result is the following.

Theorem 10.3 Given a constellation (z1, 22) associated with the matriz o(F), the eigen-
constellations of its representative in the spin j representation are the constellations of
order 2j of the form (z1,z1,...,21,22,22,...,22). If z21 # 25, they are 25 + 1 in number
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and apparent order 1 or 2. If z1 = 29, there is a unique constellation of apparent order 1
which will be called a Bloch constellation.

This simple result is proved as follows. Let
J(F) = (21 + 22) s + 21220 — Jy (10.37)

be the representative of o(F) in the representation of spin j. 1t is a simple calculation to
verify that the state

J  g-m . .
U +m J—m)' =N+ M) Jomk k)
W”TEE N RG ARG -m - RIAmr R 2

(where A is a half-integer obeying 0<A<j ) is an eigenstate
F)[ya >= Az2 — 21)[ha > .

We know that a state of spin 7 is described by a constellation of order 25. The relationship
is the following one. Let

be such a state. The associated constellation is (21, 2o, . . ., 295), where the z; are defined
by the relations

So=1

zitzot...+22
8 = atmtotm

V2j
Sg __ z1zetzi23+... 29129

a Vi2i-1)

e (10.39)
Sp:( ) 20 % 2,

p

ng =2122.. . 225

where the summation is made on all combinations (elementary functions). We verify that,
for j = 1/2, we arc back to the relations already written.

It is not difficult to show, after a small combination calculation, that the state |¢) >
is represented by the constellation (zy, 21, . . ., 21, 22, . . ., 22), where the multiplicity of z, is
2 and the onc of 2 is 25 — 2. In the peculiar case where z; = 2o, all the |y >’s collapse
in a single state with the correspouding cigenvalue zero. Such a state has a nice property
which we are going to describe.

10.7 Rushin-Ben-Arieh property of Radcliffe-Bloch
states
A state of spin j associated with a star constellation can be parametrized by spherical

coordinates 6, ¢. It will be denoted |j8¢ >. Such states were introduced by Radcliffe
under the name of spin coherent states. Such a name is in agreement with the Perelomov
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general definition of coherent states associated with a Lie group. According to Perelomov,
a set of coherent states is associated with a homogeneous space of the group. Moreover,
it is also in agreement with the restricted definition of coherent states we have proposed,
namely the homogeneous space must be canonically symplectic (coadjoint orbit) in order
to have a classical interpretation. It is the case for the Radcliffe spin coherent states, the
sphere being a canonical symplectic orbit of the group SO(3,IR). The classical model
of spin associated with this structure was discovered by Kramers, then studied by the
Author. A modern description can be found in a book by Souriau.

The sphere of spin coherent states may be seen as the sphere known by physicists
as the Bloch sphere. Two physicists, Rushin and Ben-Arieh, have shown an interesting
physical property of such states. They proved the following property for an arbitrary state

1
AJ]AJz > §| < J3 > | (1040)

where AJ; = /< (J;,— < J; >)? > and the signs < ... > denotes the mean value of an
operator in an arbitrary state |1 >. In particular,

< Jz >=< ¢Y|Js|¢p > (10.41)
The Radcliffe-Bloch state minimalizes the inequality (10.40).

10.8 Spherical constellations and classification of pure
spin states

Pure spin states of the electron (spin 1/2) are simple to classify. They all look the same.
An electron in a pure state has always its spin up. We only have to specify in which
direction its spin is pointing. If it is in an eigenstate of o3, it is said to point in North
direction or in South direction, according to its eigenvalue. We can always state that
it is pointing in a direction which may be called afterwards the North direction. More
generally, we know that the set of spin states form a sphere and it is always possible to
say that the spin is up in some direction. Obviously, we prefer to choose three axes Oz,
Oy, Oz on that sphere which are related to physical objects such as a magnetic field and
to admit that the direction of the spin is along some axis defined by a unit vector n with
components sin 6 cos ¢ along Oz, sinfsin ¢ along Oy and cos@ along Oz. Then the spin
is in eigenstate of o.n, with a positive eigenvalue. We note that its state is invariant
under the subgroup SO(2, R) of rotations around n and the set of states is the manifold
SO(3,R)/SO(2,R), that is the sphere S;. We understand now why we say that all the
spin states look the same; they all have the subgroup SO(2,R) as a stability subgroup.

We intend to classify in an analogous way pure spin states for any value of the spin. Let
us start, as an example with spin one states. Spin one states are described by constellations
of order two on the sphere. In the general case, a constellation of order two is composed of
two stars pointing in directions n and n’ and the stability subgroup of such a constellation
is a subgroup generated by the rotation of angle m around the direction n + n’. It is the
cyclic group Cy with two elements. There are also two particular cases, the one where the
vectors n and n’ are equl and the case where n + n’ = 0. In the first case, the stability
subgroup is SO(2, R); in the second, it is O(2,R) because we have to take into account
all the rotations around diameters orthogonal to n. Therefore, there exist three kinds of
spin states of spin one, namely:
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e The generic case. The set of such states is SO(3,R)/C,. The apparent order of the
associated constellations is two.

e The degenerate case. The correspouding set is SO(3,IR)/SO(2, R). The apparent
order of the associated constellations is one.

e The special case. The corresponding set is SO(3,R)/O(2,R). The apparent order
of the associated constellations is two. Note that they are real constellations.

Let us see how the so-called canonical states are relatedto this classification. The degen-
crate case corresponds to the addition of two spin one-half “spin up”. This is the case of
a spin noted |11 > or |1 — 1 >. The special case corresponds to the addition of a spin
onc-half “spin up” and a spin ouc-half “spin down”, that is a spin of the kind |10 >. We
note that the canonical spin states are the most symietric states, but that these states
are exceeptionnal ones: their symmetry is quite large.

Before investigating higher values of the spin, we note other interesting properties of
canonical states in relationship with constellations description. They are shown on Figure
10.8, where the vector n is chosen to point, in the North direction. We note the three
following properties:

1) All these states are eigenstates of the operator Jy. This implies that they are also
eigenstates of the operator exp(—igJs), for an arbitrary value of ¢. This property may
be stated in another way: these states are invariant under the group SO(2, IR) generated
by J;. This is an obvious statement if we look for the constellatrion description of these
states.

2) Tt is well known that we go from the state |1 —1 > to the state |10 > and from
the state |10 > to the state |11 > by making the operator J, acting. But the way this
operator is acting is obvious in the constellation language. It arises one star in the North
direction. Once all stars are “up”, the operator J, becomes powcerless. We readily note
that the operator J_ operates in the opposite way, pushing the stars “down”.

In-1> 10> 11>

Figure 10.2: Canonical states

3) The number of canonical states is the number of ways to put two stars at the end
of a diamecter, that is three.

Those three properties may be generalized to the case of spin j states. We state them
without proof.

Theorem 10.4 Canonical states are described by constellations of order 25 which are
invariant under rotations around a given diameter. They are 2j + 1 in number. The
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operator Jy transforms the constellation {2m,2j — 2m} into the constellation {2(m +
1),2( —m — 1)}. Ifj is half an integer, these states belong to j + 1/2 distinct orbits
isomorphic to Sy (SO(2, R) as a stability subgroup). If j is an integer, these states belong
to j distinct orbits isomorphic to Sy and one to an orbit isomorphic to SO(3, R)/O(2, R).

The following question arises: what is the space of orbits of spin one states? In order
to answer that question, we must note that the angle between the vectors n and n’ is an
invariant under rotations. It follows that the space of orbits is isomorphic to the interval
[0, ], as shown on Fig. 10.8.

Figure 10.3: Space of orbits of spin one

We now turn to the classification of orbits of spin states for an arbitrary value of spin
j. Our way of solving this problem consists in answering the question: Given a closed
subgroup H of SO(3,R), how many points can be put on the sphere in such a way that
the associated constellation has H as a stabilizer?

Let us first consider a stabilizer of the type C,,, the cyclic subgroup of order n. Let
A be the axis of rotations of angles 27m /n which form the group C,. It is clear that the
stars associated with a constellation invariant under C,, are necessarily either on the axis
A itself or at the vertices of a certain number of regular n—polygons perpendicular to A.
For C, to be the stabilizer of a state, it must be the maximal subgroup which leaves the
state invariant. This implies that the constellation must contain at least one n—polygon,
since without any polygon the stabilizer would contain SO(2, R) as a subgroup. Because
the number of stars on A is unlimited, a necessary and sufficient condition for C,, to be
the stabilizer of some state of spin j is 2j > n.

Let us now examine the case of dihedral groups D,, as stabilizers. Let A be the n—axis
of symmetry and A the corresponding diameter. The 2j points must be situated on A
in even number and on the vertices of n—polygonals, with n > 2. We must distinguish
between the two following cases:

1) There are nonequatorial polygons. Their number is necessarily even, due to the
symmetry properties of D,,. This corresponds to a number of stars which is a multiple of
2n. Since the number of stars in the equatorial plane is a multiple of n and the number
of stars on A is even, we get the condition:

27 = 2na + 2nb + 2c, (10.42)
where a > 1,6 >0,c> 0.
2) All polygons are equatorial. We get, in that case,
27 =nb+ 2c, (10.43)

with b > 1, ¢ > 0. In fact, this result is not valid when n = 2 because ir corresponds to a
situation where the symmetry is larger if b=1and c=0 (nostaron Aorifb=c=1
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Stability subgroup Representations

O(2,R) J integer

SO(2,IR) all

C, 2j>n

D, j integral (except j =1).

Dy j integral (except j =1 and 3).
D, forn> 2 (except n =4) | 2j = n+nb+ 2c (b and ¢ > 0)
T Jj integral (except 1 and 3)

O j=4a+3b

Y J = 10a + 6b

Table 10.1: Classification of pure spin states.

(symmetry of the squarc) and when n =4, b = ¢ = 1 (symmetry of the octahedron). We
arrive at the results presented in Table 10.8.

We are left with the polyhedron subgroups. The situation is quite simmple for the
octahedron group O and the icosahedron group Y. For O, the 2j stars must be at the
vertices of an octaliedron and/or a cube. Therefore O is a stabilizer for all values of 2j of
the kind 25 = 8a + 6b > 0, for a and b nonnegative integers. In the case of Y, the 2j stars
mnust lic on the vertices of a icosahedron and/or a dodecahedron. Tt follows that Y is a
stabilizer for 25 = 20a + 12b > 0. In order to study the case of the tetrahedron group 7T,
we must remind that T is a subgroup of O. In order to have T as a stability subgroup,
27 must be of the form 8a + 6b + 4¢ = 2(da + 3b + 2¢), with a > 0, b > 0, ¢ > 1. This
includes all integral values of j, except 1 and 3.

10.9 The set of spin 3/2 states

The reader will verify by himself the following results:

1) First orbit: completely degenrate constellations. They are of the type |3/2 3/2 >.
The little group is SO(2).

2) Second orbit: constellations of apparent order two. They are of the type [3/2 1/2 >.
Since the little group is also SO(2), these two orbits form a single stratum.

3) Third kind of orbits: constellations of the type: with two equal angles (different. of

Figure 10.4: Third kind of orbits

27w /3). These orbits formn a stratum with litlle group C2.

4) Fourth kind of orbits. Constallations represented by a regular triangle. The corre-
sponding stratum has C* as a little group.
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5) The fifth orbit of large regular triangles, that is regular triangles having its center
of mass at the origin of the sphere. The corresponding stratum has D(3) as a little group.

6)The sixth kind of orbits corresponding to non regular triangles. The little group of
this stratum is trivial. It only contains the identity transformation.

10.10 Remarks on spin coherent states

This kind of states have been introduced by Radcliffe in 1971. Their Clebsch-Gordan
coeflicients have been studied by Bellissard and Holtz. This set of states may be introduced
using the general scheme defined by Perelomov from group theory. He defined such a set
as the set of states belonging to some orbit in a given representation of a group. If we
adopt such a definition, any orbit of constellations we have founded will constitute a set of
coherent states. Unfortunately, from this point of view, any state is a coherent state. In a
paper written in collaboration with Alexander Grossmann and Joshua Zak, we show that
the Radcliffe states obey a special condition: the corresponding orbit is symplectic, which
permit to state that coherent states may be considered as classical ones, a condition obeyed
by the standard harmonic oscillator coherent states. The Radcliffe states are, indeed, the
ones for which the little group is SO(2), that is the degenerate constellations of the type
[2,2,2,...,2], the orbit being the two-dimensional sphere 52~SO(3)/SO(2).

It has been shown by Ruschin and Ben-Aryeh that the Radcliffe states are minimum
uncertainty states for angular momentum operators, i.e.

1
AZAT = 3T, (10.44)
For all other states, we have, instead of (10.44),

1
AJlAJz > 5]3 (1045)

10.11 Clebsch-Gordan product of states

The product of representations of spin j and spin j is given by
Dj X Dj/ = D\j-j’\ -+ D\j—j’#—l[ + ...+ D]‘+]‘/. (1046)

In particular,
Dl X Dl = D() + Dl + D2. (1047)

Suppose we start with two real constellations, one in the z—direction, the second in the
y—direction. The three product states appearing in the right hand of (10.47) will be:

e the trivial constellation of order zero
e the real constellation in the z—direction

e the union of the two constellations, that is the constellation of order four with stars
on the diameters z and y.
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Note that the real constellation in the z—direction is the two fixed points of the Lorentz
transformation which maps the first constellation ( the one in the z—direction) on the
second (the one in the y—direction).

More generally, the state D, of Eq. (10.46) will be always the union of the constel-
lations associated with D; and Dy .

The general case is obtained as follows. Suppose we want to write the product of the
following constellations

Z = [2172-2,.4.,224”, (1048)

7' =[2,2,..., 2], (10.49)

We define the set of new constellations of order n:
Z% = (o, 20y 225y 2, 24 2], (10.50)

Z/#:[217z;7"'Y‘Zéjﬂz‘r’zﬁ"'1z]' (1051)

Z# differs from Z by the adding of n — 25 times the star z and Z'# differs from Z' by
the adding of n — 25’ times the same star z.we impose Z# and Z'# to be harmonically
conjugate, a condition which has the form of an cquation of degree n — 25 in z. The
corresponding constellation is the one composed of the roots of that equation. It is easy
to show that for n larger than 25 + 25’, the two constellations Z# and Z'# are trivially
harmonically conjugate, whatever is the value of z.

10.12 Coherent Senitzky states

This kind of states may be considered as generalized Radcliffe states defined as follows.

B (0121 + Qazg + ... + apzy)"
VR(lai|2 + |ag)? 4 ...+ |ag|2)n/2

|an, g,y ooy Qi >

_ h! al Fab 4. ol h .
Feothal - Rl ([0 4 Jaual? 4 - Jaug P)R72 oo

hydha,..ohn

where |hy, ..., h, > denotes a Bargmann state.

Because |aq, as, ..., 0, >= |Aa1, Ao, ..., Aa, > for any value of A (except zero), we
sce that the coherent Senitzky states form the orbit SU(n)/U(n —1)~P,_1(C). They are
constellations of oder n — 1.
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Exercises

1. Use Vilenkin representation in order to find the eigenstates of aJ; + bJy + ¢J3, where
a,b,c are arbitrary complex numbers. If a? + b% + ¢? # 0, the eigenstate is of the form
(z 4+ 20)%z + 22)%~4, where a is an integer satisfying 0<A<2j. It corresponds to a
constellation {2y, z1,..., 21,22, 22,...,22} of order 2j and apparent order two, made of
two stars of respective orders A and 2j — A.

If a® + b2 + ¢ = 0, there is only one eigenstate, of the form [(a + ib)z + c|¥ , with
eigenvalue zero, corresponding to a degenerate constellation of order 2j. If a + ib is zero,
the constellation is a star at infinity.

2. Show that the states satisfying condition (10.44) are - if we except the two states |JJ >
and |J — J > - of the type

exp(bJs) exp{—i(m/2)J2 }|TM >,

where b is some real number.
3. Construct the constellations of the product

Dlan

where the first constellation is composed of the North-South stars and the second constel-
lation is described by a regular equatorial 2n-polygonal (with n > 2).
Show that

D,,_; is the trivial constellation,

D, is the regular equatorial 2n—polygonal constellation obtained form the original one
by a rotation of angle 7/2n,

D, is the union of the two original constellations.
4. Write the scalar product of two Senitzky states.



Chapter 11

The finite irreps of the Lorentz group

11.1 The representations of SO(4,IR)

There is a certain relationship between the irreducible representations of the compact,
group SO(4,R), which are all finite-dimensional, and the finite-dimensional irreducible
representations of SL(2, C). The reason is that their Lie algebras are real forms of the same
complex Lie algebra, namely the one of SO(4, €). Onc of the main difference between the
two groups is that SO(4, R) is compact and SL(2,C) is not. This explains why this last
group has also infinite-dimensional irreps. We must underline that we are not concerned
with this kind of representations in the present book.

Let us show that SO(4,R) is isomorphic to the group %‘w In order to prove
it, let us look at the action of SU(2) x SU(2) on the matrices of the form
X(t.“”’z ”+.y>. (11.1)
w—y t—aiz

We note that Det(X) = 22 4+ y? + 22 + 2 is the square length of the vector (z,y, 2.t) .
The matrices X satisfy the property

Xt = (DetX)'X L (11.2)

Let U, V be two matrices of SU(2) and let us examine the matrix UXV*. It is easy
to verify that the determinant and the property (11.2) are conserved. Since the trans-
formation leaves the length unchanged, it may be interpreted as a rotation of the group
SO(4,R). It follows that there exists a homomorphism:

SU(2) x SU(2) — SO(4, R) (11.3)

The kernel of this homomorphism is obtained by solving the equation UXV* = X, for an

arbitrary X. In setting
a b a/ b/
U= ( b a* ) , V= ( g ) s (11.4)

and writing the condition in the form

UX =XV, (11.5)
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one gets a = a’ and b= b = 0. The kernel is made of the couple
(U, V)={(d, Id),(-Id,-1d)}. (11.6)
This proves the isomorphism

SU(2) x SU(2)

SO(4, R)~ >
2

(11.7)
The group SU(2) x SU(2) is the covering group of SO(4, R). The covering group of a
rotation group is called the spin group. If we denote by D;q the irrep of dimension 2541 of
the first SU(2) group and by Dy; the same irrep for the second SU(2) group, we see that
the general irrep of the spin group may be denoted D;;; = Djq + Dy;. It is of dimension
(27 + D25 +1).

It is a simple matter to see that the irreps of SO(4,R) are those D;; , where j and
7' are both integers or half integers. In particular, the vector representation of dimension
four is D13 1/2.

Let us consider the subgroup SO(3,R) of SO(4,R). It leaves invariant the matrix
( [t) (t) ) It is easy to prove that the couples (U, V) which leave this matrix invariant
are of the type (U,U). It follows that the representation D;; is the direct sum:

Dyj_ji+ Djj—jer + Dijjriez + -+ Doy (11.8)
of irreps of SO(3,R).

11.2 Finite dimensional irreps of SL(2, C)

Let us consider the action of SU(2,C) on the space of Hermitian matrices defined as

follows.
Let H = ( f+e z-1y
T+ t—=z
vector (¢,7,y,z). We have DetH = 2 — 22 — 32 — 22, Given A , a matrix of SL(2,C),
we describe its action on H as AHA™. Such an action preserves the determinant and the
Hermitian character of H. This property proves the homomorphism

) be the Hermitian matrix associated with the space-time

SL(1,C) — L, (11.9)

The kernel is obtained in looking for SL(2, €) transformations which preserve an arbitrary
matrix H. In order to find them, we set

A= ( (; 3 ) , with ad —bc =1, and AH = H(AT)™%. (11.10)

a b t+z -y \ [ t+z x—1y 4 —c
c d z+iy t—z ) \z+iy t-2 -b* a*

We obtain the conditions:

We get

b=c=0, a=d real. (11.11)
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It follows that the kernel is the couple {Id, —Id)}. We obtain the isomorphism
L} ~ SL(2,C)/Zy. (11.12)

This relation is analogous to (11.7).
The finite dimensional irreps of SL(2,C) are also labelled by two indices j and j'. If
Jy, Jo, Jy, K1, Ko, Ky arc the representatives of the generators of the group, we have

(P-KH+2IK=35(G+1) .
{ 4 (11.13)

(32 —K?) — 2K = j'(j' + 1)

We note that j = 5 if and only if J. K = 0.
Ouly irreps for which j + j' is an integer are irreps of LL.

11.3 Finite dimensional irreps of L

The vectors J and K transform differently under the parity operation. This can be shown
if we use Lorentz indices for these vectors

1
J,j = 56,,¢Hﬂljk, Kz' = 17\4(”7 i,j,k = 1, 2, 3. (1114)

Let II be the parity operator. We have
HJ\IJAH ik Mg I = — My,

that is
I =J, IKII ' = -K. (11.15)

That is why J is called an axial vector (parity +1) and K a polar vector (parity -1).
In the same way, the magnetic vector B is an axial vector and the electric vector E is a
polar vector.

It follows that the parity operator permute the two invariants (J2 — K2) + 2iJ.K and
(J2 — K?) — 2iJ. K. Two cascs occur:

1) j# 7. The representation D, = D+ Dys; is irreducible.
2) j = 7. There are two irreducible representations DJr and Dy

Let us examine some examples. The electromagnetic field corresponds to the six-dimensional
representation Dy, Space-time vectors (like the energy-momentum four-vector) corre-
spond to the four-dimensional representation Df/m /2
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Exercise

1. Compute j and 7’ for spinor representations:
1 .
J=Z0, K=+
2 2

where o are the Pauli matrices.



Chapter 12

Petrov’s classification of curvature
tensors

12.1 The curvature tensor

The following physical application lics in the geometry of Lorentz constellations. It con-
cerns the classification of curvature tensors for space-time in general relativity. Such a
tensor € is a real one, with components R,g,s laving the following symmetry properties:

R(vﬂ'yé = —R[1<17(5 = 7Ra[36’y = R[jry&'yy (121)

and satisfying
Rapgys + Bones + Raspy = 0. (12.2)

wliere space-time indices o, 3, v, A run from zero to three. Two tensors which are multiple
one from cach other arc said to be of the same type.

The number of different compouents of a curvature tensor equals 20. Indeed, the corre-
sponding space can be scen as the symetrie product of the 6-dimensional representation
Dyq of the Lorentz group by itself. Oue has

Dy x Dy = Dfy + Dy + Do + Dy + Dfy + Dy

(s) (s) (a) (s) (s) (a)
6 x 6 = 1 + 1 + 6 + 10 + 9 + 9

where the symmetric (resp. antisymetric) character is mentioned together with the dimen-
sion of the representations. Eq. (12.2) concerns the vanishing of a pseudoscalar quantity,
that is the representation Dg,. We are left with the twenty components associated with
the representations: Dg,, Dag, and Dfy.

In the vacunm, the Ricei tensor R,,, = g”"Ra/M is zero. Discarding this trivial case
is equivalent to discard the D, + D}| part of the tensor, that is to only retain the Doy
part. The Petrov classification of curvature tensors concerns the classification of tensors
of type Dyy. This five-diinensional representation corresponds to constellations of order
4. We know that they are of five types:

1, E [a,b, c, d],
Ibi EH [(170«7 b7 b}‘

117
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Hﬁj [a,a,b,c],

Il o [a,a,a,4],
I111: H5  [a,a,a,0].

We intend to give in the next sections an alternative derivation of the Petrov classification.

12.2 The Lorentz group as a subgroup of SO(3, 3)

Under the mathematical point of view, this section could be entitled: “the group SO(3,C)
as a subgroup of SO(3,3)”. The contents of this chapter may be generalized easily to
another dimension than 3, and seen as SO(n, €) as a subgroup of SO(n,n). However, we
have in mind applications to physics, a fact which justifies our choice.

We have shown that the Lorentz group is isomorphic to SO(3, €), in using the action of
this group on the space €3, An element of C? is physically denoted F, in order to remind
that F is related to the electromagnetic field by the relation F = B — {E, where B and
E represent the magnetic and the electric vectors, respectively. The SO(3, C) invariant
associated with F is given by F? = B2 — E? — 2:B.E. We intend to show that the group
SO(3,3) is characterized by the two separate invariants B2 — E? and 2B.E, from which
it follows that SO(3, C) is a subgroup of SO(3, 3).

Let us consider the space R®, the elements of which are of the form ( g ) . The two

invariants may be written as

(2Y (5 1) (2)-wr

E 0 —1 E

B\"/0 1 B (12.3)
(£) (80)(E)-»e

The two symmetric tensors have the same signature, namely (+ + + — — —). It

follows that the Lorentz group can be seen in two ways as a subgroup of SO(3,3). In

other words, it is the subgroup of SO(3,3) which preserves a second scalar product with

the same signature. We note that the matrix is the parity operator, since under this

transformation the vector B is unchanged (axial vector) and the vector E changes sign

{polar vector).

The Doy part of the tensor 2 is symmetric with respect to each scalar product. It
means that it must satisfy the properties:
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It is casy to deduce that Q is of the form

Q:(_PQ g) (12.4)

with P and @ symmetric, that is with six real components each. That is a total of twelve
componcents. Iu the basis B —¢E, B +E, the matrix Q is simpler. We have

(B)-1(t 1)(BE).
R [ I G T G |

It is clear that D, and Dy, correspond to the following scalar tensors

Id 0
D()+(] (BZ_E2)( 0 Id 3 P = 11 Q:Oa
_ Id 0
Dy, (2B.E)( . M), P=0,Q=1.

The ten other components (those of Dyg) correspoud to Tr(P) = Tr(Q) = 0.

12.3 Petrov’s classification

The group SO(3, €) docs not, act. transitively on the set of 3 x 3-dimensional symmetric
complex matrices P+ iQ). Not all these matrices arc diagonizable. Those which are
diagonizable are said to be of Petrov’s type I. One has to distinguish two subclasses:

I,: Three distinct cigenvalues.
I,: A double eigenvalue.

The case of three equal cigenvalues corresponds to the zero matrix and must be discarded
as an unsignificant one from the physical point of view.

Petrov’s types I, and I, correspond to matrices which can be put in the respective
Jordan forms

p 1 0 01 0
(P+1iQ)gig. = | 0 p 0 and 00 0
00 -2 00 -0

Petrov’s type 11 correspouds to matrices of the type

(P + iQ)ding. =

o O o
oo
o - O
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Exercise

1. Find the SO(3) subclasses of the Petrov classes. Show that the stabilizers are the
following ones:

L [a,b,c,d], D(4), T, C(2) x C(2),
Iy [a,a,b,b], O(2)xO(1,1),

I1,: [a,a,b,c], C(2),

Il [a,a,a,a], S(2),

III: [a,a,a,b], SO(2)x SO(1,1).
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