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INTRODUCTION TO THE SERIES

The aim of the Handbooks in Economics series is to produce Handbooks for various
branches of economics, each of which is a definitive source, reference, and teaching
supplement for use by professional researchers and advanced graduate students. Each
Handbook provides self-contained surveys of the current state of a branch of economics
in the form of chapters prepared by leading specialists on various aspects of this branch
of economics. These surveys summarize not only received results but also newer devel-
opments, from recent journal articles and discussion papers. Some original material is
also included, but the main goal is to provide comprehensive and accessible surveys.
The Handbooks are intended to provide not only useful reference volumes for profes-
sional collections but also possible supplementary readings for advanced courses for
graduate students in economics.

KENNETH J. ARROW and MICHAEL D. INTRILIGATOR

PUBLISHER’S NOTE

For a complete overview of the Handbooks in Economics Series, please refer to the
listing at the end of this volume.
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PREFACE

Purpose

The explosive growth in computer power over the past several decades offers new
tools and opportunities for economists. Volume 1 of the Handbook of Computational
Economics [Amman et al. (1996)] surveyed the growing literature on computational
methods for solving standard economic models such as Arrow–Debreu–McKenzie gen-
eral equilibrium models and rational expectations models. This second volume focuses
on Agent-based Computational Economics (ACE), a computationally intensive method
for developing and exploring new kinds of economic models.

ACE is the computational study of economic processes modeled as dynamic systems
of interacting agents who do not necessarily possess perfect rationality and informa-
tion. Whereas standard economic models tend to stress equilibria, ACE models stress
economic processes, local interactions among traders and other economic agents, and
out-of-equilibrium dynamics that may or may not lead to equilibria in the long run.
Whereas standard economic models require a careful consideration of equilibrium prop-
erties, ACE models require detailed specifications of structural conditions, institutional
arrangements, and behavioral dispositions.

Although the tools and language may differ, the agendas of standard economics and
ACE are thus complementary. For example, many ACE modelers study the processes
by which prices are set in decentralized market economies, a problem not considered in
standard equilibrium modeling. Moreover, the two modeling approaches share the long-
run goal of understanding more fully the dynamic properties of realistically rendered
economic systems, an understanding that requires knowledge of potential equilibria to-
gether with their basins of attraction.

As noted in the preface of Volume 1, there is no clearly defined field that we call Com-
putational Economics. However, the body of ACE research focusing on core topics is
now substantial, and it is a good time to take stock of where we are and to communicate
this summary to a wider audience of economists.

Moreover, having an ACE handbook at this time also serves an important peda-
gogical purpose. The ACE approach to economic problems is novel. ACE research
requires training in computational modeling skills that few graduate economic programs
currently provide, and that relatively few professional economists currently possess.
Individuals desiring to take this path will therefore need to have a certain amount of
boldness, a willingness to take risks, a willingness to operate outside the boxes outlined
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xii Preface

by those who have gone before. This ACE Handbook is dedicated to the support and
encouragement of these individuals.

Organization

The ACE Handbook is divided into sixteen research reviews, six perspective essays, and
a guideline for newcomers to agent-based modeling. These materials cover the follow-
ing topics.

In the first two chapters, the Editors present overviews of the substantive aims of the
ACE literature and the relationship of the ACE methodology to more standard eco-
nomic modeling. Chapter 16, by L. Tesfatsion, discusses the ACE approach to the
study of economic systems and contrasts this approach with more standard equilib-
rium approaches using a relatively simple two-sector decentralized market economy for
concrete illustration. In Chapter 17, K.L. Judd focuses on the problems of determining
and communicating the economic content of the results of computationally intensive
research, and the trade-offs between standard approaches and computational methods.
These two introductory pieces are intended as gateways into the handbook for econo-
mists new to ACE modeling.

Chapter 18, by T. Brenner, discusses the key role played in ACE models by learning
agents and critically surveys a wide variety of possible agent learning representations.
In Chapter 19, J. Duffy examines the potential synergies between experiments con-
ducted with human subjects and experiments conducted with computational agents, with
a stress on empirical validation issues.

The determination of agent interaction patterns is a basic foundation for all ACE
models. In Chapter 20, A. Wilhite undertakes a series of experiments to explore how bi-
lateral trading and other forms of economic interactions are influenced when conducted
within alternative types of networks (e.g., a small-world network). N. Vriend extends
this focus in Chapter 21 by considering how ACE researchers have modeled the endoge-
nous formation of interaction networks. In the latter models, agents have some degree
of choice regarding not only how to behave in any given interaction but also with whom
to interact and with what regularity. In Chapter 22, H.P. Young presents and concretely
illustrates a rigorous method for analyzing the long-run behavior of systems constituting
large numbers of interacting agents with widely differing characteristics.

Financial economics is one of the more active ACE research areas. Chapters 23
and 24 provide extensive surveys of financial market research in which the endogeneous
heterogeneity of dynamic investment behavior appears to be critically important for the
explanation of observed regularities in financial time series. In Chapter 23, C. Hommes
focuses on relatively simple financial market models that are at least partly tractable by
analytic methods and that are being used as benchmarks in support of more complex
ACE modeling efforts. In contrast, B. LeBaron in Chapter 24 focuses on ACE finan-
cial market studies for which the complexity of the models requires the intensive use of
computational tools.
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Technological change and innovation concern the generation and diffusion of new
knowledge, technologies, and products. In Chapter 25, H. Dawid discusses the current
and potential contributions of the ACE modeling approach to this difficult topic area. For
example, he demonstrates how several empirically established stylized facts regarding
technological change and innovation, viewed as puzzles within standard equilibrium
modeling, emerge quite naturally in agent-based models.

Organizations are collections of agents who interact with each other within the
confines of some formally or informally structured set of rules, and whose activities
are guided in part by personal preferences and in part by collective objectives. In
Chapter 26, M. Chang and J. Harrington survey a wide variety of organization mod-
els, including models of multi-agent firms, multi-plant manufacturers, and retail chains.
They develop their chapter around a set of research questions common to the orga-
nization literature, comparing and contrasting traditional and agent-based modeling
approaches and highlighting new insights afforded by the latter approach.

Over the past thirty years a whole new field of study has blossomed within eco-
nomics, called market design. The normative focus of this field is how institutional
rules governing trade can be treated as variables subject to optimization. To date, how-
ever, tractability concerns have forced many researchers to restrict attention to equilib-
rium models in which the strategic options open to traders are severely constrained ex
ante.

In Chapter 27, R. Marks first reviews in general terms the manner in which ACE
models with strategic learning agents have been used to evaluate market designs from
a dynamic perspective. He then highlights ten papers that exemplify recent progress in
this topic area, with a particular emphasis on the evaluation of electricity market designs.
Chapter 28, by J. Mackie-Mason and M. Wellman, also addresses market design issues.
In contrast to Marks, however, the authors focus their attention on automated markets
with software trading agents. Their primary concern is the direct use of agent-based
tools to achieve a complete effective automation of the various components of market
transactions.

A particularly exciting aspect of the ACE methodology is the encouragement and
facility it provides for integrative modeling. In keeping with the reasonable Einstein
dictum “a scientific theory should be as simple as possible but no simpler,” researchers
generally tailor their models to the type of issue under study, stressing some features
while downplaying or omitting others. But critical model features do not always fall
tidily along conventional disciplinary lines.

Chapters 29 and 30 focus on issues of importance to economists for which political
concerns are paramount. In Chapter 29, K. Kollman and S. Page critically survey a range
of agent-based models developed by economists and political scientists to address col-
lective action problems, pie-splitting problems, electoral competitions, and security and
communal stability issues at both the national and sub-national levels. In Chapter 30,
M. Janssen and E. Ostrom survey ACE research addressing the governance of systems

http://dx.doi.org/10.1016/S1574-0021(05)02025-3
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comprising social and biophysical agents. A key aim of the latter research has been
increased understanding of institutional arrangements conducive to the cooperative use
of collective ecological resources (e.g., fisheries) in the face of extensive behavioral
uncertainty.

In Chapter 31, C. Dibble discusses the potential of computational laboratories for
facilitating the design and exploratory analysis of agent-based models with spatial as-
pects. Illustrative examples include spatial small-world network models, social norm
diffusion models, and epidemiology models for the control of infectious diseases.

The next section of the handbook consists of six essays offering perspectives on
agent-based modeling. Alphabetically ordered by author, these essays elaborate on the
following themes.

W.B. Arthur explains why the movement now under way towards agent-based mod-
eling is not simply an adjunct to neoclassical economics but a major shift to a more
general out-of-equilibrium economics. R. Axelrod uses some of his own personal ex-
periences to exemplify how agent-based modeling can help overcome the somewhat
arbitrary boundaries between disciplines. J. Epstein argues that the central contribution
of agent-based modeling to the scientific enterprise is the facilitation of generative ex-
planation: How can an observed regularity be generated through the autonomous local
interactions of heterogeneous boundedly-rational agents?

P. Howitt contends that current economic growth research focuses too exclusively
on individual incentives and choice, ignoring critical coordination issues. He advocates
the use of agent-based modeling tools as a way of seeing beyond the “individual dots”
of an economic system to the overall patterns that emerge from simple interactions
among a large number of interacting agents. Following a critique of modern macro
theory, A. Leijonhufvud argues that agent-based methods should be used to revive the
traditional core of macroeconomics: namely, supply and demand interactions in markets
with adaptive boundedly-rational participants. He concludes, in particular, that agent-
based methods provide the only means for exploring the self-regulating capabilities
of complex dynamic economies, and for advancing our understanding of the adaptive
dynamics of actual economies.

In the final perspectives essay, T. Schelling takes the reader back to an airplane
trip in the 1960s during which, for amusement, he began experimenting with x’s and
o’s on a penciled-in checkerboard on a piece of paper. His purpose was to see what
might result from the repeated location choices of the x and o agents under vari-
ously assumed intensities of preference for residing among neighbors of their own
type. Out of such musings, the now-famous Schelling City Segregation Model was
born.

The handbook concludes with an Appendix by R. Axelrod and L. Tesfatsion offering
a general guideline for newcomers to agent-based modeling in the social sciences. The
guideline provides a short annotated list of suggested introductory readings.

http://dx.doi.org/10.1016/S1574-0021(05)02031-9
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It also provides pointers to additional readings and software materials to help inter-
ested readers get started on their own agent-based research.

LEIGH TESFATSION ∗
Department of Economics, 260 Heady Hall, Iowa State University, Ames, IA 50011-1070, USA
e-mail: tesfatsi@iastate.edu; url: http://www.econ.iastate.edu/tesfatsi/

KENNETH L. JUDD
Hoover Institution, Stanford, CA 94305, USA
e-mail: judd@hoover.stanford.edu; url: http://bucky.stanford.edu/
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Abstract

Economies are complicated systems encompassing micro behaviors, interaction pat-
terns, and global regularities. Whether partial or general in scope, studies of economic
systems must consider how to handle difficult real-world aspects such as asymmetric
information, imperfect competition, strategic interaction, collective learning, and the
possibility of multiple equilibria. Recent advances in analytical and computational tools
are permitting new approaches to the quantitative study of these aspects. One such ap-
proach is Agent-based Computational Economics (ACE), the computational study of
economic processes modeled as dynamic systems of interacting agents. This chapter
explores the potential advantages and disadvantages of ACE for the study of economic
systems. General points are concretely illustrated using an ACE model of a two-sector
decentralized market economy. Six issues are highlighted: Constructive understanding
of production, pricing, and trade processes; the essential primacy of survival; strategic
rivalry and market power; behavioral uncertainty and learning; the role of conventions
and organizations; and the complex interactions among structural attributes, institutional
arrangements, and behavioral dispositions.

Keywords

agent-based computational economics, complex adaptive systems, endogenous
interactions, decentralized market processes, strategic rivalry, behavioral uncertainty,
learning, institutions, agent-oriented programming
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1. Introduction

Economies are complex dynamic systems. Large numbers of micro agents engage re-
peatedly in local interactions, giving rise to global regularities such as employment and
growth rates, income distributions, market institutions, and social conventions. These
global regularities in turn feed back into the determination of local interactions. The re-
sult is an intricate system of interdependent feedback loops connecting micro behaviors,
interaction patterns, and global regularities.

Economists have grappled with the modeling of economic systems for hundreds of
years. Nevertheless, the Walrasian equilibrium model devised by the nineteenth-century
French economist Leon Walras (1834–1910) still remains the fundamental paradigm
that frames the way many economists think about this issue. Competitive models di-
rectly adopt the paradigm. Imperfectly competitive models typically adopt the paradigm
as a benchmark of coordination success. Although often critiqued for its excessive ab-
straction and lack of empirical salience, the paradigm has persisted.

As detailed by Katzner (1989) and Takayama (1985), Walrasian equilibrium in
modern-day form is a precisely formulated set of conditions under which feasible
allocations of goods and services can be price-supported in an economic system or-
ganized on the basis of decentralized markets with private ownership of productive
resources. These conditions postulate the existence of a finite number of price-taking
profit-maximizing firms who produce goods and services of known type and quality,
a finite number of consumers with exogenously determined preferences who maxi-
mize their utility of consumption taking prices and dividend payments as given, and
a Walrasian Auctioneer (or equivalent clearinghouse construct) that determines prices
to ensure each market clears.1 Assuming consumer nonsatiation, the First Welfare The-
orem guarantees that every Walrasian equilibrium allocation is Pareto efficient.

The most salient structural characteristic of Walrasian equilibrium is its strong de-
pendence on the Walrasian Auctioneer pricing mechanism, a coordination device that
eliminates the possibility of strategic behavior. All agent interactions are passively me-
diated through payment systems; face-to-face personal interactions are not permitted.
Prices and dividend payments constitute the only links among consumers and firms prior
to actual trades. Since consumers take prices and dividend payments as given aspects of
their decision problems, outside of their control, their decision problems reduce to sim-
ple optimization problems with no perceived dependence on the actions of other agents.
A similar observation holds for the decision problems faced by the price-taking firms.
The equilibrium values for the linking price and dividend variables are determined by

1 The colorful term “Walrasian Auctioneer” was first introduced by Leijonhufud (1967). He explains the
origins of the term as follows (personal correspondence, May 10, 2004): “I had come across this statement by
Norbert Weiner, made in the context of explaining Maxwell’s Demon to a lay audience, to the effect that ‘in
the physics of our grandfathers’ information was costless. So I anthropomorphized the tâtonnement process
to get a Walras’s Demon to match Maxwell’s.”
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market clearing conditions imposed through the Walrasian Auctioneer pricing mecha-
nism; they are not determined by the actions of consumers, firms, or any other agency
supposed to actually reside within the economy.

Walrasian equilibrium is an elegant affirmative answer to a logically posed issue:
can efficient allocations be supported through decentralized market prices? It does not
address, and was not meant to address, how production, pricing, and trade actually take
place in real-world economies through various forms of procurement processes.

What, specifically, is standardly meant by “procurement processes” in the business
world? As discussed at length by Mackie-Mason and Wellman (2006), customers and
suppliers must identify what goods and services they wish to buy and sell, in what
volume, and at what prices. Potential trade partners must be identified, offers to buy
and sell must be prepared and transmitted, and received offers must be compared and
evaluated. Specific trade partners must be selected, possibly with further negotiation to
determine contract provisions, and transactions and payment processing must be carried
out. Finally, customer and supplier relationships involving longer-term commitments
must be managed.

Theories always simplify, and substituting equilibrium assumptions for procurement
processes is one way to achieve an immensely simplified representation of an economic
system. For economic systems known to have a globally stable equilibrium, this simpli-
fication might be considered reasonable since procurement processes do not affect the
system’s long-run behavior. Even in this case, however, the path of adjustment could be
of considerable practical concern as a determinant of the speed of convergence. For eco-
nomic systems without a globally stable equilibrium, procurement processes determine
how the dynamics of the system play out over time from any initial starting point.

As carefully detailed by Fisher (1983) and Takayama (1985, Chapters 2–3), econo-
mists have not been able to find empirically compelling sufficient conditions guarantee-
ing existence of Walrasian equilibria, let alone uniqueness, stability, and rapid speed of
convergence, even for relatively simple modelings of market economies. For extensions
of the Walrasian framework to dynamic open-ended economies, such as overlapping
generations economies, multiple equilibria commonly occur and the Pareto efficiency
of these equilibria is no longer guaranteed.2 The explicit consideration of procurement
processes would therefore appear to be critically important for understanding how nu-
merous market economies have managed in practice to exhibit reasonably coordinated
behavior over time. As eloquently expressed by Fisher (1983, p. 16):

“The theory of value is not satisfactory without a description of the adjustment
processes that are applicable to the economy and of the way in which individual

2 See, for example, Pingle and Tesfatsion (1991, 1998a, 1998b). Interestingly, the latter studies illustrate
how more explicit attention to procurement processes can produce more optimistic assessments of market
performance. The studies show that the First Welfare Theorem can be restored for overlapping generations
economies if the passive Walrasian Auctioneer intent only on market clearing is replaced by active private
corporate intermediaries intent on the maximization of their shareholders’ profits.
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agents adjust to disequilibrium. In this sense, stability analysis is of far more than
merely technical interest. It is the first step in the reformulation of the theory of
value.”

A natural way to proceed is to examine what happens in a standard Walrasian model if
the Walrasian Auctioneer pricing mechanism is removed and if prices and quantities are
instead required to be set entirely through the procurement actions of the firms and con-
sumers themselves. Not surprisingly, this “small” perturbation of the Walrasian model
turns out to be anything but small. Even a minimalist attempt to complete the resulting
model leads to analytical difficulty or even intractability. As elaborated by numerous
commentators, the modeler must now come to grips with challenging issues such as
asymmetric information, strategic interaction, expectation formation on the basis of lim-
ited information, mutual learning, social norms, transaction costs, externalities, market
power, predation, collusion, and the possibility of coordination failure (convergence to
a Pareto-dominated equilibrium).3 The prevalence of market protocols, rationing rules,
antitrust legislation, and other types of institutions in real-world economies is now bet-
ter understood as a potentially critical aspect of procurement, the scaffolding needed to
ensure orderly economic process.

Over time, increasingly sophisticated tools are permitting economic modelers to in-
corporate procurement processes in increasingly compelling ways. Some of these tools
involve advances in logical deduction and some involve advances in computational
power.4

This chapter provides an introductory discussion of a potentially fruitful compu-
tational development, Agent-based Computational Economics (ACE). Exploiting the
growing capabilities of computers, ACE is the computational study of economic
processes modeled as dynamic systems of interacting agents.5 Here “agent” refers
broadly to bundled data and behavioral methods representing an entity constituting
part of a computationally constructed world. Examples of possible agents include indi-
viduals (e.g., consumers, workers), social groupings (e.g., families, firms, government
agencies), institutions (e.g., markets, regulatory systems), biological entities (e.g., crops,
livestock, forests), and physical entities (e.g., infrastructure, weather, and geographi-
cal regions). Thus, agents can range from active data-gathering decision-makers with

3 See, for example, Akerlof (2002), Albin and Foley (1992), Arrow (1987), Bowles and Gintis (2000),
Colander (1996), Feiwel (1985), Hoover (1992), Howitt (1990), Kirman (1997), Klemperer (2002a, 2002b),
and Leijonhufvud (1996).
4 See, for example, Albin (1998), Anderson et al. (1988), Arthur et al. (1997), Axelrod (1997), Brock et

al. (1991), Clark (1997), Day and Chen (1993), Durlauf and Young (2001), Gigerenzer and Selten (2001),
Gintis (2000), Judd (1998), Krugman (1996), Nelson (1995), Nelson and Winter (1982), Prescott (1996),
Roth (2002), Sargent (1993), Schelling (1978), Shubik (1991), Simon (1982), Witt (1993), and Young (1998).
5 See http://www.econ.iastate.edu/tesfatsi/ace.htm for extensive on-line resources related to ACE, includ-

ing readings, course materials, software, toolkits, demos, and pointers to individual researchers and research
groups. A diverse sampling of ACE research can be found in Leombruni and Richiardi (2004) and in Tesfat-
sion (2001a, 2001b, 2001c). For surveys and other introductory materials, see Axelrod and Tesfatsion (2006),
Batten (2000), Epstein and Axtell (1996), Tesfatsion (2002), and the remaining entries of this handbook.

http://www.econ.iastate.edu/tesfatsi/ace.htm
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sophisticated learning capabilities to passive world features with no cognitive function-
ing. Moreover, agents can be composed of other agents, thus permitting hierarchical
constructions. For example, a firm might be composed of workers and managers.6

Section 2 explains more fully the basic ACE methodology and discusses the potential
advantages and disadvantages of ACE for the study of economic systems. An illustrative
ACE model of a relatively simple two-sector decentralized market economy, referred to
as the “ACE Trading World,” is outlined in Section 3. This model is used in Section 4
to discuss in concrete terms several important but difficult issues associated with pro-
curement processes in real-world economies that ACE is able to address. Concluding
remarks are given in Section 5. A detailed discussion of the ACE Trading World is
presented in an Appendix A.

2. ACE study of economic systems

A system is typically defined to be complex if it exhibits the following two properties
[see, e.g., Flake (1998)]:

• The system is composed of interacting units;
• The system exhibits emergent properties, that is, properties arising from the inter-

actions of the units that are not properties of the individual units themselves.
Agreement on the definition of a complex adaptive system has proved to be more diffi-
cult to achieve. The range of possible definitions offered by commentators includes the
following three nested characterizations:

DEFINITION 1. A complex adaptive system is a complex system that includes reactive
units, i.e., units capable of exhibiting systematically different attributes in reaction to
changed environmental conditions.7

6 A person familiar with object-oriented programming (OOP) might wonder why “agent” is used here in-
stead of “object,” or “object template” (class), since both agents and objects refer to computational entities
that package together data and functionality and support inheritance and composition. Following Jennings
(2000) and other agent-oriented programmers, “agent” is used to stress the intended application to problem
domains that include entities capable of varying degrees of self-governance and self-directed social interac-
tions. In contrast, OOP has traditionally interpreted objects as passive tools in the service of some specific
task. Consider, for example, the following description from the well-known Java text by Eckel (2003, p. 37):
“One of the best ways to think about objects is as ‘service providers.’ Your goal is to produce ... a set of
objects that provides the ideal services to solve your problem.”
7 For example, this definition includes simple Darwinian systems for which each unit has a rigidly structured

behavioral rule as well as a “fitness” attribute measuring the performance of this unit relative to the average
performance of other units in the current unit population. A unit ceases to function if it has sufficiently low
fitness; otherwise it reproduces (makes copies of itself) in proportion to its fitness. If the initial unit population
exhibits diverse behaviors across units, then the fitness attribute of each unit will change systematically in
response to changes in the composition of the unit population.
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DEFINITION 2. A complex adaptive system is a complex system that includes goal-
directed units, i.e., units that are reactive and that direct at least some of their reactions
towards the achievement of built-in (or evolved) goals.

DEFINITION 3. A complex adaptive system is a complex system that includes planner
units, i.e., units that are goal-directed and that attempt to exert some degree of control
over their environment to facilitate achievement of these goals.

The ACE methodology is a culture-dish approach to the study of economic systems
viewed as complex adaptive systems in the sense of Definition 1, at a minimum, and
often in the stronger sense of Definition 2 or Definition 3. As in a culture-dish labora-
tory experiment, the ACE modeler starts by computationally constructing an economic
world comprising multiple interacting agents (units). The modeler then steps back to
observe the development of the world over time.

The agents in an ACE model can include economic entities as well as social, bi-
ological, and physical entities (e.g., families, crops, and weather). Each agent is an
encapsulated piece of software that includes data together with behavioral methods that
act on these data. Some of these data and methods are designated as publicly accessi-
ble to all other agents, some are designated as private and hence not accessible by any
other agents, and some are designated as protected from access by all but a specified
subset of other agents. Agents can communicate with each other through their public
and protected methods.

The ACE modeler specifies the initial state of an economic system by specifying each
agent’s initial data and behavioral methods and the degree of accessibility of these data
and methods to other agents. As illustrated in Tables 1–4, an agent’s data might include
its type attribute (e.g., world, market, firm, consumer), its structural attributes (e.g., ge-
ography, design, cost function, utility function), and information about the attributes of
other agents (e.g., addresses). An agent’s methods can include socially instituted be-
havioral methods (e.g., antitrust laws, market protocols) as well as private behavioral
methods. Examples of the latter include production and pricing strategies, learning al-
gorithms for updating strategies, and methods for changing methods (e.g., methods for
switching from one learning algorithm to another). The resulting ACE model must be
dynamically complete. As illustrated in Table 5, this means the modeled economic sys-
tem must be able to develop over time solely on the basis of agent interactions, without
further interventions from the modeler.

In the real world, all calculations have real cost consequences because they must be
carried out by some agency actually residing in the world. ACE modeling forces the
modeler to respect this constraint. An ACE model is essentially a collection of algo-
rithms (procedures) that have been encapsulated into the methods of software entities
called “agents.” Algorithms encapsulated into the methods of a particular agent can only
be implemented using the particular information, reasoning tools, time, and physical re-
sources available to that agent. This encapsulation into agents is done in an attempt to
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Table 1
A Computational World

agent World
{

Public Access:

// Public Methods
The World Event Schedule, a system clock permitting World

inhabitants to time and order their activities (method activations),
including synchronized activities such as offer posting and trade;

Protocols governing the ownership of stock shares;
Protocols governing collusion among firms;
Protocols governing the insolvency of firms;
Methods for retrieving stored World data;
Methods for receiving data.

Private Access:

// Private Methods
Methods for gathering, storing, and sending data.

// Private Data
World attributes (e.g., spatial configuration);
World inhabitants (e.g., markets, firms, consumers);
Attributes of the World’s inhabitants;
Methods of the World’s inhabitants;
History of World events;
Address book (communication links);
Recorded communications.

}

achieve a more transparent and realistic representation of real-world systems involving
multiple distributed entities with limited information and computational capabilities.

Current ACE research divides roughly into four strands differentiated by objective.8

One primary objective is empirical understanding: why have particular global regulari-
ties evolved and persisted, despite the absence of centralized planning and control? ACE
researchers pursuing this objective seek causal explanations grounded in the repeated in-
teractions of agents operating in realistically rendered worlds. Ideally, the agents should
have the same flexibility of action in their worlds as their corresponding entities have in
the real world. In particular, the cognitive agents should be free to behave in accordance
with their own beliefs, preferences, institutions, and physical circumstances without the
external imposition of equilibrium conditions. The key issue is whether particular types

8 See http://www.econ.iastate.edu/tesfatsi/aapplic.htm for pointers to resource sites for a variety of ACE
research areas.

http://www.econ.iastate.edu/tesfatsi/aapplic.htm
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Table 2
A Computational Market

agent Market
{

Public Access:

// Public Methods
getWorldEventSchedule(clock time);
Protocols governing the public posting of supply offers;
Protocols governing the price discovery process;
Protocols governing the trading process;
Methods for retrieving stored Market data;
Methods for receiving data.

Private Access:

// Private Methods
Methods for gathering, storing, and sending data.

// Private Data
Information about firms (e.g., posted supply offers);
Information about consumers (e.g., bids);
Address book (communication links);
Recorded communications.

}

of observed global regularities can be reliably generated from particular types of agent-
based worlds, what Epstein and Axtell (1996) refer to as the “generative” approach to
science.9

A second primary objective is normative understanding: how can agent-based models
be used as laboratories for the discovery of good economic designs? ACE researchers
pursuing this objective are interested in evaluating whether designs proposed for eco-
nomic policies, institutions, and processes will result in socially desirable system per-
formance over time. The general approach is akin to filling a bucket with water to
determine if it leaks. An agent-based world is constructed that captures the salient as-
pects of an economic system operating under the design. The world is then populated
with privately motivated agents with learning capabilities and allowed to develop over
time. The key issue is the extent to which the resulting world outcomes are efficient, fair,
and orderly, despite attempts by agents to gain individual advantage through strategic
behavior.10

9 This issue is considered in the handbook entries by Brenner (2006), Dawid (2006), Duffy (2006), Epstein
(2006), Hommes (2006), Howitt (2006), LeBaron (2006), and Leijonhufvud (2006).
10 See, for example, the handbook chapters by Janssen and Ostrom (2006), Mackie-Mason and Wellman
(2006), and Marks (2006).
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Table 3
A Computational Firm

agent Firm
{

Public Access:

// Public Methods
getWorldEventSchedule(clock time);
getWorldProtocol(ownership of stock shares);
getWorldProtocol(collusion among firms);
getWorldProtocol(insolvency of firms);
getMarketProtocol(posting of supply offers);
getMarketProtocol(trading process);
Methods for retrieving stored Firm data;
Methods for receiving data.

Private Access:

// Private Methods
Methods for gathering, storing, and sending data;
Method for selecting my supply offers;
Method for rationing my customers;
Method for recording my sales;
Method for calculating my profits;
Method for allocating my profits to my shareholders;
Method for calculating my net worth;
Methods for changing my methods.

// Private Data
My money holdings, capacity, total cost function, and net worth;
Information about the structure of the World;
Information about World events;
Address book (communication links);
Recorded communications.

}

A third primary objective is qualitative insight and theory generation: how can eco-
nomic systems be more fully understood through a systematic examination of their
potential dynamical behaviors under alternatively specified initial conditions?11 Such
understanding would help to clarify not only why certain global outcomes have regu-
larly been observed but also why others have not. A quintessential example is the old
but still unresolved concern of economists such as Smith (1937), Schumpeter (1934),
and Hayek (1948): what are the self-organizing capabilities of decentralized market

11 This question is addressed in the handbook entries by Arthur (2006), Axelrod (2006), Chang and Harring-
ton (2006), Kollman and Page (2006), Schelling (2006), Vriend (2006), Wilhite (2006), and Young (2006).
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Table 4
A Computational Consumer

agent Consumer
{

Public Access:

// Public Methods
getWorldEventSchedule(clock time);
getWorldProtocol(ownership of stock shares);
getMarketProtocol(price discovery process);
getMarketProtocol(trading process);
Methods for retrieving stored Consumer data;
Methods for receiving data.

Private Access:

// Private Methods
Methods for gathering, storing, and sending data;
Method for determining my budget constraint;
Method for determining my demands;
Method for seeking feasible and desirable supply offers;
Method for recording my purchases;
Method for calculating my utility;
Methods for changing my methods.

// Private Data
My money holdings, subsistence needs, and utility function;
Information about the structure of the World;
Information about World events;
Address book (communication links);
Recorded communications.

}

economies? For the latter issue, the typical approach is to construct an agent-based
world that captures key aspects of decentralized market economies (circular flow, lim-
ited information, strategic pricing,...), introduce privately motivated traders with learn-
ing capabilities, and let the world develop over time. The key concern is the extent to
which coordination of trade activities emerges and persists as the traders collectively
learn how to make their production and pricing decisions.12

12 An illustrative ACE study of this issue is provided in Section 3, below. Pointers to additional ACE work on
this issue can be found at http://www.econ.iastate.edu/tesfatsi/amulmark.htm. There is also an active literature
on macroeconomic models with learning (forecasting) agents that maintains price-taking assumptions for
firms and consumers and hence rules out any direct strategic interaction effects. See Arifovic (2000) and
Evans and Honkapohja (2001) for surveys of some of this work.

http://www.econ.iastate.edu/tesfatsi/amulmark.htm
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Table 5
World Dynamic Activity Flow

main () {

initWorld(); // Construct a world composed of agents
// (markets, firms, consumers,...).

configWorld(); // Configure the world and its constituent
// agents with methods and data.

For (T = 0,...,TMax) { // Enter the World Event Schedule:

postOffers(); // Firms select supply offers and
// publicly post them.

seekOffers(); // Consumers seek supply offers in accordance
// with their needs and preferences.

match(); // Firms and consumers determine trade
// partners and record transaction costs.

trade(); // Firms and consumers engage in trade
// interactions and record trade outcomes.

update(); // Firms and consumers update their methods
// and data based on their search and trade
// experiences.

}
}

A fourth primary objective is methodological advancement: how best to provide ACE
researchers with the methods and tools they need to undertake the rigorous study of eco-
nomic systems through controlled computational experiments? To produce compelling
analyses, ACE researchers need to model the salient structural, institutional, and behav-
ioral characteristics of economic systems. They need to formulate interesting theoretical
propositions about their models, evaluate the logical validity of these propositions by
means of carefully crafted experimental designs, and condense and report information
from their experiments in a clear and compelling manner. Finally, they need to test their
experimentally-generated theories against real-world data. ACE researchers are explor-
ing a variety of ways to meet these requirements ranging from careful consideration of
methodological principles to the practical development of programming, visualization,
and validation tools.13

ACE can be applied to a broad spectrum of economic systems ranging from micro
to macro in scope. This application has both advantages and disadvantages relative to
more standard modeling approaches.

13 ACE methodological issues are addressed by many of the authors in this handbook. See, in particular,
the contributions by Arthur (2006), Axelrod (2006), Brenner (2006), Dibble (2006), Duffy (2006), Epstein
(2006), Howitt (2006), Judd (2006), Leijonhufvud (2006), and Schelling (2006).
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On the plus side, as in industrial organization theory [Tirole (2003)], agents in ACE
models can be represented as interactive goal-directed entities, strategically aware of
both competitive and cooperative possibilities with other agents. As in the extensive-
form market game work of researchers such as Albin and Foley (1992), Rubinstein
and Wolinsky (1990), and Shubik (1991, Chapter 15), market protocols and other insti-
tutions constraining agent interactions can constitute important explicit aspects of the
modeled economic processes. As in the behavioral game theory work of researchers
such as Camerer (2003), agents can learn, i.e., change their behavior based on previous
experience; and this learning can be calibrated to what actual people are observed to do
in real-world or controlled laboratory settings. Moreover, as in work by Gintis (2000)
that blends aspects of evolutionary game theory with cultural evolution, the beliefs, pref-
erences, behaviors, and interaction patterns of the agents can vary endogenously over
time.

One key departure of ACE modeling from more standard approaches is that events
are driven solely by agent interactions once initial conditions have been specified. Thus,
rather than focusing on the equilibrium states of a system, the idea is to watch and see
if some form of equilibrium develops over time. The objective is to acquire a better
understanding of a system’s entire phase portrait, i.e., all possible equilibria together
with corresponding basins of attraction. An advantage of this focus on process rather
than on equilibrium is that modeling can proceed even if equilibria are computationally
intractable or non-existent.

A second key departure presenting a potential advantage is the increased facility pro-
vided by agent-based tools for agents to engage in flexible social communication. This
means that agents can communicate with other agents at event-driven times using mes-
sages that they, themselves, have adaptively scripted.

However, it is frequently claimed that the most important advantage of ACE modeling
relative to more standard modeling approaches is that agent-based tools facilitate the
design of agents with relatively more autonomy; see Jennings (2000). Autonomy, for
humans, means a capacity for self-governance.14 What does it mean for computational
agents?

Here is how an “autonomous agent” is defined by a leading expert in artificial intelli-
gence, Stan Franklin (1997a):

“An autonomous agent is a system situated within and part of an environment that
senses that environment and acts on it, over time, in pursuit of its own agenda and
so as to effect what it senses in the future.”

Clearly the standard neoclassical budget-constrained consumer who selects a sequence
of purchases to maximize her expected lifetime utility could be said to satisfy this defin-
ition in some sense. Consequently, the important issue is not whether agent-based tools

14 See the “Personal Autonomy” entry at the Stanford Encyclopedia of Philosophy site, accessible at http:
//plato.stanford.edu/entries/personal-autonomy/.

http://plato.stanford.edu/entries/personal-autonomy/
http://plato.stanford.edu/entries/personal-autonomy/
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permit the modeling of agents with autonomy, per se, but rather the degree to which
they usefully facilitate the modeling of agents exhibiting substantially more autonomy
than permitted by standard modeling approaches.

What degree of agent autonomy, then, do agent-based tools permit? In any purely
mathematical model, including any ACE model in which agents do not have access to
“true” random numbers,15 the actions of an agent are ultimately determined by the con-
ditions of the agent’s world at the time of the agent’s conception. A fundamental issue,
dubbed the First AI Debate by Franklin (1997b, Chapter 5), is whether or not the same
holds true for humans. In particular, is Penrose (1989) correct when he eloquently argues
there is something fundamentally non-computational about human thought, something
that intrinsically prevents the algorithmic representation of human cognitive and social
behaviors?

Lacking a definitive answer to this question, ACE researchers argue more prag-
matically that agent-based tools facilitate the modeling of cognitive agents with more
realistic social and learning capabilities (hence more autonomy) than one finds in tra-
ditional Homo economicus. As suggested in Tables 3 and 4, these capabilities include:
social communication skills; the ability to learn about one’s environment from various
sources, such as gathered information, past experiences, social mimicry, and deliberate
experimentation with new ideas; the ability to form and maintain social interaction pat-
terns (e.g., trade networks); the ability to develop shared perceptions (e.g., commonly
accepted market protocols); the ability to alter beliefs and preferences as an outcome of
learning; and the ability to exert at least some local control over the timing and type of
actions taken within the world in an attempt to satisfy built in (or evolved) needs, drives,
and goals. A potentially important aspect of all of these modeled capabilities is that they
can be based in part on the private internal methods of an agent, i.e., internal processes
that are hidden from the view of all other entities residing in the agent’s world. This
effectively renders an agent both unpredictable and uncontrollable relative to its world.

In addition, as indicated in Tables 3 and 4, an agent can introduce structural changes
in its methods over time on the basis of experience. For example, it can have a method
for systematically introducing structural changes in its current learning method so that
it learns to learn over time. Thus, agents can socially construct distinct persistent per-
sonalities.

Agent-based tools also facilitate the modeling of social and biological aspects of eco-
nomic systems thought to be important for autonomous behavior that go beyond the
aspects reflected in Tables 1–5. For example, agents can be represented as embodied
(e.g., sighted) entities with the ability to move from place to place in general spatial
landscapes. Agents can also be endowed with “genomes” permitting the study of eco-
nomic systems with genetically-based reproduction and with evolution of biological

15 Agent-based modelers can now replace deterministically generated pseudo-random numbers with random
numbers generated by real-world processes such as atmospheric noise and radioactive decay; see, e.g., http:
//www.random.org. This development has potentially interesting philosophical ramifications.

http://www.random.org
http://www.random.org
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populations. For extensive discussion and illustration of agent-based models incorpo-
rating such features, see Belew and Mitchell (1996), Epstein and Axtell (1996), and
Holland (1995).

What are the disadvantages of ACE relative to more standard modeling approaches?
One drawback is that ACE modeling requires the construction of dynamically complete
economic models. That is, starting from initial conditions, the model must permit and
fully support the playing out of agent interactions over time without further intervention
from the modeler. This completeness requires detailed initial specifications for agent
data and methods determining structural attributes, institutional arrangements, and be-
havioral dispositions. If agent interactions induce sufficiently strong positive feedbacks,
small changes in these initial specifications could radically affect the types of outcomes
that result. Consequently, intensive experimentation must often be conducted over a
wide array of plausible initial specifications for ACE models if robust prediction is to
be achieved.16 Moreover, it is not clear how well ACE models will be able to scale up
to provide empirically and practically useful models of large-scale systems with many
thousands of agents.

Another drawback is the difficulty of validating ACE model outcomes against em-
pirical data. ACE experiments generate outcome distributions for theoretical economic
systems with explicitly articulated microfoundations. Often these outcome distributions
have a multi-peaked form suggesting multiple equilibria rather than a central-tendency
form permitting simple point predictions. In contrast, the real world is a single time-
series realization arising from a poorly understood data generating process. Even if an
ACE model were to accurately embody this real-world data generating process, it might
be impossible to verify this accuracy using standard statistical procedures. For example,
an empirically observed outcome might be a low-probability event lying in a relatively
small peak of the outcome distribution for this true data-generating process, or in a thin
tail of this distribution.

3. From Walrasian equilibrium to ACE trading

For concrete illustration, this section first presents in summary form a Walrasian equilib-
rium modeling of a simple two-sector economy with price-taking firms and consumers.
The Walrasian Auctioneer pricing mechanism is then removed, resulting in a dynam-
ically incomplete economy. Specifically, the resulting economy has no processes for
determining how production and price levels are set, how buyers are to be matched with
sellers, and how goods are to be distributed from sellers to buyers in cases in which
matching fails to result in market clearing.

One possible way to complete the economy with agent-driven procurement processes
is then outlined, resulting in an ACE Trading World. The completion is minimal in

16 This point is discussed at some length by Judd (2006).
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the sense that only procurement processes essential for re-establishing the underly-
ing circular flow between firms and consumers are considered. As will be elaborated
more carefully below, these processes include firm learning methods for production and
pricing, firm profit allocation methods, firm rationing methods, and consumer price dis-
covery methods.

In the ACE Trading World, firms that fail to cover their costs risk insolvency and
consumers who fail to provide for their subsistence needs face death. Consequently,
the adequacy of the procurement processes used by these firms and consumers deter-
mines whether they survive and even prosper over time. The critical role played by
procurement processes in the ACE Trading World highlights in concrete terms the ex-
traordinarily powerful role played by the Walrasian Auctioneer pricing mechanism in
standard Walrasian equilibrium models.

3.1. Walrasian bliss in a hash-and-beans economy

Consider the following Walrasian equilibrium modeling of a simple one-period econ-
omy with two production sectors. The economy is populated by a finite number of
profit-seeking firms producing hash, a finite number of profit-seeking firms producing
beans, and a finite number of consumers who derive utility from the consumption of
hash and beans. Each firm has a total cost function expressing its production costs as a
function of its output level. Each consumer is endowed with an equal ownership share
in each firm as well as an exogenous money income.

At the beginning of the period, each firm has expectations for the price of hash and
the price of beans. Conditional on these price expectations, the firm selects a production
level to maximize its profits. The solution to this profit-maximizing problem gives the
optimal output supply for the firm as a function of its price expectations and its cost
function. At the end of the period, all firm profits are distributed back to consumers as
dividends in proportion to their ownership shares.

At the beginning of the period, each consumer has expectations regarding the divi-
dends she will receive back from each firm, as well as expectations for the price of hash
and the price of beans. Conditional on these expectations, the consumer chooses hash
and bean demands to maximize her utility subject to her budget constraint. This budget
constraint takes the following form: the expected value of planned expenditures must
be less than or equal to expected total income. The solution to this utility maximization
problem gives the optimal hash and bean demands for the consumer as a function of
her dividend expectations, her price expectations, her tastes (utility function), and her
exogenous money income.

DEFINITION. A specific vector e∗ comprising each consumer’s demands for hash and
beans, each firm’s supply of hash or beans, nonnegative prices for hash and beans, ex-
pected prices for hash and beans, and consumer expected dividends, is said to be a
Walrasian equilibrium if the following four conditions hold:
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(a) Individual Optimality: At e∗, all consumer demands are optimal demands condi-
tional on consumer expected prices and consumer expected dividends, and all firm
supplies are optimal supplies conditional on firm expected prices.

(b) Correct Expectations: At e∗, all expected prices coincide with actual prices, and all
expected dividends coincide with actual dividends calculated as consumer shares of
actual firm profits.

(c) Market Clearing: At e∗, aggregate supply is greater than or equal to aggregate de-
mand in both the market for hash and the market for beans.

(d) Walras’ Law (Strong Form): At e∗, the total value of excess supply is zero; i.e., the
total value of all demands for hash and beans equals the total value of all supplies of
hash and beans.

Conditions (c) and (d) together imply that any consumption good in excess supply
at e∗ must have a zero price. If consumers are nonsatiated at e∗, meaning they would
demand more of at least one type of good if their incomes were to increase, their bud-
get constraints must be binding on their purchases at e∗. Given nonsatiation together
with conditions (a) and (b), a summation of all consumer budget constraints would then
reveal that the total value of excess supply must necessarily be exactly zero at e∗, i.e.,
Walras’ Law in the strong sense of condition (d) necessarily holds. Finally, given con-
sumer nonsatiation together with conditions (a) through (c), the First Welfare Theorem
ensures that any hash and bean consumption levels supportable as optimal consumer de-
mands under a Walrasian equilibrium will be a Pareto efficient consumption allocation
[see Takayama (1985, Thm. 2.C.1, p. 192)].

3.2. Plucking out the Walrasian Auctioneer

The fulfillment of conditions (b) through (d) in the above definition of Walrasian equi-
librium effectively defines the task assigned to the Walrasian Auctioneer. This task has
three distinct aspects, assumed costless to achieve. First, all prices must be set at market
clearing levels conditional on firm and consumer expectations. Second, all firms must
have correct price expectations and all consumers must have correct price and dividend
expectations. Third, consumers must be appropriately matched with firms to ensure an
efficient set of trades.

To move from Walrasian to agent-based modeling, the Walrasian Auctioneer has to
be replaced by agent-driven procurement processes. As discussed at some length in
Section 1, this replacement is by no means a small perturbation of the model. Without
the Walrasian Auctioneer, the following types of agent-enacted methods are minimally
required in order to maintain a circular flow between firms and consumers over time:

Terms of Trade: Firms must determine how their price and production levels will be
set.

Seller-Buyer Matching: Firms and consumers must engage in a matching process that
puts potential sellers in contact with potential buyers.
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Rationing: Firms and consumers must have procedures in place to handle excess de-
mands or supplies arising from the matching process.

Trade: Firms and consumers must carry out actual trades.
Settlement: Firms and consumers must settle their payment obligations.
Shake-Out: Firms that become insolvent and consumers who fail to satisfy their sub-

sistence consumption needs must exit the economy.

Attention thus shifts from firms and consumers optimizing in isolation, conditional on
expected prices and dividends, to the interaction patterns occurring among firms and
consumers as they attempt to carry out their trading activities.

The ACE Trading World, outlined below and detailed in the Appendix, illustrates one
possible completion of the hash-and-beans economy with procurement handled by the
agents themselves rather than by a Walrasian Auctioneer. The resulting process model
is described at each point in time by the configuration of data and methods across all
agents. A partial listing of these data and methods is schematically indicated in Ta-
bles 1–4. As indicated in Table 5, all outcomes in the ACE Trading World are generated
through firm and consumer interactions played out within the constraints imposed by
currently prevalent structural conditions and institutional arrangements; market clear-
ing conditions are not imposed. Consequently, in order to survive and even prosper in
their world, the firms and consumers must learn to coordinate their behaviors over time
in an appropriate manner.

3.3. The ACE Trading World: Outline

Consider an economy that runs during periods T = 0, 1, . . . , TMax. At the beginning
of the initial period T = 0 the economy is populated by a finite number of profit-
seeking hash firms, a finite number of profit-seeking bean firms, and a finite number of
consumers who derive utility from the consumption of hash and beans.

Each firm in period T = 0 starts with a nonnegative amount of money and a positive
production capacity (size). Each firm has a total cost function that includes amortized
fixed costs proportional to its current capacity. Each firm knows the number of hash
firms, bean firms, and consumers currently in the economy, and each firm knows that
hash and beans are perishable goods that last at most one period. However, no firm
has prior knowledge regarding the income levels and utility functions of the consumers
or the cost functions and capacities of other firms. Explicit collusion among firms is
prohibited by antitrust laws.

Each consumer in period T = 0 has a lifetime money endowment profile and a utility
function measuring preferences and subsistence needs for hash and beans consumption
in each period. Each consumer is also a shareholder who owns an equal fraction of each
hash and bean firm. The income of each consumer at the beginning of period T = 0
is entirely determined by her money endowment. At the beginning of each subsequent
period, each consumer’s income is determined in part by her money endowment, in
part by her savings from previous periods, and in part by her newly received dividend
payments from firms.
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At the beginning of each period T ≥ 0, each firm selects a supply offer consisting
of a production level and a unit price. Each firm uses a learning method to make this
selection, conditional on its profit history and its cost attributes. The basic question
posed is as follows: Given I have earned particular profits in past periods using particular
selected supply offers, how should this affect my selection of a supply offer in the
current period? Each firm immediately posts its selected supply offer in an attempt
to attract consumers. This posting is carried out simultaneously by all firms, so that no
firm has a strategic advantage through asymmetric information.

At the beginning of each period T ≥ 0, each consumer costlessly acquires complete
information about the firms’ supply offers as soon as they are posted. Consumers then
attempt to ensure their survival and happiness by engaging in a price discovery process
consisting of successive rounds. During each round, the following sequence of activities
is carried out. First, any consumer unable to cover her currently unmet subsistence needs
at the currently lowest posted prices immediately exits the price discovery process. Each
remaining consumer determines her utility-maximizing demands for hash and beans
conditional on her currently unspent income, her currently unmet subsistence needs,
and the currently lowest posted hash and bean prices. She then submits her demands to
the firms that have posted these lowest prices. Next, the firms receiving these demands
attempt to satisfy them, applying if necessary a rationing method. Consumers rationed
below subsistence need for one of the goods can adjust downward their demand for the
remaining good to preserve income for future rounds. Finally, actual trades take place,
which concludes the round. Any firms with unsold goods and any rationed consumers
with unspent income then proceed into the next round, and the process repeats.

This period-T price-discovery process comes to a halt either when all firms are
stocked out or when the unspent income levels of all consumers still participating in
the process have been reduced to zero. Consumers who exit or finish this process with
positive unmet subsistence needs die at the end of period T . Their unspent money hold-
ings (if any) are then lost to the economy, but their stock shares are distributed equally
among all remaining (alive) consumers at the beginning of period T + 1. This stock
share redistribution method ensures that each alive consumer continues to own an equal
share of each firm. At the end of each period T ≥ 0, each firm calculates its period-T
profits. A firm incurs positive (negative) profits if it sells (does not sell) enough output
at a sufficiently high price to cover its total costs, including its fixed costs. Each firm
then calculates its period-T net worth (total assets minus total liabilities). If a firm finds
it does not have a positive17 net worth, it is declared effectively insolvent and it must exit
the economy. Otherwise, the firm applies a state-conditioned profit allocation method
to determine how its period-T profits (positive or negative) should be allocated between
money (dis)savings, capacity (dis)investment, and (nonnegative) dividend payments to
its shareholders.

17 As detailed in the Appendix A, a valuation of each firm’s capacity is included in the calculation of its net
worth. Consequently, a zero net worth implies a firm has no capacity for production.
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In summary, the ACE Trading World incorporates several key structural attributes,
institutional arrangements, and behavioral methods whose specification could critically
affect model outcomes. These include: initial numbers and capacities of hash and bean
firms; initial number of consumers; initial firm money holdings; consumer money en-
dowment profiles; initial firm cost functions; consumer utility functions; market price
discovery and trading protocols; world protocols regarding stock ownership, firm col-
lusion, and firm insolvency; firm learning methods; firm rationing methods; and firm
profit allocation methods.

The degree to which the ACE Trading World is capable of self-coordination can be
experimentally examined by studying the impact of changes in these specifications on
micro behaviors, interaction patterns, and global regularities. For example, as detailed
in Cook and Tesfatsion (2006), the ACE Trading World is being implemented as a com-
putational laboratory with a graphical user interface. This implementation will permit
users to explore systematically the effects of alternative specifications, and to visualize
these effects through various types of run-time displays.

3.4. Defining “equilibrium” for the ACE Trading World

Definitions of equilibrium appearing in scientific discourse differ in particulars depend-
ing on the system under study. All such definitions, however, would appear to embody
the following core idea: a system is in equilibrium if all influences acting on the system
offset each other so that the system is in an unchanging condition.

It is important to note the absence in this core definition of any conception of unique-
ness, optimality, or stability (robustness) with regard to external system disturbances.
Once the existence of an equilibrium has been established, one can further explore the
particular nature of this equilibrium. Is it unique? Does it exhibit optimality properties
in any sense? Is it locally stable with respect to displacements confined to some neigh-
borhood of the equilibrium? If so, what can be said about the size and shape of this
“basin of attraction”?

The ACE Trading World is a deterministic system.18 The state of the system at the
beginning of each period T is given by the methods and data of all of the agents currently
constituting the system. The methods include all of the processes used by agents in
period T to carry out production, pricing, and trade activities, both private behavioral
methods and public protocols. These methods are schematically indicated in Tables 1–4
and discussed in detail in Sections A.1–A.7 of the Appendix A. The data include all
of the exogenous and period-T predetermined variables for the ACE Trading World; a
complete listing of these variables can be found in Section A.8 of the Appendix A.

Let X(T ) denote the state of the ACE Trading World at the beginning of period T .
By construction, the motion of this state follows a first-order Markov process. That is,

18 Each firm and consumer in the ACE Trading World implementation by Cook and Tesfatsion (2006) has
access to its own method for generating “random numbers.” However, as usual, these methods are in actuality
pseudo-random number generators consisting of systems of deterministic difference equations.
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X(T + 1) is determined as a function of the previous state X(T ). This function would
be extremely difficult to represent in explicit structural form, but it could be done.19 For
expository purposes, let this state process be depicted as

(1)X(T + 1) = S
(
X(T )

)
, T = 0, 1, . . . , TMax.

If in some period T̄ ≥ 0 all firms were to become insolvent and all consumers were to
die for lack of goods sufficient to meet their subsistence needs, the ACE Trading World
would exhibit an “unchanging condition” in the sense of an unchanged state,

(2)X(T + 1) = X(T ) for T = T̄ + 1, . . . , TMax.

Apart from this dire situation, however, the ACE Trading World has four features that
tend to promote continual changes in the data components of X(T ): (a) the firms’ use
of choice probability distributions to select supply offers; (b) firm learning (updating
of choice probability distributions); (c) changing firm capacity levels in response to
changing profit conditions; and (d) resort by firms and consumers to “coin flips” to
resolve indifferent choices. Consequently, although a stationary-state equilibrium in the
sense of condition (2) is possible, it is too restrictive to be of great interest.

More interesting than this rarified stationary-state form of balance are conceptions
of equilibrium for the ACE Trading World that entail an “unchanging condition” with
regard to more global world properties. Some of these possible conceptions are listed
below.

• The economy exhibits an unchanging carrying capacity, in the sense that it sup-
ports an unchanged number of solvent firms and viable consumers over time.

• The economy exhibits continual market clearing, in the sense that demand equals
supply in the markets for hash and beans over time.

• The economy exhibits an unchanging structure, in the sense that the capacity levels
(hence fixed costs) of the hash and bean firms are not changing over time.

• The economy exhibits an unchanging belief pattern, in the sense that the firms’
choice probability distributions for selection of their supply offers are not changing
over time.

• The economy exhibits an unchanging trade network, in the sense that who is trad-
ing with whom, and with what regularity, is not changing over time.

• The economy exhibits a steady-state growth path, in the sense that the capacities
and production levels of the firms and the consumption levels of the consumers are
growing at constant rates over time.

Finally, it is interesting to weaken further these conceptions of equilibria to permit
approximate reflections of these various properties. Define an idealized reference path
for the ACE Trading World to be a collection of state trajectories exhibiting one (or
possibly several) of the above-listed global properties. For example, one might consider
the set E∗ of all state trajectories exhibiting continual market clearing. For any given

19 See Epstein (2006) for a discussion of the recursive function representation of ACE models.
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tolerance level τ , define a τ -neighborhood of the reference path E∗ to be the collection
of all state trajectories whose distance from E∗ is within τ for some suitably defined
distance measure.20 Given any initial specification for the ACE Trading World, one can
then conduct multiple experimental runs using multiple pseudo-random number seed
values to determine the (possibly zero) frequency with which the ACE Trading World
enters and remains within this τ -neighborhood.

4. ACE modeling of procurement processes

In real-world economies, rival firms must actively compete for customers in order
to survive and prosper. This section focuses on six important issues entailed by this
procurement process that ACE frameworks are able to address: namely, constructive
understanding; the essential primacy of survival; strategic rivalry and market power;
behavioral uncertainty and learning; the role of conventions and organizations; and the
complex interactions among structural attributes, institutional arrangements, and behav-
ioral dispositions. The ACE Trading World outlined in Section 3.3 is used to illustrate
key points.

4.1. Constructive understanding

If you had to construct firms and consumers capable of surviving and even prospering in
a realistically rendered economy, how would you go about it? To express this question
in more concrete terms, consider the following exercise similar to the type of exercise
undertaken in Section 3.

• Select as your benchmark case an equilibrium modeling of an economy from the
economic literature that is clearly and completely presented and that addresses
some issue you care about.

• Remove from this economic model every assumption that entails the external im-
position of an equilibrium condition (e.g., market clearing assumptions, correct
expectations assumptions, and so forth).

• Dynamically complete the economic model by the introduction of production, pric-
ing, and trade processes driven solely by interactions among the agents actually
residing within the model. These procurement processes should be both feasible
for the agents to carry out under realistic information limitations and appropriate
for the types of goods, services, and financial assets that the agents produce and
exchange.

• Define an “equilibrium” for the resulting dynamically complete economic model.

20 For example, a state trajectory might be said to be within distance τ of E∗ if, for all sufficiently large
tested T values, the discrepancy between period-T aggregate demand and period-T aggregate supply is less
than τ in absolute value for both hash and beans.
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In my experience, economics students are generally intrigued but flummoxed when
presented with this type of exercise because it is radically different from the usual eco-
nomic problems their professors have asked them to consider. In particular, they find
it difficult to specify procurement processes driven solely by agent interactions and to
define a correspondingly appropriate concept of equilibrium. Yet the key issue is this: If
economists cannot rise to this constructive challenge, to what extent can we be said to
understand the micro support requirements for actual decentralized market economies
and the manner in which such economies might achieve an “unchanging condition”?

4.2. The essential primacy of survival

ACE modeling forces researchers to rise to the constructive challenge posed in Sec-
tion 4.1. The most immediate, dramatic, and humbling revelation flowing from the ACE
modeling of economic systems is the difficulty of constructing economic agents capable
of surviving over time, let alone prospering.

When firms with fixed costs to cover are responsible for setting their own produc-
tion and price levels, they risk insolvency. When consumers with physical requirements
for food and other essentials must engage in a search process in an attempt to secure
these essentials, they risk death. Every other objective pales relative to survival; it is
lexicographically prior to almost every other consideration.

The explicit consideration of subsistence needs also has interesting ramifications for
the analysis of social welfare. The incorporation of subsistence needs into consumer
utility functions induces a fundamental non-concavity in these functions at subsistence
levels, i.e., where death occurs. This invalidates many important conclusions drawn
from standard utilitarian social welfare analyses, for which concave utility and welfare
functions are presumed. For example, a comfortable outcome commonly supported by
such analyses is an egalitarian resource distribution. Suppose, however, that consumer
utility functions take the form uk(x) = 1− exp(−[x − x̄k]) for x ≥ x̄k and 0 otherwise,
where x̄k is a nonnegative subsistence need. The maximization of a standard utilitar-
ian social welfare function of the form W(u1, . . . , uK) with dW/duk > 0 for each k

will then dictate that consumers k with relatively high subsistence needs x̄k should be
permitted to die for the greater benefit of consumers as a whole, even if sufficient re-
sources are available to satisfy the subsistence needs of all consumers (Tesfatsion, 1985,
p. 297). In order to ensure survival, a right to subsistence shares must be imposed as an
additional constraint on the social welfare maximization problem, thus throwing into
question the completeness of utilitarianism as a theory of distributive justice.

Despite these observations, fixed costs and subsistence needs are often assumed to
be either absent or unimportant in theoretical models of economic systems.21 Attention

21 Important exceptions include work by researchers such as Richard Nelson, Roy Radner, Amartya Sen,
and Sidney Winter on market survival and famine—see Nelson (1995) and Radner (1998)—and work by
Chatterjee and Ravikumar (1999) on endogenous growth models incorporating subsistence requirements.
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is focused on economic systems assumed to be operating smoothly at their equilibrium
points. Survival is assured as a modeling assumption, not as the outcome of a process of
blood, sweat, and tears. Fixed costs and subsistence needs reduce to bells and whistles
of no consequence for the model outcomes.

Agent-based modeling tools permit economists to test their ability to construct firms
and consumers capable of surviving and prospering in realistically rendered economic
environments for which survival is by no means assured.

4.3. Strategic rivalry and market power

In economies organized on the basis of decentralized markets, each firm is necessar-
ily in rivalry with other firms for scarce consumer dollars. The production and price
choices of firms are intrinsically linked through consumer budget constraints and pref-
erences. A firm’s production and price choices can help attract consumers for its output
by making its output relatively cheap, or by making its output relatively abundant and
hence free of stock-out risk. In addition, a firm’s production and price choices can help
to counter the relative preference of consumers for other types of outputs.

For example, in the ACE Trading World each hash firm has to worry about the supply
offers (i.e., the production and price choices) of other hash firms. A hash firm might
try to set a low price to avoid being undercut by rival hash firms. Alternatively, a hash
firm could deliberately price high with an eye to profitably capturing residual hash de-
mand from capacity-constrained lower-price hash firms. A hash firm might also try to
use its price as a signal to other hash firms, repeatedly setting a relatively high price
in an attempt to induce implicit collusion at this price. The riskiness of these supply
offer strategies depends strongly on the microstructure of the market and the learning
behaviors of the other hash firms. In particular, the initial money holdings and produc-
tion capacity of a hash firm limit the degree to which it can afford to experiment with
alternative supply offers. Negative profits must be covered by reductions in money hold-
ings or by sale of capacity, hence too many successive periods with negative profits will
ultimately force the firm into insolvency.

Also, hash firms as a whole have to worry about setting a market price for hash that
is too high relative to the price for beans. Too high a hash price could induce potential
hash customers to instead buy beans, thus driving down hash firm profits unnecessar-
ily. Since hash firms do not have prior knowledge of consumer demand functions or of
the supply offer strategies of bean firms, they do not have prior knowledge regarding
the maximum possible profits they could extract from the market through appropriate
supply offers. An additional challenging but realistic complication is that each firm can
increase or decrease its production capacity over time in response to its own idiosyn-
cratically changing financial state, hence a hash firm’s maximum extractable profits can
vary over time even if all other firms have stationary structures and supply offer strate-
gies.

Similarly, each consumer is necessarily in rivalry with other consumers for potentially
scarce produced goods. The firms currently offering the lowest prices can suffer stock-
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outs, hence a consumer formulating her demands conditional on receiving these lowest
posted prices has no actual guarantee that her demands will be realized. If a stock-out
results in a consumer’s demand being rationed below her subsistence needs, preserving
income for future purchases to secure these needs becomes a critical survival issue.

For example, as detailed in Section A.7 of the Appendix A, consumers in the current
rendition of the ACE Trading World are myopic utility seekers. In each period T they
submit hash and bean demands to the firms currently posting the lowest hash and bean
prices in an attempt to maximize their period-T utility.22 If they are then rationed below
subsistence needs in one of these goods, they back down their demand for the other
good in order to preserve income for future purchases of the rationed good at a possibly
higher price. However, consumers do not anticipate and plan in advance for stock-out
and rationing contingencies.

It would be interesting to consider alternative specifications of consumer utility-
seeking behaviors permitting consumers to display a more sophisticated awareness of
the opportunities and risks they face over time. For example, if firms offering the lowest
possible prices are frequently stocked out, smart consumers might plan in advance to
patronize firms offering slightly higher prices in order to avoid long queue lines and
stock-out risk. Alternatively, consumers might engage in a sequential search process,
one firm at a time, in which they first attempt to secure their subsistence needs and
then revert to utility maximization once these needs are secured. In addition, consumers
might deliberately plan to save a portion of their current money income in excess of sub-
sistence needs expenditures as a precautionary measure against uncertain times ahead. It
is interesting how naturally one slips back into a consideration of such practical “Key-
nesian” rules of thumb when procurement processes must be constructively modeled
solely in terms of agent interactions.

4.4. Behavioral uncertainty and learning

Substantial progress has been made in understanding how people learn in various social
settings captured in laboratory experiments; see, for example, Camerer (2003), Kagel
and Roth (1995), and McCabe (2003). In addition, researchers in social psychology,
marketing, and other disciplines have accumulated a wealth of empirical evidence on
learning in a wide range of natural social settings. Based on these findings, a variety of
learning algorithms have been proposed in the economics literature.23

Unfortunately, tractability problems have made it difficult for economists to incorpo-
rate these insights on learning into their analytical models. In current economic theory it

22 Thus, consumers display an extreme form of “quasi-hyperbolic discounting:” namely, current utility out-
comes always have a weight of 1 whereas future utility outcomes always have a weight of 0. Recent experi-
mental evidence appears to support quasi-hyperbolic discounting in the less extreme form (1, β, β, . . .) with
0 < β < 1; see Sections 1–4 (pp. 351–365) of Frederick et al. (2002).
23 See http://www.econ.iastate.edu/tesfatsi/aemind.htm for annotated pointers to some of this research. De-
tailed surveys of the economics learning literature can be found in Brenner (2006) and Duffy (2006).

http://www.econ.iastate.edu/tesfatsi/aemind.htm
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is common to see the problem of learning short-circuited by the imposition of a rational
expectations assumption. Rational expectations in its weakest form assumes that agents
on average make optimal use of their information, in the sense that their subjective ex-
pectations coincide on average with objectively true expectations conditional on this
information. This weak-form rational expectations assumption is in accordance with a
postulate most economists find uncontroversial: namely, that agents continually act to
bring their expectations into consistency with their information.24 Nevertheless, it con-
siderably strengthens this postulate by assuming that agents’ expectations are consistent
with their information. Moreover, economists typically apply rational expectations in an
even stronger form requiring optimal usage of information plus the inclusion in this in-
formation of all relevant information about the world.

Whatever specific form it takes, the rational expectations assumption requires uncer-
tainty to be ultimately calculable for all agents in terms of “objectively true” conditional
probability distributions as an anchor for the commonality of beliefs. Expectations can
differ across agents conditioning on the same information only by noise terms with no
systematic relationship to this information, so that these noise terms wash out when
average or “representative” expectations are considered. This rules out strategic multi-
agent situations in which a major source of uncertainty is behavioral uncertainty, i.e.,
uncertainty regarding what actions other agents will take.

For example, firms in the ACE Trading World have no prior knowledge of consumer
demand functions or of the cost functions and capacities of other firms. An added com-
plication is that the structure of the ACE Trading World can change endogenously over
time if individual firms ever find themselves in profit conditions that induce them to
change their capacities and hence their fixed costs. Consequently, firms must operate
under a great deal of behavioral and structural uncertainty. Even if each firm were
to have complete and correct information about structural conditions, the behavioral
uncertainty would remain. This is because structural aspects by no means determine
“objectively true” expectations for the supply offer strategies of other firms. Rather,
such expectations could be self-referential, depending in part on what one firm expects
other firms expect about its own expectations, and so on, resulting in an inherent expec-
tational indeterminacy.

The profit-seeking hash and bean firms in the ACE Trading World therefore face
extremely challenging learning problems. Despite profound behavioral and structural
uncertainty, they must somehow decide on supply offers in each successive period.
These choices require the resolution of a trade-off in each period between two com-
peting objectives:

• Information Exploitation: Select production and price levels today so that my
current expected profits are as high as possible, given my current information.

24 The strong psychological evidence supporting the prevalence of cognitive dissonance suggests that econo-
mists should exercise caution even with regard to this postulate.
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• Information Exploration: Select production and price levels today in an attempt
to learn more about my economic environment, even if this adversely affects my
current profits, so that my future expected profits can be increased.

The manner in which the firms resolve this trade-off in each successive period deter-
mines their long-run fate. Will they survive or become insolvent? If they survive, just
how profitable will they be?

Given the importance of learning to firms in the ACE Trading World, a key issue
is whether there is any one “best” way for firms to learn. The theoretical literature on
multi-agent learning is currently in its infancy and offers little guidance at this point in
time. However, the experimental findings reported by ACE researchers to date suggest
the answer might well be negative. The main difficulty is the prevalence of two-way
feedbacks in multi-agent settings such as the ACE Trading World. The relative per-
formance of a learning method employed by any one particular agent tends to depend
heavily on the current behavior of other agents as well as on current structural and insti-
tutional conditions. These conditioning factors can, in turn, undergo change in response
to actions taken by the agent employing the learning method. Even if a Nash equilib-
rium in learning strategies were to exist, there is no particular reason to expect that it
would be unique or Pareto optimal.

Indeed, it is not even clear what information an ACE Trading World firm should
optimally take into account during the course of its learning. For example, as detailed
in Section A.4 of the Appendix A, hash and bean firms in the current rendition of the
ACE Trading World are assumed to rely on a simple form of reinforcement learning
to make their supply offer selections in each period. The information requirements of
this learning method are minimal. Each firm keeps track of its own profit history, and
each firm uses knowledge of its own cost function in order to exclude consideration
of supply offer selections that would result in negative profits for sure. One potentially
valuable piece of information ignored by this learning method is the length of the queue
lines faced by each firm during the course of the price discovery process. A firm might
be able to use the length of its queue lines, in conjunction with its production levels,
to obtain excess demand estimates that could be used to better inform both its supply
offer selections and its capacity (dis)investment decisions. Another type of information
currently ignored by firms is observations on the supply offer selections of other firms.

Could a hash or bean firm necessarily improve its profit performance by making
use of additional information either alone or in conjunction with other firms? The ex-
perimental findings reported by Axelrod (1997) suggest that transparency can be an
important criterion for successful performance in multi-agent settings.25 A potential

25 In 1979 Robert Axelrod posed an intriguing question: What type of strategy (if any) ensures good indi-
vidual performance over the long haul when one is engaging in Iterated Prisoner’s Dilemma (IPD) game play
in round-robin fashion with multiple strangers whose strategies are not known in advance? Axelrod explored
this question by conducting an IPD computer tournament with IPD strategies solicited from game experts
from all over the world. The winner of this tournament was the Tit-for-Tat (TFT) strategy submitted by Anatol
Rapoport. The TFT strategy is simply stated: Start by cooperating, then do whatever your rival did in the
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downside for a firm attempting to use multiple sources of information to inform its se-
lections is that its actions and intentions might become so opaque to other agents that
opportunities for mutually beneficial coordination are lost. In this case the profits of the
firm could actually diminish.

On the flip side of this issue, Gode and Sunder (1993) have demonstrated that even
highly uninformed Zero-Intelligence (ZI) traders can perform well in certain types of
market settings. Specifically, Gode and Sunder conducted continuous double-auction
experiments with computational traders. They observed that high market efficiency
was generally obtained as long as the traders acted within their budget constraints,
abided by an auction protocol requiring current bids/offers to be improvements over the
currently best bids/offers (p. 122), and satisfied the behavioral assumption that higher-
value/lower-cost units were always bid/offered first (p. 122 and footnote 5, p. 131).
Gode and Sunder concluded that the high market efficiency they observed in their ex-
periments derived from the structural and institutional aspects of the auction and not
from the learning capabilities of the auction traders per se.26

Later research has raised some cautions about the generality of these early Gode–
Sunder findings; see, e.g., Cliff and Bruten (1997) and Gode and Sunder (1997). For
example, Cliff and Bruton consider Zero-Intelligence-Plus (ZIP) traders who systemat-
ically vary their current bids/offers on the basis of information about the bid/offer levels
last accepted in the market. In comparison with Gode–Sunder’s original ZI traders, Cliff
and Bruten find that the performance of their modestly more informed ZIP traders is
significantly closer to the efficient performance of human traders typically observed in
human-subject double-auction experiments. Nevertheless, the basic conclusion reached
in the original Gode–Sunder work still stands: good market performance should not
automatically be attributed to trader learning and rationality.

Finally, timing is another potentially critical aspect of learning. In the current rendi-
tion of the ACE Trading World, firms are assumed to update their supply offer selections
at the beginning of every period in response to last period’s profit outcomes. Moreover,
their state-conditioned profit allocation methods dictate that they should undertake ca-
pacity investment whenever their profits are positive and their current demand exceeds
their current capacity. However, in a decision environment as highly uncertain as the
ACE Trading World, some degree of inertia could be beneficial. For example, multi-
ple positive excess demand observations would increase confidence in the wisdom of
undergoing a costly capacity expansion.

Intensive experimentation with multi-agent economic models such as the ACE Trad-
ing World might help shed additional light on these empirically important learning
issues.

previous iteration. As stressed by Axelrod (1997), one key reason for the success of TFT in this tournament
appears to have been its transparency; other players could easily determine that cooperation with TFT would
induce cooperation in turn.
26 See Duffy (2006) for an extensive discussion of the findings by Gode and Sunder (1993).
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4.5. The role of conventions and organizations

In the Walrasian equilibrium model, the fictitious Walrasian Auctioneer pricing mecha-
nism ensures buyers are efficiently matched with sellers at market clearing prices. In the
real world, it is the procurement processes implemented by firms, consumers, and other
agents actually residing within the world that drive economic outcomes. These procure-
ment processes must allow for a wide range of contingencies in order for economies to
function properly.

In particular, buyers and sellers must be able to continue on with their production,
pricing, and trade activities even if markets fail to clear. The ACE Trading World
illustrates the minimal types of additional scaffolding required to support orderly pro-
curement despite the occurrence of excess supply or demand.

Consider, first, the possibility of excess supply in the ACE Trading World. Excess
supply increases a firm’s risk of insolvency because the firm’s revenues, hence profits,
are less than anticipated. In accordance with the market protocol governing the insol-
vency of firms, a firm must exit the economy when and if it sustains negative profits
that wipe out its current money holdings and capacity and leave it with a non-positive
net worth. Since amortized fixed costs must be covered in each period regardless of a
firm’s production level, a decision by a firm to refrain from production is not a safe
harbor. Moreover, inventory management is not an effective counter to over-production
because goods are perishable.

What firms in the ACE Trading World can do to try to lessen their insolvency risk
is to implement state-conditioned profit allocation methods. As illustrated concretely in
Section A.3 of the Appendix A, these methods determine how the profits of the firms—
whether positive or negative—are to be allocated among money (dis)savings, capacity
(dis)investment, and (nonnegative) dividend payments to shareholders. In particular,
a profit allocation method permits a firm to tailor its production capacity to its normal
demand in order to control the frequency of both stock-outs (missed profit opportunities)
and unsold goods (unnecessarily high production costs).

For example, if a firm finds itself in an excess capacity state relative to current
demand, it can channel more of any positive profits into money holdings instead of div-
idend payments or capacity investment, or even sell off capacity if its current demand
level is expected to persist. Money holdings provide a way for a firm to store value as a
buffer against future adverse revenue shocks. Capacity investment also provides a store
of value for the firm, hence a buffer against unanticipated declines in future revenues;
but capacity entails a carrying charge through fixed costs. On the downside, a curtail-
ment of dividends represents a curtailment of consumer incomes, which could cause a
decline in the future demand for the firm’s goods. These competing considerations must
all be weighed in the selection of an appropriate profit allocation method.

Consider, next, the possibility that firms in the ACE Trading World experience excess
demands for their goods. The firms have to determine their supply offers in each period
on the basis of limited information about consumer demands and about the simultaneous
supply offers of other firms. Consequently, it is possible that firms posting relatively
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low prices will find their demand exceeds their supply. A firm facing this contingency
must have some way of determining how to ration its limited goods among its current
customers.

Each firm in the ACE Trading World is assumed to implement rationing in accor-
dance with its own rationing method. These rationing methods can have a potentially
significant effect on the resulting world dynamics. Consumers must consume enough
goods in every period in order to meet their subsistence needs. As dictated by the mar-
ket protocol governing consumer price discovery, consumers in every period search for
the lowest posted goods prices in an attempt to meet and even exceed their subsistence
needs in accordance with their utility maximization objectives. Consumers who fail to
meet their subsistence needs by the end of the period will die.

Suppose, for example, that all firms in the ACE Trading World implement the Ran-
dom Queue Rationing Method described in Section A.7 of the Appendix A. This
rationing method allocates limited goods among current customers through random cus-
tomer selection, without any regard for differential customer attributes (e.g., differential
needs and incomes). Under such a method, lower-income customers with currently un-
met subsistence needs could face a significant risk of death; any failure to meet their
subsistence needs through the current firm means they will next have to try to meet
their needs by patronizing a higher-priced firm. If, instead, firms were to implement ra-
tioning methods systematically biased in favor of higher-income customers, the risk of
death faced by lower-income customers would become even greater.

Imagine how different the dynamics of the ACE Trading World might be if, in addi-
tion to private firms, the world also included non-profit firms constituted as government
service agencies specifically and publicly charged with providing priority service to
lower-income customers. Nevertheless, even the presence of such agencies might not
be sufficient to eliminate subsistence risk for consumers. If the agencies cannot afford
to produce (or acquire) enough goods to service all of the subsistence needs of their
customers, they will face painfully difficult “life-boat ethics” decisions regarding who
will be permitted to live and who will be permitted to die.

Rationing methods are not viewed as critical aspects of procurement in economies
with abundant goods and infrequent stock-outs. Nevertheless, as the ACE Trading
World suggests, rationing methods could potentially influence the growth paths of
economies by affecting the allocation of resources and even life and death itself. An
economy’s current rationing methods might not appear to matter only because they
have mattered so much in the past.

In summary, in order to enable procurement to proceed in the face of excess supply or
demand, the ACE Trading World relies on a support system of public and private meth-
ods: namely, insolvency protocol, price discovery protocol, profit allocation methods,
and rationing methods. The implicit assumption is that all agents accept the outcomes
determined in part by these methods. Insolvent firms accept they must exit the economy.
Consumers accept that their dividend payments might vary with profit levels, that queue
lines will form before the firms posting the lowest prices, and that their actual purchases
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might in some circumstances be rationed below their planned purchases. Consequently,
these methods are in fact conventions, i.e., generally accepted practices.

Clearly, however, the ACE Trading World exaggerates the coordination problems
faced by firms and consumers in real-world decentralized market economies. Apart
from the Walrasian Auctioneer pricing mechanism, Walrasian equilibrium models are
free of any organizational structure. Consequently, in trying to retain as much as possi-
ble of the basic features of the Walrasian equilibrium model outlined in Section 3.1 apart
from equilibrium assumptions, the ACE Trading World is forced to rely on conventions
to fill out the needed scaffolding to ensure orderly procurement.

As stressed by Clower and Howitt (1996), Colander (1996), Howitt (2006), and
Leijonhufvud (2006), real-world decentralized market economies have evolved a wide
variety of organizations to reduce coordination problems. For example, even the hum-
drum retail store dramatically facilitates orderly buyer–seller exchange through the
reduction of transaction and information costs. In the current ACE Trading World,
traders can only buy and sell hash and beans through bilateral trades. The coordina-
tion problems faced by these traders would be ameliorated if hash and beans could also
be purchased through retail grocery stores.

ACE frameworks can incorporate realistically rendered institutional aspects of
economies with relative ease. Consequently, ACE researchers are increasingly focusing
on the role of conventions and organizations in relation to economic performance.27

4.6. Interactions among attributes, institutions, and behaviors

Recall that an agent in an ACE model is an economic, social, biological, or physical
entity represented as a bundle of data and methods. An agent’s data might include infor-
mation about the attributes of other agents as well as itself. An agent’s methods might
include socially instituted codes of conduct (e.g., market protocols and other institu-
tional arrangements) as well as behavioral modes private to the agent. Anyone who has
hands-on experience with the construction of ACE models, and hence with the speci-
fication of data and methods for multiple agents in a dynamic social setting, is sure to
have encountered the following modeling conundrum: everything seems to depend on
everything else.

Consider, for example, the complicated feedbacks that arise for firms in the ACE
Trading World. The learning methods used by firms to select their supply offers de-
termine in part their profit outcomes, which in turn affect their capacity investment
decisions and hence their size and cost attributes. On the other hand, the size and cost at-
tributes of firms affect their feasible supply offer domains, which in turn constrain their
learning methods. Similarly complicated feedbacks arise between firms and consumers.
The chance that any particular consumer will survive and prosper depends strongly on

27 See the handbook chapters by Chang and Harrington (2006) and Young (2006) for discussions of some of
this work.
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supply conditions, in particular on the number and types of supply offers posted by
firms. In turn, the survival and prosperity of firms depends strongly on demand con-
ditions, and hence on the survival and prosperity of consumers. Moreover, all of these
feedbacks among attributes and private behaviors must play out within the constraints
imposed by market protocols and other institutional arrangements.

Given these complex interactions, it is generally not possible to conclude for an ACE
model that a particular attribute will give an agent an absolute advantage over time, or
that a particular method is optimally configured for an agent in an absolute sense. The
advantage or optimality accruing to an attribute or method at any given time generally
depends strongly on the current configuration of attributes and methods across agents.

In principle, using agent-based tools, a modeler can (if desired) permit any or all agent
attributes and methods to vary over time. These variations could be the result of innate
or external forces for change, or they could result from deliberate actions undertaken by
agents in response to received or acquired data. In short, when in doubt about the ex-
ogenous specification of particular attributes or methods, an agent-based modeler could
simply relax assumptions to permit endogenous co-development. This raises an inter-
esting nature-nurture modeling issue: namely, which attributes and methods of agents
should be viewed as part of their core maintained identities and which attributes and
methods should be permitted to vary in response to environmental influences? More-
over, this issue arises at both individual and population levels. How much variation
should any one agent be permitted to exhibit over time, and how much variation should
be permitted across agents at any one time?

One obvious recourse for ACE researchers is to attempt to calibrate the plasticity of
their agents to empirical reality. Empirical evidence strongly indicates that structural
attributes, behaviors, and institutional arrangements have indeed co-evolved. For exam-
ple, McMillan (2002) uses a variety of case studies to argue that markets have both
evolved from below and been designed from above, with necessary support from rules,
customs, and other institutions that have co-evolved along with the markets. It is both
informative and fun to study historically oriented works such as McMillan (2002) in
order to better appreciate the extent to which attributes, institutions, and behaviors have
undergone significant change over time. Plasticity of biological forms is a major concern
of computational biologists (see, e.g., [Belew and Mitchell (1996)]), and computational
social scientists might find it both productive and thought-provoking to read some of
this literature as well.

Another recourse for ACE researchers is more normative in nature. If certain aspects
of the world can be set by design, one can explore through intensive experimentation
which designs tend to induce desirable social outcomes when other aspects of the world
are permitted to exhibit realistic degrees of plasticity. Alternatively, exploiting the grow-
ing power of evolutionary algorithms, one can deliberately induce the co-evolution of
forms in “survival of the fittest” tournaments as a means of discovering improved design
configurations. For example, Cliff (2003) explores the co-evolution of auction forms and
software trader forms for possible use in fully automated Internet markets. This work
raises a number of intriguing questions for future research. Have real-world economic



Ch. 16: Agent-Based Computational Economics 863

institutions specifically evolved to provide robust aggregate performance as a substitute
for trader rationality? To what extent do current economic institutions leave room for
improvement by design? And to what extent should humans in economic institutions be
replaced by computational decision-makers with designed or evolved capabilities?

Finally, given the complex interactions among attributes, institutions, and behaviors,
and our growing ability to model these interactions computationally, it seems an appro-
priate time to reexamine the standards for good economic modeling. As noted by many
commentators (e.g., [Clower and Howitt (1996)]), economic theory currently places
a great deal of emphasis on the attributes and optimal choice behaviors of individual
firms and consumers, downplaying important institutional aspects such as markets and
market-making activities. Recently, Mirowski (2004) has argued that this emphasis on
“agency” (cognitive decision-makers) should be replaced by an emphasis on markets
as evolving computational algorithms. Surely, however, we can do better than either of
these polar options alone.

Taking the broad view of “agent” adopted in ACE modeling and in agent-oriented
programming in general, institutions and structures as well as cognitive entities can be
represented as recognizable and persistent bundles of data and methods that interact
within a computationally constructed world. Indeed, as schematically depicted in Ta-
bles 1–4, the ACE Trading World includes a world agent, market agents (hash and bean
markets), and cognitive agents (firms and consumers). In short, agent-based tools pro-
vide tremendous opportunities for economists and other social scientists to increase the
depth and breadth of the “representative agents” depicted in their models.

A key outstanding issue is whether this ability to consider more comprehensive and
empirically compelling taxonomies of representative agents will ultimately result in
better predictive, explanatory, and exploratory models. For example, for the study of
decentralized market economies, can the now-standard division of cognitive agents into
producers, consumers, and government policy-makers be usefully extended to include
brokers, dealers, financial intermediaries, innovative entrepreneurs, and other forms of
active market-makers? Similarly, can the traditional division of markets into perfect
competition, monopolistic competition, duopoly, oligopoly, and monopoly be usefully
replaced with a broader taxonomy that better reflects the rich diversity of actual market
forms as surveyed by McMillan (2002)?

5. Concluding remarks

The defining characteristic of ACE models is their constructive grounding in the inter-
actions of agents, broadly defined to include economic, social, biological, and physical
entities. The state of a modeled system at each point in time is given by the internal
data and methods of the agents that currently constitute the system. Starting from an
initially specified system state, the motion of the state through time is determined by
endogenously generated agent interactions.
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This agent-based dynamical description, cast at a less abstract level than standard
equation-based economic models, increases the transparency and clarity of the modeling
process. A researcher can proceed directly from empirical observations on the structural
conditions, institutional arrangements, and behavioral dispositions of a real-world eco-
nomic system to a computational modeling of the system. Moreover, the emphasis on
process rather than on equilibrium solution techniques helps to ensure that empirical un-
derstanding and creative conjecture remain the primary prerequisites for useful model
design.

That said, ACE modeling is surely a complement, not a substitute, for analytical and
statistical modeling approaches. As seen in the work by Sargent (1993), ACE models
can be used to evaluate economic theories developed using these more standard tools.
Can agents indeed learn to coordinate on the types of equilibria identified in these the-
ories and, if so, how? If there are multiple possible equilibria, which equilibrium (if
any) will turn out to be the dominant attractor, and why? ACE models can also be used
to evaluate the robustness of these theories to relaxations of their assumptions, such as
common knowledge, rational expectations, and perfect capital markets. A key question
in this regard is the extent to which learning, institutions, and evolutionary forces might
substitute for the high degree of individual rationality assumed in standard economic
theories.

More generally, the use of ACE models could facilitate the development and ex-
perimental evaluation of integrated theories that build on theory and data from many
different fields of social science. With ACE tools, economists can address growth, dis-
tribution, and welfare issues in a comprehensive manner encompassing a wide range of
pertinent economic, social, political, and psychological factors. It is particularly intrigu-
ing to reexamine the broadly envisioned theories of earlier economists such as Adam
Smith (1937), Joseph Schumpeter (1934), John Maynard Keynes (1965), and Friedrich
von Hayek (1948), and to consider how these theories might now be more fully ad-
dressed in quantitative terms.

Another potentially important aspect of the ACE methodology is pedagogical. As de-
tailed in Dibble (2006), ACE models can be implemented by computational laboratories
that facilitate and encourage the systematic experimental exploration of complex eco-
nomic processes. Students can formulate experimental designs to investigate interesting
propositions of their own devising, with immediate feedback and with no original pro-
gramming required. This permits teachers and students to take an inductive open-ended
approach to learning. Exercises can be assigned for which outcomes are not known
in advance, giving students an exciting introduction to creative research. The modular
form of the underlying computational laboratory software also permits students with
programming backgrounds to modify and extend the laboratory features with relative
ease.28

28 See http://www.econ.iastate.edu/tesfatsi/syl308.htm for an ACE course relying heavily on computational
laboratory exercises to involve students creatively in the course materials. Annotated pointers to other ACE-
related course preparations can be found at http://www.econ.iastate.edu/tesfatsi/teachsyl.htm.

http://www.econ.iastate.edu/tesfatsi/syl308.htm
http://www.econ.iastate.edu/tesfatsi/teachsyl.htm
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A number of requirements must be met, however, if the potential of ACE for scien-
tific research is to be realized. ACE researchers need to focus on issues of importance
for understanding economic systems. They need to construct models that capture the
salient aspects of these issues, and to use these models to formulate clearly articulated
theories regarding possible issue resolutions. They need to evaluate these theories sys-
tematically by means of multiple controlled experiments with captured seed values to
ensure replicability by other researchers using possibly other platforms, and to report
summaries of their theoretical findings in a transparent and rigorous form. Finally, they
need to test their theoretical findings against real-world data in ways that permit empir-
ically supported theories to cumulate over time, with each researcher’s work building
appropriately on the work that has gone before.

Meeting all of these requirements is not an easy task. One possible way to facili-
tate the task is interdisciplinary collaboration. Recent efforts to advance collaborative
research have been encouraging. For example, Barreteau (2003) reports favorably on
efforts to promote a companion modeling approach to critical policy issues such as
management of renewable resources. The companion modeling approach is an itera-
tive participatory process involving stakeholders, regulatory agencies, and researchers
from multiple disciplines in a repeated looping through a three-stage cycle: field work
and data analysis, model design, and computational experiments. Agent-based model-
ing and role-playing games constitute important aspects of this process. The objective
is the management of complex problems through a continuous learning process rather
than the delivery of definitive problem solutions.29

Realistically, however, communication across disciplinary lines can be difficult,
particularly if the individuals attempting the collaboration have little or no cross-
disciplinary training. As elaborated by Axelrod and Tesfatsion (2006), economists and
other social scientists interested in agent-based modeling should therefore ideally ac-
quire basic programming, statistical, and mathematical skills together with suitable
training in their desired application areas. Of these requirements, programming skills
remain by far the most problematic for economists because few graduate economic pro-
grams currently have computer programming requirements. I would therefore like to
conclude with some heart-felt exhortations from the programming trenches.

As a professor of mathematics (as well as economics), I appreciate the beauty of
classical mathematics. However, constructive mathematics is also beautiful and, in my
opinion, the right kind of mathematics for economists and other social scientists. Con-
structive mathematics differs from classical mathematics in its strict interpretation of the
phrase “there exists” to mean “one can construct.”30 Constructive proofs are algorithms
that can, in principle, be recast as computer programs. To master a general programming

29 See Janssen and Ostrom (2006) for applications of the companion modeling approach to the study of
governance mechanisms for social-ecological systems. Koesrindartoto and Tesfatsion (2004) advocate and
pursue a similar approach to the design of wholesale power markets.
30 See the “Constructive Mathematics” entry at the Stanford Encyclopedia of Philosophy Site, accessible at
http://plato.stanford.edu/entries/mathematics-constructive/.

http://plato.stanford.edu/entries/mathematics-constructive/
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language is to acquire a form of mathematical skill every bit as aesthetically pleasing,
powerful, and practical as the differential calculus. Indeed, for economic purposes, com-
puter programming is in some ways more powerful in that it facilitates the modeling of
complex interactive processes involving kinks, jumps, and other forms of discreteness
imposed or induced by empirical constraints. Consequently, programming frees us to
adapt the tool to the problem rather than the problem to the tool. Every graduate eco-
nomics program should incorporate general programming language requirements. It is
time.

Appendix A: The ACE Trading World

This appendix presents a detailed description of the ACE Trading World outlined in
Section 3.3. See Cook and Tesfatsion (2006) for a C#/.Net implementation of the ACE
Trading World as a computational laboratory with a graphical user interface.

A.1: The economy in the initial period

The ACE Trading World is a discrete-time dynamic economy that runs during periods
T = 0, 1, . . . , TMax. The economy produces two perishable infinitely-divisible goods,
hash and beans. At the beginning of the initial period T = 0 the economy consists of
J (0) hash-producing firms, N(0) bean-producing firms, and K(0) consumers.

Each hash firm j in period T = 0 has exogenously given money holdings
MoneyHj (0) and an exogenously given hash-production capacity CapHj (0). Hash firms
can buy additional hash-production capacity at an exogenously given nominal unit price
of ρH . Each bean firm n in the initial period T = 0 has exogenously given money hold-
ings MoneyBn(0) and an exogenously given bean-production capacity CapBn(0). Bean
firms can buy additional bean-production capacity at an exogenously given nominal unit
price of ρB .

Each consumer k in period T = 0 has an exogenously given lifetime money endow-
ment profile (Endowk(T ): T = 0, 1, . . . , TMax). Consumer k also has exogenously
given subsistence needs for hash and beans, h̄k and b̄k , which must be met in every
period in order to survive. Finally, the utility Uk(h, b) obtained by consumer k from
consuming h ≥ h̄k pounds of hash and b ≥ b̄k pounds of beans in any period T is given
by

(A.1)Uk(h, b) = (h − h̄k)
αk · (b − b̄k)

[1−αk],
where the parameter αk measures consumer k’s relative preference for hash versus
beans.

A.2: Activity flow for hash firms in period T

At the beginning of each period T ≥ 0, each hash firm j has money holdings
MoneyHj (T ) and a hash-production capacity CapHj (T ). The amortized fixed costs of
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hash firm j in period T are proportional to its capacity:

(A.2)FCostsHj (T ) = fHj · CapHj (T ) + FHj ,

where fHj and FHj are given constants. Each hash firm j selects a feasible (capacity
constrained) hash supply hs

j (T ), measured in pounds, together with a per-pound supply
price pHj (T ). Hash firm j ’s total cost of producing hs

j (T ) is

(A.3)TCostHj (T ) = SHj · [hs
j (T )]2 + RHj · hs

j (T ) + FCostHj (T ),

where SHj and RHj are given constants. If hash firm j then actually sells hj (T ) pounds
of beans at price pHj (T ) in period T , its (possibly negative) profit level in period T is

(A.4)ProfitHj (T ) = pHj (T ) · hj (T ) − TCostHj (T ).

Note that a decision not to produce any hash in period T results in a profit level
−FCostsHj (T ) for hash firm j due to its fixed costs.

At the end of each period T ≥ 0, each hash firm j calculates its period-T profits
ProfitHj (T ) and its period-T net worth

(A.5)NetWorthHj (T ) = MoneyHj (T ) + ρH · CapHj (T ) + ProfitHj (T ),

where ρH denotes the market price for hash-production capacity. If the net worth of
hash firm j is non-positive, the firm is declared effectively insolvent and it must im-
mediately exit the economy. If the net worth of hash firm j is positive, then the firm
applies the following profit allocation method A(mHj , dHj ) to determine the disposi-
tion of its period-T profits among money (dis)savings, capacity (dis)investment, and
dividend payments to shareholders.

A.3: Profit allocation method for hash firm j

Capacity investment state: If period-T profits ProfitHj (T ) are nonnegative and if ac-
tual hash sales hj (T ) are at maximum capacity CapHj (T ), allocate a portion mHj

of period-T profits towards money holdings and the remaining portion [1 − mHj ]
towards capacity investment. Further earmark a portion dHj of the resulting money
holdings as dividend payments to be paid to shareholders at the beginning of period
T + 1. Thus, in this state, the money holdings, capacity, and dividend payments of
hash firm j at the beginning of period T + 1 are as follows:

MoneyHj (T + 1) = [1 − dHj ] ·
[
MoneyHj (T ) + mHj · ProfitHj (T )

];
CapHj (T + 1) = CapHj (T ) + [1 − mHj ] · ProfitHj (T )

ρH

;
DivHj (T + 1) = dHj · [MoneyHj (T ) + mHj · ProfitHj (T )

]
.
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Precautionary savings state: If period-T profits ProfitHj (T ) are nonnegative but ac-
tual period-T hash sales hj (T ) are less than maximum capacity CapHj (T ), allocate
all period-T profits to money holdings. Further earmark a portion dHj of the resulting
money holdings as dividend payments to be paid to shareholders at the beginning of
period T +1. Thus, in this state, the money holdings, capacity, and dividend payments
of hash firm j at the beginning of period T + 1 are as follows:

MoneyHj (T + 1) = [1 − dHj ] ·
[
MoneyHj (T ) + ProfitHj (T )

];
CapHj (T + 1) = CapHj (T );
DivHj (T + 1) = dHj · [MoneyHj (T ) + ProfitHj (T )

]
.

Contractionary state: If period-T profits ProfitHj (T ) are negative, use period-T
money holdings to cover as much of these negative profits as possible. If necessary,
sell period-T capacity to cover any remaining negative profits. Do not distribute any
dividend payments to shareholders at the beginning of period T + 1. Thus, in this
state, the money holdings, capacity, and dividend payments of hash firm j at the be-
ginning of period T + 1 are as follows. Let IHj (T ) denote the indicator function
defined by

IHj (T ) =
{

1 if MoneyHj (T ) + ProfitHj (T ) ≥ 0;
0 otherwise.

Then:31

MoneyHj (T + 1) = IHj (T ) · [MoneyHj (T ) + ProfitHj (T )
];

CapHj (T + 1) = CapHj (T ) + [
1 − IHj (T )

]
· [MoneyHj (T ) + ProfitHj (T )

]
/ρH ;

DivHj (T + 1) = 0.

A.4: Learning for hash firms

Representation of hash firm j ’s supply offers

A possible supply offer (h, p) for hash firm j at the beginning of any period T consists
of a hash production level h and a unit price p. These supply offers can usefully be
expressed in an alternative form. By assumption, hash firm j in period T cannot post a
negative production level or a production level in excess of its current (positive) capacity

31 The following relationships imply, by construction, that a firm with a positive net worth (A.5) at the end
of period T cannot have a non-positive capacity at the beginning of period T + 1. Consequently, a firm either
exits the economy at the end of period T with a non-positive net worth or has a positive capacity at the
beginning of period T + 1.
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level CapHj (T ). Consequently, a choice of a feasible production level h in period T can
alternatively be expressed as a choice to produce a percentage of current capacity:

(A.6)CapPercentHj (h, T ) = h

[CapHj (T )] .

By construction, the capacity percentage (A.6) lies between 0 and 1.
Also, given any feasible production level h, a choice of a feasible price p in period T

can alternatively be expressed as a choice of a price-cost margin, or mark-up for short.
This mark-up is defined to be the percentage difference between the price p and the
marginal cost of producing h. More precisely, using the total cost function specified for
hash firms in Section A.2 above, let MCHj (h) = 2SHjh + RHj denote hash firm j ’s
marginal cost of producing h. Then the mark-up corresponding to any feasible supply
offer (h, p) for hash firm j is defined as

(A.7)MarkUpHj (h, p) = p − MCHj(h)

p
for p > 0,

with MarkUpHj (h, 0) = −1000. As long as hash firm j never chooses to supply
hash either at a zero price or at a price below marginal cost, the mark-up (A.7) will
be bounded between 0 and 1 for all of its supply offers.32 Henceforth, the feasible
supply offers of hash firm j in each period T ≥ 0 will be assumed to take the form
(CapPercent, MarkUp).

Hash firm j ’s learning problem

Hash firm j ’s learning problem involves two basic decisions: (i) How to select a supply
offer in the initial period T = 0; and (ii) when and how to change a previous supply
offer. Assuming it sells all it produces, hash firm j can attempt to secure higher profits
by increasing its capacity percentage given its current mark-up, increasing its mark-up
given its current capacity percentage, or increasing both its capacity percentage and
its mark-up. However, hash firm j must make its supply offers in the face of a high
degree of uncertainty about the structure of the economy and the behavior of other
agents. Consequently, a danger is that not all produced units will be sold. In this case
the revenues of hash firm j could be insufficient to cover its total costs of production.
Indeed, overly aggressive experimentation with supply offers could eventually result in
forced capacity sales or even insolvency.

Intuitively, then, a cautious approach to learning seems warranted for hash firm j in
the ACE Trading World. One such cautious approach is reinforcement learning (RL);
see Sutton and Barto (1998). The basic idea underlying RL is that the tendency to imple-
ment an action should be strengthened (reinforced) if it produces favorable results and

32 This definition for mark-up coincides with the well-known “Lerner Index” used in industrial organization
studies to measure market power in monopolistic and oligopolistic markets; see Tirole (2003, pp. 219–220).
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weakened if it produces unfavorable results. Game theorists have begun to explore the
use of RL to explain experimental data obtained from human subjects who are learning
to play repeated games in laboratory settings involving multiple strategically-interacting
players. For example, in Erev and Roth (1998) and Roth and Erev (1995), the authors
develop an RL algorithm able to track successfully the intermediate-term behavior of
human subjects observed by the authors for a particular test suite of repeated games.

A variation of the Roth–Erev RL algorithm—hereafter referred to as the VRE learn-
ing algorithm—is one possible learning method that can be specified for firms in the
ACE Trading World. A brief outline of this VRE learning algorithm will now be given
for an arbitrary hash firm j .

The VRE learning algorithm for hash firm j

Suppose hash firm j can choose from among ZHj feasible supply offers in each period
T ≥ 0. In the initial period T = 0, the initial propensity of hash firm j to choose its ith
feasible supply offer is given by a nonnegative initial propensity qji(0), i = 1, . . . , ZHj .
These initial propensities are assumed to be equal valued. That is, it is assumed there
exists a constant value qHj (0) such that

(A.8)qji(0) = qHj (0) for all feasible supply offers i.

Now consider the beginning of an arbitrary period T ≥ 0 in which the propensity of
hash firm j to choose feasible supply offer i is given by qji(T ). The choice probability
that hash firm j uses to select a feasible supply offer i in period T is then given by33

(A.9)pji(T ) = exp(qji(T )/CHj )∑ZHj

m=1 exp(qjm(T )/CHj )
.

In (A.9), CHj is a cooling parameter that affects the degree to which hash firm j makes
use of propensity values in determining its choice probabilities. As CHj → ∞, then
pji(T ) → 1/ZHj for each i, so that in the limit hash firm j pays no attention to
propensity values in forming its choice probabilities. On the other hand, as CHj → 0,
the choice probabilities (A.9) become increasingly peaked over the particular supply
offers i having the highest propensity values, thereby increasing the probability that
these supply offers will be chosen.

At the end of each period T ≥ 0, the current propensity qji(T ) that hash firm j

associates with each feasible supply offer i is updated in accordance with the following
rule. Let i′ denote the supply offer that was actually selected and posted for period T ,

33 In the original RL algorithm developed by Erev and Roth (1998) and Roth and Erev (1995), the choice
probabilities are defined in terms of relative propensity levels. Here, instead, use is made of a “simulated
annealing” formulation in terms of exponentials. As will be seen below in (A.10), in the current context
the propensity values qji (T ) can take on negative values if sufficiently large negative profit outcomes are
experienced. The use of exponentials in (A.9) ensures that the choice probabilities pji (T ) remain well defined
even in this event.
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and let Profitji′(T ) denote the profits (positive or negative) attained by hash firm j in
period T following its actual choice of supply offer i′. Then, for each feasible supply
offer i,34

(A.10)qji(T + 1) = [1 − rHj ]qji(T ) + Responseji(T ),

where

(A.11)Responseji(T ) =
{
[1 − eHj ] · Profitji′(T ) if i = i′;
eHj · qji(T )/[ZHj − 1] if i �= i′.

Equations (A.10) and (A.11) clarify how the settings for the initial propensity values
qji(0) in (A.8) for period T = 0 determine initial profit aspiration levels for firm j ’s
supply offer choices i. More generally, for any T ≥ 0, the propensity qji′(T ) of firm
j to choose supply offer i′ in period T tends to increase or decrease for period T + 1
depending on whether firm j ’s realized profits from choice of i′ in period T are higher
or lower than qji′(T ). The introduction of the recency parameter rHj in (A.10) acts as
a damper on the growth of the propensities over time. The experimentation parameter
eHj in (A.11) permits reinforcement to spill over to some extent from a chosen supply
offer to other supply offers to encourage continued experimentation with various supply
offers in the early stages of the learning process.

Hash firm j faces a trade-off in each period T between information exploitation and
information exploration. The VRE learning algorithm resolves this trade-off by ensur-
ing continual exploration, typically at a declining rate. More precisely, under the VRE
learning algorithm, note that hash firm j in period T does not necessarily choose a sup-
ply offer with the highest accumulated profits to date. Given a suitably small value for
eHj , selected supply offers generating the highest accumulated profits tend to have a rel-
atively higher probability of being chosen, but there is always a chance that other supply
offers will be chosen instead. This ensures that hash firm j continues to experiment with
new supply offers to some degree, even if its choice probability distribution becomes
peaked at a particular selected supply offer because of relatively good profit outcomes.
This helps to reduce the risk of premature fixation on suboptimal supply offers in the
early stages of the decision process when relatively few supply offers have been tried.

In summary, the complete VRE learning algorithm applied to hash firm j is fully
characterized once user-specified values are provided for the following five learning pa-
rameters: the number ZHj of feasible supply offers; the initial propensity value qHj (0)

34 As in Nicolaisen et al. (2001), the response function appearing in (A.10) modifies the response function
appearing in the original RL algorithm developed by Erev and Roth (1998) and Roth and Erev (1995). The
modification is introduced to ensure that learning (updating of choice probabilities) occurs even in response
to zero-profit outcomes, which are particularly likely to arise in initial periods when hash firm j is just begin-
ning to experiment with different supply offers and failures to trade tend to be frequent. See Koesrindartoto
(2002) for a detailed discussion and experimental exploration of the zero-profit updating problem with the
original Roth–Erev learning algorithm. See Nicolaisen et al. (2001) for a detailed motivation, presentation,
and experimental application of the modified response function in (A.10).



872 L. Tesfatsion

in (A.8); the cooling parameter CHj in (A.9); the recency parameter rHj in (A.10); and
the experimentation parameter eHj in (A.11).

A.5: Activity flow and learning for bean firms

The discussion of basic activity flow and learning for hash firms in Sections A.2–A.4
applies also for the bean firms. All that is needed is a change of subscripts from Hj ,
H , and j to Bn, B, and n, as well as a change of quantity designations from h to b.
See Section A.8 below for a classification of variables for the ACE Trading World that
includes the basic exogenous and endogenous variables pertaining to the bean firms.

A.6: Activity flow for consumers in period T

The income Inck(0) of each consumer k at the beginning of period T = 0 consists solely
of her exogenously given money endowment, Endowk(0). The income Inck(T ) of each
alive consumer k at the beginning of each period T > 0 comes from three sources:
unintended savings from period T − 1; an exogenous money endowment Endowk(T );
and dividend payments distributed by firms.

More precisely, let Expk(T − 1) denote the total expenditure of consumer k on hash
and beans during period T − 1, and let the unintended savings of consumer k from
period T − 1 be denoted by

(A.12)Savk(T ) = Inck(T − 1) − Expk(T − 1).

Let J (T ) and N(T ) denote the number of effectively solvent hash and bean firms at
the beginning of period T , and let K(T ) denote the number of alive consumers at the
beginning of period T . Then the total income Inck(T ) of consumer k at the beginning
of period T takes the form

Inck(T ) = Savk(T ) + Endowk(T ) +
[∑J (T )

j=1 DivHj (T )

K(T )

]
(A.13)+

[∑N(T )
n=1 DivBn(T )

K(T )

]
.

Consumers seek to survive and prosper in period T by participating in the following
price-discovery process.

A.7: Consumer price discovery process in period T

The period-T price discovery process begins as soon as each effectively solvent hash
and bean firm has publicly posted its period-T supply offer consisting of a produc-
tion level and a unit price. Any firm that stocks out of goods during the course of the
period-T price discovery process immediately has its supply offer removed from post-
ing. Consequently, the lowest posted hash and bean prices either stay the same or rise
during the course of the price discovery process; they never fall.
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As explained more fully below, the period-T price discovery process consists of a se-
quence of rounds. The process comes to a halt as soon as either all firms are stocked out
(hence no posted supply offers remain) or the unspent income levels of all consumers
still participating in the process have been reduced to zero (hence no positive demand
remains). The total hash and bean amounts actually purchased by each consumer k dur-
ing the course of the period-T price discovery process are denoted by hk(T ) and bk(T ).

Consumers who exit or finish the period-T price discovery process with positive un-
met subsistence needs die at the end of period T . Their unspent money holdings (if any)
are then lost to the economy, but their stock shares are distributed equally among all
remaining (alive) consumers at the beginning of period T + 1.

A typical price-discovery round for an arbitrary consumer k

Suppose at least one firm has not stocked out and that the currently unspent portion Inc∗k
of consumer k’s period-T income is positive. Let h̄∗

k and b̄∗
k denote consumer k’s current

net subsistence needs for hash and beans, i.e., her basic subsistence needs h̄k and b̄k net
of any hash and bean purchases she has made in previous rounds of the period-T price
discovery process. Finally, let pL

H denote the currently lowest posted price for hash if
any hash firms are still posting supply offers, and similarly for pL

B .
Suppose all hash firms have stocked out but at least one bean firm has not stocked

out. If either h̄∗
k > 0 or pL

B · b̄∗
k > Inc∗k , consumer k exits the price discovery process.

Otherwise, consumer k determines her hash and bean demands hd
k and bd

k as follows:

(A.14)hd
k = 0; bd

k = Inc∗k/pL
B.

Conversely, suppose at least one hash firm has not stocked out but all bean firms have
stocked out. If either pL

H · h̄∗
k > Inc∗k or b̄∗

k > 0, consumer k exits the price discovery
process. Otherwise, consumer k determines her hash and bean demands hd

k and bd
k as

follows:

(A.15)hd
k = Inc∗k/pL

H ; bd
k = 0.

Finally, suppose that at least one hash firm and one bean firm have not stocked out. If
the following condition,

(A.16)pL
H · h̄∗

k + pL
B · b̄∗

k ≤ Inc∗k,

fails to hold, consumer k exits the price discovery process. Otherwise, consumer k

chooses demands hd
k and bd

k for hash and beans to maximize her utility

(A.17)U∗
k

(
hd

k , bd
k

) = (
hd

k − h̄∗
k

)αk · (bd
k − b̄∗

k

)[1−αk]

subject to the budget constraint[
pL

H · hd
k + pL

B · bd
k

] ≤ Inc∗k
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and the subsistence constraints

hd
k ≥ h̄∗

k; bd
k ≥ b̄∗

k .

Since condition (A.16) holds by assumption, the solution to this utility maximization
problem yields demands hd

k ≥ h̄∗
k and bd

k ≥ b̄∗
k for hash and beans satisfying the fol-

lowing demand functions:

(A.18)hd
k = [1 − αk] · h̄∗

k + αk · [Inc∗k − b̄∗
k · pL

B

]
/pL

H ;
(A.19)bd

k = αk · b̄∗
k + [1 − αk] ·

[
Inc∗k − h̄∗

k · pL
H

]
/pL

B.

If consumer k’s net subsistence need h∗
k (or b∗

k ) is negative in value, this indicates
that consumer k’s purchases of hash (or beans) in previous rounds of the price discovery
process have been more than sufficient to cover her basic subsistence needs h̄k (or b̄k).
In this case, one (but not both) of consumer k’s current demands hd

k and bd
k could be

negative.35 This would indicate that, at the currently lowest posted prices, consumer
k would actually prefer to sell some of the hash (or beans) she purchased in previous
rounds of the period-T price discovery process. This is not allowed. Consequently, if
either of consumer k’s initially calculated demands hd

k and bd
k in (A.18) and (A.19)

is negative, it is assumed that consumer k then resets this demand to 0 and redirects
all of her unspent income entirely toward demand for the other good. The demands
of consumer k for this round of the price discovery process are thus determined in
accordance with the following successive assignment statements:

hd
k = max

{
0, hd

k

};
bd
k = max

{
0, bd

k

};
hd

k = Inc∗k/pL
H if bd

k = 0;
bd
k = Inc∗k/pL

B if hd
k = 0.

After consumer k determines her demands hd
k and bd

k for hash and beans either
from (A.14) or (A.15) in the case of a good stock-out or from the above assignment
statements in the case neither good is stocked out, she immediately conveys any posi-
tive demands to the hash and/or bean firms who are offering the currently lowest posted
prices pL

H and/or pL
B . If multiple hash (bean) firms are offering the currently lowest

posted hash (bean) price, consumer k randomly decides which of these firms to patron-
ize.

If a hash or bean firm cannot meet its current demand, it implements the following
rationing method:

35 Since consumer k’s utility function is strictly increasing in hash and bean consumption over her
subsistence-constrained budget set, she would never simultaneously choose negative demands for both hash
and beans. She would only choose a negative demand for one of these goods if this “sale” permitted a greater
positive demand for the other.
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Random Queue Rationing Method: Given excess demand for my good, I first ran-
domly order my current customers into a queue line. I then attempt to satisfy each
customer’s demand in turn, to the fullest extent possible. All rationed amounts
offered to consumers must be nonnegative.

If consumer k is offered rationed amounts that do not satisfy fully her demands hd
k

and bd
k for hash and beans at the currently lowest posted prices pL

H and pL
B , her first

concern must be her survival. The primary issue is whether she is at least able to cover
her net subsistence needs under rationing. If not, she will need to adjust her purchases
under rationing to preserve as much income as she can in an attempt to satisfy her net
subsistence needs in the next round of the price discovery process.

Thus, consumer k’s actual purchased amounts in the current round of the price dis-
covery process (as opposed to her demands) are determined by her specific state, as
follows.

State I: No rationing. Consumer k satisfies fully her demands hd
k and bd

k for hash and
beans, i.e., she is not rationed. Her actual purchased amounts are then hk = hd

k and
bk = bd

k .
State II: All needs met under rationing. Consumer k is offered hash and beans in ra-

tioned amounts hR
k ≤ hd

k and bR
k ≤ bd

k that are sufficient to cover her net subsistence
needs for both hash and beans, i.e., hR

k ≥ h∗
k and bR

k ≥ b∗
k . In this case, her actual

purchased amounts are hk = hR
k and bk = bR

k .
State III: One need not met under rationing. Consumer k is offered hash and beans

in rationed amounts hR
k ≤ hd

k and bR
k ≤ bd

k , and exactly one of these amounts is not
sufficient to cover her net subsistence need. In this case she adjusts down her demand
for the other good to her net subsistence need (if positive) or to 0 (otherwise) in order
to preserve as much income as possible for the next price discovery round. Specifi-
cally, if hR

k is not sufficient to cover h∗
k , then bd

k is adjusted down to bA
k = max{0, b∗

k }
and her actual purchased amounts are hk = hR

k and bk = bA
k . Alternatively, if bR

k

is not sufficient to cover b∗
k , then hd

k is adjusted down to hA
k = max{0, h∗

k} and her
actual purchased amounts are hk = hA

k and bk = bR
k .

State IV: Both needs not met under rationing. Consumer k is offered hash and beans
in rationed amounts hR

k and bR
k , neither of which is sufficient to cover her net subsis-

tence needs. In this case her actual purchased amounts are hk = hR
k and bk = bR

k .

At the end of the current price discovery round, consumer k updates her unspent
income Inc∗k and her net subsistence needs h∗

k and b∗
k in accordance with the following

assignment statements:

Inc∗k = Inc∗k − pL
H hk − pL

Bbk;
h∗

k = h∗
k − hk;

b∗
k = b∗

k − bk.
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If Inc∗k = 0, consumer k exits the price discovery process. Otherwise, she enters into the
next price discovery round, which proceeds as described above for the previous price
discovery round.

A.8: Classification of variables

NOTE: Only variables persisting at least one time period are listed in the following
classification. Locally scoped variables temporarily introduced to carry out method im-
plementations are not included.

Exogenous variables:

Initial economy data:

TMax > 0; J (0) > 0; N(0) > 0; K(0) > 0; ρH > 0; ρB > 0.

Initial firm data: (j = 1, . . . , J (0); n = 1, . . . , N(0))

MoneyHj (0) ≥ 0; CapHj (0) > 0; qHj (0);
MoneyBn(0) ≥ 0; CapBn(0) > 0; qBn(0);
SHj ≥ 0; RHj > 0; fHj ≥ 0; FHj ≥ 0;
0 ≤ mHj ≤ 1; 0 ≤ dHj ≤ 1; 0 ≤ rHj ≤ 1; 0 ≤ eHj ≤ 1;
ZHj > 0; CHj > 0;
SBn ≥ 0; RBn > 0; fBn ≥ 0; FBn ≥ 0;
0 ≤ mBn ≤ 1; 0 ≤ dBn ≤ 1; 0 ≤ rBn ≤ 1; 0 ≤ eBn ≤ 1;
ZBn > 0; CBn > 0.

Initial consumer data: (k = 1, . . . , K(0))

h̄k ≥ 0; b̄k ≥ 0; 0 ≤ αk ≤ 1; (Endowk(T ) ≥ 0, T = 0, 1, . . . , TMax).

Period-T endogenous variables: (T = 0, 1, . . . ,TMax)

Firm choice variables: (j = 1, . . . , J (T ); n = 1, . . . , N(T ))

hs
j (T ); pHj (T );

bs
n(T ); pBn(T ).

Other firm variables: (j = 1, . . . , J (T ); n = 1, . . . , N(T ))

FCostHj (T ); TCostHj (T ); ProfitHj (T ); NetWorthHj (T );
J (T + 1); MoneyHj (T + 1); CapHj (T + 1); DivHj (T + 1);
FCostBn(T ); TCostBn(T ); ProfitBn(T ); NetWorthBn(T );
N(T + 1); MoneyBn(T + 1); CapBn(T + 1); DivBn(T + 1).
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Consumer choice variables: (k = 1, . . . , K(T ))

hd
k (T ); bd

k (T ).

Other consumer variables: (k = 1, . . . , K(T ))

Inck(T ); Savk(T ); Expk(T ); K(T + 1).
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Computer technology presents economists with new tools, but also raises novel method-
ological issues. This essay discusses the challenges faced by computational researchers,
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1. Introduction

The growing power of computers gives economists a new tool to explore and evaluate
both old and new economic theories. The essays in this handbook illustrate that potential
in many parts of economics, and make clear that they have just scratched the surface of
what can be done. The main goal of this handbook is to encourage new work. However,
as with any new tool, there are many questions about how to use it wisely and effectively.
Important methodological questions need to be addressed before computational tools
can achieve their potential for contributing to economic science.

Conventional economics uses computation primarily for two purposes: empirical
analysis of data and computing equilibria of conventional models. The primary com-
putational tools for these activities are standard numerical analytic tools for solving
optimization problems and nonlinear systems of equations. Agent-based computational
economics (ACE) often takes us in new directions that focus on computer models of
complex dynamical systems to analyze alternative theories of economic behavior. ACE
research is often like theory since it studies the implications of alternative assump-
tions about economic systems, as described in the description of constructive theory
in Tesfatsion (2006). Unfortunately, the complexity that is embraced by ACE research
makes it difficult, if not impossible, to use conventional ways for describing theories
such as stating and proving theorems, presenting cases with closed-form solutions, and
proving comparative statics. Instead, much ACE research uses computer simulations to
analyze complex dynamic models.

The computationally intensive approaches to economics research typified in ACE
research (as well as some other economics research) presents us with basic questions
about how they should be used and what we can learn from their results. Where does
simulation of complex dynamic models fit into the general set of economic method-
ologies? When and how much can we rely on computational findings? What are the
criticisms of computationally intensive work? How should we address the challenges
raised by critics? This essay will examine these questions and offer some answers1.

2. Computational tools

Before discussing methodological issues, it is useful to recall why we are here. The key
fact is that we now have increasingly powerful computational tools and rapid progress
will continue. First, there has been and will almost surely continue to be tremendous
progress on improving computer hardware. The progress of the past 40 years has been
related to advances in semiconductors. We are all familiar with Moore’s law declaring
that “chip density doubles every 18 months.” Of course, this cannot continue forever

1 This essay updates Judd (1994) and Judd (1997) that also discusses similar questions. I also draw on the
suggestions of McFadden (1992).
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because the components of a chip cannot be smaller than a molecule. Even optimistic
experts argue that this can continue for only another 10–15 years. However, that will
likely not be the end of hardware progress. Current research on three-dimensional chips,
asynchronous chips, spintronics, optical computing and other technological advances
give us good reason to believe that computational speeds will continue to grown expo-
nentially for at least a few more decades. Furthermore, the potential for computational
work would explode if we are really lucky and quantum computing achieves just a frac-
tion of its theoretical potential. While this is speculative, it indicates that progress will
continue even after the end of Moore’s law. While improvements in semiconductor tech-
nology have been immeasurably important, we get a better appreciation of historical
trends when we remember that the rate of increase in computing speed due to semi-
conductors in the last half of the 20th century was no greater than improvement in
computing speeds achieved in the first half of the 20th century using other technologies.
Even if technological advances stopped today, the cost of hardware would continue to
fall as we reap the benefits of learning curve effects and increasing returns to scale in
the production of computer components. The cumulative impact of this progress will
make computation increasingly efficient, cheap, and available to economists.

Second, there has also been significant progress in software engineering with many
developments being particularly valuable for ACE modeling. Supercomputing used to
mean vector processing, a technique of limited value for ACE modeling. The current
strategies in high performance computing exploit massive parallelism and distributed
computing. In these environments, many processors of possibly varying power are com-
bined in a network and through communication, sometimes over the Internet, to work
together to solve a problem. The value of parallelism depends on the problem. Fortu-
nately, many of the problems discussed in the handbook, particularly those using Monte
Carlo simulation, can easily make full use of the computational power of parallel and
distributed computing. Of more specific value to ACE modeling has been the work on
developing software tools for ACE models, such as the Sugarscape environment dis-
cussed in Epstein and Axtell (1996). Here, also, progress will continue and significantly
reduce the human cost of doing computationally intensive economics research and make
it easier for economists to profitably use ACE modeling.

This is all old news, but it bears repeating when we consider how computation could
be used in economics. Some of the ideas I outline below will sound unreasonable and
probably are infeasible today given current technology. However, we need to focus on
how to proceed in the future, and that discussion should be mindful of the tools we will
have then.

3. Weaknesses of standard models

The other reason why economists are turning to ACE modelling is the dissatisfaction
with conventional economic models and their frustration with the limitations of standard
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research paradigms. Of course, all economics research is motivated by some dissatis-
faction with the existing theories, and ACE modelling has been applied to many of the
same questions, such as how an economic system gets to an equilibrium, that is studied
by conventional means. What makes much of the ACE literature different from other re-
search is its methodological novelty. Conventional economic theory, following the style
of mathematics in general and real analysis in particular, begins with a set of defini-
tions and assumptions, and proves theorems. The universe of models covered by the
definitions is generally infinite. For example, general equilibrium theory begins with
the concepts of preference orderings and feasible allocations. Theoretical models often
make simplifying assumptions so that they can get clear, substantive results. In basic
general equilibrium theory, we assume well-behaved excess demand functions and con-
cave production functions in order to invoke the Brouwer fixed-point theorem. In other
cases, such as the CAPM model of asset pricing or oligopoly models with linear de-
mand and marginal cost curves, tractability considerations lead economists to make far
more restrictive assumptions in order to get clean solutions. Furthermore, economists
often examine simple models in the search for “the” cause of some economic phenom-
enon, and argue for a parsimonious explanation of their observations. This approach
often ignores the possibility that the truth could be multidimensional, and that the mul-
tiple dimensions of reality could interact to produce phenomena that no one factor can
explain. While we all like parsimony, true parsimony chooses a model as simple as
possible without being too simple, and would not force our thinking into a conceptual
straightjacket.

We often question the validity of the implications of these models because the el-
ements which are sacrificed in the interest of simplicity are possibly of first-order
importance. For many economists, this dissatisfaction with simple models is the main
appeal of computational approaches. This dissatisfaction has moved economists in a
variety of directions. For example, in public finance, economists often use computation
to avoid the single-sector, representative agent models that are commonly used only
because of their tractability.

The ACE literature generally aims at other weaknesses of standard models, often fo-
cusing on foundational problems instead of, for example, studying models with more
goods. The chapters in this handbook study many models for which a computational ap-
proach is the only way to attain clear results. The models of social interactions presented
in Vriend (2006), Wilhite (2006) and Young (2006) have combinatorial complexities
that make it difficult (if not impossible) to attain closed-form solutions. The impact of
learning on financial markets, discussed in Hommes (2006) and LeBaron (2006) also
requires computational tools, particularly when individuals do not all follow exactly the
same learning rules. Multiperson decision making, whether it is on the scale of a firm,
as studied in Chang and Harrington (2006), or at the level of politics, as reviewed in
Kollman and Page (2006), also involves complex patterns of learning and choices that
are difficult to describe precisely without computation.

Many economists dismiss these complexities (along with many other features of
real economic life glossed over in conventional models) arguing that they can’t matter.
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Some will point to convergence theorems and conclude that the convergence problem is
“solved” and that factors affecting the convergence process cannot be important “in the
long run.” Of course, Keynes’ observation that “in the long run we are all dead” force-
fully reminds us that abstract convergence theorems tell us nothing about what happens
at economic time scales. More generally, no matter how good our intuition is, we do not
know which features of an economy are important and which are not until we exam-
ine them, and do so in a manner that reveals their quantitative importance. That focus
on the quantitative properties of complex systems leads us to computationally intensive
methods.

4. Criticisms of computationally intensive research

Many economists are dissatisfied with conventional economic models, but have serious
doubts about taking a computationally intensive approach to addressing fundamental
issues. This is natural since any novel methodology and paradigm will be challenged and
scrutinized before it is accepted. Economists using computationally intensive methods
need to acknowledge this process and develop responses to the questions and criticisms
raised by the status quo. Thinking about these issues will also help us construct more
compelling formulations of our ideas.

First, critics point out that computational methods produce only examples, whereas
conventional economic theory aims to produce theorems. This is true given the conven-
tional use of the words “examples” and “theorem.” The usual theorem in economics,
such as existence theorems in general equilibrium theory, will cover an infinite number
of possible cases. However, the substantive gap between “examples” and “theorem” is
less clear. In fact, isn’t “theorem” just a plural of “example”? Theories usually examine a
continuum of examples but, in order to attain analytical tractability, that continuum often
constitutes a measure zero set of economically plausible and interesting specifications.
Assumptions made for reasons of tractability may miss many interesting phenomena.
These assumptions may take the form of functional form specifications, such as the lin-
ear demand curves we often see in oligopoly theory, or may be qualitative assumptions
such as the strong informational assumptions used in rational expectations analyses.
While computations examine only a finite set of examples, that set can be taken from a
much more robust set of possible specifications, allowing more flexible functional form
specifications as well as more complex and realistic assumptions about the distribution
of information and evolution of beliefs. The relevance and robustness of examples is
more important than the number of examples, and computational methods allow one
to examine cases that theory cannot touch. Furthermore, computation can often give us
insights when there are no general theorems to be had. Simple general statements are
not likely to be globally true, but there may still be patterns that are economically use-
ful, such as statements about what is usually true over empirically plausible parts of the
parameter space.
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Second, critics point out that numerical results have errors. Again, this is a correct
observation for most computational work. For example Monte Carlo simulations have
nontrivial sampling error since N−1/2 convergence is slow. Many algorithms produce
estimates of a bound on the numerical error, but this only reduces the uncertainty. Very
few computational techniques produce error bounds along with the results. The presence
of numerical errors is another distinction between theorems and computational results.
However, these errors can be controlled by the application of sophisticated algorithms
and powerful hardware. Careful simulation methods can reduce simulation error by in-
creasing the sample size and by exploiting variance reduction methods. More generally,
careful numerical work can reduce numerical errors. The problems of numerical er-
rors in ACE models are no more difficult to handle (and often much easier) than the
analogous numerical problems that arise in maximum likelihood estimation and other
econometric methods.

Theoretical models may not have errors when they solve particular cases, but they
often commit specification errors by focusing on tractable cases. In fact, computational
work has an advantage here because numerical errors can be reduced through computa-
tion but correcting the specification errors of analytically tractable models is much more
difficult. The issue is not whether we have errors, but where we put those errors. The key
fact is that economists face a trade-off between the numerical errors in computational
work and the specification errors of analytically tractable models. Computationally in-
tensive approaches offer opportunities to examine realistic models, a valuable option
even with the numerical errors. As Tukey (1962) put it, “Far better an approximate an-
swer to the right question . . . than an exact answer to the wrong question. . . ”

Third, they argue that computational models are black boxes that offer few if any
insights. This is an understandable reaction to a single computed example of a model,
particularly one with many factors contributing to the result. A single example may
show what is possible and an author may come up with an appealing story to explain
the result, but one example cannot sort out the relative importance of a model’s var-
ious components. This is sometimes addressed by sensitivity analysis where a small
number of alternative parameterizations are computed and the results are compared;
this is essentially a computational version of comparative statics. However, it is unclear
how much can be inferred from a few examples. Here, again, is a problem that can be
addressed using computation. A few examples may not demonstrate much but a few
thousand well chosen examples can be more convincing, and a few million examples
may be as compelling as any theorem, as well as being less costly to produce. Of course,
this presents us with a different problem: How do we communicate to a reader or listener
the lessons learned from thousands of examples? We now turn to that issue.

5. Systematic approaches to computationally intensive research

An important advantage of conventional economic theory is that a theorem is an ef-
ficient means of communicating a result: it is a simple but informative statement of
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a truth about a large set of examples. In contrast, computationally intensive papers in
economics often focus on a few examples to show what can happen. Some papers will
say “We have examined other cases and found similar results”; this statement may be
true but falls far short of what is expected in a “scientific” paper. Readers of any kind
of paper, theoretical or computational, want more than a couple of examples and un-
supported assertions of generality. Sometimes demands by readers can be unreasonable
(examples of which are related in Axelrod (2006)), particularly when the demand for
robustness in computational models exceeds the demand for robustness in theoretical
models. However, we need to develop tools for addressing reasonable demands.

A computational economist can easily offer up many examples, but it is not obvious
how to communicate his findings in a compact and informative manner. For example,
space limitations mean that a paper can present only a few graphs of time series gen-
erated by simulations of a dynamic process. Tables can summarize results for several
cases, but they are often harder to quickly digest than a good graph, and space limita-
tions again will limit the amount of information that can be conveyed.

Research that relies on computationally intensive methods needs to find effective
ways to communicate its findings, and it needs to develop its own style. It cannot nec-
essarily follow what, for example, physicists do. For example, if a physicist wants to
simulate the collision of two black holes, he writes down the relevant equations from
general relativity, uses the constants of nature that have been precisely estimated by
experimentation, and uses astronomical observations to judge what size of black holes
he needs to consider. A few examples will suffice for his purposes. Economics is a
much less clear mixture of the quantitative and qualitative. We often make qualitative
restrictions, such as concave utility, but we do not want to make inflexible functional
form assumptions. When we do compute something, we have to make functional form
assumptions that we acknowledge are only approximations, and calibrate them with im-
precise estimates of parameters of functions that are themselves just approximations to
true functions.

In this section, I will discuss some approaches that computationally intensive work
may take to address the critical issues.

5.1. Search for counterexamples

While a computer cannot prove a theorem2, it can help us look for falsifying examples.
Suppose we have a model with parameters θ and we have a conjecture that can be
expressed as a proposition P(θ). For the sake of specificity, suppose that the proposition
is true if P(θ) ≥ 0. For example, suppose are examining one of the asset market models
described in Hommes (2006) and want to test a hypothesis about the relation between
price volatility and the parameters describing learning rules or agent heterogeneity. In

2 Of course, computers have occasionally proven nontrivial theorems in mathematics, but we are a long way
from computer theorem-proving being a common tool in economics.
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this case, P(θ) would be a statement about measures of volatility (some moments or a
measure of chaoticity) and θ would include the exogenous parameters. Even if we could
not prove the truth of P (that is, the global nonnegativity of P(θ)) we could assess the
likelihood of its truth by searching for counterexamples, that is, values of θ such that
P(θ) < 0.

Global optimization software could be used for testing P(θ) by finding the global
minimum of P(θ), and determining if it were ever negative. The choice of global op-
timization software would depend on the nature of the function P(θ). If P(θ) were a
rough function, we would have to use methods like genetic algorithms or simulated an-
nealing. If P(θ) were piecewise continuous, then we would want to combine a global
strategy (such as in GA or simulated annealing) with a more conventional optimization
method, such as Nelder–Mead, to take the guesses generated by the global strategy and
find nearby local optima. If P(θ) were a smooth, but possibly multimodal, function, we
could even combine a Newton-style method with a global strategy. Once we exploit the
properties of P(θ), we could formulate an efficient as well as systematic approach for
finding counterexamples.

If we find a counterexample then we will have learned something about the model.
Also, the counterexample, or counterexamples, will give insight about when and why
a proposition fails to hold. Failure to find a counterexample would not prove the con-
jecture, but would be strong evidence for its truth. If high-quality global optimization
software is used, then this would be even more compelling evidence.

If we do find counterexamples, we would like to find ways to describe when P is
true. If we fail to find a counterexample, we may want to consider alternative ways to
express the apparent global validity of proposition P . We next turn to methods that help
us in those tasks.

5.2. Sampling methods

If we are convinced of a proposition’s truth, then we would want to express that in some
compact way. Various sampling schemes can be developed for this purpose and produce
statements using standard language from statistics or analysis.

Monte Carlo sampling offers one simple procedure. Suppose we want to investigate
a set of models where we have imposed a probability measure, μ, over the parameter
space θ . Suppose we want to evaluate our proposition P(θ) over a set θ ∈ �. We could
draw N models at random from � according to the measure μ, and use computation
to determine the truth of the proposition in those cases. If computation showed that
proposition P held in each case, then we could say “We reject the hypothesis that the
μ-measure of counterexamples to proposition P exceeds ε at the confidence level of
1 − (1 − ε)N .” Note the crucial role of the randomization; the fact that we randomly
drew the cases allows us to use the language of classical statistics.

We could also use Bayesian methods to express “posterior beliefs” after several com-
putations. Let p be the probability that a μ-measure randomly drawn point satisfies
proposition P , and suppose that we have a uniform prior belief about the value of p.
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Then our posterior belief about p after N draws which satisfy proposition P can be
directly computed.

The advantage of Monte Carlo sampling methods is the ease of expression using
language from either classical or Bayesian statistics. There is little question about the
meaning of these statements since independent draws are easy to implement and well-
understood.

Some have told me that they would prefer to use a prespecified, uniform grid of cases
for this task instead of random draws. The idea is to examine a set of examples such that
each possible case is within some distance δ of one of the cases computed. The uniform
grid approach has an advantage over Monte Carlo in that it avoids the clumping and
gaps that, due to the Central Limit Theorem, must occur with Monte Carlo sampling.
However, uniform grids are inefficient ways of sampling in a multidimensional space.
Fortunately, there are quasi-Monte Carlo sampling methods, such as low discrepancy
sets, that use far fewer points than the Cartesian grid and accomplish the same goal.
With deterministic grids, one cannot use the statistical concept of “confidence levels” to
summarize a result. The alternative statement would be based on the maximal size of a
ball or cube of counterexamples; that is, if proposition P is true at each point on a grid
and the largest ball which can miss each point on the grid is of diameter δ, then δ could
be used as a measure of the strength of proposition P .

One advantage of all sampling methods is the ease of implementation. If you can
compute P(θ), then you can execute a sampling method. Sampling methods can effi-
ciently use any computer environment. In particular, because there is little interdepen-
dence across different points in a grid, sampling methods can be directly implemented
in all distributed computing environments, such as massively parallel supercomputers or
grid computing systems. The global optimization approach could also exploit a parallel
environment but would require some coordination.

5.3. Regression methods

Instead of trying to prove that P(θ) is always nonnegative, we may instead try to find the
shape of P . Judicious use of computational power can help us here as well. A computa-
tional study can compute P(θ) for a large number θ values, use approximation methods,
such as regression, neural nets, or radial basis functions, to express how P depends on
the exogenous parameters, θ . The approximation results would then tell us how a model
depends on its parameters. If a simple functional form, such a low order polynomial in
the components of θ (or log θ ), could fit the data, then the fitting function would cleanly
express our findings.

While this looks a lot like statistics, our task would be easier than standard econo-
metrics. First, we can define the set of sample points θ . Econometricians are stuck with
the θ ’s nature gives them. We instead can control the number and distribution of θ ’s
so as to maximize the information we get from our computations. Second, the error in
computing P(θ) can often be controlled much better than an econometrician can con-
trol measurement errors. Third, because we have control over the measurement errors,
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sampling errors and sample size, we can be more flexible in terms of functional form
specifications and get more information out of our data. In particular, we could focus on
finding functional forms that can compactly express the patterns we find.

There are many ways to accomplish this. The main point is that approximation meth-
ods, and data mining in general, could be used to summarize results of a computational
study and test hypotheses one has for a model.

5.4. Replication and generalization

We have discussed ways that computational work could be conducted and expressed
to produce conclusions that are clear to a reader, and, in some cases, nearly as com-
pelling as a proof. Computational methods have one potentially important advantage
over theorem-proving. Suppose that your paper did not examine a case or class of mod-
els that some reader cares about. If you have proved a theorem that does not include that
case, the reader has to work hard to see what happens for his case, and will usually fail
to find the answer unless he has expertise comparable to the author. In contrast, in com-
putational models the reader could just take the computer program you wrote and apply
it to the parameter values he wants to examine. If his case is qualitatively different, he
could perhaps make modest changes in the (hopefully well-written) code and then run
the program. In either case, he can quickly find the answers to his questions in a way
that is not possible for theoretical work.

This observation also points out how replication of computational work could be
done. Of course, this assumes that the software you use is easily transportable and flex-
ible to use. This is often not true today, partly because there is little incentive to write
software that can be used by others. This is a not as bad a problem in empirical work
since people often use common data sets and common econometric software. The lack
of similar software is holding back the potential of ACE approaches, but that is hope-
fully only a temporary problem.

5.5. Synergies with conventional theory

The observations above have been of an “us versus them” nature. While this is a useful
framework to use when discussing these issues, it is counterproductive for us to view
this as a zero-sum contest between two methodologies. The ultimate aim is for com-
putational and theoretical tools to interact in a fruitful manner. We have already seen
some examples of this. For example, Arthur (1994) posed the El Farol Problem where
customers want to predict the number of people at the El Farol bar because they want
to avoid times when it is crowded. Arthur (1994) used computational methods to study
the implications of inductive inference by patrons. Motivated by the insights in Arthur
(1994), Zambrano (2004) reexamined the problem analytically and arrived at important
insights that went beyond both the computational results and the related game theory.

I have laid out several distinctions between conventional theory and the kind of
computationally intensive approaches to studying economic models advocated in ACE.
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These distinctions will remain in the future even after we have refined our computa-
tional tools, and both approaches will be used, each exploiting its own unique strengths.
The aim of this essay, as well as much of this handbook, is to highlight the distinct
nature of computationally intensive research tools. However, there is no desire that the
economics community be divided between computational economists and practitioners
of conventional theory. Instead, the hope here is that a clear understanding of alternative
methodologies will foster vigorous interactions where each approach benefits from the
insights of the other.

6. Conclusion

Any time a new tool is introduced into economics, economists need to decide how best
to use it to produce insights about economic problems. Economists who were trained
in the literary tradition of classical economics were troubled by the infusion of math-
ematics in the middle of the 20th century. Likewise, the infusion of computationally
intensive approaches will push economists to learn new tools, and raise questions about
how best to use them in economic analysis. These questions need to be addressed in
a systematic manner. This essay proposes some ideas that could be used more in eco-
nomics, and I am sure that others will offer suggestions as we think about these issues.
The potential usefulness of computational methods is enormous. I am confident that we
will find suitable answers if we think carefully about the tradeoffs between conventional
approaches and the ACE tools presented in this handbook, and if we make efficient and
full use of the computational resources that will become available in the future.
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1. Introduction

In the last 20 years the variety of learning models used in economics has increased
tremendously. This chapter provides an overview on these learning models. Further-
more, it classifies learning processes and gives tips on choosing amongst the various
models.

There are many different ways in which such an overview can be presented and
structured. The structure chosen here reflects two considerations: First, the main aim
of this chapter is to help agent-based computational economists to choose the adequate
learning model in their simulations. In giving such advice, we assume that agent-based
computational economists intend to model human behaviour as realistically as pos-
sible. Other arguments in the context of choosing learning models are discussed in
Section 5.2. However, the question of how real learning processes can be accurately
modelled is the central concern of this chapter. As a consequence, the chapter is strongly
based on research in psychology because psychologists have established most of the ac-
tual knowledge about human learning. Experimental economics has made increasingly
larger contributions to this knowledge in recent years (a comprehensive overview is
given in Duffy, 2006). Nevertheless, most current knowledge stems from psychology.

Second, most researchers agree that there is no single universal learning model. Dif-
ferent learning processes take place in different situations (see experimental evidence
presented in Duffy, 2006). Thus, different learning models have to exist. In order to sup-
port agent-based computational economists in choosing a model, the learning situations
have to be categorised and separate advice has to be given for each category. Many dif-
ferent categorisations are possible. The categorisation used here was developed earlier
on the basis of the psychological literature (see Brenner, 1999). It is based on the as-
sumption that there is a hard-wired learning process that is common among all animals
and a flexible learning process that requires features of the human brain. Other categori-
sations are possible and the specific choice in this overview is motivated and discussed
in detail in Section 1.2.

The chapter proceeds as follows: The remaining introductory section gives a short
historical overview and presents and discusses the categorisation of learning models
used here. Subsequently, for each learning process class, the various models available
are presented in Section 2 (non-conscious learning), Section 3 (routine-based learning),
and Section 4 (belief learning). Section 5 addresses some basic issues in modelling
learning, such as the complexity and validity of learning models, the distinction between
individual and population learning, and the calibration of learning models. Furthermore,
Section 6 gives detailed advice on how to adequately model the various ways of learn-
ing.

1.1. History of modelling learning

This short trip through history will focuses on mathematical learning models used in
economics. Nevertheless, it is necessary to start with a short overview of psycholog-
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ical research on learning as the study of learning processes is mainly handled within
psychology and many models that are used in economics are based on psychological
findings. Furthermore, it was psychologists who developed the first mathematical mod-
els of learning.

1.1.1. Psychological research on learning

Psychologists started to study learning processes extensively approximately 100 years
ago. At that time, psychology was dominated by the view that processes within the brain
cannot be studied and that explanations of behaviour should be based purely on ob-
servable variables. Subsequently, psychologists identified two major learning processes:
classic conditioning and operant conditioning. So far, classic conditioning has had little
impact on economic discussion (an exception can be found in Witt, 2001), although it
is still extensively studied in psychology (an overview is given in Mackintosh, 2003).
It describes the development of new stimuli and reinforcers on the basis of existing
ones and can, therefore, explain change in preferences (see Witt, 2001). Mathematical
models for this learning process have so far only been developed within psychology
(see Rescorla and Wagner, 1972), while economic literature has focused more on the
process of operant conditioning. Most of the empirical studies in psychology on operant
conditioning are conducted with animals. A general result that has been found is that
actions that lead to rewards occur with a higher frequency in the future, while actions
that cause punishment become less frequent. This kind of learning process is nowadays
referred to as ‘reinforcement learning’ in economics. The first mathematical model of
this learning process was developed within psychology by Bush and Mosteller (1955).

In the 1950s psychologists started a new line of research into learning processes. They
studied the impact of social interaction and observation on learning. The basic argument
was that people do not only learn from their own experience but also from the experi-
ence of others, meaning that the concept of reinforcement learning was transferred to
interactions and observation. However, it was not only assumed that experience was ex-
changed between individuals but it was also claimed that people are able to understand
the similarities and differences between other’s and their own situation. Psychologists
at that time entered the sphere of cognition and the resulting theory was called a social-
cognitive learning theory (with the most prominent work by Bandura, 1977).

Finally, in the last 20 years psychologists have concentrated on the processes of
cognitive learning. Cognitive learning, in general, means the development of an under-
standing of real world processes and interrelations including the development of notions
and expressions. Nowadays much research is done on the development of cognitions in
children, such as the learning of languages, and logical thinking. However, formulations
of the learning processes in the form of equations are absent as the processes are usu-
ally described using graphs, accompanied by verbal arguments or logical elements. The
main topics centre on the development of structures and the integration of knowledge in
the brain. Hence, this research is far removed from the type of decision making usually
studied in economics with reference to learning processes.
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A recent development is the use of neuro-science in the study of cognitive learning
processes (see, e.g., Rumiati and Bekkering, 2003). This research offers new informa-
tion on the speed of information processing; the interaction between different stimuli
that appear simultaneously; the extent to which different parts of the brain are involved
in the processing of stimuli and similar aspects of learning. Again this research is, up
to this point, of little use for modelling learning processes in economics. However, this
may well change in the future.

1.1.2. Learning and optimisation

For a long time learning was a minor issue in economics. When economists started to
show some interest in learning, they were mainly concerned with two issues. First, they
established a normative learning model that described the optimal learning process, en-
titled Bayesian learning (see, e.g., Easley and Kiefer, 1988 and Jordan, 1991). Second,
they developed models of learning in which behaviour converges towards the optimal
behaviour in equilibrium. For quite some time, most economists who studied learning
processes were mainly concerned with proving that learning converges towards the op-
timal behaviour. The first approach of this kind appeared in 1951 (see Brown, 1951).
After the proposal of the Nash equilibrium (Nash, 1950) the question arose of how peo-
ple come to play according to this equilibrium. Brown established a learning model
called fictitious play for which Robinson (1951) could show that it converges to Nash
equilibrium behaviour (later it was proved that this only holds under certain conditions;
see Shapley, 1964).

Many authors who model learning processes still want to show that learning processes
converge towards optimisation (examples can be found in Bray, 1982; Yin and Zhu,
1990; Jordan, 1991; Börgers and Sarin, 1997; Dawid, 1997; and Sarin and Vahid, 1999).
Often it is even argued that learning models can only be adequate if they converge, at
least in the long run, towards optimising behaviour in a stationary situation. However,
mainly caused by enormous experimental evidence, this claim is slowly disappearing
from the debate. There are increasingly more works that study when and how behaviour
predicted by learning models differs from optimal behaviour (see, e.g., Herrnstein and
Prelec, 1991; Brenner, 1997; Brenner, 2001; and Brenner and Vriend, 2005).

Nevertheless, economists who model learning processes are still very much divided
into two camps: those who prefer learning models that converge towards optimal be-
haviour and those who are not interested in optimality. In contrast to this, we argue here
that finding out under which conditions the various existing models work best is more
important (see Börgers, 1996 for a similar argument).

1.1.3. Increasing variety of learning models

In the past few years, there has been a tremendous increase in the number of learning
models used in economics. After experimental studies have repeatedly shown that the
original economic learning models have been rejected in some experiments (see, e.g.,
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Feltovich, 2000), many economists, who modelled learning in economic contexts, de-
veloped their own model or their own variation of an existing model. Most of these
models are based on introspection, common sense, artificial intelligence approaches or
psychological findings. Nearly all of them are in some way or another set up ad-hoc
without clear scientific justification.

In the meantime some approaches have tried to compare the suitability of different
models on the basis of experimental data (see, e.g., Feltovich, 2000; Tang, 2003 and
Arifovic and Ledyard, 2000). This topic is addressed and extensively discussed by Duffy
(2006).

Independent of this discussion a few learning models have become dominant in eco-
nomics, while others have been mainly neglected. The most prominent models are
Bayesian learning, least-squares learning, as well as the learning direction theory, rein-
forcement learning, evolutionary algorithms, genetic programming, fictitious play and
the learning model by Camerer and Ho. There are different reasons for the dominance
of these models, which range from being well-supported by empirical and experimen-
tal evidence to converging to optimal behaviour or reducing complexity. We present
here more than these prominent models, although it is impossible to present all existing
models and modifications of models.

1.2. Classification of learning models

A classification is always as beneficial as it is helpful for practical tasks. We consider
here an agent-based computational economist who aims to explain features and dynam-
ics of the economy on the basis of interaction between economic agents. For such an
endeavour it is important to know the way in which economic agents behave and the
adequate ways to model this behaviour in simulations. The task is to choose a learning
model for a planned simulation study. Given the above assumption that the aim is to
find the most realistic model, we have to ask what is the right learning model in a given
situation.

However, in economic literature on learning this is not the only aim, and not even
the most frequent one. Other aims are discussed in Section 5.2.1. Searching for realistic
learning models, most information about real learning processes can be found in the
psychological literature, thus building the basis for the classification proposed here.

1.2.1. Potential alternative classifications

Alternative ways to classify learning models should not be ignored here. There are at
least three other options. First, one might classify learning models according to their ori-
gin. This would allow us to distinguish between psychology-based models, rationality-
based models, adaptive models, belief learning models, and models inspired by com-
puter science and biology. A classification of all learning models that are discussed here
according to such a classification and according to the classification developed below
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Table 1
Classification according to the source of the learning models and according to the classification developed

below

Non-conscious
learning

Routine-based
learning

Belief learning

Psychology-
based models

Bush–Mosteller
model,
parameterised
learning automaton

satisficing, melioration,
imitation, Roth–Erev
model, VID model

stochastic belief
learning, rule
learning

Rationality-
based models

Bayesian learning,
least-squares
learning

Adaptive models learning direction theory

Belief learning
models

EWA model fictitious play

Models from AI
and biology

evolutionary algorithms,
replicator dynamics,
selection-mutation
equation

genetic
programming,
classifier systems
neural networks

is given in Table 1. Such a distinction informs the reader about the various sources of
learning models, however, it does not help in choosing a model for simulations.

Second, we might classify learning models according to the economic fields in which
they are usually applied. For example, macro-economists mainly use Bayesian learning
and least-squares learning while reinforcement learning, fictitious play and learning di-
rection theory are prominent among experimental economists. Meanwhile, evolutionary
algorithms and genetic programming are frequently used in agent-based computational
economics and game theorists seem to prefer fictitious play, replicator dynamics and
other adaptive learning models. However, it is unclear why economists in different fields
use different learning models. Obviously, economists who use mathematical analysis
are restricted in their choice by the requirement of treatable models. The other differ-
ences seem to be historical in nature and it could be rather unproductive to support such
differences by using them for a classification of learning models.

Third, one might look for existing classifications of learning models in economic
literature. However, no classification is available that contains as many different learning
models as discussed here. Usually only a few subjectively selected learning models are
presented and discussed (see, e.g., Fudenberg and Levine, 1998).

1.2.2. Proposed classification

The classification chosen here is based on the aim to assign realistic learning models to
various situations. It is strongly based on psychological knowledge about learning.
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It is not clear whether there is a fundamental mechanism within the brain that explains
all learning methods. However, since neuro-physiologists and cognitive psychologists
have not yet detected such a fundamental mechanism, learning methods can only be
developed through empirical observations. Furthermore, it may be technically advan-
tageous not to base all learning processes on one fundamental mechanism. Often it is
simpler to describe learning processes on the basis of resulting changes in behaviour
than to describe the probably complicated interaction of cognitive processes.

Thus, we are looking for information that helps us decide which learning model is
suitable under certain conditions. We ignore the alternative option to search for the
best learning model that describes all learning processes and is suitable under every
condition. No such model exists, per se, and it is doubtful that there will ever be one.

While looking for a match between adequate learning models and situational charac-
teristics, we are less interested in whether a model has structural attributes facilitating its
use in a given situation. We are more interested in whether a learning model describes
the relevant processes that occur in reality. Hence, we have to find out if various kinds
of learning processes with different features exist in reality and how they occur.

1.2.3. Two ways of learning

Although the psychological literature on learning distinguishes (for historical reasons)
between three kinds of learning processes, there are only two fundamentally different
ways of learning. First, humans share with other animals a simple way of learning,
which is usually called reinforcement learning. This kind of learning seems to be bi-
ologically fixed. If an action leads to a negative outcome—a punishment—this action
will be avoided in the future. If an action leads to a positive outcome—a reward—it
will reoccur. This kind of learning process has been extensively studied in psychology
around 100 years ago with different kinds of animals (extensive literature can be found
in Thorndike, 1932 and Skinner, 1938). It does not involve any conscious reflection on
the situation. Hence, people are not always aware that they are learning.

In addition to reinforcement learning, people are able to reflect on their actions and
consequences. We are able to understand the mechanisms that govern our surrounding
and life; and we are able to give names to objects and establish causal relations that
describe their interaction and nature. Nowadays, this is mainly studied in psychology
under the label of learning and is referred to as cognitive learning.

These two kinds of learning are completely different. We argue—without having
any empirical proof for this—that reinforcement learning is a mechanism that works
in an automatically and continuous fashion. Subsequently, whatever we do is, instan-
taneously, guided by reinforcement learning. It seems likely that humans are endowed
with the same basic mechanisms as animals and therefore learn according to the same
hard-wired principles of reinforcement learning.

However, we are able to reflect on our actions and their consequences. This requires
active thinking and, therefore, cognitive resources, which are scarce. Hence, we are not
able to reflect on all our actions. Imagine if we would have to consider each move of
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each single muscle. We would not be able to live our life as we do. However, if we
think about an action, we are able to overrule the law of reinforcement learning. We
argue that the effect of cognitive learning on behaviour is stronger than the effect of
reinforcement learning. But, in addition, we argue that we do not have the cognitive
capacity to reflect on all our actions and therefore many actions are conducted on the
basis of reinforcement learning.

1.2.4. Further distinction of learning processes

While reinforcement learning (or conditioning as it was originally named by psychol-
ogists) is well studied and understood, conscious learning processes are more difficult
to grasp. Although various learning models exist in psychology, detailed knowledge on
the formation of beliefs in the brain are missing.

Hence, there is some temptation to ignore the exact working of the brain and model
some basic mechanisms of learning that are well established from empirical and exper-
imental observations. Such models take a mechanistic perspective on learning. People
are assumed to learn according to fixed mechanisms or routines. Therefore, we call the
learning processes described by these models routine-based learning.

An example is the rule to imitate local people whilst in a foreign country for the first
time. In this way one quickly learns about the traditions there and adapts behaviour.
However, conscious learning is more than simply imitating the behaviour of others.
Conscious learning usually means that we understand why this behaviour is advanta-
geous, maybe how it developed and what are its suitable circumstances. This means
that we associate meaning to our observations and build beliefs about relationships
and future events. In order to distinguish these processes from simplified routine-based
learning, it is defined as associative learning (in accordance with Brenner, 1999) or
belief learning in accordance with the term used in the economics literature.

All conscious learning is belief learning because, whenever people reflect upon their
situation and learn about appropriate actions, they assign meanings to the gathered in-
formation, thus developing beliefs about relationships and future events. Routine-based
learning is a simplification of real learning processes that makes life easier for the
researcher and is applicable in a number of situations. The correct way would be to
model the belief learning process, although the correct way is not always the appro-
priate way. This holds especially because we have little information about how belief
learning processes should be modelled. Nevertheless, while using routine-based learn-
ing models, we should keep in mind that they only represent approximations.

2. Modelling non-conscious learning

According to the categorisation proposed here, all learning processes that occur without
individuals being aware of them are labelled non-conscious learning. In psychology two
such learning processes are identified: classical conditioning and operant conditioning
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(also called reinforcement learning). As mentioned above, the discussion is restricted
here to the process of reinforcement learning as classical conditioning is rarely ad-
dressed in economic literature (a discussion of modelling classical conditioning can be
found in Brenner, 1999, Ch. 3 and 5). However, it has to be mentioned that if we equate
non-conscious learning with reinforcement learning, we depart from the traditional psy-
chological notion of reinforcement learning. In psychology, reinforcement learning was
established at a time in which behaviourism was dominant, which meant that models
which explicitly considered the internal functioning of the cognitive processes were ar-
gued by psychologists to be pure speculation and therefore should be avoided. Hence,
they developed models of learning processes that saw decisions as being outcomes of
visible processes, i.e. stimulus-response relations. However, these models have not ex-
cluded the possibility that there might be cognitive processes in the background that
cause visible changes in behaviour. They only hold that these processes should not be
explicitly included in the models.

Non-conscious learning, as it is defined here, applies only to those learning processes
in which no cognitive reflection takes place. The analogy that we draw here comes from
the fact that most psychological studies of conditioning have been based on animal ex-
periments which claim that animals mainly learn non-cognitively. Hence, we argue that
reinforcement learning models should be suitable for modelling non-cognitive learning
processes in humans. In psychology it is frequently argued that individuals learn ac-
cording to reinforcement learning if they do not reflect on the situation (see, e.g., Biel
and Dahlstrand, 1997).

Reinforcement learning is based on an initial frequency distribution among various
possible actions. The origin of this frequency distribution has to be explained by other
means, as it has been mainly neglected in the literature. Reinforcement learning means
that actions are chosen randomly according to the current frequency distribution. If an
action leads to a reward (positive outcome) the frequency of this action in future behav-
iour is increased. If an action leads to a punishment (negative outcome) the frequency
of this action is decreased.

2.1. Existing models

In economics three frequently used models that describe reinforcement learning are the
Bush–Mosteller model, the principle of melioration, and the Roth–Erev model. All three
models best capture the major characteristic of reinforcement learning: the increase in
the frequency of behaviours that lead to relatively better results and the slow disap-
pearance of behaviours if reinforcement is removed. All these models are inspired by
psychological research on reinforcement learning. However, as discussed above, non-
conscious learning is not the same as reinforcement learning. Therefore, we have to
depart from the psychological literature here and assess whether these models actually
describe a non-conscious learning process.

The three models do differ in their details. Melioration learning assumes that the
learning process is based on the average experience of each behaviour in the past. The
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Bush–Mosteller model and the Roth–Erev model assume that the change of behaviour
at each point in time is determined by the current outcome together with the previously
determined frequency distribution, which are used to determine an updated frequency
distribution for current action choice. Hence, while the Bush–Mosteller model and
the Roth–Erev model only require the individual to store the actual frequencies of
the possible actions, melioration learning requires them to also remember past events.
Furthermore, it requires individuals to calculate averages. Herrnstein developed the me-
lioration principle in the light of experimental observations (see Herrnstein, 1970 and
Herrnstein and Prelec, 1991). However, given their laboratory settings, such behaviour
is probably conscious. Hence, the melioration concept seems to fit better into the mod-
elling of routine-based learning and will be further discussed there. It does not seem to
be adequate to model non-conscious learning processes.

Juxtaposing the Bush–Mosteller model and the Roth–Erev model, one may observe
that they have the same fundamental structure. The Bush–Mosteller model was set up
in 1955 by psychologists according to the psychological knowledge on operant condi-
tioning (see Bush and Mosteller, 1955). It was adapted to economics by Cross about 20
years later (see Cross 1973, 1983). Arthur (1991) generalised the model by allowing for
different developments of the learning speed during the learning process. He called his
learning model ‘parameterized learning automaton’. The two extreme cases that are in-
cluded in Arthur’s model are a constant learning speed and a hyperbolically decreasing
learning speed. The former border case is identical to the Bush–Mosteller model. The
latter border case later became the original Roth–Erev model. Arthur (1991) developed
a very flexible model and discussed the meaning of different learning speeds. However,
all these developments did not catch much attention within economics and it is to the
merit of Roth and Erev to have reestablished reinforcement learning in economics.

The major difference between the Bush–Mosteller model and the original Roth–Erev
model is the speed of learning, which was already discussed by Arthur (1991). In the
Bush–Mosteller model the speed of learning remains constant. This means that an indi-
vidual with a lot of experience in a situation reacts in the same way to a new experience
as an individual with no former experience. The original Roth–Erev model assumes that
the learning speed converges hyperbolically to zero while experience is collected. Psy-
chological studies describe the aspect of spontaneous recovery (see Thorndike, 1932),
which means those actions that have been abandoned because of unpleasant results are
quickly taken into the individual’s behavioural repertoire again if positive outcomes re-
sult from these actions. This spontaneous recovery is captured by the Bush–Mosteller
model but not by the original Roth–Erev model. However, Roth and Erev (1995) have
modified their original model by including the aspect of forgetting, so that it also cap-
tures the process of spontaneous recovery.

A second difference is that the Bush–Mosteller model can also deal with negative
payoffs, while the Roth–Erev model and the parameterized learning automaton are only
able to use positive payoffs. The original psychological studies show that reinforcement
learning has different characteristics for positive (rewarding) and negative (punishing)
outcomes. The Bush–Mosteller model is able to capture these effects and accordingly
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leads to different predictions (see Brenner, 1997). Thus, it is the only learning model
that does not contain cognitive elements and is able to reproduce all features of rein-
forcement learning that have been identified in psychological studies.

As the parameterized learning automaton and the Roth–Erev model are described by
Duffy (2006), only the Bush–Mosteller model is described here in detail.

2.2. Bush–Mosteller model

At the beginning of the last century reinforcement learning became a central topic
in psychology (cf. the previous section). This eventually led to the development of
a mathematical learning model by Bush and Mosteller (1955). Their model is based
on the considerations of Estes (1950) who took the first steps towards a mathematical
formulation of reinforcement learning. It is based on the idea of representing behav-
iour by a frequency distribution of behaviour patterns given by a probability vector
p(t) (= (p(a, t))a∈A). This vector assigns a probability p(a, t) (0 ≤ p(a, t) ≤ 1,∑

a∈A p(a, t) = 1) to each behavioural alternative a (a ∈ A) at each time t . The term
p(a, t) is sometimes called habit strength. The Bush–Mosteller model is a stochastic
model that predicts probabilities for the occurrence of behaviour patterns rather than
the behaviour pattern itself.

The probability vector p(t) changes during the learning process according to the the-
ory of reinforcement. Bush and Mosteller distinguished only between rewarding and
punishing outcomes, but not within both classes. Cross (1973) further developed the
Bush–Mosteller model by answering the question of how to deal with rewards and pun-
ishments of different strength. He placed the models into an economic context and so
defined the reinforcing character of an event by the utility to which it gives rise. In
doing so, he assumed that the impact of an outcome is monotonously increasing in its
utility. However, Cross also eliminated the punishing character of events, because in
economics it is assumed that utilities can be linearly transformed and negative utilities
values can be avoided without a loss of generality as long as they have a finite lower
bound. He overlooked that reinforcement learning works in a different manner for those
situations in which agents are exposed to punishing outcomes compared to those situ-
ations in which they are exposed to rewarding outcomes. Therefore, in reinforcement
learning it matters whether punishing or rewarding outcomes motivate learning.

This shortcoming of Cross’s version of the Bush–Mosteller model has been overcome
by the work of Börgers and Sarin (1997) and Brenner (1997). Only this version of the
Bush–Mosteller model, called the generalised Bush–Mosteller model here, is described
here (a discussion of all versions can be found in Brenner, 1999, Ch. 3). Reinforce-
ment strengths are defined in such a way that all rewarding outcomes are reflected by
positive reinforcement strengths, while all punishing outcomes are reflected by nega-
tive reinforcement strengths. Apart from this, the generalised Bush–Mosteller model is
identical to the version proposed by Cross. The change in the probability p(a, t) of the
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individual to realise action a is given by

(1)p(a, t + 1) = p(a, t) +
{

ν(�(t)) · (1 − p(a, t)) if a = a(t)

−ν(�(t)) · p(a, t) if a �= a(t)

if action a(t) is realised and the resulting reinforcement strength �(t) is positive, and
by

(2)p(a, t + 1) = p(a, t) +
{−ν(−�(t)) · p(a, t) if a = a(t)

ν(−�(t)) · p(a,t)p(a(t),t)
1−p(a(t),t)

if a �= a(t)

if action a(t) is realised and the resulting reinforcement strength �(t) is negative.
ν(�) is a monotonously increasing function in � (� > 0) with ν(0) = 0 and
0 ≤ ν(�) ≤ 1. A reinforcement strength of � = 0 can be interpreted as the aspi-
ration level (as done in Börgers and Sarin, 1997).

Usually, a linear formulation ν(�) = ν · � is used, so that the learning process is
described by

p(a, t + 1) = p(a, t)

(3)+

⎧⎪⎪⎨⎪⎪⎩
ν · �(t) · (1 − p(a, t)) if a = a(t) ∧ �(t) ≥ 0
ν · �(t) · p(a, t) if a = a(t) ∧ �(t) < 0
−ν · �(t) · p(a, t) if a �= a(t) ∧ �(t) ≥ 0

−ν · �(t) · p(a,t)·p(a(t),t)
1−p(a(t),t)

if a �= a(t) ∧ �(t) < 0

.

All versions of the Bush–Mosteller model assume that an outcome has an impact on
the frequency distribution p(t) in the moment of its occurrence only. This means that
individuals do not remember previous actions and outcomes. The past is implicitly con-
tained in the frequency distribution p(t). Learning is assumed to be a Markov process.

This model can only be applied to situations in which individuals have to choose re-
peatedly between a finite number of alternative behaviours, such as a set of different
actions or a number of real-valued actions, e.g., prices. It cannot be applied to situa-
tions in which individuals have to choose a value from a set of infinite cardinality, such
as an interval of possible prices. Choosing a real value within an interval implies con-
scious thinking, because the very notion of real value is a cognitive concept and must
be consciously learnt.

3. Modelling routine-based learning

It was extensively discussed above that routine-based learning models are approxima-
tions for the real conscious learning processes, as they are based on the identification of
some simple fundamental principles of learning. These principles are deduced in eco-
nomic literature either from experimental observations, from ad-hoc reasoning, or from
some considerations on optimal learning. They might describe learning quite accurately
under certain circumstances. However, they are never able to describe learning in each
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situation because people are capable of complex reasoning and of understanding the
potentially complex environment that they face. Unfortunately, psychologists still have
quite a vague comprehension of reasoning and understanding processes. Nevertheless,
it is clear that these processes are not simple and that they involve the development of
concepts and beliefs (see, e.g. Anderson, 2000).

We define routine-based learning models as those models in which there is a direct
connection from the agent’s experiences and observations to their behaviour. All models
that include beliefs and their development over time are seen as potential candidates for
modelling, what is called here, associative or belief learning (they are discussed in the
next section). We claim that there will never be a routine-based learning model that
accurately describes the conscious learning process in all circumstances.

Nevertheless, under certain circumstances, routine-based learning models may be an
adequate and simple description of learning. Several studies have shown that individ-
uals tend to stick to their beliefs even if there is some evidence that falsify them (see,
e.g., Luchins, 1942 and Anderson, 2000). Some strands of psychological research have
shown that individuals apply simple rather than optimal routines in decision making
(see, e.g., Gigerenzer and Selten, 2001).

Although we have to be aware of the restrictions of routine-based learning models, it
might be advantageous to search for a routine-based learning model in order to describe
behaviour. In this case, the only way to guide this search is empirical and experimental
evidence. The aim is not to have a detailed description of the learning process but to
find a model that accurately represents the dynamics of these actions.

Various learning models have been put forward in the economics literature that fit
into this category. The most frequently used models are represented here; some of them
model one aspect of learning, while others combine a number of mechanisms within
one model. Furthermore, there are models that describe learning on the individual level,
while others describe them on a population level. These issues are discussed in Sec-
tion 5.2. Here, the most prominent models are presented sequentially.

3.1. Experimentation

The standard form of learning by experimentation is the trial-and-error principle. How-
ever, it is not sufficiently specific to be called a model. It requires specification of
whether all possible actions are tried, how often they are tried before they can be called
an error and what an error means. Therefore, experimentation is usually included in
other models as an additional factor. Nowadays, for almost all learning and decision
models, some variants exist that include experimentation. Even utility maximisation has
been expanded to include these elements, such as errors or individual differences in the
evaluation of actions, which are similar to experimentation (see Brenner and Slembeck,
2001 for a detailed presentation). The inclusion of experimentation in other models will
be discussed during the presentation of these models below. Here two concepts will be
presented that are only based on experimentation: the concept of S(k)-equilibria and the
learning direction theory.
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Experimentation is based on the argument that through choosing different actions in-
dividuals can collect information on the consequences of these actions. In the literature
it is sometimes argued that there is a trade-off between experimentation and exploita-
tion. This means that an individual can either experiment to obtain further information
on the situation or exploit the information collected in the past using this as a basis to
choose the best action.

A simple form of this kind of behaviour is the proposed behaviour by Osbourne and
Rubinstein (1995). They argued that individuals choose each possible action k times.
After this initial phase they choose the action that has led to the highest average payoff
whenever they face the same situation. What remains unclear in this approach is the
question of how k is determined. This model has also not been tested empirically or
experimentally.

More evidence exists in favour of the learning direction theory (see, e.g., Berninghaus
and Ehrhart, 1998 and Grosskopf, 2003). The learning direction theory was proposed
by Selten (see Selten and Stoecker, 1986 and Selten, 1997). Learning direction theory
can only be applied if individuals are confined to choosing from a set of alternatives
that can be ordered in a meaningful way, or if, at least, individuals are able to separate
the alternatives that increase performance from those which decrease performance each
time. Moreover, learning direction theory assumes that individuals are able to identify
whether their last action was pitched too high or too low in this order of possible actions.
Given these assumptions, learning direction theory states that individuals will change
their behaviour in the direction in which they expect their own performance to increase,
or stay with the same behaviour. Such a learning procedure has some similarities with
gradient methods used in optimisation problems, although in the case of the learning di-
rection theory there does not necessarily have to be something like a potential function.
In other words, learning direction theory states that individuals change their behaviour
only in a way that increases their payoff. As long as the situation is easy to understand,
such a statement is straightforward. So it is no surprise that the theory has been con-
firmed in many experiments. However, the implications of learning direction theory are
rather weak.

3.2. Melioration and experience collection

It is well-known that individuals memorise their experience with certain situations and
use this experience to choose an adequate action if they face the situation again. Indi-
viduals even transfer experience between different situations that are perceived to be
similar. In the psychological literature it is argued that probabilities and values are as-
signed to outcomes, both determined by previous experience.

In economics, various models have been developed that describe the collection of
knowledge about a situation. Some of them are based on statistical considerations about
how people should learn in an optimal way. The two most widespread models of this
kind are Bayesian learning and least-squares learning. In contrast, some models are
built according to how the modeller thinks people learn in reality. These include the
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models of myopic learning, fictitious play and melioration learning, which is based on
experimental findings.

Except for melioration learning, an element that all these models have in common is
that individuals not only learn about the results of their actions but also about the prob-
abilities of the actions of other agents or events. Hence, although Bayesian learning,
least-squares learning and fictitious play can be used to describe a learning process in
which the outcomes of different actions are memorised, they are also able to describe
a learning process in which beliefs and hypotheses about the situation are developed.
They are suited to describe what is called belief learning here. Therefore, they are dis-
cussed in the next section. The only learning model that is only designed to describe
the memorising of experience with different actions is melioration learning. However, it
should be stated here that we regard also fictitous play as a relevant model for experience
collection.

Melioration learning, although it is never related to the model of fictitious play in the
literature, is a special case of gradual convergence to fictitious play. Melioration learning
was developed to represent reinforcement learning (see Herrnstein, 1970; Vaughan and
Herrnstein, 1987; and Herrnstein and Prelec, 1991). However, it is argued here that it
is less adequate to model what was called non-conscious learning above. It seems to be
more adequate to model the routine-based learning process of experience collection.

The dynamics of melioration learning have been formulated mathematically by
Vaughan and Herrnstein (1987). For a case with two possible actions a and ã, they
describe it as a time continuous adjustment process of the form

(4)
dp(a, t)

dt
= ν

(
ū(a, t) − ū(ã, t)

)
,

where p(a, t) denotes the probability of income spent on activity a, ū(a) denote the
average utility from activity a in the past, and ν(·) is a monotonously increasing function
with ν(0) = 0.

Vaughan and Herrnstein (1987) neglect cases in which the individuals can choose be-
tween more than two alternative actions. Nor do they define the average utilities ū(a, t)

in detail. A discussion of the average utility or payoff is presented by Brenner and Witt
(2003). They define Ta(t) as the set of moments of time in which an individual has re-
alised action a and also has a memory of it at time t . The term ka(t) denotes the number
of these occasions. Consequently the average utility ū(a, t) is given by

(5)ū(a, t) = 1

ka(t)
·
∑

τ∈Ta(t)

u(a, τ ).

Brenner and Witt (2003) also claim that it is more adequate to multiply equation (4) by
p(a, t) · (1−p(a, t)) instead of the artificial additional condition that the dynamics stop
if p(a, t) becomes smaller than zero for at least one action a. Consequently equation (4)
can be written as

(6)
dp(a, t)

dt
= p(a, t) · (1 − p(a, t)

) · ν(ū(a, t) − ū(ã, t)
)
.
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This approach can be easily expanded to a situation in which the individual has more
than two options to choose. Let us assume that there is a set A of alternative actions.
Furthermore, let us assume that the function ν(·) is linear. Then, the dynamics of me-
lioration learning is given by

(7)
dp(a, t)

dt
= p(a, t) · ν ·

(
ū(a, t) −

∑
ã∈A

p(ã, t) · ū(ã, t)

)
.

Equation (7) describes a replicator dynamic (compare to equation (13)). At the same
time, it also represents a special case of a gradual convergence to fictitious play. The
utility or payoff u(a, t) is calculated for each action a on the basis of a finite mem-
ory. However, the action that caused the highest payoffs in the past is not immediately
chosen. Instead, the behaviour converges towards the choice of the action with the best
experience. Through this process, individuals keep experimenting as long as one action
does not supersede the others for a relatively long time. Such a model seems to be a good
choice for modelling a realistic combination of experience collection and experimenta-
tion, but it is nevertheless quite simple. Alternatively, the average payoffs ū(a, t) might
also be calculated as exponentially weighted averages of the past experience according
to

(8)ū(a, t) = 1 − β

1 − β(t−1)

t−1∑
τ=0

β(t−1−τ) · u(τ) · δ(a(τ ) = a),

where u(τ) is the utility obtained by the individual at time τ , a(τ) is the action taken at
time τ , and δ(a(τ ) = a) is 1 if a(τ) = a and otherwise 0. β is a parameter that reflects
the time-horizon of the memory.

3.3. Imitation

The process of imitation is often used to describe learning processes in economics. Yet
no general model exists that describes imitation. Each author who considers imitation
an important aspect makes her own assumptions about the process. Most models of
imitation found in economic literature assume that the individuals are able to observe the
actions of other individuals and their resulting outcomes. Furthermore, the individuals
are assumed to use this information in order to take actions that lead to a better outcome.
This contrasts with the recent psychological literature on imitation. There, imitation is
seen as an innate process: Children are found to imitate behaviours that have no real
advantage. Nevertheless they are also able to concentrate on the crucial features for
success and neglect minor aspects as well as learn from unsuccessful behaviour (see
Rumiati and Bekkering, 2003 for a condensed overview). However, the psychological
research has not produced learning models that could be used in economics.

Therefore, the different models that have been developed in economics are discussed
below. These models differ in various characteristics:
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• In some models it is claimed that a certain number of individuals are observed,
where these are located next to the observer (see, e.g., Eshel et al., 1998) or they
are randomly picked from the whole population (see, e.g., Duffy and Feltovich,
1999 and Kirchkamp, 2000). In other models the entire population is observed
(see, e.g., Morales, 2002). Because the situation determines how many individuals
are observed in reality, the existence of various models is justified.

• Some models calculate the average utility of each action based on observations
(see, e.g., Eshel et al., 1998). Other models claim that individuals imitate the one
who has obtained the highest utility of those observed (see, e.g., Nowak and May,
1993; Hegselmann, 1996; Vega-Redondo, 1997; and Kirchkamp, 2000). Vega-
Redondo adds noise to this assumption. Finally, in some models it is assumed
that only one other individual is observed at any time and the payoff or utility ob-
tained by this individual is compared to their own payoff. Then, either a stochastic
approach is chosen whereby it is more likely to imitate those with a higher differ-
ence between the other’s and their own utility (see, e.g., Witt, 1996) or the other
individual’s behaviour is imitated whenever it has given rise to a higher utility (see
Schlag, 1998 for a discussion of these different rules). There is no empirical or
experimental study that examines which of these many models is more realistic.

Although the psychological literature offers no mathematical model, it does offer
some conceptual help. Imitation learning is discussed in psychology under the label of
observational learning (see Bandura, 1977). It is discussed how the attention of people
is drawn to the experience made by others and how this experience is transferred to
one’s own situation. This literature implies that we may treat imitation via the models
of experience collection that have been described above. Furthermore, such a modelling
would include the process of communication. The above equation (8) can be modified
such that it also contains the experience gathered by other individuals. Then, the only
question that has to be answered is the question of how much of other individuals’ expe-
rience is observed and considered in decision making. The answer is context-dependent
and has to be found for each situation separately.

A very simple model that combines the routine-based processes of experimentation,
experience collection and imitation/communication would consist of two processes:
First, an exponentially weighted average of the past experience with each action a is
built, including the experience of all N individuals in the population:

(9)ūi (a, t) = 1 − β

1 − β(t−1)

t−1∑
τ=0

[
β(t−1−τ) ·

N∑
j=1

σ(i, j) · uj (τ ) · δ(aj (τ ) = a)

]
,

where uj (τ ) is the utility obtained by individual j at time τ , aj (τ ) is the action taken
by individual j at time τ , and σ(i, j) is the weight with which individual i includes the
experience of individual j in her own expectation about the future. These weights have



Ch. 18: Agent Learning Representation 913

to satisfy

(10)
N∑

j=1

σ(i, j) = 1

for each individual i. Besides this, the weights have to be determined specifically for
each situation. The change of behaviour can then be modelled by equation (7). The
above can however also be used to learn about the circumstances, such as the behaviour
of others or any rules of the situation, as it is modelled in fictitious play.

3.4. Satisficing

The concept of satisficing can be found in many learning models in the literature. It
was first proposed by Simon (1957). Since then, many models have been proposed that
describe learning on the basis of the satisficing principle (for a detailed description of the
satisficing principle see Simon, 1987). Many of these models, however, are based on one
of the routine-based learning processes above and contain satisficing as an additional
aspect.

The satisficing principle is based on the assumption that individuals have an aspi-
ration level. This means that they assign a value z to each situation for the payoff or
utility that they expect to obtain. If the actual payoff or utility is above this value they
are satisfied, while an outcome below this value dissatisfies them. In order to model
satisficing three things have to be specified: 1) the aspiration level, 2) the dependence
of behavioural changes on dissatisfaction, and 3) how the new action is chosen if the
current one is abandoned because of dissatisfaction.

Aspiration levels have been studied intensively in psychology in the 1940s and 1950s
(see, e.g., Festinger, 1942; Thibaut and Kelley, 1959 and Lant, 1992 and Stahl and
Haruvy, 2002 for economic studies). From these empirical studies we know that the
aspiration level of an individual changes in time. On the one hand, it depends on the
outcomes of the individual’s own behaviour. These experiences are considered more
seriously the more recent they are (see Thibaut and Kelley, 1959). On the other hand, it
depends on the performances of others (see Festinger, 1942). Here again the influence
of outcomes decreases with increasing time but also depends on the similarity of these
people and their situation with one’s own position.

In the literature, three kinds of aspiration levels can be found (see Bendor et al., 2001
for an overview). First, some authors assume for simplicity a constant aspiration level z

(see, e.g., Day, 1967 and Day and Tinney, 1968). Second, some authors assume an as-
piration level zi(t) of an individual i that adapts towards the payoffs currently obtained
by this individual (see, e.g., Witt, 1986; Mezias, 1988; Gilboa and Schmeidler, 1995;
Pazgal, 1997; Karandikar et al., 1998; and Börgers and Sarin, 2000). Third, some au-
thors let the experiences of others influence the formation of individual aspirations, as it
was proven in psychological studies. This additional impact is called ‘social influences’
(see, e.g., Dixon, 2000 and Mezias et al., 2002).
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The assumption of a constant aspiration level is rare in the recent literature. Therefore,
we focus on the two other approaches here. The most common way of modelling (see,
e.g., Karandikar et al., 1998 and Börgers and Sarin, 2000) an aspiration level that adapts
to the personal experience is based on the equation

(11)z(t + 1) = λ · z(t) + (1 − λ) · π(t).

In this equation λ determines how much the new experience influences the aspiration
level z(t) and π(t) is the payoff obtained by the individual at time t . Alternative models
mainly replace the payoff π(t) in equation (11) by other variables such as the utility
obtained at time t or the maximal or average payoff in the past.

The influence of the experience of other individuals can be included, for example (see
Mezias et al., 2002), by introducing a social influence πsoc(t):

(12)zi(t + 1) = λ1 · zi(t) + λ2 · [πi(t) − zi(t)
]+ λ3 · πsoc(t),

where λ1, λ2 and λ3 determine the strengths of the different influences on the aspiration
level and have to add up to one: λ1 + λ2 + λ3 = 1. The social influence πsoc(t) can
be defined as the average payoff that other individuals obtain at time t . However, it
might also include further social aspects: An individual might put her own aspiration
relatively higher or lower to what others reach. Furthermore, other individuals might
vary in importance in the formation of the individual’s own aspiration.

A further complication is that different assumptions about the reaction to dissatis-
faction can be found in the literature. In general it is argued that the probability to
change behaviour increases with the degree of dissatisfaction but never reaches one
(see Palomino and Vega-Redondo, 1999 and Dixon, 2000). Usually a linear increase in
the probability of changing behaviour is assumed (see, e.g., Börgers and Sarin, 2000).
However, other forms are possible as well.

Finally, a satisficing model has to specify how the new action is chosen if the current
action is abandoned because of dissatisfaction. If there are only two alternative actions,
this specification is straight-forward. In the case of more than two alternative actions
there are two options. First, one of the other routine-based learning models can be used
to determine the new choice. Through this, the satisficing principle can be combined
with other concepts. Second, the new choice can be determined randomly.

3.5. Replicator dynamics and selection-mutation equation

The replicator dynamics (see Hofbauer and Sigmund, 1984) is the basis for evolutionary
game theory. It originates from biology and simply states that behaviours that are fitter
than average occur more frequently and behaviours that are worse than the average
occur less frequently. This is mathematically given by

(13)
ds(a, t)

dt
= ν(t) · s(a, t)

[
�(a, t) − 〈�(t)〉],
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where ν(t) denotes the speed of the process, �(a, t) is the average outcome obtained by
those individuals that show behaviour a at time t , and 〈�(t)〉 = ∑

a∈A s(a, t) · �(a, t)

is the average outcome in the whole population at time t . The replicator dynamics de-
scribes the selection process in biological evolution. There, ν(t) is called the selection
pressure, meaning the velocity of the elimination of less fit species. �(a, t) is the fitness
of the species a at time t .

The selection-mutation equation (see Eigen, 1971), also called Fisher–Eigen equa-
tion, also originates from biology. In addition to the selection process that is captured
by the replicator dynamics, it also captures the mutation process. The selection-mutation
equation can be written as (see Helbing, 1995)

ds(a, t)

dt
=
∑
ã∈A

[
ω(a|ã, t) · s(ã, t) − ω(ã|a, t) · s(a, t)

]
(14)+ ν(t) · s(a, t)

[
�(a, t) − 〈�(t)〉].

The first term on the right-hand side of equation (14) represents the mutation processes.
The mutation matrix ω(a|ã, t) defines the probability of a mutation from genetic variant
ã to genetic variant a. The mutation matrix has to be chosen according to the biological
probabilities of crossovers, mutations and other similar processes. In an economic con-
text it can be chosen according to the probabilities of individuals randomly switching
from one choice to another. The second term on the right-hand side of equation (14)
corresponds exactly to the replicator dynamics.

The replicator dynamics and selection-mutation equation are mainly used in math-
ematical analysis of learning processes because they are, in contrast to most other
common learning models, analytically treatable. We are not aware of any experimental
accuracy test, so little can be said whether they accurately represent learning processes.
However, the selection-mutation equation is, at least, a flexible formulation. Defining
the mutation matrix ω(a|ã, t) allows the inclusion of various aspects into the model.
It is even possible to make this matrix, and thus the experimentation of individuals,
dependent on the actual situation (such as the satisfaction of the individuals or their
knowledge about potential improvements). However, these possibilities have so far not
been examined closely in the literature.

3.6. Evolutionary algorithms

The evolutionary algorithms of Rechenberg and Holland (see Rechenberg, 1973 and
Holland, 1975) are based on the same biological basis as the selection-mutation equa-
tion. However, equation (14) is not able to exactly represent the dynamics of evolu-
tionary algorithms because the selection process is modelled differently in evolutionary
algorithms. Furthermore, evolutionary algorithms explicitly describe the development
of each individual and its replacement in the next generation (a detailed description of
genetic algorithms can be found in Duffy, 2006; evolutionary strategies are thoroughly
described in Beyer, 2001). While the replicator dynamics and the selection-mutation
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equation dominate mathematical evolutionary game theory, it has become common to
use evolutionary algorithms in economic simulations (see Holland and Miller, 1991;
Arifovic, 1994; and Dawid, 1996 for some path breaking works). An extensive repre-
sentation of genetic algorithms and a discussion on the interpretation of these as learning
processes can be found in Duffy, 2006. Hence, we take up only two issues here that are
rarely considered in computational economics but are important for using evolutionary
algorithms to represent economic learning: learning aspects not represented by evo-
lutionary algorithms and the difference between genetic algorithms and evolutionary
strategies.

While in computational economics the analogy between genetic algorithms and real
learning processes is widely accepted, this does not hold on a more general level where
the similarities between biological evolution and cultural evolution, based on learning,
are controversially discussed (see, e.g., Maynard Smith, 1982; Hallpike, 1986; Witt,
1991; and Ramstad, 1994). Some differences between biological evolution and learning
processes also hold for using genetic algorithms in modelling economic learning. The
main difference (for other differences see Brenner, 1998) is that evolutionary algorithms
contain a limited type of memory. Past experience is only remembered through the rel-
ative share of various actions in the current set of strategies. Consequently, individuals
are just as likely to mutate to an action previously tested with very uncomfortable re-
sults as to mutate to an action that they have never tried before. In reality and in learning
models such as fictitious play and Bayesian learning, people would remember their past
experience and would treat the two actions differently.

In the field of technical optimisation, genetic algorithms and evolutionary strategies
are still used for different applications, contrastingly, computational economists only
use genetic algorithms. The literature does not provide a reason for this neglect of evo-
lutionary strategies. Originally there has been one major difference between the two
approaches: evolutionary strategies require the variables that are to be optimised to be
real values, while genetic algorithms require a binary coding. This had, of course, some
consequences for the modelling of mutations and crossovers. In the case of genetic algo-
rithms mutations are switches of bits in the binary code, while in evolutionary strategies
mutations are normally distributed changes in these real values (see Rechenberg, 1973
and Schwefel, 1995). Similarly, crossovers, in the case of genetic algorithms, are the
exchange of bits, while crossovers are used in a similar form in evolutionary strate-
gies only if a multi-dimensional variable is to be optimised. However, crossovers in the
case of genetic algorithms should also be only used if the bits represent independent
features of behaviour. If the bits in a binary string of a genetic algorithm represent the
binary coding of a value, crossover might lead to strange results because the crossover
of 1000 (representing 8) with 0111 (representing 7) might lead to 1111 (15) and 0000
(0), which is not in line with the interpretation of crossovers as representing communi-
cation.

Hence, the coding of variables is the basic difference between genetic algorithms
and evolutionary strategies. Therefore, in technical optimisation, which of the two ap-
proaches are used depends on which coding is more adequate for the given problem.
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In contrast, in economics only genetic algorithms are used and recently authors have
started to adapt genetic algorithms to the use of real values instead of the binary coding.
It seems as if computational economics are simply throwing away half the available
options.

3.7. Combined models: EWA and VID model

There seems to be a natural tendency for researchers to search for general models that
describe various processes, which also holds in the learning context. We have seen above
that various kinds of learning processes exist and it could be argued that the different
models can be combined. Combining different models of routine-based learning can be
justified by the argument that each routine-based learning model represents one feature
of learning and that all these features are simultaneously given. However, the modelling
of routine-based learning was justified by the attempt to focus on one feature to sim-
plify modelling. This justification is lost by combining routine-based learning models.
Nevertheless, combined learning models exist and two approaches are presented here:
Camerer and Ho’s Experience-Weighted Attraction (EWA) model and the Variation-
Imitation-Decision (VID) model.

In the EWA model (Camerer and Ho, 1999) it is argued that two fundamental types
of learning processes exist: reinforcement learning and belief learning. The model is
designed such that it describes these two learning processes as border cases for spe-
cific choices of the model parameters. The model is described by two equations that
determine the process of updating in the light of new experience:

(15)N(t) = ρ · N(t − 1) + 1

and

A
j
i (t) = {

φ · N(t − 1) · Aj
i (t − 1)

(16)+ [
δ + (1 − δ) · I(sj

i , si(t)
)] · πi

(
s
j
i , s−i (t)

)}/
N(t).

N(t) is called the experience weight and A
j
i (t) is called the attraction of strategy j for

individual i. The term si(t) denotes the strategy used by individual i at time t , while
s−i (t) is a vector that represents the strategies that are chosen by all other individuals,
except individual i, at time t . The function I (s

j
i , si(t)) equals one if s

j
i = si(t) holds

and equals zero otherwise. The payoff πi(s
j
i , s−i (t)) is obtained by individual i if she

chooses strategy s
j
i and the behaviour of all others is described by s−i (t). The terms ρ,

φ, and δ are the parameters of the model. The initial values of N(t) and A
j
i (t) have to

be chosen according to considerations about what experience individuals might transfer
from other situations.

If N(0) = 1 and ρ = δ = 0, the model reduces to the original Roth–Erev model of
reinforcement learning. If δ is larger than zero, the experience collection is expanded
to actions that are not chosen. Thus, it is assumed that the individual can learn by the
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observation of events about the adequacy of actions that were not taken. If ρ = φ

and δ = 1, the model reduces to weighted fictitious play. For other parameter values
the model presents a mixture of the two learning processes. Finally, the EWA model
assumes that people make their choice of action according to a logit formulation. The
probability of each strategy j to be taken by individual i is given by

(17)P
j
i (t + 1) = eλ·Aj

i (t)∑mi

k=1 eλ·Ak
i (t)

,

where λ is a parameter and mi is the number of possible strategies that individual i can
use.

By combining a reinforcement learning model and a belief learning model, the EWA
model presents a mixture of non-conscious and conscious learning. Hence, it could be
argued that the EWA model is a general learning model.

The VID model combines all the features of learning that have been described above
under the heading of routine-based learning: experimentation, experience collection,
imitation, and satisficing. Therefore, it presents what has been discussed above: a com-
bination of all main features of conscious learning on the routine level. However, this
implies that the VID model is very complex, which reduces its attractiveness. In most
situations, the model would contain many aspects that are simply irrelevant. Hence, its
adequacy is restricted to addressing some general questions (see, e.g., Brenner, 2001).

A complete description of the model would take too much space here. Therefore,
the interested reader is referred to the detailed description by Brenner (1999, Ch. 3).
The model assumes that individuals collect information on the outcome of behaviours
similar to how it is done in fictitious play. However, this knowledge does not directly
influence behaviour. Instead, individuals are assumed to continue displaying the same
behaviour if it leads to satisfying outcomes most of the time. Some very rare modifi-
cations are assumed without motivation. Besides these, individuals change behaviour
only if they are dissatisfied with the previous outcomes of their actions. In this case they
choose their next action according to their experience and their observation of others.

The resulting model contains many parameters and is a mixture of various exist-
ing models and some psychological findings. It is unclear whether the way in which
the model is put together is a realistic one. Many other ways of building such a com-
bined model of routine-based learning are possible. However, we have stated above that
routine-based models are not developed in order to describe reality exactly. They are
designed to represent certain features of learning processes approximately. In this way,
the VID model could be used to show the consequence of combining various learning
features.

4. Modelling belief learning

The psychological literature on learning processes is nowadays dominated by cogni-
tive learning process analysis. Neuro-scientific research has added quite some insights
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to this line of research. However, the class of belief learning does not exactly match
what psychologists call cognitive learning. It is rather a subclass of cognitive learning
processes.

Nevertheless, the discussion of conscious learning will be based on psychological
knowledge. Therefore, we start with an overview on the psychological knowledge on
cognitive learning. Then, the models used in economics are explicitly described. We
subsume under this category not only the learning models that are called belief learning
models in economics, but also the rational learning models as well as many models
from artificial intelligence and machine learning. However, despite this large number of
available models there is little empirical evidence from experimental economics.

4.1. Psychological findings about cognitive learning

At the beginning of the psychological research into cognitive learning, the main issue
was the development of so-called cognitive or mental models or maps (see, e.g., Bruner,
1973; Piaget, 1976; Johnson-Laird, 1983; and Anderson, 2000). They are based on the
argument that within the brain a representation of the real world (or at least the part
of the real world that is relevant to the individual) is developed. This representation
contains subjective knowledge about concepts, connections, causal relationships and so
on. The representations in the brain develop according to experience and information
obtained from different sources. Still, psychology has not come to one common frame-
work to deal with these processes and many questions are left unanswered. Therefore,
we present here one basic concept in order to build some ground for the following dis-
cussion. Then, we shall present those insights about cognitive learning that are most
relevant to our topic of modelling learning as realistically as possible. These insights
will be drawn from different sources. The concept explained here is that of mental mod-
els. This term is chosen for examination as it is the only one of the available concepts
which has been introduced to economics (Denzau and North, 1994) and has frequently
been used thereafter (see, e.g., Gößling, 1996 and Kubon-Gilke 1997).

In psychology the theory of mental models has mainly been influenced by Johnson-
Laird (1983). The basic idea is that individuals develop mental models about their
surroundings. A detailed model on the development of causal relations according to
this theory is provided by Goldvarg and Johnson-Laird (2001). Denzau and North, who
have introduced this concept into economics, state that “mental models are the inter-
nal representation that individual cognitive systems create to interpret the environment”
(Denzau and North, 1994, p. 4). Hence, we can interpret mental models as the sum of
all beliefs and knowledge that an individual holds about the world, including the results
that different actions will bring about. Mental models are subjective and may not match
reality.

Mental models about the working and state of the real world are used to make pre-
dictions about the future and the consequences of actions. This, in turn, is the basis for
choosing an adequate action. A description of this process should be based on those
mechanisms that guide the development of mental models. However, these are difficult
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to study. From the research into neural networks, we know that these networks are able
to reproduce very complex relationships. The structure of the neural network in hu-
man brains is more complex than the neural networks that are usually implemented on
computers. Hence, people are able to develop extremely complex mental models.

Furthermore, new information is always interpreted and included in the light of exist-
ing mental models. The subjective knowledge of an individual is somehow structured in
hierarchies (psychologists are still discussing their exact structural appearance). Each
new piece of information may change different hierarchical levels. This could cause
complex and elaborated mental models. However, experimental studies show that peo-
ple usually consider only a few levels of a strategic situation (see, e.g., Nagel, 1995
and Stahl, 1998). Hence, most parts of mental models can be assumed to have a rather
simple structure.

Mental models contain various elements that are labelled differently by various re-
searchers. In some cases it is helpful to restrict the discussion to specific parts of mental
models. Here the categorisation of Anderson (2000) is used. He distinguishes between
propositions, schemas and scripts. Propositions represent “what is important about spe-
cific things” (Anderson, 2000, p. 55). Schemas sort similar things together and define
what they have in common. Scripts are representations of events and sequences of
events. Thus, scripts also represent what the individual expects to happen under certain
circumstances. Decisions are made on the basis of these expectations and become habits
if the same situation is repeatedly faced and the decisions prove to be adequate. Scripts,
and thus also expectations, change if a new experience is made. However, people are
reluctant to change scripts. They are much faster in processing confirming evidence
for the existing scripts than in processing experience that does not fit into the existing
scripts and schemas (see, e.g., Kahneman, 2003 and Hebb, 2002 for the neurological
basis of this process). Scripts are the elements that are of most interest in the context of
belief learning. Some findings that are relevant for modelling belief learning are:

• People typically hold one mental model about reality at any one time (see Dörner,
1999). Sometimes an individual might not be sure about certain issues and may
consider different expectations. However, people tend to fix their expectations
quickly on the basis of little evidence.

• Scripts, and hence also expectations, change if new knowledge about a situation
is gathered (see Anderson, 2000). New knowledge can be obtained by experience,
observation or communication.

• Experiments have shown that people do not develop very complex expectations
(see Stahl and Wilson, 1994). However, if a situation is repeatedly faced and simple
expectations are falsified, people develop more complex expectations (see Brenner
and Hennig-Schmidt, 2005).

• People develop scripts quickly without much evidence and tend to stick to scripts
without strong opposing evidence (see Dörner, 1999). People have the ability to
ignore evidence that contradicts their beliefs.
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4.2. Fictitious play

The fictitious play model was developed within the context of games (see Brown, 1951).
It assumes that individuals in a game mentally record all previous moves of their oppo-
nents. Let us denote each move of their opponents by the vector ai−(t) and their own
action by ai(t). The individuals are assumed to remember all previous behaviours of
all other individuals. Thus, they are able to calculate the frequency of occurrence for
each action profile ai− . They assume that their opponents’ actions will occur with the
same probability in the future. Consequently, the expected probability p(ai− , t) for each
action profile ai− realised by the other individuals is given by

(18)E(p(ai−, t)) = 1

t

t−1∑
τ=0

δ(ai−(τ ) = ai−),

where

(19)δ(ai−(τ ) = ai−) =
{

1 for ai−(τ ) = ai−
0 for ai−(τ ) �= ai−

.

Furthermore, the individuals have complete knowledge about their payoffs �i(ai, ai−)

for each action profile (ai, ai−). So they are able to calculate the best response to the
expected behaviours of their opponents. To this end, they calculate the expected average
payoff

(20)E(�i(ai, t)) =
∑
ai−

�i(ai, ai−) · E(p(ai−, t))

for each action ai they are able to realise. Then they choose the action ai with the
highest expected average payoff E(�i(ai, t)). This action is called the best response to
the expectations given by E(p(ai−, t)).

Of course, the above model is not restricted to learning the behaviour of other players
in a game. It can also be applied to any situation in which individuals learn about the
frequency of certain events, are able to observe these events after their own action, and
know the impact which these events, in combination with their own action, have on their
payoff or utility. Hence, the fictitious play model can be easily applied to the learning
of beliefs. All that a researcher has to do is to define the set of events and/or causal
relations that the individuals build beliefs about.

As modelled above, fictitious play assumes that the likelihood of these events and
causal relations is given by a stationary probability distribution. Hence, all the individ-
uals have to do is to approximate this probability distribution by collecting more and
more information and calculating appropriate averages. This is done in equation (18). If
the real probabilities change, the fictitious play model allows only a very slow adapta-
tion to the new circumstances. The more individuals have already learnt, the less flexible
their expectations become. If circumstances continually change, the above fictitious play
model is, of course, a rather incompetent learning method.
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Moreover the fictitious play model, as it is described above, requires an enormous
cognitive capacity because all previous experience has to be remembered and conse-
quently the best response calculated. It is doubtful whether individuals are able to do
so.

In recent years, some modifications of the fictitious play model have been presented.
These modifications reduce the requirements for the individuals’ cognitive capacity.
Young (1993) modelled individuals who are only able to remember the last k events.
They play the best response based on the average observations in these k rounds. By
doing so, the individuals adapt faster to changing circumstances. If k is reduced to one
in Young’s model, the model of myopic learning is obtained (see, e.g., Ellison, 1993;
Kandori et al., 1993 and Samuelson, 1994). However, this extreme again seems to be
less realistic.

Another more realistic possibility is to exponentially weigh past experiences (see also
the description of the model by Cheung and Friedmand in Duffy, 2006). This means that
the latest experience is more important than the experience that occurred further back
in the past. For such a model equation (18) has to be replaced by

(21)E
(
p(ai−, t)

) = 1 − β

1 − β(t−1)

t−1∑
τ=0

β(t−1−τ) · δ(ai−(τ ) = ai−),

where β is a parameter that determines how fast experience is forgotten.
Some authors have modified the concept of myopic learning by the introduction of

errors and occasional adaptation to the best response (see, e.g., Samuelson, 1994) or
by the introduction of gradual convergence to the best response behaviour (see, e.g.,
Crawford, 1995). All this makes the model less demanding with respect to peoples’
cognitive capabilities and thus more realistic. Nevertheless, all these versions of ficti-
tious play share the assumption that individuals define a set of events or relationships
and keep track of their likelihood.

4.3. Bayesian learning

Although very few economists would claim that people behave optimally, most of eco-
nomic literature on learning has a connection to optimisation. The oldest and most
prominent ‘optimal’ learning model is Bayesian learning (descriptions and analyses
of Bayesian learning can be found in Jordan, 1991; Eichberger et al., 1993; Kalai and
Lehrer, 1993; Jordan, 1995; and Bergemann and Välimäki, 1996). Bayesian learning
concerns a single learning individual and assumes that the individual establishes a set
of hypotheses about the situation she faces. Each hypothesis h makes a probabilistic
statement P(e|h) about the occurrence of each event e of a set of events E . This means
that hypothesis h implies that event e occurs with probability P(e|h). The set of hy-
potheses H has to be complete and complementary, meaning that every possible state of
reality has to be represented by one, and only one, hypothesis. At the beginning of the
learning process an individual generally assigns the same probability p(h, 0) to each
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hypothesis h ∈ H. If the individual has initial information about the situation she faces,
the initial probabilities p(h, 0) are different from each other according to this informa-
tion. p(h, t) denotes the individual estimation of the probability that hypothesis h is
correct. In other words, p(h, t) is the belief of the individual in hypothesis h at time t .
The sum

∑
h∈H p(h, t) has to equal one.

After each event e(t) the individual updates her presumed probabilities. The updating
proceeds as follows (cf. e.g. Easley and Kiefer, 1988 or Jordan, 1991). The individual
calculates the probability P(e(t)|h) for each hypothesis h. Subsequently she updates
her beliefs according to the following equation:

(22)p(h, t + 1) = P(e(t)|h) · p(h, t)∑
h̃∈H P(e(t)|h̃)p(h̃, t)

.

By this, the presumed probabilities of hypotheses that predict the occurrence of the ob-
served event with a greater chance increase, while the presumed probabilities of the
other hypotheses decrease. The condition

∑
h∈H p(h, t) = 1 is maintained while up-

dating the probabilities according to equation (22). After many observed events, the
probability p(h, t) should converge to p(h, t) ≈ 1 for the correct hypothesis about
reality, and to p(h, t) ≈ 0 for all other hypotheses.

Decisions are made according to the following consideration. For each hypothesis h

the individual calculates the average utility ū(a, t) that the action a gives rise to. To this
end, she has to assign a utility u(e, a) to each event e and action. ū(a) is given by

(23)ū(a, t) =
∑
h∈H

∑
e∈E

u(e, a) · p(h, t) · P(e|h).

The average utility is the expected result from action a. In economics it is called ex-
pected utility. As it is learnt adaptively, it is also referred to as adaptive expected utility.
Subsequently, the individual decides in such a way that she maximises her expected
utility ū(a, t).

4.4. Least-squares learning

Another learning model that is based on the assumption that people optimise their be-
haviour is least-squares learning (see Bray, 1982; Marcet and Sargent, 1989; and Bullard
and Duffy, 1994). In this model, it is assumed that people make assumptions about the
functional dependencies in reality. These dependencies contain, as in regression analy-
sis, a number of parameters. Individuals, it is assumed, intend to learn about the value
of these parameters. In order to predict the values of these parameters it is assumed that
they proceed statistically. It is further assumed that individuals fit the parameters such
that the sum of the squares of the differences between the predicted and the observed
values becomes minimal.
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If an individual, for example, assumes a linear relationship between y(t) and ỹ(t),
the slope parameter β in this linear function can be calculated by

(24)β̂(t + 1) =
∑t

t ′=1 y(t ′) ỹ(t ′)∑t−1
t ′=1 y2(t ′)

.

β̂(t +1) is the prediction of β at time (t +1). The formula for linear regression can also
be written recursively as follows:

(25)β̂(t + 1) = β̂(t) + g(t)

(
ỹ(t)

y(t)
− β̂(t)

)
and

(26)g(t) =
(

y2(t)

y2(t − 1) g(t − 1)
+ 1

)−1

,

where g(t) exists only for mathematical reasons and has no economic meaning.
The decision is then made on the basis of the estimated value. In the long run, the

algorithm converges to the real value of β if this value is constant (cf. Marcet and
Sargent, 1989).

4.5. Genetic programming

Genetic programming has emerged from the concept of genetic algorithms (see Bäck,
1996 for a description of all types of evolutionary algorithms). The basic mechanisms of
genetic programming are the same as those of genetic algorithms: selection, reproduc-
tion, crossover and mutation. The difference is the unit that is selected and mutated. In
the case of genetic algorithms actions or strategies are coded, usually in binary form, and
optimised by the algorithm. In the case of genetic programming a formula- or program-
like structure is coded and optimised. This formula- or program-like structure can be
easily interpreted as a belief about the functioning of the world.

A usual example is the coding of a mathematical formula. For example, the formula
y = 3 · x1 + 8 · (x2 − 1) would be coded in genetic programming as depicted in
Figure 1. It might be assumed that it represents the belief of an individual about the
relationship between the variables x1, x2 and y. Such a representation allows economic
agents to have quite complex beliefs. Furthermore, the beliefs are not restricted at the
beginning by the structure of the formula as in the case of fictitious play. Therefore,
genetic programming seems to be adequate to describe belief learning (for a similar
argument see Chen et al., 2002). If, furthermore, the formula is length restricted, the
psychological finding that people tend to think in simple relationships is included in the
modelling.

The learning process is modelled in genetic programming by the processes of selec-
tion, reproduction, crossover and mutation. At each point in time a number of formulas
or programs coded as given in Figure 1 exist. Some of these are selected according to
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Figure 1. Coding in genetic programming, an example.

the correspondence between their prediction and the observations of the real world (the
sum of squares of the errors can be used as in least-squares learning). These selected for-
mulas or programs are reproduced. Then cross-over operations are applied as in genetic
algorithms. To this end two formulas or programs are crossed together at a randomly
determined node and the two parts connected by this node are exchanged. Finally, the
resulting formulas or programs are mutated (for a detailed description see Bäck, 1996).

4.6. Classifier systems

The psychological literature often characterises human beings as classifiers. Humans
tend to sort things, events and relationships into classes and act according to their clas-
sification. Hence, it seems to be natural to model such classifying behaviour.

Classifier systems seem to be an adequate tool for this purpose (see Holland et al.,
1986). The core elements of classifier systems are condition-action rules. These rules
state under what conditions specific actions should be taken. Thus, two things have to
be codified. First, the set of conditions has to be defined, which is usually, but not neces-
sarily, in binary form. However, it is generally in the form of a string of characteristics:
{c1, c2, . . . , cn}. The same holds for the actions: {a1, a2, . . . , ap}.

A classifier system is characterised at each time by a set of q decision rules Ri (i =
1, 2, . . . , q) of the form {ci1, ci2, . . . , cin} → {ai1, ai2, . . . , aip}. In this context each
entry in the condition string can be represented by a symbol ‘#’ instead of a number,
which implies that the corresponding action is taken independent of the value of this
characteristic.

Two values are assigned to each decision rule Ri at each time: its strength, which is
determined by its success in the past, and its specificity, which is determined by the num-
ber of ‘#’s in the condition string. If a message S = {s1, s2, . . . , sn} that characterises
the current situation is observed, this message is compared to all condition strings. De-
cision rules with a condition string that matches S compete for being activated. The
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value

B(Ri) = g1 · (g2 + g3 · Specificity(Ri)) · Strength(Ri, t)

(g1, g2 and g3 are fixed parameters) is calculated for each of these decision rules. The
decision rule with the highest value is activated and the respective action taken. The
strength of this decision rule is updated according to

Strength(Ri, t + 1) = Strength(Ri, t) + Payoff(t) − B(Ri).

The specification of classifier systems has so far created mechanisms to identify the
most adequate rules out of a given set of rules. However, no new rules evolve. Therefore,
the existing decision rules are changed by a second process, which is based on genetic
operators. At certain points in time, a certain number of decision rules are eliminated.
The probability of each decision rule being eliminated decreases with the actual strength
assigned to the rule. To replace the eliminated rules some new rules are created. To this
end some existing rules are randomly picked. The probability of each rule to be picked
increases with its actual strength. These rules are copied and then slightly modified.
Different specifications of these mechanisms exist in the literature (see, e.g., Beltrametti
et al., 1997).

4.7. Neural networks

In the last decade, computer technology has developed to such a point that reproducing
brain structures on the computer has to some extent become feasible. Hence, it seems to
be natural to model human cognitive learning processes by simply rebuilding the brain
on the computer. This is done in the field of neural networks.

Many discussions of neural networks can be found in the literature so that it is unnec-
essary to discuss them at length here (see, e.g., Beltratti et al., 1996). They have been
used repeatedly in the recent economic literature to model learning processes (see, e.g.,
Calderini and Metcalfe, 1998 and Heinemann, 2000). Nevertheless, the prominence of
this method of modelling learning processes is still slight. There are two main reasons
for this. First, the details of how brain structures are developed and how meaning is cre-
ated within these networks are not sufficiently known. As a consequence, it is difficult
to determine how a neural network that rebuilds the human brain has to be designed.
Second, using a neural network, which needs to be quite complex, does not allow us to
understand why the modelled agent behaves in a certain way. Using neural networks is
akin to a black-box approach. The results of such an approach are difficult to judge as
one cannot be sure that the network has been adequately designed.

4.8. Rule learning

Some psychologists have claimed that cognitive learning follows also the rules of rein-
forcement learning (see, e.g., Kandel and Schwartz, 1982). The only difference is that
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rules are reinforced instead of actions. This is taken up in the approaches by Erev et al.
(1999) and Stahl (2000), the latter calling this process rule learning.

This means that a probability is assigned to each alternative belief or script. Each
new experience changes the probabilities according to the mathematical formulation of
reinforcement learning. The usual modelling of reinforcement learning implies that if
a decision has to be made, a belief is randomly drawn according to the probabilities
and the action is taken that is most suitable given this belief. Such a modelling might
be adequate if individuals are not consciously aware of their expectations and behave
intuitively, but are nevertheless tacitly guided by beliefs and scripts. If individuals are
aware of their beliefs it seems unlikely that decisions are made according to one ran-
domly drawn belief each time.

4.9. Stochastic belief learning

A similar approach that takes psychological findings into account is the stochastic be-
lief learning model (see Brenner, 2005). This model differs from rule learning, and also
Bayesian and least-squares learning, especially in two features. First, it assumes that not
all possible beliefs play a role. Instead, a set of relevant beliefs is defined according to
experimental knowledge. Second, it assumes that individuals only consider one belief
most of the time. The set of possible beliefs is denoted by H and each element is de-
noted by h ∈ H. The number of different beliefs is denoted by H . The beliefs of each
individual i at any time t are given by a set of beliefs si(t) ⊂ H which is a subset of all
possible beliefs. This means that each individual considers at any one time only a few
beliefs. The model that is proposed here starts from a situation in which each individual
holds exactly one belief, meaning that si(0) contains exactly one element denoted by
hi(0) here. The initial beliefs of individuals have to be empirically determined. Usu-
ally, beliefs from other situations are transferred. However, so far, there is no available
knowledge on this process that would allow us to make predictions about the initial
beliefs.

The beliefs are then updated according to incoming information. This information
might originate from one’s own experience, from observing or communicating with
others. The information is only used to update beliefs that are currently considered by
an individual. Each belief h in the set si(t) is checked against the new information k

(K denotes the set of all possible pieces of information that might be gained). Only two
situations are distinguished here: the new information might either contradict or not
contradict the belief h.

If none of the beliefs in si(t) is contradicted by the new information obtained at time
t , the set of beliefs remains unchanged: si(t + 1) = si(t). For each belief h in the set
si(t) contradicted by the new information k, it is randomly determined whether this
belief disappears from the set si(t + 1). According to psychological arguments above, a
belief is not automatically eliminated if it is contradicted or proven wrong. People tend
to stick to their beliefs even if there is conflicting evidence. Hence, a probability ρi is
defined for each individual i that determines the likelihood of a belief h to be eliminated
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in face of information k that contradicts this belief. Hence, ρi describes how individual
i reacts to new knowledge. The smaller ρi , the more individual i sticks to her beliefs.

According to the above process, beliefs could disappear. In contrast, new beliefs ap-
pear according to three processes: variation, communication and necessity. First, the
model assumes, with a certain likelihood, that individuals consider a new belief by
chance. The probability that a new belief is considered by chance is denoted by νi .
Then, this new belief is added to the set si(t + 1). Second, an individual might be
convinced to consider a belief by others. This can be modelled by assuming that each
individual i communicates the beliefs in her set si(t) at time t to each other individual j

with a certain probability σij . σij would then describe the probability that at each time
t the elements of si(t) move into the set sj (t + 1). Third, if a set si(t + 1) is empty at
the end of time t , a new belief has to be taken up. There always has to be at least one
element in the set si(t) of beliefs, because otherwise the individual is unable to decide
about her action.

If, for one of the above three reasons, a new belief is built, this new belief is deter-
mined as follows. Each belief h that individual i does not hold so far (h ∈ H\si(t)) is
chosen with a probability that is given by

(27)Pi(h, t) = pi(h, t)∑
h̃∈H\si (t) pi(h̃, t)

.

This means that the values pi(h, t) determine the likelihood of each belief h to be con-
sidered. The initial values of these probabilities have to be empirically estimated or it
has to be assumed that each belief is equally likely.

During the learning process it can be assumed that beliefs that have been considered
in the past and are then omitted because of contradicting events are less likely to be
reconsidered. Hence, the model assumes that each time a belief h leaves the set si(t),
the probability for this belief to be reconsidered is updated according to

(28)pi(h, t + 1) = λipi(h, t),

where λi is a parameter that determines how likely individual i reconsiders disconcerned
beliefs.

5. Conclusions and recommendations

Each kind of learning process; non-conscious learning, routine-based learning and be-
lief learning; has been discussed separately above. Now, we will return to the general
question of choosing a learning model for conducting a computational study.

The use of learning models is often criticised due to the lack of a common model and
the ad-hoc choice of specific models. It has been argued above that a common model is
unlikely to exist as different learning processes take place in different situations. How-
ever, learning models are indeed usually chosen without much justification. This section
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aims to offer a common platform to justify the use of specific learning models in specific
contexts.

The recommendation consists of a two-step process. First, it has to be decided which
type of learning should be modelled in the given context. The characteristics of the
situation determine whether economic agents learn non-consciously or consciously and
whether routine-based modelling is sufficient (Section 5.1).

In a second step, a learning model has to be chosen within the relevant class of
learning. There are different ways to choose a learning model and various information
sources that can be used (Section 5.2). Here, one specific approach to choose a learning
model is taken and the above presented learning models are discussed on the basis of
this approach (Section 5.3). However, some degree of freedom remains as the lack of
empirical and experimental evidence makes it impossible to precisely recommend one
learning model for each learning class. Researchers have to make their final choice ac-
cording to the specific topic of their study and to some extent according to their own
preferences. The whole process of choosing a learning model is summarised in Figure 2.

5.1. Situational characteristics and learning

A very important topic that is rarely discussed in the literature concerns the applicability
of learning models in various circumstances. Above, three types of learning have been
distinguished: non-conscious learning, routine-based learning and belief learning. Fur-
thermore, it has been argued that basically there are two different learning processes;
non-conscious learning and belief learning; while the third type, routine-based learning,
presents a simplification of belief learning. Hence, the first question to be answered is
when do non-conscious learning and belief learning occur in reality; and the second
question addresses when belief learning can be appropriately approximated by routine-
based learning models.

5.1.1. Non-conscious versus belief learning

As mentioned above, non-conscious learning seems to be a hard-coded process that
takes place in many, if not all, animals. Examples in the economic sphere are affec-
tive purchases, tacit knowledge, intuition and routines of interaction within and among
firms. In contrast, we will usually not buy a car or a house in an affective way. Humans
are able to reflect on their behaviour and build models about the consequences. Such
conscious learning seems to be capable of reducing the consequences of non-conscious
learning.

As a consequence, non-conscious learning is, in general, mainly relevant if conscious
learning does not take place. Conscious learning requires the individual to be aware and
reflect upon their behaviour. Therefore, it requires time and cognitive capacity. During
a normal day we face an enormous number of decision-making tasks of varying degrees
of importance and difficulty. Most decisions are made automatically, without spending
a single thought on them. An obvious example is driving a car on the left- or right-hand
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Figure 2. Steps to choose an accurate learning model for representing economic behaviour.

side of the road. In a familiar location this is luckily an unconscious decision. However,
many people have experienced this non-conscious behaviour in a foreign country, where
people drive on the other side of the road.

Humans seem to be endowed with a mechanism that determines which decisions
and behaviours are consciously reflected. This mechanism is not studied in the litera-
ture. Hence, we can only speculate about its functioning. Some statements seem to be
evident. Conscious reflection on behaviour is restricted by the time available for such
contemplation. Furthermore, there are certain motivations that make conscious reflec-
tion more likely. Finally, habituation can also occur. All in all, this means that once a
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situation has been consciously reflected on and a conclusion has been drawn, individuals
often repeat the same action without further reflection.

In general we can state that people spend their cognitive time on those behaviours and
decisions that they personally find most important to consider. All other actions are the
result of non-conscious learning. Various situations provide obvious motives provoking
conscious attention:

• In a new situation in which individuals have no established rules to rely on, a
cognitive effort is worthwhile as an arbitrary choice may cause poor performance.
Nevertheless, in many new situations individuals utilise routines transferred from
similar situations. Thus, the expression ‘new’ has to be handled carefully.

• Dissatisfaction is a strong motivation for dealing with a situation cognitively. When
a repeatedly faced situation leads to unsatisfactory outcomes, individuals are mo-
tivated to change their behaviour. To this end, they are attentive to the situation
and reflect upon it cognitively, in an attempt to improve their performance. In this
context the aspiration level plays an important role.

• Certain situations and decisions are regarded as important to the individual for
personal reasons, such as personal pride, aesthetic aspirations or the relevance for
one’s own life. Such specific motivations may explain the large variance of behav-
iour among individuals.

Except the latter point the above arguments state that attention is directed towards
situations in which the outcome is either unsatisfactory or can be anticipated to be
unsatisfactory with a high probability. Thus, we claim the following: in general, non-
conscious learning is the normal route to behavioural changes. Individuals generally
do not pay attention to the repeated situations they face. Paying conscious attention
is inspired by unsatisfactory results or their anticipation. Although this assumption is
a theoretical abstraction of the factors analysed above, it offers a sound basis for the
categorisation of learning processes and for the choice of a learning model to describe
the learning process. Whenever a modeller treats a situation that is important or new to
the individuals, it is likely that the individual is learning consciously and a conscious
learning model should be chosen. If the situation that is modelled is unimportant for the
economic agents, it seems adequate to assume that they learn non-consciously and thus,
a non-conscious learning model should be chosen.

In reference to the above simplification, however, it must be noted that in the course
of a repeated situation faced by an individual, two non-conscious processes should be
distinguished. A behaviour may originate and be guided further non-consciously until
an unsatisfactory outcome is obtained, or may originate consciously and then be guided
further non-consciously. In the case of consciously learnt behaviour, individuals may, as
soon as they have found a satisfying behaviour, direct their cognitive attention to other
situations. Subsequently, the behaviour becomes subject to non-conscious learning and,
as it is repeatedly chosen, this behaviour is confirmed as long as it is reinforcing, i.e.,
satisfying. If, however, the outcomes prove dissatisfying, conscious attention is usually
redirected to the situation.



932 Th. Brenner

5.1.2. Routine-based versus belief learning

The choice between the models of the two kinds of conscious learning, routine-based
and belief learning, is more difficult. As mentioned above, routine-based learning does
not describe a real learning process but is an approximation of belief learning. Hence,
the question is not in which situations the two kinds of learning processes occur but
when the routine-based approximation sufficiently describes the real learning process.

Models of routine-based learning are usually based on empirical or experimental
observations of learning. They reduce the learning process to one or a few main char-
acteristics that can be observed without actually knowing the real processes responsible
for the learning process in the brain. Through this, they miss part of the conscious learn-
ing process. The missing part could be called the understanding of the situation. Let us
consider as an example the process of imitation. If we imitate other people we do not
only imitate the behaviour that performs best, we usually also develop a subjective un-
derstanding of why they perform best. This includes the possibility to act differently if
the situation changes or if the observed agents differ from the own personality.

Nevertheless, in some situations the development of a deeper understanding does
not influence behaviour significantly. If, for example, all people sit in front of identical
multi-arm bandits and all want to maximise their profits, not much understanding of
the situation is needed and people will imitate the choice of the arm that performs best,
possibly with some experimentation of other arms. It would be unnecessarily complex
to accurately model the processes in the brain in such a situation.

Hence, the question of whether to use a routine-based or belief learning model is
related to the discussion between using a complex and realistic model or whether to
use a simple, approximating model. In addition, this question is related to the discus-
sion on the validity of models. These questions are taken up in the next section. In the
sphere of routine-based models there is quite an amount of supporting evidence avail-
able while in the sphere of belief learning, no model has yet been developed that seems
completely convincing. Hence, there is a temptation to use routine-based learning mod-
els and therefore these are discussed here separately. Nevertheless, whoever uses them
should be aware of the fact that they only represent approximations of real learning
processes. Furthermore, in the literature various routine-based learning models can be
found and it is important to choose the most appropriate one.

5.2. Choosing a learning model

After a modeller has clarified the type of learning process to be modelled, one must
choose the model that best describes this kind of learning. Some discussion is needed on
how such a choice should be done. This discussion has to deal with several questions,
such as the aim of choosing a learning model, the sources of empirical evidence, the
complexity of learning models, and the level on which learning is modelled.
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5.2.1. Aims in choosing a learning model

There are various approaches in choosing a learning model four of which shall be dis-
cussed herein. First, one might search for the model that best describes real learning
processes. This can be done on the basis of experimental findings or psychological
knowledge. However, sufficient empirical and experimental knowledge is not always
available. Nevertheless, we will follow this approach here.

Second, one might look for some learning model that leads to an outcome which
corresponds to known stylised facts without worrying about the details of the learning
model. Such approaches are often taken in agent-based computational economics and
aim to keep the learning model as simple as possible and as complex or realistic as
needed to obtain the correct outcome. Such a modelling is helpful to understand the
minimum requirements of learning in a given situation. It is also helpful to classify
situations with respect to the competences that are required of the economic agents in
these situation. However, such an approach does not give information about how people
learn. Studying whether certain learning models predict economic dynamics that are in
line with our empirical knowledge only allows us to reject some learning models but it
does not confirm the others. There might be other learning models that lead to the same
predictions. Sometimes this is omitted in the literature.

Third, some researchers search for learning models that converge to equilibrium,
since often equilibrium is predicted by the neo-classical theory or other equilibrium
concepts. It is not clear what we gain from such approaches. Our economic surrounding
permanently fluctuates and learning is rather important because it allows us to react to
these changes and not because it converges to an equilibrium. In specific cases, how-
ever, an equilibrium might describe the real world adequately and searching for learning
models that converge to this equilibrium is what has been described above as the second
possible aim.

Fourth, some researchers aim at developing clever or even optimal learning mod-
els. One might even compare the performance of learning models in a given situation
in order to make statements about how people should learn. Besides the positive aim
of agent-based computational economics, there is a normative aim of testing alterna-
tive economic structures (see Tesfatsion, 2001) which may be expanded to alternative
behaviours. This is a valid aim which is not further considered here. Most of the re-
cent literature on artificial intelligence and machine learning seems to belong to this
approach. In general, a tendency has been observed in recent years to borrow methods
from other disciplines. These models have become increasingly complex, mixing such
features as evolutionary algorithms, classifier systems, fuzzy logic and neural networks.
Besides obtaining very competent learning models, some authors seem to believe that
the obtained learning models describe real learning without looking at any evidence for
this. As discussed above, this does not hold in all cases.
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5.2.2. Validity and complexity of learning models

After clarifying that we want to realistically model learning processes, we have to
judge how well confirmed learning models have to be before being used in simula-
tions. Clearly it would be preferred that the learning models available are supported
by strong empirical evidence. Unfortunately, only a few studies can be found that offer
such evidence. We have to live with and use the little evidence that is currently available
and hope for more evidence in the future.

There are two sources of this evidence. On the one hand, experimental studies provide
us with some information on the suitability of different learning models (see Duffy,
2006). On the other hand, psychological literature also provides us with information
about the mechanisms and circumstances involved in learning. We take the position that
learning models that are contradicted by experimental findings (in the situation under
consideration) or by psychological knowledge should not be used. Given the above aim,
this opinion might be confronted with one counter-argument.

Some researchers argue that their study does not mainly aim to identify the impli-
cations of a specific learning process. Instead, their main aim is to analyse a certain
complex situation and learning is only included to represent the basic dynamics of
behaviour. It might be argued that the choice of learning model is not significant un-
der such circumstances. However, this only holds if different learning models predict a
similar behaviour. While this is true for some learning models and situations, it is not
universally the case. In various situations different learning models predict contrasting
behaviours, so that the choice of the learning model might matter tremendously for the
study’s result.

Nevertheless, some learning models can lead, under numerous circumstances, to quite
similar predictions. Furthermore, empirical and experimental evidence on their suitabil-
ity is often rare, making it difficult to choose. Thus, the first step would be to exclude
all models that can be rejected on the basis of psychological knowledge or experimental
evidence, then complexity could be used to select among the remaining models. For
example, Rapoport et al. (2000) states “that the simplest model should be tried first,
and that models postulating higher levels of cognitive sophistication should only be
employed as the first one fails”.

Hence, in total we have three selection criteria: experimental evidence, psychological
knowledge, and simplicity. All three criteria come with advantages and disadvantages
that are valued differently by researchers.

Experimental evidence The primary source for evaluating the existing learning models
are empirical and experimental studies. Empirical studies on learning are quite rare. The
existing experimental studies that evaluate learning models are presented in Chapter 20
of this book. It was argued previously that the use of learning models that are rejected
by experimental evidence should be avoided. However, two remarks are necessary here.

First, there is still the discussion as to what extent laboratory situations can be com-
parable to real life situations. Experimental situations are usually artificial and often

http://dx.doi.org/10.1016/S1574-0021(05)02020-4
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deprived of any context. Therefore, some researchers argue that behaviour is different
in these situations. However, it may also be argued that learning models that adequately
describe real life learning processes should also suitably describe experimental learning
processes, because in both situations the same cognitive apparatus (the brain) is used.
Nevertheless, there may well be a difference in learning processes. In this chapter it
is argued that different learning processes exist, for example, non-conscious and con-
scious learning processes. As a consequence, it may be the case that the frequencies
with which certain kinds of learning occur in reality and in experiments could differ
tremendously. For example, non-conscious learning processes occur frequently in real-
ity because we do not have the time to reflect on all our decisions. Most experiments, in
contrast, force the participants to think about their decisions, so that conscious learning
processes appear to dominate in experiments. Thus, we argue that the same kinds of
learning processes occur in experiments and real life but that their relative importance
may differ between the two settings.

This leads to the second remark. All experimental studies include only a limited num-
ber of situations and we know that learning processes differ between situations. Results
from experimental studies can only be transferred to a situation under the condition that
the situations are sufficiently similar. The amount of sufficient similarity is difficult to
state, given the lack of experimental studies that attempt to classify situations according
to the learning model that fits best (some discussion in this direction is given in Duffy,
2006). Furthermore, the very artificial circumstances often found in experiments must
be taken into account.

Nevertheless, we believe that in the long term, experiments will be the major way
by which to evaluate the various existing learning models and to support their further
development. At the moment there are not many studies of this kind available, so that
experimental evidence only offers some help in choosing learning models. Further stud-
ies have to be conducted in the future and, most importantly, a classification of situations
and a relationship between learning models and situations has to be developed. A pri-
mary classification is discussed in this chapter. Checking, refining and revising this
classification with the help of experimental studies would tremendously advance the
modelling of learning in economics. In addition, these experimental studies should take
into account the fact that people differ with respect to their learning processes even in
the same situation.

Adequateness of the details of the model In the psychological literature there is an
abundance of knowledge on the details of learning processes. This knowledge can be
used to evaluate learning models. However, it might be argued that in economics we are
not interested in modelling learning process details. Instead, what we need is a model
that effectively describes the resulting behaviour. A model that contradicts psycholog-
ical findings on the learning process might, nevertheless, predict behaviour correctly.
Most of the time agent-based computational economists are only interested in the im-
plications of learning processes for economic processes.
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However, as discussed above, evidence about the validity of different model predic-
tions are still rare. Due to the lack of empirical and experimental evidence, adequate
representation of the learning process might be a better alternative criterion for learning
model evaluation. Detailed models in line with psychological findings could be more
trusted than models that contradict psychological findings. However, the inclusion of
such details increases the complexity of the model. Hence, there is a trade-off between
sufficiently representing all learning details and simplifying the model.

Simplicity of the model Many economists tend to use simple behavioural models. The
neo-classical model of optimisation is a good example. Similarly within the field of
economic learning, those models with clear rules and a few parameters have been used
most frequently (examples are reinforcement learning, least-squares learning, Bayesian
learning and fictitious play). There are good reasons for simplifying learning models.

First, the more parameters a learning model has, an increasing amount of empirical
or experimental evidence is necessary to estimate the correct parameters. If there is
no sufficient empirical or experimental data, a model with more parameters offers, in
general, more vague predictions. Second, simpler models can be more easily interpreted.
Third, it is argued that economists are not interested in learning process details, but in
their implications for organisation, working and the dynamics of economies. Hence,
simple models that capture the basic characteristics of learning processes should suffice.

However, one might also argue in favour of more complex learning models. First,
psychological studies suggest that learning processes are complex. The lack of a simple
learning model that exactly describes experimental behaviour offers additional evidence
for this claim. Second, the progress in computer technology makes it easy to deal with
complex models in simulations. Even for very complex learning models simulations
can be run with a large variety of parameter values, so that the influence of different
parameter values can be studied.

Of course, more complex models require some additional effort. Hence, we have
to deal with a trade-off between the effort necessary and the accuracy of the model.
There are many economic situations, such as markets, in which the specific set-up of
the learning model is not important for the results of the analysis (see Duffy, 2006).
However, there are also situations, like a prisoner’s dilemma, in which the predictions
of different learning models vary tremendously (see Brenner, 2005). Thus, in some sit-
uations the loss in suitability by using a simple model may be minor, rendering the
use of a more complex model unnecessary. In other situations important details may
be lost by using a simple model. We have so far only little knowledge on the vari-
ous situations which are of the former and the latter type. In situations which have a
clear equilibrium point and no contradiction between the individually and socially op-
timal state, simple models seem to be sufficient. Situations involving strategic thinking
and assorted motives seem to be, in general, unsatisfactorily described by simple mod-
els.
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5.2.3. Individual and population learning

An important aspect of modelling learning processes is the level of modelling. Two
options exist: Either the learning process of each individual is modelled explicitly—
meaning that at each point in time the situation of each individual is clearly represented
in the model—or the implications of the individual learning processes for the behaviour
of a population of individuals are modelled—meaning that the model only represents
the shares of various situations of individuals in the population at any point in time—
(for a discussion of this in the context of genetic algorithms see Vriend, 2000).

Psychological literature deals almost exclusively with individual learning processes,
whereas in the economics literature learning models on the individual and population
level are used. Again arguments can be put forward in favour of both options, the indi-
vidual and population level of modelling learning.

The main advantages of modelling learning on a population level is that it simplifies
the modelling and one does not have to care about the details of the individual learning
process. For example, modelling on the population level and assuming an infinitely large
population eliminates the stochastic feature of learning from the analysis. As a conse-
quence, the resulting learning process can be easily treated analytically. An analysis of
learning processes on the population level is also often used in experiments. Examin-
ing behaviour on the population level permits us to ignore inter-individual differences.
Usually learning models on the population level are more straight-forward as only the
fundamental dynamics of learning have to be considered. This makes them quite attrac-
tive in situations where the modeller is only interested in the implications of learning
processes for an economy consisting of many agents.

However, neglecting details and individual differences comes at a risk as learning
process details and individual differences may indeed matter. There are situations, such
as a market, where the exact characteristics of the learning process of individuals is
not important for the resulting dynamics. But, there are also situations in which various
learning models lead to assorted predictions, which could lead to wrong predictions.
Recognising this risk, individual learning models are favoured especially in simulation
approaches where the complexity of the implemented learning processes is irrelevant.

An alternative is the use of sub-populations. This is the division of people into het-
erogeneous groups, whereby the individual characteristics are homogeneous within the
group. This prohibits us to model a situation where each individual is specific but takes
into account partial differences between individuals. It presents a compromised way to
study the impact of heterogeneous types of people.

In conclusion, the question of whether learning processes should be modelled on
an individual or population level cannot be answered here finally. Modelling on the
population level simplifies things, whereas modelling on the individual level increases
accuracy. The situation that is to be studied determines how accurate an individual learn-
ing model is in comparison to a model on the population level. In some situations the
gain is small, while in others it is tremendous. Hence, it depends on the situation whether
the effort of individual modelling is necessary.
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5.2.4. Calibration of learning models

Most learning models contain a number of parameters. Thus, once a researcher has cho-
sen a learning model, the parameters of the model must be adjusted accordingly. This is
especially important for simulation approaches, wherein each simulation only one spe-
cific choice of parameters can be used. Unfortunately, the empirical and experimental
literature on learning processes provides us with little information about the parameters
of various learning models. Furthermore, parameters may differ between individuals,
which is rarely considered in experimental studies. Comprehensive, or even sufficient
parameter information of various learning models is not available.

How one might deal with this problem depends on the research aim. Above, different
research aims have been outlined. Here it is assumed that the simulation approach is
used to predict real processes or to obtain detailed knowledge about the implications of
learning processes. In such a case we argue that a range should be defined for each of
the parameters such that the modeller is quite certain that the possible values lie within
this range. It is important to note that empirical knowledge can be used to reduce the
range. All parameter combinations within these ranges have to be analysed in order
to be sure about the model implications. A Monte-Carlo approach is applicable in this
case (see Werker and Brenner, 2004 for a detailed discussion of this methodology and
Brenner and Murmann, 2003 for an application). If empirical data on learning processes
outcomes are available, it can be used in a Bayesian approach to further reduce the pa-
rameter ranges or to assign likelihoods to each of the model specifications (see Zellner,
1971 and Werker and Brenner, 2004). Such an approach is very labour-intensive and
requires quite an amount of computer time. However, it increases the reliability of the
results.

In addition, such a methodology would certainly benefit from further detailed exper-
imental studies that not only compare learning models but also identify the parameters
of various learning models that best describe behaviour. Hopefully, more experimental
studies of this kind will be conducted in the future.

5.3. Recommendations for the choice of a model

In this section advice is given to computational economists who try to realistically
model learning processes. It has been argued above that three considerations are of help
in this context: experimental evidence for a model, the psychological knowledge about
the details of real learning processes, and the complexity of learning models. Further-
more, it has been argued above that three kinds of learning processes have to be treated
separately: non-conscious learning, routine-based learning, and belief learning. The rel-
evant learning models for each of these learning types are discussed in the following.

5.3.1. Recommendations for non-conscious learning

Section 2 discusses three models that could be used to model non-conscious learning. It
has been argued that non-conscious learning processes typically do not occur in exper-
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iments. Hence, experimental findings on human behaviour should not be used to judge
the adequateness of various models in non-conscious learning. The experimental confir-
mation of the Roth–Erev model (see Roth and Erev, 1995 and Erev and Roth, 1998) has
to be interpreted as a confirmation of this model being able to describe the outcomes
of cognitive learning, although economic literature interprets this model as representing
reinforcement learning. This discrepancy results from the difference between the defi-
nition of reinforcement learning as simple model on the level of behaviour—although
Roth and Erev include more complex aspects such as experimentation and forgetting—,
while non-conscious learning is more rigidly defined here as a learning process people
are not aware of.

For non-conscious learning, findings from animal experiments and habit formation
knowledge could be adopted. From this literature we know that learning processes slow
down under constant circumstances but could be reactivated by environmental changes.
Furthermore, we know that people might completely eliminate actions from their reper-
toire and that rewards (positive outcomes) are treated differently from punishments
(negative outcomes) (see Kahneman and Tversky, 1979). Only one of the models pre-
sented in Section 2 captures all these features, this being the generalised Bush–Mosteller
model. Therefore, it seems to be adequate to use this model. As long as there are no
negative outcomes, the parameterized learning automaton and the Roth–Erev model
without experimentation also represent all major features. However, they are not able to
deal with negative outcomes.

5.3.2. Recommendations for routine-based learning

Choosing a model of routine-based learning is more difficult and ad-hoc because these
are approximations that consider only part of the real learning process. The parts of the
real learning process that should be included depends on the modelled situation. Two
different strategies have to be distinguished: using a general model that includes many
or all characteristics of routine-based learning or focusing on one specific feature.

General models Above various general models are presented: the combined models,
the EWA model and the VID model, and evolutionary algorithms which also represent,
given their usual interpretation, a combined model. Experimental evidence is avail-
able for some of these models. The EWA model is supported by some evidence (see
Anderson and Camerer, 2000), while evolutionary algorithms have been repeatedly con-
firmed (see Duffy, 2006), while the VID model has not yet been experimentally tested.

In comparing the three models in the light of what the psychological literature knows
about learning, the VID model is the most accurate. It is developed on the basis of such
knowledge. The EWA model combines two models, a reinforcement learning model
with a belief learning model. As a consequence, it fails to fit into the classification of
learning processes used here and it is not clear whether such a combination does ac-
tually occur, although there is separate support for both of these in the psychological
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literature. Evolutionary algorithms do not match psychological knowledge about learn-
ing processes. The cross-over processes are not in line with communication knowledge
as well as the interaction and mutation process, which is independent of past experience.

The VID model is obviously the most complex of the three models. Hence, all three
models have their shortcomings, so that none of them can be recommended without
hesitation. Nevertheless, the use of evolutionary algorithms is favoured here. This rec-
ommendation is based on the fact that it might sometimes be helpful to describe the
results of a learning process on the population level without much interest in the de-
tails of individual learning dynamics. Evolutionary algorithms are well supported by
experimental evidence on the population level (see Duffy, 2006). Furthermore, evolu-
tionary algorithms have the interesting feature of being able to deal with very large sets
of actions and strategies and even allow the sets of strategies to increase endogenously.

Nevertheless, two points have to be kept in mind while using them. First, Rechenberg
and Holland developed their algorithms as means to determine optimal solutions to
technical problems. Hence, they are developed to describe an optimising search process
and not a learning process. Interpreting their dynamics as individual learning processes
seems to be inaccurate, since they contradict psychological knowledge on individual
learning processes. Therefore, their use is only recommended on the population level
here. Second, the problem of coding actions and strategies should not be neglected
while using evolutionary algorithms. Evolutionary strategies and genetic algorithms are
two options that mainly differ in their coding. Recoding non-binary values binary and
using genetic algorithms thereafter, as it is sometimes done in the literature, seem to
be inadequate since it increases the distortion between psychological knowledge on
learning and the dynamics of the resulting model.

Separate modelling All of the above separate routine-based learning models are sub-
ject to two limitations. First, they model only one part of the whole learning process.
Second, they model the outcome of the underlying learning process, meaning that they
only offer an approximation of what actually occurs. There is little knowledge about
how suitable this approximation is. Fortunately, there is some experimental evidence in
favour of melioriation learning (see Herrnstein, 1970), fictitious play (see Duffy, 2006),
satisficing (Stahl and Haruvy, 2002) and some mixed evidence for imitation (Huck et
al., 2002 and Bosch-Domenech and Vriend, 2003). There is also various experimen-
tal evidence in favour of the learning direction theory (Berninghaus and Ehrhart, 1998
and Grosskopf, 2003). However, this theory has very weak predictions and is, therefore,
usually not sufficiently precise for agent-based computational models.

The problem with these models is that they only offer accurate approximations of the
real learning processes if the learning part described dominates the learning process.
With the help of experiments, knowledge on the dominating parts of learning processes
in various situations can be established. However, this has not yet been sufficiently
done. It depends on the researcher’s good judgement to identify which part of learning
dominates the examined situation and to choose the respective model.
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Learning by experience is not a central research field in psychology. Since melio-
ration learning and fictitious play are both quite simple learning models and are both
supported by experimental evidence, they are recommended here. In the case of imita-
tion psychological literature discusses a cognitive process in which people transfer their
observations to their own situation. Therefore an extension of the fictitious play model
to include imitation is recommended here, although standard imitation models could
also be chosen for simplicity. Satisficing is also less prominently discussed in psycho-
logical literature but is supported by experiments. How satisficing should be modelled
in detail is less clear.

5.3.3. Recommendations for belief learning

Many different models have been described that are potential candidates for modelling
belief learning. If we look for experimental evidence, there is some experimental evi-
dence in favour of fictitious play (see Duffy, 2006), genetic programming (see Chen et
al., 2002) and stochastic belief learning (see Brenner, 2005). Rule learning is somewhat
supported by experimental evidence in favour of reinforcement learning. However, the
models have never been empirically compared and the experimental evidence has never
overwhelmingly favoured any model. For example, the study of Nyarko and Schotter
(2002) shows that people hold much stronger beliefs than predicted by fictitious play
and change them more radically. Brenner (2005) shows that the stochastic belief learn-
ing model explains some individuals’ behaviour very well while it fails to explain the
behaviour of others.

Furthermore, it is difficult to observe what people are thinking while making their de-
cisions, or as (Cheung and Friedman, 1997, p. 49) put it: “experimental learning models
must deal with the fact that beliefs are not directly observable”. This may change in
the future as more and more methods are developed to observe people’s beliefs in ex-
periments (see Brenner and Hennig-Schmidt, 2005 for a promising method). So far, we
have to deal with the problem that little evidence is available in the context of belief
learning.

Neural networks are in line with the knowledge on brain structure. However, we still
have no sufficient knowledge to be able to represent the brain. Hence, it is doubted
whether neural networks have the correct structure. Rule learning can claim some psy-
chological backing while the stochastic belief learning model is based on currently
available psychological knowledge. However, the stochastic belief learning model re-
quires some knowledge on the potential beliefs of individuals that is often not available.
In addition, it is more complex than fictitious play and the rule learning model.

Bayesian learning and least-squares learning are not supported by psychological
knowledge. Two arguments can be put forward against Bayesian learning. First, people
are not able to do the calculations for a proper Bayesian updating. Second, people do not
consider a large number of competing expectations or hypothesis at one time. Usually
individuals have one specific expectation about reality. Psychologists argue that people
tend to fix schemas and scripts very quickly even if little evidence has been collected
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(see Dörner, 1999) and that they do not change these for more adequate alternatives
if they lead to satisficing results (see Luchins, 1942 and Anderson, 2000). Similar to
Bayesian learning, least-square learning does not fit the psychological evidence related
to cognitive learning. People are simply either not able or not willing to do demanding
calculations in most real situations as assumed in least-squares learning.

Genetic programming can be used to describe one individual or a population of agents
(see, e.g. Edmunds, 1999 and Chen and Yeh, 2001). Presenting each agent by a popula-
tion of formulas or programs means that we assume that different beliefs compete in the
agent’s brain and are simultaneously developed. This contradicts the above psychologi-
cal finding that people usually only have one mental model at any one time. Presenting
a population of agents by a population of formulas or programs implies that agents copy
the beliefs of others. It has been stated above that it is difficult to study beliefs because
they cannot be observed easily. Hence, it is unclear how agents can perfectly copy be-
liefs as is assumed in such an approach. In addition, cross-over operations are difficult
to interpret. Why do agents exchange part of their beliefs instead of one agent convinc-
ing another of her beliefs? The advantage of genetic programming is that it allows the
learning process to be very open with respect to the resulting beliefs.

Classifier systems have the interesting feature that they also model the development
of a classification of situations. All other available learning models describe the learning
process in one given situation. Thus, classifier systems focus on an element of cognitive
learning that other learning models ignore: the development and change of schemas.
However, this comes at some cost. Classifier systems do not represent beliefs in the
same way the other belief learning models do. Instead, classifier systems define simple
condition-action rules. They fail to accurately describe the learning of beliefs, which
has been declared the central feature of belief learning here.

To sum up, we argue that more research on the modelling of belief learning is neces-
sary. Given the current knowledge, we recommend the models of fictitious play and rule
learning as simpler solutions and the stochastic belief learning model if more knowledge
about beliefs is available. If the invention of new beliefs by individuals is an important
feature of the processes under investigation, genetic programming could be also an op-
tion.

For the future we can hope that more empirical and experimental tests are conducted
for the various learning models. This would help to develop a clearer picture of the
conditions for different learning process to occur and the accurate ways to model them.
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Abstract

This chapter examines the relationship between agent-based modeling and economic
decision-making experiments with human subjects. Both approaches exploit controlled
“laboratory” conditions as a means of isolating the sources of aggregate phenomena.
Research findings from laboratory studies of human subject behavior have inspired
studies using artificial agents in “computational laboratories” and vice versa. In certain
cases, both methods have been used to examine the same phenomenon. The focus of
this chapter is on the empirical validity of agent-based modeling approaches in terms of
explaining data from human subject experiments. We also point out synergies between
the two methodologies that have been exploited as well as promising new possibilities.

Keywords
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JEL classification: B4, C6, C9
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1. Introduction

The advent of fast and cheap computing power has led to the parallel development of
two new technologies for doing economic research—the computational and the exper-
imental laboratory. Agent-based modeling using computational laboratories grew out
of frustration with the highly centralized, top-down, deductive approach that continues
to characterize much of mainstream, neoclassical economic-theorizing.1 This standard
approach favors models where agents do not vary much in their type, beliefs or endow-
ments, and where great effort is devoted to deriving closed-form, analytic solutions
and associated comparative static exercises. By contrast, agent-based computational
economic (ACE) researchers consider decentralized, dynamic environments with pop-
ulations of evolving, heterogeneous, boundedly rational agents who interact with one
another, typically locally. These models do not usually give rise to closed-form solu-
tions and so results are obtained using simulations. ACE researchers are interested in
the aggregate outcomes or norms of behavior that emerge and are sustained over time
as the artificial agents make decisions and react to the consequences of those decisions.

Controlled laboratory experimentation with human subjects has a longer history than
agent-based modeling as the experimental methodology does not require the use of lab-
oratories with networked computers; indeed the experimental methodology predates the
development of the personal computer.2 However, computerization offers several ad-
vantages over the “paper-and-pencil” methodology for conducting experiments. These
include lower costs, as fewer experimenters are needed, greater accuracy of data collec-
tion and greater control of the information and data revealed to subjects. Perhaps most
importantly, computerization allows for more replications of an experimental treatment
than are possible with paper-and-pencil, and with more replications, experimenters can
more accurately assess whether players’ behavior changes with experience. For all of
these reasons, many human subject experiments are now computerized.

With advances in computing power, the possibility of combining the agent-based
computational methodology with the human subject experimental methodology has
been explored by a number of researchers, and this combination of methodologies
serves as the subject of this survey chapter. Most of the studies combining the two ap-
proaches have used the agent-based methodology to understand results obtained from
laboratory studies with human subjects; with a few notable exceptions, researchers have
not sought to understand findings from agent-based simulations with follow-up ex-
periments involving human subjects. The reasons for this pattern are straightforward.
The economic environments explored by experimenters tend to be simpler than those
explored by ACE researchers as there are limits to the number of different agent char-
acteristics that one can hope to “induce” in an experimental laboratory and time and
budget constraints limit the number of periods or replications of a treatment that can be

1 See, e.g., Axelrod and Tesfatsion (2006) or Batten (2000) for introductions to the ACE methodology.
2 See, Davis and Holt (1993) and Roth (1995) for histories of the experimental methodology.
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considered in a human subject experiment; for instance, one has to worry about human
subjects becoming bored! As human subject experiments impose more constraints on
what a researcher can do than do agent-based modeling simulations, it seems quite nat-
ural that agent-based models would be employed to understand laboratory findings and
not the other way around.

There is, however, a second explanation for why the ACE methodology has been used
to understand experimental findings with human subjects. Once a human subject exper-
imental design has been computerized, it is a relatively simple matter to replace some
or all of the human subjects with “robot” agents. Indeed, one could make the case that
some of the earliest ACE researchers were researchers conducting experiments with hu-
man subjects. For instance, Roth and Murnighan (1978) had individual human subjects
play repeated prisoner’s dilemma games of various expected durations against artificial
“programmed opponents” in order to more clearly assess the effect of variations in the
expected duration of the game on the human subjects’ behavior. Similarly, Coursey et al.
(1984) and Brown-Kruse (1991) tested contestable market theories with human subjects
in the role of sellers and robots in the role of buyers. The robots were programmed to
fully reveal their market valuations and were introduced after human subject buyers
were found to be playing strategically, in violation of the theory being tested. Gode and
Sunder (1993) were the first researchers to “go all the way” and completely replace
the human subject buyers and sellers in the experimental laboratory double auction en-
vironment with artificial agents, whom they dubbed “zero-intelligence” agents. Their
approach, discussed in greater detail below, serves as the starting point for our sur-
vey. Subsequently, many researchers have devised a variety of agent-based models in
an effort to explain, understand and sometimes to predict behavior in human subject
experiments.3

Of course, the great majority of ACE researchers, following the lead of Schelling
(1978), Axelrod (1984), or Epstein and Axtell (1996), do not feel constrained in any
way by the results of human subject experiments or other behavioral research in their
ACE modeling exercises. These researchers endow their artificial agents with certain
preferences and what they perceive to be simple, adaptive learning rules. As these ar-
tificial agents interact with one another and their environment, adaptation takes place
at the individual level, or at the population level via relative fitness considerations, or
both. The details of how agents adapt are less important than the aggregate outcomes
that emerge from repeated interactions among these artificial agents.

ACE researchers contend that these emergent outcomes cannot be deduced without
resorting to simulation exercises, and that is the reason to abandon standard neoclas-
sical approaches.4 But it is not always clear when ACE approaches are preferred over
standard, deductive economic theorizing. As Lucas (1986, p. 218) observed,

3 See Mirowski (2002) for an engaging history of the emergence of economics as a “cyborg science,” and, in
particular, the role played by experimentalists. See also Miller (2002) for a history of experimental analyses
of financial markets.
4 Batten (2000) offers some advice as to when ACE models are appropriate and when old-fashioned analytic

methods are preferred.
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“It would be useful, though, if we could say something in a general way about the
characteristics of social science prediction problems where models emphasizing
adaptive aspects of behavior are likely to be successful versus those where the
non-adaptive or equilibrium models of economic theory are more promising.”

Lucas went on to suggest that experiments with human subjects might serve to re-
solve such questions, and gave several examples. Of course, economic experiments are
not without problems of their own. ACE researchers (e.g., Gode and Sunder, 1993;
Chan et al., 1999) have argued that agent-based modeling permits greater control over
the preferences and information-processing capabilities of agents than is possible in
laboratory experiments, where human subjects often vary in their learning abilities or
preferences (e.g. in their attitudes towards risk), despite careful efforts to control some
of these differences by experimenters. Further, one can question the external validity of
the behavior of the human subjects, who are often inexperienced with the task under ex-
amination and who may earn payments that do not accurately approximate “real-world”
incentives.5

In addition to questioning when the ACE methodology is appropriate, one can also
question the external validity of ACE modeling assumptions and simulation findings.
Many ACE researchers, following the lead of Epstein and Axtell (1996) adopt the
“generative approach” to understanding empirical phenomena. This involves pointing
to some empirical phenomenon, for example, skewed wealth distributions, and asking:
“can you grow it?” In other words, can you specify a multi-agent complex adaptive
system that generates the empirical phenomenon.

While the ability to generate a particular empirical phenomenon via an ACE simula-
tion exercise does represent a certain kind of understanding of the empirical phenom-
enon, ACE researchers could do more to increase our confidence in this understanding.
Indeed, the empirical phenomena under study are often the result of some casual em-
piricism on the part of the ACE researcher. More precise and careful empirical support,
using field data or other observations could be brought to bear in support of a particular
phenomenon, but this is not (yet) the standard practice. Further, the processes by which
agents in ACE models form expectations, choose actions or otherwise adapt to a chang-
ing environment is not typically based on any specific micro evidence; the empirical
comparisons that most interest ACE researchers are between the simulated aggregate
outcomes and the empirical phenomenon of interest. The shortcomings of such an ap-
proach have not gone unnoticed. Simon (1982) for example, writes:

Armchair speculation about expectations, rational or other, is not a satisfactory
substitute for factual knowledge as to how human beings go about anticipating
the future, what factors they take into account, and how these factors, rather than
others, come within the range of their attention.

5 However, as Smith (1982, p. 930) observes, “... there can be no doubt that control and measurement can
be and are much more precise in the laboratory than in the field experiment or in a body of Department of
Commerce data.”
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As I argue in this chapter, data from human subject experiments provide a ready-made
source of empirical regularities that can be used to calibrate or test ACE models of in-
dividual decision-making and belief or expectation formation. Explaining the aggregate
findings of a human subject experiment might also serve as the goal of an agent-based
modelling exercise.

The main behavioral principle that ACE researchers use in modeling individual ar-
tificial agent behavior is, what Axelrod (1997) has termed, the “keep-it-simple-stupid”
(KISS) principle. The rationale behind this folksy maxim is that the phenomena that
emerge from simulation exercises should be the result of multi-agent interactions and
adaptation, and not because of complex assumptions about individual behavior and/or
the presence of “too many” free parameters. Of course, there are many different ways
to adhere to the KISS principle. Choosing simple, parsimonious adaptive learning rules
that also compare favorably with the behavior of human subjects in controlled labora-
tory settings would seem to be a highly reasonable selection criterion.

Experimental economists and ACE researchers are natural allies, as both are inter-
ested in dynamic, decentralized inductive reasoning processes and both appreciate the
importance of heterogeneity in agent types. Further, the economic environments de-
signed for human subject experiments provide an important testbed for agent-based
modelers. The results of human subject experiments are useful for evaluating the ex-
ternal validity of agent-based models at the two different levels mentioned above. At
the aggregate level, researchers can and have asked whether agent-based models give
rise to the same aggregate findings that are obtained in human subject experiments. For
instance, do artificial adaptive agents achieve the same outcome or convention that hu-
man subjects achieve? Is this outcome an equilibrium outcome in some fully rational,
optimizing framework or something different? At the individual level, ACE researchers
can and have considered the external validity of the adaptive rules they assign to their
artificial agents by comparing the behavior of individual human subjects in laboratory
environments with the behavior of individual artificial agents placed in the same en-
vironments. Achieving some kind of external validity, at either the aggregate or the
individual level, should enable agent-based modelers to feel more confident in their
simulation findings. They may then choose to abandon, with even greater justification,
the constraints associated with the experimental methodology or those of standard, de-
ductive economic theorizing.

This chapter surveys and critiques three main areas in which agent-based models have
been used to study findings from human subject experiments. In the next section, we ex-
plore what has been termed the “zero-intelligent” agent approach, which consists of a
set of agent-based models with very low rationality constraints. In the following section,
we explore a set of agent-based models that employ somewhat more sophisticated indi-
vidual behaviors, ranging from simple stimulus-response learning to more complicated
belief-based learning approaches. Finally, in the last section, we explore agent-based
models where individual learning is even more complicated, as in a classifier system, or
is controlled by population-wide selection criteria as in genetic algorithms. In all cases,
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we compare the findings of human subject experiments with those of agent-based sim-
ulations.

2. Zero-intelligence agents

The zero-intelligence agent trading model was developed to explain findings from lab-
oratory double auction experiments with human subjects. We therefore begin with a
discussion of the double auction environment and laboratory findings.

2.1. The double auction environment

The double auction is one of the most celebrated market institutions, and is widely used
in all kinds of markets including stock exchanges and business-to-business e-commerce.
The convergence and efficiency properties of the double auction institution have been
the subject of intense interest among experimental economists, beginning with the work
of Smith (1962), who built on the early work of Chamberlin (1948). Altering Chamber-
lin’s design so that information on bids and asks was centralized as in a stock market,
Smith (1962) was able to demonstrate that experimental markets operating under double
auction rules yielded prices and trading volumes consistent with competitive equilib-
rium predictions, despite limited knowledge on the part of participants of the reserve
values of other participants.

The double auction markets studied by Smith and subsequently by other experimen-
talists and ACE researchers can be described using a simple, one-good environment,
though multi-good environments are also studied. The single good can be bought and
sold over a fixed sequence of trading periods, each of finite length. The N participants
are often divided up between buyers or sellers (in some environments agents can play
either role). Buyer i has valuation for unit j = 1, 2, . . . of the good, vij , where the
valuations satisfy the principle of diminishing marginal utility in that vij � vik for all
j < k. Similarly, seller i has a cost of selling unit j = 1, 2, . . . of the good, cij , which
satisfies the principle of increasing marginal cost, cij � cik for all j < k. Sorting the
individual valuations from highest to lowest gives us a step-level market demand curve,
and sorting the individual costs from lowest to highest gives us a step-level market sup-
ply curve. The intersection of these two curves, if there is one, reveals the competitive
equilibrium price and quantity. The left panel of Figure 1 taken from Smith (1962), pro-
vides an illustration. In this figure, the valuations of the 11 buyers (for a single unit) have
been sorted from highest to lowest, and the costs to the 11 sellers (of a single unit) have
been sorted from lowest to highest. The equilibrium price is $2.00 and the equilibrium
quantity is 6 units bought and sold.

In the experimental double auction markets, subjects are informed as to whether they
will be buyers or sellers and they remain in this role for the duration of the session.
Buyers are endowed with private values for a certain number of units and sellers are
endowed with private costs for a certain number of units. No subject is informed of the
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Figure 1. Values and costs induced in an experimental double auction design (left panel) and the path of prices achieved by human subjects (right panel). Source:
Smith (1962, Chart 1).
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valuations or costs of other participants. Buyers are instructed that their payoff from
buying their j th unit is equal to vij − pj , where pj is the price the buyer agrees to pay
for the j th unit. Similarly, sellers are instructed that their payoff from selling their j th

unit at price pj is equal to pj − cij . The double auction market rules vary somewhat
across studies, but mainly consist of the following simple rules. During a trading period,
buyers may post any bid order and sellers may post any ask order at any time. Further,
buyers may accept any ask or sellers may accept any bid at any time. If a buyer and
seller agree on a price, that unit is exchanged and is no longer available for (re)sale for
the duration of the period. The buyer-seller pair earns the profit each realized on their
transaction.

In many double auction experiments, the order book is cleared following each trans-
action, so that buyers and sellers have to resubmit bids and asks. It is also standard
practice to assume a closed order book, meaning that subjects can only observe the
best bid and ask price at any moment in time. To surplant the current best bid (ask) a
buyer (seller) has to submit a bid (ask) that is higher (lower) than the best bid (ask); this
is known as the standard bid/ask improvement rule. At all times, the current best bid-
ask spread is known to all market participants. The entire history of market transaction
prices is also public knowledge.

The striking result from applying these double auction rules in laboratory markets is
the rapid convergence to the competitive equilibrium price and quantity. The right panel
of Figure 1, shows the path of prices over five trading periods in session 1 of the Smith
(1962) study. The first transacted price in period 1 is for $1.70, the second for $1.80,
etc. Notice that the number of transacted prices in period 1 is 5, which is one short of the
competitive equilibrium prediction, and these prices all lie below the competitive equi-
librium price of $2.00. As subjects gain experience over trading periods 2–5, however,
the deviations of traded prices and quantities from the competitive equilibrium values
steadily decrease. This main finding has been replicated in many subsequent experi-
ments, and continues to hold even with small numbers of buyers and sellers (e.g., 3–5
of each).

2.2. Gode and Sunder’s zero-intelligence traders

Gode and Sunder (1993) were interested in assessing the source of this rapid con-
vergence to competitive equilibrium in laboratory double auction markets. They hy-
pothesized that the double auction rules alone might be responsible for the laboratory
findings and so they chose to compare the behavior of human subject traders with that
of programmed robot traders following simple rules. As these robot players chose bids
and asks randomly, over some range, Gode and Sunder chose to label them “zero-
intelligence” (or ZI) machine traders. This choice of terminology has stimulated much
debate, despite Gode and Sunder’s disclaimer that “ZI traders are not intended as de-
scriptive models of individual behavior.”

Gode and Sunder’s 12 ZI traders were divided up equally into buyers and sellers. In
the most basic environment, the buyer’s bids and the seller’s asks were random draws
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from a uniform distribution, U [0, B], where the upper bound B, was chosen so as to
exceed the highest valuation among all buyers. In particular, Gode and Sunder chose
B = 200. Buyers’ bids and sellers’ asks were made without concern for whether the
bids or asks were profitable. Gode and Sunder referred to these unconstrained traders as
ZI-U traders. In the other, more restrictive environment they considered, buyer i’s bid
for unit j was a random draw from the uniform distribution, U [0, vij ] and seller i’s ask
for unit j was random draw from the uniform distribution U [cij , B]. As the traders in
this environment were constrained from making unprofitable trades, they were referred
to as ZI-C traders.

A trading period consisted of 30 seconds for the ZI traders and 4 minutes for a paral-
lel human subject experiment. Within the 30 second period, the standard double auction
rules applied: the best available bid is the one that is currently the highest of all bids
submitted since the last transaction, while the best available ask is the one that is cur-
rently the lowest of all asks submitted since the last transaction. A transaction occurs
if either a new bid is made that equals or exceeds the current-best ask, in which case
the transaction occurs at the current-best ask price, or a new ask is made that equals or
falls below the current-best bid, in which case the transaction occurs at the current-best
bid price. Once a transaction occurs, all unaccepted bids/asks are cleared from the order
book and, provided that the period has not ended, the process of bid/ask submission be-
gins anew. Traders were further restricted to buying/selling their j th unit before buying
or selling their j + 1th unit. This sequencing restriction is not a double auction trad-
ing restriction, and it appears to be quite important to Gode and Sunder’s results.6 Of
course, if every agent has a single inframarginal unit to buy or sell (those units to the left
of the intersection of demand and supply) and one or more extramarginal units (units to
the right of the intersection point), as is often the case in double auction experiments,
then there is no sequencing issue.

The results from a simulation run of the ZI-U and ZI-C artificial trading environ-
ment and from a human subject experiment with 13 subjects (1 extra buyer) are shown
in the three panels of Figure 2. The left panels show the induced demand and supply
step-functions and the competitive equilibrium prediction (price = 80, quantity = 24)
while the right panels show the path of transaction prices across the 6 trading periods.
Gode and Sunder’s striking finding is that the transaction price path with the budget con-
strained ZI-C traders bears some resemblance to the path of prices in the human subject
experiment. In particular, prices remain close to the competitive equilibrium price, and
within a trading period, the price volatility declines so that prices become even closer
to the competitive equilibrium prediction. This finding stands in contrast to the ZI-U
environment, where transaction prices are extremely volatile and there is no evidence of
convergence to the competitive equilibrium. As the ZI-C or ZI-U agents have no mem-
ory regarding past prices, the difference in the simulation findings are entirely due to
the difference in trading rules, namely the constraint imposed on ZI-C traders ruling

6 See, e.g., the discussion of Brewer et al. (2002) below.
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Figure 2. Competitive equilibrium prediction (left) and path of transaction prices (right). Source: Gode and
Sunder (1993, figure 1).

out unprofitable trades. The dampened volatility in prices over the course of a trading
period arises from the fact that units with the highest valuations or lowest costs tend to
be traded earlier in the period, as the range over which ZI-C agents may submit bids or
asks for these units is larger than for other units. After these units are traded, the bid
and ask ranges of ZI-C agents with units left to trade become increasingly narrow, and
consequently, the volatility of transaction prices becomes more damped.

Gode and Sunder also examine the “allocative efficiency” of their simulated and hu-
man subject markets, which is defined as the sum of total profit earned over all trading
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periods divided by the maximum possible profit, which is simply the sum of consumer
and producer surplus (e.g., the shaded area in the left panel of Figure 1). They find that
with the ZI-U traders, market efficiency averages 78.3 percent, while with ZI-C traders
it averages 98.7 percent; the latter figure is slightly higher than the average efficiency
achieved by human subjects, 97.6 percent! Gode and Sunder summarized their findings
as follows:

“Our point is that imposing market discipline on random unintelligent behavior is
sufficient to raise the efficiency from the baseline level [that attained using ZI-U
agents] to almost 100 percent in a double auction. The effect of human motivations
and cognitive abilities has a second-order magnitude at best.”

One explanation for the high efficiency with the ZI-C agents is provided in Gode
and Sunder (1997b). They consider the consequences for allocative efficiency of adding
or subtracting various market rules and arrive at some very intuitive conclusions. First,
they claim that voluntary exchange by agents who are sophisticated enough to avoid
losses is necessary to eliminate one source of inefficiency, namely unprofitable trades.
By voluntary exchange, they mean that agents are free to accept or reject offers. The
second part of this observation, that agents are sophisticated enough to avoid losses, is
the hallmark of the ZI-C agent model, but its empirical validity is not really addressed.
We know from experimental auction markets, for example, where private values or costs
are induced and subjects have perfect information about these values or costs, that sub-
jects sometimes bid in excess of their private valuations (Kagel et al., 1987). Gode and
Sunder (1997a) are careful to note that they “are not trying to accurately model human
behavior,” (p. 604) but the subtext of their research is that the no unprofitable trades as-
sumption does not presume great sophistication; the traders are “zero-intelligence” but
constrained. Perhaps the more restrictive assumption is that agents have perfect infor-
mation about their valuations and costs and perfect recall about units they have already
bought or sold. Absent such certainty, it might be harder to reconcile the assumption
of no unprofitable trades with the observation that individuals and firms are sometimes
forced to declare bankruptcy.

Other sources of inefficiency are that ZI-C traders fail to achieve any trades, and that
extramarginal traders—traders whose valuations and costs lie to the right of the inter-
section of demand and supply—displace inframarginal traders whose valuations lie to
the left of the intersection of demand and supply and who have the potential to realize
gains from trade. Gode and Sunder (1997a, 1997b) define an expected efficiency metric
based on a simplified model of induced demand and supply and show that inefficiencies
arising from failure to trade can be reduced by having multiple rounds of trading. Ineffi-
ciencies arising from the displacement of inframarginal traders by extramarginal traders
can depend on the “shape” of the extramarginal demand and supply, e.g., whether it is
steep or not and on the market rules, e.g., whether bids and asks are ranked and a sin-
gle market clearing price is determined (as in a call market) or whether decentralized
trading is allowed (as in the standard, double auction).
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Gode and Sunder (2004) further consider the consequences of nonbinding price ceil-
ings on transaction prices and allocative efficiency in double auctions with ZI-C traders
(the analysis of price floors follows a symmetric logic). A nonbinding price ceiling is an
upper bound on admissible bid and ask prices that lies above the competitive equilibrium
price. If a submitted bid or ask exceeds the price ceiling it is either rejected or reset at
the ceiling bound. Since the bound lies above the competitive equilibrium price, theoret-
ically it should not matter. However, in experimental double-auction markets conducted
by Isaac and Plott (1981) and Smith and Williams (1981), non-binding price ceilings
work to depress transaction prices below the competitive equilibrium level relative to
the case where such ceilings are absent. Gode and Sunder (2004) report a similar finding
when ZI-C agents are placed in double auction environments with non-binding price
ceilings similar to the environments examined in the experimental studies. Gode and
Sunder explain their finding by noting that a price ceiling reduces the upper-bound on
the bid ask range, and with ZI-C agents, this reduction immediately implies a reduction
in the mean transaction price relative to the case without the price ceiling. Further they
show that with ZI-C agents, a price ceiling reduces allocative efficiency as well (which
is consistent with the experimental evidence) by making it more likely that extramar-
ginal buyers are not outbid by inframarginal buyers, and by excluding extramarginal
sellers with costs above the ceiling from playing any role.

Summing up, what Gode and Sunder (1993, 1997a, 1997b, 2004) have shown is that
simple trading rules in combination with certain market institutions can generate data
on transaction prices and allocative efficiency that approach or exceed those achieved
by human actors operating in the same experimental environment. This research finding
serves as an important behavioral foundation for the “KISS” principle that is widely
adopted in agent-based modeling. However, agent-based modelers are not always as
careful as Gode and Sunder to provide external validity (experimental or other evidence)
for the simple rules they assign to their artificial agents.

2.3. Reaction and response

Not surprisingly, the Gode and Sunder (1993) paper provoked a reaction, especially by
experimenters, who viewed the results as suggesting that market institutions were pre-
eminent and that human rationality/cognition was unimportant. Of course, the various
different market institutions are all of human construction, and are continually evolving,
so the concern about the source of market efficiency (institutional or human behavior)
seems misplaced.7 Nonetheless, there is some experimental literature addressing what
human subjects can do that Gode and Sunder-type ZI agents cannot.

Van Boening and Wilcox (1996) consider double auction environments where buyers
all have the same market valuation for units of the good, and sellers do not have fixed

7 Analogously, there was great outcry in May 1997 when Gary Kasparov, widely considered to be the great-
est player in the history of chess, first lost a chess match to a machine nicknamed “Big Blue,” even though
Big Blue’s hardware and algorithms were developed over many years by (human) researchers at IBM.
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or marginal costs for various units, but instead have large “avoidable costs”—costs they
incur only if they decide to actively engage in exchange. In such environments, seller
decisions to enter the market can be fraught with peril since they cannot anticipate the
entry decisions of other sellers and consequently, supply, and a seller’s average costs
(avoidable cost divided by number of units sold) can be highly variable. Van Boening
and Wilcox report that the efficiency of human subject traders in the more complex DA-
avoidable costs environment is much lower than in the standard DA environment with
pure marginal costs, but the efficiency of ZI traders in the DA-avoidable cost market is
significantly worse than the human subject traders operating in the same environment.

Brewer et al. (2002) consider a different but similarly challenging variant of the dou-
ble auction environment, where demand and supply conditions do not change within a
trading period as exchanges between buyers and sellers remove units from trade, but
where instead, market conditions remain invariant over each (and all) trading periods.
This is accomplished by continually refreshing the units that all buyers (sellers) are
able to buy (sell) following any trades, and Brewer et al. refer to this market environ-
ment as one with continuously refreshed supply and demand (CRSD).8 Recall that the
dampened volatility of prices over a trading period in the ZI-C simulations was owing
to the greater likelihood that inframarginal units with the lowest marginal cost/highest
reservation value would trade earlier than other inframarginal units where the difference
between marginal cost and valuation was lower. In the continually refreshed design of
Brewer et al. the forces working to dampen price adjustment over the course of a trading
period are removed. Hence prices generated by ZI-C traders in the CRSD environment
are quite random and exhibit no tendency toward convergence to any competitive equi-
librium notion (Brewer et al. consider several). On the other hand, the human subject
traders in the CRSD environment have no difficulty converging to the “velocity-based”
competitive equilibrium, and are also able to adjust to occasional perturbations to this
equilibrium.

Sadrieh (1998) studies the behavior of both human subjects and ZI agents in an
“alternating” double-auction market, a discrete-time version of the continuous double-
auction market that retains the double auction trading rules. The alternating DA is more
conducive to a game-theoretic analysis but differs in some respects from the standard
continuous DA in that only one side of the market (buyers or sellers) is active at once,
the bids or asks submitted are sealed (made simultaneously), and there is complete in-
formation about values, costs and ex post offers of all players. The determination of the
opening market side (buyers or sellers) is randomly determined, and then alternates over
the course of a trading period. Sadrieh’s game-theoretic prediction is that convergence
to the competitive equilibrium price would be from above (below) when sellers (buyers)
opened the market. By contrast, ZI simulations suggested that convergence to the mar-
ket price would be from above (below) when the surplus accruing to buyers (sellers) in

8 A motivating example is housing or labor markets without entry or exit of participants. A worker attracted
by a firm to fill a job vacancy, leaves another vacancy at his old firm, so that labor demand is effectively
constant.



Ch. 19: Agent-Based Models and Human Subject Experiments 963

Figure 3. Demand (D) and supply (S) curves for four economies. Source: Cliff and Bruten (1997b).

the competitive equilibrium was relatively larger than that accruing to sellers (buyers).
Sadrieh’s experimental findings, however, were at odds with both of these predictions;
the most typical path for prices in an experimental session involves convergence to the
competitive equilibrium from below, regardless of which side opens the market or the
relative size of the surpluses. On the other hand, ZI simulations accurately predicted the
extent of another of Sadrieh’s findings, “the proposer’s curse.” The curse is that those
submitting bids or asks tend to do so at levels that yield them lower profits relative to
the competitive equilibrium price; the additional gains go to the players accepting those
bids or asks. Sadrieh reports that the frequency of proposer’s curse among inexperienced
subjects was comparable to that found in ZI simulations, though experienced subjects
learned to avoid the curse.

Experimentalists are not the only ones to challenge Gode and Sunder’s findings. AI
researchers Cliff and Bruten (1997a, 1997b) have examined the sensitivity of Gode and
Sunder’s findings to the elasticity of supply and demand. In particular they examine DAs
with four different types of induced demand and supply curves as shown in Figure 3.
Of these four economies, simulations using ZI-C agents converge to the competitive
equilibrium price, P0 and quantity, Q0 only in economies of type A, the same type that
Gode and Sunder consider, and not in economies of type B, C or D. The intuitive rea-
son for this finding (which Cliff and Bruten formalize) is that the probability density
function (pdf) for transaction prices (a random variable with ZI agents) is symmetric
about the competitive equilibrium price, P0, only in the case of economy A; in the
other economies, the transaction price pdf has P0 as an upper or lower bound. Since
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the expected value of a random variable, such as the transaction price, is the “center of
gravity” of the pdf, it follows that price convergence with ZI-C agents only occurs in
economies of type A. Cliff and Bruten’s simulations bear out this conclusion. It remains
to be seen how human subject traders would fare in economies such as B, C and D.
However, as a purely theoretical exercise, Cliff and Bruten suggest that an alternative
algorithm, which they call “zero-intelligence plus” (ZIP), achieves convergence to com-
petitive equilibrium in economies such as B, C, and D more reliably than does Gode and
Sunder’s ZI approach. By contrast with ZI agents, ZIP agents aim for a particular profit
margin on each unit bought or sold, and this profit margin dictates the bid or ask they
submit. Each agent’s profit margin is adjusted in real time depending on several factors
most of which concern properties of the most recent bids, asks and transactions made.
Hence ZIP involves some memory though it is limited to the most recent data available.
Comparisons of ZIP simulations with some of Smith’s aggregate experimental findings
are encouraging, though a more detailed analysis of the ZIP mechanism’s profit margin
adjustment dynamic with experimental data has yet to be performed.

As these critiques make clear, it is relatively easy to construct environments where
human subjects outperform ZI agents or environments where ZI agents fail to converge
to competitive equilibrium. However the broader point of Gode and Sunder’s pioneering
work is not that human cognitive skills are unimportant. Rather it is that, in certain
market environments, aggregate allocation, price and efficiency outcomes can approach
the predictions of models premised on high levels of individual rationality even when
individual traders are only minimally rational. Understanding precisely the conditions
under which such a mapping can be assured clearly requires parallel experiments with
both human and artificial subjects.

2.4. Other applications of the ZI methodology

In addition to Cliff and Bruten, several other researchers have begun the process of
augmenting the basic ZI methodology in an effort to explain economic phenomena in
various environments. The process of carefully building up an agent-based framework
from a simple foundation, namely budget-constrained randomness, seems quite sensi-
ble, and indeed, is well under way.

Bosch-Doménech and Sunder (2001) expand the Gode and Sunder (1993) double
auction environment to the case of m interlinked markets populated by dedicated buyers
in market 1, by dedicated sellers in market m, and consisting exclusively of arbitrage
traders operating in markets i = 1, 2, . . . , m. In the baseline model, arbitrageurs are
prevented from holding any inventory between transactions. They operate in adjacent
markets, simultaneously buying units in market i + 1 and selling them in market i. As
market m is the only one with a positive net supply of the asset, trading necessarily
begins there. Absent the possibility of inventories, a transaction in market m instanta-
neously ripples through the entire economy (the other m − 1 markets) so that the good
traded quickly ends up in the hands of one of the dedicated buyers in market 1. One
interpretation of this set-up is that of a supply-chain, consisting of producers in mar-
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ket m, middlemen in markets m,m − 1, . . . , 1 and ultimate consumers in market 1.
Bosch-Doménech and Sunder report simulations showing that regardless of whether
the number of markets, m is 2, 5 or 10, prices and volume in each market quickly con-
verge to the competitive equilibrium levels obtained by crossing demand in market 1
with supply in market m, and that market efficiency is close to 100%. Bosch-Doménech
and Sunder further examine what happens when arbitrageurs can take long or short in-
ventory positions. As the number of short or long positions that arbitrageurs can take
is increased, and the number of markets, m, gets large, prices remain very close to the
competitive equilibrium prediction in all m markets, but trading volume in the “middle”
markets (populated only by arbitrageurs) increases well beyond the competitive equilib-
rium prediction and market efficiency declines. This finding is an argument for keeping
supply chains short (or finding ways to “cut out the middleman”). An experimental test
of this prediction remains to be conducted.9

Duffy and Ünver (2006) use the ZI methodology to understand asset price bubbles
and crashes in laboratory market experiments of the type first examined by Smith et
al. (1988). In these laboratory markets there is a single “asset” that is traded in a finite
number, T , of trading periods; unlike the previously described double auction exper-
iments, players here can be either buyers or sellers, and so they are referred to as
traders. Those holding units of the asset at the end of each trading period are enti-
tled to a random dividend payment per unit, with expected value d. The fundamental
expected market value of a unit of the asset at the start of trading period t � T is given
by Dt = d(T − t + 1) + DT+1, where DT+1 is the final buy-out value per unit of the
asset held at the close of period T . All participants’ initial endowments of the asset and
money have the same expected value, though the allocation of assets and money differs
across agents. Consequently, risk neutral traders should be indifferent between engaging
in any trades or trading at the fundamental market value which is declining over time.
With groups of inexperienced human subjects, the path of the mean transaction price
tends to start below the fundamental value in the first trading periods, quickly soaring
above this fundamental value in the middle trading periods before finally crashing back
to or below fundamental value near to the final trading period T .

Duffy and Ünver show that such asset price bubbles and crashes can arise with ZI
agents, who are a little more sophisticated than Gode and Sunder’s ZI-C agents—Duffy
and Ünver call them “near-zero intelligence agents”. In particular, Duffy and Ünver’s
agents are not constrained from submitting bids or asks in excess of the fundamental
market value of the asset as such a constraint would rule out the possibility of bubbles.
As in Gode and Sunder (1993) there is an exogenously imposed range for bids and
asks given by the interval [0, κDT

t ], where κ > 0. In addition, bids and asks are not
entirely random. The ask of trader i in period t is given by ai

t = (1 − α)ui
t + αpt−1,

where ui
t is a random draw from [0, κDT

t ] and pt−1 is the mean transaction price from

9 See, however, the related work of Grossklags and Schmidt (2004), who add artificial arbitrage agents to a
double auction experiment with human subjects.
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the previous trading period; the weight given to the latter, α, if positive, introduces a
simple herding effect, and further implies that ask prices must rise over the first few
periods. A similar herding rule is used to determine bids. The random component to
bids and asks serves to insure that some transactions take place. As in Gode and Sunder
(1993) budget constraints are enforced; traders cannot sell units they do not own, nor
can traders submit bids in excess of their available cash balances. Finally, to account
for the finite horizon, which was known to the human subjects, Duffy and Ünver endow
their artificial agents with some weak foresight; specifically, the probability that a trader
submits a bid (as opposed to an ask) is initially 0.5, and decreases over time, so, over
time, there are more asks than bids being submitted reflecting the declining fundamental
value of the asset. Standard double auction trading rules are in effect. Duffy and Ünver
use a simulated method of moments procedure to calibrate the parameter choices of
their model, e.g. κ , α, so as to minimize the mean squared deviations between the price
and volume path of their simulated economies and the human subject markets of Smith
et al. (1988). They are able to find calibrations that yield asset price bubbles and crashes
comparable to those observed in the laboratory experiments and are able to match other,
more subtle features of the data as well.

2.5. ZI agents in general equilibrium

The original Gode and Sunder (1993) study follows the Smith (1962) partial equilibrium
laboratory design, where market demand and supply are exogenously given. In more re-
cent work, zero-intelligence traders have been placed in general equilibrium settings,
with the aim of exploring whether they might achieve competitive equilibrium in such
environments. Gode et al. (2000) placed zero-intelligence traders, who could both buy
and sell, in a two-good, pure exchange economy (an Edgeworth box). Traders are di-
vided up into two types i = 1, 2, that differ only in terms of the parameters of their
Cobb–Douglas utility function defined over the two goods and their initial endowments
of these two goods. The trading rules for ZI agents in the general equilibrium environ-
ment are similar to rules found in the partial equilibrium environment. In particular, in
the general equilibrium environment, ZI agents’s bids and asks are limited to utility im-
proving allocations. Specifically, each agent of type i begins by calculating the slope of
its indifference map at its current endowment point. The slope is calculated in terms of
radians, r , where 0 � r � π

2 ; this gives the number of units of good y the trader is will-
ing to give up per unit of good x. Next, the agent picks two random numbers, b ∈ [0, r]
and a ∈ [r, π/2], with the first representing its bid price for units of good y in terms of
good x, and the second representing its ask price for units of good y in terms of good x.
Finally, the unit of a transaction for simulation purposes involves a discrete step size
in the quantity of both goods; otherwise, with an infinitesimal quantity exchanged each
period, convergence could take a long time. A consequence of this discrete step size
assumption is that an adjustment has to be made to the bid and ask ranges to account for
the curvature of the indifference map. Given these trading restrictions, and the double
auction rules, market transactions will be limited to lie in the set of Pareto improving re-
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Figure 4. An illustration of the path of ZI transactions in an Edgeworth box. Source: Gode et al. (2000).

allocations, i.e., the area between the two indifference maps. Once an exchange occurs,
endowments are updated, and the process described above begins anew.

Figure 4 (taken from Gode et al., 2000) illustrates this process. The initial endowment
is at point A, and the indifference maps of the two agent types intersect at this point. The
ZI trading restrictions and discrete step size imply that the first transaction occurs along
the arc BC. If this first round transaction occurs at, say, point D, this point becomes the
new endowment point. The set of feasible trades in the subsequent period lie on the arc
B′C′, etc. Given this characterization of ZI trading rules it is clear—even without sim-
ulating the system—that this updating process must eventually converge to the contract
curve, representing the set of all Pareto optimal allocations, and will then cease, as the
bid-ask range shrinks to the null set.10 And, indeed, this is precisely what Gode et al.
(2000) find. Simulations of ZI agents operating according to the rules described above
yield limiting allocations that lie on the contract curve, and so these allocations are
Pareto optimal. However, these allocations do not necessarily correspond to the com-
petitive equilibrium allocation, the point on the contract curve where the two price-offer

10 One consequence of studying ZI, directed random search processes is that once the environment is spec-
ified, actual simulation of the search process may be unnecessary. Still, the value of this approach lies in
building the minimal, necessary restrictions on directed random search that achieve the desired outcome.
The ZI approach aids in formulating these restrictions, by greatly simplifying agent behavior, allowing the
researcher to concentrate on the institutional restrictions.
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curves of the two agent types intersect. So, by contrast with the findings in the partial
equilibrium framework, ZI-trading rules turn out to be insufficient to guarantee conver-
gence to competitive equilibrium in the two-good general equilibrium environment.

The nonconvergence of the ZI algorithm to competitive equilibrium is further ad-
dressed by Crockett, Spear and Sunder (CSS) (Crockett et al., 2004) who provide an
answer to the question of “how much additional ‘intelligence’ is required” for ZI agents
to find a competitive equilibrium in a general equilibrium setting with M agents and
� commodities. In their environment, ZI agents do not submit bids or asks. Rather a
proposed allocation of the � goods across the M agents is repeatedly made, correspond-
ing to a random draw from an epsilon-cube centered at the current endowment point.
Agent i compares the utility he gets from the proposed allocation with the utility he re-
ceives from the current endowment. If the utility from the proposed allocation is higher,
agent i is willing to accept the proposal. If all M agents accept the proposal, the pro-
posed allocation becomes the new endowment point. The random proposal generation
process (directed search) then begins anew and continues until no further utility im-
provements are achieved. At this point the economy has reached a near-Pareto optimum
(an allocation that lies approximately in the Pareto set), though not necessarily a com-
petitive equilibrium; this outcome is analogous to the final outcome of the Gode et al.
(2000) algorithm. Crockett, Spear and Sunder further assume that once agents have
reached this approximate Pareto optimum (PO), they are able to calculate the common,
normalized utility gradient at the PO allocation. The ZI agents are then able to deter-
mine whether this gradient passes through their initial endowment point (the condition
for a competitive equilibrium) or not. If it does not, then, in the PO allocation, some
agents are subsidizing other agents. Note that these assumptions endow the ZI agents
with some calculation and recall abilities that are not provided (or necessary) in Gode
and Sunder’s partial equilibrium environment.

Consider for example, the two agent, two-good case. In this case, the normalized
utility gradient corresponds to a price line through the tangency point of the two indif-
ference curves (preferences must be convex), representing the relative price of good 2
in units of good 1 at the PO allocation. Suppose that at the end of trading period t , agent
i’s approximate PO allocation is x̂t

i ∈ R2+. Agent i’s gain at this PO allocation can be
written as:

λt
i = pt

(
x̂t
i − ωi

)
,

where pt is the price line at the end of period t and ωi ∈ R2+ is agent i’s initial endow-
ment. Agent i is said to be subsidizing the other agent(s) if λi < 0. That is, at pt � 0,
agent i cannot afford to purchase his initial endowment. Crockett et al.’s innovation is
to imagine that if agent i was a ‘subsidizer’ in trading period t , then in trading period
t + 1 he agrees to trade for only those allocations, xt+1 that increase his utility and that
satisfy:

0 � pt
(
xt+1
i − ωi

)
� λt

i + νi,
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where νi is a small, positive bound. With this additional constraint in place, the PO
allocation achieved at the end of period t + 1, x̂t+1, is associated with a larger gain
for the subsidizing agent i, i.e. λt+1

i > λt
i , so he subsidizes less in period t + 1 than

in period t . When all i agents’ gains satisfy a certain tolerance condition, convergence
to a competitive equilibrium is declared. Crockett et al. show that while cycling is a
possibility, it can only be a transitory phenomenon. Indeed, they provide a rigorous
proof that their algorithm converges to the competitive equilibrium with probability 1.

This subsidization constraint puts to work the Second Welfare theorem—that every
Pareto optimum is a competitive equilibrium for some reallocation of initial endow-
ments. Here, of course, the initial endowment is not being reallocated. Instead, agents
are learning over time to demand more (i.e. refuse trades that violate the subsidization
constraint) if they have been subsidizing other agents in previous periods. The realloca-
tion takes place in the amounts that agents agree to exchange with one another.

The appeal of Crockett et al.’s “ε-intelligent” learning algorithm is that it imple-
ments competitive equilibrium using only decentralized knowledge on the part of agent
i, who only needs to know his own utility function and be able to calculate the nor-
malized utility gradient at the PO allocation attained at the end of the previous period
(or more simply, to observe immediate past prices). Using this information, he deter-
mines whether or not he was a subsidizer, and if so, he must abide by the subsidization
constraint in the following period. The algorithm is simple enough so that one might
expect that simulations of it would serve as a kind of lower bound on the speed with
which agents actually learn competitive equilibrium in multi-good, multi-agent general
equilibrium environments, analogous to Gode and Sunder’s (1993) claim for ZI agents
operating in the double auction.

Indeed, Crockett (2004) has conducted an experiment with paid human subjects
aimed precisely at testing this hypothesis. Crocket’s experiment brings the ZI research
agenda full circle; his experiment with human subjects is designed to provide external
validity for a ZI, agent-based algorithm whereas the original Gode and Sunder (1993)
ZI model was developed to better comprehend the ability of human subjects to achieve
competitive equilibrium in Smith’s double auction model. Crockett’s study explores sev-
eral different experimental treatments that vary in the number of subjects per economy
and in the parameters of the CES utility function defined over the two goods. For each
subject, a preference function was induced, and subjects were trained in their induced
utility function, i.e., how to assess whether a proposed allocation was utility improving.
Further, at the end of each trading period, Crocket calculated for subjects the end-of-
period-t marginal rate of substitution, pt , as well as the value of the end-of-period-t
allocation, ptxi , but did not tell subjects what to do with that information, which re-
mained on subjects’ screens for the duration of the following period, t + 1. Subjects
could plot the end-of-period-t price line on their screens to determine whether or not
it passed through their beginning-of-period-t endowment point. Thus, subjects had all
the information necessary to behave in accordance with the CSS algorithm, that is, they
knew what comprised a utility improving trade and they had the information necessary
to construct and abide by the subsidization constraint.
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Figure 5. Median, end-of-period CSS-ZI allocations over periods 1–10 (left panel) versus median, end-of-period human subject allocations in periods 1 and 10
(right panel) in an Edgeworth box.
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The left panel of Figure 5 presents the median end-of-period allocation of CSS–ZI
agents for a particular 2-player CES parameterization, over trading periods 1–10, de-
picted in an Edgeworth box (the competitive equilibrium is labeled CE). The right
panel of Figure 5 presents comparable median end-of-period allocations from one of
Crockett’s human subject sessions conducted in the same environment. Support for the
hypothesis that the CSS-ZI algorithm accurately characterizes the behavior of paid hu-
man subjects appears to be mixed. On the one hand, nearly all of the human subjects
are able to recognize and adopt utility improving trades, so that end of period alloca-
tions typically lie on or very close to the contract curve. And, once the contract curve is
achieved, in subsequent periods, the human subjects appear to be moving in the direc-
tion of the competitive equilibrium allocation, as evidenced by the change in the median
allocation at the end of period 10 relative to the median at the end of period 1 in the right
panel of Figure 5. On the other hand, simulations of the CSS–ZI algorithm (left panel
of Figure 5) suggest that convergence to the competitive equilibrium should have been
achieved by period 6.

The reason for the slow convergence is that most, though not all subjects in Crockett’s
experiments are not abiding by the subsidization constraint; most are content to simply
accept utility improving trades, while a few behave as CSS-ZI agents. The median al-
location masks these differences, though the presence of some “CSS-ZI-type” agents
moves the median allocation towards the competitive equilibrium. Hence, there is some
support for the CSS-ZI algorithm, though convergence to competitive equilibrium by
the human subjects is far slower than predicted by the algorithm.

2.6. Summary

The ZI approach is a useful benchmark, agent-based model for assessing the marginal
contribution of institutional features and of human cognition in experimental settings.
Building up agent-based models starting from zero memory and random action choices
seems quite sensible and is in accord with Axelrod’s KISS principle. Using ZI as a
baseline, the researcher can ask: what is the minimal additional structure or restrictions
on agent behavior that are necessary to achieve a certain goal such as near convergence
to a competitive equilibrium, or a better fit to human subject data.

Thus far, the ZI methodology has been largely restricted to understanding the process
by which agents converge to competitive equilibrium in either the partial equilibrium
double auction setting or in simple general equilibrium pure exchange economies. ZI
models have achieved some success in characterizing the behavior of human subjects
in these same environments. More complicated economic environments, e.g. produc-
tion economies or labor search models would seem to be natural candidates for further
applications of the ZI approach.

The ZI approach is perhaps best suited to competitive environments, where individu-
als are atomistic and, as a consequence, institutional features together with constraints
on unprofitable trades will largely dictate the behavior that emerges. In environments
where agents have some strategic power, so that beliefs about the behavior of others
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become important, the ZI approach is less likely to be a useful modeling strategy. In
such environments—typically game-theoretic—somewhat more sophisticated learning
algorithms may be called for. We turn our attention to such learning models in the next
section.

3. Reinforcement and belief-based models of agent behavior

Whether agents learn or adapt depends on the importance of the problem or choice that
agents face. Assuming the problem commands agents’ attention, e.g., because payoff
differences are sufficiently salient, the manner in which agents learn is largely a func-
tion of the information they posses and of their cognitive abilities. If agents have little
information about their environment and/or they are relatively unsophisticated, then we
might expect simple, backward-looking adaptive processes to perform well as charac-
terizations of learning behavior over time. On the other hand, if the environment is
informationally rich and/or agents are cognitively sophisticated, we might expect more
sophisticated, even forward-looking learning behavior to be the norm.

This distinction leads to two broad sets of learning processes that have appeared in
the agent-based literature, which we refer to here as reinforcement and belief learning
following Selten (1991). Both learning processes are distinct from the fully rational,
deductive reasoning processes that economists assign to the agents who populate their
models. The important difference is that both reinforcement and belief learning ap-
proaches are decentralized, inductive, real-time, on-line learning algorithms that are
unique to each agent’s history of play. In this sense, they comprise agent-based models
of learning. Our purpose here is to discuss the use of these algorithms in the context of
the experimental literature, with the particular aim of evaluating the empirical plausibil-
ity of these learning processes.

3.1. Reinforcement learning

The hallmark of “reinforcement,” “stimulus–response” or “rote” learning is Thorndike’s
(1911) ‘law of effect’: that actions or strategies that have yielded relatively higher
(lower) payoffs in the past are more (less) likely to be played in the future. Rein-
forcement learning involves an inductive discovery of these payoffs; actions that are
not chosen initially, are, in the absence of sufficient experimentation, less likely to be
played over time, and may in fact, never be played (recognized). Finally, reinforcement
learning does not require any information about the play of other participants or even the
recognition that the reinforcement learner may be participating in a market or playing a
game with others in which strategic considerations might be important. Thus, reinforce-
ment learning involves a very minimal level of rationality that is only somewhat greater
than that possessed by ZI agents.

Reinforcement learning has a long history associated with behaviorist psychologists
(such as B.F. Skinner), whose views dominated psychology from 1920 through the
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1960s, until cognitive approaches gained ascendancy. Models of reinforcement learn-
ing first appeared in the mathematical psychology literature, e.g. Bush and Mosteller
(1955) and Suppes and Atkinson (1960). Reinforcement learning was not imported into
economics however, until very recently, perhaps owing to economists’ long-held scep-
ticism toward psychological methods or of limited-rationality heuristics.11

Brian Arthur (1991, 1993) was among the first economists to suggest modeling agent
behavior using reinforcement-type learning algorithms and to calibrate the parameters
of such learning models using data from human subject experiments. In his 1991 paper,
Arthur asks whether it is possible to design a learning algorithm that mimics human
behavior in a simple N -armed bandit problem. Toward this aim, Arthur used data from
an individual-choice, psychology experiment—a 2-armed bandit problem—conducted
by Laval Robillard four decades earlier in 1952–3 and reported in Bush and Mosteller
(1955) to calibrate his model.12

In Arthur’s model, an agent assigns initial “strength” si
0 to each of the i = 1, 2, . . . , N

possible actions. The probability of choosing action i in period t is then pi
t = si

t /Ct ,
where Ct = ∑

i si
t . Given that action i is chosen in period t , its strength is then updated:

si′
t = si

t + φi
t , where φi

t � 0 is the payoff that action i earned in period t . Finally, all of
the strengths, including the updated si′

t are renormalized so as to achieve a prespecified
constant value for the sum of strengths in period t : Ct = Ctν , where C and ν represent
the two learning parameters. When ν = 0 (as in Arthur’s calibration) the speed of
learning is constant and equal to 1/C.

Arthur ‘calibrated’ his learning model to the experimental data by minimizing the
sum of squared errors between simulations of the learning model (for different (C, ν)

combinations) and the human subject data over all experimental treatments, which
amounted to variations in the payoffs to the two arms of the bandit. He showed that
regardless of the treatment, the calibrated model tracked the experimental data rather
well. In subsequent work, (e.g. the Santa Fe Artificial Stock Market (Arthur et al., 1997)
discussed in LeBaron’s (LeBaron, 2006) chapter), Arthur and associates appear to have
given up on the idea of calibrating individual learning rules to experimental data in fa-
vor of model calibrations that yield aggregate data that are similar to relevant field data.
Of course, for experimental economists, the relevant data remain those generated in
the laboratory, and so much of the subsequent development of reinforcement and other
types of inductive, individual learning routines in economic settings has been with the
aim of exploring experimental data.

Roth and Erev (1995) and Erev and Roth (1998) go beyond Arthur’s study of the
individual-choice, N -armed bandit problem and examine how well reinforcement learn-
ing algorithms track experimental data across various different multi-player games that

11 An even earlier effort, due to Cross (1983), is discussed in Brenner’s (Brenner, 2006) chapter.
12 Regarding the paucity at the time of available experimental data, Arthur (1991, pp. 355–356) wrote:
“I would prefer to calibrate on more recent experiments but these have gone out of fashion among psy-
chologists, and no recent more definitive results appear to be available.” Of course, economists have recently
taken to conducting many such experiments.
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have been studied by experimental economists. The reinforcement model that Roth and
Erev (1995) develop is similar to Arthur’s, but there are some differences and important
modifications that have mainly served to improve the fit of the model to experimental
data. The general Roth–Erev model can be described as follows.

Suppose there are N actions/pure strategies. In round t , player i has a propensity
qij (t) to play the j th pure strategy (propensities are equivalent to strengths in Arthur’s
model). Initial (round 1) propensities (among players in the same role) are equal,
qij (1) = qik(1) for all available strategies j , k, and

∑
j qij (1) = Si(1), where Si(1)

is an initial strength parameter, equal to a constant that is the same for all players,
Si(1) = S(1); the higher (lower) is S(1) the slower (faster) is learning.

The probability that agent i plays strategy j in period t is made according to the linear
choice rule:

pij (t) = qij (t)∑n
j=1 qij (t)

.

Some researchers prefer to work with the exponential choice rule:

pij (t) = exp[λqij (t)]∑n
j=1 exp[λqij (t)] ,

where λ is an additional parameter that measures the sensitivity of probabilities to rein-
forcements. For now, however, we follow Roth and Erev (1995) and focus on the linear
choice rule.

Suppose that, in round t , player i plays strategy k and receives a payoff of x. Let
R(x) = x−xmin, where xmin is the smallest possible payoff. Then i updates his propen-
sity to play action j according to the rule:

qij (t + 1) = (1 − φ)qij (t) + Ek

(
j, R(x)

)
,

Ek

(
j, R(x)

) = {
(1 − ε)R(x) if j = k,(
ε/(N − 1)

)
R(x) otherwise.

This is a three-parameter learning model, where the parameters are (1) the initial
strength parameter, S(1), (2) a forgetting parameter φ that gradually reduces the role
of past experience, and (3) an experimentation parameter ε that allows for some exper-
imentation.13 Notice that if φ = ε = 0 we have a version of Arthur’s model, where the
main difference is that the sum of the propensities is not being renormalized in every
period to equal a fixed constant. This difference is important, as it implies that as the
propensities grow, so too will the denominator in the linear choice rule and the impact
of payoffs for the choice of strategies will become attenuated. Thus, one possibility is

13 In certain contexts, the range of strategies over which experimentation is allowed is restricted to those
strategies that are local to strategy k; in this case, the parameter ε can be regarded also as a ‘generalization’
parameter, as players generalize from their recent experience to similar strategies.
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that certain strategies that earn relatively high payoffs initially get played more often,
and over time, there is lock-in to these strategies; alternatively, the “learning curve” is
initially steep and then flattens out, properties that are consistent with the experimental
psychology literature (Blackburn’s (1936) “Power Law of Practice”).

The ability of reinforcement learning models to track or predict data from human sub-
ject experiments has been the subject of a large and growing literature. Roth and Erev
(1995) compare the performance of various versions of their reinforcement learning
model with experimental data from three different sequential games: a market game, a
best-shot/weakest link game and the ultimatum bargaining game; in all of these games,
the unique subgame perfect equilibrium calls for one player to capture all or nearly all
of the gains, though the experimental evidence is much more varied, with evidence of
convergence to the perfect equilibrium in the case of the market and best-shot games
but not in the case of the ultimatum game. Roth and Erev’s simulations with their re-
inforcement learning algorithm yield this same divergent result. Erev and Roth (1998)
use simulations of two versions of their reinforcement model (a one parameter version
where φ = ε = 0) and the three parameter version to predict play in several repeated
normal form games where the unique Nash equilibrium is in mixed strategies. They re-
port that the one and three-parameter models are better at predicting experimental data
as compared with the Nash equilibrium point predictions, and that the three-parameter
model even outperforms a version of fictitious play (discussed in the next section).

Figure 6 provides an illustration of the performance of the three models relative to
human subject data from a simple matching pennies experiment conducted by Ochs
(1995). This game is of the form

Player 2
A2 B2

Player 1 A1 x, 0 0, 1
B1 0, 1 1, 0

where x is a payoff parameter that takes on different values in three treatments (x = 1,
4 or 9). The unique mixed strategy equilibrium calls for player 1 to play A1 with prob-
ability .5, and player 2 to play A2 with probability 1/(1 + x); these Nash equilibrium
point predictions are illustrated in the figure, which shows results for the three different
versions of the game (according to the value of x). The data shown in Figure 6 are the
aggregate frequencies with which the two players play actions A over repeated plays of
the game. The first column gives the experimental data, columns 2–3 give the results of
the 1 and 3 parameter reinforcement learning models, while column 4 gives the result
from a fictitious play-like learning model. The relatively better fit of the three-parameter
model is determined on the basis of the deviation of the path of the experimental data
from the path of the simulated data. Erev and Roth suggest that the success of reinforce-
ment learning in predicting experimental data over Nash equilibrium point predictions
is owing to the inductive, real-time nature of these algorithms as opposed to the de-
ductive approach of game theory, with its assumptions of full rationality and common
knowledge.
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Figure 6. Experimental data from Ochs (1995) and the predictions of the Roth–Erev and fictitious play learn-
ing models. Source: Erev and Roth (1998).

Other variants of reinforcement learning have been proposed with the aim of bet-
ter explaining experimental data. Sarin and Vahid (1999, 2001), for instance, propose
a simple deterministic reinforcement-type model where agents have “subjective assess-
ments,” qj (t), for each of the j = 1, 2, . . . , N possible strategies. As in Roth and Erev’s
model, an agent’s subjective assessment of strategy j gets updated only when strategy
j is played: qj (t + 1) = (1 − φ)qj (t)+ φπj (t), where πj (t) is the payoff to strategy j

at time t , and φ is the forgetting factor and sole parameter of their model. The main
difference between Sarin and Vahid’s model and Roth and Erev’s is that the strategy
an agent chooses at time t in Sarin and Vahid’s model is the strategy with the maxi-
mum subjective assessment through period t − 1. Thus, in Sarin and Vahid’s model,
agents are acting more like optimizers than in the probabilistic choice framework of
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Roth and Erev. Sarin and Vahid show that their one parameter model often performs
well and sometimes better than Roth and Erev’s 1 or 3-parameter, probabilistic choice
reinforcement learning models in the same games that Erev and Roth (1998) explore.

Duffy and Feltovich (1999) modify Roth and Erev’s (Roth and Erev, 1995) model
to capture the possibility that agents learn not only from their own experience, but also
from the experience of other agents. Specifically, they imagine an environment where
agent i plays a strategy r and learns his payoff in period t , πi

r (t) but also observes the
strategy s played by another player j (of the same type as i) in period t and the payoff
that player earned from playing strategy s, π

j
s (t). Player i updates his propensity to

play strategy r in the same manner as Roth and Erev, (with φ = ε = 0) but also updates
his propensity to play strategy s: qi

s(t + 1) = qi
s(t) + βπ

j
s (t), where β � 0 is the

weight given to observed payoffs, or “second-hand” experience. Duffy and Feltovich
set β = .50 and simulate behavior in two of the games studied in Roth and Erev (1995),
the best-shot game and the ultimatum game. They then test their simulation predictions
by conducting an experiment with human subjects; their reinforcement-based model
of the effect of observation of others provides a very good prediction of the role that
observation of others’ actions and payoffs plays in the experiment.

Another modification of reinforcement learning is to suppose that agents have cer-
tain “aspiration levels” in payoff terms that they are trying to achieve. This idea has a
long history in economics dating back to Simon’s (Simon, 1955) notion of satisficing.
Aspiration learning has recently been resuscitated in game theory, e.g. by Karandikar
et al. (1998) and Börgers and Sarin (2000) among others. Bendor et al. (2001) provide
an overview and additional references. The reinforcement learning models discussed
above can be viewed as ones where a player’s period aspiration level is constant and
less than or equal to the minimum payoff a player earns from playing any action in
the given strategy set, so that the aspiration level plays no role in learning behavior.
More generally, one might imagine that an agent’s aspiration level evolves along with
the agent’s probabilistic choice of strategies (or propensities), and this aspiration level
lies above the minimum possible payoff. Thus, in aspiration-based reinforcement learn-
ing models, the state space is enlarged to include a player’s aspiration level in period t ,
ai(t). Suppose player i chooses strategy j in period t yielding a payoff of πi

j (t). If

πi
j (t) � ai(t), then player i’s propensity to play strategy j in subsequent periods is

assumed to be (weakly) higher than before; precisely how this is modeled varies some-
what in the literature, but the end result is the same: i’s probability of playing strategy j

satisfies pi
j (t+1) � pi

j (t). On the other hand, if πi
j (t) < ai(t), then pi

j (t+1) < pi
j (t).

Finally, aspirations evolve according to:

ai
t = λai

t + (1 − λ)πi
j (t),

where λ ∈ (0, 1). This adjustment rule captures the idea that aspirations vary with an
agent’s history of play. The initial aspiration level a0 as with the initial probabilities
for choosing actions, are assumed to be exogenously given. Karandikar et al. (1998)
also add a small noise term to the aspiration updating equation representing trembles.
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They show, for a class of 2× 2 games that includes the prisoner’s dilemma, that if these
trembles are small, and aspiration updating is slow (λ is close to 1) that in the long-run,
both players are cooperating most of the time.

There is some experimental evidence in support of aspiration learning. Bereby-Meyer
and Erev (1998) studied behavior in a binary choice game where the probabilities of
achieving a ‘success’ were exogenously fixed at 0.7 for choice 1 and 0.3 for choice 2.
In one treatment, subject payoffs were set at 2 for a success and −2 for a failure, while
in another treatment, the payoffs were 4 for a success and 0 for a failure, amounting
to an addition of 2 to the payoffs in the first case. They found that learning of the
optimal choice of strategies (choice 1) was significantly reduced when the payoffs were
(4, 0) relative to the case where the payoffs were (2,−2). Erev et al. (1999) explain
this result by presenting an adjustable reference point reinforcement learning model. In
place of the assumption that R(x) = x − xmin in the Roth–Erev model, they propose
that R(x, t) = x(t) − ρ(t), and let the reference point, ρ(t) be a weighted average of
the past reference point and current payoffs, where the weights depend on the difference
between the payoff and the reference point; if payoffs are highly variable relative to the
reference point, learning is slower than if payoffs are less variable; this is simply another
version of aspiration learning. They report that this model tracks the difference in the
experimental findings rather well.

Huck et al. (2002) find evidence of aspiration learning in a laboratory oligopoly
experiment. They test the theoretical proposition that bilateral mergers in oligopoly
markets with n > 2 firms, homogeneous goods and constant returns to scale are un-
profitable; the profit share of the merged firm, 1/n − 1 is less than the total share of
the two firms prior to the merger 2/n (1/n each). In the experiment, n > 2 subjects
make quantity decisions in a Cournot game and midway through a session, two of the
subjects combine decision-making as a merged firm. The authors report that, contrary
to theory, the subjects in the role of the merged firm produce significantly more output
than the other unmerged firms and come close to sustaining total profit levels they would
have achieved as unmerged firms. The authors argue that pre-merger aspiration-levels
cause merged firms to increase output with the aim of maintaining total profits and the
other firms acquiesce by reducing their output. They connect this finding with Cyert
and March’s (1956) observation that oligopoly firms are guided by “an acceptable-level
profit norm” that is a function of market history.

Varieties of reinforcement learning algorithms have become a mainstay of agent-
based modeling, perhaps because they accord with Axelrod’s KISS principle. Other
attractive features are the low level of history-dependent rationality, and relatively few
parameters. Examples of the use of reinforcement learning in agent-based models are
commonplace. Epstein and Axtell (1996) use several variants of reinforcement learning
in their Sugarscape model. Nicolaisen et al. (2001) use Roth–Erev-type reinforcement
learning to model buyer and seller price–quantity decisions in a computational model of
the wholesale electricity market. Pemantle and Skyrms (2003) use reinforcement learn-
ing to study how groups of players play games in endogenously formed social networks.
Franke (2003) uses reinforcement learning to study Arthur’s (Arthur, 1994) El Farol Bar
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problem; Kutschinski et al. (2003) use a reinforcement learning model to study buyer
search and seller price setting behavior in a competitive market with induced demand
and supply schedules. Bendor et al. (2003) use a reinforcement learning model with
endogenous aspirations to model voter turn-out. Finally, Erev and Barron (2003) apply
reinforcement learning to cognitive strategies, e.g., loss avoidance, hill-climbing, rather
than to the direct strategies available to agents in simple, repeated decision problems.

There is also a parallel and much more voluminous literature on reinforcement learn-
ing in the machine learning literature. See, e.g., Kaelbling et al. (1996) and Sutton and
Barto (1998) for surveys. A popular reinforcement learning model in this literature is
Q-learning (Watkins, 1989), which is closely related to Bellman’s approach to dynamic
programming, but differs from the latter in being much less informationally demanding,
e.g. the agent need not know the period payoff or state transition functions. (See, e.g.,
Mitchell, 1997 for a good introduction the topic.) Q-learning algorithms involve on-line
estimation of an evaluation function, denoted Q(s, a), representing the maximum ex-
pected discounted sum of future payoffs the agent earns from taking action a in state s.
Starting from some random initialization of values, estimation of the Q function oc-
curs in real-time using the history of states and payoffs earned by the agent from action
choices in those states. To determine the action chosen, a probabilistic choice rule is
used: actions with higher Q-values for the given state s and the current approximation
of the Q-function, are more likely to be chosen than actions with lower Q-values. Thus,
the main difference between Q-learning and the reinforcement-learning models stud-
ied by economists is that Q-learners are learning an evaluation function mapping from
states to actions, analogous to the policy function of dynamic programming. An advan-
tage of Q-learning over reinforcement learning algorithms studied by economists is that
convergence results for Q-learning can be proved under certain assumptions, e.g. for
simple Markov-decision processes. Surprisingly, the predictions of Q-learning models
have yet to be compared with data from controlled laboratory experiments with human
subjects—a good topic for future research.

3.2. Belief-based learning

The primary difference between belief-based learning algorithms and reinforcement
learning algorithms is that in belief-learning models, players recognize they are play-
ing a game or participating in a market with other players, and form beliefs about the
likely play of these other players. Their choice of strategy is then a best response to
their beliefs. By contrast, reinforcement learners do not form beliefs about other play-
ers and need not even realize that they are playing a game or participating in a market
with others. Belief-based learning models range from naive, Cournot-type learning to
slightly more sophisticated “fictitious play,” to fully rational, Bayesian learning. Here
we discuss the first two types of belief learning models.

Fictitious play was proposed by Brown (1951) as a model of how players form beliefs
and best respond to them in two-person zero sum games. Fictitious play was originally
proposed as a means of determining the value of a game; indeed, Robinson (1951) shows
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that fictitious play converges to equilibrium in 2 × 2 zero sum games, though Shapley
shows via a counterexample that this result does not hold in more general games. Sub-
sequently, fictitious play has come to serve as a model of boundedly rational learning:
players form beliefs about their opponents based on the historical frequency of their
opponent’s actions choices and play myopic best responses to these beliefs; the best
responses are myopic because agents do not anticipate that their opponent is behaving
similarly toward them.

Cheung and Friedman (1997) propose a one-parameter class of learning rules that
yields Cournot and fictitious play learning as special cases and thus serves to com-
pactly illustrate the main difference between the two approaches. They suppose there
are i = 1, 2, . . . , N players, each of whom chooses an action ai from the set of possible
actions, A, in each period. Player i’s payoff function is π(ai, s

−i ), where s−i is a state
vector representing the distribution of action choices chosen by all of i’s opponents. It
is assumed that each player i discounts past states using a constant discount factor, γi ,
and possesses some initial prior, s−i (1). Player i’s belief about the state that will prevail
in periods t = 1, 2, . . . is given by:

ŝ−i (t + 1) = s−i (t) +∑t−1
k=1 γ k

i s−i (t − k)

1 +∑t−1
k=1 γ k

i

.

Cournot (naive) belief learning results from setting γi = 0 for all i; in this case,
players hold the naive belief that ŝ−i (t + 1) = s−i (t). Fictitious play belief learning
results from setting γi = 1 for all i; in this case, players’ beliefs about the current state
are simply the average of all past observed states. Weighted average, adaptive belief
learning results from setting 0 < γi < 1.14 Given beliefs, a player’s decision is to
choose ai ∈ A so as to maximize his expected payoff (i.e., maxai∈A π(ai, ŝ

−i )).
Consider by way of illustration, the class of 2 player, binary choice games that have

been widely studied in the experimental literature. Let the 2 × 2 payoff matrix be given
by M = (mij ), and let us assign a ‘1’ to the choice of action 1 and a ‘0’ to the choice
of action 2. With a single opponent per period, s−i (t) ∈ {0, 1} and ŝ−i (t) ∈ [0, 1]
represents player i’s belief about the likelihood that his opponent will play action 1 in
period t .15 Player i evaluates the expected payoff differential from choosing action 1
over action 2:

ri1 = R
(
ŝ−i (t)

) = (1,−1)M
(
ŝ−i (t), 1 − ŝ−i (t)

)′
.

A deterministic best response in the binary choice game is to choose action 1 if
R(ŝ−i (t)) > 0 and to choose action 2 if R(ŝ−i (t)) < 0. Some kind of tie-breaking
rule is needed for the special case where R(ŝ−i (t)) = 0. As Fudenberg and Levine

14 Other, less plausible possibilities include γ > 1, so that the past is given more weight than the present and
γi < 0, which implies cycling.
15 More generally, if player i faces up to n � N − 1 opponents in a binary action game, then s−i (t) =
n−1 ∑n

j=1 I (aj ), where I (j) = 1 if aj = 1 and I (aj ) = 0 otherwise.
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(1998) note, fictitious play (γ = 1) is a form of Bayesian learning in the special case
where a player’s prior beliefs over the distribution of opponent strategies is Dirichlet.

As was the case under reinforcement learning, researchers examining the predictions
of Cournot or fictitious play belief learning have added some kind of noise to the de-
terministic best response. Boylan and El-Gamal (1993) propose that agents play the
deterministic best response with probability 1 − ε, and any of the available actions
a ∈ A with probability ε/A.

Fudenberg and Levine (1998) propose a stochastic approximation to deterministic
fictitious play—smooth fictitious play—which can be implemented, as in Cheung and
Friedman (1997), through the use of the logistic function:

pij (t) = 1

1 + e−xi (t)
, where xi(t) = αi + βirij (t),

where αi is an individual specific fixed effect indicating individual i’s bias for action
j (αi = 0 reveals an unbiased choice) and βi representing the sensitivity of choices to
expected payoff differentials.

These stochastic versions of fictitious play have several advantages over deterministic
fictitious play. First, they do not imply that behavior switches dramatically with small
changes in the data agents use to form beliefs. Second, insisting that strategies remain
probabilistic has certain advantages, e.g., when agents have achieved near convergence
to a mixed strategy equilibrium and need to keep their opponent guessing even though
the differences in utility from the various actions may be quite small. (See Fudenberg
and Levine, 1998 for a further discussion.)

Boylan and El-Gamal (1993) use a Bayesian approach to assess the likelihood that
behavior in 9 different matrix game experiments (conducted by other researchers) is
consistent with either the noisy-Cournot or the noisy-fictitious play hypothesis. They
find that for some games, the Cournot belief hypothesis is favored while for other games
the fictitious play hypothesis is favored. Their over all assessment of the relative validity
of the two learning hypotheses is that fictitious play describes the experimental data
better than Cournot learning.

Cheung and Friedman (1997) estimate their three parameter model (α, β, γ ) on data
from several different bimatrix games. Median estimates of α, β and γ are all signifi-
cantly positive; the finding that γ > 0 rules out the Cournot belief hypothesis. Further
they report they can reject the hypothesis that γ = 1 (fictitious play). Indeed, their esti-
mates of γ always lie between 0 and 1 indicating that subjects’ belief updating process
is neither Cournot or fictitious play, but is instead approximated best by some adaptive
intermediate case.

In addition to asking which belief-based learning model best predicts experimental
data, one can also explore the empirical validity of the belief formation process as-
sociated with these belief-based models. This can be simply accomplished by asking
subjects to state, prior to play of the game, their beliefs about their opponent’s play and
comparing these stated beliefs with those predicted by belief-based learning models.
Nyarko and Schotter (2002) have carried out such an exercise in a simple 2 × 2 ma-
trix game where the unique Nash equilibrium prediction is in mixed strategies. The two
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Figure 7. Stated versus fictitious play beliefs of a typical subject in Nyarko and Schotter’s experiment. Source:
Nyarko and Schotter (2002, fig. 2).

strategies were labeled Green and Red, and the equilibrium calls on both players to play
Green (Red) with probability .4 (.6). Nyarko and Schotter asked subjects to state the
probability with which they thought their opponent would play Green prior to the play
of each round. Subjects’ compensation was determined in part by the accuracy of their
stated beliefs and in part by the payoffs they received from playing the game.

Figure 7 plots stated beliefs against those predicted by fictitious play for a “typical
subject” in Nyarko and Schotter’s experiment. As is apparent, the variance in subject
beliefs is much greater than predicted by fictitious play, and the differences do not de-
crease with experience. A similar difference is found in a comparison of the subjects’
beliefs with Cournot beliefs. Nyarko and Schotter further conclude that best responses
to subjects’ stated beliefs provide a better account of the path of actions chosen by sub-
jects than does reinforcement or a hybrid belief-reinforcement model discussed below.
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This evidence suggests both that subjects are following some kind of belief-learning
process and that a good model of that belief formation process has yet to be developed.

Belief-based learning models also make strong predictions regarding equilibrium
selection in environments with multiple, Pareto rankable equilibria. Essentially, belief-
based models predict that if the initial conditions lie in the domain of attraction of a
particular equilibria under the belief learning dynamic, then, with experience, agents
will learn over time to coordinate on that equilibrium, regardless of its efficiency. This
hypothesis has been experimentally tested by Van Huyck et al. (1997) and Battalio et
al. (2001) in the context of simple coordination games where the domain of attraction
of the two symmetric pure strategy equilibria is defined by the best response separatrix.
Van Huyck et al. (1997) show that both Cournot and fictitious play learning dynamics
predict different equilibrium outcomes depending on initial conditions in a median ef-
fort game (involving strategic complementarities), and their experimental findings are
remarkably accurate on this score. If the initial condition (median effort) lies in the do-
main of attraction of the unique, payoff-dominant equilibrium, subjects subsequently
coordinate on that equilibrium, otherwise they coordinate on the other symmetric Nash
equilibrium. As Van Huyck et al. point out, this behavior is very different from deduc-
tive equilibrium selection principles, which might involve, for instance, calculation of
all equilibria and selection of the payoff dominant one.

The use of belief-based learning models by economists is not limited to normal form
games. Varieties of belief-based learning models have also been used to study bid and
ask behavior in the double auction.16 Gjerstad and Dickhaut (1998) provide a partic-
ularly elegant characterization of the DA and propose heuristic rules by which buyers
and sellers assess and update the probability that their bids or asks will be accepted,
given market history. Using these beliefs together with private information on valua-
tions and costs, individual buyers or sellers propose bids or asks that maximize their
(myopic) expected surplus. The main parameter in their model is the length of memory
that players use in calculating probabilities. Using a stricter convergence criterion than
Gode and Sunder adopt, Gjerstad and Dickhaut show via simulations that their heuristic
belief-learning model can more reliably achieve convergence to competitive equilibrium
than Gode and Sunder’s ZI-C model, and the belief-learning model provides a better fit
to the aggregate human subject data as well. Indeed, in their chapter in this handbook,
Mackie-Mason and Wellman (2006) argue that this heuristic belief-learning model rep-
resents the best agent-based model of the DA. Still, the fit of this belief-learning model
to individual human subject behavior remains to be examined.

Belief-based learning models are less common in the agent-based literature than are
reinforcement learning models, perhaps for the simple reason that belief-based models
require that agents possess more memory (e.g. the histories of their opponents). Still,
some versions of belief-based learning can be found see, e.g. Kandori et al. (1993),
Young (1993, 1998); naive Cournot best response behavior is also found see, e.g. Ellison
(1993) or Morris (2000).

16 Early efforts include Friedman (1991) and Easley and Ledyard (1993).
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3.3. Comparisons of reinforcement and belief-based learning

A large literature is devoted to testing whether simple reinforcement or more compli-
cated belief-based learning algorithms better characterize experimental data from a wide
variety of different games. In addition to the papers of Roth and Erev and Cheung and
Friedman mentioned above, other papers comparing versions of these two approaches
to learning include Mookherjee and Sopher (1994, 1997), Camerer and Ho (1999),
Feltovich (2000), Salmon (2001), Blume et al. (2002), Stahl (1999) and Haruvy and
Stahl (2004) among others. In making these comparisons, researchers have adopted
some kind of goodness-of-fit metric or made use of an econometric estimator to assess
the fit of various candidate learning models to experimental data.

The findings from this literature are varied, but several conclusions appear to have
wide support. First, the evidence is very strong that either reinforcement or belief-based
learning models are better predictors of human subject behavior than are the static Nash
equilibrium point predictions. This is strong evidence in favor of the bottom-up, in-
ductive reasoning approaches used by ACE researchers as opposed to the top-down,
forward-looking, deductive reasoning of fully rational players that gives rise to those
equilibrium point predictions. Second, in the simple games that experimentalists have
studied, reinforcement and belief-based learning models do not yield predictions that
are all that distinct from one another and so identifying which rule performs well across
a variety of different games leads to murky outcomes that appear sensitive to various
particulars of the datasets or games examined (Feltovich, 2000; Salmon, 2001). Given
the lack of a clear bias in favor of reinforcement or belief-based approaches over a wide
variety of games, a natural approach is to adopt a hybrid model that allows for both
reinforcement and belief-based learning as special cases, as well as mixtures of both.
The hybrid modelling approach is taken e.g., by Camerer and Ho (1999), and discussed
in Brenner’s (Brenner, 2006) chapter. While this approach has had some success in
explaining data from human subject experiments (see Camerer, 2003 for an extensive
and detailed assessment), the additional complexity of such models, e.g., more parame-
ters to calibrate, may make this approach less appealing to ACE researchers.17 Third,
there is some evidence that if subjects’ information is restricted to their own histories
of play, that reinforcement learning models perform slightly better than belief-based
learning models that use data on opponent’s histories that was unavailable to subjects.
Analogously, in environments where data on opponent’s histories was made available,
players appear to condition their expectations, in part, on those histories, in line with
the predictions of belief-based models (Blume et al., 2002). These findings are not so
surprising, and, indeed, simply confirm that players use histories to form expectations.
Finally, there is some evidence that the complexity of the game, the manner in which
players are matched and the length of play are all important factors in the accuracy of
learning models in predicting the play of human subjects.

17 See, however, a simpler, one-parameter version of their model given in Ho et al. (2002).
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On the latter point, much of the observed differences in the two approaches to mod-
eling learning may be tied up with the relatively small periods of time over which
individual human subject experiments are conducted. While experimentalists often give
their subjects repeated experience with a game or decision, concerns about subject bore-
dom or the salience of participation payments severely restrict the length of the time
series that can be generated in the laboratory for any individual subject. By contrast,
ACE researchers do not feel bound by such considerations, and think nothing of sim-
ulating their models out for very long periods of time. Asymptotically, the behavior of
reinforcement and belief-based models may not be all that different. Hopkins (2002)
shows that both reinforcement learning and stochastic fictitious play can be viewed
as noisy versions of replicator dynamics (discussed later in Section 4.1), and that the
asymptotic predictions of these two models may be the same; roughly speaking if an
equilibrium is locally stable under stochastic fictitious play, then the same holds true
under reinforcement learning. Duffy and Hopkins (2005) conduct experiments with a
longer than typical number of repetitions under various information conditions in an
effort to test this prediction and find that it has some, qualified support. An implication
of these findings for ACE researchers is that the kind of learning rule that agents are
endowed with may not be of such great importance if the research interest lies in the
long-run behavior of the agent-based system.

3.4. Summary

Unlike ZI agent models, reinforcement and belief-based learning models presume that
agents have some memory. These models of inductive reasoning have been primarily
studied in the context of simple two player games. Reinforcement learners condition
their actions on their own histories of play and abide by the principle that actions that
have yielded relatively high (low) payoffs in the past are more (less) likely to be played
in subsequent periods. Belief-based learning models assume that players have history
dependent beliefs over the actions their opponents are likely to play, and they choose
actions that are myopic best responses to these beliefs. While there is no guarantee that
either type of learning model converges to an equilibrium, these models have neverthe-
less proven useful in tracking the behavior of human subjects in controlled laboratory
settings.

Reinforcement learning models have been widely used in the agent-based literature,
perhaps for the simple reason that they require only information on an individual’s own
history (payoffs and actions). In complex, multi-agent settings, this parsimony of infor-
mation may be an important consideration in the modeling of agent learning. On the
other hand, in settings with just a few agents, and especially in settings where agents
interact with one another repeatedly, a belief-based learning approach may be more ap-
propriate. Indeed, the available experimental evidence suggests that agents do condition
their actions on both their own history of play and, when available, on information about
the play of their opponents. However, the manner in which they do this does not appear
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to be strictly consistent with either reinforcement or belief-based learning models. As-
ymptotically, there may be little difference between the two approaches.

4. Evolutionary algorithms as models of agent behavior

In addition to directed random (ZI-agent) searches and individual learning approaches,
agent-based researchers have used a variety of different evolutionary algorithms to
characterize the behavior of populations of heterogenous, interacting, boundedly ratio-
nal agents facing various economic decisions. Examples include replicator dynamics,
genetic algorithms, classifier systems and genetic programming. These evolutionary
algorithms differ from the learning processes considered so far in several respects.
First, evolutionary algorithms were designed to mimic naturally occurring, biological
processes. Not surprisingly, these algorithms can be difficult for social scientists to in-
terpret and for experimentalists to test in the laboratory. Second, these methods are
population-based, which is to say that the fitness of a particular individual or strategy
(the distinction becomes blurred in this literature) is based on its performance relative
to a certain population of individuals (or strategies). Thus, these algorithms presume
that fitness values across individuals/strategies are readily and immediately available
for comparison purposes; in this regard, they can be viewed as the most complex class
of algorithms (or least decentralized) in the set of approaches considered in this chapter.
Third, as with ZI or reinforcement learning, evolutionary algorithms are not belief-
based; players are not aware that they are playing a game against other players and
do not act strategically in any way. Fourth, some evolutionary algorithms, e.g., genetic
algorithms and genetic programming, are employed in environments where strategies
or equilibrium policy functions cannot be characterized analytically. This (alternative)
use of evolutionary algorithms is owing to the performance of these algorithms as func-
tion optimizers in complex landscapes; indeed, genetic algorithms were developed for
precisely this purpose. Finally, evolutionary algorithms may or may not be well-suited
to modeling economic decision-making. Evolution is often a slow process and so algo-
rithms that mimic this process tend to work best on an unchanging landscape. However,
economic systems are often modeled as state dependent, and may also be subject to
temporary shocks or more permanent structural shifts. In such environments, the perfor-
mance of evolutionary algorithms may be degraded relative to the less volatile (natural)
landscapes for which they were developed.

Despite these potential problems and shortcomings, evolutionary algorithms are
widely used by agent-based modelers. By contrast with the other agent-based ap-
proaches we have discussed, evolutionary algorithms have not been developed or
adapted to explain data from economic decision-making experiments. For the most part,
the opposite has occurred; agent-based researchers have sought to validate the predic-
tions of evolutionary algorithms by conducting experiments with human subjects placed
in the same environments. In certain cases, the experimental environment has been mod-
ified to better approximate the evolutionary environment! These comparisons have met
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with some success, but as I will argue, some difficulties of interpretation remain, for
example, the question of the appropriate time-frame for comparisons. It may simply be
that evolutionary algorithms cannot be adequately tested using human subject experi-
ments.

4.1. Replicator dynamics

Replicator dynamics comprise the simplest class of evolutionary algorithms that econo-
mists have used to model the behavior of populations of players. See Hofbauer and
Sigmund (1988, 1998) for a complete treatment. These models presume that the set of
strategies (or phenotypes) does not evolve, and that reproduction is asexual. The as-
sumption of a small strategy space is most likely to be satisfied in simple games, and
so it is not surprising that replicator dynamics have mainly been employed by game
theorists.

To understand how replicator dynamics work, consider a game with N strategies, and
let s(t) ≡ (si(t))i=1,2,...,N be a vector representing the proportions of the N strategies
in the population at time t ;

∑
i si(t) = 1 for all t . The N ×N payoff matrix M = (mij )

here represents the payoff earned by each strategy in the population when matched
against every other strategy, including itself. For illustration purposes, we focus here
in the simplest case where M is symmetric, known as the one-population model. The
fitness of strategy i at time t is given by Mis(t), where Mi denotes the row of the payoff
matrix corresponding to strategy i. The idea of assessing how a strategy fares against the
entire population of strategies is what Maynard Smith termed “playing the field.” The
deterministic replicator dynamic posits that strategy i’s representation in the population
be updated as follows:

si(t + 1) = si(t)Mis(t)

s′(t)Ms(t)
,

where the denominator can be interpreted as the average fitness level in the entire pop-
ulation of strategies, including strategy i. The idea of the replicator dynamic is that
strategies with above average fitness see their proportion in the population increase
while those with below average fitness see their proportion in the population decrease.
Further, if ŝ is a Nash equilibrium of the symmetric game M , then it is also a fixed point
of the replicator dynamic. In the deterministic version of the replicator dynamic, the
proportion of certain strategies can go to zero, i.e., extinction is possible. A stochastic
version of replicator dynamics due to Foster and Young (1990) eliminates extinction,
and can have quite different limiting dynamics than the deterministic version.

Friedman (1996) and Cheung and Friedman (1998) have examined the predictions
of replicator dynamics using data from human subject experiments. Friedman stud-
ies the predictions of the replicator dynamic for equilibrium stability, and Cheung and
Friedman compare replicator dynamic predictions with that of the individual, belief-
based, stochastic fictitious play learning algorithm. Most of the games they study are
two player, binary choice games with a unique Nash equilibrium in either mixed or
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pure strategies. In such games, the state, s(t)′ = (s1(t)), (1 − s1(t)), and the replicator
dynamic for strategy s1 is written as:

�s1(t + 1)

s1(t)
= β

[M1s(t) − s(t)′Ms(t)]
s(t)′Ms(t)

,

where β > 0 represents an adjustment parameter, and �s1(t + 1) = s1(t + 1) − s1(t).
Cheung and Friedman omit the denominator on the right hand side, s(t)′Ms(t), which
serves as a normalization device ensuring that proportions sum up to one; in the binary
choice case this device is unnecessary, and furthermore, Cheung and Friedman report
that the unnormalized version fits the data better.

In their experimental design, these authors make some accommodation for the “play-
ing the field” nature of the replicator dynamic; in their “mean matching” treatment,
each player is matched against all other players, receiving the average payoff from his
choice of action against that of all others. The other matching treatment is the standard,
random pairwise matching protocol. While game theory would treat these two environ-
ments very differently, with the first corresponding to an n-player repeated game and
the second to a two-player, one-shot game, the only difference under the replicator dy-
namic lies in the greater variance in payoffs that players receive in the random pairwise
matching protocol. Friedman and Cheung and Friedman are careful to address issues
concerning group size, the length of play of a single game, and of the information that
players receive, all of which are important to approximating the environment for which
the replicator dynamic was devised.

Cheung and Friedman (1998) use experimental data from the two binary choice
games they study to estimate the linear equation:

�s1(t + 1)/s1(t) = α + β
[
M1s(t) − s(t)′Ms(t)

]+ γ dt + ε,

where dt = I (t)[M1s(t) − s(t)′Ms(t)], I (t) = 1 if the mean matching treatment
was used, and ε is an error term. They report that α is typically significantly differ-
ent from zero, implying a persistent bias from the pure replicator dynamic, and that
β is significantly positive as is γ . The latter finding suggests that the mean matching
protocol aids in the speed of adjustment relative to random pairings. In a head-to-head
comparison of the explanatory power of the replicator dynamic versus an individual, be-
lief learning model—the three parameter weighted fictitious play model of Cheung and
Friedman (1997) described in Section 3.2—Cheung and Friedman report that over the
two games they study, the belief learning model outperforms the replicator dynamic,
where performance is measured by either the root mean squared errors or the mean
absolute deviations computed from the three parameter belief-learning or replicator dy-
namic model.

This finding suggests that there is some value to thinking of human players as playing
best responses to beliefs about their opponents’ actions rather than thinking of them
as playing a game against nature. On the other hand, it is less clear that Cheung and
Friedman have successfully implemented the evolutionary game environment germane
to the use of replicator dynamics or that such an environment could be implemented
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in the laboratory, where budget and time constraints limit the number of subjects and
replications of a treatment that are possible. Further work reconciling the replicator
dynamic with human learning processes is needed.

4.2. Genetic algorithms

Genetic algorithms (GAs) have been widely used by economists to model learning by
populations of heterogenous, adaptive agents especially following Sargent’s (Sargent,
1993) encouraging assessment and the subsequent use of GAs by his student, Jasmina
Arifovic. These algorithms differ from replicator dynamics in that they allow for the
development of new strategies or decisions that may not have been included in the
initial population. As such, they are efficient sampling methods most appropriate to
large decision or strategy spaces.

Indeed, genetic algorithms, originally developed by Holland (1975), are stochastic,
directed search algorithms based on principles of population biology.18 These algo-
rithms have been demonstrated to perform well in large or “rugged” search spaces where
classical methods, e.g., grid search or gradient descent, are either inefficient or suscepti-
ble to getting stuck at local optima. While there is wide variation in the specific details of
genetic algorithms, there are some general principles and procedures that are regarded
as relatively standard. First, the researcher must specify the objective function of the
genetic algorithm search, the parameter values that will be used to maximize (or mini-
mize) that objective, and the range of admissible parameter values allowed in the search
for an optimum. Second, vectors of parameters, representing candidate solutions are
encoded as strings of finite length L. The strings are intended to mimic chromosomes,
with the individual elements of a string representing genes; hence the name genetic al-
gorithm. In the earliest implementation of genetic algorithms (e.g., Goldberg, 1989),
parameters were encoded using the binary {0, 1} alphabet, and much of the theory of
genetic algorithms as function optimizers is developed for binary encodings. However,
more recently, researchers have made use of real-valued, character, or tree encodings
in place of traditional binary encodings. Researchers typically work with a population
of strings of some fixed size, N . Third, the performance of each string in the popula-
tion is evaluated using the objective criterion—this is the string’s fitness. Fourth, a new
generation of N strings is determined using operations that mimic natural selection and
naturally occurring biological processes.

The first step in a genetic algorithm, known as selection, is to randomly select N

strings from the existing population in such a way that the fitness of the N randomly se-
lected strings is on average higher than the average fitness of the population from which
they were chosen. This selection operation can be accomplished in many ways, includ-
ing the biased roulette wheel selection mechanism originally proposed by Holland, in

18 For a complete treatment of genetic algorithms see, e.g., Goldberg (1989) or Michalewicz (1996). Dawid
(1999a) provides a thorough discussion of genetic algorithms as applied to economic problems. See also
Sargent (1993) and Judd (1998).
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g = 0
initialize population of N strings, P(0)
while tolerance criterion remains unmet or g < G

evaluate fitness of strings in P(g)

select N strings for P(g + 1) based on relative fitness
apply crossover to selected strings
apply mutation to recombined strings
evaluate tolerance criterion
g = g + 1
end while

Figure 8. Pseudo-code for a genetic algorithm.

which the likelihood of selecting a string is proportional to its relative population-wide
fitness or other methods e.g. binary tournaments or rank order lists. The selection oper-
ation is intended to mimic Darwinian survival-of-the-fittest. Once a new set of N strings
has been selected, these strings undergo two main biological operations that mimic ge-
netic inheritance. The first, crossover, typically involves randomly pairing strings and,
with some probability, pc, randomly cutting the two strings at one or more points and
swapping elements. Once crossover is applied to all strings, a second operator, mutation
is applied, which involves randomly changing each element in a string with a (small)
probability pm, to some other value; in the case of binary strings, a ‘0’ is flipped to a
‘1’ and vice versa. After these operations are complete, the new generation of N strings
is evaluated in fitness terms and the process of choosing a new generation begins again.
The genetic algorithm is terminated after a set number of generations, G, or after some
tolerance criterion based on the objective function has been satisfied. Some pseudo-code
for a genetic algorithm is given in Figure 8.

The main theoretical result for genetic algorithms is known as the schema theorem
(Holland, 1975). The idea of a schema can be understood by the addition of a don’t care
character, *, to the binary alphabet that is typically used to encode strings. A schema
is a template characterizing a set of chromosomes. For example, the schema of length
5, (*101*) characterizes the set of chromosomes {(11011), (11010), (01011), (11010)}.
The order of a schema is the number of fixed positions; e.g., the order of the schema in
our example is 3. The schema theorem (proved, e.g. in Goldberg, 1989) states that low-
order, above-average (below-average) schema appear exponentially more often (less
often) in subsequent generations of a genetic algorithm. This theorem follows directly
from the operation of fitness-proportional selection. These low-order schema are some-
times referred to as “building blocks.” Crossover plays the role of introducing new
schemata and mutation also contributes to variability while at the same time preventing
premature convergence to local optima.

How are the genetic operators to be interpreted when applied to economic systems?
Several authors, e.g., Arifovic (1996), Bullard and Duffy (1998), Dawid (1999a), Riech-
mann (1999, 2001a, 2001b), have offered interpretations. One can think of the individual
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strings as representing the strategies/decisions of individual agents, so that the GA is
made up of many interacting agents. Alternatively, one can imagine there is a single
agent with the individual strings of the GA representing different decisions/strategies
that agent might adopt. The selection operation is perhaps the easiest to defend; this
operator just insures that agents or decisions that have worked well in the past are more
likely to be chosen in the future while decisions that have fared poorly are more likely
to be discarded. This probabilistic choice of decisions based on relative payoff or fitness
success is similar to stochastic reinforcement learning or stochastic replicator dynamics.
The turnover of population need not be interpreted so literally as one of birth and death;
instead it can be interpreted as a turnover of decisions or ideas among players who are
long-lived. The crossover/recombination operator is easiest to interpret if the popula-
tion of strings is viewed as representing individual agents. In that case, crossover can be
thought of as communication between pairs of agents, who exchange bits and piece of
ideas, though the population as a whole retains core principles (low-order schema) that
have yielded high payoffs in the past. Finally, the mutation operator can be viewed as
representing trembles or experimentation.

A further issue concerns the choice of GA parameters: the number of strings, N , the
string length, the mutation and crossover parameters, pc, pm, etc. Here, the practice has
been to adopt parameterizations that computer scientists have found to perform well on
test suites of difficult static optimization problems. These optimization problems are not
ones that are so applicable to the dynamic settings studied by economists, and so further
research into this issue would be of some value.

What about the external validity of simulations using genetic algorithms? Arifovic
(1994) was the first to directly compare simulations of a genetic algorithm with the
behavior of human subjects in a controlled laboratory experiment.19 The economic en-
vironment studied was a textbook version of Ezekiel’s (Ezekiel, 1938) “Cobweb” model
of demand and supply for a single good. In this model, market demand in period t is a
decreasing, linear function of current period price, pt , while market supply in period t

is an increasing, linear function of the market price that suppliers expected in period
t − 1 would prevail in period t , Et−1pt ; the latter assumption captures the notion that
it takes time (one-period) to produce the good, and makes the model dynamic. Arifovic
followed experimental researchers, Carlson (1968) and Wellford (1989), who adopted
Ezekiel’s assumption of naive and homogeneous expectations, i.e. Et−1pt = pt−1 as a
benchmark assumption for expectation formation; in that case, the equilibrium is stable
(unstable) if the ratio of the slope of the supply curve to the slope of the demand curve,
in absolute value, is less than (greater than) unity. Bray and Savin (1986) have shown in
a stochastic version of the linear cobweb model that adaptive learners, running regres-
sions of prices on past prices, can learn the equilibrium price level in the stable case but

19 Similarly, Axelrod (1987) sought to determine whether the human-submitted ‘tit-for-tat’ strategy that won
his (Axelrod, 1984) prisoner’s dilemma tournament would emerge in a simulation exercise that used a genetic
algorithm to evolve strategies (it did).
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not in the unstable case.20 By contrast, a main finding of the experimental studies was
that groups of subjects generally converged to a neighborhood of the unique equilibrium
regardless of whether that equilibrium was stable or unstable under the naive expecta-
tions assumption. However, the variance of quantities or prices was much greater and
more persistent in the unstable case as compared with the stable case.

Arifovic represented firms (suppliers) in two ways. In the single-population repre-
sentation, each firm was represented as one of N = 30 strings in a single population.
In the multiple population representation, each of the m firms is represented by a dif-
ferent population of 30 strings. In both cases, each string in a population represents a
decision as to how much a firm might produce in the current period, qi(t) ∈ [0, q̄],
absent knowledge of the market price that will prevail. This decision was encoded as a
string, of length 30, using a binary alphabet; initial ‘bit’ values were randomly deter-
mined. The fitness criterion used was the firm’s current period profit; to evaluate fitness,
strings had to be decoded to real quantities. In addition to using the standard genetic al-
gorithm operations of selection, crossover and mutation on the binary strings, Arifovic
adopted a fourth operator, which amounted to an augmented, elitist selection criterion
which Arifovic called “election.” Following crossover and mutation, which yields two
new strings from two parent strings, the fitness of the new, offspring strings is evaluated
and compared with the fitness of the parent strings; of this group of four strings, the two
strings with the highest fitness values are allowed to enter the next generation of candi-
date solutions. This election operator simply allows the genetic algorithm to converge,
asymptotically to a solution; without it, mutations would lead to persistent heterogene-
ity in the string population in the neighborhood of a solution. In the case of the single
population representation, Arifovic reported the average value of q(t) in the population
of 30 strings; in the case of the multiple population simulation, Arifovic imagined that
each firm randomly chose one of its strings to determine its quantity decision in each pe-
riod; she then reported the average of these m quantity decisions. In certain simulations,
the model parameters were chosen to be the same as in one of Wellford’s treatments,
including the number of periods, 30, and the number of firms, m = 5.

Figure 9 shows results for the unstable parameter case; the left panel shows the
average quantity produced (with a 1-standard deviation band) for the human subject ex-
periments and the right panel shows the same for a simulation of the multiple-population
version of the genetic algorithm over the same number of periods. Both the human sub-
jects and the genetic algorithm converges to a neighborhood of the equilibrium quantity
of 14 though convergence takes longer and is more volatile in this ‘unstable case’ than
in the stable case (not shown). However, the average quantity in the GA simulation ap-
pears to get very close to the equilibrium prediction beginning after period 10 while the
same cannot be said of the experimental data. However, consistent with the experimen-
tal evidence, Arifovic is able to reject the null of no difference between the volatility

20 Hommes (1994) studies the more general case where demand is linear and supply is nonlinear. He provides
conditions under which adaptive learning dynamics converge to limit cycles or chaos in the unstable case.
Sonnemans et al. (2004) provide experimental evidence in support of Hommes’ predictions.
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Figure 9. Average quantity in the Cobweb model, unstable case (plus/minus one st. dev.). Left panel: human subject data, right panel: multiple-population GA
simulation. Source: Arifovic (1994).



994 J. Duffy

of prices in the stable and unstable cases using the simulation data. These findings pro-
vide some support for the reasonableness of genetic algorithms as models of adaptive
processes.

Several papers explore GA learning in general equilibrium, overlapping generation
models of money, and compare the results with experimental findings. Arifovic (1996)
studies exchange rate volatility in a two-country, two-currency, two-period overlap-
ping generations model due to Kareken and Wallace (1981). Details of this model are
discussed in LeBaron’s (LeBaron, 2006) chapter. Arifovic’s main conclusion is that,
counter to the theoretical prediction derived under the rational expectations assumption,
under genetic algorithm learning, the exchange rate displays persistent volatility, which
is due to the persistence of mutation and the election operator.

By contrast, Arifovic (1995) shows that in a single country model, an equilibrium
with valued fiat currency and low inflation is asymptotically stable under GA learning
with persistent mutation and the election operator in place. The selection by the GA of
the stationary, low inflation equilibrium, rather than another high inflation, stationary
equilibrium is consistent with the laboratory findings of Marimon and Sunder (1993).
Other, homogeneous and non-evolutionary learning algorithms, such as recursive least
squares learning, fail to converge to the same low inflation equilibrium (see, e.g., Marcet
and Sargent, 1989).

In Arifovic’s work, the strings of the GA encode decisions that agents make, e.g.,
how much to consume in the first period. The GA then works to find the optimal de-
cision, given feasibility and budget constraints. In Marimon and Sunder’s (Marimon
and Sunder, 1993, 1994) overlapping generation experiments, subjects were not asked
to make consumption/savings decisions as pilot studies suggested that subjects had a
difficult time solving that kind of intertemporal optimization problem. Instead, Mari-
mon and Sunder asked subjects to provide forecasts of the price level they expected
would prevail in the next period. Given a subject’s forecast, the computer program
solved that subject’s optimal consumption/savings allocation and determined market
clearing prices. Bullard and Duffy (1999) adopted this same learning-how-to-forecast
design in a GA-learning simulation of the environment studied by Arifovic (1995). They
imagine that agents have some belief about how prices in period t + 1 will be related to
prices in period t , and the strings of the GA encode this belief. Given the price forecast,
the program optimally determines each agent’s consumption/savings decision, along
with market clearing prices. Bullard and Duffy (1999) show that this learning-how-to-
forecast implementation of GA learning results in findings that are consistent with the
experimental evidence of Marimon and Sunder (1994) and also with Arifovic (1995)’s
learning-how-to-optimize implementation of GA learning.

Several papers use GAs to understand findings from auction experiments. A difficulty
with auctions is that participants frequently fail to win an item or agree to a transaction,
so that the fitness of strategies may need to be assessed over a longer period of time than
is typical in other applications of GAs.

Andreoni and Miller (1995) use genetic algorithms as a way of studying how close
populations of adaptive agents might come to learn equilibrium bid functions in a vari-
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ety of auction formats: first and second price affiliated-values auctions, first and second
price private-values auctions, and common value auctions. The design of their sim-
ulation experiments is aligned with that of laboratory experiments with paid human
subjects in several dimensions, e.g., the number of bidders in a group and the informa-
tion available to these bidders. However, their 20 simulation runs of 1000 generations
per auction format is more difficult to compare with the 20–30 auctions that human sub-
jects participate in the typical experiment. In Andreoni and Miller’s implementation, the
genetic algorithm is employed to search over two parameters of a general linear bidding
function of the form

b(xi) = βi1xi + βi2ε,

where xi is agent (string) i’s valuation and ε is some distribution parameter that varies
according to the knowledge that agents are assumed to have, e.g., whether valuations
are private-independent, private-affiliated or common. This functional form nests (to an
approximation) all the equilibrium bid functions that are predicted to obtain in the var-
ious auction formats. The binary strings of the GA encode the two parameters, β1 and
β2. For the standard GA implementation, Andreoni and Miller report that the GA sim-
ulations come closest to learning the equilibrium bid functions in the affiliated private
value, first or second price auction formats and have more difficulty achieving the equi-
librium bid functions in the independent-private and common value formats. Consistent
with evidence from human subject experiments, e.g. Cox et al. (1982), Kagel and Levin
(1986), they find violations of revenue equivalence between first- and second-price auc-
tion formats, and they find that smaller groups of 4 rather than 8 bidders are less prone
to the winner’s curse in common value auctions.

Dawid (1999b) examines genetic algorithm learning in a sealed bid, double auction
market. The N buyers’ each have some value, v, from consuming a unit of the single
good while the N sellers’ have some cost, c, of producing a unit of the good, and 1 >

v > c > 0. The strings of the GA encode the buyers’ bids and the sellers’ asks. In each
period, buyer and sellers are randomly paired. If a buyer’s bid, pb, exceeds a sellers’
ask, pa , a transaction occurs at price p = (pa +pb)/2; otherwise no transaction occurs.
Profits are determined in the usual way, v − p for buyers and p − c for sellers, and
the fitness of buyer/seller rules and application of genetic operators is assessed every
m periods. Dawid shows analytically that the only locally stable equilibria under GA
dynamics are those where all buyers (sellers) submit the same bid (ask) in the interval
[v, c]. In 50 simulation runs where v = 1 and c = 0, he reports that the most common
outcome is a single price equilibrium in a small neighborhood of .5. Interestingly, this
finding is quite similar to that observed in an experiment conducted by Valley et al.
(2002), where values of v and c are drawn randomly from [0, 1] and after learning
these values, pairs of players were allowed to communicate with one another prior to
submitting bids/asks. The most common outcome, in cases where gains from trade are
possible (v > c), was for both buyer and seller to name the same price. While this
experimental finding may not be so surprising, the fact that the GA simulation delivers
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this same finding, without any explicit communication between populations of buyers
and sellers, is quite interesting.

Finally, there are several papers comparing GA simulations with experimental find-
ings in labor markets. Pingle and Tesfatsion (2001) examine the impact of varying levels
of non-employment benefits on worker–employer matches and on-the-job cooperation
using data from both human subject experiments and computational experiments that
make use of genetic algorithms. The environment studied is a repeated two-stage game
where in the first stage workers decide whether (and for which employer) to work or
remain unemployed while employers decide whether to accept these offers or keep
a position vacant. At the end of this first stage, unemployed workers and employers
with vacancies receive a fixed non-employment benefit while matched workers and
employers proceed to the second stage, which involves play of a prisoner’s dilemma
game, with strategies labeled ‘shirk’ and ‘don’t shirk.’ The single treatment variable was
the size of the non-employment benefit. The human subject experiments revealed that
increases in the non-employment benefit both decreased the frequency with which re-
lationships formed, and the frequency of mutual cooperation between worker-employer
pairs, though this effect was not monotonic. Further, long-term relationships between
the same worker and employer were rare. The computational labor market had four
times as many workers and employers as the human subject experiment and was simu-
lated for a much longer period of time: 1000 generations. Each generation consisted of
successive trade cycles followed by an evolutionary step that updated strategies; the ge-
netic algorithm operates in the latter stage. A trade cycle consisted of both a matching
process, which utilizes a reinforcement learning algorithm to determine the expected
utility of potential partners, followed by a work-site interaction among matched play-
ers. The work-site interaction was governed by a finite state automaton, and the genetic
algorithm was used to search for potentially better work-site rules in the evolution step.
Among the findings from simulations of this model are that, consistent with the hu-
man subject experiments, the frequency of employment relationships decreases with
increases in the non-employment benefit. On the other hand, by contrast with the human
subject findings, in the computational experiment, nearly all employers and workers end
up in long-term fixed relationships, and either mutual cooperation or mutual defection
becomes the norm, depending on initial conditions. The authors suggest that these dif-
ferences may be owing to differences in the design of the two experiments, in particular
the different number of employers and workers in the computational versus the human
subject experiments appears to have played an important role in the outcomes, though
the different time-frames of analysis may also be a contributing factor.

Ünver (2001a) and Haruvy et al. (2002) use genetic algorithms to model the two-
sided, worker-firm matching process in markets for medical intern and federal law clerks
and compare these results with human subject experiments. These entry-level labor mar-
kets as well as others, have been susceptible to a phenomenon known as unraveling, in
which the date at which firms and workers agree to contracts becomes increasingly
earlier in time relative to the actual start-date of employment leading to possible inef-
ficiencies in matches due to unavailability of relevant information. Some markets have
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sought to address this problem by having centralized clearinghouses that match work-
ers with firms. Ünver studies three centralized matching mechanisms used in British
medical-intern markets. Of these three, two are still in use, though only one of these
two is stable in the Gale and Shapley (1962) sense. Ünver uses a GA to encode and
model the evolution of worker-firm strategies under these three mechanisms. Among
other findings, he shows that the theoretically unstable, “linear programming” matching
protocol may not be susceptible to unraveling under the GA adaptation, which is con-
sistent with the continued use of this mechanism in the field. He is able to corroborate
other findings of two-sided matching experiments conducted by Kagel and Roth (2000)
and Ünver (2001b) that explore the unraveling in the British medical intern markets.

Haruvy et al. (2002) conduct a parallel experiment with human subjects and with
artificial agents modeled using a genetic algorithm with the aim of studying two-sided
matching in the market for federal law clerks. Applicants initially decide whether to
submit applications to judges of varying qualities, and judges may in turn accept of-
fers. The grades of applicants, affecting the payoff from a match, are only fully revealed
later, during a centralized matching process. Matches not made by the end of the first
two periods (years) are, in certain treatments, subject to a centralized match in period 3
using a stable matching protocol. In the ‘idealized-centralized’ treatment, applicants are
not required to submit offers prior to the centralized match in order to participate in it,
while in the coerced-centralized treatment they are required to submit offers prior to the
match. In both cases, offers accepted prior to the centralized match date are binding,
consistent with practice in this market, though in the idealized treatment, binding offers
can be avoided by waiting for the centralized match. In the human subject experiments,
the authors report that many more subjects in the role of applicants and judges wait
for the centralized match under the ‘idealized-centralized’ treatment than do so under
the coerced-centralized treatment, and given the additional information that can be ob-
tained by waiting, welfare is higher in the former treatment than in the latter. In genetic
algorithm simulations, where the strategies of applicants and judges co-evolve, a similar
finding obtains. Haruvy et al. are careful to compare their findings for human subject
experiments over the same time-scale used in the genetic algorithm simulations. They
then carry out the genetic algorithm simulation exercise much further in time, and find
that this difference becomes even more pronounced over time. This seems a reasonable
merger of the two technologies they use to understand these matching markets. As they
observe (p. 3), “the computations will give us some assurance that our experimental
results are not artifacts of slow learning in the laboratory, while experiments will as-
sure us that the behavior produced by the genetic algorithms is in fact similar to human
behavior.”

The findings from all of these studies provide some support for the reasonableness
of genetic algorithms as models of adaptive learning by populations of heterogenous
agents. Genetic algorithms appear best suited for large, complex search spaces where it
is more efficient to sample from the set of possible actions/strategies than to enumerate
all possibilities and consider their relative fitness at every decision step. At the same
time, most of the studies treat the genetic algorithm as a kind of black box generator of
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new-and-improved decisions or strategies, without much regard to the interpretation of
genetic operators, or how they compare with actual human decision-making processes.
Toward this goal, it would be of interest to consider the marginal contribution of each of
the genetic operators in explaining data from human subjects, an exercise akin to adding
additional structure to ZI-algorithms or moving from reinforcement to hypothetical re-
inforcement (belief) learning models.

4.3. Comparisons between genetic algorithm and reinforcement learning

Two papers have compared the performance of genetic algorithm learning and reinforce-
ment learning in terms of explaining data from human subject experiments. Haruvy and
Ünver (2003) study matching behavior in procurement-type markets where the match-
ing decision is consequential to both the seller and the buyer. They are interested in the
question of whether buyers and sellers achieve a stable outcome, á la Gale and Shap-
ley (1962) and if so, whether the stable matching is optimal for the party who initiates
a proposed match (buyers or sellers). As the strategy space in the repeated game they
consider is highly complex, and there are multiple stable outcomes, deductive reason-
ing is not very useful and so they turn to inductive reasoning processes, in particular,
reinforcement learning and genetic algorithm learning, to predict what will happen in
the experiments they conduct with human subjects. Both the reinforcement and genetic
algorithm learning simulations predict that in seller- (buyer-) proposing markets, sellers
(buyers) are most likely to achieve the seller- (buyer-) optimal stable outcome, and this
prediction is consistent with the experimental findings. Aside from the observation that
the two learning models yield the same prediction however, Haruvy and Ünver do not
go into a deeper comparison of the performance of the two learning models.

By contrast, Arifovic and Ledyard (2004) look for a clear winner between reinforce-
ment and genetic algorithm learning in the context of a repeated public good game
that makes use of a Groves–Ledyard allocation mechanism. As the authors point out,
this environment differs from those typically studied by learning researchers in that the
strategy space is continuous. They compare the predictions of an “individual evolu-
tionary learning” model (a GA-without-crossover for each individual’s strategies) with
Roth–Erev-style reinforcement learning and Camerer and Ho’s (Camerer and Ho, 1999)
hybrid reinforcement-belief learning algorithm in terms of the fit of simulations of these
models to the experimental data. To facilitate a comparison, some discretization of
the action space is necessary. They report that for two different ways of discretizing
the strategy space, reinforcement learning fares substantially worse than the other two
learning approaches in that it takes much longer to converge to the Nash equilibrium
than does the human subjects. However, the version of reinforcement learning they use
is not as general as Roth and Erev allow. For instance, there is no forgetting factor nor
is there any spillover in the probability choice updating to nearby strategies. Given the
large strategy space considered, it is not so surprising that the genetic algorithm appears
to perform best for the reasons noted above. However, before concluding in favor of
one approach over others, it would be useful to compare the predictions of evolutionary
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and reinforcement-type learning models on a broad range of games including those with
both continuous and discrete strategy sets.

4.4. Classifier systems

Classifier systems, first proposed by Holland (1986), are inductive, rule-based learn-
ing systems that combine reinforcement-type learning over a set of simple logical rules
called classifiers, with occasional use of a genetic algorithm search for new classifiers.
As with genetic algorithms, there are many variants, but a typical classifier system con-
sists of four parts: 1) a set of if–then decision rules or classifiers, 2) an accounting
system for assessing the strength of classifiers and for apportioning credit, 3) an auction
system for determining which classifiers are invoked and 4) a genetic algorithm for the
introduction of new classifiers. Classifier systems are perhaps best viewed as models of
individual learning, akin to expert systems, while genetic algorithms, as typically mod-
eled are often interpreted as models of population or social learning. As Vriend (2000)
points out, simulations with classifier systems used to model social learning (mimicry)
at the population level can yield outcomes that differ substantially from simulations with
classifier systems used to model learning at the level of individual agents, especially in
environments where strategic considerations come into play.21

The first use of a classifier system (or a genetic algorithm) in an economic application
was due to Marimon et al. (1990), who used a classifier system to model behavior in
Kiyotaki and Wright’s (Kiyotaki and Wright, 1989) model of money as a medium of
exchange. That model has equal numbers of three types of agents who produce either
good 1, 2 or 3, but who desire to consume another good, e.g. type 1 produces good 2,
type 2 produces good 3, and type 3 produces good 1. Each agent may store a single unit
of a good at a time, and the goods have different storage costs, with good 1 being the
least costly to store and good 3 being the most costly to store. Agents receive utility
from consumption of the good they desire in an amount that exceeds the highest stor-
age cost. In each period, agents are randomly paired and decide whether to engage in
trade with their match. Trades must be mutually agreed upon by both parties, in which
case inventories of the two goods are swapped; otherwise, inventories of goods do not
change. Agents earn utility only when they trade for the good they desire; in that case
they immediately produce a new unit of their production good. In every period they in-
cur storage costs based on the type of good they hold in inventory. The optimal trading
strategy for a type 2 or 3 player is a fundamental, cost-reducing pure strategy in which
they agree (refuse) to trade the good they hold in storage for less (more) costly-to-store
goods in route to getting the good they desire to consume. On the other hand, depending
on parameter values, type 1 players may find it optimal to adopt the fundamental strat-
egy, or a speculative strategy in which they trade their production good 2 for the more
costly to store good 3 with the rational expectation that speculating in the more costly
to store good 3 will reduce the time it takes to acquire the good they desire, good 1.

21 For a further discussion of this issue see, e.g., Riechmann (2002) and Arifovic and Maschek (2004).
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In Marimon et al.’s implementation, there are two classifier systems for every agent, a
set of trade and consumption classifiers represented by strings. The trade classifier takes
as input the good an agent has in storage and the good that his match has in storage, and
provides, as output, a decision (or message) of whether to trade or not. The consumption
classifier takes as input the good a player has in storage and provides as output, a deci-
sion (message) of whether or not to consume that good. Each classifier has a strength or
fitness measure associated with it. In each period, the collection of classifiers that satisfy
the current state for an agent, consisting of the good the agent holds in storage and the
good in storage of the matched player, bid a fraction of their current strengths in an auc-
tion that determines which classifier the agent adopts; the highest bidding classifier of
each type is chosen, its bid is deducted from its strength and its decision is implemented.
The bid of the winning exchange classifier in the current period is paid to (added to the
strength of) the previous period’s winning consumption classifier, which determined
the current good the agent holds in storage, while the bid of the winning consumption
classifier is paid to the current period winning exchange classifier, which determine the
good the agent holds in storage. This payment system is what Holland termed a ‘bucket
brigade’ wherein classifiers that are not necessarily active in the current period, but
which were critical for activating classifiers that were active can still earn some share
of credit and see their strengths improve. The current winning consumption classifier
earns the ‘external’ payoff associated with its decision, which depends on whether the
good in storage is the desired good or not. Finally a genetic algorithm is called on, with
some decreasing frequency, to generate new classifiers, with the population of parent
strings being selected from the population of classifiers according to relative strengths.
The set of strings resulting from the genetic operators are assigned the strengths of the
parent strings.

In simulations of this system, Marimon et al. report many interesting findings, but
the main finding is that speculative trading strategies (e.g. by type 1 players) are not
observed in environments where, in equilibrium, they would comprise a unique best
response. Marimon et al. comment on this finding by observing that the behavior of
the artificial agents, modeled using classifier systems, can be very myopic in the begin-
ning, while it may take time for some optimal strategies, such as speculation, to achieve
strengths that will sustain these strategies. They conclude that “the present algorithm
seems defective in that it has too little experimentation to support the speculative equi-
librium even in the long simulations we have run.” 22

Inspired by Marimon et al.’s simulation findings, Duffy and Ochs (1999, 2002) sought
to test the Kiyotaki–Wright model in a laboratory experiment. They made an effort to
provide subjects with all the information relevant to making optimal decisions in the
theoretical environment. Duffy and Ochs sought to induce a stationary infinite horizon,

22 Subsequent applications of classifier systems in economic applications, include Başçi (1999), Beltrametti
et al. (1997) and Vriend (2000). LeBaron’s (LeBaron, 2006) chapter discusses the Santa Fe artificial stock
market (Arthur et al., 1997) which makes use of a classifier system to model traders’ decisions. See Lettau
and Uhlig (1999) for a comparison between classifier/rule learning and dynamic programming.
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as the theory presumes, by having an indefinite end to a sequence of pairwise trad-
ing rounds. Such concerns with implementation of infinite horizons do not typically
concern agent-based modelers, as the artificial agents in their models are not typically
forward-looking, alleviating concerns about backward induction due to end-game ef-
fects. Finally, among the parameterizations they chose was one that was also used by
Marimon et al. (1990). Though Duffy and Ochs had only 8 or 10 agents of each of
the three types, while Marimon et al. had 50, the findings from the human subject ex-
periments were quite similar to those obtained in the artificial agent simulations using
classifier systems. In particular, Duffy and Ochs also find that subjects failed to adopt
speculative trading strategies in environments where such strategies comprise an equi-
librium best response.23

Duffy (2001) considers two alterations of the Kiyotaki–Wright model that might
serve to promote the adoption of speculative strategies. In one version, agents whose
optimal equilibrium strategy calls for speculation are given more encounters with sit-
uations where playing the speculative strategy results in higher expected utility. In the
other, two of the three agent types are constrained to playing the strategies that are op-
timal for them in equilibrium. Duffy adopts a reinforcement learning model which is
similar to the exchange classifier of Marimon et al. (1990), automates the consumption
classifier and gets rid of the genetic algorithm. A similar model was found to provide
a good fit to the experimental data of Duffy and Ochs (1999). Duffy uses this rein-
forcement model to simulate what will happen in the two alternative environments, and
reports that both alternatives speed up the learning of speculative strategies. However,
the adoption of speculative strategies is greater in the second alternative, where two
thirds of the agent types are constrained to playing optimal strategies. He then conducts
an experiment with human subjects designed to test these same alternatives. In the hu-
man subject experiment, the model parameters, the number of agents, and other features
of the environment are kept as similar as possible to that of the simulated environments
to facilitate comparisons. The human subject findings are largely consistent with the
artificial agent findings. Duffy stresses that agent-based modeling exercises of this type
can be a useful tool for experimental design, and at the same time, the results of human
subject experiments might be useful in thinking about how to model the decisions of
artificial agents.

4.5. Genetic programming

Another variant of genetic algorithm learning, known as genetic programming, was de-
veloped by Koza (1992). In genetic programming, the same genetic operators of the
GA are used to search over a population self-executing computer programs represented

23 Brown (1996) conducted an experimental test of the Kiyotaki–Wright that was more narrowly focused on
the speculative equilibrium prediction and came to the same conclusion: most subjects failed to adopt the
speculative trading strategy.
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as decision trees (variable-length strings) in an effort to obtain an optimal functional
relationship or program. This type of genetic search is well-suited to finding functional
solutions to problems that do not readily yield closed-form solutions. Genetic program-
ming has been mainly used by economists to study financial market phenomena, e.g., to
uncover technical trading rules or to discover pricing formulas for financial derivatives.
Chen (2002) provides a good survey.

However, the external validity of genetic programming has been assessed through a
few comparisons with the results of human subject experiments. Perhaps the best known
work is that of Chen and Yeh (1996), who revisit the unstable cobweb model studied by
Arifovic (1994) and examined experimentally by Wellford (1989). Chen and Yeh note
that it is more general to view agents as learning a functional relationship for prices,
e.g. Et−1pt = f (pt−1, pt−2, . . .) than for them to be learning about what quantity to
produce as in Arifovic’s (Arifovic, 1994) implementation, as the former approach al-
lows for the possibility that the equilibrium is not a fixed point, e.g., it could be a limit
cycle. Chen and Yeh apply a genetic programming algorithm to search over a class of
price forecast functions. Essentially the algorithm allows for a wide range of linear and
nonlinear functions mapping from observations on as many as 10 past prices to deliver a
forecast for period t . These forecast functions determine quantities which subsequently
determine actual market prices via the equilibrium market clearing condition. Fitness of
individual forecast functions is then assessed, and genetic operations are applied to ad-
vance the search for better price forecast functions in a manner analogous to the genetic
algorithm search. Chen and Yeh report that for the same unstable parameterization of the
model considered by Arifovic and Wellford, (as well as for some even more egregious
cases) their genetic programming algorithm has no difficulty yielding price predictions
that were very close to the equilibrium price level without the need for an election oper-
ator to contain the effects of the mutation operator. The price forecasting functions are
initially quite complex and difficult to interpret. However, as convergence to the equi-
librium obtains, the price forecasting functions become quite simple, as prices cease to
vary so much.24

In a quite different application, Duffy and Engle-Warnick (2002) use genetic pro-
gramming to infer the strategies that human subjects play in a simple bargaining game,
given only the actions and histories of the players. This approach, which Koza (1992)
termed “symbolic regression”, involves evaluation of a population of computer pro-
grams in terms of their relative success in mapping from inputs, e.g., players’ histories,
to output, e.g., player’s action choices. An advantage of this approach is that the user
does not have to specify the functional form of the strategy model in advance, aside from
specifying a set of model primitives; both the form and the coefficients of the computer

24 Chen et al. (2002) use a genetic programming algorithm to reach a similar conclusion in a median effort
coordination game studied experimentally by Van Huyck et al. (1994). Chen et al. show that a steady state
effort level that is theoretically unstable under a myopic, homogeneous best-response learning dynamic turns
out to be stable under the genetic-programming-based learning system in accordance with Van Huyck et al.’s
(Van Huyck et al., 1994) finding from human subject experiments.



Ch. 19: Agent-Based Models and Human Subject Experiments 1003

programs are estimated simultaneously. Using this algorithm, Duffy and Engle-Warnick
report that simple threshold strategies characterize the behavior of most of the human
subject participants.

4.6. Summary

Evolutionary algorithms, by contrast with ZI and individual learning algorithms, are
derived from principles of population biology. While the principle of survival and prop-
agation based on relative fitness is similar to reinforcement learning, fitness assessments
in evolutionary algorithms are not made on the basis of an individual agent or strategy’s
own history, but instead are based on population-wide measures. The biological mod-
els from which evolutionary algorithms derive lead to some difficulties of interpretation
for social scientists. While some efforts have been made to interpret the operators of
evolutionary algorithms, the more common approach has been to treat these algorithms
as a kind of black box model of social learning and focus on the similarity between
aggregate outcomes in simulations and in human subject experiments.

Two main approaches in evolutionary models have been identified. With the replicator
dynamic, the set of strategies or actions must be fully specified at the outset. Such an
approach is reasonable in environments where the set of actions or strategies is small.
In environments where the search space is larger, a genetic algorithm approach may be
preferred. GAs are effective, population-based search algorithms that optimize on the
tradeoff between finding new strategies, and exploiting strategies that have worked well
in the past.

Comparisons between simulations using evolutionary algorithms and human subject
experiments suggest that there is some support for the use of evolutionary algorithms
as models of population learning. However, the time-frame and the number of agents
used in simulation of evolution algorithms is often quite different from that adopted in
human subject experiments.

5. Conclusions and directions for the future

Two parallel computer-based technologies, the experimental and the computational lab-
oratory, have begun to have a major impact on economic research. While top-down,
deductive theorizing with fully rational agents remains the standard in economics, the
findings of experimentalists and ACE researchers using bottom-up, boundedly rational,
inductive models of behavior are attracting increasing attention in the profession, as
these models often provide a better fit to experimental (as well as to field) data, and
operate without the centralized coordinating devices found in standard theory.

There are difficulties with the external validity of both approaches. Agent-based mod-
els have many degrees of freedom, while experimental methods are unable to perfectly
induce or control subject behavior, etc. Still, the fact that findings from agent-based
models and human subject experiments are often in agreement helps to allay concerns
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with either approach individually. Can an argument be made for one approach over the
other? Analogous to Judd’s (Judd, 1997) answer to the question of whether computa-
tional economics and economic theory are substitutes or complements, we have seen
that agent-based models and humans subject experiments are sometimes nearly perfect
substitutes (e.g., zero intelligent agents in certain versions of the double auction market)
but are more often complements (e.g., the degree of sophistication in individual learning
models can be calibrated based on experimental data).

There are several directions for future research. First, further comparisons of different
agent-based models using a variety of experimental data sets are needed. “Horse-races”
such as those between reinforcement learning and belief-learning and between belief-
learning and replicator dynamics are important for choosing among agent-based mod-
eling approaches. Second, further parallel experiments with human and artificial agents
situated in the same environment are needed to better understand the external validity
of agent-based models as well as to appropriately calibrate those models. These parallel
experiments will necessarily involve more constraints on agent-based modeling exer-
cises than on human subject designs owing to the stricter time and budget constraints of
laboratory research. However, if agent-based models can accurately track the behavior
of human subjects over the short-time frame of a human subject experiment, that find-
ing would give the ACE researcher some license to carry out simulations of the model
over a much longer time-frame, as might be necessary to achieve convergence to an
equilibrium. Third, new agent-based models might be developed based on laboratory
evidence.

There are at least two possibilities for attacking the latter goal. First, researchers
could seek to determine how players go about analyzing the experimental environments
in which they are placed. For example, the kind of information subjects consider, their
cognitive skills and other characteristics that Costa-Gomes et al. (2001) have termed
the players’ strategic sophistication. Costa-Gomes et al.’s use of the Mouselab software
which enables the researcher to capture and study the information that players consider
in playing normal form games, as well as Camerer et al.’s (Camerer et al., 1993) use of
the Mouselab software to study behavior in extensive form games, is very useful in iden-
tifying heterogeneity of player types, and testing cognitive concepts such as backward
induction.

A second possibility for designing agent-based models more fully grounded in labo-
ratory evidence is to make greater use of an experimental design known as the strategy
method, first proposed by Selten (1967). The strategy method requires subjects to simul-
taneously specify, prior to the start of a game, the strategies they will play in that game,
i.e. their action choice at every information set. Subjects’ choices are then made for them
based on the strategies they submit.25 Unlike observing how players make decisions as
a game unfolds in real-time and attempting to infer subjects’ strategies from their action

25 The counterpart of the strategy method in the agent-based literature is to hold a tournament á la
Axelrod (1984), in which researchers submit computer code (strategies) characterizing the behavior of
their gladiatorial-agent models. The tournament organizers then use some matching protocol or test suite
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choices, the strategy method provides researchers with all the information necessary to
program artificial agent strategies.26 In more complex environments, it may be neces-
sary to give subjects experience with the game prior to having them submit strategies.
For instance, Selten et al. (1997) have subjects play a Cournot duopoly game repeatedly
and then ask them to program their strategies. The programmed strategies were then
played against one another and the programmers were allowed to alter their strategies
based on their performance. The adoption of such an approach might well lead to the
development of new adaptive models with a greater claim to the term ‘agent-based.’
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Başçi, E. (1999). “Learning by imitation”. Journal of Economic Dynamics and Control 23, 1569–1585.
Battalio, R., Samuelson, L., Van Huyck, J. (2001). “Optimization incentives and coordination failure in labo-

ratory stag hunt games”. Econometrica 69, 749–764.
Batten, D.F. (2000). Discovering Artificial Economics: How Agents Learn and Economies Evolve. Westview

Press, Boulder, CO.
Beltrametti, L., et al. (1997). “A learning-to-forecast experiment on the foreign exchange market with a clas-

sifier system”. Journal of Economic Dynamics and Control 21, 1543–1575.
Bendor, J., Mookherjee, D., Ray, D. (2001). “Aspiration-based reinforcement learning in repeated interaction

games: An overview”. International Game Theory Review 3, 159–174.
Bendor, J., Diermeir, D., Ting, M. (2003). “A behavioral model of turnout”. American Political Science

Review 97, 261–280.
Bereby-Meyer, Y., Erev, I. (1998). “On learning to become a successful loser: A comparison of alternative

abstractions of learning in the loss domain”. Journal of Mathematical Psychology 42, 266–286.
Blume, A., DeJong, D.V., Neumann, G.R., Savin, N.E. (2002). “Learning and communication in sender–

receiver games: An econometric investigation”. Journal of Applied Econometrics 17, 225–247.
Börgers, T., Sarin, R. (2000). “Naive reinforcement learning with endogenous aspirations”. International Eco-

nomic Review 41, 921–950.
Bosch-Doménech, A., Sunder, S. (2001). “Tracking the invisible hand: Convergence of double auctions to

competitive equilibrium”. Computational Economics 16, 257–284.
Boylan, R.T., El-Gamal, M.A. (1993). “Fictitious play: A statistical study of multiple economic experiments”.

Games and Economic Behavior 5, 205–222.
Bray, M.M., Savin, N.E. (1986). “Rational expectations equilibria, learning, and model specification”. Econo-

metrica 54, 1129–1160.
Brandts, J., Charness, G. (2000). “Hot vs. cold: Sequential responses and preference stability in experimental

games”. Experimental Economics 2, 227–238.
Brenner, T. (2006). “Agent learning representation: Advice on modelling economic learning”, this handbook.
Brewer, P.J., Huang, M., Nelson, B., Plott, C.R. (2002). “On the behavioral foundations of the law of supply

and demand: Human convergence and robot randomness”. Experimental Economics 5, 179–208.
Brosig, J., Weimann, J., Yang, C.-L. (2003). “The hot versus cold effect in a simple bargaining experiment”.

Experimental Economics 6, 75–90.
Brown, G.W. (1951). “Iterative solution of games by fictitious play”. In: Koopmans, T. (Ed.), Activity Analy-

sis of Production and Allocation. Wiley, New York, pp. 374–376.
Brown, P. (1996). “Experimental evidence on money as a medium of exchange”. Journal of Economic Dy-

namics and Control 20, 583–600.
Brown-Kruse, J.L. (1991). “Contestability in the presence of an alternative market: An experimental exami-

nation”. Rand Journal of Economics 22, 136–147.
Bullard, J., Duffy, J. (1998). “A model of learning and emulation with artificial adaptive agents”. Journal of

Economic Dynamics and Control 22, 179–207.
Bullard, J., Duffy, J. (1999). “Using genetic algorithms to model the evolution of heterogeneous beliefs”.

Computational Economics 13, 41–60.
Bush, R.R., Mosteller, F. (1955). Stochastic Models for Learning. John Wiley & Sons, New York.
Camerer, C. (2003). Behavioral Game Theory: Experiments in Strategic Interaction. Princeton University

Press, Princeton.
Camerer, C., Ho, T.-H. (1999). “Experience-weighted attraction learning in normal form games”. Economet-

rica 67, 827–874.



Ch. 19: Agent-Based Models and Human Subject Experiments 1007

Camerer, C., Johnson, E., Rymon, T., Sen, S. (1993). “Cognition and framing in sequential bargaining for
gains and losses”. In: Binmore, K., et al. (Eds.), Frontiers of Game Theory. MIT Press, Cambridge, MA,
pp. 27–47.

Carlson, J. (1968). “An invariably stable cobweb model”. Review of Economic Studies 35, 360–362.
Chamberlin, E.H. (1948). “An experimental imperfect market”. Journal of Political Economy 56, 95–108.
Chan, N.T., LeBaron, B., Lo, A.W., Poggio, T. (1999). “Agent-based models of financial markets: A compar-

ison with experimental markets”, working paper.
Chen, S.H. (2002). Genetic Algorithms and Genetic Programming in Computational Finance. Kluwer, Dor-

drecht.
Chen, S.H., Yeh, C.H. (1996). “Genetic programming learning and the cobweb model”. In: Angeline, P.J.,

Kinnear, K.E. Jr. (Eds.), Advances in Genetic Programming 2. MIT Press, Cambridge, MA, pp. 443–466.
Chen, S.H., Duffy, J., Yeh, C.H. (2002). “Equilibrium selection via adaptation: Using genetic programming to

model learning in a coordination game”. The Electronic Journal of Evolutionary Modelling and Economic
Dynamicshttp://e-jemed.org~article~1002 .

Cheung, Y.-W., Friedman, D. (1997). “Learning in evolutionary games: some laboratory results”. Games and
Economic Behavior 19, 46–76.

Cheung, Y.-W., Friedman, D. (1998). “A comparison of learning and replicator dynamics using experimental
data”. Journal of Economic Behavior and Organization 35, 263–280.

Cliff, D., Bruten, J. (1997a). “Minimal-intelligence agents for bargaining behaviors in market-based environ-
ments”, Technical report HP-97-91, Hewlett–Packard Research Labs, Bristol, England.

Cliff, D., Bruten, J. (1997b). “More than zero intelligence needed for continuous double-auction trading”,
Hewlett Packard Laboratories Paper HPL-97-157, Bristol, England.

Coursey, D., Issac, R.M., Luke, M., Smith, V.L. (1984). “Market contestability in the presence of sunk (entry)
costs”. Rand Journal of Economics 15, 69–84.

Costa-Gomes, M., Crawford, V., Broseta, B. (2001). “Cognition and behavior in normal-form games: An
experimental study”. Econometrica 69, 1193–1235.

Cox, J.C., Roberson, B., Smith, V.L. (1982). “Theory and behavior of single object auctions”. In: Smith, V.L.
(Ed.), Research in Experimental Economics. JAI Press, Greenwich, CT.

Crockett, S. (2004). “Learning competitive equilibrium in experimental exchange economies”, working paper,
Carnegie-Mellon University.

Crockett, S., Spear, S., Sunder, S. (2004). “A simple decentralized institution for learning competitive equi-
librium”, working paper, Carnegie-Mellon and Yale Universities.

Cross, J.G. (1983). A Theory of Adaptive Economic Behavior. Cambridge University Press, Cambridge, UK.
Cyert, R.M., March, J.G. (1956). “Organizational factors in the theory of oligopoly”. Quarterly Journal of

Economics 70, 44–64.
Davis, D.D., Holt, C.A. (1993). Experimental Economics. Princeton University Press, Princeton.
Dawid, H. (1999a). Adaptive Learning by Genetic Algorithms: Analytical Results and Applications to Eco-

nomic Models, 2nd revised and enlarged edition. Springer-Verlag, Berlin.
Dawid, H. (1999b). “On the convergence of genetic learning in a double auction market”. Journal of Economic

Dynamics and Control 23, 1545–1569.
Duffy, J. (2001). “Learning to speculate: Experiments with artificial and real agents”. Journal of Economic

Dynamics and Control 25, 295–319.
Duffy, J., Feltovich, N. (1999). “Does observation of others affect learning in strategic environments? an

experimental study”. International Journal of Game Theory 28, 131–152.
Duffy, J., Ochs, J. (1999). “Emergence of money as a medium of exchange: An experimental study”. Ameri-

can Economic Review 89, 847–877.
Duffy, J., Engle-Warnick, J. (2002). “Using symbolic regression to infer strategies from experimental data”.

In: Chen, S.H. (Ed.), Evolutionary Computation in Economics and Finance. Physica-Verlag, New York,
pp. 61–82.

Duffy, J., Ochs, J. (2002). “Intrinsically worthless objects as media of exchange: Experimental evidence”.
International Economic Review 43, 637–673.

http://e-jemed.org~article~1002


1008 J. Duffy

Duffy, J., Hopkins, E. (2005). “Learning, information and sorting in market entry games: Theory and evi-
dence”. Games and Economic Behavior 51, 31–62.

Duffy, J., Ünver, M.U. (2006). “Asset price bubbles and crashes with near zero-intelligence traders”. Eco-
nomic Theory 27, 537–563.

Ellison, G. (1993). “Learning, local interaction and coordination”. Econometrica 61, 1047–1071.
Easley, D., Ledyard, J.O. (1993). “Theories of price formation and exchange in double oral auctions”. In:

Friedman, D., Rust, J. (Eds.), The Double Auction Market: Institutions Theories, and Evidence, Santa Fe
Institute Studies in the Sciences of Complexity, vol. 14. Addison–Wesley, Reading, MA, pp. 63–97.

Epstein, J.M., Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom Up. MIT Press,
Cambridge, MA.

Erev, I., Roth, A.E. (1998). “Predicting how people play games: Reinforcement learning in experimental
games with unique, mixed strategy equilibria”. American Economic Review 88, 848–881.

Erev, I., Barron, G. (2003). “On adaptation, maximization and reinforcement learning among cognitive strate-
gies”, working paper, Technion and Harvard Universities.

Erev, I., Bereby-Meyer, Y., Roth, A.E. (1999). “The effect of adding a constant to all payoffs: Experimental
investigation and implications for reinforcement learning models”. Journal of Economic Behavior and
Organization 39, 111–128.

Ezekiel, M. (1938). “The cobweb theorem”. Quarterly Journal of Economics 52, 255–280.
Feltovich, N. (2000). “Reinforcement-based vs. belief-based learning models in experimental asymmetric

information games”. Econometrica 68, 605–641.
Franke, R. (2003). “Reinforcement learning in the El Farol model”. Journal of Economic Behavior and Orga-

nization 51, 367–388.
Friedman (1991). “A simple testable model of double auction markets”. Journal of Economic Behavior and

Organization 15, 47–70.
Friedman (1996). “Equilibrium in evolutionary games: some experimental results”. Economic Journal 106,

1–25.
Foster, D., Young, H.P. (1990). “Stochastic evolutionary game dynamics”. Theoretical Population Biology 38,

219–232.
Fudenberg, D., Levine, D.K. (1998). The Theory of Learning in Games. MIT Press, Cambridge, MA.
Gale, D., Shapley, L.S. (1962). “College admissions and the stability of marriage”. American Mathematical

Monthly 69, 9–15.
Gjerstad, S., Dickhaut, J. (1998). “Price formation in double auctions”. Games and Economic Behavior 22,

1–29.
Gode, D.K., Sunder, S. (1993). “Allocative efficiency of markets with zero-intelligence traders: Market as a

partial substitute for individual rationality”. Journal of Political Economy 101, 119–137.
Gode, D.K., Sunder, S. (1997a). “What makes markets allocationally efficient?”. Quarterly Journal of Eco-

nomics 112, 603–630.
Gode, D.K., Sunder, S. (1997b). “Lower bounds for efficiency of surplus extraction in double auctions”. In:

Friedman, D., Rust, J. (Eds.), The Double Auction Market: Institutions Theories, and Evidence, Santa Fe
Institute Studies in the Sciences of Complexity, vol. 14. Addison–Wesley, Reading, MA, pp. 199–220.

Gode, D.K., Sunder, S. (2004). “Double auction dynamics: structural effects of non-binding price controls”.
Journal of Economic Dynamics and Control 28, 1707–1731.

Gode, D.K., Spear, S.E., Sunder, S. (2000). “Convergence of double auctions to competitive equilibrium in
an Edgeworth box”, working paper.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison–
Wesley, Reading, MA.

Grossklags, J., Schmidt, C. (2004). “Artificial software agents on thin double auction markets—A human
trader experiment”, working paper, University of California, Berkeley.

Haruvy, E., Ünver, M.U. (2002). “Equilibrium selection in repeated B2B matching markets”, working paper,
University of Texas, Dallas and Koç University.

Haruvy, E., Roth, A.E., Ünver, M.U. (2002). “The dynamics of law clerk matching: An experimental and
computational investigation of proposals for reform of the market”, working paper.



Ch. 19: Agent-Based Models and Human Subject Experiments 1009

Haruvy, E., Stahl, D.O. (2004). “Deductive versus inductive equilibrium selection: Experimental results”.
Journal of Economic Behavior and Organization 53, 319–331.

Ho, T.-H., Camerer, C., Chong, J.-K. (2002). “Economic value of EWA lite: A functional theory of learning
in games”, working paper.

Hofbauer, J., Sigmund, K. (1988). The Theory of Evolution and Dynamical Systems: Mathematical Aspects
of Selection. Cambridge University Press, Cambridge, UK.

Hofbauer, J., Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University
Press, Cambridge, UK.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor,
MI.

Holland, J.H. (1986). “Escaping brittleness: The possibilities of general purpose learning algorithms ap-
plied to parallel rule-based systems”. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (Eds.), Machine
Learning: An Artificial Intelligence Approach. Morgan Kaufmann, Los Altos, CA.

Hommes, C.H. (1994). “Dynamics of the cobweb model with adaptive expectations and nonlinear supply and
demand”. Journal of Economic Behavior and Organization 24, 315–335.

Hopkins, E. (2002). “Two competing models of how agents learn in games”. Econometrica 70, 2141–2166.
Huck, S., Konrad, K.A., Müller, W., Normann, H.-T. (2002). “Mergers and the perception of market power”,

working paper, University College London.
Isaac, R.M., Plott, C.R. (1981). “Price controls and the behavior of auction markets: An experimental evalua-

tion”. American Economic Review 71, 448–459.
Judd, K.L. (1997). “Computational economics and economic theory: Substitutes or complements?”. Journal

of Economic Dynamics and Control 21, 907–942.
Judd, K.L. (1998). Numerical Methods in Economics. MIT Press, Cambridge, MA.
Kaelbling, L.P., Littman, M.L., Moore, A.W. (1996). “Reinforcement learning: A survey”. Journal of Artificial

Intelligence Research 4, 237–285.
Kagel, J.H., Levin, D. (1986). “The winner’s curse and public information in common value auctions”. Amer-

ican Economic Review 76, 894–920.
Kagel, J.H., Roth, A.E. (2000). “The dynamics of reorganization in matching markets: A laboratory experi-

ment motivated by a natural experiment”. Quarterly Journal of Economics 115, 201–235.
Kagel, J.H., Harstad, R.M., Levin, D. (1987). “Information impact and allocation rules in auctions with affil-

iated private values: A laboratory study”. Econometrica 55, 1275–1304.
Kandori, M., Mailath, G.J., Rob, R. (1993). “Learning, mutation, and long run equilibria in games”. Econo-

metrica 61, 29–56.
Karandikar, R., Mookherjee, D., Ray, D., Vega-Redondo, F. (1998). “Evolving aspirations and cooperation”.

Journal of Economic Theory 80, 292–331.
Kareken, J.H., Wallace, N. (1981). “On the indeterminacy of equilibrium exchange rates”. Quarterly Journal

of Economics 96, 207–222.
Kiyotaki, N., Wright, R. (1989). “On money as a medium of exchange”. Journal of Political Economy 97,

927–954.
Koza, J.R. (1992). Genetic Programming. MIT Press, Cambridge, MA.
Kutschinski, E., Uthmann, T., Polani, D. (2003). “Learning competitive pricing strategies by multi-agent

reinforcement learning”. Journal of Economic Dynamics and Control 27, 2207–2218.
LeBaron, B. (2006). “Agent-based computational finance”, this handbook.
Lettau, M., Uhlig, H. (1999). “Rules of thumb versus dynamic programming”. American Economic Re-

view 89, 148–174.
Lucas, R.E. (1986). “Adaptive behavior and economic theory”. Journal of Business 59, S401–S426.
Mackie-Mason, J., Wellman, M. (2006). “Automated markets and trading agents”, this handbook.
Marcet, A., Sargent, T.J. (1989). “Least-squares learning and the dynamics of hyperflation”. In: Barnett, et al.

(Eds.), Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity. Cambridge University Press,
New York, pp. 119–137.

Marimon, R., Sunder, S. (1993). “Indeterminacy of equilibria in a hyperinflationary world: Experimental
evidence”. Econometrica 61, 1073–1107.



1010 J. Duffy

Marimon, R., Sunder, S. (1994). “Expectations and learning under alternative monetary regimes: An experi-
mental approach”. Economic Theory 4, 131–162.

Marimon, R., McGrattan, E., Sargent, T.J. (1990). “Money as a medium of exchange in an economy with
artificially intelligent agents”. Journal of Economic Dynamics and Control 14, 329–373.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition. Springer-
Verlag, Berlin.

Miller, R.M. (2002). Paving Wall Street: Experimental Economics and the Quest for the Perfect Market. John
Wiley, New York.

Mirowski, P. (2002). Machine Dreams: Economics Becomes a Cyborg Science. Cambridge University Press,
Cambridge, UK.

Mitchell, T.M. (1997). Machine Learning. McGraw Hill, New York.
Morris, S. (2000). “Contagion”. Review of Economic Studies 67, 57–78.
Mookherjee, D., Sopher, B. (1997). “Learning and decision costs in experimental constant sum games”.

Games and Economic Behavior 19, 97–132.
Mookherjee, D., Sopher, B. (1994). “Learning behavior in an experimental matching pennies game”. Games

and Economic Behavior 7, 62–91.
Nicolaisen, J., Petrov, V., Tesfatsion, L. (2001). “Market power and efficiency in a computational electricity

market with discriminatory double auction pricing”. IEEE Transactions on Evolutionary Computation 5,
504–523.

Nyarko, Y., Schotter, A. (2002). “An experimental study of belief learning using elicited beliefs”. Economet-
rica 70, 971–1005.

Ochs, J. (1995). “Games with unique, mixed strategy equilibria: An experimental study”. Games and Eco-
nomic Behavior 10, 202–217.

Pemantle, R., Skyrms, B. (2003). “Network formation by reinforcement learning: The long and medium run”,
working paper, UC Irivne.

Pingle, M., Tesfatsion, L. (2001). “Non-employment payoffs and the evolution of worker-employer coopera-
tion: Experiments with real and computational agents”, Economic Report 55, Iowa State University.

Riechmann, T. (1999). “Learning and behavioral stability—An economic interpretation of genetic algo-
rithms”. Journal of Evolutionary Economics 9, 225–242.

Riechmann, T. (2001a). Learning in Economics: Analysis and Application of Genetic Algorithms. Springer-
Verlag, Berlin.

Riechmann, T. (2001b). “Genetic algorithm learning and evolutionary games”. Journal of Economic Dynam-
ics and Control 25, 1019–1037.

Riechmann, T. (2002). “Cournot or Walras? Agent based learning, Rationality and long run results in
oligopoly games”, discussion paper, University of Hannover.

Robinson, J. (1951). “An iterative method of solving a game”. The Annals of Mathematics 54, 296–301.
Roth, A.E. (1995). “Introduction to experimental economics”. In: Kagel, J., Roth, A.E. (Eds.), Handbook of

Experimental Economics. Princeton University Press, Princeton, NJ.
Roth, A.E., Murnighan, J.K. (1978). “Equilibrium behavior and repeated play of the prisoner’s dilemma”.

Journal of Mathematical Psychology 17, 189–198.
Roth, A.E., Erev, I. (1995). “Learning in extensive-form games: Experimental data and simple dynamic mod-

els in the intermediate term”. Games and Economic Behavior 8, 164–212.
Sadrieh, A. (1998). The Alternating Double Auction Market: A Game Theoretic and Experimental Investiga-

tion. Lecture Notes in Economics and Mathematical Systems, vol. 466. Springer, Berlin.
Salmon, T.C. (2001). “An evaluation of econometric models of adaptive learning”. Econometrica 69, 1597–

1628.
Sargent, T.J. (1993). Bounded Rationality in Macroeconomics. Oxford University Press, Oxford.
Sarin, R., Vahid, F. (1999). “Payoff assessments without probabilities: A simple dynamic model of choice”.

Games and Economic Behavior 28, 294–309.
Sarin, R., Vahid, F. (2001). “Predicting how people play games: A simple dynamic model of choice”. Games

and Economic Behavior 34, 104–122.



Ch. 19: Agent-Based Models and Human Subject Experiments 1011

Schelling, T.C. (1978). Micromotives and Macrobehavior. W.W. Norton, New York.
Selten, R. (1967). “Die strategiemethdoe zur erforschung des eingeschränkt rationalen verhaltens im rahmen

eines oligopolexperiments”. In: Sauermann, H. (Ed.), Beiträge zur Experimentellen Wirtschaftsforschung.
J.C.B. Mohr, Tübingen, pp. 136–168.

Selten, R. (1991). “Evolution, learning and economic behavior”. Games and Economic Behavior 3, 3–24.
Selten, R., Mitzkewitz, M., Uhlich, G.R. (1997). “Duopoly strategies programmed by experienced players”.

Econometrica 65, 517–555.
Simon, H.A. (1955). “A behavioral model of rational choice”. Quarterly Journal of Economics 69, 99–118.
Simon, H.A. (1982). Models of Bounded Rationality. MIT Press, Cambridge, MA.
Smith, V.L. (1962). “An experimental study of competitive market behavior”. Journal of Political Econ-

omy 70, 111–137.
Smith, V.L. (1982). “Microeconomic systems as an experimental science”. American Economic Review 72,

923–955.
Smith, V.L., Williams, A.W. (1981). “On nonbinding price controls in a competitive market”. American Eco-

nomic Review 71, 467–474.
Smith, V.L., Suchanek, G.L., Williams, A.W. (1988). “Bubbles, crashes, and endogenous expectations in

experimental spot asset markets”. Econometrica 56, 1119–1151.
Sonnemans, J., Hommes, C., Tuinstra, J., v.d. Velden, H. (2004). “The instability of a heterogeneous cobweb

economy: A strategy experiment on expectation formation”. Journal of Economic Behavior and Organi-
zation 54, 453–481.

Stahl, D. (1999). “A horse race among action-reinforcement learning models”, working paper, University of
Texas-Austin.

Suppes, P., Atkinson, R. (1960). Markov Learning Models for Multiperson Interactions. Stanford University
Press, Stanford.

Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA.
Thorndike, E.L. (1911). Animal Intelligence. Hafner Publishing, New York.
Ünver, M.U. (2001a). “Backward unraveling over time: The evolution of strategic behavior in the entry level

British medical labor markets”. Journal of Economic Dynamics and Control 25, 1039–1080.
Ünver, M.U. (2001b). “On the survival of some unstable two-sided matching mechanisms: An experimental

and computational investigation of the stability hypothesis”, working paper, Koç University.
Valley, K., Thompson, L., Gibbons, R., Bazerman, M.H. (2002). “How communication improves efficiency

in bargaining games”. Games and Economic Behavior 38, 127–155.
Van Boening, M.V., Wilcox, N.T. (1996). “Avoidable cost: Ride a double auction roller coaster”. American

Economic Review 86, 461–477.
Van Huyck, J.B., Cook, J.P., Battalio, R.C. (1994). “Selection dynamics, asymptotic stability, and adaptive

behavior”. Journal of Political Economy 102, 975–1005.
Van Huyck, J.B., Cook, J.P., Battalio, R.C. (1997). “Adaptive behavior and coordination failure”. Journal of

Economic Behavior and Organization 32, 483–503.
Vriend, N.J. (2000). “An illustration of the essential difference between individual and social learning, and its

consequences for computational analyses”. Journal of Economic Dynamics and Control 24, 1–19.
Watkins, C. (1989). Learning From Delayed Rewards (PhD Dissertation), King’s College Cambridge, Eng-

land.
Wellford, C.P. (1989). “A laboratory analysis of price dynamics and expectations in the cobweb model”,

Discussion Paper 89-15, Department of Economics, University of Arizona.
Young, P.H. (1993). “The evolution of conventions”. Econometrica 61, 57–84.
Young, P.H. (1998). Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Prince-

ton University Press, Princeton.



This page intentionally left blank



Chapter 20

ECONOMIC ACTIVITY ON FIXED NETWORKS

ALLEN WILHITE *

Department of Economics and Finance, University of Alabama in Huntsville, Huntsville, AL 35899, USA
e-mail: wilhitea@uah.edu; url: http://cas.uah.edu/wilhitea

Contents

Abstract 1014
Keywords 1014
1. Introduction 1015
2. Some notable networks 1016

2.1. The complete network 1017
2.2. The star 1017
2.3. The ring 1019
2.4. The grid 1019
2.5. The tree 1019
2.6. Small-worlds 1020
2.7. Power networks 1021

3. Coordination and cooperation in networks 1021
3.1. Coordination 1022
3.2. Cooperation 1024

3.2.1. The complete network 1026
3.2.2. The star 1026
3.2.3. The ring 1027
3.2.4. The grid 1030
3.2.5. The tree 1031
3.2.6. Small-world networks 1033
3.2.7. Power networks 1034

4. Exchange in networks 1035
5. Conclusions 1042
References 1043

* I am indebted to Leigh Tesfatsion, Nick Vriend, David Allen, and an anonymous reader who graciously
made several recommendations on earlier drafts. I am also grateful for the feedback given at the Handbook
workshop held at the Center for the Study of Complex Systems, University of Michigan.

Handbook of Computational Economics, Volume 2. Edited by Leigh Tesfatsion and Kenneth L. Judd
© 2006 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-0021(05)02020-4

mailto:wilhitea@uah.edu
http://cas.uah.edu/wilhitea


1014 A. Wilhite

Abstract

A large portion of our economic interactions involves a very small portion of the pop-
ulation. We seem to prefer familiar venues. But the tendency to focus our attention on
a few individuals or activities is an attribute that is typically omitted in our characteri-
zation of markets. In markets agents seem to interact impersonally and efficiently with
countless other faceless agents. This chapter looks into the consequences of including
a connection between agents, a tendency to interact with a specific few, in economic
decision making. Agents are assumed to occupy the nodes of a network and to inter-
act exclusively with agents to whom they are directly linked. We then study evolution
of game strategies and the effectiveness of exchange as the topology of the underlying
network is altered. We find that networks matter, that changes in a network’s structure
can alter the steady-state attributes of an artificial society as well as the dynamics of that
system.

Keywords

networks, games on networks, exchange on networks, small worlds, power networks

JEL classification: B4, C63, C7, D5, D83
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1. Introduction

For the most part, neoclassical economics views individuals as independent decision
makers. People have tastes and preferences and an endowment of resources they employ
to maximize their well-being. Agents trade through markets, prices reflect the actions
of others, and people tune their decisions to the information broadcast by those prices.
Interaction among individuals is institutionalized, impersonal and impartial. This for-
malization allows a rigor to exist in the field of economics seldom seen in the other
social sciences.

But sometimes these impersonal markets are too artificial. Individuals are influenced
by more than prices; often they are influenced by others. Typically we turn to game the-
ory in those cases, as it allows us to study how the actions of one individual influence
the behavior of another. But even as game theory stresses the interplay between decision
makers, it says little about who plays the game. Hearkening back to sociologists who
study neighborhoods and peer groups, imitative behavior and learning, economists are
beginning to re-explore not only the effects of interaction but also the identity of the
agents involved in that interaction. Enter networks. In the last 10 years or so, empirical
and theoretical studies have begun to investigate how networks, as structures underly-
ing economic activity, influence behavior. This chapter continues that investigation by
examining unchanging, fixed, or stable networks. In reality, truly fixed networks may
not exist: institutions and relationships grow, evolve, and eventually fade. But if this
evolution is slow relative to the economic activity taking place on the network, the char-
acteristics of the network will have a larger effect on economic decisions than those
decisions will have on the network.

Networks become particularly useful when agents primarily interact with only a small
part of the population, or in network parlance, when agents interact with their neighbors.
There is a familiarity in this: each of us tends to shop at the same stores, interact with
the same individuals at work and at play, read the same magazines and newspapers;
and even the most gregarious among us limit our conversation to a tiny fraction of the
available ears. Surely this narrowing of our attention constrains the flow of information
and impacts our economic activities.

Or maybe not. In 1967, Stanley Milgram’s famous letter-delivery experiment sug-
gested that even with limited individual interaction, we still manage to connect to distant
parts of the world. Even though many economic activities occur locally, they seem to
have global reach. What is going on? How do bits of information, goods and services,
opinions, and attitudes percolate through a population? These activities are increasingly
being explored by placing people on a network, using the network architecture to reflect
the many ways individuals can be connected.

All of the traditional tools of economists—theory, empirical testing, and experimen-
tation—have been applied to study the questions raised by networks, but each has its
shortcomings. Mathematical theory is confounded by the architecture of many net-
works; some are too irregular to describe analytically and yet have too much structure
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to be treated as random and thus statistically regular.1 Lacking theory, empirical studies
are reduced to description and testing ad-hoc hypotheses. Experiments on networks are
hampered by their limited time horizon and severe size restrictions. These limitations
become especially problematic when certain features of a network emerge only in the
presence of many, many nodes, or when features emerge only over time.

Agent-based computational modeling is ideally suited for studying networks and
economic activity on networks. ACE researchers can program complex networks with
relative ease (but some tedium) and let thousands of agents interact thousands of times
on these networks. Virtual experiments can be conducted time and again with the re-
searcher making but a single change in the system and observing the effects of that
change. Every decision can be captured and examined. In this way even subtle effects
can be revealed with a systematic stream of computations. Of course, agent-based mod-
eling does have shortcomings; it cannot establish proofs, other than existence claims or
where a proof is available through exhaustion.

This chapter conducts a string of agent-based, virtual experiments investigating two
fundamental economic activities undertaken on a variety of networks. Upon this struc-
ture, the literature on static or fixed networks will be draped, and some of the gaps
between the existing studies will be filled. By necessity we ignore the infinite variety of
networks available for study and instead concentrate on a few that have been singled out
as notable and deserving of exploration. We first describe these networks and give a ra-
tionale for their selection. We then investigate cooperation by having virtual agents play
a series of games on those networks. Finally we consider bilateral trade by letting our
agents exchange goods on those same networks. Throughout, we try to keep all other
aspects of the experiments unchanged and by comparing results of identical agents on
different networks we tickle out some of the effects most readily explained by network
structure.

2. Some notable networks

Economists approach networks as reflecting a set of choices, outcomes of interactions
between individual decision-makers. Excellent reviews of the analytical literature on the
emergence of networks include Jackson (2004), and Goyal (2002) and for an overview
of the computational literature on emerging networks see Vriend (2006). Physicists also
study networks but appear more interested in their topology, their statistical properties,
and how a network with a particular set of attributes might be created in a mechanistic
way (see for example Watts, 1999, Newman, 2000, and Barabási, 2002). They appear
less interested in the origins of networks and the decisions of individual agents embed-
ded within. But all of these studies focus on a relatively small set of networks, a practice
we will follow here.

1 For instance, many of the advances in graph theory rely on random graphs.
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As is customary in network studies, we borrow much of our nomenclature from graph
theory. We investigate a population of n agents on a network, G, which is an unordered
list of the linked pairs of agents {i, j} written as i ∼ j . So the phrase i ∼ j ∈ G means
agents i and j are linked in network G. In this chapter, links are undirected; that is,
if i ∼ j ∈ G then j ∼ i ∈ G. All networks are simple, in that only one edge con-
nects any linked pair and no link connects a node to itself. The networks are connected,
meaning any node can be reached from any other node by following a path made up
of a finite number of edges. Finally, our edges are unweighted in that no edge has any
intrinsic value (length or quality) that differs from other edges. Thus the importance
of any particular edge derives solely from its location relative to the other edges in the
network.

Using this notation and terminology we will define seven specific networks that frame
the rest of the study: the complete network, the star, the ring, the grid, the tree, the small-
world network, and the scale-free or power network. We focus on these seven because
they emerge from certain types of behavior, have interesting attributes, and/or reflect
networks found in nature. Clearly we omit an infinite variety of other networks, some
possessing interesting properties, but this cross-section allows us to address many of
the central issues arising in network studies. Our first task is to describe each network
and give a brief justification for its inclusion. As a visual aid to the descriptions below,
Table 1 provides a sketch of these networks.

2.1. The complete network

In a complete network every node is connected to every other node, that is, i ∼ j ∈ G

∀i, j, i �= j . Although few examples of sizeable, completely-connected networks exist
in nature (the telephone system in a developed country is probably close), the abstract
simplicity of this network makes it a good starting point. The complete network surfaces
as a stable network structure in several studies of network formation. For example,
Jackson and Wolinsky (1996) design a model in which agents choose to establish links
with other agents because links accrue benefits, but their creation and maintenance is
costly. They then define “pairwise stability” as occurring when no pair of agents wishes
to establish more links and no individual agent wishes to sever a link. If the costs of
establishing and maintaining a link is low relative to the benefits of having such a link,
the pairwise stable network is the complete network. Bala and Goyal (2000a, 2000b)
study a similar situation where single agents can establish links, and they also find that
the complete network is stable.

2.2. The star

The star is a network in which some randomly selected agent, s, is linked to the oth-
ers, but no other agents are connected; s ∼ j ∈ G ∀j, s �= j . Some have proposed
the star network as a representation of the abstract marketplace, with the fictitious Wal-
rasian auctioneer occupying the center. But as Tesfatsion points out in Chapter 16 of this

http://dx.doi.org/10.1016/S1574-0021(05)02016-2
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Table 1
Sketches of seven networks

Complete Star

Ring Grid

Tree Small-world

Power

* The shaded nodes illustrate the endowment differences used in Section 4.

Handbook, such simplification glosses over the procurement processes and information
systems that are required in practice. Bala and Goyal (2000b) study network reliability
(the likelihood that a piece of information traveling over a network’s links successfully
reaches its intended destination) and network decay (how information degrades as it
travels more links). They too use the idea of Nash equilibrium as agents wire and rewire
until there is no incentive to continue. Decay leads to efficient and minimally connected
networks, like the star, while reliability concerns lead to redundantly wired structures
like the complete network. Hendricks et al. (1995) investigate a hypothetical airline try-
ing to optimize its routes. They assume that most of the airline’s customers want to fly
between two cities out of the group of cities it serves. Given sufficient economies of
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density, the optimal network is a star. Customers first fly to the center (the hub) and then
to their destination.

2.3. The ring

To visualize a ring network, imagine agents sitting around a table, agent i being linked
to k neighbors half of which sit to his left and half to his right. Formally,

i ∼ j ∈ G if

{
j = {(i − m) + n} mod n or

j = {i + m} mod n
,

where m ∈
{

1, 2, . . . ,
k

2

}
and k is an even number.

With the ring we introduce local neighborhood constraints, that is, unlike the complete
and star network there is no agent who interacts with everyone else; agents interact only
with a fraction of the population. The ring is commonly used as a substrate for network
studies because its simple architecture ensures that the graph will be connected even
though there are few edges and because it imposes minimal structure on the network
(there are no “more central” or “more peripheral” nodes for example). The ring also
emerges as a stable network in Bala and Goyal (2000a).

2.4. The grid

Given that economics seems to rely on two-dimensional graphics more than any other
social science, it seems natural to include the grid network in our review. A simple grid
is a chessboard with nodes residing at the corners of each square. Explicitly, in a grid

network: i ∼ j ∈ G if

{
j = {(i ± 1) + n} mod n or

j = {(i ± n1/2) + n} mod n
.

The grid also fits our intuitive perception of space; we tend to orientate ourselves in a
two-dimensional fashion as we move along the surface of the planet. The applications
of a grid network are many: the layout of city blocks, rooms on the floor of a building,
and townships in the mid-west and western states. Note that the above formula for the
grid eliminates boundary effects by connecting the opposing edges. The resulting three-
dimensional form is a torus.

2.5. The tree

A tree is a network in which each node branches off to k other nodes, each of which
branches again and so forth. Formally: i ∼ j ∈ G if i = 1 and j = 2+(0, 1, . . . , k) and
if i > 1, j = (ki + v), v ∈ {0, 1, . . . , k − 1} where k is the number of edges connecting
each node. Tree networks are frequently used to describe hierarchical social systems,
mechanical systems, and organizations. For instance, the organization of power in a
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government, the supply chain for an industry, and the sewage disposal system for a mu-
nicipality can be represented as tree networks. Radner (1993) studied the processing of
information by the administrative staff of a large organization and found the hierarchi-
cal network to be the efficient network structure, although it was quite irregular. Trees
have some distinguishing characteristics that will be of particular interest in this paper.
Trees have minimal overlap between neighborhoods; in fact, no agent’s neighbors are
neighbors with each other, and not all nodes are created equal in a tree. There are central
nodes that on average carry more traffic than other nodes; and periphery nodes located
out on the rim that are completely dependent on another node for their link to the rest
of the network.

2.6. Small-worlds

Unlike the structures discussed above, the specific topology of small-world and power
networks differs from case to case. Consequently physicists and mathematicians have
created a variety of metrics to capture their primary attributes. Three commonly dis-
cussed measures are: (i) path-length, the average minimum number of edges that must
be traversed to get from one node to any other node; (ii) clustering, the tendency of
nodes to clump together (i.e., if nodes i and j are both connected to node k, then in
a cluster, nodes i and j are also connected); and (iii) the degree of the graph, or the
average number of edges connected to each node.2

Watts and Strogatz (1998) investigate a small-world network that lies somewhere
between a ring network and a random network. Small-worlds have what seems to be an
odd pair of attributes: high clustering and short path-lengths. In other words, most of an
individual’s neighbors are also neighbors of each other, and yet seemingly distant nodes
tend to be just a few steps away. Somehow these small, close-knit neighborhoods have
global reach. Thirty years after Milgram’s (Milgram, 1967) discovery of small-world
activity, Watts and Strogatz provided a structure to explain such behavior. Consequently
their work triggered a flurry of papers investigating small-world graphs.

Watts and Strogatz (1998) present an elegant way to construct and think about these
networks. Starting with a k-ring, each edge is considered for random rewiring with
some probability p. A particular connection, i ∼ j , is rewired by severing that link
at j and then randomly selecting a new node, say h, and creating a link i ∼ h. If the
probability of rewiring equals zero, this process leaves the ring undisturbed. If p = 1
every edge will be randomly wired, creating a random graph. But in between, p ∈ (0, 1),
intermediate graphs emerge. Watts (1999) shows that for surprisingly small values of p

(and thus with relatively few rewired paths), small-world characteristics like short path-
lengths between clusters begin to emerge.

Watts and Strogatz (1998), Watts (1999), and Newman (2000) suggest that electric
power grids, the neurological network of a worm (Caenorhabditis elegans), and the

2 Often it is not a graph’s degree that is of most interest, but its degree distribution.
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distribution of coauthors in scientific journals appear to be small-world networks. Goyal
et al. (2004) also find an emerging small world in economics co-authorship, although
they find characteristics of a power network as well. The key ingredient to small-world
networks is the bridging of edges or shortcuts that connect otherwise distant clusters.
Thus, while most of your acquaintances reside in your cluster of friends, a few are
located elsewhere in the network which connects you and everyone in your cluster to
the individuals in this distant group. Just a few of these shortcuts drastically reduces the
average path-length of the entire system.

2.7. Power networks

Power networks or scale-free networks have a degree distribution that follows a power
law.3 That is, a few nodes possess many, many edges or are of very high degree (com-
monly called hubs) and at the other extreme many, many nodes have very few edges.
Barabási (2002) shows that a power network emerges from the following exercise. Start
with small network of any simple configuration. Add new nodes one at a time with each
node making k connections to existing nodes. Select the termination nodes through a
preferential weighting such that nodes with more edges are more likely to be selected
than nodes with fewer edges. The preferential weighting used here follows Albert and
Barabási (2002): P(i ∼ j ∈ G|i) = jd/nd , where jd is the number of edges reaching
node j and nd is the total number of edges in the entire network. Recent explorations by
Albert and Barabási (2002) and Barabási (2002) suggest that the large-scale structures
of the internet and the world-wide-web are power networks. This design lends a great
deal of resiliency to the web because random attacks that disable nodes have practically
no impact on the overall functioning of the network (most nodes have few edges). How-
ever, the power law architecture does render a network susceptible to directed attacks;
that is, if one explicitly attacks the high-degree hubs, the performance of the web can
be degraded quickly.

3. Coordination and cooperation in networks

Suppose the nodes of a network are occupied by economic agents who directly in-
teract with only their neighbors. How does the topology of the network affect the
resulting economic decisions? For the most part this question has been ignored until
the last few years. There were early pioneers, but among those the stunning insights
of Thomas Schelling stand alone. Reading Schelling’s (Schelling, 1969, 1971, 1978)
studies changes the way one thinks about economics; they offer a simple yet com-
pelling example of how individual actions can lead to unanticipated aggregate behavior.

3 Albert et al. (1999) pioneered this type of network and because the resulting topology has no characteristic
node, they called this a scale-free network.
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Schelling (1969, 1971) considers agents who wish to have at least one (or sometimes
two) of their neighbors sharing a common attribute. He shows that as people act on
this mild desire, the population eventually segregates into distinct groups based on that
attribute. This segregation occurs even though no one in the population desires segrega-
tion or acts in a way to achieve it. Considered in reverse, Schelling shows how flawed
it can be to interpret an aggregate result as reflecting individual preferences. Beyond
his social insights, his methodology was novel as well. In a sense, these are some of
the first agent-based computational models to appear in the social sciences—decades
before their time. His elegant studies have intuitive underpinnings, surprising results,
and yet are so simple that just about anyone can explore and tinker to build on his work.
The balance of this chapter is just such an exercise as we explore how economic activity
is affected by network structure.4

First consider coordination and cooperation. Coordination and cooperation are essen-
tial in society, as the rules, mores, and conventions that guide interaction often become
too costly to formally regulate, monitor and enforce. In some cases citizens have strong
private incentives to cooperate and the central problem becomes learning what others
do and adapting. In other cases cooperation may be more elusive as individuals have
private incentives to not cooperate even though cooperation raises aggregate welfare.

To investigate the extent to which agents cooperate or coordinate their activities,
economists often turn to game theory. This section focuses on games played on a net-
work; that is, the network identifies which players are to be matched for a game. The
classic two-person game is conveniently represented by a two-dimensional matrix with
payoffs given in each cell as seen in Figure 1. Consider two players, i and j , who can
each play one of two strategies, C or D. For example, if agent i plays strategy C against
an opponent j playing strategy D, agent i receives a payoff of b and his opponent re-
ceives payoff c. Adjusting the payoffs allows us to explore games of coordination as
well as games of cooperation. Both games can be embedded into a network and agents
can play against their neighbors. The central question becomes whether identical agents
located in different networks adopt different strategies.

Figure 1.

3.1. Coordination

The game that has received the most scrutiny on networks is a game of coordination.
The payoff matrix in Figure 1 describes a game of coordination if we let a > b and

4 I recommend Professor Schelling’s recollection of this research in the “perspectives” section of this Hand-
book (Schelling, 2006).
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d > c. In this situation each agent can earn a better payoff by playing the same strategy
as his opponent, yielding two Nash equilibria, [C,C and D,D]. Notice, however, that
payoff a is not necessarily equal to payoff d; thus one of the equilibria may be payoff
dominant. When this game is played on a network, the issues typically investigated are:
Do societies coordinate, do they find the dominant equilibrium, and how quickly does
all this take place?

Ellison (1993) investigates cooperation by comparing local interaction to global de-
cision making. First he randomly matches players in a coordination game and lets the
system find its equilibrium. He then places the agents on a ring, restricting their in-
teraction by having them play exclusively with their neighbors. He found, somewhat
surprisingly, that the system coordinates its activity more quickly when agents focus
on their neighbors. If an agent plays only with his neighbors, the neighborhood, being
small, quickly finds the optimal strategy. This quickness replicates throughout the pop-
ulation, and the system converges. Alternatively, randomized play sets agents up with
a grab bag of opponents, and it takes longer for agents to learn the prevailing strategy.
Ellison and Fudenberg (1993) further consider agents who review the actions of their
neighbors and have a tendency to adopt the decision that worked the best. If the returns
to each decision incorporate some noise, pure imitation leads to fluctuations in the sys-
tem, which can take some time to stabilize. But with popularity weighting, meaning the
most frequently selected strategy was more likely to be chosen by others, agents find
the best alternative more quickly.

Bala and Goyal (2001) look into technological diffusion incorporating the use of
historical data and heterogeneous preferences of agents located on a network. They find
that if local information is weighted more heavily than global information, different,
competing technologies can coexist in a connected network. Bala and Goyal (1998) and
Goyal (2002) study agents who play a single strategy with all of their neighbors. After
each round of play, agents consider the history of their decisions as well as the complete
history of their neighbors’ decisions before updating their strategies. At issue is how
well agents learn to coordinate their decisions and how network structure affects that
learning. First, they create a network in which a particular group of individuals, called
the Royal Family, is connected to every other player. This group has enormous influence
on the societal outcome, and under most circumstances everyone copies them, even
when they make an inferior decision. Bala and Goyal (1998) then contrast that result
to results on a line network. In the latter structure society takes longer to coordinate,
but becomes more likely to find the optimal solution. In general, Goyal (2002) argues
that a network topology that focuses agents locally can improve aggregate learning by
restricting the flow of extraneous information.

Morris (2000) uses a coordination game to investigate contagion—the likelihood that
a particular strategy spreads to overtake an arbitrary network. He shows that in best
response coordination games with a given payoff structure, decisions are more likely
to spread the more cohesive the neighborhoods and the more uniform the network. In
a cohesive neighborhood an agent’s neighbors tend to be neighbors of one another.
Uniformity exists when the neighborhood pattern repeats throughout the network. Co-
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hesiveness encourages all agents in the neighborhood to select the same strategy, while
uniformity allows this chosen strategy to spread across the population.

Perhaps the most comprehensive analyses of coordination on a network are those un-
dertaken by Young (1993, 1998), who studies the emergence of societal conventions.
He begins with the suggestion that in many situations the hyper-rationality of agents in
neoclassical economics is an unreasonable representation of nature. Instead, he consid-
ers agents who make sensible decisions, not necessarily optimal ones, and who typically
interact with a small portion of the population using the limited information most read-
ily available. Crucial to his work is the evolutionary aspect of games, i.e., while agents
are essentially rational, they sometimes neglect to take an action that is warranted or
may even take one that is not. Perturbations or mutations such as these allow us to un-
derstand how society might sort through multiple equilibria and how it can settle, at
least for long periods, on outcomes that are superior.

In many respects, Young formalizes and extends the insights introduced by Schelling.
He shows that standard, neoclassical equilibrium solutions to games are frequently the
selected conventions of less rational, locally interacting agents. But in addition he shows
how there can be punctuated equilibria (systems that tend to stay close to a particular
equilibrium for an extended period only to be disrupted to tip into another) and diversity
across localities. This diversity across space and time is observed in nature but has
resisted explanation. Finally, Young shows that some equilibria are more stable than
others and even when individuals react in response to only local signals, they will tend
to spend more time near this stochastically stable equilibrium. For greater depths into
these issues see Young (2006).

In an examination of the diffusion of innovations through social networks, Young
(2002) finds that agents arranged in small, close-knit groups adopt a particular tech-
nology more quickly than agents arranged randomly. Burke et al. (2003) studied the
practice of physicians choosing one or another treatment by placing hypothetical physi-
cians on a ring network with overlapping neighborhoods. Even when one treatment was
superior, their model illustrated how pockets of physicians might choose different ap-
proaches, an outcome consistent with empirical evidence of local variation. Similarly,
Young and Burke (2001) also present evidence of local diversity in crop-sharing con-
tracts in Illinois even across counties exhibiting relatively uniform productivity of land.

3.2. Cooperation

If individuals have a private incentive not to cooperate, as in a prisoners’ dilemma (PD)
game, cooperation can be more difficult to attain. The payoff matrix for a conventional
prisoner’s dilemma game sees c > a > d > b and 2a > (b + c). A player has the
option to cooperate (C) or not cooperate (or defect, D). Even when individuals have no
incentive to cooperate in a single shot PD game, we observe cooperation in experiments
and nature. For example, cooperation arises in repeated PD games of uncertain length,
and cooperation survives if social success is included in the individuals’ utility function,
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such as when survival of the species benefits an individual by increasing the chances that
his genetic code is passed to succeeding generations.

Some suggest that reactive play and learning can also explain the existence of coop-
erative behavior. Axelrod (1984) has conducted the authoritative analysis of competing
strategies in the context of the economics of cooperation. Axelrod takes decision strate-
gies (like TIT for TAT) and has agents play one another in round-robin tournaments. He
finds several cooperative strategies can do quite well in repeated play. He also investi-
gates the role of network effects, showing that the success of strategies played on a grid
differ from tournament play. For a closer look at Axelrod’s study of cooperation see his
“perspectives” contribution in this Handbook (Axelrod, 2006).

This section probes further into these network differences by comparing play on sev-
eral different architectures. In the following examples we set up a simple PD game and
play it on the seven networks. The specific payoffs (Figure 1) are a = 4, b = 0, c = 7
and d = 0.1.5 Fundamentally we seek to discover how changing the underlying network
influences the adoption of a particular strategy. To isolate these effects, we will attempt
to keep other attributes of the game constant across the networks. Specifically we shall
use the same learning algorithm in all simulations, maintain a constant population size,
and replicate the randomly determined initial strategies on every network at time zero.
Finally, and central to our discussion, we keep the size of the neighborhood, or the size
of the average neighborhood, constant across networks.6

Play unfolds as follows. To start, individuals are randomly assigned a strategy, C or
D, and they play that strategy in a game with themselves and each of their neighbors.7

After collecting their payoffs, agents observe their neighbors’ strategies and payoffs,
and adjust their strategy by copying the strategy of the most successful player in their
neighborhood. Using their now updated strategy, agents replay, survey their neighbors
again, update, and so forth. Play continues until the aggregate distribution of strate-
gies becomes relatively stable, what we casually call a steady state. That agents imitate
winners as opposed to mapping out an optimal strategy is particularly important. Eshel
et al. (1998) suggest that people may not think like game theorists or even know they
are in a game, but, they write, “people are generally able to form a good estimate of
other’s payoffs,... and to imitate the behavior of those they observe earning higher prof-
its” (p. 159). In the literature of cooperative play on networks, imitation can take many
forms: copying the best average return, copying the best strategy from a sample of
neighbors, copying the most frequently used strategy, etc. We have taken one of the
simplest approaches; agents copy the most successful player in their neighborhood.

5 As one might expect, the relative size of these payoffs have an enormous impact on the resulting distri-
bution of strategies (see for example Nowak and May, 1992, 1993) but cross-network differences for most
(nontrivial) sets of payoffs are persistent.
6 In the following exercises each agent has four neighbors in a neighborhood of five. Note however, that the

complete network and the star have neighborhoods that cannot be replicated in other shapes unless the size of
the entire population is limited to five agents.
7 Nowak and May (1992) suggest self-play captures the idea of family or group play at the node level. As it

turns out, the results are not substantially changed if self-play is omitted.
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As emphasized by Axtell (2000), the timing of updates can affect the dynamics in
an ACE model. Most of the initial studies in cooperation games employed synchro-
nous updating, meaning that every agent updates his strategy after every round of play.
Huberman and Glance (1993) explored the opposite extreme by assuming that only a
single agent changes his strategy in each period. But this may go too far; it seems un-
likely that the vast majority of agents would stick with a losing strategy for so long.
Nevertheless, agents may procrastinate due to a conservative bent, a slowness to real-
ize a strategy is losing, or simple laziness. Consequently, Mukherjl et al. (1996) and
Nowak et al. (1996) use random updating while Page (1997) and Wilhite (2006) bases
updating on an incentive system. The following experiments incorporate two updating
routines for every network: synchronous updating in which each agent is allowed to
change his strategy each period, and asynchronous or random updating, in which there
is a 0.25 chance that any particular agent will change a strategy when such a change is
warranted.

Using these rules, we observe an agent-based computational model in which 2500
agents play this PD game on the seven networks of interest. Repeated experiments (fifty
trials for each network and updating routine) let us derive typical outcomes for a pop-
ulation starting with an approximate 50/50 split of cooperators and defectors randomly
dispersed across the network.

3.2.1. The complete network

In a complete network with synchronous updating everyone becomes a defector after
the first round of play as long as at least one agent initially adopts the defection strat-
egy. Consider a network with n individuals, m playing D and n − m playing C. Since
every player interacts with every other player, the cooperative agents all earn 4(n − m)

while the defecting agents earn 7(n−m)+ 0.1(m). Thus, as long as m > 0 cooperators
will imitate defectors. The same aggregate result occurs under asynchronous updating
although it takes more rounds to get all of the procrastinators to update. In these exper-
iments and reported in Table 2, it takes 27 rounds, on average, for everyone to defect.

3.2.2. The star

In the steady state of the star network with synchronous updating all agents play the
same strategy after one round of play: either everyone cooperates or everyone defects.
Which strategy dominates depends on the choices made by center player and one other
player. Suppose agent s occupies the center of the star and plays strategy D. All players
on the rim earn 0 or 0.1 depending on their strategy, while agent s earns 7m+0.1(n−m),
where m is the number of cooperators. Consequently all rim players adopt the defection
strategy in the second round. On the other hand, if the center agent plays C, he earns
4m while the rim defectors earn 7. If m > 2 the rim players will copy the center’s
cooperation strategy. Finally if the center is the only cooperator he switches to defection



Ch. 20: Economic Activity on Fixed Networks 1027

Table 2
Proportion of population adopting the cooperative strategy in a prisoners’ dilemma game

Synchronous updating Asynchronous updating

Proportion
cooperating

Rounds to
steady-state

Proportion
cooperating

Rounds to
steady-state

Complete no cooperation 1 no 27.2
cooperation (4.19)

Star P(all Cs) = ½ 1 P(all Cs) = ½ 27.3
P(all Ds ) = ½ P(all Ds ) = ½ (4.10)

Ring 0.967 189.2* 0.998 very large
(.0075) (57.45) (0.0010) number of rounds

Grid 0.358 no steady state 0.538 no steady state
(0.071) (0.071)

Tree P(all Cs) = 0.6 14.4 0.894 no steady state
P(all Ds) = 0.4 (1.12) (0.003)

Small-world 0.713 150.2* 0.700 no steady state
(0.021) (96.79) (0.014)

Power 0.947 20.5 0.944 58.4
(0.011) (5.22) (0.012) (13.0)

Top number is the average proportion of cooperators from 50 separate experiments on each network. The
second number is the standard deviation of those averages (across experiment variation). Periodic steady
states are indicated by *.

immediately. Asynchronous updating leads to the same steady state but again it takes a
few rounds for everyone to make the switch.

The complete and star networks yield rather bland results because everyone eventu-
ally plays the same strategy. Nature is much richer. Some individuals cooperate, others
don’t, and still others switch back and forth. One can generate this mixed behavior in
a population by imposing utility functions that place value on cooperation, but such an
approach raises questions about refutability, making that a less desirable avenue. But as
we shall see, a rich mixture of strategies also arises when we alter the underlying topol-
ogy of the network. We shall also see that in some networks, asynchronous updating not
only affects the speed of convergence but can also impact the distribution of strategies
in the steady state.

3.2.3. The ring

Consider playing this PD game on a ring with a neighborhood of five individuals. Use
the same learning rules, begin with a set of strategies assigned randomly across the net-
work and assume updating is synchronous. The surprising result is that both strategies
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almost always survive and cooperation does quite well. Society evolves into all defec-
tors only if the initial distribution contains no string with more than three cooperators,
and pure cooperation arises only if the initial distribution contains no defectors. Oth-
erwise both strategies survive and cooperators make up the majority of the population.
This result was initially put forth by Eshel et al. (1998). Their study used a smaller
neighborhood (k = 2) and their learning algorithm was different (players adopted the
strategy that worked best on average), but this curious result is theirs.

Eshel et al. (1998) provide a proof of their finding making it unnecessary to do so
here, but an intuitive explanation of this outcome can help us understand neighborhood
effects in the present setting. In a prisoners’ dilemma defection dominates any particular
game thus it seems likely that defection would spread throughout a ring. It does not.
Consider a string of at least four cooperators in a row, hemmed in by defectors, as
shown below:

. . . – D – D – D – C –

neighborhoodk︷ ︸︸ ︷
Ci – Cj – Ck – Dl – Dm – D – D – D – . . .

Subscripts indicate which agent plays the accompanying strategy and the top brace
identifies agent k’s neighborhood. Agent k earns a payoff of 12, but he sees agent l

earning 2×7+3×0.1 = 14.3 and agent j who earns 16. Thus, his best option is to copy
agent j and retain his cooperative strategy. Agent l, currently defecting, sees agents k

and m, each earning a payoff less than his own, but he also sees agent j whose payoff
of 16 exceeds own. Thus agent l switches to C, and in the following round agent m

switches to C, and so forth. Cooperation spreads down the line. A similar situation on
the left-hand-side of the cooperators spreads cooperation in that direction. Thus these
four initial cooperators spread around the ring. If these four cooperators were the only
ones in the initial population they would continue to spread until their strings met on
the other side of the ring. What happens?

Suppose things had progressed until a single defector remained.

· · · – C – C – C – Cp – Dq – Cr – C – C – C – C · · ·
Now agent q, the last defector, earns 4×7+0.1 = 28.1 which exceeds the payoffs of

all the other agents, and in the following round all of his neighbors will adopt his strat-
egy, D. But this creates a string of defectors in which the defectors at ends of the string
earn less than one of their cooperative neighbors (as above). Thus, the two end agents
switch back to cooperation in the following round, the next two switch in the subsequent
round, and we get a three-cycle “blinker” consisting of (1, 5, 3), (1, 5, 3), . . . , defectors
as shown here:

round t . . . – C – C – C – Cp – Dq – Cr – C – C – C . . . (one defector)

round t + 1 . . . – C – C – D – Dp – Dq – Dr – D – C – C . . . (five defectors)

round t + 2 . . . – C – C – C – Dp – Dq – Dr – C – C – C . . . (three defectors)

round t + 3 . . . – C – C – C – Cp – Dq – Cr – C – C – C . . . (one defector)
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Similarly, if a string shrinks to just two defectors, both remaining defectors earn more
than all of their cooperative neighbors and defection spreads to their neighbors. Decay
then sets in at the ends of the string, it shrinks, and we get another three-cycle blinker
(2, 6, 4), (2, 6, 4), . . . .

Unless they exist in a population totally absent of cooperators, defectors can only
survive as part of a blinker. Furthermore, at least four cooperators must separate any
two blinkers, or else they will connect and the two strings of defectors will become
one long string. This longer string would be vulnerable to unraveling at each end until
only a single blinker remained.8 Packing the (2, 6, 4) blinkers to maximize the number
of defectors yields a population that contains a minimum of 40% defectors and 60%
cooperators, on average. Similar packing of the (1, 5, 3) blinkers yields 33% defectors
(see Eshel et al., 1998).

Thus, the ring usually leads to the survival of both strategies with cooperation se-
lected by at least 60% of the population. But typically there are more cooperators than
this prescribed minimum. Table 2 presents the results of 50 virtual experiments with a
ring topology and 97% of the population cooperates, while the standard deviation is a
miniscule 0.0075. Somewhat ironically, the relative difficulty of establishing surviving
cooperators leads to their proliferation in the steady state. To survive, cooperators must
come in fours (at least), meaning that defectors (at their maximum length) have to be
separated by four adjacent cooperators. If two blinkers are separated by less than four
cooperators the cooperators die out—become defectors—which connects the two blink-
ers and creates a long string of defectors vulnerable to unraveling. If it were easier to
establish a surviving string of cooperators, say survival required only two cooperative
neighbors, the final population would contain fewer cooperators.9 Intuitively, groups of
cooperators chop defectors into strings that shrink into blinkers, the only form in which
defectors can survive. More chops, more blinkers, more defectors. The more difficult it
is for cooperators to survive, the better they do over time.

Asynchronous updating makes the dynamics of the ring even more curious. Again,
strings of defectors unravel at both ends until they shrink into one of the blinkers. But
with asynchronous updating these blinkers can move around the ring. Consider the fol-
lowing sequence of events. Suppose cooperation has spread to surround a single defector
triggering a (1, 5, 3) blinker centered on agent k:

. . . – C – C – C – C –

neighborhoodk︷ ︸︸ ︷
Ci – Cj – Dk – Cl – Cm – C – C – C – . . .

Agent k earns more than all of his neighbors, but with random updating suppose only
one of his neighbors, say agent m, decides to change.

. . . – C – C – C – C –

neighborhoodk︷ ︸︸ ︷
Ci – Cj – Dk – Cl – Dm – C – C – C – . . .

8 Blinkers could be at different points of their cycle, but the minimum separation must be four cooperators.
9 In Eshel et al. (1998), for example, only two cooperators were necessary for survival and we would expect

13.75% of the evolved population to be defectors.



1030 A. Wilhite

In the next round, agent m earns 21.2 = 3×7+2×0.1 which exceeds the earnings of
all of his neighbors. Thus, in the next round (if all agents in m’s neighborhood happen
to update) we would see:

. . . – C – C – C – C – Ci – Cj –

neighborhoodm︷ ︸︸ ︷
Dk – Dl – Dm – Dn – Do – C – C – C – . . .

The (1, 5, 3) blinker has moved from being centered on agent k to being centered on
agent m. In subsequent rounds the blinker can shift to the left again, back to the right,
or stretch out (at least for a brief period). Still, such strings are susceptible to unraveling
and cannot break into two separate strings to establish more blinkers (a break requires
a minimum of four cooperators). Consequently, given enough time, a blinker will move
around a network and scoop up the other defection blinkers. When such mobile blinkers
merge, their subsequent unraveling reduces the aggregate number of defectors. In fact,
as t → ∞ only a single, mobile blinker survives.10

3.2.4. The grid

Suppose agents are spread out on a grid with a single decision maker occupying each
square. To keep these agents’ neighborhoods the same size as the neighborhoods on the
ring, we limit each agent to four neighbors, those located in the 4 closest squares: one
above, one below and one on each side. Consequently, in a grid, none of the agents’
neighbors are neighbors with one another.

When these agents play the cooperation game, a single cooperator surrounded by de-
fectors will perish; but two neighboring cooperators will spread. And, a single defector
will also spread, leading many agents to adopt the defection strategy. Thus, the pat-
tern of cooperation and defection takes on a complex dynamic. Nowak and May (1992,
1993) first explored this situation for several different neighborhood sizes and payoffs
on a two-dimensional grid.

According to Nowak and May (1992), this process of chaotically changing patterns is
a dynamic fractal.11 If the initial distribution of cooperators and defectors is symmetric,
this dynamic creates “evolutionary kaleidoscopes” of changing cooperation and defec-
tion (a similar pattern of spreading strategies is observed by Axelrod, 1984). Given
a finite population, this pattern must eventually repeat, but in our experiments such
repetition did not occur after thousands of rounds for our population of 2500 agents.
Furthermore, even though each of the fifty simulations starts with a different disper-
sion of strategies, this chaotic behavior converged to 36% cooperation with a standard
deviation across experiments of only 0.071.

Although this system yields a stable distribution of cooperators and defectors, one
cannot predict the moves of any individual agent. An agent might adopt one strategy for

10 A visual display of the spread of defection and cooperation in a ring, grid and small world can be found at
http://cas.uah.edu/wilhitea/simsims.html.
11 A fractal is an object, in this instance a shape, of non-integer dimension (see Flake, 1998).

http://cas.uah.edu/wilhitea/simsims.html
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dozens of rounds of play, switch intermittently between cooperation and defection for
awhile, perhaps only to once again stabilize on a single strategy for another extended
period. Kirchkamp (2000) extended Nowak and May’s studies by introducing more
complex strategies, and a longer memory and he found that different strategies survive
even though they receive different payoffs.

Huberman and Glance (1993) examined asynchronous updating on the grid and using
their payoff matrix cooperation disappeared as a strategy. Nowak et al. (1994) expanded
on this by looking at a variety of PD payoff schemes. They found asynchronous up-
dating sometimes eliminates cooperation but typically cooperation survives. Using the
payoffs defined above, we find that cooperation actually increases with asynchronous
updating, from about 36% of the population to almost 54% (see Table 2). In addition,
the within-experiment variation was much lower with asynchronous updating. Asyn-
chronous updating leads to the establishment of stable cooperative “crosses” in which a
complete neighborhood cooperates. The crosses nest together to form blocks of cooper-
ative behavior surrounded by strings of defectors. Only the boundaries are susceptible
to defection. While these blocks mutate and move around, cooperation remains the ma-
jority’s choice (for an illustration see footnote 10).

3.2.5. The tree

Our tree network has the same size neighborhood as the grid and ring (except for the
furthest reaches, the tips of the branches), but the neighborhoods of an agent’s neigh-
bors differ. In a tree, none of the agents’ neighbors are neighbors with one another, nor
do they share neighbors (except the original agent of course). So, the union of agent
i’s neighbors’ neighborhoods is larger than on the grid or ring, and the intersection is
smaller; in fact, the intersection contains only agent i.

Defection can spread in such a network as illustrated in Figure 2. Introduce a single
defector, D1, into a tree network of cooperators (someplace other than out on the rim of
the tree), and his payoff of 28.1 (4× 7+ 0.1) exceeds all of his neighbors’ earnings and
defection spreads (each C′ switches to D). In fact, if a single defector is introduced into
a network of cooperators, the entire network will quickly adopt the defection strategy.
However, isolated defectors on the rim, such as D2, die out.

Cooperation spreads just as readily if a pair of cooperators starts out as neighbors.
Those paired cooperators earn a payoff of 8 which dominates all defectors, who can

Figure 2.
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Figure 3.

earn at most 7.4.12 Thus, a single defector will conquer a network of cooperators, but
two (neighboring) cooperators will conquer a network of defectors. For this reason,
the stable equilibrium strategy in a tree network conforms to one of two states: total
cooperation or total defection. Starting with a random allocation of cooperative and
defection strategies, we know that the network will eventually converge to one or the
other outcome, but which is uncertain.

The dynamics of the tree are surprisingly complex. For example, while a single de-
fector conquers an entire network of cooperators, two defectors do not. Two defectors
interfere with one another, reducing each other’s payoffs, leaving cooperation as the
superior local strategy. Consider Figure 3, in which defectors co-mingle with cooper-
ators and have spread up the tree to this point. Agents D1 and D2 have just switched
their strategy to defect, and in the next round all cooperators in their neighborhoods,
including C1, will switch to the defection strategy.

At this point the defection strategy will stop spreading. Agent C1 (now a defector)
earns a payoff of 14.3 (= 2× 7+ 3× 0.1), which is less than the payoff of his neighbor
playing C2 so agent C1 and will switch back to cooperation. In the following round
defectors D1 and D2 will also switch, and in subsequent rounds the cooperative strategy
will eventually wipe out the defectors. Regardless of where the two defectors are ini-
tially located, they will eventually meet at a fork and from that point cooperation takes
over. One defector conquers a network; two do not.

Cooperators do not face an interference problem because if two cooperators meet
they actually increase each other’s payoff. However, if three cooperators meet at a fork
occupied by a defector, that defector’s payoff suddenly increases (because he now can
take advantage of all three cooperators) and dominates the cooperative payoff. At that
point the momentum shifts and defection takes over.

Thus, two converging defectors interfere and eliminate each other and three converg-
ing cooperators stop cooperation. Given a random distribution of initial strategies, a
meeting of two defectors more likely occurs than a meeting of three cooperators, and so

12 If two cooperators are neighbors, then by the topology of the tree network no defector shares a neighbor-
hood with both; thus the maximum earnings of any neighboring defector is (7 + 4 × 0.1 = 7.4).
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the steady state more likely takes the form of a cooperative tree. As shown in Table 2,
the steady state of the tree consists of all cooperators 60% of the time.

Asynchronous updating has two marked effects on the dynamics in a tree network.
First, partial updating dramatically slows things down. As seen in Table 2, the synchro-
nously updated system required only 14 or 15 rounds of decision making to reach the
steady state but with asynchronous updating no steady state emerged even after thou-
sands of rounds of play. Second, the lack of synchronicity allows both strategies to
survive.

To understand how asynchronous updating induces these changes, reconsider Fig-
ure 2 above and focus solely on the neighborhood of the defector D1. With synchronous
updating the next round of play sees all agents indicated by C′ switching to the defection
strategy. The initial defector’s payoff falls dramatically but he retains his defection strat-
egy because all of his neighbors are defecting. But with asynchronous updating some
of his neighbors may not switch. Suppose only two of the four agents indicated by C′
switch to the defection strategy. Agent D1 has a payoff of 14.3, but he now has at least
one cooperative neighbor earning a payoff of 16 creating an incentive to switch to coop-
eration. Cooperation offers an even larger payoff if three of the four initial cooperators
switch. Now consider all possibilities. With asynchronous updating, one of five changes
will occur: exactly 0, 1, 2, 3, or 4 neighbors will update. If none or only one updates,
the defector will continue to have the highest payoff and will influence his remaining
cooperative neighbors to defect and some will in subsequent rounds. Eventually we will
see two, three, or four neighbors switch to defection. Agent D1 is secure only if all of
the cooperators in his neighborhood change at once, which occurs with a probability =
1/256—unlikely but it surely happens. However, for defection to conquer the network
this unlikely event has to occur in every neighborhood at just the right time, a probabil-
ity that becomes vanishingly small as the population gets large. Thus, defection loses
its ability to become the dominant strategy.

While asynchronous updating dooms the defection strategy’s chances of conquering
the network, it also makes defection difficult to eradicate. Again consider agent D1 in
Figure 2 and suppose two of his neighbors have updated and switched to the defection
strategy. Agent D1 will eventually to switch to the cooperative strategy, but in the mean-
time his newly defecting neighbors will be influencing their neighbors to defect. They
in turn will eventually be pressured to switch back to cooperation, but their now de-
fecting neighbors will be infecting others still. In this way the defection strategy moves
around the tree and manages to avoid its eventual extinction. This activity accounts for
the absence of a steady-state. While an unlikely chain of events might still lead to the
eradication of defection, none of the experiments conducted here suffered such a fate in
tens of thousands of rounds of play.

3.2.6. Small-world networks

Because small-worlds have a ring substructure, the long run distributions of strategies
inherit some of the attributes of the ring network. For example, small worlds contain
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both cooperators and defectors with cooperators making up the majority, and they
typically evolve some limit cycle reflecting the presence of “blinkers,” groups of de-
fectors that grow and shrink repeatedly. But substantial differences emerge as well. For
instance, the pure ring had only two, three-period cycles, the (1, 5, 3) and (2, 6, 4) blink-
ers. With shortcut edges involved, some of these cycles include more periods, and the
coordination of these different-length individual cycles can create very long aggregated
cycles. Consequently the periodic, steady-state, aggregate distribution of cooperators
versus defectors may repeat itself only after hundreds of rounds of play.

Small-worlds also tend to have fewer cooperators than rings. As summarized in Ta-
ble 2, 97% of the population cooperates in a ring, but only 70% of the population
cooperates in a small world. Shortcuts open the benefits of cooperation to a wider
population, limiting its local restraint and more individuals defect to free-ride on this
cooperative behavior. By inspecting the experiments visually (one of the advantages of
ACE modeling) you can see this difference emerge. First envision a ring with a single
group of surviving cooperators (at least four cooperative neighbors). Recall that this co-
operation will spread around the ring ending in a single blinker that contains the only
surviving defectors. Now contrast that with a ring that has a single shortcut or bridge.
As cooperation spreads as it did in the ring, it eventually reaches this bridge. At this
point, cooperation splits and one line of cooperators continues its trek around the ring
while the other jumps to the other side of the bridge to spread from there. These two
distinct lines of cooperators will eventually converge to create two blinkers (instead of
the single blinker that would have resulted in a ring). Small worlds thus retain more
clusters of defectors than do rings.

As in a ring, incorporating asynchronous updating in a small-world network makes
blinkers mobile; they expand and contract irregularly moving around the network soak-
ing up other blinkers. But, unlike the ring, bridges or short cuts can chop a blinker into
two surviving groups of defectors (see footnote 10). In these experiments this concur-
rent fusion and division of blinkers seems to balance out and the aggregate distribution
of strategies is changed little, containing about 70% cooperators.13 Synchronous up-
dating also leads to a more unstable contingent of cooperators that repeats after a long
cycle while asynchronous models tend to change less from period to period but wander
more erratically over time.

3.2.7. Power networks

Both strategies survive in power networks. Pockets of defectors can persist because
small neighborhoods can be surrounded by larger neighborhoods, upstream and down-
stream. In such a situation, an agent who retains the defection strategy may have some
neighbors who keep playing the cooperative strategy because their neighbors are earn-
ing a large payoff through cooperation.

13 The determinants of the relative speed of the division and fusion of blinkers include the number of bridges
in the small world and the probability of updating. How each affects the eventual distribution of strategies is
an open question.
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Power networks display an interesting dynamic in the presence of synchronous up-
dating. Cooperation falls in the early rounds, but soon it rallies to quickly become the
dominant strategy. There is a phase transition from a state of chaotic, low-cooperation to
periodic, high-cooperation. Leigh Tesfatsion (2006) mentions how ACE models some-
times surprise you, bringing forth results that one would not anticipate, yet can make
sense on further inspection. This phase transition is such an example. Remember that
the power network contains a few nodes of high degree (hubs) which are almost always
directly connected to each other. Consequently, even if the network contains only a few
cooperators knocking around in its far reaches those cooperators eventually align them-
selves in such a way to induce one of the hubs to switch to cooperation. His switch
induces a switch for most of his neighbors (just as in a star) and the hub’s payoff from
cooperation soars. This triggers a switch for another, perhaps even larger hub and starts a
chain reaction in which all hubs switch to cooperation in just a few rounds. The network
dramatically changes from one state in which a minority of the population cooperates
to one in which almost everyone cooperates.

Asynchronous updating has minor effects on the aggregate distribution of strategies
in a power network, primarily dampening the convergence process. It takes a bit longer
to reach its periodic steady state, and the phase transition is smoothed out to a more
gradual trend of cooperation.

Reviewing all of the results in Table 2, we see that network structure has dramatic
effects on the eventual proportion of agents adopting a cooperative strategy. Further,
the impact of asynchronous updating differs across networks, sometimes altering the
steady-state distribution of strategies and sometimes altering the dynamics within a net-
work. In both cases network structure—the way we are connected to our neighbors,
influences our aggregate decision making.

4. Exchange in networks

But games are not the only game in town. Economic agents frequently engage in non-
strategic behavior, like exchange. This section considers exchange when it is shaped
by a network. The pure exchange economy created here differs fundamentally from
the games played above because agents do not alter their behavior based on a neigh-
bor’s behavior. Agents simply exchange if they find it beneficial, and prices are set by
an exogenous formula known by all. Thus the economic problem is one of matching
voluntary traders. Our primary interest is how the topology of a network affects the
efficiency of exchange.

Most of the literature investigating exchange on networks concentrates on the for-
mation of the network, i.e., how traders select partners and the resulting network’s
attributes. Vriend (1995) advanced one of the first ACE models which studied the
self-organization of markets. Following his lead, McFadzean and Tesfatsion (1999),
Kranton and Minehart (2001), Dawid (2000), Kirman and Vriend (2001), and Wilhite
(2003) have explored a number of additional issues in market-induced network evolu-
tion. Vriend (2006) reviews these and related issues in this volume.
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But research examining exchange on an existing network remains in its infancy. Bell
(1998) compared trade on a ring and a star and found that centralized networks con-
verge more quickly and appeared less prone to spatial price anomalies. Wilhite (2001)
examined trade on a complete network, a type of ring, and a small-world and found that
the small-world network, while not centralized, still achieved rapid convergence with
less search and negotiation costs than the complete network. Other related studies have
not explicitly focused on the impact of network topology. For example, Epstein and Ax-
tell (1996) placed the agents in Sugarspace on a grid, but their agents could move; thus
their neighborhoods were not fixed as defined in this chapter. However, the resources in
Sugarspace were spatially fixed and required transportation, consequently Epstein and
Axtell also observed spatial price anomalies.

This section explores trade on a network by simplifying to focus on a barter economy
with only two goods, g1 and g2. These are durable goods in the sense that they suffer
no degradation over time. There is no production and there are no imports; thus, the
aggregate stock of goods at the beginning of the experiment is the same at the end.
These goods have value as intrinsic sources of pleasure and as durable assets usable in
exchange. Examples include collectibles such as precious stones, baseball cards, works
of art, or antiques. One of the goods, g2, is infinitely divisible but the other, g1, must be
traded in whole units.14

The network trade experiments involve 1000 independent agents, each possessing
the same symmetric Cobb–Douglas utility function. Agents are rational, non-strategic,
and myopic in that they do not attempt to mislead potential trade partners, or plan for
future opportunities. They simply try to improve their current position in each period by
engaging in voluntary trade. At the time of an exchange, agents are constrained by their
existing wealth, which consists of their current stock of goods 1 and 2. Finally, half of
the agents are endowed with an initial allocation of 1500 units of good 1 and 150 units
of good 2. The other half of the population has the mirror image, 150 units of good 1
and 1500 units of good 2. These endowments define the entire resource base of society.

Formally, the utility of agent i, Ui , depends on the amount of the two goods, g1 and
g2, he possesses:

(1)Ui = gi
1g

i
2, i ∈ {1, . . . , 1000}.

Agent i trades as long as the incremental exchange increases Ui . An opportunity for
mutually beneficial exchange exists if the marginal rates of substitution of two agents
differ. Given the utility function in (1), the mrs of agent i is

(2)mrsi = U ′(gi
1)

U ′(gi
2)

= gi
2

gi
1

, i ∈ {1, . . . , 1000},

where U ′(·) is the first derivative of U .

14 Requiring increments of a whole unit of good 1 adds some rigidity (and realism) to the model. The effects
of this rigidity were explored by altering the aggregate initial endowment.



Ch. 20: Economic Activity on Fixed Networks 1037

Agents are allowed to trade with any agent with whom they are linked, and trade pro-
ceeds as follows. A randomly selected agent searches among his neighbors for trading
opportunities, picking the one offering the best deal. They establish prices, and trade
one unit of good 1 for the stipulated amount of good 2. He then searches and trades
again, until four trades are made. Then another agent is selected randomly to search
through his neighborhood, set prices and so forth. A complete “round” of trade termi-
nates when 1000 agents (the size of the population) have had the opportunity to initiate
trade.15 Note that, any agent can either buy good 1 (trade g2 for g1) or sell good 1 (trade
g1 for g2). Indeed, in successive rounds a particular agent may buy and later sell the
same good.

The exchange price between agent i and agent j , pi,j , is set according to the follow-
ing rule.16

(3)pi,j = gi
2 + g

j

2

gi
1 + g

j

1

, i, j ∈ {1, . . . , 1000}.

Equilibrium is defined as a point of rest; trading stops because traders find no deals
that improve both parties. Because the market is seeded with equal amounts of g1
and g2, the equilibrium price equals one. And since all of the networks are connected,
each market eventually reaches this equilibrium price and all agents eventually see their
mrs approach unity.

Using this simple setup we examine how a network’s topology affects trade. To pro-
ceed, one of the networks of interest is selected, primed with initial endowments, and
agents trade. We explored two alternative methods of distributing the initial endow-
ments: random assignment and directed assignment. At first glance, randomly selecting
the agents who start rich in g1 and those who start rich in g2 might seem an unbiased
way to initialize the system, but a random distribution of the initial goods could hide
the very network effects that are of primary interest. For example, if agent i’s neighbors
just happen to have the goods he wants, networks matter little. Furthermore, in nature,
economic commodities generally are not randomly dispersed throughout a system. In-
stead they clump together around some resource base or spatial anomaly, or they reflect
a regional comparative advantage. In general our challenge is not to distribute goods
that are already distributed; it is to distribute goods that are not.

Consequently, initial endowments were assigned directly. In this case, the first half
of the population received 1500 units of good one and 150 units of good 2 and the rest
of the population received the opposite. While this arbitrary allocation is not meant to
capture some prevalent distribution found in nature, it does force each network to face
the challenge of moving goods from one location to another by trading. A visual image

15 An agent can trade several times in a single round because he may be randomly selected several times in
that round, and he may be selected by more than one agent as a trading partner.
16 In a previous study two other pricing rules, the arithmetic mean and the geometric mean, were explored,
but they had little effect on our conclusions. A quick check suggests the same is true here.
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Table 3
Trading on networks. Speed of convergence, number of trades and searches

Network type Number of edges Rounds of trading Total trades Total searches

Complete 500 500 157 468 748 1 568 430 000
(8.75) (3314) (8 741 250)

Star 999 452 481 443 2 257 740
(2.81) (2396) (14 035)

Ring 2000 35 681 45 102 011 142 724 800
(239.93) (55 205) (959 720)

Grid 2000 2515 3 250 932 10 062 000
(50.45) (3983) (201 800)

Tree 999 34 742 2 039 978 138 968 000
(1548.56) (155 332) (6 194 240)

Small-world 2000 3719 3 766 358 14 872 000
(592.11) (466 836) (2 368 440)

Power 2000 422 744 698 1 689 600
(24.35) (13 736) (97 400)

The top number is the average number of rounds, trades or searches to reach equilibrium in fifty trials on each
network; the lower number is its standard deviation.

of the initial distribution of goods appears in Table 1 where the shaded nodes represent
agents receiving more g1.

Trade proceeds on the seven networks of interest until the equilibrium price emerges,
the agents’ mrs converges, and no further mutually beneficial exchange opportunities
exist. Some networks converge faster, some feature greater amounts of search and ne-
gotiation, and others generate more equitable distributions of income or goods.17 See
Table 3 for an overview of these statistics.

Just as one’s intuition might suggest, the complete network converges more rapidly
than the other structures. When everyone can trade with anyone else, the most prof-
itable exchanges happen in every round and prices quickly converge to their equilibrium.
However, the complete network contains the largest number of edges, 250 times more
edges than the next, most dense network. So, if edge creation and edge maintenance
consume resources, this rapid price convergence is costly. Furthermore, since agents
search their entire neighborhood to find the best trading partner, a complete network
requires agents to sift through the entire population. Consequently, the complete net-
work’s abundance of edges inflates search and negotiation expenses such that it may not
be the most efficient way to organize trade.

The star seems to hold promise as an efficient organization because it has a small
number of edges and everyone is only two steps away from every other agent. Consistent

17 While agents search and negotiate costlessly in these experiments, in nature they do not. To recognize this
potential cost we write as if traders do negotiate at every trading opportunity and just happen to end up at the
price as determined in equation (3).
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with Bell (1998) we find that the star converges more quickly than most of the other
networks and requires less search and negotiation. But there is a catch. The star network
generates an extremely uneven income distribution as discussed below. Convergence
happens slowly on a ring because goods must be handed from person to person to pass
from one side of the ring to the other, much like water moving in an old bucket brigade.
In the tree, goods must pass down through the branches and through the single “trunk”
node before they can reach the other branches. This slows its convergence considerably.
The small-world and the power networks converge more quickly and require less search
and negotiation than the grid, ring, or tree. The power network is particularly efficient,
clearing markets in fewer rounds and with fewer searches than even the star.18

When a network restricts the flow of trade along certain routes, certain positions can
gain a spatial advantage. In the above exercise, agents at such crucial nodes could not
exploit their position in the sense of allowing or disallowing some individual or group of
individuals to trade or to force prices to their advantage. However, those critical nodes
still benefit from their location because they offer so many opportunities to trade and
each exchange generates some incremental gain. Consequently, agents at these critical
nodes can earn much more than others in the network. Table 4 displays a representative
income distribution following trade on each network.

Notice the disparity in the star network. The spike represents the wealth of the central
agent. Even though he cannot exploit his position by coercing others in the network, he
still occupies an advantageous node. Every trade includes him as one of the partners and
since every trade is beneficial he acquires more goods. This result brings to mind many
historic examples, including how Constantinople accumulated vast wealth when most
of Europe’s spice merchants routed trade through this territory.19 The complete network
yields a more equitable distribution of goods although the richest individual earns about
twice as much as the poorest. Those random agents who were lucky enough to trade
early earn a bit more because the best bargains are then available.

The distribution of income in the ring and grid resemble one another, which makes
sense. Consider the ring. Given the uneven distribution of initial endowments, the two
most critical neighborhoods lie between the agents rich in g1 and those rich in g2. Goods
must flow through those two regions (which reside directly across from each other on
the ring) and so those neighborhoods see more action and earn more profits. This ac-
counts for the peaked earnings in the ring network. A similar results holds for the grid,
except the regions separating the two sets of endowments contain several neighborhoods
leading to a greater dispersion of wealth.20

18 For more on the dynamics of price adjustment in these networks, see the web-site referenced in footnote 10.
19 Note how the star network’s income distribution shifts at the halfway point in the population. This earnings
difference is solely a function of the directed assignment of initial endowments and the restriction that good 1
can only be swapped in whole units. That artificially restricts the trades agents can make, which causes the
observed difference. If the initial endowments are swapped such that the first half of the population has more
of g2, the second half of the population ends up with the greater earnings.
20 The skew accompanying the income spikes in the ring and grid are also artifacts of the requirement that
g1 is traded in whole units. Flipping initial endowments flips the skew.
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Table 4
Trading on networks. Sample income distributions after trading on each network

Complete:

Star:

Ring:

Grid:
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Table 4
(continued)

Tree:

Small world:

Power:

The horizontal axis reflects the 1000 agents and the vertical axis measures the level of g1 held by each agent
after trading comes to a halt (recall g1 = g2 in equilibrium).

The income distribution emerging in a society that trades on a tree network depends
critically on the distribution of the initial endowments. If we distribute goods as above,
most of the g2-rich agents reside in two of the four branches. Consequently, trade must
flow through the center agents. The resulting distribution reflects great wealth for the
center player, a bit less for the next level players (the first nodes off the trunk), and so
on. If goods were distributed in another fashion (for instance, if one good was seeded
completely around the rim of the tree), the resulting distribution would favor a different
sub-group.21

21 In that case the critical nodes are those that lay one step upstream of the tips of the branches.
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Reviewing Tables 3 and 4, we see that the small-world and power networks quickly
allocate goods to reach the equilibrium price and they do not suffer from the undue
search costs arising from many edges. These networks also yield a more equitable dis-
tribution of income. Hubs in the power networks naturally earn more profits, but the
richest agent earns only about seven times the average agent’s income, a smaller differ-
ential than all but the complete network. We also see variation in small-world networks
as the agents with “shortcuts” to regions having the opposite endowment of goods do
better than those without such links. But the rich earn only about ten times the poorest
agent. Thus, the small world and power networks seem to achieve their increased speed
without concentrating earning power into the hands of a few.

5. Conclusions

This chapter has explored the effects of a network’s topology on two types of economic
activity: strategic coordination and cooperation, and exchange. Given the infancy of
economic research on networks, many open questions remain. I expect future network
research to focus on more complex topologies. The small-world and power networks ap-
pear to be important structures but they have eluded serious study until the last few years
and remain largely ignored in economics despite their efficiency, resiliency, and their
ability to provide a framework to study some economically important environments.
That these two significant creations resided undetected for years makes one wonder
what other types of undiscovered network structures exist. Recently Jackson and Rogers
(2004) have constructed networks from a search and strategic attachment process that
possesses characteristics of both the power and small-world networks. These networks
may more readily fit the topology of the world-wide-web by mimicking the clustering
of nodes in the web more accurately than the power networks put forth by Albert et
al. (1999). Certainly one can envision other hybrid networks. For example, Gastner and
Newman (2004) investigate networks that emerge from a cost minimization rule which
is “tuned” depending on whether agents are more concerned with minimizing the spatial
distance traveled or minimizing the number of edges traversed. They find that grid-like
networks emerge when geographic distance matters and power networks emerge when
the number of edges matters. In between hybrid networks containing attributes of both
arise. The economic properties of these more complex networks deserve our attention.

Networks certainly influence other types of economic activities besides games and
pure exchange. For example, Calvó-Armengol and Jackson (2004) present an example
of networked labor markets which suggests that an individual’s job history depends,
in part, on the job history of his acquaintances. Allen (2000) offers a similar explana-
tion for the decision to become an entrepreneur. Kranton and Minehart (2001) look at
exchange between buyers and sellers. They find that agents can use networks to pool
the risk of uncertainty arising from the stochastic nature of supply and demand, and
that under reasonable circumstances non-cooperative actors can successfully establish
such networks. Wilhite (2003) suggests that the decreased search and negotiation costs
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accompanying established trading partners solidifies a network’s structure. Tesfatsion
(2001) finds that the asymmetric earnings of workers across a contractual network are
affected by the relative market power of employers and workers.

In addition, researchers are only beginning to study the effects of weighted edges on
economic activity. As networks come to represent more complex structures, we may
not treat all links as equals. Some highways are wider, safer, and faster than others,
some friends are more cherished, some pundits more respected. Weighted edges offer
a simple method by which we can incorporate such differences. We can also represent
spatial networks—those that formally incorporate the “distance” between two nodes—
by weighting edges. And by weighting edges probabilistically, one can incorporate risk
and uncertainty. When edges are given these types of attributes, the shortest route from
node A to node B might be different than the fastest route, which could differ from the
least costly route, or the most certain route.

Other issues arise when edges are not assumed to be bidirectional as they are in this
chapter. Information might flow in only one direction between certain nodes, or an edge
might have one weight in one direction and a different weight in the opposite direction
(it is harder to swim upstream than down). The information an agent receives might be
more reliable than the information he gives out, either by design or by circumstance.
Furthermore, the weighting scheme on a network’s edges may change over time. Such
changes could be internal to the issue being investigated; for example, an edge being
used more frequently could become better and stronger, or it could become congested
and depreciate from use. Or change could be exogenous to the system; perhaps edges
change with the seasons. Dibble (2001) is exploring the effects of technology on edges;
for example, technology might shorten the travel time between some nodes and not
others.

Network studies offer an intuitive way to incorporate these and many additional at-
tributes governing agent interaction into our thinking. But this complexity also tends to
make things more, well, complex. It doesn’t take much to render a network’s architec-
ture analytically intractable, particularly if the distribution of edges contains a random
component or if edges are weighted. But with agent-based computations such compli-
cations can be expressed in computer code and then virtual experiments can probe into
the finer workings of an architecture. In this manner, the origins of networks can be
modeled, their impact on individual decision making can be explored, and their large-
scale characteristics can be described statistically. Ultimately network effects can be
dissected by economists, turned into research tools, and added to the arsenal of models
which help us understand our world.
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Abstract

Various approaches used in Agent-based Computational Economics (ACE) to model
endogenously determined interactions between agents are discussed. This concerns
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but also (learn to) decide with whom to do that (or not).
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1. Introduction

This chapter presents an overview of Agent-based Computational Economics (ACE)
models of endogenously determined relationships. This concerns models in which
agents not only (learn how to) play some (market or other) game, but also (learn to)
decide with whom to do that (or not). Such decisions may depend, for example, on the
perceived success of the interactions. These models of endogenous interactions are to
be distinguished from models in which the interactions between agents are exogenously
determined; for example by the given spatial positions of agents, such as with cellular
automata. An alternative way to put this is that in the models with endogenous inter-
actions discussed in this chapter, the speed with which connections can be updated is
comparable to (or faster than) the speed with which strategies in some underlying game
can be updated, whereas in models with exogenously determined interactions the speed
of the network updating is so low that the interaction structure can be taken as given.

The main motivation for studying models of endogenous interactions is that endo-
geneity is a ubiquitous feature of the reality of social interactions. Therefore, a theory
of social interactions must take account of it. Consider, for example, the following quote
concerning market organization.

“Markets rarely emerge in a vacuum, and potential traders soon discover that they
may spend more time, energy, and other resources discovering or making a market
than on the trade itself. This predicament is shared equally by currency traders,
do-it-yourself realtors, and streetwalkers! Their dilemma, however, seems to have
gone largely unnoticed by economists, who simply assume that somehow traders
will eventually be apprised of each other’s existence—to their mutual benefit or
subsequent regret” (Blin, 1980, p. S193).

Therefore, models of market organization going beyond assumptions of perfectly
competitive markets (either considering them as black boxes, or with Walrasian auc-
tioneers or invisible hands pulling the strings), explicitly focusing on the “who interacts
with whom?” question seem useful. The endogeneity of interactions is equally ubiqui-
tous in other social domains. As Skyrms and Pemantle (2000) observe:

“A child who is being bullied learns either to fight better or to run away. Similarly,
a player who obtains unsatisfactory results may choose either to change strategies
or to change associates” (p. 9340).

We will focus on ACE models. The basic idea of ACE modeling is that one com-
putes explicitly (either with paper and pencil, using a computer, or just mentally) the
actions and outcomes for each and every individual agent at each relevant moment in
time. Modeling individual agents computationally does not pose particular conceptual
difficulties to economic theory. After all, as Lucas puts it, doing economics means “pro-
gramming robot imitations of people” (in Klamer, 1984, p. 49). In fact, ACE modeling
follows the same methodology of scientific inference as more traditional mathematical
modeling in economics, and should be seen as complementary rather than an alternative
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to such more standard modeling. Both are modeling approaches using equations and
deduction. With standard mathematical modeling in economics one typically specifies
a certain micropattern (primitives and rules of possible interaction) and then considers
a macropattern as an equilibrium of the thus specified model. In this traditional view,
if a certain macropattern is not an equilibrium of such a microspecification, then it is
not explained. This is what Varian (1984) calls “recoverability” (p. 3). The same ap-
plies to ACE modeling, where one also focuses on the question whether it is possible to
‘recover’ regularities known from reality in relatively simple models (abstracting from
many aspects of reality), and analyzes how these regularities depend upon parameter
choices or modeled mechanisms. Both ACE models and formal, mathematical models
are thus models that are in themselves possible explanations for some real phenom-
ena. Whereas the insights offered by mathematical models are typically presented in
the form of theorems or propositions, ACE models seem to produce only computational
examples. However, as Judd (2006) explains, even in this respect the two approaches
are similar because ‘theorem’ is just a plural of ‘example’. Although examples are pro-
duced in a somewhat different way in ACE models, there is no fundamental difference
in this respect.

The difference between ACE and more traditional mathematical modeling in eco-
nomics is a matter of the tools and techniques used: mathematical equations and speci-
fications versus computational instructions. This facilitates different microspecifications
and different ways to generate macropatterns, which in turn allows for different types of
analysis, addressing somewhat different questions. For example, paying more attention
to dynamic and non-equilibrium phenomena such as bounded rationality and learning,
while maintaining tractability might be easier with ACE models. And as Tesfatsion
(2006) explains, this makes ACE similar to constructive rather than classical mathemat-
ics.

Sometimes in the literature one can find people comparing the output of an ACE
model run on a computer to the data of laboratory experiments with real (human) sub-
jects, as if such a run were a test of some hypotheses, and as if the computer output were
data to be explained. Such a view does not seem very helpful. As explained above, an
ACE model is a model as much as a more traditional mathematical economics model
is. That is, the computer program in itself is the (possible) explanation of some real
phenomena. Running an ACE model on a computer (no matter whether this is called
a simulation, a computational test-bed, a wind-tunnel experiment, or an artificial petri
dish) is only a matter of analyzing the model, checking its internal consistency and
examining its properties.

The studies presented in this chapter may differ in a number of important aspects from
each other. (i) In the way connections are formed in a technical sense (e.g., by sending
a communication signal, making a trip to a store, being a neighbor, etc.), and whether
there are constraints formed by some underlying topology for the connections (e.g., a
lattice). (ii) The way connections are evaluated and established in an economic sense
(e.g., as myopic best-replies, or based on some learning process). (iii) The type of game
(if any) being played for a given interaction structure or network. (iv) The way agents
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Table 1
Different ways to model interactions in ACE models

Mechanism Paper Section

random
local
residential pattern Schelling (1971) 2.1
resource gradient Epstein and Axtell (1996) 2.2
predictors Arthur (1994) 2.3
advertising/patronage Vriend (1995) 2.4
(threshold) expected payoff Ashlock et al. (1996) 2.5
arbitrary tags Riolo (1997) 2.6
trust Hanaki et al. (2004) 2.7
expected payoff/familiarity Kirman and Vriend (2001) 2.8
past success rate Chang and Harrington (2005) 2.9
directed random search Jackson and Rogers (2004) 2.10

decide upon their strategies in such a game (e.g., as myopic best-replies, or based on
some learning process). (v) Whether the focus is on the emerging interaction structure,
or on the emerging strategies used in the underlying game (e.g. the trade-off between
risk- and payoff-dominance in coordination games, or the sustainability of cooperation
in prisoner’s dilemma games). We will focus on the first two of these dimensions, i.e.,
on the various ways to model the endogenous interactions themselves.

Table 1 lists a number of different ways used in the ACE literature to model in-
teractions. The first two ways to model interactions are relatively well-known and
straightforward. Considering random interactions has been popular in particular in work
originating from evolutionary game theory. Local interactions have often been modeled
in the form of interactions with nearest neighbors, e.g., on a grid or lattice. Notice that
in these first two approaches the interactions are not endogenous. Instead, they are de-
termined through some exogenous random process or through exogenously determined
locations of the agents. Therefore, we will focus on the other approaches listed. In all
these approaches, the agents themselves decide whether to establish, maintain, or severe
a link with some other agent(s), and these decisions are usually somehow related to the
perceived success of their interactions. In the remainder of this chapter we present an
ACE paper (see Table 1) for each of these ways to model the endogenous determination
of interactions.

The overview will focus on the modeling of interactions as such, and will not provide
a complete summary of the papers. The prime objective, rather, will be to catalog the
ACE ways to model endogenous interactions. We will also not attempt a comparison
to find the best (elements of each) approach, but rather we would argue that the choice
of model should depend on ‘circumstances’ to be modeled in a broad sense, and on
the purpose of the model. This includes issues such as the cognitive capabilities of the
agents and the opportunities to use them (e.g., for interactions that are immediate, a
fast and frugal way to guide interactions may be appropriate), the number of agents
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involved, whether the interactions are face-to-face (allowing for face recognition and
use of simple physical cues as signals) or not, whether the interactions are anonymous
or not, whether they are repeated or not, and whether trust is an issue or not.

The objective of this chapter is not to attempt to reach a conclusion as to what inter-
action patterns typically emerge in models with endogenous interactions (e.g., does a
fully connected network ever appear?), or whether there are any general differences in
this sense between models with endogenous and models with exogenous interactions.1

On the one hand, it seems much too early for such an attempt. On the other hand, as
Wilhite (2006) shows, the relevance of the interaction structure may be different for any
different exogenous interaction structure, not to mention the differences among models
of endogenous interactions. Similarly, in principle it could be that at some point we will
be able to conclude that models with exogenous interactions are satisfactory approxi-
mations to the social reality of endogenous interactions. But for the moment any such
conclusion would seem premature.

2. Various approaches

2.1. Schelling (1971): residential pattern

Schelling (1971) presents a spatial proximity model of neighborhood segregation. Al-
though Schelling does not actually use any computers, this must be one of the very first
ACE models.

There are two versions of this spatial proximity model: a one-dimensional (1D) and a
two-dimensional (2D) model. In the 1D model, individual agents are distributed along a
line. An agent’s position is defined relative to his neighbors only, and agents can always
position themselves next to any agent. A given individual’s neighborhood is defined
as the k nearest neighbors on either side of him. Agents towards the end of the line
will have fewer than 2k neighbors. Schelling’s 2D model concerns a regular lattice with
bounds, such as a checkerboard.2 Each agent occupies one cell of the board, and each
cell can be occupied by only one agent at a time. Unlike in the 1D model, there are
also some free cells. The neighborhood of an individual agent is the so-called Moore
neighborhood. For an agent in the interior of the board this consists of the eight cells
directly surrounding his own location, with fewer neighbors for agents at the boundary.

In both versions, Schelling considers a finite number of individual agents, distin-
guishing two types of individuals. Each individual is concerned only with the number
of like and unlike neighbors. More specifically, each agent wants, for example, at most
50% unlike neighbors; otherwise agents are indifferent.

1 For example, Oechssler (1997), Dieckmann (1999), and Mailath et al. (2000) show that for a certain class
of coordination games endogeneity of interactions may directly affect the equilibrium selected.
2 See also Sakoda (1971), which is based on Sakoda (1949), for a very similar model of endogenous inter-

actions.
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Figure 1. Structure of Schelling (1971).

The time structure of the model is given in Figure 1. The starting configuration is
created by randomly distributing equal numbers of agents of each type. The dynamics,
then, are an iterative process of agents choosing myopic best-responses to the residen-
tial locations chosen by the other agents. At each stage all agents that are not satisfied
are put in some arbitrary order. When an agent’s turn comes, he moves to the nearest
satisfactory position. Since in the 1D version all positions are relative only, he simply
inserts himself between two agents (or at either end of the line), and his own departure
does not lead to an empty position. In the 2D version, each agent who wants to move has
to find an empty location. At the next stage a new list of unsatisfied agents is compiled,
and so on. This process continues until no agent wants to move anymore.

The interactions are endogenous in the following sense. Individual agents choose
their neighbors on the basis of the current residency pattern (neighborhood ratios of like
and unlike agents). As individual agents move, this residency pattern evolves. In fact,
there are two kinds of externalities with every move. A leaving agent changes the neigh-
borhood ratios for his old neighbors, while a newly arriving agent modifies the ratios
in his new neighborhood. In both cases, these externalities may be positive or negative
(depending on the perspective of the agents affected). Agents choose their location di-
rectly in (myopic) response to the existing residential pattern right from the start, and
there is no learning (e.g., to be forward-looking) in this respect. Notice that there is no
further underlying game to be played. The only thing that matters to the agents is with
whom they interact, i.e., the proportions of each type in their own neighborhood. In
some of the other models we will see that the variable guiding the interactions is some
intermediate variable, and the agents can learn how this intermediate variable relates to
eventual payoffs.

The random starting state is typically highly integrated. The usual outcome of the
dynamic process is a highly segregated state, although nobody actually prefers segre-
gation to integration. Figure 2 gives an example based on Schelling (1971), showing
the initial (integrated) and final (segregated) state. Does the endogeneity of the interac-
tions matter? Yes, it is all that matters. Many integrated equilibria exist (see Pancs and
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Figure 2. Emergence of segregation. Source: based on Schelling (1971).

Vriend, 2003). But externalities of each residential location choice (i.e., the endogenous
interaction choice) lead to an unraveling process (i.e., further endogenously determined
interactions) resulting eventually in segregation.

2.2. Epstein and Axtell (1996): resource gradient

Epstein and Axtell (1996) study a number of different social behavioral phenomena,
ranging from simple gathering and consumption, to mating, cultural transmission, com-
bat, trade, credit, and the spreading of diseases.

These phenomena are studied in a so-called ‘sugarscape’. This space consists of a
lattice in the shape of a torus (i.e., a 2D grid with each edge folded and connected to
the opposite edge). At each site, sugar can grow at a given rate up to some maximum
(which may differ from site to site). In the basic model, sugar is the only commodity,
and individual agents need it to survive, while in the model with trade there is a second
commodity, called spice, as well. Each site will generally have some sugar and some
spice, and can be occupied by at most one agent at a time, with each agent occupying
one cell. When an agent occupies a site, he increases his wealth by accumulating the
sugar (and spice) available at that site. Each individual agent has a given metabolic rate,
specifying how much sugar per time step is consumed (decreasing the agent’s wealth,
i.e., sugar holdings), a given maximum age, and lateral vision up to some given limit.
In the variant with trade, agents have also a utility function specified, and they have a
metabolism for both sugar and spice, needing both to survive. In other variations of the
model, the agents may also have their sex, and an array of arbitrary cultural attributes
specified. Each agent has at most four neighbors, comprising the agents occupying sites
in his von Neumann neighborhood (i.e., the sites laterally adjacent to his own site).

As explained above, Epstein and Axtell study a whole range of behaviors. They do
this in a modular setup, in which forms of behavior can be added or taken away as one
likes. A typical sequence of events, following the initialization of all individual agents
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Figure 3. Structure of Epstein and Axtell (1996).

and sites, is given in Figure 3. First, at all sites simultaneously, resources grow at the
given rate up to the limit of that site. The agents, then, move sequentially (in random
order). Each individual agent checks the sites within his field of vision, moves to the
best available location therein (if more than one he selects the nearest), makes a record
of his new neighbors (calling this his ‘neighborhood’), and increases his wealth by col-
lecting the available sugar, while decreasing his wealth through his metabolism. Agents
reaching a negative wealth die. Once these basic modules have finished, the optional
trade module can be executed, in which agents may trade sequentially (in random or-
der). A trading agent places all agents on his ‘neighborhood’ list in random order, and
processes this list sequentially, making one transaction (if possible) with each of his
neighbors by exchanging sugar for spice (or the other way around). The amounts ex-
changed depend on their marginal rates of substitution (as defined by the agents’ utility
functions) such that each trade leads to a welfare improvement of all agents involved,
and on a pre-defined bargaining rule. After this, the optional combat module may be
used, in which all agents sequentially (in random order) may combat with their neigh-
bors. Finally, the optional agent replacement module may be applied, in which agents
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who have reached their maximum age, or have died for other reasons (e.g., due to lack
of resources or combat), are replaced by new agents with random characteristics.

All interactions are endogenous in the following sense. In all variants of the model, all
interactions depend exclusively on the location choices of the agents, and these location
choices are guided only by the resource availability, i.e., the distribution of available
sugar (and spice) on the landscape. As individual agents move around and harvest sugar
(and spice), the pattern of resource availability evolves. As in Schelling (1971), agents
choose best-responses to the existing resource pattern right from the start, and there
is no learning (e.g., how to react to certain resource patterns). In the basic setup with
only consumer-gatherers, there is only indirect interaction between the agents. In the
variants studying also other types of behavior (such as sex, trade, and credit), there are
direct interactions between the agents as well. These activities take place in ‘networks’.
But these networks are essentially the (one-step) lagged von Neumann neighborhoods,3

and these neighborhood choices depend only on the resource availability on vacant sites.
For example, in the variant with trade, an agent does not take account of the potential
gains from trade on a given location, and agents just trade with whoever turns out to be
an accidental new neighbor.

Given the enormous range of behaviors studied in the various modules, we will not
try to summarize the results. For each of the modules interesting properties of demo-
graphic, economic and other phenomena emerge. What is more, they show that the
behaviors of the various modules interact with each other. For example, the outcomes
of the economic process are influenced through the demographic dynamics. Given that
all interactions are essentially determined through the gradient of the resources in the
landscape, the emerging properties are remarkable. Figure 4 gives an example for the
model with trade as the only optional module. The figure shows the time series average
trading price converging to the “market-clearing” level of 1, which is the emergent prop-
erty of the model with only bilateral interactions determined through agents myopically
following their resource gradient.

2.3. Arthur (1994): predictors

Arthur (1994) examines the importance of inductive reasoning, and illustrates this with
the so-called ‘El Farol’ bar problem.

People like spending some time together in this bar, in particular on Thursday nights
with Irish music, unless it is too crowded. More specifically, Arthur (1994) assumes that
there is a fixed population of 100 agents, that agents enjoy spending time together in the
bar if fewer than 60 people are present, but prefer to stay home if more than 60 show up.
Hence, the question in the El Farol problem (and in similar coordination problems) is

3 These networks are formed as follows. When an agent moves in to the nearest best available location within
his field of vision, he records his neighbors. Subsequently these neighbors may move on themselves. When,
e.g., the trade module is executed, an agent can only initiate trading with those people on his ‘neighbor’ list.
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Figure 4. Typical time series for average trade price. Source: Epstein and Axtell (1996).

which agents will interact with each other, and how will they decide to do so (assuming
that all agents make up their mind each time independently).

Each individual agent is modeled as follows. An agent has an individualized set of
predictors in mind. Each predictor determines the expected number of people attending
on the basis of a sample of the past weeks’ attendance figures. For example, a predictor
could be “the average attendance of the last four weeks”, or “the trend in the last eight
weeks (bounded by 0, 100)”. The agent keeps track of the accuracy of each predictor,
using the actual attendance figures.

The time-structure of Arthur (1994) is the following (see Figure 5). The model starts
with randomly drawing a set of predictors for each agent individually from an “alphabet
soup” of predictors. At the beginning of each period, each agent chooses one of his
predictors, the one he currently believes to be the most accurate one. Given the predicted
attendance. An agent decides to go to the bar if and only if the predicted number is
less than 60. The actual attendance figure determined by all these individual decisions
is, then, used to update each agent’s belief concerning the accuracy of his attendance
predictor.

The interactions are determined endogenously as follows. The individual interaction
decisions (whether to go to the bar or not) depend on the past pattern of interactions
(attendance figures), as different patterns of past attendances will typically lead to dif-
ferent expected attendance figures and hence different interaction decisions for most
given predictors. Through these individual interaction decisions, the pattern of inter-
actions itself evolves, as they will form part of the interaction pattern on which future
interactions will be based. What is more, the view of an agent as to how a given pattern
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Figure 5. Structure of Arthur (1994).

Figure 6. Numbers attending in first 100 weeks. Source: Arthur (1994).

of past attendance figures should lead to an interaction decision itself evolves. That is,
the agents learn which predictor to use by updating their beliefs as to how accurate these
predictors are, where this accuracy depends on the predictors used by the other agents.

How does the interaction pattern evolve? Figure 6 shows the attendance figures for
100 periods. As we see, it fluctuates around 60% attendance. That is, in each period
about 60% of the agents predict attendance below 60%, while another 40% forecast
attendance above 60%. Obviously, these predictions cannot be all correct at the same
time. Hence, individual choices fluctuate over time as well, not only because the at-
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tendance pattern fluctuates, but also because individual agents continue revising the
accuracy of their predictors. As Arthur (1994) puts it: “This is something like a forest
whose contours do not change, but whose individual trees do” (p. 410).

2.4. Vriend (1995): advertising/patronage

Vriend (1995) presents an example of a computational approach to self-organization of
markets, in particular buyer-seller networks. The starting point is the idea that market
organization depends in a crucial way on knowledge of the identity of some potential
trading partners. Such knowledge requires some kind of communication or interaction
between the agents. Markets, then, emerge as the result of interacting individual agents
pursuing advantageous contacts. The paper analyzes the emerging trading structure of
the self-organized markets, the distribution of firm sizes, etc.

Each day, firms produce a certain commodity in advance, without knowing what the
demand on the day will be. They may attract the attention of potential customers by
sending information signals randomly into the population, directed at nobody in par-
ticular (presenting themselves as sellers to the population), and by offering a reliable
service. Both production and signaling are costly. Consumers, then, have the choice to
either ‘shop around’ randomly, stay loyal to their current supplier, or follow one of the
information signals they received. Consumers want exactly one unit per day (at a given
price), and shopping takes place on a first-come first-served basis. Figure 7 shows the
structure of the model.

Each individual firm is specified as a set of alternative rules: binary strings, determin-
ing a production and an advertising level. The fitness of each rule depends on the actual
payoffs generated using that rule, with fitter rules being more likely to be used. This is
a form of reinforcement learning. After each block of 50 days, the sets of decision rules
used by the individual firms evolve using a genetic algorithm: some rules are eliminated,
while others are reproduced, with selection based on the fitness of the rules, applying
crossover, and mutation. See also Brenner (2006) and Duffy (2006) on reinforcement
learning and genetic algorithms.

Each individual consumer consists of a set of 15 “if ... then...” rules to decide how
to shop: the conditions considered relate to the consumer’s shopping experience during
the previous day (whether he was satisfied, whether he was late and found only empty
shelves, or whether he was simply lost in the mist and could not even find a firm selling
the commodity), and to his information state (whether he did or did not receive any
advertising signals from firms on this day). The possible actions for a consumer to
consider are whether to patronize (return to the last firm visited), to visit one of the
firms known to be selling this commodity through the advertisement signals, or to try
his luck visiting somebody chosen at random. The fitness of each rule depends again on
the actual payoffs generated using that rule, and fitter rules are more likely to be used in
the future.

The interactions are endogenous in the following senses. The firms decide with how
many people to link up through the number of advertising signals they send, and in-
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Figure 7. Structure of Vriend (1995).

fluence how many of these interactions are successful through their output decisions.
Their views on these decisions evolve as they gain experience about their profitability.
This profitability depends also on the shopping behavior of the consumers. These shop-
ping decisions depend on the success of their latest trip and on whether they received
advertising signals. These variables may evolve as the result of decisions by the firms
and other consumers, and the consumers’ view on the importance of these two variables
may evolve as well.

What is the dynamic behavior of this model? First, starting from completely ran-
dom behavior, all agents are relatively quick to learn reasonable behavior (production,
signaling and shopping), leading to high efficiency and a good profit margin for the
firms, while heterogeneous behavior emerges among consumers and firms. Second, does
patronage occur, and what role does it play? As Figure 8 shows, especially ‘strict pa-
tronage’ (i.e., patronage by a satisfied consumer) emerges. That is, consumers quickly
learn that in case they had been disappointed by a firm there is much less reason to
return to that firm than in case of previous success. Notice that it is strict patronage that
leads to the arbitrage of trading opportunities. For suppose some firms offer higher ser-
vice rates than other firms. Strict patronage would imply that a firm not able to satisfy
its clients is likely to loose some of its customers. Given its level of production, that
would mean a higher coefficient of customer satisfaction on the next day. On the other
hand, a firm satisfying its customers is likely to enlarge its clientele, thus lowering its
service rate. Hence, ceteris paribus, strict patronage directly implies arbitrage of trad-
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Figure 8. Evolution of patronage rate. Source: Vriend (1995).

ing opportunities, in the sense of the equalization of service rates across firms. Third,
does communication matter? Yes, but it is costly and directly related to the endogenous
shopping behavior. As can be seen in Figure 2 in Vriend (1995) (showing the costs per
unit of sales), the firms, having reached profitable decisions early on, then continue to
increase their signaling level steadily, as they are competing with each other to attract
the consumers through the advertisement signals, until some constant average level is
reached with much lower profits for the firms. Thus, communication matters, although
the firms have no (explicit) clue as to why they send such signals. They have no idea
what governs shopping behavior. This is illustrated in Figure 11 in Vriend (1995), show-
ing the average signaling level for two versions of the model: the standard version, and
a variant in which consumers will always return to a firm after a successful trip (i.e.,
fixed patronage). Although the firms do not know anything about this, they immedi-
ately spot the difference in the value of advertising in the latter setup, avoiding it almost
completely, whereas high signaling levels are reached in the standard version.

2.5. Ashlock et al. (1996): (threshold) expected payoff

Ashlock et al. (1996) study the effect of preferential partner selection in an evolutionary
study of the prisoner’s dilemma game. The Prisoner’s Dilemma game studied is a stan-
dard two-player simultaneous-move game in which each player can decide to Cooperate
or to Defect with the resulting payoffs being as follows: payoffs for mutual cooperation
and mutual defection are 3 and 1 respectively, while a unilateral defector gets a payoff
of 5, and the sucker payoff equals 0.
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Figure 9. Structure of Ashlock et al. (1996).

Each individual agent is modeled as a finite automaton (Moore machine), represented
by a binary string. This string contains two parts. The first part specifies the agent’s dy-
namic game strategy in the iterated prisoner’s dilemma. That is, this specifies an agent’s
action in the first round plus his actions in later rounds, with the latter being depen-
dent on the history of play up to that point. The second part determines the endogenous
interactions of the agent (i.e., with whom this agent wants to play the PD game).

The time-structure of the ACE model of Ashlock et al. (1996) is shown in Figure 9.
For a given generation of agents, there are 150 rounds. In each round, each agent pro-
poses to one opponent to play one round of the basic Prisoner’s Dilemma game. All
proposals are evaluated, and each accepted pair plays the game. After 150 rounds, the
set of agents is evolved using a genetic algorithm. That is, depending on their perfor-
mance, some agents are eliminated, while others are reproduced (applying crossover to
recombine successful strings and mutation to induce some experimentation). The per-
formance of an agent is measured by his fitness. This fitness equals the sum of payoffs
received by an agent divided by the number of payoffs received. An agent receives a
payoff either from playing a round of the Prisoner’s Dilemma game, or from the refusal
of another agent to interact with him (in the latter case the payoff will be 1.0). There is
no payoff for an agent if he rejects himself somebody’s offer to play. If an agent neither
makes nor receives any offers to play in a given round, he receives a wallflower payoff
of 1.6. The model considers 2000 generations.



Ch. 21: ACE Models of Endogenous Interactions 1063

The interactions are made endogenous as follows. Each individual agent keeps track
of the payoffs realized with each other individual agent in the population (either from
playing or from refusal by the other). An agent updates his assessment of another agent
by taking a convex combination of his existing assessment and his very latest experience
with that agent. Hence, this assessment is a weighted average of past payoffs, placing
more weight on recent interactions. The initial expected payoff is 3 for each agent.
When an agent makes a proposal to play the PD game, he will do so only to the best
agent in the population, provided this agent is tolerable (see below). An agent receiving
offers, on the other hand, will accept all offers from agents that are tolerable. An agent
is tolerable if and only if the expected payoff with that agent is greater than a certain
threshold. This threshold forms part of the individual agent’s string, and evolves in the
genetic step, such that threshold levels leading to higher fitness are more likely to be
reproduced. The initial thresholds of the individual agents are uniform randomly drawn
between 0 and 3.

What does this all imply for the organization of the interactions taking place? Notice
that, through their individual threshold levels, the agents care about the payoffs to be
expected from other individual agents. First, do agents learn to be picky in this respect?
The answer is “yes”. The average threshold level increases over time from a level of 1.5
to about 2.1. Second, does being picky matter? Again, the answer is affirmative. The av-
erage fitness level increases from a random initial level of 2.25 to a level just above 2.8.
In a variant of the model, without allowing for endogenous interactions (which would
be the same as having a fixed low threshold level), the average fitness reaches a level of
about 2.3. This difference is due to changes in the ways in which agents interact. In par-
ticular, the option of refusal gives agents a way to protect themselves from defections
without having to defect themselves. As a result, ostracism of defectors occurs endoge-
nously, while parasitic relations are also observed. It is not true in general, however, that
higher threshold levels will lead to higher average fitness. There is some risk with caring
too much about with whom one will interact. That is, an agent’s threshold level might
be so high that no agent is acceptable anymore. As a result, only wallflower payoffs are
received. Figure 10 illustrates this. The figure shows the frequency distribution over the
fitness and threshold levels for all generations over 196 runs. In most cases we observe
a high threshold going hand-in-hand with a high average fitness, but there are a good
number of generations with a very high threshold and a low fitness. In those generations
being too picky led to a breakdown of interactions.

2.6. Riolo (1997): arbitrary tags

Riolo (1997) studies the effects and evolution of tag-mediated selection of partners in
populations playing the Iterated Prisoner’s Dilemma (IPD) game, analyzing exactly the
same basic Prisoner’s Dilemma (PD) game as Ashlock et al. (1996).

An individual agent is modeled as a 5-tuple, the first three real-encoded parameters
specifying his dynamic game strategy (whether to cooperate or not, conditional on the
history of play), and the last two parameters determining the endogenous interactions.
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Figure 10. Distribution of threshold and fitness levels. Source: Ashlock et al. (1996).

For a given generation, each agent has to find an opponent ten times. Each success-
fully matched pair plays a 4-round IPD game. Once this is all done, the set of agents
evolves. That is, some agents are eliminated while others are reproduced, with selection
based on the agents’ fitness (depending on the payoffs realized), and with noise added
to the parameter values to induce some experimentation. Figure 11 shows the structure
of the model.

The interactions are made endogenous as follows. Each individual agent i uses some
arbitrary tag τi in [0, 1]. This tag is some external label or (behavioral) characteristic
that can be easily recognized by other agents. One could, for example, think of the tag τ

here as a number written on an agent’s forehead. When an agent needs to find an oppo-
nent, he first selects a possible opponent randomly. He, then, accepts this opponent on
the basis of the similarity of their tags: probability (i agrees to play j ) = 1−|τi−τj |b(i),
where |τi − τj | measures the absolute distance between the tags of the two agents and
b(i) is a parameter in [0, 100] determining the ‘pickiness’ of agent i. For any given
value of b(i), agent i is more likely to interact with others the closer their tags are.4

The opponent carries out a similar evaluation simultaneously, and they will play the
IPD only if both accept to do so. Otherwise an agent will randomly try another possi-
ble opponent. There are search costs (to be subtracted from an agent’s eventual payoff)

4 The similarity in the tag can be seen as a clue that the players can trust each other as they may have a
common understanding of the situation. Thus, somebody might be reluctant to play a game with a person
with a weird hairdo who does not wear a tie, unless this player happens to go through life without a decent
haircut and a tie himself.
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Figure 11. Structure of Riolo (1997).

for each failed attempt to find an opponent. After four failed attempts, an agent will
have to play against a randomly chosen opponent, who will have to accept. The tags
τi are an element of the second part of the 5-tuple specifying an individual agent, and
evolve in the ‘genetic’ step, such that tag values leading to higher fitness are more likely
to be reproduced. The other element of the second part of the 5-tuple specifying an
individual agent consists of the ‘pickiness’ parameter b. Notice that a high b implies
indifference with respect to tags (the distance does not matter), whereas a low b implies
that the agent is very picky (the distance must be very small). The pickiness parame-
ter b(i), being part of the 5-tuple specifying an individual agent, evolves as well in the
‘genetic’ step, such that values leading to higher fitness are more likely to be repro-
duced. Notice that selection and reproduction take place at the level of the individual
agents (each modeled as a 5-tuple). That is, strategies, tags, and pickiness with respect
to tags all evolve together such that successful combinations are more likely to pros-
per.

Riolo’s model has some similarity with models in which agents choose a location in
space, and then interact with nearby agents. That is, the abstract tag signal can be seen
as a location. Notice, however, that in Riolo’s model part of the endogeneity concerns
the agents’ choices whether or not to care about distance. Such endogeneity seems less
natural in space, where the economic importance of the distance is typically exoge-
nously given. One could also imagine an evolving matching function as such, allowing,
for example, agents to learn to play only against large distance opponents. Again, this
seems more natural with arbitrary tags than in real space.

What are the dynamics of this model to determine endogenous interactions? First,
do tags matter? The answer is “yes”. As Figure 1 in Riolo (1997) shows, for a given
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parameter value of b = 0.02 for all agents, the use of tags leads to quicker and more
stable cooperation (resulting in higher average fitness). It is only without the tags that
we observe troughs in fitness levels due to systematic defections. The average fitness
with tags fluctuates around the expected payoff for random behavior. Hence, what the
tags seem to do is allow the agents to ‘escape’ from systematic defectors (through the
evolving tag values). Second, if the parameter b is no longer exogenously fixed, will
agents learn to care about tags (through the pickiness parameter b)? Figure 12 shows
that this depends on the (indirect) search costs. The figure shows the evolution of the
pickiness parameter b over the generations. If the population starts out caring about
tags (b = 0.01 initially) and there are no search costs, then the population continues
to care about tags (see the — line in Figure 12). But if there are search costs, then the
population slides into indifference with respect to tags (o line in Figure 12). If, however,
the population starts being relatively indifferent with respect to tags (b = 2.00), and
there are no search costs, then the population may or may not evolve into one that cares
about tags (see � and � lines in Figure 12).

Figure 12. Evolution of tag-bias (pickiness) parameter. Source: Riolo (1997).



Ch. 21: ACE Models of Endogenous Interactions 1067

2.7. Hanaki et al. (2004): trust

Hanaki et al. (2004) study a repeatedly played one-shot version of a standard Prisoner’s
Dilemma (PD) game. Just as Ashlock et al. (1996), they start from the observation that
defection is the dominant strategy, and ask the question whether cooperation could be
sustained with endogenously determined local interactions, with the individual agents
choosing their (number of) partners.

Each individual agent can choose a strategy for the one-shot PD and he can revise his
links with other agents. The agents are restricted to using the same PD strategy for their
entire neighborhood (i.e., all partners they are linked to). An individual agent’s payoffs
are summed over all his interactions, and there are costs attached to interacting with
other agents, with the costs increasing in the number of partners.

The dynamics of the model are given in Figure 13. The model starts with a given
number of agents being assigned random actions and beliefs (see below) and without
any links between agents. Each period, all agents simultaneously play one round of the
PD with all their partners. At the end of each period, with some exogenously given
probability, individual agents can update their PD strategy, and with some other ex-
ogenously given probability they can update their local network, after which they play
another round of the PD. When they update their interaction structure, with some ex-
ogenously given probability they either try to severe an existing link or to form a new
link, and if this fails they try the opposite action. To choose a PD strategy, each agent
copies the most successful strategy in his neighborhood (including his own), where the

Figure 13. Structure of Hanaki et al. (2004).
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measure of success is the sum of all current payoffs. If an agent had no partners before,
he randomly chooses to cooperate or defect in the next period.

The interactions are endogenous in the following sense. When looking for a link
to severe, an agent chooses one of his existing partners randomly, and terminates the
relationship if the net benefit of doing so is positive, myopically assuming other agents
will not change behavior and the network remains otherwise unchanged too. No consent
is needed. To form a link, on the other hand, consent is needed. Hence, both agents,
myopically comparing costs and benefits, need to find positive net marginal payoffs.
A potential new partner can be selected either among the partners of his current partners
(with the probability of any partner being chosen proportional to the number of shared
partners) or be a randomly chosen stranger from the entire population. The probability
used to decide between these two routes to a new partner is exogenously fixed. That is,
the agents do not learn which route to follow. How to estimate the expected payoff of a
new partner? If it is a partner of a partner, this partner will inform the agent about the
most recent PD strategy of this new partner. If the potential new partner is a stranger, the
initial expected payoff depends on trust, which is effectively the subjective probability
that such an agent will cooperate. This trust level itself evolves. That is, it is updated
every period such that it is a weighted average of the cooperation levels experienced
by the agent (with greater weights for more recent experiences). The experiences that
matter in this respect are either (in one version of the model) all others interacted with
(including ongoing interactions) or (in another version) only all new partners interacted
with. The agents’ view on this does not evolve. That is, although the agents update their
trust levels, they do not learn on which interactions they should base their trust.

Hanaki et al. (2004) present an extensive analysis for a wide range of parameter val-
ues. Figure 14 shows the relative frequency distribution of average cooperation levels

Figure 14. Distribution of average cooperation levels reached. Source: Hanaki et al. (2004).
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reached in 10 000 runs of 10 000 periods for a population of 1000 agents, with the other
parameter values sampled randomly from pre-specified ranges. As we see, substantial
amounts of cooperation can occur. They show that the amount (and volatility) of coop-
eration relies on networks being sparse (both globally and locally), which is facilitated
by high connection costs. In a fully-connected network, where cooperators and defec-
tors interact with the same agents, all agents would quickly learn to defect (which is
the dominant strategy). They find that cooperation levels are higher when new partners
are chosen at random from the whole population rather than friends of friends. On the
one hand, this is due to the fact that relying exclusively on friends to find new partners
leads to too high connectivity, and hence collapse of cooperation (see above). On the
other hand, the advantage of interacting with strangers is that cooperation can expand.
Friends of friends are acceptable only if it is known (through the friends) that they coop-
erate anyway. But strangers are acceptable depending on the trust of the agent looking
for new partners. This trust (based on past experiences) is an imperfect substitute for
information. As a result, such agents may seek interaction with current defectors, possi-
bly leading to the recruitment of defectors. If these defectors are relatively isolated, they
may immediately be converted (through the payoffs) to cooperation if the cooperating
agent initiating the link has enough cooperators in his network. Obviously, this implies
that assortive matching is essential, i.e., there must be a limit to this willingness to in-
teract with defectors. The eventual amount of cooperation developed is the net result of
these two forces. The balance is due to the endogenous trust level. That is, the amount of
expansion is determined endogenously. Imperfectly informed agents are open enough
for new contacts while all the time updating their beliefs about their environment.

2.8. Kirman and Vriend (2001): expected payoff/familiarity

Kirman and Vriend (2001) study the evolving structure of an actual market: the whole-
sale fish market of Marseille. They focus in particular on two stylized facts of that real
market: price dispersion and the loyalty of buyers to sellers.

Each day the following sequence of events takes place in this model (see Figure 15).
In the morning, before the market opens, the sellers purchase their supply for the day,
without knowing the demand they will face during the day. The market, then, opens,
and the buyers (who want one unit each of the fish) choose the queue of a seller in the
market hall. The sellers handle their queues sequentially, giving each individual buyer
a ‘take-it-or-leave-it’ price (thus, prices are not posted). Once the sellers have handled
all queues, the morning session is over. In the afternoon, the market re-opens, allowing
unsatisfied buyers from the morning sessions to choose again a queue of a seller. With
all queues handled by the sellers, the market closes, and all unsold stocks perish. The
buyers, then, re-sell their fish outside the market. The model considers 5000 days.

Each individual seller must decide the quantity to supply, how to handle queues, and
which prices to ask during the morning and afternoon sessions. For each decision they
use a set of alternative rules. The fitness of each rule depends on the actual payoffs real-
ized when using the rule, and fitter rules are more likely to be used again. An individual
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Figure 15. Structure of Kirman and Vriend (2001).

buyer chooses a seller in the morning, and possibly (another) one in the afternoon.
Whenever a buyer hears a price, he will need to decide whether to accept or reject the
price. For each of these decisions an individual buyer has a set of decision rules at his
disposal, being more likely to use the fitter rules, with these fitnesses depending on the
payoffs generated by these rules.

The interactions are endogenous as follows. The choice of which seller to visit for the
buyers depends directly on the average payoffs a buyer realized with each seller, such
that more satisfactory sellers (in the sense of offering a better combination of service and
prices) are more likely to be visited by a buyer. When the sellers handle their queues,
they can do this in any order they like. That is, they may give precedence to some buyers
over other buyers. They do this on the basis of the familiarity of the faces of the buyers in
their queue. This familiarity is basically a weighted average of past presences of a buyer
in a certain seller’s queue, and it evolves directly as the result of the buyer’s shopping
behavior. What is more, the sellers’ view concerning the relevance of this familiarity
may evolve. That is, an individual seller can move a more loyal buyer either towards
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Figure 16. Evolution of loyalty. Source: Kirman and Vriend (2001).

the front or the back of a queue. The probability for a buyer to be served next is a
function of a buyer’s loyalty, and this function depends on a choice parameter, such that
different values of this parameter give either more or less advantage or disadvantage
to loyal buyers. The sellers learn which parameter value to use through reinforcement,
such that values that led to higher payoffs in the past are more likely to be used again.
To decide upon a price to ask from an individual buyer, a seller takes into account the
familiarity of the buyer’s face too, as well as the remaining stock and remaining queue
at that moment. Each seller uses a set of alternative rules linking these two factors to
prices, and learns through reinforcement which rule to use.

What kind of interaction pattern does this imply? First, does loyalty emerge? As
Figure 16 shows, loyalty does emerge (on average). The loyalty index used is such that
it would be 1 if buyers were perfectly loyal, and 0.10 if buyers were not loyal at all.
As buyers do not even know the concept loyalty (they just pick a firm each day), and
sellers are indifferent with respect to loyalty to start with, why do buyers become loyal?
As it turns out, most buyers get a higher average payoff when returning to the same
seller the next day than when switching. This occurs mainly through a better service
rate of loyal buyers. Why do sellers offer this advantage to loyal buyers? Sellers realize
higher gross revenues when dealing with loyal buyers, which is related mainly to a
higher acceptance rate. Second, does this familiarity of faces matter? The answer is
“yes”, and the role it can play with respect to market organization is illustrated nicely
by a setup in which there are three types of buyers. The difference between these three
types is in the given prices for which they can re-sell outside the market (imagine,
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e.g., a cheap corner shop versus a posh restaurant). The model explains how ‘high’
buyers (those that can re-sell for a higher price) do not only pay higher prices than ‘low’
buyers, but also find higher prices than the latter. This happens notwithstanding the
fact that in this model no trader knows about this difference between types of buyers,
and no trader can recognize any type of buyer. But different types of buyers notice
their different payoffs at the end of each day. This affects their evaluation of their price
acceptance/rejection decisions, and their evaluation of the sellers they visited. Hence,
this will influence their shopping behavior. These differences in shopping patterns are
indirectly picked up by the sellers through the familiarity of buyer faces. In turn, this
leads to different treatments in queues and different prices. What is more, differences
among sellers emerge. Some sellers learn to specialize in ‘high’ buyers, some others
in ‘low’ buyers. The latter ask lower prices, experience nevertheless a higher rejection
rate, maintain a lower supply/sales ratio, leading to a lower service rate, and put loyal
customers towards the end of the queue.

2.9. Chang and Harrington (2005): past success rate

Chang and Harrington (2005) study the issue of discovery and diffusion of knowledge,
and the social networks that may thus arise.

They consider a population of individuals, who all have to solve the same given num-
ber of separate tasks. A method to solve a given task is described by a sequence of binary
bits. Hence, each individual agent’s method to solve his entire set of tasks is simply a
binary vector of bits. Each individual agent has an optimal, target vector that describes
the optimal way to solve all his tasks. Chang and Harrington (2005) assume that indi-
vidual agents, although they can not simply pick the optimal method themselves, can
rank any two method vectors on their Hamming distance from their target vector (which
is effectively the number of bits that is different in the two vectors). The individual tar-
get vectors may change over time following some pre-specified dynamic process. This
implies that there is a persistent need for the individual agents to discover new methods,
and for such knowledge to be diffused.

The time-structure is the following (see Figure 17). Having drawn all initial method
vectors and target methods randomly, and avoiding any bias in favor of imitation or
innovation, or any bias favoring the observation of one individual over another, in each
period each individual agent goes through the following sequence: An agent decides
whether to innovate (all by himself) or to imitate another agent. If he decides to innovate,
then he randomly chooses a method for a randomly chosen task. If, however, he decides
to imitate, then he chooses an agent to imitate, and copies the method from this other
agent for a randomly chosen task. In both cases (innovation and imitation), the method
obtained is actually adopted only if its adoption gets the agent closer to his target vector
(using the Hamming distance as measure).

The endogenous interactions are modeled as follows. The structure of interactions
depends solely on the success of past interactions. This success depends on the distrib-
ution of the vectors of methods adopted by the agents as such, and their state relative to
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Figure 17. Structure of Chang and Harrington (2005).

the target vector. But the agents do not use any information about this directly. As the
agents interact (or not), the distribution of method vectors changes. The agents’ view as
to whether they should innovate or imitate (and if so, whom) evolves as the agents learn
through their own experience. The choice of an agent between imitation and innovation
(i.e., whether to interact with others or whether to stay alone) is a probabilistic decision.
The decision weight for each depends essentially on the number of successes when
choosing that option in the past. In addition, the weights decrease each period through
some decay. In case an agent opts for imitation, the choice of the agent to be imitated
is made in a similar probabilistic way. The weight for a given agent in the population is
increased each time that agent has been imitated successfully, and it decreases through
some decay.

Chang and Harrington (2005) focus on the properties of the emerging social net-
works. In much of their analysis they partition the population into a fixed number of
groups to get some persistent similarity in goals, as the dynamics of the target vectors
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of all agents within a group follow some stochastic process (modeling turbulence in
the task environment) such that they stay within certain bounds. The individual agents
know nothing about this, and one of the questions is whether they will imitate other
agents, and if so to what extent they will learn to imitate agents from their own group or
from other groups. The analysis is based on 20 runs of 20 000 periods with 20 individual
agents. Figure 18 shows the interaction probabilities for all individual agents for a setup
with four fixed groups of five agents. The 20 individual agents are ordered identically
on both the horizontal and vertical axis according to their group association. Lighter
shades indicate higher probabilities of interaction. Notice that individual agents cannot
imitate themselves, which shows up as black diagonal cells. As we see, there are four
5 × 5 blocks that are clearly lighter, indicating that agents learn to interact more with
agents within their group than with other agents. Notice that agents within their group
are pursuing similar goals, but this is not known to the individual agents. Further analy-

Figure 18. Interaction probabilities between agents i and j . Source: Chang and Harrington (2005).
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sis shows that this property is stronger the more groups are similar within and different
from other groups.

2.10. Jackson and Rogers (2004): directed random search

Jackson and Rogers study some abstract network formation process, and in particu-
lar the question which processes may lead to power laws and small worlds, properties
that have often been observed empirically in large networks. More precisely, they focus
on the following three stylized features of such networks: highly clustered connections
(which means that two agents linked to a given agent are themselves likely to be linked
to each other as well), small maximal distances between nodes (which means that any
two nodes in the network can be linked through a short path), and a power law in the up-
per tail for the distribution of node degrees (which means that there are more nodes with
very few or with very many connections than one would expect if links were formed in-
dependently).

Jackson and Rogers consider an abstract model of network growth, without any fur-
ther economic interaction. Figure 19 shows the time-structure of the model. At each
time step, one individual agent is added to the network. Before joining the network,
the individual agent forms two samples of potential links. First, he creates a uniform
randomly chosen sample out of all agents in the current network, and second, he forms
another sample chosen uniform randomly out of all agents who are currently directly
linked to the agents in his first sample. In the basic setup the net benefit of a link is
independently and identically distributed across pairs. Given the two samples of poten-
tial links, the new agent myopically chooses any links within those samples providing

Figure 19. Structure of Jackson and Rogers (2004).
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him with positive net utility. Once linked, agents remain linked forever, and no further
payoff relevant events occur for these agents.

The links formed are endogenous in the following sense. The choice of agents sam-
pled by a new agent depends on the existing network structure. More precisely, the
second sample consisting of partners of the first uniform randomly generated sample of
agents is affected directly by the existing network structure. As new agents form links,
this network structure evolves. The agents’ view on the relevance of certain network
structures, however, does not evolve, as the agents do not learn anything. That is, the
sizes of the two samples, and the fact to use these two sampling methods are deter-
mined exogenously. This is irrelevant in the basic version of the model. Since the net
utilities for pairs are independent and identical draws, any sampling method is as good
as any other. But as soon as the net utility of connecting to a certain node depends on
the existing network structure this is no longer true.

The analysis of this agent-based model of Jackson and Rogers is in part formal math-
ematical, in part based on mean-field approximations, and in part computational. They
show that the model explains high clustering, which does not go to zero as the network
grows (unlike a number of alternative network formation processes). This seems due to
the search method, as any two nodes linked to by a new agent are likely to have been
selected in part because they were linked to each other. The diameters of the networks
tend to be small, which seems again related to the directed search method. As search
is directed towards nodes with relatively large degree, new links are likely to shorten
paths for many existing nodes. Finally, they show that the degree distribution of nodes
has a scale-free upper tail. Scale-free means that the ‘connectedness’ (the distribution
of links per node) does not vary with the scale of the network. This can be expressed by
a power law as the probability of any given node being connected to k other nodes is
(1/k)n, where n is some constant parameter. Figure 20 shows a log–log plot of the com-
plementary cumulative distribution function of node degrees. The solid curve is from a
mean-field approximation, and the dotted curve from the computational analysis. The
latter is based on a run of 10 000 periods, in which both samples were always of size
two, and all agents sampled offer positive net payoffs (which means that they are ac-
ceptable links). As we see, the upper tail of the distribution is nearly linear, indicating a
scale-free distribution, but the lower tail is not scale-free.

3. Concluding remarks

Although the models discussed cover a wide range of possibilities to model endogenous
interactions, we can detect some kind of prototype of modeling endogenous interac-
tions. This prototype seems to consist of up to three elements. (i) The interactions are
directed (guided) by some variable x, e.g., because the agents are ‘picky’ with respect to
this variable x. (ii) This variable x itself evolves directly as a result of the interactions.
(iii) The agents’ view of the relevance of variable x evolves, as they may learn, e.g.,
how and how much they care about it.
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Figure 20. Distribution of node degrees. Source: Jackson and Rogers (2004).

Where can the ACE modeling of endogenous interactions go from here? Obviously
the approaches discussed could be improved, and alternatives may be created. It seems
in particular interesting if various approaches could be used for the same underlying
game or economic situation, to analyze the possible differences in dynamics. In the in-
troduction we argued that the choice of interaction mechanism should depend on the
‘circumstances’ to be modeled in a broad sense, and on the purpose of the model. But
it would seem interesting to add one level of endogeneity to the interaction mecha-
nisms discussed in this chapter, i.e., to let the type of endogenous interaction itself be
determined endogenously. This would allow us to study why certain endogenous inter-
action mechanisms (depending on past payoffs, proximity, familiarity of faces, simple
physical cues or tags, trust, advertisements, ...) seem to be relevant for certain types of
interactions but not for others.

4. For further reading

Galouye (1964). For a start, consider the following quotes:

“We can electronically simulate a social environment. We can populate it with
subjective analogs—reactional identity units. By manipulating the environment,
by prodding the ID units, we can estimate behaviour in hypothetical situations.”
(p. 7/8).

And:



1078 N.J. Vriend

“... the simulator ... would ... be exploring fully the unpredictable fields of social in-
teraction and human relationships as a means of suggesting a more orderly society,
from the bottom up!” (p. 10).
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Abstract

Agent-based models typically involve large numbers of interacting individuals with
widely differing characteristics, rules of behavior, and sources of information. The dy-
namics of such systems can be extremely complex due to their high dimensionality.
This chapter discusses a general method for rigorously analyzing the long-run behav-
ior of such systems using the theory of large deviations in Markov chains. The theory
highlights certain qualitative features that distinguish agent-based models from more
conventional types of equilibrium analysis. Among these distinguishing features are:
local conformity versus global diversity, punctuated equilibrium, and the persistence of
particular states in the presence of random shocks. These ideas are illustrated through
a variety of examples, including competition between technologies, models of sorting
and segregation, and the evolution of contractual customs.

Keywords

bounded rationality, social norms, Markov chains, random perturbations, stochastic
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1. Adaptive dynamics

Many forms of social and economic behavior evolve from the bottom up: they crystal-
lize from the behavior and beliefs of disparate individuals interacting with each other
over time. Language, codes of dress, forms of money and credit, patterns of courtship
and marriage, standards of evidence, rules of the road, and economic contracts all have
this feature. For the most part no one dictated the form that they have; they emerged
through a process of experimentation, historical accident, and the accumulation of
precedent. Agent-based models are particularly well suited to studying the dynamics
of such processes, since by their nature they involve large numbers of dispersed, hetero-
geneous actors. In this chapter I shall outline a general framework for analyzing such
systems based on theoretical results on large Markov chains, and then show how to
apply the theory to concrete situations. Importantly, the theory can be applied without
compromising the inherent complexity of the system: agents can be endowed with dif-
ferent characteristics, different levels of rationality, different amounts of information,
and different locations.

My starting point is the assumption that agents are boundedly rational but purposeful.
They look around them, they gather information, and they act fairly sensibly on the basis
of that information.1 I shall also assume that their choices are not entirely deterministic
and predictable, but may be buffeted by random perturbations in the environment, errors
of perception, and idiosyncrasies in behavior. Whatever the source, these perturbations
play a role similar to mutations in biology by injecting variability into agents’ behav-
iors. Moreover, the presence of perturbations implies that the evolutionary dynamic
never settles down completely; it is always in flux. This feature provides a powerful
analytical tool for analyzing its long-run behavior. In what follows I shall illustrate this
approach through a variety of concrete examples, including competing technologies,
neighborhood segregation, and the emergence of contractual norms.2

To set the stage, let us consider a classical example: the emergence of money as a
medium of exchange.3 History records the great variety of goods that societies have
adopted as money: some used gold or silver, some copper or bronze, others used beads,
still others favored cattle. In the early stages of economic development, we can conceive
of the choice of currency as growing out of individual decisions that gradually converge
on some norm. Once enough people in a society have adopted a particular currency,
everyone else wants to follow suit.

At the individual level, this sort of decision problem can be cast as a coordination
game. Suppose that there are two choices of currency: gold and silver. At the beginning
of a period, each person must decide which currency to carry. During the period, each

1 For a discussion of learning models see the chapters in this volume by Thomas Brenner and John Duffy.
2 There is a large literature on the evolution of norms, some of which is related to the approach described

here. See in particular Ullman-Margalit (1977), Sugden (1986, 1989), Bendor and Swistak (2001), Hechter
and Dieter (2001), Skyrms (2004), and Bicchieri (2006).
3 See for example Menger (1871) and Marimon et al. (1990).
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Figure 1. The currency game with equal payoffs, sample size m = 10, and ε = 0.5.

person meets various other people in the society at random, and they can trade only if
they are both carrying the same currency. Thus the decision problem at the beginning
of the period is to choose the currency that one believes will be chosen by a majority of
the others.

Schematically we can model the dynamics as follows. Let pt be the proportion in the
population choosing gold at time t , and let 1 − pt be the proportion choosing silver.
In period t + 1, one person is drawn at random to reconsider his decision. He or she
selects a random sample of s other individuals to determine what they are currently
doing. Let êt be the sample proportion of those using gold. Assume for the moment that
the properties of gold and silver make them equally desirable as currencies. Then the
decision maker chooses gold in period t + 1 if êt > 0.5 and chooses silver if êt < 0.5.
(If êt = 0.5 we shall assume the agent chooses randomly.) All of this happens with high
probability, say 1 − ε. But with probability ε > 0 a person chooses gold or silver at
random, that is, for reasons external to the model.

Qualitatively this process evolves in the following manner. After an initial shakeout,
the process converges quite rapidly to a situation in which most people are carrying the
same currency—say gold. This norm will very likely stay in place for a considerable
period of time. Eventually, however, an accumulation of random shocks will “tip” the
process into the silver norm. These tipping incidents are infrequent compared to the
periods in which one or the other norm is in place. Moreover, once a tipping incident
occurs, the process will tend to adjust quite rapidly to the new norm. This pattern—
long periods of stasis punctuated by sudden changes of regime—will be called the
punctuated equilibrium effect. (The term is used here descriptively; in biology it has a
somewhat different meaning.) Figure 1 illustrates this idea for the currency game when
the two currencies have equal payoffs.
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Figure 2. The currency game with asymmetric payoffs, α = 1/3, m = 10, and ε = 0.5.

Figure 3. The currency game with asymmetric payoffs, α = 1/3, m = 10, and ε = 0.05.

Now let us ask what happens when one currency is inherently better than the other.
Suppose, for example, that gold is somewhat preferred because it does not tarnish as
easily as silver. Then the decision problem at the individual level is to choose gold if
êt > α, and to choose silver if êt < α, where α is a fraction strictly less than one-half.
Now the process follows a path that looks like Figure 2. Over the long run there is a
bias toward gold, that is, at any given time the society is more likely to have adopted the
gold standard than the silver standard. Moreover, the bias becomes larger the smaller
the random perturbations are. Figure 3 shows a characteristic sample path when the
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noise level is reduced by a factor of ten. Notice that the process is at or near the gold
standard a larger fraction of the time, and shifts of regime are more infrequent. These
features become more pronounced as the noise level becomes smaller, a fact that can be
verified analytically using methods to be discussed in the next section.

2. Stochastic stability

Many agent-based models can be represented as Markov processes of very large di-
mensionality. A state of the system is specified by the location, information, and beliefs
of the various actors. The transition probabilities are specified by the interaction prob-
abilities among agents and the rules by which they adapt their choices and beliefs to
perceived conditions (the learning rules). Let Z denote the set of possible states of
such a system, which, though finite, may be extremely large. For every pair of states z,
z′ ∈ Z, let P be a |Z| × |Z| matrix such that the component Pzz′ is the probability of
moving from state z to state z′ in one period. P is the transition probability matrix of
a finite Markov process. We shall always restrict ourselves to processes that are time-
homogeneous, that is, the transition probabilities do not change from one period to the
next.

Suppose that the initial state is z0. For every time t > 0, let the random variable
f t (z|z0) denote the empirical frequency with which state z is visited during the first t

periods. It can be shown that, as t goes to infinity, f t (z|z0) converges almost surely to a
limiting frequency distribution. If this distribution depends on the initial state z0, or on
chance events that occur along the way, we shall say that the process is non-ergodic or
path-dependent. If the limiting distribution is uniquely determined independently of z0,
the process is ergodic.

There is a simple structural criterion that allows us to say whether or not a process is
ergodic.4 Say that state z′ is accessible from state z, written z → z′, if there is a positive
probability of moving from z to z′ in a finite number of periods (including no periods,
i.e., z is accessible from z). States z and z′ communicate, written z ∼ z′, if each is
accessible from the other. Clearly ∼ is an equivalence relation, so it partitions the space
Z into equivalence classes, which are known as communication classes. A recurrence
class of P is a communication class such that no state outside the class is accessible
from any state inside it. It is straightforward to show that every finite Markov chain
has at least one recurrence class. A state is recurrent if it is contained in one of the
recurrence classes; otherwise it is transient. In particular, a state is recurrent if and only
if, once the process has entered it, the probability of returning to it is one.

A basic result on finite Markov chains is that ergodicity holds if and only if the
process has a unique recurrence class. Equivalently, such a process is ergodic if the
states can be divided into two disjoint classes A and B such that: there is a positive

4 For a discussion of ergodicity in Markov chains see Karlin and Taylor (1975, Chapter 2).
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probability of moving from any state in A to some state in B; there is a positive prob-
ability of moving from any state in B to any other state in B; there is zero probability
of moving from any state in B to any state in A. A particular instance occurs when A
is empty and B constitutes the entire state space; in this case the process is said to be
irreducible.

The standard approach to analyzing the asymptotic behavior of a Markov chain is
to solve for the stationary distribution algebraically. Specifically, let μ be a probability
distribution on Z written out as a row vector and consider the system of linear equations

(1)μP = μ, where μ � 0 and
∑
z∈Z

μ(z) = 1.

This system always has at least one solution μ, called a stationary distribution of the
process P . The solution is unique if and only if P has a unique recurrence class, that is,
if and only if P is ergodic. In this event the empirical frequency distribution converges
almost surely to μ independently of the initial conditions:

(2)lim
t→∞ f t

(
z|z0) = μ(z).

By contrast, if P has more than one recurrence class, the process is path-dependent, and
the initial position—as well as chance events along the way—can influence its long-run
behavior.

Most of the models we shall consider are ergodic; in fact they have another property
that allows us to make even sharper statements about their asymptotic behavior. Given
a finite Markov process P and a state z, let Nz be the set of all positive integers n

such that there is a positive probability of moving from z to z in exactly n periods. The
process P is aperiodic if, for every z, the greatest common divisor of Nz is unity. If
P is aperiodic and ergodic, not only does its average behavior converge to the unique
stationary distribution μ, so does its probabilistic behavior at each point in time t when
t is sufficiently large. More precisely, P t be the t-fold product of P . If the process starts
in an arbitrary state y, then in t periods the probability of being in state z is P t

yz. It can
be shown that, if P is ergodic and aperiodic, then with probability one

(3)∀y, z ∈ Z, lim
t→∞P t

yz = μ(z).

In particular, the probability of being in a given state z at a given time t is essentially
the same as the probability f t (z|z0) of being in state z up through time t provided that t

is large; furthermore both converge to the stationary distribution μ(z) independently of
the initial state.

When the state space is very large—as is usually the case with agent-based models—
the stationarity equation (1) is much too cumbersome to solve explicitly. Fortunately
there is an alternative approach, based on the theory of large deviations, that often
permits a good approximation of the stationary distribution without having to solve
equation (1).

Suppose that the Markov process P can be split into two parts: a basic process P 0,
on which is superimposed small trembles or perturbations. An example would be a
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model in which agents change their behaviors according to a choice rule that has a small
probabilistic component. In this case the basic process is given by the probabilities of
interaction among the agents, combined with their expected change in behaviors; the
perturbations correspond to idiosyncratic aspects of individual-level changes in behav-
ior. (We shall consider a number of concrete examples below.) Under certain regularity
conditions, one can identify the states that have high probability when the perturbations
are small without solving for the stationary distribution explicitly. These are known
as stochastically stable states, and correspond to the equilibria that have the greatest
persistence or robustness in the presence of random perturbations [Foster and Young
(1990)].

3. Technology adoption

We shall first illustrate the approach using a model of technology choice with net-
work externalities, which is similar to the currency model discussed earlier. Consider
a population of n individuals. At each point in time every individual owns one of two
technologies, A or B, hence the system has 2n possible states. Both technologies gener-
ate positive externalities—the payoff from a given choice increases with the proportion
of others who make the same choice. A contemporary example is personal computers:
if most people own PCs it is advantageous to own a PC; if most people own Macs it is
more desirable to own a Mac. The reason is that the more popular a given model is, the
more software will be created for it, and the easier it is to share programs with others.5

In each period one individual is chosen at random to make a new choice—say because
her current model wears out. She makes her decision by asking s randomly selected peo-
ple what choices they made, and then choosing a perturbed best response. The payoffs
are as follows: if in the random sample k people have chosen A and s − k have cho-
sen B, the payoff to adopting A is ak and the payoff to adopting B is b(s − k). This
is equivalent to playing a game against the field in which the row player’s payoffs are
given by

A B

A a 0

B 0 b

Let us assume that players choose a best response with high probability, but not with
certainty. Specifically let us suppose that an individual chooses a best response (given
the sample evidence) with probability 1 − ε, and chooses an action at random with
probability ε. Thus, with low probability the individual does not deliberate about her
decision, whereas with high probability she does.

5 For other models of network externalities see Katz and Shapiro (1985, 1986), David (1985), and Arthur
(1989).
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This is a simple example of a perturbed dynamical process. There is a finite (but large)
number of states, and there are well-defined transition probabilities from any state to any
other state. Unless the population is very small, however, it is extremely cumbersome
to write down the transition matrix and to solve the stationarity equation algebraically.
Instead we exploit the fact that the process is perturbed due to the idiosyncratic choices
of agents.

If there were no perturbations (ε = 0), the transition probabilities would be calculated
as follows. Let the current state consist of m users of A and n − m users of B. At the
start of the next period, choose one agent at random and let her draw a sample of size s

from the remaining agents. Assume that she chooses a best response to the distribution
of A-users and B-users in her sample. The combination of these events determines the
probability of transiting to every possible successor state at the end of the period. (Note
that the process can only transit to a state that differs from the current state in at most
one coordinate, because only one agent reconsiders in each period.) Let P 0 denote the
transition probability matrix of the resulting unperturbed process. Define a separate
process Q in which one agent is drawn at random each period and chooses A or B with
equal probability. We can then represent the perturbed process (with noise level ε) by
the transition matrix P ε = (1 − ε)P + εQ.

The stationary distribution may now be calculated as follows. First we identify the re-
currence classes of P 0. One such class is the absorbing state in which everyone plays A;
another is the absorbing state in which everyone plays B. Call these states zA and zB

respectively. It can be checked that these are the only recurrence classes: from any state
the probability is one of eventually landing in one of these two states. Now compute
the “path of least resistance” from zB to zA and vice versa. Starting from zB, consider
a series of A adoptions (due to perturbations) that lead to a critical or “tipping” state
z∗, from which the process can transit to zA with no further perturbations. This tipping
point occurs when there are k∗ choices of A, where k∗ is the smallest integer satisfying
the condition ak∗ � b(s − k∗), that is, k∗ � bs/(a + b). (An agent who draws these
k∗ individuals in her sample will choose A instead of B.) The probability of this tipping
event is approximately (ε/2)�bs/(a+b)�, where in general �x� denotes the least integer
greater than or equal to x. Define the resistance of the transition zB → zA to be the
exponent on ε, that is,

r(zB → zA) = �bs/(a + b)�.
Similarly, the resistance of the transition zA → zB is

r(zA → zB) = �as/(a + b)�.
The smaller of these numbers determines the shape of the stationary distribution when
ε is small. Specifically, if r(zA → zB) < r(zB → zA) then the stationary distribution
puts probability close to 1 on the state zB. If r(zA → zB) > r(zB → zA), the stationary
distribution puts probability close to 1 on the state zA. It follows that, when the sample
size s is sufficiently large, the Pareto efficient technology is favored in the long run:
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if a > b, society is much more likely to have a large number of A-users than a large
number of B-users, and vice versa.

4. Characterizing the stochastically stable states

We now show how this framework can be generalized to a wide variety of agent-based
models. Consider a process such that the size of the perturbations can be indexed by a
scalar ε > 0, and let P ε be the associated transition probability matrix. P ε is called a
regular perturbed Markov process if P ε is ergodic for all sufficiently small ε > 0 and
P ε approaches P 0 at an exponentially smooth rate [Young (1993a)]. Specifically, the
latter condition means that

∀z, z′ ∈ Z, lim
ε→0+

P ε
zz′ = P 0

zz′ ,

and

P ε
zz′ > 0 for some ε > 0 implies 0 < lim

ε→0+
P ε

zz′/ε
r(z→z′) < ∞,

for some nonnegative real number r(z → z′), which is called the resistance of the
transition z → z′.

Let P 0 denote the unperturbed process and let its recurrence classes be denoted by
E1, E2, . . . , EN . For each pair of distinct recurrence classes Ei and Ej , i �= j , an ij -
path is defined to be a sequence of distinct states ζ = (z1 → z2 → · · · → zn) such
that z1 ∈ Ei and zn ∈ Ej . The resistance of this path is the sum of the resistances
of its edges, that is, r(ζ ) = r(z1 → z2) + r(z2 → z3) + · · · + r(zn−1 → zn). Let
ρij = min r(ζ ) be the least resistance over all ij -paths ζ . Note that ρij must be positive
for all distinct i and j , because there exists no path of zero resistance between distinct
recurrence classes.

Now construct a complete directed graph with N vertices, one for each recurrence
class. The vertex corresponding to class Ej will be called “j”. The weight on the di-
rected edge i → j is ρij . A tree rooted at vertex j , or j -tree, is a set of N − 1 directed
edges such that, from every vertex different from j , there is a unique directed path in
the tree to j . The resistance of a rooted tree T is the sum of the resistances ρij on the
N − 1 edges that compose it. The stochastic potential γj of the recurrence class Ej is
defined to be the minimum resistance over all trees rooted at j . The following theorem
gives a simple criterion for determining the stochastically stable states [Young (1993a,
Theorem 4)].

THEOREM 1. Let P ε be a regular perturbed Markov process and for each ε > 0 let
με be the unique stationary distribution of P ε. Then limε→0 με exists and the limit-
ing distribution μ0 is a stationary distribution of P 0. The stochastically stable states
(the support of μ0) are precisely those states contained in the recurrence classes with
minimum stochastic potential.
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Figure 4. The currency game with two recurrence classes.

We shall illustrate this result with the preceding example. In this situation there are
two recurrence classes, {zA} and {zB}, and exactly two rooted trees, as shown in Fig-
ure 4.

The tree with least resistance points toward the Pareto dominant equilibrium, and
confirms our earlier calculation that this is the stochastically stable outcome.

A more complex example is the following. Consider a technology choice game in
which there are three choices of technology—A, B, C—and the payoffs from network-
ing are

A B C

A 5 0 0

B 0 4 0

C 0 0 3

In this case there are three recurrence classes, one for each of the absorbing states zA,
zB, zC, and there are nine trees, as shown in Figure 5.

Figure 5. An example with nine rooted trees and three recurrence classes.
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The sum of the resistances is minimized for the middle tree in the top row (3/8+4/9
is the smallest sum among the nine trees). Hence the root of this tree, which corresponds
to the state in which everyone adopts technology A, is the stochastically stable state.

5. Efficiency versus stochastic stability

The preceding examples should not lull the reader into believing that evolution invari-
ably selects efficient norms or standards. On the contrary, this state of affairs is quite
exceptional, and hinges on the form of the payoff matrix. In this section we discuss the
connection between efficiency and stochastic stability when there are two alternatives;
a more extended discussion may be found in Young (1993a, 1998).

Assume then that there are two competing technologies, A and B. In the preceding
section we assumed that there were gains only from networking with the same tech-
nology (the payoff matrix has zeroes off the diagonal). In general, however, there may
be positive payoffs from networking with different technologies, and there may also be
payoffs that arise from using the technology independently of networking effects. (For
example, in the case of computer software there is a payoff from ease of file-sharing
with other users, but there is also a payoff from the convenience of the software itself.)
To be concrete, suppose that A–A interactions yield a payoff of 4 to each user, A–B
interactions yield a payoff of 1 to each user, and the use of A yields a payoff of 1 to
the user in addition to the networking payoffs. Similarly, suppose that B–B interactions
yield a payoff of 1 to each user, B–A interactions also yield a payoff of 1, while us-
ing B yields a payoff of 3 in addition to the networking payoffs. The combination of
these effects leads to the following total payoff matrix (the entries are the row player’s
payoffs):

networking own use total payoff
A B A B A B

A 4 1 1 1 5 2+ =
B 1 1 3 3 4 4

We claim that the efficient outcome is for everyone to adopt A, but the stochastically
stable outcome is for everyone to use B. To see why this is so, we need to compute
the two resistances r(zB → zA) and r(zA → zB). This involves finding the smallest
number, k∗, of mistakes or mutations that are needed to tip the process from zB to zA.
This is the least integer satisfying the inequality

5k∗ + 2(s − k∗) � 4k∗ + 4(s − k∗).

Subject to rounding this leads to the estimate r(zB → zA) ≈ 2s/3. Similarly we find
that r(zA → zB) ≈ s/3. Since the latter is smaller, it follows from theorem 1 that
(when s is sufficiently large) the stochastically stable state is all-B, which of course is
not efficient.
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Suppose, more generally, that the payoff matrix is of form

A B
A a c

B d b

When a > d and b > c, this is a symmetric coordination game with coordination
equilibria (A, A) and (B, B). We say that alternative A is strictly risk-dominant if a−d >

b−c. Similarly, B is strictly risk-dominant if the reverse inequality holds. Note that risk
dominance is not the same as efficiency, which is determined by the larger of a and b.
One implication of the preceding analysis is the following.

THEOREM 2. Let G be a 2 × 2 symmetric coordination game with a strictly risk-
dominant equilibrium. If G is played by a population of n players using samples of
size s, then for all sufficiently large s and n(s � n/2) the unique stochastically stable
state is the one in which everyone plays the risk-dominant alternative.

This result has an interesting implication for the relative “fitness” of competing
technologies. Consider again the situation in which each individual’s payoff can be
decomposed into a payoff from networking and a payoff from own use. We can write
this in the following general form:

(4)

networking own use total payoff
A B A B A B

A a c a′ a′ a + a′ c + a′
+ =

B c b b′ b′ c + b′ b + b′

Assume that a+a′ > c+b′ and b+b′ > c+a′, so that both A and B are coordination
equilibria. By definition, the risk dominance of A is determined by the inequality

(a + a′) − (c + b′) > (b + b′) − (c + a′),

that is,

(5)a + 2a′ > b + 2b′.

This has the following implication for the producers of A and B. Suppose that one of the
firms—say the A-producer—is contemplating whether to invest in improvements that
lead to greater networking transparency with other As, or to greater ease of use. Where
should the money be invested to maximize the chance that A will take over the market?
The answer is that investment in networking should be chosen only if it increases each
user’s utility at least twice as much as a similar investment in non-networking improve-
ments. For example, suppose that A and B represent two types of cellphones. Suppose
that, for a given expenditure, the firm producing A can either improve the clarity of the
signal with other A-users, or improve the ease of reading the monitor independently of
other users. Say that the first improvement increases the payoff to a given A-user by �
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per call made to other A’s, whereas the second increases it by �′ per call made to any-
one. If everyone in the population were using A, the firm would simply evaluate which
is larger: � or �′. But in a competition for acceptance, the relevant criterion is the larger
of � or 2�′. The reason is that � results from externalities with other A-users, whereas
�′ does not. To my knowledge this point has not been previously recognized in the
literature on network externalities.

6. Application to Schelling’s segregation model

We turn now to a more complex example that illustrates the power of the analytical
method discussed above. One of the earliest agent-based models in the social science
literature is Schelling’s illustration of how segregated neighborhoods can emerge spon-
taneously from decisions by individuals who would in fact prefer to live in integrated
settings [Schelling (1971, 1978)]. Here we shall present a variant of Schelling’s model
that lends itself to the stochastic analysis discussed above; for an extension of the analy-
sis to more complex environments see Zhang (2004a, 2004b).

Assume that the population consists of n individuals, who are of two types: A and B.
They cannot change their type, but they can choose where to live. Suppose for simplicity
that they are located around a circle as shown in Figure 6. We shall say that an individual
is discontent if his two immediate neighbors are unlike himself; otherwise he is content.
An equilibrium is a state in which no two individuals want to trade places. In other
words, there is no pair of agents such that one (or both) is currently discontent, and both
would be content after they trade locations. (If only one agent is discontent beforehand,

Figure 6. A disequilibrium state.
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we can imagine that he compensates the other to move, so that both are better off after
the move than they were before.)

We claim that, if there are at least two agents of each type, then in equilibrium no one
is discontent. To see why this is so, suppose to the contrary that an A is surrounded by
two B’s: . . . BAB . . . . Moving clockwise around the circle, let B* be the last B-type in
the string of Bs who follows this A, and let A* be the agent who follows B*:

. . . BAB . . . BB∗A∗ . . .

Since there are at least two agents of each type, we can be sure that A* differs from
the original A. But then the original discontent A could switch with B* (who is content),
and both would be content afterwards. Thus we see that the equilibrium configurations
consist of those arrangements in which everyone lives next to at least one person of his
own type. No one is “isolated.” In general there are many different kinds of equilibrium
states: some consist of small enclaves of A’s and B’s scattered around the landscape,
while others exhibit full segregation with the A’s living on one side of the circle and the
B’s on the other.

Consider the following adjustment dynamic. In each discrete time period a pair of
individuals is selected at random, where all pairs are equally likely to be chosen. Con-
sider such a pair of individuals, say i and j . We shall assume that the probability that
they trade depends on their prospective gains from trade. Let us assume that every trade
involves moving costs. Thus there can be positive gains from trade only if the partners
are of opposite types and at least one of them (say i) was discontent before and is con-
tent afterwards. This means that, before the trade, i was surrounded by people of the
opposite type, so in fact both i and j are content afterwards. (We shall assume that if j

is content before and after the trade, i can compensate j for his moving costs and still
leave both better off.) Such Pareto improving trades are said to be advantageous; all
other trades are disadvantageous.

Assume that each advantageous trade occurs with high probability, and that each
disadvantageous trade occurs with low probability. Specifically, let us suppose that there
exist real numbers 0 < a < b < c such that the probability of a disadvantageous trade is
εa if neither partner’s degree of contentment changes (so the losses involve only moving
costs), the probability is εb if both partners were content before and one is discontent
after, and it is εc if both were content before and both are discontent after. (These are
the only possibilities.) Advantageous trades are assumed to occur with probabilities that
approach one as ε → 0; beyond this we need not specify the probabilities exactly. The
resulting perturbed Markov process P ε is ergodic for every ε > 0, and regular in the
sense defined earlier.

To apply the theory, we first need to identify the recurrence classes of the unperturbed
process P 0. These obviously include the absorbing (equilibrium) states. We claim that
these are in fact the only recurrence classes of P 0. To prove this, consider a state that
is not absorbing. It contains at least one discontent individual, say i; without loss of
generality we may assume that i is of type A. Going clockwise around the circle, let i′
be the next individual of type A. (Recall that there are at least two individuals of each



1096 H.P. Young

type.) The individual just before i′ must be of type B. Call this individual j . If i and
j trade places, both will be content afterwards. In any given period there is a positive
probability that this pair will in fact be drawn, and that they will trade. The resulting
state has fewer discontent individuals. Continuing in this manner, we see that from any
non-absorbing state there is a positive probability of transiting to an absorbing state
within a finite number of periods. Hence the absorbing states are the only recurrent
states.

Denote the set of all absorbing states by Z0. For any two states z and z′ in Z0, let
r(z, z′) denote the least resistance among all paths from z to z′. The stochastic potential
of z ∈ Z0 is defined to be the resistance of the minimum resistance z-tree on the set
of nodes Z0. By Theorem 1, the stochastically stable states are those with minimum
stochastic potential. We claim that these are precisely the segregated absorbing states,
that is, states in which all the A’s are lined up on one side of the circle and all the B’s
are on the other.

To prove this claim, let Z0 = Zs ∪ Zns where Zs is the set of segregated absorbing
states and Zns is the set of non-segregated absorbing states. We claim that (i) for every
z ∈ Zns, every z-tree has at least one edge with resistance b or c (which by assumption
are greater than a); and (ii) for every z ∈ Zs , there exists a z-tree in which every
edge has resistance exactly equal to a. Assume for the moment that (i) and (ii) have
been established. In any z-tree there are exactly |Z0| − 1 edges, and the resistance of
each edge is at least a. It follows from (i) and (ii) that the stochastic potential of every
segregated state equals a|Z0|−a, while the stochastic potential of every non-segregated
state is at least a|Z0|−2a+b, which is strictly larger. Theorem 1 therefore implies that
the segregated states are precisely the stochastically stable states.

To establish (i), let z ∈ Zns be a non-segregated absorbing state. Given any z-tree T,
there exists at least one edge in T that is directed from a segregated absorbing state zs

to a non-segregated absorbing state zns. We claim that any such edge has resistance at
least b. The reason is that any trade that breaks up a segregated state must create at
least one discontent individual, hence the probability of such a trade is either εb or εc

(see Figure 7). Thus the resistance of the edge from zs to zns must be at least b, which
establishes (i).

To establish (ii), let z ∈ Zs be a segregated absorbing state. From each state z′ �= z

we shall construct a sequence of absorbing states z′ = z1 → z2 → · · · → zk = z such
that r(zj−1 → zj ) = a for 1 < j � k. Call this a z′z-path. We shall carry out the
construction so that the union of all of the directed edges on all of these paths forms a
z-tree. Since each edge has a resistance of a and the tree has |Z0| − 1 edges, the total
resistance of the tree is a|Z0| − a as claimed in (ii).

Suppose first that z′ is also segregated, that is, z′ consists of a single contiguous
A-group and a complementary contiguous B-group. Label the positions on the circle
1, 2, . . . , n, in the clockwise sense. Let the first member of the A-group trade places
with the first member of the B-group. Since both were content before and after, this
trade has probability εa . It also results in a new absorbing state, which shifts the A-
group and the B-group by one position clockwise around the circle. Hence within n
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Figure 7. Single disadvantageous trade leading from an equilibrium to a disequilibrium state.

steps we can reach any absorbing state, and in particular we can reach z. Thus we have
constructed a sequence of absorbing states that leads from z′ to z, where the resistance
of each successive pair in the sequence equals a.

Suppose alternatively that z′ is not segregated. Moving clockwise from position 1,
let A denote the first complete group of contiguous As. Let B be the next group of Bs,
and A′ the next group of As. Since z′ is absorbing, each of these groups contains at
least two members. Let the first player in A trade places with the first player in B (in
the clockwise labeling). Since both players were content before and after the trade, its
probability is εa . This trade also shifts group A one position clockwise and reduces by
one the number of B players between A and A′. It either results in a new absorbing state,
or else a single B player remains between A and A′. In the latter case this B player can
then trade with the first player in group A, and this trade has zero resistance. The result
is an absorbing state with fewer distinct groups of As and Bs.

Repeat the process described in the preceding paragraph until all the As are contigu-
ous and all the Bs are contiguous. Then continue as in the earlier part of the argument
until we reach the target state z. This construction yields a sequence of absorbing states
that begins at z′ and ends at z, where the resistance between each successive pair of
states is a. The path contains no cycles because the number of distinct groups never
increases; indeed with each transition one of the groups shrinks until it is eliminated.
Thus the union of these paths forms a z-tree whose total resistance is a|Z0| − a. This
concludes the proof that the stochastically stable states are precisely the segregated ones.

7. Local interaction models

Schelling’s model is an example of a situation in which agents adapt their behaviors
to the actions of their near neighbors. We can easily imagine that the same issue could
arise in a model of technological adoption. What happens if people adopt practices or
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technologies based only on the choices of their immediate neighbors, as opposed to a
sample drawn from the population at large? In this section we show how to address this
problem using methods from statistical mechanics, an approach pioneered by Blume
(1993, 1995).

Consider a group of n agents who are located in a social or geographic space that
allows us to talk about their proximity. A very general model of this sort is to suppose
that each agent lives at the vertex of a graph. The edges of the graph have weights that
indicate the degree of proximity or influence that pertains to each pair of agents. To be
specific, let V denote the set of vertices, and let i ∈ V denote a particular vertex (which
is identified with an agent whom we shall also call i). Let wij � 0 be a weight that
measures the proximity of agents i and j in a geographical (or social) sense. We shall
assume that this is a symmetric relation, that is, wij = wji .

Let X be a finite set of available options or choices. The state of the process at time t

specifies the choice of each agent at that time. A state can therefore be represented as an
n-dimensional vector xt ∈ Xn, where xt

i is i’s choice at time t . Each individual i gets to
reconsider his choice at random times governed by a Poisson random variable ωi . We
shall assume that the random variables ωi are independent and identically distributed
among agents, and that time is scaled so that, on average, there is one revision oppor-
tunity per time period at each location. (Allowing differences in the rates of revision
opportunities does not change the analysis in any fundamental way.)

In line with our earlier discussion, we shall decompose the utility of each agent i into
two parts: the utility of the choice itself (without externalities), and the positive exter-
nality from doing what “the Joneses” do. Specifically, let wiju(x, y) be the externality
payoff from choosing x at location i when one’s neighbor at location j chooses y. Thus
ei(x) = ∑

j �=i wiju(xi, xj ) denotes i’s externality payoff in state x. Let vi(x) denote
the utility that i derives from xi itself without regard to externalities. Assume that i’s
utility in state x at time t is given by

(6)Ui(xt ) = vi

(
xt
i

)+ ei(xt ) + εt
i ,

where εt
i is an unobserved utility shock. It is analytically convenient to assume that the

εt
i are independent and identically distributed according to the extreme value distribu-

tion.6 Suppose that i chooses xt
i to maximize Ui given that the others’ choices at time

t are fixed. It can be shown that, from the observer’s point of view, i chooses xt
i ∈ X

according to the logistic distribution

(7)P
(
xt
i |xt−i

) = exp β
[
vi

(
xt
i

)+ ei(xt )
]
/
∑
yi∈X

exp β
[
vi(yi) + ei

(
yi, xt−i

)]
.

6 The random variable z is extreme value distributed if its cumulative distribution function F(z) takes the

form ln F(z) = −e−βz. This distribution is analytically convenient because it yields a simple closed-form
solution for the stationary distribution of the adjustment process; moreover it is standard as a model of discrete
choice [McFadden (1974), Blume (1993, 1995), McKelvey and Palfrey (1995), Durlauf (1997), Brock and
Durlauf (2001)]. Alternative error distributions can be analyzed using the methods discussed in Section 2.
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The resulting stochastic adjustment process can be represented as a finite Markov chain.
This process has a unique recurrence class (namely the whole state space) because the
choice model implies that any choice will be made with positive probability whenever
an agent reconsiders. Hence the process is ergodic and has a unique stationary distrib-
ution μβ on the set of states X. For each x ∈ X, μβ(x) represents the long-run relative
frequency with which state x is visited starting from any initial state.

A noteworthy feature of this set-up is that the stationary distribution can be expressed
in a simple closed form. Specifically, define the potential of state x to be

(8)ρ(x) =
n∑

i=1

vi(xi) + (1/2)

n∑
i=1

ei(x).

Thus the potential of a state equals the nonexternality payoffs generated by individuals’
choices, plus one-half the externalities generated by social interactions. It can be shown
that the long-run distribution of the process has the following simple form, known as a
Gibbs representation:

(9)μ(x) = eβρ(x)∑
y eβρ(y)

.

It follows that, when β is large, the probability is close to one that the process will be
in a state that maximizes potential, that is, the stochastically stable states are precisely
those that maximize ρ(x).

THEOREM 3. Starting from an arbitrary initial state, the long-run probability of being
in any given state x is proportional to eβρ(x). When β is large, the probability is close
to one that the process is in a state x that maximizes ρ(x).

We remark that this model can be applied to the technology adoption problem dis-
cussed in Section 5. Recall that in this case the choice set consists of just two options,
A and B, and the utilities are given by the payoff matrix

networking own use total payoff
A B A B A B

A a c a′ a′ a + a′ c + a′
+ =

B c b b′ b′ c + b′ b + b′

Now let us suppose a social structure among the agents that determines who interacts
with whom. Specifically, assume that each agent is joined by an edge to s other agents
(the graph is regular of degree s), and that the weight on each edge is 1/s.

Consider any state x, and let nAA(x) be the total number of edges such that the agents
at both ends of the edge choose A. Similarly, let nBB(x) be the total number of edges
such that the agents at both ends choose B, and let nAB(x) be the total number of edges
such that the agent at one end chooses B and the agent at the other end chooses A. Next,
let nA(x) be the number of agents who choose A and let nB(x) be the number who
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choose B. Note that nA(x) + nB(x) = n and nAA(x) + nBB(x) + nAB(x) = ns/2. The
potential function in (8) can then be written as follows:

(10)ρ(x) = a′nA(x) + b′nB(x) + (1/s)(anAA(x) + bnBB(x) + cnAB(x)).

This is maximized either by the all-A state xA or the all-B state xB. Thus we wish to
evaluate which is larger:

(11)ρ(xA) = a′n + an/2 or ρ(xB) = b′n + bn/2.

This amounts to finding the larger of a+2a′ and b+2b′, which is exactly the risk domi-
nance criterion (see the derivation of (5)). It can be shown, in fact, that risk dominance is
the relevant criterion of stochastic stability in a wide variety of binary choice situations
[Kandori et al. (1993), Blume (2003)], though this is not always the case when more
than two choices are available [Young (1993a)].

8. Contractual norms

The framework outlined above has potential application to any situation in which social
norms influence individual agents’ decisions. Cases in which this possibility has been
discussed include the use of addictive substances, dropping out of school, and criminal
behavior [Case and Katz (1991), Crane (1991), Glaeser et al. (1996)]. In this section we
apply the theory to yet another domain, the role of social norms in shaping the terms
of economic contracts. In particular we show how it can illuminate the pattern of crop-
sharing contracts found in contemporary U.S. agriculture [Young and Burke (2001)].7

A share contract is an arrangement in which a landowner and a tenant farmer split
the gross proceeds of the harvest in fixed proportions or shares. The logic of such a
contract is that it shares the risk of an uncertain outcome while offering the tenant a
rough-and-ready incentive to increase the expected value of that outcome. When con-
tracts are competitively negotiated, one would expect the size of the share to vary in
accordance with the mean (and variance) of the expected returns, the risk aversion of
the parties, the agent’s quality, and other relevant factors. In practice, however, shares
seem to cluster around “usual and customary” levels even when there is substantial
heterogeneity among principal-agent pairs, and substantial and readily observed differ-
ences in the quality of different parcels of land. These contractual customs are pinned
to psychologically prominent focal points, such as 1/2–1/2, though other shares—such
as 1/3–2/3 and 2/5–3/5—are also common, with the larger share going to the tenant.

A striking feature of the Illinois data is that the above three divisions account for
over 98% of all share contracts in the survey, which involved several thousand farms in
all parts of the state. An equally striking feature is that the predominant or customary

7 Applications of the theory to the evolution of bargaining norms may be found in Young (1993b) and Young
(1998, chapter 9).
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shares differ by region: in the northern part of the state the overwhelming majority of
share contracts specify 1/2–1/2, whereas in the southern part of the state the most com-
mon shares are 1/3–2/3 and 2/5–3/5 [Illinois Cooperative Extension Service (1995)].8

Thus, on the one hand, uniformity within each region exists in spite of the fact that there
are substantial and easily observed differences in the soil characteristics and produc-
tivities of farms within the region. On the other hand, large differences exist between
the regions in spite of the fact that there are many farms in both regions that have es-
sentially the same soil productivity, so in principle they should be using the same (or
similar) shares. The local interaction model discussed in Section 7 can help us to under-
stand these apparent anomalies.

Let us identify each farm i with the vertex of a graph. Each vertex is joined by edges
to its immediate geographical neighbors. For ease of exposition we shall assume that the
social influence weights on the edges are all the same. The soil productivity index on
farm i, si , is a number that gives the expected output per acre, measured in dollars, of the
soils on that particular farm. (For example, si = 80 means that total net income on farm
i is, on average, $80 per acre.) The contract on farm i specifies a share xi for the tenant,
and 1 − xi for the landlord, where xi is a number between zero and one. The tenant’s
expected income on farm i is therefore xisi times the number of acres on the farm. For
expositional convenience let us assume that all farms have the same size, which we may
as well suppose is unity. (This does not affect the analysis in any important way.)

Assume that renegotiations occur on each farm according to i.i.d. Poisson random
variables, as described in the preceding section. When the time comes to renegotiate on a
particular farm, say i, the landlord makes an offer, say xi . The tenant accepts if and only
if his expected return xisi is at least wi , where wi is the reservation wage at location i.
The expected monetary return to the landlord from such a deal is vi(xi) = (1 − xi)si .

To model the impact of local custom, suppose that each of i’s neighbors exerts the
same degree of social influence on i. Specifically, for each state x, let δij (x) = 1 if i and
j are neighbors and xi = xj ; otherwise let δij (x) = 0. We assume that i’s utility in state
x is (1 − xi)si + γ

∑
j δij (x), where γ is a conformity parameter. The idea is that, if a

landlord offers his tenant a contract that differs from the practices of the neighbors, the
tenant will be offended and may retaliate with poorer performance. Hence the landlord’s
utility for different contracts is affected by the choices of his neighbors. The resulting
potential function is

(12)
∑

i

(1 − xi)si + (γ /2)
∑
i,j

δij (x).

Note that
∑

i (1 − xi)si represents the total rent to land, which we shall abbreviate by
r(x). The expression (1/2)

∑
i,j δij (x) represents the total number of edges (neighbor-

pairs) that are coordinated on the same contract in state x, which we shall abbreviate

8 This north–south division corresponds roughly to the southern boundary of the last major glaciation. In
both regions, farming techniques are similar and the same crops are grown—mainly corn, soybeans, and
wheat. In the north the land tends to be flatter and more productive than in the south, though there is substantial
variability within each of the regions.
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Figure 8. The hypothetical state of Torusota. Each vertex represents a farm, and soil quantities are High (H),
Medium (M), or Low (L).

by e(x). We can therefore write

(13)ρ(x) = r(x) + γ e(x).

As in (9) it follows that the stationary distribution, μ(x), has the Gibbs form

(14)μ(x) ∝ eβ[r(x)+γ c(x)].
It follows that the log probability of each state x is a linear function of the total rent
to land plus the degree of local conformity. Given specific values of the conformity
parameter γ and the response parameter β, we can compute the relative probability of
various states of the process, and from this deduce the likelihood of different geographic
distributions of contracts. In fact, one can say a fair amount about the qualitative behav-
ior of the process even when one does not know specific values of the parameters.

We illustrate with a concrete example that is meant to capture some of the key features
of the Illinois case. Consider the hypothetical state of Torusota shown in Figure 8. In
the northern part of the state—above the dashed line—soils are evenly divided between
High and Medium quality soils. In the southern part they are evenly divided between
Medium and Low quality soils. As in Illinois the soil types are interspersed, but aver-
age soil quality is higher in the north than it is in the south. Let n be the number of
farms. Each farm is assumed to have exactly eight neighbors, so there are 4n edges al-
together. Let us restrict the set of contracts to be in multiples of ten percent: x = 10%,
20%, . . . , 90%. (Contracts in which the tenant receives 0% or 100% are not considered.)
For the sake of concreteness, assume that High soils have index 85, Medium soils have
index 70, and Low soils have index 60. Let the reservation wage be 32 at all locations.

We wish to determine the states of the process that maximize the potential function
ρ(x). The answer depends, of course, on the size of γ , that is, on the tradeoff rate
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between the desire to conform with community norms and the amount of economic
payoff one gives up in order to conform.

Consider first the case where γ = 0, that is, there are no conformity effects. Maxi-
mizing potential is then equivalent to maximizing the total rent to land, subject always
to the constraint that labor earns at least its reservation wage on each class of soil. The
contracts with this property are 40% on High soil, 50% on Medium soil, and 60% on
Low soil. The returns to labor under this arrangement are: 34 on H, 35 on M, and 36 on
L. Notice that labor actually earns a small premium over the reservation wage (w = 32)

on each class of soil. This quantum premium is attributable to the discrete nature of
the contracts: no landlord can impose a less generous contract (rounded to the nearest
10%) without losing his tenant. Except for the quantum premium, this outcome is the
same as would be predicted by a standard market-clearing model, in which labor is paid
its reservation wage and all the rent goes to land. We shall call this the competitive or
Walrasian state w.

Notice that, in contrast to conventional equilibrium models, our framework actually
gives an account of how the state w comes about. Suppose that the process begins in
some initial state x0 at time zero. As landlords and tenants renegotiate their contracts,
the process gravitates towards the equilibrium state w and eventually reaches it with
probability one. Moreover, if β is not too small, the process stays close to w much of
the time, though it will rarely be exactly in equilibrium.

These points may be illustrated by simulating the process using an agent-based
model. Let there be 100 farms in the North and 100 in the South, and assume a mod-
erate level of noise (β = 0.20). Starting from a random initial seed, the process was
simulated for three levels of conformity: γ = 0, 3, and 8. Figure 9 shows a typical
distribution of contract shares after 1000 periods have elapsed. When γ = 0 (bottom
panel), the contracts are matched quite closely with land quality, and the state is close to
the competitive equilibrium. When the level of conformity is somewhat higher (middle
panel), the dominant contract in the North is 50%, in the South it is 60%, and there are
pockets here and there of other contracts. (This looks quite similar to the Illinois case.)
Somewhat surprisingly, however, a further increase in the conformity level (top panel)
does not cause the two regional customs to merge into a single global custom; it merely
leads to greater uniformity in each of the two regions.

To understand why this is so, let us suppose for the moment that everyone is using
the same contract x. Since everyone must be earning their reservation wage, x must
be at least 60%. (Otherwise southern tenants on low quality soil would earn less than
w = 32.) Moreover, among all such global customs, x = 60% maximizes the total rent
to land. Hence the 60% custom, which we shall denote by y, maximizes potential among
all global customs. But it does not maximize potential among all states. To see why this
is so, let z be the state in which everyone in the North uses the 50% contract, while
everyone in the South everyone uses the 60% contract. State z’s potential is almost as
high as y’s potential, because in state z the only negative social externalities are suffered
by those who live near the north-south boundary. Let us assume that the number of
such agents is on the order of

√
n, where n is the total number of farms. Thus the
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Figure 9. Simulated outcomes of the process for n = 200, β = 0.20.

proportion of farms near the boundary can be made as small as we like by choosing
n large enough. But z offers a higher land rent than y to all the northern farms. To be
specific, assume that there are n/2 farms in the north, which are evenly divided between
High and Medium soils, and that there are n/2 farms in the south, which are evenly
divided between Medium and Low soils. Then the total income difference between z
and y is 7n/4 on the Medium soil farms in the north, and 8.5n/4 on the High soil farms
in the north, for a total gain of 31n/8. It follows that, if γ is large enough, then for all
sufficiently large n, the regional custom z has higher potential than the global custom y.9

9 A more detailed calculation shows that z uniquely maximizes potential among all states whenever γ is
sufficiently large and n is sufficiently large relative to γ .
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While the details are particular to this example, the logic is quite general. Consider
any distribution of soil qualities that is heterogeneous locally, but exhibits substantial
shifts in average quality between geographic regions. For intermediate values of confor-
mity γ , it is reasonable to expect that potential will be maximized by a distribution of
contracts that is uniform locally, but diverse globally—in other words the distribution
is characterized by regional customs. Such a state will typically have higher potential
than the competitive equilibrium, because the latter involves substantial losses in social
utility when land quality is heterogeneous. Such a state will typically also have higher
potential than a global custom, because it allows landlords to capture more rent at rel-
atively little loss in social utility, provided that the boundaries between the regions are
not too long (i.e., there are relatively few farms on the boundaries).

In effect, these regional customs form a compromise between completely uniform
contracts on the one hand, and fully differentiated, competitive contracts on the other.
Given the nature of the model, we should not expect perfect uniformity within any given
region, nor should we expect sharp changes in custom at the boundary. The model
suggests instead that there will be occasional departures from custom within regions
(due to idiosyncratic influences), and considerable variation near the boundaries. These
features are precisely what we see in the distribution of share contracts in Illinois.

9. Conclusion

In this paper I have described a framework for analyzing the asymptotic behavior of a
wide variety of agent-based models. In particular, the theory makes quantitative predic-
tions about the long-run probability of various outcomes and thus avoids the hazards of
drawing conclusions solely from simulations. (Of course, simulations can still be ex-
tremely helpful in understanding the short and medium run dynamics of a process.) I
have shown how the theory plays out in specific contexts, including technology adop-
tion, neighborhood segregation, and the evolution of contractual norms. Perhaps the
most important aspect of the theory, however, is that it brings into focus certain qualita-
tive features that are common to many agent-based models, but that one does not tend to
find in conventional equilibrium types of analysis. The three critical features are: i) local
conformity vs. global diversity; ii) punctuated equilibrium; iii) persistence of particular
states in the presence of stochastic shocks [Young (1998)].

We can illustrate these concepts by imagining a collection of distinct societies whose
members do not interact with each other. Over time, each will develop distinctive in-
stitutions to cope with various forms of economic and social coordination—forms of
contracts, norms of behavior, property rights, technological standards, and so forth. The
solutions that each society finds to these coordination problems will typically take the
form of an equilibrium state in an appropriately defined dynamical system. Due to the
positive externalities that arise from conforming to the reigning equilibrium, one will
tend to find a substantial amount of conformity within a given community. But in sep-
arate, noninteracting communities, one may find that the same basic problem is solved
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in different ways. This is the local conformity/global diversity effect. It can apply even
within a given society if interactions are sufficiently localized and the externalities are
sufficiently strong; Illinois agricultural contracts provide a real-world instance of this
phenomenon. A concrete prediction is that two individuals are more likely to exhibit
similar behaviors if they come from the same society (or are close in the relevant social
network) than if they come from different societies, holding constant all other explana-
tory variables.

The second qualitative feature of this class of models has to do with the look of the
dynamic paths. The theory predicts that the process will tend to exhibit long periods of
stasis in which a given equilibrium—or something close to an equilibrium—is in place,
punctuated by bursts in which the equilibrium shifts in response to stochastic shocks. In
the context of residential segregation Schelling called this the “tipping” phenomenon;
here I refer to it as the punctuated equilibrium effect.

The third key feature highlighted by the theory is that some equilibrium states are
more persistent or stable than others. Once established they tend to stay in place for long
periods of time because they are robust against stochastic shocks. The methodology
outlined allows us to identify these stochastically stable states using the concept of
a stochastic potential function. This approach also allows us to make predictions about
the long-run behavior of specific dynamical systems, such as segregated outcomes being
more stable than integrated ones, and risk dominant technologies being more stable than
efficient ones.

I conclude this essay by drawing attention to an important aspect of the theory that
we cannot explore in depth here, but that deserves particular recognition, namely, the
length of time that it takes for the long-run asymptotic behavior of an evolutionary
process to reveal itself. From an empirical point of view it obviously makes a difference
if a process takes ten years or a million years to reach its long-run distribution. In the lat-
ter case, the short-run dynamics are more important than the long-run asymptotics, and
the process may be effectively path dependent even if it is not so from a truly long-run
perspective. In practice, however, it is quite difficult to say how long the long run really
is. There are several reasons for this. One is that time periods in the model do not cor-
respond to real time intervals; they simply represent markers between distinct events in
the model, such as revision decisions by individuals. When the population is large and
people interact often, thousands or even millions of such events might be compressed
within a short period of real time, such as an hour or a day. Second, the speed of adjust-
ment depends on a number of modeling factors, including the degree of local interaction
[Ellison (1993), Young (1998, Chapter 6)], the amount of information that people use
to make their decisions, and the extent to which agents’ errors are correlated. If agents
react only to the behavior of a few neighbors, or they get their information by asking a
few friends, or they react similarly to the same conditions, the process can tip from one
equilibrium to another in relatively short order. Thus unless we know quite a lot about
the topology of interaction and the agents’ decision-making processes, estimates of the
speed of adjustment could be off by many orders of magnitude.
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The theory discussed above identifies those aspects of evolutionary, agent-based mod-
els that are critical to determining the speed with which change occurs. The remaining
challenge is to bring these theoretical predictions to bear on the forms of social structure
that we see in the real world.
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Abstract

This chapter surveys work on dynamic heterogeneous agent models (HAMs) in eco-
nomics and finance. Emphasis is given to simple models that, at least to some extent, are
tractable by analytic methods in combination with computational tools. Most of these
models are behavioral models with boundedly rational agents using different heuristics
or rule of thumb strategies that may not be perfect, but perform reasonably well. Typ-
ically these models are highly nonlinear, e.g. due to evolutionary switching between
strategies, and exhibit a wide range of dynamical behavior ranging from a unique stable
steady state to complex, chaotic dynamics. Aggregation of simple interactions at the
micro level may generate sophisticated structure at the macro level. Simple HAMs can
explain important observed stylized facts in financial time series, such as excess volatil-
ity, high trading volume, temporary bubbles and trend following, sudden crashes and
mean reversion, clustered volatility and fat tails in the returns distribution.
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“One of the things that microeconomics teaches you is that individuals are not
alike. There is heterogeneity, and probably the most important heterogeneity here
is heterogeneity of expectations. If we didn’t have heterogeneity, there would be
no trade. But developing an analytic model with heterogeneous agents is diffi-
cult.” (Ken Arrow, In: D. Colander, R.P.F. Holt and J. Barkley Rosser (eds.), The
Changing Face of Economics. Conversations with Cutting Edge Economists. The
University of Michigan Press, Ann Arbor, 2004, p. 301.)

1. Introduction

Economics and finance are witnessing an important paradigm shift, from a represen-
tative, rational agent approach towards a behavioral, agent-based approach in which
markets are populated with boundedly rational, heterogeneous agents using rule of
thumb strategies. In the traditional approach, simple analytically tractable models with
a representative, perfectly rational agent have been the main corner stones and mathe-
matics has been the main tool of analysis. The new behavioral approach fits much better
with agent-based simulation models and computational and numerical methods have
become an important tool of analysis. In the recent literature however, already quite
a number of heterogeneous agent models (HAM) have been developed which, at least
to some extent, are analytically tractable and for which theoretical results have been
obtained supporting numerical simulation results. In this chapter we review a number
of dynamic HAM in economics and finance. Most of these models are concerned with
financial market applications, but some of them deal with different markets, such as
commodity good markets. The models reviewed in this chapter may be viewed as sim-
ple, stylized versions of the more complicated “artificial markets” and computationally
oriented agent-based simulation models reviewed in the chapter of LeBaron (2006) in
this handbook. In the analysis of the dynamic HAM discussed in the current chapter one
typically uses a mixture of analytic and computational tools.

The new behavioral, heterogeneous agents approach challenges the traditional rep-
resentative, rational agent framework. It is remarkable however, that many ideas in the
behavioral, agent-based approach in fact have quite a long history in economics already
dating back to earlier ideas well before the rational expectations and efficient market
hypotheses. For example, some of the key elements of the behavioral agent-based mod-
els are closely related to Keynes’ view that ‘expectations matter’, to Simon’s view that
economic man is boundedly rational and to the view of Kahneman and Tversky in
psychology that individual behavior under uncertainty can best be described by sim-
ple heuristics and biases. Before starting our survey, we briefly discuss these important
(and closely related) ideas, which will be recurrent themes in this chapter.

Keynes (1936) argued that investors’ sentiment and market psychology play an im-
portant role in financial markets, as will be clear from the following famous quote:
‘Investment based on genuine long-term expectation is so difficult as to be scarcely
practicable. He who attempts it must surely lead much more laborious days and run
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greater risks than he who tries to guess better than the crowd how the crowd will be-
have; and, given equal intelligence, he may make more disastrous mistakes’ (Keynes,
1936, p. 157). According to Keynes, it is hard to compute an objective measure of ‘mar-
ket fundamentals’ and, if possible at all, it is costly to gather all relevant information.
Another difficulty is that it is not clear what the ‘correct’ fundamental variables are,
and fundamentals can be relevant only when enough traders agree on their role in deter-
mining asset prices. Instead of relying on market fundamentals, for an investor it may
be easier, less risky and more relevant to make a rule of thumb estimate of the mar-
ket sentiment. Herbert Simon (1957) emphasized that individuals are limited in their
knowledge about their environment and in their computing abilities, and moreover that
they face search costs to obtain sophisticated information in order to pursue optimal de-
cision rules. Simon argued that, because of these limitations, bounded rationality with
agents using simple but reasonable or satisficing rules of thumb for their decisions under
uncertainty, is a more accurate and more realistic description of human behavior than
perfect rationality with fully optimal decision rules. In the seventies this view was sup-
ported by evidence from psychology laboratory experiments of Kahneman and Tversky
(1973) and Tversky and Kahneman (1974), showing that in simple decision problems
under uncertainty humans do not behave rational, in the sense of maximizing expected
utility, but their behavior can be described by simple heuristics which may lead to signif-
icant biases. For a more recent and stimulating discussion of bounded rationality, simple
heuristics and biases as opposed to rational behavior we refer to the Nobel Memorial
Lectures in Simon (1979) and Kahneman (2003).

In contrast, Milton Friedman has been one of the strongest advocates of a rational
agent approach, claiming that the behavior of consumers, firms and investors can be de-
scribed as if they behave rationally. The Friedman hypothesis stating that non-rational
agents will not survive evolutionary competition and will therefore be driven out of
the market has played an important role in this discussion. The following quote from
Friedman (1953, p. 175) concerning non-rational speculators is well known: ‘People
who argue that speculation is generally destabilizing seldom realize that this is largely
equivalent to saying that speculators lose money, since speculation can be destabi-
lizing in general only if speculators on the average sell when the currency is low in
price and buy when it is high’. In a similar spirit, Alchian (1950) argued that biologi-
cal evolution and natural selection driven by realized profits may eliminate non-rational,
non-optimizing firms and lead to a market where rational, profit maximizing firms domi-
nate. The question whether the Friedman hypothesis holds in a heterogeneous world has
played an important role in the development and discussion about HAMs, and we will
come back to it several times in this chapter.

Rational behavior has two related but different aspects (e.g. Sargent, 1993). Firstly,
a rational decision rule has some micro-economic foundation and is derived from opti-
mization principles, such as expected utility or expected profit maximization. Secondly,
agents have rational expectations (RE) about future events, that is, beliefs are perfectly
consistent with realizations and a rational agent does not make systematic forecasting
errors. In a rational expectations equilibrium, forecasts of future variables coincide with
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the mathematical conditional expectations, given all relevant information. Rational ex-
pectations provides an elegant and parsimonious way to exclude ‘ad hoc’ forecasting
rules and market psychology from economic modeling. Since its introduction in the
sixties by Muth (1961) and its popularization in economics by Lucas (1971), the ratio-
nal expectations hypothesis (REH) has become the dominating expectation formation
paradigm in economics.

Another important issue in the discussion of rational versus boundedly rational be-
havior is concerned with market efficiency, as e.g. emphasized by Fama (1965). If
markets were not efficient, then there would be unexploited profit opportunities, that
would be exploited by rational arbitrage traders. Rational traders would buy (sell) an
underpriced (overpriced) asset, thus driving its price back to the correct, fundamental
value. In an efficient market, there can be no forecastable structure in asset returns, since
any such structure would be exploited by rational arbitrageurs and therefore disappear.

In the seventies and eighties the representative agent, rational expectations and effi-
cient market hypotheses became the dominating paradigm in economics and finance. In
the late eighties and nineties however, HAMs and bounded rationality became increas-
ingly popular. The following developments contributed to this change:

1. In a world where all agents are rational and it is common knowledge that all agents
are rational, there will be no trade. A trader with superior private information can
not benefit from his information, because other rational traders anticipate that he
must e.g. have positive information about an asset and will therefore not sell the
asset to him. Several no trade theorems have been obtained (Milgrom and Stokey,
1982; see Fudenberg and Tirole (1991, especially Section 14.3.3) for a discussion).
No trade theorems are in sharp contrast with the high daily trading volume ob-
served in real markets, such as the stock market and the foreign exchange market.
This tremendous trading volume reinforces the idea of heterogeneous expectations
and the idea that it takes differences of opinion among market participants to trade.

2. In the early eighties, Shiller (1981, 1989) and LeRoy and Porter (1981) claimed
that stock prices exhibit excess volatility, that is, movements in stock prices are
much larger than movements in underlying economic fundamentals. Statistical
tests for excess volatility were developed, but the power of these tests turned out
to be low and the issue is still heavily debated. The stock market crash in October
1987 reinforced the idea of excess volatility and the crash appeared to be difficult
to explain by a representative, rational agent model. Another important empirical
observation has been the strong appreciation followed by a strong depreciation of
the dollar in the mid eighties, which seemed to be unrelated to economic funda-
mentals as stressed by Frankel and Froot (1986). Cutler et al. (1989) showed that
the days of the largest aggregate stock market movements in the S&P500 index,
1941–1987, do not coincide with the days of the most important fundamental news
and vice versa. These empirical observations have played an important role in the
increasing popularity of non-rational, heterogeneous agent explanations of asset
price movements.
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3. Following earlier ideas of Simon, in the nineties and since more and more econo-
mists have come to question the unrealistically strong rationality assumptions
concerning perfect information about the environment and unlimited computing
abilities. In particular, in a heterogeneous world a rational agent has to know the
beliefs of all other, non-rational agents, which seems highly unrealistic as empha-
sized e.g. in Arthur (1995) and Hommes (2001). These developments contributed
to a rapidly growing interest in bounded rationality in the 1990s, see for exam-
ple the survey by Sargent (1993). A boundedly rational agent forms expectations
based upon observable quantities and adapts his forecasting rule as additional
observations become available. Adaptive learning may converge to a rational ex-
pectations equilibrium or it may converge to an “approximate rational expectations
equilibrium”, where there is at least some degree of consistency between expec-
tations and realizations (see Evans and Honkapohja (2001) for an extensive and
modern treatment of adaptive learning in macroeconomics).

4. A problem with behavioral economics and bounded rationality is that it leaves
“many degrees of freedom”. Any HAM with bounded rationality must provide a
plausible story that there is at least some reasonable consistency between beliefs
and realizations and how agents select from a large class of possible forecasting
and trading strategies. One plausible story is an evolutionary approach, advocated
by Nelson and Winter (1973, 1974, 1982), where agents or firms select from a
class of simple, behavioral strategies according to their relative performance, e.g.
as measured by relative profitability and how much this strategy is used by others.
The evolutionary approach plays an important role in this chapter.

5. New developments in mathematics, physics and computer science in nonlinear
dynamics, chaos and complex systems motivated economists to apply these tools.
Economic applications of nonlinear dynamics are surveyed in Brock et al. (1991),
Day (1994), Lorenz (1993) and Medio (1992). The Santa Fe conference proceed-
ings Anderson et al. (1988) and Arthur et al. (1997a) contain contributions in
which the economy is viewed as a complex evolving system, see also Arthur (2006)
and the collection of papers in Rosser (2004a). Nonlinear dynamics, chaos, and
complex systems have important consequences for the validity of the REH. In a
simple (linear) stable economy with a unique steady state path, it seems natural
that agents can learn to have rational expectations, at least in the long run. A repre-
sentative, perfectly rational agent model nicely fits into a linear view of a globally
stable and predictable economy. But how could agents have rational expectations
or perfect foresight in a complex, nonlinear world, with prices and quantities mov-
ing irregularly on a strange attractor? A boundedly rational world view with agents
using simple forecasting strategies, perhaps not perfect but at least approximately
right, seems more appropriate within a complex, nonlinear world; see e.g. Brock
and Hommes (1997b). Applications of tools from nonlinear dynamics and com-
plex systems theory have stimulated much work in HAM, which are almost always
highly nonlinear, adaptive systems.
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6. Laboratory experiments have shown that individuals often do not behave ratio-
nally. We already mentioned the work by Kahneman and Tversky, showing that
individuals tend to use heuristics and biases in making decisions under uncertainty.
In a stimulating and influential paper, Smith et al. (1988) showed the occurrence
of bubbles in asset pricing laboratory experiments; see also the survey in Sunder
(1995). These bubbles occur despite the fact that participants had sufficient in-
formation to compute the fundamental value of the asset. This type of laboratory
experiments reinforced theoretical work on HAMs with non-rational agents. See
also the chapter of Duffy (2006) on the relationship between laboratory experi-
ments and agent-based modeling.

7. Evidence from survey data on exchange rate expectations of financial specialists,
e.g. by Frankel and Froot (1987a, 1987b, 1990a, 1990b), Allen and Taylor (1990),
Ito (1990) and Taylor and Allen (1992), showed that financial practitioners use
different trading and forecasting strategies. A consistent finding from survey data
is that at short horizons investors tend to use extrapolative chartists’ trading rules,
whereas at longer horizons investors tend to use mean reverting fundamentalists’
trading rules. Frankel and Froot (1987b, p. 264) conclude the following from their
survey data analysis: “It may be that each respondent is thinking to himself or
herself, “I know that in the long run the exchange rate must return to the equilib-
rium level dictated by fundamentals. But in the short run I will ride the current
trend a little longer. I only have to be careful to watch for the turning point and
to get out of the market before everyone else does”.” For a long time academic
work has been skeptical concerning the usefulness of technical trading. Brock et
al. (1992) tested 26 simple, frequently used technical trading rules (e.g. moving
average and trading range breaks) on the Dow Jones index in the period 1897–
1986 and showed that they can generate significantly positive returns, suggesting
extra structure above and beyond the EMH benchmark. Dacorogna et al. (1995)
show that trading models with different time horizons and risk profiles can be
profitable when applied to high frequency exchange rate data. Both the work on
survey data, the fact that technical trading is used extensively among practition-
ers and empirical work suggesting the potential success of technical trading have
stimulated much work on HAMs with chartists versus fundamentalists.

8. Finally, the fact that computational tools became widely available in the late eight-
ies and the nineties has enormously stimulated the development and numerical
simulation analysis of behavioral HAMs with boundedly rational agents, both in
research and in teaching. The current Handbook provides the best proof of this
fact, see in particular the chapters of Judd (2006) and Tesfatsion (2006).

There is already too much work on HAMs to provide a comprehensive review in this
chapter. We focus on stylized dynamic HAMs using some simple examples to illustrate
and discuss what we believe to be important characteristics of HAMs. A long list of
references is provided to help guide the interested reader through the already extensive
literature. The chapter of LeBaron (2006) contains an overview of larger, computational
HAMs as well as many more references to the literature. This chapter is organized as
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follows. Section 2 discusses some early HAMs with chartists and fundamentalists and
work on survey data analysis of expectations of financial experts. Section 3 relates the
work on HAMs to behavioral finance. Section 4 presents examples of disequilibrium
HAMs, where the interaction of agents leads to complex market dynamics such as cy-
cles or chaotic fluctuations. Section 5 discusses stochastic interacting agent systems and
work on social interactions. Section 6 discusses simple financial market HAMs with
herding behavior, able to generate important stylized facts such as clustered volatil-
ity. Section 7 discusses models where sophisticated agents using advanced but costly
strategies compete against simple agents using cheap rule of thumb strategies. Sec-
tion 8 discusses an asset pricing model with heterogeneous beliefs with endogenous
evolutionary switching of strategies. Section 9 summarizes and discusses some future
perspectives.

2. Fundamentalists and chartists

In many HAMs two important types of agents are distinguished, fundamentalists and
chartists. Fundamentalists base their expectations about future asset prices and their
trading strategies upon market fundamentals and economic factors, such as dividends,
earnings, macroeconomic growth, unemployment rates, etc. They tend to invest in as-
sets that are undervalued, that is, whose prices are below a benchmark fundamental
value, and sell assets that are overvalued, that is, whose prices are above the market
fundamental value. In contrast, chartists or technical analysts do not take market fun-
damentals into account but instead base their expectations about future asset prices and
their trading strategies upon observed historical patterns in past prices. Technical ana-
lysts try to extrapolate observed price patterns, such as trends, and exploit these patterns
in their investment decisions. A well known example of a technical trading rule is the
moving average trading rule, buying (selling) an asset when a short run moving average
crosses a long run moving average from below (above).

This section discusses some early work emphasizing the importance of fundamen-
talists and chartists. Subsection 2.1 discusses one of the first financial HAMs with
fundamentalists and chartists, due to Zeeman (1974). Subsection 2.2 discusses work on
survey data on expectations of Frankel and Froot (1986, 1987a, 1987b, 1990a, 1990b)
and Allen and Taylor (1990), showing the importance of chartists trading rules among
financial practitioners. Finally, Subsection 2.3 discusses another early model with fun-
damentalists and chartists discussed in a series of papers by Frankel and Froot (1986,
1987a, 1987b, 1990a, 1990b), which have stimulated much subsequent work in this
area.

2.1. An early example

One of the first HAMs for the stock market (or for exchange rates) can be found in
Zeeman (1974). This model is an application of the cusp catastrophe with a slow feed-
back flow. Zeeman’s purpose was to offer a qualitative description of the observed
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stylized fact of temporary bull and bear markets. The model is highly stylized and lacks
any micro foundations, but nevertheless it contains a number of important, behavioral
elements that have also been used in recent heterogeneous agents modeling.

The model contains two types of traders, fundamentalists and chartists. Fundamen-
talists know the ‘true’ value of the stock and buy (sell) when the price is below (above)
that value. Chartists are trend followers, buying when price rises and selling when price
falls. There are three variables J , F and C. J denotes the rate of change of a stock
market index or of an exchange rate. J = 0 represents a static market, whereas J > 0
(J < 0) represents a bull (bear) market. C denotes the proportion of the market held
by chartists, i.e. the proportion of speculative money in the market, and F denotes the
excess demand for stock by fundamentalists. Zeeman assumes that J responds to C and
F much faster than C and F respond to J . Stated differently, J is a fast variable (a
state variable) and C and F are slow variables (control variables or slowly changing
parameters).

Zeeman postulates seven hypotheses based upon observed qualitative features of the
stock exchange and the behavior of speculators (chartists) and value investors (funda-
mentalists). Using Thom’s classification theorem, Zeeman then shows that the simplest
generic mathematical model that can be derived from these hypotheses is the cusp
catastrophe model with a slow feedback flow. Figure 1 shows the surface S satisfying

(1)J 3 − (C − C0) − F = 0.

The surface S represents the equilibria of the system.1 The projection of S onto the
(C, F )-plane yields the cusp region, bounded by two fold curves tangent to each other
in the cusp point. For (C, F ) outside the cusp region, S is single sheeted and the model
has a unique (stable) steady state. Inside the cusp region, S is 3-sheeted, the middle
sheet representing an unstable equilibrium and the other two sheets stable equilibria.
The system converges quickly to the attractor surface S and then slowly moves along
the surface. For example, consider a situation where the system is in a bull market at
the upper sheet of S. In a bull market the proportion of chartists increases, because they
‘follow the trend’, thus accelerating a further increase of the stock index. At some point
however fundamentalists start selling stocks, because they judge that the market has be-
come overvalued, causing the growth of the index to decrease. The excess demand F

of fundamentalists decreases and the system moves along the upper sheet of S in the
direction of the point B, causing a crash and a rapid decline of the stock prices until
the system reaches the lower sheet of S. During this bear market, at some point funda-
mentalists start buying stocks again, because they believe that the stock is undervalued,
causing a decrease in the proportion of chartists and an increase of the market index. As
the index rises, the proportion of chartists increases again, accelerating the rise in stock
prices leading to a new bull market. Zeeman’s model thus explains a switching between
bull and bear markets, as indicated by the arrows in Figure 1, derived from behavioral
assumptions about chartists and fundamentalists.

1 Notice that, since J denotes the rate of change, these equilibria are not steady states, but rather equilibria
with constant growth rate.
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Figure 1. The cusp catastrophe surface of equilibria. The state variable J is the rate of change of the stock in-
dex, whereas the control variables F and C represent excess demand of fundamentalists and the proportion of
chartists. For clarity the (C, F )-plane has not been drawn through the origin, but below the surface. Reprinted
with permission from Journal of Mathematical Economics, Vol. 1, No. 1, 1974, E.C. Zeeman, The unstable

behavior of stock exchange, Figure 3, p. 46.

Catastrophe theory became quite popular in the early seventies, but was heavily crit-
icized as being a “science fad” in the late seventies and eighties, for example in Zahler
and Sussmann (1977). Rosser (2004b) contains an interesting recent discussion and
reappraisal of mathematical methods from catastrophe theory and of Zeeman’s model.
Guastello (1995, pp. 292–297) studied the 1987 market crash using Zeeman’s model,
whereas recently Rheinlaender and Steinkamp (2004) introduced a stochastic version
of Zeeman’s model using random dynamical systems theory.

2.2. Survey data on expectations

In the late eighties and early nineties, a number of authors including Frankel and Froot
(1987a, 1987b, 1990a, 1990b), Shiller (1987), Allen and Taylor (1990) and Taylor and
Allen (1992) conducted questionnaires among financial practitioners to obtain detailed
information about investors’ expectations. This survey data work has been an important
source of inspiration for the development of HAMs. More recent survey based evidence
includes Cheung et al. (1999), Lui and Mole (1999) and Menkhoff (1997, 1998).
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Figure 2. Time series of the real value of the dollar against a weighted average of the currencies of the foreign
G-10 countries plus Switzerland (bold graph) and the time series of the real interest differential between
the US and a weighted average of the foreign country rates (dotted graph) in the eighties. Reprinted with
permission from American Economic Review, Vol. 80, No. 2, AEA Papers and Proceedings, Frankel, J.A. and
Froot, K.A., The rationality of the foreign exchange rate. Chartists, fundamentalists and trading in the foreign

exchange market, Figure 1, p. 181.

In their series of papers in the mid eighties and early nineties, Frankel and Froot stud-
ied the large movements of the US dollar exchange rate in the eighties and in particular
they investigated the question whether investors’ expectations may have amplified those
movements. Frankel and Froot (1990a) contains a detailed description of this research;
a short, but stimulating discussion is also given in Frankel and Froot (1990b). Figure 2
shows a time series of the real value of the dollar against a weighted average of the
currencies of the foreign G-10 countries plus Switzerland and the time series of the real
interest differential between the US and a weighted average of the foreign country rates
in the eighties. Frankel and Froot (1990b, p. 181) note the following:

“At times, the path of the dollar has departed from what would be expected on the
basis of macroeconomic fundamentals. The most dramatic episode is the period
from June 1984 to February 1985. The dollar appreciated another 20 percent over
this interval, even though the real interest differential had already begun to fall.
The other observable factors that are suggested in standard macroeconomic mod-
els (money growth rates, real growth rates, the trade deficit) at this time were also
moving in the wrong direction to explain the dollar rise.”
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Indeed it seems difficult to believe that a rational theory could explain such an in-
crease of 20% of the equilibrium real exchange rate within 9 months and that this
rapid rise would then be reversed within the next month. Instead Frankel and Froot
(1990b, p. 182) argue that “the appreciation may have been an example of a specula-
tive bubble—that it was not determined by economic fundamentals, but rather was the
outcome of self-confirming market expectations.” Frankel and Froot use survey data on
exchange rate expectations to test this hypothesis.2

Frankel and Froot (1987a, 1987b, 1990a, 1990b) use three different sources for their
survey data on exchange rate expectations of financial specialists, bankers and currency
traders. Some of the surveys go back to 1976 and include telephone interviews. The
time horizon of the exchange rate expectations vary from 1 week to 12 months. An
important finding is that respondents’ short-term expectations are quite different from
their long-term expectations. Frankel and Froot estimate three simple, standard mod-
els for expectations, namely extrapolative expectations, regressive (or mean reverting)
expectations and adaptive expectations. The extrapolative expectations model assigns a
weight g to the lagged spot rate and a weight (1− g) to the current spot rate, that is, the
expected spot rate is given by

(2)se
t+1 = (1 − g)st + gst−1,

where st is the log of the current spot rate, or equivalently

(3)�se
t+1 = −g�st ,

where �se
t+1 is the expected change of the (log) spot rate and �st the last realized

change. For short-term horizons (1 week, 2 weeks, 1 month) significantly negative val-
ues of g (ranging from −0.13 to −0.05) are obtained, characteristic of destabilizing or
bandwagon expectations for which a current appreciation generates self-sustaining ex-
pectations of future appreciations. In contrast, at longer-term horizons of 6–12 months,
significantly positive values of g (ranging from 0.07 to 0.38) are obtained characteristic
of stabilizing expectations, where a trend is expected to reverse.

The regressive or mean-reverting expectations model is a weighted average between
the current (log) spot rate and the (log) long-run equilibrium spot rate s̄t , that is

(4)se
t+1 = (1 − v)st + vs̄t ,

or in terms of expected depreciation

(5)�se
t+1 = v(s̄t − st ).

2 Another rational explanation of the large fluctuations in the exchange rate is a time varying risk premium.
Froot and Frankel (1989) show however that the bias in the forward discount, i.e. the log difference of the
forward exchange rate and the spot rate, cannot be explained by rational expectations and a (time varying)
risk premium, but may be attributable to systematic expectational errors.
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If the weight v is positive (negative), then investors expect the exchange rate to move
towards (away from) the long run equilibrium value. A negative weight v is characteris-
tic of destabilizing or explosive expectations, while a positive weight v is characteristic
of stabilizing expectations. Again, at short-term horizons (1 week, 2 weeks, 1 month)
significantly negative values of v (ranging from −0.03 to −0.08) are obtained, whereas
at longer-term horizons of 6–12 months significantly positive values of v (ranging from
0.06 to 0.17) are obtained. Similar results are also found for the case of adaptive expec-
tations. Frankel and Froot (1990a, pp. 98–101) conclude that

“. . . short-term and long-term expectation behave very differently from one an-
other. In terms of the distinction between fundamentalists and chartists views, we
associate the longer-term expectations, which are consistently stabilizing, with the
fundamentalists, and the shorter term forecasts, which seem to have a destabiliz-
ing nature, with the chartists expectations. Within each of the above tables, it is
as if there are actually two models of expectations operating, one at each end of
the forecasting horizons, and a blend in between. Under this view, respondents use
some weighted average of the chartist and fundamentalist forecasts in formulating
their expectations for the value of the dollar at a given future date, with weights
depending on how far off that date is.”

This conclusion is in line with other questionnaire surveys of Allen and Taylor (1990)
and Taylor and Allen (1992), conducted on behalf of the Bank of England, among chief
foreign exchange dealers in London. Taylor and Allen (1992, p. 304) conclude:

. . . at least 90 per cent of the respondents place some weight on this form of non-
fundamental analysis when forming views at one or more time horizons. There is
also a skew towards reliance on technical, as opposed to fundamentalist, analy-
sis at shorter horizons, which becomes steadily reversed as the length of horizon
considered is increased. A very high proportion of chief dealers view technical
and fundamental analysis as complementary forms of analysis and a substantial
proportion suggest that technical advice may be self-fulfilling.

Finally, Table 1 is reproduced from Frankel and Froot (1990b) showing how the rel-
ative importance of fundamentalist and technical analysis shifts over time. The table
shows that in 1978 most of the forecasting services (19 vs. 3) relied on fundamental
analysis, whereas in 1985 the situations has been reversed (5 vs. 15). Frankel and Froot
(1990b, pp. 184–185) conclude the following:

“. . . it may indeed be the case that shifts over time in the weight that is given to
different forecasting techniques are a source of changes in the demand for dol-
lars, and that large exchange rate movements may take place with little basis in
macroeconomic fundamentals.”
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Table 1
From Frankel and Froot (1990b, p. 184, Table 2); source: Euromoney, August issues. Total = number of
services surveyed; Chart. = number who reported using technical analysis; Fund. = number who reported
using fundamentals models; and Both = number reporting a combination of the two. When a forecasting firm

offers more than one service, each is counted separately.

Techniques used by forecasting services

Year Total Chart. Fund. Both

1978 23 3 19 0
1981 13 1 11 0
1983 11 8 1 1
1984 13 9 0 2
1985 24 15 5 3
1988 31 18 7 6

2.3. An exchange rate model

Their work on questionnaire surveys among financial practitioners motivated Frankel
and Froot (1986, 1990a 1990b) to develop a heterogeneous agent model for exchange
rates with time varying weights of forecasting strategies, which has stimulated much
subsequent research in the field. Their exchange rate model contains three classes of
agents: fundamentalists, chartists and portfolio managers. Fundamentalists think of the
exchange rate according to a model—e.g. the overshooting model—that would be ex-
actly correct if there were no chartists in the market. Chartists do not have fundamentals
in their information set; instead they use autoregressive time series models—e.g. simple
extrapolation—having only past exchange rates in the information set. Finally portfolio
managers, the actors who actually buy and sell foreign assets, form their expectations as
a weighted average of the predictions of fundamentalists and chartists. Portfolio man-
agers update the weights over time in a rational, Bayesian manner, according to whether
the fundamentalists or the chartists have recently been doing a better job of forecasting.
Thus each of the three is acting rationally subject to certain constraints. The model de-
parts from the orthodoxy in that the agents could do better, in expected value terms,
if they knew the complete model. The departure is a general model of exchange rate
determination

(6)st = c�sm
t+1 + zt , c ≥ 0,

where st is the log of the spot exchange rate, �sm
t+1 is the rate of depreciation expected

by the market, i.e. by the portfolio managers, and zt , represents market fundamentals.
Portfolio managers use a weighted average of the expectations of fundamentalists and
chartist:

(7)�sm
t+1 = ωt�s

f

t+1 + (1 − ωt)�sc
t+1, 0 ≤ ωt ≤ 1.
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Fundamentalists’ forecast are given by

(8)�s
f

t+1 = v(s̄ − st ),

where s̄ is the fundamental exchange rate and v is the speed of adjustment. For simplic-
ity, Frankel and Froot (1990b) assume that the ‘chartists’ believe that the exchange rate
follows a random walk, that is,

(9)�sc
t+1 = 0.

Portfolio managers’ expected change of exchange rates (7) then simplifies to

(10)�sm
t+1 = ωtv(s̄ − st ).

The weight ωt attached to fundamentalists views by portfolio managers evolves accord-
ing to

(11)�ωt = δ(ω̂t−1 − ωt−1), 0 ≤ δ ≤ 1,

where ω̂t−1 is defined as the weight, computed ex post, that would have perfectly pre-
dicted the realized change in the spot rate, that is, ω̂t−1 is defined by the equation

(12)�st = ω̂t−1v(s̄ − st−1).

Equations (11) and (12) together determine the change of weights that portfolio man-
agers give to fundamentalist’s views:

(13)�ωt = δ

(
�st

v(s̄ − st−1)
− ωt−1

)
,

where the coefficient δ measures the speed of adaption. Portfolio managers thus adapt
the weight given to the fundamentalist forecast in the direction of the weight that would
have yielded a perfect forecast.

Frankel and Froot (1990a) take a continuous time limit and obtain differential equa-
tions for ω(t) and s(t). Since the fundamental steady state may be unstable, the model
is extended by adding an endogenous stabilizing fundamental force, due to current ac-
count imbalance when the exchange rate moves too far away from the fundamental.
Simulations of the extended model show that the exchange rate may exhibit a temporary
bubble, during which fundamentalists weight is driven to zero, with a rapidly increasing
exchange rate, but at some point when the exchange rate has moved too far away from
its fundamental value external deficits turn the trend and portfolio managers start giving
more weight again to fundamentalists forecast, accelerating the depreciation. Frankel
and Froot (1990a, p. 113) note that “Ironically, fundamentalists are initially driven out
of the market as the dollar appreciates, even though they are ultimately right about its
return to s̄.”

In the model the three types of agents, portfolio managers, chartists and fundamental-
ists are not fully rational. In defending their approach against the Friedman hypothesis
that speculative, destabilizing investors will be driven out of the market by smart, stabi-
lizing investors, Frankel and Froot (1986, pp. 35–36) use a bounded rationality defense
for their model [emphasis added]:
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“All this comes at what might seem a high cost: portfolio managers behave ir-
rationally in that they do not use the entire model in formulating their exchange
rate forecasts. But another interpretation of this behavior is possible in that port-
folio managers are actually doing the best they can in a confusing world. Within
this framework they cannot have been more rational; abandoning fundamental-
ism more quickly would not solve the problem in the sense that their expectations
would not be validated by the resulting spot process in the long run. In trying
to learn about the world after a regime change, our portfolio managers use con-
vex combinations of models which are already available to them and which have
worked in the past. In this context, rationality is the rather strong presumption that
one of the prior models is correct. It is hard to imagine how agents, after a regime
change, would know the correct model.”

3. Noise traders and behavioral finance

The work on HAMs discussed in this chapter is closely related to recent ideas from
behavioral finance. In their recent survey, Barberis and Thaler (2003, p. 1052) state:
behavioral finance argues that some financial phenomena can plausibly be understood
using models in which some agents are not fully rational. Behavioral finance has two
building blocks. The first is limits to arbitrage, meaning that it can be difficult and
risky for rational arbitrageurs to correct mispricing caused by non-rational traders, be-
cause the mispricing may get worse in the short run when a majority of traders adopts
a trend following strategy. The second building block is market psychology, an attempt
to characterize which heuristics and biases play a role in financial markets. The finan-
cial market HAMs discussed in the current chapter fit within behavioral finance in that
they provide tractable, parsimoniously parameterized models capturing key features in
behavioral finance.

In the HAMs with fundamentalists versus chartists discussed in Section 2, none of
the two trader types is fully rational, because none of the two takes into account the
presence of the other. Would not, as the Friedman hypothesis suggests, a fully rational
trader perform better and drive out all other trader types? In this section we discuss two
early models due to DeLong et al. (1990a, 1990b). This approach has been called the
noise trader approach and has e.g. been nicely summarized in Shleifer and Summers
(1990). Another early, related HAM with “smart money” versus “ordinary” traders has
been introduced by Shiller (1984). In these models there are two types of investors: ra-
tional arbitrageurs and noise traders. Arbitrageurs—also called smart money traders or
rational speculators—are investors who form fully rational expectations about security
returns. In contrast, “noise traders”, a term due to Kyle (1985) and Black (1986),—
sometimes also called liquidity traders—are investors whose changes in asset demand
are not caused by news about economic fundamentals but rather by non-fundamental
considerations such as changes in expectations or market sentiment.
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3.1. Rational versus noise traders

In DeLong et al. (1990a) there are two types of traders, noise traders and sophisticated,
rational traders. There are two assets, a safe asset paying a fixed dividend r in each
period, and a risky asset paying an uncertain dividend

(14)r + εt ,

where εt is IID, normally distributed with mean 0 and variance σ 2
ε . The price of the

unsafe asset in period t is denoted by pt .
Noise traders incorrectly believe that they have special information about the fu-

ture price of the risky asset. For example, they use signals from technical analysts,
stock brokers or economic consultants and irrationally believe that these signals carry
information and select their portfolios based upon these incorrect beliefs. For sophisti-
cated traders it is optimal to exploit noise traders misperceptions. Sophisticated traders
buy (sell) when noise traders depress (push up) prices. This contrarian trading strategy
pushes prices in the direction of the fundamental value, but not completely.

For both trader types, demand for the risky asset is derived from expected utility
maximization of constant absolute risk aversion (CARA) utility of tomorrow’s wealth,

(15)λR
t = r + Etpt+1 − (1 + r)pt

2γ (σ 2
pt+1

+ σ 2
ε )

,

(16)λN
t = r + Etpt+1 − (1 + r)pt

2γ (σ 2
pt+1

+ σ 2
ε )

+ ρt

2γ (σ 2
pt+1

+ σ 2
ε )

,

where γ is the coefficient of absolute risk aversion, Et [pt+1] is the expected price at
date t + 1 conditional on information up to time t , σ 2

pt+1
is the expected one period

variance of pt+1 and ρt is the misperception of the expected price for tomorrow by the
noise trader. Notice that the only difference in the demand of rational and noise traders is
the second term in (16), due to the misperception ρt of the noise traders of next periods
price of the risky asset. The misperception of noise traders is an exogenously given IID
normally distributed random variable with mean ρ∗ and variance σ 2

ρ .
There is a fixed fraction μ of noise traders and a fraction 1 − μ of rational, sophis-

ticated traders. Market equilibrium requires that aggregate demand equals fixed supply
normalized to 1, yielding the equilibrium price

(17)pt = 1

1 + r

[
r + Etpt+1 − 2γ

(
t
σ 2

pt+1
+ σ 2

ε

)+ μρt

]
.

DeLong et al. (1990a) only consider steady state equilibria satisfying the pricing rule

(18)pt = 1 + μρ∗

r
+ μ(ρt − ρ∗)

1 + r
− (2γ )

r

[
σ 2

ε + μ2σ 2
ρ

(1 + r)2

]
.

The last three terms show the impact of noise traders on the price of the risky asset.
Notice that, when the distribution of the misperception ρt of the noise traders converges
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to a point mass at ρ∗ = 0, the price of the risky asset converges to its fundamental
value 1 − (2γ σ 2

ε /r). The second term on the RHS of (18) captures the fluctuations
in prices due to the average misperception ρ∗ of noise traders. The higher the average
misperception of noise traders, the higher the asset price in equilibrium. The third term
on the RHS of (18) captures the fluctuations in prices due to the variation ρt − ρ∗ in
misperception of noise traders. When noise traders in period t are more bullish (bearish)
than on average, the asset price increases (decreases). The final term on the RHS of (18)
captures both fundamental risk and noise trader risk. A higher variance σ 2

ε , or a higher
fraction μ of noise traders or a higher variance σ 2

ρ of noise traders’ misperceptions all
increase the risk premium to hold the risky asset and thus lower the asset price.

An important question is which type of traders, sophisticated or noise traders, earn
relative higher returns. DeLong et al. (1990a) compute the (unconditional) expected
difference of return between noise traders and sophisticated traders to be

(19)E[�Rt ] = ρ∗ − (ρ∗)2 + σ 2
ρ

2γ
[ μσ 2

ρ

(1+r)2 + σ 2
ε

μ

] .
From this expression it follows that for the noise traders to earn higher expected re-
turns. the mean misperception ρ∗ of returns must be positive. It is also clear, due to the
dominating quadratic term in ρ∗, that for high values of ρ∗ the expected difference in
returns will become negative. However, for intermediate degrees of average bullishness
ρ∗ noise traders earn higher expected returns than sophisticated traders. Furthermore,
the larger is the value of γ , that is, the more risk averse traders are, the larger is the
range of ρ∗-values for which noise traders earn higher expected returns.

Imitation of beliefs

The arguments above show that when the fractions of both types are fixed, noise traders
may earn higher expected returns suggesting that they may be able to survive in the
long run. DeLong et al. (1990a) also discuss a dynamic version of the model with time
varying fractions. Strategy selection is based upon the relative performance of the two
strategies. Letting μt be the fraction of noise traders and RN

t and RS
t be the realized

return of noise traders and sophisticated traders, the fraction of noise traders changes
according to

(20)μt+1 = max
{
0, min

[
1, μt + α

(
RN

t − RS
t

)]}
,

where α > 0 is the rate at which investors become noise traders. According to (20) the
strategy that has performed better, according to realized returns, attracts more followers,
and such a rule may be interpreted as an imitation rule. It should be noted that this
HAM with sophisticated agents and time varying fractions can only be solved for small
values of α, because sophisticated agents have to calculate the effect of the realization
of returns on the fractions of noise traders and sophisticated traders in the next period.
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For α sufficiently small realized returns can be calculated under the approximation that
the fraction of noise traders remains the same.

For α small, the expected return difference between noise traders and sophisticated
traders is obtained from (19) by replacing μ by μt :

(21)E[�Rt ] = ρ∗ − (ρ∗)2 + σ 2
ρ

2γ
[ μtσ 2

ρ

(1+r)2 + σ 2
ε

μt

] .
The fraction of noise traders will increase (decrease) as long as the difference in ex-
pected returns (21) is positive (negative). A steady state fraction μ∗ must satisfy either

(22)E[�Rt ] = 0,

or μ∗ = 0 or μ∗ = 1. A straightforward computation shows that the number of steady
states μ∗ depends upon the parameter condition

(23)σ 2
ε >

(1 + r)2(ρ∗ + σ 2
ρ )2

16γ 2(ρ∗)2σ 2
ρ

.

The dynamics of the fraction of noise traders, in the limit as the speed of adjustment α

tends to 0, has the following properties:
• If (23) is satisfied, then there are no steady states μ∗ satisfying (22); noise traders

always earn higher expected return and drive out sophisticated rational traders, that
is, the noise trader share μt tends to 1;

• If (23) is not satisfied, then (22) has (at least one) positive real root(s); the smallest
μ∗

L > 0 is stable and thus a positive share of noise traders always survives in the
market; if μL ≥ 1, then noise traders drive out sophisticated rational traders.

The fact that noise traders may survive in the long run, is only true if selection of trad-
ing strategies is based upon realized returns, and it can be argued that this contradicts
traders’ objective of maximizing expected utility. Since sophisticated investors maxi-
mize true expected utility, any other trading strategy that earns a higher mean return
must have a variance sufficiently higher to make it non-optimal, that is, it must have
sufficiently higher risk. When strategy selection is based upon realized utility instead of
realized return, noise traders can not survive in the long run, because on average realized
utility of sophisticated traders is higher than realized utility of noise traders. DeLong et
al. (1990a, p. 724) however argue that a wealth based performance rule such as realized
returns may be more relevant for real markets: “. . . we find it plausible that many in-
vestors attribute the higher returns of an investment strategy to the market timing skills
of its practitioners and not to its greater risk. This consideration may be particular im-
portant when we ask whether individuals change their own investment strategies that
have just earned them a high return. When people imitate investment strategies, they
appear to focus on standard metrics such as returns relative to market averages and do
not correct for ex ante risk. As long as enough investors use the pseudo signal of realized
returns to choose their own investment strategy, noise traders will persist”. Realized re-
turns are also important simply because those who make them become wealthier and
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get more weight in the market. The noise trader model thus contradicts the Friedman
hypothesis.

3.2. Informed arbitrage versus positive feedback trading

DeLong et al. (1990b) consider a different model where noise traders are replaced by
positive feedback traders. The purpose of the model is to show that, in contrast to the
Friedman hypothesis, in the presence of positive feedback traders, rational speculation
can be destabilizing. The model only has four periods (0, 1, 2 and 3) and two assets,
cash and stock. The stock is liquidated and pays an uncertain dividend �+θ in period 3,
when investors consume all their wealth. θ is normally distributed with mean 0, and no
information about θ is revealed. � can take three different values, −φ, 0 or φ; the value
of � becomes public in period 2, and a signal ε about � is released in period 1.

There are three types of investors. Positive feedback traders, whose asset demand
depends upon the latest observed price change, informed rational speculators who max-
imize utility of period 3 consumption using private information and passive investors
whose asset demand depends only on the asset price relative to its fundamental price
and who only have access to public information. In period 2, the value of � is revealed
to both the informed rational investors and the passive investors. In period 1 a signal
about period 2 fundamental news � is given, but only the informed rational investors
have access to this private information. The fractions of the three types are constant over
time. The fraction of positive feedback traders is normalized to 1, the fraction of rational
informed speculators is μ and the fraction of passive investors is 1 − μ. The sum of the
last two types is held constant in order to keep the risk-bearing capacity of the market
constant. An increase in μ is therefore an increase in the proportion of rational investors
who receive information and exploit short run price dynamics, holding the risk-bearing
capacity of the market constant.

The structure of the model is summarized in Table 2. Informed rational speculators
are perfectly rational in the sense that they form their demand optimally from mean-
variance maximization given private information and taking into account the other type
of investors in the market. Demand of passive investors is assumed to be negatively
related to the price deviation from the fundamental. Finally, the demand of feedback
traders is determined by the most recently observed past price change.3

In period 1, the rational informed investors receive a signal ε ∈ {−φ, 0, φ}. We focus
on the situation where this signal is positive, i.e. ε = φ > 0. We consider two cases,
one where the signal is noiseless and a second case where the signal, ε = φ is imper-
fectly informative and � = φ or � = 0 each with probability 1/2. The equilibrium
prices in periods 0, 1, 2 and 3 can be computed by solving the model backwards, and

3 As pointed out in DeLong et al. (1990b, p. 385, footnote 6) it is the responsiveness of feedback traders
to past price changes and not the responsiveness to current price changes that leads to the possibility of
destabilizing rational speculation.
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Table 2
As in DeLong et al. (1990b, p. 385). Demand of different investor types and information for different investor
types. β and α are the slope of the demand curves of positive feedback traders and passive investors. p0, p1,

p2 and p3 are asset equilibrium prices in the corresponding periods.

Structure of the model

Period Event Total demand of

Positive
feedback
traders

Passive
investors

Informed
rational

speculators

0 None, benchmark period 0 0 optimal choice
(= 0)

1 Speculators receive signal ε 0 −αp1 optimal choice
of period 2 fundamental shock

2 Passive investors learn � β(p1 − p0) −α(p2 − �) optimal choice

3 Liquidation of stock β(p2 − p1) −α(p3 − (� + θ)) optimal choice
dividend � + θ

revealed publically

they are graphically represented in Figure 3. Period 0 forms a reference period and the
initial price is set to the fundamental price 0, i.e. p0 = 0. When there are no rational
informed speculators (i.e. μ = 0), the equilibrium price jumps from 0 in period 1 to
φ in period 2, when private information becomes public. When there are rational in-
formed traders in the market, arbitrage pushes up the equilibrium prices p1 and p2 in
periods 1 and 2, in both the noiseless and noisy signal cases. This effect is amplified
by the presence of positive feedback trading leading to equilibrium prices far above
fundamental prices reflecting private information in period 1 and public information in
period 2. The conclusion is that, in contrast to the Friedman hypothesis, in the pres-
ence of positive feedback traders, rational speculation can be destabilizing. The model
thus explains overreaction to news about economic fundamentals, caused by rational
informed speculators taking into account the presence of feedback traders.

In the models of DeLong et al. (1990a, 1990b) the behavior of noise traders is ex-
ogenously given, and the other group, the sophisticated (informed) traders, take the
presence of noise traders into account and respond perfectly rational to their erroneous
behavior. In a way, this requires even more rationality than in a RE-model, because
in a heterogeneous market a rational agent must anticipate the beliefs of all other,
non-rational traders. More recently, behavioral finance HAMs have been developed
where two (or more) different groups of boundedly rational traders interact. A recent
example is Hong and Stein (1999), who consider a model with newswatchers versus
momentum traders. Newswatchers make forecasts based on private information with-
out conditioning on past prices, whereas momentum traders’ forecasts are based on
the most recent price change. These type of behavioral finance models can explain im-
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(a)

(b)

Figure 3. As in DeLong et al. (1990b, p. 390). Equilibrium prices with a noiseless signal (a) and a noisy
signal (b) ε for rational informed traders. Without rational informed traders in the market (circles, lower
graphs) the equilibrium price jumps from 0 in period 1 to φ in period 2 when the positive, private information
becomes public. In the absence of feedback traders, arbitrage of rational informed traders pushes up the
equilibrium prices p1 to a fundamental value φ when the signal is perfect ((a), dotted line) resp. a fundamental
value φ/2 (when all agents are informed, i.e. μ = 1) when the signal is imperfect ((b), dotted line). In the
presence of feedback traders rational speculation by informed traders causes the equilibrium prices (black
dots, upper graphs) to overshoot the fundamental price by a large amount. α is the slope of the demand curve
of the passive and informed rational traders; β is the responsiveness of positive feedback traders to past price

changes.

portant stylized facts, which can not be explained by a perfectly rational agent EMH
model, such as excess volatility, positive correlations of returns at short horizons and
negative correlation of returns at long horizons. It also provides an explanation for the
risk premium puzzle: because of noise trader risk, the difference between average re-
turns on stocks and bonds—the risk premium—is higher than the fundamental risk.
We refer the reader to the recent survey by Barberis and Thaler (2003) and their many
references.
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4. Complex dynamics

In the seventies and the eighties, due to the discovery of deterministic chaos, it be-
came widely known that simple nonlinear deterministic laws of motion can generate
seemingly unpredictable, chaotic fluctuations; see e.g. Medio and Lines (2001) for a
mathematical introduction. Dynamic HAMs are often highly nonlinear, for example
due to the fact that the weights or the fractions of the different trader types are time
dependent. HAMs can therefore generate complicated, chaotic fluctuations for a broad
range of parameter settings. Chaotic models offer the possibility to describe erratic, un-
predictable movements in asset prices by a simple, nonlinear ‘law of motion’, and this
possibility has stimulated much research in this area. In particular, a chaotic HAM with
chaotic asset price fluctuations around a benchmark fundamental may explain excess
volatility. In a non-linear, chaotic market system arbitrage trading is difficult and risky,
because such a system is difficult to predict, especially when it is buffeted with (small)
noise representing e.g. news about economic fundamentals. In this section, we review
some nonlinear HAMs exhibiting periodic and chaotic asset price fluctuations.

In the models in Subsections 4.1 and 4.2 the price setting mechanism is not the
classical Walrasian market clearing framework, but rather a market maker who sets
prices according to aggregate excess demand. Subsection 4.1 discusses a continuous
time model due to Beja and Goldman (1980) and Chiarella (1992), allowing for limit
cycles, whereas Subsection 4.2 discusses a discrete time model due to Day and Huang
(1990), exhibiting chaotic asset price fluctuations, and a market maker model due to
Farmer (2002) and Farmer and Joshi (2002). Finally, Subsection 4.3 discusses an ex-
change rate model with fundamentalists and chartists of DeGrauwe et al. (1993), with
the weights of both trader types changing endogenously over time.

4.1. An early disequilibrium model with speculators

Beja and Goldman (1980) were among the first to consider a dynamic HAM with a
stylized representation of the market institution by a market maker who adjusts prices
according to aggregate excess demand. They argue that a real asset market does not
operate as a perfect Walrasian market, but that a price formation process admitting a
finite adjustment speed that allows for transactions at disequilibrium prices is a more
accurate description. In their model traders try to exploit these market imperfections
and, at least partly, act on their perception of the current price trend.

Movements in the asset price p are driven by aggregate excess demand with a finite
adjustment speed, i.e. the price change is given by

(24)
dp

dt
= D

f
t + Dc

t ,

where D
f
t and Dc

t represent excess demand of fundamentalists and chartists respec-
tively. Let w(t) denote the (exogenously generated) fundamental price that clears funda-
mental demand at time t . Fundamental excess demand is assumed to be a linear function
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of the form

(25)D
f
t = a

(
w(t) − p(t)

)
, a > 0,

where the coefficient a measures the relative impact of fundamental demand upon price
movements.

Let ψ(t) be the chartists’ assessment of the current price trend, and g(t) the (exoge-
nously given) return on alternative securities (e.g. ψ(t) could represent the return on
stocks and g(t) the return on bonds). Chartists’ excess demand is a linear function of
the expected return differential ψ(t) − g(t), that is,

(26)Dc
t = b

(
ψ(t) − g(t)

)
, b > 0,

where the coefficient b measures the relative impact of speculator’s demand upon price
movements. According to (24)–(26), aggregate price change is given by

(27)
dp

dt
= a

[
w(t) − p(t)

]+ b
[
ψ(t) − g(t)

]+ e(t),

where e(t) denotes an additional noise term. Speculators use an adaptive process for
trend estimation

(28)
dψ

dt
= c

[
dp

dt
− ψ(t)

]
, c > 0,

where c is the adaption speed. The trend estimate ψ is thus adjusted upwards (down-
wards) when the current price change is higher (lower) than expected.

A stability analysis of the 2-D linear system of differential equations (27) and (28)
shows that the system is stable if and only if a > c(b − 1). Hence, if the impact a of
fundamental demand is sufficiently large or if the impact b of speculative demand is
low (b < 1), then the market will be stable. However, when the market impact b of
speculative demand becomes large and/or when the adaption speed c with which spec-
ulators adapt their perceived price trend becomes large, the system becomes unstable
with exploding price oscillations. This simple, behavioral model thus shows that, under
a market maker scenario, speculative trading may destabilize prices.

Chiarella (1992) considers a nonlinear generalization of the model, where linear
chartists’ excess demand (26) is replaced by a nonlinear function h(·) of the expected
return differential ψ(t) − g(t), that is,

(29)Dc
t = h

(
ψ(t) − g(t)

)
.

The function h is nonlinear, increasing and S-shaped. More precisely, h satisfies (i)
h′(x) > 0, (ii) h(0) = 0, (iii) there exists x∗ such that h′′(x) < 0 (> 0) for all
x > x∗ (x < x∗), and (iv) limx→±∞ h′(x) = 0. Although Chiarella (1992) does not pro-
vide a micro-foundation for this aggregate excess demand function of chartists, he does
provide behavioral arguments why such a demand function may be reasonable. For ex-
ample, each chartist may seek to allocate a fixed amount of wealth between speculative
risky assets and riskless bonds so as to maximize intertemporal utility of consumption.
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The demand for the risky asset is then proportional to the difference in expected return
ψ − g, but is also bounded above and bounded below due to wealth constraints. For
a chartist, the individual demand function would then be piecewise linear, and adding
many such individual demand functions together leads approximately to an S-shaped
increasing aggregate excess demand function.

Chiarella (1992) focuses on the simplest case where the fundamental price and the
return on alternative investments are constant, w(t) ≡ w and g(t) ≡ g. The dynamics
of the nonlinear model is then described by the 2-D system of differential equations

(30)
dp

dt
= a

[
w − p(t)

]+ h
(
ψ(t) − g

)
,

(31)
dψ

dt
= c

[
dp

dt
− ψ(t)

]
.

The nonlinear system has a unique steady state (p∗, ψ∗) = (w + h(−g)/a, 0). The
local stability analysis yields the same results as in Beja and Goldman (1980): a large
market impact of speculative demand (i.e. a large h′(−g)) and/or a high adaption speed
c with which speculators adapt their perceived price trend destabilizes the system. More-
over, Chiarella (1992) shows that in the unstable case, a (unique) stable limit cycle exists
along which price and trend estimation of chartist fluctuate over time. The limit cycle
and the corresponding time series are illustrated in Figure 4.

4.2. Market maker models

Another early, stimulating and influential model with price setting by a market maker
has been introduced by Day and Huang (1990). The model is in discrete time and it is
one of the first models exhibiting complicated, chaotic asset price fluctuations around
a benchmark fundamental price, qualitatively similar to real stock market fluctuations,
with bull markets suddenly interrupted by market crashes.

There are three types of investors, α-investors, β-investors and market makers. The
α-investors base their investment decision upon a sophisticated estimate of the long run
investment value u in relation to the current price and on an estimate of the chance
for capital gains and losses. The α-investors thus base their investment decision on a
combination of (long run) economic fundamentals, such as dividends, earnings, growth,
etc., and an estimate about the probability that an investment opportunity may disappear
in the near future. The excess demand, Dα

t , by α-investors as a function of the market
price pt is given by

(32)
Dα

t = a(u − pt )f (pt ) if p ∈ [m,M],
α(p) = 0 if p < m or p > M,

where u is the (constant) long-run investment value expected by the α-investors, a mea-
sures the relative strength of their investment demand, and f (p) is a bimodal probability
density with peaks near the extreme values m and M . The α-investors believe that, when
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Figure 4. Limit cycle and time series of price (p) and perceived price trend (ψ) by chartists. When the per-
ceived price trend is positive, the price change is reinforced by the speculators. The function h(x) = Tanh(λx),

with λ = 2, and other parameters are a = 0.5, w ≡ 1, g = 0 and c = 0.5.

pt is close to the topping price M , the probability of loosing a capital gain and experi-
encing a capital loss is high, and if pt is close to the bottoming price m, the probability
of missing a capital gain by failing to buy is high.

The β-investors are less sophisticated than the α-investors. Their investment de-
cision is based upon a simple extrapolative rule of their expected investment value,
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us
t+1 = pt + σ(pt − v), where v is the (constant) fundamental value of the asset. The

β-investors thus believe that the investment value of the asset can be extrapolated from
past deviations from the fundamental value. Excess demand of β-investors is given by

(33)D
β
t = δ

(
us

t+1 − pt

) = b(pt − v),

with b = δσ . Hence, β-investors buy (sell) when the price is above (below) its perceived
fundamental value. In contrast to the α-investors, β-investors do not take into account
an estimate of the probability of investment opportunities in the near future.

The third trader type are market makers who mediate transactions on the market out
of equilibrium by providing liquidity. The market maker sets a price and supplies stock
out of his inventory when there is excess demand and accumulates stock to his inventory
when there is excess supply. Aggregate excess demand of α- and β-investors is given
by

(34)ED(pt ) = Dα
t + D

β
t ,

and the change of the market makers’ inventory Vt of stock is

(35)Vt+1 − Vt = −ED(pt ).

Prices are set by the market maker according to the price adjustment rule

(36)pt+1 = g(pt ) := pt + λED(pt ), λ > 0,

where the parameter λ is the speed of adjustment. This price adjustment rule is similar to
the classical price tâtonnement process. Day and Huang (1990) argue that the price ad-
justment rule is determined by the market institution, and that the market maker should
be viewed as a stylized version of the specialist at the New York Stock Exchange.

When the probability distribution f (p) is bimodal, the price adjustment function g

in (36) is a non-monotonic 1-D mapping. Day and Huang (1990) consider a simple
example f (p) = (p − m + ε)−d1(M + ε − p)−d2 , for m ≤ p ≤ M and f (p) = 0
otherwise, whose graph is illustrated in Figure 5. They show that for suitable values of
the parameters, stock prices exhibit chaotic fluctuations.

In these simulations, the fundamental value v and the long run investment value u are
both constant and equal to 0.5. Stock prices switch irregularly between bull markets with
prices rising above the fundamental and bear markets with prices dropping below the
fundamental value. Prices are driven up (or down) by trend extrapolating β-investors,
until they get close to their topping (or bottoming) price where the excess demand of
α-investors sharply decreases (increases) causing the bull (bear) market to end. The β-
investors (who may be compared with noise traders) ‘follow market prices like sheep’
thus making the market for α-investors (or better informed investors) whose behavior is
exactly opposite. Day and Huang (1990, p. 307) also note that “the market makers must
buy high from investors and sell low to them, but the damage to their position can be
offset by investments on their own account and by their fees for conducting the market”.

More recently, Farmer (2002) and Farmer and Joshi (2002) have derived a similar
price setting rule, which they call the market impact function. In their model, there are
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(a)

(b)

Figure 5. Chaotic time series, with an initial state p0 just above the fundamental price 0.5, and graph of the
1-D map (36). Stock prices switch irregularly between bull and bear markets, as explained in the graphical
analysis for initial state p0 = 0.55 (b). Parameters: m = 0, M = 1, d1 = d2 = 0.5, ε = 0.0097, u = v = 0.5,

a = 0.2, b = 0.88 and λ = 1.
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N directional traders who buy or sell a single risky asset by placing market orders,
which are always filled. Typically, the buy and sell orders of the directional traders do
not match, but the excess demand or excess supply is taken up from or added to the in-
ventory of a market maker, who increases (decreases) the price when there is net excess
demand (supply). The market impact function is the algorithm used by the market maker
to set prices. To be more concrete, let xi

t = xi(Pt−1, Pt−2, . . . , It−1) be the position of
directional trader i at time t , where xi represents the trading strategy or decision rule of
agent i depending on past prices Pt−1, Pt−2, . . . and exogenous information It−1. The
net order ωi

t of directional trader i is given by

(37)ωi
t = xi

t − xi
t−1.

The aggregate net order is then

(38)ω =
N∑

i=1

ωi.

The market maker adjust prices according to

(39)Pt+1 = Ptφ(ω),

with φ an increasing function and φ(0) = 1. Taking logs a linear approximation yields

(40)log Pt+1 − log Pt ≈ ω

μ
,

where the parameter μ normalizes the order size and is called liquidity. The function φ

is referred to as the log linear market impact function. Writing pt = log Pt and adding
a noise term εt (e.g. representing noise traders), the (log) price dynamics is given by

(41)pt+1 = pt + 1

μ

N∑
i=1

ωi(pt , pt−1, . . . , It ) + εt .

Notice that this price updating rule is essentially the same as the market maker price ad-
justment rule in Beja and Goldman (1980), Day and Huang (1990) and Chiarella (1992),
as discussed above, except that pt now represents log price instead of price. The liquid-
ity parameter μ in (41) is inversely related to the speed of adjustment λ in (36). Farmer
(2002) and Farmer and Joshi (2002) consider different types of directional traders, ei-
ther using value investment strategies (or fundamental trading strategies) based upon the
perceived value of the asset or using chartists, trend following trading strategies based
upon past prices. They show that trend following strategies induce short run positive
autocorrelations in returns, whereas value trading induces negative autocorrelations.
Furthermore, they present a simple HAM with value investors versus trendfollowers,
where autocorrelations of returns are close to zero and other stylized facts observed in
financial time series, such as noise amplification, excess volatility, excess kurtosis and
clustered volatility, are also matched.
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4.3. A chaotic exchange rate model

DeGrauwe et al. (1993) introduce an equilibrium exchange rate model with fundamen-
talists and chartists, following earlier work of Frankel and Froot (1986, 1990a). It is
one of the first HAMs where the weights of the two investor types is determined en-
dogenously and fluctuates over time. The basic equation determining the exchange rate
is

(42)st = Xt

(
Et [st+1]

)b
,

where st is the exchange rate in period t , Xt is an exogenous variable representing the
underlying economic fundamental driving the exchange rate, Et [st+1] is next period’s
expected exchange rate and the parameter b is a discount factor, 0 < b < 1.

The aggregate change in the expected future exchange rate consists of two compo-
nents, a forecast made by chartists and a forecast made by fundamentalists:

(43)Et [st+1]/st−1 = (
Ect [st+1]/st−1

)mt
(
Ef t [st+1]/st−1

)1−mt , 0 ≤ mt ≤ 1,

where Et [st+1] is the aggregate market forecast for next period’s exchange rate made at
date t , Ect [st+1] and Ef t [st+1] are the forecasts made by chartists and fundamentalists,
and mt and 1 − mt are the weights given to chartists and fundamentalists respectively.

Fundamentalists believe that the exchange rate returns towards its fundamental value
s∗t at rate α, 0 ≤ α ≤ 1, that is,

(44)Ef t [st+1]/st−1 = (
s∗t−1/st−1

)α
,

where s∗t = X
1/(1−b)
t is the steady state equilibrium exchange rate s∗t obtained

from (42). Chartists look for patterns in past exchange rates and their forecast is

(45)Ect [st+1] = f (st−1, st−2, . . . , st−N),

where N is the maximum lag used. DeGrauwe et al. (1993) mainly focus on moving
average rules for chartists of the form

(46)
Ect [st+1]

st−1
=
(

SMA(st−1)

LMA(st−1)

)2γ

, γ > 0

where SMA(st−1) and LMA(st−1) are short run and long run moving averages. Accord-
ing to (46), when the short run moving average is above (below) the long run moving
average, chartists expect a future increase (decline) of the exchange rate. This type of
technical trading rule is employed frequently by financial practitioners. The parameter
γ measures the rate at which chartists extrapolate the past into the future. DeGrauwe et
al. (1993) mainly focus on the simplest moving average rules, with a one-period change
short run rule

(47)SMA(st−1) = st−1

st−2
,
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and a simple two-period moving average for the long run, i.e.

(48)LMA(st−1) =
(

st−1

st−2

)0.5(
st−2

st−3

)0.5

.

Using the short run and long run moving averages (47) and (48), the chartists expected
change of the exchange rate (46) becomes

(49)
Ect [st+1]

st−1
=
(

st−1

st−2

)γ(
st−3

st−2

)γ

.

We now turn to the endogenous determination of the weight mt of chartists.
DeGrauwe et al. (1993) postulate the following weighting function:

(50)mt = 1

1 + β(st−1 − s∗t−1)
2
, β > 0.

DeGrauwe et al. (1993, pp. 75–76) present the following behavioral motivation. There
is uncertainty about the fundamental exchange rate equilibrium and fundamentalists
have heterogeneous expectations about its true value. When the exchange rate is at its
fundamental equilibrium value, st−1 = s∗t−1, half of the fundamentalists will find that
the market rate is too low, and the other half will find it too high compared to their own
estimate. Assuming that all fundamentalists have the same degree of risk aversion and
the same wealth, the amount of foreign exchange bought by the first half equals the
amount sold by the second half. Hence, when the exchange rate equals its fundamental
value, fundamentalists do not influence the market and the market expectation will be
completely dominated by chartists (mt = 1). When the exchange rate deviates from its
fundamental equilibrium value, the weight of fundamentalists increases, at a rate mea-
sured by the parameter β. The endogenous switching mechanism (50) for the weights of
chartists and fundamentalists acts as a “far from the fundamental equilibrium stabiliz-
ing force” on exchange rates. The more the exchange rate deviates from its fundamental
equilibrium, the higher the weight of fundamentalists and the stronger the exchange rate
will be pushed back towards its fundamental equilibrium value.

In the simplest case, with the fundamental Xt ≡ 1 normalized to 1, and one-period
short run and two-period long run moving averages, the model can be written as

(51)st = s
φ1
t−1s

φ2
t−2s

φ3
t−3,

(52)mt = 1

1 + β(st−1 − 1)2
,

with φ1 = b[1 + γmt − α(1 − mt)], φ2 = −2bγmt and φ3 = bγmt . The unique fun-
damental steady state is (s∗,m∗) = (1, 1). The model exhibits rich dynamical behavior
ranging from a stable steady state to (quasi-)periodic as well as chaotic dynamics. In
particular, when the parameter γ , measuring the rate at which chartists extrapolate a
trend, is sufficiently large, the fundamental steady state becomes unstable and chaotic
exchange rate fluctuations around the fundamental equilibrium rate arise, as illustrated
in Figure 6. In the next sections we discuss HAMs with switching between trading
strategies driven by evolutionary selection and social interactions.
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(a)

(b)

Figure 6. Strange attractor in the (st , st−1) (a) and (st , mt ) (b) phase space and corresponding chaotic time
series of the exchange rate st (c) and the weight of chartists mt (d). Parameters: b = 0.95, α = 0.65, γ = 3

and β = 10000.
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(c)

(d)

Figure 6. (continued.)
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5. Interacting agents

In this section we discuss models in which individual agents interact stochastically. At
first sight one may think that, due to a law of large numbers, stochastic interactions
average out and can not affect aggregate variables. However, this is not the case. Even
weak (local) interactions among individuals may lead to strong dependencies and cause
large movements at the aggregate level. Aggregation of simple interactions at the mi-
cro level may generate sophisticated behavior and structure at the macro level. An early
model with interaction effects has been introduced by Föllmer (1974), who considers an
exchange economy with random preferences with a probability law depending upon the
agents’ environment. Using results on interacting particle systems in physics, Föllmer
(1974) shows that even short range interaction may propagate through the economy and
lead to aggregate uncertainty causing a breakdown of price equilibria. In this section we
discuss work on local interactions by Kirman (1991, 1993) and work on social interac-
tions by Brock and Durlauf (2001a, 2001b).4 These papers have been quite influential
and stimulated much work in this area. For surveys on interacting agent models see, for
example, Brock (1993) and Kirman (1999); see also the papers on path dependence in
Arthur (1994) and the collection of articles in Gallegati and Kirman (1999) and Delli
Gatti et al. (2000).

5.1. An exchange rate model with local interactions

This section discusses an exchange rate model with fundamentalists and chartists in-
troduced by Kirman (1991). The model consists of two parts: an equilibrium model of
foreign exchange rate and a model of opinion formation as described by the stochastic
model of recruitment proposed by Kirman (1993).

The stochastic recruitment model was motivated by an observed puzzle in biology
concerning the behavior of ants. When ants face two different but identical food sources,
surprisingly often the majority concentrates on one of the food sources, say with 80%
of the population on one food source and only 20% of the populations on the other.
Moreover, after some time these proportions suddenly switch. Ants facing a symmetric
situation, thus collectively behave in an asymmetric way. Kirman (1993) proposed a
simple and elegant dynamic stochastic model explaining this observed asymmetric, ag-
gregate behavior. The model offers an explanation for the behavior of ants, but here we
follow Kirman’s discussion of the model within a financial market framework. There
is a fixed number of N agents. Agents must form an opinion about next period’s price
pt+1 of a risky asset and can choose between two opinions, optimistic and pessimistic.
The expectations of agents are affected by random meetings with other agents. The state
of the system is determined by the number k of agents holding say the optimistic view,

4 Related continuous time diffusion models of stock prices with stochastic interacting agents have been
pioneered by Föllmer and Schweizer (1993) and Föllmer (1994).
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with k ∈ {0, 1, 2, . . . , N}. Two agents meet at random. The first agent is converted to
the second agent’s view with probability (1 − δ). There is also a small probability ε

that the first agent will change his opinion independently. This (small) ε-probability is
necessary, in order to prevent the system to get stuck in the absorbing extreme states
k = 0 or k = N . The state k then evolves according to

k → k + 1, with probability P(k, k + 1) =
(

1 − k

N

)(
ε + (1 − δ)

k

N − 1

)
,

(53)k → k − 1, with probability P(k, k − 1) = k

N

(
ε + (1 − δ)

N − k

N − 1

)
,

k → k, with probability P(k, k) = 1 − P(k, k + 1) − P(k, k − 1).

The stochastic process (53) is a simple Markov chain. Kirman investigates the equilib-
rium distribution μ(k) of (53), and shows that the form of the equilibrium distribution
μ(k) depends on the relative magnitude of the parameters δ and ε:

• if ε < (1 − δ)/(N − 1), then the equilibrium distribution is bimodal, with a mini-
mum at k/N ≈ 0.5 and maxima at the extremes k = 0 and k = N ;

• if ε = (1 − δ)/(N − 1), then the equilibrium distribution is uniform;
• if ε > (1 − δ)/(N − 1), then the equilibrium distribution is unimodal with a

maximum at k/N ≈ 0.5.
Note that this result does not depend on the size of the probabilities δ or ε itself, but
rather on their relative magnitudes. When the probability ε of self-conversion is low
compared to the probability (1 − δ) of being converted by the other trader, the limiting
distribution is bimodal with maxima at the extremes. In that case, a typical time series
of the state k is highly persistent and spends little time close to its average k = 0.5, but
much more time close to the extremes k = 0 and k = N , as illustrated in Figure 7. This
equilibrium distribution thus explains the asymmetric 80%–20% distribution of ants and
its occasional flipping to a 20%–80% distribution and vice versa.

Kirman (1991) considers an exchange rate model where the fractions of chartists and
fundamentalists are driven by the stochastic model for opinion formation. The exchange
rate equilibrium model is similar to the model of Frankel and Froot (1986), but Kirman
(1991) provides a micro-foundation of asset demand. Agents can choose to invest in a
risk free domestic currency paying a fixed interest rate r or in a risky foreign currency
paying an uncertain (stochastic) dividend yt+1 in period t + 1, assumed to be IID with
mean ȳ. Agent type i maximizes expected utility from a mean-variance utility function
Ui(Wi

t+1) = Ei[Wi
t+1] − μiVi[Wi

t+1], where Ei and Vi denote agent type i’s belief
about conditional expectation and conditional variance of tomorrow’s wealth Wi

t+1 and
2μi represents risk aversion. Agent type i’s demand for foreign currency is then given
by

(54)di
t = se

i,t+1 + ȳ − (1 + r)st

2αμi
,
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(a)

(b)

Figure 7. Fractions k/N of optimistic types, for N = 100, δ = 0.01 and ε = 0.05 (a) resp. ε = 0.002
(b). In the latter case (b) the equilibrium distribution is bimodal with peaks at 0 and 1 and the time series is
highly persistent and spends relatively much time close to the extremes. In the other case (a) the fraction stays

relatively close to 0.5, i.e. to a symmetric distribution of the two types, most of the time.
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where se
i,t+1 represents agent type i’s expectation about the exchange rate st+1, ȳ is the

mean of the IID dividend process and α = V [st+1 +yt+1]. In the case of homogeneous,
rational expectations, the fundamental value of the exchange rate is given by

(55)s∗ = ȳ − 2αμiXt

r
,

where Xt is the supply of foreign exchange. In the heterogeneous agents case of funda-
mentalists versus chartists, with fractions nt resp. 1 − nt , market equilibrium yields

(56)ntd
f
t + (1 − nt )d

c
t = Xt .

The expectations of fundamentalists and chartists about next period’s exchange rate st+1
are given by5

(57)se
f,t+1 = st−1 + v(s∗ − st−1), 0 ≤ v ≤ 1, fundamentalists,

(58)se
c,t+1 = st−1 + g(st−1 − st−2), g > 0, chartists.

Fundamentalists believe that the exchange rate will move back towards its fundamental
value s∗, or equivalently, their expected change of the exchange rate is proportional to
the observed distance to the fundamental. In the special case v = 1 fundamentalists
expect the exchange rate to jump to its fundamental value s∗ immediately, whereas the
other extreme case v = 0 corresponds to naive expectations where fundamentalists
expect the exchange rate to follow a random walk. Chartists extrapolate in a simple
linear way and forecast the change of the exchange rate to be proportional to the latest
observed change; Kirman focuses on the case g = 1.

Substituting the expectation rules (57) and (58) in the market equilibrium equa-
tion (56) and solving for the equilibrium exchange rate yields the difference equation

(59)(1 + r)st =
[
1 − vnt + g(1 − nt )

]
st−1 − g(1 − nt )st−2 + ȳ − 2αμiXt .

In deviations xt = st − s∗ from the fundamental benchmark this simplifies to

(60)(1 + r)xt =
[
1 − vnt + g(1 − nt )

]
xt−1 − g(1 − nt )st−2.

Kirman’s exchange rate model with fundamentalists versus chartists is thus given
by (60) with the fraction nt = kt/N evolving according to the (exogenously given)
Markov chain (53).6 It is easily verified that when all agents are fundamentalists, i.e.

5 We choose a specification where st−1 is the most recent observation used in the forecasts of st+1. Kirman
discusses a specification where st is used as the most recent observation to forecast st+1, but in that case
the HAM generates exploding exchange rate paths. As Kirman (1991, p. 364) notes when expectations are
based on earlier observations (such as st−1) the HAM allows for symmetric bubbles, both rising and falling.
The approach chosen here is similar to the asset pricing model of Brock and Hommes (1998), as discussed in
Section 8, and the forecasting rules (57) and (58) are the same as in Gaunersdorfer and Hommes (2006).
6 Kirman (1991, pp. 359–360) describes a slightly more complicated way of determining the fractions of

the two types. Agents try to assess the majority opinion, but observe nt = kt /N with noise. If agent i’s
observation qit = nt + εit ≥ 1/2 (< 1/2), then he acts as a fundamentalist (chartist).
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nt ≡ 1, (60) yields

(61)xt = 1 − v

1 + r
xt−1,

which is a stable linear system with eigenvalue λ = (1−v)/(1+r). In the other extreme
case when all agents are chartists, i.e. nt ≡ 0, (60) reduces to

(62)xt = 1 + g

1 + r
xt−1 − g

1 + r
xt−2.

For g = 1 (62) has a pair of stable complex eigenvalues. Notice however that, if the
time period of the model is one day, the daily domestic interest rate r is very close to 0
so that these complex eigenvalues are in fact close to a unit root +1. These complex
roots become unstable when g increases beyond 1+ r , that is, when chartists expect the
change in exchange rates to be larger than the risk free gross return.

In periods when the market is dominated by fundamentalists, the exchange rate st is
stable and is pushed towards its fundamental value s∗. In contrast, when the market is
dominated by chartists, the exchange rate is driven by a stable, but near unit root process
for g = 1 or an unstable process when g > 1 + r . A typical example of simulated time
series of the exchange rate and the fraction of fundamentalists is illustrated in Figure 8.
The fraction nt of fundamentalists is driven by the stochastic recruitment model with
the same parameters as in Figure 7b and is therefore highly persistent, switching be-
tween two different phases where one of the two groups dominates the market. When
chartists (fundamentalists) dominate the market, i.e. when nt is close to 0 (1), volatil-
ity of the exchange rate fluctuations is high (low). This HAM therefore captures, at
least qualitatively, the phenomenon of volatility clustering, with exchange rates switch-
ing irregularly between phases of high and low volatility. Kirman and Teyssière (2002)
discuss stylized facts, such as clustered volatility and long memory, generated by the
model in more detail. Section 6 of this chapter also discusses stylized facts generated
by HAMs. A related model with interaction through a random communication struc-
ture has been introduced by Cont and Bouchaud (2000); see also the survey of Kirman
(1999).

5.2. Social interactions

Social interaction among individuals refers to a situation where the utility or payoff
of an individual agent depends directly upon the choices of other individuals in their
reference group, in addition to the dependence which occurs through the intermediation
of markets. When the spillovers are positive, i.e. when the payoff is higher if others
behave similarly, social interactions induce a tendency for conformity among members
of the reference group. Social interactions may explain large cross-group variations,
when different groups conform to alternative, self-reinforcing behavior. In the absence
of a coordination mechanism social interactions can lead to multiple equilibria. Social
interactions may cause a large social multiplier, meaning that small changes in private
utility may cause large changes at the aggregate level.
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(a)

(b)

Figure 8. Time series of exchange rates (a) and fraction of fundamentalists (b). Parameters: N = 100,
ε = 0.002, δ = 0.01, r = 0.01, v = 0.5 and g = 0.8. Exchange rates switch irregularly between phases of
high volatility when the market is dominated by chartists and low volatility when the market is dominated by

fundamentalists.
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Schelling (1971) introduced one of the first models with some form of social interac-
tion. He considered a model where individuals have preferences over their neighborhood
of racial composition and showed that, even when these preferences are relatively weak,
it may lead to pronounced residual segregation. Brock and Durlauf (2001a, 2001b) have
written excellent surveys on social interaction models in economics and developed a
general class of social interaction models. A key feature of their models, following
Brock (1993) and Blume (1993), is the use of discrete choice models with interaction
effects. Their approach leads to analytically tractable models that can be used in es-
timating social interaction effects using the discrete choice framework of Manski and
McFadden (1981). In this section we discuss a simple binary choice model with social
interactions, closely following the presentation in Brock and Durlauf (2001a); the inter-
ested reader is referred to Brock and Durlauf (2001b) and their references for detailed
discussions of more general social interactions models.

Each individual of a population of N agents makes a binary choice ωi ∈ {−1,+1}.
Let ω−i = (ω1, . . . , ωi−1, ωi+1, . . . , ωI ) denote the choices of all agents other than i.
Individual utility derived from choice ωi consists of three components:

(63)V (ωi) = u(ωi) + S
(
ωi, μ

e
i (ω−i )

)+ ε(ωi).

Here u(ωi) represents private utility associated with choice ωi , S(ωi, μ
e
i (ω−i )) rep-

resents social utility depending upon choice ωi of individual i as well as upon the
conditional probability measure μe

i (ω−i ) agent i places on the choice of other agents
and ε(ωi) is an idiosyncratic random utility term IID distributed across agents. In-
stead of a general dependence of social utility on the conditional probability measure
μe

i (ω−i ), it is often assumed that social utility depends upon agent i’s expectation m̄e
i of

other individual choices j given by the average of subjective expected values me
i,j , i.e.

(64)m̄e
i = 1

N − 1

∑
j �=i

me
i,j .

We focus on the case of global interaction, where the average (64) is taken over the
entire population, i.e. over all individuals j different from i. One may also consider
local interaction by restricting the average over the reference group of an individual i.

Brock and Durlauf (2001a) focus on simple and tractable parametric representations
of both the social utility term and the probability density of the random utility term.
Assuming constant cross partial derivatives leads to two functional forms for social
utility. The first form is given as a multiplicative interaction between individual and
expected average choices, that is,

(65)S
(
ωi, m̄

e
i

) = Jωim̄
e
i .

This form is referred to as proportional spillover, because the percentage change in in-
dividual utility from a change in the mean choice level is constant. The second parame-
trization of social utility with constant partial derivatives captures the pure conformity
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effect as considered by Bernheim (1994), and is given by

(66)S
(
ωi, m̄

e
i

) = −J

2

(
ωi − m̄e

i

)2
.

Notice that this form penalizes choices far from the mean more strongly than the pro-
portional spillover case. Using the fact that ω2

i = 1, (66) can be rewritten as

(67)−J

2

(
ωi − m̄e

i

)2 = Jωim̄
e
i −

J

2

(
1 + (

m̄e
i

)2)
.

This shows that (65) and (66) only differ in levels, but coincide on the terms including
individual choices. Therefore, these two different parametrizations of social utility lead
to the same discrete choice probabilities as discussed below. In what follows we focus
on the proportional spillover specification for social utility in (65).

A standard way to obtain a convenient parametrization for the choice probabilities
is to assume that the random utility terms ε(−1) and ε(1) in (63) are independent and
extreme-value distributed, so that the difference in errors are logistically distributed,

(68)Prob
{
ε(−1) − ε(1) ≤ x

} = 1

1 + exp(−βx)
, β ≥ 0.

Under this assumption the probability for individual choices is given by the logit model
probability

(69)Prob{ωi} = exp(β[u(ωi) + Jωim̄
e
i ])∑

νi∈{−1,1} exp(β[u(νi) + Jνim̄
e
i ])

.

The parameter β is called the intensity of choice and it is inversely related to the level
of random utility ε(ωi). In the extreme case β = ∞ the random utility term will vanish
and all agents will choose the alternative with highest utility. In the other extreme case
β = 0 the effect of the random utility term will dominate both individual and social
utility and each alternative will be chosen with probability 1/2.

Since the errors ε(ωi) are independent across agents, the joint probability distribution
over all choices is given by

(70)Prob{ω} = exp(β[∑N
i=1(u(ωi) + Jωim̄

e
i )])∑

ν1∈{−1,1} . . .
∑

νN∈{−1,1} exp(β[∑N
i=1 u(νi) + Jνim̄

e
i ])

.

This probability structure is equivalent to the so-called mean field version of the Curie–
Weiss model of statistical mechanics, see e.g. Brock and Durlauf (2001b) for further
discussion.

For the binary choice model the private utility function can be replaced by a linear
private utility function ũ(ωi) = hωi+k, with h and k chosen such that h+k = u(1) and
−h + k = u(−1). This linearization is possible since the linear functions coincide with
the original private utility function on the support of the binary choices (but this trick
does not work when more than two choices are possible). Notice that the parameter h =
(u(1) − u(−1))/2, i.e. h is proportional to the difference in private utility between the
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two alternatives. Using this linearization and reintroducing expectations of individual
choices in (64), the expected value of individual choice ωi is given by

E[ωi]

= 1 · exp(βh + βJ (N − 1)−1 ∑
j �=i me

i,j )

exp(βh + βJ (N − 1)−1
∑

j �=i me
i,j ) + exp(−βh − βJ (N − 1)−1

∑
j �=i me

i,j )

(−1) · exp(−βh − βJ (N − 1)−1 ∑
j �=i me

i,j )

exp(βh + βJ (N − 1)−1
∑

j �=i me
i,j ) + exp(−βh − βJ (N − 1)−1

∑
j �=i me

i,j )

(71)= Tanh(βh + βJ (N − 1)−1 ∑
j �=i me

i,j ).

Brock and Durlauf (2001a) now impose a self-consistent equilibrium or rational ex-
pectations equilibrium condition me

i,j = E[ωj ] for all i, j . A rational expectations or
self-consistent equilibrium must satisfy

(72)E[ωi] = Tanh

(
βh + βJ (N − 1)−1

∑
j �=i

E[ωj ]
)

.

By symmetry it follows that E[ωi] = E[ωj ], for all i, j , hence a self-consistent, rational
expectations equilibrium average choice level m∗ must satisfy

(73)m∗ = Tanh(βh + βJm∗).

Brock and Durlauf (2001a) show that a rational expectations equilibrium always exists
and, depending upon the parameters, multiple equilibria may exist. More precisely:

• if βJ < 1, then (73) has a unique solution;
• if βJ > 1 and h = 0, then (73) has three solutions: 0, one positive solution m+

and one negative solution m−;
• if βJ > 1 and h �= 0, then there exists a threshold H (depending on βJ ) such that

– for |βh| < H , (73) has three solutions, one of which has the same sign as h, and
the others possessing opposite signs;

– for |βh| > H , (73) has a unique solution with the same sign as h.
Notice that the possibility of multiple equilibria depends on the intensity of choice β,
the strength of social interactions J and the difference h in private utility between the
two choices. In particular, for each β and J when the difference h is large enough, the
equilibrium is unique. Multiplicity of equilibria is most likely when the difference in
private utility among alternatives is small and the choice intensity and/or social interac-
tion are strong.

Brock and Durlauf (2001a) also briefly discuss dynamic stability of the steady states
of expected choice levels under the assumption of myopic expectations, that is, agents
use last period’s choice level mt−1 as their expectation of others’ individual choices. In
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that case, the dynamic version of (73) becomes

(74)mt = Tanh(βh + βJmt−1).

Since f (m) = Tanh(βh + βJm) is an increasing function of m, it follows easily that
(i) if (74) has a unique steady state, then it is globally stable, and (ii) if (74) has three
steady states, then the middle one is locally unstable, whereas the smallest and largest
steady states both are locally stable. In the case of multiple steady states, the system
thus settles down in one of its extremes, where a vast majority of individuals choose
one strategy or the other. A large social multiplier exists in such circumstances, that is,
small differences in individual utility may lead to large changes at the aggregate level.

6. Heterogeneity and important stylized facts

An important motivation for HAMs has been to explain the stylized facts observed in
financial market data. An immediate advantage of a HAM compared to a representative
rational agent model is that heterogeneity easily generates large trading volume consis-
tent with empirical observations. Other important stylized facts of financial time series
at the daily frequency that have motivated much work on HAMs are: (i) asset prices
follow a near unit root process, (ii) asset returns are unpredictable with almost no auto-
correlations, (iii) the returns distribution has fat tails, and (iv) financial returns exhibit
long range volatility clustering, i.e. slow decay of autocorrelations of squared returns
and absolute returns. Facts (i) and (ii) are consistent with a random walk model with
a representative rational agent. However, for example, Cutler et al. (1989) have shown
that a substantial fraction of stock market fluctuations can not be explained by macro-
economic news and that large moves in stock prices are difficult to link with news about
major economic or other events. Therefore, a rational agent model has difficulty in ex-
plaining fact (iii). One of the most important empirical stylized facts observed in many
financial time series is clustered volatility, that is, asset price fluctuations are character-
ized by phases of high volatility interspersed with phases of low volatility. Mandelbrot
(1963) was the first to observe this phenomenon. In time series econometrics the class
of (generalized) autoregressive conditional hetereroskedastic (G)ARCH-models, pio-
neered by Engle (1982), has become very popular to describe volatility clustering.
However, since news about economic fundamentals do not seem to arrive in clusters
of high and low volatility, there is no satisfactory representative rational agent explana-
tion of this phenomenon.

In this section we discuss the HAM introduced in Lux (1995, 1998) and Lux and
Marchesi (1999, 2000), which has been successful in explaining the stylized facts (i)–
(iv) simultaneously. In particular, clustered volatility arises through the interaction and
switching between fundamental and chartist trading strategies. Other HAMs explaining
these stylized facts include Brock and LeBaron (1996), Arthur et al. (1997a, 1997b),
Youssefmir and Huberman (1997), LeBaron et al. (1999), Farmer and Joshi (2002),
Kirman and Teyssière (2002), Hommes (2002), Iori (2002), Giardina and Bouchaud
(2003) and Gaunersdorfer and Hommes (2006).
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6.1. Socio-economic dynamics of speculative markets

The model of Lux (1995, 1998) and Lux and Marchesi (1999, 2000) describes an asset
market with a fixed number N of speculative traders, divided in two groups, fundamen-
talists and chartists. Fundamentalists’ trading is based upon the fundamental price: they
sell (buy) when the price is above (below) the fundamental value. Chartists or techni-
cal analysts pursue a combination of imitative and trend following strategies. At time t ,
there are nc

t technical analysts and n
f
t fundamentalists in the market, nc

t +n
f
t = N . The

chartists are subdivided into two subgroups: at time t , n+
t of them are optimistic (bullish)

and n−
t are pessimistic (bearish), n+

t + n−
t = nc

t . The number of fundamentalists and
(optimistic and pessimistic) chartists changes over time, but to keep the notation sim-
ple, we suppress the time index below. The model contains three elements: (1) chartists
switching between optimistic and pessimistic beliefs; (2) traders switching between a
chartist and a fundamental trading strategy, and (3) a price adjustment process based
upon aggregate excess demand.

Contagion behavior of chartists

Chartists switch between an optimistic and a pessimistic mood, depending upon the
majority opinion and upon the prevailing price trend. The first element, the contagion
behavior, can be motivated as in Keynes’ beauty contest that traders try to forecast
‘what average opinion expects average opinion to be’. This element is similar in spirit
to Kirman’s model of opinion formation and Brock and Durlauf’s social interaction
effects, as discussed in Section 5. An opinion index, representing the average opinion
among non-fundamentalist traders, is defined as

(75)x = n+ − n−

nc
, x ∈ [−1,+1].

Obviously, x = 0 corresponds to the balanced situation where the number of optimists
equals the number of pessimists, whereas x = +1 (resp. x = −1) corresponds to
the extreme case where all chartists are optimists (resp. pessimists). It is also useful to
define the proportion of chartist traders as

(76)z = nc

N
, z ∈ [0,+1].

The probabilities for chartists’ switching between pessimistic and optimistic depend
upon the opinion index x and the price trend (in continuous time) ṗ = dp/dt . Let

(77)U1 = α1x + α2
ṗ

ν1
, α1, α2 > 0,

where the parameters α1 and α2 measure the sensitivity of traders to the opinion in-
dex (i.e. the behavior of others) resp. their sensitivity to price changes. The switching
probabilities are formalized following the synergetics literature, originally developed in
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physics for interacting particle systems (e.g. Haken (1983)). The probabilities π+− and
π−+ that chartists switch from pessimistic to optimistic and vice-versa are given by

(78)π+−(x) = ν1
nc

N
eU1, π−+(x) = ν1

nc

N
e−U1, ν1 > 0.

The parameter ν1 measures the frequency of this type of transition, while the term nc/N

represents the probability for a chartist to meet a chartist.

Switching between chartists and fundamentalists

Agents can also switch between chartists and fundamentalists strategies. These switches
are driven by expected or realized excess profits. For chartists, realized excess profit per
unit is given by (y+dp/dt)/p−r , where y are (constant) nominal dividends of the asset
and r is the average (risk adjusted) real return from other investments. It is assumed that
y/pf = r , so that at the steady state fundamental price the return from the asset will
equal the average return on other investments.

Fundamentalists believe that the asset price will revert back to its fundamental value
pf , and therefore will buy (sell) the asset when its price is below (above) the funda-
mental value. Fundamentalists expected excess profit is then given by s|(p − pf )/p|.
The parameter s > 0 may be interpreted as a discount factor, since these are expected
excess profits realized only when the price has returned to its fundamental value. Let

(79)U2,1 = α3

(
y + ṗ/ν2

p
− R − s

∣∣∣∣p − pf

p

∣∣∣∣),

(80)U2,2 = α3

(
R − y + ṗ/ν2

p
− s

∣∣∣∣p − pf

p

∣∣∣∣),

where α3 measures the sensitivity of traders to differences in profits. The probabilities
to switch from fundamentalists to optimistic chartist, from optimistic chartist to funda-
mentalists, from fundamentalist to pessimistic chartist resp. from pessimistic chartist to
fundamentalists are given by:

(81)π+f = ν2
n+

N
eU2,1 , πf+ = ν2

nf

N
e−U2,1 ,

(82)π−f = ν2
n−

N
eU2,2 , πf− = ν2

nf

N
e−U2,2 ,

where ν2 > 0 is a parameter measuring the frequency of this type of transition. Notice
the inclusion of the terms nf /N , n+/N , n−/N in the probabilities (81) and (82), rep-
resenting the probabilities for a fundamentalist to meet an optimistic chartist, etc. U1,
U2,1 and U2,2 in fact play the role of a fitness measure determining the switching proba-
bilities, similar to Brock and Hommes (1997a, 1997b, 1998).7 There is an asymmetry in
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the fitness measure for chartists and fundamentalists however, since chartists’ switching
is driven by realized profits, whereas fundamentalists’ switching is driven by expected
arbitrage profits which will not be realized until the price has reversed to its fundamen-
tal value. Goodhart (1988) pointed out that this asymmetry may bias traders towards
chartist strategies. The asymmetry also reflects ‘limits to arbitrage’ of fundamentalists.

Price formation

Price changes are determined by a market maker according to aggregate excess demand
of chartists and fundamentalists (cf. Section 4). A chartist buys (sells) a fixed amount
tc of the asset per period when he is optimistic (pessimistic). Using the opinion index x

in (75) and the proportion of chartists z in (76), excess demand by chartists is

(83)EDc = (
n+ − n−)tc = xzNtc ≡ xzT c, T c ≡ Ntc,

where T c denotes the maximum trading volume of chartists. Fundamentalists buy (sell)
when the asset price is below (above) its fundamental value, and their excess demand is

EDf = nf γ
(
pf − p

) = (1 − z)Nγ
(
pf − p

)
(84)≡ (1 − z)T f

(
pf − p

)
, T f ≡ Nγ,

where γ > 0 measures the reaction speed of fundamentalists to price deviations from
the fundamental and T f is a measure of the trading volume of fundamentalists.

A market maker adjusts prices according to aggregate excess demand by

(85)
dp

dt
= β

[
EDc + EDf

] = β
[
xzT c + (1 − z)T f

(
pf − p

)]
,

where β denotes the speed of adjustment.
In their numerical simulations, Lux and Marchesi (1999, 2000) use a stochastic

process for the market maker price adjustment. The market maker is assumed to adjust
the price to the next higher (lower) possible value (one cent say) within the next time
increment with a certain probability depending upon aggregate excess demand. It is also
assumed that there are some noise traders or liquidity traders in the market whose as-
set demand is random, or alternatively excess demand is observed by the market maker
with some imprecision, captured by a noise term μ, normally distributed with standard
deviation σμ. The transition probabilities for an increase or decrease of the price by an
amount �p = ±0.01 are then given by

(86)
π↑p = min

{
max

{
0, β(ED + μ)

}
, 1
}
,

π↓p = min
{−min

{
0, β(ED + μ)

}
, 1
}
.

7 Obviously, these probabilities need to be restricted to the unit interval [0, 1]. Note that if one normalizes

the expressions for π+− and π−+ in (78), π+f and πf+ in (81), resp. π−f and πf− in (82) by dividing by
their sum, expressions similar to the discrete choice or logit model probabilities used in Brock and Hommes
(1997a, 1997b, 1998) are obtained (see Sections 7 and 8).
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6.2. Dynamical behavior and time series properties

A formal analysis of this kind of stochastic interacting agent system is possible using the
so-called master equation for the time evolution of the probability distribution in order
to derive differential equations describing a first order approximation of the dynamics
of the first moment, i.e. the mean, of the stochastic variables. This approach originates
from elementary particle systems in physics and has been followed in the synergetics
literature (e.g. Haken (1983)) and its applications to social science (e.g. Weidlich and
Haag (1983)); see also Aoki (2002, 1994) and references therein for a more detailed
treatment and (macro)economic applications. For the current stochastic system the set
of differential equations has been derived in Lux (1995, 1998).8 The change in the
opinion index is governed by:9

dx

dt
=
(

dn+

dt
− dn−

dt

)
/nc − (

n/(nc)2)dnc

dt

= z
[
(1 − x)π+− − (1 + x)π−+]

+ 0.5(1 − z)
(
1 − x2)(π+f − πf+ + πf− − π−f

)
,

= 2zν1
[
Tanh(U1) − x

]
Cosh(U1)

(87)+ (1 − z)
(
1 − x2)ν2

[
Sinh(U2,1) − Sinh(U2,2)

]
,

while the change of the proportion of chartists is governed by

dz

dt
= dnc

dt
/N

= 0.5(1 − z)z(1 + x)
(
π+f − πf+)+ 0.5(1 − z)z(1 − x)

(
π−f − πf−),

(88)= (1 − z)z(1 + x)ν2Sinh(U2,1) + (1 − z)z(1 − x)ν2Sinh(U2,2).

Equations (85), (87) and (88) constitute a highly nonlinear 3-D system of differential
equations. The system has three types of steady states:

(i) x∗ = 0, p∗ = pf , with arbitrary 0 ≤ z ≤ 1,
(ii) x∗ = 0, z∗ = 1, with arbitrary p, and

(iii) z∗ = 0, p∗ = pf , with arbitrary −1 ≤ x ≤ +1.
The most important steady states are of type (i), with the price at its fundamental value,
a balanced proportion between optimists and pessimists and an arbitrary proportion of
chartists; there exists a continuum of steady states of type (i). At type (ii) steady states
the market is completely dominated by chartists, with balanced proportion between op-
timists and pessimists, and an arbitrary price level. Type (iii) steady states correspond to

8 Lux (1997) uses the master equation approach to derive an approximate system of differential equations
describing the dynamical behavior of the first two moments, the mean and the co-variances, of the stochastic
variables.
9 Recall that Sinh(y) = (ey − e−y)/2, Cosh(y) = (ey + e−y)/2 and Tanh(y) = Sinh(y)/Cosh(y).
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the other extreme where the market is completely dominated by fundamentalists, with
the price at its fundamental value. These extreme cases (ii) and (iii) act as absorbing
states of the system. In the numerical simulations of Lux and Marchesi (1999, 2000)
these absorbing states are avoided by additional borderline conditions.

Concerning the (in)stability of steady state type (i) it should first be noted that, since
for any 0 ≤ z ≤ 1 such a steady state exists, the corresponding Jacobian matrix of
the mean value differential equation system has a zero root, or equivalently, the corre-
sponding discrete system has a unit root. For the stochastic system one thus expects that
the proportion of chartists z follows a path close to a random walk, especially when the
price is close to the fundamental and the proportions of optimists and pessimists are bal-
anced. Lux (1997) and Lux and Marchesi (2000) provide precise (in)stability conditions
of steady states of type (i), which can be summarized as follows. When the parameters
α1, α2 and α3 measuring traders sensitivity w.r.t. the opinion index, price changes and
profits are larger than some critical value, all steady states of type (i) are repelling. When
these sensitivity parameters are below their critical value, the (in)stability depends upon
the corresponding proportion z∗ of chartists; when this proportion z∗ exceeds a critical
value, the steady state becomes repelling.

Figure 9 shows simulated time series of the model as well as autocorrelations of re-
turns, squared returns and absolute returns.10 In this simulation, the price stays fairly
close to its fundamental value most of the time, because for these parameter values
the steady states of type (i) are not unstable.11 Prices follow a near unit root process
and financial returns are unpredictable with little autocorrelations (except some small
negative autocorrelations at the first lag). Autocorrelations of squared returns and ab-
solute returns are positive and decay slowly, showing long range volatility clustering.
The high volatility phase is due to noise amplification through the interactions of agents
at the micro-level and coincides with a large proportion of chartists in the market whose
opinion is more or less balanced. Returns also exhibit fat tails and Lux and Marchesi
(1999, 2000) show that the tail of the returns distribution follows a power law.

Lux and Marchesi (1999, 2000) note that these results are fairly robust w.r.t. choices
of the parameters. However, Egenter et al. (1999) show that a puzzling ‘finite size effect’
occurs, that is volatility clustering tends to disappear when the number of agents N tends
to infinity. This finite size effect seems to be due to some law of large numbers. As N

becomes large, the random fluctuations in the opinion index become smaller and the
population of chartists remains close to being balanced. As a result, the market becomes
dominated by fundamentalists and price changes are mainly driven by fundamentals.
Nevertheless, this type of HAM matches some important stylized facts remarkably well.
In the last 5 years, physicists have done quite a lot of work in finance in particular
looking for scaling laws in financial market data. The power law decay of the returns

10 I would like to thank Thomas Lux and Timur Yusupov for providing these simulations.
11 The Jacobian matrix of the steady state has a unit root due to existence of a continuum of steady states. Lux
(1997, 1998) shows that, for different parameter values the steady state becomes repelling and stable periodic
cycles and chaos can occur. In the unstable case, prices persistently deviate from the fundamental value.
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Figure 9. Time series of prices (top left), fundamental price (top right), returns (second panel, left), squared
returns (second panel, right), opinion index (third panel, left), fraction of chartists (third panel, right) and
autocorrelation patterns (bottom panel) of returns, squared returns and absolute returns. Parameters: N = 500,
ν1 = 3, ν2 = 2, β = 6, Tc(≡ Ntc) = 10, Tf (≡ Nγ ) = 5, α1 = 0.6, α2 = 0.2, α1 = 0.5, pf = 10,

y = 0.004, R = 0.0004, s = 0.75 and σμ = 0.05.
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distribution and of autocorrelations of squared returns are examples of such a scaling
law. For a discussion and overviews of this literature see e.g. Farmer (1999), Mantegna
and Stanley (2000), Bouchaud (2001), Cont (2001) and Mandelbrot (2001a, 2001b).

7. Costly sophisticated versus cheap simple rules

Herbert Simon (1957) already stressed information gathering and processing costs as
an obstacle to fully rational, optimal behavior. Agents must either face search and
information gathering costs in using sophisticated, optimal rules or may choose to em-
ploy free and easily available simple rules of thumb that perform “reasonably well”. In
this section we discuss HAMs where agents can choose between costly, sophisticated
strategies and simple, but cheap rules of thumb. Simple strategies include naive expec-
tations, adaptive expectations, trend extrapolation, simple technical trading rules, etc.
Sophisticated strategies are e.g. fundamental market analysis or predictions of macro
economic quantities such as growth, inflation or unemployment, which usually re-
quire costly information gathering. In Subsection 7.1 we briefly discuss some early,
stimulating examples due to Conlisk (1980), Evans and Ramey (1992) and Sethi and
Franke (1995), whereas Subsection 7.2 discusses the model of Brock and Hommes
(1997a) of endogenous selection of costly, sophisticated versus cheap, simple expec-
tations rules.

7.1. Examples

An interesting and early dynamic model with costly optimizers versus cheap imitators
has been introduced by Conlisk (1980). There are two types of agents, rational opti-
mizers and simple imitators, who try to minimize a quadratic loss function depending
upon their choice and an exogenously generated stochastic state of the economy. Opti-
mizers pay a cost for their optimal strategy, to cover the cost of analyzing the decision
problem at hand, searching the market or preparing or reading consumer reports, etc.
Non-optimizers’ behavior is imitative and they adapt their behavior in the direction of
last period’s observed average optimal choice. Non-optimizers “will make mistakes,
but avoid the costs of avoiding mistakes”. The mix between the two types evolves over
time according to the relative average performance of the two strategies. Conlisk (1980)
shows that if the average loss for imitators exceeds the costs for optimizers, imitators can
not survive and in the long run optimizers completely dominate the economy. Stated dif-
ferently, “Imitation can have no redeeming merit when optimization is cheap enough”
(Conlisk, 1980, p. 282). In contrast, if the cost of optimizing is substantial imitators
will not disappear but can survive, and both optimizers and imitators will coexist in
the long run. Note that in this model the state of the economy evolves according to an
exogenous stochastic process and is not affected by the behavior of the optimizers and
imitators.



Ch. 23: Heterogeneous Agent Models in Economics and Finance 1159

Evans and Ramey (1992) consider a dynamic macroeconomic model where calcula-
tion of rational expectations is costly. Agents have preferences over expectational errors
and calculation costs, and in each period choose optimally whether or not to calculate
expectations at costs C or keep the same expectation at no costs. The strategy choice is
coupled endogenously to the market dynamics. Evans and Ramey discuss the possibility
of different types of equilibria. In a calculation equilibrium agents start close enough
to a REE, it is optimal to never calculate and the system stays close to the REE. Two
stage equilibria are characterized by the system starting off far from REE, so that all
agents choose to calculate until the point where the system is close enough to REE and
it becomes optimal for all agents to switch to ‘never calculate’. Sethi and Franke (1995)
consider a macroeconomic model with evolutionary dynamics and endogenous switch-
ing between naive agents using costless adaptive expectations and sophisticated agents
using costly rational expectations. Dynamics of output are driven by exogenous shocks
to production costs. Strategy fractions are updated according to the relative success of
the strategies. Naive agents generally persist in the market, especially when optimiza-
tion is costly. Both in Evans and Ramey (1992) and Sethi and Franke (1995) market
dynamics and strategy selection are endogenously coupled and the state of the econ-
omy and the population of strategies co-evolve over time. These examples however are
globally stable: in the absence of any exogenous random shocks to the economy, both
dynamic models converge to a globally stable steady state with all agents using the
simple, freely available strategy.

7.2. Rational versus naive expectations

Brock and Hommes (1997a), henceforth BH97a, introduce a model of endogenous, evo-
lutionary selection of heterogeneous expectations rules. In particular, BH97a consider
evolutionary switching between a costly sophisticated forecasting strategy, such as ratio-
nal expectations, versus a free, simple rule of thumb strategy such as naive expectations.
They introduce the concept of Adaptive Rational Equilibrium Dynamics (ARED), an en-
dogenous coupling between market equilibrium dynamics and evolutionary selection of
expectations rules. The ARED describes evolutionary dynamics among competing pre-
diction strategies, in which the state of the economy and the distribution of agents over
different expectation rules co-evolve over time.

Agents can choose between H different (prediction) strategies and update their choice
over time. Strategies that have been more successful in the recent past are selected more
often than less successful strategies. More precisely, the fraction nht of traders using
strategy h are updated according to an evolutionary fitness measure or performance
measure, such as (a weighted sum of) past realized profits. All fitness measures are
publically available (e.g. published in newspapers), but subject to noise e.g. due to mea-
surement error or non-observable characteristics. Fitness of strategy h is given by a
random utility model

(89)Ũht = Uht + εht ,
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where Uht is the deterministic part of the fitness measure and εht represents the noise
in the observed fitness of strategy h at date t . Assuming that the noise εht is IID across
types and drawn from a double exponential distribution, in the limit as the number of
agents goes to infinity, the probability that an agent chooses strategy h is given by the
well known multinomial logit model or ‘Gibbs’ probabilities

(90)nht = exp(βUht )

Zt

, Zt =
H∑

h=1

exp(βUht ),

where Zt is a normalization factor for the fractions nht to add up to 1. Manski and Mc-
Fadden (1981) and Anderson et al. (1993) give an extensive overview and discussion of
discrete choice models, in particular the multinomial logit model, and their applications
in economics. The crucial feature of (90) is that the higher the fitness of trading strat-
egy h, the more agents will select strategy h. The intensity of choice parameter β > 0
in (90) measures how sensitive agents are to selecting the optimal prediction strategy.
This intensity of choice β is inversely related to the variance of the noise εht . The ex-
treme case β = 0 corresponds to noise with infinite variance, so that differences in
fitness cannot be observed and all fractions (90) will be equal to 1/H . The other ex-
treme case β = ∞ corresponds to the case without noise, so that the deterministic part
of the fitness is observed perfectly and in each period, all agents choose the optimal
forecast. An increase in the intensity of choice β represents an increase in the degree of
rationality w.r.t. evolutionary selection of strategies.12

BH97a employ the classical cobweb framework to study a HAM with two prediction
strategies, costly rational versus free naive expectations. A related, artificial cobweb
economy with genetic algorithms learning is studied by Arifovic (1994). The cobweb
model describes fluctuations of equilibrium prices in a market for a non-storable con-
sumption good. The good takes one period to produce, so that producers must form
price expectations one period ahead. Applications of the cobweb model mainly concern
agricultural markets, such as the classical examples of cycles in hog or corn prices. Sup-
ply S(pe

t ) is a function of producer’s next period expected price, pe
t and is derived from

expected profit maximization, that is, S(pe
t ) = argmaxqt

{pe
t qt − c(qt )} = (c′)−1(pe

t ),
where c(·) is the cost function. BH97a assume a quadratic cost function c(q) = q2/(2s),
so that the supply curve is linear, S(pe

t ) = spe
t , s > 0. Consumer demand is linearly

decreasing in the market price pt and given by D(pt ) = a − dpt , d > 0.13

12 The probabilities (90) are also used in game theory, in quantal response equilibria introduced by McKelvey
and Palfrey (1995), where β = ∞ corresponds to a Nash equilibrium. Blume (1993) also uses the same type
of probabilities in a game theoretic setting and argues that β = ∞ corresponds to the noise free case where
all weight is given to best response(s). Nadal et al. (1998) argue that the logit probabilities (90) can be derived
as an optimal response in an exploration-exploitation trade off. They derive (90) from maximizing a linear
combination of past profit and new information (using entropy as a measure), with β being the weight given
to past profit.
13 Goeree and Hommes (2000) extend the analysis of the cobweb model with rational versus naive expecta-
tions to the case of nonlinear (but monotonic) supply and demand.
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Producers can choose between two different forecasting rules. They can either buy
a sophisticated, rational expectations (perfect foresight) forecast at positive per period
information cost C ≥ 0, or freely obtain the simple, naive forecast. The two forecasting
rules are thus pe

1,t = pt and pe
2,t = pt−1. Market equilibrium in the cobweb model with

rational versus naive expectations and linear demand and supply is given by

(91)a − dpt = n1,t−1sp
e
1,t + n2,t−1sp2,t = nR

t−1spt + nN
t−1spt−1,

where n1,t−1 = nR
t−1 and n2,t−1 = nN

t−1 are the fractions of producers using the ra-
tional respectively naive predictor, at the beginning of period t . Notice that producers
using RE have perfect foresight, and therefore must have perfect knowledge about the
market equilibrium equation (91), including past prices as well as the fractions of both
groups. Consequently, rational agents have perfect knowledge about the beliefs of all
other agents. The difference C between the per period information costs for rational
and naive expectations represents an extra effort cost producers incur over time when
acquiring this perfect knowledge. Solving (91) explicitly for the market equilibrium
price yields

(92)pt =
a − nN

t−1spt−1

d + nR
t−1s

.

When all agents have rational expectations, pt ≡ p∗ = a/(d + s), for all t ≥ 1,
that is, the price jumps immediately to its steady state value p∗ where demand and
supply intersect. When all agents have naive expectations (92) reduces to the linear
difference equation pt = (a − spt−1)/d , leading to the familiar up and down price
oscillations around the steady state p∗. Price oscillations under naive expectations are
stable (unstable) under the familiar ‘cobweb theorem’ condition s/d < 1 (s/d > 1).

To complete the model, the fractions of traders using either rational or naive expec-
tations must be specified. As discussed above, these fractions are updated according to
a publically available evolutionary fitness measure associated to each predictor. BH97a
focus on the case with the most recent realized net profit as the performance measure for
predictor selection.14 For the rational resp. the naive forecasting strategies with linear
supply, the realized profits in period t are given by

(93)πR
t = pt S(pt ) − c

(
S(pt )

) = s

2
p2

t ,

(94)πN
t = pt S(pt−1) − c

(
S(pt−1)

) = s

2
pt−1(2pt − pt−1).

14 The case where the performance measure is realized net profit of the most recent past period, leads to a
two-dimensional dynamical system. The more general case, with a weighted sum of past net realized profits
as the fitness measure, leads to higher dimensional systems, which are not as analytically tractable as the
two-dimensional case. In this more general higher dimensional case however, numerical simulations suggest
similar dynamic behavior.
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Notice that the net realized profit for rational expectations is given by πR
t − C, where

C is the per period information cost that has to be paid for obtaining the perfect fore-
cast. The fractions of the two groups are determined by the logit discrete choice model
probabilities, as discussed above. The fraction of agents using the rational expectations
predictor in period t equals

(95)nR
t = exp(β(πR

t − C))

exp(β(πR
t − C)) + exp(β πN

t )
,

and the fraction of agents choosing the naive predictor in period t is

(96)nN
t = 1 − nR

t .

A key feature of this evolutionary predictor selection is that agents are boundedly ratio-
nal, in the sense that most agents use the predictor that has the highest fitness. From (95)
and (96) we have that nR

t > nN
t whenever πR

t − C > πN
t , although the optimal pre-

dictor is not chosen with probability one. The intensity of choice, i.e. the parameter β,
measures how fast producers switch between the two prediction strategies. For β = 0,
both fractions are fixed over time and equal to 1/2. In the other extreme case β = ∞
(the neoclassical limit) all producers choose the optimal predictor in each period.

The timing of predictor selection in (95) is important. In (92) the old fractions nR
t−1

and nN
t−1 determine the new equilibrium price pt . This new equilibrium price pt is used

in the fitness measures (93) and (94) for predictor choice and the new fractions nR
t and

nN
t are updated according to (95) and (96). These new fractions in turn determine the

next equilibrium price pt+1, etc. Equilibrium prices and fractions thus co-evolve over
time. BH97a called the coupling between the equilibrium price dynamics and adaptive
predictor selection an Adaptive Rational Equilibrium Dynamics (ARED) model.

The model has a unique steady state (p∗, n∗) = (a/(d+s), 1/(1+exp(βC/2))), with
p∗ the price where demand and supply intersect. When there are no costs for rational
expectations (C = 0), at the steady state the fractions of the two types are exactly
balanced. In contrast, for positive information costs for rational expectations (C > 0),
n∗ < 0.5, so that at the steady state most agents use the naive forecasting rule. This
makes sense, because at the steady state both forecasting rules yield exactly the same
forecast, and most agents then prefer the cheap, naive forecast.

If the familiar cobweb stability condition s/d < 1 is satisfied, implying that the
model is stable under naive expectations, then the heterogeneous cobweb model with
rational versus naive expectations has a globally stable steady state, for all β. Prices will
then always converge to p∗, and the fraction of rational agents converges to n∗. More
interesting dynamics occur when the cobweb model is unstable under naive expecta-
tions.

Assume that the market is unstable under naive expectations, that is, s/d > 1:
1. without information costs (C = 0), the steady state is globally stable for all β;
2. with positive information costs (C > 0), there is a critical value β1 such that the

steady state is (globally) stable for 0 ≤ β < β1 and unstable for β > β1. At
β = β1 a period doubling bifurcation occurs and a stable 2-cycle is created;
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3. as β increases from 0 to +∞ a rational route to randomness occurs, that is, a
bifurcation route from a stable steady state to a strange attractor occurs and chaotic
price fluctuations arise.

Figure 10 shows an example of a strange attractor, with corresponding chaotic time
series of prices pt and fractions nR

t of rational producers. Numerical simulations suggest
that for (almost) all initial states (p0,m0) the orbit converges to this strange attractor.
For a high intensity of choice price fluctuations are characterized by an irregular switch-
ing between a stable phase, with prices close to the steady state, and an unstable phase
with fluctuating prices, as illustrated in Figure 10. There is a strikingly simple economic
intuition explaining this switching behavior when the intensity of choice is large. Sup-
pose we take an initial state close to the (locally unstable) steady state. Most agents will
use the cheap, naive forecasting rule, because it does not pay to buy a costly, sophisti-
cated forecasting rule that yields an almost identical forecast. With most agents using
the cheap, naive predictor prices diverge from the steady state, start fluctuating, and net
realized profits from the naive predictor decrease. At some point, it becomes profitable
to buy the rational expectations forecast, and when the intensity of choice to switch pre-
dictors is high, most agents will then switch to rational expectations. As a result, prices
are driven back close to the steady state, and the story repeats. Irregular, chaotic price
fluctuations thus result from a (boundedly) rational choice between cheap ‘free riding’
and costly sophisticated prediction.15

Price fluctuations in this simple evolutionary system are thus characterized by an ir-
regular switching between a low volatility phase with prices close to the fundamental
steady state and a high volatility phase with large amplitude price fluctuations. The evo-
lutionary system has a locally destabilizing force due to cheap free riding and a far from
the steady state stabilizing force of sophisticated prediction. In this simple evolutionary
system, in contrast to the Friedman hypothesis, simple and sophisticated types co-exist
in the long run with their fractions fluctuating over time. Due to information gathering
costs, rational agents can not drive out naive agents.

Several extensions of the BH97a framework have been considered recently. Branch
(2002) investigates the cobweb model with three (rational, adaptive and naive) expec-
tation rules, and Lasselle et al. (2005) investigate the case of rational versus adaptive
expectations. The same evolutionary framework is applied to an overlapping genera-
tions monetary economy by Brock and de Fontnouvelle (2000) and to a Cagan type
monetary model by Chiarella and Khomin (1999). Branch and McGough (2004) in-
vestigate the cobweb model with evolutionary replicator dynamics and obtain similar
results; Droste et al. (2002) investigate evolutionary replicator dynamics in a Cournot
duopoly model with a Nash rule versus a best reply rule. Branch and Evans (2005)
consider a HAM where agents can choose between a number of misspecified econo-
metric models, with a dual learning process of agents learning the model parameters

15 Brock and Hommes (1997a) show that for a large intensity of choice, the ARED-cobweb model is close
to having a so-called homoclinic orbit, a notion already introduced by Poincaré around 1890, and one of the
key features of a chaotic system; see Hommes (2005) for a recent, more detailed discussion.
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(a)

(b)

Figure 10. Chaotic time series of price deviations from the steady state (a) and fractions of rational agents
(b) and the corresponding strange attractor in the (x, nR)-phase space (c), where x = p − p∗ is the deviation

from the steady state price. Parameters are: β = 5, a = 10, d = 0.5, s = 1.35 and C = 1.
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(c)

Figure 10. (continued.)

by ordinary least squares (OLS) and strategy fractions updated according to relative
performance. De Fontnouvelle (2000) applies the ARED to a financial market model,
where agents can choose to buy information about future dividends with high precision,
or obtain information with low precision for free. Another recent contribution along
these lines is Goldbaum (2005). In the next subsection we discuss an application of the
BH97a evolutionary framework to an asset pricing model.

8. An asset pricing model with heterogeneous beliefs

In this section we discuss Adaptive Belief Systems (ABS) as introduced by Brock and
Hommes (1998), henceforth BH98, a financial market application of the evolutionary
selection of expectation rules introduced by Brock and Hommes (1997a). An ABS is
in fact a standard discounted value asset pricing model derived from mean-variance
maximization, extended to the case of heterogeneous beliefs. Agents are boundedly
rational and select a forecasting or investment strategy based upon its recent, relative
performance. An ABS may be seen as a stylized, to some extent analytically tractable,
version of more complicated artificial markets and is in fact similar to the SFI model
of Arthur et al. (1997b) and LeBaron et al. (1999) (see also the chapter of LeBaron).
A convenient feature of an ABS is that it can be formulated in terms of deviations
from a benchmark fundamental and therefore an ABS can be used in experimental and
empirical testing of deviations from the RE benchmark.
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8.1. The model

Agents can either invest in a risk free asset or in a risky asset. The risk free asset is
perfectly elastically supplied and pays a fixed rate of return r; the risky asset (e.g. a
stock or a stock market index) pays an uncertain dividend. Let pt be the price per share
(ex-dividend) of the risky asset at time t , and let yt be the stochastic dividend process
of the risky asset. Agents are myopic mean-variance maximizers so that the demand zht

per trader of type h for the risky asset is given by

(97)zht = Eht [pt+1 + yt+1 − (1 + r)pt ]
aVht [pt+1 + yt+1 − (1 + r)pt ] = Eht [pt+1 + yt+1 − (1 + r)pt ]

aσ 2
.

Eht and Vht denote the ‘beliefs’ or forecasts of trader type h about conditional expec-
tation and conditional variance of excess return pt+1 + yt+1 − (1 + r)pt and a is the
risk aversion parameter. Bold face variables denote random variables at date t + 1. For
analytical tractability, the conditional variance Vht = σ 2 is assumed to be equal and
constant for all types.16 Let zs denote the supply of outside risky shares per investor,
assumed to be constant, and let nht denote the fraction of type h at date t . When there
are H different trader types, equilibrium of demand and supply yields

(98)
H∑

h=1

nht

Eht [pt+1 + yt+1 − (1 + r)pt ]
aσ 2

= zs .

BH98 focus on the special case of zero supply of outside shares, i.e. zs = 0, for which
the Walrasian market clearing price satisfies17

(99)(1 + r)pt =
H∑

h=1

nhtEht [pt+1 + yt+1].

It is well known that in a homogeneous world where all agents have rational expecta-
tions, the asset price is completely determined by economic fundamentals and given by
the discounted sum of expected future dividends:

(100)p∗
t =

∞∑
k=1

Et [yt+k]
(1 + r)k

.

In general, the properties of the fundamental price p∗
t depend upon the stochastic divi-

dend process yt . In the special case of an IID dividend process yt , with constant mean

16 Gaunersdorfer (2000) investigates the case with time varying beliefs about variances and Chiarella and He
(2002) study heterogeneous risk aversion.
17 Brock (1997) motivates this special case by introducing a risk adjusted dividend y#

t+1 = yt+1 − aσ 2zs ,
and after dropping the superscript “#” obtains the market equilibrium equation (99).
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E[yt ] = ȳ, the fundamental price is constant and given by18

(101)p∗ =
∞∑

k=1

ȳ

(1 + r)k
= ȳ

r
.

Heterogeneous beliefs

We now discuss traders’ expectations about future prices and dividends. As discussed
above, beliefs about the conditional variance Vht = σ 2, for all h, t , are assumed to
be equal and constant for all types. Beliefs about future dividends are assumed to
be the same for all trader types and equal to the true conditional expectation, that is,
Eht [yt+1] = Et [yt+1], for all h, t ; in the special case of IID dividends this simplifies to
Eht [yt+1] = ȳ. All traders are thus able to derive the fundamental price p∗

t in (100) that
would prevail in a perfectly rational world. Traders nevertheless believe that in a het-
erogeneous world prices may deviate from their fundamental value p∗

t . It is convenient
to introduce the deviation from the fundamental price:

(102)xt = pt − p∗
t .

Beliefs about the future price of the risky asset are of the form

(103)Eht [pt+1] = Et

[
p∗

t+1

]+ fh(xt−1, . . . , xt−L), for all h, t.

Each forecasting rule fh represents a model of the market (e.g. a technical trading rule)
according to which type h believes that prices will deviate from the fundamental price.
We use the short hand notation fht = fh(xt−1, . . . , xt−L).

An important and convenient consequence of these assumptions concerning traders’
beliefs is that the heterogeneous agent market equilibrium equation (99) can be refor-
mulated in deviations from the benchmark fundamental as

(104)(1 + r)xt =
H∑

h=1

nhtEht [xt+1] =
H∑

h=1

nhtfht .

In this general setup, the benchmark rational expectations asset pricing model is nested
as a special case, with all forecasting strategies fh ≡ 0. In this way, the adaptive belief
systems can be used in empirical and experimental testing whether asset prices deviate
significantly from a benchmark fundamental.

Evolutionary selection of strategies

The evolutionary part of the model, describing how beliefs are updated over time, fol-
lows the endogenous selection of forecasting rules introduced by Brock and Hommes

18 Brock and Hommes (1997b), for example, discuss a non-stationary example, where the dividend process
is a geometric random walk; see also Hommes (2002).
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(1997a) as discussed in Subsection 7.2. The fractions nht of trader types are given by
the multinomial logit probabilities of a discrete choice:

(105)nht = exp(βUh,t−1)

Zt−1
, Zt−1 =

H∑
h=1

exp(βUh,t−1).

Uh,t−1 is the fitness measure of strategy h evaluated at the beginning of period t . A nat-
ural candidate for evolutionary fitness is (accumulated) realized profits, given by

(106)Uht = (pt + yt − Rpt−1)
Eh,t−1[pt + yt − Rpt−1]

aσ 2
+ wUh,t−1,

where R = 1+r is the gross risk free rate of return and 0 ≤ w ≤ 1 is a memory parame-
ter measuring how fast past realized profits are discounted for strategy selection.19 We
will focus on the simplest case with no memory, i.e. w = 0, so that fitness Uht equals
the most recently observed realized profit. Fitness can now be rewritten in deviations
from the fundamental as

(107)Uht = (xt − Rxt−1)

(
fh,t−1 − Rxt−1

aσ 2

)
.

8.2. Few-type examples

BH98 have investigated evolutionary competition between simple linear forecasting
rules with only one lag, i.e.20

(108)fht = ghxt−1 + bh,

where gh is a trend parameter and bh a bias parameter. It can be argued that, for a
forecasting rule to have any impact in real markets, it has to be simple. For a complicated
forecasting rule it seems unlikely that enough traders will coordinate on that particular
rule so that it affects market equilibrium prices. Notice that for gh = bh = 0 the linear
forecasting rule (108) reduces to the forecast of fundamentalists, i.e. fht ≡ 0, believing
that the market price will be equal to the fundamental price p∗, or equivalently that the
deviation x from the fundamental will be 0. Notice also that the forecasting rule (108)
uses xt−1 (or pt−1) as the most recently observed deviation (or price) to forecast xt+1
(or pt+1), because the market equilibrium equation (98) has not revealed the equilibrium

19 We focus on the case where there are no differences in the costs for the strategies.
20 Brock and Hommes (1998, pp. 1246–1248) also discuss a 2-type example with a costly rational expec-
tations or perfect foresight forecasting rule fht = xt+1 versus pure trend followers, and show that the
fundamental steady state may become unstable and multiple, non-fundamental steady states may arise. Global
dynamics in such an example are difficult to handle, because the system is only implicitly defined. Such im-
plicitly defined evolutionary systems cannot be solved explicitly and often they are not even well-defined. See
also Arthur (1995) and Hommes (2001) for a discussion of a fully rational agent type within a heterogeneous
agents setting.
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price pt yet when forecasts for pt+1 are formed. A convenient feature of this setup is
that the market equilibrium price pt is always uniquely defined at all dates t .

This section presents two simple examples of ABS, an example with three and an
example with four competing linear forecasting rules (108). The ABS becomes (in de-
viations from the fundamental):

(109)(1 + r)xt =
H∑

h=1

nht (ghxt−1 + bh) + εt ,

(110)nh,t = exp(βUh,t−1)∑H
h=1 exp(βUh,t−1)

,

(111)Uh,t−1 = (xt−1 − Rxt−2)

(
ghxt−3 + bh − Rxt−2

aσ 2

)
,

where εt is a small noise term representing uncertainty about economic fundamentals,
e.g. random outside supply of the risky asset. The timing of the coupling between the
market equilibrium equation (109) and the evolutionary selection of strategies (110)
is important. The market equilibrium price pt (or deviation xt from the fundamental)
in (109) depends upon the fractions nht . The notation in (110) stresses the fact that these
fractions nht depend upon past fitnesses Uh,t−1, which in turn depend upon past prices
pt−1 (or deviations xt−1) in periods t − 1 and further in the past. After the equilib-
rium price pt (or the deviation xt ) has been revealed by the market, it will be used in
evolutionary updating of beliefs and determining the new fractions nh,t+1. These new
fractions nh,t+1 will then determine a new equilibrium price pt+1 (or deviation xt+1),
etc. In the ABS, market equilibrium prices and fractions of different trading strategies
thus co-evolve over time.

Fundamentalists versus opposite biases

The first example of an ABS has three trader types, fundamentalists and two purely
biased belief, optimists and pessimists expecting a constant price above or below the
fundamental price:

(112)f1t = 0 fundamentalists,

(113)f2t = b b > 0, positive bias (optimists),

(114)f3t = −b − b < 0, negative bias (pessimists).

For low values of the intensity of choice β, the 3-type evolutionary system is stable and
the asset price converges to its fundamental value. However, as the intensity of choice
increases the fundamental steady becomes unstable due to a Hopf bifurcation and the
dynamics of the ABS is characterized by cycles around the unstable steady state. This
example shows that, even when there are no information costs for fundamentalists, they
cannot drive out other trader types with opposite biased beliefs. In the evolutionary
ABS with high intensity of choice, fundamentalists and biased traders co-exist with their
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fractions varying over time and asset prices fluctuating around the unstable fundamental
steady state. Moreover, Brock and Hommes (1998, p. 1259, lemma 9) show that as the
intensity of choice tends to infinity the ABS converges to a (globally) stable cycle of
period 4. Average profits along this 4-cycle are equal for all three trader types. Hence, if
the initial wealth is equal for all three types, then in this evolutionary system in the long
run accumulated wealth will be equal for all three types. This example suggests that the
Friedman argument that smart fundamental traders will drive out simple habitual rules
of speculative traders is not true in general.

Fundamentalists versus trend and bias

The second example of an ABS is an example with four trader types, with linear fore-
casting rules (108) with parameters g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9,
b3 = −0.2 and g4 = 1+ r = 1.01, b4 = 0. The first type are fundamentalists again and
the other three types follow a simple linear forecasting rule with one lag. The dynamical
behavior is illustrated in Figure 11. For low values of the intensity of choice, the 4-type
ABS is stable and the asset price converges to its fundamental value. As the inten-
sity of choice increases, as in the previous three type example, the fundamental steady
becomes unstable due to a Hopf bifurcation and a stable invariant circle around the un-
stable fundamental steady state arises, with periodic or quasi-periodic fluctuations. As
the intensity of choice further increases, the invariant circle breaks into a strange at-
tractor with chaotic fluctuations. In the evolutionary ABS fundamentalists and chartists
co-exist with fractions varying over time and prices moving chaotically around the un-
stable fundamental steady state.

This 4-type example shows that when traders are driven by short run profits, even
when there are no information costs, fundamentalists cannot drive out other simple trend
following strategies and fail to stabilize price fluctuations towards its fundamental value.
As in the three type case, the opposite biases create cyclic behavior, but apparently trend
following strategies turn these cycles into unpredictable chaotic fluctuations.

The (noisy) chaotic price fluctuations are characterized by irregular switching be-
tween phases of close-to-the-EMH-fundamental-price fluctuations, phases of ‘opti-
mism’ with prices following an upward trend, and phases of ‘pessimism’, with (small)
sudden market crashes, as illustrated in Figure 11. In fact, in the ABS prices are char-
acterized by an evolutionary switching between the fundamental value and temporary
speculative bubbles. In the purely deterministic chaotic case, the start and the direction
of the temporary bubbles seem hard to predict. However, once a bubble has started, in
the deterministic case, the burst of the bubble seems to be predictable in most of the
cases. In the presence of small noise however, as illustrated in Figure 11 (top right),
the start, the direction as well as the time of burst of the bubble all seem hard to pre-
dict.

In the deterministic chaotic as well as the noisy chaotic case, the autocorrelations of
returns are close to zero, so there is little linear predictability in this model. In order
to investigate the (un)predictability of this market model in more detail, we employ a
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Figure 11. Chaotic (top left) and noisy chaotic (top right) time series of asset prices (deviations from fun-
damental value) in ABS with four trader types. Strange attractor (middle left) and enlargement of strange
attractor (middle right). Belief parameters are: g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2
and g4 = 1 + r = 1.01, b4 = 0; other parameters are r = 0.01, β = 90.5 and w = 0. The bottom shows
forecasting errors for the nearest neighbor method applied to noisy chaotic returns series, for different noise
levels (see the text). All returns series have close to zero autocorrelations at all lags. The benchmark case of
prediction by the mean 0 is represented by the horizontal line at the normalized prediction error 1. Nearest
neighbor forecasting applied to the purely deterministic chaotic series leads to much smaller forecasting er-
rors (lowest graph). A noise level of say 10% means that the ratio of the variance of the noise term εt in (109)
and the variance of the deterministic price series is 1/10. As the noise level slowly increases, the graphs are

shifted upwards. Small dynamic noise thus quickly deteriorates forecasting performance.
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so called nearest neighbor forecasting method to predict the returns, at lags 1 to 20,
for the purely chaotic as well as for several noisy chaotic time series, as illustrated in
Figure 11.21 Nearest neighbor forecasting looks for past patterns close to the most recent
pattern, and then yields as the prediction the average value following all nearby past
patterns. It follows essentially from Takens’ embedding theorem that this method yields
good forecasts for deterministic chaotic systems. Figure 11 shows that as the noise
level increases, the forecasting performance of the nearest neighbor method quickly
deteriorates. Hence, in our simple nonlinear evolutionary ABS with noise it is hard
to make good forecasts of future returns. The market is close to being efficient in the
sense that there is “no easy free lunch”. However, the market is inefficient in the sense
that prices exhibit persistent deviations from fundamental value, due to self-fulfilling
temporary speculative bubbles driven by short run profit opportunities.

Recently several modifications of ABS have been studied. In BH98a the demand for
the risky asset is derived from a constant absolute risk aversion (CARA) utility function.
Chiarella and He (2001) consider the case with constant relative risk aversion (CRRA)
utility, so that investors’ relative wealth affects asset demand and realized asset price,
and study wealth and asset price dynamics in such a heterogeneous agents framework.22

Anufriev and Bottazzi (2005) characterize the type of equilibria and their stability in a
HAM with CRRA utility and an arbitrary number of agents. Chiarella et al. (2002,
2006) use CRRA utility in an ABS with a market maker price setting rule Chiarella
and He (2003). Hommes et al. (2005a) investigate an ABS with a market maker price
setting rule, and find similar dynamical behavior as in the case of a Walrasian market
clearing price. Chang (2005) studies the effects of social interactions in an ABS with
a Walrasian market clearing price. DeGrauwe and Grimaldi (2005a, 2005b) recently
applied the ABS framework to exchange rate modeling. A related stochastic model
with heterogeneous agents and endogenous strategy switching similar to the ABS has
recently been introduced in Föllmer et al. (2005). Scheinkman and Xiong (2004) review
related stochastic financial models with heterogeneous beliefs and short sale constraints.

8.3. Many trader types

In most HAMs discussed in this chapter the number of trader types is small, restricted to
two, three or four. Analytical tractability can only be obtained at the cost of restriction
to just a few types. Brock et al. (2005), henceforth BHW05, have recently developed a
theoretical framework to study evolutionary markets with many different trader types.
They introduce the notion of Large Type Limit (LTL), a simple, low dimensional ap-
proximation of an evolutionary market with many trader types. BHW05 develop the

21 See e.g. Kantz and Schreiber (1997) for an extensive treatment of nonlinear time series analysis and fore-
casting techniques such as nearest neighbors. I would like to thank Sebastiano Manzan for providing the
nearest neighbor forecasting plot.
22 In the artificial market of Levy et al. (1994), asset demand is also derived from CRRA utility.
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notion of LTL within a fairly general market clearing setting, but here we focus on its
application to the asset pricing model.

Recall that in the asset market with H different trader types, the equilibrium
price (104), in deviations xt from the fundamental benchmark, is given by

(115)xt = 1

1 + r

H∑
h=1

nhtfht .

Using the multinomial logit probabilities (105) for the fractions nht we get

(116)xt = 1

1 + r

∑H
h=1 eβUh,t−1fht∑H

h=1 eβUh,t−1
.

The equilibrium equation (116) determines the evolution of the system with H trader
types—this information is coded in the evolution map φH (x, λ, θ):

(117)φH (x, λ, θ) = 1

1 + r

∑H
h=1 eβU(x,λ,θh)f (x, λ, θh)∑H

h=1 eβU(x,λ,θh)
,

where x = (xt−1, xt−2, . . .) is a vector of lagged deviations from the fundamental, λ is a
structural parameter vector (e.g. the risk free interest rate r , the risk aversion parameter
a, the intensity of choice β, etc.) and the belief variable θh is now a multidimensional
stochastic variable which characterizes belief h. At the beginning of the market, a large
number H of beliefs is sampled from a general distribution of beliefs. For example, all
forecasting rules may be drawn from a linear class with L lags,

(118)ft (θ0) = θ00 + θ01xt−1 + θ02xt−2 + · · · + θ0Lxt−L,

with θ0h, h = 0, . . . , L, drawn from a multivariate normal distribution.
The evolution map φH in (117) determines the dynamical system corresponding to an

asset market with H different belief types. When the number of trader types H is large,
this dynamical system contains a large number of stochastic variables θ = (θ1, . . . , θH ),
where the θh are IID, with distribution function Fμ. The distribution function of the
stochastic belief variable θh depends on a multi-dimensional parameter μ, called the
belief parameter. This setup allows to vary the population out of which the individual
beliefs are sampled at the beginning of the market.

Observe that both the denominator and the numerator of the evolution map φH

in (117) may be divided by the number of trader types H and thus may be seen as
sample means. The evolution map ψ of the large type limit is then simply obtained by
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replacing sample means in the evolution map φH by population means:

ψ(x, λ, μ) = 1

1 + r

Eμ[eβU(x,λ,θ0)f (x, λ, θ0)]
Eμ[eβU(x,λ,θ0)]

(119)= 1

1 + r

∫
eβU(x,λ,θ0)f (x, λ, θ0)dνμ∫

eβU(x,λ,θ0)dνμ

.

Here θ0 is a stochastic variable which is distributed in the same way as the θh, with dis-
tribution function Fμ. The structural parameter vectors λ of the evolution map φH and
of the LTL evolution map ψ coincide. However, whereas the evolution map φH in (117)
of the heterogeneous agent system contains H randomly drawn multi-dimensional sto-
chastic variables θh, the LTL evolution map ψ in (119) only contains the belief parame-
ter vector μ describing the joint probability distribution. Taking a large type limit thus
leads to a huge reduction in stochastic belief variables.

BHW05 prove an LTL-theorem, saying that, as the number H of trader types tends
to infinity, the H -type evolution map φ converges almost surely to the LTL-map ψ . The
LTL theorem implies that the corresponding LTL dynamical system is a good approxi-
mation of the dynamical behavior in a heterogeneous asset market when the number of
belief types H is large. In particular, all generic and persistent dynamic properties will
be preserved with high probability. For example, if the LTL-map exhibits a bifurcation
route to chaos for one of the structural parameters, then, if the number of trader types
H is large, the H -type system also exhibits such a bifurcation route to chaos with high
probability.

For example, in the case of linear forecasting rules (118) with three lags (L = 3), the
corresponding LTL becomes a 5-D nonlinear system given by

(1 + r)xt = μ0 + μ1xt−1 + μ2xt−2 + μ3xt−3

+ η
(
xt−1 − Rxt−2 + aσ 2zs

)
(120)× (

σ 2
0 + σ 2

1 xt−1xt−3 + σ 2
2 xt−2xt−4 + σ 2

3 xt−3xt−5
)
,

where η = β/(aσ 2). BHW05 show that a bifurcation route to chaos, with asset prices
fluctuating around the unstable fundamental steady state, occurs when η increases. This
shows that a rational route to randomness can occur in an asset market with many dif-
ferent trader types, when traders become increasingly sensitive to differences in fitness
(i.e. an increase in the intensity of choice β) or traders become less risk averse (i.e. a
decrease of the coefficient of risk aversion a). In a many trader types evolutionary world
fundamentalists will in general not drive out all other types and asset prices need not
converge to their fundamental value.

Recently Diks and van der Weide (2003, 2005) have generalized the notion of LTL
and introduced so-called Continuous Belief Systems (CBS), where the beliefs of traders
are distributed according to a continuous density function. The beliefs distribution func-
tion and the equilibrium prices co-evolve over time. Assuming a suitable performance
measure, e.g. quadratic in the belief parameter θ , the evolution of the distribution of be-
liefs is determined by the evolution of the first two moments, and analytical expressions
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for the change of the mean and the variance over time can be obtained. The LTL theory
discussed here as well as its extensions can be used to form a bridge between an ana-
lytical approach and the literature on evolutionary artificial market simulation models
reviewed in the chapter of LeBaron (2006) and LeBaron (2000).

9. Concluding remarks and future perspective

The work on heterogeneous agent modeling within the new paradigm of behavioral eco-
nomics, behavioral finance and bounded rationality is rapidly expanding. This chapter
has reviewed HAMs emphasizing models that, at least to some extent, are analytically
tractable. The development and analysis of these models requires a combination of an-
alytical and computational tools. The review shows a development from very simple,
early models in the seventies and the eighties based on somewhat ad hoc assumptions
(e.g. ad hoc demand or supply functions, fixed fractions using the different strategies) to
more sophisticated models in the nineties based on micro foundations (e.g. local inter-
actions, social utility, asset demand derived from myopic mean-variance maximization)
with switching between different strategies according to an evolutionary fitness mea-
sure based upon recent realized performance and social interaction effects. Markets
are viewed as complex adaptive systems, with the evolutionary selection of expectations
rules or trading strategies endogenously coupled to the market (dis-)equilibrium dynam-
ics. Prices, trading volume and the population of beliefs and strategies co-evolve over
time. In this behavioral world the “wilderness of bounded rationality” is disciplined by
parsimony and simplicity of strategies and their relative performance as measured by
recent profits, forecasting errors and social utility. Aggregation of interactions of indi-
viduals at the micro-level may explain structure and stylized facts at the macro-level.

Dynamic HAMs are highly nonlinear systems, generating a wide range of dynami-
cal behaviors, ranging from simple convergence to a stable steady state to very irregular
and unpredictable fluctuations which are highly sensitive to noise. Sophisticated traders,
such as fundamentalists or rational arbitrageurs typically act as a stabilizing force, push-
ing prices in the directions of the RE fundamental value. Technical traders, such as
feedback traders, trend extrapolators and contrarians typically act as a destabilizing
force, pushing prices away from the fundamental. When the proportion of chartists be-
lieving in a trend exceeds some critical value, the price trend becomes reinforced and
the belief becomes self-fulfilling causing prices to deviate from fundamentals. Nonlin-
ear interaction between fundamental traders and chartists can lead to deviations from
the fundamental price in the short run, when price trends are reinforced due to tech-
nical trading, and mean reversion in the long run, when more agents switch back to
fundamental strategies when the deviation from fundamental price becomes too large.
Asset prices switch irregularly between temporary bull and bear markets, and are very
unpredictable and highly sensitive to noise. Fractions of the different trading strategies
fluctuate over time and simple technical trading rules can survive evolutionary compe-
tition, and on average chartists may earn profits comparable to the profits earned by
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fundamentalists or value traders. In financial market applications, simple HAMs can
mimic important stylized facts, such as persistence in asset prices, unpredictability of
returns at daily horizon, mean reversion at long horizons, excess volatility, clustered
volatility and fat tails in asset returns. These models also generate high and persistent
trading volume in sharp contrast to no trade theorems in RE models. High trading vol-
ume is mainly caused by differences in beliefs. Volatility in asset prices is driven by
news about economic fundamentals, which is amplified due to the interaction of dif-
ferent trading strategies. Self-fulfilling trend following investment strategies may cause
persistent deviations from fundamental values.

Much more work in this area remains to be done and of the many open issues that re-
main we can only mention a few. We have seen examples of HAMs where non-rational,
non-fundamental traders survive competition in the market. Under which conditions
is this true? This important question has also been addressed from a theoretical per-
spective in the recent evolutionary finance literature. Blume and Easley (1992, 2002)
have shown that in a general equilibrium setting, when markets are incomplete, rational
agents are not always able to drive out non-rational traders. Sandroni (2000) shows that
in a complete market, agents who do not make accurate predictions are driven out of the
market by agents who make accurate predictions.23 Evstigneev et al. (2002), Hens and
Schenk-Hoppé (2005) and Amir et al. (2005) investigate market selection of portfolio
rules and investment strategies in asset markets. Applying the theory of random dynam-
ical systems they show that in an incomplete market with short lived assets a unique
evolutionary stable strategy distributing wealth according to expected relative payoffs
accumulates all wealth. It is an open question whether this result holds for infinite lived
assets. It is also an open question whether the Brock and Hommes type of instability
will survive in a general equilibrium framework with consumption.

Another important issue is how memory in the fitness measure affects stability of evo-
lutionary adaptive systems and survival of technical trading (see Brock and Hommes,
1999). This question is related to heterogeneity in investors’ time horizon, both their
planning and their evaluation horizon. In a computational framework this problem has
been addressed by LeBaron (2002), but simple, analytically tractable models are not
available yet. Most dynamic HAMs focus on a market with one risk free and one risky
asset, and little attention has been paid to multi risky asset markets. Westerhoff (2004)
recently considered multi-asset markets, where chartists can switch their investments

23 There is an important difference between Sandroni (2000) and e.g. the approach of Brock and Hommes
(1997a, 1998). Sandroni assumes heterogeneity in expectations about future states of the world, generated by
an exogenous stochastic process. These beliefs affect asset prices, but do not affect realized states of the world,
so that agents with correct beliefs have a comparative advantage in realized utility and asset prices converge
to RE prices. In contrast, Brock and Hommes assume correct beliefs about dividends for all agents, but
heterogeneous beliefs about prices. These beliefs endogenously affect realized prices. For example, optimistic
traders may then survive in the market when enough traders share their optimism, causing the asset price to
increase above its RE fundamental value and giving optimists a relatively high return on their investment
decision.
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between different markets for risky assets. The interaction between the different markets
causes complex asset price dynamics, with different markets exhibiting co-movements
as well as clustered volatility and fat tails of asset returns. In another recent paper,
Böhm and Wenzelburger (2005) apply random dynamical systems to investigate the
performance of efficient portfolios in a multi-asset market with heterogeneous investors.
A final important question concerns futures or derivative markets. In a homogeneous,
rational agent world futures markets are stabilizing because agents can hedge risk and
thus force prices closer to their fundamental values. But what happens in a heteroge-
neous world with boundedly rational agents? Are futures markets stabilizing because
risk can be hedged, or will boundedly rational agents take larger positions and destabi-
lize markets?

Expectations play a key role in dynamic HAMs. It is remarkable that relatively little
work in laboratory experiments and survey data analysis has focused on dynamic se-
lection of expectation strategies. We mention three recent contributions, and emphasize
that much more work needs to be done; see also the chapter of Duffy (2006) for an
extensive discussion of the relationship between human subject laboratory experiments
and agent-based modeling. Branch (2004) uses survey data on inflation expectations of
households to estimate a version of the dynamic HAM of Brock and Hommes (1997a,
1997b), with naive expectations, adaptive expectations and a VAR-forecasting rule. The
dynamic HAM fits the survey data best (better than the corresponding homogeneous
agent models) with time varying proportions of the three expectations types inversely
related to each predictor’s MSE. Adam (2005) presents an experimental monetary sticky
price economy in which output and inflation depend on expected future inflation. Partic-
ipants are asked to forecast inflation for about 50 periods, and the average expectation
determines next period’s output and inflation. In the experimental sessions, output and
inflation display considerable persistence and regular cyclical patterns. Such behavior
emerges because subjects inflation expectations fail to be captured by rational expecta-
tions functions, but instead are well described by simple forecast functions using only
one period lagged output and inflation as explanatory variables. Hommes et al. (2005b)
conduct laboratory experiments, where individuals are asked to forecast an asset price
for 50 periods, with realized prices determined endogenously in the laboratory by the
Brock–Hommes (Brock and Hommes, 1998) asset pricing model with feedback from
individual forecasts. In this simple stationary environment, in most cases the asset price
does not converge to its fundamental value. Agents learn to coordinate on a common,
simple prediction rule, e.g. a simple linear trend following rule, and asset prices oscillate
around the fundamental value exhibiting short run bubbles and long run mean reversion.

Although there are already quite a number of HAMs, only few attempts have been
made to estimate a HAM on economic or financial data. An early attempt has been
made by Shiller (1984), who presents a HAM with smart money traders, having ratio-
nal expectations, versus ordinary investors (whose behavior is in fact not modeled at
all). Shiller estimates the fraction of smart money investors over the period 1900–1983,
and finds considerable fluctuations of the fraction over a range between 0 and 50%.
More recently, Baak (1999) and Chavas (2000) estimate HAMs on hog and beef mar-
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ket data, and found evidence for the heterogeneity of expectations. For the beef market
Chavas (2000) finds that about 47% of the beef producers behave naively (using only
the last price in their forecast), 18% of the beef producers behaves rationally, whereas
35% behaves quasi-rationally (i.e. use a univariate autoregressive time series model
of prices in forecasting). Winker and Gilli (2001) and Gilli and Winker (2003) esti-
mate the model of Kirman (1991, 1993) (see Subsection 5.1) with fundamentalists and
chartists, using the daily DM–US$ exchange rates 1991–2000. Their estimated parame-
ter values correspond to a bimodal distribution of agents, and Gilli and Winker (2003,
p. 310) conclude that “. . . the foreign exchange market can be better characterized by
switching moods of the investors than by assuming that the mix of fundamentalists and
chartists remains rather stable over time”. Westerhoff and Reitz (2003) also estimate an
HAM with fundamentalists and chartists to exchange rates and find considerable fluctu-
ations of the market impact of fundamentalists. In a recent paper, Boswijk et al. (2005)
use yearly data of the S&P500 index, 1890–2003, to estimate a version of the Brock
and Hommes (1998) asset pricing model with two types of strategies and switching
of strategies driven by short run profits. Their estimation yields two different regimes,
one stable mean-reverting and one unstable trending regime. Fractions of the two types
change considerably over time, and especially in the nineties, the fraction of trend fol-
lowers becomes large, suggesting that the strong rise in stock prices in the nineties has
been exaggerated by trend extrapolation driven by short run profits. All these empirical
papers suggest that heterogeneity is important in explaining the data, but much more
work is needed to investigate the robustness of this empirical finding.

Much of the work on HAMs is computational and theoretically oriented, but little
work has been done on policy implications. The most important difference with a repre-
sentative rational agent framework is perhaps that in a heterogeneous boundedly rational
world, asset price fluctuations exhibit excess volatility. If this is indeed the case, it has
important policy implications e.g. concerning the debate on whether a Tobin tax on fi-
nancial transactions is desirable. In an interesting recent paper, Westerhoff and Dieci
(2005) use a HAM to investigate the effectiveness of a Tobin tax. Investors can invest
in two different speculative asset markets. If a Tobin tax is imposed on one market, it
is stabilized while the other market is destabilized; if a tax is imposed on both markets,
price fluctuations in both markets decrease. Another example of a policy oriented paper
is Westerhoff (2004), who investigates the effectiveness of trading brakes in a HAM.
Although much more work is needed to be conclusive on these important issues, these
are interesting results illustrating how HAMs can be used to investigate policy issues in
future work.

The paradigm of agent-based, behavioral economics, behavioral finance and bounded
rationality is rapidly expanding. Heterogeneity is likely to play a key role in this ap-
proach, and agent-based computational HAMs deserve high priority in future work.
Will an analytical approach survive within more computational oriented research in the
21st century? Computational models are becoming increasingly important and have the
advantage that many aspects at the micro level and details of the interaction among
agents can be modeled and simulated on a computer. But a problem with large com-
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puter simulation models is that there are too many degrees of freedom and too many
parameters. For example, in a computational model often there are many places where
noise enters the model at the micro-level, which makes it very difficult to assess the
main causes of observed stylized facts at the aggregate, macro level. The search for a
(large) computational agent-based HAM capturing the stylized facts as closely as pos-
sible deserves high priority. But at the same time one would like to find the simplest
behavioral HAM (e.g. in terms of number of parameters and variables), with a plausible
behavioral story at the micro level, that still captures the most important stylized facts
observed at the aggregate level. The simplest HAM can then be used to estimate behav-
ioral heterogeneity in laboratory experimental and/or empirical time series data. Simple
and parsimonious HAMs can thus help to discipline the wilderness of agent-based mod-
eling.
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1. Introduction

In the mid to later part of the 20th century, finance witnessed a revolution. The advent of
the efficient markets hypothesis, the capital asset pricing model, and the Black/Scholes
options pricing formula put the field on a new, solid scientific foundation. This world
was built on the assumption that asset markets were powerful computational engines,
and were able to aggregate and process the beliefs and demands of traders, leaving in
prices the full set of properly processed information currently available. At the core of
asset pricing, efficient market theories give a clean and compelling picture of the world
which is as appealing to financial economists as it is potentially unappealing to financial
practitioners.1 It is interesting to note that these foundations came with a very important
computational dimension. The early availability of large machine-readable data sets,
and the computational power to analyze them, laid the critical foundation for this new
financial rigor.2 In agent-based computational models the computer is once again at the
center of a change in thinking about financial markets. This time it is helping to pursue
a world view in which agents may differ in many ways, not just in their information,
but in their ability to process information, their attitudes toward risk, and in many other
dimensions.

Models in the realm of agent-based computational finance view financial markets as
interacting groups of learning, boundedly-rational agents. The computer may or may
not be a necessary tool to understand the dynamics of these markets. This survey will
concentrate on the cases where analytic solutions would be impossible, and computa-
tional tools are necessary.3 It is important to distinguish agent-based models from other
more general heterogeneous agent models in finance, since the latter have been part of
the field for some time.4 In agent-based financial markets, dynamic heterogeneity is
critical. This heterogeneity is represented by a distribution of agents, or wealth, across
either a fixed or changing set of strategies. In principle, optimizing agents would re-
spond optimally to this distribution of other agent strategies, but in general, this state
space is far too complicated to begin to calculate an optimal strategy, forcing some
form of bounded rationality on both agents and the modeler. It is important to note that
in these worlds bounded rationality is driven by the complexity of the state space more
than the perceived limitations of individual agents. It is also important to remember that
the simplified rules of thumb used by agents do not suggest that the exercise is forcing
some sort of simplified solution on the dynamics of the steady state or the model, or
is presupposing that markets are not well represented by equilibrium rational stories.

1 This view is not far off the more general perspective on information dissemination in the economy as a
whole put forth in Hayek (1945).
2 A good early collection of work from this era is Cootner (1964).
3 The survey by Hommes (2006) covers the more analytic heterogeneous agent models. Also, the recent

book by Levy et al. (2000) provides another survey of recent work in the field.
4 See Tesfatsion (2006) for more extensive definitions of agent-based approaches in economics.
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However, it is stressing that rules of thumb need to be built from a foundation of simple
adaptive behaviors.

Financial markets are particularly appealing applications for agent-based methods for
several reasons. First, the key debates in finance about market efficiency and rationality
are still unresolved. Second, financial time series contain many curious puzzles that are
not well understood. Third, financial markets provide a wealth of pricing and volume
data that can be analyzed. Fourth, when considering evolution, financial markets provide
a good approximation to a crude fitness measure through wealth or return performance.
Finally, there are strong connections to relevant experimental results that in some cases
operate at the same time scales as actual financial markets.

Academic finance has debated the issue of market efficiency for some time. The con-
cept of market efficiency has a strong theoretical and empirical backing which should
not be ignored.5 On the theoretical side, the argument is that traders with less than ratio-
nal strategies will disappear, and if prices contain any predictable components either in
their own past series, or connected to fundamentals, the remaining rational investors will
reduce these to zero. This is very close to the evolutionary arguments put forth in both
Alchian (1950) and Friedman (1953) for the evolution of firms and rational behavior in
general. This powerful idea still holds sway in much of the academic financial world,
and can be seen in papers such as Rubenstein (2001). As appealing as this idea is, it is
interesting to note that there never really has been a truly accepted dynamical process
describing how market efficiency comes about. The second foundation for efficient mar-
ket theories, supported by much of the early empirical work on financial markets, is that
markets are much more unpredictable than the world of the financial practitioner sug-
gests.6 In this early literature, the random walk model appeared to be a pretty good
approximation for the movements of stock prices, and it can be argued that the same
holds true today. We know that markets are probably not completely unpredictable, but
they still are very difficult to forecast.7

The early ideas of efficient markets were made more formal as modern tools of
dynamic optimization were brought to bear on these problems.8 This led to an even
stronger representation for financial markets, the representative agent.9 This model for-
mally connects asset prices to the beliefs of a single aggregate individual who can then
be linked to various state variables of the macroeconomy.

The theoretical parts of efficient markets ideas have been attacked for quite some
time. One of the most important questions for market efficiency comes from Grossman

5 The field has been surveyed many places, but the classic surveys remain Fama (1970) and Fama (1991).
6 Examples are in Cootner (1964) and Fama (1970).
7 It is also important to note that the radical idea that randomness was a good model for financial prices goes

back to the beginning of the 20th century in Bachelier (1900).
8 See, for example, Merton (1971), Breedon (1979), and Lucas (1978).
9 Constantinides (1989) is a good example describing the assumptions necessary to get a representative

consumer in many cases. Also, Kirman (1992) critically assesses the use of representative agents in many
economic contexts.
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and Stiglitz (1980). Here, agents have the choice of purchasing an information signal
on a financial asset. In a perfectly efficient world with a small cost on the signal, no
one would have an incentive to buy the signal. However, if no one bought the signal,
how did the market get informationally efficient in the first place? It is interesting to
note that many of the papers mentioned here, and in Hommes (2006), are based on the
paradoxical structure of this model. More recently, the literature on noise trading, e.g.,
[DeLong et al. (1990)], introduced the important idea that risk averse rational types may
not be able to “take over” the dynamics from less rational strategies, since they trade
less aggressively because they are sensitive to the risk induced by the other traders. We
will see that this concept plays an important role in many of the computational models
considered here.

The attacks on the empirical side of market efficiency have been more controversial.
During the 1980’s and 1990’s evidence began appearing indicating weaknesses with the
efficient market hypothesis and related equilibrium theories. There was evidence of pre-
dictability at long horizons as in Campbell and Shiller (1988), and at shorter horizons
as in Lo and MacKinlay (1988). Old prediction methods which had been previously
discredited began to appear again. An example of this was the use of moving average
technical analysis rules as in Brock et al. (1992). Also, connections between finan-
cial markets and macro dynamics were called into question by papers such as Mehra
and Prescott (1988) and Hansen and Singleton (1983). Finally, the single factor CAPM
model was shown to be insufficient in Fama and French (1992). Predictability alone did
not mean the efficient market was dead. Indeed, in his later survey Fama (1991) is well
aware that some studies had found some market predictability, but he correctly reminds
us that predictability alone does not necessarily mean that markets are inefficient since
profitable strategies may be bearing higher risk.10

Beyond simple predictability, there is a large range of empirical financial puzzles
which remain difficult to explain using traditional asset pricing models. Among these
are the overall level of volatility and long swings around fundamentals.11 Also, the
equity premium, which measures the difference between the real return on risky and
riskless assets, is difficult to explain.12 This feature is directly connected to the failure
of macro time series to connect well to financial markets. Series such as consumption
are not volatile enough, and do not comove with markets in a way that can justify the
magnitudes of risk premia observed in financial series. There have been many attempts
to address these issues in the academic finance literature, and these wont be surveyed
here.13

10 A good recent survey on this literature is Campbell (2000); see also, the textbook by Campbell et al.
(1996).
11 Shiller (2003) is a good recent survey on this.
12 This one feature has generated an extensive literature which is surveyed in Kocherlakota (1996) and more
recently in Mehra (2003).
13 Two recent models attempting to address many of these features are Campbell and Cochrane (1999) and
Bansal and Yaron (2004).
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Beyond these puzzles there are a set of facts that are still not well explained by any
existing model. Trading volume is probably the most important. Financial markets gen-
erally exhibit large amounts of trading volume, and it is difficult to imagine that this
can be driven by any situation not involving continuing disagreement between individ-
uals. Beyond the level of volume, there are also some interesting dynamic effects which
include persistence and cross correlations with returns and market volatility.14 Also,
volume has recently been shown to be a long-memory process with persistence extend-
ing out many periods [see, e.g., Lobato and Velasco (2000)]. At this time no convincing
mechanisms exist for any of these features.

Equally puzzling, but more extensively studied, the persistence of volatility is another
major feature that lacks an accepted explanation. While the direction of stock returns
is generally unpredictable, their magnitudes are often very predictable.15 Stock markets
repeatedly switch between periods of relative calm and periods of relative turmoil. This
feature remains one of the most robust, and curious, in all of finance. Although much
is known about the structure of volatility persistence, little is known about its causes.16

Similar to volume persistence, it is also a potential long-memory process.17 Beyond
simple persistence there are some more complicated issues in the dynamics of volume
and volatility.18

Closely related to volume and volatility persistence is the issue of fat tails, or excess
kurtosis. At frequencies of less than one month the unconditional returns of financial
series are not normally distributed. They usually display a distribution with too many
observations near the mean, too few in the mid range, and again, too many in the ex-
treme left and right tails. This feature has puzzled financial economists since it was
discovered by Mandelbrot (1963). Recently, it has gained more attention since practi-
cal problems of risk management critically depend on tail probabilities. Precisely tuned
complex derivative portfolios need very good estimates of potential tail losses. Return
distributions eventually get close to normal as the time horizon is increased. At the
annual frequency, the normal distribution is not a bad approximation. Fat tails are not
entirely independent of volatility persistence. The unconditional distributions of most
volatility persistent processes are fat tailed, even when their conditional distributions are
Gaussian. Beyond the frequency of large moves there is a continuing debate about the
exact shape of the tails of return distributions. It is possible that these may be described
by power laws.19

14 Many of these are documented in Gallant et al. (1992) and Gallant et al. (1993).
15 This has been well known since Mandelbrot (1963), and has led to a large industry of models for fitting
and testing volatility dynamics. See Bollerslev et al. (1995) for a survey.
16 One of the few examples of theoretical models generating persistent volatility is McQueen and Vorkink
(2004).
17 See Ding et al. (1993), Andersen et al. (2003), and also Baillie et al. (1996).
18 These include connections between volatility and volume to return autocorrelations, LeBaron (1992) and
Campbell et al. (1993), and temporal asymmetries in volatility documented in Dacorogna et al. (2001). Also,
there are general indications that volatility tends to lead volume, but not vice versa, Fung and Patterson (1999).
19 Good surveys on power laws in finance are Cont (2001), Dacorogna et al. (2001), Mantegna and Stanley
(1999), and Lux et al. (2002). Power laws are difficult to formally test empirically. However, Solow et al.
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One of the reasons for this wide range of puzzles is another justification for finance
being a good agent-based test bed. Financial data are generally plentiful, accurate, and
available on many different aspects of financial market functions. Good time series of
up to forty years are available on prices and volume. Series of lengths up to one hundred
years are available for lower frequencies, and for certain securities. Over the past twenty
years, extremely high frequency data has become available. These series often record
every trade or every order entering a financial market, and sometimes include some
information as to the identity of traders. Therefore, researchers have a detailed picture
of exactly how the market is unfolding, and the exact dynamics of trade clearing. Also,
series are available that show detailed holdings of institutions, such as mutual funds, and
that record the flows coming in and out of these funds. For individuals a few series have
been used that reveal the trades of investors’ accounts at various brokerage firms.20 This
gives an amazing level of detail about the behavior of individuals which will be useful
in the construction and validation of agent-based models. Finally, experimental data are
available that can be used to line up and calibrate agent behavior. Several of the models
covered here have already done this, and more examples of using experiments are given
in Duffy (2006). Finance experiments are particularly appealing since they often can be
done at time scales that are reasonable for the real data. It is more credible that you can
simulate a day of trading in the laboratory, than to simulate someone’s entire life cycle.

To summarize, financial markets are particularly well suited for agent-based explo-
rations. They are large well-organized markets for trading securities which can be easily
compared. Currently, the established theoretical structure of market efficiency and ra-
tional expectations is being questioned. There is a long list of empirical features that
traditional approaches have not been able to match. Agent-based approaches provide an
intriguing possibility for solving some of these puzzles.21 Finally, financial markets are
rich in data sets that can be used for testing and calibrating agent-based models. High
quality data are available at many frequencies, and in many different forms.

The remainder of this chapter will summarize recent work on agent-based computa-
tional models in finance. The next section introduces some of the computational tools
and design issues that are important in building markets. Section 3 covers artificial mar-
ket models that attempt to recreate an entire market. Section 4 covers a few other types
of markets which do not fit into the earlier categories. Section 5 covers some on-going
debates and criticisms of agent-based markets, and Section 6 concludes and suggests
questions for the future.

(2003) is one framework for attempting to build a test of power law behavior. LeBaron (2001c) provides an
example showing how visual tests of power laws can be deceiving.
20 Barber and Odean (2000) is example of this research.
21 There are other explanations that may yet prove to be important. These come from the area of behavioral
finance which allows for deviations from strict rationality, and emphasizes the presence of certain key psycho-
logical biases which have been experimentally documented. See Hirshleifer (2001) and Barberis and Thaler
(2002) for recent surveys on this literature.
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2. Design questions

In constructing an agent-based financial market the researcher is faced with a large
number of basic design questions that must be answered. Unfortunately, there is often
little guidance on which direction to follow. This section briefly overviews most of these
questions which will be seen again as the setup of different markets is covered in later
parts of this survey.

Probably the most important question is the design of the economic environment
itself. What types of securities will be traded? Will there be some kind of fundamental
value, and how does this move? Is there an attempt to model a large subset of the macro
economy or just a very specific financial market? As in any economic modeling situation
these are not easy questions. In the case of agent-based models they are often more
complicated, since the accepted knowledge of how to craft good and interesting worlds
of heterogeneous agents is still not something economists are very good at. It is not
clear that the knowledge base for building representative agent macro economies will
necessarily carry over into the agent-based world. This design question is probably the
most important, and the most difficult to give guidance on.

2.1. Preferences

Agent preferences are an important decision that must be made. Questions about pref-
erence types are critical. Should they be simple mean/variance preferences, or standard
constant relative risk aversion form? Also, myopic versus intertemporal preferences is
another issue. The latter brings in more realism at a cost of additional complexity in
the learning process. It is also possible that certain behavioral features, such as loss
aversion, should be included. Finally, there may be an argument in certain cases to
avoid preferences altogether, and to concentrate simply on the evolution of specific be-
havioral rules. The use of well-defined preferences is the most comfortable for most
economists. Their use facilitates comparisons with other standard models, and they al-
low for some welfare comparisons in different situations. Most applications to date have
stayed with myopic preferences since the added complexity of moving to an intertem-
poral framework is significant. It involves learning dynamic policy functions in a world
which already may be ill-defined.

2.2. Price determination

Many models considered here focus on the fundamental problem of price formation,
and the method for determining prices is critical. As we will see, many methods are
used, but most fall into one of four categories. The first mechanism uses a slow price
adjustment process where the market is never really in equilibrium. An early example
of this is Day and Huang (1990). In this case a market-maker announces a price, and
agents submit demands to buy and sell at this price. The orders are then summed; if there
is an excess demand the price is increased, and if there is an excess supply the price is
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decreased. The price is often changed as a fixed proportion of the excess demand as in
equation (1).

(1)pt+1 = pt + α(D(pt ) − S(pt )).

An advantage and disadvantage of this is that the market is never in equilibrium. This
might be reasonable for the adaptively evolving situations that are being considered.
However, it also may be a problem, since, depending on α, these markets may spend a
lot of time far from prices that are close to clearing the market. Another issue is how
is excess demand handled? Are excess demanders supplied from some inventory, or is
rationing used?

A second market mechanism is to clear the market in each period either numerically,
or through some theoretical simplifications that allow for an easy analytic solution to the
temporary market clearing price. Two examples of this method are Brock and Hommes
(1998) and Arthur et al. (1997). This method reverses the costs and benefits of the
previous method. The benefit is that the prices are clearing markets, and there is no
issue of rationing, or market-maker inventories that need to be dealt with. There are two
critical problems for this type of market. It may impose too much market clearing, and it
may not well represent the continuous trading situation of a financial market. Also, it is
often more difficult to implement. It either involves a computationally costly procedure
of numerically clearing the market, or a simplification of the demands of agents to yield
an analytically tractable price.22

These two pricing mechanisms take opposite extremes in terms of market clearing.
Two other mechanisms fall somewhere in between. The most realistic mechanism from
a market microstructure perspective is to actually simulate a true order book where
agents post offers to buy and sell stock. Orders are then crossed using some well-defined
procedure. Examples of this are Chiarella and Iori (2002) and Farmer et al. (2005). This
method is very realistic and allows detailed analysis of trading mechanisms. Its only
drawback is that these same institutional details need to be built into both the market
architecture, and the learning specifications of agents. Any market that hopes to simulate
realistic market microstructure behavior should follow this procedure.

The final market mechanism that can be used is to assume that agents bump into
each other randomly and trade if it benefits them. This is closest to a random field sort
of approach as in Albin and Foley (1992). A finance example of this is Beltratti and
Margarita (1992). This mechanism may have some connections to floor trading as used
in the Chicago futures and options exchanges. It might also be a good representation
for informal markets such as foreign exchange trading where, until recently, a lot of
trade was conducted over the telephone. It would appear realistic for situations where

22 A close relation to this method is to assume that prices are a function of the aggregation of expectations
as in Kirman (1991) and De Grauwe et al. (1993). Although trades don’t actually take place, these papers
do provide a clean mechanism for determining the current period price, and they can concentrate on agent
expectation formation.
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no formal trading markets have been established. However, it may not be very natural
in places where trading institutions are well defined, and function to help buyers meet
sellers in a less-than-random fashion.

2.3. Evolution and learning

Much of the agent-based literature has used tools taken from the artificial intelligence
literature to model learning. One of these is the Genetic Algorithm (or GA), which is
a key component in many, but not all, agent-based financial markets.23 It is viewed by
some as a power tool for modeling learning and adaptation. It is an alternative to more
traditional learning approaches such as Bayesian learning and adaptive linear models. It
is also controversial in that it is not clear that this is a good mechanism for replicating
the learning process that goes on inside market participants’ heads.

The most common application of the GA is as a simple optimization technique used in
various problem solving situations. It is one of several optimization tools that are useful
in situations where traditional hill climbing methods can fail, such as multi-peaked ob-
jectives, or nondifferentiable objective functions, possibly with discrete input variables.
Although in this context the behavior of the GA is still not completely understood, this
is a far simpler setting than the multi-agent models that will be considered in this survey.
Many beginning researchers view the GA as a kind of black box, and simply follow pre-
vious work in setup and structure.24 This approach is probably a mistake. It is important
to think more about evolutionary computation in general than about the particular pieces
of the GA. The general field of evolutionary computation includes other methods such
as evolutionary programming, and evolutionary strategies, and genetic programming.
For the consumer of these techniques distinctions are somewhat unnecessary, and parts
of different methods should be used when the problem warrants it.25

Setting up an evolutionary learning framework requires several preliminary steps.
First, the mapping from behavioral rules into a genetic structure is important. In some
contexts this might involve simply combining real-valued parameters into a vector of
parameters, or in some instances it might involve coding real values as strings of zeros
and ones. It also may involve taking a complex representation such as a neural network
and mapping it into some simpler object. One needs to end up with some type of object
that represents behavior and can be easily manipulated by evolutionary operators.

In most evolutionary methods there will be a population of the previously mentioned
solutions. In the individual optimization setting the information contained in the popu-
lation is crucial to aiding in the search for solutions. Attached to each solution or rule is
a fitness value. This is essentially the objective function for this potential solution. In the
traditional optimization setting this isn’t a problem since it is most likely a well-defined

23 More information on genetic algorithms along with many other learning algorithms is presented in Brenner
(2006) and Duffy (2006).
24 Goldberg (1989) is the classic book for early GA adopters.
25 A nice balanced overview of all these methods is Fogel (1995).
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function of the given parameters. This gets more difficult in multi-agent settings where
the question of optimality may be less well defined. Given a fitness value, the population
can now be ranked. The computer simulates evolution by removing some set of low fit-
ness solutions. The fraction of the population removed is an important design parameter
to be decided. Setting this too high may cause the population to converge too quickly
to a suboptimal solution. Setting it too low may make selection weak, and the GA may
converge far too slowly.

In financial settings agents and strategies can be evolved using either wealth, or
utility-based fitness. In the case of wealth, evolution of the agents themselves might
be unnecessary since agents gaining more wealth will have a larger impact on prices.
Utility is another possible fitness measure. Agents can be evaluated based on ex post
utility achieved. Rules or trading strategies are often evolved and evaluated. The sim-
plest criterion is to use a forecast-based measure such as mean squared error, or mean
absolute error, and to promote rules that minimize this. Forecasts are then converted
into asset demands using preferences. This is a very transparent route, and it is possible
to evaluate and compare agents based on their forecasting performance. This also aligns
with the bulk of the learning literature in macroeconomics, which often concentrates on
forecast evaluation.

A second route is to ignore forecasts altogether and to deal directly with asset de-
mands and strategies. The strategies are then evolved based on their impact on agents’
utilities. This may be more difficult than considering forecast errors, but it eliminates
an extra step in converting forecasts to demands and is a little cleaner from a decision-
theoretic standpoint. In some cases this also avoids the need to estimate variances and
other higher moments since risk would be taken into account. Finally, it is important
to remember that all these fitness measures will most likely be measured with noise.
Furthermore, it is not clear that the time series used to estimate them are stationary.
Agents may end up choosing different lengths of history, or memory, in their rule eval-
uations, which can translate into interesting dynamics. In a nonstationary world, there
is no a priori argument for any particular history length. This greatly complicates the
evolutionary process, and distances these problems from those often considered in the
evolutionary computation literature.

2.4. Information representation

One of the biggest problems in market design is how information is presented to the
agents, and how they process it. Theoretically, this is the daunting task of converting
large amounts of time series information from several series into a concise plan for
trading. To handle this researchers are often forced to predefine a set of information
variables as well as the functional structure used to convert these into trading strategies.
A second problem is how information is revealed about securities. Are there special sig-
nals visible only to certain agents? Are there costly information variables? How frequent
are information releases? Unfortunately, there are no easy answers to these questions.
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This is another area where technology is often taken from the artificial intelligence lit-
erature. In Arthur et al. (1997) a method known as a classifier system is used, which will
be described later in this chapter and in Brenner (2006) and Duffy (2006). In Beltratti
and Margarita (1992) and LeBaron (2001b) neural networks are used to represent trad-
ing strategies. However, strategies can be as simple as a vector of parameters as in Lettau
(1997).

2.5. Social learning

How agents learn from each other is another important design question. This is often
known as “social learning”, and has been the subject of much discussion in the agent-
based modeling community.26 At one extreme, agents may operate completely on their
own, learning rules over time, and only reacting with others through common price and
information variables. However, in financial settings it may be useful to try to implement
some form of communication across agents, or even to transfer rule-based information
across individuals from generation to generation. How this information transfer is han-
dled may be critical in market dynamics; these information correlations cause eventual
strategy correlations, which can translate into large price movements and other features
suggestive of a breakdown in the law of large numbers.

2.6. Benchmarks

The final design issue is the creation of useful benchmark comparisons. It is very impor-
tant to have a set of parameters for which the dynamics of the market is well understood.
This demonstrates certain features in terms of learning dynamics and trading. An impor-
tant benchmark might be the convergence to a well defined rational expectations equi-
librium for certain parameters. The existence of such a benchmark further strengthens
the believability of a computational market. Parameter sensitivities can reveal critical
factors in a simulation that lead a market towards or away from an equilibrium. Finally,
the dynamics of the learning process may be just as interesting in a neighborhood of an
equilibrium as far away from an equilibrium. To make this distinction the definition of
a benchmark is essential.

3. Artificial financial markets

It is easy to get lost in the many different types of models used in agent-based financial
markets. Several approaches are used, and it is often difficult to distinguish one model
from the next. This survey will take an initial stand on trying to categorize the many
models that exist in a hope that this will help new researchers to better sort out what is

26 See Vriend (2000) for a description and examples.
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going in the field. At such an early stage, it is still possible that some may argue about
how markets are being categorized, or that some markets belong in multiple categories,
or that the categories themselves are wrong. Most of the earliest models were intended
to create an entire functioning financial market. They were often referred to as “arti-
ficial financial markets.” The next several subsections deal with different parts of this
literature.

3.1. Few-type models

Most of the earliest artificial financial markets carefully analyze a small number of
strategies that are used by agents to trade a risky asset. The advantage of a small set of
strategies comes in tractability, and in many cases these models are more analytic than
computational. Many of these models follow the early lead of Frankel and Froot (1988),
Kirman (1991), and De Grauwe et al. (1993). In these papers it is assumed that there is
a population of traders following two different types of strategies, labeled “technical”
and “fundamental.” Technical traders are generally responsive to past moves in prices,
while fundamental traders make decisions based on some perceived fundamental value.
The relative numbers in the populations usually respond to past performance of the
given strategies. The simplicity of these models makes them an important base case
for the more complicated computational models which will be discussed later. Most of
these models are analytic, but several with small strategy sets still require computational
techniques to get their dynamics. These will be discussed here.27

One of the earliest few-type financial market models was developed by Figlewski
(1978). This market model examines the impact of shifting wealth across differentially-
informed agents in a simple asset pricing framework. In this market agents possess a
critical piece of information which might be unrealistic when considering real financial
markets. It is assumed that they know the wealth level of the other type of agent in the
market. This is critical in forming price expectations across the two types. There is an
efficient market benchmark, and many of the simulation runs converge to this. Certain
sets of parameters do not perform well in terms of convergence. Among these is the case
where one set of agents has better information in terms of signal variance. In this case
the simulated variance in the market is 14 percent larger than the efficient market bench-
mark. Actually, the simulations show that overall market efficiency might be reduced by
the addition of traders with inferior information. Though this paper contains little infor-
mation on the dynamics of prices and trades, it is still an important early reminder on
how wealth dynamics affect the convergence to an efficient market.

Kim and Markowitz (1989) are interested in the problem of market instability, and
the impact that computerized strategies such as portfolio insurance may have had on the

27 Other important early papers in this area which are discussed in Hommes (2006) are Beja and Goldman
(1980), Brock and Hommes (1998), Chiarella (1992), Cont and Bouchaud (2000), Day and Huang (1990),
Lux (1997), and Zeeman (1974).
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crash of 1987. Portfolio insurance strategies attempt to put a floor on the value of a port-
folio through the use of a dynamic trading strategy. As the market falls, investors move
holdings to cash to stop their losses. It is obvious that a market with many traders using
portfolio insurance strategies can be very unstable. Since the strategy is well defined,
this allows for a simple computational test bed to assess their impact. The authors find
that price volatility, trading volume, and the size of extreme price changes is increased
as the fraction of portfolio insurance traders increases.

3.2. Model dynamics under learning

The papers described in this section are more computational than those mentioned pre-
viously. In most cases the small sets of tractable trading rules are replaced with larger
sets of strategies, which are usually represented using various computational techniques.
These will be referred to as many-type models. This first section concentrates on appli-
cations where the economic environment is well understood and where there is often a
simple homogeneous rational expectations equilibrium which gives a useful benchmark
comparison.

Lettau (1997) provides a good example of a computational model of this type. He
implements a financial market model with a set of heterogeneous learning agents, that is
simple, transparent, and easy to implement. The model is a portfolio choice environment
where investors must decide what fraction of wealth to put in a risky asset. There is also
a risk-free asset paying zero interest. The world is a repeated two-period model with
myopic preferences based only on wealth in the second period. The risky asset has
an exogenously given price and pays a random dividend, d , which follows a normal
distribution. The second period wealth of agents is given by,

(2)w = s(d − p),

and their preferences are assumed to exhibit constant absolute risk aversion which can
be parameterized as in,

(3)U(w) = −e−γw.

This is clearly a very simplified market. No attempt is made to look at the feedback from
agents’ demands to returns on the risky asset. There is no consumption, and wealth is
not linked to agents’ impact on asset prices, or evolution. However, it is a very straight-
forward test of learning in a financial market.

Given the normally distributed dividend process, there is a well-known optimal solu-
tion to the portfolio problem given by,

(4)s∗ = α∗(d̄ − p),

(5)α∗ = 1

γ σ 2
d

,

where σ 2
d is the variance of the random dividend payout. The main exercise in Lettau’s

paper is to see if and when agents are able to learn this optimal portfolio strategy using
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a genetic algorithm. In general, agents’ policy functions could take the form of

(6)s = s(d̄, p),

but Lettau simplifies this by using the optimal linear functional form for agent i,

(7)si = αi(d̄ − p).

This gives the agents a head start on the portfolio problem, but they still need to learn
the optimal α.28

The market is run for S periods with new independent draws of the dividend for each
period. Each agent continues to use the portfolio determined by αi , which remains fixed.
At the end of each block of S the genetic algorithm (GA) is run, and the set of agent
parameters is redrawn. Agents are parameterized with a bitstring encoding given by

(8)αi = MIN + (MAX − MIN)

∑L
j=1 μj,i2j−1

2L − 1
,

where μj,i is the bitstring for the strategy of agent i. The GA first gets a fitness value
for each agent estimated over the S periods using

(9)Vi =
S∑

s=1

U(wi,s).

This sets the fitness to the ex post estimated expected utility over the sample. A new
population is chosen using a technique known as “fitness proportional” selection. Each
agent is assigned a probability using

(10)pi = 1/Vi∑J
j=1(1/Vj )

.

Then a new population of length J is drawn from the old, with probability pi assigned to
each type. This new population is now the basis for the crossover and mutation operators
in the GA. Each new rule is crossed with another rule chosen at random according to a
fixed crossover probability. Crossover chooses a midpoint in each of the two bitstrings,
and then combines the first substring of one rule, with the second substring of another
rule. This new set of rules is then mutated, where each bit is flipped according to a fixed
probability. In Lettau’s framework the mutation rate is slowly decayed over time, so
that eventually mutation probabilities go to zero. This is a form of cooling down the
learning rate as time progresses. After mutation, the new population is ready to go back
to purchasing the risky asset for another S periods before the GA is run again.

Lettau’s results show that in various specifications the GA can learn the optimal pa-
rameter for the portfolio policy, nevertheless, there are some important caveats. First,

28 A more complicated functional form is tried, but the only change is that convergence is slowed down by
the need to learn more parameters.
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the specification of S is crucial. For example, Lettau ran experiments for which the
optimal value of α was α∗ = 1.0. With S = 150, he found that the experimentally-
determined value of α in his agent population was 1.023. However, for S = 25 this
average population α increased to 1.12, substantially different from the optimal value.
It is not surprising that sample size matters, but this is a fact that can often be forgotten
in more complicated setups where this choice is not as transparent. Also, Lettau’s esti-
mated α values are all biased above the optimal value. The intuition for this is clear for
the case where S = 1. Ex post it is optimal for S to be 0 or 1 depending only on the draw
of d . Lettau sets the mean, d̄ , to a positive value, so that, on average, it will be better to
hold the risky asset. This leads to an upward bias for the smaller values of S. In larger
samples this bias dissipates as agents are better able to learn about the advantages of
the diversified optimal strategy. This small bias is an important reminder that learning
diversified strategies can be difficult.

This is a very stylized and simplified agent-based market. There is no attempt to
model the price formation process at all. Therefore, this cannot be viewed as an attempt
to model an actual financial market, in which the dependence between today’s price
and traders’ strategies is the most critical aspect of the agent-based modeling approach.
However, it is a very clean and straightforward setup and hence a good learning tool.
Also, the biases and sample size issues that it brings up will also pertain to many of the
much more complicated models that will be considered later.29

In Arifovic (1996) a richer more extensive model is constructed. Once again, the
model stays close to a well-defined theoretical framework while extending the frame-
work to include learning agents. The model that is used is the foreign exchange model
of Kareken and Wallace (1981). This is a two-country, two-period, overlapping gen-
erations model. Agents have income and consumption in both periods of their lives.
Agents’ only means for saving income from the first to the second period of their lives
is through either country’s currency.

Agents maximize a two-period log utility function subject to their budget constraints
as in,

max
ct,t ,ct,t+1

log ct,t + log ct,t+1

st. ct,t ≤ w1 − m1,t

p1,t

− m2,t

p2,t

ct,t+1 ≤ w2 + m1,t

p1,t+1
+ m2,t

p2,t+1
.

m1,t and m2,t denote the money holdings of agents in the two currencies. There is only
one consumption good, which has a price in each currency. The exchange rate is given
by

(11)et = p1,t

p2,t

.

29 Another simple example of this can be found in Benink and Bossaerts (2001).
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Given this setup, all agents care about in terms of money holdings are the relative returns
of the two currencies. In an equilibrium where both currencies are held, these returns
must be equal.

(12)Rt = p1,t

p1,t+1
= p2,t

p2,t+1
.

It is also easy to show that the agents’ maximization problem yields the following de-
mand for savings:

(13)st = m1,t

p1,t

+ m2,t

p2,t

= 1

2

(
w1 − w2

1

Rt

)
.

The model has a fundamental indeterminacy in that, if there exists one price series and
an exchange rate paring that constitutes an equilibrium, then there will exist infinitely
many such equilibria. One of the interesting issues that Arifovic is exploring is whether
the GA learning mechanism will converge to a single exchange rate. Sargent (1993)
explored this same question; he found that certain learning algorithms converge, but the
final exchange rate depends on the starting value.

The multi-agent model is set up with a population of agents in each generation.
Agents are represented with a bitstring which represents both their first period con-
sumption decision, and the fraction of their savings to put into currency 1. A bitstring of
length 30 is divided as 20 binary bits for consumption in period 1, and 10 for the frac-
tion of savings put into currency 1. These two values completely determine a period 1
agent’s behavior through life. The price level in this model is determined endogenously.
The agent bitstrings determine their desired real savings in each currency, which gives
the aggregate demand for real balances in the two currencies. Nominal currency sup-
plies are given, so this determines the price level in each currency. This setup avoids
some of the complexities that appear in other papers in finding prices.

The evolution of strategies is similar to Lettau (1997). The fitness of a strategy is de-
termined by its ex post utility, and a new population is drawn using fitness proportional
selection. Agents are paired, and a crossover operator is applied to each pair with a given
probability generating two new children. When crossover is not used, the children are
direct copies of the parents. These children are then mutated by flipping bits with a cer-
tain probability. The fitness of the new rules is then estimated by implementing them on
the previous round of prices and returns. At this point all four of the children and par-
ents are grouped together, and the fittest two of this set are put into the next generation’s
population. This is known as the election operator, which was first used in Arifovic
(1994). It is designed to make sure that evolution continues to progress to higher fitness
levels.

Arifovic analyzes the dynamics of this market for various parameter values. The re-
sults show that the first-period consumption level converges to a stable value close to
the optimum. However, the exchange rate continues to move over time, never settling to
any constant value. There is an interesting interpretation for this dynamic price process.
In the equilibrium the return on the two assets is the same, so the learning agents are
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indifferent between holding the two currencies. Groups of agents move to holding one
currency or another, the exchange rate moves around as they shift demands between cur-
rencies. In a model such as this, it is clear that a constant exchange rate equilibrium can
only be maintained through some mechanism that shuts down learning and exploration
in the model. Arifovic also shows that similar features are obtained in experimental
markets.30

Routledge (2001) also critically examines what happens when leaning agents are
introduced into a well-known model. He implements GA learning in a version of the
heterogeneous information model of Grossman and Stiglitz (1980). This is a repeated
version of a model where agents can purchase a costly signal about a future dividend
payout of a stock. Learning takes place as agents try to convert the noisy signal into
a forecast of future dividends. Agents who decide not to purchase the signal must use
the current price to infer the future dividend payout. Individual agent representations
encode not just the decision on whether to purchase the signal but also the linear forecast
parameters which convert the signal into a conditional expectation of the future dividend
payout.

Grossman and Stiglitz (1980) show that there is an equilibrium in which a certain
fraction of agents will purchase the signal. Routledge (2001) shows that this can be sup-
ported in the GA learning environment. However, there are also sets of parameters for
which the original equilibrium proves to be unstable. The dynamics of this instability
are very interesting. There is instability and exploration going on around the equilib-
rium, and by chance a few more-informed agents may enter the market. The change in
market proportions of informed versus uninformed agents means that the current lin-
ear forecast parameters are now wrong. In particular, the uninformed need to learn how
to interpret the price with fewer of their type around. Unfortunately, as the number of
uniformed agents falls, the ability of their population to learn decreases due to small
sample size. Typically the end result is convergence to a situation in which all agents
are informed.31

3.3. Emergence and many-type models

The next set of artificial market models moves farther from testing specific models and
more towards understanding which types of strategies will appear in a dynamic trading
environment. All have at their core a philosophy of building a kind of dynamic ecology
of trading strategies and of examining their coevolution over time. This methodology
attempts to determine which strategies will survive, and which will fail. Also, one ob-
serves which strategies will emerge from a random soup of starting strategies, and which
are capable of self-reinforcing themselves, so that survival is possible. They also at-
tempt to perform a very direct exploration into the dynamics of market efficiency. If

30 These results are discussed in Duffy (2006).
31 Routledge (1999) presents similar results in an analytic framework.
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the market moves into a state where certain inefficiencies appear, then the hope is that
the evolutionary process will find new strategies to capitalize on this. The objective is to
explore a market that may not be efficient in the textbook sense, but is struggling toward
informational efficiency.

The Santa Fe Artificial Stock Market, SF-ASM, is one of the earliest in this set of
models. It is described in Arthur et al. (1997), and also in LeBaron et al. (1999).32

The basic objective of the SF-ASM is to understand the behavior of an environment
of evolving trader behavior, where prediction strategies compete against each other.
Part of this objective is to find if and when the market converges to a tractable rational
expectations equilibrium. A second part is to explore the dynamics of the computational
model for the cases in which convergence does not occur, and to compare these to results
from real financial time series.

The basic economic structure of the market draws heavily on existing market setups
such as Bray (1982) and Grossman and Stiglitz (1980). The traders have one-period
myopic preferences of future wealth with constant absolute risk aversion (CARA) utility
functions. There are two assets that agents trade in the market, a risky stock paying a
random dividend, dt , and a risk-free bond paying a constant interest rate, r . The dividend
follows an autoregressive process as in,

(14)dt = d̄ + ρ(dt−1 − d̄) + εt ,

where εt is Gaussian, independent, and identically distributed, and ρ = 0.95 for all
experiments. It is well known that, assuming CARA utility functions, and Gaussian
distributions for dividends and prices, the demand for holding shares of the risky asset
by agent i is given by,

(15)st,i = Et,i(pt+1 + dt+1) − pt (1 + r)

γ σ 2
t,i,p+d

,

where pt is the price of the risky asset at t , σ 2
t,i,p+d is the conditional variance of p +

d at time t for agent i, γ is the coefficient of absolute risk aversion, and Et,i is the
expectation for agent i at time t . Assuming a fixed number of agents, N , and a number
of shares equal to the number of agents gives,

(16)N =
N∑

i=1

si ,

which closes the model.
The SF-ASM includes an important benchmark for comparison. There exists a linear

homogeneous rational expectations equilibrium in which all traders agree on the model

32 There is also an earlier version of the SFI market which is described in Palmer et al. (1994). This market
has one crucial difference with the later market in that it implements an excess demand price adjustment
mechanism. The later version uses a form of market clearing.
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for forecasting prices and dividends. In the equilibrium it is easy to show that the price
is a linear function of the dividend,

(17)pt = b + adt ,

where dt is the only state variable. The parameters a and b can be easily derived from
the underlying parameters of the model by simply substituting the pricing function back
into the demand function and setting it equal to 1, which is the equilibrium holding of
shares for each agent.

The most important part of the SF-ASM is its implementation of learning and fore-
casting. This is done with a classifier forecasting system, which is a modification of
Holland’s condition-action classifier [Holland (1975), Holland et al. (1986)]. It maps
current state information into a conditional forecast of future prices and dividends.33

Traders build their own individual forecasts of future prices and dividends by matching
specific forecasting rules to current market conditions. In the classifier system traders
can use, or ignore, any part of a predefined set of current information in their forecasts.
In the SF-ASM classifiers are used to select between different forecasts that are con-
ditioned on certain pieces of market information. Information is coded into bitstrings,
and each bit is connected to different ranges for various indicators. The information bits
are classified either as fundamental or technical. Fundamental bits refer to the current
price relative to the current dividend level. Technical bits are trend following indicators
that refer to the current price relative to a moving average of past prices.34 A classifier
forecasting rule is matched to a specified vector of these conditions, and corresponds to
a linear price-dividend forecast of the form

(18)Et,i(pt+1 + dt+1) = aj (pt + dt ) + bj .

The classifier selects the appropriate real-valued pair, (aj , bj ). Therefore, the classifier
selects a piecewise linear forecasting rule which is then used in the demand relation-
ship (15). It is important to note that given the linear structure of the forecasting rule
and the rational expectations equilibrium in (17), neither fundamental nor technical bits
would provide additional information if the market were in the equilibrium.

At the end of each period, each trader with probability p engages in a learning process
to update his current set of forecasting rules for the next period and with probability
(1 − p) leaves his current set of forecasting rules unchanged. The probability, p, is
an important model parameter that determines the average number of periods between
learning for each trader as a function K = K(p). This K is referred to as the “learning
rate.” Learning takes place with a modified genetic algorithm (GA) designed to handle
both the real and binary components of the rule sets. The worst performing 15 percent

33 Classifiers are not used extensively in economic modeling. Examples of other studies using classifiers are
Marimon et al. (1990) and Lettau and Uhlig (1999). See Brenner (2006) and Duffy (2006) for more discussion.
34 The bits code these based on conditions. An individual bit would refer to the test pt /mat > 1. If this is
true the bit is set to 1, and if it is false it is set to 0.
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of the rules are dropped out of an agent’s rule set, and are replaced by new rules. New
rules are generated using a genetic algorithm with uniform crossover and mutation. For
the bitstring part of the rules, crossover chooses two fit rules as parents, and takes bits
from each parent’s rule string at random.35 Mutation involves changing the individual
bits at random. Crossover also is implemented on the real components of the forecasting
rules too. This is one of the earlier applications of a real-valued crossover operator in
finance.

One of the objectives of the SF-ASM was to examine the dynamics of learning, and
to explore its likelihood of convergence to an efficient market equilibrium. Experiments
are performed for two values of the learning rate. A slow-learning experiment sets the
average time between runs of the GA to K = 1000, and a fast-learning experiment
sets the average time between runs to K = 250. In the first case, the market converges
to the benchmark rational expectations equilibrium, where all agents agree on how to
process the fundamental dividend information. They also ignore all other information.
In the fast-learning experiments, K = 250, a very different outcome occurs. The market
does not appear to converge, and it shows several indications of interesting features
in the stock return time series.36 Among these are nonnormal return distributions, or
“fat tails”, persistent volatility, and larger amounts of trading volume than for the slow
learning case. All of these are elements of the empirical puzzles mentioned in the early
sections of this chapter. Though the SF-ASM does a good job in replicating these facts
qualitatively, no attempt is made to quantitatively line them up with actual financial data.
Indeed, the SF-ASM never even clearly states what it considers to be the frequency
of the returns series that it generates, or whether the underlying dividend process is
realistic.

The SF-ASM has formed a platform for other explorations. Joshi et al. (2000) explore
the interactions between the technical and fundamental traders. They find that the use of
technical trading bits is a dominant strategy in the market. If all other traders are using
technical bits, then it would be in the interest of new agents to use them too. Also, if
all other agents are using fundamental bits only, then it is optimal for the new agent to
add technical bits as well. This strongly suggests that trend-following behavior may be
difficult to remove from a market. The most sophisticated addition to the SFI classifiers
is in Tay and Linn (2001), who replace the classifiers with a fuzzy logic system.

The SF-ASM market has generated much interest since its software is now publicly
available. It was originally written in the programming language C, then objective-C,
and finally ported to the Swarm system. Johnson (2002) gives an overview and critique
of the software from a design perspective, and Badegruber (2003) provides an extensive
replication and reliability study. It is fair to summarize that the software is not easy to
read or use. Much of this stems from its long history on several different platforms. Also,

35 Selection is by tournament selection. This means that, for every rule that is needed, two are picked at
random and the strongest is taken.
36 This parameter sensitivity is closely related to the changes observed in Brock and Hommes (1998) as the
intensity of choice parameter is changed.
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it began before objective languages were popular, and was only adapted to objective
form in its later versions. It was not built to be an objective piece of code from the start.

Another important software replication issue arising from work with the SF-ASM is
presented in Polhill et al. (2005). These authors show that the precise trajectory dynam-
ics in the SF-ASM can be altered by making mathematically irrelevant changes in the
code. For example one might change,

(19)d = a + b

c

to

(20)d = a

c
+ b

c
.

Although these two equations are the same, they generate different code in the com-
piler. This change appears to have no impact on the general results, but it does impact
the exact replication of trajectories. Runs using the two different forms will eventually
diverge. This is an interesting reminder about the importance of nonlinearities inside
these large systems, and on the difficulties in replicating exact trajectories across dif-
ferent computing platforms. While general statistical properties and features should be
maintained, exact replications may be an elusive goal.

In addition to software critiques of the SF-ASM, there are also important design
issues to consider. Many of these are covered in LeBaron (2005). Qualitatively, the
classifier system has proved to be a very complicated and unwieldy way to model and
understand the market dynamics. Many parameters are needed to define the operation
of the classifier, and it not clear which of these is important. Also, the implementation
of the classifier is often criticized. Ehrentreich (2002) addresses the GA and its impact
on the classifier bitstrings. His claim is that the original SF-ASM GA mutation operator
was biased, and he implements a new operator that he claims is unbiased. In his modi-
fied market bitstrings contains fewer 1’s and 0’s which connect forecasts to information
bits. Also, the emergence of technical trading rules does not occur. This is an interesting
modification, but the entire classifier system makes it difficult to judge what is unbiased
in terms of mutation. There is a generalizer system which periodically removes bits in
the classifier from rules that haven’t been used recently. This puts a downward pres-
sure on bit-setting in the Ehrentreich (2002) system. Second, it is not clear whether one
has to have an unbiased mutation operator in terms of bitstrings. One could view a bi-
ased operator as putting many possible conditional rules out in public view, and then
it is the agents’ choice to ignore them. The traders are designed to ignore useless rules
since the forecast performance of these rules will be inferior to the others. Disagree-
ments about the “right” mechanism here indicate why the classifier system is difficult
to implement and completely understand. One major question about the classifier that
is left unanswered is how important the definition of the bitstring is to the dynamics
of the market. These bit information values are obviously pre-loaded. Finally, another
important critique is that by assuming CARA utility functions, the SF-ASM ignores the
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wealth dynamics of agents. In other words, it is not the case that wealthier agents have
a greater impact on prices in the SF-ASM.

If the general goal of the financial markets in this section is to see strategies form
out of a general set of functional building blocks with little structure entered initially
by the designer, then the model of Chen and Yeh (2001) is probably the best model di-
rectly addressing this problem. These authors use a computational methodology known
as genetic programming to model agent learning. They allow traders to evolve actual
predictor functions for financial forecasting.37

The economic setup in Chen and Yeh (2001) is similar to the SF-ASM except that the
price adjustment occurs in response to excess demands as in Palmer et al. (1994). Also,
demands are based on the forecast of future prices and dividends. This is where genetic
programming learning is implemented. The forecast takes the form of

(21)Ei,t (pt+1 + dt+1) = (pt + dt )(1 + θ1 tanh(θ2fi,t )),

where fi,t is evolved using genetic programming. It takes as inputs pt−j + dt−j for
j = 1, 2, . . . , 10.

A second important innovation is the use of a common pool of rules, which the au-
thors refer to as a “business school.” This allows for some strategy learning to occur
across agents in a very natural way.38 The rules in the common pool are evolved ac-
cording to forecast accuracy. Traders then decide to update their own strategies based
on current performance. They draw rules from the common pool, comparing their per-
formance with their current rules. If the new rule is better they switch, but if they are
unsuccessful after several tries, they quit and stay with their current rule.

Simulations of this financial market display some features of actual return time series.
They exhibit fat tails, and visually they do not settle down to any price level. However,
there are several features that disagree with the actual data. For example, there is a large
level of positive skew. Also, the linearly filtered return series are independent, which
indicates there may be no persistent effects in volatility. Another interesting feature that
the authors test for is a unit root in the price series. The standard tests cannot reject a
unit root. This is a little curious since the dividend process is stationary. It is probably
sensible that in the long run prices should not diverge too far from the fundamental, and
should therefore also be stationary.

Another financial market model is the Genoa artificial market, Raberto et al. (2001).
In the original version of their market model the authors used random-order selection,
meaning that buy and sell limit orders are generated at random by traders. Traders first
determine whether they are a buyer or seller at random, and then place a limit buy or
sell order determined by their budget constraints. These limit prices in each case are

37 Genetic programing is discussed in Brenner (2006) and Duffy (2006). There have been some implementa-
tions of this technology on actual data as in Neely et al. (1997) and Allen and Karjalainen (1998). The origins
of genetic programming go back to Koza (1992).
38 This is the recurring theme of individual versus social learning; see Vriend (2000).
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generated as random variables. In contrast to the previous markets, these traders are
generally fairly unsophisticated. As in the study by Cont and Bouchaud (2000) they
exhibit a kind of herding behavior. Buyers and sellers group into larger dependent sets,
which then move together.

The Genoa artificial stock market has an interesting market-clearing property. The
limit orders are all collected after a short period has gone by, and then the market is
cleared by crossing the supply and demand curves given by the current limit orders.
The market-clearing price is then used to clear all of the trades that can be executed on
the limit order book. This interesting batch-order book market is very simple and direct.
Similar to the other models discussed earlier, the Genoa market generates uncorrelated
returns, fat tailed return distributions, and persistent price volatility.

The financial market model presented in Beltratti and Margarita (1992) and in
Beltratti et al. (1996) is quite different from the other markets described here. It is again
searching for an emergent pattern in the trading behavior of adaptive agents. However,
unlike the previous models, this one has no organized central trading institution. Agents
trade in a completely disaggregated fashion in a market where they randomly bump into
potential trading partners. This is similar to structures such as Albin and Foley (1992).

The traders build a forecast of what they think the stock is worth using past infor-
mation and an artificial neural network. The network builds a forecast of the following
form,

(22)Ei,t (p + t + 1) = f (pi,j,t−1,�pi,j,t−1, πt−1,�πt−1),

where πt−1 is the average transaction price at time t − 1 across all traders, pi,j,t−1 is
the last price execution that the trader received, and �x refers to the one-period change
in x. This is an interesting function because it implies the traders are using both local
and global information. When two traders meet, they compare their price forecasts. The
trader with the larger forecasted price then purchases 1 share from the trader with the
smaller forecasted price. The trade is executed at the simple average of the two prices.
The market keeps track of the average execution price across the random pairings, and
this is included in the information sets of the traders. After a day of trading, traders are
allowed to update the weights of their neural networks in a direction that they perceive
will improve forecast accuracy.

Beltratti et al. (1996) present many experiments with this basic structure. One of
the more interesting explorations tackles the problem of heterogeneous agents with
differing levels of complexity. This is covered in Beltratti and Margarita (1992). The
population consists of different neural network structures. Trader sophistication is rep-
resented by more complicated neural networks. The more complicated structure comes
at a given complexity cost, c, that is paid directly by the traders. The simulations show
the eventual heterogeneous population depends critically on the value of c. For low lev-
els of c, traders purchase the extra network complexity, and for high levels of c, they
eventually only use the simple networks. There is an interesting mid-range of c values
where both types of strategies are able to coexist.
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In all of the papers reviewed so far, the traders are assumed to behave competitively.
That is, they view themselves as having no price impact, and they believe there is little
information to be gained by observing other individual’s trades. Chakrabarti and Roll
(1999) is an interesting exception to this. These authors model an information acquisi-
tion process where agents observe other large traders in the market and adjust their own
beliefs based on the observed actions of others. This is in the spirit of other sequential
trading models such as Welch (1992).

The individual traders receive a signal each period, and they also observe the trades of
others. Their own trading strategies are based on optimally forecasting the final payment
of the security using Bayesian updating from their initial priors. Though the individual
strategies are analytically defined, the final dynamics of the market as a whole requires a
computational experiment. The authors employ a novel approach to explore the impact
of many different parameters. They run many simulations at randomly chosen para-
meter values, and record various results. To analyze all this data, they run multiple
linear regressions on the parameter values, to observe their impact on empirical market
outcomes. This may seem like a lengthy and indirect method to understand parame-
ter sensitivity, but it may be important when there are many parameters, and when the
interactions between parameters are not well understood.

The authors analyze many properties of the market, including price volatility, and
price prediction error (or tracking). An interesting result is that, when signal diversity
increases, price volatility increases, but the price is also a better forecast of future value.
This implies that increased trading activity can lead both to greater price movements
and to better learning and information-sharing through price signals. This should re-
mind policy makers that simple measures of volatility alone may not always be a good
measure of market quality. Other interesting results include the fact that a more diffuse
prior on the value of the stock can lead to better learning in the market. This is be-
cause, when the traders have less belief in their initial information, they have a greater
incentive to glean knowledge from the better informed market as a whole. The authors’
model allows for another interesting experiment. One of the parameters of their model
is the threshold level at which a trade between two agents is noticed by other traders.
Trades which are smaller than this threshold level go unnoticed, but the larger trades are
observed. The authors find that reducing this threshold reduces price volatility and in-
creases forecast accuracy. This is again suggests that, in the end, the learning processes
in this sequential market are effective although not perfect.

3.4. Calibration

The markets discussed in this section emphasize the replication of many of the empirical
puzzles that were mentioned at the beginning of this chapter. In each case the agent-
based model itself is less important than the replication of various empirical results
from financial market time series.
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3.4.1. Memory and return autocorrelations

Levy et al. (1994) presents a financial market model with outcomes emerging from
agent strategies.39 Similar to the market models covered above, these outcomes depend
on the presence of many different heterogeneous agent types. However, the traders in
Levy et al. (1994) do not form complicated strategies and predictors. Traders maximize
a one-period myopic utility function exhibiting constant relative risk aversion rather
than constant absolute risk aversion. This technical change is important in that now
agents’ impact on prices depend on their relative wealth levels.

The economic foundations of the model are similar to other agent-based financial
markets. There is a risk-free asset which pays a constant interest rate. There is a risky
stock paying a random dividend that follows a multiplicative random walk,

(23)dt+1 = dt (1 + zt+1),

where zt is drawn from a well-defined distribution designed to roughly replicate actual
dividend growth.

The market consists of several types of traders. There are fundamental traders who
possess a model for pricing the stock based on the dividend fundamental. They use this
to predict the future price, and to then set their optimal portfolio fraction accordingly.
A second, and more important, type for this model uses past information only to deter-
mine its current portfolio. This trader looks at the past m periods of returns, and finds
what fraction of stock and bond holdings would have been optimal over this period. This
is a kind of memory length for traders. It allows for some to believe that only a short pe-
riod of the past is necessary for forecasting, and others to a believe a much longer series
is necessary. The short-memory types represent a kind of short-term trader who is only
interested in the latest fads and who believes the older returns data are irrelevant.40 The
memory length history of past returns is used to make a portfolio recommendation for
the next period. There is often a population of these traders with many different memory
lengths.

The authors progressively add richer sets of the heterogeneous memory traders who
trade alongside the fundamental traders. For sets with only one, or two memory types,
the stock price dynamics clearly reflect the memory length, in that distinct cycles are
observed. However, when a full spectrum of these traders is added, the prices show no
perceptible cycles, and display very realistic features. The returns show relatively large
positive autocorrelations at shorter horizons and negative autocorrelations at longer
horizons. The authors suggest that this is representative of actual markets, where it has
been shown that stock returns demonstrate small positive autocorrelation over short
horizons, but negative autocorrelation over longer horizons.41 Many empirical aspects

39 This model is presented in the book, Levy et al. (2000), which also contains useful summaries of many
other agent-based markets.
40 See Mitra (2005) and Sargent (1999) for analysis of short memory, mis-specified forecasting models.
41 See Hirshleifer (2001) for summaries of these empirical results.
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of the model are explored, including large amounts of trading volume, and its posi-
tive correlation with volatility. The market also is capable of endogenously generating
market crashes. The authors are also very concerned with the coexistence of both the
fundamental strategy, and the finite-memory strategies. They give some examples show-
ing the two types can coexist with neither one evolutionarily driving the other out.42

The model has been criticized recently by Zschischang and Lux (2001). These au-
thors claim that some of the original results are sensitive to the initial conditions in
the simulation. They further indicate that the results may be sensitive to the number of
agents in the simulation. This critique is interesting, but it was done for a set of only
three different memory lengths of traders, 10, 141, 256. It remains to be seen if it has
implications over more general distributions of memory length.

3.4.2. Volatility

One of the most interesting empirical features that various financial market models try
to replicate is the persistence of asset price volatility. While stock returns themselves
are relatively uncorrelated, the squares or absolute values of returns are autocorrelated,
reflecting a tendency for markets to move from periods of relative quiet to more turbu-
lent periods. Significant positive autocorrelations for absolute stock returns continue out
a year or more, and decay at a rate which is slower than exponential. This slow decay
rate cannot be captured by traditional time series models, and may indicate the presence
of fractional integration in volatility.43 The mere fact that volatility is persistent is puz-
zling enough, but the fact that it may be fractionally integrated presents a high hurdle
for agent-based financial markets to hit in terms of empirical replications.

The model of Iori (2002) is interesting both in its structure and in its ability to fit
these facts. The model is based on the spatial spread of information across traders.44 In
this model each trader i in each period t receives a signal Yi,t that combines information
about the decisions of this trader’s local neighbors. For example,

(24)Yi,t =
∑
(i,j)

Ji,j Sj,t + Aνi,t ,

where Sj,t are the decisions of other traders in the neighborhood of i, and Ji,j controls
the weighting and the neighborhood size, and νi,t is a noise term. Ji,j declines as the
distance between i and j increases. This signal is an input into a trader i’s final decision

42 Levy et al. (2000) begin to explore some simple multi asset models. Their goal is to begin to understand
how well the predictions of the Capital Asset Pricing Model hold up in heterogeneous agent situations. Their
early findings are supportive of the CAPM, but the model only allows heterogeneity to enter in a limited way,
through mean expectations.
43 See Baillie et al. (1996) for an example of a fractionally integrated volatility process. Also, see LeBaron
(2001c) for further discussion of fractional integration in stock return series.
44 Other examples of this type of model are discussed by Hommes (2006). These examples include Cont and
Bouchaud (2000) and Stauffer and Sornette (1999).
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to purchase or sell one share of the stock. The interesting part of this decision is that
agents are assumed to have a range of inaction on the signal. For −wt < Yi,t < wt

there is no trade by agent i, and Si,t = 0. When the signal is less than −wt , the agent
sells one unit, Si,t = −1, and when the signal is greater than wt the agent buys one unit,
Si,t = 1.

It is clear that the decisions of trader i in turn feed into the signals of other traders.
The traders’ belief formation and demand processes are iterated several times until there
is convergence. Then the demands to buy and sell shares are calculated as the number of
positive and negative values of Si,t , respectively, and are recorded as Dt and Zt . There
is a market-maker who covers the order imbalance and who adjusts the price using

(25)pt+1 = pt

(
Dt

Zt

)α

.

Stock returns are measured as the log difference of this price series, and the volatility is
estimated with the absolute values of these returns. The model generates returns that are
nearly uncorrelated, but the volatility series generates a very persistent autocorrelation
pattern which is similar to actual asset return data. Further, the model is also able to
display the strong positive correlation between trading volume and volatility that is
observed in the data. It also appears that the thresholding of the signals is critical for
volatility clustering to occur.

Kirman and Teyssiere (2001) develop another model capable of generating very per-
sistent return volatility. It is a modified version of Kirman (1991) which is described
more extensively in Hommes (2006). This model is a form of the earlier-mentioned few-
type models in which agents follow a finite set of well-defined portfolio rules. These are
defined as technical and fundamental, and the traders shift back and forth between these
according to an epidemiological process of contagion. The authors perform extensive
tests on the properties of returns generated by the model, and show good qualitative
agreement with actual foreign exchange series in terms of long range persistence in
volatility.

3.4.3. Macro fundamentals

Several papers have taken the step of trying to tie markets to actual market fundamentals.
In Farmer and Joshi (2002) the authors use U.S. aggregate real dividends interpolated
to daily frequencies as a fundamental input into market with heterogeneous value in-
vestors and trend followers. Their financial market model generates reasonable long
swings away from the fundamental pricing as well as uncorrelated daily returns. It also
generates most of the important empirical features described in previous sections, in-
cluding, fat tails, volatility persistence, and trading volume persistence. The model also
offers interesting tractability since it is built from a foundation of realistic trading strate-
gies.

LeBaron (2001a, 2002a) performs some extensive calibration exercises. These ex-
ercises are based on an agent-based model presented in LeBaron (2001b). This model
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combines several features of the models mentioned previously. It uses a neural network
structure to represent trader portfolio strategies. In this model traders do not build fore-
casts. The neural network maps past information directly into a recommended portfolio
holding directly, and thus avoids the intermediate step of mapping a forecast into a
portfolio policy. It also avoids having to estimate the return variance using a separate
volatility equation. Traders are defined by heterogeneous memory lengths as in Levy et
al. (1994). Some traders evaluate strategies using a short past history of returns, while
others use longer histories. Also, the preferences for the agents are constant relative
risk aversion, so agents with more wealth control a larger fraction of the market. The
strategy population evolves separately from the traders; the traders choose strategies
perceived to be optimal based on time series with lengths corresponding to the traders’
memory lengths. This has some similarities to the social learning mechanisms in Chen
and Yeh (2001). The strategies are evolved using a modified genetic algorithm designed
to respect the neural network architecture. Finally, the economic structure is similar to
many of the financial market models reviewed above in that there are only two traded
assets, a risky asset and a risk-free asset. The risky asset pays a well-defined stochas-
tic dividend following a geometric random walk with drift and volatility calibrated to
match aggregate U.S. dividends. The time period in the model is set to 1 week.

The model is compared with values drawn from the S&P 500, and it is able to repli-
cate a large range of features quantitatively. These range from simple statistics, such as
means and variances of returns, to the more complicated dynamic features of volatility
persistence, and volatility/volume cross correlations.45 These results appears to be con-
nected to the presence of short-memory traders. Eliminating the latter group leads the
market to converge to a well-defined rational expectations equilibrium. Other modifica-
tions are shown to improve learning and to induce the market to converge. Among these
are slowing down the rate at which agents switch rules, and having them switch strate-
gies only when a new strategy beats the current one by a certain threshold [LeBaron
(2002b)]. Both of these operate to slow down the learning process, which one would
think would make things worse.

The strategies used in this market are emergent in that they are not prewired into the
model. It is interesting to note that the learning process does evolve as the market pro-
gresses. LeBaron (2001a) shows that in the early stages of the market, predictability is
quite high. Regressions of returns on simple lagged returns can yield R-squared values
as high as 0.7. These patterns are quickly learned by agents, however, and this unrealisti-
cally high predictability is greatly reduced. It is also interesting that the dividend–price
ratio remains a consistently good predictor in many different time periods, which is
consistent with results from real financial data.

Bullard and Duffy (2001) introduce learning into a more traditional macroeconomic
framework for asset prices. The model is a multiperiod overlapping generations setup

45 An interesting feature is that the model replicates the tendency for volatility to lead trading volume. This
is consistent with results in Gallant et al. (1993).
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with a constant returns to scale aggregate production technology. Also, important is the
fact that the government issues money in the economy at a constant growth rate that is
greater than the growth rate of the economy. Therefore, the forecasting of inflation and
real returns becomes an important problem for agents in this economy. They forecast
future price levels using a recursive regression framework. This learning mechanism
yields excess volatility in the asset market. The authors perform a search over their pa-
rameter space using a genetic algorithm to find parameters generating results similar to
actual data. They find parameter values that are able to give them reasonable volatil-
ity in asset returns along with a low volatility in per capita consumption growth. For
the most part, the parameter values that generate these results are consistent with U.S.
macroeconomic data.

3.4.4. Other calibration examples

This section briefly summarizes several other calibration examples which try to line up
with interesting data sets, and scrutinize time series generated by agent-based financial
markets. Arifovic and Masson (1999) implement an agent-based model of foreign ex-
change currency crises which is aligned with empirical results from foreign exchange
crises periods. Another model examining foreign exchange markets is Marey (2004)
which uses foreign exchange survey forecasts to calibrate agent behavior. Finally, sev-
eral papers such as Chen et al. (2001) and Arifovic and Gencay (2000) perform detailed
tests on the nonlinear properties of the time series output from various agent-based fi-
nancial markets. They find evidence similar to that from actual markets.

3.5. Estimation and validation

While many market models have been calibrated to financial time series, very few com-
putational models have attempted to actually fit parameters to data in a direct estimation
procedure. Obviously, in most computational models this will be a costly procedure in
terms of computer time. A recent exception to this is Winker and Gilli (2001) where the
authors estimate parameters in the Kirman (1991) model. They search over two para-
meters in the model with an objective of fitting two features of actual financial returns,
kurtosis, and the first order volatility coefficient in an ARCH(1) specification. Since the
search space and objective are relatively simple, this paper provides the most detailed
view into the sensitivity of the results to various parameter specifications.

Estimation of few-type models has been a much more common activity, and has
already yielded some interesting early results. The simpler structure of these models
permits their conversion into tractable, albeit nonlinear, time series structures. Vigfusson
(1997) is one of the first papers to estimate one of these models. The framework is based
on a model by Frankel and Froot (1988) for studying exchange rate movements, which
was mentioned in Section 3.1 and is also covered by Hommes (2006). The model is im-
plemented empirically as a Markov switching model, as in Engel and Hamilton (1990),
where the two states correspond to fundamental and chartist regimes. Exchange rate
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predictions are generated as a weighted average of the two different regimes, where the
weights are given by conditional probabilities of the two states. Some general support
is given to the different conditional forecasts in different states of the world, but some
of the results are mixed. Ahrens and Reitz (2005) is a more recent test of a Markov
switching model. They find better evidence in favor of the model with chartists and fun-
damentalists, and they also test several different specifications for the chartist regime.
They see an interesting connection between volatility and the types of traders, and many
of these results appear robust across different subsamples. They also document an in-
teresting result that volatility is larger during the fundamental regime. This result is
interesting, but a little difficult to explain.

Westerhoff and Reitz (2003) and Reitz and Westerhoff (2004) fit a nonlinear thresh-
old model of a financial market to various time series. This model is also inspired by the
few-type models with chartists and fundamentalists trading in a market. The model re-
sults are generally supportive of the transition between the two different types of trading
strategies. They find different market dynamics depending on how close the price is to
fundamental value. These are an interesting first test of heterogeneous trader behavior.
More extensive tests will be necessary to judge the general robustness of this modeling
framework.

A common concern about all agent-based computational modeling is validation. The
usual criticism leveled at agent-based financial markets is that there are too many de-
grees of freedom. Researchers are able not just to move freely through large parameter
spaces, but can also change entire internal mechanisms at their discretion in the attempt
to fit sets of stylized facts. Anyone using agent-based financial markets must acknowl-
edge that there is some truth to these criticisms. However, these comments should not
stop all experimentation. Furthermore, there are directions in which the field is moving
that will give these markets a more solid foundation.

Some steps that researchers can take to ameliorate these problems include replicating
difficult empirical features, putting parameters under evolutionary control, and using
results from experimental markets. The first of these suggestions involves making sure
that an agent-based financial market fits facts which are not well replicated by standard
models. Examples of this would be empirical features such as the long range persistence
of volume and volatility in financial time series. This requirement sets a higher standard
for empirical replication, and also pushes the envelope in terms of our understanding
about which mechanisms may be at work in financial markets.46 The second sugges-
tion is to put as many parameters as possible in the market under evolutionary control.
An example of this change is reflected in the differences between markets such as the
SF-ASM, and LeBaron (2001b). In the first case fixed learning rates for all traders im-
plicitly give them a common perspective on how much past data is allowed into fitness
evaluation. It turns out that this parameter is crucial to the behavior of the market. In the

46 An extension of this is to concentrate model fitting on extreme event periods in the market as in Ecemis et
al. (2005).
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second case, traders with different perspectives on the past compete against each other.
If there were an optimal memory length of past data to use, this would dominate the
market in terms of wealth. Thus the setting of this effective value of this parameter is
reflected in the wealth distribution of traders in the model, and is part of the evolutionary
dynamics. The final suggestion would be to use results from experimental economics
to build better, and more realistic learning dynamics in the artificial financial markets.
This seems like a promising procedure, but as yet there are not that many examples of
it.47

4. Other markets

This sections covers several financial market models which are different from those
considered above. Among these are markets which consider detailed trading institu-
tions and learning market makers, and also models which consider the coevolution of
strategies and financial securities.

Most of the markets considered up to now have abstracted away from actual trad-
ing institutions. This is somewhat of a puzzle in the agent-based finance world, since a
bottom up approach would appear to call for starting from the basics of how trades are
executed. Most models build stylized economic structures that avoid the institutional
details of trading. However, research has begun appearing which implements more re-
alistic trading systems.48 Market design and market microstructure questions appear to
be well suited for agent-based approaches. First, large amounts of data are available.
Second, there are critical policy questions which clearly need to be tested in an envi-
ronment with heterogeneous, adaptive strategies. Since some of this area is covered in
other handbook chapters, the descriptions of models here will be relatively brief.

It is interesting that Rieck (1994), one of the earliest agent-based financial market
studies, specifies the trading process in detail. Rieck (1994) looks at the evolution of
trading strategies with a simple order-book trading mechanism. His model has many
similarities to some of the emergence papers mentioned in the previous sections in that
the coevolution of strategies is the crucial issue of interest. Also, strategies are evolved
using evolutionary techniques, but these are applied to functional forms that are de-
signed to replicate actual trading strategies. His results show that fundamental strategies
are not able to take over the market and drive the price to the fundamental value. Rieck
(1994)’s findings suggest that many results obtained in agent-based financial market

47 Duffy (2006) surveys agent-based models and experimental work. There are several examples given there
of agent-based learning mechanisms which fit experimental data. Whether such mechanisms could be taken
into settings that are more complicated that the human experimental settings is an interesting and open ques-
tion.
48 This area of financial research overlaps with work on market design which is covered more extensively in
Mackie-Mason and Wellman (2006) and Marks (2006).



Ch. 24: Agent-based Computational Finance 1219

models without detailed specifications for trading strategies could be replicated using
more empirically-based micro trading mechanisms.49

Much simpler models have been implemented using an order-book trading mecha-
nism with the goal of replicating empirical features of actual market data. One example
of this is Chiarella and Iori (2002). This is a few-type model with technical, fundamen-
tal, and noise traders placing orders in an electronic order book system. They show that
the interaction of these three types generates realistic price series, and trading activity.
Just how much agent complication is necessary to replicate high frequency features in
financial time series is a question which is addressed in Farmer et al. (2005). This is not
exactly an agent-based market since order flow is completely random and there is no
individual trading agent per se. Random order flow is calibrated to the actual order flow
for several different stocks on the London Stock Exchange. This flow is then fed into a
market clearing mechanism with a standard electronic order book. The types of incom-
ing orders, limit or market, are determined randomly and calibrated to the actual order
flow from the data. Even though traders in this model have no learning capabilities, the
authors are able to show that the outcomes of their model replicate many feature from
actual price history data sets. As in the work by Gode and Sunder (1993) on “zero intel-
ligence traders,” these results help us to understand which empirical regularities are the
result of learning behavior, and which are simply a feature of the trading institution.50

One of the most well documented features in intra-day data is the U-shaped pattern
in bid ask spreads which are wide at the opening of trading, narrow during the day, and
again widen before the close. There are also similar patterns in the volatility of spreads,
return volatility, and trading volume as well. Chakrabarti (1999) seeks to replicate these
features in a microstructure trading model that uses an agent-based framework for for-
eign exchange dealers. Dealers receive random order flow through the day which gives
them information about the aggregate order flow, and the eventual value of the foreign
currency they are dealing in. This information is augmented by quotes they receive from
other dealers during the intra-day trading period. Dealers are risk averse and are con-
cerned about variances of their positions during the day, and also on the positions they
hold overnight. The reservation prices for these dealers are determined in a Bayesian
learning framework. Each dealer determines an optimal selling (ask) and buying (bid)
price at each time step. The spread between these is the return that compensates the
dealer for risk in the inventory position. Trade takes place in a random matching process
of the dealers. They trade when a calling dealer’s bid is greater than the responding
dealer’s ask, or when the calling dealer’s ask is less than the responding dealer’s bid.
Dealers use information from the other dealer spreads to update their own beliefs about
order flow as they move through the day. As trading proceeds, all traders’ information

49 Yang (2002) replicates many of the SF-ASM results with a microstructure foundation.
50 A very early example of this type of research on random order flow is Cohen et al. (1983). Another recent
research direction has been to link electronic trading agents to live data feeds coming off of actual markets.
In the Penn-Lehman Trading Project, Kearns and Ortiz (2003), the survival of different strategies can be
monitored as they interact with live market data.
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improves, and order flow uncertainty falls. This leads to smaller spreads from the morn-
ing into the day. As the day reaches the close, the impact of overnight risk takes over
for the dealers and spreads rise again.

The model is simulated for a wide range of parameters values. The author chooses
729 unique parameter value combinations, performs simulation runs for each combina-
tion off parameters values and records their results as separate observations. Parameter
sensitivity is then determined using least squared regressions. The results show a gen-
eral presence of the U-shaped spreads of return volatility over the simulated trading
days, and these results are robust across many of the tested parameter combinations.
An interesting general result is that there is more unexplained variation in the afternoon
variables. The author conjectures that this indicates the importance of path dependence
of the prices and trades executed through the day. Finally, the nonlinear impact of the
parameter values on the results is explored. In most cases there are significant nonlin-
ear effects in both quadratic and cross terms. This suggests a very complex relationship
connecting the underlying information and preference parameters to final market out-
comes.

Most financial markets depend critically on the behavior of a market maker, or dealer,
who brings liquidity and continuity to a real time trading market. Several agent-based
models explore the behavior of dealers. Gu (1995) takes the model of Day and Huang
(1990) and explores changing the market maker behavior built into the model. This
analysis includes estimating the market maker profitability under different parameters.
The results show that a profit-maximizing specialist may be interested in generating
some amount of extra market churning. The specialist’s objectives will not align with
price variance minimization which could be construed as the maintenance of an or-
derly market. Westerhoff (2003c) also explores the impact of inventory restrictions in
a setup with an implied market maker. The market maker price adjustment reactions
differ depending on the current inventory position along with current excess demands.
The market maker is assumed to make greater price adjustments when these two vari-
ables are of the same sign. Increasing this adjustment level leads to increased volatility.
Although interesting, this result does depend critically on very specific behavioral as-
sumptions made for the market maker.51

Most of the papers considered in this survey could loosely be considered part of the
investment side of finance. There is no consideration for the issuance of securities by
firms, or the design and evolution of securities themselves. A recent exception is Noe
et al. (2003) which represents the first paper to consider corporate finance issues in an
agent-based framework. The authors are interested in the problem of which securities
firms will issue to raise investment capital, and how investors learn to price these se-
curities. Firms need to issue securities that maximize their profits, but cannot do this

51 A related paper is Chan and Shelton (2001) which models a dealer learning optimal behavior when faced
with a random order flow. Further research in the area of market design includes papers examining tick sizes
(Darley et al., 2000 and Yeh, 2003), order book versus dealer markets (Audet et al., 2001), and price limits,
trading taxes, and central bank intervention (Westerhoff, 2003a, 2003b, 2003d).
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independent of investors’ pricing strategies. On the other hand, investors must learn
how to price and evaluate the securities issued by firms, but they can only do this for
securities they have seen in the past. The importance of this coevolutionary process of
firm and investor learning turns out to be critical in the authors’ model.

In Noe et al. (2003) a firm has an investment project that needs to be financed, and
there are two potential investors. The firm can chose from a fixed set of six different
securities that it can issue. These include standard debt and equity securities, along with
some more complex ones. The latter include convertible and subordinated debt, as well
as something known as a “do-or-die” security. In each case the security represents a
well-defined contract for splitting the payout to the firm’s risky project between the firm
and the two investors. Both the firm and investors encode their strategies as bitstrings
for use with a GA. The firm maintains a pool of 80 potential security issue decisions
which is a vector of numbers (binary coded) between one and six corresponding to the
six types of securities. The firm will chose one of these at random each period. The
fitness of a strategy is updated with the realized cash flow received by the firm after
the investment project has been completed and the investors have been paid. Evolution
takes place by replacing all the rules that encode the least profitable strategies with rules
that encode the most profitable strategy. Then a mutation operator is applied to all rules.

The investors are encoded as bitstrings. The two investors maintain a price table that
indicates the price that they will pay for each possible security. The investor has a table
of 80 possible pricing strategies for each security. In each round, each investor choses a
pricing strategy at random from the appropriate security table after the firm has decided
on the security that it will issue.52 The security goes to the highest bidder in each round.
The profitability of the strategy from the investor’s perspective is recorded, and the
populations are adjusted with a selection procedure in which the 10 worst strategies are
replaced by the 10 best. At this point the GA is applied to the population with crossover,
mutation, and the election operator.

The authors then run this simulation for many rounds and in many different design
situations. One of the most interesting results comes from the choice of securities. Ex-
periments are performed that try to separate out the joint learning processes. Firms play
against a fixed set of investors who know the appropriate pricing functions. In this situ-
ation equity and subordinated debt dominate the market, and straight debt is rarely used
in stark contrast to the real world. When learning is allowed for both parties, debt moves
to becoming the most commonly used security, with subordinated debt next, and equity
third. This shows the importance of the coevolutionary learning dynamic. In this world
the preponderance of debt may have more to do with the ability of firms to learn how
to price this relatively simple security, and the ensuing positive feedback this has on the
issuance decision. Several other results from the model are also interesting. Investors
tend to systematically underprice the securities in all cases. Also, the situation where
the firm is not able to raise sufficient investment funds actually occurs more often with
two-sided learning than investor-only learning.

52 As in the earlier GA papers there is a binary-to-real mapping that determines the real valued price.
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The results in this paper will eventually need to be explored under different learn-
ing specifications and investment structures, but it is an interesting first attempt to use
agent-based models in the field of corporate finance. The coevolution of agent behavior
along with the institutions that guide this behavior is interesting both for finance and for
economics in general.

One final agent-based model which is often compared to financial markets is the
minority game.53 This is a repeated game in which agents must chose one of two doors,
left or right. If the minority of agents choses left this group wins, and if the minority
chose right this group wins. The connection to finance is through the notion of contrarian
strategies, where it is best to move against the herd. Connecting this model to finance is a
controversial subject since its basic version does not have a natural role for prices. Also,
it would appear that the contrary nature of the minority game is somewhat forced, and
in real financial markets it may be better to follow the herd for a short period of time. An
interesting application of the minority game to financial data is Johnson et al. (2001).
In this model the authors convert a financial series into a binary string depending on
whether the price rises or falls. The agents play the game for many periods, watching
the real financial time series as the input into their rule selection process. The agents
are then allowed to continue playing the game after the price series is shut off, and
the continued model dynamics are used in a kind of out of sample forecasting context.
They are able to produce some small forecasting gains in some high frequency data. It
remains to be seen how robust and reliable these numbers are, but this is an interesting
test of the minority game model on real data.54

5. Cautions and criticisms

Agent-based markets have been criticized from many different angles. The most com-
mon criticism is that the models have far too many parameters, and the impact of many
of these parameters is not well understood. This issue has already been discussed in the
section on calibration. However, beyond simple parameter questions, these models have
made use of a wide selection of the available computational tools and methods. Table 1
gives a short overview of the design structures of some of the agent-based financial mar-
ket models described in this paper. This is far from being an all inclusive list, since many
of the models described in this chapter would not fit well into the criteria for the list.
This emphasizes what should have become clear from the earlier sections: agent-based

53 There are several early implementations of this model. These include Arthur (1994), and Challet and
Zhang (1997). However, early versions of similar models can be found in Schelling (1978). See Jefferies
et al. (2000) for a recent survey. Interested readers should go to the website for the minority game at
http://www.unifr.ch/econophysics/minority/.
54 Another agent-based model indirectly related to finance is the resource allocation setup in Youssefmir and
Huberman (1997).

http://www.unifr.ch/econophysics/minority/
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Table 1
Model structures

Authors Preferences Price determination Evolution,
fitness

Strategy
representation

Arifovic (1996) CRRA Market clearing GA, utility Real parameters
Arthur et al. (1997) CARA Market clearing GA, forecast Classifier
Beltratti and Margarita
(1992)

CRRA Random matching Hill climbing,
forecast

Neural network

Bullard and Duffy (2001) CRRA Market clearing OLS, forecast Real parameters
Chen and Yeh (2001) CARA Price adjustment GP, forecast GP functions
Chiarella and Iori (2002) None Order book None, none Real parameters
Farmer and Joshi (2002) None Price adjustment None, none Real parameters
LeBaron (2001b) CRRA Market clearing GA, utility Neural network
Lettau (1997) CARA Exogenous GA, utility Real parameters
Levy et al. (1994) CRRA Market clearing None, utility Real parameters
Raberto et al. (2001) None Order book None, none Real parameters
Routledge (2001) CARA Market clearing GA, utility Real parameters
Tay and Linn (2001) CARA Market clearing GA, forecast Fuzzy logic

This is a short description of some of the multi-agent computational models considered here along with their
design structures described in Section 2. Preferences describe the types of preferences used by agents. Price
determination describes the method for determining asset prices. Evolution refers to which computational
evolution mechanisms, if any, are used. Fitness is the fitness measure used to evolve strategies, and to deter-
mine agent strategy choices. Strategy representation is the way strategies are stored in the computer. Often
this is a predefined functional form, and the representation is simply a vector of real parameters. GA stands
for the genetic algorithm. CARA and CRRA are constant absolute risk aversion, and constant relative risk
aversion, respectively.

financial models have been built using many different features and designs. This is nat-
ural for a field at this early stage, but it has made comparisons across market platforms
difficult. Unlike analytic models, there are still relatively few general principles that one
can confidently apply to the construction of different agent-based market models. This
is a problem, but the situation should improve as the field evolves.

Another important issue that is brought up is the stability of a given agent-based
model’s results to the addition of new trading strategies. Specifically, are there strate-
gies that would smoke out obvious patterns in the data and change the dynamics?
Agent-based models are trying to continuously defend against this with the continuously
learning agents, but something outside the learning structure is possible. An initial de-
fense of this is that most markets generate very little autocorrelation and therefore yield
no obvious arbitrage opportunities for new trading strategies to exploit. However, there
is a possibility that more complex nonlinear strategies could detect such opportunities.
Arifovic (2001) is an example testing this sort of issue, and finds that the more compli-
cated agents do not do better in her simulated market environment. This problem is still
one of the most important for agent-based modelers to worry about, and no one should
feel immune to this criticism.
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Another very common and pertinent criticism is that most agent-based financial mar-
ket models assume a small number of assets. Often agents trade only one risky asset,
and one risk-free asset alone.55 It is certainly true that, with all of the new methodolog-
ical tools in use in these models, it was important to start with the simplifying case of
one risky and one risk-free asset. However, this simplification may eliminate many in-
teresting features. The criticisms of models with a single representative agent may carry
over equally well to models with a single representative risky asset. Questions naturally
arise about calibrating to aggregate dividends, and exactly what this calibration means,
since aggregate dividends are not paid by any single stock. Also, recent events such as
the technology bubble of the 1990s remind us that bubbles are often very sector de-
pendent. Finally, when thinking about trading volume, it is really necessary to have a
multi-asset world where traders are allowed to move back and forth between stocks. The
single asset market puts an extreme restriction on the amount of trading volume that can
be generated in a simulated market. Another related problem is that, even though most
agent-based markets have two assets, they actually shut down pricing in one market.
In many cases the risk-free rate is fixed, hence the market is not a general equilibrium
model. This is problematic in that explaining the level and volatility of the risk-free as-
set itself has been another asset pricing puzzle. Getting the risk-free rate to be as low
and stable as it is in actual macro data is not easy, and most agent-based models simply
avoid this problem completely. Endogenously opening multiple markets for trading is
still a difficult problem, but it needs to be addressed at some point. Once researchers
are more confident they have mastered agent-based modeling tools, they will probably
tackle multi-asset market modeling more frequently.

Egenter et al. (1999) address another interesting question for agent-based modelers
to consider. What happens as the number of agents is increased? They have performed
some tests on models that can be studied analytically, and they find that the dynamics
can change dramatically as the number of agents becomes large. What initially looks
like random behavior for small numbers of agents can become increasingly predictable
as the number of agents becomes very large. Is it possible that many of the nice features
that many models display are artifacts of the limitation to relatively small numbers of
traders imposed by computer modeling? This is a very important question. One response
to this question is that assuming an infinite number of agents might not be realistic in
some settings. There may be real-world market situations in which the thinness of the
market is an important and critical issue for the determination of the market’s dynamics.
This issue will definitely be an important one for the field to tackle in the future.

Almost all of the agents that are modeled and discussed in this survey operate in-
ductively. They adopt rules and forecasts which have performed well in the recent past,
and they adjust these rules and forecasts to perform better in the future. The early spirit
of agent-based models is clearly to push away from more traditional deductive styles

55 Two recent exceptions to this are Chiarella et al. (2004) and Westerhoff (2004). Also, Levy et al. (2000)
perform some experiments in multi-asset settings with options.
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of learning and towards more inductive styles of learning. However, it is often asked if
there still may be a role for some form of deductive reasoning. Is it going too far to think
of agents simply looking for patterns in the past and using behaviors that have worked in
the past? Can they be allowed to do some form of deductive reasoning? Can they learn
commonly held theories in finance, such as present value analysis, or the Black-Scholes
option pricing formula? An interesting question is whether an agent-based model can
be constructed that allows for a little deductive reasoning while keeping the general
inductive spirit of simple rules of thumb.

A final problem, often ignored, is timing. Almost all agent-based models need to
make explicit assumptions about the timing of decisions, information, and trade. Of
course, any asset pricing model needs to make these choices, but in analytic settings
more events can be assumed to take place simultaneously. In the computer this sequence
of events often needs to be spelled out. The degree to which results depend on arbitrary
timing decisions is definitely important. One example that has been discussed here is the
delayed price adjustment approach, where prices are adjusted based on current excess
demand in the market. It is important to note that in a world of evolving strategies,
this timing may have a large impact since the strategies themselves adapt to the specific
timing and trading structures. It will be interesting to see if agent-based financial models
start permitting actions to take place more asynchronously, and if this has an impact on
any of the early results.

6. Conclusions

This paper has given an overview of the current state of research in agent-based com-
putational finance along with some ideas concerning the design and construction of
working simulations. It is important to note that this is a very young field, and it still
shows the kind of open-ended exploratory nature of such an endeavor. However, several
crucial trends are starting to appear.

First, the models are beginning to divide into several different types. These range
from the few-type models covered in Section 3.1, in which traders are assumed to
choose from among relatively small fixed sets of trading strategies, to the many-type
models covered in Sections 3.2 and 3.3 in which traders choose from among large and
possibly evolving sets of trading strategies. The few-type models offer an important
dimension of tractability relative to the many-type models, and they often provide de-
finitive connections between parameters and results which might not be seen or noticed
in the more complex frameworks, so it is easy to see their appeal. However, a key reason
for doing computer modeling is that the use of more sophisticated trading strategies in
many-type models needs to be understood as well. There are two basic reasons for this.
First, many-type models take emergence very seriously in that they do not bias toward
any particular strategy loaded ex ante by the researcher. The strategies that end up being
used are those that appear and persist inside a learning structure. They therefore partially
answer a criticism of the few-type models that their specification of trading strategies
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is ad hoc. Second, they use the computer and the learning algorithms to continuously
search the time series record to smoke out new trading opportunities. This is something
that is not present in the few-type models. The obvious limitation is that their ability to
seek out and take advantage of any inefficiencies that may appear depends critically on
the data representations and implementations of the learning algorithms. Few-type and
many-type models clearly each have both strengths and weaknesses that users should
take into account.

Agent-based modelers are also starting to move from the more stylized earlier finan-
cial market models toward models incorporating explicit market microstructure. The
latter try to model very explicitly the actual mechanisms of trade that are being used in
the market as opposed to building a stylized trading framework. These microstructure
oriented models are well designed to answer questions concerning the construction and
design of these same trading mechanisms. In some of these markets it is the institutions
that are at the center of the investigation, and the agents are just a mechanism for test-
ing their behavior. Some of the policy questions addressed in this work are much more
sharply defined than in other agent-based models. An example of this would be the ex-
plorations into decimalization on markets, or the implementation of price limits. From
a policy perspective this would seem to be a very natural place for the field to move as
it matures.

Up to this point very little reference has been made to the growing literature on behav-
ioral finance. It is important to define where agent-based financial markets sit relative to
this larger field. First, they are clearly behavioral models themselves, since the agents
are boundedly rational and follow simple rules of thumb. This is a key characteristic of
any behavioral model, and agent-based models have this characteristic. Where agent-
based financial market models have diverged to date from behavioral finance models
is their typical presumption that agent preferences have relatively standard representa-
tions. Typically, no attempt is made to model common behavioral biases such as loss
aversion or hyperbolic discounting. This is not because agent-based models cannot han-
dle these behavioral aspects. Rather, it has just seemed sensible in this early stage of the
field to refrain from adding too many more complications to models which are already
very complicated. It is important to note that agent-based technologies are well suited
for testing behavioral theories. They can answer two key questions that should be asked
of any behavioral structure. First, how well do behavioral biases hold up under aggrega-
tion; and second, which types of biases will survive in a coevolutionary struggle against
others. Therefore, the connections between agent-based approaches and behavioral ap-
proaches will probably become more intertwined as both fields progress.

Whether computational or not, all of the models mentioned in this survey share a
common tie to ideas from nonlinear dynamics and chaos. The relationship between
model structure and noise in nonlinear systems can be very complicated, and these mar-
kets share this feature. In many cases the markets operate as noise magnifiers, taking a
small amount of input noise, or underlying fundamental risk, and increasing its level to
a much larger observed macro value. Noise can also help to stabilize a nonlinear system
by keeping it off unstable trajectories. As is well known, nonlinear systems can also
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be difficult to forecast, and most of the markets described here share this feature. Un-
fortunately, this may also make them difficult to estimate using traditional econometric
tools. Agent-based modelers should be aware of these nonlinear issues, and take them
into account when evaluating market simulations.

Financial markets are an important challenge for agent-based computational mod-
elers. Financial markets may be one of the important early areas where agent-based
methods show their worth, for two basic reasons. First, the area has many open ques-
tions that more standard modeling approaches have not been able to resolve. Second
there is a large amount of financial data available for testing. It will be interesting to see
if, sometime in the future, financial economists eventually replace the stylized theories
of equilibrium market dynamics with a more realistic picture of the continuing struggle
of learning and adapting agents who push markets in the direction of efficiency, even
though they never quite reach this goal.
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Abstract

This chapter discusses the potential of the agent-based computational economics ap-
proach for the analysis of processes of innovation and technological change. It is argued
that, on the one hand, several genuine properties of innovation processes make the pos-
sibilities offered by agent-based modelling particularly appealing in this field, and that,
on the other hand, agent-based models have been quite successful in explaining sets of
empirical stylized facts, which are not well accounted for by existing representative-
agent equilibrium models. An extensive survey of agent-based computational research
dealing with issues of innovation and technological change is given and the contribution
of these studies is discussed. Furthermore a few pointers towards potential directions of
future research are given.
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1. Introduction

Innovation and technological change1 is today generally seen as one of the driving
forces if not the driving force of economic growth in industrialized countries (see
e.g. Maddison (1991) or Freeman (1994)). Whereas this aspect of economic activity
has for a long time been largely neglected in mainstream economics, its importance has
by now been recognized and a large rather diversified literature has evolved focusing on
different aspects of technological change. Based on the fast growing empirical literature
on this issue a rich set of well accepted facts concerning technological change have been
established. Concepts of incremental/radical innovations or technological paradigms
and trajectories have been developed to capture patterns holding across sectors. Typical
patterns of industry evolution and the general importance and structure of knowledge
accumulation processes have been established. Also, the existence of heterogeneity in
employed technology and firm size within many industries as well as a large degree
of sector specificity of patterns of technological change has been observed. The reader
is referred to Dosi (1988), Dosi et al. (1997), Freeman (1994), Klepper (1997), Kline
and Rosenberg (1986), Malerba (1992), Pavitt (1984, 1999), Rosenberg (1994) for ex-
tensive discussions of empirical findings about technological change. Likewise, the set
of modelling approaches and tools that have been used to gain theory-based insights
about origins and effects of innovation and technological change is very wide including
dynamic equilibrium analysis, static and dynamic games, theory of complex systems or
evolutionary theorizing. Overviews over different strands of theory-oriented literature
can be found e.g. in Dosi et al. (1988), Grossman and Helpman (1994), Hall (1994),
Nelson and Winter (2002), Stoneman (1995), Sutton (1997) or van Cayseele (1998).

The aim of this chapter is to highlight and discuss the past and potential future role of
the agent-based computational economics (ACE)2 approach in the important endeavor
to gain a better understanding of technological change. Two main arguments will be put
forward to make the point that agent-based models might indeed contribute significantly
to this literature. First, as will be argued below, predictions of standard equilibrium
models do not provide satisfying explanations for several of the empirically established
stylized facts which however emerge quite naturally in agent-based models. Second,
the combination of very genuine properties of innovation processes call for a modelling
approach that goes beyond the paradigm of a Bayesian representative-agent with full
rationality and it seems to me that the possibilities of ACE modelling are well suited to
incorporate these properties. The genuine properties I have in mind are: (i) the dynamic
structure of the process(es); (ii) the special nature of ‘knowledge’, arguably the most
important input factor for the ‘production’ of innovation; (iii) the strong substantive

1 Throughout this chapter the term ‘technological change’ will be interpreted in a wide sense to subsume
processes leading to generation and diffusion of new knowledge, technologies and products.
2 No general introduction to the field of ACE is given in this chapter. See e.g. Tesfatsion (2006a) or

Tesfatsion (2006b) in this handbook for such an introduction.
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uncertainty involved; (iv) the importance of heterogeneity between firms with respect
to knowledge, employed technology and innovation strategy for technological change.

Let us briefly discuss these four points. (i) The dynamic aspects of the process of
innovation and technological change have been stressed at least since the seminal work
of Schumpeter (1934, first published 1911 in German language). Technological change
does not only lead to an increase in overall factor productivity but also has significant
effects on the way the market and industry structure evolves over time. Schumpeter’s
trilogy of invention-innovation-diffusion already indicates that the innovation process
per se has a time structure which should be taken into account. In particular, the speed
of diffusion has important implications for the expected returns to innovation on one
hand and for the evolution of the market structure on the other hand. The way innova-
tions diffuse are industry specific and such processes typically involve path dependency
and dynamic externalities. Also the other two stages in the trilogy involve truly dynamic
processes. Investment decisions about innovation projects are typically not made once
and for all but are continuously updated over time. This is necessary due to the substan-
tive uncertainty involved in predicting markets and technological developments as well
as the accumulation of own knowledge (see the comments below)3.

(ii) The success of innovative activities of a firm does not only depend on its current
investment but also to a large extent on the size and structure of the knowledge base
the firm has accumulated. The stock of knowledge of a firm is not uniform and has a
lot of structure4. For example distinctions should be made between explicit and tacit
knowledge as well as between general knowledge and specific skills. A large body of
empirical evidence has demonstrated that the knowledge base (Dosi, 1988) needed for
successful inventions and innovations has to be gradually accumulated over time. Sev-
eral mechanisms have been identified to gain such knowledge, among them in-house
R&D, informal transfer of knowledge between companies (spillovers) or learning by
doing. In all cases the effect of current actions depends crucially on past experience
and therefore the entire process of knowledge accumulation has to be considered when
studying innovative activities. Studying accumulation of knowledge is however quite
different from studying accumulation of physical capital. Knowledge can only to a cer-
tain extent be traded on a market. It is often embodied in individuals and groups of
people (‘tacit knowledge’; see Polanyi, 1966), can almost without cost be duplicated
by its owners and has a tendency to flow through several local and global channels of
diffusion. Studying such flows means dealing also with issues of local interaction and
communication network formation. Incorporation of explicit knowledge accumulation

3 Also within the literature dealing with fully rational Bayesian decision makers the importance of the dy-
namic resolution of uncertainty in innovation projects has been acknowledged leading to the application of a
real-option approach for such decision problems (see e.g. Grenadier and Weiss, 1997 or Smit and Trigeorgis,
1997).
4 Loasby (1999) provides an excellent discussion of the nature of knowledge and cognition and its role in

economic interactions and development.
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processes and non-market interactions between firms into an equilibrium model of tech-
nological change might in principle be possible, but this would most probably destroy
any analytical tractability and to my knowledge has not been attempted yet.5

(iii) The level of uncertainty associated with innovations depends on the type of in-
dustry and the type of innovation we are dealing with. Typically a distinction is made
between incremental innovations, where minor extensions to existing processes or prod-
ucts are introduced without leaving the current paradigm, and radical innovations which
try to open new markets or to employ a new technique or organizational structure for
the production of a good. Building beliefs about future returns of an attempt to develop
a radical innovation is a very challenging task (see Freeman and Perez, 1988). There is
uncertainty not only about the technical aspects (feasibility, reliability, cost issues) but
also about market reaction. Whether an innovation turns out to be a market-flop, a solid
profit earner or the founder of a new market depends on numerous factors and is ex ante
hard to see6.

More generally, any economic agent operating in an environment influenced by in-
novations is subject to ‘strong substantive uncertainty’ (Dosi and Egidi, 1991) in the
sense that it is impossible to foresee the content of inventions to be made in the future
(otherwise it would not be a new invention) and therefore to anticipate all possible direc-
tions of future technological development. Put more formally, the current mental model
of the agent cannot include all possible future contingencies. Accordingly, a standard
Bayesian approach, which has to assume that the agent ex ante knows the set of all possi-
ble future states of the world, is not appropriate to capture the essence of the uncertainty
involved with innovation processes. Or, as Fremman and Soete (1997) put it: ‘The un-
certainty surrounding innovation means that among alternative investment possibilities
innovation projects are unusually dependent on ‘animal spirits”. [p. 251]. Furthermore,
it has been argued in Dosi and Egidi (1991) that ‘procedural uncertainty’ referring to
the inability of an agent to find the optimal solution in a choice problem—either due
to her limited capabilities or due to actual problems of computability—is also of par-
ticular importance in many tasks associated with innovation and technological change
(see also Dosi et al., 2003). It seems that a rule-based model of the decision making

5 A recent example of a dynamic equilibrium model which explicitly takes into account the heterogeneity
of knowledge stocks and spillovers is Eeckhout and Jovanovic (2002). Here spillovers work on a one-
dimensional stock variable representing an aggregate of physical and human capital. The stock of a firm
is updated based on the part of the population distribution above the own stock using a weighted average
rule. The interaction leading to exchange of knowledge is not explicitly modelled but the weighting function
is estimated using stock market data. As usual in equilibrium the (physical-human) capital stock of all firms
grows at a uniform rate.
6 Beardsley and Mansfield (1978) show, based on 1960–1969 data from a multi-billion dollar corporation,

that (discounted future) profitability forecasts for new products were wrong by a factor larger than 2 in more
than 60% of the cases, although the study was not restricted to radical innovations. Even 5 years after devel-
opment of new products forecasts were off by a factor larger than 2 in more than 15% of the cases. See also
e.g. Cooper and Kleinschmidt (1995), Hultink et al. (1994) or Fremman and Soete (1997) for more recent
discussions of the issue.
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process which, on the one hand, makes constraints on computability explicit and, on
the other hand, restricts usable information to what is available to the agent at a certain
point in time, rather than assuming an ex-ante knowledge about the set of all possible
future contingencies, is better able to capture decision making under strong substantive
and procedural uncertainty than dynamic optimization models with Bayesian updating
or even perfect foresight.

(iv) Finally, the study of processes and effects of innovation requires particular con-
sideration of the heterogeneity between firms in a market. Different types of heterogene-
ity should be distinguished. I will mention here three types of heterogeneities relevant
for understanding technological change, but this is certainly no complete list. First, it
has been shown that the basic approach towards innovative activities—e.g. whether to
focus efforts on product or process innovation, on incremental or radical innovation
or even completely on imitation and reverse engineering—is in many instances quite
heterogeneous even within one industry (e.g. Malerba and Orsenigo, 1996). Second,
heterogeneity and complementarity of the knowledge held by different firms in an in-
dustry is an important factor in facilitating the generation of new knowledge through
spillovers as well as in the exploration of the potential avenues of technological devel-
opment. Third, heterogeneity is not only an important pre-requisite for the emergence
of technological change, it is also a necessary implication of innovative activities. The
whole point of innovating for firms is to distinguish themselves from the competitors in
the market according to production technique or product range, thereby generating het-
erogeneities. Innovation incentives depend on (potential) heterogeneities between firms.
So, whereas heterogeneity of agents is an important property in any market interac-
tion, consideration of heterogeneities of firm characteristics, strategies, technologies and
products seems essential if the goal is to understand the processes governing technolog-
ical change. It is well established by now that in general aggregate behavior stemming
from heterogeneous agents cannot be properly reproduced by using a representative
agent instead (see e.g. Kirman, 1992) and therefore these heterogeneities should be
properly represented in the models used to analyze technological change.

Summarizing the brief discussion of properties (i)–(iv) we conclude that when con-
sidering the process of technological change in an industry, we are looking at a
highly decentralized dynamic search process under strong substantive and procedural
uncertainty, where numerous heterogeneous agents search in parallel for new prod-
ucts/processes, but are interlinked through market and non-market interactions. So
already from the purely theoretical perspective that a micro-founded economic model,
even if highly stylized, should capture the essential effects influencing the phenomenon
under examination, the possibilities offered by agent-based computational models are
appealing. The modelling of the dynamic interaction between individuals who might be
heterogenous in several dimensions and whose decisions are determined by evolving
decision rules can be readily realized using ACE models.

Whereas my discussion so far has focused on the issue of realism of the assumptions
underlying a model, there is a second argument of at least the same importance for
the use of an ACE approach in this field, namely that of the explanatory power of the
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model. This is particularly true, if we compare the ACE modelling with neoclassical
equilibrium analysis. The problems of neoclassical models to explain and reproduce
important stylized facts about innovation, technological change and industry evolution
have been discussed among other places in Dosi et al. (1995, 1997), Sutton (1997) or
Klepper and Simmons (1997). Here, no extensive discussion of this issue is possible. I
restrict myself to sketching a few of the empirically supported observations which are at
odds with or at least not satisfactorily explained by a neoclassical approach, particularly
if we consider several of these facts jointly (for more details on these ‘stylized facts’ see
the references given above, Silverberg and Verspagen (2005a) and a special issue of
Industrial and Corporate Change (Vol. 6, No. 1, 1997)).

• In almost all industries a relatively stable skewed firm size distribution can be
observed, i.e. there is persistent co-existence of plants and firms of different sizes.

• Persistent heterogeneities between firms with respect to employed technology, pro-
ductivity and profits rather than convergence to a common rate of return can be
observed in many industries.

• In general, there is a positive correlation between entry and exit rates of firms
across industries. Industry profitability does not seem to have a major effect on
entry and exit rates.

• Patterns of industry evolution and demographics vary considerably from industry
to industry. On the other hand, there are strong similarities of these patterns across
countries in the same technological classes. In particular, the knowledge conditions
shaping the technological regime underlying an industry have substantial influence
on the observed pattern.

• The arrival of major innovations appears to be stochastic, but clustering of major
innovations in a given time interval is stronger than one would expect under a
uniform distribution.

As will be demonstrated in Subsections 3.4 and 3.5, quite a few of these observed
patterns can be rather robustly reproduced using ACE models. This is particularly en-
couraging since these patterns are in no way explicitly incorporated into these models,
but are emergent properties of the aggregate behavior in complex models, which in
many cases are built upon rich micro foundations incorporating at least some of the
key features of the processes involved in actual technological change. This highlights
another important feature of ACE models: namely, that due to its reliance on computer
simulations, this approach can easily link the interplay of individual innovation strate-
gies, market structure and micro effects to the development of industry-wide or even
economy-wide variables like average factor productivity, number of firms or economic
growth. The emergence of regular macro patterns based on decentralized uncoordinated
micro interaction is an important general feature of agent-based models. The fact that
ACE models are well able to reproduce actual aggregate behavior under given economic
conditions becomes particularly relevant if ACE models are used to predict and evalu-
ate the effects of policy measures that might change the industry or market environment
(see e.g. Kwasnicki, 1998 or Pyka and Grebel, 2006 for more extensive discussions of
the potential of agent-based modelling in evolutionary economics).
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Despite the apparent merit of the agent-based simulation approach for the analysis
of a wide range of issues in the economics of innovation and technological change,
the amount of relevant ACE-based work in this area is not huge. A large fraction of
this work has been conducted in the tradition of the evolutionary economics approach
pioneered by Nelson and Winter (1982). However, the amount of work in this area sub-
stantially increased during the last few years where also several issues outside the scope
of evolutionary analyses were addressed. This chapter will give an overview over the
issues addressed in the different types of ACE studies in this area and highlight some
examples of the kinds of models which were developed to do this. The presentation will
be organized around the two main arguments for the use of ACE models in the domain
of the economics of innovation which were discussed in this introduction. I will first
illustrate the different ways ACE researchers have tried to address each of the four dis-
cussed specific properties of technical change processes in their models.7 Afterwards,
I will discuss a number of ACE models which have been successful in reproducing styl-
ized patterns of industry evolution and economic growth. Although there will be some
coverage of ACE models of economic growth, the overall focus of the chapter is on the
micro foundations and industry level behavior rather than on economic growth. A more
extensive discussion of the potential of ACE models for the analysis of economic growth
from a broader perspective can be found in the chapter by Howitt (2006) in this hand-
book. It is also important to point out a few topics what will not be covered in this
chapter in spite of their relevance for the understanding of economic change. I will not
discuss issues associated with organizational change (this is at least partly covered in
the chapter by Chang and Harrington, 2006 in this handbook). I will only touch upon the
important relationship between organizational and technological change and the crucial
role of organizational structure of a firm for the success of its innovative activities. Also,
there will be little discussion of networks emergence and information diffusion models
although such models are of obvious relevance for the understanding of several aspects
of the process of technological change (e.g. knowledge spillovers, speed of diffusion of
new technologies). Models of this kind are discussed in the chapters by Vriend (2006)
and Wilhite (2006) in this handbook. See also Cohendet et al. (1998) for a collection of
surveys and papers dealing with this issue.

The plan for the remainder of this chapter is the following. In Section 2 the evolu-
tionary approach is briefly discussed and in Section 3 I survey some of the existing

7 Actually, I will explicitly deal only with the importance of knowledge, the effect of the strong uncertainty
and issues of heterogeneity. By their very nature ACE models incorporate the dynamic nature of innovation
and technological change and therefore this point is not separately addressed. It should be noted however that
many game-theoretic results characterizing innovation incentives in different market environments rely on
static models. Among many others Dasgupta and Stiglitz (1980), D’Aspremont and Jaquemin (1988), Bester
and Petrakis (1993), Qiu (1997). Although using vastly simplified settings these papers make interesting
points about strategic effects that might influence the firms choice of innovation efforts. A static setting indeed
seems to be a useful way to clearly identify some of these effects, although it should also be considered in
how far the obtained insights transfer to a dynamic world.
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literature8 where ACE models have been developed to address issues of innovation and
technological change. In Section 4 I will briefly discuss whether my statements in this
introduction concerning the potential of ACE research in this domain can be justified
based on the work surveyed in Section 3. I conclude with Section 5, where a few chal-
lenges and promising topics for future work are highlighted.

2. The evolutionary approach

The dynamic process of technological change has been extensively analyzed in the field
of evolutionary economics. The range of work which is subsumed under the label evo-
lutionary economics is quite broad and heterogenous. According to Boulding (1991)
‘evolutionary economics is simply an attempt to look at an economic system, whether
of the whole world or of its parts as continuing process in space and time.’ Clearly
the notion of some kind of ‘selection’ process which determines the direction of the
dynamics is a key concept for most of the studies in this field which also provides the
bridge to theories of biological evolution. The idea that behavior of economic decision
makers might be determined by a selection process rather than by the application of
optimization calculus is not new (see e.g. Alchian, 1950) and has even been used by
neoclassical economists to make the ‘as if’ argument in defense of the assumption of
perfect rationality of economic decision makers (Friedman, 1953)9. Schumpeter is gen-
erally seen as the pioneering figure in the field since he was one of the first to stress the
importance of innovation for economic growth and rejected the idea of ‘convergence’
in favor of viewing the economy as an ever-changing system. Although he rejected
the simple application of biological selection metaphors to economic systems, his ideas
about technological competition characterized by the interplay of entrepreneurs advanc-
ing technology by introducing innovations (thereby earning additional transitory profits)
and imitators aiming to adopt them certainly describe a type of selection and diffusion
mechanism. The early contributors were however rather isolated and it is fair to say that
‘modern’ evolutionary economics gained momentum only about 30 years ago. Since
then it has been a very active field of research.

2.1. General characteristics of the evolutionary approach

Branches within evolutionary economics have relied on approaches heavily influenced
by models of natural evolution to study what kind of behavior emerges in the long

8 The actual selection of papers which are included in this literature review is of course strongly influenced
by the available information and the personal bias of the author. I apologize to all authors whose work is not
or not properly represented in this chapter.
9 It should be stressed that the ‘as if’ argument is flawed for several reasons. The main reason being that it

either implicitly assumes global stability of the state, where everyone uses the optimal decision rule, with re-
spect to the underlying evolutionary dynamics—which holds in only few special cases—or implicitly assumes
that the initial condition of the system happens to be in the basin of attraction of such an optimal state.
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run in a population whose members are engaged in some kind of repeated direct in-
teraction. The huge literature on evolutionary game theory falls into this category (see
e.g. Weibull, 1995). Like Schumpeterian and neo-Schumpeterian work this approach is
based on population thinking and scepticism towards too strong rationality assumptions
about economic agents. Contrary to the Schumpeterian approach the focus is however
typically on questions of dynamic equilibrium selection for a given strategy set rather
than on the exploration of actual innovation dynamics. More relevant in our context is
the branch of literature that interprets the process of technological change as an evo-
lutionary process and thereby applies evolutionary ideas to gain insights into industry
dynamics and in particular into the co-evolution of technology and industry structure.
Much of this literature was inspired by the seminal work of Nelson and Winter (1982)
and accepts computer simulations as a useful and suitable tool to study the properties
of the considered dynamic process.10 Accordingly, the evolutionary approach has been
underlying a large fraction of the agent-based work on innovation and technological
change. Before I briefly discuss the simulation models examined by Nelson and Winter
(1982) I would like to point out some of the arguments and observations concerning
technological change made in the evolutionary economics literature which highlight
the merit of agent-based modelling in this field. More extensive recent discussions of
the evolutionary approach can be found in Dopfer (2001), Dosi and Winter (2002),
Fagerberg (2003), Nelson (1995), Nelson and Winter (2002), Witt (2001) or Ziman
(2000).

Evolutionary processes in their most general form might be characterized by three
main stages: (i) generation of variety by means of individual innovations; (ii) selection
based on some measure of ‘success’; (iii) reduction of variety due to diffusion and adap-
tation. The interpretation of the three stages for biological evolution is straightforward
but this is less so if we are concerned with the evolution of economic systems. In each
of these three stages individuals make important decisions but in an evolutionary view
the subject of analysis is not the individual but rather the entire population. The ques-
tion which company is introducing a certain new technology is of less concern than the
question when such a new technology will be first developed in the entire population.
Obviously, there are crucial feedbacks between the individual and the population level.
Population characteristics are the aggregate of individual decisions, but it is also im-
portant to realize that individual decisions in all three stages are in general determined
by population characteristics. So, an evolutionary approach always calls for ‘popula-
tion thinking’ and highlights the importance of an integrated analysis of the micro and
the population level (sometimes called meso level) as well as the feedbacks between
the two. The complexity of this endeavor is obvious and calls for simulation methods.
This is even more so if one considers the importance of variety (or heterogeneity) for

10 Some of the work on industrial evolution and growth has relied on analytical tools and findings from evo-
lutionary biology like results on replicator dynamics or Fisher’s theorem of natural selection (e.g. Silverberg
et al., 1988; Metcalfe, 1988).
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the understanding of evolutionary processes. The interplay between the generation of
variety in the first stage and the reduction of variety by some kind of selection is the
fuel of the evolutionary process, which comes to a halt once the population becomes
homogenous. Therefore, the explicit consideration of heterogeneity in a population of
economic agents is indeed a natural implication of an evolutionary approach.

Another aspect of the evolutionary approach which has contributed to the popular-
ity of agent-based simulation models in this field is the way decision-making processes
within the firm are seen. Particularly for work influenced by Nelson and Winter (1982),
organizational routines are at the center-stage of these considerations. This view stresses
procedural rationality as the key concept for understanding firm’s decision-making
rather than the neoclassical perfect rationality assumption. Nelson and Winter (1982)11

argue that firms develop over time routines to deal with situations they are frequently
facing. This process is based on feedback learning rather than on perfect foresight or
complex optimization arguments. The decision-making process of a firm is character-
ized by the set of its developed routines and therefore routines have an important role as
the organizational memory. Hence, this view on the decision-making process of firms
incorporates in a natural way ‘behavioral continuity’ of firms, which seems to be an
important property of actual decision-making in many real world firms (some empirical
evidence is cited in Nelson and Winter, 2002).

This behavioral foundation of evolutionary economics has led to a focus on models
where decision-making processes are represented in an explicit procedural way rather
than by relying on abstract optimization calculus. Such a shift of focus makes agent-
based models a natural choice, since they easily allow the incorporation of decision
processes relying on sets or even hierarchies of rules (e.g. using classifier systems),
whereas such attempts are typically cumbersome in pure analytical formulations and in
general do not allow for general mathematical characterizations.

2.2. The analysis of Nelson and Winter (1982)

In this subsection I will briefly discuss a few selected parts of the book by Nelson and
Winter (1982). The reasons to do this are twofold. First, the way the analysis is carried
out in this book has been quite influential for the way simulation studies of industrial
dynamics were motivated, set-up and performed afterwards. Second, quite a few of the
agent-based models reviewed in Section 3 are more or less directly based on the models
presented in this book.

In part IV of their book Nelson and Winter develop an evolutionary model of eco-
nomic growth. There are two input factors, labor and physical capital, and firms are
characterized by the current values of the input coefficients for both factors and the
capital stock. Firms can improve the values of the input coefficients by local search

11 Nelson and Winter build upon previous work, most notably that by Cyert and March (1963) and Simon
(1959).
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and imitation. There is a fixed supply of labor and wages are determined endogenously
based on the aggregate demand for labor. Gross investment is determined by gross prof-
its. Nelson and Winter argue that an evolutionary model of economic growth should be
based on plausible micro foundations and at the same time should be able to explain pat-
terns of aggregate variables like outputs and factors prices. They calibrate their model
using data reported in Solow (1957) and show that this very simple evolutionary growth
model is able to qualitatively reproduce dynamic patters of key variables for Solow’s
data. The focus on the reproduction of ‘stylized facts’ using micro-founded dynamic
models stressed in this exercise has been a main theme of subsequent evolutionary re-
search on industrial dynamics and growth.

In part V of the book a more complex model of Schumpeterian competition and in-
dustry evolution is considered. Firms produce with constant returns to scale a single
homogeneous good. Every period each firm is using its capital stock in order to produce
output according to its current productivity level. By investing in imitation or process
innovation, firms can increase their probability to have a successful imitation or inno-
vation draw. Success means that the draw leads to the adoption of the highest current
productivity level in the industry or the development of a new technique whose pro-
ductivity is random and might be above or below the current best practice (but is only
chosen if it is above the firms’ current productivity)12. A firm is characterized by its
fraction of profits invested for imitation and innovation and by its investment function,
which determines desired expansion or contraction of capital based on observed price-
cost margin, market-share, profit and the physical depreciation rate. Since the entire
capital stock is always employed in production, the investment function is crucial for
the determination of the production quantities of the firm.

In all sets of simulations these characteristics of firms are fixed over time. However,
there are initial heterogeneities between firms with respect to their innovation strate-
gies. In particular, it is assumed that the industry is a mix of imitators (investing only
in imitative R&D) and innovators (investing in imitative and innovative R&D). The
different paces of capital accumulation and exit of single firms therefore lead to se-
lection effects of behavior on the industry level. The analysis of the simulation runs
focuses on the long run outcomes (after 100 periods) of industry evolution with respect
to the distribution of productivity, the degree of industry concentration and the relative
performance of innovators and imitators. In a first step these long run outcomes are
compared for a science-based industry across scenarios characterized by different de-
grees of initial concentration. It turns out that average productivity is larger for more
concentrated industries but no strict positive relationship between concentration and cu-
mulative expenditures on innovative R&D can be observed. Innovators are on average

12 Nelson and Winter distinguish the cases of ‘cumulative’ and ‘science-based’ technological advance.
Whereas in the first case the expected productivity of a new technology equals the firms current productivity,
for science-based industries the expectation of the productivity of a new technology equals an exogenously
given parameter called ‘latent productivity’. Latent productivity is supposed to represent the technological
possibilities created outside the industry (public research labs, universities) and grows at a given rate.
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less profitable than imitators but some still survive in the industry. In a second step Nel-
son and Winter analyze the impact of several industry characteristics (aggressiveness of
investment policies, difficulty of imitation, rate of latent productivity growth, variability
of innovation outcomes) on the degree of long run concentration. The simulations show
that among these factors the aggressiveness of investment policies is most crucial for
determining the long run industry concentration. More aggressive investment behavior
leads to higher concentration. Also the direction of the impact of the other considered
factors is quite intuitive but less pronounced.

The model and the analysis of Nelson and Winter (1982) is extended in Winter
(1984). Two main changes with respect to the model are introduced: (i) the innovation
strategies are adaptive, firms increase or decrease spending for innovative and imitative
R&D based on the past average success of these activities; (ii) if return on capital in the
industry is high, additional firms might enter the industry. The focus of the analysis is
on the comparison of two technological regimes, the entrepreneurial and the routinized
regime, which loosely correspond to the different descriptions of the innovation process
in Schumpeter’s early writings and in his later work. The main difference between the
regimes is that in the entrepreneurial regime a larger number of innovation attempts
is made outside the industry but the probability of success for a single innovation at-
tempt is smaller. The parameters are chosen such that these two effects are balanced
and the expected number of potential entrants, who have succeeded with an innovation,
are identical in both regimes. The simulations show quite distinct patterns of industry
evolution under the two regimes. In particular, the routinized regime results in much
smoother dynamics for the best practice-technology in the industry, in a higher degree
of concentration and in higher R&D expenses in the long run. These observed qualita-
tive differences match well with Schumpeter’s description of industry evolution before
and after the ‘industrialization’ of R&D.

These pioneering simulation studies of the interplay of industry evolution and techno-
logical change already nicely highlight some of the merits of the agent-based approach
for the study of innovation dynamics. Firms are rule-based autonomous agents that dif-
fer not only with respect to capital stock and employed technology but also with respect
to their production and innovation strategy. The interplay between the dynamics of in-
dustry concentration and the dynamics of productivity distribution generates feedback
effects with non-trivial implications for the long run outcome. The consideration of
different scenarios characterized by different constellations of technological parame-
ters (difficulty of imitation) or strategy characteristics (aggressiveness of investment
policies) allows a modeller to evaluate how sensitive results depend on the ‘type’ of
the industry considered. The possibility of such ‘laboratory experiments’ are indeed an
important feature of ACE modelling (see e.g. Tesfatsion, 2006a). On the other hand,
certain aspects are highly simplified in the original Nelson and Winter model and, due
to the large impact this work has had on subsequent research in this direction, this holds
in a similar way for quite a bit of work in the evolutionary tradition to be reviewed in
the next section. I will mention three points here: (i) the assumption that firms never
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adapt their decision rules13; (ii) the lack of any explicit-structure governing interactions
between firms and the shape of externalities14; (iii) the representation of the process
of technological change leaves a large black box between the inflowing funds and the
resulting productivity increase. Innovation probabilities only depend on current invest-
ments, there is no accumulation of research investment and also no explicit role for
knowledge accumulation at the firm15. The mechanistic nature of the innovation process
also leaves no room for considering the direction of the innovative activities of the indi-
vidual firm (and the direction of technological change as a whole) and the timing of the
introduction of innovations. Additional structure at the firm level is needed to address
such issues.

3. Agent-based models of technological change

In this section I will discuss a number of ACE studies dealing with different aspects
of innovation and technological change. The presentation is organized according to the
main themes discussed in the introduction. I will first focus again on the four important
properties of technological change processes discussed in the introduction. For each of
the properties (ii)–(iv)16 I will discuss examples of ACE models addressing this issue.
In Subsection 3.5 I will then shift focus to the power of ACE models to reproduce
stylized facts and discuss the success of agent-based growth models in this respect.
The final subsection of Section 3 will then be dedicated to a stream of research where
detailed models of the evolution of specific industries are developed using an agent-
based approach.

3.1. Knowledge accumulation, knowledge structure and spillovers

The success of innovative activities of a firm does not only depend on its current invest-
ment but also to a large extent on the size and structure of the knowledge base the firm
has accumulated. The stock of knowledge of a firm is not uniform and has a lot of struc-
ture. For example, distinctions should be made between explicit and tacit knowledge as
well as between general knowledge and specific skills. There is vast empirical evidence
(see e.g. Griliches, 1992; Geroski, 1996) for the relevance of technological spillovers

13 Of course this point does not hold for the extension of the model in Winter (1984). An extension of Nelson
and Winter’s model of Schumpeterian competition, where firms can adapt their R&D strategy was recently
considered in Yildizoglu (2002).
14 See however Jonard and Yildizoglu (1998) for a formulation of the Nelson and Winter model in a spatial
setting.
15 For cumulative industries the current productivity of the firm might however be seen as a proxy for the
knowledge stock of the firm at the time of its most recent innovation.
16 All ACE models discussed are dynamic, so no separate discussion of models incorporating property (i)
(‘dynamics’) is provided.
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representing knowledge flows between firms or individuals. Cohen and Levinthal (1989)
have provided empirical evidence that the extent of spillovers flowing into a firm de-
pends on the firms own R&D efforts. Rosenberg (1990) argues that different types of
research efforts have to be distinguished in this respect and particularly that basic re-
search capability is essential to enable absorption of knowledge generated elsewhere.
Existing analytical approaches and also papers using the Nelson and Winter framework
typically do not consider the dynamic accumulation of a structured knowledge base of
firms competing in a market. Knowledge accumulation is treated either implicitly, by
assuming that all current knowledge is embodied in the technology currently used, or
by considering a simple R&D stock variable which is increased by investments over
time17.

Using agent-based simulations allows a modeller to add some of the empirically
relevant structure to the standard models of knowledge accumulation and spillovers.
Cantner and Pyka (1998) consider a dynamic heterogenous oligopoly model, where
firms allocate their R&D expenditures between investment in an R&D capital stock and
the increase of their absorptive capacity. Firms might carry out product and process
innovations where the probability for a successful innovation of a firm depends on
its R&D capital stock and on the size of spillovers. It is assumed that the size of the
spillovers flowing into a firm depends on the accumulated absorptive capacity of the
firm, on the variance of the unit costs (for process innovations), respectively product
quality (for product innovations) and on the relative position of the firm in the industry
with respect to process respectively product technology. Motivated by empirical obser-
vations, a bell shaped relationship is used. Spillovers are small for firms close to the
frontier of industry technology and for firms too far behind but large for firms whose
gap to the frontier is in an intermediate range. Both the bell-shaped spillover function
and the fact that the size of spillovers depends on the heterogeneity of the technologies
used in the population stresses the point that received information only increases knowl-
edge if it is complementary to the firm’s current knowledge. This point is often ignored
in models of technological spillovers.

The authors run simulations for scenarios where all firms have identical fixed R&D
quotas but differ with respect to the share of investments used for building absorptive
capacity (the decision rules of all firms are fixed over time). Comparing the firms profits,
Cantner and Pyka find that initially the firm with zero minimal investment for building
absorptive capacity is most profitable, but if potential spillovers are large this is only a
transient phenomenon. In such a scenario firms who accumulated absorptive capacity
eventually become more profitable than firms solely relying on the own R&D stock. The

17 There are a few exceptions like Jovanovic and Nyarko (1996), who develop a Bayesian model of learning
by doing and technology choice which explicitly takes into account that agents develop expertise specific to
their current technology and also deals with spillover effects. However, they treat competition only in a very
rudimentary way. Cassiman et al. (2002) analyze a static dominant firm model where the firm allocates R&D
investments between basic and applied research.
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long run profitability of building absorptive capacity is however jeopardized if appro-
priability conditions are relatively high and cross effects between the different markets
are relatively low.

Similar in spirit is the work of Ballot and Taymaz (1997) who analyze an extensive
micro-macro simulation model based on a model of the Swedish economy by Eliason
(1991). Firms in their model can, through training, build stocks of specific skills en-
abling them to increase productivity and stocks of general knowledge which increase the
probability for successful radical innovations. One of their numerous interesting find-
ings is that there is a positive statistical relationship between a firms’ early investment
in general knowledge and the profit rate, while, with the exception of a few periods,
there is always a negative relationship between a firm’s specific human capital and the
profit rate. Their conclusion is that R&D investments should be preceded by a buildup
of general knowledge since innovators with a strong knowledge base fare better in the
long run [p. 455]. Also in this paper the firms’ strategies allocating resources between
the different types of training are fixed over time. An extension where the strategies are
updated via a classifier system has been considered in Ballot and Taymaz (1999) but the
focus there is on growth issues and it is not reported how far the findings concerning
knowledge accumulation change with adaptive strategies.

In their work on innovation networks Gilbert et al. (2000, 2001) have developed a
way to model knowledge and capabilities of a firm in substantially more detail. The
model is part of a general simulation platform which is intended to be used to simulate
and reproduce the evolution of innovation networks in various real world industries.
The knowledge base of an agent here is represented by a ‘kene’ which is a collection
of triples, each triple giving a technological capability, a corresponding specific ability
and a cardinal value describing the agent’s level of expertise for this specific ability.
Agents develop innovation hypotheses by randomly selecting a set of triplets from their
kene. This selection is supposed to capture the current research direction of the agent.
The abilities and levels of expertise involved in this hypothesis determines the finan-
cial reward which might be gained by this innovation. To capture learning by doing
effects the levels of expertise for abilities involved in the current research direction are
increased, whereas the expertise for abilities not currently needed are decreased and
might eventually vanish. If the financial reward of an innovation hypothesis is above a
certain threshold the hypothesis is considered a success and launched as an actual in-
novation. The concrete interpretation of technological capabilities, specific abilities and
the way financial rewards from innovations are determined depends on the properties
of the industry that are examined. A general feature of the map determining financial
rewards is, however, that it changes with the launch of an innovation in such a way that
launching an exact copy of the innovation does not pay, whereas a successful innovation
increases the attractiveness of points in its neighborhood.

Agents might change their kenes through their own costly R&D where both incre-
mental research, modifying abilities and expertise within the set of capabilities chosen
for its innovation hypothesis, and radical changes, where new capabilities are added, are
possible. Agents might also change their knowledge base by cooperating with a partner.
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In such a case the (capability, ability, expertise) triplets from each agent’s kene is added
to the partner’s kene. The expertise level is given by the max of the two partners for
abilities which were present in both kenes and set to one for all abilities which were not
previously present in an agent’s kene. Partners might decide to start a network, which is
a persistent connection and can be extended to more than two partners. Network mem-
bers share results of their research and always have identical innovation hypotheses,
dividing the reward if a successful innovation is launched.

This way of representing the knowledge base allows a modeller to study the accumu-
lation of knowledge in the industry in a very structured way. One can not only study the
increase in amount of knowledge but also identify patterns of knowledge accumulation,
for example whether knowledge is accumulated uniformly across the space spanned
by capabilities and abilities or whether concentration on one or maybe a few key ca-
pabilities can be observed. Also, since in this approach the exchange of knowledge is
modelled explicitly, spillovers only occur if partners with complementary abilities and
expertise exchange knowledge. Hence, this seems to be a very promising approach to
further examine in more detail the building of knowledge bases needed for innovations
in industries.

3.2. Dealing with substantive uncertainty: design of innovations, search in the
technology landscape and prediction of market response

As discussed in the introduction, the substantive uncertainty associated with innovation
processes raises several issues. First, in a world where a firm is not able to conceive
all possible outcomes of an innovation project and is even less able to generate the
payoff distributions resulting from different innovation strategies, the question of how
to search for new products and processes is far from obvious. Associated issues then are
how different type of search strategies for innovations compare to each other from the
firm’s perspective and how their interplay influences shape and speed of technological
change, industry development and growth. Second, closely related to these issues is the
question how firms can develop models to predict market reaction to the introduction of
new products and to estimate the expected returns generated by innovations.

In the analytical neoclassical innovation literature the problem of finding the op-
timal search strategy is in many instances not addressed at all. Typically it is either
assumed that R&D expenditures transform in a deterministic or stochastic way into cost
reductions (among many others e.g. Dasgupta and Stiglitz, 1980; D’Aspremont and
Jacquemin, 1988; Kortum, 1997), quality improvements (e.g. Grossman and Helpman,
1991; Aghion and Howitt, 1992; Bonanno and Haworth, 1998) or horizontal differenti-
ation of the new product from the rest (e.g. Lin and Saggi, 2002). If the dynamic nature
of the innovation process is explicitly considered, like in the patent-race literature, it is
usually assumed that there are exogenously given innovation steps the firms are aim-
ing for (see e.g. Reinganum, 1989; Beath et al., 1995). A few papers on technological
change have incorporated search theoretic considerations into equilibrium models (see
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e.g. Bental and Peled, 1996; Kortum, 1997) and in Section 4 I will briefly discuss the
basic differences between these studies and the ACE work surveyed in this subsection.

The agent-based approach allows a modeller to explicitly address the issues related
to substantive uncertainty of innovations and search on technology and product land-
scapes. The existing literature aiming in this direction is not huge but a few agent-based
models have been developed to study in more detail the process of designing and search-
ing for innovations as well as the interplay of this search process with the industry
dynamics and the evolution of consumer preferences18. Cooper (2000) makes the point
that firms are trying to solve certain design problems when carrying out R&D and that
in reality these design problems are typically ‘ill-structured’ and hard to solve. He con-
siders the example of designing a pin-joined frame with certain properties and minimal
mass in order to compare the learning curves if firms try to develop the design in isola-
tion with the learning curves under social learning. Each firm searches the design space
(represented by the set of all binary strings of a certain length describing key parameters
of the design) employing a simulated annealing algorithm. In the case of social learn-
ing, in addition each firm every period collects design bits from a given number of other
firms selected by roulette wheel selection and puts them together as a potential new
design. This design is adopted if it outperforms the current design of the firm. Cooper
shows that social learning speeds up the process of finding better designs and that partial
imitation, where firms combine design bits from several firms on average, leads to faster
learning than a scenario where firms simply adopt the design of one top performer. The
reason for this finding is that with partial imitation (corresponding to something like
crossover in Genetic Algorithms (see Dawid, 1999) a lock-in of the industry at subopti-
mal designs is avoided. Unfortunately, individual incentives are not assigned with these
considerations, since firms individually can gain by relying on simple imitation of the
best performer rather than on partial imitation.

Since in Cooper’s model the evaluation of designs is entirely based on their techni-
cal characteristics, it is reasonable to assume that new designs which have not yet been
adopted can be compared to existing designs. If the evaluation of designs depends on
their success in the market, however, such a comparison is only possible if the firm has
a way to estimate the success of a new design in the market. Firms have to build an ‘in-
ternal model’ to be able to estimate the profitability of new designs in the market and, as
stressed in Section 1, this is a very challenging task. Internal models have to be devel-
oped based on past experience. Birchenhall (1995) points out that this means that there
is co-evolution of a population of potential new designs and of the models needed to
evaluate them19. He models such a situation using two co-evolving genetic algorithms.

18 Models of search in complex technology spaces without explicit considerations of involved firms or mar-
kets have been provided for example by Ebeling et al. (2000) and Silverberg and Verspagen (2005a).
19 There are also several ACE-type market studies where firms are not able to perfectly understand the (time-
invariant) demand structure but update and select innovation strategies based on exogenously fixed evaluation
models (e.g. Kwasnicki and Kwasnicka, 1992; Adner and Levinthal, 2001; Dawid and Reimann, 2004). Since
the focus of these studies is neither on the way search in the technology landscape is performed nor on internal
model building, I do not discuss them in detail here.
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In the GA governing the search for a new technological design a new design created by
mutation and/or crossover is only adopted if it is more profitable than the current tech-
nology of the firm according to at least one of estimation functions present in the second
population (actually the second population consists of encoded parameters for a para-
meterized evaluation function). The fitness of strings in the second population, which
represent evaluation models, is determined by the evaluation errors of these models in
the past. It is shown that the use of such evolved internal models for selection of designs
to be implemented substantially increases the performance of the firm compared to a
case where any new developed design is implemented. A similar point has also been
made by Yildizoglu (2001) who inserts firms which develop an internal model of the
market into a slightly adapted version of Nelson and Winter’s model of Schumpeterian
competition.

Natter et al. (2001) consider the co-evolution of several internal models within a firm
in a rather detailed model addressing issues of organization and learning related to the
new product development process. A market with monopolistic competition structure
is considered, where each firm consists of a marketing and a production agent. The
production agent builds an internal model about the relationship between the produc-
tion processes and resulting product features as well as about the relationship between
the production process and costs. The marketing agent has to develop a model of the
relationship between product features and the attractiveness of the features in the mar-
ket. Agents build these internal models by training artificial neural networks. Using
these internal models the agents have to decide on the type of production process to be
implemented. Different organizational forms are compared (sequential or team-based
structures) where life-cycle returns are used to evaluate performance. Among other
insights, the simulations show that team-based structures are superior to sequential
decision-making and highlight the need to adjust incentive schemes to the organiza-
tional structure chosen.

Dawid and Reimann (2004) provide a systematic study of the effect of the inter-
action of different approaches for predicting the success of product innovations in
an oligopolistic market20. An industry is considered where several horizontally and
vertically differentiated products are offered. Consumers have Chamberlinian love-of-
variety-preferences, where the utility gained from consumption of a good is influenced
by the current attractiveness of this product. The attractiveness parameter of a product
changes over time according to a stochastic process resembling the shape of a life cycle.
The expected maximal attractiveness depends on the effort which has been invested by
the innovating firm in the corresponding product innovation process. Since consumers
face a budget constraint, the actual demand for a product depends on its relative attrac-
tiveness compared to the other products offered, which yields endogenously determined
demand life-cycles for the products. Each firm might offer a whole range of products.

20 An empirical study analyzing simple decision heuristics for making such predictions can be found in
Astebro and Elhedhli (2003).
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Each period a firm can extend its product range either by adding a product to its range,
that is new to the firm but already exists in the market, or by introducing a product inno-
vation which is new to the market. If a new product is taken to the market the consumers
utility function is extended accordingly, where the expected value of the attractiveness
parameter depends on accumulated investments for this product development. At the
same time, a firm might decide to drop one or more products from its range. Addition-
ally, firms have to make output, investment and investment allocation decisions.

The focus of Dawid and Reimann (2004) is on the interplay of different firms’ strate-
gies for the evaluation of existing and potential new sub-markets. The evaluation of a
sub-market is based on current profits on this sub-market, the current growth rate and
the anticipated long run potential of the sub-market. The weights assigned by a firm to
each of these three factors is seen as part of the firm’s strategy parameters. Using ex-
tensive simulations followed by statistical tests, Dawid and Reimann (2004) show that
individual incentives induce firms to put the larger weight on market growth compared
to profit, where this effect is particularly strong if the horizontal differentiation between
products is strong. This means that, in a scenario where firms adapt their evaluation
strategies over time, the firms in the industry become more and more oriented towards
sub-markets with high growth rates, which are typically markets for recently introduced
innovations. However, if all firms use evaluation strategies which put higher weight
on current profits, average industry profits increase. These findings demonstrate that,
in a complex uncertain environment, dynamic adaptation of internal evaluation models
of new products might itself induce inefficiencies with respect to the introduction and
adoption of innovations.

In the industry model of Dawid and Reimann (2004, 2005) the endogeneous product
life-cycles are driven by the fact that the offered product range has some influence on
aggregate demand, but there is no micro-founded representation of the demand side.
A more explicit consideration of the interplay between the design of product innova-
tions and the evolution of demand is provided in Windrum and Birchenhall (1998).
They consider the search for designs of innovative products as a search problem on a
shifting rather than a fixed landscape. In their agent-based model consumer preferences
co-evolve with the product designs offered by the producers. The search for designs
of producers is modelled via an algorithm similar to a genetic algorithm. Furthermore,
there is a fixed and finite set of possible consumer types where the frequency of each
type varies depending on how effectively different consumer types have been served by
the offered supply. The model reproduces patterns of decreasing (product) innovation
activities over the life-cycle, which is typically observed in real-world industries. Fur-
thermore, in this industry typically several co-existing product designs survive which
are interpreted as different niche-markets. The authors argue that this finding—although
contradicting the dominant design hypothesis—is consistent with observable patterns in
numerous industries and that the dominant design hypothesis should rather be seen as a
special case of the more general phenomenon of niche-formation.

Before I move on to the discussion of models focusing on the effects and importance
of ex-ante heterogeneity of strategies, I want to mention that several of the agent-based
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growth models also incorporate interesting and rather explicit models of technological
search. I will discuss these in Subsection 3.4.

3.3. The importance of the heterogeneity of innovation strategies

Heterogeneity of behavior of agents is a prevalent phenomenon in almost any economic
setting. As has been stressed in Section 1, this is particularly true in the context of in-
novations. In the framework of neoclassical analysis heterogeneity of behavior can be
explained by heterogeneities of agent characteristics or initial endowments. Yet even
in a symmetric equilibrium among agents with symmetric characteristics, heteroge-
neous behavior can emerge if the equilibrium involves mixed strategies. Heterogeneity
of strategies in a neoclassical world with symmetric agents can however only arise if
an asymmetric equilibrium exists. Several analytical studies dealing with innovation
have in such a way explained heterogeneity of innovation strategies (e.g. Gersbach and
Schmutzler, 2003). In an agent-based approach, where the complexity and substantive
uncertainty associated with a firm’s maximization problem is taken into account, and
strategies are rule-based rather than derived as the solution of a tractable well-posed
optimization problem, it is quite natural to deal with heterogeneity of strategies. Several
of the models discussed so far, including Nelson and Winters model of Schumpeterian
competition, incorporate heterogeneity of strategies not induced by differences in en-
dowments. The point of this subsection is therefore not to survey agent-based models
of technological change which feature heterogenous behavior—almost any ACE model
does—but to stress that several agent-based studies in this domain have explicitly fo-
cused on the effects of strategy heterogeneity from a firm and an industry perspective.
They have shown that heterogeneity of innovation strategies in not only induced by indi-
vidual incentives of firms but also has significant positive effects on the overall evolution
of the industry.

Dawid et al. (2001) address the question at the firm level. Using a simplified version
of the model in Dawid and Reimann (2004, 2005) described above, they study the ques-
tion how much inertia firms should show when switching from an established product
to a new one, and under which circumstances firms should primarily rely on imitation of
existing designs for product innovation or try to develop their own innovative designs.
Among other findings, the paper shows that, ceteris paribus, it is advantageous for a firm
to deviate with respect to the imitation-innovation weighting from the average industry
strategy. Put differently, in any state of the industry with uniform innovation strategies,
firms have incentives to deviate, thus generating strategy heterogeneity.

The effect of strategy diversity on overall industry performance is pointed out by
Llerena and Oltra (2002). They consider a setup which is based on the Nelson and
Winter model but extends significantly the description of the innovation process. Firms’
innovation probabilities depend on the stock of accumulated knowledge rather than only
on current investment. There are two types of firms characterized by different ways to
acquire knowledge and generate innovations. The cumulative firms build their stock
of knowledge by own R&D and generate innovations internally. The non-cumulative
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firms invest in building up their absorptive capacity in order to exploit the knowledge
generated externally. Accordingly, the average productivity of a new technology of a
cumulative firm is given by its own current productivity, whereas for a non-cumulative
firm the productivity is centered around the market share-weighted average industry pro-
ductivity. Loosely speaking, the two types might be labelled as innovators and imitators.
Firms are not allowed to change their innovation strategy, but there is endogenous exit
and entry of firms and therefore the number of firms of the two types in the population
varies over time. Llerena and Oltra show that, in industries where both types co-exist,
the technological evolution is superior (higher average productivity) to homogeneous
industries. Typically such a heterogenous industry ends up in a state with a few large
cumulative firms plus a fringe of many small non-cumulative ones.

Similar results concerning the importance of strategy diversity have also been ob-
tained in several other agent-based papers on industry dynamics and economic change.
Chiaromonte and Dosi (1993) consider an evolutionary agent-based growth model and
compare simulation results where technological competence and parameters of deci-
sion rules are heterogenous with scenarios where these parameters are homogenous
with unchanged means. They report that homogenous parameter settings lead to sig-
nificantly less technical progress and lower long-term aggregate income. Ballot and
Taymaz (1997, 1999), which I briefly reviewed in Subsection 3.1, consider the interplay
between four different types of decision rules in their micro-to-macro model and show
that heterogeneity of rules is not only self-sustained but that the absence of strategy
diversity reduces total output and the level of technology attained. Ballot and Taymaz’
work also makes clear that ex-ante given strategy-diversity, where firms cannot adapt
strategies later on, is not sufficient to yield high productivity levels. Crucial for dy-
namic efficiency is the interplay of heterogeneity and strategy selection by the firms, so
these findings are very much in the spirit of an evolutionary approach.

3.4. Micro-founded models of economic growth

The main goal of my survey of innovation-related ACE-work in Subsections 3.1–3.3
is to highlight how ACE researchers have incorporated important aspects of innovation
processes, which have been largely neglected in analytical papers, into their models.
Guided by the focus on three of the four important aspects of innovation processes,
which I discussed in the introduction, I have reviewed the modelling choices made in
order to deal with these issues, the research questions asked, and some insights obtained.
Hence my basic approach in these subsections was that of an economic theorist who
uses rather abstract models to gain insights into general economic phenomena21. In the
introduction I have argued that the second main advantage of ACE modelling in the
domain of innovation and industrial dynamics, besides the capability to incorporate a

21 To avoid any misunderstanding, I like to stress that quite a few of the papers reviewed in Sections 3.1–3.3
show that results obtained in the used simulation model match well with empirical stylized facts.
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larger number of important aspects of the innovation process into the analysis, is the
good ability of ACE models to reproduce empirically observed stylized facts. The focus
of the literature survey in the following two subsections will be on this aspect. In the
remainder of this section I briefly discuss some influential evolutionary growth models
with an agent-based flavor. The reader is referred to Silverberg and Verspagen (2005b)
or Windrum (2004) for a more extensive coverage of this field.

Starting with Nelson and Winters’ evolutionary growth model, a main concern of
evolutionary and ACE-minded scholars working on economic growth has been to build
models where well known stylized facts about economic growth emerge as aggregate
properties from realistic assumptions about economic interactions at the micro level.
An influential series of papers in this respect has been published by Silverberg and
Verspagen (1994, 1995, 1996), who develop an agent-based growth model with rich eco-
nomic structure. The model takes into account several stylized facts about technological
change and growth, among them the co-existence of diverse concurrent technologies
(a vintage capital approach), the exploration vs. exploitation tradeoff of innovation ef-
forts, the importance of innovation diffusion speed and the characteristics of knowledge.
A firm’s innovation strategy is characterized by its R&D quota, determining which por-
tion of profit is used for R&D. Firms are heterogenous with respect to this strategy,
which is adapted over time by imitation (proportional to market share) and mutation.
Several key points are made in Silverberg and Verspagen (1994). The trajectory of the
average R&D quota ends up fluctuating around a positive ‘evolutionary equilibrium’
which, at least for linear innovation functions, is independent from initial conditions.
Hence, there are endogenously generated positive long-run growth rates. The evolution
of the rate of technical change is characterized by a long period of slow increase fol-
lowed by a sudden ‘takeoff’ where the rate of technological change jumps up and then
keeps fluctuating at this high level. The takeoff is also associated with a sharp decrease
in market concentration. This observation makes nicely the point that the connection be-
tween R&D activity and market concentration might be characterized by co-evolution
rather than by causal relationships in either direction (as suggested in many models
rooted in the industrial organization tradition). Silverberg and Verspagen (1996) stick
to the same basic setup with the single difference that the innovation strategy of a firm
is determined by two parameters, where the first determines which portion of profits
and the second which portion of total output is invested in R&D. It turns out that in
the long run for most firms in the population the value of the first parameter is close
to zero whereas the value of the second parameter is positive. The authors argue that
profits are more volatile than output and accordingly this result can be seen as an indi-
cator that firms with strongly fluctuating R&D expenditures have lower survival chances
than those with relatively stable investment streams. A comparison of the data gener-
ated by the model with R&D expenditures in four US and Japanese industries is made
and it is demonstrated that the results of the model seem to be consistent with the em-
pirical data not only qualitatively but also with respect to the range of the observed
values.
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In Silverberg and Verspagen (1995) the model of Silverberg and Verspagen (1994) is
extended to a framework with two countries and it is demonstrated that complex patterns
of technological convergence and divergence between the countries are generated. The
authors argue that the data generated by their model matches well several characteristics
observable in OECD data. In particular they show that, like in the OECD data, the power
spectrum of the coefficient of variation of per capita GDP is an almost linear function
with negative slope.

Another string of agent-based evolutionary growth models has been developed in
Chiaromonte and Dosi (1993), Chiaromonte et al. (1993) and Dosi et al. (1994). Several
differences to the Silverberg-Verspagen models should be pointed out. There is no vin-
tage capital, but there are two sectors, one sector producing capital goods and the other
consumption goods, where production coefficients in both sectors might change over
time yielding dynamics in a two-dimensional technology space. Furthermore, firms do
not adapt innovation strategies over time. Rather, they follow ex-ante determined behav-
ioral rules with in general heterogenous strategy parameters. Although the papers differ
a bit in the details of the micro-foundation of the analyzed models, they all also in-
corporate technological change through innovation and imitation, where the innovation
process incorporates the basic distinction between incremental and radical innovations
and the diffusion of technologies is modelled explicitly as a time-consuming process.
Dynamics are open-ended since there is an ever-growing set of notional, only partly
explored technological opportunities. Market interaction is modelled in reduced form,
where in each sector market share in a given period is determined by a firm’s relative
‘competitiveness’, which depends on the price charged by the firm, the demand for its
product and—in the capital good sector—also on the productivity of labor. Chiaromonte
and Dosi (1993) provide only results for a few individual runs of the model but argue
that the simulations generate plausible time series for income and labor productivity.
Furthermore, it is demonstrated that persistent heterogeneities in market share and la-
bor productivity emerge among consumption good producers, quite in accordance with
empirical observations. The main message of the paper is the importance of persis-
tent heterogeneity of behavioral rules and employed technology for the rate of growth.
Chiaromonte et al. (1993) use the same model but focus on how price and wage adjust-
ments affect growth performance. In Dosi et al. (1994) a multi-country model of similar
type is analyzed and again it is argued, that in spite of its relatively simple structure, the
model reproduces several stylized facts such as persistent inter-firm asymmetries in pro-
ductivities and profits, persistence in aggregate fluctuations of per capita income within
a country, and increasing differentiation in level and rate of growth of per-capita income
between countries. These are indeed emergent properties of the model since there are
no country-wide externalities and since institutional design, parameter settings and so
forth are identical across countries.

An even richer agent-based growth model reproducing a large set of empirical find-
ings has been proposed by Fagiolo and Dosi (2003). In this model several of the micro-
aspects of the innovation process discussed in Subsections 3.1–3.3 are incorporated.
They consider a finite population of agents exploring an unlimited two-dimensional
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lattice which represents the technology space. Each agent every period produces a cer-
tain output which depends on a productivity parameter of her current technology and
(in an increasing way) on the number of other agents employing the same technology.
Agents in this economy every period are in one of three possible ‘modes’: (i) ‘Mining’,
i.e. producing using their current technology; (ii) ‘Imitating’, i.e. moving on the tech-
nology landscape towards some other technology which is already in use by some other
agents. Such moves are triggered by signals about other technologies received by the
agent, where the strength of the signal depends on the productivity of the technology
and its (technological) distance from the agent’s current technology. (iii) ‘Exploring’,
i.e. moving around randomly in the technology space until a new feasible technology
is discovered, where only a subset of the points on the lattice corresponds to a feasible
technology. If an explorer discovers a new feasible technology the productivity para-
meter of the new technology is determined stochastically, where the mean increases
with the distance from the origin and accumulated skills of the explorer. While an agent
moves around exploring or imitating she cannot produce. There is no market interaction
in this model22 and the characteristics of the employed technologies translate directly to
output and, on the aggregate level, to GDP. The model generates plausible outcomes on
several levels. On a technology level the model produces clusters of agents at different
co-existing technologies of comparable productivity where the adoption curves of tech-
nologies have the typical S-shape. Over time the clusters move slowly towards more
and more productive technologies. This persistent movement generates positive GDP
growth, and the authors identify conditions under which (persistently fluctuating) expo-
nential growth can be obtained. Using a much richer set of simulation data and more
sophisticated techniques compared to the ones employed in the analyses discussed so
far in this subsection, the authors also demonstrate that their artificial GDP time series
share several well established statistical properties of real-world GDP data. In particular,
there are persistent fluctuations, where autocorrelation of growth rates is significantly
positive for small lags and decreases towards zero as the lag increases. Also, it is pointed
out by the authors that, in spite of the fact that there is sustained growth, growth rates
do not increase with the population size and therefore their model does not exhibit scale
effects.

3.5. Industry studies and ‘history-friendly’ models

The previous section has demonstrated the ability of agent-based growth models to com-
bine a strong micro-foundation with the reproduction of a number of stylized facts about
economic growth. Models in the evolutionary tradition have also been used to gain
micro-founded insights into the structure of industry evolution and to account for styl-
ized facts in that respect. Klepper (1996) proposes an analytically tractable industry life
cycle model which is able to explain several stylized facts including the positive correla-
tion of entry and exit rates, the existence of industry shake-out phenomena and the shift

22 For a model in a similar spirit which includes market interaction see Kwasnicki (2001).



1260 H. Dawid

of producers efforts from product to process innovation during the life-cycle23. Fur-
thermore, evolutionary industry models by Dosi et al. (1995) and Winter et al. (2000,
2003) reproduce stylized facts concerning the skewed firm size distribution in many
industries, the long lasting co-existence of firms with different efficiency in produc-
tion, the long-term advantages of early entrants and the importance of the technological
‘regime’ in an industry for the characteristics of the industry’s evolution. However, these
models are only in a wider sense agent-based since the focus is on the analysis of the
evolution of industry-level distributions and interactions between agents and individual
decisions rules are only considered in very reduced form. Nevertheless, these models
reinforce the conclusion obtained from some of the agent-based growth models that
several of the stylized facts on the industry level emerge quite naturally from industry
models based on an explicit consideration of the dynamic interaction of heterogenous
rule-based firms.

However, the argument could be made that some of the models presented in this sec-
tion, although very sophisticated in structure, are formulated in such an abstract setting
that the modeller has enough freedom to adapt the underlying assumptions to gener-
ate certain stylized facts. Hence, these models (similarly to traditional formal economic
theory) highlight which mechanisms are potential explanations for observed phenom-
ena. In order to be more confident about capturing actual causalities in given concrete
industries it might be necessary to link the building blocks of the model more closely
to empirical observations in that given industry. Using similar arguments, Malerba et
al. (1999, 2001a) argue for the need of a new generation of evolutionary economic
models they call ‘history friendly’ models. These models should be developed based
on detailed consideration of characteristics of the industry as known to an empirically-
oriented scholar in the field. Furthermore, they should be capable of reproducing the
main facts in the historic development of the industry. The idea is to start with verbal
descriptions of the actual structure of an industry and then to translate the verbal argu-
ments into a formal model. Given the complexity of the topic under consideration, we
will see that the resulting model typically has the structure of a dynamic agent-based
simulation model.

Before describing a history friendly model in more detail, I want to mention that an
early simulation study in similar spirit was presented by Grabowski and Vernon (1987).
They build a dynamic model of the pharmaceutical industry, where specifications of
model relationships and parameters are based on empirical data describing the industry.
The model abstracts from a micro-founded representation of described relationships,
relying rather on observed statistical relationships. The model is used to evaluate and
compare the effects on the innovation rate of changes in patent duration and in the du-
ration of the regulatory review process which has to be finished before a new drug can

23 Explanations of at least some of the empirically observable regularities of industry life cycles within
dynamic equilibrium models have been given by Ericson and Pakes (1995), Hopenhayn (1992), Jovanovic
(1982), and Jovanovic and MacDonald (1994).
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be introduced to the market. The simulations imply that these two policy-determined
variables have strong influence on the rate of innovation. The positive effect of a reduc-
tion of regulatory approval time by a year approximately matches the effect of a patent
duration increase by five years.

The new generation of history-friendly models gives a much more detailed descrip-
tion of firm and behavior compared to the approach of Grabowski and Vernon (1987).
As an example I will here describe in some detail the history-friendly model of the com-
puter industry developed in Malerba et al. (1999, 2001b) and afterwards mention a few
other recent industry studies based on a similar approach.

Malerba et al. (1999, 2001b) include many of the issues discussed in the previous sub-
sections, such as the gradual buildup of technical competence, direction of search and
advance of innovations, the importance of the distance of a firm from the technological
frontier for its costs of innovation, the influence of supply on consumer preferences and
demand, the importance of diffusion of information about new technologies and the im-
plications of firms diversification decisions. The chosen specifications are motivated by
empirical observations in the computer industry. The model is supposed to capture main
phenomena observed in the transition of the computer industry from transistor to micro-
processor technology and the associated emergence of the market for PCs in addition to
the original mainframe market. In particular, the authors try to explain the empirical ob-
servation that a dominant firm emerges in the original market using ‘old’ technology and
then quickly adopts the ‘new’ technology and keeps its strong position in the original
market. However, this dominant firm is not able to gain a similar strong position in an
emerging new market (PC market). The products in the model are characterized by two
attributes ‘cheapness’ and ‘performance’. It is also assumed that there are two types of
consumers, where one type (‘big firms’) puts more weight on performance whereas the
second type (‘small users’) is more interested in cheapness. The first type of consumers
form the mainframe market whereas consumers in the PC market are of the second
type. Both types have minimal demands for both attributes which a supplying firm has
to meet in order to enter the corresponding market. A given technology puts certain lim-
its on how much of the two attributes can be delivered by a product. The microprocessor
technology extends the limit in both directions, where the potential improvement with
respect to cheapness is more substantial. In the initial period a certain number of firms
start with the transistor technology, and after a given number of periods a new bunch
of firms starts developing products using the new microprocessor technology. Firms in-
vest constant fractions of profits into R&D and advertising and prices are determined
by simple markup rules. Firms two main decisions, first, to adopt the new technology
and, second, to diversify into the new market, are represented in a very simple fashion.
Firms perceive the new technology with some probability which depends positively on
the technological level of the firm in the old technology and the current advancement of
the best-practice firm in the new technology. Once the new technology is perceived, the
firm adopts it as soon as it is able to cover the associated costs. Based on observations
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in the computer industry, diversification in this model means that a spin-off firm is cre-
ated, which inherits parts of the budget and the technical and advertising competence
of the parent firm but positions in a spot in the attribute space oriented towards the new
market.

Malerba et al. (1999) show that under certain parameter constellations the qualitative
empirical observations described above are indeed reproduced by the model (history-
replication). Deviating from such parameter constellations yields ‘history-divergent
runs’. In particular, it is shown that if the number of entrants goes down (e.g. due
to smaller initial budgets) the mainframe firms do not switch to the microprocessor
technology and the PC market never takes off. The authors argue that, based on this
observation, the lack of venture capital in Europe and Japan might be seen as a reason
for the inability of firms in these regions to take advantage of the new technological and
market opportunities in the computer industry. In Malerba et al. (2001b) the descrip-
tive analysis is complemented by an evaluation of industrial policy measures using this
model. In particular, the effect of antitrust measures which break up a dominant firm
a given period after it has reached 75% market share, and different measures aimed at
facilitating market entry of small firms are considered. The main conclusion from these
experiments is that large and focused policy interventions would have been needed to
significantly change the pattern of market development that has been observed in this
industry.

The model developed here is very elaborated in its attempt to put together a large
number of stylized facts about development of technology and demand in a specific in-
dustry in a manageable and transparent model. One possible concern could be a kind of
‘over-fitting’ of the model. It seems that some modelling choices might have been influ-
enced by the concrete set of historical stylized facts the authors intended to reproduce.
To carry out an ‘out of sample’ test of the model, if at all possible, takes time; we will
have to see how well future industry developments can be explained. Also, following
the tradition of formal evolutionary modelling, the representation of firm behavior is
very simple, relying on fixed-percentage investment rules and simple probabilistic rules
for technology perception and diversification. Whereas firms’ actions vary over time,
their strategies are assumed to be fixed. In particular, for the evaluation of the effect of
policy interventions, it might be important to take into account the reaction of firms’
strategies to given measures. Combining more flexible representation of firm strategies
with the ‘history-friendly’ approach therefore seems to be a challenging but hopefully
rewarding task.

Following the successful application of the ‘history friendly’ approach to the com-
puter industry, Malerba and Orsenigo (2002) have developed a simulation model of the
pharmaceutical industry along similar lines. Pyka and Saviotti (2000) develop an agent-
based simulation model of biotechnology-based sectors in order to study the emergence
of innovation networks in such industries.
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4. Discussion

I have started this chapter by arguing that there are two main reasons why agent-based
models should be particularly useful for the analysis of processes of innovation and
technological change. First, several of the crucial defining aspects of the process of
innovation and technological change are readily incorporated in ACE models but can
hardly be captured in neoclassical equilibrium analyses. Second, ACE models seem
to be able to reproduce a number of stylized facts in this domain which are not well
accounted for by existing analytical work.

I believe that the survey of ACE work in Section 3 reinforces this view. Although we
are certainly talking about a field of research in its infancy with a large variety of ad-
dressed research topics and employed approaches, some general insights emerge from
the surveyed body of work. It has been shown that a structured model of the knowl-
edge base allows concrete statements about the effect of the allocation of investments
between general and specific knowledge build-up and of the structure of knowledge
exchange between individuals and firms on firm success and industry development.
Considering that also economic policy makers pay more and more attention to the im-
portance of the structure of the knowledge base for technological change and growth24,
these are certainly relevant issues. ACE studies further have highlighted the importance
of the interplay of (potentially heterogeneous) individual approaches of firms towards
the search for new products and processes and the estimation of market response to
innovations. A conclusion emerging from a number of ACE studies with quite diverse
setups is that heterogeneity of innovation strategies has a positive effect on the speed of
technological change, a theme not present in mainstream theoretical analyses. For some
of the covered issues, it can be argued that these questions could in principle also be
posed in an intertemporal equilibrium setting—for example the effect of heterogeneity
of strategies could be addressed by comparing the speed of technological change un-
der symmetric and asymmetric intertemporal equilibria in a dynamic industry model.
Even if one might have concerns about the underlying assumptions, this could serve as
a useful benchmark analysis shedding additional light on the mechanisms underlying
this effect. However, analytical tractability is a severe problem as soon as asymmetric
dynamic equilibria are considered and hence general analytical results might be infea-
sible.

For other issues, like the analysis of search and prediction strategies under substantive
uncertainty, an equilibrium analysis relying on the Bayesian optimization framework
does not even allow a modeller to properly formulate the relevant question. For sake of
illustration, let us briefly compare the ACE approaches to technological search reviewed
in Subsection 3.2 with a well received equilibrium approach, like the search theoretic

24 See for example the extensive literature on regional and national innovation systems (e.g., Nelson, 1993;
Freeman, 1995; Lundvall et al., 2002) or the ‘European Innovation Scoreboard’ project of the European Union
(http://trendchart.cordis.lu/).

http://trendchart.cordis.lu/
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model of technological change by Kortum (1997). In Kortum’s approach there is a con-
tinuum of individuals, where a certain fraction is engaged in research and accumulates
over time a research stock. There is also a continuum of goods, where independence
of search across different goods is assumed. This allows the author to basically analyze
the search for new production techniques for one ‘representative’ good. The common
research stock is available to all researchers and determines the frequency at which
new ideas about production techniques arrive. If a new idea for a production technique
arrives, the corresponding labor productivity parameter is drawn from a random dis-
tribution, which is positively influenced by the common research stock. The mappings
determining the frequency of new ideas and the distribution of productivity parameters
given a certain research stock are common knowledge and the actual productivity of a
new technique is perfectly revealed to the innovator once he has this new idea. Innova-
tors can patent their new idea restricting their competitors to the second best technique,
and due to the chosen demand structure it is always optimal for them to set prices such
that all competitors are shut out. So, overall we have a scenario where a set of ex-ante
identical potential innovators employ some identical but not explicitly specified search
strategy to generate process innovations for a continuum of goods. Potential innova-
tors have no proprietary knowledge and the type of technique they use for producing
the other goods has no influence on their ability to generate good new techniques. For
each product at each point of time all the output is produced by the same technique. All
potential innovators share the same correct expectations about the (discounted infinite
horizon) future return of engaging in research today. Although all these features are not
consistent with most empirical observations, the model is quite successful in explaining
empirical observations about the time evolution of research employment, patenting and
total factor productivity in the US. Nevertheless, it seems to me that a search theoretic
approach of this kind can provide less insight about the type of search problem a poten-
tial real world innovator faces, and the effect different type of search strategies have on
technological change, in comparison with a micro-founded agent-based model.

To get to my second main argument (reproduction of stylized facts), I will now point
out a few features of the results of the surveyed agent-based evolutionary growth mod-
els, which in my eyes make them attractive alternatives to the growing literature on
new growth theory (NGT) (see Aghion and Howitt, 1998; Grossman and Helpman,
1994), which shares the desire of these models to provide micro-founded explanations
for economic growth. This should be considered in addition to the discussion about
the appropriateness of the use of representative firms carrying out infinite horizon op-
timization, and the use of non-structured knowledge variables and technology spaces
in models dealing with technological change. An important point in this respect is that,
contrary to the evolutionary growth models discussed above, NGT models predict some
balanced growth rate, but provide no endogenous explanation of the empirically observ-
able persistent fluctuations. Other issues where evolutionary studies provide empirically
plausible results but NGT models are silent or generate implausible predictions are
the co-existence of several technologies employed in an industry for the production
of the same good, the co-existence of firms of different size, the endogenous genera-
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tion of persistent cross-country differences in growth rates, the endogenous generation
of changing growth episodes, and take-off phenomena. Furthermore, as pointed out in
Subsection 3.4, evolutionary growth models do not exhibit a positive effect of popula-
tion size on the growth rate. Such a scale effect, which is at odds with much of 20th
century data on economic growth, is however present in the most influential early NGT
models, in particular Aghion and Howitt (1992), Grossman and Helpman (1991) and
Romer (1990). New growth models developed later have avoided this problem and ex-
hibit scale effects only with respect to per capita GDP but not with respect to growth
rates (see Jones, 1999).

The discussion in the previous two paragraphs highlights another point often made
by evolutionary and ACE scholars: namely, that ACE models are in principle able to
incorporate many realistic features of interaction and behavior on the micro level, and
simultaneously produce plausible time series on all different levels, rather than being
tailored to explain only a few specific phenomena. Although this is certainly an advan-
tage of this approach, the literature survey above shows that many ACE models in the
field focus on some aspect of the process of technological change and rely on agent-
based models where large parts of the economic system are represented in a highly
stylized way. Is this a ‘waste’ of the versatile powerful method at hand? In my opinion
certainly not. The use of an agent-based approach does not avoid the need to carefully
design a model under the trade-off between a proper representation of the relevant ef-
fects and the ability to generate and interpret meaningful results. As pointed out above,
ACE modelling allows a modeller to simultaneously incorporate many important as-
pects of the process of innovation and technological change into a formal model, but
this does not mean that all of them should necessarily be there. Which of the aspects are
actually relevant depends on the underlying research agenda.

Having already briefly discussed whether some of the research questions raised in
ACE studies could also be addressed using equilibrium analysis, I close this section by
pointing out that ACE scholars have so far pretty much ignored many traditional major
topics of theoretical research in the field. These issues include the relationship between
mode of competition and innovation, the optimal R&D strategy in patent races or the
optimal relationship between length and scope of patents25. It seems to me that analy-
ses of these issues in a dynamic heterogenous agent setting could provide interesting
complementary insights to the existing theoretical findings.

5. Outlook

An important aspect of the overall ACE research agenda is the provision of micro-
founded explanations for meso-level and macro-level phenomena. Quite a bit has been

25 A preliminary exploration of the effect of patents in the framework of the Nelson and Winter (1982) model
is carried out in Vallee and Yildizoglu (2004).
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done in this respect also with respect to the analysis of innovation and technological
change, but obviously there is still much more to do.

The process of technological change and the associated economic processes are ex-
tremely rich and many aspects have so far been only lightly touched or even completely
ignored in the literature. Accordingly, there is a plethora of potential directions to pursue
and certainly no ‘natural’ trajectory for the field to follow. On a general level, a promis-
ing extension of the current approaches might be to try to link the industry development
with closely linked parts of the economy which are up to now typically considered as
exogenous in the economics of innovation. I would like to give two brief pointers to-
wards issues in this respect26. The first pointer is to study in more detail the co-evolution
of innovations and demand. The marketing literature provides models of the impact of
product pre-announcements and final product positioning on consumer demand with
empirical foundation. Putting together an agent-based demand side27 based on such
models with an agent-based dynamic industry model should allow a modeller to cap-
ture more realistically the properties of the ‘search on a shifting landscape’ associated
particularly with product innovation. Another challenge is to couple the description
of innovation and industry dynamics with developments in the labor market. The role
of knowledge for the rate of innovation is by now well accepted but the innovation
literature is relatively silent about how exactly a workforce which has the necessary
competence is built and knowledge is transferred through the labor market. A proper
understanding of the processes governing such a buildup might need to consider private
household decisions concerning investment in knowledge acquisition as well as those
of firms. There is a significant empirical literature studying the effect of technological
change on the demand for different skill levels on the labor market (see e.g. Pianta,
2000). On the other hand, the innovation strategy of a firm and its success depends
heavily on the ability of the firm to recruit the ‘right’ workforce. Therefore there seems
to be a feedback between innovative activities and labor market conditions. Developing
agent based models which combine the two sides is a challenging but also promising
task28.

To a large degree the agent-based work in this field has been descriptive rather than
normative, but it seems that recently more attention has been paid to the potential of this
approach for normative analysis on the level of the individual firm, of the market (see
Marks, 2006) and of public policy (e.g. Berger, 2001). The agent-based approach has

26 To avoid any misunderstanding, I am not claiming that no work addressing these issues has been carried
out, but there is very little in terms of published papers.
27 There is some agent-based work dealing with the coupling of innovations and demand dynamics, see
Aversi et al. (1999).
28 Some work aiming in this direction exists. The model of Ballot and Taymaz (1997) discussed in Sub-
section 3.1 has an explicit representation of the labor market, but no specific knowledge is embodied in the
employees and hence no knowledge is transferred through the labor market. Fagiolo et al. (2004) consider
an agent-based labor market model incorporating technical change. The model of the process of technical
change is however quite mechanistic and simple without considering firm’s decision concerning R&D and
innovation.
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large potential to provide guidance with respect to good (if not optimal) firm strategies
and public policies. This potential has been shown in concrete case studies in several
areas besides the economics of innovation. The recently developed ‘history-friendly’
models suggest that this approach can also be successfully applied to think about con-
crete industrial and innovation policy measures. However, to be able to derive robust
and convincing policy recommendations from ACE models, important issues concern-
ing model validation and calibration as well as robustness testing of simulation results
should be addressed in a systematic way. Recent contributions to the ACE literature
have shown increasing awareness of these issues. Many researchers in the field now try
to provide statistical evidence that reported qualitative findings are significant in a statis-
tical sense and robust with respect to parameter variations. Also, with respect to model
building, validation, and calibration, several concrete approaches have been proposed
recently in addition to the history friendly approach discussed in this chapter (e.g. Moss,
2002; Duffy, 2006; Werker and Brenner, 2004). Hence, it should be expected that we
will not only see more insightful descriptive agent-based work on technological change
but also a growing use of this technique for the design and evaluation of individual firm
strategies and of economic policy measures.
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Abstract

The agent-based approach views an organization as a collection of agents, interacting
with one another in their pursuit of assigned tasks. The performance of an organization
in this framework is determined by the formal and informal structures of interactions
among agents, which define the lines of communication, allocation of information
processing tasks, distribution of decision-making authorities, and the provision of incen-
tives. This chapter provides a synthesis of various agent-based models of organizations
and surveys some of the new insights that are being delivered. The ultimate goal is
to introduce the agent-based approach to economists in a methodological manner and
provide a broader and less idiosyncratic perspective to those who are already engag-
ing in this line of work. The chapter is organized around the set of research questions
that are common to this literature: (1) What are the determinants of organizational be-
havior and performance? (2) How does organizational structure influence performance?

1 The issues addressed in this section are closely related to the concerns of Janssen and Ostrom (2006).
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(3) How do the skills and traits of agents matter and how do they interact with structure?
(4) How do the characteristics of the environment—including its stability, complexity,
and competitiveness—influence the appropriate allocation of authority and informa-
tion? (5) How is the behavior and performance influenced when an organization is
coevolving with other organizations from which it can learn? (6) Can an organization
evolve its way to a better structure?

Keywords

agent-based models, organizations, organizational structure, organizational search,
organizational learning, complexity, exploration, exploitation, centralization,
decentralization, coordination, information processing, hierarchy, networks,
coevolution, organizational norms, endogenous hierarchies
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1. Introduction

An organization is a collection of agents that interact and produce some form of
output. Formal organizations—such as corporations and governments—are typically
constructed for an explicit purpose though this purpose needn’t be shared by all organi-
zational members. An entrepreneur who creates a firm may do so in order to generate
personal wealth but the worker she hires may have very different goals. As opposed
to more amorphous collections of agents such as friendship networks and societies at
large, organizations have a formal structure to them (though informal structures typi-
cally emerge as well) with the prototypical example being a corporation’s organizational
chart. This structure serves to define lines of communication and the distribution of
decision-making. Organizations are also distinguished by their well-defined boundaries
as reflected in a clear delineation as to who is and who is not a member. This bound-
ary serves to make organizations a natural unit of selection; for example, corporations
are formed and liquidated though they can also morph into something different through
activities like mergers.

The primary task of organization theory is to understand how organizations behave
and to identify and describe the determinants of organizational performance.2 To take an
agent-based approach means not having to assign an objective to an organization and
instead modelling the agents that comprise it with explicit attention to how decisions
are made and how the interaction of these decisions produce organizational output. The
smallest decision-making unit is then required to be smaller than the organization itself.
The anthropomorphic view associated with the theory of the firm—firms are profit-
maximizers—is not an agent-based model. Though neoclassical economics has many
agent-based models of organizations, including agency theory and team theory, these
models are generally quite restrictive in terms of the assumptions placed on agent be-
havior, the number and heterogeneity of agents, the richness of the interaction among
agents, and the features of the environment. These restrictions are forced upon scholars
by virtue of the limited power of analytical methods. To derive universal results (“prov-
ing” them) requires limiting the size of one’s universe (the class of models). While
some structures are relatively simple in their real form (for example, many auctions),
organizations are inherently complex; they are their own brand of society, plagued with
conflicting interests while dealing with multi-faceted problems amidst a coevolving en-
vironment. Proving universal results is only achieved at the cost of severely restricting
the richness of the setting.

A computational agent-based model uses the power of computing to “solve” a model.
A model is written down, parameter values are specified, random variables are realized,
and, according to agents’ behavioral rules, agent output is produced. Organizational
output comes from the specified mapping from the environment and agents’ actions

2 A thoughtful statement as to what is an organization and what organization theory is about can be found
in Aldrich (1999).
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into the output space. At the end of vast CPU time, the simulation output can yield
results that are rich and insightful but ultimately are a collection of examples, per-
haps many examples—thousands of periods, hundreds of runs, dozens of parameter
configurations—but still noticeably finite. In deploying numerical methods, the pre-
sumption is that the model is unsolvable by the human mind (in practice, not necessarily
in principle). If the use of computing power is not to reflect laziness or ineptness on the
modeler’s part, a computational agent-based model must then have some minimum level
of complexity—whether due to agent heterogeneity, the structure of interactions among
agents, a poorly behaved environment, dynamics, or some other feature. A legitimate
computational agent-based model is then not simply one that is solved by a computer
but rather one for which it is necessary that it be solved by a computer.3

Organization theory is traditionally of two varieties: (i) broad, institutionally rich,
and vague while using informal arguments articulated in a narrative; and (ii) narrow,
simplistic, and mathematically precise while using formal logic articulated in a set of
assumptions, a statement of a theorem, and a proof. The appeal of computational mod-
elling is that it achieves middle ground in that it has the precision of (ii) and the ability to
handle a rich set of features as with (i). It trades off the universality of results of (ii) for
a richer model while maintaining rigor and formality. This trade-off is generally judged
to be a good one when it comes to modelling a complex entity such as an organization.

In writing this chapter, the hope is to describe to the reader the central research ques-
tions addressed, synthesize the models and methods deployed, and survey some of the
new insight being delivered. Given the incipiency of this literature, what we will not
provide is a coherent set of results because such has not yet emerged. Work on com-
putational agent-based models of organizations is very much in the exploratory phase
with highly varied approaches to pursuing a broad range of questions. Our objective is
to introduce it to economists in a methodological manner and provide a broader and less
idiosyncratic perspective to those who are already engaging in this type of work.

Before launching into specific models, let us offer a quick review of some of the
questions addressed by research so that these can frame the reader’s mind. What are
the determinants of organizational behavior and performance? How does organizational
structure influence performance? How do the skills and traits of agents matter and how
do they interact with structure? What determines whether more skilled agents and a
more decentralized structure are complements or substitutes? What is the proper bal-
ance of exploration and exploitation? How do the characteristics of the environment—
including its stability, complexity, and competitiveness—influence the appropriate allo-
cation of authority and information? How is behavior and performance influenced when
an organization is coevolving with other organizations from which it can learn? Can an
organization evolve its way to a better structure?

3 Not all computational models of organizations are agent-based; Carroll and Harrison (1998) being an ex-
ample. Their formulation begins not with a specification of agents but rather a system of equations describing
hiring, socialization, and turnover.
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1.1. Related literatures

There are a number of closely related literatures that will not be covered here. A more
complete treatment of agent-based models of organizations would discuss the extensive
literature in neoclassical economics on organizations.4 These models are rich in their
modelling of incentives but mired in poverty when it comes to modelling agent hetero-
geneity, the cognitive limitations of agents, organizational structure, and the coevolving
nature of a population of organizations. A second related literature is on networks, for
implicit in any non-degenerate model of an organization is a network which describes
how agents communicate and influence each other. As there are two other chapters in
this handbook devoted to networks (Vriend, 2006; Wilhite, 2006), we will generally
exclude such work other than that which is specifically designed to understand organi-
zations. Thirdly is work on distributed artificial intelligence which develops better ways
to solve problems through the distribution of tasks among agents.5 While some of these
models have something meaningful to say regarding the questions of this chapter, the
ultimate objective is quite different. For example, as the objective is developing more
efficient solutions rather than better explaining organizations, it is common to assume
agents’ goals coincide with the organizational goal. Finally, there is the line of work
best referred to as organizational engineering. This research develops a relatively literal
description of an organization which can then be calibrated and simulated to provide
quantitative answers to policy questions. As a result, the models are not designed to
provide qualitative insight and have different objectives from the work that is reviewed
here. At the risk of unfairly over-generalizing, organizational engineering models are
designed for prediction, not explanation.

As to other review articles, the Introduction to Lomi and Larsen (2001) offers a most
enlightening historical perspective that draws on many scholarly antecedents. The re-
view article closest to what we are doing here is Carley and Gasser (1999) though they
give emphasis to organizational engineering. Sorensen (2002) provides a nice review
of organizational models based on the NK-approach (Kauffman, 1993) and cellular au-
tomata. One of the best papers that discusses the general topic of complexity and how
it relates to issues in organization theory is Carroll and Burton (2000). Collections of
papers dealing with computational organization theory (not just agent-based modelling)
include Baum and Singh (1994), Carley and Prietula (1994), Cohen and Sproull (1996),
Prietula et al. (1998), and Lomi and Larsen (2001). Also see Baum (2002) for general
work on organizations with several entries dealing with computational modelling.

1.2. Roadmap and a guide for neoclassical economists

A synthesis of the central features of computational agent-based models of organi-
zations is provided in Section 2. The literature itself is partitioned according to the

4 Holmstrom and Tirole (1989), Milgrom and Roberts (1992), and Prendergast (1999) offer good general
treatments.
5 See, for example, Durfee (1999) and Mackie-Mason and Wellman (2006).
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basic task with which an organization is faced. Section 3 focuses on models for which
organizations search and learn; it represents the most well-developed body of work.
Section 4 looks into modelling the processing of information which is, roughly speak-
ing, a production function for organizational decision-making. Thus far, models are a
bit mechanical and the literature is not as developed. While these two research strands
make up the bulk of the literature, other issues are tackled and Section 5 describes the
best work on some of the more important organizational issues not covered in Sections 3
and 4. A critical appraisal is provided in Section 6 where we also identify some lines
for future work.

For the neoclassical economist largely unfamiliar with computational agent-based
modelling, we recommend focusing on Sections 2 and 3. Section 2 introduces many
concepts and elements of this modelling approach and, in its final subsection, contrasts
neoclassical and computational agent-based models and suggests why a neoclassical
economist should be interested in these methods. The search and learning literature re-
viewed in Section 3 is the closest in style to that conducted by neoclassical economists
and, in addition, we take the opportunity to begin synthesizing existing results and con-
trasting the associated insight with what one would get using a neoclassical approach.
We ask: What do we learn from the computational agent-based approach that we would
not have learned from using the neoclassical approach?

2. How to model an organization

How can intelligence emerge from nonintelligence? To answer that, we’ll show
that you can build a mind from many little parts, each mindless by itself. . . . These
we’ll call agents. Each mental agent by itself can only do some simple thing that
needs no mind or thought at all. Yet when we join these agents in societies—in
certain very special ways—this leads to true intelligence. [Marvin Minsky, The
Society of Mind (1986), p. 17.]

The typical neoclassical description of a firm—the organization that has drawn the
most attention within economics—is as a profit-maximizing entity. Being a single-agent
formulation, it represents a rather uninteresting model of an organization.6 Similarly,
there are models in the agent-based literature, such as the early work of Levinthal
(1997), that model an organization as a single agent adaptively learning. However, to be
a meaningful agent-based model of an organization, an agent must be “smaller” than the
organization itself. But then, how does organizational behavior emerge from a collec-
tion of agents making choices? Just as Marvin Minsky asks how mindless components
can form a mind and produce intelligence, we ask how agents—representing human

6 Though no economist would see the theory of the firm as a model of an organization, this misses the point.
The theory of the firm is used to make predictions about corporations which are organizations.
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actors—can form an organization and produce output beyond the capacity of any indi-
vidual agent.

This section is divided into five parts. The first part reviews the concept of an agent.
An agent represents the smallest decision-making unit of an organization. Next we turn
to examining the various dimensions of an organization; what transforms a collection of
agents into an organization? The third section describes the environment into which an
organization is placed and the task with which it is presented. The fourth section offers a
brief discussion on computationally implementing an agent-based organizational model.
In the final section, this approach is contrasted with the more standard approach in
economics.

2.1. Agents

There are many definitions of an “agent” in the agent-based literature. An agent is
said to be purposeful, autonomous, adaptive, and so on. While these terms serve to
convey a sense of what the researcher is after, they only shift the question of “what
is an agent?” to “what does it mean to be purposeful? autonomous? adaptive?” Per-
haps the best we can do is to describe our intent—what is this thing called an agent
suppose to represent?—and what we actually do—how is an agent instantiated? In
almost all models of organizations, an agent represents a flesh-and-blood human.7 Be-
ing purposeful may mean adjusting behavior to improve some measure of well-being;
being autonomous may mean choosing actions even if they are in conflict with an or-
ganizational goal; being adaptive may mean modifying behavior in response to past
experiences. Though the terms are vague, the way in which they are implemented has
substantive content.

The neoclassical approach in economics to modelling agents takes preferences and
beliefs as primitives. Typically, an agent is endowed with a utility function and, given
beliefs over that which is unknown to the agent, acts to maximize expected utility or,
in an intertemporal setting, the expectation of the discounted sum of utility. When an
agent is making choices in a multi-agent context and what is best depends on what
others do—and this certainly describes an organization—this approach is augmented
with the (Bayes–Nash) equilibrium assumption that each agent understands how other
agents behave. This doesn’t necessarily mean that agents know exactly what others will
do but they do know other agents’ decision rules—how private information maps into
actions. Agents have complete understanding though may lack complete information.

In contrast to the assumption of a hyper-rational agent, it is standard in the computa-
tional agent-based literature to assume agents are boundedly rational. The most concise
statement of this modelling approach is that agents engage in adaptive search subject
to various cognitive constraints (and not just informational constraints). These models

7 This needn’t be the case for, in actual organizations, agents can be software such as expert systems or
automated bidding rules at auctions.
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may continue to deploy the optimization framework though assuming myopic optimiza-
tion and that beliefs are empirically-based rather than the product of understanding what
is optimal behavior for others. Agents observe but do not necessarily theorize. For ex-
ample, a common specification is that an agent engages in hill-climbing as it adopts a
new alternative when doing so yields higher current performance than the previously
selected action (Chang and Harrington, 2000). Or the optimization framework may be
entirely discarded as preferences and beliefs are replaced with behavioral rules cast as
primitives. For example, in information processing models, an agent receives data and
is endowed with a rule that converts it into a lower-dimensional message sent to the next
agent in line (Carley, 1992; Barr and Saraceno, 2002).

Within this bounded rationality framework, models often provide a parameter by
which one can “tune” the cognitive skills of an agent. When rules adapt to experience,
a key parameter is how much experience an agent has as well as the size of mem-
ory (Carley, 1992). In the context of information dissemination, the likelihood that an
agent observes an innovation reflects a level of skill (DeCanio and Watkins, 1998).
For hill-climbing algorithms, agents may only evaluate alternatives imperfectly—less
skilled agents may have noisier evaluations (Chang and Harrington, 1997)—or are con-
strained in the set of alternatives—more skilled agents are able to consider options in a
wider neighborhood around their current practices (Kollman et al., 2000). A novel and
promising approach is to assume that an agent has a “model” of how actions map into
performance but where the model is of lower dimensionality than reality (Gavetti and
Levinthal, 2000).

2.2. Organizations

Let us now turn to the issue of what transforms a collection of agents into an organi-
zation. Our discussion is organized along three questions. Who comprises an organiza-
tion? How are agents connected to produce organizational output? And, how are agents
motivated?

An organization is comprised of multiple agents and indeed one common question in
the literature is how the number of agents influences organizational performance. But
more than pure numbers is relevant, especially when agents are heterogeneous. There
is an architecture to organizations, which we will elaborate upon momentarily, which
raises questions of how agents are distributed across various units and how agents are
matched to tasks. Given the often significant role to agent heterogeneity in computa-
tional agent-based models, it is surprising that there is little research exploring how
agents with different skills are distributed across the different levels of an organization.
This is an area begging for work.

Organizational structure is another one of those terms that has defied a common de-
finition. A broad but useful one refers to it as “those aspects of the pattern of behavior
in an organization that are relatively stable and that change only slowly” (March and
Simon, 1958, p. 170). Under the rubric of organizational structure, we will place three
dimensions. First, there is the allocation of information. This refers to how information
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moves between the environment and the organization—which agents receive data from
the environment—and how it moves within the organization—who reports to whom.
This may have a fairly stable component to it, as might be described by the rules of
communication laid out in an organizational chart. Such well-defined flows are a com-
mon feature of information processing models (Miller, 2001). However, just as people
create dirt paths in a park by veering from the sidewalk, information can flow outside
of mandated channels. There is then an endogenous feature to how information is dis-
tributed.8 For example, Chang and Harrington (2000) allow an upper level manager to
observe a new practice and then decide whether to communicate it to lower level agents.

A second element to organizational structure is the allocation of authority—who
makes the decisions—associated with which are two critical facets: modularity and
decentralization. An organization may have to perform many sub-tasks in solving a
problem and a key structural issue is how these sub-tasks are combined into distinct
modules which are then re-integrated to produce an organizational solution. The de-
gree to which a problem can be efficaciously modularized depends on the nature of
the task (what is referred to as decomposability, which we discuss later). Two classic
structures that represent alternative modular forms are the M-form—where all of the
sub-tasks associated with a particular product line are combined—and the U -form—
where all similar sub-tasks are combined (for example, the marketing divisions for all
product lines are in the same module). With this allocation of tasks, there is still the
issue of which agents ultimately make the decisions. In the context of a hierarchy—
which describes most organizations—to what degree is authority centralized in higher
levels? Is authority matched with who has the best information? Here we are referring
to formal authority which, as noted by Aghion and Tirole (1997), may differ from real
authority. If an agent with decision-making authority relies heavily on the information
provided by other agents then the real authority (or power) may lie with those providing
the information. The allocation of information and real authority are thus intertwined.

A third element of structure is the least well-defined: organizational norms and cul-
ture. Though there are probably as many definitions of culture as scholars who have
sought to define it, we’ll put forth the one of Sathe (1985): “Culture is a set of shared
assumptions regarding how the world works (beliefs) and what ideals are desirable (val-
ues).” Agent behavior is somehow influenced by an organization’s past and this past is
embodied in what is called norms or culture. Of particular interest is modelling the asso-
ciated feedback dynamic—norms, being determined by past behavior, influence current
behavior which then serves to define future norms. This is a driving force in March
(1991).

The final element to organizations to be covered is agent motivation. Agents may
be modelled as having preferences—for example, they desire income and dislike exert-
ing effort—but how that translates into behavior depends on an organization’s incentive

8 This type of model is more fully explored in Vriend (2006).
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scheme for rewarding and punishing.9 The compensation scheme for corporate man-
agers may drive them to seek higher organizational profit, while the scheme for division
managers may be tied to division profit (so as to induce high effort) which can then
create a conflict of interests. Conflict may also arise when an organization uses pro-
motion or bonuses based on relative performance to encourage effort.10 An important
element to any conception of an organization is the degree of such conflicts and how
it varies within and across levels. By contrast, models of distributed problem solving
in AI assume agents have a coherence of goals. More realistic models of organizations
recognize that conflict of interest is an endemic feature of actual organizations.

An organization has an output—say, a set of practices—and delivers some measure
of performance. Performance may be measured by profit (or some analogous criterion)
or may involve specifying a particular target (for example, the global optimum) and
then measuring performance by the frequency with which an organization reaches it
or, if eventually it’ll always reach it, the average time it takes to do so. While most
organizations are designed with a particular objective in mind (the objective of the en-
trepreneur), it doesn’t follow that organizational behavior is consistent with that or any
other objective. An organization’s members may have different goals than those of the
entrepreneur. Fortunately, an agent-based model needn’t answer the dicey question of
“what is an organization’s utility function” as it is sufficient to instantiate agents and let
organizational behavior emerge from the interaction of agents amongst themselves and
with the environment. By building an organization from the ground-up, we can avoid
taking an anthropomorphic view to complex entities such as organizations.

2.3. Environments

An organization resides in an environment and is faced with a problem (or task) and
constraints to be faced in trying to solve it. The problem may be choosing a political
platform, if it is a political party, or producing and selling a product, if it is a firm.
Problems vary in terms of their difficulty. A problem may be more difficult because
it requires more information. It may be more difficult because there are interactions
between various choice variables which makes it less likely that one can search, dimen-
sion by dimension, for a multi-dimensional solution. Relatedly, it may be more difficult
because directed search is infeasible or ineffective. Knowing where to go from one’s
current position to achieve higher performance can greatly ease search. Such directed
search may be infeasible because there is no metric on the solution space; there is no
notion of two solutions being close. Even if there is a metric, the relationship between

9 Many computational agent-based models of organizations are not explicit about the form of the incentive
scheme but, if one makes standard assumptions about agents’ preferences, there is often an obvious implicit
specification.
10 Though these forces haven’t been modelled in the agent-based literature, there has been some computa-
tional work elsewhere (Harrington, 1998, 1999).
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performance and actions may not be well-behaved in that the components of the gra-
dient may quickly change sign and admit many optima. This means that hill-climbing
algorithms can get stuck on lousy local optima and it isn’t clear where to look for better
ones.11

Related to the issue of difficulty is the extent to which a problem is decomposable.
A problem is said to be decomposable if there exists a way in which to partition it
into sub-problems such that the concatenation of the solutions to the sub-problems is
a solution to the original problem. Such problems are easier and quicker to solve as it
means solving a collection of simpler (lower dimensional) problems in parallel. Fur-
thermore, how a problem decomposes suggests a “natural” organizational structure, an
issue explored in Ethiraj and Levinthal (2002).

An organization’s problem may also have a dynamic component to it. In solving a
single task in real time, the best solution may evolve with changes in the environment.
A less stable environment makes the problem more difficult as the organization is pur-
suing a moving target. Or an organization may face a series of problems. Is the same
problem being faced repeatedly or are the problems distinct and, if so, how are they
related? As long as the problems retain some similarity, the solution to one will provide
clues for another, thereby creating opportunities to learn.

A more distinctive feature of an organization’s environment is the presence of other
entities that are also solving problems; there may be a pool of organizations coevolving.
Other organizations may influence an organization’s current performance—consider a
setting in which they compete (Barr and Saraceno, 2002)—or influence future per-
formance when they can learn from each other (Miller, 2001) or exchange personnel
(Axtell, 1999). There may be other adapting agents such as consumers—Chang and
Harrington (2003) allow consumers to search at the same time that firms are adapting
their practices—or lobbyists (if the organizations are governments). In providing an en-
dogenous source of change in an organization’s environment, coevolution can provide
rich and non-trivial dynamics.

2.4. Implementation of an agent-based model of an organization

Having identified many of the components that go into an agent-based model of an or-
ganization, how does one implement it computationally? As space constraints prevent a
comprehensive answer, let us focus on two broad and essential elements to implemen-
tation: agent processes and super-agent processes. In a computational model, an agent
is instantiated as a mapping from inputs into outputs. Input includes information from
outside the organization (from customers, input suppliers, competitors, etc.) and infor-
mation from inside the organization (subordinates, peers, superiors); it takes the form
of processed information, new ideas, actions. The ensuing output may be a concrete

11 Page (1996) provides a rigorous investigation into what it means for a problem to be more difficult from
the perspective of search algorithms.
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action or a message to other agents. The important point is that many of the elements of
an organization—communication network, hierarchy, incentive schemes, and the like—
are embedded in an agent’s mapping. When one writes a code that specifies that agent
i observes some data and makes a recommendation to agent h who, after also receiv-
ing a recommendation from agent j , chooses between these alternatives, one is making
assumptions about the allocation of information (i and j receive information from the
environment while h does not) and the allocation of authority (h has authority while i

and j do not). The particular form of this mapping similarly depends on organizational
features such as the form of compensation and norms (peer pressure, standard operating
practices, etc.) as well as agent-specific traits including preferences, beliefs, and cog-
nitive skills. This mapping may evolve over time due to learning but also because the
identity of an agent changes as a result of personnel turnover. In sum, an organization
is implicit in the modelling of agents’ mappings. What emerges from the interaction
among agents and the environment is organizational behavior.

Lying on top of these agent processes are super-agent processes which systemati-
cally influence an organization but are not embodied in agents’ mappings. Super-agent
processes are commonly used to endogenize organizational structure. This may mean
using a genetic algorithm defined over a population of organizations which creates new
organizational designs and weeds out poorly performing ones (Miller, 2001).12 Or one
might model the adaptation of organizational design through a hill-climbing algorithm
(Ethiraj and Levinthal, 2002) or simulated annealing (Carley and Svoboda, 1996). These
super-agent processes provide a black box mechanism to substitute for modelling the
agents who actually make these decisions. For example, a CEO typically decides on
organizational structure, creditors decide whether to force an organization to exit, and
entrepreneurs decide whether to create a new organization. As modelling all agents is
often too daunting a task, super-agent processes represent a parsimonious way in which
to encompass these other forces.

2.5. How does agent-based computational economics differ from neoclassical
economics?

The objective of this section is to summarize the essential differences between agent-
based computational economics (or ACE) and neoclassical economics (or NCE). In so
doing, we will argue why economists ought to be interested in ACE.

The first essential difference is that agent behavior is characterized by adaptive search
in ACE, which departs from the assumption in NCE that agent behavior is optimal
(for some preferences and beliefs). In short, NCE describes “what is best,” while ACE

12 The role of selection is particularly interesting because part of what makes a collection of agents an “orga-
nization” is that it is a unit of selection. Corporations are created and fail; governments are put in power and
overthrown. By comparison, general societies are more amorphous and thus less natural a unit of selection.
Indeed, conquerers can be assimilated in which case which society has really prevailed? While the same might
be said of firms—consider hostile takeovers—it is not as compelling.
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describes “what is better.” With ACE, learning is based more on experience than un-
derstanding, more on retrospection rather than foresight. Furthermore, imperfections
to agent behavior are modelled very differently. With NCE, imperfections are due to
incomplete information. Consistent with the bounded rationality approach, cognitive
limitations are central to ACE which means that what information is possessed may not
be fully processed. This distinction between optimal behavior and adaptive search has a
considerable impact on the logic of the model and the ensuing insight that is produced.
This will come out in Section 3 when we examine a particular class of ACE models.

The next two distinctive elements of ACE emanate from the methods used in solving
the model. Results are proven with NCE, while they are numerically derived for a partic-
ular parameter specification with ACE. Computational implementation has implications
for both modelling and analysis.

The second essential difference is the way in which agents’ environments are mod-
elled. The forte of expert NCE modelers is constructing a well-behaved environment
in the sense of, for example, having a unique optimum or equilibrium and allowing
comparative statics to be signed. In other words, building a plausible model that can be
mentally solved. With ACE, there are much fewer constraints of this sort since the model
is solved numerically. This allows for complex environments which are richer with more
descriptive realism. Without as many modelling constraints, a researcher is more apt to
be able to make the primitive assumptions thought to be most appropriate and let the en-
vironment be what it will be. Complexity is not shunned but rather embraced when it is
a property of the environment that actual agents and organizations face. In short, ACE
allows for richer environments than does the NCE approach and, furthermore, makes
complexity a trait of the environment whose role is to be explored. Indeed, research
reveals that qualitative results can vary significantly with environmental complexity.

The third essential difference is in the mode of analysis. Dynamic models in the NCE
tradition typically focus on the long-run, whether a steady-state or a stationary distribu-
tion. Behavior is characterized when all has settled—the environment has calmed down
(in actuality or in expectation) and the system has converged to some form of equi-
librium. A primary virtue of the ACE approach is that, by running simulations, it can
describe medium-run dynamics. By medium-run dynamics we mean that some learning
and adaptation has taken place but the system is not close to stabilizing. Not only are
medium-run dynamics important if one wants to understand the transitional impact of
various policies but, if convergence to equilibrium is slow (or if there is no convergence
at all), it may be the time scale of greatest relevance.

These three identifying traits of ACE—adaptive search with cognitive constraints,
complex environments, and medium-run dynamics—are quite complementary in that
a complex environment makes optimal behavior more problematic an assumption and,
furthermore, it is more appropriate to describe the system using medium-run dynamics
rather than a long-run equilibrium.

In light of these unique features, economists should be interested in ACE because it
offers a new set of modelling and analytical tools which, in many instances, are quite
complementary to that of NCE. First, a computational agent-based approach can be used
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when the environment is inherently complex and poorly behaved (multiple optima, non-
quasi-concave, coevolution among agents, etc.) so that analytical methods are likely to
fail and the assumption of game-theoretic equilibrium is particularly problematic as a
characterization of behavior. Rather than making heroic assumptions on behavior and
the environment in order to ensure the model can be mentally solved, one can use ACE
methods. Second, ACE can characterize medium-run dynamics, a long neglected ele-
ment of NCE in spite of its importance. Third, ACE methods can be used to explore
not just traditional NCE issues—such as the role of organizational structure—but also
previously ignored issues such as the role of environmental complexity and the cog-
nitive limitations of organizational members. Complexity may differ across economic
settings because of the production process and the extent of complementarities among
an organization’s activities. For example, greater connectedness among agents due to
innovations in information technology may mean a better global optimum but also a
more complex environment in terms of more local optima. Cognitive limitations may
differ across organizations because of education, training, and how effectively an orga-
nization “selects” smarter people. Also, the extent to which cognitive skills matter will
vary across positions within an organization; such skills are less important for tasks that
can be routinized and more important for those that are continually subject to novelty.
These new tools and issues are capable of providing new insight into organizations, as
we’ll show in this chapter.

Free your mind. [Morpheus to Neo from The Matrix.]

A challenge to a neoclassical economist in reading this chapter will be the unortho-
dox logic of these models. The optimization framework produces a certain logic which
can be quite distinct from that due to adaptive search. The canonical ACE environment
is one in which an agent is searching on a landscape with multiple optima. Changes—
such as with respect to organizational structure—may actually result in a lower global
optimum but nevertheless enhance performance because search may not always find the
global optimum or medium-run dynamics may generally not be near the global opti-
mum. For example, a change which throws the organization into the basin of attraction
for a better optimum can enhance performance even though it may be deleterious in the
short-run. The logic of these models rests not just on how the landscape is affected in
terms of its highest point but on a broader range of landscape properties which impact
how search is conducted. With NCE, what matters are the set of optima or equilibria;
with ACE, the entire landscape can matter because at issue is how likely adaptive search
can take an organization from one point of the space to another. The path matters and
not just the destination.

... a straight line may be the shortest distance between two points, but it is by no
means the most interesting. [The Doctor from “The Time Monster” episode of
Doctor Who.]
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3. Search and learning

[T]he assumption that business behavior is ideally rational and prompt, and also
that in principle it is the same with all firms, works tolerably well only within the
precincts of tried experience and familiar motive. It breaks down as soon as we
leave those precincts and allow the business community under study to be faced
by—not simply new situations, which also occur as soon as external factors un-
expectedly intrude—but by new possibilities of business action which are as yet
untried and about which the most complete command of routine teaches nothing.
[Joseph A. Schumpeter, Business Cycles: A Theoretical, Historical, and Statistical
Analysis of the Capitalist Process (1939), p. 98.]

In this section, we take the perspective that a primary task of an organization is to
constantly search for and adopt routines that improve (though do not necessarily maxi-
mize) performance. This search-and-learn perspective of a firm, as an alternative to the
neoclassical approach, is central to the evolutionary theory of the firm where firms are
“modeled as simply having, at any given time, certain capabilities and decision rules
[which are] modified as a result of both deliberate problem-solving efforts and random
events” (Nelson and Winter, 1982, p. 4).13

As formulated by Schumpeter and Nelson and Winter, a firm is represented by a
single agent—an entrepreneur carrying out search and making performance-enhancing
adoption decisions for the entire enterprise. The agent-based approach to modelling or-
ganizations takes this one step further. It recognizes that the bounded rationality on the
part of a single decision maker, faced with a large and complex routine space, makes an
organizational search strategy utilizing multiple agents compelling. The main objective
of this research program is understanding how a firm’s performance is influenced by
the way in which parallel search is carried out among multiple agents.14 This typically
takes the form of managers of various departments independently searching for better
routines. Furthermore, if we make the reasonable assumption that there is no single in-
dividual who is instantaneously and costlessly informed of all new knowledge in the
organization, it then becomes crucial for effective organizational decision-making that
there be collocation of the uncovered information and the right to act on that informa-
tion. This collocation may occur at the top, thereby requiring knowledge to be pulled
up the hierarchy, or at lower-level units, thereby requiring decision rights to be pushed
down (Jensen and Meckling, 1995).

As Hayek (1945) stated so forcefully, the assumption of bounded rationality puts an
upper limit on the effectiveness with which the central authority can process and act on

13 One of the earliest computational papers on organizational search is Levinthal and March (1981).
14 Burton and Obel (1980) is one of the pioneering efforts in using a computational model to understand
the effect of organizational form. The authors compare the M-form and U -form as a function of the degree
of decomposability in production technology; see Section 2.2 for definitions of these structural forms. Their
model anticipated many of the crucial elements of organizational modeling considered in more recent papers
reviewed in this chapter.



Ch. 26: Agent-Based Models of Organizations 1289

the large set of information sent up by an organization’s lower levels. Pushing against
this limit are two beneficial roles that the centralized authority structure may play in
formal organizations. First, it can act as a conduit for knowledge transfer. Depending
on the circumstances surrounding the local units, a piece of information uncovered by
one may prove to be of value to other units. The global exploitation of a local discovery
realizes an immediate static gain—as a useful routine is shared—but, as we will later
explain, there may also be dynamic implications in that mutual learning can influence
what units adopt in the future. While an informal social learning mechanism may be
capable of facilitating these static and dynamic processes, upper level management can
have an important role to play in this regard. Second, centralization can help disparate
units to work together by providing coordination. To the extent that an action taken by
one unit may interact with the productivity of various actions of other units, superior or-
ganizational performance may require upper management to intervene and constrain the
choices made by these units. Our discussion will focus on how various organizational
forms influence these aspects of multi-unit search.

This section is organized as follows. Section 3.1 begins with a description of how
an organization’s search space is modelled. There are two general approaches: the NK
model (which is imported from biology) and the economic model (which is built upon
economic primitives). We then briefly discuss the cognitive requirements for a search
unit exploring such landscapes as well as their implications for multi-agent search.
The relevant literature is then divided into two broad classes. One class has all of
the units of an organization engaged in similar operations and striving to solve similar
(though perhaps not identical) problems. This is covered in Section 3.2. Examples in-
clude retail chains and multi-plant manufacturers. The second class, which is reviewed
in Section 3.3, has the organizational problem segmented into distinct and dissimilar
sub-problems which are distributed among the units who separately engage in search.
The typical U -form organization is an example. The evolution of organizational de-
signs is covered in Section 3.4. Finally, Section 3.5 distills some of the new insight and
contrasts it with what a neoclassical economic approach delivers.

3.1. Modelling search

Two approaches have been taken in modelling the search space faced by an organiza-
tion. One approach is to assume the space of routines, over which an organization is
searching, is a highly structured space; typically, it is a subset of Euclidean space with a
metric that allows one to measure how “close” two routines are. Given this search space,
a mapping from it to the real line is constructed which assigns performance to each rou-
tine. How this mapping is constructed varies significantly between the NK model and
the economic model. A second approach involves less structure as its primitive is a
probability distribution over the performance (say, profit) attached to an idea. Exam-
ples utilizing this approach are March (1991) and Chang and Harrington (1997). As the
dominant approach is the first one, we will focus exclusively on it with the exception
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of discussing March (1991) in Section 5.2 due to its unique analysis of the evolution of
organizational norms.

Agent-based models of organizational search characterize an organization by a fixed
number of attributes. The search space for an organizational unit, frequently called
a landscape, is defined on Euclidean space in which each attribute of an organiza-
tion is represented by a dimension of the space and a final dimension indicates the
performance of the organization. The organization’s attributes are indexed by the set
S ≡ {1, 2, . . . , N}. For each attribute, there exists a fixed number of possible options
which we will refer to as “practices” and which Nelson and Winter (1982) call “rou-
tines.” The practice of the organization in attribute j ∈ S takes values in a non-empty
set Zj ⊆ �, where � is the set of all real numbers. Letting A ≡ Z1 ×· · ·×ZN , a vector
defined in A then completely describes the organization’s practices. There is a metric
d : A × A → � which measures how “close” practices are to one another. Finally, to
each vector of practices, there corresponds a level of performance for the organization
as described by v : A → �. The search spaces in the NK model and the economic
model, to be discussed below, are two special cases of this general model.

A key factor in the organization’s search process is the exact shape of the landscape.
Figure 1 shows two possible search landscapes for an organization which has two at-
tributes with 15 possible practices for each. Figure 1a captures a smooth landscape
having a unique local (and thereby global) optimum, while Figure 1b captures a rugged
landscape with many local optima. The shape of the landscape is typically determined
by the way the organization’s various attributes interact with one another. How the in-
teraction pattern affects the extent of ruggedness is discussed below for both the NK
model and the economic model.

3.1.1. NK model

Even though the NK model was initially conceived by Kauffman (1993) for understand-
ing biological systems, it has been extensively applied in many other domains including
computational organization theory. An organization is conceptualized as a system of ac-
tivities. It makes decisions concerning N activities where each activity can take on two
states, 0 or 1, so that, referring back to the general model, A = {0, 1}N . A particular
configuration of activity is then described by a binary vector of length N . The distance
between two such vectors, x ≡ (x1, . . . , xN) and y ≡ (y1, . . . , yN), is captured by the
Hamming distance:

(1)d( x, y) =
N∑

i=1

|xi − yi |;

that is, the number of dimensions for which the vectors differ. As part of the NK model,
the mapping v from the activity vector to the level of performance is a primitive. v is
set to depend on the performance contributions that these activities make individually,
where the contribution of each activity depends on the interactions among a subset of
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(a) Smooth landscape

(b) Rugged landscape

Figure 1. Search landscapes.

activities. The degree of interdependence among activities is captured by a parameter
K which is the number of other activities that directly affect the contribution of a given
activity. In its original formulation, these K activities are randomly selected from S for
each activity.

To be more concrete, let vi(xi, x
1
i , . . . , xK

i ) denote the contribution of activity i to the
organization’s performance where its dependence on activity i, xi , and the K activities
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to which it is coupled, (x1
i , . . . , xK

i ), is made explicit. It is common to assume that the
value attached to vi is randomly drawn from [0, 1] according to a uniform distribution
for each possible vector (xi, x

1
i , . . . , xK

i ). The overall organizational performance is
then

(2)v( x ) =
(

1

N

) N∑
i=1

vi

(
xi, x

1
i , . . . , xK

i

)
.

Normalization by N enables performance comparisons when N is changed.
The interaction parameter, K , controls the difficulty of the search problem by mak-

ing the value of the contribution of an activity dependent upon K other activities. When
K = 0, the activities are completely independent so that changing the state of one activ-
ity does not affect the performance contribution of the remaining N − 1 activities. The
landscape is then single-peaked so the globally optimal vector of activities is also the
unique local optimum. That is, improving vi by changing xi must raise the organiza-
tion’s performance since the contribution of the other activities is unaffected by xi . The
other extreme is when K = N − 1 so that a change in the state of an activity changes
the performance contributions of all other activities. This typically results in numerous
local optima for v(·) due to the complementarity among activities. That is, changing any
one of a collection of activities could lower v but simultaneously changing all activities
could raise v. Kauffman (1993) shows that the number of local optima increases in K .

Rather than specify the coupled or interacting activities to be randomly selected,
many organizational models using the NK framework choose the interaction pattern
so as to explore how different architectures influence performance. For those purposes,
it is convenient to capture the interdependencies in an adjacency matrix (Ghemawat and
Levinthal, 2000). Figure 2 shows four such matrices for N = 6 in which the degree of
interdependence as well as the exact structure of the interdependence differ. If the per-
formance contribution of the j th activity (row j ) is affected by the chosen activity in
the ith activity (column i) then the element in the matrix corresponding to row j and
column i has an ‘x’. This is always true of the principal diagonal as the contribution
of an activity depends upon the practice chosen for that activity. Figure 2a is an adja-
cency matrix for an organization in which K = 0 so that the activities are completely
independent. Figure 2b is when K = 5 and each activity is influenced by every other
activity in S. Figure 2c captures a special case of K = 2, where the interdependencies
are restricted to non-overlapping strict subsets of S; the activities in {1, 2, 3} influence
one another, while those in {4, 5, 6} influence one another. Figure 2d is another case
of K = 2, though there is no obvious systematic structure in comparison to the other
matrices. This is what would be typical if the interactions were random.

3.1.2. Economic model

The essence of the NK model is to build a generic landscape through a random con-
struction process. In contrast, the economic model builds it systematically from a set
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Figure 2. Adjacency matrix (N = 6).

of economic primitives. By way of example, let us describe the specification in Chang
and Harrington (2000). Consider an organization—such as a retail chain—that consists
of a corporate headquarters (HQ) and M ≥ 2 units (such as stores). In this section, we
will focus on constructing the landscape for only one of the stores and defer the discus-
sion of the overall organizational search problem. As in the NK model, there exist N

activities to a store’s operation. For each activity there are R possible practices so that
A = {1, . . . , R}N . A store is then characterized by a vector of N operating practices
(z1, . . . , zN ) ∈ A, where zi ∈ {1, . . . , R} is the store’s practice for the ith dimension.
These practices influence the appeal of the store to consumers. The distance between
any two vectors of practices, x and y, is measured by Euclidean distance:

(3)d(x, y) =
√√√√ N∑

i=1

(xi − yi)2.

Each consumer has an ideal vector of store practices which is an element of
{1, . . . , R}N . The net surplus to a consumer of type w ≡ (w1, w2, . . . , wN) from buy-
ing q units at a price of p from the unit is specified to be

[
� −

√√√√ N∑
i=1

(zi − wi)2

]γ

· qβ − pq.
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It is assumed that β ∈ (0, 1), γ ≥ 1, and � −
√∑N

i=1(zi − wi)2 > 1. Having q take its
utility-maximizing value, a consumer’s demand is

(β/p)
1

1−β

[
� −

√√√√ N∑
i=1

(zi − wi)2

] γ
1−β

.

The set of consumers in a market is represented by a cdf F defined on the space of con-
sumer types, {1, . . . , R}N , and is allowed to vary across markets so that the environment
a store faces varies across stores. In Chang and Harrington (2000), additional structure
is placed upon F as a consumer’s type is assumed to lie in {(1, . . . , 1), . . . , (R, . . . , R)}
so that it can be represented by a scalar. This captures the idea that a consumer’s prefer-
ences over the various dimensions are correlated so that, for example, a consumer who
prefers value 3 for dimension 1 is likely to prefer value 3 for the other dimensions. The
set of consumers in the market is represented by a triangular density function defined
on {1, . . . , R}.15

Using the derived demand for a consumer and specifying the optimal price of c/β, a
store’s profit is:

(4)v(z) ≡
[(

c

β

)
− c

](
β2

c

) 1
1−β

∫ [
� −

√√√√ N∑
i=1

(zi − wi)2

] γ
1−β

dF (w).

The crucial property here is that a store’s profit is decreasing in the distance between its
practices and those desired by its customers. For a given store, the profit function de-
fined above then represents its performance landscape over which it searches for better
combinations of practices. As in the NK model, an important property of the landscape
structure is its ruggedness. Here, the number of local optima can be shown to increase
in γ , the consumers’ sensitivity to store practices, as well as the degree of preference
complementarity (Chang and Harrington, 2004). Unlike the NK model, for which the
level of complexity is directly specified by the interaction parameter K , the economic
model allows the complexity in a decision problem to result from more fundamental
economic primitives.

3.1.3. Modelling search by a single agent

The potential for multi-agent search to outperform single-agent search on a per-agent
basis derives from its capacity to overcome the bounded rationality of individual agents
through sharing and coordination in the search process. Two forms of bounded rational-
ity stand out in these models: a lack of information about the search space (landscape),
and a constraint on the considered set of alternatives to the status quo.

15 Chang and Harrington (2004) relax the assumption of a perfect correlation in a consumer’s preferences
over dimensions and examine how the degree of preference complementarity affects the relationship between
an organization’s structure and its performance.
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If a unit has full information about the mapping from practices to performance then
search is irrelevant as the organization can simply identify and adopt the practice vec-
tor that corresponds to the global peak. Almost all agent-based models instead take
the view that agents are largely uninformed and assume the other extreme—nothing is
known about the shape of the landscape—so that agents must resort to blind search using
some form of hill-climbing algorithm. The myopic but adaptive search on the landscape
entails considering a practice vector that is different in several dimensions from the or-
ganization’s current one—the change may involve as few as one and as many as all
dimensions.

This forces us to confront the second form of bounded rationality. To what extent is
the organization capable of considering different changes? Is it capable of contemplat-
ing a major change in its operation which involves changing practices in all dimensions?
Or, is it constrained to considering only minor modifications? The ruggedness of the
landscape—which is determined by K in the NK model and partially determined by γ

in the economic model—turns out to affect the efficacy of search. When the landscape
is smooth and single-peaked, constraining the breadth of change that an organization
considers has no impact on the optimum eventually attained—as any hill-climbing algo-
rithm will find the global optimum—though it will influence the speed of convergence
and thus intermediate-run performance. This form of bounded rationality does make
a difference, however, when the landscape is rugged. While an organization capable
of carrying out transformations involving all dimensions will still eventually attain the
global optimum,16 an organization which is only capable of considering changes involv-
ing a small subset of the dimensions may become trapped on an inferior local optimum.

Central to the search-and-learn perspective of organizational theory is this dynamic
interaction between a boundedly rational search unit and the structure of its search
space, which serves to restrict the set of search paths and outcomes that the unit is ca-
pable of achieving. The organization as a multi-agent search mechanism can overcome
such restrictions through the sharing of their discoveries and internal coordination.17

3.2. Organizational search with units solving similar problems

Examples of organizations in which various units are solving similar problems include
retail chains, multi-plant manufacturers, and manufacturers producing a line of related
products. Such a situation is modelled by endowing each unit with a performance land-
scape over which it searches. All of the landscapes are defined over the same space

16 It should be noted, however, that it may take a very long time for the organization to find such a global
optimum by chance when N is relatively large.
17 Both Levinthal (1997) and Rivkin (2000) consider the impact of this interaction on the Darwinian selection
process in a population of firms climbing an NK landscape. Levinthal (1997) examines how successful firms
with tightly coupled systems (high K) find adaptation difficult in the face of environmental change, while
Rivkin (2000) allows imitation among firms and focuses on how tight coupling protects a successful firm from
potential imitators. It should be noted that both papers are restricted to single-agent models of an organization.
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of activities and similarity between units’ problems is reflected in the similarity of the
landscape, that is, how activities map into performance. Given that units are searching
over similar landscapes, the possibility of knowledge transfer among units is significant.
The main organizational issue here is how inter-unit learning can be promoted through
an appropriate organizational structure.

3.2.1. Kollman et al. 2000

Recognizing the possibility of multiple searches as the central benefit from decentraliza-
tion, Kollman et al. (2000), hereafter KMP, consider four factors affecting the magnitude
of this benefit: (1) difficulty of the problem; (2) sophistication in search; (3) heterogene-
ity among unit preferences; and (4) organizational size. Extending the NK model into
the multi-unit organizational setting, KMP endow each unit with an NK search space
which is common for all units (including the central authority).18 Search involves my-
opic hill-climbing on a fixed landscape. The objective is to investigate the efficacy of a
multi-unit organization in searching for solutions in parallel by exploiting units’ search
capacities and combining the revealed information to the benefit of the entire organiza-
tion.

Four types of organizational forms (or search rules) are considered: (1) full central-
ization in which search is carried out solely by the central authority and the best policy
found is mandated for all units—hence, this is equivalent to single agent search; (2) full
decentralization in which each unit searches independently and makes its own adoption
decision (so that there is no inter-unit spillovers of knowledge); (3) partial decentral-
ization with “best adoption” which means that each unit searches on its own but, after
a fixed number of search periods, the central authority mandates the best policy dis-
covered; and (4) partial decentralization with “incremental adoption” which means that
each unit searches on its own for a given length of time and then the central authority
forces the units to change policies incrementally (attribute by attribute) toward the best
known current policy so that, ultimately, all units have the same policy.19 The potential
trade-off between centralization and decentralization is that the former may draw from
a better distribution while the latter has multiple units searching. Under each of these
organizational rules, KMP examines the impact on the organization’s performance of
the four previously mentioned factors.

A focus of their analysis is to understand the relationship between the complexity
of the environment—measured by K in the NK formulation—and the cognitive con-
straints of the organization’s units which are represented by the maximum number of

18 The central authority in this setting is just another unit carrying out the search for the organization, though
it may have superior search capability.
19 In this case, the target policy—that is, the “best-to-date” policy—could change along the adoption process,
since the organization-wide switching of unit policies takes place one attribute at a time. This is to be con-
trasted to the “best adoption” rule under which all units immediately adopt the best policy in its entirety, while
discarding everything that they have found individually through local search.
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dimensions, denoted z, along which a new idea can depart from the status quo policy.
To begin, the benefits from decentralization are always positive under the best adoption
rule when the units are as capable as the central authority. There is also an interaction
between problem difficulty and the benefits of decentralized search because the great-
est advantage occurs with a moderate level of difficulty. Even a single unit can do very
well when problems are simple, so having more units searching in this case is of little
value. When problems are very hard, each unit tends to get stuck on a local optimum
of similar value (as the peaks become more numerous with more similar values as K

increases) so once again organizational structure doesn’t matter. It is when the prob-
lem is of moderate difficulty that the additional search under decentralization makes a
substantive difference.

In comparing the two partial decentralization rules, KMP find that the incremental
adoption rule always outperforms the best adoption rule. This is due to the fact that
the units are allowed to keep in place what has worked for them, while simultaneously
allowed to try what has worked elsewhere in the organization. This blending of diverse
local solutions proves superior to the alternative of requiring all but one unit to discard
the knowledge they accumulated. This comparative advantage of incremental adoption
is found to be non-monotonic in the difficulty of the problem. When K is low, the
probability of any one unit finding the global optimum is relatively high and, therefore,
the advantage of incremental adoption is minimal. And, when K is high, there are many
local optima which tend to be uncorrelated so that blending them together has little value
and, like any random change, generally proves deleterious. In other words, the activities
identified as worthwhile by one unit (that is, are at or close to a local optimum) are
unlikely to be of much value to another unit that is targeting a different optimum because
these different optima could be vastly distant from one another. Once again, it is for
moderately difficult problems that incremental adoption does significantly better than
best adoption. Finding the global optimum is then not easy, and information associated
with one local optimum is still of value to units that are at another local optimum as it
may allow them to move to yet better local optima.

3.2.2. Chang and Harrington (2000)

The focus of this work is to explore the relationship between organizational structure—
specifically, the degree of centralization—and firm performance. The case of a single
chain with multiple local stores is analyzed in Chang and Harrington (2000). The model
is then extended in Chang and Harrington (2003) to allow for competing chains and
searching consumers, thereby enabling an investigation of the coevolutionary dynamics
among organizations, units within an organization, and consumers in heterogeneous
markets.

Chang and Harrington (2000) consider a retail chain consisting of M stores, each
with a performance (profit) landscape defined by equation (4). The heterogeneity in the
markets that the stores serve is captured by differences in the distributions of consumer
types. Organizational profit is the simple sum of its stores’ profits. While stores’ land-
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scapes may be similar, they are independent in that a choice made by one store does not
affect the profit earned by another store. However, as explained below, inter-unit learn-
ing creates a dynamic and endogenous linkage among stores’ search paths and profits.

Search over the profit landscape takes place through an iteration of myopic one-step
hill-climbing, where a new idea is represented as a point in store practice space. In each
period, each store possesses a vector of current practices and generates one idea where
an idea is created by randomly selecting a dimension from {1, . . . , N} and assigning to
it a randomly selected element from {1, . . . , R}. If it is adopted then the store’s practice
in the specified dimension is changed to the new value.

Two organizational forms are considered in this setting. In the decentralized organi-
zation, a store manager evaluates his own idea and the ideas adopted by other stores
in the current period. A store manager sequentially evaluates these ideas and adopts an
idea if it raises store profit. Hence, each store manager searches over his store’s land-
scape and has the authority to implement any useful ideas. This is equivalent to KMP’s
full decentralization, except that inter-unit learning is voluntary. In a centralized organi-
zation, a store manager once again generates an idea and considers whether, if adopted,
it would raise store profit. If so, the idea is passed to HQ. If not, the idea is discarded.
With this set of ideas, HQ sequentially evaluates them in a myopic manner, mandating
a practice throughout the chain if doing so raises chain profit, and otherwise discarding
the idea. Thus, uniformity of practices is a feature of centralization in this model. HQ
then searches over its landscape which is based on chain profit, and it alone has the
authority to implement ideas.

Measuring performance by average chain profit, the main insight of this study is
that centralization can outperform decentralization. This occurs when markets are suf-
ficiently similar, the horizon is sufficiently short, and consumer preferences are suffi-
ciently sensitive to store practices relative to price. Given that markets are heteroge-
neous, the benefit of decentralization is clear—it allows each store manager to tailor
practices to its market. So, how can a centralized structure generate higher profit? It
turns out there is an implicit cost to decentralization. By adjusting practices to one’s
own consumers in a decentralized chain, stores’ practices tend to drift apart. As a result,
a new practice adopted by one store is increasingly unlikely to be compatible with the
current practices of other stores. In essence, stores come to target distinct consumers (by
targeting distinct local optima) and what works for one type of consumer doesn’t tend to
work for another type of consumer in light of preference complementarities. Inter-store
learning is then less under decentralization and this is detrimental to the rate of improve-
ment in store practices. The virtue of a centralized structure is that it enhances inter-store
learning by keeping stores close in store practice space so that they are targeting similar
consumers. With these two countervailing effects, a centralized structure outperforms as
long as markets are not too different. The value to enhanced inter-unit learning is great-
est when stores are farther from local optima and for this reason centralization does
particularly well in the short-run. In the long-run, decentralization is typically superior
because the uniformity of practices under centralization prevents the global optimum
being achieved since the global optimum has different practices in different markets.



Ch. 26: Agent-Based Models of Organizations 1299

Finally, centralization also outperforms when consumers are sufficiently sensitive to
store practices (γ is high). This result is related to the property that the ruggedness of
the landscape increases in γ . As the number of local optima rises, stores in different
markets (and thereby different landscapes) are more likely to share some common local
optima. This enhances opportunities for inter-store learning and the analysis shows that
this is best exploited by a centralized organization.20

A changing environment is encompassed by allowing the population of consumer
types to shift probabilistically. Measuring performance by steady-state chain profit, cen-
tralization is more likely to outperform when market fluctuations are sufficiently large.
Recall the earlier result in the static environment that centralization is favored in the
short run because stores are farther away from local optima, in which case inter-store
learning is especially valuable. As increased fluctuations in market environments shake
the landscapes more vigorously, they act to push stores further away from local optima.
Thus, a constantly fluctuating environment requires the firm to perpetually learn at a
high rate, which then sets the stage for the short-term superiority of centralization to
become a long-term advantage. Quite contrary to the received wisdom that volatility
in markets requires greater decentralization, Chang and Harrington (2000) find it is the
centralized organization that is more effective in responding to change.

3.2.3. Chang and Harrington (2003)

A more challenging issue is to consider how market structure interacts with orga-
nizational structure to influence the dynamic performance of chains. Does increased
competition make centralization more or less desirable? To address this issue, Chang
and Harrington (2003) modify the previous model by allowing for competition and
consumer search. There are L chains and M markets with each chain having a store
in each market. Within each market, there is a fixed population of consumers that en-
gage in search by moving among stores. At any point in time, a consumer in a given
market (served by L stores) has a favorite store and buys from it with probability 1−Q.
With probability Q the consumer experiments by randomly selecting another store and
buying from it. If the resulting surplus for the consumer is higher than what the con-
sumer received most recently from the favorite store then this new store becomes the
consumer’s favorite store. If not, then the consumer’s favorite store remains unchanged
and, in the next period, the process is repeated. Q regulates the extent of experimen-
tation. If Q = 0 then there is no competition as consumers are permanently loyal,
while Q = (L − 1)/L implies no loyalty. The organizational structures are as before.
A store evaluates the profit attached to adopting a new idea using its current base of
consumers—those that are currently buying from it. In a centralized organization, HQ
evaluates ideas using a measure of profit based on the current sets of consumers at its
stores.

20 The robustness of these results with respect to the shape of the landscape is explored in Chang and Har-
rington (2004).
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A key result is that centralization is more attractive when there is a larger num-
ber of competing chains and may even outperform in the long-run. The basis for this
finding is an implicit increasing returns mechanism when competing organizations are
coevolving with consumers. To understand this result, recall that centralization does
particularly well in the short-run. Thus, early on a centralized chain is developing bet-
ter practices and thereby attracting more customers than a decentralized chain. In the
one-chain model, decentralization would eventually outperform, but that needn’t be true
when consumers are searching. This early advantage from centralization establishes a
customer base which tends to include the most prevalent consumer types in the mar-
ket, and it is this customer base which is used to evaluate the profitability of new ideas.
A centralized organization then tends to adopt practices well-suited for the prevalent
consumer types, which results in their retention and the attraction of more of those
types and which makes the chain even more inclined to adopt ideas suiting their pref-
erences, and so forth. In this way, an early advantage of centralization—coming from
enhanced inter-store learning—is fed into a feedback loop to maintain an advantage in
the long run. As a result, a decentralized chain may not be able to catch up because
it is adopting ideas for a less prevalent niche of consumers. In other words, the rate at
which a chain climbs a landscape (by coming up with better practices for its current
customers) influences the shape of its future landscape (by affecting the set of loyal
customers). A centralized chain climbs its landscape faster and this results in its future
landscape being more attractive. Coevolutionary dynamics among firms and consumers
produce a powerful increasing returns mechanism.21

3.3. Organizational search with units solving different problems

The previous section is applicable when the organization is divided into units solving
similar problems such as selling a particular product line to consumers (retail chains)
or producing a particular product line (multi-plant manufacturers). Such organizations
are examples of the M-form, but let us now consider the U -form organization. The
organization’s various activities are allocated among functional departments such as
Accounting, Finance, Sales, Purchasing, Production, and so on. A new practice adopted
in Sales is unlikely to be applicable to the operation carried out in Finance—they are
engaged in entirely different types of operations and thereby solving quite distinct prob-
lems. However, it will have an impact on the effectiveness of the overall operation of
Finance when the value of certain financial practices depends on sales practices; that is,
there is a complementarity between them. These organizational issues can be modelled
by specifying the firm as a system of N activities in the context of the NK model but
with the feature that these N activities are allocated to various departments for special-
ized search occurring in parallel. For instance, half of the activities may be put under

21 As an example of how analytical and computational methods are complementary, this issue is explored
analytically in Harrington and Chang (2005) as they consider a highly stripped-down version of Chang and
Harrington (2003).
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the control of department A while the remaining activities may be under the control
of department B, with each department attempting to find the optimal configuration of
decisions over the activities it controls according to some evaluation criterion. As the
departments are then searching over distinct non-overlapping set of activities, there is
no prospect for inter-unit learning. Rather, the issue is how to structure the organiza-
tion so that the gains of parallel search can be had while balancing it with the need to
coordinate search in light of how these activities interact.

3.3.1. Rivkin and Siggelkow (2003)

A long line of scholars studying complex organizations have observed that there are
many interdependencies among elements of design such as the allocation of decisions,
incentives, and information flows. Rivkin and Siggelkow (2003) offer as one source of
such interdependencies two conflicting needs of a multi-unit organization that are cen-
tral to the search-and-learn perspective. First, to be successful, an organization must
search broadly for good actions (exploration). Second, it must also stabilize around
good actions once discovered (exploitation). An effective organization balances search
and stability. The authors focus on three prominent elements of organizational design
in exploring how they interact to influence this delicate balance: (1) a central authority
that may choose to review the proposals sent up from subordinates; (2) an incentive
system that influences the degree to which managers act parochially for the good of
their departments or for the good of the overall firm; and (3) the decomposition of an
organization’s decisions into distinct departments. Their focus is on how these design
elements interact with one another to determine organizational performance through the
balancing of search and stability and how that relationship depends on the interdepen-
dent structure of activities as dictated by the problem and on the limits on the cognitive
ability of managers.

Their simulation considers a hierarchy with a CEO and two subordinate managers,
A and B. The firm engages in multi-agent search which takes place on performance
landscapes generated by the NK model. An organization has N = 6 decision attributes
and part of its design is how they are allocated among the two managers. Manager A
has responsibility for a subset SA of these attributes and manager B for the comple-
mentary subset SB . In each period, each subordinate manager reconsiders the actions
assigned to its attributes by comparing the current configuration to some fixed number
α of alternatives, so that α reflects the cognitive capacity of a subordinate manager.
These α alternatives are ranked by a manager on the basis of an evaluation criterion
which is a weighted average of the performance of his department and of the other
department.

Initially, it is supposed that SA = {1, 2, 3} and SB = {4, 5, 6}. Denoting by δ ∈ [0, 1]
the degree to which Manager A cares about the other department’s performance, the
evaluation criterion for Managers A and B, respectively, are
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vA = v1 + v2 + v3 + δ(v4 + v5 + v6)

6
,

vB = δ (v1 + v2 + v3) + v4 + v5 + v6

6
,

where recall that vi is the contribution of the ith activity to total organization perfor-
mance. If δ = 0, a manager only cares about his own department, while if δ = 1 he
cares about firm profit. δ then controls the degree to which managers’ incentives are
aligned with those of the organization.

Finally, the form of vertical hierarchy and the ability of the CEO affect the organiza-
tional search process. From the status quo and the α alternatives, a manager sends up the
best P proposals to the CEO where “best” is according to the manager’s preferences.
There are two types of CEO’s: rubberstamping (decentralization) and active (central-
ization). The first type always approves all proposals sent up by both managers so that,
effectively, an organization with a rubberstamping CEO is decentralized since the real
authority lies with the department managers. The active CEO, on the other hand, selects
β proposals from all combinations of the submitted proposals and implements the one
that generates the highest firm profit (so δ = 1 for the active CEO). Thus, β captures
the cognitive capacity of the CEO. Since an active CEO has the final authority, we will
refer to this as the centralized organization.

In sum, there are five different factors that affect the organizational search process
and, consequently, performance: the grouping of activities into departments, the amount
of information sent up to senior management (P ), the allocation of authority (cen-
tralization/active CEO vs. decentralization/rubberstamping CEO), the extent to which
managers care about firm as opposed to department performance (δ), and the cognitive
abilities of the department managers (α) and the CEO (β).

There is found to be a significant interaction between the allocation of authority and
the complexity of the environment (as measured by K). When the complexity is low
(K = 0), the benefit of centralization is non-existent since the lack of interdependen-
cies means there is no need for coordination while, at the same time, there is a cost
due to slower adaptation. In such a case, short-run performance is lower under central-
ization. When complexity is moderate, centralizing authority in the CEO is shown to
enhance performance as the interdependence among activities makes coordination crit-
ical. But then for highly complex environments (high K), it is better to push authority
back down to the managers. Centralization suffers from the problem that an active CEO
is always moving the organization to points of higher firm profit and, when K is high,
there are many bad local optima. As a result, the organization is typically getting stuck
at a point of low performance. In essence, centralization results in excessive stability.
In contrast, a decentralized organization—by giving authority to department managers
who care more about their own department’s profit—may periodically result in orga-
nizational performance deteriorating which, when it causes movement into a basin of
attraction for a better optimum, can enhance long-run performance. This weakness to
centralization can not be mitigated by increasing the skill of the CEO (as measured by
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β), but only by increasing the information flow, P . In sum, centralization is undesirable
when interactions are pervasive and the CEO gets little information from below.

The skills and incentives of the subordinate managers have some subtle and surpris-
ing effects. In a complex environment, highly skilled managers can be harmful in a
decentralized organization. By considering alternatives that are far away from their cur-
rent position, a highly skilled manager may undermine the improvement efforts of other
managers. The organization can suffer from excessive instability as it dances around
the landscape without making much progress. Centralizing authority in the CEO pro-
vides useful coordination. An active CEO and skilled department managers are then
complements, not substitutes. Managerial incentives that are more closely aligned with
the interests of the firm are complementary to centralization as well. When managers
are parochial (low δ), many of their suggestions are turned down in a centralized or-
ganization because the CEO uses a different criterion in evaluating them. Hence, the
organization doesn’t make much progress. This is contrary to the usual argument which
is that, if managers have the right incentives, why does one need an active CEO? Here,
the problem is that departmental managers have partial information and control and one
needs the coordination that centralization delivers.

The above results are obtained for landscapes created using the usual random inter-
action NK model. Rivkin and Siggelkow (2003) also considers the interdependence be-
tween decomposition and the allocation of authority. With decomposable interactions—
as represented by the block-diagonal adjacency matrix in Figure 2c—centralizing au-
thority is irrelevant since department managers are solving independent problems.
There is no need for coordination. Superior performance can, however, come from
the combination of imperfect decomposition—there is some interdependence across
departments—and an active, well-informed CEO. For instance, given a block-diagonal
matrix (Figure 2c), performance is higher when an active CEO is combined with
(SA, SB) = ({1, 2, 6}, {3, 4, 5}) than with (SA, SB) = ({1, 2, 3}, {4, 5, 6}). At work
is the balancing of search and stability. Some overlap expands the range of search as
each manager proposes options that change the landscape faced by another department.
This may serve to move the organization to a different basin and, in some cases, result
in it homing in on a superior local optimum.

3.3.2. Siggelkow and Levinthal (2003)

Using a model similar to the preceding one, Siggelkow and Levinthal (2003) examine
the division of task and specialized search under three different organizational forms:
centralization, decentralization, and reintegration. In the centralized firm, decisions are
made only at the level of the firm as a whole, whereas a decentralized organization is
disaggregated into a number of departments in which decisions are made independently.
A reintegrated organization initially has a decentralized structure and then switches to
centralization after a fixed number of periods (typically, 25 periods). A key variable
is the degree and pattern of interactions among various activities as specified by an
adjacency matrix. The decision problem for the organization is decomposable if the
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activities can be grouped so that all interactions are contained within each group and
thus there are no cross-group interdependencies. The block-diagonal adjacency matrix
in Figure 2c is a decomposable system. On the other hand, the decision problem is non-
decomposable if there is no way to group the activities so as to eliminate all cross-group
interdependencies; see, for example, the matrix in Figure 2d.

The simulation entails creating 10 000 landscapes using the NK model with N = 6.
The three organizational forms are compared in terms of their performance (averaged
over the 10 000 landscapes) under conditions of both non-decomposability and decom-
posability of the decision problems. Firms carry out myopic local search and they only
consider changing one activity at a time. The centralized firm evaluates an idea on the
basis of firm profit: v = (v1 + v2 + v3 + v4 + v5 + v6)/6. The decentralized firm is
assumed to have two departments, A and B, with department A controlling activities
{1, 2, 3} and department B controlling {4, 5, 6}. In each period, each department comes
up with an idea which it then evaluates on the basis of the profit contribution of those
activities that are under its exclusive control. This means that the evaluation criteria
used by departments A and B are vA = (v1 + v2 + v3)/3 and vB = (v4 + v5 + v6)/3,
respectively. In evaluating an idea, a department takes the other department’s current
choices as given.

In a decomposable environment with a block-diagonal interaction structure (Fig-
ure 2c), they find that the decentralized firm outperforms the centralized firm in the
short-run. This result is directly due to the asymmetric number of draws that are al-
lowed under these two forms: the decentralized firm gets two draws per period (one for
each department), while the centralized firm gets only one. As there is no interaction
between the activities of the two departments, there is no mitigating benefit from cen-
tralization. The average levels of performance under these two forms do converge in the
long run, however. The reintegrated firm’s performance is nearly identical to that of the
decentralized firm.

The results are quite different when the organization searches in a non-decomposable
environment. Assuming a random interaction structure with K = 2, the advantage of
having more draws under decentralization is offset by the coordination benefit attained
under centralization due to the presence of cross-departmental interdependencies. More
interesting is the performance of the reintegrated firm. Prior to reintegration, the per-
formance is, of course, the same as that of a decentralized firm. After the departments
are integrated, performance not only improves but it eventually outperforms the cen-
tralized firm. The problem with the organization when it is centralized is that it is apt
to get stuck early on at an inferior local optimum, similar to the active CEO structure
in Rivkin and Siggelkow (2003). This is less likely with the reintegrated firm as it is
initially decentralized. Once centralization occurs, it is more likely to be in the basin
of a better optimum which it can take advantage of now that coordination can occur.
The lesson is that superior performance may be had by a temporal blending of different
organizational forms.

Those simulations assume the organization starts its search from a random point on
the landscape. An alternative exercise is to suppose there is an environmental shock af-
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ter the firms have achieved some steady-state. Siggelkow and Levinthal (2003) position
a firm at Hamming distance d from the global optimum—implying that the firms were
at the global optimum ex ante and then were thrown off it by a shock of magnitude d .
In this setting, the question is how effectively a firm can climb back to the global op-
timum. Centralization outperforms reintegration for sufficiently low values of d , while
reintegration outperforms centralization for sufficiently high values of d . The appro-
priate organizational form then depends on the size of the shock. The intuition is that
a centralized firm has a relatively high probability of getting locked onto nearby local
optima which makes it less suitable for large shocks but quite desirable for small shocks
since the firm is likely to start in the basin of attraction for a good optimum (recall that
the firm started at the global optimum). By comparison, reintegration initially pursues a
decentralized form and thus can better handle large shocks. The general lesson is that an
organization should be centralized at a steady-state but should temporarily decentralize
when there is a large change in its environment.

The preceding results suggest that there may be merit to grouping activities so that
there is some cross-departmental interdependence even when the decision problem is
decomposable. Suppose the interaction structure is characterized by the adjacency ma-
trix in Figure 2c. An obvious grouping of activities would be to have department A in
charge of {1, 2, 3} and department B in charge of {4, 5, 6}, thereby eliminating any
interaction between the activities controlled by these two managers. However, such
a structure underperforms one which is eventually of that form but during the early
periods has A controlling {1, 4, 5} and B controlling {2, 3, 6}. Quite interestingly, the
temporarily scrambled firm is superior to the “ideally” decomposed firm because cross-
departmental interdependence avoids excessive stability.

3.4. Evolving an organizational structure

Thus far the focus has been on comparing the performance of different elements of
organizational design. This begs the question of whether upper level management of an
organization, which is endowed with a sub-optimal design, can effectively alter design
elements so as to achieve a superior structure. What makes this a non-trivial problem
is the presence of interdependence among component tasks, which is representative of
any complex system, be it social, biological, or technological. The significance of this
problem is well illustrated by Herbert Simon in the context of organizations:

The basic idea is that the several components in any complex system will perform
particular subfunctions that contribute to the overall function. ... To design such a
complex structure, one powerful technique is to discover viable ways of decom-
posing it into semi-independent components corresponding to its many functional
parts. The design of each component can then be carried out with some degree of
independence of the design of others... There is no reason to expect that the decom-
position of the complete design into functional components will be unique... Much
of classical organization theory in fact was concerned precisely with this issue of
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alternative decompositions of a collection of interrelated tasks. [Herbert A. Simon,
The Sciences of the Artificial (1996), p. 128.]

In a decomposable system such as the one in Figure 2c, the obvious division of tasks
would entail assigning activities {1, 2, 3} to one department and {4, 5, 6} to another.
As there is no interdependence between the sets of activities of these two departments,
the optimal solution they arrive at independently will form the optimal solution for the
entire organization. Alternatively, systems may have inherent “near decomposability”
where they can be decomposed into a collection of subsystems with the property that the
components within a subsystem interact more strongly than the components belonging
to different subsystems, but with a certain degree of interdependence remaining between
the subsystems. In such situations, the problem solvers facing computational constraints
will be motivated to decompose the problem into subproblems in order to benefit from
parallel processing, while recognizing that the problem may not be decomposable.

3.4.1. Ethiraj and Levinthal (2002)

Define an organization’s “true architecture” to be a description giving the correct num-
ber of the organization’s modules and a correct assignment of functions to the respective
modules as dictated by the characteristics of the problem. Ethiraj and Levinthal (2002)
set out to identify the relationship between two key design elements—decomposability
and hierarchy—and an organization’s ability to discover its true architecture.

They consider the following four structural types: (1) hierarchical and nearly de-
composable; (2) non-hierarchical and nearly decomposable; (3) hierarchical and non-
decomposable; and (4) non-hierarchical and non-decomposable. Figure 3 presents the
adjacency matrices of the systems that belong to each one of these categories when
N = 9 and there are three non-overlapping modules labelled a, b, and c. Figure 3a
is nearly decomposable and hierarchical as b1 in module b is influenced by a3 in
module a and c1 in module c is affected by b3 in module b but module c does not
influence modules b or a and module b does not influence module a. Hence, the inter-
module interdependencies are unidirectional. Figure 3b is nearly decomposable and
non-hierarchical in that modules a and b are mutually interdependent (through b1 and
a3), while modules b and c are mutually interdependent (through c1 and b3). Figure 3c
is a non-decomposable but hierarchical system as there is a tight coupling between mod-
ules in that all components of modules b (c) are influenced by all components of module
a (b) and are unidirectional. Finally, a non-decomposable and non-hierarchical sys-
tem is captured in Figure 3d, where all modules are tightly and mutually coupled with
one another. For each of these four structures, search for the true architecture occurs
through three operations: splitting, combining, and re-allocation. Splitting of modules
involves breaking up existing departments into two or more new departments. Combin-
ing is the opposite of splitting in that it involves integrating two or more departments.
Re-allocation is when the organization reassigns functions from one unit to another.

Suppose the module designer observes the presence or absence of interactions among
attributes within the module as the result of a change in an attribute. All attributes for
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Figure 3. Adjacency matrix (N = 9).
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which their contribution to performance is unaffected by this change are identified as
not belonging to the module that includes the original attribute. All such attributes are
either transferred to a randomly chosen different module (if they constitute less than half
the total number of attributes in the current module) or are split into a new module (oth-
erwise). If the change of the given attribute does not affect any other attributes within
the module, then the attribute is viewed as not belonging to that module. In this case it
is transferred to another randomly chosen module. In each period, the module designers
also consider combining each module with another module by randomly selecting two
modules and evaluating the impact of attribute changes in both modules. The modules
are combined if changes in each module affect the other and remain separate otherwise.

Each module engages in one-step offline search based on local module performance.
This occurs in parallel. When considering a population of systems in order to explore
recombination of systems or substitution of modules, they select two systems at random
and then select two functionally equivalent modules at random for recombination. The
lower performing module is replaced with the higher performing module. Finally, in the
multi-systems analysis, the selection mechanism used is the roulette wheel algorithm,
where the probability that a system is selected equals its performance level divided by
the sum of the performance of all systems in the population at that time.

Consider a system with N attributes for which the true architecture has M modules
with each module having an equal number of attributes. The initial design of the system
is random and thus is likely to have the wrong number of modules, modules with the
wrong attributes, and modules with different numbers of attributes. The performance
measure is the number of periods its takes for the system to converge to the true archi-
tecture.

The simulation exercise is based on 100 experiments, where each experiment involves
a randomly selected landscape and initial design and entails each of the four archetypes
being run. The simulations show that an organization always discovers the true structure
when the system is hierarchical, even when it is non-decomposable. But when it is non-
hierarchical, an organization never manages to reach a stable state. The violation of both
principles—hierarchy and decomposability—is seriously detrimental to discovering the
right structure. These results suggest that the search rule for discovering the true system
structure is robust when there is a strong interaction within modules and there is a
hierarchical precedence structure underlying between-module interactions.

3.5. What do we learn from a computational agent-based approach?

The primary issue explored in agent-based models of organizational search and learning
is the role of organizational structure and, more specifically, how a centralizing authority
can influence performance by coordinating certain activities. In this section, we want to
review what we’ve learned about when an organization should be centralized, highlight
the role played by the unique features of ACE models identified in Section 2, contrast
this insight with what a NCE analysis would produce, and make the case for ACE.
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One important insight is that decentralization can be advantageous even when com-
plementarities suggest that coordination is valuable. Consider an organization in which
there are interdependencies across units. If each unit evaluates a new practice based
upon what it generates in terms of unit performance, then decentralized search can lead
to lower organizational performance due to externalities across units. A NCE analysis
would suggest that centralization is beneficial because it internalizes these externalities
by evaluating the impact of a new practice in terms of organizational profit. In contrast,
Rivkin and Siggelkow (2003) show using an ACE model that centralization can perform
worse because it results in excessive coordination. Once a centralized organization is in
the basin of attraction of a particular local optimum, it steadily marches towards it and,
as a result, it never learns whether there are other more attractive optima. Under de-
centralization, individual units—each of which is engaging in hill-climbing using the
unit’s performance—can inadvertently result in organizational performance declining.
Though detrimental in the short-run, it may serve to throw the organization into the
basin of a different and potentially better optimum. Put differently, the high level of co-
ordination achieved under centralization leads to excessive stability. Though stability is
desirable once a good optimum is reached, it can be harmful while learning because it
closes off alternatives. In the context of adaptive search—as opposed to optimal selec-
tion of organizational practices—coordination can be excessive. Second best arguments
are rampant within ACE models and this is one example—the limitations of adaptive
search may mean that fully internalizing externalities across agents can be detrimental,
an intuition quite contrary to what would emerge from an NCE analysis.

A second important insight is that centrally mandated uniform practices can be valu-
able even when units face heterogeneous environments. Consider an organization in
which there are no interdependencies across units. Each unit is in a different environ-
ment and organizational performance is the simple sum of the units’ performances. An
NCE analysis would suggest that decentralization is preferable as it allows practices
to be tailored to the environment. However, Chang and Harrington (2000) show that
a decentralized organization creates dynamic externalities related to knowledge trans-
fer which impact adaptive search. Since units are solving similar problems, what one
learns and adopts may prove useful to other units. Under decentralization, units fail
to internalize the following externality: when a unit adopts a new practice that moves
them away from other units, those other units can expect to learn less from it. A cen-
tralized organization serves a coordinating function by keeping units’ practices close to
one another, and this enhances knowledge transfer. Note that this result is produced by
medium-run dynamics. In the long run the organization will typically achieve its global
optimum and, since the global optimum is lower when constrained to uniform practices,
decentralization outperforms in the long-run.

A unique feature of ACE models mentioned in Section 2 is the complexity of the en-
vironment, and this indeed played a central role in the preceding analysis. Complexity is
measured by the ruggedness of the landscape. A more rugged landscape means more op-
tima, in which case it becomes easier to get stuck on poor optima. Chang and Harrington
(2000) show that a more complex environment makes knowledge transfer more impor-
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tant as it is more difficult for a unit, learning on its own, to succeed. This implies that
more complexity means centralization is more likely to be preferred. In Kollman et al.
(2000), organizational form matters only when environments are moderately complex.
In Rivkin and Siggelkow (2003), the potential advantage to the enhanced coordination
from centralization increases with complexity (which is associated with more inter-
dependencies) but the chances of getting stuck at a bad optimum also increases with
complexity. When the environment is moderately complex, the first effect dominates
so that centralization performs better but, when the environment is very complex, the
second effect dominates so decentralization outperforms.

The above discussion reveals that ACE delivers different insight than would an NCE
analysis. Furthermore, in reviewing NCE research on organizations, the forces at work
are quite distinct. In one class of NCE models, organizational structure affects the in-
centives of lower-level agents to produce useful information for higher levels. In Aghion
and Tirole (1997), decentralization promotes lower-level agents’ incentives to invest in
acquiring information—as their decision is less likely to be overruled (and there is little
value to investing in information if the information doesn’t make a difference)—but at
the cost of them pursuing their own interests which are distinct from the interests of the
organization. In Dessein (2002), the problem is that lower-level agents may distort the
information that they pass along to higher levels. A second class of models focuses on
how organizational structure influences monitoring, wages, and the incentives for agents
to work hard. In Qian (1994), a more hierarchical organization (which means more lev-
els and each manager has fewer agents to monitor below him) enhances monitoring
and lower wages but is less productive. Maskin et al. (2000) compare the M-form and
U -form with respect to their productivity in monitoring when pay is based on relative
performance. The emphasis, the forces, and the insight of these organizational models
are then quite different from ACE organizational models. While ultimately these alter-
native approaches may compete, thus far their analyses are complementary.

4. Information processing

Economists have also often failed to relate administrative coordination to the the-
ory of the firm. For example, far more economies result from the careful coor-
dination of flow through the processes of production and distribution than from
increasing the size of producing or distributing units in terms of capital facilities
or number of workers. Any theory of the firm that defines the enterprise merely
as a factory or even a number of factories, and therefore fails to take into account
the role of administrative coordination, is far removed from reality. [Alfred Chan-
dler, The Visible Hand: The Managerial Revolution in American Business (1977),
p. 490.]

As reviewed in the previous section, search and learning models of organizations have
agents receive new ideas, evaluate them, and then decide what to do—whether to discard
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them, pass them along to a superior, or implement them (depending on the allocation of
authority). An implicit assumption is that the evaluation process is costless and instanta-
neous. This is a striking departure from reality. It can take resources, time, and expertise
to evaluate new information and then make a decision. This section considers the costs
of processing information. An organization takes input from the environment (“data”)
and performs operations on it prior to making a decision. Information processing is
costly because, for example, it requires hiring agents and it imposes delay in reaching
a decision under the constraint of avoiding information overload. Though all models
of organization involve information processing to some degree, we have reserved this
terminology for those models where the cost of processing is explicitly modelled and is
a primary force determining organizational performance.

The organization is faced with a task which, if it were to be handled by a single agent,
would translate into long delays and inaccuracies due to processing and memory con-
straints. A more efficacious structure involves distributed problem-solving—multiple
agents solving sub-problems and then putting these sub-solutions together to produce
a solution for the original problem. We’ll address the following questions: What is the
best size and structure of an organization? What is the best way in which to allocate sub-
problems, organize information flows, and more broadly connect agents so as to lead to
fast and accurate solutions? Should the organization be “flat” so that many agents are
handling data? Should it be decentralized like a team or centralized like a hierarchy?
How many levels should the hierarchy have and should communication channels cut
across levels so high-level personnel connect with many levels? In addressing these
questions, research has considered two sets of factors: first, the characteristics of agents
with respect to their cognitive skills and accumulated knowledge; and second, the char-
acteristics of the environment in terms of its complexity, stability, and decomposability.

We begin in Section 4.1 with the canonical model of an information processing or-
ganization and an exploration of its generic properties—properties that hold for most
networks, not just optimal ones. The impact of organizational structure on performance
when agents have the capacity to learn is investigated in Section 4.2, while organiza-
tional design endogenously evolves in the models reviewed in Section 4.3. We conclude
with a critical discussion in Section 4.4.

4.1. Generic properties of information processing networks

Radner (1993) describes the canonical information processing problem faced by an or-
ganization.22 The organization is a network of agents (or information processors or
nodes) which are endowed with a fixed ability to process incoming data and a limited
capacity for doing so. For example, data might be a series of integers, the processor has
the ability to multiply them together, and its capacity limits it to handling seven num-
bers. The architecture defines how information is distributed and tasks are assigned. In

22 Also see Van Zandt (1999) and, for early work on modelling an organization as a network, Dow (1990).
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this canonical model, information enters the lowest level where it is processed and sent
through the network for further processing. Once processing is completed, an output
(that is, an organizational decision) emerges. The basic line of inquiry investigates the
relationship between size and structure of the network and performance, which is mea-
sured by the speed with which a problem is solved. More nodes in the network (or more
agents in the organization) provide more processing power—which may be particularly
critical when agents have limited capacity—but at the potential cost of more delay as
information has to traverse a longer path. Under certain conditions, it is shown that the
most efficient network is a particular type of hierarchy.

4.1.1. Miller (2001)

This canonical problem is explored in Miller (2001) with an eye to learning generic
properties of networks. He considers randomly generated networks with the hope of
identifying “order for free” without the expense of optimality. The organization faces a
series of associative (and thereby decomposable) problems. The organization receives
data in the form of a series of integers and the task is to generate their sum. Each agent
has the ability to sum two numbers. With this class of problems, and given the assump-
tions placed on agents, accuracy is assured and the performance of an organization is
measured by the delay in generating a solution. As the associative nature of the problem
means that the sequence with which it is solved is irrelevant, such problems are ripe for
distributed problem solving.

An organization is a network of nodes with each node being a processor and repre-
senting an agent. Figure 4 shows all of the possible (non-redundant) networks associated
with five bits of information, (a, b, c, d, e), where each bit is handled by exactly one
agent. For example, a single-agent organization has all five bits coming into that agent
who must progressively sum them by adding a to b, then adding the solution to c, and so
forth, until the solution is derived after four operations and four periods. In comparison,
there is a three-agent network (denoted #12) in which one agent sums three bits, another
sums two bits, and a third sums the sub-solutions. The first two agents are referred to as
child agents to the last one, who is the parent agent. Note that this network takes fewer
periods to derive a solution but at the cost of more agents.

Faced with a sequence of problems, an agent is not allowed to work on the next
problem until its output is retrieved by the next agent in the network. An agent can be in
one of three states: (i) inactive; (ii) active and unfinished; and (iii) active and finished, in
which case it can, if called upon, convey its solution to its parent agent. An agent must
decide on what problem to work, whether any sub-solutions from child agents can be
incorporated, and whether more processing is required on the current problem. When
an inactive agent is activated, it either tries to draw a child agent’s solution or data from
the queue. An agent remains active until processing is completed and the sub-solution
is taken by the parent agent.

For the purpose of identifying generic properties, Miller considers random networks
constructed as follows. A number of nodes is randomly chosen from between 1 and 50.
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Figure 4. Networks with 5 bits of information.

The organization is iteratively constructed starting with a single node to which a child is
added. One of those nodes is randomly selected and a child is added to it. This continues
until the network has the specified number of nodes. Finally, all terminal nodes are
connected to the data queue and an interior node is connected with probability 1/2.

To explore the significance of synchronization of agents in distributively solving a
problem, Miller (2001) compares the performance of networks where nodes are ran-
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domly activated with one in which there is “ordered firing” so that child nodes are
activated before parent nodes. Some interesting properties arise when exploring how
performance is related to organizational size, as measured by the number of nodes.
When firing is synchronized, performance mildly increases with size while, with ran-
dom firing, performance appears to be maximized at an intermediate number of nodes.
This suggests that, to sustain larger organizations, synchronization among agents is crit-
ical. Also noteworthy is that the variation in performance across random networks is
greater for small organizations. The possible explanation is that they are more sus-
ceptible to bad design causing bottlenecks, which creates delay as agents wait for
sub-solutions from other agents. In contrast, the denser web of connections when there
are more nodes allows information to flow more freely, which serves to make the par-
ticular architecture less important.

4.2. Organizations with adaptive/learning agents

Now consider an organization that faces what Carley (1992) calls a quasi-repetitive task.
In each period a problem arises as an iid selection from a finite set, which provides two
types of opportunities for the organization to learn. First, if the cardinality of the set of
problems is not large relative to the number of periods, the organization is likely to face
a problem repeatedly so they can learn from past mistakes. Second, the problems may
be related, in which case the solution to one problem provides information pertinent
to solving other problems. The challenge is to learn the latent function generating the
problems. For an organization to take advantage of these opportunities, agents must
be endowed with a capacity to learn. Exploring how the ability to learn influences the
relationship between organizational structure and performance is a central issue.

4.2.1. Carley (1992)

Suppose an organization faces a sequence of binary classification problems. For exam-
ple, suppose that a new project arrives each period and the organization has to decide
whether it is profitable or unprofitable. It receives information on the project that takes
the form of an element of {0, 1}N . There is a true (fixed and deterministic) latent map-
ping from {0, 1}N into {profitable,unprofitable} which assigns the status of profitable
when a majority of the bits take the value 1. Each drawn problem assigns equal prob-
ability to a bit being a 0 or 1. Based on the information, the organization must decide
whether or not to conclude it is profitable.

In contrast to the rich set of organizational structures allowed by Miller (2001), here
just two organizational forms are considered, hierarchy and team. A hierarchy com-
prises three levels where the lowest level has nine agents (referred to as analysts) who
receive the data. The data consisting of N bits are partitioned into nine sub-vectors
with each analyst receiving one of them. In response to observing an element from
{0, 1}N/9, an analyst puts forth a recommendation, either profitable or unprofitable, to
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an agent (manager) at the next level. There are three managers and each receives rec-
ommendations from three analysts. At the top is a single agent (CEO) who receives
recommendations from the three managers and makes a final evaluation regarding prof-
itability of the project. A team is also comprised of nine analysts but has just one level.
Each analyst makes a recommendation in response to their input, and the organizational
decision is based on majority rule. Though the number of decision makers varies be-
tween the two organizational forms, the number of agents receiving information about
the problem is the same.

Agents engage in experiential learning about the latent mapping between {0, 1}N and
{profitable,unprofitable}. After the organization makes its decision, all agents observe
the true state of the project. Each agent keeps track of how information relates to the
true state. For example, an analyst keeps a running tab of how many times a project was
profitable for each observed input from {0, 1}N/9. Similarly, managers and the CEO
keep track of how many times a project was profitable for each observed element from
{profitable,unprofitable}3. The specified behavioral rule is that an agent reports prof-
itable (unprofitable) in response to his information when the fraction of times that the
true state was profitable (unprofitable) for that given information exceeds 50%. When it
is exactly 50%, the agent randomizes.

The task varies in terms of complexity and decomposability. Complexity is measured
by the length of the data vector. More data means more problems, with less opportunity
to see a particular problem repetitively, and also a bigger set of possible mappings to
sort among. A problem is referred to as decomposable consensual when all analysts
are given the same sub-problem.23 For example, the task 110110110 is decomposable
consensual to three analysts. Since the more frequent bit value for each analyst is also
the more frequent bit value for all N bits, in principle an individual analyst can come
to correctly identify a project’s true state based only on his own N/9 bits of data. By
contrast, a non-decomposable task is when the accuracy of an individual’s prediction is
dependent upon information possessed by others. For example, the task 111010000 is
nondecomposable to three analysts as one analyst receives 111, a second receives 010,
and the third receives 000. This information is insufficient to determine whether 1 is in
the majority and thus that the project is profitable.

One of the unique and interesting features of this model is personnel turnover. Ac-
cording to a Poisson process, an agent may be replaced with a new agent.24 Analysts can
be replaced with someone who has no experience (“novice”), someone who has experi-
ence with 500 sub-problems generated by the same stochastic process (“good fit”), and
someone who has experience with 500 sub-problems in an organization with a slightly
different problem-generating process (“poor fit”). Managers can also be replaced, al-
though their replacements are restricted to be novices. Given that agents are learning,

23 The modifier “consensual” is added because this task is more restrictive than the standard definition of
decomposability (see Section 2). A problem can be decomposable but not involve identical sub-problems.
24 Here, turnover is exogenous though in other models it is endogenous. An agent may decide to leave, as in
Axtell (1999), and managers may decide whether to hire someone, as in Glance et al. (1997).



1316 M.-H. Chang and J.E. Harrington, Jr.

replacing experienced agents with possibly less experienced ones obviously deteriorates
performance. Less clear is what type of organizational structure better handles such dis-
ruptions.

In contrast to Miller (2001), the organization is not necessarily given enough data to
correctly solve the problem. Thus, performance is measured by the accuracy of solu-
tions. The average percentage of correct assessments in the final 200 of 2500 periods
measures long-run performance, while the average number of periods it takes to reach
60% accuracy serves as a measure of the speed of learning. As there are only two true
states and the organization is endowed with no experience, it is initially guessing and so
starts with 50% accuracy.

For either organizational type, performance is greater with a less complex task and
when the task is decomposable. Teams learn significantly faster than hierarchies (though
an important exception is noted below). A key force at work here is information loss.
Analysts convert information defined on a space with 2N/9 elements into a signal from
a two-element space. In the hierarchy, managers take information defined on an eight-
element space (the three possible recommendations from those at the next lower level)
to a two-element space. On these grounds, one expects teams to perform better because
there is less information loss; it occurs twice for a hierarchy but only once for a team.
However, when turnover is sufficiently high, hierarchies perform better for both de-
composable and nondecomposable tasks. It is unclear whether this is due to hierarchies
being less sensitive to the recommendation of a single rogue analyst or to their managers
having more experience.

4.2.2. Barr and Saraceno (2002)

A similar exercise to that of Carley (1992) is performed in Barr and Saraceno (2002)
though a distinctive feature of their approach is to model the organization as an artificial
neural network (ANN). The organization’s task is to identify the latent relationship be-
tween information that lies in {0, 1}10 and the true state that lies in {0, 1, . . . , 1023} (as
the latent function converts 10 binary digits to its equivalent number in base 10). The
organization is an ANN with three layers (see Figure 5). The input layer is comprised
of ten input nodes, each of which receives one of the ten bits of data. The next (hidden)
layer is made up of n nodes—which can be interpreted as the lowest level in the organi-
zation with each node being an agent. Each of these agents takes a weighted sum of the
data from the input layer and transforms it into an output. These n outputs then go to
the top level where they are weighted and summed to produce the organization’s output.
This output is a prediction of the true state.

On a broad level, learning is equivalent to that in Carley (1992) though the specifics
differ both because of the type of function being learned and the use of an ANN. The
state of the organization is represented by the weights that each node in the low level
uses to produce output for the high level and the weights that the high level uses to
produce organizational output. Initially, these weights are randomly selected. After re-
ceiving data, the organization produces an output, denoted ŷ, and then agents observe
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Figure 5. Artificial neural network.

the realization of the latent function, y. Each agent calculates the gradient of the mean
squared error, (1/2)(y − ŷ)2, with respect to their weights and incrementally adjusts
them in the direction that reduces mean squared error, taking other agents’ weights as
fixed.

While Carley (1992) fixes organizational size and varies structure, here structure is
fixed at the two-level hierarchy and the role of size, as measured by the number of low-
level agents, is explored. Interestingly, a bigger organization is not necessarily better.
The reason lies in two types of prediction error. Approximation error is associated with
the limited capacity of an ANN to represent a latent function. By expanding the space
of approximating functions, more agents reduce approximation error. Of course, better
fit also depends on the efficiency with which the coefficients (weights) of the ANN are
estimated. The authors refer to this as estimation error and it measures how badly the
ANN performs relative to maximal performance for a given size. The trade-off is that
a larger organization reduces approximation error but, with more agents and thus more
weights to be estimated, estimation error can rise. Clearly, with enough data, a bigger
organization means better predictions; but, as in the real world, the simulations have
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only a limited number of problems from which to learn. Small firms are interpreted as
having a simpler class of functions—they don’t need many problems to get low estima-
tion error—while large firms have a richer class of functions—they are slow to learn but
may ultimately have a more sophisticated solution.

An organization is faced with a set of feasible problems, each of which is a random
draw from {0, 1}10. The complexity of the environment is measured by the size of that
feasible set, which numbers at most ten. Stability is measured by the probability that
an element of the feasible set is replaced with a fresh draw from {0, 1}10. This random
event occurs each period.25 Performance depends on the accuracy of an organization’s
solution and, more specifically, equals the inverse of the squared error less the cost of
the network. Network cost is composed of a cost per agent plus the cost of delay, which
is linear in the number of operations performed on data. Larger firms experience greater
network costs but may have less error.

Optimal firm size is typically found to be an interior solution, reflecting the trade-off
from a bigger organization: less approximation error, more estimation error, and a higher
network cost. The most interesting results concern the interaction between stability and
complexity. When complexity is high, the optimal number of agents is lower when the
environment is less stable. With the set of problems to be learned changing at a faster
rate, agents have to adapt their weights more frequently, and this is done less effectively
when there are more weights to adjust. When instead complexity is low, optimal firm
size is higher in unstable environments than in a near-stable environment. With low
complexity, there are only two problems to be learned and this doesn’t require many
agents. As stability falls, the set of examples is changing at a faster rate and having
more agents allows the organization to adapt faster. More broadly, these results seem to
suggest a rising marginal cost to the number of agents. With only a few problems to be
learned, the organization is initially small so that reduced stability is best handled by
adding agents. However, if there are a lot of problems, then the organization is already
large and adding agents in response to less stability means having to adjust far too
many weights. It is preferable to reduce the number of agents, thereby trading off lower
estimation error for higher approximation error.

4.2.3. Barr and Saraceno (2005)

In an ensuing paper, the authors make a modelling advance that is innovative from both
a computational and economic perspective. They allow two ANNs—each represent-
ing a firm—to coevolve in a competitive market situation. The situation is the classic
symmetric Cournot game in which two firms make simultaneous quantity choices. The
demand function is linear and its two parameters follow an iid stochastic process. The
task before a firm is to learn its optimal quantity where the data it receives pertain

25 Unfortunately, the model is designed so that a less complex environment implies a more stable one, which
means any comparative statics with respect to complexity confounds these two effects.
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to the unknown demand parameters. Learning is modelled as in Barr and Saraceno
(2002). A firm chooses a quantity then learns ex post what would have been the profit-
maximizing quantity. Learning occurs in the face of an exogenously stochastic demand
function and an endogenously stochastic quantity for the other firm.

In comparison with Barr and Saraceno (2002), the environment is stable and there
is no network cost so performance equals profit. Given the absence of network costs,
the only reason not to have more agents is greater estimation error. The coevolving
system always converges to Nash equilibrium; that is, each firm’s quantity converges
to that which maximizes its profit. As this occurs for each realization of the demand
parameters, firms are learning how the signals map into the true state of demand. Further
analysis shows that average profit is initially increasing in a firm’s own network size
but, due to estimation error, is eventually decreasing. More interesting is that a firm’s
performance is initially increasing in the other firm’s network size. We conjecture the
reason is that a smaller rival learns slower, which means it takes longer for its quantity
to settle down. This would translate into a more volatile environment for a firm and
serve to lower its profit. Interestingly, it may be in the best interests of a firm that its
competitor be sophisticated.

4.3. Adaptation and evolution of organizational structure

In performing comparative statics to explore the impact of organizational size and struc-
ture on performance, a critical question is begged: To what extent can an organization
find and adopt better structures? When dealing with complex entities such as an orga-
nization’s architecture, it isn’t sufficient to characterize optimal structure and presume
an organization somehow finds it. Actual organizations are endowed with a structure
and find large-scale change difficult. It is then worthwhile to know whether incremental
changes can lead to superior designs. In addition, models of the previous section con-
sider a very limited set of structures. By instead specifying a large class of organizations
and a flexible dynamic for moving among them, new structures can emerge that are truly
novel. To address these issues, we review Carley and Svoboda (1996), where simulated
annealing searches for better organizations. We also return to discussing Miller (2001),
who utilizes the forces of selection and adaptation through a genetic algorithm (GA).
The driving question is, how effectively can an organization evolve to efficacious struc-
tures and what do those structures look like?

4.3.1. Carley and Svoboda (1996)

With some minor modifications, Carley and Svoboda (1996) adapt the organizational
model of adaptive agents of Carley (1992) by appending an organizational design dy-
namic to it. Thus, structure is adapting at the same time that agents are learning. A key
feature of this type of model is the class of organizations over which search occurs.
An organizational structure is defined by the number of agents, which agents receive
data, and how agents are connected. The set of feasible organizations is limited to those
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with at most three levels (where each level can only report to the next higher level), at
most fifteen agents on each level, and at most nine pieces of information on a task. In
the event that the highest level has more than one agent, those agents use majority rule
to determine the organization’s choice with an equality of votes being broken through
randomization.

Upon this space of organizations, a dynamic is applied which constructs a new feasi-
ble organization through four operations: (i) firing (the elimination of agents); (ii) hiring
(the addition of agents); (iii) re-tasking (a link to the data queue is redirected from one
agent to another); and (iv) reassigning (a link between two agents is changed so that
an agent reports to a new agent). Faced with a new design, the process by which it is
adopted is modelled using simulated annealing. First, an offline experiment is performed
whereby the organization’s performance (as measured by the accuracy of the organiza-
tion’s decisions) is projected out for 100 tasks under this new design. If this performance
exceeds the performance of the existing design then the new design is adopted. If perfor-
mance is lower—and here lies a singular feature of simulated annealing—it is adopted
with positive probability where this probability decreases with the existing design’s per-
formance during the preceding 500 periods (where there is one task each period) and
also exogenously declines every 200 tasks.26 The minimum time between new design
adoptions is 100 periods. The initial organizational structure is randomly selected and
there is a training period of 500 periods before the design dynamic is turned on.

As a theoretical benchmark, the optimal design is to have a one level organization
with nine agents, each receiving one of the nine bits of info, and making their decision
by majority rule. Simulated annealing never finds it. Compared to random organiza-
tions, the organizations that emerge after 20 000 periods have noticeably more agents
on average, a lower span of control (the average number of links to a higher level agent),
and fewer links to the data queue though none of these differences are statistically sig-
nificant.27 Though the results of the analysis are ambiguous, the approach represents a
pioneering step in modelling the evolution of organizational structure.

4.3.2. Miller (2001)

Finally, let us return to Miller (2001) whose work on randomly generated organizations
was reviewed earlier. Recall that the task is associative and thereby decomposable. As
all solutions are accurate, the performance criterion is speed. Using a genetic algorithm
(GA), a population of fifty randomly created organizations coevolve.28 In each gener-
ation, there is a sequence of problems that each of the fifty organizations solves. Two

26 The purpose of this feature is to try to keep the organization from getting stuck on bad local optima. By
accepting performance-deteriorating designs, the organization might get kicked into the basin of attraction for
a better local optimum.
27 They actually run two experiments and the results referred to here are for the case of “dual learning.”
28 Also see Bruderer and Singh (1996) for an early use of a GA in organization theory. For more detailed
discussions of GA learning, see Brenner (2006) and Duffy (2006).
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organizations are then randomly selected and replaced with two copies of the one with
greater speed. This operation is performed fifty times with replacement. These organi-
zations are then randomly paired to engage in two genetic operations—crossover and
mutation. For crossover, a node (other than one that is attached to the data queue) is ran-
domly selected from each organization and the subtree beginning with each node (that
is, the node and all of its children) are exchanged. Each organization also has a chance
of mutating, which means a change in links. A single run has fifty generations and the
output for analysis is the best organization after fifty generations. Results are based on
an average over fifty runs. Miller (2001) considers the four possible cases associated
with random versus ordered firing and single versus multiple problems.

To begin, is a GA outperforming random search? For comparison purposes, random
search means starting with a set of randomly generated organizations (comparable in
number to what the GA handles over its fifty generations) and choosing the best per-
former. GA is also identifying a best performer but uses crossover and mutation as well.
For the case of ordered firing and a single problem, the GA impressively reduces speed
by 25% compared to random search. For the other three cases, the reduction is consid-
erably more modest at 2%. Still, the GA is creating better structures.

Whether the organization is trying to solve a single problem or a sequence of prob-
lems, results show that synchronizing the activation of agents sustains larger organiza-
tions with more levels. For a single problem, a GA produces, on average, an organization
with 34 agents and eight levels under ordered firing while organizations are quite small
under random firing with only three agents and less than two levels. Adding agents al-
lows more processing to be done but at the cost that information has to travel through
more levels. This can create delay, which makes ordered firing critical in keeping it
under control. The superior performance of larger organizations is even stronger with
multiple problems (and ordered firing) as the average size of 48 is pushing the upper
bound of 50 agents. The range of size is 43 to 50 for the 50 runs (with a standard de-
viation of 1.9) which further suggests that to be a top performer requires being big. In
contrast, for the case of a single problem, the range is vastly greater; it runs from 7
to 50 with a standard deviation of 14.2. When an organization has a light workload, a
wide range of structures can perform well; when pushed harder, it becomes crucial to
be larger so problems can be effectively handled without much delay.

In conclusion, a challenge for analysis is developing informative summary statistics
for emergent structures. Miller (2001) goes to considerable lengths by also reporting
mean path length, highest level attached to the queue, and maximum number of nodes
at a level. Still, it’s hard to see from these measures what the architecture looks like.
One suspects it wouldn’t “look like” a typical corporation. Having meaningful sum-
mary statistics for designs is essential for drawing insight and comparing results across
studies. Indeed, two studies could produce organizations with a comparable number of
nodes and levels but result in quite different structures. This is a challenge for future
work.
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4.4. Summary

Contrary to the models of search and learning in Section 3, the models explored in this
section focus on organizational size as a critical factor in connection with an organiza-
tion as an information processing network. Generally, more agents available to process
information acts to improve predictions and produce better decisions. The analysis of
Carley and Svoboda (1996) and Miller (2001) both find that their adaptive design dy-
namics produce organizations with more agents. This advantage to size is more acute
when the task is more complex, as the organization needs the additional processing
power that comes from more agents. But bigger is not universally better. This is ob-
vious when one assumes there is a cost to more nodes in a network, but as shown in
Barr and Saraceno (2002, 2005), more agents to “train” may slow down an organiza-
tion’s rate of learning. While the long-run efficiency of a network is increasing with the
number of agents, smaller organizations can outperform in the intermediate run. This
advantage from fewer agents is particularly relevant for a less stable environment where
perpetual training occurs.

A second but more tentative piece of insight is that while bigger is typically better,
organizational structure and coordination among agents may be more critical for bigger
organizations. Miller (2001) finds that, when lower-level agents are activated prior to
higher-level agents, the best performing organizations are vastly larger than when ac-
tivation is random. Synchronization is then critical for taking advantage of larger size.
This relationship between size and structure requires further examination.

In conclusion, research on information processing is trying to develop a “produc-
tion function” for organizational decision-making, a difficult and challenging problem.
Though significant progress has not yet occurred, the modelling approaches have been
rich, novel, and provocative.

5. Effort, norms, and endogenous hierarchies

While the vast majority of computational agent-based models of organizations focuses
on search and information processing, there are many other organizational issues tack-
led. Here, we provide some of the best of this other work and in doing so touch on issues
of effort and shirking, norms, and endogenizing organizational structure.

5.1. Effort and the commons problem in organizations29

[H]ardly a competent workman can be found in a large establishment. . . who does
not devote a considerable part of his time to studying just how slow he can work
and still convince his employer that he is going at a good pace. [Frederick W.
Taylor, The Principles of Scientific Management (1919), p. 21.]

29 The issues addressed in this section are closely related to the concerns of Janssen and Ostrom (2006).
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The models of organization considered thus far have assumed that the efforts required
of agents—be it associated with production, innovation, or information processing—
are achieved costlessly. Of course, effort is, in practice, costly and, more importantly,
poses the organizational challenge of inducing agents to work hard. Organizations suffer
from the “tragedy of commons” (Hardin, 1968) whereby agents shirk from a collective
perspective. The essential problem here arises from the possibility that an agent may
have to share the returns to his costly effort with other agents in the organization. While
all agents would be better off if all were to exert effort, shirking with the intention to
free-ride may turn out to be the dominant strategy for each individual agent. As an
individual’s share of the returns to his/her effort is likely to depend on the number of
other agents in the firm, the incentive to shirk tends to be affected by firm size. This
intuition plays an important role in the ensuing analysis.

5.1.1. Axtell (1999)

Consider a population of (non-competing) firms with workers being able to partially
control their exposure to the intra-firm commons problem by switching firms or even
starting their own firm. As the mobility of the workers implies that the size of the exist-
ing firm can change, it has implications for the extent to which workers will free-ride.
A central focus of Axtell (1999) is on the dynamics of a population of firms whose
number and size are endogenous.

A firm having M ≥ 2 workers engages in production through the joint efforts of its
members. Let ei ∈ [0, 1] denote worker i’s level of effort and E ≡ ∑M

i=1 ei be the total
effort of the firm. The firm’s value, V (E), takes the following form: V (E) = aE+bEβ

with a, b > 0 and β > 1. Assume an egalitarian sharing rule so that each worker
receives exactly V (E)/M . Denote by Ui(ei, E−i;M) the utility of worker i in a firm of
M workers, where he supplies ei and everyone else supplies E−i (≡ E − ei). Workers
are assumed to have Cobb–Douglas preferences for income and leisure such that

(5)Ui(ei, E−i;M) =
(

V (ei + E−i )

M

)θi

(1 − ei)
1−θi ,

where θi is worker i’s relative weight for income over leisure (which equals 1 − ei).
Preferences are heterogeneous in the population as θi is an independent draw from a
uniform distribution on [0, 1].

To characterize the population of firms, let J (t) be the number of firms operating
at t and Mj(t) denote the size of firm j ∈ {1, . . . , J (t)}. e

j
i (t) and Ej(t) represent,

respectively, the effort exerted by worker i in firm j and the total effort level of firm j .
The initial configuration for the computational experiment assumes a population of N

workers and N single-worker firms.
In any given period, a fixed number of workers are randomly selected to alter their

behavior. Workers are myopic optimizers in that, in period t , each chooses effort to
maximize period t utility under the assumption that the period t total effort of the other
members equals what it was in the previous period, which is denoted E

j
−i (t − 1) for
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firm j , and the number of its workers is the same as previously, which is Mj(t − 1). In
this case, i was a member of firm j in t − 1. If he remains at firm j , then worker i’s
optimal effort level, ê

j
i (t), is

(6)ê
j
i (t) = arg max

e
Ui

(
e, E

j
−i (t − 1);Mj(t − 1)

)
.

This gives expected utility from remaining at firm j .
Alternatively, worker i can join another firm or start up a new firm (which will, at least

initially, consist only of himself). As regards the former option, worker i is (randomly)
endowed with a network of νi other workers and can consider joining the firms to which
they were members at t − 1. The baseline simulation assumes νi = 2 ∀i. For each of
these alternatives, the worker computes the maximal utility level using the procedure
described in (6). Out of the (at most) νi + 2 firm-options, a worker chooses the one
yielding the highest expected utility.

Simulations show that the stochastic process by which firms are created, expand, and
contract never settles down. Furthermore, there is considerable intertemporal fluctua-
tions in the number of firms, average firm size (as measured by the number of workers),
and average effort. Though average firm size is only four, firms can grow to be much
larger. The basic forces are that, as firm size grows, increasing returns to total effort
enhances marginal productivity—thereby making it more attractive for a worker to join
the firm and thus leads to growth—but the free-riding problem is exacerbated with more
employees—which serves to contract firm size. Firms expand when they offer a high
value per worker as it induces workers to join. Now recall that a worker’s optimal effort
is based on the previous period’s firm size and effort. Thus, a firm that currently has a
high value per worker will experience a high inflow of new workers and, furthermore,
this will continue to result in a high value per worker because each of those workers
base their effort on a smaller sized firm so there is less free-riding than is appropriate
for a firm of that size. This serves to attract yet more workers to join and, as long as the
flow of workers into the firm remains high, increasing returns in total effort stays ahead
of the intensifying free-riding problem. In this manner, a firm can experience sharp
growth but it is also why it cannot maintain large size because once the flow of new
workers subsides (which is sure to occur since there is a finite population of workers)
then free-riding becomes the dominant force; value per worker declines and this leads
to a rapid exodus of workers. Firms grow but then, like the bursting of a Ponzi scheme,
eventually collapse. The model is parsimonious as a rich set of dynamics is generated
by three factors: increasing returns, free-riding, and worker mobility.

Though focusing on a different set of issues, the work of Axtell (1999) has a prede-
cessor in Glance et al. (1997). The latter authors model two organizational dilemmas:
the lack of accountability in large organizations with the free-riding that ensues, as is
in Axtell (1999), and the risk associated with training workers who are mobile. An or-
ganization realizes the benefits from training employees only if they remain with the
organization but, once trained, a worker may leave to join another organization. To-
wards encompassing this latter issue, Glance et al. (1997) enrich the flat organizations
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of Axtell (1999) by assuming each firm has a manager whose role is to decide whether
to train workers and whether to add workers. A worker can join a firm only upon invi-
tation by its manager. Both of these distinctions result in the model of firms confirming
closer to reality than in Axtell (1999).

In an early model of the commons problem in a team production setting, Alchian
and Demsetz (1972) proposed a top-down organizational solution to free-riding. The
firm is hierarchical with salaried workers and a capitalist who is motivated to monitor
worker effort by virtue of being the residual claimant of firm profit. In contrast, Glance
et al. (1997) and Axtell (1999) take a bottom-up approach to the issue by assuming
that the workers themselves can independently control their exposure to the commons
problem by moving from one firm to another and that they also share in the firm’s profit.
Augmenting these models with the mechanism of Alchian and Demsetz (1972) would
move these models in a useful and realistic direction. In particular, firm size is greatly
limited in these models because of the intensity of the free-riding problem. Allowing
multiple layers with each layer monitoring the one below them could allow for larger
firms and perhaps even persistently large firms, which is a feature of the data (see, for
example, Mueller, 1986) but not a property of the model.

5.2. Organizational norms

At one point during his investigations, [consultant] Sym-Smith asked [Sears man-
agers] how controversy was handled at the upper level of Sears. He was told
that there was no controversy. Senior Searsmen were trained from their corpo-
rate infancy to participate in a veritable cult of contrived harmony and consensus.
[Donald R. Katz, The Big Store: Inside the Crisis and Revolution at Sears (1987),
p. 28.]

As discussed earlier in the context of organizational search and learning, the long-run
performance of an organization depends crucially on the way it balances exploration
with exploitation. There are two issues central to this trade-off. First, exploitation at
the organizational level relies upon diversity at the agent-level; there must be some-
one who knows something special in order for the rest of the organization to learn
something new and possibly useful. When agents engage in independent innovation,
diversity is naturally generated, thereby providing the raw material for exploitation by
the organization. However, the very process of global exploitation reduces the degree
of diversity—replacing ideas with what are considered to be superior ones—so that
eventually improvements in organizational performance disappear.

The second issue is how the global exploitation of local knowledge gets carried out
in the organization. We’ve considered exploitation being done under centralization (for
example, the top-down mandate of a superior practice) as well as decentralization (for
example, agents share information and individually decide on whether to adopt an idea).
March (1991) considers a particular form of decentralized learning in which the agents
learn from organizational norms—“accepted wisdom” as to the proper way in which to
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do things—but where the norms themselves evolve as they are shaped by the behavior
of the more successful agents within the organization. The coevolutionary dynamics
between organizational norms and agent behavior drive performance by influencing the
extent of diversity in the population and, therefore, the delicate balance between explo-
ration and exploitation.

5.2.1. March (1991)

Consider an organization facing an external reality that takes values from {−1, 1} on m

dimensions. The external reality is known only to the modeler and is assumed to be fixed
for the initial set of analyses. The organization has n agents who in each period hold
beliefs about the external reality. Agents’ beliefs on each dimension lie in {−1, 0, 1}
as does the organizational norm (or code). These beliefs coevolve and only indirectly
connect to external reality. In any period, if the code is 0 for a particular dimension,
then agents do not modify their beliefs about that dimension. It is as if the code has
nothing to prescribe for that dimension. If instead the code is −1 or 1 and differs from
an agent’s belief, then the belief of that agent switches with probability p1 to what the
code dictates. It is natural to interpret p1 as a measure of socialization since it controls
the degree to which an agent is influenced by organizational norms. As agents learn
from the code, the code itself evolves to conform to the beliefs of those agents whose
beliefs are closer to external reality than that of the code. To be specific, if the code
differs from the majority view of those agents whose beliefs (over all dimensions) are
closer to reality, then the code remains unchanged with probability (1 − p2)

k where k

is the difference between the number of agents whose beliefs differ from the code and
the number with the same belief. p2 then controls how effectively the code responds to
the beliefs of the “best” agents.

The performance of the organization is measured by two levels of knowledge: the
accuracy of the organizational code (which is the proportion of the organizational code
that matches reality) and the average accuracy of the organization’s members (which
is the average proportion of individual beliefs that match reality). As agents and the
code influence each other, they converge over time. An equilibrium is reached when the
organizational code and the individuals share common beliefs over all m dimensions.
At that point, no further learning is possible though these beliefs need not match up with
external reality.

Given the mutual learning dynamics between an organization’s members and its
norms, slower socialization (that is, a lower value for p1) enhances the equilibrium level
of knowledge. Furthermore, there is an interesting interaction between socialization
and the adaptivity of the organizational code (as measured by p2). When socializa-
tion is slow, an increase in code adaptivity raises the average level of knowledge; when
socialization is fast, a more adaptive code reduces knowledge. The equilibrium knowl-
edge level is maximized when norms respond quickly and the population is comprised
of slow-adjusting agents. The key to understanding these results is to recognize from
where the raw material for learning is coming. In that agents and the organizational
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code learn from each other to the extent that their beliefs differ, what drives mutual
learning is sustained diversity in beliefs. Rapid socialization causes agents’ beliefs to
converge to the organizational code before the code has been able to match the beliefs
of the agents whose beliefs are most accurate. In contrast, slow socialization coupled
with a rapidly learning code maintains a sufficient amount of diversity in the population
during the code’s adaptation. This augments the spreading of correct beliefs throughout
the organization, with these correct beliefs ultimately becoming embedded in the code.

Just as diversity of beliefs is conducive to knowledge accumulation, so is heterogene-
ity in learning rates among agents. For the same average rate of learning, a mix of fast
and slow learners leads to more aggregate knowledge than a homogeneous group. The
slow learners provide the raw material that the organization needs to adapt in the long
run, while the fast learners take advantage of the code capitalizing on this diversity; they
perform the exploitation function. Providing a dilemma for organizations, the individ-
ual performance of slow learners is worse than that of fast learners, as reflected in the
inaccuracy of their beliefs, which means that fast learning can be good for the agent but
bad for the organization.

A similar set of forces comes into play when personnel turnover and environmen-
tal turbulence are introduced. Suppose that, in each period, an agent is replaced with
probability p3 by a new agent with a fresh set of beliefs. When socialization is slow,
an increase in p3 decreases the average level of knowledge as these new agents replace
accurate beliefs with randomly selected ones. However, when socialization is rapid,
long-run knowledge is maximized with a moderate rate of personnel turnover as it serves
to introduce diverse beliefs and thus to prevent premature fixation on homogeneous (but
incorrect) beliefs. The impact of environmental turbulence is examined by stochastically
shifting external reality. If the rate of environmental change is such that the population
reaches an equilibrium before effectively responding to the turbulence, organizational
performance tends to degrade as the homogeneous population lacks the raw material to
respond to a changing reality. Once again, personnel turnover can enhance knowledge
by injecting new beliefs into the organization.

In evaluating this model, it clearly lacks the richness of structure of the previous mod-
els reviewed. Learning is occurring in an unstructured space, thus the model does not
deliver the type of insight obtained when there is the additional structure of a landscape.
Also, the focus on beliefs without an explicit specification of how they map into per-
formance omits an essential step in the norm-formation process. All these weaknesses
aside, the paper makes a singular contribution in providing a plausible and parsimonious
feedback mechanism for the determination of organizational norms.

5.3. Growing an organization

If you don’t zero in on bureaucracy every so often, you will naturally build in
layers. You never set out to add bureaucracy. You just get it. [David Glass, CEO of
Wal-Mart, quoted in Sam Walton with John Huey, Sam Walton: Made in America
1992, p. 232.]



1328 M.-H. Chang and J.E. Harrington, Jr.

Thus far, the primary approach to studying organizational structure has been to ex-
ogenously specify various structures—in terms of the communication network and the
allocation of information and decision-making—and to compare their performance.
While these models are bottom-up to the extent that organizational behavior is the prod-
uct of the interactions of individual agents’ acting according to their decision rules, they
are top-down in terms of organizational structure, as it is pre-specified by the modeler.
Though organizational structure is endogenized in such work as Carley and Svoboda
(1996), DeCanio et al. (2000), Miller (2001), and Ethiraj and Levinthal (2002), this
is done by specifying a super-agent process as reflected in, for example, applying a
genetic algorithm on a population of organizations. It fails to produce organizational
structure from the bottom-up by having it be the product of the decisions of indi-
vidual agents within the organization. This all-important task—using the bottom-up
approach of agent-based models to generate the structure of an organization—is ini-
tially attempted in Epstein (2003). Though, as we’ll later argue, the model has features
running counter to real organizations, it is a novel and thought-provoking initial salvo
on this challenging fundamental problem.

5.3.1. Epstein (2003)

In this model, individual agents in the organization endogenously generate internal
hierarchy in response to their environment. The environment for the organization is
represented by a flow of “opportunities” that are met by the available pool of labor
(agents). The central organizational problem is how to allocate the fixed pool of labor
within the organization so as to most effectively respond to these opportunities.

The type of task faced by the organization is visually summarized in Figure 6. There
is a fixed number N of sites (where N = 8 in Figure 6), each of which may receive
a profit opportunity. One might imagine a site corresponds to a geographic or product
market and an opportunity is demand to be met. The baseline organization consists of
a fixed number of workers and level-1 managers. Each worker is assigned to a market
site and the organization earns profit when a worker is at a site when it receives an
opportunity. Using Epstein’s colorful terminology, a worker “intercepts” an opportunity
if present when one arrives and a “penetration” occurs when an opportunity arrives
without a worker there to intercept it. In Figure 6, the firm has five workers who are
positioned at sites 1, 3, 4, 7, and 8 and there are four level-1 managers, each being in
charge of two adjacent sites. Opportunities are coming into sites 1, 2, 4, 5, 6, and 7 with
the workers at sites 1, 4, and 7 positioned to intercept. The opportunities coming into
sites 2, 5, and 6, on the other hand, are wasted and represent penetrations. Finally, the
workers at sites 3 and 8 are idle for lack of opportunities. Penetrations and idle workers
are monitored by level-1 managers. For instance, the level-1 manager in charge of sites 1
and 2 recognizes the need for a worker to meet the opportunity at site 2. Concurrently,
the level-1 manager in charge of sites 3 and 4 recognizes that the worker at site 3 is
underutilized. Clearly, an appropriate move for the organization is to shift the worker
from site 3 to site 2.
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Figure 6. Epstein’s essential problem.

The organizational problem in this model is to efficiently allocate its workforce. How-
ever, workers cannot, by themselves, move among sites but may be reallocated by upper
management. Epstein considers two approaches to solve the allocation problem, though
only the hierarchy approach will concern us here.30 This approach has managers cre-
ating higher level managers to solve the allocation problem. In the example above, a
level-1 manager would “activate” a level-2 manager who would be in control of the
four sites (two sites each from the two subordinate managers) and thus have the capac-
ity to move workers among those sites. For instance, the level-1 manager controlling
sites 1 and 2 can activate a level-2 manager who has control over sites 1 through 4 and
who can thus observe and respond to the excess demand at site 2 and the excess supply
at site 3. Being in charge of sites 1 through 4, he has the authority to shift the worker in
site 3 to site 2 and balance the demand and supply of the workers for the sites that are
under his control.

A manager’s decision rule for activating an upper level manager is defined by three
parameters: two penetration threshold values, denoted Tmin and Tmax, and a finite mem-
ory of length m. Given the number of penetrations recorded in their memory, a level-k

30 Indeed, the primary objective of the paper is to characterize the optimal solution—hierarchy or a trade
mechanism—and how it depends on the organization’s objective. Our interest is more in terms of it as a
modelling approach to endogenizing hierarchies.
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manager computes the average number of penetrations per period, P , over the 2k mar-
ket sites he controls. If P ≥ Tmax then, with some upward inertia, a manager of level
k + 1 is created. If P < Tmin then, with some downward inertia, the manager cedes
authority to managers at level k − 1. This inertia captures the reluctance of a man-
ager to relinquish control. There is no change in the current hierarchical structure when
Tmin ≤ P < Tmax. The threshold values can vary across levels, though they are speci-
fied to be the same within a managerial level. Given a pattern of opportunities arriving
at these sites over time, the baseline organization can endogenously grow its hierarchy
to as many as log2 N levels.

Suppose the flow of opportunities is continual and concentrated on a set of sites for
which there are, initially, no workers. The hierarchy mechanism creates additional man-
agerial layers to handle this misallocation as long as the penetration thresholds and the
upward inertia parameter are set sufficiently low. The emergent hierarchy, even after
the workers have been properly allocated to effectively intercept all incoming opportu-
nities, tends to remain in place when the downward inertia of the top managerial level
is sufficiently high. When downward inertia is instead low at all management layers,
then the generated hierarchy quickly dissolves after successfully reallocating labor. The
flexibility with which the organization restructures itself internally—both to effectively
reallocate labor and then to dismantle itself when no longer needed—depends on the in-
ertia embedded in agents’ decision rules as well as the thresholds for inducing a change
in structure.

As a theory of organizational structure, Epstein (2003) offers a rich and novel ap-
proach to organizations but it has a critical feature which runs counter to our under-
standing of real organizations.31 In this model, managerial layers emerge from below,
as managers create levels above them to coordinate the behavior of what were originally
independent divisions. To begin, in most organizations (such as corporations and gov-
ernments), there is always a manager at the top who, at least in principle, can reallocate
resources as desired. More importantly, managers only have authority over reorganizing
what lies beneath them in the hierarchy so that, as a result, new managerial layers are
created from above. A commonly purported motivation for adding middle level man-
agers is that upper managers perceive themselves as overburdened and thus distribute
tasks and authority to newly created managerial levels. In Epstein’s model, organiza-
tional structure is created in a direction running counter to reality.

In spite of this weakness, Epstein (2003) is a provocative study. Epstein lays down
an important issue for future research—to model the internal organizational pressures
that create a need for a new organizational structure and the process by which change
is realized. This would represent the acme of agent-based models of organizations; it
closes the circle in that an organization can re-invent itself through the decisions of the
organization’s members.

31 In fairness, Epstein (2003) states that the model is not intended to represent any existing organization.
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6. Critique of the past and directions for the future

You don’t want to learn a science in its early stages. . . . You have to think about. . .
your mind as a resource to conserve, and if you fill it up with infantile garbage
it might cost you something later. There might be right theories that you will be
unable to understand five years later because you have so many misconceptions.
You have to form the habit of not wanting to have been right for very long. If I still
believe something after five years, I doubt it. [Marvin Minsky quoted in Stewart
Brand, The Media Lab: Inventing the Future at M.I.T. (1987), pp. 103–104.]

Recent research in the computational agent-based literature has provided a new and
fresh perspective to exploring organizations. There is real promise that theory can pro-
duce precise results while encompassing the rich institutional features of corporations,
governments, political parties, and other organizations. But if we are to effectively tra-
verse the learning curve associated with this new modelling approach, we must maintain
a healthy level of skepticism. Research builds its own momentum as assumptions ini-
tially considered problematic are routinized, arbitrary modelling conveniences become
entrenched and leave unexplored the sensitivity of results to them, and standards for
acceptable work form when methods are rudimentary. As March (1991) discovered, sta-
bility during an intense learning phrase can be quite deleterious. We are at such a point
and it is wise that we be on guard against acquiring bad habits. Towards this end, we’ll
make three methodological points in this section and conclude with a few suggested
directions for research.

The first point is that, while there is always a disconnect between our models and
what they are intended to represent, this can be a more serious issue with computational
agent-based models. This concern does not come from modelling simplicity—indeed,
the models are quite rich compared to their predecessors—but rather that insuffi-
cient attention may be given to relating a model to reality. Many of the modelling
components—artificial neural networks, simulated annealing, genetic algorithms, and
the like—were originally developed for very different purposes and some work has
used them without adequately explaining how these theoretical constructs map into
real-world entities and processes. For example, what is the correspondence between
the components of an artificial neural network and the components of a firm? Is it ap-
propriate to interpret a node as a person? If not, what additional structure would make
a node a reasonable representation of a person? What is the correspondence between a
genetic algorithm and the process of imitation and innovation conducted within and be-
tween organizations? Is crossover a descriptively accurate model of some organizational
process? Before “off-the-shelf” modules are deployed in modelling organizations, the
researcher should map it to what is being modelled. Doing so will not only lead to more
confidence in the model but is likely to suggest useful modifications.

One of the reasons that neoclassical economists resist bounded rationality is that there
are so many ways to model it, and often which is selected is arbitrary. This is a legiti-
mate concern, although it should not deter one from engaging in such work. Indeed, the
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equilibrium assumption—an agent “understands” the world around him in the sense of,
for example, knowing the behavioral rules used by other agents—is as ad hoc as most
assumptions of boundedly rational agents in that, in most instances, it is not based on
empirical evidence and often no credible story can be told to make the assumption con-
vincing. (The appeal of the equilibrium assumption is not its empirical validity but rather
its power in generating precise results and its accordance with the faith of many neoclas-
sical economists in equilibrating processes.) This leads to our second point. Given there
are many ways in which to model bounded rationality, a feature to the broad research
program should be assessing the robustness of insight to the particular way bounded
rationality is instantiated in agents and how the tasks facing agents are represented. In
finding a solution, does it make a difference whether an organization is modelled as an
artificial neural network or as a collection of myopic hill-climbing agents? Do results
depend on the organization solving a decomposable problem or a binary classification
problem or minimizing a distance function? Does it make a difference whether organi-
zational structure evolves as represented by simulated annealing or a genetic algorithm?
Rather than consider one particular task, it may be more useful to allow for a variety
of tasks, exploring how the optimal organizational structure depends on the task and
identifying those structures that perform reasonably well for an assortment of tasks.

The third point to make about this literature is that results can be inadequately ex-
plained. This is partly due to models being too complex and researchers forgetting that
parsimony is a virtue, not a weakness emanating from a lack of computing power. In-
deed, the poignancy of Einstein’s well-known apothegm—“Everything should be as
simple as possible, but not simpler.”—is nowhere greater than with agent-based compu-
tational modelling.32 As the power of computing allows us to solve models of increasing
complexity, there is a natural tendency to complicate. This is a mistake. Even with
Moore’s Law sailing at full mast, computing constraints continue to make our models
gross simplifications of what we are trying to understand. The deliverable of formal
models remains what it has always been—insight. A model that is so complex that its
implications elude explanation is a model that has not altered our understanding.33

Complexity aside, a more disturbing feature of this work is the sometimes perceived
lack of necessity to carefully explain results. An attractive feature of a mathematical
proof is that it provides a paper trail that can be used to explain results. Though compu-
tational results are also the product of logical operations, there is a tendency to think that
if the model cannot be solved analytically then there is little point to trying to carefully
sort out how output is produced. Anyone who has worked with computational models
knows that results can be the product of arbitrary assumptions of convenience or coding

32 Indeed, some work in the computational agent-based literature seems to be guided by the axiom: “Make it
simple enough to be computable and complex enough to be incomprehensible.”
33 It is in this light that we decry “emergent phenomena” when it is meant to refer to results unanticipatable
by virtue of a model’s complexity. If one could not, upon proper reflection, anticipate the possibility of some
results then it is hard to see how one can ex post explain them and, if one cannot explain them, in what sense
do we understand more.
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errors, which makes it all the more critical that they be adequately explained. Though
computational work may not leave an analogous paper trail, it can offer a way in which
to “test” an explanation. If one conjectures that a result is due to a particular force, then
it may be possible to “turn off” that force. If the result persists then one’s conjecture is
wrong; if the result goes away then the “evidence” is consistent with that explanation.
Furthermore, explanation is not only essential to gaining insight but also to assessing
robustness. Convincingly arguing that the forces driving the results are not peculiar to
those examples is the way in which to develop confidence that the insight uncovered is
broadly applicable. The bottom line is that researchers must apply the same standards
for explaining results that are used in the assumption-proof-theorem tradition.34

Given research on organizations using a computational agent-based approach is in
its incipiency, there are multitudes of research directions. Rather than propose spe-
cific lines, which would only serve to scratch the surface and deplete what minuscule
scholarly wealth the authors possess, let us instead provide three general directions for
research.

One direction is to take bounded rationality another step further. While agents are
modelled as being limited in their decision-making capacity, they are often assumed
to have an unrealistic amount of information, either before or after acting. A common
assumption in rugged landscape models is that an agent observes ex ante the true per-
formance associated with an idea and, based on that information, decides whether or
not to adopt it. In some cases, this can be plausibly motivated by imagining that the
idea is temporarily implemented with (noiseless) performance being observed. Learn-
ing is then occurring offline. If, however, there is noise, then learning will have to occur
in real time—an organization may need to continue the experiment for a non-trivial
length of time in order to get a sufficiently informative signal. Before even experiment-
ing with an idea, it will want to make an assessment of its potential but then the agent
must have a “model” so as to make such a judgment. That is a feature lacking in most
agent-based models (Gavetti and Levinthal, 2000, being an exception). Depending on
how one models the evolution of an agent’s model of the landscape, biased and not just
noisy evaluations could emerge.

An analogously strong assumption is made in many information-processing models,
which is that agents learn ex post what was the true state; an organization receives data,
makes a choice, observes the outcome, and is able to infer from the outcome what would
have been the right choice. In practice, the true state is rarely observed and, while per-
formance may be observed, it provides noisy information regarding what would have
been the best decision. In addition, when there are more than a few members, organi-
zational performance is a highly uninformative signal of what an agent outside of the
upper-most levels should have done. Agents need to know about their “local” perfor-
mance rather than the global performance of the organization. Models have to come

34 This comment was distinctly improved by a stimulating dinner conversation between one of the authors
and Patrick Rey in Siena, Italy.



1334 M.-H. Chang and J.E. Harrington, Jr.

to grips with how an organization measures an individual agent’s contribution to total
performance.

A second direction is to bring in more structure. Thus far, models have been too
generic. The results generated by models of search and learning are extensions or ap-
plications of insight regarding search on rugged landscapes. If we’re to move beyond
that, we need to impose more structure so that a variable is not some faceless dimen-
sion but concretely corresponds to an actual practice. This would allow one to explore
not only how many dimensions should be centralized but also which dimensions should
be centralized. What determines whether, say, marketing is controlled by the corporate
office or a product manager? What determines which dimensions a store manager con-
trols rather than assistant managers? An important step is to further pursue the approach
of building a landscape from economic primitives by modelling specific functions—
pricing, product selection, training practices, marketing, inventory policy, etc. Such an
approach could open up an entirely new set of questions and make these models more
powerful both in explaining organizational behavior and serving a normative role for
organizations.

More structure is also needed in information processing models where, thus far,
agents are excessively simple-minded and too heavily “programmed,” even by the stan-
dards of the computational agent-based literature. Endowing them with preferences and
giving them choices—such as how much effort to exert and what information to pass
onto the next node in the network—is vital for the distance between models and reality
to lessen.

At present, organization theory is partitioned into the neoclassical economics ap-
proach and the agent-based computational approach and “ne’er the twain shall meet.”
It is obvious that these two research lines should not be moving independently. Each
has its virtues—computational work provides a rich modelling of organizational struc-
ture and how agents interact while neoclassical work is sophisticated in its modelling
of incentives—and a superior theory of organizations is to be had if the two can be
integrated. This challenge is the third direction.
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Abstract

This chapter explores the state of the emerging practice of designing markets by the use
of agent-based modeling, with special reference to electricity markets and computer-
ized (on-line) markets, perhaps including real-life electronic agents as well as human
traders. The paper first reviews the use of evolutionary and agent-based techniques of
analyzing market behaviors and market mechanisms, and economic models of learn-
ing, comparing genetic algorithms with reinforcement learning. Ideal design would be
direct optimization of an objective function, but in practice the complexity of markets
and traders’ behavior prevents this, except in special circumstances. Instead, iterative
analysis, subject to design criteria trade-offs, using autonomous self-interested agents,
mimics the bottom-up evolution of historical market mechanisms by trial and error.
The chapter highlights ten papers that exemplify recent progress in agent-based evo-
lutionary analysis and design of markets in silico, using electricity markets and on-line
double auctions as illustrations. A monopoly sealed-bid auction is examined in the tenth
paper, and a new auction mechanism is evolved and analyzed. The chapter concludes
that, as modeling the learning and behavior of traders improves, and as the software
and hardware available for modeling and analysis improves, the techniques will provide
ever greater insights into improving the designs of existing markets, and facilitating the
design of new markets.

Keywords

market, analysis, design, auctions, learning, electricity, on-line

JEL classification: C150, C630, C790, D440, D490
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1. Introduction

Institutional arrangements for exchange—markets—have emerged and evolved over the
millennia since—and perhaps as a consequence of—specialization of labor, which can
be intensive (making something “better” than others do, absolutely or relatively) or
extensive (taking the risk of fetching an item, not locally available, from afar). “Trade”
first meant exchange of foreign-produced goods for domestic goods, a form of barter,
which is made more efficient with the emergence of money—numeraire, store of wealth,
and medium of exchange, in the textbooks’ trio.

Many different market institutions have evolved, well described in John McMillan’s
book, Reinventing the Bazaar (McMillan, 2002). The development of economics, in one
view, has been the outcome of reflecting on, describing, and analyzing various markets,
from the market-town’s weekly bazaar to the complex financial markets for exchanging
risk. One form of market institution is the auction, and only over the past forty-odd
years, with the development of the tools of game theory, has formal analysis of auctions
begun.

1.1. Designer markets

As engineers say, after analysis comes synthesis—design. Designing markets is a new
discipline. At least five examples of designed market can be identified: simulated stock
markets; emission markets; auctions for electro-magnetic spectrum; electricity markets;
and on-line, e-commerce markets:

1. First, the markets for new financial instruments, derivatives, that were created and
traded after Black, Scholes, and Merton solved the seventy-year-old problem of
pricing options. Previously, financial traders understood that options were valu-
able, but not how to value them exactly. More recently, there has been research
into the rules and micro-structure of stock markets, continuous double-auction
trading, through the use of simulated markets. See LeBaron (2006) for further
discussion of this research.

2. Second, the markets for pollution emissions, usually sulphur dioxide and carbon
dioxide. The realization that the emissions from industrial processes in particu-
lar, and the emission of anthropogenic chemicals into the environment in general,
were, at least potentially, altering the biosphere for the worse was followed only
after a lag with the awareness by policy makers that market mechanisms could be
harnessed to control such emissions, generally more efficiently than could other
mechanisms.

3. Third, the auctions for electro-magnetic spectrum. The simultaneous ascending-
bid auctions that have recently been designed for selling bands of local spectrum to
be used for new communications technologies did not arise without some hiccups.
Perhaps as an offshoot of the privatization of government assets and activities in
the 1980s in many countries, the use of auctions to choose the new owners and to
value these assets slowly replaced so-called “beauty contests,” in which subject to
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certain technical requirements licenses were virtually given away. But these new
auction mechanisms at first did not allow for the complementary nature of bands
in different localities. Only after intensive efforts by economists advising, first,
governments, and, second, bidding companies did the successful “3G” auctions
occur [Milgrom (2004)].

4. Fourth, the markets for the exchange of electricity. Again, as a consequence of
the twin political aims of privatizing government-owned electricity utilities and of
improving the efficiency of electricity generation and distribution systems (per-
haps by separating ownership of generators and distributors), while reducing the
bureaucratic weight of regulation even on privately owned utilities, there has in
many jurisdictions been a move away from centralized engineering-dominated
means of allocating electricity load across generators and distribution networks to
using market mechanisms of various kinds. Electricity cannot (easily or cheaply)
be stored, a characteristic which, with some engineering issues, has meant that pre-
viously existing market mechanisms were not appropriate. Instead, several types
of new market mechanisms have been introduced.1

5. Fifth, on-line markets. With the growth of the use and extent of the Internet over
the past eight years, and the dot-com boom, with buying and selling on-line, op-
portunities for designing on-line markets de novo, as opposed to trying to emulate
existing face-to-face markets, have arisen. In the last few years these opportunities
have given rise to much work by computer scientists, as well as economists. In-
deed, there is a productive research intersection of the two disciplines, as revealed
in some of the papers discussed below.

The use of game theoretic methods to analyze market design is related to the use of
these techniques to analyze another kind of interaction, those governed by contracts.
Contract design is another area where agent-based modeling might be used, but negoti-
ation and design of contracts by use of computer simulation and agent-based modeling
is only now emerging from its infancy.2

As examples of the use of agent-based models in market design, this chapter will
examine the use of such models in designing the fourth type of market, that for elec-
tricity, and the fifth, for on-line trading, which is also examined in MacKie-Mason and
Wellman (2006). The first, for emissions abatement, is covered by Janssen and Ostrom
(2006).3 The second is covered by the chapter by LeBaron (2006), and referred to fur-
ther below. The chapter by Duffy (2006) provides evidence of validation of artificial
(“designed”) agents and the behavior of human subjects in experiments, as discussed
below.

1 Despite the debacle of the California blackouts of 2000, it is increasingly clear that it was not the underly-
ing market design per se at fault, rather it was its implementation and the consequences of lobbying by vested
interests: the retail price was regulated, while the unregulated wholesale price sky-rocketed as a consequence
of market manipulation, which had the effect of squeezing the retail electricity companies, such as Pacific
Gas & Electricity [Sweeney (2002)].
2 A good starting point is Jennings et al. (2001).
3 Agent-based models have also been used in other environmental settings: Hailu and Schilizzi (2004).
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Before reviewing the use of agent-based simulation models in market design, we
contrast analysis with design, closed-form calculations with simulation in both analysis
and design, non-agent-based simulation with agent-based simulation of analysis and
design, and finally different models of learning and adaptation in agent-based simulation
models.

2. Analysis, design, and simulation

Before design must come analysis. Simulation allows analysis of systems that are too
complex to analyze using traditional, closed-form techniques. Once we understand
through analysis how the elements of the phenomenon of concern work together, we
can ask the question of how to improve its operation: how better to design it.

2.1. Analysis

In the world of analytical, closed-form solutions, there is a certain logic to the progress
of research. A phenomenon is observed; a need for explanation and understanding is
identified; a model is built, incorporating simplifying assumptions; the model is manip-
ulated to obtain necessary and sufficient results, traditionally concerned with existence,
uniqueness, and stability of an equilibrium, and perhaps possible improvement in the
operation of the system is identified, if it is a human-made system. The former part of
the progress is analysis, the latter synthesis, or design, to improve some characteristic of
the system or its operation. Successful analyses are published, indexed, and referenced,
to be used and modified by future analysts and designers.

A common understanding of this process in general, but particularly the process of
model-building and deducing the system’s behavior and outcomes, means that, by and
large, later researchers can stand on the shoulders of earlier researchers. With today’s
on-line indexing services, it is even easier to find antecedent papers, to relax an assump-
tion or two, and to attempt to solve the ensuing model, which might (or might not) be a
closer approximation to reality, or result in a better design.

This process, I believe, is driven in particular directions by the mathematical tractabil-
ity of particular types of model, and the relative intractability of others. (If this reminds
us of the joke about the economist searching for his car keys under the street-light,
instead of in the darkness around his car, it might not be coincidental.)

2.2. Simulation and analysis

The advantage of using simulation techniques is that they provide us with light where
the analytical techniques cast little or none, in our metaphorical search, so we are no
longer restricted to working with models which we hope will prove tractable to our an-
alytical tools. As computing tools (both hardware and software) have grown more pow-
erful and user-friendly, research using simulation techniques has blossomed. Analysis
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of observed phenomena has not been a driving motivation of the research of computer
scientists—yet they have a fifty-year history of design and invention, which continues
apace (although they have from time to time looked for analogies to the natural world,
neural nets mimic in some sense the brain, and Genetic Algorithms (GA) were inspired
by natural selection with sexual reproduction). Over thirty year ago it was possible for
Donald Knuth to write an encyclopedic study of The Art of Computer Programming in
three volumes [Knuth (1968–1973)], but such a task would be daunting now.4

Moreover, as they attempt to implement automated on-line markets, computer scien-
tists have discovered economists’ work on auctions, spurred by applications of game
theory to study these traditional market institutions, and to develop new, designer mar-
kets, given the opportunities of the modern technology.

The focus in this section will be on analysis, rather than design. This is because,
as we discuss in Section 3.1 below, direct design or optimization requires a degree of
understanding of the mapping from the design space to the performance space which
has not yet been developed. Indeed, given the complexity of market phenomena, direct
design might never be possible, as Edmonds and Bryson (2003) remind us. Instead,
searching the design space will be an iterative process of analyzing the performance of
a specific model, modifying the model in the light of this analysis, and analyzing the
modified model, until the designer is happy with the performance of the multi-modified
model against various criteria.

2.3. Evolutionary simulation techniques

To the evolutionary biologist, the design is the genotype, and the performance is the
phenotype. Evolution can be characterized as a dynamic search in a population for geno-
types that result in better phenotypes, where that mapping too is ill-defined. It might not
be surprising, therefore, that the development of agent-based methods of optimization
and simulation began with techniques that mimic aspects of natural selection. Holland’s
1976 Genetic Algorithm (GA) (Holland, 1992) was used as a new kind of optimizing
tool for problems intractable to calculus-based tools. The GA tests and scores individual
solutions in a population of possible solutions, and, based on the “fitness” score of each,
selects pairs of “parents” for a new “offspring” generation of possible solutions. This
artificial reproduction uses the genetic operations of “crossover” and “mutation” (anal-
ogous to mimicry of existing solutions and to exploration of new regimes of the solution
space) on the parents. Testing, selection, and generation of a new population results in
the emergence of never-worse best solutions. GA has been widely used as an optimizer,
a directed form of trial and error that obviates exhaustive testing of all possibilities.

But using the GA as an optimizer in this way—focusing on the single best solution
(an individual)—throws away the population’s emerged characteristics qua population.

4 Apparently, Knuth has been undertaking a fourth volume, since TeX and METAFONT were put to bed
[Knuth (1979)].
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A line of research then began with Axelrod’s (Axelrod, 1987) simulation of individuals
playing the Iterated Prisoner’s Dilemma (IPD). It used the population of individuals—
stimulus–response automata, where the stimulus was the state of the interaction, and the
response was the next action of the player—to consider not only the emergence of new
strategic automata, but also to examine the stability of the population against “invasion”
by a new strategy.

Axelrod, a political scientist, was interested in combinations of strategies that exhib-
ited the emergence of cooperation [see Axelrod (2006)], a manifestation of the Folk
Theorem of repeated games [Fudenberg and Maskin (1986)]. But since the IPD can be
thought of as a simple model of a repeated Bertrand duopoly, his work soon gained the
attention of economists, who had found the analytical characterizations of equilibria in
oligopolistic competition incomplete, not least in the paucity of out-of-equilibrium char-
acterizations of the dynamics of the interaction. That is, the intermediate behavior of a
dynamic interaction, a game, might be more important than its asymptotic properties.5

When the players face identical payoff sets and choose from identical action sets,
a single population is satisfactory, since the GA processes (selection, crossover, and
mutation) which model learning among the individuals and between generations of the
population are focused on the same end: faced with the same state of the interaction,
either of the players would behave identically, and fitness is average (or discounted)
profit.

But when modeling oligopolistic players who have distinct payoff sets (because of
distinct costs, facing distinct demands, and perhaps with distinct action sets), a single
population of agents means that the GA processes are faced with a fitness “landscape”
[Kauffman (1995)] that is not only possibly rugged, but also shifting (as each agent
wears a distinct sellers hat, as it were). In this case, separate populations of sellers is
absolutely necessary.

The GA was developed and pioneered by computer scientists and engineers who were
intent on solving optimization problems exhibiting rugged landscapes. Although it was
at first used only where these were static, where the landscape did not change as the
process of genetic “learning” took place, it also turned out to be well suited to simu-
lating and solving problems where the environment was changing. When the individual
agents modeled by the GA are competing against each other, the GA is modeling the
process of co-evolution.6 GAs were originally used as means of seeking optimal so-
lutions to static problems; Marks (1989) and others adapted them to seek solutions of
co-evolutionary strategic problems, such as the IPD and oligopolies with asymmetric
players, where the fitness of an agent depends on the state of the whole population of
agents: state-dependent fitness [Riechmann (2001)]. Sargent (1993) surveys studies us-
ing adaptive algorithms (including the GA) to model macro-economic phenomena with
learning agents, but not explicitly agent-based models.

5 Just how to characterize out-of-equilibrium behavior (or bounded rationality, for that matter) remains an
open question. See Arthur (2006).
6 This process was mistakenly called boot-strapping by Marks (1989), in the first published research into

co-evolution of rivals’ strategies in oligopolies.
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Chattoe (1998) argues that GA applications in economics confuse the role of the
GA as instrumental in searching the solution space and its role as a description of
firms’ decision-making and individual learning. Dawid (1999) has argued that, despite
its foundation in computer science, the GA is good at modeling the ways in which
populations of economic actors can learn. Indeed, Curzon Price (1997) spoke of the
GA as providing a stream of hypothetical scenarios within the firm, even if not all are
acted upon. Duffy (2006) provides an extensive review of the descriptive role of GAs
in economic models, and concludes that the findings from many studies “provide some
support for the reasonableness of GAs as models of adaptive learning by populations of
heterogeneous agents.”

When applied to economic systems, the GA operators have been interpreted several
ways. Each individual string can represent either an individual agent or one possible de-
cision of a single agent. The selection operator ensures that past performance is reflected
in future choices: well (badly) performing decisions are more (less) likely to be chosen
in the future. Each new generations of strings might be new individual decision-makers,
or it might be new ideas or heuristics among long-lived players.

With few exceptions, the models of analysis and design that we discuss below are
evolutionary in nature—“dynamic models in which successful agents and activities
gradually increase their share of the economy at the expense of less successful agents
and activities” [Conlisk (1996)]—whether explicitly so (as with GAs) or implicitly.

2.4. Learning

The populations in the first applications of GAs were seen as trial solutions to arguments
that would optimize the function in question (usually highly non-linear and discontinu-
ous). Later applications, however, treated the populations as comprised of agents rather
than numbers. Individual agents were immutable, but in each generation the population
of agents would change, under selective pressure. This is implicit learning and adap-
tation.7 Just how learning and adaptation are modeled can clearly affect the model’s
behavior.

Agent-based modeling has since modeled learning as explicit. Arthur (1991, 1993)
was the first economist to support modeling agent behavior using reinforcement-
learning (RL) algorithms and to calibrate the parameters of such learning models using
data from human-subject experiments.8 In RL models, how an actor chooses to behave
later is a function of the outcomes he has experienced earlier, in part as a consequence

7 “Implicit” in that the individual agents do not change at all, but succeeding populations embody improve-
ments (“learning”) in the manner of response. Wood (2005) points out that psychological experiments have
shown that for human subjects learning can be adaptive, but that adaptation does not necessarily imply learn-
ing, the long-term rewriting of memory.
8 Brenner (2006, Section 2.1) recounts how Arthur generalized the Bush and Mosteller (1955) model, also

used by Cross (1973, 1983).
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of his earlier choices [the Thorndike effect, Thorndike (1911)].9 At first, Arthur was
interested in calibrating individual learning to experimental data, but later he and his
associates [Arthur et al. (1997)] “model calibrations that yield aggregate data that are
similar to relevant field data” [Duffy (2006)].

Roth and Erev (1995) and Erev and Roth (1998) ask how well RL algorithms track
experimental data across various multi-player games. Their general RL model, which
improves the fit of the model to human–subject experimental data, includes Arthur’s
earlier model as a subset, as seen below.

The general Roth–Erev model of reinforcement learning can be characterized as fol-
lows: Suppose there are N actions/pure strategies. In round t player i has a propensity
qij (t) to play the j th pure strategy, where propensities are equivalent to strengths in
Arthur’s model. Initial propensities are equal, qij (1) = qik(1) for all available strate-
gies j, k, and

∑
j qij (1) = Si(1), where Si(1) is an initial strength parameter, equal to

a constant that is the same for all players, Si(1) = S(1); the rate of learning is propor-
tional to the size of S(1):

(1)
∑
j

qij (1) = Si(1) = S(1) for all i.

The probability that agent i plays strategy j in period t is made according to the linear
choice rule:

(2)pij (t) = qij (t)∑N
k=1 qik(t)

.

Suppose that, in round t , player i plays strategy k and receives payoff of x. Let
R(x) = x − xmin, where xmin is the smallest possible payoff. Then player i updates
his propensity to play action j according to the rule:

(3)qij (t + 1) = (1 − φ)qij (t) + Ek(j, R(x)),

where

(4)Ek(j, R(x)) =
{

(1 − ε)R(x), if j = k;
ε

N−1R(x), otherwise.

This is a three-parameter model, where the parameters are: the initial-strength parame-
ter, S(1); a recency parameter φ that gradually reduces the power of past experiences
to influence future actions; and an experimentation parameter ε, which can be localized
for similar strategies, or be made more intrepid.

9 Recent psychological research is questioning Thorndike’s Law of Effect: the more specific and immediate
the feedback, the greater the effect on learning. The Law is a reasonable description of human behavior in
a simple world (of decision-making), but is not so good in a complex, stochastic world (of exploration and
problem-solving) [Wood (2005)].
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If φ = ε = 0 then the model becomes a version of Arthur’s model, but without
re-normalization of the sum of propensities in every period. The model without re-
normalization reflects a learning curve that flattens with experience over time.

Duffy (2006) and Brenner (2006) discuss, among others, four types of RL models:
the Arthur–Roth–Erev model mentioned above; Q-learning, which optimizes long-term
payoffs, rather than immediate payoffs [Watkins and Dayan (1992)]; multi-agent Q-
learning [Hu and Wellman (1998)]; and Adaptive Play [Young (1998)]. Below we
discuss several papers that use these models, including a useful modification of the
Roth–Erev model summarized above in equations (1)–(4).

Selten [Selten and Stoecker (1986), Selten (1998)] has devised a much simpler learn-
ing mechanism, directed learning. This is based on the notion that ex-post rationality is
the strongest influence in adaptive behavior. It requires an ordering over the set of pos-
sible actions, and models players learning to do better by probabilistically altering their
actions in the direction that would have led to higher payoffs had these actions been
chosen earlier, and never altering their actions in a direction that would have lowered
their payoffs [Brenner (2006)]. For instance, Hailu and Schilizzi (2004) model bidders’
learning in auctions: if a bidder won the previous auction, then choose an equi-probable
mixed action of the same bid or one ten percent higher for the next auction; if the bidder
did not win in the previous auction, then choose an equi-probable mixed action of the
same bid or one ten percent lower, with prior upper and lower limits to legitimate bids.
They find that the efficiency benefits of one-shot auctions dissipate with repetition and
learning.

Vriend (2000) draws the distinction between the social learning of the GA (whereby
the individuals in the population have learned from their parents, through selection and
crossover, and so there is the possibility of good “genes” spreading through society over
several populations) and the individual learning of non-GA agent-based models (with
explicit learning incorporated into the structures of the artificial, adaptive agents).10

Both sorts of models, and both sorts of learning, have been termed “agent-based” mod-
els.

The learning in reinforcement-based models and in the extant GA models is induc-
tive: that is, future actions are based on past experience, with no attempt to anticipate
and reason back, in a truly deductive, strategic fashion. Belief-based learning, however,
incorporates recognition by the players that they are interacting with other players. They
thus form beliefs about the likely actions of these other players. “Their choice of strat-
egy is then a best response to their beliefs”, [Duffy (2006), Section 3.2]. “By contrast,
reinforcement learners do not form beliefs about other players, and need not even real-
ize that they are playing a game or participating in a market with others.” Almost all the
research we review models inductive learning, but two papers which use anticipatory,
belief-based learning are reviewed in Section 3.4 below.

10 Strictly speaking, individual learning can also be modeled using classifier systems, closely related to the
GA [Holland (1992)].
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2.5. From analysis to design

As remarked by Roth (1991) in an earlier paper on market design, three approaches are
suitable for the iterative process of market design: first, traditional closed-form game-
theoretic analysis, as discussed above; second, human–subject experiments; and, third,
computational exploration of different designs. Indeed, if the design criteria are clearly
defined, some of the recent techniques of simulation and optimization developed by
computer scientists and computational economists can be used to search for optimal
market designs, directly and indirectly.

Market performance may depend on the degree of “intelligence” or “rationality” of
the agents buying and selling, which has led to computer experiments in which trading
occurs between artificial agents of limited or bounded rationality, as discussed further
below. As Walia et al. (2003) remark, if a market design with agents of low degree
of “intelligence” is found to be sufficient for a specific level of market performance,
then we might expect that agents with a higher level of intelligence, or agents whose
rationality is less bounded, will, through their decisions to buy and sell, inadvertently
create for themselves a market that is working efficiently.

But this is not necessarily the case: for instance, a market design could have a
loophole—obscure to stupid agents—that makes it completely degenerate. Even with-
out loopholes, smarter agents might find strategic ploys that reduce efficiency, or
might spend more effort (wasted, from a social efficiency perspective) on counter-
speculation.11 This is confirmed by Arifovic (2001), who finds that more complicated
agents do not necessarily do better in her simulated market environment.

Of course, historical market institutions have in general not simply been imposed
from above (so-called top-down design) but have also emerged from the bottom up as a
consequence of a multitude of actions and interactions of the myriad traders [McMillan
(2002)]. Although the omnipotent programmer can experiment with different market
forms and different kinds of boundedly rational agents to discover sufficient combina-
tions of each for specific behavior of the market, evolutionary computation raises the
possibility of bottom-up design, or emergence of market design through simulation.

This in turn raises the issue of whether agent-based experiments are being used as
a model of human behavior (where analysis is followed by design, given the behavior
of the agents and the emergent aggregate outcomes)—in which case it is an empirical
question as to how boundedly rational the agents should be to best model human agents
[Duffy (2006)]—or whether the agent-based experiments are an end in themselves, be-
cause on-line it is possible to use agents (“buy-bots, sell-bots”) to buy and sell, without
the errors that human agents are heir to.

These alternatives raise two issues [Tesfatsion (2002, p. 19)]: First, to what extent
are the learning processes of human participants in real-world markets mal-adapted to
market institutions? Perhaps the use of agent-based optimization tools could improve

11 I thank an anonymous referee for pointing this out.
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human market behavior, as is already seen, for instance, in eBay auctions, when bidders
use software to enhance their chances of being the high bidder at the deadline.

Second, to what extent have existing market protocols (or market designs) evolved or
been designed to avoid the need for any great rationality on the part of market partici-
pants? Gode and Sunder (1993) and others seek to answer this question for financial
markets, but their results may, under certain conditions, be valid for other markets.
These issues are explored at greater length in the chapters by LeBaron (2006) and Duffy
(2006).

When there are several criteria by which the desirability of a designer market might
be judged, trade-offs are necessary, and in the case of the GA, which needs one measure
of each agent’s fitness, such trade-offs must be explicit beforehand. See Section 3.2
below.

3. Market design

Design is a process of building directed by the pre-specified design objectives, if not
by an explicit how-to plan. Unfortunately, specifying objectives does not always im-
mediately delineate exactly how the model building should occur: these objectives are
specified in a performance space (or behavior space) and the building occurs in a design
space. The mapping from the designed structure to the desired performance may not be
clear.

In the case of evolution, the design would occur in the genome space, while the be-
havior or performance occurs in the phenome space. In the case of designer markets,
policy-makers have been using theory, experiments with human subjects, and computer
simulations (experiments) to reduce the risk that the mapping from design (structure
and rules) to behavior of the economic actors (the performance of the system) is incom-
pletely understood, and so that there are fewer surprises.

Where the mapping is sufficiently well understood, and where closed-form analytic
solution is tractable, it should be possible to describe not only sufficiency—if the market
has this structure, and the rules of trading are such and such and the traders are given this
information, then this performance and behavior will follow, at least in general form—
but also necessity—if you want this performance and behavior, then this is the only set
(or sets) of designs (combinations of structure and rules) that will produce it.

Without a closed-form analytical solution, but instead with human experiments or
with computer simulations, necessity is in general out of reach, and we must make do
with sufficiency. (Note that this is not always the case: James Watson and Francis Crick
[Watson and Crick (1953)] used a form of simulation to determine the structure of DNA,
with their metal rods and brass atoms, but the experimental results from the work of
others had so constrained the degrees of freedom in the space of possible structures that
they knew when they had simulated the structure correctly. Model-building (“stereo-
chemical arguments” in Watson and Crick’s 1953 phrase) could not clinch the structure
until greater congruence between the model and the observed structure of the actual
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molecule was shown to exist, as the future Nobel laureates emphasized in their 1953
paper. And any negative results would have meant returning to the drawing board, or in
this case the brass rods and sheet metal. See Marks (2003) for further discussion of this
pioneering simulation.)

MacKie-Mason and Wellman (2006) present a Marketplace Design Framework,
which delineates the three fundamental steps that constitute a transaction: first, the
connection (searching for and discovering the opportunity to engage in a market in-
teraction); second, the deal (negotiating and agreeing to terms); and, third, the ex-
change (executing a transaction). They define a “marketplace system” as consisting
of agents and the market mechanism through which they interact, all embedded in
an environment of social institutions (language, laws, etc.). Their market mechanism
is the set of “rules, practices, and social structures of a social choice process, speci-
fying, first, permissible actions” (including messages), and, second, market-based ex-
change transactions as outcomes of a function of agent messages. If there is some
entity, apart from the participating agents, that manages any inter-agent communi-
cation and implements the mechanism rules, then the market mechanism is medi-
ated.

MacKie-Mason and Wellman note that, as a consequence of this characterization of
a marketplace, there are at least two design decisions: first, the design of the market
mechanism, which might be decomposed into the design of mechanisms for, succes-
sively, the connection, the deal, and the exchange phases of a transaction; and, second,
design of agents to interact with the market mechanism, whether existing or newly de-
signed. They define an agent as an “autonomous decision-making locus in a system of
multiple decision-making entities”; an agent has “type” attributes, such as preferences,
beliefs, intentions, and capabilities. There will be a form of consistency between the
agents’ behavior, beliefs, and preferences, consistent with some principle of rationality.
In this chapter, the focus is on design of MacKie-Mason and Wellman’s market mech-
anism, specifically, the deal negotiation task. As with most of the existing literature,
this chapter focuses on market mechanisms that govern the settlement from allowable
actions.

Mechanisms specify, first, the agents’ concerns that are recognized, and, second,
rules mapping actions into allocation outcomes. A rule might specify which ac-
tions are permissible, or the procedure for choosing a settlement of agents’ con-
cerns based on observable actions. For instance, auctions, MacKie-Mason and Well-
man point out, include rules governing allowable actions, and rules governing settle-
ment.

To be effective, design of the market mechanism must be measured, and will usually
consist of a constrained optimization, even if not explicitly or directly. “No exter-
nal subsidies” or “maintain horizontal equity” are two possible constraints given by
MacKie-Mason and Wellman. We explore others below.

The general design problem has become designing a market mechanism that includes
defining a set of concerns over which agents can interact, specifying rules of permissible
actions, and rules for mapping from actions to settlement and outcomes.
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3.1. Complexity of design

Edmonds and Bryson (2003) speak of the syntactic complexity of design. This is the
lack of a clear mapping from design to behavior: the only way to know the system’s
outcomes is to run the system and observe the emerging performance. Analysis is not
able to predict the outcome. They are speaking of multi-agent computer systems, but
could be speaking of standard double auctions in continuous time, which have not yet
been solved analytically. Simon (1981) put it this way: “. . . it is typical of many kinds
of design problems that the inner system consists of components whose fundamental
laws of behavior. . . are well known. The difficulty of the design problem often resides
in predicting how an assemblage of such components will behave.”

One reason why analytical methods of analysis might fail is that the mapping from
initial conditions of structure and rules to behavior and performance is not smooth or
continuous, and, as such, is not amenable to calculus-based tools. The rugged nature
of this landscape is its complexity, a complexity that is multiplied if it too is changing,
perhaps as a function of the strategic complexity that occurs if the design has also to ac-
count for the interacting agents’ patterns of behavior changing as a result: the biologist’s
co-evolution.

It is partly because of these complexities that direct design of markets is hardly ever
attempted. Another reason is the possibility of conflicts among several design trade-offs.

3.2. Design trade-offs

Where there are several design criteria, the possibility arises of trade-offs between the
criteria. For instance, if a firm has market power, it can maximize its seller revenue,
but at the cost of market efficiency, as measured by the sum of seller (or producer)
surplus and buyer (or consumer) surplus. Or it might be possible to improve the fairness
of a market outcome, but at the cost of market efficiency. As we shall see below, to
use computer simulation such trade-offs must be explicit. It might be possible to use
a version of Simon’s [Simon (1981)] satisficing, whereby so long as the other criteria
are met (above some target level), the remaining criterion is used to rank designs. Or
different criteria could be weighted to derive a single, scalar maximand.

Possible criteria for judging the design of a single-auction market might include
[Phelps et al. (2002a, 2005)]: first, maximizing seller revenue: this has been one of
the main criteria in the design of the spectrum auctions, most famously the 3G auc-
tions [Milgrom (2004)]; second, maximizing market allocative efficiency: from a policy
viewpoint and not a seller viewpoint this is a desirable attribute of a marketplace system;
third, discouraging collusion, as a means to attaining the first and second criteria; fourth,
discouraging predatory behavior, which will also help to maximize efficiency; fifth, dis-
couraging entry-deterring behavior, again as a means of maximizing seller revenue (in a
single (selling) auction the greater the number of potential bidders, the greater the seller
revenue); sixth, budget balance: no third-party payments or subsidies for a deal to be
reached; seventh, individual rationality: the expected net benefit to each participant from
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the market mechanism should be no less than the best alternative; and eighth, strategy-
proofness: participants should not be able to gain from non-truth-telling behavior.

Myerson and Satterthwaite (1983) derived an impossibility result that demonstrates
that no double-sided auction mechanism with discriminatory pricing12 can be simulta-
neously efficient, budget-balanced, and individually rational.

Talukdar (2002) emphasized that before the market can be designed (solved), the
design problem must be well posed, that is, complete, feasible (all constraints can be
satisfied), and rich (allows for innovative and desirable solutions). To be complete, the
design problem must contain: first, the attributes to be used in characterizing behavior of
the market; second, the decision variables to be used to characterize the structure; third,
the goals to be attained (desired behaviors, laws, regulations); and, fourth, a computable
mapping of decision variables into goals (does each point in decision space meet the
goals?). This fourth requirement is achieved for complex design problems by iterative
analysis, which can be achieved using agent-based simulation tools and agent-based
verification tools, since such tools are open and modular.

LeBaron (2006), in examining the use of agent-based models of financial markets,
discusses seven basic design questions for his models, which translate across to more
general models. First, the economic environment itself needs to be resolved: What
will be traded? Second, how are agents’ preferences to be modeled? What particular
functional forms will be used, such as mean–variance, constant absolute risk aver-
sion, myopic or inter-temporal? Or will specific behavioral rules simply be evaluated
directly? Third, market clearing and price formation need to be modeled. Fourth, the
fitness of the model must be evaluated. For example, should wealth or utility be used?
And should the evolving behavioral rules to which fitness measures are applied be fore-
casts, demands, or some other type of action? Fifth, how is information to be processed
and revealed? Sixth, how does learning occur? Is it social or is it individual? Seventh,
how is benchmarking to be undertaken? While these questions relate to the models used
to design markets, they may also reflect on the design criteria for the final designer
markets.

3.3. Moving from closed-form equilibria

Traditionally for the last sixty years, economists have sought closed-form solutions to
understanding the performance of economic institutions. Economic actors have been
assumed to be perfectly rational, with the means to solve for equilibria outcomes in
complex situations. Economists have sought to characterize the equilibria of economic
interactions in terms of their existence, uniqueness, and stability, under this assumption.
When the interactions among economic actors are strategic, the equilibria become Nash
equilibria.

12 In discriminatory-price auctions (sometimes known as “pay-as-bid” auctions), distinct trades in the same
auction round occur at distinct prices; in uniform-price auctions, all trades in any given auction round occur
at the same price.
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But in an operating, real-time actual market, it turns out that we are not interested
just in equilibrium characterization: continual shocks might never allow the system to
approach, let alone reach, the equilibrium. And, moreover, it turns out in a repeated
interaction that almost any individually rational outcome for each player can be sup-
ported as an equilibrium (the Folk Theorem of repeated games). This is particularly so
for interactions which have the general character of the IPD.

Consequently, there are at least two reasons why market design has moved away
from traditional closed-form solutions: first, because of tractability: it has been very
difficult, despite advances made in recent years, to obtain solutions to the design of
some markets, such as continuous double auctions (CDAs); and, second, we should like
to characterize out-of-equilibrium behavior, and especially the dynamic behavior of an
operating market with fluctuating demand, and perhaps varying numbers of sellers, with
unpredictable, varying costs.

A third reason for considering other techniques of analysis is that the assumption of
perfect rationality and unlimited computational ability on the part of human traders is
unrealistic, and not borne out by laboratory experiments with human subjects. Instead,
using computer models of trading agents, we should like to model economic actors in
markets as “boundedly rational.” This might mean bounded computational ability, or
bounded memory, or bounded perception [Marks (1998)].13

There is a fourth reason for wanting to move from closed-form solutions, even where
they are available: to model learning. There are two reasons to include learning in any
models used to design markets: First, individuals and organizations learn. Human play-
ers learn (perhaps with the added incentive of the prospect of bankruptcy if they do not
learn from their mistakes), which means that a model without learning is not as realis-
tic as one incorporating learning. Bunn and Oliveira (2003) note that many researchers
[including Erev and Roth (1998)] have shown that learning models predict people’s
behavior better than do Nash equilibria.

Moreover, learning can help to eliminate many otherwise legitimate Nash equilibria
from further contention. Indeed, evolutionary (or learning) game theory has been seen as
a solution to the multiplicity of Nash equilibria that occur in closed-form game-theoretic
solutions: a priori, all are possible, but to see which are likely in reality, see how players
learn and choose amongst them.

3.4. Explicit use of agents

It is possible to design without the use of agents: given a market with demand and supply
schedules, economic efficiency is maximized at the output level where marginal value

13 Rubinstein (1998) elaborates on some of these bounds. Conlisk (1996) gives four reasons for incorporat-
ing bounded rationality into economic models: empirical evidence of limits to human cognition; successful
performance of economic models embodying bounded rationality (including some surveyed here); sometimes
unconvincing arguments in favor of unbounded rationality; and the costs of deliberation.
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equals the marginal unit cost, no matter how the social surplus is divided between buy-
ers and sellers. But such direct design (optimization) requires a well defined problem.
With several design trade-offs and the possible emergence of unforeseen performance
in the system, agent-based analysis and design, in which the market system can be mod-
eled as “evolving systems of autonomous, interacting agents with learning capabilities”
[Koesrindartoto and Tesfatsion (2004)], is increasingly employed.

LeBaron (2006) places some weight on how actual trading occurs: the institutions
under which trading is executed. He argues that agent-based models are well suited to
examining market design and micro-structure questions because, first, they can produce
a large amount of data, and, second, they allow testing of market design in a heteroge-
neous, adaptive environment.

Audet et al. (2002) report an agent-based study of micro-structure (order books v.
dealers), while Bottazzi et al. (2003) examine tick sizes (and unexpectedly determines
that smaller tick sizes do not necessarily improve the market’s efficiency). Chan and
Shelton (2001) examine how a model behaves with different RL mechanisms, all of
which enable the optimum policy function for a market-making broker to be found.

Belief-based learning has been used to study market design: Gjerstad and Dickhaut
(1998) propose heuristic rules by which buyers and sellers in a double auction will
assess and update their probabilities that their bids (offers to buy) and asks (offers to
sell) will be accepted, given market history. “Using these beliefs together with pri-
vate information on valuations and costs, individual buyers or sellers propose bids or
asks that maximize their (myopic) expected surplus” [Duffy (2006)]. The main para-
meter of their model is the length of memory that players use in calculating proba-
bilities. Their model, with stricter convergence criteria than Gode and Sunder (1993)
adopt, more reliably converges to competitive equilibrium, and the anticipatory, belief-
based learning model provides a better fit to aggregate human-subject data as well.
Gjerstad (2004) coins the phrase “heuristic belief learning” to describe this version
of belief learning, and shows that what he calls “pace,” the timing of the bid, is piv-
otal.

GA strings can be used to encode decisions that agents make (e.g., how much to
consume, what price to charge, etc.) and the GA works to find the optimal decision,
given feasibility and other constraints. This is how Marks et al. (1995), Arifovic (1994),
Midgley et al. (1997) modeled the interactions. Duffy (2006) calls this learning-how-
to-optimize.

An alternative is to use the strings as encoding beliefs about how prices will change
from period to period. This learning-how-to-forecast model [Duffy (2006)] was first
used by Bullard and Duffy (1999). It was introduced in order to calibrate the GA
model with human-subject experiments of overlapping-generation decision models.
Duffy (2006) explains that subjects found it easier to forecast future prices than to de-
cide on inter-temporal consumption/saving decisions. Given the price forecasts, the GA
algorithm solved that individual’s optimal consumption/savings allocations and deter-
mined the market-clearing prices at future dates.
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3.5. The design economist

Recently, software engineers have been designing systems of exchange, of markets.
Their designs—of distributed computing systems, and on-line trading in real time—
have begun to borrow from economists’ insights into how traditional face-to-face mar-
kets have evolved to operate. They have also [Phelps et al. (2002a)] begun to realize that
the equilibrium characterizations of mathematical economics do not always provide the
answers they need in designing their on-line markets, which will be in disequilibrium
almost always if trading in real time. That is, the adjustments of the operation of the
markets to the current equilibrium (or attractor) will almost never happen fast enough to
reach equilibrium, especially when the location of the attractor is continuously chang-
ing.

The shortcomings of these results from equilibrium analyses of economic mecha-
nisms have been underlined by Roth (2000, 2002) in two papers that begin to point the
way forward for market design, with the economist as engineer. Indeed, Roth makes the
point that, as engineers have learned to borrow from the insights of physics, the design
economist can use insights not only from equilibrium mathematical economics, but also
from computer science.

When, however, these insights are curtailed, perhaps by the tractability of closed-form
analytical methods, both economists and software engineers have been using simula-
tion in analysis, to obtain sufficient, but rarely necessary, conditions. Simulation has
occurred using GAs, numerical solutions, and explicit agent-based models. Iterative
analysis has been used as a means of designing systems.

LeBaron (2006), in his conclusion, lists some criticisms of the agent-based approach
to modeling financial markets. Some (such as too few assets considered, questions of
timing ignored) are more specific to the models he examines, but several are relevant
to more general market models: too many parameters; questions about the stability of
trading to the introduction of new trading strategies; sensitivity to the number of agents
trading; over-reliance on inductive models of agents, which respond to past rules and
forecasts; and not enough on deductive models which might learn commonly held be-
liefs about how markets work. These are issues that have been addressed in the two areas
of market design that we now consider: electricity markets and automated markets.

4. Electricity market design

In 1998 the U.S. Federal Energy Regulatory Commission (FERC) Chairman, James
Hoecker [Hoecker (1998)], said: “Arguably, a well-constructed computer model could
improve the accuracy of our competitive analysis in at least two ways: by explicitly
representing economic interactions between suppliers and loads at various locations on
the transmission network; and by accounting for the actual transmission flows that result
from power transactions.” He warned, however, that: “Consistency of data sources and
consistent application of those data is an attraction, but such techniques require time,
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education, and consistent refinement. Moreover, adequate data may not be available.
I hope the benefits will be worth our trouble and investment. Our economists are trying
to get a handle on precisely that equation.”

Other economists, engineers, and computer scientists had already been at work on
this issue for some years, when Mr Hoecker spoke. Applications of agent-based model-
ing to electricity market analysis and design occurred independently in several research
centers. The application of genetic algorithms to, first, oligopolies [Marks (1989)], and
then to macro-economic models [Arifovic (1994)], has more recently been followed by
its use in analyzing the behavior of new markets for electricity generation and transmis-
sion, most recently as a means of designing electricity markets.

4.1. Electricity market design trade-offs

As a consequence of the California blackouts of 2000, market efficiency has been joined
by several other criteria for the design of electricity markets. The FERC (2003) White
Paper discusses four primary objectives for wholesale electricity market design: reliable
service (no blackouts or brownouts); fair and open access to the transmission grid at rea-
sonable prices; effective price signals to provide incentives for appropriate investment in
generation and transmission capacity; and effective procedures for market oversight and
mitigation of exercise of market power.14 Koesrindartoto and Tesfatsion (2004) speak
of “efficient, orderly, and fair” market outcomes.

Cramton (2003) discusses issues of electricity market design, in general, and the mit-
igation of market power in particular. He also emphasizes that the market designer must
understand the preferences and constraints of the market participants, in order to keep
the design as simple as possible, but not too simple.15 The greater the number of di-
mensions for measuring the performance of market designs, the greater the relative
attractiveness of simulation as a design tool: as discussed above, closed-form analysis—
with its promise of the derivation of necessary conditions—becomes ever more elusive.

4.2. Academic engineers

In 1992, a pioneering paper by Verkama et al. (1992) at the Helsinki University of Tech-
nology argued that the two disparate areas of oligopoly theory and distributed artificial
intelligence (DAI) could learn from each other, since each was concerned with modeling
the interaction of autonomous, self-interested, interacting agents. Using object-oriented
programming, they had developed a test-bed for examining agents’ interactions under
various initial conditions. They acknowledged that “very general results are difficult to

14 Nicolaisen et al. (2001) distinguish the exercise of structural market power that occurs when the buyers
and sellers ask and bid their true reservation values, from the exercise of strategic market power that occurs
when opportunistic bids or asks are made.
15 Wilson (2002) surveys the experiences of electricity market designs in the U.S. and beyond at a much
greater level of detail than has yet been seen even in simulation studies.
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come by with simulations and computer experiments” (p. 157), but argued that such
approaches allow the exploration of market evolution, with entry and exit, learning, and
reputation effects. They even suggested that the market itself could be modeled as an
agent, the first suggestion in the literature that the design of markets could be modeled
and analyzed, necessary antecedents for market design using agents.

Verkama et al. (1992) do not cite any works in evolutionary computation, but two
years later, after presentation at a workshop in computational organization theory, they
[Verkama et al. (1994)] cited Arthur (1991, 1993), Holland and Miller (1991), and Lane
(1993a, 1993b). The linkages between two previously independent lines of research had
been made.16 In the 1994 paper, as well as object-oriented programming, they mention
inter alia genetic algorithms and learning automata, and the need for agents to mimic
human behavior in simulation models of strategic interaction (their “reactive behav-
ior”). The test-bed itself had evolved: in their Multi-Agent Reactions Testbed agents
can inherit properties from previous generations and add new features, in order to ex-
plore the interactions of different decision rules, and the market structure and rules of
engagement.

In 1994 Räsänen et al. (1994) introduced an object-oriented model of electricity
demand-side load, the first application of such techniques to electricity market model-
ing, although the use of inherited characteristics was not to allow the objects to evolve or
learn, but rather to aid the programmer in modeling changed load. A year later, however,
Hämäläinen and Parantainen (1995) introduced a new “agent-based modeling frame-
work” for analyzing electricity markets by using agents to model the demand-side load.

4.2.1. Hämäläinen et al. (1997) model both sides of the market

Two years later Hämäläinen et al. (1997) went much further, with agents represent-
ing both sides of the electricity market—consumers and producers—with bounded
reasoning capabilities and bounded reactions. Specifically, they use a two-hierarchy,
multi-agent system to model a von Stackelberg market, where the leader (the seller)
anticipates and reasons back to set a price for electricity which maximizes the overall
market efficiency, given the responses of the followers (the buyers, who use electric-
ity for space-heating). Agents can be modeled as: sufficiently rational to determine
their best response dynamics; or as boundedly rational (and so not always succeeding

16 In a private communication Hämäläinen (2004) explains: “The origins of my interest go very far back.
We had been working on game theory, coordination and resource economics, and to me as an engineer it was
a natural idea to see what could be achieved by a computational analysis of economic systems. One of the
first computational analyses was [a 1978] paper on the role of information in decentralized macro-economic
stabilization. Later, coordination ideas grew in my head when I was working on fishery models [in 1986
and 1990]. This was followed by incentive and coordination work: Verkama et al. (1992). At the time of the
emergence of our interest in energy economics the Finnish market had not yet been deregulated, but this took
place during our research project on real-time pricing of electricity. For a period this kind of research was not
considered interesting as markets were the hot topic.”
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in determining the best response, perhaps because of limited comparisons of possible
actions); or as constrained in their reactions from one period to the next; or with asyn-
chronous reactions.

The electricity price can vary hourly, and the electricity producer, announcing prices
24 hours ahead, can attempt to control consumption in order to smoothly costly load
peaks. Each consumer takes account of the heat-storage capacity of its dwelling and
the outside temperature. The consumer’s payoff is the difference between the utility
from consumption and the cost of the energy. The producer’s cost function reflects the
increasing (quadratic) marginal cost of production.

Using their Power Agents software for simulation of electricity markets, the authors
gain insight into a market in which consumers could have their homes heated by a
computerized agent-based heating system which would respond to changing electricity
tariffs in order to maximize the system goals. It is not clear which form of bounded
rationality they use. They have not adopted GAs or other computer science techniques
referred to in the 1994 paper. This has been left to others.

Meanwhile, at Carnegie Mellon University, Talukdar and Ramesh (1992) suggested
software to manage electricity generation when the operating environment (market)
could change rapidly. Their asynchronous and autonomous agents represent one of the
first examples of a multi-agent system in the electricity literature. Krishna and Ramesh
(1998) extend the idea to developing “intelligent software agents” to help generators to
negotiate with potential coalition partners; they point to the possibility of such agents
replacing human players in computerized electricity exchanges.

4.2.2. Talukdar (2002) models customers holding down the wholesale price

Talukdar (2002) continues to use artificial agents as members of his asynchronous
teams, sometimes borrowing from the GA models, most recently to simulate and ver-
ify the trades that occur in repeated markets, such as electricity markets, as part of the
market design process. His focus is on centralized auctions, without electricity storage
facilities, where sellers have multiple blocks of energy to sell, and customers can adjust
their demands and can automatically learn. He asks: What structures (load-adjustment
facilities) do customers need so they can use automatic learning to hold the monopolistic
price to reasonable levels?

His agents are simple: they are not intended to simulate human behavior; rather, the
dynamics of the repeated markets are probed using the emergent behaviors (which can
be quite complex) of simple agents. He finds that sellers with multiple generating units
can learn which units to withhold and that total profits rise by a fifth over a thousand
periods, with prices and profits almost at centralized (monopolistic) levels, under several
(static) demand characterizations. He then allows buyers to learn too. They aim, first,
to minimize cost, and, second, to minimize energy deviation. Over 1400 periods they
learn to reduce the price to less than a third of the monopolistic price. But with the same
quantity sold, the sellers’ profits fall below 30% of the monopolist’s profits.
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Meanwhile, at Iowa State University, a group of electrical engineers led by Gerald
Sheblé had started in 1994 to examine the operation and design of electricity markets.
Maifeld and Sheblé (1996) use a GA for solving the unit-commitment scheduling prob-
lem in electricity markets.17 They referred to no earlier work by economists, but Richter
and Sheblé (1998) referred to unpublished work by LeBaron and by Tesfatsion, and used
a GA to learn (evolve) bidding strategies in an electricity market as generators and dis-
tributors buy and sell power via double auctions. Amongst other things this model can be
used to explore how bidding behavior affects overall market performance. Richter et al.
(1999) extended their previous work on bidding strategies in double auctions for trading
electricity competitively. They used adaptive automaton strategies: tested in an auction
simulator, the automata learn using a GA. The paper examined high-profit strategies and
also modeled certain types of trading behaviors.

4.2.3. Lane et al. (2000) use GAs for double auctions

Lane et al. (2000) broadened the scope of the research: they modeled the traders in an
electricity market as adaptive agents learning with the help of a GA in a discriminatory-
price k-double auction [Satterthwaite and Williams (1989, 1993)], and, perhaps influ-
enced by Tesfatsion’s economics research, calculated the degrees of market power for
various combinations of relative capacity and production costs.

They use the EPRI18 Market Simulator, which simulates a double auction between
buyers and sellers on a graph, where the edges are the capacity-constrained transmission
lines and the buyers and sellers are at the nodes. The auction is performed in rounds or
generations; buyers and sellers are matched in each round and the price of their contract
is given by kb + (1 − k)a, where bid b ≥ ask a, and 0 ≤ k ≤ 1; here k = 0.5. Learning
is via a GA with binary strings. The GA treats buyers and sellers separately, and takes
the risk-neutral traders’ profits as their fitnesses.

The benchmarking simulation assumes price-taking agents. The buyers’ profits and
sellers’ profits in a competitive equilibrium and in the auction simulation are deter-
mined (respectively, PBCE, PSCE, PBA, PSA), and an index of market power (MPI) is
calculated:

(5)MPI = (PBA + PSA) − (PBCE + PSCE)

PBCE + PSCE
.

The simulated market has three sellers and three buyers (homogeneous, and uncon-
strained in their total demand, in order to allow sellers to play strategically). There
are three scenarios for capacity constraints on sellers, increasingly unequal, and three
scenarios for relative costs of the largest producer. Will this market converge to a near-
competitive equilibrium? Will the largest seller exhibit price leadership and the exercise
of market power?

17 Unit commitment is the problem of determining the optimal set of generating units within a power system
to be used up to a week ahead.
18 The Electric Power Research Institute, Palo Alto, CA.
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Analysis of MPI averaged over 100 runs for each of the 3 × 3 treatments indicates
that neither marginal cost nor market share has a significant effect on the large seller’s
exercise of market power, and on average total available surplus is evenly distributed
among buyers and sellers. The authors identify an anomaly: relatively more expensive
sellers gain market power, the opposite of what theory would suggest.

Why? The authors suggest four aspects of their model: limited numbers of buyers
and sellers; the GA allows indirect exchange of information among sellers and among
buyers through the genetic operators; a seller’s (buyer’s) ask (offer) price is its marginal
cost (revenue) plus (minus) a real number derived from its bit-string; and calculation
of profits in the auction (relative the averaged transaction price) is different from such
calculation in competitive equilibrium (relative to the uniform market price). There is
a rapid loss of genetic diversity, and each of the three sellers (buyers) will be tacitly
working to solve the same maximization problem.

The authors argue that a GA is inappropriate when there are few agents, and conclude
that another search method which incorporates memory and self-learning would be bet-
ter. They do not mention the possibility of a GA with separate populations for the six
distinct agents. Would such a model give results closer to those suggested by theory? I
believe so.

With the increased use of markets to help allocate the generation and distribution of
electricity in several countries, this concern with using models of electricity markets
to examine the exercise of market power is an obvious extension of the simulations,
and reflects the shift from analysis of the traders’ actions to analysis of the markets’
performance, a necessary step for market design.

4.2.4. MacGill and Kaye (1999) simulate for system efficiency

Meanwhile, engineers at the University of New South Wales [MacGill and Kaye (1999),
MacGill (2004)] were exploring a decentralized coordination framework to maximize
the market efficiency of the power-system operation, not through the operation of
Smith’s invisible hand as each resource competes to maximize its own return, but via a
decentralized framework in which each resource is operated to achieve overall system
objectives. The authors use a so-called “dual evolutionary approach,” which uses a (non-
binary coding) version of the GA, but not explicitly with autonomous, self-interested
agents. Their model contained explicit intertemporal links for actions and payoffs (such
as energy storage in, for example, pumped storage dams) across periods, and the dual
evolutionary programming model, rather than optimizing on trajectories (the “primal”
approach), uses as its variables the incremental benefit-to-go functions (the “dual”),
which means that detailed knowledge of the resources models is not required.

They are able to solve for two-storage networks, with ramp rates, leakage, and sto-
chastic supply (with photo-voltaics and hydro). A surprising result, when they allow
strategic actions by players, is that the surplus of the sole strategic player is lower than
its surplus without strategic actions. Is this a consequence of their modeling agents’ fit-
ness not as their individual surpluses but as the system’s goals? They also find that the
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total system surplus falls with strategic actions, and the surplus on the load side falls
most, as one might expect from theory.

Cau and Anderson (2002) used GAs to examine co-evolutionary behavior of agents in
markets for electricity, where such agents were modeled as autonomous, self-interested
players [see also Cau (2003)]. In particular they were interested in exploring the con-
ditions of the players and of the market under which tacit collusion occurred. Since
collusion leads to inefficiencies, from a policy-maker’s viewpoint a market structure
which discourages the emergence of learned tacit collusion is a good design, even if
discouraging the exercise of market power is not an explicit goal of market design.

The number of engineering studies of electricity supply and distribution networks
that employ agent-based (or “multi-agent”) simulations of some sort or other contin-
ues to grow, as reflected in published papers in the IEEE journals, transactions, and
proceedings.

4.3. Economists

4.3.1. Curzon Price (1997) models electricity markets

In 1997 an economist at University College London, Curzon Price (1997), presented
simulation models of simple electricity pools, in which he used the GA as a means of
simulating the repetition of two rival sellers. He saw competition in electricity markets,
often across jurisdictional borders, as a field in which the “underlying economic models
are often quite simple,” but the real-world phenomena “complicated and richly detailed
in important ways” (1997, p. 220), and hence suitable for simulation.

Curzon Price derived two models, each a simplification of the England and Wales
electricity market, where the pool price is equal to the bid of the last producer required to
satisfy demand, a uniform-price auction. The first model assumes that neither producer
can supply the whole market, but that together their capacity exceeds demand. With
price as the only choice variable, this model has two pure- and one mixed-strategy
Nash equilibria. He was able to derive the pure-strategy equilibria, but not clearly the
mixed-strategy equilibrium, even when he set the initial population proportions to the
mixed-strategy proportions. For levels of GA crossover above 6% he found that the
equilibrium mix could not be sustained. He concluded that, with an underlying situation
of residual monopoly, the electricity pool rules would not lead to competitive prices, a
finding of great significance to the market design.

His second model included the two producers’ choice of capacities as well as prices.
The first model was modified: if either producer could satisfy the entire market, then the
lowest bid would be chosen. Players offered both price and quantity bids, the quantity
offered incurring a cost whether or not the capacity was used. His analysis yielded three
regimes: one where the high bidder is a residual monopolist; one where the low bidder
can satisfy the demand; and one where there is excess demand because the higher bid is
too high. The equilibrium strategies found by the GA can be characterized as similar to
the first model without capacity as a strategic variable: one producer offering the lowest
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capacity possible and bidding it at the maximum price, and the other producer offering
the highest residual quantity at a low price. The firms evolve their capacities to avoid
Bertrand (marginal cost) outcomes.

Curzon Price’s work was directly descended from Axelrod’s (Axelrod, 1987) work
with GAs and IPDs, Marks’ (Marks, 1992) work on oligopolistic behavior, and other
economists’ use of GAs, such as Andreoni and Miller’s (Andreoni and Miller, 1995)
exploration of auctions using the GA to model the co-evolution of artificial adaptive
agents. Andreoni and Miller found that their model of adaptive learning was consistent
with the main results from laboratory experiments, and that—significantly for the pur-
pose at hand—various auction designs (“institutions”) display very different adaptive
dynamics. Curzon Price suggested that plausible behavioral elements could be included
in the simulations.

Iowa State University has been a fertile place for cross-disciplinary research in agent-
based modeling of electricity markets. As well as Sheblé in engineering, it is home to
Tesfatsion in economics. Two of the most widely cited papers on the application have
emerged from her research group. These we now discuss.

4.3.2. Nicolaisen et al. (2000) search for market power

Nicolaisen et al. (2000) used a GA agent-based model of a discriminatory-price clear-
inghouse19 k-double auction electricity market [Klemperer (2002)] to examine the ex-
ercise of market power (as deviations from competitive equilibrium values of prices
and quantities). They used the EPRI Power Market [see Lane et al. (2000), above],
where each agent simultaneously submitted a single price-quantity bid or ask. Buyers
and sellers are matched to maximize total profit, using k = 0.5 again. Each agent’s
fitness is proportional to its profit in the last round: only the last round’s bid or ask is
remembered. The linear revenue and cost functions ensure that bids and asks are at the
capacity quantities. Bids (asks) are bound between [marginal revenue − $40, marginal
revenue] (marginal cost). Two definitions: first, the relative concentration of sellers NS
to buyers NB, RCON = NS/NB; and, second, the relative capacity of buyers to sellers,
RCAP = (NB/NS) × (CB/CS), where CB (CS) is the maximum quantity of electrical
energy that each buyer (seller) can resell (generate) in a retail market. Six buyers and
six sellers compete, with 3 × 3 treatments of three values of RCON and three values of
RCAP.

The authors derived sellers’ market power, MPS = (PSA − PSCE)/PSCE, and buy-
ers’ market power, MPB = (PBA − PBCE)/PBCE. They found no evidence that MPB
is negatively related to RCAP, or that MPS is positively related to RCAP, either in ag-
gregate or individually, contrary to expectations from theory.

19 A clearinghouse (or call) market is one in which all traders place offers before the market is cleared; they
can have discriminatory or uniform prices. A continuous market is one in which trades are executed as new
offers arrive; prices are thus discriminatory.
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How could this be explained? As Tesfatsion (2005) notes, the measures of concen-
tration and capacity (RCON and RCAP) are structural characteristics of the market.
As is standard in the industrial organization literature, they are calculated before any
experiments have been run, and hence before the analyst knows which traders are in-
framarginal (and so will actually engage in trade) and which are extramarginal (and so
will not engage in any trades). Because they do not trade, the bids/asks of extramar-
ginal traders will have no affect on market power outcomes. As a result, by varying
the numbers and capacities of the extramarginal traders, the concentration and capac-
ity measures can be made arbitrarily large or small while keeping the market power
measure constant. Consequently, so long as the extramarginal/inframarginal decision
for each trader is endogenous [as in Nicolaisen et al. (2000)], no systematic relationship
among RCON, RCAP, and market power outcomes will be seen.

In Nicolaisen et al. (2000), trading agents were quite boundedly rational, with only
one round of memory. Moreover, the GA was given only two populations (one for
buyers and one for sellers), whereas the treatments meant that agents with different mar-
ginal costs and revenues faced different concentrations and capacities: the GA was not
modeling this heterogeneity. Furthermore, the social learning process (mimicry of other
buyers or other sellers) of the GA meant that any comparative advantages in strategies
(as a consequence of different firm structures) soon spread to the rest of the population
of players and became dissipated, as Vriend (2000) discussed. Moreover, social learn-
ing means that firms that would rightly decline to trade (the extramarginals) may now
engage in opportunistic trades (and become inframarginal), thus potentially lowering
market efficiency. The paper cites earlier work by Lane and by Richter, both at Iowa
State.

4.3.3. Nicolaisen et al. (2001) use reinforcement learning

Following from their 2000 study (see above), Nicolaisen et al. (2001) altered their model
by using a form of learning that, unlike the GA, did not impose strategic homogeneity on
structurally distinct buyers and sellers. As well as mimicry, individual learning would
be permitted. The model used the EPRI Power Model again, suitably modified, with
the same 3 × 3 treatments of RCON and RCAP, the same six buyers and sellers, as
characterized by their (private) marginal revenues and costs, respectively.

But in an attempt to obtain results on market power that were closer to those from
standard theory, Nicolaisen et al. (2001) used reinforcement learning [a modification
of Erev and Roth (1998)] instead of GA learning to allow individual learning and to
prevent any comparative advantage in strategies being dissipated among the artificial
agents. They point out that there are two shortcomings of the Roth–Erev model (see
equations (1)–(4) above). First, there might be degeneracy of its parameters: when the
experimentation parameter ε = (N − 1)/N , there is no updating of the choice para-
meter. Second, if there are zero profits, then the choice probabilities are not upgraded,
because a trader’s current propensity values are reduced proportionately. Lack of prob-
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ability updating in response to zero profits can result in a substantial loss of market
efficiency as traders struggle to learn how to make profitable price offers.

Nicolaisen et al. (2001) present a simple modification of the Roth–Erev RL algorithm
that addresses both of these issues while maintaining consistency with the learning prin-
ciples in the original formulation. The update function E(.) in equation (4) was replaced
by the following modified function:

(6)Ek(j, R(x)) =
{

(1 − ε)R(x), if j = k;
ε

N−1qjk, otherwise.

In effect, this modification introduces a differentiated value for the recency parameter
φ for selected versus non-selected actions, while also omitting the profit term in the
updating equation for propensities corresponding to non-selected actions. The recency
parameter for non-selected actions falls from φ to φ∗ = φ − ε/(N − 1). As Nicolaisen
et al. (2001) put it, “The choice probabilities corresponding to action choices result-
ing in zero-profit outcomes tend to decrease relative to other choice probabilities while
the choice probabilities corresponding to action choices resulting in positive profit out-
comes tend to increase.” Otherwise the paper’s model was similar to the earlier work
[Nicolaisen et al. (2000)]: a clearinghouse k-double auction with discriminatory pricing,
and k = 0.5.

The nine treatments were each tested three times, using different settings for the three
parameters of the modified Roth–Erev (MRE) model of equations (1)–(3) and (6): the
scaling parameter S(1), a recency parameter φ, and an experimentation parameter ε.
For the first two tests, the parameter values were chosen to facilitate the emergence
for each trader of a dominant price offer with a relatively large choice probability, by
the final auction round in each run. The third test used the parameter values obtained
by Erev and Roth (1998) by best overall fit of their RL algorithm (equations (1)–(4))
to experimental data from twelve distinct types of games run with human subjects:
S(1) = 9.00, φ = 0.10, ε = 0.20.

Under all treatments, the presence of active buyers and sellers reduces the abil-
ity of structurally disadvantaged traders to exercise strategic market power, that is, to
use strategic pricing to overcome the structural market-power biases inherent in the
discriminatory-pricing protocol. Moreover, traders’ ability to exercise strategic market
power is further limited by the threat of entry of extramarginal traders, as discussed in
Section 4.3.2 above.

Nicolaisen et al. (2001) obtained generally high market efficiency (defined as EA =
(PBA + PSA)/(PBCE + PSCE)) under all treatments. Notably, as seen in the earlier
study (above) by Nicolaisen et al. (2000), market efficiency was relatively low when
the traders used the inappropriate form of social mimicry embodied in GA learning.
The later results from Nicolaisen et al. (2001) suggest that the market efficiency of dou-
ble auctions operating under a discriminatory pricing rule is reliably high when buyers
and sellers refrain from inappropriate learning behavior or bad judgment [Tesfatsion
(2005)]. These results confirm Vriend’s (Vriend, 2000) argument that market efficiency
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is not robust with respect to a switch from individual learning (here MRE) to social
learning (here GA).

In asking whether the market design ensured efficient, fair, and orderly market out-
comes over time despite repeated attempts by traders to game the design for their own
personal advantage, Nicolaisen et al. (2001) were clearly focused on market design. The
paper cited Bower and Bunn (2001) and Lane et al. (2000).

One of the most successful academic economists to use agent-based techniques to
analyze electricity markets is Bunn with his associates at the London Business School.
As well as publishing in the economics literature, he has also published in the energy
and regulatory literature, and his models have been calibrated against historical data. In
Bunn and Oliveira (2001), we read: “The development of a detailed simulation platform
representing the agents, the markets, and the market-clearing mechanisms, together with
reinforcement learning to facilitate profit-seeking behavior by the agents, can, in prin-
ciple, provide a computational framework to overcome the limitations of the analytical
approaches.” That is, such a platform could be used to design a market.20

Following the deregulation and privatization of the electricity generation sector in
Britain, Bunn and Day (1998) proposed using agent-based simulation of electricity
power pools to analyze the short- and longer-term behavior of the generators, as they
learned, partly to see whether high prices might be the result of implicit collusion.

Bower and Bunn (2000, 2001) developed a simulation model of the wholesale elec-
tricity market in England and Wales as a means of systematically testing the potential
impact of alternative trading arrangements on market prices, specifically uniform- ver-
sus discriminatory-price auctions, thus undertaking a form of market design. Generators
were represented as autonomous, adaptive, computer-generated agents, which progres-
sively learned better profit-maximizing bidding behavior, by developing their own trad-
ing strategies, in order to explore and exploit the capacity and technical constraints of
plant, market demand, and different market-clearing and settlement arrangements. Their
agents used simple internal decision rules that allowed them to discover and learn strate-
gic solutions which satisfied their profit and market-share objectives over time. These
rules constituted what is essentially a naïve RL algorithm, and the behavior of the sim-
ulated market is thus almost entirely emergent. The agents knew everything about their
own portfolio of plants, bids, output levels, and profits, but nothing about other agents
or the state of the market. Their ability to capture and retain data was limited, they had
no powers of strategic reasoning, and hence they exhibited a high degree of bounded
rationality. The agents were modeled as data arrays in Excel 97 and manipulated with
Visual Basic. Bower and Bun concluded that the discriminatory auction results in higher

20 In a private communication, Bunn (2004) remembered that his interest in using agent-based models fol-
lowed from a new Ph.D. candidate with a computer science background who suggested using Object-Oriented
Programming [Gamma et al. (1995)], such as Java, as a better platform for simulating the electricity market
than Systems Dynamics [Forrester (1961)]. As we see below, OOP leads to agent-based models relatively
easily.
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market prices than does the uniform-price auction. The papers did not cite any earlier
work on agent-based modeling.

This research did not capture the interaction between the bilateral trading and the bal-
ancing market, nor did it incorporate any sophistication in the agents’ learning abilities.
Bunn and Oliveira (2001), however, describe a model with agents whose learning was
inspired by the fitness function and selection mechanisms used in GAs. They argue that,
by keeping the probabilities of exploration and exploitation independent of the expected
reward from following a particular bidding strategy, their GA model should be trapped
at local equilibria less often than would agents using a naïve RL algorithm, such as
Erev and Roth (1998), especially in non-stationary environments. Their new simulation
platform was a much more detailed representation: it actively modeled the demand side
and the interactions between two different markets, as well as the settlement process;
and it took into account the daily dynamic constraints and different marginal costs for
each generation technology. It referenced two earlier works from the GA simulation
literature: LeBaron et al. (1999) and Nicolaisen et al. (2000).

Bower et al. (2001) applied a similar agent-based model to the German electricity
market, specifically examining the effects on peak prices of consolidation, and the po-
tential for the exercise of market power by the dominant generators. The references in
this paper included Hämäläinen (1996) and Curzon Price (1997).

4.3.4. Bunn and Oliveira (2003) help design a new wholesale market

Bunn and Oliveira (2003) use agent-based simulation in a coordination game to analyze
the possibility of market power abuse in a competitive electricity market. The model
builds on the work in Bunn and Oliveira (2001), but does not allow the agents to learn
as they did in the earlier, GA-based model, in order to retain more transparency in
understanding their actions. Instead, the model uses reinforcement learning. The aims
of the authors were not to evaluate the market structure but rather to see whether market
conditions were sufficient to allow the exercise of market power by a certain player. The
paper referenced Nicolaisen et al. (2001).

The authors used agent-based simulation in a coordination game to analyze the pos-
sibility of market power (structural or strategic, as measured by higher prices and prof-
itability than competitive outcomes) being exercised in a competitive electricity market:
the policy issue was to help answer the question of whether two specific generators
could influence wholesale electricity prices.

They extended Bun and Oliveira’s (Bunn and Oliveira, 2001) New Electricity Trading
Arrangements simulation platform. Their agents can be modeled as having the capacity
to learn, and represented generating companies (possibly owning several plants with
different generation philosophies) and buyers in the wholesale market who then supply
end-use consumers. Agents use a RL algorithm to improve their performance: each
agent evaluates the profit earned, and then derives new policies to bid or offer, given its
strategic objectives of profit maximization and market exposure.
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The authors were not interested in whether a particular market design, or structure,
resulted in a competitive equilibrium; rather, whether a particular player, by its conduct,
finds it profitable to act (choosing its offer price and strategically withholding capacity)
in order to increase wholesale electricity prices.

They derive a simplified analytical model of the market: two generators in a stylized
discriminatory-price Bertrand game with capacity constraints, from which they derive
several propositions, which are then tested in the simulation of a more realistic model
of the electricity industry. They used the eight largest generators in the England and
Wales electricity market in 2000, splitting each generator’s capacity into three cate-
gories, based on the degree of flexibility and running times of each technology (nuclear,
large coal and combined-cycle gas turbines, and the rest). The simulated industry had
80 gensets, owned by 24 generators, who sell power to 13 suppliers. Four daily demand
profiles were used. After initial learning by the agents, they found that the evolution of
prices settled by about 50 iterations (trading days), and results were averaged over the
last 10 days (of 50).

They simulated six different strategies for one and (or) both of the generators whose
behavior was under scrutiny, under six different scenarios, each of which was repeated
twice, with small differences. Average prices of the six strategies (under the 12 simu-
lations) were higher than the marginal costs (even with full capacity available). This
indicated structural market power caused by the industry structure, exacerbated by
strategic market power (such as deliberately withholding capacity).

In order to evaluate the capacity of the two generators to manipulate market prices
through capacity withholding, they compared different simulations using t-statistics (for
pooled samples), a result of the complexities introduced by multiple equilibria and the
effects of agents’ learning. The two can act as price makers, but only when they both
simultaneously withdraw capacity from the market can they profit from price manipu-
lation.

They argued that the agent-based simulation technique enabled substantial insights
to be gained before the new wholesale electricity market was introduced, and enabled
the modeling of complex adaptive behavior in an environment with possible multiple
equilibria, with heterogeneous agents and price uncertainty.

4.4. Recent non-academic research centers

It is the mark of a successful research method that its use has spread beyond the
academy into government agencies (as foreshadowed eight years ago by the head of
the FERC) and commercial research organizations and companies. The agent-based
analysis and design of electricity markets is a successful research method. We briefly
mention the latest centers of research into electricity market design using agent-based
models: EPRI and the Lawrence Berkeley National Laboratory; Argonne National Lab-
oratory; and Hewlett-Packard. [Koesrindartoto and Tesfatsion (2004) discuss other cen-
ters.]
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The Argonne National Laboratory has developed the Electricity Markets Complex
Adaptive Systems (EMCAS) model, which incorporates agent learning and adaptation
based on performance and changing conditions [North et al. (2001, 2002)]. There are
user-specified market rules affecting the behavior of individual agents as well as the
system. Earlier work at Argonne [North (2000)] was based on the SWARM agent-based
modeling platform [Burkhart et al. (2000)]. Although EMCAS is based on the RePast
open-source agent-based simulation platform [Collier and Sallach (2001)] and uses GA
learning for certain agents, it is a proprietary system. EMCAS is designed to determine
the state or states to which the market will gravitate, and the transients involved in
getting there. Customer agents represent electricity users and company agents represent
electricity suppliers. In EMCAS, each company agent seeks to maximize its individual
corporate utility, not overall social utility, as it interacts with other agents and with
the Independent System Operator (ISO) or Regional Transmission Organization (RTO)
agent. EMCAS operates at six interdependent time scales: from real-time dispatch; to
planning day-ahead; week-ahead; month-ahead; year-ahead; and in the medium-to-long
term (2–10 years). The authors are aware that as well as allowing alternative company
strategies to be simulated, EMCAS allows market rules to be tested: iterative market
design.

Meanwhile, Harp et al. (2000) developed a proof-of-concept software tool, SEPIA
(simulator for electric power industry agents), an agent-based simulation platform for
modeling and exploring a complex adaptive system, the electric power industry. It used
two kinds of learning algorithms: Q-learning [Watkins and Dayan (1992)], a version of
reinforcement learning; and genetic classifier systems. SEPIA was hosted at Honeywell,
and was under-written by EPRI. [See Amin (2002) for further discussion.]

EPRI has used agent-based models to explore market design: Entriken and Wan
(2005) describe experiments using computer-based agents to simulate the impact of the
California Independent System Operator’s proposed Automatic Mitigation Procedure
(AMP) on market behavior. These computer agents play the role of market participants
seeking to maximize their profits as they formulate bids under a number of scenarios
over a simple, two-node market at various levels of demand and transfer capability, with
and without the AMP in force. The study demonstrates that agent-based simulation is
a useful tool for analyzing existing and proposed design features of electricity markets.
One aim was to eliminate the need for human laboratory subjects, and they configured
the computer agents in an attempt to eliminate experimental bias. The researchers mod-
eled demand players as price takers: they always bid their willingness-to-pay. Suppliers
used an identical strategy of aggressive profit maximization. By comparing their bid
prices with the market-clearing price, suppliers could determine whether they were mar-
ginal, in which case they used a very simple naïve rule for rent capture: they tested the
margin by raising their bid prices. Agents were given the opportunity to learn, although
the exact learning algorithm is not described.
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5. Computer trading and on-line markets

As mentioned above, inspired by natural phenomena, computer scientists invented vari-
ous forms of evolutionary programs, such as Holland’s GA. They had for some time also
been interested in DAI and object-oriented programs, which allow parallel processing
to speed solution of the simulation models. This use of multi-agent systems resulted in a
special issue of the Journal of Artificial Intelligence, edited by Boutilier et al. (1997), on
the Economic principles of multi-agent systems, which attempted to introduce computer
scientists to the work of economists and game theorists in modeling the interactions of
few and many economic actors in markets.

Note that, as they design computerized trading systems, computer scientists have also
become interested in the means by which explicit communication between agents might
facilitate the operation of these virtual markets. Economists analyzing oligopolistic mar-
kets and auctions using agent-based models have denied their agents the possibility
of explicit communication: under the various antitrust regimes such communication
would probably be illegal. Instead, any communication must be arm’s-length signaling
by means of prices chosen in previous rounds, if common knowledge.

As well as developing algorithms to pursue simulations of market interactions, com-
puter scientists have also been pioneers in the task of parameterizing auction design
space [Wurman et al. (2001)]. This achieves two things: it allows a standard way to
describe auction rules, for human beings or for software agents; and, more importantly
for the purpose at hand, parameterization of the design space of auctions is necessary to
allow direct agent-based design of markets in general and auctions in particular to pro-
ceed. A further motivation is to aid the development of auctioneer programs, perhaps
on-line.

At IBM, Walsh et al. (2002) used replicator dynamics [Weibull (1995)] to model
learning in a multi-agent system to analyze the dynamics and equilibria of two market
types for which a full game-theoretic analysis is intractable: automated dynamic pric-
ing, where sellers compete; and automated bidding in the CDA. Unlike GA learning,
replicator dynamics cannot generate new strategies or rules: it can only alter the likeli-
hoods of strategies and rules existing at the start of the simulation [Duffy (2006)]. The
authors are explicit about the need to obtain clear understanding of the workings of such
mechanisms through analysis before design is possible: efficiency and stability are two
design criteria mentioned.

5.1. “Evolutionary mechanism design” at Liverpool

A group at the University of Liverpool have been developing techniques of what they
dub “evolutionary mechanism design” to examine not just buyer and seller behavior,
but auctioneer behavior too, that is, how the transaction price is (or might be) derived in
double auctions. Specifically, they took the wholesale electricity market of Nicolaisen
et al. (2001) almost intact, with one change: they moved from a clearinghouse double
auction to a CDA, using the open-source “4-heap” algorithm [Wurman et al. (1998)].
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As a CDA, there was discriminatory pricing, and Myerson and Satterthwaite’s [Myerson
and Satterthwaite (1983)] impossibility theorem holds.

In the first of a series of papers, Phelps et al. (2002a) sought to co-evolve the buyers,
the sellers, and the auctioneer. That is, they viewed the market as the outcome of some
evolutionary process involving these three types of actors. They identified two possible
techniques for computer-aided auction design based on evolutionary computing: Koza’s
(1993) genetic programming (GP) and the MRE RL algorithm as formalized in equa-
tions (1)–(3) and (6) above.

The authors first used the same best-fit MRE parameters and the same 3×3 treatment
of RCON and RCAP as in Nicolaisen et al. (2001). They were able to replicate Nico-
laisen et al.’s results for market power and for mean market efficiency (close to 100%).
But market efficiency was more volatile than in Nicolaisen et al. (2001), perhaps be-
cause of the change from clearinghouse to CDA.

The authors then switched to assuming that each trader used GP instead of MRE rein-
forcement learning to search for a pricing strategy. Each agent’s fitness was a function of
its profits. Separate populations allowed the emergence of collusive strategies between
self-interested traders. Could high-efficiency outcomes be sustained in this model? The
answer was no: After 2000 generations, market efficiency stabilized at the relatively low
level of 74%.

The final section of the paper added a seventh population, that of auctioneers, again
using GP to search a space of pricing rules that included both uniform-pricing and
discriminatory-pricing versions of the k-double auction. The auctioneer’s fitness was
proportional to the total profits earned in the market.

The simulation results showed that the adaptive auction was able to significantly im-
prove its mean EA: to 94.5% and stability after only 500 generations, with the same
3×3 treatment of RCON and RCAP as above. In each of the 9 cases the evolved pricing
rule was a linear function of either b or a, the two prices, but not both. When NS = NB,
the price is determined by a, suggesting that sellers control the market whatever the
values of RCAP. They cited Curzon Price (1997).

In a succeeding paper, Phelps et al. (2002b) use an objective function which is a
weighted sum of MPB, MPS, and EA, each suitably normalized. They restrict search of
the mechanism design space to the question: What is the best k-double-auction rule?
Are there alternatives that perform as well or better when agents play strategies derived
from a cognitive model of strategic interacting: the MRE?

They first simulated the same wholesale electricity market for a range of k values,
using stochastic sampling, and found that k ≈ 0.5 gave good performances. Then they
used GP to search the larger space of arbitrary pricing rules, from b and a prices in the
CDA. They derived several pages of “completely impenetrable” Lisp-based arithmetical
expressions, which only became clear when plotted: effectively the discriminatory-price
k-CDA with k = 0.5, apart from a small variation when a is small, or a = b. So k = 0.5
is reasonable.

A third paper [Phelps et al. (2003)] extended the earlier work to examine the strategy-
proofness of k. It found that k = 0.5 is close to strategy-proof. A fourth paper [Phelps et
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al. (2005)] uses a “heuristic-strategy” approach and replicator dynamics [Duffy (2006)]
to compare the clearinghouse double auction with the CDA, in terms of strategy-
proofness and EA efficiency. It concluded that although the CDA is, on average, slightly
less efficient, it can handle higher flows of transactions.

To summarize the significance of these papers: Agent-based market models have used
two kinds of learning: social evolutionary learning algorithms, such as Holland’s GAs
or Koza’s GP; and versions of individual reinforcement learning, such as the Roth–Erev
model and modifications. On the one hand, Nicolaisen et al. (2001) argue that the social
learning implicit in the GA together with the endogenous extramarginal/inframarginal
decision militates against the emergence high market efficiency in agent-based models,
while a version of Roth–Erev is sufficient for its emergence. On the other hand, Phelps
et al. (2002a) believe that a GP model of learning in electricity markets is a better
model in which to design the auction by including the auction rules in the search space
of the GP algorithm, as well as including the buyers’ and sellers’ strategies. It remains
a challenge to reconcile the power of evolutionary algorithms in searching a complex
design space for agents’ strategies and auction rules with the greater realism (but less
effective exploration and exploitation of the design space) of models using individual
reinforcement learning.

Design of markets might occur with simultaneous “design” of trading agents, a line
of research pursued with GA learning at Hewlett-Packard by Cliff (2001, 2002a, 2002b,
2003a)21 on CDAs and by Byde (2002) on sealed-bid auctions. Two weakness of Cliff
(2001) are that, one, it uses a single population for many heterogeneous agents, and, two,
the fitness function selects only for globally desirable outcomes, not individually desir-
able ones. This might be of interest when the designer market will not be a venue for
human traders (or their organizations), but rather will be a venue for the designer trad-
ing agents (the “buy-bots” and “sell-bots”). This situation has become a possibility with
the growth of the Internet. The use of artificial trading agents in business-to-business
wholesale trading and in allocations internal to the company or organization is where
one might expect such agents to appear most naturally.

5.2. Byde (2002) evolves a new form of sealed-bid single auction

The emphasis of the mechanism-design research in this chapter has been almost ex-
clusively on double auctions. Yet, the single (or monopolist) auction is also of great
interest, especially the new, spectrum auction. Byde (2002) examines the design of the
sealed-bid single auction, using automated agents as bidders. The agents learn via a

21 On his web page, Cliff (2003b) explains how he came to develop computer traders—his ZIP (Zero Intel-
ligence Plus) traders—that researchers at IBM found outperformed human traders [Das et al. (2001)]. “The
wonderful results in the IBM paper, and the success of using the GA to get better ZIPs, led me to think about
using a GA to design new marketplaces that are specialized for trading agents.” [See Cliff (2002a), et seq.]
See the chapter by Duffy (2006) for an extensive discussion of Zero-Intelligence traders.
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GA, and the objective is to maximize seller revenue, while not ignoring buyers’ von-
Neumann–Morgenstern utilities under different designs. Each bidding agent’s valuation
of the item for sale is some function of the signals received by all bidders.

Byde defines a w-price auction as a generalization of first- and second-price auc-
tions: let w = (w1, w2, . . . , wn) be a vector of n non-negative real numbers. A w-price
auction is a sealed-bid auction in which the highest bidder wins the item, and pays

(7)

∑N
j=1 wjbidj∑N

j=1 wj

,

where N is the minimum of n and the number of bidders, and bid1, bid2, . . . are the
bids ordered from highest to lowest. Byde used the GA to examine a one-dimensional
sub-space of w-price auctions: those of the type where the vector w = (1 − w2, w2).
When w2 = 0, this is a standard first-price auction; when w2 = 1, this is a second-price
(Vickrey) auction; and when 0 < w2 < 1, the payout is (1 − w2)bid1 + w2bid2, a
non-standard sealed-bid auction.

The space of agent preferences and environmental variables searched allowed Byde
to examine exceptions to the Revenue Equivalence Theorem [Milgrom (2004)]: variable
numbers of bidders, risk preferences, correlated signals, and degrees of commonality of
values. Using a GA, he simulated a population of bidding agents which bid as a function
of the signal each received, and played the game many times with stochastic sampling.
He noted that each agent’s fitness is relative to other agents (although, with a single
population, he was not strictly co-evolving agents), which can lead to strategic behavior,
such as bidding above one’s signal if low, in order to reduce the winner’s surplus. The
game was repeated, not once-off, modeling bidders who come to know each others’
behaviors.

With risk-neutral bidders, independent signals, and a fixed number of bidders, Byde
benchmarked the Revenue Equivalence Theorem: there is no seller revenue advantage
to any particular w2. With risk-averse agents cet. par., first-price (w2 = 0) gave highest
seller revenue; with correlated signals cet. par., second-price (w2 = 1) gave highest.
He then found that “under several classes of non-pathological conditions (e.g. bidders
were risk-averse, and unaware of how many players they would face in a given auction),
there existed sealed-bid mechanisms expected to return significantly higher revenue to
the auctioneer than either the first- or second-price sealed-bid mechanisms,” specifi-
cally a payout where w2 = 0.3, or = 0.7 under other conditions. He noted that since
agents’ average expected utility seems insensitive to w2, sellers could design sealed-bid
auctions to maximize their revenue without much buyer resistance. Byde’s paper di-
rects the market engineer to a new family of designs for sealed-bid auctions, and a new
way to examine their performance in silico, before committing to real-world construc-
tion.
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6. Conclusion

The practical design of markets—mechanism design—using the tool of agent-based
simulation is emerging from its infancy. On the one hand, there are mechanisms, such
as monopoly auctions, that have been in use since antiquity [McMillan (2002, p. 69)]
without much self-conscious design effort. On the other, recent advances in theory and
computation have allowed analysis and design to derive new or better mechanisms. The
iterative analysis of electricity markets with agent-based models is now just ten years
old, and the work on automated markets is even more recent. Only recently have there
been attempts to use such models, after parameterizations of auctions, to directly design
markets, including electricity markets, as we have seen. Indeed, direct market-design
modeling attempts have only occurred in the last several years. Clearly, we have further
to travel down this road, as Roth’s (Roth, 2002) notion of the design economist emerges
from the work of many modelers, in economics, engineering, and computer science.

In this chapter, we have discussed the meaning of market design, its challenges, and
the use of agent-based simulation models to achieve it, examining in detail published
research in two of the five designer markets we introduced in Section 1 above, as exam-
ples of design by simulation.

We have discussed, first, analyzing electricity markets; second, attempting to design
such markets directly; and, third, designing new markets for on-line and automated
transactions. We have also mentioned in passing design issues in financial markets. It
has been impractical to mention all or even most modeling efforts in the literature,
and we have focused on the pioneering efforts and the most successful efforts so far.
Nonetheless, the future development of the field of agent-based market design will flour-
ish, as evidenced by the large numbers of researchers in different disciplines across the
Internet now involved in advancing our knowledge and understanding.

Acknowledgements

I acknowledge help in writing this chapter from the editors, and from Raimo Hämäläi-
nen, Derek Bunn, Peter McBurney, Bob Wilson, Paul Klemperer, Simon Parsons, Enrico
Gerding, Eddie Anderson, Thai Cau, Steve Phelps, Carol McCormack, Robert Wood,
and my fellow contributors at the Handbook Workshop at the University of Michigan,
May, 2004. Three anonymous referees were very helpful with their comments.

References

Amin, M. (2002). “Restructuring the electric enterprise: simulating the evolution of the electric power in-
dustry with intelligent adaptive agents”. In: Faruqui, A., Eakin, K. (Eds.), Market Analysis and Resource
Management. Kluwer, Dordrecht. Chapter 3.

Andreoni, J., Miller, J.H. (1995). “Auctions with artificial adaptive agents”. Games and Economic Behav-
ior 10, 38–64.



Ch. 27: Market Design Using Agent-Based Models 1375

Arifovic, J. (1994). “Genetic algorithm learning and the cobweb model”. Journal of Economic Dynamics and
Control 18, 3–28.

Arifovic, J. (2001). “Performance of rational and boundedly rational agents in a model with persistent ex-
change rate volatility”. Macroeconomic Dynamics 5, 204–224.

Arthur, W.B. (1991). “Designing economic agents that act like human agents: a behavioral approach to
bounded rationality”. American Economic Review 81, 353–359.

Arthur, W.B. (1993). “On designing economic agents that behave like human agents”. Journal of Evolutionary
Economics 3, 1–22.

Arthur, W.B. (2006). “Out-of-equilibrium economics and agent-based modeling”, this handbook.
Arthur, W.B., Holland, J., LeBaron, B., Palmer, R., Tayler, P. (1997). “Asset pricing under endogenous ex-

pectations in an artificial stock market”. In: Arthur, W.B., Durlauf, S., Lane, D. (Eds.), The Economy as
an Evolving Complex System II. Addison-Wesley, Reading, MA, pp. 15–44.

Audet, N., Gravelle, T., Yang, J. (2002). “Alternative trading systems: does one shoe fit all?”, working paper
2002-33 (Bank of Canada, Ottawa).

Axelrod, R. (1987). “The evolution of strategies in the iterated Prisoner’s Dilemma”. In: Davis, L. (Ed.),
Genetic Algorithms and Simulated Annealing. Pittman, London, pp. 32–41.

Axelrod, R. (2006). “Agent-based modeling as a bridge between disciplines”, this handbook.
Bottazzi, G., Dosi, G., Rebesco, I. (2003). “Institutional architectures and behavioural ecologies in the dy-

namics of financial markets: a preliminary investigation”, Technical Report, Laboratory of Economics
and Management, Sant’ Anna School of Advanced Studies, Pisa, Italy.

Boutilier, C., Shoham, Y., Wellman, M.P. (1997). “Economic principles of multi-agent systems”. Journal of
Artificial Intelligence 94 (1–2), 1–6. Editorial.

Bower, J., Bunn, D.W. (2000). “Model-based comparison of pool and bilateral markets for electricity”. Energy
Journal 21 (3), 1–29.

Bower, J., Bunn, D.W. (2001). “Experimental analysis of the efficiency of uniform-price versus discriminatory
auctions in the England and Wales electricity market”. Journal of Economic Dynamics and Control 25 (3–
4), 561–592.

Bower, J., Bunn, D.W., Wattendrup, C. (2001). “A model-based analysis of strategic consolidation in the
German electricity industry”. Energy Policy 29, 987–1005.

Brenner, T. (2006). “Agent learning representation”, this handbook.
Bullard, J., Duffy, J. (1999). “Using genetic algorithms to model the evolution of heterogeneous beliefs”.

Computational Economics 13 (1), 41–60.
Bunn, D.W. (2004). Personal communication.
Bunn, D.W., Day, C.J. (1998). “Agent-based simulation of electric power pools: a comparison with the supply

function equilibrium approach”. In: Technology’s Critical Role in Energy and Environmental Markets,
Proceedings of the 19th Annual North American Conference of the United States Association for Energy
Economics and the International Association for Energy Economics, 18–21 October 1998, Albuquerque,
New Mexico. IAEE/USAEE, Cleveland.

Bunn, D.W., Oliveira, F.S. (2001). “Agent-based simulation: an application to the New Electricity Trading
Arrangements of England and Wales”. IEEE Transactions on Evolutionary Computation 5 (5), 493–503.

Bunn, D.W., Oliveira, F.S. (2003). “Evaluating individual market power in electricity markets via agent-based
simulation”. Annals of Operations Research 121, 57–77.

Burkhart, R., Askenazi, M., Minar, N. (2000). “Swarm Release Documentation”, available as http://www.
santafe.edu/projects/swarm/swarmdocs/set/set.html. Accessed 25 November 2004.

Bush, R.R., Mosteller, F. (1955). Stochastic Models for Learning. Wiley, New York.
Byde, A. (2002). “Applying evolutionary game theory to auction mechanism design”, Hewlett-Packard Tech-

nical Report HPL-2002-321.
Cau, T.D.H. (2003). “Analyzing tacit collusion in oligopolistic electricity markets using a co-evolutionary ap-

proach”, PhD dissertation, Australian Graduate School of Management, University of New South Wales.
Cau, T.D.H., Anderson, E.J. (2002). “A co-evolutionary approach to modeling the behavior of participants

in competitive electricity markets”. In: Proceedings of the Power Engineering Society Summer Meeting.
IEEE Society Press, Piscataway, NJ, pp. 1534–1540.

http://www.santafe.edu/projects/swarm/swarmdocs/set/set.html
http://www.santafe.edu/projects/swarm/swarmdocs/set/set.html


1376 R. Marks

Chan, N.T., Shelton, C. (2001). “An electronic market-maker”, Artificial Intelligence Lab, M.I.T., AI Memo
2001-005, April.

Chattoe, E. (1998). “Just how (un)realistic are evolutionary algorithms as representations of social
processes?”. Journal of Artificial Societies and Social Simulation 1 (3). http://www.soc.surrey.ac.uk/
JASSS/1/3/2.html.

Cliff, D. (2001). “Evolutionary optimization of parameter sets for adaptive software-agent traders in continu-
ous double auction markets”, Hewlett-Packard Technical Report HPL-2001-99.

Cliff, D. (2002a). “Evolution of market mechanism through a continuous space of auction-types”. In: Pro-
ceedings of the 2002 Congress on Evolutionary Computation, (CEC ’02) Honolulu. IEEE Society Press,
Piscataway, NJ, pp. 2029–2034.

Cliff, D. (2002b). “Evolution of market mechanism through a continuous space of auction-types II: Two-sided
auction mechanisms evolve in response to market shocks”, Hewlett-Packard Technical Report HPL-2002-
128.

Cliff, D. (2003a). “Explorations in evolutionary design of online auction market mechanisms”. Electronic
Commerce Research and Applications 2 (2), 162–175.

Cliff, D. (2003b). “Artificial trading agents for online auction marketplaces”, http://www.hpl.hp.com/
personal/dave_cliff/traders.htm. Accessed 15 July 2004.

Collier, N., Sallach, D. (2001). “RePast”. Available at http://repast.sourceforge.net.
Conlisk, J. (1996). “Why bounded rationality?”. Journal of Economic Literature 34, 669–700.
Cramton, P. (2003). “Electricity market design: the good, the bad, and the ugly”. In: Proceedings of the 36th

Hawaii International Conference on System Sciences. IEEE Society Press, Piscataway, NJ.
Cross, J.G. (1973). “A stochastic learning modle of economic behavior”. Quarterly Journal of Economics 87,

239–266.
Cross, J.G. (1983). A Theory of Adaptive Economic Behavior. Cambridge University Press, Cambridge.
Curzon Price, T. (1997). “Using co-evolutionary programming to simulate strategic behavior in markets”.

Journal of Evolutionary Economics 7 (3), 219–254.
Das, R., Hanson, J.E., Kephart, J.O., Tesauro, G. (2001). “Agent-human interactions in the continuous dou-

ble auction”. In: Nebel, B. (Ed.), Proceedings of the 17th International Joint Conferences on Artificial
Intelligence (IJCAI), Seattle. Morgan Kaufmann, San Francisco, pp. 1169–1187.

Dawid, H. (1999). Adaptive Learning By Genetic Algorithms: Analytical Results and Applications to Eco-
nomic Models, 2nd edn. Springer, Berlin.

Duffy, J. (2006). “Agent-based models and human-subject experiments”, this handbook.
Edmonds, B., Bryson, J.J. (2003). “Beyond the design stance: the intention of agent-based engineering”,

Centre for Policy Modelling, CPM Report No.: CPM-03-126. http://cfpm.org/papers/btds.pdf.
Entriken, R., Wan, S. (2005). “Agent-based simulation of an Automatic Mitigation Procedure”. In: Proceed-

ings of the 38th Hawaii International Conference on System Sciences. IEEE Society Press, Piscataway,
NJ.

Erev, I., Roth, A.E. (1998). “Predicting how people play games: reinforcement learning in experimental games
with unique mixed strategy equilibria”. American Economic Review 88 (4), 848–881.

FERC (2003). “Notice of White Paper”, U.S. Federal Energy Regulatory Commission Docket No. RM01-12-
000, April 28.

Forrester, J.W. (1961). Industrial Dynamics. M.I.T. Press, Cambridge.
Fudenberg, D., Maskin, E. (1986). “The Folk Theorem in repeated games with discounting or incomplete

information”. Econometrica 54, 533–554.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA.
Gjerstad, S. (2004). “The impact of bargaining pace in double auction dynamics”, Department of Economics,

University of Arizona.
Gjerstad, S., Dickhaut, J. (1998). “Price formation in double auctions”. Games and Economic Behavior 22,

1–29.
Gode, D., Sunder, S. (1993). “Allocation efficiency of markets with Zero Intelligence traders: market as a

partial substitute for individual rationality”. Journal of Political Economy 101, 119–137.

http://www.soc.surrey.ac.uk/JASSS/1/3/2.html
http://www.hpl.hp.com/personal/dave_cliff/traders.htm
http://repast.sourceforge.net
http://cfpm.org/papers/btds.pdf
http://www.soc.surrey.ac.uk/JASSS/1/3/2.html
http://www.hpl.hp.com/personal/dave_cliff/traders.htm


Ch. 27: Market Design Using Agent-Based Models 1377

Hailu, A., Schilizzi, S. (2004). “Are auctions more efficient than fixed price schemes when bidders learn?”.
Australian Journal of Management 29, 147–168.

Hämäläinen, R.P. (1996). “Agent-based modeling of the electricity distribution system”. In: Hamza, M.H.
(Ed.), Modelling, Identification and Control, Proceedings the 15th International Association of Science
and Technology for Development (IASTED) International Conference, February 19–21, Innsbruck. ACTA
Press, Calgary, pp. 344–346.

Hämäläinen, R.P. (2004). Personal communication.
Hämäläinen, R.P., Kettunen, E., Ehtamo, H. (1997). “Game modelling and coordination processes for two-

level multi-agent systems”. In: Hamza, M.H. (Ed.), Modelling, Identification and Control, Proceedings of
the 16th IASTED International Conference, February 17–19, Innsbruck. ACTA Press, Calgary, pp. 234–
240.

Hämäläinen, R.P., Parantainen, J. (1995). “Load analysis by agent-based simulation of the electricity dis-
tribution system”. In: Proceedings of the 2nd International Federation of Automatic Control (IFAC)
Symposium on Control of Power Plants and Power Systems SIPOWER95, Cancun, Mexico, December
6–8, 1995. Elsevier, Oxford, pp. 213–217.

Harp, S.A., Brignone, A., Wollenberg, B.F., Samad, T. (2000). “SEPIA: a Simulator for Electric Power In-
dustry Agents”. IEEE Control Systems Magazine 20 (4), 53–69.

Hoecker, J. (1998). “Keeping electric restructuring moving forward” (Feb. 3, 1998) (11th Annual Utility
M&A Symposium, New York), quoted in: E.P. Kahn, “Numerical techniques for analyzing market power
in electricity”, The Electricity Journal 34–43, July.

Holland, J.H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applica-
tions to Biology, Control, and Artificial Intelligence, 2nd edn. M.I.T. Press, Cambridge.

Holland, J.H., Miller, J.H. (1991). “Artificial adaptive agents in economic theory”. American Economic Re-
view 81 (2), 365–370.

Hu, J., Wellman, M.P. (1998). “Multiagent reinforcement learning: theoretical framework and an algorithm”.
In: Proceedings of the Fifteenth International Conference on Machine Learning. Morgan Kaufmann, San
Francisco, pp. 242–250.

Janssen, M.A., Ostrom, E. (2006). “Governing socio-ecological systems”, this handbook.
Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M. (2001). “Automated nego-

tiation: prospects, methods, and challenges”. International Journal of Group Decision and Negotiation 10
(2), 199–215.

Kauffman, S.A. (1995). At Home in the Universe: The Search for the Laws of Self-Organization and Com-
plexity. Oxford University Press, New York.

Klemperer, P. (2002). “What really matters in auction design”. Journal of Economic Perspectives 16 (1),
169–189.

Knuth, D.E. (1968–1973). The Art of Computer Programming. Addison-Wesley, Reading, MA.
Knuth, D.E. (1979). TeX and METAFONT: New Directions in Typesetting. Digital Press, Bedford, MA.
Koesrindartoto, D., Tesfatsion, L. (2004). “Testing the reliability of FERC’s Wholesale Power Market Plat-

form: an agent-based computational economics approach”. In: Energy, Environment and Economics in
a New Era, Proceedings of the 24th Annual North American Conference of the United States Associ-
ation for Energy Economics and the International Association for Energy Economics, 8–10 July 2004,
Washington, DC. IAEE/USAEE, Cleveland.

Koza, J.R. (1993). Genetic Programming: On the Programming of Computers by Means of Natural Selection.
M.I.T. Press, Cambridge.

Krishna, V., Ramesh, V.C. (1998). “Intelligent agents in negotiations in market games, Part 2, Application”.
IEEE Transactions on Power Systems 13 (3), 1109–1114.

Lane, D.A. (1993a). “Artificial worlds and economics, part I”. Journal of Evolutionary Economics 3, 89–107.
Lane, D.A. (1993b). “Artificial worlds and economics, part II”. Journal of Evolutionary Economics 3, 177–

197.
Lane, D., Kroujiline, A., Petrov, V., Sheblé, G. (2000). “Electricity market power: marginal cost and relative

capacity effects”. In: Alzala, A. (Ed.), Proceedings of the 2000 Congress on Evolutionary Computation.
IEEE Society Press, Piscataway, NJ, pp. 1048–1054.



1378 R. Marks

LeBaron, B. (2006). “Agent-based computational finance”, this handbook.
LeBaron, B., Arthur, W.B., Palmer, R. (1999). “Time series properties of an artificial stock market”. Journal

of Economic Dynamics and Control 23 (9–10), 1487–1516.
Maifeld, T., Sheblé, G. (1996). “Genetic-based unit commitment”. IEEE Transactions on Power Systems 11

(3), 1359.
MacGill, I.F. (2004), “Exploring spot electricity market operation through agent-based simulation and evolu-

tionary programming”, Canberra: CSIRO Agent-Based Modeling Seminar, February.
MacGill, I.F., Kaye, R.J. (1999). “Decentralized coordination of power system operation using dual evolu-

tionary programming”. IEEE Transactions on Power Systems 14 (1), 112–119.
MacKie-Mason, J.K., Wellman, M.P. (2006). “Automated markets and trading agents”, this handbook.
Marks, R.E. (1989). “Breeding optimal strategies: optimal behavior for oligopolists”. In: Schaffer, J.D. (Ed.),

Proceedings of the Third International Conference on Genetic Algorithms, George Mason University,
June 4–7, 1989. Morgan Kaufmann Publishers, San Mateo, CA, pp. 198–207.

Marks, R.E. (1992). “Breeding hybrid strategies: optimal behaviour for oligopolists”. Journal of Evolutionary
Economics 2, 17–38.

Marks, R.E. (1998). “Evolved perception and behaviour in oligopolies”. Journal of Economic Dynamics and
Control 22 (8–9), 1209–1233.

Marks, R.E. (2003). “Models rule”. Australian Journal of Management 28 (1), i–ii. Editorial.
Marks, R.E., Midgley, D.F., Cooper, L.G. (1995). “Adaptive behavior in an oligopoly”. In: Biethahn, J.,

Nissen, V. (Eds.), Evolutionary Algorithms in Management Applications. Springer, Berlin, pp. 225–239.
McMillan, J. (2002). Reinventing the Bazaar: A Natural History of Markets. Norton, New York.
Midgley, D.F., Marks, R.E., Cooper, L.G. (1997). “Breeding competitive strategies”. Management Science 43

(3), 257–275.
Milgrom, P. (2004). Putting Auction Theory to Work. Cambridge University Press, Cambridge.
Myerson, R.B., Satterthwaite, M.A. (1983). “Efficient mechanisms for bilateral trading”. Journal of Economic

Theory 29, 265–281.
Nicolaisen, J., Smith, M., Petrov, V., Tesfatsion, L. (2000). “Concentration and capacity effects on electricity

market power”. In: Alzala, A. (Ed.), Proceedings of the 2000 Congress on Evolutionary Computation.
IEEE Society Press, Piscataway, NJ, pp. 1041–1047.

Nicolaisen, J., Petrov, V., Tesfatsion, L. (2001). “Market power and efficiency in a computational electricity
market with discriminatory double-auction pricing”. IEEE Transactions on Evolutionary Computation 5
(5), 504–523.

North, M.J. (2000). “SMART II: The Spot Market Agent Research Tool Version 2.0”. In: Proceedings of
SwarmFest 2000. Swarm Development Group, Logan, Utah, pp. 9–13.

North, M.J., Macal, C., Cirillo, R., Conzelmann, G., Koritarov, V., Thimmapuram, P., Veselka, T. (2001).
“Multi-agent social and organizational modeling of electric power and natural gas markets”. Computa-
tional & Mathematical Organization Theory 7 (4), 331–337.

North, M., Conzelmann, G., Koritarov, V., Macal, C., Thimmapuram, P., Veselka, T. (2002). “E-Laboratories:
agent-based modeling of electricity markets”. In: Proceedings of the 2002 American Power Conference.
PennWell, Tulsa, Okla.

Phelps, S., McBurney, P., Parsons, S., Sklar, E. (2002a). “Co-evolutionary auction mechanism design: a pre-
liminary report”. In: Padget, J.A., Shehory, O., Parkes, D.C., Sadeh, N.M., Walsh, W.E. (Eds.), Lecture
Notes In Computer Science: Revised Papers from the Workshop on Agent-Mediated Electronic Com-
merce IV: Designing Mechanisms and Systems. Springer, Berlin, pp. 123–142.

Phelps, S., Parsons, S., Sklar, E., McBurney, P. (2002b). “Applying multi-objective evolutionary computing to
auction mechanism design”, University of Liverpool Computer Science Technical Report ULCS-02-031.

Phelps, S., McBurney, P., Sklar, E., Parsons, S. (2003). “Using genetic programming to optimise pricing
rules for a double auction market”. In: Proceedings of the Workshop on Agents for Electronic Commerce,
Pittsburgh, PA.

Phelps, S., Parsons, S., McBurney, P. (2005). “Automated trading agents versus virtual humans: an evolution-
ary game-theoretic comparison of two double-auction market designs”. In: Faratin, P., Rodriguez-Aguilar,



Ch. 27: Market Design Using Agent-Based Models 1379

J.A. (Eds.), Agent-Mediated Electronic Commerce VI: Theories for and Engineering of Distributed Mech-
anisms and Systems. In: Lecture Notes in Computer Science. Springer, Berlin.

Räsänen, M., Hämäläinen, R.P., Ruusunen, J. (1994). “Visual interactive modelling in electricity load analy-
sis”. In: Hamza, M.H. (Ed.), Modelling, Identification and Control, Proceedings the 13th International
Association of Science and Technology for Development (IASTED) International Conference, Grindel-
wald, Switzerland, Feb. 21–23. ACTA Press, Calgary, pp. 339–342.

Richter, C.W., Sheblé, G. (1998). “Genetic algorithm evolution of utility bidding strategies for the competitive
marketplace”. IEEE Transactions on Power Systems 13 (1), 256–261.

Richter, C.W. Jr., Sheblé, G.B., Ashlock, D. (1999). “Comprehensive bidding strategies with genetic pro-
gramming/finite state automata”. IEEE Transactions on Power Systems 14 (4), 1207–1212.

Riechmann, T. (2001). “Genetic algorithm learning and evolutionary games”. Journal of Economic Dynamics
and Control 25, 1019–1037.

Roth, A.E. (1991). “Game theory as a part of empirical economics”. Economic Journal 101 (401), 107–114.
Roth, A.E. (2000). “Game theory as a tool for market design”. In: Patrone, F., García-Jurado, I., Tijs, S. (Eds.),

Game Practice: Contributions from Applied Game Theory. Kluwer, Dordrecht, pp. 7–18.
Roth, A.E. (2002). “The economist as engineer: game theory, experimentation, and computation as tools for

design economics”. Econometrica 70 (4), 1341–1378.
Roth, A.E., Erev, I. (1995). “Learning in extensive form games: experimental data and simple dynamic models

in the intermediate term”. Games and Economic Behavior 8, 848–881.
Rubinstein, A. (1998). Modeling Bounded Rationality. M.I.T. Press, Cambridge.
Sargent, T.J. (1993). Bounded Rationality in Macroeconomics. Oxford University Press, New York.
Satterthwaite, M.A., Williams, S.R. (1989). “Bilateral trade with the sealed bid k-double auction: existence

and efficiency”. Journal of Economic Theory 48, 107–133.
Satterthwaite, M.A., Williams, S.R. (1993). “The Bayesian theory of the k-double auction”. In: Friedman,

D., Rust, J. (Eds.), The Double Auction Market: Institutions, Theories, and Evidence. Addison-Wesley,
Reading, MA, pp. 99–123.

Selten, R. (1998). “Features of experimentally observed bounded rationality”. European Economic Review 42,
413–436.

Selten, R., Stoecker, R. (1986). “End behavior in sequences of finite Prisoner’s Dilemma supergames”. Journal
of Economic Behavior and Organization 7, 47–70.

Simon, H. (1981). The Sciences of the Artificial, 2nd edn. M.I.T. Press, Cambridge.
Sweeney, J.L. (2002). The California Electricity Crisis. Hoover Institution Press, Stanford.
Talukdar, S. (2002). “Agent-based market testing”, DOE Transmission Reliability Research Review, Wash-

ington, DC, December 10.
Talukdar, S., Ramesh, V.C. (1992). “A-teams for real-time operations”. International Journal of Electrical

Power & Energy Systems 14 (2–3), 138–143.
Tesfatsion, L. (2002). “Agent-based computational economics: growing economies from the bottom up”. Ar-

tificial Life 8 (1), 55–82.
Tesfatsion, L. (2005). Personal communication.
Thorndike, E.L. (1911). Animal Intelligence: Experimental Studies. Macmillan, New York.
Verkama, M., Hämäläinen, R.P., Ehtamo, H. (1992). “Multi-agent interaction processes: from oligopoly the-

ory to decentralized artificial intelligence”. Group Decision and Negotiation 1 (2), 137–159.
Verkama, M., Hämäläinen, R.P., Ehtamo, H. (1994). “Modeling and computational analysis of reactive be-

havior in organizations”. In: Carley, K.M., Prietula, M.J. (Eds.), Computational Organization Theory.
Lawrence Erlbaum Assoc., Hillsdale, NJ, pp. 161–177.

Vriend, N. (2000). “An illustration of the essential difference between individual and social learning and its
consequences for computational analyses”. Journal of Economic Dynamics and Control 24, 1–19.

Walia, V., Byde, A., Cliff, D. (2003). “Evolving market design in zero-intelligence trader markets”. In: Pro-
ceedings of the IEEE International Conference on E-Commerce, 2003 (CEC ’03). IEEE Society Press,
Piscataway, NJ, pp. 157–164.



1380 R. Marks

Walsh, W.E., Das, R., Tesauro, G., Kephart, J.O. (2002). “Analyzing complex strategic interactions in multi-
agent systems”. In: Gmytrasiwicz, P.J., Parsons, S. (Eds.), Game Theoretic and Decision Theoretic
Agents, American Association for Artificial Intelligence Technical Report WS-02-06. AAAI Press, Menlo
Park, CA, pp. 109–118.

Watkins, C.J.C.H., Dayan, P. (1992). “Q-learning”. Machine Learning 8, 279–292.
Watson, J.D., Crick, F.H.C. (1953). “Molecular structure of nucleic acids: a structure of deoxyribose nucleic

acid”. Nature 4356, 737–738.
Weibull, J.W. (1995). Evolutionary Game Theory. M.I.T. Press, Cambridge.
Wilson, R. (2002). “Architecture of power markets”. Econometrica 70 (4), 1299–1340.
Wood, R.E. (2005). Personal communication.
Wurman, P.R., Walsh, W.E., Wellman, M.P. (1998). “Flexible double auctions for electronic commerce: theory

and implementation”. Decision Support Systems 24, 17–27.
Wurman, P.R., Wellman, M.P., Walsh, W.E. (2001). “A parameterization of the auction design space”. Games

and Economic Behavior 35, 304–338.
Young, H.P. (1998). Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Prince-

ton University Press, Princeton.



Chapter 28

AUTOMATED MARKETS AND TRADING AGENTS

JEFFREY K. MACKIE-MASON AND MICHAEL P. WELLMAN

University of Michigan, Ann Arbor, MI 48109, USA
e-mails: jmm@umich.edu; wellman@umich.edu
url: http://www-personal.umich.edu/~jmm/; url: http://ai.eecs.umich.edu/people/wellman/

Contents

Abstract 1382
Keywords 1382
1. Introduction 1383
2. Marketplace design framework 1384

2.1. Marketplace systems 1385
2.2. Formal model 1387

2.2.1. Design and goods 1388
2.2.2. Designing market mechanisms 1389
2.2.3. Designing agents 1389

2.3. Possibilities and impossibilities 1390
3. Automating market mechanisms 1391

3.1. Connecting: discovery services 1391
3.1.1. Recommendation 1392
3.1.2. Reputation 1392
3.1.3. Comparison shopping 1392
3.1.4. Auction aggregation 1392

3.2. Dealing: negotiation mechanisms 1393
3.2.1. Smart markets for domain-specific applications 1394
3.2.2. Combinatorial markets 1399

3.3. Exchanging: transaction services 1405
4. Automating market participants 1405

4.1. Program trading 1407
4.2. Market interfaces 1408
4.3. Agent strategies 1408

4.3.1. Continuous double auction strategies 1409
4.3.2. Simultaneous ascending auction strategies 1410

4.4. Case study: trading agent competition 1413
4.4.1. TAC travel-shopping rules 1413

Handbook of Computational Economics, Volume 2. Edited by Leigh Tesfatsion and Kenneth L. Judd
© 2006 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-0021(05)02028-9

mailto:jmm@umich.edu
mailto:wellman@umich.edu
http://www-personal.umich.edu/~jmm/
http://ai.eecs.umich.edu/people/wellman/


1382 J.K. MacKie-Mason and M.P. Wellman

4.4.2. TAC experience 1414
5. A computational reasoning methodology for analyzing mechanisms and

strategies 1416
5.1. Generate candidate strategies 1418
5.2. Estimate the “empirical game” 1419
5.3. Solve the empirical game 1420
5.4. Analyze the results 1421
5.5. Discussion 1422

Acknowledgements 1422
References 1422

Abstract

Computer automation has the potential, just starting to be realized, of transforming the
design and operation of markets, and the behaviors of agents trading in them. We dis-
cuss the possibilities for automating markets, presenting a broad conceptual framework
covering resource allocation as well as enabling marketplace services such as search
and transaction execution. One of the most intriguing opportunities is provided by mar-
kets implementing computationally sophisticated negotiation mechanisms, for example
combinatorial auctions. An important theme that emerges from the literature is the cen-
trality of design decisions about matching the domain of goods over which a mechanism
operates to the domain over which agents have preferences. When the match is imper-
fect (as is almost inevitable), the market game induced by the mechanism is analytically
intractable, and the literature provides an incomplete characterization of rational bid-
ding policies. A review of the literature suggests that much of our existing knowledge
comes from computational simulations, including controlled studies of abstract market
designs (e.g., simultaneous ascending auctions), and research tournaments comparing
agent strategies in a variety of market scenarios. An empirical game-theoretic method-
ology combines the advantages of simulation, agent-based modeling, and statistical and
game-theoretic analysis.

Keywords

computational markets, automated markets, trading agents, mechanism design

JEL classification: C63, C72, D40, D44
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1. Introduction

Many digitally mediated activities present participants with complex strategic decisions,
involving significant interaction with other agents. The strategic dimension of elec-
tronic commerce, for instance, is obvious, not just for negotiation and trading, but also
for ancillary commerce operations such as matchmaking, resource finding, advertising,
recommendation, contracting, and executing transactions. All of these are increasingly
subject to automation as part of online marketplaces [Wellman (2004)]. Other digital
realms, not necessarily viewed as commerce per se, nevertheless involve pivotal strate-
gic relationships. Examples include peer-to-peer resource sharing [Golle et al. (2001);
Cox and Noble (2003)], formation of coalitions, teams, or affinity groups [Brooks
and Durfee (2003); Sandholm and Lesser (1997); Tambe (1997)], scientific sharing
of large-scale instrumentation and other infrastructure [Finholt and Olson (1997);
Finholt (2003)], and coordination of activity within organizations [Malone (1987);
Pynadath and Tambe (2002)].

There are a variety of possible benefits from automating markets. One is cost saving
from automating some functions of existing non-computational markets. For example,
search automation reduces the cost of finding goods and potential trading partners. Mi-
cropayment systems offer the hope—not yet fully realized—of enabling large volumes
of remote, low-value transactions by reducing the execution overhead. Another benefit
is the ability to extend markets in time and geographic scope by conducting them over
networks. For example, eBay’s main innovation is not in the form of its markets, but in
its ability to make markets that bridge time and space.

The greatest disruptive potential may lie in the opportunity to deploy market mech-
anisms that are simply infeasible to operate without computer automation. Creating
previously missing markets enables gains from trade, and the creation of new products
and services, with first-order effects on social welfare. Such mechanisms were dubbed
“smart markets”, apparently by Vernon Smith. For example, a multi-airport landing
slot allocation policy might require the solution of a constrained integer program as
a function of bid messages from participating agents. Such policies are well beyond
the capabilities of non-automated market mediators; in some applications they take
CPU days to solve even with current hardware. The emergence of cheap, high-speed
computation created excitement among market designers, because without automated
computation many interesting allocation mechanisms were infeasible for problems with
real-world scale.

We study issues in the design of automated markets with software agents: how to
automate effectively various components of market transactions? We emphasize design
issues impinging on strategy, and strategic behavior particular to the market setting. Our
chapter complements Marks (2006), who focuses on the use of agent-based computa-
tional techniques as a tool for use in (not necessarily computational) market design.
Thus, Marks emphasizes positive analysis: how we can use agent-based models to
evaluate performance of various market designs. We adopt this perspective briefly in



1384 J.K. MacKie-Mason and M.P. Wellman

Section 5, where we describe a computational game methodology for analyzing agent
strategies and computational market designs.

Given our focus on design, much of the contribution of our chapter to agent-based
computational economics (ACE) is to the development of infrastructure. For ACE mod-
elers to study the implications of various market designs and agent strategies they need
to be able to implement computational representations that are correct, interesting, and
tractable.

To assist in these endeavors, we first present, in Section 2, a conceptual market
design framework. After graphically characterizing the design space for marketplace
systems, we present a brief specification of a formal model that encompasses many of
the interesting problems for market and agent design. The model provides a structured
framework for organizing the literature review in the rest of the chapter.

Section 3 covers the largest body of material. We discuss design issues and imple-
mentation research for mechanisms that provide the three different types of market
transaction services we identified in our conceptual framework: discovery, negotiation
(what is usually, narrowly, called “the market”), and execution. We devote dispro-
portionate attention to negotiation or deal-making market mechanisms, reflecting the
relative attention economists in general give to each of the three stages.

In Section 4 we focus on the other major area for design: trading agents, who interact
through the market mechanisms discussed in Section 3. We consider both theoretical
and practical problems of designing strategies needed to make economically-intelligent
trading agents. We present a case study based on a several-year history of trading agent
competitions that have attracted substantial attention.

We close the chapter by presenting an emerging computational agent-based method-
ology for empirical game-theoretic analysis. This method has been developed to address
a fundamental problem in the design of both trading agent strategies and the mar-
ket mechanisms through which they interact: optimal strategies for complex (realistic)
markets are analytically intractable. We consider empirical game-theoretic analysis a
promising approach for systematic investigation of agent strategies, and then for the
evaluation of market mechanism performance when agents follow successful strategies.
These agent-based methods offer one way to close the loop between the over-simplified
theoretical models of agents and market, and the practical problems that designers must
solve to implement realistic markets.

2. Marketplace design framework

Markets allocate resources through a series of transactions, each an exchange of goods
and services expressed in terms of an underlying monetary system. We find it useful to
organize the life cycle of a transaction into three stages, representing the fundamental
steps that parties must go through in order to conduct trade.

1. Connecting: the search for and discovery of an opportunity to engage in a market
interaction.
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Figure 1. The fundamental steps of a market transaction.

2. Dealing: the negotiation of terms.
3. Exchanging: the execution of the terms of an agreed transaction.
These steps are illustrated in Figure 1. Of course, the boundaries between steps are not

sharp, and these activities may be repeated, partially concluded, retracted, or interleaved
along the way to a complete commercial transaction. Nevertheless, keeping in mind the
three steps is useful as a way to categorize particular resource allocation services, which
tend to focus on one or the other.

Rarely are all of these tasks automated. Only some agents may be automated, and
even then perhaps only partially. Some of the market functions (say, finding connections,
or negotiating deals) may be automated, but not others. Therefore, it is not very useful to
discuss automation of an entire system as a single problem. In this chapter we consider
the components separately, reflecting the complexity of the problem and the division of
labor in the research literature.

2.1. Marketplace systems

To organize our discussion, we present and discuss a schematic representation of the
overall design problem.1 In Figure 2 we embed a marketplace system in an environ-
ment of social institutions (e.g., language, laws, etc.). The marketplace system itself
consists of agents and the market mechanism through which they interact. The market
mechanism can be roughly subdivided into structures, practices, and rules for the tasks
of connecting, dealing, and exchanging. We now offer more precise definitions of the
central concepts, and provide a formal framework within which we analyze them.

Marketplace system The agents who participate in the resource allocation problem,
together with the market mechanisms through which they interact.

Mechanism The rules, practices and social structures of a social choice process, spec-
ifying (1) permissible actions (often limited to messages, expressible as a commu-
nication protocol) and (2) outcomes as a function of agent actions. A mechanism
is mediated if there is some entity, distinct from the participants, that manages the
communication and implements the mechanism rules.

1 The descriptive terms we use do not have standard definitions, so we need to establish our own for these
purposes. For example, some use “market” to refer to what we call a marketplace system. But others use
“market” just for the practices and structures for making deals, excluding the participating agents and the
other activities (such as connecting) from the term.
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Figure 2. Schematic for a marketplace system.

Market mechanism A mechanism for which the possible ultimate outcomes comprise
market-based exchange transactions.

Agent An autonomous decision-making locus in a system of multiple decision-making
entities.2 An agent has “type” attributes such as preferences, beliefs, intentions, and
capabilities. Type information is generally considered private, not inherently ac-
cessible to others. For purposes of analysis, we may attribute to agents particular
decision-making rules, or more generally, assume that they conform to some deci-
sion rule, specifying a form of consistency between the agent’s behavior, beliefs and
preferences. Such attributions may appeal to classical notions of rationality, as well
as alternative bounded or otherwise nonstandard coherence criteria.

Our characterization of a marketplace system indicates that there is not just one
design problem, but several. The first is design of the market mechanism, for use by
human (undesigned), or computational (designed) agents. The market mechanism may
be decomposed into several design subproblems: for example, mechanisms typically
are designed separately for the connection, deal and exchange phases of a transaction.
The second top-level problem is design of agents to interact (perhaps with human assis-
tance) with existing market mechanisms, or with new mechanisms designed by others.
In some situations one might be in a position to design an entire marketplace system,
though we consider this unusual.

In this chapter, we focus on market mechanism design in Section 3, devoting most of
our attention to the deal negotiation task. We also provide a brief discussion of automat-
ing the connecting and exchanging functions. We address agent design in Section 4.

2 For purposes of framing the general design problem, we apply the term agent generically to humans,
computational processes, or organizations as long as they exhibit agent characteristics.
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2.2. Formal model

We present a formal model of a marketplace system to focus attention on the important
design issues that we review the rest of the chapter. The formal representation is not
essential to understand the rest of the chapter, but it provides a concise organization
of the main themes. This representation also implicitly suggests (we do not provide
extensive references) the links between the topics we cover and the more theoretical
literature on mechanism design that we do not review in detail.

Marketplaces can be designed for transactions in goods, services, tasks, plans or
other resources and activities. For simplicity, we will refer to these state variables as
goods, and represent them as a vector of quantities that takes values from a domain X.
Given N total agents, an allocation is an assignment of a matrix  x ∈ XN to agents
i ∈ {1, . . . , N}, with the individual allocation vector to each agent denoted by  xi ∈ X.

A market mechanism specifies (1) the goods it recognizes, and (2) rules for deter-
mining allocation outcomes. There are typically two types of rules: those specifying
a set of permissible actions (strategies), si ∈ Si for each agent i, and procedures
for choosing an allocation based on the observable actions. We denote a mecha-
nism by γ = (s1, . . . , sN , g(·)), where g maps the set of actions into allocations,
g : S1 × · · · × SN → XN . We denote the allocation this mechanism makes to a spe-
cific agent by gi( s) =  xi . An example of the rules governing allowable strategies is the
set of bidding rules in an ascending auction (for example, bids must be over single lots,
and must exceed the previous bid by at least some specified increment). An example of
an allocation rule is the English auction rule for unitary objects (the high bidder wins
the object, and pays her announced bid).

When a market mechanism is designed, the designer presumably wishes to fulfill
some objective subject to various constraints. Let  θ be the information state across
all agents, defined on the Cartesian product of the individual information spaces �i .
Typically the objective can be expressed as a function (often called a social choice
function) that maps from the information state of the agents to a preferred allocation,
as f : �1 × · · · × �N → XN . However, since elements of the  θi are private to the
agents, and thus not directly accessible to the designer, the ability to achieve this ob-
jective depends on the extent to which agents choose to reveal this information, and the
cost to the mediator of inducing revelation. Further, the space of possible mechanisms
may be constrained by additional social restrictions such as “no external subsidies”, or
“maintain horizontal equity”, which taken together restrict the set of allocations to some
permissible space, f ( θ) ∈ F .

Agents are distinguished by their possession of private information and autonomy.
We let θi denote agent i’s private information, which can be taken to include all of the
agent’s relevant knowledge of or beliefs about states of the world. This information is
private in the sense that other agents j do not generally have access to all of the infor-
mation in the set θi . An agent is autonomous if it exhibits preferences over allocations,
and chooses actions according to some decision rule. Assume that i’s preferences can be
represented by a real-valued function ui( xi, θi), called agent i’s utility for a given alloca-
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tion  xi given its private information, which has the property that ui( x′
i , θi) > ui( xi, θi)

exactly when i prefers allocation  x′
i to  xi .

An autonomous agent maps its preferences into actions according to decisions that
follow from its decision rule. For example, the canonical decision rule assumed by
economists for non-strategic settings is that an agent will select feasible actions that
maximize its (expected) utility. In strategic settings, one commonly assumed decision
rule is that an agent will choose a dominant strategy if one exists. This decision rule
is not complete, because it does not specify what to do when no dominant strategy ex-
ists. There are many more complete decision rules commonly studied in the literature.
For example, every finite game of (incomplete) information has a set of agent strategies
that form a mixed perfect (Bayesian) Nash equilibrium [Fudenberg and Tirole (1991)].3

A corresponding decision rule is that an agent will play a strategy from the Bayes-Nash
set. Unfortunately, this decision rule offers a choice for every (finite) problem, but may
still be incomplete because there may be multiple equilibria, and then it is necessary
to specify which Bayes-Nash strategy to play. A particular computational implementa-
tion of the agent’s decision rule may or may not involve explicit optimization of ui , or
explicit models of beliefs and preferences [Russell and Norvig (2003)].

This formal description of a marketplace system highlights many of the problems
that must be addressed by the designer of an automated system. One crucial thing to re-
member when reading the literature, and when engaging in computational marketplace
design, is that some features will be explicitly designed while others will be unspecified
(and thus taken as found in the environment in which the system is applied). The per-
formance of the system is likely to depend at least as crucially on the features that are
not designed as those that are.

We defined a role for goods, mechanisms and agents. We now use the model to illus-
trate with just a few examples the design issues for these features in turn.

2.2.1. Design and goods

One issue for the designer is which goods the system will recognize, and in partic-
ular whether the domain of the goods a market mechanism allocates corresponds to
the domain of the goods over which agents have preferences. For example, external-
ity problems (such as pollution) have long been characterized as problems of “missing
markets” for certain goods. Some computational markets are designed specifically to
enable allocations of goods that matter to agents but which are not generally traded in
spontaneous (undesigned) markets (see, e.g., Ledyard and Szakaly (1994)). The issue
of which goods to transact is central to the interest in combinatorial mechanisms, which
we discuss below in Section 3.2.2.

3 A Nash equilibrium is one in which each agent is playing a strategy that is a best response to the strategies
of the others: that is, all strategies are mutual best responses. Bayes-Nash equilibrium means that when infor-
mation is incomplete, players update their beliefs as new information arrives in the game according to Bayes’
Rule, and then play Nash strategies with respect to their expectations.
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2.2.2. Designing market mechanisms

An important issue for automated market designers is to decide which of the several
market mechanism features to design, and which to leave unspecified. Recall from
Figure 2 that market transactions require mechanisms for mediating the functions of
connecting, dealing and exchanging. Much of the market mechanism literature focuses
on the dealing function: the determination of terms of trade and the assignment of al-
locations. Even when there is attention to mechanisms for the other functions, the most
common approach is to define for each function as a separate entity; thus in Section 3 we
discuss separately design for each. However, ignoring interactions between the mech-
anisms may result in inefficiencies and failures. We expect that as automated market
design matures we will see increasing attention to mechanisms that integrate more of
these several necessary functions.

Recall also (see Figure 2) that a marketplace system operates in the context of a
problem environment, consisting of technological and institutional constraints. Other
institutions are features of the environment that restrict the set of possible mechanism
designs. In this chapter we treat other institutions and technology as given, and im-
mutable by the designer; e.g., laws, common languages, government structures, CPU
capabilities. The institutions restrict feasible mechanisms to some space, �. The design
problem is to configure a feasible mechanism γ ∈ �—that is, to define a set of goods
over which agents can deal, rules specifying permissible actions, and rules mapping ac-
tions to allocations—that implements the constrained social choice function f ( θ) ∈ F .
Designers of computational markets thus need to either implicitly or explicitly make
assumptions about laws, languages and other social institutions necessary to support
transactions.

2.2.3. Designing agents

We defined agents by their information, preferences and decision rules. Each raises
important design considerations. For example, to predict the performance of a par-
ticular mechanism the designer must make assumptions about the decision rule the
agents will follow when interacting with the mechanism, which in turn depends on
assumptions about agent information and preferences. When building automated agents
themselves, the designer must deal with information acquisition, storage and process-
ing problems (for example, to compute Bayesian updates or other predictions of relevant
events). Designers must endow agents with feasible algorithms to implement their de-
cision rules, which is no small matter in some settings. For example, in many market
mechanisms—such as the ubiquitous multiple simultaneous ascending auctions—it is
generally computationally infeasible to determine Bayes-Nash strategies. We discuss
this problem and a method for analyzing agent strategies for intractable mechanisms in
Section 5.
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2.3. Possibilities and impossibilities

It is often difficult in complex problem environments to find a mechanism that im-
plements the desired objective while satisfying even a few, seemingly reasonable con-
straints on the social choice functions that it implements. Indeed, in very general classes
of problems, no such mechanisms of any sort exist. A considerable body of design the-
ory characterized the space of social choice functions that are possible; this literature
provides crucial guidance for the design of computational markets.

For example, suppose the marketplace designer wants a system that will satisfy the
following rather weak requirements (we use fi( θ) to denote the subset of allocation
f ( θ) received by agent i):

1. Ex-post efficiency (Pareto optimality): For no profile  θ = {θ1, . . . , θN } ∈ �1 ×
· · · × �N is there an  x ∈ X such that ui(xi, θi) ≥ ui(fi( θ), θi) for all i, and
ui(xi, θi) > ui(fi( θ), θi) for some i. That is, there is no alternative outcome in
which at least one agent would be better off, and no agent would be worse off.

2. Ex-interim participatory efficiency (individual rationality): Suppose agent i begins
with an endowment of goods, ωi ∈ �i , which it keeps if it refrains from partic-
ipating in the mechanism. Then ui(fi( θ), θi) ≥ ui(ωi, θi) for every i. That is,
agents must be willing to voluntarily participate given the rules of the mechanism
and their private knowledge about their own situation (before the final allocation
is revealed).

3. No subsidies: The mechanism does not require any external injection of resources
(e.g., payments to agents) that are not obtainable through the allocation of endow-
ments �1 × · · · × �N → X.

Myerson and Satterthwaite (1983) showed that in general for a bilateral exchange
problem there is no mechanism that satisfies (1)–(3) (if agents are assumed to use a
Bayes-Nash strategy as their decision rule).4

Given this strong impossibility result, designers must choose ways in which to relax
the design requirements. Three typical approaches are to (1) assume (or impose if un-
der designer control) agent preferences that are more tightly restricted in the space of
rational preferences; (2) assume or impose that agent decision rules are restricted more
narrowly; or (3) relax some of the social choice constraints on an acceptable mechanism.

Two of the more important constructive results are the Vickrey-Clarke-Groves (VCG)
family of social efficiency maximizing mechanisms and the Maskin-Riley revenue max-
imizing mechanism. In VCG (discussed in more detail in Section 3.2.2, below), agent
preferences are restricted to those that can be expressed as quasilinear utility func-
tions, and the “no subsidies” constraint is abandoned. The Maskin and Riley (1989)
mechanism limits the space of goods, and replaces ex-post efficiency with revenue
maximization (that is, the social choice function depends on the preferences of only
one agent, the seller).

4 A bit more precisely, the result holds for at least bilateral trade between agents each of whom is au-
tonomous and self-interested, has private information about its own value, satisfies Bayes-Nash rationality,
and for whom the support for those valuations overlap.
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3. Automating market mechanisms

We organize our review on the design of computational market mechanisms to follow
the three stages in our diagram of the canonical transaction problem: discovery, negoti-
ation and execution (see Figure 1).

We focus primarily on computational mechanisms for negotiation, or making the
deal, which is the second of the three steps. This focus largely reflects the bias in the
economics field, which is most relevant for the audience of this book. However, we
think it is important to recognize the plethora of ancillary services that must also be
provided to support trading. Each is potentially subject to automation as well. As agent-
based computational systems mature, we hope to see increasing attention to the design
of mechanisms for connecting and exchanging. These are relatively open-ended prob-
lems, with services often provided by third parties outside the scope of a particular
marketplace, as well as within the marketplace itself.

In the first subsection we provide a brief overview of some discovery facilities to
illustrate some of the opportunities provided by the online medium, as well as require-
ments for operating a successful marketplace. In the second and longest subsection we
discuss in some detail research on the design of computational mechanisms for deal ne-
gotiation (the “market” to many, though we use the term more expansively to describe
all three functions). In the third subsection we survey briefly a few systems to facilitate
transaction execution. The need for additional attention to discovery and execution as
problems of market design should become evident.

3.1. Connecting: discovery services

At a bare minimum, marketplaces must support discovery to the extent of enabling users
to navigate the opportunities available at a site. More powerful discovery services might
include electronic catalogs, keyword-based or hierarchical search facilities, and the like.
The world-wide web precipitated a resurgence in the application of information retrieval
techniques [Belew (2000)], especially those based on keyword queries over large textual
corpora.

Going beyond generic search, industry groups proposed a variety of standards for de-
scribing and accessing goods and services across organizations. Examples include lan-
guages extending XML with commerce-specific constructs [Hofreiter et al. (2002)], and
protocols and registration infrastructure supporting web services [Curbera et al. (2002)].
Some recent proposals suggested using semantic web [Berners-Lee et al. (2001)] tech-
niques to provide matchmaking services based on inference over richer representations
of goods and services offered and demanded [Di Noia et al. (2004), Li and Horrocks
(2004)].

The task of discovering commerce opportunities inspired several innovative ap-
proaches that go beyond matching of descriptions to gather and disseminate information
relevant to comparing and evaluating commerce opportunities. Here we merely enumer-
ate some of the important service categories:
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3.1.1. Recommendation

[Resnick and Varian (1997), Schafer et al. (2001)]. Automatic recommender systems
suggest commerce opportunities (typically products and services to consumers) based
on prior user actions and a model of user preferences. Often this model is derived from
cross-similarities among activity profiles across a collection of users, in which case it is
termed collaborative filtering [Resnick et al., 1994; Hill et al., 1995; Riedl and Konstan,
2002]. A familiar example of collaborative filtering is Amazon.com’s “customers who
bought” feature.

3.1.2. Reputation

When unfamiliar parties consider a transaction with each other, third-party information
bearing on their reliability can be instrumental in establishing sufficient trust to proceed.
In particular, for person-to-person marketplaces, the majority of exchanges represent
one-time interactions between a particular buyer and seller.

Reputation systems [Dellarocas (2003), Resnick et al. (2002)] fill this need by ag-
gregating and disseminating subjective reports on transaction results across a trading
community. One of the most prominent examples of a reputation system is eBay’s
“Feedback Forum” [Cohen (2002), Resnick and Zeckhauser (2002)], which some credit
significantly for eBay’s ability to achieve a critical-mass network of traders.

3.1.3. Comparison shopping

The ability to obtain deal information from a particular marketplaces suggests an oppor-
tunity to collect and compare offerings across multiple marketplaces. The emergence on
the web of price comparison services followed soon on the heels of the proliferation of
searchable retail web sites. One early example was BargainFinder [Krulwich (1996)],
which compared prices for music CDs available across nine retail web sites. The Uni-
versity of Washington ShopBot [Doorenbos et al. (1997)] demonstrated the ability to
automatically learn how to search various sites, exploiting known information about
products and regularity of retail site organization. Subsequent research systems em-
phasized issues such as adaptivity to user preferences [Menczer et al. (2002)]. Today’s
shopping engines employ direct data feeds from product vendors, and provide standard
interfaces with typically price-based product rankings.

3.1.4. Auction aggregation

The usefulness of comparison shopping for fixed-price offerings suggested that sim-
ilar techniques might be applicable to auction sites. Such information services might
be even more valuable in a dynamically priced setting, as there is typically greater in-
herent uncertainty about the prevailing terms. The problem is also more challenging,
however, as auction listings are often idiosyncratic, thus making it difficult to recognize
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all correspondences. Nevertheless, several auction aggregation services (BidFind, Auc-
tionRover, and others) launched in the late 1990s. Concentration in the online auction
industry and resistance from auction sites has combined with the difficulty of delivering
reliable information to limit the usefulness of such services, however, and relatively few
are operating today.

3.2. Dealing: negotiation mechanisms

Negotiations are the major component of many computational market institutions (see
Figure 2), and probably the component that received the most research attention. We
use the word “negotiation” to refer to any process through which potential traders come
to agreement on the terms of a deal. This includes a range of practices, from two agents
haggling over price in a bazaar to a standard retail transaction in which the selling agent
posts a fixed price and the buying agent says either “yes” or “no”.

Computational negotiation mechanisms often involve a mediator: an entity that col-
lects offer messages from the potential traders, and facilitates the mapping of those
messages into an outcome. Well-known non-computational examples include an auc-
tioneer and a market maker on a stock exchange floor. Auction web sites such as
eBay are the best known examples of mediation in computational markets. In general
a mediator may have a stake in the outcome (e.g., as party to transactions, or through
commissions), in which case it also plays the role of an agent. However, to sharpen the
distinction we maintain a strict separation between the agent and mediator roles, mod-
eling the latter as following a fixed policy determined by the mechanism designer. For
example, an eBay auction is mediated by the process that receives and validates bids,
following the specified eBay rules for showing the current high bid, and determining
the final winner and price.

In this section we discuss research on the design of mediated computational negoti-
ation mechanisms. We start with a review of designs (and some implementations) for a
smorgåsbord of domain-specific applications, ranging from computer file systems to en-
ergy markets to belief aggregation. We describe the main goals, assumptions and some
results, without attempting to be comprehensive or exhaustive. We selected applications
areas because they are significant in the historical development of thought in this area,
or because they received intensive research attention in recent years.

We then turn to the large body of recent work that focuses on mostly technical
questions arising from the design of an important class of computational markets: com-
binatorial mechanisms. We give extra attention to this particular area of the market
design theory literature because it emerged from important real market design appli-
cations (most notably public spectrum auctions), it attracted the attention of many top
researchers in both economics and computer science, and it represents an important area
at the current leading edge of research. Further, many of the problems that arise in other
settings are similar to those in combinatorial markets, so it is a good representative for
other bodies of literature we have insufficient space to review.
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3.2.1. Smart markets for domain-specific applications

There are many computational markets in use. Most research, with some exceptions,
concerned designs that have not (yet) been implemented. One important exception has
been a recent surge in matching markets for solving various social problems. The best
known is the medical resident matching market in the U.S. [Roth and Peranson (1999)].
Related field work is underway, though not yet complete, for markets to match pairs
of potential kidney donors [Roth et al. (2005)] and to match students to public schools
[Abdulkadiroglu et al. (2005)]. More often, due to the high cost of implementing test
markets, empirical research to evaluate performance is carried out through human sub-
ject laboratory experiments on stylized instances of the designs, or through numerical
computer simulations.

In the remainder of this section we discuss a number of computational negotiation
mechanisms—only some of which have been implemented in the field—designed for
specific domains. We call these “smart markets”, following Vernon Smith [McCabe et
al. (1991)], because nearly all of these mechanisms involve a nontrivial computation on
submitted offer messages to determine the outcome. Thus, we do not discuss the nego-
tiation mechanisms that underlie markets such as eBay, because they are simple enough
to not require any special computational capabilities. Indeed, such negotiation mecha-
nisms are notable for mimicking non-computational auctions and other market forms
that have been common for centuries.5 Instead, we focus on negotiation mechanisms
that for the most part are infeasible to operate without computer automation.

3.2.1.1. Allocating computational and communication network resources Given that
computer scientists directly confront allocation problems involving computational re-
sources (e.g., sharing bandwidth, CPU cycles, file space), it is perhaps unsurprising
that much research in computational market mechanisms has targeted such problems.
This reflexive phenomenon has been important for development of the research commu-
nity. Over time, a number gravitated towards principles from economics: the discipline
most focused on the analysis of resource allocation questions. More or less contempora-
neously, economists interested in computationally-intensive mechanisms began picking
up ideas from computational science. Mechanism design for network and computational
resources became an early meeting ground for economists and computer scientists, and
much of the research began to exhibit cross-disciplinary approaches, often supported
by cross-disciplinary collaboration. These early efforts resulted in important learning
about the interaction between incentives theory and computational method that in-
formed much of the more recent negotiation design research in other domains.

Several computer scientists in the 1980s focused on the possibility of applying
market-mediated transactions to allocate computational resources.6 These projects drew

5 Other features of eBay and similar online auctions, such as search facilities and reputation management,
do make innovative use of computational and communication technology.
6 Ironically, an early market for time-sharing computer resources was implemented at Harvard without com-

putational support, with bids and schedules posted by hand on a bulletin board [Sutherland (1968)].
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attention to the problem of defining the goods over which a computational market
negotiates. There are many levels of abstraction and aggregation at which computing
resources and services could be specified; to create an automated market it is necessary
to explicitly specify the set of goods. Among these early studies were investigations of
the problems of specifying markets for file space [Kurose and Simha (1989)], commu-
nications channels [Kurose and Simha (1986)], and CPU loads [Ferguson et al. (1988)].

In a novel approach to allocating scarce computing resources, Brewer (1999) pro-
poses a “computation procuring clock auction” which addresses the challenge at the
level of a market for problem solutions, rather than a market for problem-solving re-
sources. In Brewer’s mechanism a mediator poses a computationally costly problem and
agents offer approximate solutions. Thus, the computational market effectively creates
a decentralized “computer” out of the participating agents. At any instant the market
displays the current best solution to the problem of interest. Agents can then submit
improved solutions; they are paid some fraction of the improvement in the objective
function. The auction ends when a defined interval passes without new solution submis-
sions. Brewer obtained positive results in human subject experiments, using a complex
train schedule from another smart market as the problem to be solved.

The academic research Internet rapidly grew and made the transition to the commer-
cial Internet in the early 1990s. For several years, usage (traffic) doubled approximately
annually, outstripping (physical and technical) increases in the network. Congestion be-
came a significant problem, and engineers were concerned that with continued growth
the Internet would collapse. From these conditions emerged a quite large literature on
designing computational markets for allocating bandwidth. The early work focused on
characterizing the economics of bandwidth congestion and the potential benefits from
a designed market [Cocchi et al. (1993), Shenker (1994), MacKie-Mason and Var-
ian (1994a, 1995a)]. Congestion is an externality: that is, a given user putting a load
on the network does not directly bear the cost of additional congestion experienced
by others. Thus in general the allocation of bandwidth resources by a market will be
inefficient unless the market is specifically designed to internalize the congestion exter-
nality.

Internet traffic is transported using packet-switching; by contrast, voice networks
switch circuits. MacKie-Mason and Varian (1994a, 1995b, 1996) explored the implica-
tions of the Internet’s architecture for good market design, and proposed a mechanism
designed specifically for packet networks that would allocate congested bandwidth to
packets. Their mechanism charges a positive price for packets when there is congestion
(and zero otherwise), respects agents’ autonomy and private information, and obtains an
efficient allocation despite the congestion externality. This mechanism is a smart mar-
ket that necessarily depends on a high degree of automation to process agent messages,
determine the allocation, and implement the allocation. This computational market is a
Generalized Vickrey Auction [MacKie-Mason and Varian (1994b)], which is a feasible
instance of a Vickrey-Clark-Groves (VCG) mechanism designed specifically to handle
externalities. This is the first proposal for a VCG mechanism we have found for com-
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putational markets; the later literature on combinatorial markets extensively explores
VCG mechanisms, as we discuss below.

Other mechanisms proposed for congestion priority allocation include [Cocchi et al.
(1993), Gupta et al. (1996), Korilis et al. (1995)]. These and the Generalized Vickrey
Auction have various difficulties with the matching of the domain of allocations offered
in the market to the domain of agent preferences. Some proposed mechanisms are spe-
cific to allocating packets, but generally users have preferences defined over sessions
or flows with many (sometimes many thousand) packets. Further, all of these proposals
were for static allocation markets, but user preferences generally encompass schedule
and other time dependencies.

Well over one hundred papers were published about computational markets for net-
work bandwidth in the ensuing decade. One important topic addressed early was the
design of markets to allocate multiple qualities of service (rather than merely conges-
tion priority); see, e.g., [Cocchi et al. (1991), Shenker (1995), MacKie-Mason et al.
(1996b)]. Mechanisms were designed for networks with virtual circuits [MacKie-Mason
et al. (1996a), Thomas et al. (2002), Kelly et al. (1998)].7 Others developed compu-
tational mechanisms for cost-sharing network services that generate joint costs, such
as multi-casting [Moulin and Shenker (2001), Feigenbaum et al. (2001)]. Chen (2003)
tested some of these mechanisms with human subjects. Some work addressed additional
problems that arise in markets for network services that support mobile users [Mullen
and Breese (1998)]. Recent work in “distributed algorithmic mechanism design” ob-
tains results for a mechanism to assign interdomain routing that is constrained to be
backwards compatible with existing Internet communication protocols [Feigenbaum et
al. (2005)].

Recently there has been renewed interest in computational markets for other com-
putational resources. In particular, in the late 1990s several authors explored markets
for CPU resources. This research responded to the observation that most CPU cycles
available from desktop computers and workstations are unused. For a price, computer
owners might be willing to let others run programs on their machines. Researchers ex-
plored market designs for CPU markets on networks of workstations [Amir et al. (2000),
Gagliano et al. (1995), Waldspurger et al. (1992)], as well as the broader Internet [Amir
et al. (1998), Regev and Nisan (1998)]. Recent work introduced market models for peer-
to-peer [Gupta and Somani (2004), Cox and Noble (2003)] and grid computing [Wolski
et al. (2001)].

The other significant strand of computational market design for computational re-
sources focused on providing file system services. Specific applications include markets
for distributed databases [Stonebraker et al. (1996)]; Web servers and web caching
[Karaul et al. (1998), Kelly et al. (1999, 2006)]; and data replication [Anastadiadi et
al. (1998)].

7 Virtual circuits are a blend of packet- and circuit-switching technology of which asynchronous transfer
mode (ATM) is the best known example.
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3.2.1.2. Energy markets Computational mechanisms have been employed for elec-
tric generation in England, California, France, New England, and other locations. In
an important study, given the paucity of empirical evaluations of implemented markets,
Wolfram (1998) studies the behavior of (non-automated) bidders in the automated daily
generating capacity auction in England. This is a multi-unit uniform-price mechanism;
Wolfram finds that bidders strategically manipulate their bids in accordance with the-
oretical predictions about this mechanism design, resulting in less than optimal social
efficiency. Cameron and Cramton (1999) analyze some of the institutional details of
market implementations in California, and their implication for efficiency. Nicolaisen
et al. (2001) develop a simulation model of electricity markets, relating efficiency and
market power to mechanism microstructure. Ygge and Akkermans (1996) design a com-
putational market mechanism for power load management, where agents representing
individual devices present demands, responding competitively to price changes. See
Marks (2006) for an extended discussion of agent-based simulation models applied to
energy markets.

A joint market for natural gas supplies and transportation was designed and evaluated
with human subject experiments by McCabe et al. (1989). The market calls for sealed,
one-shot bids. Wholesale buyers and wellhead producers submit location-specific of-
fers, and pipeline owners submit link-specific capacity offers. The smart market solves
a linear programming problem for the network, sets uniform prices and assigns a consis-
tent allocation of gas and transport that maximizes social surplus (given the constraints
of the market design). In experiments the market achieved 90% or higher efficiency, and
marginal bids were approximately truthful (thus fulfilling a price discovery role). How-
ever, inframarginal bids were substantially below truth values, and the authors point out
that the theoretical literature predicts an equilibrium for this market that is not truth-
revealing and thus is less than fully efficient.

3.2.1.3. Scheduling Resource allocation with time contingencies is known as a
scheduling problem. There is a huge research literature on the centralized solution of
scheduling problems. A simple keyword search yields over 1500 references, covering
many varieties of scheduling problems distinguished by constraints, objectives, and in-
formation available. Recently a few authors have started to develop market solutions to
scheduling problems, addressing the decentralized structure of many scheduling envi-
ronments.

In traditional scheduling problems, agents submit their bids for time-indexed re-
sources in advance, the mediator applies the mechanism allocation function, and the
schedule is announced, then implemented [Nisan and Ronen (2001)]. Time dependen-
cies almost always lead to complementarities in preferences; Wellman et al. (2001a)
analytically compare three designs along a spectrum of matching the domain of al-
locations to the domain of preferences (separate markets, restricted package markets,
and a fully combinatorial VCG mechanism). Train scheduling is one application for
which specific markets have been designed and tested (with human subject experiments)
[Brewer and Plott (1996, 2002)].
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Another interesting category for computational markets contains online scheduling
problems: the inputs arrive sequentially, and allocations are made dynamically, before
all of the inputs are known. At any given moment there is a set of jobs that want to
use the resource. One difference from offline scheduling is that some or all of the re-
source may already be in use, facing the mediator with a decision whether to pre-empt
a running task. Another difference is that new bids for service may arrive in the future,
creating an option cost of committing current resources to current job requests.

Online scheduling problems highlight a problem caused by uncertainty. The eco-
nomic objective in an online problem usually involves some sort of expected value
maximization. In deterministic problems, it is relatively straightforward to evaluate the
performance of a particular allocation rule given the agents’ (static) private informa-
tion. With uncertainty, the outcome also depends on the future evolution of these state
variables. Some of these stochastic processes themselves may be endogenous to the
problem: for example, the arrival of new requests may depend on the current allocation
decisions by the mediator. This only complicates what is already typically an intractable
(NP-hard) optimization problem.

Due to the complexity, there are few results on markets that maximize expected
value for online scheduling problems. The smart markets proposed typically implement
heuristic allocation rules, for instance pre-empting a currently running job if a new
request has an estimated expected value greater than some threshold. Two recent con-
tributions provide some hope for traditional mechanism designs (that maximize a social
objective function) in online scheduling problems. Friedman and Parkes (2003) define a
class of problems for which a “delayed Vickrey-Clarke-Groves mechanism” has a dom-
inant strategy equilibrium. Parkes and Singh (2003) show that an online mechanism
design problem can be formulated and solved as a Markov Decision Process (MDP)
problem, and they define a mechanism in which there is an approximately efficient
(though computationally intractable) Bayes-Nash equilibrium.

Most of the online scheduling literature has avoided the complexity problems by
focusing on minimax optimization, that is, reaching lower bounds for worst case per-
formance. Two teams established that the best ratio achievable for worst case on-
line scheduling performance (in centralized (non-strategic) problems) relative to full-
information (offline) scheduling is (1 + √

k)2, where k is the maximum ratio between
the value per time unit of any two jobs [Baruah et al., 1992; Koren and Shasha, 1995].
These authors also provide algorithms that reach these bounds. Two recent approaches
construct market solutions for strategic agents. In one the worst case ratio is increased to
only ((1+√

k)2+1) [Porter (2004)]; the other addresses a somewhat different question,
but also provides constructive results [Hajiaghayi et al. (2004)].

3.2.1.4. Belief discovery and aggregation One of the benefits of market allocations is
the discovery of value information. Of particular interest, markets for securities whose
value depends on the future realization of a random variable will aggregate beliefs about
the outcome, and thus provide a predictor. For example, it has long been known that
well-functioning financial markets provide excellent predictors of the underlying asset
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values [Forsythe and Lundholm (1990), Plott and Sunder (1988)]. Forsythe et al. (1992)
implemented and studied the long-running Iowa Electronic Market, in which agents bid
for securities that pay off on the results of political events (e.g., presidential primaries)
and other well-defined events such as corporate earnings announcements. This market
has routinely forecast political outcomes more accurately than professional polling or-
ganizations.

Standard financial markets introduce independent auctions for each security, which
presents scaling problems when there are a large number of uncertain propositions.
Pennock and Wellman (2000) establish conditions under which probabilistic depen-
dence structure can or cannot reduce the number of securities needed for an opera-
tionally complete market. Hanson (2003) addresses the problem by defining a hybrid
between pure markets and the evaluation methods sometimes used to score proba-
bility assessors. His market scoring rules exhibit properties of a market when there
exists sufficient activity, reverting to the properties of scoring rules in cases of low
liquidity. This market was implemented as a DARPA experiment to aggregate public
information relevant to national security concerns [Polk et al. (2003)], but days before
trading began it was halted due to political uproar. Inspired by market scoring rules,
Pennock (2004) introduced a dynamic pari-mutuel market for information aggregation
that exhibits guaranteed liquidity, no risk to the mediator, and continuous updating of
information.

3.2.2. Combinatorial markets

3.2.2.1. Problems with complementarities Complementarities in demand are one of
the more common causes, at least in the research literature, for the complexity that calls
for smart markets. Goods are complements when acquisition of one increases demand
for the other. In such a case, an agent’s willingness to pay for one good will depend
on whether or not the other can also be obtained. Many problems have this feature. For
example, a take-off slot is worth little if the airline cannot also secure a landing slot.
One hour of job-shop time may be worth zero if the firm cannot obtain the second hour
necessary to complete the job. Fast delivery of the first packet in a file or email delivery
is worth little if the remaining packets are delayed.

When goods are complements, a standard competitive price equilibrium may not exist
[Bikhchandani and Mamer (1997)].8 Even when one does, standard price-formation
protocols are not guaranteed to find it [Scarf (1973)]. The fundamental problem is that
when markets operate by separately forming prices for each good, agents cannot directly
express information concerning value complementarities. Using the language from our
conceptual framework, the domain of goods allocated by the mechanism does not match
the domain of goods over which agents have preferences. For example, consider two

8 A “standard” competitive price equilibrium is a vector of unit prices and corresponding feasible allocation
such that each agent receives the quantities it desires taking these prices as given.
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simultaneous sealed-bid auctions, one each for goods A and B. An agent who jointly
values the goods at $3, but who values each separately at $0, might be willing to pay
$1 for good A if it can also purchase good B for no more than $2, but not otherwise.
However, in this auction market the agent can bid for A at $1, but cannot ensure that if
it wins it can simultaneously purchase B for $2 or less.

A direct response to this mismatch between the agent’s preference domain and mech-
anism’s allocation domain is to design mechanisms that allocate a domain of goods
better aligned with the domain of agent preferences. Many authors pursue this through
the design of combinatorial mechanisms.

Aligning the scopes of mechanism allocations and agent preferences does not, it
turns out, solve the design problem. There are two types of difficulties. First, as shown
by Myerson and Satterthwaite (1983), for a surprisingly broad set of problems, it
is impossible to design mechanisms that satisfy minimally desirable constraint sets.
Then, though all else equal some combinatorial mechanisms may outperform non-
combinatorial options, the problem remains of choosing among the possible second-best
combinatorial mechanisms, which may be unbounded in number. The second difficulty
is that all else is not equal: when we take into account the computational and other costs
of combinatorial mechanisms, non-combinatorial mechanisms may better achieve the
designer’s objective. We shall discuss these two problems, and then some highlights of
the literature that developed around them.

The first problem is that in a broad class of problems there exists no Bayesian-Nash
mechanism that is efficient, individually rational, and budget balanced (see Section 2),
but generally two of these can be satisfied at the expense of the third. Therefore, de-
signers typically choose which property to sacrifice, and then try to limit loss on that
dimension. As an alternative, a designer might give up one of these criteria but offer a
mechanism that satisfies the other two plus some other desiderata. Thus, the intuition
to design combinatorial mechanisms when agents exhibit complementary preferences
is only the first search step through a vast design space: the quality of a design depends
in a strong way on the designer’s objective and desired constraints. There may be many
or zero combinatorial mechanisms that are best.

The second problem is that mechanisms implemented for actual use inevitably incur
transaction, computation, and cognitive costs that are often ignored in theoretical analy-
ses. Computational costs include most directly the complexity of solving combinatorial
optimization problems, but also the communication complexity of transmitting offers
over many possible bundles. Cognitive costs include the burden of constructing offers
over such bundles. Transaction costs include delays, coordination effort, and other costs
of addressing multi-dimensional allocation domains in a single overarching mechanism.
These implementation costs create standard economic tradeoffs (largely ignored by
mechanism design economists) between the advantages of combinatorial mechanisms
and their inherent diseconomies of scope. The potential benefits of aligning mechanism
allocation domains with agent preference domains, along with the computational chal-
lenges, motivated a surge in mechanism design research by computer scientists [Dash
et al. (2003), Nisan and Ronen (2001), Papadimitriou (2001), Rosenschein and Zlotkin
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(1994)]. This line of work has begun to address some of these additional costs, however
we are unaware of any work that presents a reasonably complete and explicit model of
the overall design tradeoffs.

3.2.2.2. Combinatorial market design A combinatorial auction specifies rules for per-
missible messages that express values over combinations of goods, and an allocation
function over these messages that assigns combinations. See de Vries and Vohra (2003)
for a good survey; Cramton et al. (2006) collect articles by many of the leading re-
searchers on this topic, presenting an in-depth review of technical issues. We can only
briefly introduce this huge literature. We highlight crucial issues for computational mar-
ket design and open research questions.

Combinatorial mechanisms are motivated in part by the Arrow-Debreu theorem,
which establishes that if markets span the complete domain of agent preferences, a
competitive equilibrium exists and is efficient [Arrow (1964), Debreu (1954)]. How-
ever, a full set of Arrow-Debreu markets, including markets for all bundles of interest
to agents, is not sufficient for two reasons. First, when preferences exhibit complemen-
tarities, the conditions of the Arrow-Debreu theorem are not met and a competitive
equilibrium may not exist [Bikhchandani and Mamer (1997)]. Second, designers are
often concerned with strategic (non-competitive) situations as well. The most important
motivation for computational market design when agents are strategic is a result due to
Vickrey, Clarke, and Groves: a direct revelation mechanism that guarantees an efficient,
individually rational allocation [Vickrey (1961), Clarke (1971), Groves (1973)]. In a
direct revelation mechanism, agents announce to the mediator their preferences over al-
locations; in the VCG family of mechanisms, the scope of allocations is the same as the
scope of agent preferences. For our discussion of combinatorial mechanisms we focus
on VCG-based mechanisms.9

Based on the number of papers solving implementation design problems for VCG
mechanisms, it might appear that researchers view the VCG as an ideal form. In gen-
eral, it is not. First, VCG does not overcome the Myerson and Satterthwaite (1983)
impossibility result: a VCG mechanism that is guaranteed to be efficient and individu-
ally rational will not in general be budget balanced. Indeed, in bad cases, for N agents
the VCG can require a subsidy on the order of N − 1 times the total surplus of the
final allocation.10 Second, although individual rationality and efficiency is a plausible

9 VCG mechanisms maximize Marshallian social welfare, which is the unweighted sum of surpluses (value
net of any payments) for all buying and selling agents, measured in some common unit such as dollars.
Another common design goal is to maximize the seller’s revenue. Most of the points we make about VCG
mechanisms are qualitatively true for revenue-maximizing mechanisms as well, though of course the details
are different. The literature on revenue maximizing mechanisms over complementary goods is much less
developed than that for VCG mechanisms.
10 Roughly speaking, the VCG pays to each agent the value of the surplus that the agent’s value creates by its
participation in the final allocation. Consider a problem in which the participation of all agents is necessary
for any positive value to be created (a coordination, or joint production problem). In this case, if a total value
of S is created, the VCG pays NS in total, of which only S is financed by the surplus created through the
allocation.
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set of minimally desirable criteria, other criteria may be desirable for some allocation
problems. For example, VCG payments are typically “discriminatory”: different agents
likely make (or receive) different payments for the same allocation. In some settings so-
cial norms or other goals may impose a non-discriminatory constraint.11 Third, there are
substantial concerns about the computational feasibility of VCG mechanisms in mod-
erately complex problems. The practical problems proved to be so numerous, and thus
far, sufficiently intractable, that almost no VCGs are implemented in observed practice.
We now discuss these feasibility concerns.

One computational design issue is the winner determination problem: how to com-
pute the allocation function g(S1, S2, . . . , SN) (see Section 2.2)? For a general combina-
torial problem, the VCG computation requires N − 1 separate solutions of an NP-hard
set-packing problem [Rothkopf et al. (1998)]. Known algorithms for NP-hard prob-
lems have worst-case exponential runtimes: the computational cost effectively doubles
with each additional good.12 One line of research focused on developing algorithms
with good average-case performance on representative problem classes [Leyton-Brown
(2003), Sandholm and Suri (2003)]. A second logical approach is to find an algorithm
that is guaranteed to find an approximate solution to the VCG allocation in polynomial
time. However, Nisan and Ronen (2000) demonstrate that approximate (non-optimal)
but polynomial (computationally feasible) VCG-based mechanisms that are truthful
have arbitrarily bad performance in the worst case. Yet a third approach is to impose
sufficient restrictions on agent rationality (or permissible strategies) to enable mecha-
nisms that implement the VCG outcomes exactly with feasible computations [Parkes
and Ungar (2002)]. Another line of research studied problems in which there is a struc-
ture on the space of goods that provides sufficient simplification to make the winner
determination problem tractable [Rothkopf et al. (1998), Wellman et al. (2001a)].

A symmetric problem is that of preference elicitation: extracting value information
from agents without imposing an undue or infeasible burden. Given a fully combina-
torial allocation space, agents must determine and express an exponential number of
valuations. For example, with only 30 distinct goods, there are 230 − 1 (over a billion)
possible bundles for which to bid.

A number of authors investigate the communication complexity of various resource
allocation mechanisms. For a convex economy, the Walrasian mechanism is the unique
individually rational mechanism that is informationally efficient (minimizes the dimen-
sionality of the message space necessary to verify a Pareto efficient allocation) [Jordan

11 Much has been written over the years about the social ethics of discriminatory prices. In practice they are
common: for example, students generally pay less for movie tickets than do their professors. Nonetheless,
non-discriminatory pricing is sometimes imposed, particularly for public projects. For example, in designing
a computational market for the provision of evaluations, such as product reviews, Avery et al. (1999) require
that the same action (timing of an evaluation) must be paid the same price.
12 For example, the FCC simultaneously auctioned 1472 licenses in one 1996 auction. The total number of

possible combinations to consider in a fully combinatorial allocation function would have been 21472 − 1.
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(1982), Hurwicz (1960), Mount and Reiter (1974)].13 Among other things, for an econ-
omy to be convex preferences must be sub-additive (which rules out complementarities
between goods), and continuous (which rules out integer constraints), and thus many in-
teresting problems cannot be treated as convex. Unfortunately, the results are somewhat
negative for non-convex economies. Nisan and Segal (2006) show that any efficient
mechanism must communicate at least as much information as a full revelation of one
agent’s preferences, which will in general be exponential when agents have preferences
over combinations of goods. They further prove that even approximately efficient allo-
cations are hard: To guarantee an improvement over the approximation represented by
selling all of the items as a single bundle requires communication that is exponentially
increasing in the number of goods. This is true in a worst-case analysis, and also in
expectation for at least some probability distributions over agent valuations.

Although the preference elicitation problem is provably hard, a number of authors
have worked on pragmatic approaches to making it manageable for some problems.
For example, some researchers address this problem by designing iterative, or progres-
sive combinatorial auctions [Ausubel and Milgrom (2002), Parkes (1999), Parkes and
Ungar (2000), Wurman and Wellman (2000)], in which agents are expected to bid on
each iteration only on bundles that appear best given the current information. Recently,
some proposed methods based on explicit queries [Conen and Sandholm (2002)], where
agents are asked their values for particular bundles based on the auction’s defined query
policy for its current state. There are a variety of related approaches to the elicita-
tion problem [e.g., Faratin and de Walle (2002), Conen and Sandholm (2001), Parkes
(2005)]. One is to develop bidding languages that are natural and concise for human
agents [Boutilier and Hoos (2001)].

A different approach is to identify special problem classes that require less complete
expressions of preferences. For example, Bikhchandani et al. (2002) focus on settings in
which “agents are substitutes”: the contribution to problem value of a group of agents is
more than the sum of their individual contributions. In such cases, agents can describe
their preference over a smaller number of bundles, and communication and computa-
tion are polynomial (requiring the solution of two linear programs). Another class of
examples are problems in which valuations satisfy the gross substitutes property [Kelso
and Crawford (1982)]: a Walrasian equilibrium exists [Gul and Stacchetti (1999)] and
it can be found with polynomial communication [Nisan and Segal (2006)].14

Another pragmatic concern for VCG mechanisms (as well as many others) is their
susceptibility to the often unenforceable assumption that agents do not collude. In our
conceptual framework this assumption is represented by limiting communications to the
links between agents and the mediator (see Figure 2). Specifying mechanism rules that

13 A Walrasian mechanism is one that yields a competitive equilibrium; see footnote 8.
14 Two goods are gross substitutes when the Marshallian demand for one increases as the price of the other
increases. The Marshallian demand is the “ordinary” demand; that is, it reflects how a consumer’s demand
changes with price changes, without any income compensation to hold the consumer’s level of overall utility
constant. See, e.g., Mas-Colell et al. (1995).
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forbid collusion does not necessarily prevent it. VCG mechanisms perform arbitrarily
badly when agents can collude [Ausubel and Milgrom (2002)]. A related concern is their
vulnerability to “false name” bids (one agent splitting package bids between multiple
pseudonyms to change the allocation or associated payments) [Sakurai et al. (1999)].

Despite the known problems with combinatorial mechanisms, they have been tested
in a number of laboratory experiments in which the space of goods was small enough
for the computations to remain tractable. For example, Rassenti et al. (1982) developed
a sealed-bid combinatorial auction to allocate airport runway time slots. Their specifica-
tion of goods allowed for agents to express preferences over packages of multiple slots
to accommodate complementarities (for example, needing a landing slot to combine
with every take-off slot). They implemented an algorithm to determine the allocation
that maximized system surplus, then awarded packages at prices guaranteed to be no
more than the amounts bid. They tested this smart market negotiation mechanism in a
laboratory setting with cash-motivated human subjects, where it obtained about 10%
higher efficiency than a mechanism of independent auctions for each slot.

NASA funded a team of Caltech economists to study various computational market
designs to allocate payload space, power, and other resources for commercial experi-
ments in the space station program. Banks et al. (1989) report on several designs and
human subject experimental tests of their performance. As in Rassenti et al. (1982), the
designs were driven by the specification of the goods over which negotiations were de-
fined. They addressed problems with multiple resources (space, power), uncertainties
in demand and supply (for example, some shuttle launches are cancelled), unresponsive
supply (no inventories and fixed capacities), and demand indivisibilities. They tested
two smart market negotiation mechanisms: one an iterative approximation to a Vickrey-
Clarke-Groves mechanism, and the second a simpler iterative package bidding process.
Traditional markets averaged only 66% efficiency; the iterative VCG averaged 78%,
and the package bidding mechanism averaged 81% efficiency.

Another Caltech experiment tested a combinatorial design for the FCC spectrum
auctions [Bykowsky et al. (2000)]. The FCC did not use combinatorial markets for
its spectrum auctions despite the well-known complementarities, due to concerns with
computational costs and bidding strategy issues.15

Combinatorial mechanisms directly address the problem we have identified many
times in this chapter: the performance of negotiation mechanisms will depend crucially
on the quality of the match between the mechanism’s domain of goods and the domain
of agent preferences. To date few combinatorial mechanisms have been implemented,
but the very active research on each of the design problems we identify offers hope that
this approach to computational negotiation will become more usable in the future.

15 We discuss the FCC auctions further in Section 4.3.2 below, when we address agent bidding strategies for
simultaneous ascending auctions.
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3.3. Exchanging: transaction services

Once a deal is negotiated, it remains for the parties to execute the agreed-upon exchange.
Many online marketplaces support transaction services to some extent, recognizing that
integrating “back-end” functions—such as logistics, fulfillment, and settlement—can
reduce overall transaction costs and enhance the overall value of a marketplace [Woods
(2002)].

A critical component of market-based exchange, of course, is payment, the actual
transfer of money as part of an overall transaction. The online medium enables the
automation of payment in new ways, and indeed, the 1990s saw the introduction of
many novel electronic payment mechanisms [O’Mahony et al. (1997)], offering a variety
of interesting features [MacKie-Mason and White (1997)], including many not available
in conventional financial clearing systems. For example, some of the schemes supported
anonymity [Chaum (1992)], micropayments [Manasse (1995)], or atomic exchange of
digital goods with payment [Sirbu and Tygar (1995)].

As it turned out, none of the innovative electronic payment mechanisms really caught
on. There are several plausible explanations [Crocker (1999)], including inconvenience
of special-purpose software, network effects (i.e., the need to achieve a critical mass
of buyers and sellers), the rise of advertising-supported Internet content, and decreases
in credit-card processing fees. Nevertheless, some new payment services proved com-
plementary with marketplace functions, and thrived. The most well-known example is
PayPal, which became extremely popular among buyers and sellers in person-to-person
auctions, who benefited greatly from simple third-party payment services. PayPal’s
rapid ascension was in large part due to an effective “viral marketing” launch strategy,
in which one could send money to any individual, who would then be enticed to open
an account [Jackson (2004)]. PayPal is still not economical for micropayments, how-
ever, and new schemes—most notably, Peppercoin [Micali and Rivest (2002)]—have
emerged aiming to provide such services.

4. Automating market participants

Part of automating markets is automating the behavior of participants in those markets.
Of course, computerized trading has been a reality almost as long as we have had com-
puters. What is relatively new is the proliferation of electronic markets on networks, and
their potential to dramatically expand the opportunities for automating trading functions
in a broad variety of domains. Conversely, automating traders can shape the automation
of markets, for example, by rendering feasible some market designs too complex for
manual traders.

As in most realms of computerization, there is no sharp line between automated
and non-automated trading. Virtually all trading in financial markets is mediated by
computers at some stage of the process, and the same is true by definition for markets
that themselves operate electronically. Consider the communication flow of the generic
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Figure 3. The trading agent interacts with a market mechanism by submitting bids in response to market
information. The process can be automated to varying degrees, depending on the role of the computer in the

process of translating instructions and market information.

trading system diagrammed in Figure 3. The human trader issues “instructions” to the
computer, resulting in bids submitted to the market. The instructions may be direct, for
example, “buy 100 shares XYZ at $20”, in which case the computer is merely serving
a communication interface function, and the trading is essentially manual. To the ex-
tent instructions are indirect, such as “balance my portfolio”, or “liquidate my holdings
in sector S in an orderly manner”, we would characterize the trading as automated to
a correspondingly greater degree. Similarly, to the extent the computer processes the
market information for presentation to the human—summarizing, identifying patterns,
even recommending specific trading actions—we would have to credit the machine with
a share of the overall decision process.

The upshot is that automated trading exists on a continuum, and it is futile to attempt a
precise binary classification of human and computer trading activity. We merely observe
that the computer’s role is often significant, and growing over time in sophistication and
complexity. Of course, the trading is ultimately on behalf of humans (or organizations
operated by and for humans), and so the humans will continue to exert ultimate control
and influence over their trading agents. As the machines prove increasingly worthy of
trust in their competence to execute decreasingly direct instructions, it is inevitable that
a significant fraction of trading activity will become fully automated for all practical
purposes.

Recognizing that overall trading activity is the product of manual and automated
components, we henceforth apply the term “trading agent” to the combined entity inter-
acting with the market, enclosed by the dashed box in Figure 3.

The phenomenon of automated trading raises several interesting questions.
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• How should trading agents behave? How can we design effective strategies for a
range of environments? How can we construct agents capable of incorporating new
information and objectives, and adapting to changing circumstances?

• How will automated traders change the character and behavior of markets? Will
additional stabilization, security, or other safety-related mechanisms be required?

• How can we design markets to cater to or exploit the capabilities of automated
trading agents?

In the sections below we address these questions, in the course of surveying some sig-
nificant threads in trading agent research. Our focus is on works that study the behavior
or potential of trading agents themselves, as opposed to efforts that use computational
agents as a way to model human trading behavior. The latter is the domain of much
research in agent-based computational economics, addressed in several other chapters
of this handbook.

4.1. Program trading

As noted above, automation of trading in financial markets is a well-established practice.
The term “program trading” (or “programmed trading”) is sometimes applied generi-
cally to any initiation of trade activity based on procedural rules (typically implemented
by computer programs), but more frequently refers to a particular form of trading based
on index arbitrage [Brennan and Schwartz (1990)] or other standard portfolio trad-
ing strategies. Index-arbitrage programs monitor the price of index futures contracts
(e.g., for the Standard & Poor’s 500), as well as the basket of underlying securities, and
trigger trades whenever the futures price deviates from the underlying price by some
pre-specified threshold dependent on the interest rate. Academic interest in program
trading focused on the effect of this activity on price volatility, including much inves-
tigation of its relation to the October 1987 stock market crash [Baldauf and Santoni
(1991)].

The New York Stock Exchange (NYSE) requires its members to report trades in-
volving fifteen or more stocks with aggregate value of a million dollars or more. This
definition is designed to capture the common pattern of program trading for index or
other derivative-based arbitrage, portfolio insurance, and other portfolio-based actions.
According to NYSE, such trades account for a large fraction of overall volume: 51.2%,
for a typical example, in the last week of January 2005. Of this, 11.4% was attributed to
index arbitrage specifically.

It is of course possible to implement any systematic trading strategy in a computer
program, and many such programs have been marketed to investors as “black-box” or
“gray-box” trading systems (so-called because their specific trading rules are secret or
only partially revealed). As the availability of financial market data via the Internet
has increased, so have the offerings of software packages providing analysis and mon-
itoring tools, some providing interfaces for user-specified trading rules. Whereas it is
doubtful that retail investors can profit substantially through such means, major broker-
ages reportedly devoted significant resources to computational modeling and automated
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trading strategies for internal use by their trading units. For proprietary reasons, little
is publicly known about the nature and extent of these computerized trading activities.
Bass (1999) presents an unusually forthcoming story of the Prediction Company’s ef-
forts in automated trading, but even this account stops short of technical and strategic
precision.

4.2. Market interfaces

Automated agents interact with electronic markets according to standardized inter-
faces. Program trading in financial markets is facilitated by ECNs (electronic crossing
networks) such as Island and Instinet, which support specified network protocols for
submitting stock orders. The Small Order Execution System provides an analogous
standard interface to Nasdaq market makers.

Online marketplaces inherently provide a window to automated traders, as a side
effect of supporting standard web protocols. For example, eBay cannot necessarily dis-
tinguish a bid submitted by a human user through a browser from one generated by
a program constructing the same web posting. Users have taken advantage of this op-
portunity, for example by employing programs to submit bids at prespecified times,
typically seconds before the scheduled auction close. This practice, called sniping, is
quite common on eBay, and can be supported by several auction-theoretic arguments
[Roth and Ockenfels (2002)]. Services such as eSnipe also provide rudimentary facili-
ties to condition bids on auction events, such as the success or failure of related bids in
specified auction groups.

Definition of a market interface is part of the overall task of market design. Bidding
rules comprise a dimension of market design space, governing the language of allowable
bids as well as the policy for admitting bids over time [Wurman et al. (2001)]. Choice
of a bidding language often entails addressing rich tradeoffs, for example in the com-
plexity of bidding or evaluating bids [Nisan (2000)]. In some cases, a designer might
intentionally restrict bidding rules in order to simplify the interface implementation or
to bias toward simple negotiation strategies [Cranor and Resnick (2000)].

To fully support automated trading, market interfaces would provide machine-
readable specification of bidding rules, as well as other market policies. This would
facilitate deployment and testing of mechanisms, promote transparency, and ultimately
support automatic adaptation of trading strategies. Although sufficiently flexible and
formal standards for specifying markets are not yet available, special-purpose languages
for specifying auctions [Lochner and Wellman (2004)] and reasoning about negotiation
protocols [Guerin and Pitt (2002)] constitute steps in this direction.

4.3. Agent strategies

How a trading agent should behave depends, of course, on the market mechanism and
other agents in its environment. Studies of trading agent strategy typically focus on a
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particular environment; there have been few attempts thus far to distill general cross-
cutting principles. In this section we examine research on strategies for two canonical
market environments: individual continuous double auctions and collections of simul-
taneous auctions. In Section 4.4 we consider a more complex market game combining
several different market mechanisms.

4.3.1. Continuous double auction strategies

One of the most basic trading scenarios is an abstract market based on the continuous
double auction (CDA) mechanism [Friedman (1993)]. The CDA is a simple and well-
studied auction institution, employed commonly in commodity and financial markets.
The “double” in its name refers to the fact that both buyers and sellers submit bids,
and it is “continuous” in the sense that the market clears instantaneously on receipt of
compatible bids.16

The CDA has also been widely employed in experimental economic studies, and
notably in an open research competition conducted at a Santa Fe Institute workshop
in 1990 [Friedman and Rust (1993), Rust et al. (1994)]. The winning trader in this
competition held back until most of the other agents revealed their valuations through
bidding behavior, then “stole the deal” by sniping at an advantageous price. Agents
employing more elaborate reasoning failed to make such sophistication pay off. This
is consistent with observations that even extremely naive strategies—exhibiting what
Gode and Sunder (1993) dubbed “zero intelligence” (ZI)—achieve virtually efficient
outcomes in this environment. Such results suggested a strong limit on the potential
returns to positive smarts.

Over the last fifteen years, CDA markets served as a basis for many further studies of
artificial trading agents. The simplicity and familiarity of the abstract CDA framework
presents some distinct advantages as the basis for trading agent research. These include
ease of explanation and simulation, low barriers to entry, consensus understanding of
market rules, predictability of behavior, opportunity to build on prior work (on design
of both mechanism and agents), and analyzability of outcomes. Given the ubiquity of
the CDA institution, there is even a potential to incorporate real-world market data of
various kinds.

Cliff (1998) provides an extensive bibliography covering much of this work, includ-
ing his own evolutionary studies of “ZI plus” agents. One particularly influential trading
strategy was proposed by Gjerstad and Dickhaut (1998), later revised and termed the
“heuristic belief learning” (HBL) model [Gjerstad (2004)]. An HBL agent maintains a
belief state over acceptance of hypothetical buy or sell offers, constructed from histori-
cal observed frequencies. It then constructs optimal offers with respect to these beliefs
and its underlying valuations. The timing of bid generation is stochastic, controlled by

16 In the computer science literature “continuous” mechanisms are usually called “on-line”; we discussed
some theoretical results for on-line scheduling market design in Section 3.2.1, above.
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a pace parameter, which may depend on absolute time and the agent’s current position.
Gjerstad (2004) demonstrates that pace is a pivotal strategic variable, and that indeed
there is surprisingly large potential advantage to strategic dynamic behavior despite the
eventual convergence to competitive prices and allocations.

In extensive simulated trials, Tesauro and Das (2001) found that a modified version
of HBL outperformed a range of other strategies, including ZI, ZI plus, and the sniping
strategy that won the original Santa Fe tournament. The strategy also compared favor-
ably with human traders [Das et al. (2001)].

Because CDAs or close variants are widely employed in financial markets, models
from the finance literature that account for details of the trading mechanism, or market
microstructure [Garman (1976)], are also highly relevant to trading agent strategy.17

Much of this literature addresses the trading problem from a market maker’s perspec-
tive, explaining price spreads and the potential for dealer profit by way of transaction
costs and inventory management, information asymmetries, or strategic opportunities
[O’Hara (1995)].

Availability of real-time market information has recently begun to enable higher-
fidelity modeling of financial trading environments. The Penn Exchange Simulator
[Kearns and Ortiz (2003)] merges bids from automated trading agents with actual limit-
order streams, providing realistic volume and volatility patterns, whether or not these
would emerge naturally from the artificial agent strategies. Competitions based on this
simulator enabled comparison of a wide variety of CDA bidding policies [Sherstov and
Stone (2004)], including some that may use information from the entire order book
[Kearns and Ortiz (2003)].

4.3.2. Simultaneous ascending auction strategies

A simultaneous ascending auction (SAA) allocates a set of M related goods among N

agents via separate English auctions for each good. Each auction may undergo multiple
rounds of bidding. At any given time, the bid price on good m is βm, defined to be the
highest agent bid max1≤j≤N {bm

j } received thus far, or zero if there have been no bids.
To be admissible, a new bid must meet the bid price plus a bid increment (which we
take to be one w.l.o.g.), bm

j ≥ βm + 1. If an auction receives multiple admissible bids in
a given round, it admits the highest (breaking ties arbitrarily). An auction is quiescent
when a round passes with no new admissible bids.

The auctions proceed concurrently. When all are simultaneously quiescent, the auc-
tions close and allocate their respective goods per the last admitted bids. Because no
good is committed until all are, an agent’s bidding strategy in one auction cannot be
contingent on the outcome for another. Thus, an agent j desiring a bundle of goods
inherently runs the risk—if it bids at all—that it will purchase some but not all goods

17 Agent-based finance models, as discussed by Hommes (2006) and LeBaron (2006), are primarily directed
at explaining aggregate behavior, but may also prove useful for strategic studies.
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in the bundle. This is the well-known exposure problem, and arises whenever agents
have complementarities among goods allocated through separate markets. The expo-
sure problem is perhaps the pivotal strategic issue in SAAs.

As noted above, dealing with complementarities was a prime motivation for the de-
velopment and exploration of combinatorial auctions in recent years. Although such
mechanisms may provide an effective solution in many cases, there are often signifi-
cant barriers to their application. Most significantly, conducting a combinatorial auction
requires the existence of a competent authority to coordinate the allocation of interde-
pendent resources, and incurs costs and delays associated with such coordination. It is a
simple fact that today we see many markets operating separately, despite apparent strong
complementarities for their respective goods. Whereas automation will very likely in-
crease the prevalence of combinatorial markets, we expect that the issue of trading in
separate dependent markets will remain for the foreseeable future.

Perhaps the most natural baseline for SAAs is a strategy called straightforward bid-
ding (SB).18 A straightforward bidder takes a vector of perceived prices for the goods
as given, and bids those prices for the bundle of goods that would maximize the agent’s
surplus if it were to win all of its bids at those prices.

Let vj (X) denote the value to agent j of obtaining the set of goods X. Given that it
obtains X at prices  p, the agent’s surplus is its value less the amount paid, σ(X,  p) =
vj (X) − ∑

m∈X pm. When agent j is winning the set of goods X−1 in the previous
bidding round, we define the current perceived prices to be p̂m = βm for m ∈ X−1, and
p̂m = βm + 1 otherwise. Then, under SB, agent j bids bm

j = p̂m for m ∈ X∗ such that

X∗ = arg maxX σ(X,  ̂p).
The straightforward bidding strategy is quite simple, involving no anticipation of

other agents’ strategies. For the single-unit problem, such anticipation is unnecessary,
as the agent would not wish to change its bid even after observing what the other agents
did [Bikhchandani and Mamer (1997)]. This is called the no regret property [Hart and
Mas-Colell (2000)], and means that from the agent’s perspective, no bidding policy
would have been a better response to the other agents’ bids.

For a single-unit value function, the value of a set of goods is just that of its most
valuable included singleton. When all agents have single-unit value, and value every
good equally, the situation is equivalent to a problem in which all buyers have an in-
elastic demand for a single unit of a homogeneous commodity. For this problem, Peters
and Severinov (2006) showed that straightforward bidding is a perfect Bayesian equilib-
rium. Up to a discretization error, the allocations from SAAs are efficient when agents
follow straightforward bidding. It can also be shown [Bertsekas (1992), Wellman et al.
(2001a)] that the final price vector will differ from the minimum unique equilibrium
price by at most κ ≡ min(M,N). The value of the allocation, defined to be the sum of
the bidder surpluses, will differ from the optimal by at most κ(1 + κ).

18 We adopt the terminology introduced by Milgrom (2000). The same strategy concept is also referred to as
“myopic best response”, or “myopically optimal”, or even “myoptimal” [Kephart et al. (1998)].
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Unfortunately, the very nice properties for straightforward bidding with single-unit
value do not carry over to multiple-unit problems. Indeed, the resulting price vector
can differ from the minimum equilibrium price vector, and the allocation value can dif-
fer from the optimal, by arbitrarily large amounts [Wellman et al. (2001a)]. However,
whereas the case against SB is quite clear, auction theory [Krishna (2002)] to date has
relatively little to say about how one should bid in simultaneous markets with comple-
mentarities. In fact, determining an optimal strategy even when it is known that other
agents are playing SB turns out to be an unsolved and surprisingly difficult problem,
sensitive to the smallest details of preference distributions [Reeves et al. (2005)].

Our gap in knowledge about SAA strategy is especially striking given the ubiq-
uity of simultaneous auctions in economically significant settings. Indeed, markets for
interdependent goods operating simultaneously and independently represents the nor-
mal or default state of affairs. Even for some markets that are expressly designed,
most famously the US FCC spectrum auctions starting in the mid-1990s [McAfee and
McMillan (1996)], a variant of the SAA is deliberately adopted, despite awareness of
strategic complications [Milgrom (2000)]. Simulation studies of scenarios based on the
FCC auctions shed light on some strategic issues [Csirik et al. (2001)], as have accounts
of some of the strategists involved [Cramton (1995), Weber (1997)], but the general
game is still too complex to admit definitive strategic recommendations.

In our own work, we explored SAA strategies in the context of a simple market-based
scheduling scenario [MacKie-Mason et al. (2004), Reeves et al. (2005)]. In the schedul-
ing game, agents need to complete a job requiring a specified duration of resource, by
acquiring the resource over individual time slots. The value for completing a job de-
pends on when it is finished. Complementarities arise whenever jobs require more than
a single time slot.

We investigated a family of possible strategies for this game, employing an empirical
methodology discussed in some detail in Section 5 below. Our basic approach was to
start with SB as a baseline, and evaluate parametric variations through extensive sim-
ulation and analysis. In particular, we considered two extensions of SB designed to
mitigate the exposure problem. First, we modify SB to account for sunk costs to some
degree, recognizing that goods an agent is already winning will pose no marginal costs
if other agents do not submit additional bids. The strategy is implemented in terms of a
“sunk awareness” parameter ranging over [0,1], with zero treating all winning bids as
sunk costs and one corresponding to unmodified SB. Perhaps it should not be surprising
that the equilibrium settings of this parameter are quite sensitive to the distribution of
agent job characteristics (length, deadline values). We identified qualitatively distinct
equilibria corresponding to different job distributions.

The second alternative we considered attempts to explicitly predict the closing prices
for each slot, and selects bundles based on these price predictions [MacKie-Mason et
al. (2004)]. Our overall finding is that this approach is quite effective compared to SB
or employing a global sunk-awareness parameter. Performance, of course, depends on
the prediction vector employed by the agent, as well as the distribution of job char-
acteristics. Since prices are observable, however, it is perhaps plausible to glean the
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prediction vectors directly from experience (real or simulated). The structure of the pre-
diction methods surviving in equilibrium appear relatively robust to changing the agent
job distributions.

4.4. Case study: trading agent competition

Inspired by success of Santa Fe double auction tournament and other research com-
petitions, a community of trading-agent researchers established an annual competition
event designed to focus effort on a common problem, thus enabling researchers to com-
pare techniques and build on each others’ ideas [Wellman et al. (2001b)]. Working on a
shared problem coordinates attention on particular issues (among the many of interest
in the trading domain), and facilitates communication of methods and results by fixing
a set of assumptions and other environment settings.

The multi-year Trading Agent Competition (TAC) series offers the further prospect
of learning from shared experience over time. As a case study of trading agent research,
we examine the experience of the first four years of TAC, and some of the research
results spawned from that activity. The first TAC was held in 2000, followed by annual
sequels, each attracting approximately twenty participant teams. In 2003, TAC intro-
duced a second game, in the domain of supply chain management [Arunachalam and
Sadeh (2005)], which also produced significant interest and research activity. In this
case study we focus on the original travel-shopping market game.

4.4.1. TAC travel-shopping rules

The TAC travel-shopping market game presents a travel-shopping task, where traders
assemble flights, hotels, and entertainment into trips for a set of eight probabilistically
generated clients. Clients are described by their preferred arrival and departure days, the
premium they are willing to pay to stay at the nicer hotel, and their respective values for
three different types of entertainment events. The agents’ objective is to maximize the
value of trips for their clients, net of expenditures in the markets for travel goods. The
three categories of goods are exchanged through distinct market mechanisms.

Flights. A feasible trip includes round-trip air, which consists of an inflight day i and
outflight day j , 1 ≤ i < j ≤ 5. Flights in and out each day are sold independently, at
prices determined by a stochastic process. The initial price for each flight is distributed
uniformly, following a random walk thereafter with an increasingly upward bias.

Hotels. Feasible trips must also include a room in one of the two hotels for each
night of the client’s stay. There are 16 rooms available in each hotel each night, and
these are sold through ascending 16th-price auctions. Agents submit bids for various
quantities, specifying the price offered for each additional unit. Each minute, the hotel
auctions issue quotes, indicating the 16th- (ASK) and 17th-highest (BID) prices among
the currently active unit offers. To ensure ascending prices, hotel bidders are subject
to a “beat-the-quote” rule [Wurman et al. (2001)], requiring that any new bid offer to
purchase at least one unit at a price of ASK +1, and at least as many units at ASK +1 as
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the agent was previously winning at ASK. Also each minute, starting at minute four, one
of the hotel auctions is selected at random to close, with the others remaining active and
open for bids. When the auction closes, the units are allocated to the 16 highest offers,
with all bidders paying the price of the lowest winning offer.

Entertainment. Agents receive an initial random allocation of entertainment tickets
(indexed by type and day), which they may allocate to their own clients or sell to other
agents through CDAs. The entertainment auctions issue BID and ASK quotes represent-
ing the highest outstanding buy and lowest sell offer, respectively, and remain open for
buying and selling throughout the 12-minute game duration.

A feasible client trip is defined by inflight and outflight days, rooms in the same hotel
for all nights in the interim, and a set of entertainment tickets. The client’s utility for this
trip is given by a constant base value, minus penalties for deviating from preferred dates,
plus (if applicable) bonuses for staying in the premium hotel and attending entertain-
ment. At the end of a game instance, the TAC server calculates the optimal allocation of
trips to clients for each agent, given final holdings of flights, hotels, and entertainment.
The agent’s game score is its total client trip utility, minus net expenditures in the TAC
auctions.

4.4.2. TAC experience

As we can see, the TAC travel-shopping game scenario presents a challenging trad-
ing problem, involving multiple interdependent goods allocated over time, through
three distinct market mechanisms. Flights are sold through take-it-or-leave-it offers, ho-
tels through multiunit SAAs (with stochastic termination), and entertainment through
CDAs. Each of these poses open strategic problems.

The TAC record is well documented, including accounts of particular tourna-
ments [Wellman et al. (2001b, 2003b), Lanzi and Strada (2002), Eriksson and Jan-
son (2002)], and summary descriptions of competing agents [Greenwald and Stone
(2001), Greenwald (2003)]. We also investigated behavior across years [Wellman et
al. (2003a)], finding that over time the allocation of travel resources in TAC play has
become increasingly efficient. Since the TAC market appears to be quite competitive
(as discussed below), this provides indirect evidence of general progress in agent per-
formance.

One of the first findings to emerge from TAC was simply that a diverse set of research
groups (ranging from individual students or employees to teams of senior researchers)
were capable of constructing competent agents to play a complex game. By and large,
most participants recognized the key strategic issues, and solved relevant subproblems
accurately. For example, two key subproblems identified and solved by many partic-
ipants were determining the optimal allocation of a given set of goods to clients, and
evaluating the marginal utility of a particular good [Greenwald and Boyan (2001), Stone
et al. (2001)]. Techniques for such core problems are generally disclosed by participants
after the competition, and often incorporated and extended by other entrants in the next
year’s event.
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In some cases, work on challenging TAC problems spurred research on techniques
applicable much more generally in automated reasoning and decision making. For
example, Stone et al. (2003) extended boosting techniques from machine learning to
estimate conditional densities, driven by the pivotal TAC problem of estimating future
hotel prices given current and historical price information, as well as other features.

Sophisticated learning of price distributions was undoubtedly a major ingredient in
the success of ATTac-2001, which finished in a virtual two-way tie for first place in the
2001 TAC tournament. Its precise monitoring and reaction to prices was in stark contrast
with the other first-place agent, livingagents [Fritschi and Dorer (2002)], which imple-
mented a comparatively simple strategy of predicting optimal trips at the beginning and
then taking hotel prices however they turned out. That such open-loop behavior could
work so well was initially surprising. Indeed, if all agents played the livingagents strat-
egy, hotel prices would skyrocket to unprofitable levels. But in the actual tournament,
stabilizing agents like ATTac-2001 were the norm, effectively removing the risk to blind
price-taking behavior.

An interesting lesson from this 2001 outcome was that interactions among the strate-
gies are indeed important in TAC. The success of price-taking in the finalist pool also
suggests that the market was fairly competitive. In the 2002 tournament, Walverine
[Cheng et al. (2005)] took the competitiveness assumption seriously, modeling the TAC
hotel market as a perfectly competitive system. Specifically, Walverine derived the Wal-
rasian equilibrium for hotel prices given the initial flight prices and expected demand
based on the known distribution of client preferences. This proved to be quite accurate as
an initial prediction for hotel prices, performing on par with the sophisticated machine
learning method employed by ATTac-2001 [Stone et al. (2003)], and significantly better
than all other approaches in the TAC-02 finals [Wellman et al. (2004)]. This is perhaps
surprising, given that Walverine was the only agent that did not employ historical data in
its prediction method. Subsequent analysis indicated that a key determinant of success
was taking into account the effect of flight prices on clients’ choices of travel dates (and
therefore hotel demands on different days). This relationship was pivotal in Walverine’s
competitive equilibrium analysis, and was empirically learned by ATTac-2001 as well
as kavayaH [Putchala et al. (2002)], which predicted prices based on a neural-network
model.

Predictions are of course uncertain, and TAC participants have identified several ap-
proaches to using probability distribution information in their bidding strategies. ATTac-
2001 made decisions based on sampling from the price distribution, but its developers
found in subsequent experiments that deciding directly based on distribution means was
more effective [Stone et al. (2003)]. Similar results in the context of other agents were
reported by the developers of RoxyBot and Walverine. Greenwald and Boyan (2004) per-
formed a careful study of the general problem of bidding under uncertainty, comparing
the problem as it arises in TAC to simpler models of purely sequential and simultane-
ous auctions. Hotel auctions in TAC are a hybrid, as agents bid simultaneously in all
of them, after which one closes, and the agents have an opportunity to revise bids in
the rest based on the results. Their study found that TAC hotel auctions strategically re-
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semble simultaneous more than sequential auctions, which suggests that insights from
research on SAAs (Section 4.3.2) may prove applicable to this problem.

Overall, success in TAC requires putting together solutions to the several subprob-
lems comprising the game. The top scorer in the 2002 tournament was whitebear, whose
developers tuned to victory through a process of extensive simulation experiments,
performed systematically over a set of key control parameters [Vetsikas and Selman
(2003)]. The 2003 tournament proved to be the tightest competition yet, with less than
100 points separating the top five agents: ATTac-2001, PackaTAC, whitebear, Thalis, and
UMBCTAC.

5. A computational reasoning methodology for analyzing mechanisms and
strategies

To conduct descriptive and explanatory research, economists traditionally rely heavily
on the specification of stylized models that abstract from many real-world details in or-
der to obtain formal results. One of our themes is that less formalism is reasonable when
economics is practiced as a normative science applied to the design of computational
markets and agents. Implementation details, problem complexity, and context matter in
a fundamental way.

Direct application of analytic (usually game) theory quickly becomes infeasible as
problem complexity grows, as reflected (informally) in size of strategy space, number of
agents, degree of incomplete and imperfect information, and dynamism. Despite recent
advances in game computation [Koller et al. (1996), McKelvey and McLennan (1996),
Kearns et al. (2001), Porter et al. (2004)], even moderate size coupled with uncertainty
and dynamics suffices to place modest but interesting market designs beyond the range
of currently available solution methods.19 As one well-known example, consider the
FCC spectrum auctions. These multi-billion dollar auctions were designed by some
of the best auction theory researchers alive, and major bidders hired most of the rest
of the top auction researchers to help them devise strategies. Yet neither the market or
agent strategy designers were able to analytically solve the game induced by the auction
rules.20 The outlook is more bleak for the numerous other markets that are at least as
complex but less rich with potential gains from analytical solution.

When analytic methods are infeasible, what other tools are available for market and
agent designers? One standard method is to statistically study quasi-experimental ev-
idence from real-world market implementations to test generalizable hypotheses. Of

19 Although the theoretical complexity of various game-computation problems [Conitzer and Sandholm
(2003), Papadimitriou (2001)] is to some extent unsettled, the practical unsolvability of many games of
interest—now and for the foreseeable future—is an uncontroversial proposition.
20 Nor, apparently, did the designers anticipate and prevent certain collusive strategies; see, e.g., Weber
(1997).
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course, for computational market design there are few implementations in the field, es-
pecially if we wish to test new ideas. In this case, a variant is to design markets based
on heuristics when theory is not complete, implement them in the field, and test their
performance. This process, unfortunately is both slow and extremely expensive.

A related approach that has been used from the earliest days of computational market
design is to test implementations in human subject laboratory experiments. Some of the
earliest computational market designers were also among the pioneers of experimental
lab methods in economics; in particular, the economists at the University of Arizona
[Smith (1962)] and the California Institute of Technology [Plott (1986)]. This coinci-
dence is not terribly surprising: to test any market, including non-computational, in a lab
setting, researchers quickly found it expedient to build computational markets so that
the experiment interface and instrumentation could be automated. However, although
laboratory experiments are often more practical than field trials, they are still expensive.
Further, mechanism and strategy complexity is limited by reliance on non-expert human
participants.

We describe an emerging methodology that uses computational experiments to sys-
tematically investigate agent strategies and the performance of market mechanisms. The
method begins with an explicit formulation of the resource allocation problem, and pro-
ceeds through at least five distinct tasks (we elaborate on these and provide references
in the ensuing subsections):

1. Specify a computational mechanism (or several). Designs can be generated from
innovation to existing forms, creative speculation, or through directed search (say,
with a genetic program [Cliff (2003), Phelps et al. (2002)]).

2. Generate candidate strategies. As with mechanisms, candidate strategies can be
generated in several ways. One promising idea is to search systematically or ran-
domly through some encoding of strategy space. Another is to specify a strategy
family parameterized to address important tradeoffs, perhaps based on a previ-
ously studied strategy. In any case, it is necessary to reduce dimensionality by
restricting the strategy space, in order to employ numeric analysis methods.

3. Estimate the “empirical game”. Simulation and sampling converts the extensive
form game of incomplete information into a normal form with expected payoffs
associated with each possible strategy profile.

4. Solve the empirical game. Methods such as replicator dynamics exploit symme-
try or other available structure to efficiently solve large games for their equilibria.

5. Analyze the results. Attempt to extract generalizable regularities, and employ
sensitivity analysis to drive further sampling and search.

These methods are emerging in the work of several authors [Reeves et al. (2005),
MacKie-Mason et al. (2004), Armantier et al. (2005), Kephart and Greenwald (2002),
Walsh et al. (2002)]. They are related in some respects to the generative social science
methods used elsewhere in agent-based research [Epstein (2006)].

In the remainder of this section we discuss most of the main steps in this methodol-
ogy. We do not devote any further attention to the first step of specifying a mechanism:
this was the subject of Section 3 (especially Section 3.2).
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5.1. Generate candidate strategies

One important source of intractability in market mechanisms is the enormousness of
the strategy space. For example, in the market-based scheduling problem we studied,
agent strategies include all functions from preferences (job length and deadline values)
and price-quote histories to current-round bid vectors. The strategy domain includes
all preferences ((M + 1)-dimensional, when there are M time slots), plus all price-
quote histories up to the current time T (MT -dimensional). Partial or full combinatorial
mechanisms have even higher dimensionality. Exploring all possible mappings from an
M(T + 1) to an M dimensional space is clearly not feasible. The traditional approach
is to impose a rationality assumption (usually Bayes-Nash) and solve analytically for
optimal strategies, but as we noted above the problem is not tractable for most complex
mechanisms.

To render computational analysis feasible, the researcher restricts the strategy space
to a manageable set. Typically, the researcher will specify a few “interesting” strategies,
generated by intuition or experience, and analyze their performance against each other.
Selten et al. (1997) implement a strategy generation method first proposed by Selten in
1967: humans play strategies in a laboratory setting to gain experience with the game
and the mechanism, and then program those strategies so the researchers could analyze
them further. In a similar vein, Axelrod (1984) solicited programmed strategies. Another
approach is to implement a directed search strategy, such as a genetic algorithm, to select
candidates from the full strategy space [Miller (1988), Koza (1991), Ünver (2001)].

A different approach for identifying such strategies that we explored is to spec-
ify a reasonable skeletal structure augmented with control parameters addressing key
tradeoffs, and then to vary the parameters. For example, as discussed in Section 4.3.2,
straightforward bidding (SB) is a natural candidate for a baseline strategy in any simul-
taneous ascending auction situation [Milgrom (2000)]. An SB agent determines which
subset of goods (including the null set) would be most profitable at currently avail-
able prices, and places incremental bids on those it is not currently winning. For our
scheduling problem we considered variants of SB that admit deviations from its myopic
behavior. One variant was to introduce a “sunk awareness” parameter to account for
exposure risk when an agent is already high bidder on some but not all slots it needs
to complete its package [Reeves et al. (2005)]. Parameters need not be limited to scalar
quantities. We recently investigated bidding strategies that use explicit price prediction
[MacKie-Mason et al. (2004)], similar to many of the trading agents in the TAC compe-
tition (see Section 4.4). The parameters in this case may be vectors of expected prices,
full belief distributions, or more generally, methods for price prediction that may be
plugged in to the broader bidding strategy.

Although sometimes for a different purpose, many investigations of bidding agents
include simulations of what are essentially restricted strategy profiles [Csirik et al.
(2001), Goldman et al. (2001), Wellman et al. (2003a, 2005), Stone et al. (2001, 2003),
Vetsikas and Selman (2003)].
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5.2. Estimate the “empirical game”

Given a restricted set of candidate strategies, the cross-product of these sets across
agents induces a space of strategy profiles, defining a restricted game. The payoff to
each agent in a given profile is defined as the expected payoff for playing its corre-
sponding strategy, where expectations are taken with respect to the distribution over the
agents’ private information, and any other stochastic factors.

For shorthand, refer to the joint probability function over these random variables as
the type distribution. Given a specification of the type distribution, the expected payoffs
with respect to this distribution can be estimated via sampling. The researcher draws
randomly from the type distribution, and simulates play for a given profile. In the limit,
the sample average payoff vector will approach the true expected payoffs for this profile
if the mild conditions hold to support a weak law of large numbers. We refer to the
mapping of strategy profiles to their estimated payoff vectors as an empirical game. This
mapping has also been termed a heuristic strategy payoff matrix [Walsh et al. (2003)].

For example, we investigated a task-allocation problem in an information-collection
domain [Cheng et al. (2003)]. The game has five agents, and we restricted the agents
to choose among three available strategies (A, B, C). The game is symmetric, which
means that each agent receives the same payoff from a given strategy when it faces a
given profile of strategies played by the other agents (in payoff matrix terms, the matrix
is symmetric). Agent types represent resources and tasks assigned in a particular game
instance. Figure 4 depicts the empirical game matrix. We constructed similar empiri-

Figure 4. Payoff matrix for symmetric game with five agents choosing from strategies A,B,C. Each column
corresponds to a strategy profile: {A,A,A,A,A} through {C,C,C,C,C} in lexicographic order. The j th dot
within a column represents the mean payoff for the j th strategy in the profile. This payoff matrix is based on
over 200 games simulated for each of the 21 distinct profiles. The error bars denote 95% confidence intervals.
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cal games for many other scenarios, including several configurations of the scheduling
problem, with varying numbers of agents and strategies.

5.3. Solve the empirical game

With a normal form expression of the empirical game, the next step is to solve for one
or more of the Nash equilibria. Because it is based on a restricted strategy set, a Nash
equilibrium of the empirical game—termed a constrained strategic equilibrium (CSE)
[Armantier et al. (2005)]—does not correspond to an equilibrium of the full original
game (even ignoring sampling error). Moreover, because the strategies already dictate
how agents choose their actions based on private information, the CSE is not even a
Bayes-Nash equilibrium (BNE) of the game where agents may play any of the strategies
conditional on this private information. For this reason, Walsh et al. (2003) refer to the
derived solution profile as an ex ante Nash equilibrium. In the limit as we relax strategy
restrictions, a CSE converges to a BNE [Armantier et al. (2005)].

There are a variety of tools for finding a CSE in the restricted empirical game. The
state-of-the-art solver for finite games is GAMBIT [McKelvey et al. (1992)]. But GAM-
BIT fails to exploit key structure in many games, such as symmetry. Converting the
compact, symmetric representation of a payoff matrix into the more general form often
renders the problem of finding equilibria intractable. For example, we have had GAM-
BIT fail on games with five agents choosing among five strategies. For this reason, we
used two other solution methods that do exploit symmetry, described below.

In his original exposition of the concept, Nash (1950) suggested an evolutionary in-
terpretation of the Nash equilibrium. We used the related replicator dynamics formalism
[Taylor and Jonker (1978), Schuster and Sigmund (1983)] in service of computing equi-
libria. Friedman (1991) proves that if the probabilities in a mixed strategy are cast as
proportions of a large population of agents playing the corresponding pure strategies,
then an agent population that reaches a fixed point with respect to the replicator dy-
namics will be a symmetric mixed-strategy Nash equilibrium. This definition suggests
an evolutionary algorithm in which population proportions are iteratively updated in
successive generations.

We illustrate this evolutionary process in Figure 5 for a version of our scheduling
game [MacKie-Mason et al. (2004)]. In this particular example, agents in a five-player
game are drawn from a population in which the indicated fractions play one of five
strategies from the set labeled by {16, 17, 18, 19, 20}. These strategy labels refer to a
parameter we call “sunk awareness”; when zero the strategy treats all winning bids as
sunk costs, and when the parameter is one the strategy completely ignores sunk costs.
In the figure, the population is converging to the mixed strategy of playing strategy 16
with probability 0.745, and 17 with probability 0.255. In our experience the replicator
dynamics method converges quickly, however the theory only guarantees convergence
to a Nash equilibrium as the number of generations approaches infinity. We are unaware
of any literature that systematically analyzed the performance of this method for solving
matrix form games.
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Figure 5. Replicator dynamics for a five-strategy version of a scheduling market.

Another solution method for symmetric games characterizes (symmetric) Nash equi-
librium as the global minimum of a function mapping mixed strategies to the reals. For
our experiments, we used an adaptation of a Nelder and Mead (1965) nonlinear function
minimizer developed by Walsh et al. (2002).

Although, in part by exploiting symmetry and using replicator dynamics, we have
been able to solve moderately large games faster and more successfully than GAMBIT,
the problem is still computationally burdensome. The number of strategy profiles in a
game with N agents and S strategies is the binomial coefficient

(
N+S−1

N

)
. For example,

we recently studied a problem with five agents and 53 possible strategies, which has
over four million unique strategy profiles to evaluate and hand to a game solving tool to
find the equilibrium strategy set [Osepayshvili et al. (2005)]. We have not come close
to estimating empirically all of the cells in the payoff matrix.

5.4. Analyze the results

Once an equilibrium strategy set is obtained, all of the usual analyses can be performed
(subject to the caveat that the equilibria hold with respect to a restricted set of permis-
sible strategies). For example, the equilibrium strategies can be analyzed to discover
critical features that explain their strategic robustness, or to measure their performance
under various conditions. Or, the equilibrium set can be calculated for each of several
candidate mechanisms, and then the performance of the mechanisms compared under
equilibrium play as part of the design loop to obtain better mechanisms.

As we noted above, fully solving a large game may be infeasible. However, partial
empirical data offers opportunities for analysis as well. For example, in our game with
five agents and 53 possible strategies, we have empirically evaluated only 4916 of the
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more than four million possible strategy profiles (and that only for a single assumed
preference distribution). However, we have been able to establish that a particular strat-
egy, s∗, forms a pure symmetric Nash equilibrium when all five agents play it. We did
this by selectively estimating the payoff submatrix for 53 profiles: one with all agents
playing s∗, and 52 with four agents playing s∗ and one agent unilaterally deviating to an
alternate strategy. None of the deviations was successful, so all-s∗ is a Nash equilibrium
[Osepayshvili et al. (2005)].

5.5. Discussion

The automation of markets and agents that trade in them opens up many new oppor-
tunities in market design and deployment. It also raises many new issues for strategic
analysis: extending attention to challenging new market environments, and accounting
for the wide strategic options available to computational agents. It may seem ironic (par-
ticularly for a chapter in the Handbook of Agent-Based Computational Economics) that
we conclude by sketching a methodology that uses agent-based simulations in service
of game-theoretic analysis. Indeed, many of the works in the agent-based economic lit-
erature [Tesfatsion (2006)] aim expressly to overcome the limitations of overly stylized
analyses of markets abstracted from their microstructure. We share this aim, but empha-
size the possibility of addressing issues of model fidelity without necessarily discarding
the underlying theoretical framework. Computational modeling will likely prove just as
valuable in service of game-theoretic analyses, as it can be as an alternative.
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Abstract

In this chapter, we assess recent contributions of computational models to the study
of politics. We focus primarily on agent-based models developed by economists and
political scientists. These models address collective action problems, questions related
to institutional design and performance, issues in international relations, and electoral
competition. In our view, complex systems and computational techniques will have a
large and growing impact on research on politics in the near future. This optimism
follows from the observation that the concepts used in computational methodology in
general and agent-based models in particular resonate deeply within political science
because of the domains of study in the discipline and because early findings from agent-
based models align with widely known empirical regularities in the political world. In
the process of making our arguments, we survey a portion of the growing literature
within political science.
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1. Introduction

In this chapter, we assess recent contributions of computational models to the study
of politics. We focus primarily on agent-based models developed by economists and
political scientists. These models address collective action problems, questions related
to institutional design and performance, issues in international relations, and the study
of competition in elections.

In order to place in context the research contributions discussed in this chapter, it is
important to begin with a description of political science as an academic and scientific
discipline. Modern political science is very broad, much broader than economics, both
in terms of methodological approaches and in terms of the questions addressed. Despite
this breadth, the set of methodologies used in political science does not contain the set
used in economics. There are marked differences. As this is a volume on economics,
these differences may not be apparent to all readers, and thus, we begin by describing
the key subjects, approaches, and methods that animate contemporary political science.

As we discuss below, political scientists address three fundamental problems: col-
lective action, the allocation of finite resources, and the determination of boundaries
and secure spaces. These problems (especially the first two) have direct analogues to
problems regularly studied in economics. Indeed, there is considerable overlap and
cross-fertilization between the disciplines, especially in the field of political economy.

We discuss the implications of the fact that political scientists as a whole place
much more emphasis on description and less emphasis on optimal design. Relative
to economics, political science devotes more attention to history, case studies, and
cross-national differences. And finally, political scientists show a greater willingness
to engage the question of whether people are fundamentally self-interested or act in the
interest of groups or collectivities.

We also discuss the methodological diversity of the discipline. Political science is
open to far more methodologies than economics. In principle, this should make it eas-
ier for researchers attempting to integrate computational techniques into the discipline.
However, at the same time computational techniques were being introduced into main-
stream political science, there was a backlash of sorts against formal modeling, which
has likely slowed the growth in use of these methods.

As will become evident, we are optimistic that complex systems and computational
techniques will have a large and growing impact on research on politics in the near
future. This optimism follows from the observation that the concepts used in compu-
tational methodology in general and agent-based models in particular resonate deeply
within political science because of the domains of study in the discipline and because
early findings from agent-based models align with widely known empirical regularities
in the political world. In the process of making our arguments, we survey a portion of
the growing literature within the discipline. We conclude with a discussion of fruitful
research agendas that are already under way, and suggest some prospects for further
progress.
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2. Core questions motivating political scientists

The topics covered in political science research journals include the study of consti-
tutions, public decision-making institutions, philosophical issues on the relationship
between governments and individuals, courts and legal systems, race and ethnicity,
economic growth and institutional structure, urban politics, public opinion, mass par-
ticipation, lobbying, elections and voting, and cultural difference. Amidst this topical
diversity, three major sets of questions cut across these topics and form the substantive
bases of modern political science:

(i) How, when, and if individuals work together to accomplish common tasks, other-
wise referred to as collective action for the purposes of, among other things, the
production of public goods, the selection of leaders, and the determination of rules
of behavior.

(ii) How governments, organizations, or societies divide up resources and who ben-
efits from the division. Let us call this “pie-splitting.”

(iii) How and when do groups and political units form, creating new identities or
new legal entities. This includes both the origins of conflicts of interest and the
study of how and when countries or sub-national groups decide to exit from the
everyday, legal institutions of conflict resolution to threaten or engage in violent
action. Let us call this “security and communal stability.”

For any given domain of politics, all three questions can be important. For instance,
electoral campaigns for national office concern who gets what (pie splitting), what pub-
lic goods the government should provide (collective action), and how to define and then
defend a country’s interests (security and communal stability).

The disciplinary emphasis on collective as opposed to decentralized pie-splitting
links the first two questions within political science. Political (i.e. non-market) institu-
tions almost by definition require coordinated collective action to function. For example,
federal systems, like the United States, involve collective participation by the subunits
to decide on policies (as in the U.S. Senate) as well as dividing up of resources to states
and regions. The pie is not always split fairly across geographic areas as electoral in-
centives of national leaders may lead them to provide benefits to different populations.

The discipline of economics places some emphasis on both of these two questions
as well. Market allocations are of course of fundamental concern to economists, but
as a general rule, political scientists focus more on non-market institutions that split
pies–organizations, governments, courts, legislatures, electoral systems. They put less
emphasis on market-based mechanisms than do economists. A major reason for the
difference is the simple fact that governments tend to intervene when markets fail. While
economics can be thought of as the study of how and when markets work, part of politics
is the study of how to allocate resources when either markets fail to work or they result
in distributions that people find unpalatable.

The third set of questions is central to political science. Defining the boundaries be-
tween political units, between organized groups, and between electoral, legislative, or
judicial coalitions is fundamental to political processes. The international system of
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nation-states at any moment in time is a consequence of wars, diplomatic agreements,
and declarations of both independence and subservience by national and ethnic groups.
Political scientists devote much attention to how the various boundaries are determined
and potentially change over time, and whether some kinds of political pressures lead to
instability and violence.

Moreover, the option for persons, groups, or countries to “exit” from legitimate in-
stitutions makes it difficult for researchers to contain all that happens in politics into
simple models of specific institutional settings. In political settings, nations or groups
can opt out of a structured institutional environment (a well defined “game”, if you will).

An act of war, rebellion, or terrorism can be thought of as abandoning current insti-
tutional arrangements. There are two ways to characterize these actions within models.
One can consider war as a type of punishment in an institution-free repeated game set-
ting, or one can consider violence as destroying the game itself, not something typically
allowed in most game theoretic models of institutions. At the end of the war, it is not
necessarily the case that the countries or groups go back to playing the same game. In
some political settings, the option exists to eliminate your opponent. One country may
take over another country and impose a new set of laws and institutions, or interactions
among groups or regions can cease altogether after violence ends.

3. Different practices in comparison with economics

The many overlapping interests across the two disciplines, economics and political sci-
ence, have resulted in substantial cross-fertilization of ideas and tools. Researchers in
both disciplines model, estimate, and compare levels of efficiency, equity, growth and
robustness across places and eras. Political economy, a field blending insights from
both disciplines, has flourished in recent years. These similarities notwithstanding, on
the whole the two disciplines are quite different. To paint in very broad strokes, eco-
nomics is more technical and probes deeper empirically and theoretically into topics,
while political science is richer and broader.

In comparison with economists, political scientists tend to devote less attention to
the study of idealized mechanisms for the distribution of resources and more attention
describing how existing mechanisms perform. A consequence of this different empha-
sis is that relatively less effort is spent in political science proposing mechanisms for
improving the efficiency of social institutions. Put differently, political science devotes
less attention to the “engineering” part of social science than does economics. Rather,
the practice of political science places more attention on what has been and what is.

Political science also emphasizes more than economics cross-cultural and cross-
national differences. While it is true that economics departments include scholars who
focus on particular regions and countries, regional economics does not occupy as cen-
tral a place in its discipline as does comparative political science. Moreover, the type
of analysis done in political science is more nuanced and certainly broader in scope.
While development and growth economists typically focus on variations in performance
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measures—rates of growth, inequality, and education levels—political scientists more
often immerse themselves in understanding broader sets of concepts, including the
culture of the countries they study. They consider, among other things, the lifestyles,
beliefs, family structures, political participation, levels of trust, and religious practices.

An important reason for this emphasis on cross-cultural and cross-country variation
is that the data demand it. Countries can have similar formal social, political and eco-
nomic institutions, and yet the operation of those institutions can vary dramatically. For
instance, Canada and India have the same electoral systems and systems of government,
yet the nature of political competition, the relationships between levels of government,
and the types of polices adopted by both countries have been vastly different. Argentina
copied the United States constitution almost exactly. How political institutions have op-
erated within those rules varies substantially across the two countries. Survey courses of
comparative politics which cover many countries, the kind of courses taught at the un-
dergraduate level, emphasize that, even though countries exhibit similarities in formal
institutions, variation over time and across countries is the norm. Thus, as political sci-
entists seek to discover and explain the empirical patterns in pie-splitting and collective
action that emerge across countries or regions they incorporate not only institutional
factors in their explanations. They also pay close attention to historical trajectories and
cultural differences.

It is also the case that political scientists more openly grapple with the assumption
of self interest. Granted, the rebirth of behavioralism has led economists to examine
not only biases in behavior but also to question the self interest assumption (Camerer,
2003). And granted, some of that research demonstrates that in some contexts people act
altruistically. But those experiments have not led economists to abandon the assumption
of self interest. And for good reason. Economists mostly study situations for which an
assumption of self interest makes sense. When a person buys a house or groceries, they
create few externalities, other than pecuniary ones, so they might as well act in their self
interest.

The three questions at the heart of political science, however—collective action, pie-
splitting, and security and communal stability—all involve decisions and outcomes that
create externalities. And in each case, there may be reasons for individuals to act in the
collective interest rather than in their narrow self interest. In fact, many of the experi-
ments that reveal altruism involve variants of the divide the dollar games and collective
action games, corresponding to two of the core problems for political science.

Not surprisingly, political scientists have long been interested in the degree to which
people act in their self interest, in their group’s interest, or in what they perceive to be
the collective interest of some large polity. From studies of voting (do people vote with
their pocketbooks?) to studies of family structure (do people take in elderly relatives?),
to studies of trust among neighbors (are people willing to lend money to friends?), re-
search demonstrates what appear to be systematic differences across countries in the
extent to which people are individually and collectively motivated. Whether people act
in their self interest or are willing to act in the collective interest influences how institu-
tions perform. The invisible hand at the core of economics implies that self interest and
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collective interest align. When providing for a public good, splitting a pie, or fighting
wars, as everyone knows all too well, those interests may not align. In comparing the
two disciplines, on balance political scientists are confronted more often with situations
where the contrast between self-interest and group interest is evident.

4. Methodological diversity

Political science is a diverse and lively academic discipline. It is not uncommon for
political science faculties to include scholars of ancient and modern political philos-
ophy, area studies specialists who cover Russian and Chinese politics, students of the
Supreme Court, experts on cultural change or diplomatic history, formal mathematical
and statistical modelers using the latest techniques from econometrics or game theory to
understand public opinion, elections, or legislative behavior, and researchers using the
experimental techniques from psychology to understand mass political demonstrations.
As we have mentioned several times, the discipline prizes empirical work and historical
work, but it is decidedly not the case that the bulk of research is thick description. Many,
if not most, political scientists are interested in discovering general understandings that
translate across time and region. Nevertheless, there is a shared belief that such an un-
derstanding benefits from having solid accounts of what has happened and is happening
across time and space so that such theories can be substantiated.

The upshot is that political scientists as a group will look at a single problem, process,
or puzzle through many lenses. Voting behavior is analyzed with formal mathematical
models, large N studies, small n in-depth surveys, controlled experiments, and historical
analysis. Given this back-drop, computational models will never be seen as providing
any definitive answers but as contributing to a general understanding formed through
multiple methods. This is not a shortcoming of the approach—the same can be said of
mathematical models—but a comment on the discipline (De Marchi, 2005).

Political scientists have made numerous methodological contributions to the social
and behavioral sciences, including advances in survey research, spatial analysis of social
processes, and models of collective decision-making, organizations and organizational
decision-making. Yet the discipline also owes methodological debts to other disciplines,
including, of course, economics. Researchers have borrowed theoretical concepts, sta-
tistical and experimental techniques, game-theoretic solution concepts, mathematical
and behavioral axioms, and research design templates from across the social, natural,
and even physical sciences. Given the broad scope of inquiry necessary to understand
political systems and processes, perhaps this methodological diversity is inevitable and
desirable.

In the best of scenarios, a diversity of approaches, methods, and areas of interest
makes for interesting and productive seminars, faculty meetings, and professional con-
ferences. The same diversity that can seed the cross fertilization of ideas, however, can
lead to tension. In recent years, political science has delved into what have at times
been heated controversies over the value of historical research, rational choice modeling
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(what some have called economic hegemony), and psychological experiments. A focal
moment in this discipline-wide debate was the circulation of an e-mail document by
“Mr. Perestroika” in 2000, and then a follow-up letter signed by hundreds of profes-
sional political scientists that same year demanding an end to hegemonic economic-type
methods and the opening of journals to a wider assortment of methodologies. Much
more commonly than does economics, political science tolerates and even accommo-
dates on a regular basis internal debates over methodology, the appropriate fundamental
assumptions of human behavior and cognition, and the social value of abstract theoriz-
ing.

Within this context—methodological pluralism and a portion of the discipline re-
senting the accretion of dominant methodologies from economics—complex systems
approaches have become more prominent and accepted in political science in the last
ten years. By and large, the techniques and approaches used did not originate within
political science, though clearly some political scientists have been at the forefront of
some areas of computational modeling. The techniques were largely borrowed from
other disciplines. In this case, the providers were physicists, computer scientists, econo-
mists, theoretical biologists, and even persons now called complexologists. At the same
time the reactions to complex systems have been complicated.

The Perestroika letter and its resulting movement within the discipline were partly
a backlash against abstract (particularly mathematical) modeling in recent years. The
complaints about modeling are themselves varied. Some political scientists call for
more direct empirical grounding in theoretical models, and wish for more realism in
the concepts used. This complaint sometimes pairs with another one: that highly tech-
nical work focuses attention on trivial, technical problems at the expense of important
political problems. Some object in particular to rational choice assumptions as unre-
alistic. Others complain about attempts to “scientize” what are highly contingent and
time-dependent processes in the political world. Others question the validity of much of
the data being collected and analyzed.

Of course, several of these complaints can extend to computational models as well.
Complex systems research, while not necessarily based on rational choice assumptions,
deals with abstract, technical models, often without direct empirical implications. The
methodological debates within political science, while they signal a colorful and some-
times tolerant discipline, might have come at an unfortunate time for computational and
complex systems approaches.

We think this would be unfortunate if true, because computational techniques can
potentially build a bridge within political science between those who value the rigor
of modeling and those who see the explanatory power of particular contextual details.
Complex systems approaches in the social sciences typically allow for historical contin-
gency, more complicated interactions of diverse agents, and adaptation of preferences
and agent-types. Looking to the future, we see reasons to be optimistic that these ap-
proaches will gain increasing respect, prestige and usage, largely because many of the
core concepts that define and characterize the computational agenda resonate among
political scientists (Johnson, 1999).
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5. Resonance within political science

As we have discussed, political scientists study collective action, pie-splitting, and se-
curity and communal stability. The political systems within which these activities occur
also exhibit characteristics that are similar to those found in other systems of interest to
researchers in complex systems.

Consider the following seven terms, referring to concepts fundamental to complex
systems and agent based modeling: adaptation, difference, externalities, path depen-
dence, geography, networks, and emergence (Page, 2000). These concepts all map to
empirical features of political systems.

In other words, political systems and complex adaptive systems appear similar in
many respects. This resonance between the methodology of complex adaptive systems
and the reality of politics provides strong support for an increased mingling of compu-
tational techniques and approaches within mainstream political science.

5.1. Adaptation

By adaptation, we mean selective pressures and learning (Axelrod and Cohen, 2000).
Both forms of adaptation occur in political systems. They often occur simultaneously
and at different time scales. A politician who does not learn fast enough loses his or her
job in the next election. Institutions also learn and get selected for and against based
on their performance. The study of selection and learning holds a prominent place in
political science. Lindbloom’s (Lindbloom, 1959) seminal article on government agen-
cies is entitled, “The Science of Muddling Through.” His follow-up two decades later
(Lindbloom, 1979) was entitled, “Still Muddling, Not Through Yet.”

Political science PhD students tend to read a lot of history and case studies of partic-
ular events or institutions, in addition to receiving basic statistical and game theoretic
training. Naturally, this differs from the training of economics PhD students, who de-
vote much more time to mathematics and the intricacies of studying quantitative data.
A reasonable defense of political science training is that the study of politics requires
an appreciation of the complexity of particular circumstances, because contexts change
rapidly, and decision-makers rarely face the same competitive situation more than once.
Moreover, in many political settings, the range of tactics or strategies available to
decision-makers can be immense, and the number of potential influences on the con-
sequences of decisions can be far beyond what decision-makers can comprehend.

In combination, the relative lack of repeated, highly correlated decision-making en-
vironments and the vast strategy spaces confronting decision-makers makes politics a
fertile ground for studying adaptive behavior. Game theoretic models of battlefield de-
cisions on where to allocate troops (Colonel Blotto Games, for instance) and on which
policy platforms to propose in electoral campaigns, typically do not have pure strategy
equilibria even if it is assumed that there is complete information.

The idea that behavior adapts over time rather than being chosen by rational ac-
tors has implications for the study of social systems, including voting and elections
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(Bendor et al., 2003a). Some have already used agent-based models to argue that fight-
ing among agents, with some dying off, leads to selection towards altruists (Cederman,
1997; Bowles et al., 2003). The research identifies a fundamental tension present in
many political situations, one that in the abstract is a basic collective action problem,
but with a steep discount factor. Self interest can help an agent to survive in the short
run, while relying on notions of collective interest helps the group of agents survive in
the long run (Miller, 1996).

If there are frequent interactions that lead to extermination, such as wars or elec-
tion results that wipe out competitors, group selection perhaps can lead to an increase
in collectively-interested behavior. Thus, the collective-based incentives that we see in
some societies may in fact have evolved over time given the propensity of dangerous
conflict. As we discuss later in more detail, Harrington (1998) has shown that actors
within organizations can adapt over time as hierarchical structures weed out certain
types of potential leaders in ways that affect organizational performance.

5.2. Difference

At a descriptive level, political scientists often begin with the basic fact of difference.
There are deep and consequential differences across population groups and across coun-
tries. Even within a country, groups differ by their levels and types of political participa-
tion. It is not enough to know different resource endowments, underlying preferences,
or institutional rules. Cultural differences abound, and culture interacts in complicated
ways with other differences that influence the success or failure of policies and reforms.
As we discuss in more detail below, complex systems research, with its emphasis on
interactions among agents, can help in understanding the emergence of cultural differ-
ences that are hard to explain with more traditional economic methods that focus on
preferences and information.

In understanding the mechanisms of politics, the two opposing forces, splitting and
unifying, are always present. Individuals with different characteristics, preferences, and
information have to conduct pie-splitting. At the same time, nothing of consequence can
happen in most political settings without coalitions of diverse individuals, organizations,
or countries, putting aside their differences to accomplish collective action.

Two important classes of traditional models in political science concern coalition
formation among diverse individuals. Game theoretic bargaining models, such as those
proposed by Baron and Ferejohn (1989) and by Harrington (1990)—both are variants
of the Rubinstein bargaining model—help us to understand how coalitions might form
within majority-rule legislatures to decide how to divide up a fixed pie. Agenda-setting
agents make proposals and try to win majority support with a legislature. Variations in
institutional rules can then be shown to affect how the pie is split. Being able to make
the first proposal conveys an advantage. Allowing legislators to propose amendments
can increase equality.

Spatial voting models, in a similar fashion, depict political parties or candidates as
offering campaign platforms to try to win the votes of diverse citizens (Downs, 1957;
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Enelow and Hinich, 1984). The parties or candidates that attract a coalition of voters
around their platforms sufficient enough to win elections can choose how to divide the
governmental pie.

Potential differences across individuals in these models are depicted as dimensions,
where each political issue or each policy domain is its own dimension. For both classes
of models, there exists the well-known problem of a lack of a core allocation in multiple
dimensions. This means that if players are selfish, there typically is no collective deci-
sion or allocation of resources in multiple dimensions that cannot be blocked by some
coalition of players. In bargaining models, tight agenda-control can avoid the problem of
winning coalitions fragmenting with each new proposal. And in spatial voting models,
with multiple dimensions, only by introducing uncertainty among agents or by fixing
some party’s or candidate’s behavior artificially can we tie down pure strategy equilibria
(Kollman et al., 1998; De Marchi, 1999).

Yet in real politics, coalitions and party ideologies are far more durable than these
traditional models would generally predict. Agent-based models can help to understand
this durability. The models help us pay careful attention to the limited cognition of
political competitors and the consequences of repeated interactions with other people
who live nearby and share similar cultures.

Difference can also lead to fighting. As we discuss later, Bhavnani and Backer (2000)
model ethnic conflict using computational methods. Ethnic conflict naturally lends itself
to dynamic, computational models because it is not a one-shot event, but a series of
reactions and counter-reactions that result in patterns of activity over time.

Political scientists also care about difference as representation. When putting together
a cabinet, a committee, or a court, a leader is often under tremendous pressure to choose
members who represent various identity groups (by gender, race, ethnicity, and so on).
Most arguments in favor of such diverse representation are based primarily on norms
of fairness. Yet, as some complex systems research has shown (Hong and Page, 2001),
diversity may also lead to better collective decisions.

5.3. Externalities

In economics, it is widely known that markets can fail because of unpriced external-
ities. Indeed, much of political science concerns the allocation of goods and services
when markets do not work as intended, and specifically, how governments decide to
manage externalities. Governments, at least in principle, ought to adopt policies to try
to mitigate negative externalities and promote positive externalities. Government may
also deliberately take actions intended to create positive externalities, such as building
infrastructure and establishing the rule of law. Government actions have pronounced
boundary effects: encouraging growth by protecting and encouraging industries; provid-
ing for schools, parks, roads, prisons, and welfare systems; and ensuring public peace
by maintaining a military.

The scope of externalities can influence the performance of political institutions. Lacy
and Niou (1998), for example, have shown how certain voting systems can perform
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poorly when decisions have externalities, and Kollman et al. (2000) have shown that
whether to decentralize or centralize decisions on policies in a federal system may de-
pend upon the level of external effects among decisions. More externalities make for
harder problems. Organizations, governments, or people facing harder problems may
benefit from more sophisticated search techniques to find solutions (Page, 1996).

When the trading of goods only affects buyers and sellers, in principle any trade
increases total happiness or utility: both sets of participants are better off and no one
else is affected. Since total happiness probably has a maximum (due to resource or
technological constraints), the trading system must stop and reach an equilibrium. In
graduate economics textbooks, this process is often modeled with a Lyapunov function.
With externalities, total happiness does not have to increase with each trade, so the
trading process may not reach an equilibrium. If North Korea trades with a member
of the former Soviet Union for nuclear fuel, both trading partners have improved their
utility, but the rest of the world is worse off. Aggregate utility need not rise with some
kinds of trading among nations. Furthermore, trades can beget further trades as total
happiness flows up and down over time. The system can churn endlessly rather than
settle.

Many political systems appear to be constantly churning and not settling into an equi-
librium. (See Janssen and Ostrom, 2006 “Governing Social-Ecological Systems”, this
Handbook.) Admittedly, the alliance formation process that occurs in the international
arena and the coalition formation process in electoral or legislative politics are more
durable that one might predict in the absence of some kind of institutional structure, as
discussed above, but it would be a stretch to say that participants in either domain attain
a steady-state. Agent-based models can provide insight into both the dynamics of social
interactions with externalities and the reasons some systems settle into equilibria and
other systems do not (Jackson, 2003; Cederman, 1997).

Political scientists and economists both try to understand when it is better to use
market solutions to solve problems of negative externalities and when it is better to
centralize decision-making and solve those problems politically. Agent-based modeling
techniques, by allowing for the exploration of different kinds of externalities affecting
diverse agents interacting in space and in time, can help in making such decisions.

5.4. Path dependence

Path dependence refers to the idea that the particular way events unfold over time shapes
future outcomes, and that systems exhibit feedback leading outcomes toward a strict
subset of all possible steady-state or equilibrium outcomes. Political scientists have long
acknowledged such path dependence in explaining specific institutional and cultural
features of societies.

Sequential decisions can be path dependent. Consider, for example, how this matters
for urban and regional development. In the splitting up of the pie in a federated system,
giving a region a slice in the form of an airport, military base, or public works project
can create positive and negative externalities. These externalities shape future decisions
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on splitting the next pie, so that governments may want to continue to invest or cease
such investments in a region, depending on the nature of the externalities. (See Arthur,
2006 “Out of Equilibrium Economics and Agent-Based Modeling”, this Handbook.)

Institutional development can be path dependent. As Pierson (2000) has argued, the
operations of political institutions lead to public attitudes and preferences among the
population that in turn pressure government leaders to shape reforms of those insti-
tutions and to create new ones. Governmental programs, such as social security or
educational loans, create constituencies among voters that severely limit the options
available to public officials in budgeting and in administrative operations (Jackson,
2003). Over time, many governmental programs can outlive their usefulness but they
survive because their histories have created constituencies that monitor closely govern-
ment action.

Beliefs, values, and understandings support this path dependence. In international
relations or in ethnic conflict, for instance, the past can shape present outcomes long
after it seems rational for decision-makers to invoke the past in predicting the future
behavior of adversaries. Tensions across national and ethnic boundaries often have their
origins in events that transpired generations ago. In Ireland and in Serbia, for example,
battles won or lost many centuries ago appear as focal events in generating collective
action among ordinary Irish and Serbs. The collective actions then shape contemporary
negotiations over splitting pies and establishing security and stability. History matters
and lingers in ways that are hard to imagine in most systems that economists study, such
as industrial or financial markets (Page, 2006).

5.5. Geography

Geography has become increasingly important in some fields of economics, such as
in the study of city formation and location. It has long been important in political sci-
ence, especially in the study of international relations, urban politics, and voting and
elections. Besides the fact that wars and diplomatic disputes are often about the protec-
tion or acquisition of land, geography seems to have broader consequences in politics.
People living near each other interact and influence each other on a regular basis, and
differences can emerge among population groups based on little more than geographic
proximity. Animosity can grow between groups that otherwise have similar political
preferences simply because they live in different areas.

Geographic correlation of induced preferences over policies in democracies may be
largely due to electoral districting rules. In all but a handful of countries, representatives
are allocated by geographic districts or regions, and thus candidates or parties structure
their campaigns around geography. They promise particular populations living in spe-
cific areas pieces of the pie to win their votes.

Geography has the effect of reducing the number of potential coalitions in a democ-
racy or in an international dispute down to manageable numbers. Consider the potential
number of coalitions of the members of the U.S. Senate or the U.S. House of Represen-
tatives. In the former case, the potential set of majority coalitions is 100 choose 51, or
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over a million billion, while for the latter it is 435 choose 218, substantially bigger than
a billion billion. Yet throughout American history, coalitions within the Congress have
always had enduring geographic bases, over and above shared policy preferences that
exist across widely spread population groups.

In international relations, the fact that wars are usually over land has the (hardly
redeeming) characteristic of enabling coalitions to become manageable. The number of
sides in wars has nearly always been two (Jervis, 1997). When Germany invaded its
erstwhile ally the Soviet Union in 1941, it unified the Allies and the Soviets instead of
creating a three-sided war, even though there were huge differences between the main
Allied countries and the Soviets. It was not geographic proximity in this case, but the
fact that the two new allied sides were poised to squeeze Germany from east and west.
The aggregation of diverse preferences is central to the study of politics, and geography
offers a convenient way for leaders to unify people, organizations, or countries, around
common goals.

Agent-based models from political science have analyzed the dynamics of interac-
tions and coalition formation not just in time but in space (Cederman, 1997; Lustick and
Miodownik, 2000). Researchers can depict interactions of agents as occurring on a grid
that has geographic features of proximity and the observable spread of something—
agents, culture, characteristics, empires, political control—over space. (See Dibble,
2006 “Agent-Based Computational Laboratories”, this Handbook.)

5.6. Networks

The idea that information can spread through networks in unexpected but consequential
ways has long been understood by social scientists, including political scientists. Just as
people tend to get jobs through weak ties, they also obtain political information through
friends of friends. Moreover, there has been a long-standing interest in how these net-
works are connected and who has power within those networks. This includes research
on the topology of networks, such as the research by Padgett and Ansell (1993) on the
Medici family in Italy. (See Vriend, 2006 “ACE Models of Endogenous Interactions”,
and Wilhite, 2006 “Economic Activity on Fixed Networks”, both in this Handbook.)

Within political science, there has been a great deal of research on social capital.
Putnam’s research (Putnam, 2000) concludes that social capital in the United States
is declining, with negative consequences. Tilly (1998) provides data indicating that a
systematic lack of social capital for one group can lead to long term inequality relative
to other groups with higher social capital. For Putnam, a lack of social capital can lead
to less pie to split; for Tilly, network connections may explain how the pie is split.

In our times, the link of networks to security and stability seems obvious, though
it was not twenty years ago. Terrorist networks are now one of the greatest threats to
domestic and international security and stability. Threats are no longer restricted to
state-sponsored militaries. Naturally, there is growing interest in network structures that
cross national boundaries and that rely on religious motivations to work.
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Research on networks in political science is still primarily empirical and descriptive.
At present, efforts are more toward documenting the operations of the networks rather
than trying to understand theoretically the structural implications of those networks.
There are reasons to be optimistic that computational techniques can help researchers
lead the way in understanding both beneficial and insidious networks in the politics.
The recent work by Huckfeldt et al. (2004) discussed below on political participation
demonstrates the power of computational techniques to study social networks.

5.7. Emergence

Emergence refers to surprising aggregate phenomena that result from the micro level
actions of agents (Axelrod et al., 1995). Gliders can emerge in the “game of life”,
and prices can emerge in complex markets. Segregation can emerge in Schelling’s
(Schelling, 1978) tipping model, and criticality emerges in sand pile models. Emer-
gence can even be formally defined as a logical or statistical property that occurs at a
higher level than the component units.

Since political scientists observe cultural differences across space and time, the notion
of emergence resonates in the discipline. (See Axelrod (2006), “Agent-based Modeling
as a Bridge Between Disciplines”, this Handbook.) As an indication, the studies by
Axelrod on the emergence of cooperation (Axelrod, 1984) and the emergence of norms
(Axelrod, 1986) have been very influential. Empirically, macro-level characteristics of
societies can change over time, sometimes gradually and sometimes dramatically. For
example, societies vary substantially in their levels of trust and individualism displayed
in surveys and in experiments (Inglehart, 1997). If asked if they trust other people, over
two-thirds of Scandinavians will reply that they do. Fewer than a fifth of Turkish people
do. Some countries have seen increases in measures of trust, something often attributed
to economic growth. Economic growth itself has an emergent quality that is hard to
predict in advance, and can occur in a relatively short period of time, as observed in
several East Asian economies, and in Ireland in the 1980s and 1990s. (See Howitt, 2006
“Coordination Issues in Long-Run Growth”, this Handbook.)

Most political scientists agree that cultural differences exist and are meaningful, but
there is less agreement on where these cultural differences come from, and the role
of institutions in forming and transforming culture. Putnam et al. (1993) attributes the
profound differences between the trusting, economically well-off Northern Italians and
the less trusting, less well-off Southern Italians to the “mists of the dark ages”, or the
historical legacies of centuries-old practices.

We have reasons to believe that complex systems and agent-based modeling are well
suited to construct valuable models of culture. There has already been computational
research on where and how cultural differences emerge (Axelrod, 1997; Bowles et
al., 2003, and Bednar and Page, 2006). This research examines three different aspects
of culture: within group homogeneity, altruism, and behavioral consistency; all three
programs hint at the enormous potential for future work. Some political scientists, espe-
cially from the area studies tradition, believe that each region or country is exceptional,
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and that because people of different regions interpret the world differently and act dif-
ferently, comparative work across cultural contexts obscures the uniqueness of each
setting and leads to false inferences about the causes of varying outcomes. Computa-
tional models can help us understand how unique kinds of behavior emerge in specific
contexts (Epstein, 2003).

For political scientists, fieldwork to study the local context will continue to be valu-
able. In fact, they may be even more so as it becomes possible to link more tightly the
results of models on the emergence of those cultural contexts with data collected in the
field.

6. The state of research

In reviewing current research on computational methods in political science and polit-
ical economy, not surprisingly we observe diverse approaches and purposes. If we cast
our net broadly, to capture all computational modeling, including numerical estimations
of equilibria from game theory (see, for example, Baron and Herron, 2003), calculations
of all possible coalitions in large groups (see, for example, Laver and Benoit, 2003), or
Monte Carlo simulations of social processes using empirically-derived estimators, then
the amount of published work is quite large. For purposes of this handbook, however, it
is most useful to cast our net somewhat narrower, to focus on agent-based computational
models.

Political scientists have used computer simulation and computational modeling in
various guises for many decades. Guetzkow (1963) simulated the international system
using complicated computer models in the 1960s. Computational versions of Axelrod’s
prisoner’s dilemma tournament (Axelrod, 1984) were summarized in publications more
than 20 years ago. The use of computation to explore domains of interest to political
scientists has grown tremendously. A list of the computational versions of the repeated
prisoner’s dilemma would alone fill a chapter of this handbook.

In this brief summary of the research, we focus on those papers or books that ad-
dress what we previously identified as the core concerns of political scientists: collective
choices and production of public goods; pie splitting; and cohesion and conflict. How-
ever, as will be seen below, many of the models we summarize address more than one of
these concerns, and thus it is difficult to categorize the models cleanly. Nevertheless, to
generalize over the following summary, the models of electoral competition and institu-
tional comparisons tend to focus on issues of collective choice, the models of adaptive
agents within organizations and complex environments tend to focus on issues of pie-
splitting, and the models of identity tend to focus on issues of cohesion and conflict.

6.1. Models of electoral competition

The study of elections is central to political science. A great deal of research is de-
voted to the analysis of party position-taking and voter behavior. By some depictions, in
U.S. presidential elections, the candidates compete within vast multi-dimensional issue
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spaces and voters are bombarded with diverse and often conflicting information from a
variety of sources. The resulting system of positioning, advertising, and voting among
diverse kinds of actors lends itself to agent-based modeling.

We consider electoral models in some detail to provide a vivid example of how com-
putational models can add value to the study of politics. The model that is most widely
used to study candidate behavior is called the spatial model, as policies and voter ideal
points are represented as vectors. Voters vote for the party or candidate closest to them in
the space of possible positions. This was first proposed by Hotelling (1929) as a model
of economic spatial competition in one dimension. Downs (1957) applied this model to
candidate positioning with the result that in two-candidate competition, the candidates
converge to the median voter’s position.

For nearly fifty years spatial models of electoral competition have been prominent
fixtures in political science journals or on bookshelves. Subsequent to Downs, Plott
(1967) proved that in higher dimensions, unless voter ideal points satisfied radial sym-
metry (an extremely strong condition), any policy position could be defeated. This ruled
out pure strategy equilibria in predicting candidate behavior. The lack of a pure strategy
equilibrium can be overcome by introducing uncertainty by candidates, but the infor-
mational assumptions in such models are still quite strong. Candidates have to know the
distribution over votes for all pairs of positions. Building upon the logic in Plott’s re-
sult, McKelvey (1976) then showed that the top cycle set, the set of positions that defeat
any other position, equals the entire set. This is typically taken to mean that there is no
equilibrium policy position in a multidimensional voting model where majority rule is
the means of deciding among policies.

Yet the McKelvey result is often interpreted incorrectly. Some have concluded that
the result means electoral democracy in general leads to chaos (Riker, 1982). In fact,
the McKelvey result is a theorem about what kind of preference aggregation is possible
under majority rule. It does not tell us what happens under specific institutions (other
than majority rule) or given a specific set of behavioral assumptions about rational ac-
tors. The latter consideration was considered by Kramer (1977) who showed that if an
incumbent party remains fixed while the challenger party seeks a position to defeat the
incumbent, and parties want to maximize their vote total, over a sequence of elections
policies would converge to the min max set, the set of policies that lose by a minimal
amount. This would seem to lend some stability to electoral outcomes. Unfortunately,
once the min max set is reached, the winning policy can then jump back out of the set
in a future period. Kramer’s result does not, therefore, imply stability.

Viewed in summary, the Plott, McKelvey, and Kramer results made some schol-
ars question whether democratic procedures could aggregate preference information
in a coherent way. The multidimensional results have also led theorists and empiri-
cists to rely on more manageable one-dimensional models. A single-dimensional model
of competition, while useful for some purposes, is by some considered too simplistic to
capture many aspects of electoral competition, such as the trade-offs voters make across
issue dimensions in evaluating candidates or parties.
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To draw an analogy to economics, suppose that economists discovered in mathemati-
cal models with rational consumers and firms that supply equaled demand if there were
a single market but not if there were more than one market attracting the dollars of con-
sumers. If economists then collectively decided that there was really only one market
and that this was the only kind of model worth studying, we would be disappointed
that constraints on modeling were leading us away from studying more complex as-
pects of the real economy. In fact, in standard economic models, two markets work as
efficiently as one. (To be fair, economists are not faultless either. They assume that a
million markets also behave like a single market, a conjecture that certainly cannot be
true.)

The contribution of computational models to the elections literature takes three forms.
First, scholars have asked the basic computational question: how hard would it be to
find a sequence of policies that led through a series of votes from one policy to a second
arbitrary policy? More formally, given a policy x and a policy y, how difficult is finding
policies x1, x2, . . . xn such that x1 = x, xn = y, and xi−1 loses in a democratic election
to xi for each i = 1 . . . n? Bartholdi et al. (1989) show that manipulating a plurality
voting system is computationally hard. They show that if there are C candidates and
V voters, then the difficulty of manipulating a voting system by adding or deleting
candidates is NP hard in C ∗ V , the number of candidates times the number of voters.
This result points toward a more nuanced interpretation of McKelvey’s result. Even if
the top cycle set is the entire set, the ability of someone to manipulate outcomes may
well be limited by computational constraints. We might think of McKelvey as showing
what is possible and the later results of Bartholdi, Tovey, and Trick as describing what
is plausible.

Moreover, if anything, these findings understate the difficulty of the task because
these researchers assume sincere voting (voting for the most preferred outcome in the
choice set) by everyone. With sophisticated voting (voting for the option that maximizes
one’s utility given one’s knowledge of others’ behavior) or a blend of sophisticated and
sincere voting, predicting the outcomes of various configurations of candidates might
itself be even more difficult computationally than even Bartholdi, Tovey, and Trick de-
scribe.

The second computational contribution to this literature relies on agent-based models
of elections. These papers relax the assumption that parties choose their platforms opti-
mally. Instead, the parties adapt platforms using search strategies that range from quite
simple to rather sophisticated. In an early paper, Kollman, Miller, and Page (Kollman
et al., 1992) show that adaptive parties in a multidimensional environment tend to con-
verge to central regions of the policy space.

In the basic KMP model, voters have ideal points in an N -dimensional policy
space. Candidates or parties choose policies in that space. A voter chooses to vote for
whichever party’s platform is closer to her ideal point. Unlike in the standard spatial
model, parties are constrained in their movements and in the information they have. In
the KMP model, parties can only move locally, in the neighborhood of their current
policy platform.
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In one version of the KMP model, a party’s decision about where to move is dic-
tated by polling results. A party with a policy (y1, y2, . . . yn) tests a neighboring policy
(ŷ1, ŷ2, . . . ŷn). If that new policy gets more votes against the opponent in a poll than
does the old policy, then the party moves to (ŷ1, ŷ2, . . . ŷn). In another version of the
model, parties toss out an initial set of policies in the neighborhood of their current
policies and choose the best among those. In yet another, the parties use a genetic algo-
rithm to evolve policies. (See Brenner, 2006 “Agent Learning Representation: Advice
on Modeling Agent-based Learning”, and Duffy, 2006 “Agent-based Models and Hu-
man Subjects Experiments”, both in this Handbook, for detailed discussion of genetic
algorithms.)

Regardless of the policy formation rule, the qualitative results remain unchanged:
parties tend to choose policies near the center of the policy space. Once both parties
locate there, they make small changes hoping to build winning coalitions of voters. One
result that depends upon the learning rule was the time it took the parties to locate the
center of the policy space. This depended on the relationship between the sophistication
of the policy search algorithm and the size of the policy space.

The convergence of the parties’ platforms depended on other parts of the model. In
later work KMP (Kollman et al., 1998) reveal a relationship between the nature of voter
preferences and policy convergence. They use the metaphor of an “electoral landscape”
as a way to describe the adaptive environment that a political party faces. In their use
of the concept, higher points on the landscape mean more voter support. They find that
voter preferences help determine whether electoral landscapes are relatively flat or rel-
atively rugged. This matters because with flat landscapes, parties have difficulty finding
more popular, winning policies through adaptation. With more pointed landscapes and
steep slopes, parties can easily find pathways to high ground. In contrast, if modelers
assume optimizing parties, as is standard in traditional spatial models, the notion of
landscapes is irrelevant. The slope of the payoff function does not matter with optimiz-
ing parties because the parties can find the optima immediately and do not need to find
pathways there. Thus, the computational approach with adaptive parties can highlight a
linkage between voters’ preferences and rates of party convergence by focusing on how
parties adapt toward more popular policy positions.

The near-convergence result from the computational model suggests a reconsidera-
tion of the importance of a lack of a formal equilibrium in the multiple-issue domain.
Does the equilibrium really matter that much if it is just a benchmark? Given optimizing
agents and certain additional regularity conditions, a market has an equilibrium that is
efficient. But agent-based models of markets do not necessarily go right to that equilib-
rium. Instead, they often bounce around in the neighborhood of the efficient allocation.
Two-party competition in multiple dimensions does not have a pure strategy equilibrium
in the absence of institutional or information constraints, but in agent-based, adaptive
models candidates tend to bounce around in the neighborhood of the policies that give
the highest utility. If modern social science relied on agent-based models with adaptive,
purposeful, but not hyper-rational agents, and not on equilibrium notions, then perhaps
social scientists would not be led to think that markets work and electoral democracy



1452 K. Kollman and S.E. Page

does not. Instead, perhaps the two kinds of systems for aggregating preferences would
look about equally effective at carrying out their respective tasks.

In addition to convergence results, KMP also find that incumbents, who are assumed
to be fixed in the policy space, often win elections. This occurs because challengers may
not adapt well enough to locate winning policy positions. These challengers were not
stupid. The difficulty in beating an incumbent results from the fact that the challeng-
ing candidate who has just been defeated often has many possible policy changes that
improve its vote total but there is no-clear direction on which changes will lead to win-
ning. Moreover, the elections are depicted are zero sum games. If one candidate is at a
multi-dimensional peak, then the other is stuck in a multi-dimensional hole. Positioned
in this hole, any path leads upward, toward more votes, but only a few of these paths
may lead to a platform that wins the election (Tovey, 1991).

These computational models of elections not only generate intuitively appealing re-
sults, they display a kind of realism lacking in some game theoretic models that assume
perfect optimizing behavior. In the adaptive models, parties take polls and respond to the
polling information by moving locally in policy space. Parties attain office with moder-
ate platforms. And the parties occasionally, but only occasionally, re-aligne themselves,
changing the blocks of voters to whom they appeal. This is similar to real politics, such
as when most African-Americans switched their allegiances from the Republican Party
to the Democratic Party over the latter half of the 20th Century because of the changes
in party position-taking.

The initial KMP models were somewhat primitive. There have been extensions and
variations by other authors that include interest groups and adaptive voters. De Marchi
(2003), for instance, considers a two-dimensional issue space. As before, the parties re-
spond to polls of voters on issues. His models depart from the more basic KMP model in
their assumptions about voter information and sophistication. In the KMP model, voters
know the parties’ policy positions exactly. De Marchi’s assumptions incorporate widely
accepted research findings on the distribution of information among mass electorates.
Including empirically supportable assumptions of informational diversity among voters
lends realism to his computational models and offers the potential for empirical testing
as well as calibration.

In the first of De Marchi’s models, some voters have sophisticated ideologies and
therefore are consistent in their survey responses to pollsters. Other voters are not ide-
ologically “constrained”, and their poll responses across issue dimensions are highly
variable. He finds that the responsiveness of the adaptive parties to the voters is sensi-
tive to the instability of voters’ answers to pollsters about their favorite policy positions,
and not so much to the levels of ideological sophistication.

In the second model, voters vary in the amount of information they have. He finds that
less voter information leads to an even greater incumbency advantage compared with the
case of more voter information. Incumbents’ platforms are better known so incumbents
do better. De Marchi also explores competition over which issues candidates choose to
highlight. Candidates can emphasize certain issues at the expense of others. Here again,



Ch. 29: Computational Methods and Models of Politics 1453

we get an incumbency advantage. Incumbents tend to have more money, and therefore
can highlight issues upon which they have an electoral advantage.

In light of the fact that adaptive parties tend to converge in more than one dimension,
there are single-dimensional political models with adaptive agents. In one such model,
Jackson (2003) proposes a single-dimensional dynamic model of two-party electoral
competition where both parties and voters adapt. The parties adapt to the position of the
median voter in trying to win elections, while simultaneously the position of the median
voter adapts to the positions of the parties. Voters change policy positions because they
develop partisan attachments to the parties and are influenced by the policy positions
of the parties. The computer in this case solves a system of five equations that depicts
the changing policy positions of the parties, the changing position of the median voter,
and the changing levels of party loyalty present among the voters. Jackson finds that
for reasonable ranges of parameter values, the model does settle into equilibrium party
positions, but only after a lengthy time period. Under various conditions, the fortunes of
the parties, and their policy positions, fluctuate over time, with alternating stretches of
one party dominance followed by collapse and the emergence of the other party as the
dominant force. This again is similar to real election results in American history, where
there have been long stretches of one-party dominance, followed by abrupt change.

In a recent paper, Laver (2005) proposes an innovative computational model of party
competition and then tests its implications using electoral data from Ireland. The model
includes parties with different kinds of strategies and different motivations. Some par-
ties in the model, for example, change their policy positions to mimic the largest party,
and then move in the direction of the maximal gradient. Other parties retain their found-
ing policy positions and move incrementally in search of more votes. Laver studies
competition with diverse kinds of parties with different motivations, and suggests that
his model captures the essence of many multi-party systems, such as those in many Eu-
ropean countries. Some parties seek to maximize votes while others seek to retain their
ideological identities. He calibrates his simulations using real data from Irish elections,
making assumptions about the strategies of the various Irish parties. He is able to create
simulated results that resemble historical changes in parties’ support in Ireland.

6.2. Institutional comparisons

Institutions enable groups to decide over public goods, but they also enable collective
decisions over pie-splitting—who gets what, where and when, and how, to paraphrase
the definition of politics given by Harold Lasswell (1958), a famous political scientist
from the 1950s. (See Janssen and Ostrom, 2006 “Governing Social-Ecological Sys-
tems”, this Handbook.)

A small but growing literature is devoted to comparisons of political institutions using
computational models. We think this area of research is particularly promising. For ex-
ample, McGann et al. (2002) study voting behavior under three different electoral rules
using a computational model. In the model, candidates are randomly selected from the
population to run for office and their policy platforms are depicted as falling on a one-
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dimensional scale. Citizens vote sincerely for the candidate closest to them. McGann et
al. evaluate results from many simulations of voting behavior under plurality, run-off,
and sequential elimination voting rules, and measure how closely the winner in each
election approximates the median voter or is the Condorcet winner among the candi-
dates.

In this model, candidates or citizens are not adapting in a complex environment, in
contrast to most agent-based models. Instead the computer is able to replicate various
instantiations of specific kinds of voting behavior under different institutional rules.
The researchers find that winners are more often than not representative of modes in the
distribution of voters instead of medians, and that the run-off and sequential elimination
rules reward the Condorcet winner more often than plurality rules.

Hayes and Richards (2003) rely on computational methods to analyze economic be-
havior in the context of different kinds of exchange rate regimes by governments. In
their model, buyers and sellers of foreign currencies who can profit by predicting future
exchange rates attempt to learn the true nature of the monetary regime by observing
changes in the money supply. The currency traders use Bayesian reasoning to learn
whether the regime is contractionary or expansionist, although the agents receive noisy
information generated by the stochastic environment. The model indicates, surprisingly,
that politically-dependent central banks may benefit traders because learning the nature
of the regime becomes easier. A dependent central bank produces politically motivated
policies, and therefore traders can ascribe less of the variance in the money supply to
stochastic variables than they can in the case of an independent central bank. They com-
pare the results of their computational model to real data from Britain and Germany. The
trajectories of excess returns from both countries differ in ways predicted by the model.

As these papers suggest, computational models allow scholars to capture explicit
differences in institutions and to consider the implications of those differences. Another
advantage of computational models is that they allow for multiple institutions to be
considered simultaneously. As an example, Kollman et al. (1997) embed their spatial
voting model with adaptive parties in a Tiebout framework. In the model, citizens are
free to move between locations based upon the locations’ offerings of public goods.
Those public goods are decided by voting among the citizens at the locations.

The results of this model were surprising. Poorly performing rules for voting—those
that produced the least stable policies within locations—did the best in the Tiebout set-
ting. Thus, the instability of majority rule voting, the lack of equilibrium that everyone
considers a weakness, turns out to be a strength when Tiebout effects are included. After
analyzing the results of the computational model, the reason becomes apparent. Stabil-
ity of electoral outcomes is correlated with the homogeneity of preferences. If people in
a location all want the same thing, the parties offer that. If people have diverse prefer-
ences, the parties wander in policy space. This policy instability leads to more sorting.
If people have not yet sorted into homogeneous preference groups, then the policies
continue to cycle. If the people have sorted into groups with homogeneous preferences,
then the system stabilizes.
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The key insight is that, if instability of the entire system decreases as utility increases,
then the system stabilizes at good outcomes. Bad outcomes get disturbed by the lo-
cal instability, leading the system to search for better policies in locations and better
distributions of citizens across locations. This results in a search that is even better
than simulated annealing. In simulated annealing, the amount of instability decreases
with time. In the Tiebout model, the amount of instability decreases with total util-
ity.

There is a further point related to the future of the spatial modeling literature. In po-
litical institutions, voters cast ballots for candidates who then comprise a legislature.
Within that legislature, there are rules for how votes get aggregated. The candidates,
when making appeals to voters, propose policies. These policies generate outcomes over
which the voters have preferences. Voters, candidates, parties, legislatures—political
systems are linked at several levels that ultimately result in policy outcomes of great
importance. Many game theoretic models of politics tend to focus on a single level,
such as the relationship between voters and election outcomes, the relationship between
legislative composition and coalition formation, or the relationship between coalitions
and policy choices. Some game theoretic models include voters who take into account
the composition of the legislature, but it is very difficult to model the full linkage that
includes whether policies lead to good outcomes and learning about the policy space
among the various actors. Agent-based models and computational equilibrium models
may allow richer institutional analyses of linked levels of conflict and organized be-
havior among people deciding over public goods. (See Chang and Harrington, 2006
“Agent-based Models of Organizations”, this Handbook.)

6.3. Individuals or agents adapting in complex political environments

The computational literatures on electoral competition and on institutional analysis
complement a relatively large literature that considers adaptive individuals and orga-
nizations in political systems. We discuss four general classes of research here: general
models of political organizations; models of information transmission in political net-
works; models of violence (non-lattice based); and models of electoral settings. Within
each, we highlight a handful of prominent papers.

The Tiebout model by Kollman et al. (1997) analyzes multiple institutional forces
occurring simultaneously. Several organizational models consider structural features of
an environment or organization and ask how those features influence behavior of agents.
Harrington (2003), for example, examines a series of models of competition within
hierarchies. In one paper, he proposes a model of agents competing for promotion in
a hierarchical society or organization. We can think of these as politicians rising to
positions of prominence. In the political story told to motivate the model, candidates
pair off against each other at each level of the hierarchy. The winner goes on to compete
again, while the loser leaves the population of competitors.

There are two types of candidates in the Harrington model, those who adapt to their
environment and those who are rigid and do not adapt. The policies that the agents
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propose correspond to unidimensional issue positions. The rigid types are ideologues.
They will not switch their positions to match current public opinion. Given the assump-
tions of the model, the number of survivors gets smaller as competitors ascend up the
hierarchy of political offices. Harrington analyzes which kinds of agents (or candidates)
survive to higher office when the exogenous environment changes over time. In partic-
ular, he traces the proportion of rigid (as opposed to flexible) agents in the top level of
the hierarchy as competition unfolds and the population of surviving politicians evolves.
Thus, the Harrington model can be thought of as a model of pie-splitting in two senses.
First, the agents are proposing a particular way to split the pie. Second, there are only a
limited number of positions at the top of the hierarchy.

Intuitively, we might expect the rigid agents to lose more often. However, in his
model, voters have lexicographic preferences. They prefer someone who takes their
preferred position; but if both candidates propose the same policy, the voter prefers a
candidate who has consistently favored the policy. Thus, as they move up the hierarchy,
the flexible agents get exposed and will lose to a rigid agent provided the rigid agent ad-
vocates the policy currently in fashion. Under some conditions, Harrington shows that
the rigid agents, and not the flexible agents, win out.

The Harrington paper considers politicians who evolve in a complex system. A nat-
ural question to ask is what attributes of voters might emerge. In a series of papers,
Bendor et al. (2003a, 2003b) explore how the aspiration levels of agents evolve over
time. They find surprising emergent outcomes in the aggregate. In one paper (Bendor
et al., 2003a), they propose a model of citizens deciding whether to vote when it is
costly to do so. Voters have aspiration levels that respond to whether they voted and the
election outcome, and they decide whether to vote based on how their expected utility
compares to aspiration levels. Instead of focusing on free-riding, as with most voter
turnout models, this research examines the dynamics of voter turnout as aspiration lev-
els evolve over time, and whether that turnout settles into an equilibrium level. The
computational experiments allow for different scenarios, such as specifying the cost of
voting and the number of voters. They find that turnout does equilibrate at empirically
observable levels—ranging from 30% to 70% in two-party systems—and those levels
are lower as the number of voters increases and the cost of voting increases.

In another paper (Bendor et al., 2003b), agents pair off and play one of a number of
well-known games, such as stag hunt, chicken, or prisoner’s dilemma. However, instead
of assuming optimization by agents, they assume that agents “satisfice” according to an
aspiration level. An agent’s aspiration level adjusts in response to payoffs from previous
games. Thus, the agents adapt their decision rules according to their experience. With
this simple model, the authors can examine a large number of questions, such as the
amount of cooperation induced by agents with adaptive aspirations and the sensitivity
of players’ strategies to initial conditions (e.g., the initial aspiration levels). Among the
many results in their paper, they find that cooperation in games like prisoner’s dilemma
can occur even in one-shot settings. They also show by including trembles that the
games have unique limiting distributions, a valuable “existence” result that allows for
empirical applications of the model.
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In a recent book, Huckfeldt et al. (2004) summarize a study of how individuals talk
politics within social networks. The authors begin with the following stylized facts that
might seem contradictory. People are easily influenced by their friends and acquain-
tances on politics. People interact with many others over the course of a relevant period
prior to an election. Diversity of political attitudes exists within electorates, even among
people who interact with each other on a regular basis and who even talk about politics
with each other. Given how easily people are influenced, how does the diversity happen?
Why do societies fail to converge on uniform opinions?

The authors demonstrate empirically, first, that individuals talk about politics within
social networks, and that diversity exists even among loose social networks. The au-
thors suggest that the social networks are the key mechanisms that lead to diversity of
opinions within an electorate. To understand these social networks, the authors describe
a simple agent-based model, based on the culture model by Axelrod (1997) discussed
below. In brief, agents with political attitudes interact and can influence each other, and
one can trace the spread of attitudes across the social system. In the first version of this
model, all agents eventually agree on the same political attitudes. In contradiction to
their empirical findings, there is no diversity of opinion after a relatively short period
of time within the model. They test several simple solutions, such as introducing rigid
agents who do not change, and various parameter changes that make sense.

Eventually, they introduce different, more realistic changes to the model. Most im-
portantly, they give agents different layers of friends and acquaintances, where the
probability of being influenced depends on how close the other agent is to you. As
they examine the runs of this model, they see that social networks begin to emerge,
and over time diversity exists in the societies. The social networks cling to opinions
that differ from other social networks, and the entire population exhibits both an intra-
group homogeneity but an across-group heterogeneity. It looks a lot like the empirical
data. The basic insight, which is similar to others from the research summarized be-
low, is that social systems can exhibit a balance of influence and social cohesion that
leads to clumping of people into like-minded social groupings. Moving the parameters
of choice, interaction, or influence too much in one direction or the other in the model
can lead to complete homogeneity.

Bhavnani and Backer (2000) analyze the spread of genocide using a computational
model. In the model, there are two groups of agents, and each agent has a different
propensity to violence based on the number of others participating, and a different level
of hatred toward the other group. The agents interact and influence each other. The
model begins with a signal sent to one or the other group, or both, that violence has
broken out. Then agents react to the news and to the behavior of other agents. They
discover two sets of findings. In some instances, violence between the groups can oc-
cur sporadically and intensely, with many killed. In other instances, violence occurs
at a moderate level at a constant rate. Which outcome occurs depends on the initial
conditions: the distribution of propensities, of inter-ethnic hatred, and of frequencies of
interactions between the groups.
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6.4. The spread of collective identities or authority structures

As in other fields, in political science agent-based models have been used to analyze
the spread of characteristics across a lattice, when the agents on the lattice interact and
influence each other. Sometimes those characteristics are the component descriptors of
a location on the lattice. Other times, those characteristics are the boundaries of political
units or social networks.

As for the former type of model, Axelrod (1997) models the spread of culture by
creating a N × m lattice of sites—interpreted in one version as villages—where two
sites interact with probability in proportion to their cultural similarity. If sites interact,
then with a given probability one site takes on some of the cultural characteristics of
the other. He finds that the social system usually settles into a relatively small number
of cultural zones, defined as homogeneous groups of sites forming a contiguous set on
the lattice. Moreover, the number of cultural zones that exist either in equilibrium or
after a very large number of interactions varies with the size of the lattice, the number
of cultural characteristics, and the number of possible types of culture.

In a similar vein, Lustick and Miodownik (2000), model a process of deliberation
among citizens trying to decide on a common course of action. A prominent topic for
research within political science and law has been on the value of having groups of peo-
ple discussing current events or political issues before deciding how to answer opinion
polls, vote, or choose a particular action for the collective. Some think that deliberation
leads to wiser or more considered decision-making (Fishkin, 1997), while others are
deeply skeptical (Lupia, 2002).

The Agent-Based Argument Repertoire (ABAR) model developed by Lustick is a
two-dimensional lattice with agents in locations on the lattice interacting with neigh-
bors and influencing them. Lustick and Miodownik (2000) use this model to simulate
democratic deliberation. There are two types of agents on the lattice, ordinary citizens
and opinion leaders. All agents in the model interact with only their neighbors, but opin-
ion leaders have larger neighborhoods. A citizen is called upon to propose an argument
(a way of interpreting the problem at hand), and others in the neighborhood are differ-
entially influenced by that argument, depending on their types. Through interactions,
neighbors with some probability reduce their levels of disagreement with each other,
but may increase it with other groups on the lattice.

In one version of the model, Lustick and Miodownik vary the number of different
arguments available in the population, the number of opinion leaders relative to ordi-
nary citizens, and the size of the opinion leaders’ neighborhoods. They then track the
overall level of disagreement in the population on the lattice. They find a trade-off in the
deliberative process between engendering less disagreement and more common stances
on proposed solutions, and diversity in the population. That is, under certain conditions,
the population comes to agreement but has little diversity and not much flexibility to
adapt to new information, and under other conditions the population remains divided,
but diverse and flexible.
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In a paper using similar methodology but tackling a different set of questions, Lustick
et al. (2004), simulate the changing identities of agents on a two-dimensional lattice and
how the emergence of identity patterns might encourage secession. One possible iden-
tity, if agglomerated in sufficient weight in one geographic region, will encourage agents
to push for secession from the entire group of agents. Lustick, et al. examine different
parameter ranges to examine what can cause more or less sentiment for secession. For
instance, one kind of identity that can emerge in the population is the propensity for
agents to share power with minorities, and this is varied to understand how it interacts
with other identities to mitigate or possibly encourage secession by those minorities.
They find that increased power-sharing sentiments among the population as a whole
leads to greater numbers of minorities arising, with fewer number of secessionist move-
ments proportional to the number of minorities. However, secessionism can still arise
even under tolerant regimes.

For the second kind of model, where characteristics that change on the lattice are po-
litical boundaries or networks of trusting agents, several studies deserve mention here.
Macey and Skvoretz (1998) analyze the evolution of trust and cooperation among agents
engaging in one-shot prisoner’s dilemma games. As in the earlier Axelrod models of it-
erated prisoner’s dilemma games and dynamic population changes, the authors depict
agents as having strategies that can evolve over time as they interact with other agents,
using a genetic algorithm to simulate the evolution of strategies. Payoffs to an agent in
the Macey and Skvoretz model do not depend on prospects for repeated play with the
same opponent, but rather on the standard cooperation and defect choices in a one-shot
setting and also on the possibility of refusing to play at all. They track the propensity of
agents to cooperate as one increases the payoff for refusing to play, and as one embeds
agents into smaller and smaller communities. It turns out that, in this model, embedded-
ness in small communities is the key linchpin to increasing cooperation among strangers
in one-shot PD games.

In several articles and a book, Cederman (1997, 2002, 2003) reports a series of results
using a network model (projected onto a lattice) of political units that can choose to
cooperate or fight each other. His basic interest is in understanding the emergence of
new political boundaries, thus simulating the spread of empires or the enlargement of
countries. Each political unit exists as a location on a two-dimensional lattice. With
some probability, one location, following a fight if it takes place, can ‘swallow” the
other to integrate together into a larger political unit.

Cederman’s core model has many facets. He varies parameters such as the propensity
of units to attack each other, the costs of defending oneself, and the size of the grid. His
main variables of interest are the number and size of the political units over time. In
Cederman (2003), for example, he finds that territories expand and wars take place in
distributions that correspond to empirical patterns discovered many decades ago in in-
ternational relations. Empirically, the size of wars and the number of casualties in those
wars approximate a power law distribution when plotted against their frequency. This
relationship also emerges from Cederman’s simulations, with the parameters of that
power law determined by the initialized parameters in the computational experiments.
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Cederman interprets many of his results that accord with data on inter-state conflicts as
vindicating an agent-based modeling approach. He notes that agent-based modeling can
provide distributions of outcomes in international relations, not simply point predictions
about specific events.

Several researchers have analyzed models of civic violence using interacting agent-
based models. Epstein (2002) proposes a model with two types of agents, ordinary
persons and cops, who live on a lattice. Ordinary persons decide in each time period
whether to rebel or not, and they can influence each other. Cops decide whether or not
to arrest rebellious persons. There are various renditions of the model, including one
where two different population groups might fight each other as a form of rebellion. Ep-
stein examines the rebelliousness of persons as their grievance levels increase relative
to the number of cops, and as the behavior of the cops change. He finds that over time
rebelliousness comes in waves (like punctuated equilibria), with the size and frequency
of the waves varying with parameters in some intuitive and some nonintuitive ways.

7. Conclusion

In taking stock of the contributions of agent-based modeling to the study of politics so
far, we conclude that though small in number, the papers and models have been high
in quality and growing in their impact. We also detect an increase in interest among
political scientists of all disciplinary stripes from formal theorists to empiricists to his-
torians. At our most optimistic, we might even claim, with others, that complex systems
research might prove to be a glue that can hold some disparate parts of the discipline to-
gether. Computational methods may offer a bridge between the side of political science
with scientific aspirations, including those researchers with preferences for, or open-
ness to, rigorous theories, falsifiable propositions, and systematic data collection, and
the side of political science that forces us to confront contextual details that provide vital
information about cross-national and cross-cultural differences (Kollman et al., 2003).

Computational models can perform this role because of what they are well disposed
to capture: systems with adaptive structures but not deterministic structure, and systems
with diverse agents who interact over time on a geographic space. Political systems
contain diverse actors who pass information among each other through complicated
networks. Conflict within political systems is often highly dimensional, and outcomes
appear to be path dependent. Some outcomes in political systems emerge into stable
equilibria, but much of what emergences is complex and nonlinear.

The separate components of complex systems research resonate within political
science—adaptation, difference, externalities, path dependence, geography, networks,
and emergence—but so does the complete picture. One might argue, as Jervis (1997)
has in reference to the importance of complexity studies in international relations, that
most of the linear and equilibrium features of political systems are now understood, and
that we should turn to these latest techniques to grapple with what is left, the complex.
Major events in the political world are often unpredictable. By definition, terrorist acts



Ch. 29: Computational Methods and Models of Politics 1461

can only be predictable in a statistical sense. The implications of events are often im-
possible to foresee from simple models. As Neil Harrison (2004) writes: “The reality of
world politics is more complex than dreamt of in most theories.”

In addition to enabling political science to enlarge the domain of possible questions,
agent-based models may allow the discipline to accommodate some of the conflicting
claims made by rational choice modelers and scholars who advocate thick description.
Rational choice theory allows us to capture important basic causal forces, but models
based on game theory are limited in helping us understand how history, culture, infor-
mation networks, and collective-interested behavior also matter. Agent-based-models
may enable us to advance the discipline by bridging formal modeling and thick descrip-
tion given the dual capacity of these models to capture the richness of history and the
theoretical sturdiness of logically consistent aggregation.
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Abstract

Social-ecological systems are complex adaptive systems where social and biophysical
agents are interacting at multiple temporal and spatial scales. The main challenge for
the study of governance of social-ecological systems is improving our understanding of
the conditions under which cooperative solutions are sustained, how social actors can
make robust decisions in the face of uncertainty and how the topology of interactions
between social and biophysical actors affect governance. We review the contributions
of agent-based modeling to these challenges for theoretical studies, studies which com-
bines models with laboratory experiments and applications of practical case studies.

Empirical studies from laboratory experiments and field work have challenged the
predictions of the conventional model of the selfish rational agent for common pool
resources and public-good games. Agent-based models have been used to test alter-
native models of decision-making which are more in line with the empirical record.
Those models include bounded rationality, other regarding preferences and heterogene-
ity among the attributes of agents. Uncertainty and incomplete knowledge are directly
related to the study of governance of social-ecological systems. Agent-based mod-
els have been developed to explore the consequences of incomplete knowledge and
to identify adaptive responses that limited the undesirable consequences of uncertain-
ties. Finally, the studies on the topology of agent interactions mainly focus on land use
change, in which models of decision-making are combined with geographical informa-
tion systems.

Conventional approaches in environmental economics do not explicitly include non-
convex dynamics of ecosystems, non-random interactions of agents, incomplete un-
derstanding, and empirically based models of behavior in collective action. Although
agent-based modeling for social-ecological systems is in its infancy, it addresses the
above features explicitly and is therefore potentially useful to address the current chal-
lenges in the study of governance of social-ecological systems.

Keywords

social-ecological systems, agent-based computational models, commons dilemma,
cooperation, non-convex ecosystem dynamics
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1. Introduction

For millennia, human activities have affected their environment. In ancient times, the
use of fire and tools enabled humans to learn to live outside their original environment—
the savannah of eastern Africa. The development of agriculture about ten thousand years
ago, and industrialization during the last two hundred years, have generated massive
population increases and intense uses of natural resources. Now, we live on a human-
dominated planet. Human activities have transformed the land surface, altered the major
biogeochemical cycles, and added or removed species in most of Earth’s ecosystems
(Vitousek et al., 1997).

This chapter reviews the efforts by many scholars to use agent-based computational
models to study the governance of social-ecological systems. This field is truly inter-
disciplinary. It will be difficult, if not impossible, therefore to restrict our focus solely
to economics. Although economics will be our starting point, we will include studies
from other disciplines. To facilitate communication across disciplines we will use an
organizing framework in the second section of this chapter. To structure our chapter, we
identify three main challenges for the study of the interactions between human activities
and ecosystems.

• What conditions enhance the likelihood of cooperative solutions to the massive
number of social dilemmas that confront social-ecological systems? This relates to
the problem of preventing overharvesting of common-pool resources such as fish
stocks, forests, and fresh water.

• How do economic agents make effective and robust decisions given the fundamen-
tal uncertainty of the complex dynamics of the social-ecological system?

• How can the topology of interactions among actors be explicitly included in the
analysis of the first two questions given the importance of interactions to an under-
standing of natural resource dynamics?

The aim of this chapter is to show the contribution of agent-based computational
economics to these challenges. We emphasize the linkages between field research, labo-
ratory experiments, and agent-based modeling. Pure analytical models have proved to be
essential tools for analyzing highly competitive markets and other settings with strong
selection pressures (Ruttan, 2003). When trying to understand how and why individuals
engage in collective action, however, analytical models have not proved as useful. In the
field and in the experimental laboratory, we have observed many settings in which indi-
viduals overcome the incentives to free ride, increase the levels of inter-personal trust,
produce public goods, and manage common-pool resources sustainably (Bromley et al.,
1992; Gibson et al., 2000a; National Research Council, 2002; Ostrom and Walker, 2003;
Dietz et al., 2003). Candidate theories for explaining these surprising empirical results
are too complex to be usefully pursued using only analytical techniques. To understand
these phenomena agent-based modeling has become an essential tool complementing
empirical methods. Other chapters in this volume (Brenner, 2006; Duffy, 2006) also
address the combination of laboratory experiments and agent-based modeling. Their
contribution focuses more on learning models, while our focus is on public goods and
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common-pool resource experiments using several models of human decision-making.
It is important to realize that every method used to study social-ecological systems has
its methodological problems. We will therefore emphasis in this chapter the plurality
of approaches, which may unravel the complexity of the systems when findings are
consistent with all the types of approaches used.

The studies reviewed in this chapter differ from those most frequently addressed by
environmental economists. Conventional economic theory predicts that when agents
have free access to a common-pool resource they will consume ecosystem services to
the point where private costs equal the benefits, whereas externalities are imposed on the
rest of the community. This can lead to the well-known tragedy of the commons (Hardin,
1968). Traditionally, economists study the management of ecosystems in terms of har-
vesting ecosystem services from renewable resources. Substantial progress has been
made during the last 30 years. Prior to 1970, models were mainly static, such as the
seminal work on renewable resource harvesting by Gordon (1954). During the 1970s,
the trend shifted toward dynamic systems for the economics of renewable resources. The
resulting optimization problem was addressed by dynamic programming, game theory,
and equilibrium analysis (Clark, 1990; Dasgupta and Heal, 1979; Mäler, 1974). Irre-
versibility and uncertainty have been addressed since the early 1970s (Arrow and Fisher,
1974; Henry, 1974) and remain among the main foci of environmental economics (e.g.,
Chichilnisky, 2000). Recently, economists have started to include non-convexities of
ecosystems into their analysis of optimal management of ecosystems (Dasgupta and
Mäler, 2003; Janssen et al., 2004).

In simple models in mainstream environmental economics, a representative agent
is presumed to have perfect knowledge (or knowledge on the probabilities of out-
comes) and to maximize utility of consumption for an infinite time horizon. Such an
approach results in interesting insights. Representing agents as maximizing known util-
ity functions is, however, of limited use when systems are characterized by non-convex
dynamics, structural uncertainty, heterogeneity among agents, multi-attribute utility,
and spatial heterogeneity. Evidence is accumulating that social-ecological systems fre-
quently do have complex, non-linear dynamics. This affects the type of governance that
may lead to sustainable outcomes (Scheffer et al., 2001). Initial steps has been taken
to include such non-linear dynamics in environmental economics (Dasgupta and Mäler,
2003). Furthermore, increasing evidence exists that agents are able to self-govern some
types of common-pool resources without external governmental intervention but do not
always succeed (Bromley et al., 1992; Ostrom, 1990; National Research Council, 2002;
Ostrom et al., 1994). The question is how to analyze ecosystem management problems
with spatially explicit, non-convex dynamics influenced by multiple stakeholders with
divergent interests and who consume different types of ecosystem services. We need
new tools. Agent-based modeling is a promising tool for the analysis of these complex
problems (Janssen, 2002a).

Several developments outside environmental economics during the last thirty years
have influenced the current state of agent-based modeling of social-ecological systems.
We will briefly discuss some of these developments. Since the early 1970s, scholars
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from system dynamics have developed and used integrated models of humans and their
environment (Ford, 1999). Prime examples are the World 2 and 3 models of Forrester
(1971) and Meadows et al. (1972, 1974). The World 2 and 3 models simulated the long-
term interactions between population, industrial and agricultural production, resource
use, pollution and food supply at an aggregated global level. A core finding was that
continuing early 1970s’ trends would lead to an overshoot and collapse in terms of pop-
ulation and economic development. The World 2 and 3 models were highly criticized for
the subjectivity of the assumptions and the lack of rationality of the decision-making ac-
tors within the model (Cole et al., 1973; Nordhaus, 1973). In fact, the actors, economic
sectors on a global level, reacted in a predetermined way.

The first type of agent-based model for governing social-ecological systems that we
were able to trace in the literature is Bossel and Strobel (1978). They developed a model
to address two lacunae in the World 2 and 3 models—namely, their failure to account
for cognitive processes and their usual neglect of normative criteria and changes in these
criteria. In fact, the Bossel and Strobel model is of a cognitive agent interacting with the
global system. Their agent bases its decisions on the state of the global system, using
indicators, so-called system’s orientors, like existence needs, security, freedom of ac-
tion, adaptivity, and effectiveness. This agent receives information about the state of the
system and decides to change priorities or aspirations, which affect the investment de-
cisions of the agent. Inclusion of these “intelligent” agents prevents the preprogrammed
“pollution crisis” from occurring. It also leads to policies producing very satisfactory
overall results, provided the planning horizon and the control sensitivity are sufficiently
large. The current field of integrated modeling of humans and the environment still faces
similar problems, uncertainty, subjective assumptions and lack of behavioral models, to
those of the initial models (Janssen and de Vries, 1999). Core questions remain regard-
ing how to deal with uncertainty and subjective assumptions and how to include human
dimensions.

Another field that contributed to the development of agent-based modeling of social-
ecological systems is individual-based modeling in ecology, which really took off in the
late 1980s (Huston et al., 1988). Individual-based modeling refers to simulation models
that treat individuals as unique and discrete entities who have at least one property, in
addition to age, that changes during the life cycle, e.g. weight, rank in a social hierarchy,
etc. Often motivated by pragmatic reasons, individual-based models are used to study
systematically the behavior of organisms in complex (spatially explicit) environments
(Grimm, 1999).

In the artificial intelligence field since the late 1980s, scholars developed tools for
natural resource management (Coulson et al., 1987). Well known are geographic infor-
mation systems and expert systems, but also a number of models have been developed
that included intelligent agents interacting with their complex environment (Anderson
and Evans, 1994). An interesting early example is the PHOENIX model on fire manage-
ment (Cohen et al., 1989). The model simulates a forest fire and the actions of intelligent
agents, representing bulldozers and airplanes. The model is an event-driven simulation
model, meaning that the agents perform real-time tasks based on events that happen
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in their local environment. Every five simulated minutes of the model, the agents are
synchronized to allow coordination among the agents. The model is aimed at evaluating
fire-fighting plans in various scenarios.

Bousquet et al. (1994) developed an objected-oriented model of natural resource man-
agement of fisheries in the central Niger delta. Based on fieldwork, an artificial world
was created where different scenarios of rules of when and where to fish in a wetland
area were analyzed for this impact on long term viability of the natural resources. The
existence of space-sharing rules was found to be essential to avoid overfishing.

Deadman and Gimblett (1994) constructed a system that handles the complexity of
goal-oriented autonomous human agents seeking recreational opportunities in natural
environments. The model simulates the behavior of three types of visitors and their
interactions in an event-driven GIS environment of a park environment using intelligent
agents: hikers; bikers; and visitors transported in tour vehicles. The results of hiker
interactions with other users have been used to provide feedback about the implications
for alternative recreation management planning.

Complexity science is still another foundation for the study of the governance of com-
plex social-ecological systems. Social-ecological systems can be viewed as complex
adaptive systems—systems in which the components, and the structure of interactions
between the components, adapt over time to internal and external disturbances (Holland,
1992a). Order in complex systems is emergent as opposed to predetermined. The sys-
tem’s history is irreversible, and future behavior is path dependant. The system’s future
is often unpredictable due to the non-linearity of many basic causal relationships. The
variables that affect performance are both fast and slow moving. If information about
slow-moving variables is not recorded for a long period of time, substantial surprises
can occur when a slow-moving variable reaches some threshold. In social-ecological
systems, the key components are individuals and institutions. With institutions we refer
to the formal and informal rules that shape human interactions. Individuals may change
their relations with other individuals, their strategies, and the rules they are using. In
fact, individual strategies and institutional rules interact and co-evolve, frequently in
unpredictable ways. For example, the peasants who were starting to drain the peat mires
on a local level more than 1000 years ago in the precursor of the Netherlands did not
foresee the large-scale consequences in the few hundred years on the larger-scale land-
scape (lowering of the surface by about 2 cm a year), leading to new institutions (like
waterboards), and different practices (livestock instead of agriculture).

From this perspective, the question arises of how to govern social-ecological systems.
In systems that are indeed complex, one needs to understand processes of organization
and reorganization including collapse and the likely processes that happen after col-
lapse. Does a system have one and only one equilibrium to which it returns after a major
shock and temporary collapse? Are there multiple equilibria with different characteris-
tics? How easy is it for a system to flip from a desirable equilibrium to an undesirable
one? These are crucial questions.

The complex adaptive systems perspective provides us the view of individuals within
a variety of situations structured by the biophysical world, the institutional rules, and
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the community in which they interact. Within ongoing structures, individuals search out
perceived advantageous strategies given the set of costs and benefits that exist and the
strategies that others adopt. Boundedly rational individuals trying to do as well as they
can in uncertain situations continuously tinker with their strategies, including trying
to change the rules that affect particular situations. They may look for loopholes in
the law, particularly if they think others are doing the same. They may check out the
level of enforcement by occasionally breaking rules. Those who have responsibility for
changing the rules of an institution also experiment with new rules and try to learn from
others why other institutional arrangements appear to work better than their own.

Agent-based models are a suitable methodology to study these complex social-
ecological systems in a formal manner for the following reasons:

• Agent decisions are based on internal decision rules; this fits very well with the
increasing insights from experimental social science that humans use various types
of heuristics in different situations (Gigerenzer et al., 1999; Gigerenzer and Selten,
2001).

• The explicit inclusion of agent interactions helps to integrate the increasing insight
of the importance of communication in managing social dilemmas (Ostrom et al.,
1994; Ahn et al. 2003, 2004).

• Agent-based modeling shares similarities with models used in ecology, such as
individual-based models, system theory, and the inclusion of space. Therefore,
agent-based modeling facilitates collaborative efforts of ecologists and social sci-
entists.

• Agent-based models are suitable for modeling complex adaptive systems, in which
the interactions of individual units lead to larger-scale phenomena.

• Agent-based modeling makes it possible to address the problem of scale explicitly
(Gibson et al., 2000b).

The perspective of social-ecological systems as complex adaptive systems provides us a
useful stepping stone for using agent-based modeling for the study of social-ecological
systems. In the next section we discuss a general framework of social-ecological sys-
tems that we will use as a guideline to discuss the work done in this field.

2. A framework for social-ecological systems

The social-ecological systems (SESs) to be examined in the rest of this chapter are (1)
systems composed of both biophysical and social components, (2) where individuals
self-consciously invest time and effort in developing forms of physical and institutional
infrastructure that affect the way the system functions over time in coping with (3)
diverse external disturbances and internal problems, and (4) that are embedded in a
network of relationships among smaller and larger components. In other words, humans
have designed some parts but not all of the overall SES. In most instances, the design has
evolved over time as feedback generated information about how the SES was operating
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Figure 1. A conceptual model of a social-ecological system. Source: Anderies et al. (2004).

and participants in various positions try to improve the operation of the system—at least
from their perspective.

We adopt the general framework proposed by Anderies et al. (2004) that identifies
the relevant parts of a social-ecological system and how they are linked. In Figure 1,
the elements of such a framework are presented. Given that most multi-level SESs are
very complex, we start by focusing first on a single-level SES. We identify four “en-
tities” that are normally involved in SESs utilized by groups of individuals over time.
Two of these entities are composed of humans. First are the resource users (B in Fig-
ure 1), who are the population of those harvesting from the resource (A in Figure 1).
Second are the public infrastructure providers (C in Figure 1), who receive monetary
taxes or contributed labor and make policies regarding how to invest these resources
in the construction, operation and maintenance of a public infrastructure. A substantial
overlap may exist among the individuals in B and in C or they may be entirely different
individuals depending on the structure of the social system governing and managing
the SES.

The public infrastructure (D in Figure 1) combines two forms of capital: human-made
capital (physical capital) and institutional capital (see Ostrom and Ahn, 2003; Costanza
et al., 2001). The physical capital includes a variety of engineered works, for example
the headworks and canals of an irrigation system and the constructed highways of a
transportation system. The institutional capital includes the rules actually used by those
governing, managing and using the system that create opportunities and constraints in
the action-outcome linkages available to participants.
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The resource (A in Figure 1) is most frequently a biophysical system or a form of
natural capital that has been transformed for use by B through the efforts of C to invest
in D. We will focus on common-pool resources where it is difficult to exclude potential
beneficiaries from receiving the costs or benefits of governance strategies, and where the
resource flows withdrawn from the resource system subtract from the availability of re-
source flows for other users (Ostrom et al., 1994). If one is going to examine robustness
or resilience, one needs to include external disturbances (incoming arrows on Figure 1),
which can include biophysical disruptions (Linkages 7) including floods, earthquakes,
landslides, and climate change which impact on A and D or socioeconomic changes
(Linkages 8) including population increases, changes in economic opportunities, de-
pressions or inflations, and major political changes that impact on B,C and D.

A social-ecological system can be challenged in two ways: (1) by external distur-
bances; and (2) by fluctuations within internal entities and the links between them. The
internal fluctuations may result from the strategic interactions among the resource users
and among the participants in the process of providing the public infrastructure. Further,
strategic interactions exist among resource users regarding the harvesting rate from the
resource (Linkage 1 on Figure 1), the linkages among resource users and the public in-
frastructure providers (Linkage 2 on Figure 1), the public infrastructure providers and
the investments made in the infrastructure (Linkage 3), and potentially, the linkage be-
tween resource users and the public infrastructure (Linkage 6). Further, the linkages
among the ecological entities (Linkages 1, 4 and 5) are also sources of fluctuations that
may challenge the robustness of the overall SES at any particular point in time.

The simplest example of a social-ecological system consistent with the framework is
a small group of actors with relatively homogeneous interests who are in both positions
B and C. Without a medium of exchange other than labor and goods, cooperation must
be undertaken by direct interactions and transparent means. Such a system might be a
small irrigation system where farmers who own relatively similar plots of land meet
regularly to discuss how many days to work on maintenance and how to allocate the
water (see Tang, 1992; Lam, 1998; Ostrom, 1992). A social-ecological system becomes
more complex when task specialization occurs and most actors are either resource users
or public infrastructure providers. This might create incentives for rent seeking, corrup-
tion, and mismanagement due to incomplete or competing knowledge systems. So the
internal stability might become less robust when a system becomes more diverse and
specialized.

External threats may affect the various components and links within the SES. Natural
events, human induced impacts, and accidents can disrupt the resource system. External
sources may change the preferences of resource users as a consequence of new infor-
mation and inward and outward migration of people. The abilities to perform by public
infrastructure providers can be affected due to changes in higher level regulations, and
by the emergence or decline of local champions, those individuals who make a differ-
ence in making things happen. Finally, the public infrastructure can itself be affected
by natural events and accidents (physical infrastructure) and changes in higher level
regulations (institutional rules). These external disturbances interdependently affect the
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activities within the social-ecological system. In fact, there might be interactions across
scales that make SES’s become more or less robust to internal and external challenges.

This general framework lets us rephrase the three puzzles identified in the introduc-
tion. The first set of questions addresses social dilemmas: What kind of institutional
frameworks lead to robust governance of social-ecological systems? What is the influ-
ence of the ecological dynamics? What kind of information do resource users and public
infrastructure providers exchange? What are conflicting and compromising interactions
between the different agents involved? What is the effect of different levels of spatial
and temporal scale? How do institutional rules evolve?

The second type of question addresses uncertainty: What information do resource
users and public infrastructure providers have, and what is the asymmetry of this infor-
mation? How do resource users learn, and how do their learning processes differ from
how public infrastructure providers learn? How do different mental models of agents
affect the use and governance of the resource? Finally, social and biological agents in-
teract in a spatially explicit landscape formulated as maps or networks. How does spatial
heterogeneity affect the functioning of social-ecological systems? How does informa-
tion spread among nodes in a network? Who talks with whom, when and about what,
and how does this affect resource management?

We will now discuss each of the three areas and dig in more deeply to discuss theo-
retical and applied agent-based models, and the relation of laboratory experiments with
agent-based modeling.

3. Social dilemmas

A key theoretical and empirical puzzle in all of the social sciences is how individ-
uals overcome the strong temptation not to cooperate in social dilemmas, in which
individual contributions exceed individual returns, and instead attempt to achieve joint
benefits through cooperation (Axelrod, 2006). Both sets of human actors identified in
Figure 1 face multiple social dilemmas. Resources users (B) face common-pool re-
source dilemmas that can, if unresolved, lead to serious over-harvesting and potentially
the destruction of the resource. As one New England fisher recently put it, “I have no
incentive to conserve the fishery, because any fish I leave is just going to be picked up
by the next guy” (cited in Tierney, 2000, p. 38). Some users may develop trust (Ostrom
and Walker, 2003) and/or strong reciprocity even when they have heterogeneous inter-
ests (Bowles and Gintis, 2004). Without some agreed-upon and enforced rules, however,
resources users may simply race each other to use up the resource. Public infrastructure
providers (C) also face social dilemmas in their effort to develop effective institutions (a
public good) or efficient infrastructure (usually another common-pool resource). Sim-
ply authorizing some individuals to govern a resource does not guarantee that they will
overcome the temptations to engage in rent-seeking, to accept bribes, or simply to avoid
investing in costly information acquisition.
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Cooperation in social dilemmas can be easily explained when the social agents are ge-
netically related (Frank, 1998) and/or interact repeatedly over a long indeterminate time
(Kreps et al., 1982). The question of why non-related social agents cooperate relates
to a number of important issues in ecological economics, especially to the question of
designing effective institutional configurations for common-pool resources and public
goods. Schlager (2004) reviews the extensive empirical cases where local communities
have developed institutions to deal with social dilemmas. These examples demonstrate
that people have the capacity to organize themselves to achieve much higher outcomes
than predicted by conventional economic theory. Capacity is not, however, sufficient to
ensure that resources are governed sustainably.

Empirical research stimulated in large part by a mid-1980s Committee of the National
Research Council (National Research Council, 1986) and synthesized by a more recent
committee (National Research Council, 2002) has demonstrated that no form of gov-
ernance is guaranteed to change the strong incentives of the pervasive social dilemmas
faced by resource users and public infrastructure providers so as to generate long-term
sustainability. Governing resources successfully is always a struggle (Dietz et al., 2003).
Empirical findings suggest that successful, adaptive governance of natural resources re-
quires: (1) generating substantial information about stocks, flows, and processes within
the resource (the arrows in Figure 1); (2) dealing with conflict that arises among mul-
tiple users and uses of a resource; (3) inducing rule compliance among all participants
so that each has confidence that the others are not cheating; (4) providing effective
physical and institutional infrastructure (C in Figure 1); and (5) preparing for the in-
evitable changes that occur due to external disturbances as well as internal changes in
resource and human dynamics (Dietz et al., 2003). A recent empirical study of over 200
forests located in Africa, Latin America, Asia, and the United States provides strong
evidence that regular rule enforcement is more important in achieving sustainable forest
conditions than the form of organization governing a forest, the level of social capital
existing among users, or the level of dependence of users on a forest (Gibson et al.,
2005).

3.1. Theoretical models

Field research has thus generated substantial evidence that, contrary to earlier economic
theory, no optimal form of governance exists that can be imposed on all SESs with the
expectation that resource users and public infrastructure providers will accept the sys-
tem and make it work. On the other hand, field research has also shown that resource
users and public infrastructure providers have devised an ingenious array of rule con-
figurations that work effectively in specific ecological and social settings. Thus, there is
a lot for theory to explain!

As discussed in more detail by Dibble (2006), Axelrod (2006), Young (2006), and
Kollman and Page (2006), agent-based models are being intensely used to derive a
better theoretical understanding of the conditions that lead social agents to cooperate.
Axelrod (1984, 1987) pioneered in this field with his iterated prisoner’s dilemma (IPD)
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tournaments and with his simulation of the evolution of strategies using genetic algo-
rithms. This led to a vast number of human–subject experiments (summarized in Davis
and Holt, 1993; Colman, 1995) and agent-based models on variations of the IPD game
focused on the effects of partner choice, tags, reputation symbols, spatial interactions,
noise, probabilistic choice, and so forth (see Gotts et al., 2003). Multiple theoretical
efforts have been made to provide a coherent, analytical framework for explaining the
repeated finding that cooperation levels in social dilemmas are frequently above the zero
contribution level predicted by non-cooperative game theory (see Boyd and Richerson,
1992; Bowles, 1998; Gintis, 2000; Camerer, 2003).

Axelrod (1986) was among the first to tackle how norms supporting cooperative
strategies, that were not the strategies leading to a Nash equilibrium, could be sustained
over time. He posited that individuals could adopt norms—meaning that they usually
acted in a particular way and were often punished if they were not seen to be acting in
this manner. He posited that some individuals also developed a norm to punish those
who defected in social dilemmas as well as the concept of a meta norm—a norm that
“one must punish those who did not punish a defection” Axelrod (1986, p. 1109). With
punishment norms backing cooperative norms, and the meta norm of punishing those
who did not punish defectors, Axelrod was able to develop an evolutionary theory of
cooperation consistent with evidence from the field.

Recent evolutionary models by Kameda et al. (2003) have developed these ideas
even further. In a formal analysis of a set of simplified strategies, these authors ex-
plore the viability of a “communal sharing strategy” which cooperates when in the role
of resource acquisition and imposes sanctions on others if they engage in non-sharing
behavior. They establish that the communal-sharing strategy is a unique evolutionar-
ily stable strategy that blocks any other strategy from successfully invading for a wide
range of parameters. Kameda et al. also undertook a simulation of the performance
of multiple strategies when ten players are involved and their strategies could evolve
over time. Here they observed that free riding could become the dominate strategy
over multiple generations due to the problem of second-order free riding in regard to
norm enforcement. When they added an “intolerant” norm enforcer who is willing to
bear extra costs for excluding others who are second-order free riders on the enforce-
ment of cooperative norms, simulated ten-person games tended to sustain cooperative
sharing over very large number of generations. In field settings of robust SESs, one
does tend to find some members of self-organized groups who are “fired up” about
the need for everyone to follow the rules and norms they have evolved over time.
Some groups rotate the role of being the local enforcer among their membership, so
no one has to bear the cost of monitoring and enforcing at all times, while each of
them is “super-charged” with the responsibility for local monitoring on a rotating ba-
sis.

Many of the specific rules that empirical researchers have observed in the field have
puzzled theorists. In addition to rotating enforcement responsibilities, elaborate turn-
taking rules have, for example, been observed in robust institutions related to harvesting
fish from inshore fisheries (see Berkes, 1986) and obtaining water from farmer-governed
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irrigation systems (Ostrom, 1992). Even subjects in repeated common-pool resource
experiments with opportunities to engage in face-to-face communication have devised
rotation systems enabling one set of subjects to gain more in one round and less in the
next (Ostrom et al., 1994). A recent paper by Lau and Mui (2003) has now provided a
strong game-theoretic analysis of how such complex rules can be sustained in a repeated
environment characterized by asymmetric payoffs in any one period.

Let us now turn to agent-based models of cooperation. Thébaud and Locatelli (2001),
for example, developed an agent-based model to address a puzzle initially proposed by
Sugden (1989). Sugden observed the emergence of property-right rules of those who
gather driftwood after a storm on the Yorkshire coast. Whoever found an item first
could take it and gather it into piles. By placing two stones on the top of each pile, the
gatherer could mark his property. If a pile had not been removed after two more high
tides, the ownership rights terminated. Thébaud and Locatelli were able to generate the
emergence of piles, whose existence varied with the range of vision (could the agent
steal without being caught?) and the threshold of the size of the pile before it is consid-
ered private property (lower threshold makes it easier to generate private piles). Another
aspect that was found important is the imitation rule. Agents compare their wood pile
with others they encounter and, if the observed pile is larger than their own (including
the wood they are currently carrying), they adopt the strategy of its owner with regard
to the property rule.

Another set of papers discusses the effect of different models of human behavior on
the management of common resources. Jager et al. (2000) discuss the harvesting by a
population of agents of a fish stock and a gold mine (whose pollutants negatively af-
fect the carrying capacity of the fish population). They tested two types of models of
behavior. In the first model, the agents considered all possible actions. In the second,
agents used heuristics mimicking repetition, deliberation, social comparison, and imi-
tation. Which heuristic was active at a certain moment in time depended on the level of
satisfaction and uncertainty. Jager et al. (2000) show that constant deliberation over all
possible options leads to a faster decline of the resources, and an uneven transition from
fishing to gold digging. Several social psychology-based agent-based models on the
collective use of common resources have especially focused on including the effects of
resource uncertainty (Jager et al., 2002; Mosler and Brucks, 2002). Jager et al. (2002),
for example, show that overharvesting is more severe in periods of uncertainty, which
is consistent with laboratory experimental and field evidence. Due to the use of agent-
based models, Jager et al. were able to pin-point three different behavioral processes
that may contribute to this overuse. Another relevant paper is by Janssen and Ostrom
(2005), who study the conditions that are needed for a population of agents to voluntar-
ily restrict their own behavior to avoid collapse of the resource in the longer term. They
show that when agents are able to evolve mutual trust relationships, a proposed rule on
restricted use of the resource will be accepted because the agents trust each other to
follow the rules.
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3.2. Laboratory experiments related to the governance of social-ecological systems

Behavioral game theory has been instrumental in testing the effects of alternative mod-
els of decision-making on social dilemmas (see, for example, Erev and Roth, 1998;
Camerer and Ho, 1999; Camerer, 2003; Duffy, 2006). With regard to the governance
of social-ecological systems, the study of public goods and common-pool resources are
important. The standard linear public-good provision experiment can be characterized
by the number of individuals (N), the marginal per capita return (r), the number of
repetitions (T ), and the initial endowment of token money for each player (ω). An ex-
perimental linear public-good provision game involves a free-rider problem if r < 1 and
N × r > 1. Suppose, in a given round, individual i contributes xi of ω for the provision
of the public good. The subject’s payoff (πi) is:

πi = ω − xi + r

N∑
j=1

xj .

The equilibrium prediction, assuming individuals maximize own monetary payoffs, is
that the public good will not be provided at all.

For the common-pool resource experiments with a quadratic production function, the
experiments are formulated in the following way. The initial resource endowment ω of
each participant consists of a given set of tokens that the participant needs to allocate
between two markets: Market 1, which has a fixed return; and Market 2, which functions
as a collective resource and which has a return determined in part by the actions of the
other participants in the experiment. Each participant i chooses to invest a portion xi of
his/her endowment of ω in the common resource Market 2, and the remaining portion
ω − xi is then invested in Market 1. The payoff function as used in Ostrom et al. (1994)
is:

ui(x) = 0.05 · e if xi = 0
0.05 · (ω − xi) +

(
xi/

∑
xi

) · F (∑ xi

)
if xi > 0

where

F
(∑

xi

)
=
(

23 ·
8∑

i=1

xi − 0.25 ·
(

8∑
i=1

xi

)2)
/100.

According to this formula, the payoff of someone investing all ω tokens in market one
(xi = 0) is 0.05 × ω, thus 0.5 tokens. The return is like a fixed wage paid according to
the hours invested. Investing a part or all of the tokens in market two (xi > 0) yields
an outcome that depends on the investments of the other players. If the players behave
according to the non-cooperative game theory, they would derive the Nash equilibrium,
where each player maximizes payoff given the strategies chosen by the other players.

A series of laboratory experiments during the last twenty years have shown that sub-
jects do invest in public goods and are able to govern common-pool resources more
sustainably than predicted by theory (Isaac et al., 1984, 1985, 1994; Isaac and Walker,
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1988; Marwell and Ames, 1979, 1980, 1981; Ostrom et al., 1994). Depending on the
return rate from investments in the public good, the initial contribution rate remains the
same or decreases with the number of rounds. Laboratory experiments have consistently
shown that communication is a crucial factor for achieving cooperative behavior (Sally,
1995; Brosig, 2002).

In the common-pool resources, the average harvest approaches the Nash equilibrium
when no communication or sanctioning is allowed, but decreases to a cooperative level
when participants do communicate (cheap talk) or are able to penalize (impose costs on)
those who harvest more than agreed upon. The ability of participants to determine their
own monitoring and sanctioning system is critical for sustaining efficient cooperative
behavior (Ostrom et al., 1994).

3.3. Agent-based models of laboratory experiments

Since the behavior of subjects is not consistent with predictions using a rational choice
model of individual behavior, an important question is what types of models of human
behavior explain the observations. A recent development is the use of agent-based mod-
els to test alternative models that replicate the patterns of the subjects in the laboratory
experiments. Peter Deadman (1999) defined agents who chose a certain strategy and
could update these strategies in an environment that is similar to the common pool ex-
periments run at Indiana University (Ostrom et al., 1994). He modeled their updating
process to be based on the expected and experienced performance of strategies in pre-
vious rounds. The types of strategies he used were based on exit interviews conducted
after a session of common-pool resource experiments had ended (Ostrom et al., 1994).

One strategy attempts to maximize the individual return received in each round by
comparing investments in Market 2 in previous rounds with the resulting returns. If re-
turns on tokens are increasing, then more tokens are placed in Market 2. If returns on
tokens invested in Market 2 are decreasing, then fewer tokens are placed in Market 2.
Another strategy mentioned by subjects is to compare average returns between Market 1
and Market 2, increasing the tokens allocated to the market that performs better. The last
type of strategy directly compares an individual agent’s investment with the investments
of the group as a whole. The agent-based model showed similar fluctuations in aggre-
gated token investment levels in Market 2 as in the laboratory experiments reported in
(Ostrom et al., 1994).

Deadman et al. (2000) introduce communication between agents in their agent-based
model. During communication, agents are assumed to pool their experience in regard
to the various strategies they have used. In this way, all agents derive a similar map of
which strategies work well. As in the laboratory experiments where communication was
allowed, investment levels moved closer to the optimal level of full cooperation.

Like Deadman (1999), Jager and Janssen (2002) used agent-based models to provide
a possible explanation of observed patterns in common-pool experiments without com-
munication. The agents in Jager and Janssen are based on a meta-theoretical framework
of psychological theories. An agent is assumed to have different type of needs, includ-
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ing subsistence, identity and exploration. Depending on whether the needs of the agent
are satisfied or not, and whether the agent is uncertain or not, an agent uses one of four
decision rules: deliberation; social comparison; repetition; and imitation. An unsatis-
fied agent spends more cognitive energy (e.g., deliberation or social comparison) than
a satisfied agent (who relies more on repetition and imitation). An uncertain agent uses
information from other agents (social comparison or imitation) instead of relying on
individual information (deliberation or repetition). The difference between social com-
parison and imitation is that during social comparison an agent checks whether copying
the strategy of another agent leads to an expected improvement of the utility.

Jager and Janssen found that agent-based models of individual behavior in common-
pool resource settings needed to include

• social value orientation,
• preferences one has for a particular distribution of outcomes for oneself and others,
• satisfying behavior,
• exploratory behavior when payoffs of an agent remain the same for a number of

rounds, and
• heterogeneity of needs among the agents.

All five individual characteristics are needed in the analysis to derive token investment
patterns at the group level similar to those resulting in the human–subject experiments.
The investment patterns were evaluated by taking into account the average investment
level, the differences between the agents in a group, and the changes of investment levels
across rounds.

Castillo (2002) investigates the decision rules individuals used during field experi-
ments of common-pool resources conducted by Cardenas among coastal communities
in the Colombian Caribbean Sea (Cardenas et al., 2000). The model is based on the
theory of collective action of Ostrom (1998) and implemented from a systems dynam-
ics perspective. As in previous studies, Castillo simulates the experiments describing
the actions of individual agents. By using response functions, Castillo is able to esti-
mate the theoretical framework of Ostrom (1998) without describing the mechanisms
of reputation, trust, and reciprocity explicitly.

We are aware of two additional papers that use agent-based model to understand the
behavior of agents in public-good experiments. Iwasaki et al. (2003) examined a rein-
forcement learning model to explain patterns of behavior observed in their threshold
public-good experiments. In such an experiment, a minimum threshold of investments
in the public good must be contributed before the public good is provided. Their model
of reinforcement learning was only partly able to explain the observed data. It did
reproduce cooperative patterns, but was not able to reproduce non-cooperative pat-
terns.

Janssen and Ahn (2005) compare the empirical performance of two decision mak-
ing models to explain the outcomes in a large set of public-good experiments without
communication (Isaac and Walker, 1988; Isaac et al., 1994), namely, the experienced
weighted attraction learning model of Camerer and Ho (1999), and the best-response
model with signaling based on Isaac et al. (1994). In contrast with the previous studies,
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Janssen and Ahn focus on the problems on parameter calibration and the evaluation of
the model performance on individual and group level statistics. Both models outperform
the selfish rational actor model as an explanation of observed behavior. Furthermore, the
learning model was found to give the best performance using the individual level cal-
ibration, while the best response model was found to calibrate best at the group level.
The essential elements of the model that enhances its performance is the inclusion of
other regarding preferences and satisficing behavior, similar to Jager and Janssen (2002)
for common-pool resources.

The strategy method, where human subjects develop strategies based on their ex-
perience in laboratory experiments, is an interesting method which links agent-based
models and experiments (Selten et al., 1997). Keser and Gardner (1999) apply the strat-
egy method to common-pool resources. Their common-pool resource game consisted of
a constituent game played for twenty periods. Sixteen students, all experienced in game
theory, were recruited to play the game over the course of six weeks. In the first phase of
the experiment, they played the common-pool resource game on-line three times. In the
second phase of the experiment, the tournament phase, they designed strategies which,
after implementation as agents, were then played against each other. As for human sub-
jects, a Nash equilibrium was found at the aggregate level, but at the individual level,
fewer than 5% of subjects played in accordance with the game equilibrium prediction.

Combining agent-based modeling and laboratory experiments of complex dynamic
social dilemmas has just started (see Duffy, 2006 for a more general discussion on
agent-based modeling and laboratory experiments). The current publications demon-
strate considerable potential to test alternative theories of human behavior. Huge
methodological challenges still exist, however, in regard to parameter estimation and
model comparison. For example, Salmon (2001) showed that identification of the cor-
rect learning models using econometrics techniques leads to potential problems. Salmon
generated experimental data by simulation of normal-form games using a number of
learning models so that he could test four different econometric approaches in their ac-
curacy of distinguishing the individual models by which the data was generated. Wilcox
(2003) did a similar experiment to test the implication of the assumption of homogene-
ity of the subjects. If the agent population is heterogeneous in parameter values, serious
problems in accuracy of parameter estimation are created.

Model selection is an important line of research in cognitive science (Pitt and Myung,
2002). Various approaches have been developed to test models in regard to goodness of
fit and generalizability. These approaches penalize models with increasing complexity.
Approaches based on maximum likelihood depend on the assumption that the obser-
vations are statistically independent. This is not the case when multiple actors interact
over time in experiments with public goods and common-pool resources. Interdepen-
dence in a complicated fashion definitely exists when communication, monitoring, and
sanctioning are allowed.
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3.4. Applications to social-ecological systems

An early application of agent-based modeling to study the coordination among resource
users is the study of the irrigation systems of Bali (Lansing and Kremer, 1993). The ir-
rigators have to solve a complex coordination problem (Lansing, 1991). On one hand,
control of pests is most effective when all rice fields in a watershed have the same
schedule of planting rice. On the other hand, the terraces are hydrologically interdepen-
dent, with long and fragile systems of tunnels, canals, and aqueducts. To balance the
need for coordinated fallow periods and use of water, a complex calendar system has
been developed that details what actions should be done on each specific date in each
organized group of farmers—called a subak. These actions are related to offerings to
temples, ranging from the little temples at the rice terrace level to the temples at the
regional level and all the way up to the temple of the high priest Jero Gde, the human
representative of the Goddess of the Temple of the Crater Lake. Crater Lake feeds the
groundwater system, which is the main source of water for irrigating in the entire water-
shed. These offerings were collected as a counter gift for the use of water that belonged
to the gods.

The function and power of the water temples were invisible to the planners involved
in promoting the Green Revolution during the 1960s. They regarded agriculture as a
purely technical process. Farmers were forced to switch to the miracle rice varieties,
which were predicted to lead to three harvests a year, instead of the two of the traditional
varieties. Farmers were stimulated by governmental programs that subsidized the use of
fertilizers and pesticides. After the governmental incentive program was started, the
farmers continued performing their rituals, but they no longer coincided with the timing
of rice-farming activities. Soon after the introduction of the miracle rice, a plague of
plant-hoppers caused huge damage to the rice crop. A new variety was introduced, but
then a new pest plague hit the farmers. Furthermore, there were problems of water
shortage.

During the 1980s, an increasing number of farmers wanted to switch back to the old
system, but the engineers interpreted this as religious conservatism and resistance to
change. It was Lansing (1991) who unraveled the function of the water temples, and
was able to convince the financers of the Green Revolution project on Bali that the irri-
gation was best coordinated at the level of the subaks with their water temples. Lansing
built an agent-based model of the interactions of subak management strategies and the
ecosystem, and the local adaptation of subaks to strategies of neighboring subaks, and
showed that for different levels of coordination, from farmer level up to central con-
trol, the temple level was the level of scale where decisions could be made to maximize
the production of rice (see also Lansing and Kremer, 1993). He also showed how the
coordination might have been evolved as a result of local interactions (Lansing, 2000).

In Lansing and Miller (2003), a simple game-theoretic model is used to provide a
compact explanation for many of the most salient features observed in the system.
While externalities caused by either water scarcity or pests in isolation would be ex-
pected to cause a serious failure in the system, they find that the ecology of the rice
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farming system links these two externalities in such a way that cooperation, rather than
chaos, results. The reason for this, depending on the underlying ecological parameters
in the system, is that regimes exist in which the farmers would like to coordinate their
cropping patterns (in particular, have identical fallow periods) so as to control pest pop-
ulations. In other regimes, coordination is not an equilibrium, even though coordinated
farming would result in greater aggregate crop output. Lansing and Miller identified
two indirect mechanisms by which the system can reach cooperation. The first is to
have the upstream farmers share their water with the downstream farmers. The second
is that increases in pest damage can drive the system into a coordinated equilibrium,
enhancing aggregate output. The Balinese rice temples would have played a facilitat-
ing role in deriving coordination in this complex system. In an earlier game-theoretical
paper, Ostrom (1996) also examined how differences between head-end and tail-end
farmers could be the foundation for extensive mutually productive coordination in the
maintenance of irrigation infrastructure.

Bousquet and his colleagues (Bousquet et al., 1998) developed a modeling plat-
form, CORMAS, dedicated to the study of common-pool resources through agent-based
modeling. They have performed many applications and work together with local stake-
holders, often in Africa and Asia, to develop agent-based models for practical natural
resource management problems.1 Barreteau and Bousquet (2000), for example, study
the underutilization of irrigated systems in the Senegal River Valley in North Sene-
gal. An agent-based model was developed to simulate an archetypal irrigation sys-
tem. The agents represent farmers, credit access, and water allocation groups. The
processes represented deal with the circulation of water and credit and with interac-
tions about their allocation and access to them. The model was used in role-playing
experiments to test its potential as a negotiation support tool and to test the model with
the agents they try to simulate (Barreteau et al., 2001). The use of a role-playing game
was found very useful for testing the model and interacting with local stakeholders.
This led Bousquet et al. (2002) to the idea of companion modeling, which interac-
tively combines agent-based modeling and role-playing games and uses the latter to
acquire knowledge, build and validate the agent-based model, and use the model in
the decision-making process. This has been applied to a number of case studies, as re-
viewed in Bousquet et al. (2002). We come back to role-playing games later in this
chapter.

Rouchier et al. (2001) discuss a coordination problem of nomad herdsmen securing
their access to the rangelands in Cameroon. Herdsmen who need the grass and water
from the villages negotiate with village leaders to get access to the land of the farmers.
The herdsmen choose which leaders to approach. Those leaders may reject offers if they
are lower than a minimum acceptance level. Herdsmen need to sell some of their animals
to derive the resources to pay the fee. Three types of choice processes are simulated:
(1) herdsmen make offers to place their animals on random spots; (2) they make offers

1 See http://cormas.cirad.fr.

http://cormas.cirad.fr
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for the cheapest spots; or (3) they make offers to the villages with the best friendship
relations that take into account past refusals of offers. Rouchier et al. found that choices
based on costs lead to the lowest number of animals that the simulated system could
sustain, because considerable resources are lost by negotiation and refusals when all
herdsmen try to enter cheapest village. Since the herdsmen do not learn in this model,
they continue losing productivity by aggregating around the same village every time
period. Other applications of the CORMAS group include collaborative forest manage-
ment in East Kalimantan in Indonesia (Purnomo et al., 2003) and the management of
livestock effluents in Réunion, France (Farolfi et al., 2002).

3.5. What have we learned?

In regard to the governance of common-pool resources, agent-based modeling has been
able to draw on a foundation of extensive fieldwork and laboratory experiments as well
as extending our theoretical understanding of cooperation in social dilemma settings.
Since both forms of empirical research had already challenged the capacity of simple,
analytical theory based on non-cooperative game theory to explain empirical results,
the field was ripe for the use of agent-based models. We have learned from agent-based
models of the processes linking resource users, public infrastructure providers, and their
resources and infrastructures that much of the data reported by field researchers is con-
sistent with a complex, adaptive systems view of social dilemmas.

From the combination of research methods examining factors enhancing levels of
cooperation, we have learned that devising rules that allocate benefits to resource users
in a legitimate, fair, and enforceable way is essential to overcome incentives to free
ride. Rarely can external authorities devise rules that are well tailored to a local ecol-
ogy and culture and also invest substantial resources in monitoring patterns of resource
use and sanctioning those who do not follow rules. Thus, the repeated finding that in-
dividuals can devise agreed-upon norms for governing a resource that they themselves
can monitor and enforce has changed our scientific understanding of these processes.
Unfortunately, public policies have all too frequently relied on simple panaceas that
either recommend government, private property, or decentralized governance of SESs.
We have strong evidence that simplistic solutions that are imposed by external agen-
cies on resource users rarely work (National Research Council, 2002; Dietz et al.,
2003). And, fortunately, we now have methods—agent-based models—that facilitate
the analysis of complex SESs by stakeholders and officials. No longer do we need to
throw up our hands in despair because the system is so complex! We do, however, need
to continue a sense of modesty. Even with agent-based models of complex SESs, we
rarely can prescribe “the” optimal solution for any complex setting. Those involved
have to learn over time by experimenting with local ideas, with what they can learn
from others and with ideas from the literature describing what has worked well in other
settings.
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4. Dealing with uncertainty

Understanding of the processes of social-ecological systems is incomplete and is likely
to remain incomplete. Given the persistent uncertainty facing resource users and public
infrastructure providers in the field, researchers need to incorporate uncertainty explic-
itly in their analyses (Ludwig et al., 1993). Agent-based models can address uncertainty
by analyzing the consequences of how people make decisions under uncertainty and by
assessing the impact of different types of hypotheses about these processes in social-
ecological systems.

Models of human decision-making under uncertainty have traditionally been ap-
proached from a probabilistic standpoint: human performance was compared to prob-
abilistic prescriptions. Any divergence was interpreted as a deviation from the optimal
behavior. Laboratory experiments of human decision-making, however, show that fre-
quently people do not make decisions under uncertainty that are consistent with the
probabilistic perspective (Kahneman and Tversky, 1979). Further, many decision prob-
lems cannot be characterized by a closed set of probabilities (Ludwig et al., 1993).

If agents do not have complete knowledge of a complex ecological system, how do
their mental models of the system affect their actions? How can they learn to derive a
more accurate mental representation? These questions refer to the general problem in
agent-based modeling that agents do not have perfect knowledge of the system. They
make their decisions based on the perceptions they have of the problem. These per-
ceptions do not have to include correct representations of reality and may vary among
agents. The focus in this section is on the uncertainty of agents about the ecological
dynamics.

4.1. Theoretical models

An important source of uncertainty in the governance of social-ecological systems is the
fundamental uncertainty of the functioning of the biophysical system. One of the uses
of agent-based models is to explore the consequences of agents who have incomplete
perceptions of reality. Different perceptions of reality can be visualized by different
perspectives of stability (Figure 2). According to the equilibrium perspective, systems
are in equilibrium. External effects can push the system briefly out of equilibrium, but
it automatically returns to the previous equilibrium situation. This perspective corre-
sponds very well with the Newtonian-modeling paradigm. The perspective of stability
can be represented graphically as a ball at the bottom of a valley (Figure 2c). Perturba-
tions only temporarily knock the ball away from the bottom of the valley. An implicit
assumption of this perspective is that systems have the capacity to dampening all kinds
of disturbances.

An alternative perspective is the obverse: namely, the perspective of instability. Sys-
tems are assumed to be very sensitive to disturbances. Every disturbance can lead to
a catastrophe. Applied to environmental issues, the perspective of instability explains
why some people argue that human activities are not supposed to disturb the natural



Ch. 30: Governing Social-Ecological Systems 1487

Figure 2. Perspectives of nature: (a) nature is unstable; (b) nature is stable within limits; (c) nature is stable;
(d) nature has different stability domains (after Janssen, 2002b).

system. Any degree of pollution or increase of extractions can lead to a collapse of the
system. This perspective can be visualized by a ball on a peak (Figure 2a). Any pertur-
bation can cause the ball to roll down the slope. A third perspective is in-between the
perspectives of stability and instability: namely, a system is assumed to be stable within
limits. When the system is managed well, the system can absorb small perturbations.
This perspective can be visualized as a ball in a valley between two peaks (Figure 2b).

A more advanced framework is to consider multiple stable states (Scheffer et al.,
2001). As depicted in Figure 2d, this perspective can be represented as a number of
peaks and valleys. The ball is resting in a valley and is able to absorb a certain degree
of disturbance. However, a severe disturbance can push the ball over a peak such that
it will rest in another valley, an alternative equilibrium. Examples of these multiple
states are lakes that can flip from an oligotropic state to a eutrophic state due to inputs
of phosphates, and rangelands that can flip from a productive cattle-grazing system
into unproductive rangeland dominated by woody vegetation, triggered by variability in
rainfall.

A perspective of systems that is more advanced, and lies in line with the complex
adaptive system modeling paradigm, is the perspective of resilience. The perspective
of resilience not only considers the balls moving up and down the peaks and valleys,
but also considers possible movements of the peaks and valleys themselves. In this evo-
lutionary picture, stability domains can shrink, and disturbances that previously could
be absorbed might now dislodge the system. This view has important implications for
managing systems. In the previously discussed perspective, systems could be known
perfectly. Surprises could lead to changes of management, because the balls move into
another valley; but, in principle, management is simply a matter of controlling the sys-
tem. From the perspective of an evolving ‘landscape,’ however, one has to manage a
system in the face of fundamental uncertainty about the functioning of the system. One
continually needs to observe the system in order to respond adequately. Moreover, small
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human-induced perturbations are recommended in order to learn from the system over
time.

Various concepts called worldviews are designed to classify different perceptions of
reality. Michael Thompson and his colleagues give a general description of perspectives
on natural and human systems and social relations in their Cultural Theory (Thompson
et al., 1990). This theory was used during the 1990s to classify different types of in-
stitutional designs in relation to global environmental change. Cultural Theory is even
used in various mathematical models, when suitable, because it includes perspectives
on human and natural systems that claim generality and includes the determinism of ex-
plaining the rationality of each perspective. Cultural Theory combines anthropological
and ecological insights, and results in multiple types of culture.

The three main worldviews in Cultural Theory are:
• Hierarchists assume that nature is stable in most circumstances but can collapse

if it crosses the limits of its capacity. Therefore, central control is advocated as a
management style.

• Egalitarians assume that nature is highly unstable and that the least human in-
tervention could lead to its complete collapse. A preventive management style is
preferred.

• Individualists assume that nature provides an abundance of resources and believe
it is stable with human interventions. A responsive management style is advocated.

Human-induced climate change is a topic surrounded with many uncertainties and is
therefore an excellent example to illustrate how worldviews can be quantified to sim-
ulate alternative futures based on different perceptions of reality. Such an analysis was
made by Janssen and de Vries (1998), who developed three versions of a simple model
of a social-ecological system based on alternative assumptions about climate sensitiv-
ity, technological change, mitigation costs, and damage costs due to climate change.
Egalitarians, for example, assume high climate sensitivity, high damage costs, low tech-
nological development, and low mitigation costs. For management styles, they assume
different strategies for investments and reductions of emissions of carbon dioxide. The
individualist, for example, assumes a strategy that maximizes economic growth and
assumes emissions are reduced only if a certain threshold of economic damage is ex-
ceeded.

Suppose the agents in a model world are all hierarchists, all egalitarians, or all indi-
vidualists. If agents are assumed to have perfect knowledge of their world, their utopia
can be simulated. If their worldview is incorrect and they still apply their preferred man-
agement style, their dystopia can be simulated. An example is presented in Figures 3a
and 3b. In the egalitarian utopia, emissions of carbon dioxide will be reduced to zero
within a few decades, leading to a modest temperature change. However, if the individ-
ualistic worldview manages a world that actually operates according to the egalitarian
worldview, emissions increase until climate change causes such an economic disaster
that an emission reduction policy is unavoidable.

By introducing a population of agents with heterogeneous worldviews, a complex
adaptive system is produced. It is assumed that the better an agent’s worldview ex-
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(a)

(b)

Figure 3. (a, b) Expected carbon dioxide emissions and temperature increase according to the egalitarian
utopia an a possible dystopia (individualistic management style in an unstable global system). (c, d) Expected
carbon dioxide emissions and temperature increase according to different views on the functioning of the

global system. (Based on Janssen and de Vries, 1998).
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(c)

(d)

Figure 3. (Continued.)

plains the world’s observed behavior, the greater is the chance that it will be stable.
A genetic algorithm is used to simulate a battle between perspectives (Holland, 1992b).
The better a worldview explains observations, the more it is likely to be followed by a
larger proportion of the population. They simulate a learning process where agents may
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adjust their mental models when they are surprised by observations, and may make ad-
justments in their decisions according to their new perceptions of the problem. Agents
tolerate some level of error, however, before they change their worldviews. The ini-
tial distribution of worldviews is therefore important for the long-term evolution of the
social-ecological system. On aggregate, worldviews tend to change to the worldview
that explain the observations in the most convincing way. Suppose that reality is one of
the three possible worlds, and an agent obtains information over time that causes it to
adjust (or not) its perspective on the problem of climate change. Three sets of projec-
tions are derived in which agents adapt to climate change (Figures 3c and 3d). Prior to
year 2040, the observed climate change does not lead to domination of one of the world-
views. After 2040, the climate signal becomes clear enough that one of the worldviews
begins to dominate. In the event of the world functioning according to the egalitarian
worldview, the emissions growth stabilizes in the coming decades and decreases to a
level below half of the present amount of emissions. However, this reduction cannot
avoid a global mean temperature increase of about 2.5◦C in the coming century.

The explicit inclusion of subjective perceptions of reality has led to a rich variety of
possible futures. This approach has also been applied to lake management (Carpenter
et al., 1999a, 1999b; Janssen and Carpenter, 1999; Janssen, 2001; Peterson et al., 2003)
and rangeland management (Janssen et al., 2000). Lakes are a favorite ecosystem for the
study of social-ecological systems, because the multiple stable states are well studied
and simple, empirically based models are available (Carpenter et al., 1999b). The typi-
cal lake model focuses on phosphorus pollution. Phosphorus flows from agriculture to
upland soils, and then on to surface waters where it cycles between water and sediments.
The lake ecosystem has multiple locally stable equilibria and moves among basins of
attraction depending on the history of pollutant inputs. Lakes are often classified as
oligotrophic or eutrophic depending on their productivity. Oligotrophic lakes are char-
acterised by low nutrient inputs, low to moderate levels of plant production, relatively
clear water, and relatively high economic value of ecosystem services. Eutrophic lakes
have high nutrient inputs, high plant production, murky water with problems including
anoxia and toxicity, and relatively low value of ecosystem services. When mitigating
eutrophication, lakes can respond differently to reduced phosphorus inputs, which is
mainly related to recycling of phosphorus from sediments to the overlying water.

In Carpenter et al. (1999a), an agent-based model is developed in which agents form
expectations about ecosystem dynamics, markets, and/or the actions of managers, and
they choose levels of pollutant inputs accordingly. Agents have heterogeneous beliefs
and/or access to information. Their aggregate behavior determines the total rate of pol-
lutant input. As the ecosystem changes, agents update their beliefs and expectations
about the world they co-create. They modify their actions accordingly. For a wide range
of scenarios, Carpenter et al. observe irregular oscillations among ecosystem states and
patterns of agent behavior. These oscillations resemble some features of the resilience
of complex adaptive social-ecological systems. Janssen and Carpenter (1999) applied
the same framework of worldviews as used in Janssen and de Vries (1998) to the man-
agement of lakes. The agents learn and adapt to unexpected changes in the state of the
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lake, and a mix of perspectives is required to manage the resilience of the system. Al-
though low levels of phosphorus in the lake will not be reached, the lake is prevented
from flipping to catastrophically high phosphorus levels.

The agents are always learning, but never get it exactly right. They come close
enough, however, to sustain the social-ecological system. In Janssen (2001), the agents
were enriched with a mix of various cognitive processes, such as imitation, deliberation,
and repetitive behavior, in their decisions about how much phosphorus to use. Analyses
with the model showed that the dominating type of cognitive processing was a relevant
factor in the response to uncertainty and policy measures. When agents are easily unsat-
isfied with their economic performance, it leads to a more intensive use of phosphorus
and to higher levels of phosphorus in the lake. Simulated farmers used phosphorus more
intensively in situations with high natural variability. A tax on phosphorus had little ef-
fect on the behavior of the farmers when they felt uncertain and were easily satisfied.

Peterson et al. (2003) describe the management of a lake as a learning process. The
agents consider two management models of the lake, one for an oligotrophic lake and
the other for a eutrophic lake. As agents observe the lake varying from year to year,
they estimate how well each of the two management models is supported by the ob-
served data. Management policies maximize the expected net present value of the lake.
Even under optimistic assumptions about environmental variation, learning ability, and
management control, conventional decision theory and optimal control approaches fail
to stabilize ecological dynamics. Rather, these methods drive ecosystems into cycles of
collapse and recovery.

Weisbuch and Duchateau-Nguyen (1998) study fisheries where fishers do not have
complete understanding of the underlying (logistic) resource dynamics. Historical in-
formation about catches, capital amounts, and the fraction of the income used for
consumption, are used by the agents to predict future catches. Incremental learning is
used to update the weights on the various sources of information. The agents were able
to learn to manage the system and could cope with sudden shocks to the system.

In the rangeland model of Janssen et al. (2000), agents do not learn but may go bank-
rupt, leave the system, and be replaced by a random, new pastoralist. The agents have
incomplete understanding of the complex rangeland system. They tend to overgraze
their property by putting too many sheep on their land, and suppress fire too much so
woody shrubs can start dominating. Janssen et al. analyzed the consequence of different
government regulations on the evolution of types of agents. Agents who evolve under
a regime of limited grazing do not have a proper understanding of the dynamics of the
system. Agents who evolve without regulations, experience the whole spectrum of pos-
sible events. In the latter case, many properties are unproductive for a longer period,
but those agents who evolve have a good understanding of the system. This example
shows the importance of exploring the possible dynamics of a regime and the effects of
precautionary policies to avoid overuse of the resource.

Bodin and Norberg (2005) examine the principal impact of information sharing in
(social) networks of artificial natural resource managers capable of experimenting, sim-
ple information processing, and decision-making. All managers adaptively manage their
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own local ecological resources. All properties are close to a threshold at which the eco-
logical system flips into an unproductive state. Aggregate properties of the coupled
social-ecological system are analyzed in relation to different network structures. Bodin
and Norberg find that the network structures have a profound effect on the system’s
behavior. Networks of low- to moderate-link densities significantly increase the sustain-
ability of the ecological resource. However, networks of high-link densities contribute
to a highly synchronized behavior of the managers, which causes occasional large-scale
ecological crises between meta-stable periods of high production. It is demonstrated
that in a coupled social-ecological system the system-wide state transition occurs not
because the ecological system flips into the undesired state, but because the managers
loose their capacity to reorganize back to the desired state.

4.2. Laboratory experiments

We will discuss the work of scholars who test different types of heuristics to ex-
plain experimental observation of decision-making in different situations (Gigerenzer
et al., 1999). In a similar vein, we will analyze the comparative analysis of quantitative
learning models on experimental data of subjects learning to find good solutions for
allocation problems in complex environments (Rieskamp et al., 2003). For a broader
discussion on agent-based models, laboratory experiments, and learning we refer to
Brenner (2006) and Duffy (2006) in this volume.

Gigerenzer et al. (1999) argue that humans use fast and frugal heuristics to make
satisfying decisions about a set of alternatives that respect the limitations of human
time and knowledge. Complexity and uncertainty of the environment have led in the
evolution of the brain to smart solutions that are “ecologically rational.” The authors
discuss a large number of experiments in which they test simple heuristics such as one-
reason decision-making (e.g., “take the last,” “take the best”), elimination heuristics, or
recognition heuristics. A drawback of this research program, so far, is that the decision-
making experiments are very simple, like what city has the largest population, compared
to the more dynamic decision environments with social interactions as is characteristic
of social-ecological systems.

Rieskamp et al. (2003) used experiments to compare two learning models related
to long-term decisions made under uncertainty. One learning model is reinforcement
learning, a global search model that assumes that decisions are made probabilistically
based on the experience aggregated across all past decisions. The other learning model
is hill-climbing, a local search model that assumes a new decision is made by com-
paring the preceding decision with the most successful decision up to that point. One
application of their model is explaining the decisions made by resource users about di-
verse strategies of land use. In the laboratory experiment, participants were asked to
allocate three financial assets in a repeated session of two hundred rounds. The optimal
allocation was often not found, but a learning effect was still measurable. Rieskamp et
al. (2003) conclude that the hill-climbing model best describes their observations.
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Goldstone and Ashpole (2004) performed experiments where a large number of hu-
man participants interacted in real time within a shared virtual world. Two resource
pools were created with different rates of replenishment. The participants’ task was to
obtain as many resource tokens as possible during an experiment. Besides variation in
the rate at which consumed tokens were replaced, Goldstone and Ashpole manipulated
whether agents could see each other and the entire token distribution, or had their vi-
sion restricted to tokens in their own location. The optimal solution for participants is to
distribute themselves in proportion to the distribution of resources. The human subjects
did not to distribute themselves in this optimal fashion. Rather, they systematically al-
located themselves more to the relative scarce resource, leading to an underutilization
of the resources. Furthermore, especially when the vision of the subjects was restricted,
oscillations in the harvesting rates of the resources across time were observed. Per-
ceived underutilization of a resource resulted in an influx of agents to that resource.
This sudden influx, in turn, resulted in an excess of agents, which then led to a trend
for agents to depart from the resource region. Thus, uncertainty about the availability of
resources increased instability of the distribution of the subjects, which itself enhanced
uncertainty.

4.3. Applications

In the spirit of adaptive management (Holling, 1978), various researchers develop their
agent-based models together with the stakeholders of the problem. Like the participa-
tory modeling approach, such as practiced in systems dynamics (e.g., Costanza and
Ruth, 1998), they use the model as a tool in the mediation process with stakeholders
and as a way for the stakeholders to learn strategies that might solve the dilemmas they
face in complex environments. In Bousquet et al.’s (Bousquet et al., 2002) companion
modeling, the role-playing games are meant to reveal some aspects of social relation-
ships by allowing the direct observation of interactions among players, the stakeholders.
Barreteau et al. (2003) argue that such role-playing games are good communication
tools among stakeholders, but it is difficult to reproduce the results. Systematic compar-
ison of the results is difficult since many factors are uncontrolled. When players play
again, they may change the context of the game due to their learning experience in the
previous experiment.

In Etienne et al. (2003), for example, an agent-based model was developed to simu-
late strategies of natural resource management in the Causse Méjan, a limestone plateau
in southern France dominated by a rare grassland-dominated ecosystem endangered by
pine invasion. To facilitate discussion of alternative long-term management strategies
for the sheep farms and the woodlands, contrasting perspectives on land resources from
foresters, farmers, and rangers of the National Park of Cévennes were designed at differ-
ent spatial scales. A series of exercises with different stakeholder groups was performed
to confront the consequences of their viewpoints, and that of the other stakeholders. As
a result of this iterative process it was possible to select a set of feasible scenarios
stemming from the current actors’ perceptions and practices and to suggest alterna-
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tive sylvopastoral management based on innovative practices. D’Aquino et al. (2003)
describe their project on irrigation systems in Senegal. Since 1997 they have experi-
mented at an operational level (2500 km2) in the Senegal River valley with agent-based
modeling intertwined with role-playing games. Their self-design approach is aimed to
include as much as possible the knowledge of the local participants. This develop-
ment of methodology may contribute to additional tools of resource users and public
infrastructure providers to self-govern their common resources.

Pahl-Wostl (2002) discusses a similar development that she calls participatory agent-
based social simulation. This modeling technique inputs social processes into integrated
models that are developed in participatory settings. Hare and Pahl-Wostl (2002) illus-
trate in a Swiss case study how card-sorting can be used to categorize stakeholders to
inform the design of agent-based models.

An interesting application of learning models to natural resource management is the
work of Dreyfus-Leon on fisheries. Dreyfus-Leon (1999) presents a basic model to
mimic the search behavior of fishers. It is built on two neural networks to cope with
two separate decision-making processes in fishing activities. One neural network deals
with decisions to stay in current fishing grounds or move to new ones. The other is
constructed for the purpose of finding prey within the fishing grounds. Reinforcement
learning is used to derive expectations of catches from previous neural network-based
decisions. Feedback about catches is used to update the weights of the neural networks.
Some similarities with the behavior of real fishers were found: the concentrated local
search once a prey has been located to increase the probability of remaining near a prey
patch and the straightforward movement to other fishing grounds. Also, they prefer ar-
eas near the port when conditions in different fishing grounds are similar or when there
is high uncertainty in their world.

The observed behavior of the artificial fisher in uncertain scenarios can be described
as a risk-aversion attitude. In Dreyfus-Leon and Kleiber (2001), the model of fishers’
behavior was applied to yellow-fin tuna fishing in the eastern Pacific Ocean. In contrast
to Dreyfus-Leon (1999)—where the schools of fish were located at fixed points—in
this study, movements of schools of fish were simulated with artificial neural networks,
based on relative habitat comfort. Like Dreyfus-Leon (1999), the individual fishing ves-
sels were represented with artificial neural networks. The tuna vessels searched for the
tuna schools during a fishing trip. An interesting Turing experiment was performed to
test the performance of the model by asking experts, fishers, and tuna researchers to
identify which tracks were simulated and which were real. The experts were not able to
provide the correct answer more frequently than random choice. This provided the mod-
elers some confidence in their results. Two scenarios were considered in the analysis:
one with no fishing regulation and another with an area closure during the last quarter
of the year. In the scenario without regulation, fishing effort was allocated, particularly
in higher levels nearer the coast and where high concentrations of tuna were detected. In
the scenario with regulation, redistribution of effort was uneven but increased in neigh-
boring areas or in areas relatively near the closure zone. Decrease in effort was evident
only in the closed area. Effort redistribution when regulations were implemented is not
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well understood, but this modeling approach can help fishery managers to envisage
some regulation effects in the fishery.

4.4. What have we learned?

Uncertainty and limited knowledge about ecological processes are crucial elements in
the study of social-ecological systems. Agent-based modeling provides us a tool to
test the consequences of the limitations of knowledge of various actors in decision-
making processes on the governance of natural resources. Theoretical models focused
on mental models match very well the applications that use role-playing games and
the participatory approach. These applications provide stakeholders instruments to test
the consequences of different perceptions of the systems, which enable them to identify
compromises and conflicts. The participatory use of models, such as systems-dynamics,
already existed. Agent-based models enable researchers to be more explicit about the
behavioral and spatial aspects of social-ecological systems.

The experimental work related to natural resource management and uncertainty re-
lates primarily to heuristics and learning models. In that respect there is a mismatch
with the theoretical and applied agent-based models. A considerable challenge remains
to develop experimental work to test the consequences of various mental models for the
management of natural resources.

5. Topology of interactions

The importance of non-random and non-uniform topologies of interactions between
agents can be an important reason to use agent-based models. As discussed by Dibble
(2006), Wilhite (2006), and Vriend (2006), the role of the structure of interactions has
been found important in various areas of agent-based computational economics. In this
chapter we mainly focus on exogenous structures of interactions, especially as they are
caused by ecological processes. In fact, when we include space, many questions arise
related to the structure of interactions.

Explicit inclusion of space in the analysis of environmental economic problems leads
to the questions of how to allocate a scarce amount of space, how to manage land given
uncertainty of the dynamics of the system, how to deal with spatial externalities and re-
sulting spatial conflicts, and how information spreads in a spatially explicit system. The
area of land-use and land-cover change addresses these issues, and agent-based mod-
eling has been applied in this area. Agent-based modeling for land-use and land-cover
change combines a cellular model representing the landscape of interest with an agent-
based model that represents decision-making entities (Parker et al., 2003). Due to the
digitalization of land-use/cover data, i.e. remotely sensed imagery, and the development
of geographic information systems, cellular maps can be derived for analysis.

Since the 1980s, cellular automata have been used to model land use/cover over time
(Couclelis, 1985). Human decision-making was taken implicitly into account in the



Ch. 30: Governing Social-Ecological Systems 1497

transition rules, but not expressed explicitly. Sometimes the cells represent the unit of
decision-making. In most applications, however, the unit of decision-making and the
cell are not the same. The desire to include more comprehensive decision rules, and
the mismatch between spatial units and units of decision-making, led to the use of
agent-based modeling for land-use and land-cover change. By including agents, one
can express ownership explicitly, as the property about which an agent can make deci-
sions. An agent can make decisions on the land use in a number of cells—for example,
by allocating cells to derive a portfolio of crops.

Another rapid development is the study of the structure of networks (Watts and Stro-
gatz, 1998; Barabasi and Albert, 1999). Since agent-based models are characterized by
the interactions of agents, it is important to understand the consequences of the effects of
different network structures on the collective behavior in social-ecological systems. We
will review some of this literature from the perspective of governing social-ecological
systems.

5.1. Theoretical models

In a number of examples, Axtell (2000) shows that changes in the interaction topology
can have important consequences for the outcomes in agent-based simulations, since
the topology affects the speed at which information is processed among agents. For
example, having X interactions in each time step, or on average, may lead to different
aggregated results, depending on the nonlinear behavior of the agent-based model. In
a similar vein, Flache and Hegselmann (2001) investigated the sensitivity of two main
processes in social science, migration dynamics and influence dynamics, to different
spatial relationships among the agents. They concluded that most of the insights are
robust to alternative spatial patterns, but some interesting differences do exist. Irregular
grids, for example, result in path-dependent processes, leading to lock-ins of certain
patterns.

Within the theoretical studies of social dilemmas, the paper of Nowak and May
(1992) simulated the study of social dilemmas in a spatial context. In their study, agents
play a Prisoner’s Dilemma game with their nearby neighbors in a rectangular cellular
automata environment. The players defect or cooperate, and update their strategy each
round, by imitating the strategy with the highest payoff in their neighborhood. The de-
terministic model led to spatially chaotic patterns of cooperation and defection. Thus,
without memory, patterns of cooperation can be derived in a spatial context.

We will not review the comprehensive literature on spatial games here, but focus on
public-good games because of their relevance for natural resource management. Hauert
and colleagues study the evolution of cooperation in spatial public-good games (Hauert
et al., 2002; Brandt et al., 2003; Hauert and Szabo, 2003). They show that when agents
are able to leave a game, defectors, cooperators, and non-players co-exist in a dynamic
environment (Hauert et al., 2002). The possibility of costly punishment of defectors
significantly increases the level of cooperation (Brandt et al., 2003). Hauert and Szabo
(2003) tested the consequence of different geometries of interactions. Cooperation is
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higher on honeycomb versus square interactions. Also, larger neighborhoods, and thus
larger groups who share the pubic good, reduce the level of cooperation.

5.2. Laboratory experiments

Laboratory experiments with regard to the importance of the structure of interactions are
rare, especially with respect to the governance of social-ecological systems. This may
change in the near future since new laboratories for experimental studies have been
established at the University of Rhode Island and Indiana University. Both laboratories
will focus on spatially explicit experiments with human subjects.

An interesting set of experiments that is of particular interest for this chapter seeks
to understand how information from other agents affects decision-making. Kameda and
Nakanishi (2002, 2003) performed experiments to analyze the consequences when hu-
man subjects had the choice to solicit information on the choices of other participants
in the experiment. The experiment was called “Where is the rabbit?” and simulated a
fluctuating uncertain environment in a laboratory setting. In this game, participants were
asked to judge in which of two nests a rabbit was currently located based on stochastic
information. Participants played the game for a total of sixty rounds. They were in-
structed that the rabbit (environment) had a tendency to stay in the same nest over time,
but this tendency was not perfect: The rabbit might change its location between any two
consecutive rounds with a probability of 20%. Thus, the location of the rabbit in a given
round corresponded to the current state of the fluctuating environment. In one half of the
experiments, subjects did not derive information from the choices of other participants.
In the other half of the experiments, subjects in six-person groups derived information
of three others (randomly chosen) in their group. In both cases, the subject could derive
information about the location of the rabbit by a costly information search. Kameda and
Nakanishi showed that the subjects who were able to derive information from others
in their group derived a higher payoff than those who could only learn individually.
A simulation was developed that mimicked the observed findings.

5.3. Applications

Balmann (1997) studied structural change in agricultural activities. He developed a
model that was based on a number of individually acting farms located at different
points in an agricultural region. Like a cellular automaton, the region was subdivided
into a number of spatially ordered plots. The farms competed for these plots and
competed in different markets. Farms were allowed to engage in different production
possibilities and could use several investment alternatives. They optimized their activi-
ties with respect to their objective function by considering their expectations, financial
state, and existing assets. The model was applied to a hypothetical region and studied
how agricultural development was path dependent. In Balmann et al. (2002), an ap-
plication of the model is presented with data from a region in Germany. The model
consists of approximately 2600 farms, distinguishing twelve farm types, as observed in
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the data. In their application of the model, heterogeneity among the agents resulted in
diversity of adjustment costs to policy interventions. The model provides insights into
the distribution and dynamics of the impacts of policy changes on incomes.

Building on the work of Balmann (1997), Berger (2001) developed an agent-based
model for an agricultural region in Chile. The farm-household decision-making was
represented as a linear programming problem solved for each simulated year. Berger
analyzed the adoption of new export-oriented agricultural activities using a network-
threshold framework (Valente, 1995). Empirical studies provided the foundation for the
type of networks and the heterogeneity of threshold values. The analysis showed that a
governmental policy to stimulate export-oriented agricultural activities was effective to
double the income from agriculture in a twenty-year period, compared to a stabilization
of the income level if the policy intervention was not implemented.

Deffuant et al. (2002) present another agent-based model of innovation among farm-
ers. Their model is based on an in-depth survey and interviews with farmers in various
locations in Europe. The empirical model presented about Allier, France, tried to un-
derstand how organic farming was diffused. A positive attitude toward organic farming
was necessary but not sufficient to get adoption started. Positive information in the press
stimulated farmers to exchange opinions, and stimulated adoption of organic farming.

Allen and McGlade (1987) developed a spatially explicit model of fishers. These
fishers could have different strategies, based on the information available to them, such
as fishing only at the location from which they expected the highest catch, or moving
around randomly. Inclusion of stochastic behavior for some fishers was necessary to
discover the location of fish stocks and to maintain the fish industry.

Hoffmann et al. (2002) present a pilot study of land-use change in south-central Indi-
ana, USA. This part of the state was primarily forested prior to the arrival of settlers from
Europe in the early 1800s. These settlers cleared substantial areas of land for agricultural
production (crops and pasture) and for forest products used for construction materials.
The process of clearing land continued until the early 1900s, at which time areas mar-
ginal for agricultural production were gradually abandoned, resulting in a pattern of
forest regrowth in areas of low agricultural suitability. The agents (private landowners)
made decisions regarding their portfolio of land-use products that affected their utility.
The utility depended on components such as income from timber, income from farm-
ing, and aesthetic enjoyment of the forests. Using scenarios of prices for agricultural
commodities, Hoffmann et al. were able to reproduce land-cover dynamics in line with
observed stylized facts (agriculture on the flat land, reforestation on the slopes).

Evans and Kelley (2004) tested an elaborated version of the Hoffmann et al. model on
Indian Creek Township, located in southwest Monroe County, Indiana. This area is ap-
proximately 10×10 km, with private landholders as the primary actors in the landscape.
Indian Creek Township is characterized by a series of rolling hills with bottomland ar-
eas suitable for agricultural production interspersed between ridges/hills that are largely
forested. Landowners are a mix of households that derive a portion of their household
income from extraction practices (agriculture, farming, haying, timber harvesting) and
other households that derive all their income from non-farm activities. Evans and Kel-
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ley analyzed the consequences of using different scales of modeling the decisions of the
private landowners. The best fit of the calibrated model was derived at the highest reso-
lution, and declined non-monotonically with scale. The authors argue that agent-based
models of land use need to be analyzed at different levels of scale.

Parker and Meretsky (2004) focus on externalities of land use, and their affect on
land-use composition and pattern. Their model was used to analyze interactions be-
tween urban use and agricultural use, and how externalities of the use of the property
affected spatial patterns if agents made rational decisions to maximize their utility. The
assumption was that when agents adopt NIMBY (not in my back yard) strategies related
to urban activities, inefficient urban sprawl results.

Brown et al. (2005) present a model of urban sprawl applied to Washtenaw County,
Michigan, USA. The agents entering the county weigh aesthetics, distance to the service
center, and neighborhood density to make decisions about where to live. In addition to
their empirical landscape, Brown et al. used artificial landscapes to test the ability of
the model to predict certain spatial patterns generated by a known model. It was not
always possible to predict settlement patterns with the model, illustrating the difficulty
of getting a good fit in spatially explicit models. Nevertheless, they were able to derive
good fits with aggregated spatial metrics.

The study areas of Brown et al. (2005) and Evans and Kelley (2004) are similar in
some aspects (agents are households making decisions on a detailed, real landscape), but
differ in others (urban vs. rural, residential choice vs. allocation of land-use activities).
It is important to note the difference between the two modeling approaches as applied.
Brown et al. developed an extremely stylized model. By keeping it as simple as possible,
they were able to explore the parameter space in a comprehensive way. The agents and
decision-making processes in the Evans and Kelley model were more sophisticated, and
the model was calibrated on the observed detailed pattern of land-cover changes. Both
approaches are defended as being more appropriate to understanding the underlying
processes. More work definitely needs to be done to define the right type of model for
the research question at stake.

5.4. What have we learned?

Agent-based models offer various new aspects to spatially explicit modeling. By ex-
plicitly including decision-making processes we may be able to test the consequences
of various behavioral theories on spatial processes, such as land-use change and urban
sprawl. We recognize a lacuna in the availability of laboratory experiments that may
inform the choice of behavioral theories, but new laboratories at Indiana University and
the University of Rhode Island are currently conducting such experiments.

Spatially explicit processes in landscapes and networks of interactions are important
to investigate, since agent-based models are defined by the topology of interactions
among agents. Much more work needs to be done to address how the structures of
interactions and networks affect aggregated outcomes.
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6. Challenges ahead

The use of agent-based computational modeling to understand the governance of social-
ecological systems is rapidly developing. We identify a number of challenges for the
coming years that are fundamental to the further development of this field.

• Throughout this chapter we have discussed theoretical and applied models in rela-
tion to laboratory experiments. Such a triangular approach is an exception within
most research groups. We stress the importance of using multiple methods to ana-
lyze a common set of puzzles. No one method guarantees the right answer. When
similar answers are derived from methodological triangulation, we can have more
confidence in our findings.

• The Internet provides us new opportunities to study social-ecological systems from
an agent perspective. Users need to make decisions in a complex, interlinked envi-
ronment. Most of the information used during this process can be recorded. This
leads to interesting opportunities to perform experiments in cyberspace, such as
the experiment of Dodds et al. (2003) to identify social networks at a global scale.

• Significant progress has been achieved to understand the evolution of strategies and
norms in collective-action situations, given a fixed set of commonly understood
rules. What is currently lacking is a formal model of the process of rule change
and the evolution of institutional rules, although some initial models have been
developed (Janssen, 2005; Janssen and Ostrom, 2005).

• During the last few years considerable progress has been achieved in understanding
the structure of networks. This has also been explored by those who are interested
in the governance of social-ecological systems. An interesting development is the
formal modeling of co-evolving networks, such as the work of Börner et al. (2004)
in information science. From the perspective of social-ecological systems, it would
be interesting to explore the co-evolution of social and ecological networks.

• Agent-based models often have a tendency to become complicated and detailed,
which reduces the ability for rigorous analysis of the model. How to find a bal-
ance between detail and simplicity is an important question. Therefore, evaluation
techniques for the balance between complexity of the model and explanation of
the empirical phenomena need to be developed. In a broader sense, we need to
develop appropriate methodologies for model testing, model selection, and model
validation (Durlauf, 2003).

7. Discussion and conclusions

The governance of social-ecological systems has been dominated during the last century
by a top-down control paradigm. Concepts and tools from environmental economics
generate the maximum sustainable yield of fish stocks, the optimal time to harvest
forests, and the optimal allocation of water in irrigation systems. Empirical studies have
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shown that such a top-down perspective is often ill-suited and can stimulate unsus-
tainable use of the resource. Empirical studies also have shown that complex, nested
governance systems operating at multiple levels can govern similarly complex ecologi-
cal systems at multiple scales more efficiently than single, large units lacking knowledge
of many specific structures and processes. Social-ecological systems are complex, adap-
tive systems in which heterogeneity, multiple scales, multiple domains of attraction,
surprise, and fundamental uncertainty of the functioning of the ecosystem need to be
explicitly considered. Agent-based modeling may provide new tools to address im-
portant questions of how to govern our common resources now that we have a better
appreciation of the complexity of social-ecological systems and the multiple dilemmas
facing resource users and public infrastructure providers at multiple scales. However,
the development of agent-based modeling is in its infancy. Whatever the future may
bring, agent-based models need to be used as one of the tools in a pluralistic toolbox of
concepts, frameworks, and methods in understanding and improving the governance of
social-ecological systems.
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Abstract

An agent-based model is a virtual world comprising distributed heterogeneous agents
who interact over time. In a spatial agent-based model the agents are situated in a spa-
tial environment and are typically assumed to be able to move in various ways across
this environment. Some kinds of social or organizational systems may also be modeled
as spatial environments, where agents move from one group or department to another
and where communications or mobility among groups may be structured according to
implicit or explicit channels or transactions costs.

This chapter focuses on the potential usefulness of computational laboratories for
spatial agent-based modeling. Speaking broadly, a computational laboratory is any
computational framework permitting the exploration of the behaviors of complex sys-
tems through systematic and replicable simulation experiments. By that definition, most
of the research discussed in this handbook would be considered to be work with com-
putational laboratories. A narrower definition of computational laboratory (or comp lab
for short) refers specifically to specialized software tools to support the full range of
agent-based modeling and complementary tasks. These tasks include model develop-
ment, model evaluation through controlled experimentation, and both the descriptive
and normative analysis of model outcomes.

The objective of this chapter is to explore how comp lab tools and activities facilitate
the systematic exploration of spatial agent-based models embodying complex social
processes critical for social welfare. Examples include the spatial and temporal coordi-
nation of human activities, the diffusion of new ideas or of infectious diseases, and the
emergence and ecological dynamics of innovative ideas or of deadly new diseases.
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1. Introduction

1.1. Overview of chapter

“Research has been likened to warfare against the unknown. ... The attacker will
have a great advantage if he can bring to bear a new technical weapon.”

[Beveridge (1957), page 176]

An agent-based model is a virtual world comprising distributed heterogeneous agents
who interact over time. In a spatial agent-based model the agents are situated in a spa-
tial environment and are typically assumed to be able to move in various ways across
this environment. Some kinds of social or organizational systems may also be modeled
as spatial environments, where agents move from one group or department to another
and where communications or mobility among groups may be structured according to
implicit or explicit channels or transactions costs.

This chapter focuses on the potential usefulness of computational laboratories for
spatial agent-based modeling. Speaking broadly, a computational laboratory is any
computational framework permitting the exploration of the behaviors of complex sys-
tems through systematic and replicable simulation experiments. By that definition, most
of the research discussed in this handbook would be considered to be work with com-
putational laboratories. A narrower definition of computational laboratory (or comp lab
for short) refers specifically to specialized software tools to support the full range of
agent-based modeling and complementary tasks. These tasks include model develop-
ment, model evaluation through controlled experimentation, and both the descriptive
and normative analysis of model outcomes.

The objective of this chapter is to explore how comp lab tools and activities facilitate
the systematic exploration of spatial agent-based models embodying complex social
processes critical for social welfare. Examples include the spatial and temporal coordi-
nation of human activities, the diffusion of new ideas or of infectious diseases, and the
emergence and ecological dynamics of innovative ideas or of deadly new diseases.

Consider a thought experiment to help motivate the usefulness of comp labs as com-
plements to spatial agent-based models: Imagine that top decision-makers have asked
you to apply an agent-based research model to avert a global pandemic, where the liveli-
hoods and perhaps the lives of millions of people may depend upon the timeliness and
quality of your results [Osterholm (2005), Aldhous and Tomlin (2005)]. They need your
answers within six months. Preliminary results even before then could provide crucial
leverage for averting disaster, yet misleading results may do more harm than good.

Which comp lab tools would you wish you had available to assist with development,
testing, and refinement of your model? Which simulations would you run first to explore
the problem? How would you calibrate, test, apply, evaluate, and perhaps generalize
your model and your results within six months? How would you adapt your model or
your inference as the crisis begins to unfold, or as preliminary feedback from the success
or failure of your advice begins to arrive? Which analytical tools would you most wish
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you had, given reasonable yet finite computational power and limited time for analysis
of simulation results as they accumulate?

Comp labs provide the tools researchers need to perform such tasks. At the simplest
level, a good agent-based model is capable of generating the phenomenon we seek to
study. Yet generating a phenomenon is far from sufficient for effective agent-based re-
search. What matters most is what we can learn from our models, and how much we
can trust their results.

This chapter provides an overview of the comp lab capabilities most likely to be
useful for spatial agent-based models, and explores the various ways they could be used
effectively. This exploration is explicitly normative and does not presume to represent
current practices in Agent-based Computational Economics (ACE).

Although this chapter specifically addresses comp lab tools for working with spatial
agent-based models, many of the comp lab principles and tools discussed apply to as-
patial models as well. Similarly, spatial landscapes may be interpreted quite broadly as
anything that structures local context and interactions among a model’s agents.

This chapter orients newcomers to comp labs by discussing and illustrating basic
components and capabilities of comp labs for research with spatial agent-based models.
The remainder of Section 1 highlights research challenges posed by richly structured
distributed dynamic systems for standard economic modeling, and briefly summarizes
how comp labs might aid researchers in addressing these challenges. Sections 2–4 ex-
amine three main categories of tools, such as comp lab support for controlling and
testing models, for modeling agents, and for creating empirical or synthetic social and
spatial landscapes. Subsequent Sections 5–7 address finer points and more sophisticated
methods for inference and for effective analysis of robustness and risk. Concluding re-
marks are provided in Section 8.

1.2. Challenges posed by spatial systems

[N]ew tools . . . have removed crucial technical barriers and transformed a once
inhospitable field into fertile ground for theorists.

[Fujita et al. (1999), page 2]

Local (micro) interactions among distributed dynamic agents generate global (macro)
structures; diverse examples include market prices, market failures, organizational be-
havior, social norms, and regional settlement patterns. These dynamic spatial processes
defy top-down modeling or deductive analytical inference due to the complex exoge-
nous and endogenous boundary conditions arising from their micro-level interactions.
Local interactions may be either spatial or aspatial; in general, the term refers to inter-
actions among distributed subsets of agents.

Realistic geographic landscapes may generate conditions that violate one or more
assumptions underlying the First and Second Welfare Theorems. The First Welfare The-
orem (efficiency) roughly states that if markets exist for all valued goods and services,
if no firm or consumer can influence prices, if prices adjust perfectly so that all markets
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clear, and if all (price-taking) firms and consumers correctly anticipate these prices, then
the market outcomes will be Pareto Optimal. The Second Welfare Theorem (equity)
roughly states that if the First Welfare Theorem applies and if there are no externalities
of consumption or of production, then any Pareto Optimal outcome may be reached,
given appropriate transfers of wealth [Mas-Colell et al. (1995), page 308].

Yet uneven spatial distributions of goods and people across a geographic landscape
may lead to conditions that violate these assumptions. For example:

• There may be too few local buyers and sellers to create local markets for goods,
especially when there are high transportation costs.

• Small numbers of buyers or sellers may lead to thin markets where one side or both
no longer acts as a price taker.

• Even with modern transportation and telecommunication systems, spatial distance
continues to impose significant transactions costs such as imperfect information
and severe coordination problems that affect market transactions.

• Geographic landscapes generate local environments where externalities of con-
sumption or production are often the norm rather than the exception.

As Tesfatsion (2006a) demonstrates with respect to the implicit Walrasian Auction-
eer assumed in competitive market models, tractable theoretical models often naively
assume agent coordination or sophistication that may in fact not be feasible given the
agents’ contexts, information, or incentives.

The complexity that arises from interacting agents becomes even more interesting
once we consider strategic interactions. Schelling’s Micromotives and Macrobehavior
(Schelling, 1978) summarizes the essential challenges for modeling strategic interac-
tions among distributed agents:

What we typically have is a mode of contingent behavior—behavior that depends
on what others are doing. (Page 17)

[P]eople locate themselves voluntarily in some pattern that does not possess evi-
dent advantages even for the people who by their own choices form the pattern.
(Page 12)

How well each does for himself in adapting to his social environment is not the
same thing as how satisfactory a social environment they collectively create for
themselves. (Page 19)

Economic theory and game theory begin to provide formal theoretical frameworks for
emergent macro effects of non-strategic and strategic micro-level interactions among
agents. Yet it is nearly impossible to extend the fundamental theoretical results to re-
alistically distributed systems of heterogeneous, dynamic, adaptive, and mobile agents
when researchers are limited to thought experiments or top-down, equation-based com-
putational models. Well equipped comp labs for spatial agent-based models can greatly
extend our ability to explore beyond the bounds of purely analytical inference to estab-
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lish new theoretical and applied results for important and interesting richly structured
systems.

1.3. Addressing spatial system challenges with comp labs

A prototypical spatial agent-based model consists of a full specification for the follow-
ing aspects:

• One or more classes of agents, and the types of interactions they may have with
one another and possibly also with their environment.

• The nature of the spatial, social, or organizational environments within which these
agents may or may not move around and which may structure their encounters.

• A specification of initial conditions for the simulation, generally including the ini-
tial locations of agents within their environment.

• A schedule of activities for the simulation, including a means for determining when
each simulation should end.

• Means for observing and recording key data about the simulation’s behavior.
In principle, the conceptual specification of a spatial model exists independently of

any given implementation of the model in a particular computer language, simulation
platform, or comp lab. Ideally, important models will be implemented in more than one
computer language, model platform, or comp lab. In practice, implementation details
such as the order in which agents take turns, nuances of their interaction structures,
or the specific random number generators used often affect the model’s behavior. So
in practice the term “agent-based model”—whether spatial or aspatial—almost always
refers to a specific implementation of the conceptual model. Essentially, for now, an
agent-based model’s implementation is its complete specification.

Tesfatsion (2006a) provides an excellent introduction to agents and an “ACE Trad-
ing World” that exemplifies a typical fully specified aspatial agent-based model. She
includes pseudo-code outlines for the public and private data for each agent and its be-
havioral methods, and for the initial conditions, agent activities, and stopping rule for
each simulation. The ACE Trading World has three types of cognitive agents: bean pro-
ducers, hash producers, and consumer-shareholders who purchase beans and hash to
consume at each simulation step [Tesfatsion (2006a), Tables 1–4]. It is an interesting
exploration of the operation of a simple market once agents are required to engage in
explicit procurement rather than trading indirectly via a mythical Walrasian auctioneer.

Yet the ACE Trading World is strictly aspatial; each agent has perfect information
about the prices posted by all other agents, and there are no transaction costs or spa-
tial locations of the agents to structure their information or their interactions with one
another. This is wise, as its behavior is already complex. Even models that seek to under-
stand the effects of spatial or other interaction structures should be able to run aspatial
control simulations where the same set of agents interacts in a null space, such as a
perfectly mixed soup, in order to distinguish the effects of agent or other model spec-
ifications from the effects of their interaction structure. Thus, when simulations with
the same populations of agents with the same random number seeds are run on richly
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structured spatial or organizational landscapes, the effects due to landscape structure
can be thoroughly isolated from the effects due to other aspects of the model or of their
interactions.

1.3.1. Richly structured spatial or organizational network landscapes

Extending the ACE Trading World [Tesfatsion (2006a)] even to simple spatial land-
scapes raises interesting questions. For example, imagine a network landscape of local
villages, where each village is aspatial, per the original model, and links such as roads
connect villages to one another in various patterns. This is likely to introduce several
kinds of information costs (effort, noise) and transaction costs (shipping, time delay, tar-
iffs). For now, consider simply Samuelson’s [Samuelson (1952)] simple iceberg model
of shipping costs, where x% of the goods melt per mile.

If shipping costs are prohibitive even for the nearest neighbors, then we simply have
islands, each of which operates as a separate ACE Trading World. Even so, it may nev-
ertheless be interesting to explore the effects of population sizes and relative proportions
of its three types of agents, per Tesfatsion’s (Tesfatsion, 2000, 2001) exploration of the
effects of market power in labor markets. Alternatively, if shipping costs are zero and
we have assumed perfect information and no transaction costs despite distance, then the
distribution of agents across villages makes no difference and it functions as one global
trading world.

In all other situations, imperfectly linked local markets for identical goods are dis-
tinguished only by their locations relative to each potential consumer. The landscape’s
network characteristics and its distribution of agents may have tremendously interest-
ing effects on the adjustment dynamics and potential equilibria of local markets. We
have not even begun to discuss related extensions such as information costs, local re-
source constraints, heterogeneous distribution of resources or production conditions,
local externalities of consumption or production, or migration of agents from one node
to another. ACE researchers have barely begun to explore such extensions, although see
Wilhite (2001, 2006) and Dibble (2001b) for early work along these lines.

Networks are especially relevant for economics because almost all economic ex-
changes are mediated by transportation or communication networks of some kind. The
structure of such networks is generally fixed within the time frame considered for most
ACE models, although it can be even more interesting to consider the long-run co-
evolution of economic processes, population distributions, and network infrastructure.

Such questions have been difficult to address in part because we have not had good
tools to generate synthetic network landscapes and population distributions in order
to explore their effects. While extensions to network landscapes will not be deeply ex-
plored within this chapter, the objective here is to motivate the importance of landscapes
and other interaction structures for ACE research, as a key example of potentially useful
capabilities provided by a well-equipped comp lab to support spatial modeling.
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2. A well-equipped comp lab for spatial agent-based modeling

In contrast, the real world is a single time-series realization arising from a poorly
understood data generating process. Even if an ACE model were to accurately
embody this real-world data generating process, it might be impossible to verify
this accuracy using standard statistical procedures. For example, an empirically
observed outcome might be a low-probability event lying in a relatively small peak
of the outcome distribution for this true data-generating process, or in a thin tail of
this distribution.

[Tesfatsion (2006a), page 845]

In the real world, we almost never have an opportunity to rewind the historical tape to
replay and explore the different outcomes that may result from chance events [Fontana
and Buss (1994)]. In econometrics, we understand that each empirical observation con-
tains some proportion of variation due to explanatory variables, inextricably entwined
with an unknown but ideally well-behaved proportion of noise assigned to its error term
and ascribed to chance or imperfect observation. Each implementation of an agent-
based model is, by itself, a means to simulate one time-series realization at a time. With
an agent-based comp lab, we have perfect control over both treatments and stochastic
sources of variation. Thus we have the capability to simulate exact replicates of each
treatment, to fully explore the effects of stochastic variation.

In my research on spatial systems, I have found the following three types of comp lab
tools to be especially useful:

1. tools to facilitate implementation, testing, calibration, and basic operation of a
spatial agent-based simulation model, including its landscapes, agent populations,
initial conditions and spatial distributions, and model-specific rules and schedules;

2. basic tools to generate, control, and observe multiple realizations of the model,
including separable realizations of landscape characteristics, agent characteristics,
initial conditions and distributions, and stochastic events during the simulation’s
execution; and

3. advanced tools to provide especially effective control, search, optimization, and
evaluation within an especially large or complex space of potential scenarios and
associated stochastic realizations for each scenario of characteristics and initial
conditions.

Multi-purpose spatial agent-based modeling platforms and comp labs are generally
implemented in object-oriented programming languages. In an object-oriented lan-
guage, each type of agent is defined by a class, which acts as a blueprint to define
the basic private and public data fields and behavioral methods that each agent created
with this class will possess. This class approach to the construction of agents offers two
important advantages.

First, each agent instantiated from a class is encapsulated as its own separate entity,
with private data and methods that may be accessed only by asking the agent for its
answer or by telling it to do something that it knows how to do. Encapsulation seems
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intuitively obvious to social scientists. Moreover, an important advantage of agent en-
capsulation from a modeling perspective is that it supports modular programming. That
is, agents only need to know what they can ask of each other. Any agent may alter its
internal characteristics or methods without disrupting the public characteristics of its
methods.

Second, classes can inherit characteristics from other classes, which provides tremen-
dous advantages for developing agent-based simulation models and complementary
laboratory tools. For example, we may define a base class of ruminant livestock, which
we can use as the parent class from which we create child classes for sheep, goats, cows,
camels, and llamas. Each child class inherits all capabilities of its base class, and may
then redefine inherited methods or add new data and methods to the base class. When
used wisely, encapsulation and inheritance enhance conceptual clarity and economical
software design, development, and modifications.

A well-equipped comp lab provides a rich set of classes for cognitive and other
agents, each provided with diverse capabilities to support use directly in models or as
base classes for model-specific extensions. The laboratory should also provide at least
one “landscape” class to provide structure for agent interactions, whether this is an as-
patial institution, an organizational structure that may or may not include some metric
for distances among teams, or a fully spatial landscape.

Even laboratories with sophisticated classes to generate spatial landscapes should
always provide an aspatial randomly-mixed null landscape. This serves as a control to
test for artifacts of the model unrelated to the structure of interactions among agents.

“Docking” refers to the practice of comparing results from matching simulation runs
for different implementations of a given conceptual model. Docking can be an especially
important approach to identify, isolate, and control for subtle differences that may be
introduced even by apparently congruent implementations. See Axtell et al. (1995) or
Axelrod (1997) for an interesting discussion of their experience docking their respective
simulation models.

In this spirit, a comp lab’s aspatial landscape can also be useful for docking spatial
models with aspatial mathematical models of corresponding processes. For example, a
new agent-based model of an infectious disease epidemic may be docked and calibrated
against classical aspatial mathematical models or highly simplified spatial mathematical
models for a particular population of agents. The spatial agent-based model can then
be used with greater confidence to explore the unique effects of more realistic spatial
structures on epidemic dynamics for the same disease as it unfolds within the same
population of agents.

Finally, spatial comp labs that are well equipped to support both applied and theoreti-
cal work may also include tools to calibrate synthetic landscapes according to empirical
characteristics, or to directly import various types of empirical landscapes from Ge-
ographic Information Systems (GIS) or satellite remote sensing observations [Dibble
and Feldman (2004)].

In order to simulate synthetic initial conditions, synthetic landscapes, stochastic
events, and stochastic choices by cognitive agents, well equipped comp labs should
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provide classes to start and seed multiple, fully separable, ultra long-period (i.e.
Mersenne Twister) random number series for a wide variety of distributions (e.g. uni-
form, Gaussian, fair or weighted coin flip, or roulette wheels that assign probability
distributions derived from histograms, which are important for genetic algorithms). The
long period before repeating random number patterns is essential for serious inference
with any stochastic spatial agent-based model, in order to prevent spurious artifacts
where observed cycles or patterns are driven merely by repetition in one or more of the
model’s random number series.

Time in simulation models may be absolute, relative, or both. These correspond, re-
spectively, to agent actions that are triggered by a simulation clock (e.g. via simulation
‘steps’), by other endogenous events or agent actions within the simulation, or by rel-
ative time elapsed since some endogenous triggering event. Simple examples of each
would include aging, contracting an infectious disease, and becoming ill with the dis-
ease after some incubation period beyond infection.

Scheduling tools are important, not only for cognitive agents within each simulation,
but also for other simulation agents (trees may grow, toxins may diffuse, water may
accumulate), and especially for meta-activities such as data collection and other forms
of simulation monitoring such as those related to stopping the simulation. Stopping
rules may also be absolute, relative, or both. For example, a simulation may be set to
stop after a certain number of steps have elapsed, after a persistent condition has been
reached, or following a set delay after a specific event.

Ideally, each comp lab should have at least one fully-constructed proto-model, no
matter how trivial, of a fully-implemented spatial agent-based simulation model on a
simple landscape. Such proto-models serve several important purposes. For example,
they provide simple working examples to show that the comp lab itself was correctly
installed. They also provide a simple model from which researchers may learn, and a
simple foundation that researchers may modify to create their own models.

Finally, at least one and ideally two important classes control simulations. First, a
“main” class is generally responsible for setting up and running each simulation. It
reads in the parameters and treatments for that simulation, sets up the landscape, agents,
and initial conditions of the simulation, starts the simulation, and supervises data col-
lection, visualization (if any), and stopping conditions. One or more secondary classes
can supervise multiple simulations by allowing researchers to specify parameters and
treatments for large batches of simulations.

2.1. Generating, controlling, and observing many simulations for each model

The secondary classes mentioned above provide batch-control tools to specify fixed
parameters, to specify lists of values for each of the parameters chosen for parameter
sweeping for sensitivity analysis, or to specify levels of treatment variables in order
to explore model behavior. For stochastic models, it is especially important to sweep
across one or more sets of random number seeds for each of the separable random
number series to be used by the model, in order to generate statistically significant
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realizations for each scenario. It is important to explore the variability of stochastic
outcomes for each scenario’s specific combination of model parameters and treatment
variables.

Some of these parameters chosen for sweeping, including random number seeds,
may be used to generate specific realizations of synthetic landscapes or other inter-
action structures, as discussed in greater detail in Section 4 of this chapter. Other
parameters or series of random number seeds may in turn be used to generate syn-
thetic agent populations and to control their initial conditions and stochastic decisions
or events.

For example, one random number seed may control the initial distributions of agent
characteristics and endowments. Another may be responsible for allocating agents to
initial locations within a spatial landscape or related interaction structure such as an
organization. Others may control various stochastic aspects of agent decisions or of
landscape events as each simulation unfolds.

2.2. Advanced tools for effective search, control, optimization, and testing

An especially helpful tool for any comp lab is a supervisory genetic algorithm, simu-
lated annealing, or other automated search and optimization heuristic to help discover
combinations of scenarios and random number seeds that lead to particularly interest-
ing outcomes. For example, see Section 7 of this chapter for a discussion of the ways
in which a comp lab supervisory genetic algorithm can be used to support inference,
optimization, and analysis of risks.

In turn, complementary analytical tools for network analysis, and analytical measures
such as spatial statistics, can help to support generalization from specific spatial land-
scapes or populations to broader classes. Such analytical measures may characterize
combinations of initial conditions, distributions, or outcomes, to relate common charac-
teristics of each across multiple simulation outcomes.

Finally, spatial comp labs may also be used in conjunction with familiar econometric
and statistical tools through systematic analysis of output when highly stochastic mod-
els generate especially large numbers of simulation outcomes. This can be especially
helpful to support analysis of risk or resilience that may be associated with particular
interventions such as for controlling epidemics or similarly normative modeling objec-
tives.

These are classifications for comp lab tools that have been especially useful in my
research with spatial agent-based simulations on richly structured organizational and
spatial landscapes. As with agent-based simulation models, even general-purpose comp
labs differ widely in their strengths and capabilities. However, this superset of capa-
bilities that have proven useful for spatial agent-based modeling may provide helpful
existence proofs and inspiration for evaluating the strengths and limitations of particu-
lar comp labs.
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2.3. Principles of comp lab engineering

Eventually, spatial agent-based models and comp labs may become so powerful and
well equipped that serious researchers devote entire careers simply to studying the be-
havior of a well established and fully implemented model, or of model variants fully
supported by the comp lab’s existing classes. (This is one way to introduce students to
comp lab research.) For now, even the simplest spatial agent-based modeling project
generally involves the design and programming implementation of at least one new
model-specific child class for agents, landscapes, or both. Thus, I highly recommend
that comp lab researchers carefully study the O’Reilly Extreme Programming Pocket
Guide [Chromatic (2003)]. This graceful little book (81 pages) is as much about the
clear communication and coordination of model specifications as about programming,
so it is at least as important for researchers who hire programmers as it is for those who
program models themselves.

Ideally, a comp lab provides a rich hierarchy of well-factored base classes, where the
accumulation of a rich library of classes for agents, spatial landscapes or other interac-
tion structures and related comp lab tools provides researchers with powerful research
leverage. Factoring classes is similar to factoring numbers into primes; it refers to the
clean division of class functionality into unique and irreducible units. To consider an ex-
ample closer to the hearts of most researchers, factoring classes in an agent-based model
is similar to factoring sections of a research paper to reduce unnecessary repetition.

3. Comp Lab support for heterogeneous, mobile, cognitive agents

3.1. Hierarchies of Agent Classes

Here “agent” refers broadly to bundled data and behavioral methods representing
an entity constituting part of a computationally constructed world. Examples of
possible agents include individuals (e.g., consumers, workers), social groupings
(e.g., families, firms, government agencies), institutions (e.g., markets, regulatory
systems), biological entities (e.g., crops, livestock, forests), and physical entities
(e.g., infrastructure, weather, and geographical regions). Thus, agents can range
from active data-gathering decision-makers with sophisticated learning capabilities
to passive world features with no cognitive functioning. Moreover, agents can be
composed of other agents, thus permitting hierarchical constructions. For example,
a firm might be composed of workers and managers.

[Tesfatsion (2006a), pages 835–836]

One of the most important distinctions between a spatial agent-based simulation
model and a comp lab is the laboratory’s provision of a powerful set of base classes
for agents, for other model components such as landscapes (see Section 4 below), and
for comp lab tools to support visualization, data collection, analysis, search, optimiza-
tion, and control for simulation models.
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Figure 1. Synthetic or empirically derived organizational or geographic network landscapes, where individ-
ual agents travel between team or city nodes and bar charts summarize the current status of each node’s

population.

For example, the GeoGraph Comp Lab [Dibble and Feldman (2004)] in use by my
research group at the University of Maryland provides two base classes for agents,
from which model agents may inherit specific geographic capabilities that correspond
to classes of GeoGraph landscapes.

• GeoAgent is a network-enabled agent. It may either teleport from node to node
or may be restricted to follow specific types of links within the landscape. It can
evaluate nodes within a network-specific neighborhood, and can compute short-
est paths from one node to another along multiple links. It is written to utilize the
GeoGraph Node3D class, which is a network enabled node class used with Geo-
Graph network landscapes for modeling organizational structures or geographical
landscapes such as networks of cities. Most of the simulations extend this class,
including the epidemic model illustrated in Figure 1.

• FreeAgent is a free-roaming agent. This class provides the basis for ‘flocking
agents’ such as villagers or wildlife on synthetic fractal terrain or empirical digital
elevation models of natural landscapes, illustrated in Figure 2.

As a second layer in our hierarchy of agent classes, we have developed two child
classes, each of which serves as an agent class or base class for one of our primary
research lines:
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Figure 2. A synthetic three-dimensional fractal terrain landscape with parameterized renewable green “tree”
agents and small flocks of “deforestation” round agents, shown toward the front. This could instead use
empirically derived geographic terrain and vegetation, imported from a Geographic Information System or

from Remote Sensing data.

• EconAgent is a GeoAgent that knows how to collect information about its world
in order to select from among its list of alternatives the one that provides sufficient
(for satisficing) or optimal satisfaction of its objective function.

• EpiAgent is a GeoAgent that knows how to become infected with or immune to
a disease, and how to progress through various stages of incubation, sickness, and
death or recovery if it becomes infected. For many diseases, an EpiAgent becomes
infectious for some duration that may overlap other stages, during which the agent
“knows” how to transmit the disease to the landscape (e.g. via doorknobs or key-
boards) or directly to other agents (e.g. via “sneezing”).

For example, our EconAgent class could be used to implement Schelling’s segrega-
tion game [Schelling (1978)] directly, without further modification. We simply create
instances for a simulation population of n + m agents, tell each of n agents that it is
type “Blue” and each of m agents that it is type “Green,” and tell each what minimum
percentage of neighbors of its own type it considers to be satisfactory.

In general, we develop a new child class only when we need to add new data fields
or new capabilities (methods) to an agent. We simply use the class directly to create
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individual “instances” of agents for each simulation if all we need to do is to provide
each individual model agent created from the class with values for its variables. In
our case, the objective function for an EconAgent may be provided to the agent as a
parameter rather than “hard-coding” each equation into a new class that differs only
according to that equation. We create separate child classes only when their objective
functions need to be defined according to radically different sets of variables.

3.2. Cognitive agent learning, adaptation, and evolution

Cognition refers to the methods agents use to make decisions about their behavior.
Learning refers to their ability to modify their cognitive methods over time. Adapta-
tion is generally distinguished from learning by being passive and biological rather than
active and cognitive, although these two terms are often confused and used interchange-
ably. Alternatively, adaptation may refer to an agent selecting an alternative strategy that
was already known to it, without requiring any cognitive effort to develop new methods.
Evolution refers to the improvement of subsequent generations of agents as a result of
natural selection (e.g. via survival and reproduction in proportion to relative fitness of
the agents).

In general, learning may be modeled simply as imitation of the behavioral rules used
by more successful agents. Alternatively, learning models such as genetic-based ma-
chine learning [Holland (1992), Goldberg (1989), Dibble (2001a)] may apply “fitness
selection,” “cross-over” and “mutation” operations to sets of competing behavioral rules
in an attempt to evolve better-performing rules. Evolutionary models may not involve
learning within individual agents, but may instead simply select for the agents who em-
ploy the most successful strategies. For example, evolution may select for firms that are
able to compete most profitably in a given environment. Yet such models in principle
provide an excellent demonstration of the importance of learning as opposed to evolu-
tion, as individuals or firms that cannot learn or adapt to changing circumstances are
likely to die or go out of business when conditions change.

For more detailed discussions of models of learning, adaptation, and evolution, see
the handbook chapters by Brenner (2006), Duffy (2006), and Young (2006).

4. Comp lab spatial and organizational landscapes

Sound generalizations based on scientific experiments require controlled conditions and
sufficient experimental trials in order to distinguish fully their incidental effects from
their systematic effects. A well-equipped agent-based comp lab provides such controls
over the characteristics of agent populations for each model. Yet agents are only half of
the story for realistically structured systems we wish to study.

Each agent’s opportunities and constraints for interaction are determined not only by
the characteristics of its own position in an organizational structure, or by its geographic
location, but also by its structural situation; its access to other positions or locations,
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each with its current complement of agents and other characteristics. Historically, spatial
and even social situations have been determined primarily by geographic distance, with
the relative ease of access modified by natural features such as rivers, mountains, or
coastlines. More recently, opportunities for social and economic interaction are driven
by networks of transportation or communication spatial technologies [Couclelis (1994)]
that shrivel time and cost surfaces unevenly at all scales [Tobler (1999)].

Many of the fundamental open questions at the frontiers of theoretical and applied
economics and related social science research are driven by the analytical intractabil-
ity of studying dynamic interactions among distributed, heterogeneous, mobile agents
embedded or mobile within richly structured spatial and social networks. Formal theo-
retical analysis of the behavior of aggregate systems of such agents becomes intractable
almost immediately. Agent-based comp labs can help theorists to explore the behav-
ior of these spatially distributed socio-economic systems. Spatial structure is central to
the dynamics of spatial processes such as the diffusion of innovations or of infectious
diseases within a population of mobile individuals.

Section 4.1 introduces comp lab generation of synthetic landscapes. Section 4.2
briefly summarizes the original work on aspatial small-worlds that inspired the ex-
tensions by Wilhite (2001, 2006), Dibble (2001b), and Dibble and Feldman (2004) to
spatial small-world synthetic landscapes. Section 4.3 introduces the contraction factor,
distance decay, and positive feedback extensions that provide the conceptual founda-
tion for generating geographically interesting spatial small-worlds for use in comp lab
experiments. Finally, Section 4.4 summarizes typical comp lab options for generating
richly-structured synthetic landscapes for controlled experiments.

4.1. Introduction to comp lab generation of synthetic landscapes

Ideally, we should be able to study the effects of exogenous landscape structure by ex-
ploring the ways in which selected local and global network characteristics affect the
micro and macro evolution of systems of agents. Similarly, we should be able to study
the effects of endogenous network structure by studying the co-evolution of agents and
networks, especially the effects of positive feedback and of both micro and macro path
dependence [Tesfatsion (1997)]. Systematic exploration of either is problematic when
we are limited to observations and analysis of real-world geographies. For example,
real-world network landscapes that have dissimilar characteristics may be inhabited by
agents whose economic and social conditions are too different for meaningful compar-
ison.

Similarly, a real-world landscape limits the generality of our results by offering only
a single observation of an interaction structure and associated population distributions.

In contrast, parameterized families of synthetic landscapes can be coupled with pa-
rameterized families of synthetic population distributions to offer essential control for
comp lab experiments, leading to far deeper and more generalizable understanding of
the relationships between network structures and distributed dynamic processes.
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In order for comp labs to reach their full potential as tools for theorists modeling
distributed systems, we need to be able to generate parameterized families of richly
structured synthetic landscapes that vary in the characteristics that we seek to study, yet
that remain congruent in their other characteristics. For example, DeCanio et al. (2000,
2001) evaluate the effects of richly structured synthetic organizational networks on the
efficiency of distributed processes among a collection of workers. Wilhite (2001) con-
siders a trading economy modeled as a ring landscape divided into contiguous regions,
then adds one or two random aspatial shortcuts to each landscape to explore the effects
of network structure on local commodity markets.

Section 4 extends such approaches by addressing comp lab tools for controlled syn-
thesis of landscapes and other interaction structures, ranging from simple fully-mixed
aspatial random soups to richly structured network landscapes that structure opportuni-
ties for interactions among agents.

Our GeoGraph Comp Lab has been explicitly designed for use in controlling experi-
mental conditions for spatial agent-based modeling through its ability to generate richly
structured parameterized families of synthetic landscapes. These landscapes are useful
for building and testing formal models grounded in interesting spatial structures, homo-
geneous or heterogeneous distributed mobile agents, and context-specific behaviors. To
the best of our knowledge, this is the first and remains the only general purpose research
comp lab for building bottom-up models that have large numbers of heterogeneous, spa-
tially distributed, mobile individuals on richly structured synthetic network and terrain
landscapes.

4.2. Aspatial small-world and scale-free networks

The goal before us is to understand complexity. To achieve that, we must move
beyond structure and topology and start focusing on the dynamics that take place
along the links. Networks are only the skeleton of complexity, the highways for the
various processes that make our world hum.

[Barabási (2002)]

New formalizations of network structures have begun to revolutionize the study of
everything from human social networks [Watts (1999)] to the Internet [Albert et al.
(1999)], the error and attack tolerance of networks [Albert et al. (2000)], and metabolic
networks within a cell [Jeong et al. (2000)]. Small-world networks are networks char-
acterized by a high degree of local structure, which nevertheless have surprisingly short
average path lengths (e.g. “six degrees of separation”) due to the importance of ran-
dom shortcuts [Watts and Strogatz (1998)]. Scale-free networks have a distribution of
links per node that is exponential rather than normal or uniform, implying that almost all
nodes have very few connections while a few “hub” nodes are extremely well connected
[Barabasi and Albert (1999)]. See Strogatz (2001) for an excellent review.

Yet Barabási was right about the limitations of these network formulations. Each
addresses merely the structural analysis of a static network, with limited capability to
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model dynamic processes among heterogeneous mobile individuals. Similarly, each net-
work formulation has been purely aspatial, in the sense that it has structure but not yet
spatial relationships or corresponding weights for the links; rather, each link has a uni-
form “distance” of one, and nodes have no natural location. Finally, small-worlds and
scale-free networks represent only two dramatically distinct families of networks; un-
til our GeoGraph Comp Lab [Dibble and Feldman (2004)], there had not yet been a
generalization to the synthesis and use of realistically hybrid spatial networks.

The original Nature paper on small-world networks [Watts and Strogatz (1998)]
reported the synthesis and analysis of a particular parameterized class of irregular net-
works. Each ring of n (= 1000) nodes was initially configured with links to each node’s
k (= 4) nearest neighbors on either side. A small-world network was created from
each k-connected ring by randomly rewiring each link in the network with a very small
probability p. All networks in the paper were aspatial, where each link has its distance
normalized to one, and the length of any given path is defined by simply counting the
number of links it contains.

Two characteristics were measured for each small-world network. First, the Charac-
teristic Path Length (L(p)) measured the average shortest-path distance between each
pair of nodes in a network. Second, the Cluster Coefficient (C(p)) measured the number
of links for each node that are still attached only to one of its k nearest neighbors [Watts
and Strogatz (1998)].

When compared across small-worlds, L(p) falls precipitously and then levels off as
p increases from 0 to 1. C(p) falls extremely gradually for p close to 0, and only begins
to fall precipitously as p converges to 1. Thus, the L(p) and C(p) curves leave a large
lens-shaped gap for small values of p, for their example of 1000-node rings. This gap
corresponds to the network’s small-world characteristics; where the L(p) is low and it
is relatively easy for signals to traverse the network, yet C(p) is high as almost all links
in the world remain local rather than shortcuts [Watts and Strogatz (1998)].

Watts (1999) defines the range of a link to be the second-shortest path available be-
tween the two nodes. For example, the range of a shortcut connecting nodes separated
by three base links would be three. Intuitively, small-world characteristics arise when
the rewired links provide dramatically advantageous shortcuts by spanning especially
large ranges of the base network.

Despite Watts’s claims to the contrary [Watts (1999)], the configuration of the base
network does have an important effect on a network’s small-world characteristics for
any given n and p. To see this, consider the maximum range for alternative config-
urations of a network of n nodes, where each node is initially connected only to its
nearest neighbors. For a ring landscape, the maximum range is n/2. For a square grid
landscape, the maximum range is 2n1/2. For n = 100, this corresponds to 50 versus
20. For n = 10 000, this corresponds to 5000 versus 200. The larger the network, the
more dramatic the small-world characteristics are on the ring landscape. This is true for
aspatial networks, where each shortcut link has unit distance no matter how large its
range.
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To extend this analysis to spatial networks, consider the small-world characteristics
of a grid lattice where each link has Euclidean distance. Without loss of generality,
we can normalize to unit distance for each (orthogonal) base link. In such networks,
maximum range remains as defined above, yet the shortcut links that correspond to
each maximum range now have distances of n/π and 21/2n1/2, respectively. Small-
world characteristics still exist for each, yet they are considerably less dramatic. For
example, in unpublished small-world simulations conducted on Berkeley’s Cray T3E
super computer with n = 1000 for a spatial (Euclidean) grid, we found that C(p) falls
only linearly with respect to p.

Yet, although small-world effects are interesting and important, the truly profound
innovation in Watts and Strogatz (1998) is the synthesis and study of parameterized
families of irregular networks. In addition, small-world effects do seem to exist in every-
day geographic landscapes, so it makes sense instead to turn the question around: what
drives the small-world characteristics of a network, and how best can this be modeled
in organizational networks or in spatial networks for geographic landscapes?

4.3. Spatial small-worlds, contraction factors, and modeling globalization

In synthetic landscapes such as these GeoGraph spatial small-world networks, we can
control structure as we improve shortcut technologies, or we can control technologies as
we change structure. So we can explore separately the effects of changes in technology
from changes in structure, in order to study the specific effects of each on geographic
systems and processes. This is an important scientific advantage. Unlike real-world
landscapes, GeoGraph’s ability to synthesize stochastic families of spatial small-world
networks allows us to control geographic structure to compare effects of different spatial
technology regimes across landscapes that have equivalent numbers and arrangements
of spatial technology shortcuts.

The driving force behind a network’s small-world properties is the ratio between the
length and the range of its small-world shortcuts. In large aspatial ring networks, the
maximum of this ratio is high because 1 : (n/2) is high. In square grids, the maximum
of this ratio is low because (21/2n1/2) : (2n1/2) simplifies to 0.71 : 1, which is quite
low. Yet real-world geographic landscapes do exhibit small-world properties, primarily
due to the technological advantage of their shortcuts.

To model this, we generalize our synthesis of small-world networks and unify both
aspatial and spatial small-worlds by introducing a contraction factor multiplier for the
length (weight, time, cost, etc.) of each small-world shortcut. Let C denote the value of
this contraction factor, which may be any real number between 0 and 1. Let x denote
the uncontracted length of a small-world shortcut, and x′ denote its contracted length.
Then x′ = C · x.

The simplest such model would simply choose a contraction factor C ∈ [0, 1] and ap-
ply it to each small-world shortcut generated for the network. More complicated models
might apply different values of the contraction factor to different shortcuts, or perhaps
even assign the value of the contraction factor as a linear or non-linear function of
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properties of the shortcut itself. In principle, contraction factors could also have values
greater than one, which would still represent a shortcut in many networks, merely a less
effective shortcut than its corresponding aspatial or Euclidean value.

Contraction factors model improvements in spatial technologies as shortcuts become
faster and cheaper over time. In geographic landscapes, the most natural interpretation
of a contraction factor’s value is its relative technological advantage in speed or cost
with respect to the base technology. So a synthetic landscape that has one uniform
contraction factor could be interpreted as a landscape spanned by two spatial tech-
nologies, one for the base and one for the shortcuts. Alternatively, the base could be
interpreted as an isotropic plane, with a single network of spatial technology shortcuts
super-imposed. The application of several different contraction factors to various sets
of shortcuts would be interpreted as a selection of complementary or competing spatial
technologies. Finally, the application of non-linear contraction factors could be inter-
preted as corresponding to various economic pricing schemes such as are often used to
separate shipping costs into fixed and variable components according to the nature of
the cargo.

4.3.1. Distance decay

Distance decay is the usual geographic term reflecting a diminished effect or degree of
interaction with respect to greater distance. In principle, this generalization could be
used to alter the probability of assigning a shortcut’s destination node either to nodes
that tend to be closer or to nodes that tend to be farther away. For example, given a
particular origin node for the small-world shortcut, its corresponding destination node
could be interpreted to be either more or less likely to be chosen, according to some
function of its distance from the origin node.

4.3.2. Positive feedback

Similarly, define the degree of a node to be the number of links of any type attached to
it. Then we may also define the probability of selecting a particular shortcut destination
node according to its respective degree relative to the degrees of other nodes in the
landscape. Again, we usually think in terms of positive feedback with respect to degree,
but this is fully generalizable and could just as easily be modeled as negative feedback
that would make a node less likely to be chosen as a destination if it were already well
connected. Refinements of this principle could also pay attention to the type of links
attached to a particular node, so that nodes are either more or less likely to be selected
as shortcut destinations depending upon the degree to which they are or are not already
well connected to a particular type of small-world shortcuts.

4.3.3. Addition of new links

The net addition of new links could obviously affect the outcome of a particular model.
The original small-world paper by Watts and Strogatz (1998) held the number of links
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constant by rewiring edge links rather than adding new links as shortcuts. For real-world
landscapes, the base geography would generally be affected in different ways by the
addition of new links, depending upon the scale of the model and upon the interpretation
of the various types of spatial technologies. This last extension is important to note, yet
it is not essential to the distinction between spatial and aspatial small-worlds.

4.4. Extensions and calibration of synthetic spatial small-world networks

Section 4.3 presented a general conceptual model for the synthesis of spatial small-
world networks that may also incorporate spatial analogs for the characteristics of
scale-free networks. Yet this is only the simplest beginning. Each could be further gen-
eralized or calibrated, depending upon the modeling task at hand. Different contraction
factors can be applied to different sets of shortcuts in order to model disparate spatial
technology networks. Variable or non-linear contraction factors may be calibrated to
represent more realistic technological and economic relationships among the various
spatial technologies.

In turn, distance decay or expansion, as well as positive or negative feedback with
respect to various types of node degree, may be tailored to actual or theoretical prop-
erties of specific organizational or geographic networks. Parameters for each may be
tuned until the characteristics of the synthetic spatial small-worlds correspond to the
characteristics of existing real-world networks suitable for each model. Finally, the spa-
tial small-world extensions discussed above may be applied to either one or both nodes
for each shortcut.

The following lists indicate GeoGraph agent-based comp lab options for modeling
landscapes, initial population distributions, and agent travel or relocation decisions:

A. Network landscapes (usually spatial, but may be aspatial)

Nodes may be distributed:
• as a circle,
• as a square grid,
• randomly,
• from data (e.g. geographic coordinates read from a file).

Base links may be distributed:
• between immediate neighbors on the circle (i.e, as its circumference),
• between orthogonal immediate neighbors on the square grid,
• as radial dendrites from a core node to peripheral nodes on square grid,
• from network data read from a file (with optional attributes).

Base links may be weighted:
• 1 for all links (a binary/aspatial network, with no distance or weights),
• Euclidean distance for each link (determined by node coordinates),
• from data, providing distances or costs for each link (read from the link file).

Shortcut links may be distributed:
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• stochastically according to small-world logic (between randomly selected nodes),
• stochastically according to scale-free logic (to a node according to its link count),
• stochastically according to Dibble (2001b) and Dibble and Feldman (2004) spatial

small-world logic, where both nodes are selected stochastically according to:
– distance (with positive or negative weighting for distance decay),
– degree (with positive or negative weighting for node’s # of links).

B. Initial population distributions

Agents may be distributed:
• entirely to one node (whether there is one node or many in the landscape),
• uniformly across nodes (population must be an integer multiple of the # of nodes),
• stochastically across nodes, with variability ranging from 0 (1 node) to 1 (uniform),
• from data, providing integer populations for each node.

C. Simple models of agent travel patterns

In a locational game, each agent may decide at each turn where it would prefer to be,
which may or may not lead to a decision to relocate. In a simulation of an epidemic, an
agent may decide whether to travel to another node based on endogenous perceptions
of local risks or on a stochastic model parameter such as travelProbability. In turn,
evaluations of potential destinations could be modeled as one of the following:

• random node—randomly choose any node in the landscape,
• random neighbor—randomly choose any node that is one link away from current,
• random base neighbor—randomly choose one node that is one base link away,
• local or global characteristics of a node—such as its current residents or neighbors,
• gravity model—choose nodes in the landscape according to a probability distribu-

tion across k destination nodes that is proportional to:

gravityWeight = (
jPoptau2 · kPoptau1)/distancerho

where:
gravityWeight = weight for the number of trips from node j to node k
j, k = nodeIDs for the from and to nodes, respectively
jPop = population of the origin node
kPop = population of the (potential) destination node
tau2 = scaling power for the origin node
tau1 = scaling power for the destination node
rho = distanceDecay

Note: tau2 and jPop can be ignored, as these will be the same for any given node.
We only need to find the probability of a given destination node. Origin probability
already scales with respect to jPop via travelProbability · jPop.
Here, a simple gravity model simplifies to:



1534 C. Dibble

gravityWeight = kPop/distancedistanceDecay

where: distanceDecay defaults to 2.0

When we assume that node populations remain constant, this means that each node
calculates a roulette wheel of proportional probabilities for each of the n − 1
other nodes in the landscape, where all probabilities sum to 1. Any agent who
travels from that node thus uses that roulette wheel to decide where to go. The
roulette wheel remains constant for each node during each simulation. When node
populations fluctuate significantly during a simulation, each node would need to
recompute its roulette wheel of population-weighted probabilities for each of the
n − 1 other nodes in the landscape.

5. Examples: games, diffusion, innovation, and globalization

This section introduces several spatial processes and related practical applications in
order to illustrate the kinds of problems that may be explored via comp labs for spatial
agent-based models.

Locational games and coordination problems include many familiar ACE examples
such as the segregation tipping game, audience seating, and cafeteria selection first
introduced by Schelling (1978). These also include the El Farol spatio-temporal bar-
coordination problem, and the Standing Ovation Problem used by Miller and Page
(2004) to teach agent-based modeling.

Diffusion processes become especially interesting when the diffusion occurs among
mobile heterogeneous agents interacting on richly structured landscapes. Understanding
diffusion dynamics can be especially important to encourage the diffusion of important
information or to inhibit the diffusion of deadly infectious diseases.

Ecological innovation refers to the degree to which diffusion of heterogeneous ideas
or viruses may encourage or inhibit opportunities for their recombination within agents
to create new ideas, inventions, or deadly diseases.

Finally, increasing population densities and improvements in transportation and com-
munication technologies facilitate globalization processes by profoundly altering the
ease, frequency, and range of spatial interactions. In turn, such changes affect locational
choices, spatio-temporal coordination, diffusion processes, and ecological innovation at
all scales.

5.1. Locational games and spatio-temporal coordination problems

Consider a class of models where agents play a locational game on the nodes of a
network landscape. This is modeled as a game rather than as an individual optimiza-
tion problem because the payoffs for each agent’s locational choice are an endogenous
function of the locational choices of the other agents. Persistent configurations reflect
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the Nash equilibrium [Nash (1950, 1951)] aspect of settlement patterns: each agent’s
objective score is affected by the locations of other agents, so each agent’s location
(its strategy) is best subject to where everyone else has decided to locate (their strate-
gies).

A Nash equilibrium need not be unique, and Nash equilibria may have very differ-
ent degrees of stability with respect to small perturbations or errors in one or more of
the strategies played. In non-zero-sum games such as these, some equilibria will gen-
erally have very different average payoffs than others. Mutually beneficial equilibria
may evolve over time in repeated games, even when there exist no formal or even in-
formal mechanisms to support cooperation among the agents. Analogs to many of these
questions become especially interesting when considering the independent, localized
actions of non-cooperative agents acting in space, with varying degrees of imperfect
(local) versus perfect (global) information and coordination mechanisms.

If it were possible to logically derive all such results with respect to locational choices
of individuals via spatial analysis or game theory, then we would solve such puzzles
using only formal analysis, and there would be no need for simulation models. Simu-
lation models are useful for modeling locational games precisely because of the degree
of complexity introduced by the non-linear and widely divergent payoffs that arise
from individual agent contexts, embedded in each unique spatial situation that may
emerge.

Yet any persistent spatial configuration that emerges when agents are free to move
is in effect a generalized Nash equilibrium (gNE); given the configuration of agents in
the landscape, individual agents may continue to make marginal moves among nodes
between which they are indifferent, yet the spatial configuration generally remains un-
changed [Dibble (2001b)]. The term “generalized” contrasts with a pure locational Nash
equilibrium, in which no agent would move once the equilibrium was reached. In a
generalized locational Nash equilibrium, the overall characteristics of the configuration
remain unchanged and agents who move do so only on the margin. In other words, they
are sufficiently happy with their locations that they would move only to approximately
equivalent positions, and they would not move at all if we applied even a modest epsilon
moving cost. Thus, we could formalize the notion of a gNEε that applies a moving cost
of ε to induce a pure locational Nash equilibrium. Simulations here do not impose ε but
such models could be used to study persistent configurations.

Similarly, we may define a distributed Nash equilibrium (dNE) according to the de-
gree that local neighborhoods overlap by some percentage of each landscape’s spatial
diameter; a range treatment variable [Dibble (2001b)]. As range converges to 0, strate-
gic interactions among agents converge to normal, isolated games among strictly local
sets of agents. As range converges to 1, this becomes simply one global game involving
all of the agents in the landscape. But for intermediate values of range, where neigh-
borhoods for each local game overlap for some strategic positions or some players, we
introduce the potential for tremendously interesting and empirically important percola-
tion dynamics as strategic interactions from one semi-isolated local game ripple through
the landscape to disturb or encourage equilibria in neighboring games.
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5.2. Diffusion of ideas, information, or infectious diseases

Mathematical models of diffusion and percolation among static populations are well
established. See for example Nowak and May (2000), and Stauffer and Aharony (1992).
The new science of networks (see Barabási (2002) or Strogatz (2001)) continues to offer
important breakthroughs on the immunization of complex networks [Pastor-Satorras
and Vespignani (2002)] and halting viruses in scale-free networks [Dezsó and Barabási
(2002)]. Yet each of these models is limited to static social networks where the pattern
of encounters between agents has been fixed a priori and remains static throughout the
analysis.

Consider exploration of the fundamental characteristics of diffusion among popu-
lations of mobile, heterogeneous agents where the pattern of encounters is dynamic
throughout the simulation and where the chance of transmission—whether of a virus
or of an idea—is dependent upon the characteristics of each agent involved in each
encounter. Encounters among agents are structured by two types of networks: social
networks determine friendships, yet spatial networks determine the geographic distrib-
ution of social agents. For example, I may be able to catch an idea via email, but I am
unlikely to catch a cold via email from a friend who is currently living far away.

5.3. Innovation and ecological emergence of new ideas, inventions, or diseases

Even in the most sophisticated models, diffusion is treated as though there is a single el-
ement to be traced, and as though its effect upon each individual is independent of any
competing or complementary elements that may be diffusing or have diffused in the
past among members of the population in question. Yet the diffusion of complementary
or competing infectious disease strains or ideas may make all the difference. Simply
setting up multiple diffusions among a population is not especially difficult. What has
been missing is some way to model the cumulative effects of multiple exposures (e.g.
for anthrax or even for SARS) and the internal evolutionary effects of the competition
or complementarity of multiple strains within each individual. What happens when oth-
erwise relatively benign disease strains or ideas combine within affected individuals to
evolve into an especially virulent strain?

This fundamental scientific question could have practical relevance such as:
• Globalization increases the range and frequency of interactions among distributed

mobile agents, thus providing ideal conditions for exposure to multiple disease
strains. Moreover, globalization facilitates the emergence of new diseases as strains
from different species in distant parts of the world encounter one another and re-
combine to form novel and potentially lethal strains such as H5N1 Avian Influenza.

• During volatile social conditions, conditions favoring civil unrest are likely to be
fostered by the diffusion of multiple competing or complementary rumors and
ideas. Understanding their dynamics both among and within agents is important
for understanding how best to respond to their emergent effects such as riots, loot-
ing, sniping and related resistance, or genocide against unpopular civilian factions.
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Sufficiently deep understanding of these models may lead not only to effective re-
sponse but perhaps also to effective control or prevention, as peacekeeping teams
diffuse competing information to calm the situation.

Research domains such as multi-scale diffusion of competing and complementary
infectious diseases, behavioral norms, and social, economic, political, or technologi-
cal ideas provide examples of multi-disciplinary research on fundamental ecological
mechanisms and the dynamics of richly structured systems of interacting agents. Comp
lab research for these domains benefits from our ability to simulate the full multi-scale
range of dynamic processes, from the adaptive mechanisms within agents such as the
internal genetic algorithms introduced in Dibble (2001a) and in Brenner (2006) and
Duffy (2006) to the richly structured organizational and geographic landscapes intro-
duced here and in Dibble (2001b), Dibble and Feldman (2004), and Wilhite (2006).

5.4. Globalization processes and the effects of new technologies

Finally, consider a model of globalization where decreases in costs and other barriers
to long-distance communication, exchange, travel, and migration facilitate increased
ranges and frequencies of many types of spatial interactions among geographically sep-
arated agents. In the long run, reductions in the costs of spatial interaction generally
lead to corresponding locational, socio-economic, institutional, and infrastructure ad-
justments as well, as agents adapt to the new costs of interaction.

Dibble (2001b) presents a simple example of a model of this type, which makes use
of the GeoGraph Comp Lab spatial small-world landscapes described in Dibble and
Feldman (2004). First, decreasing contraction factors model technological improve-
ments or falling fuel prices, which reduce the impedance of distance along selected
network shortcuts. Second, agents respond to the new contraction factors immediately
via a change in their analysis of their current locations, by implicitly increasing their
interaction range. In turn, such increases in their scales of interaction may result in
direct or indirect incentives to relocate, as other nodes become more attractive either di-
rectly through their improved relative accessibility or indirectly through the relocations
of other agents as disturbances ripple through the landscape.

6. Exploration and analysis of spatial system behaviors

Always the more beautiful answer who asks the more beautiful question.
(e.e. cummings, i: six non-lectures)

There is a fine art to designing any research model, not merely agent-based. There is
of course the obvious necessary condition that it be capable of generating—either de-
ductively or via simulation—the phenomenon of interest. See Epstein and Axtell (1996)
and Epstein (1999, 2006). Yet generative models are necessary but not sufficient for the
effective conduct of agent-based research [Epstein (2006)]. Undue focus on the model
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itself provides insufficient guidance for asking meaningful questions of our models, and
for undertaking related refinements and further exploration. What matters most is un-
derstanding when a simulation model is required in order to generate insights that are
not available in other ways, to be clear about what we can learn from the model, what
is truly new about its results, and how much we can trust what we learn.

6.1. Parsimony and predictive accuracy

Predictive accuracy concerns a model’s fit to the population, whereas postdictive
accuracy concerns a model’s fit to a sample.

(Gauch, 2003, page 280)

Parsimonious modeling means selecting the simplest possible model capable of gen-
erating a phenomenon of interest. Although Gauch (2003) addresses the importance of
parsimony for statistical modeling of empirical data, his distinctions between predictive
and postdictive accuracy and between signal and noise provide compelling arguments
for the importance of parsimony in agent-based modeling as well.

As with econometric models, a highly complicated agent-based model that has many
types of agents and a large number of parameters provides additional degrees of freedom
that allow it to adjust to stochastic noise and thus to fit too closely to sample data. The
costs of developing, calibrating, and running complicated agent-based models can be
especially prohibitive. Yet complicated models risk overfitting to sample data, which
provides merely postdictive accuracy that is least valuable for generalization beyond
the sample data. In contrast, parsimonious models are more useful to the extent that
they can generate crucial predictive accuracy regarding the full population of potential
outcomes for whichever spatial processes we seek to understand.

Parsimonious spatial agent-based modeling provides two further advantages as well.
First, parsimonious models are generally far easier, faster, and less expensive to de-
velop, test, calibrate, and run. Second, systematic exploration of the interactions among
key parameters affecting initial conditions or model behavior can be challenging due
to the combinatorial explosion of parameter interactions even for simple models. Thor-
ough exploration of model behavior quickly becomes prohibitive for highly complicated
simulation models, as such models suffer exponentially from the effects of combinato-
rial explosion among their parameters, with the additional burden that each simulation
generally takes far longer to run.

6.2. Preliminary thought experiments

Theories help experimentalist[s] to design incisive experiments, and experiments
yield results that guide the thinking of theoreticians. They coevolve. The indis-
pensability of experiments in scientific research and the surprises experiments
constantly throw up suggest that nature has many emergent characteristics in store.
... Emergent characters mostly belong to the structural aspect of systems and stem
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mainly from the organization of their constituents. ... Emergence is closely associ-
ated with microexplanations of macrophenomena.

[Auyang (1998), pages 175–176]

As first mentioned in the introduction to this chapter, Schelling’s Micromotives and
Macrobehavior [Schelling (1978)] provides compelling examples of incisive questions
about the behavior of distributed agent systems, where each question is framed suffi-
ciently clearly to be answerable, of necessity, purely via thought experiments. Ideally,
framing research questions for agent-based comp lab research does begin with ques-
tions answerable by thought experiments. Indeed, testing results from such a simulation
model against logically derived results from thought experiments can be one of the most
powerful methods both for aligning the simulation model with extant theory and for
checking the implementation and reasonable behavior of the model. Both approaches
are highly recommended. Yet neither is sufficient to establish new insights.

Thought experiments can save years of modeling and guide researchers toward essen-
tial questions that cannot be answered in any other way. Nevertheless, to establish new
results, research with an agent-based model must extend to unknown territory, where
macrophenomena emerge beyond what could be predicted by a careful thought exper-
iment applied to knowledge of initial micro conditions. If you know the values for
all of your explanatory variables, can you predict the values of your dependent vari-
able?

That’s appropriate for early calibration and testing for a new model. Yet there is no
need for simulation modeling if true emergence or surprises are never possible. Finally,
can you tell from thinking in depth about your model that you are likely to find trustwor-
thy treasure out there, for reasonable costs, risks, and opportunity costs of the research?

In order to be worthy of study, an emergent property needs to be more than merely
something that is not programmed into the individual agents; it must meet the stronger
standard that it arise from interactions among agents in a way that could not easily be
predicted simply by knowing the micro specifications or objectives of the agents. For
example, if you program agents to seek high concentrations of sugar in the landscape,
their congregation at such places once the simulation runs is easily predicted and would
not be considered an emergent property of the model.

6.3. Scaling agent-based simulation models

Well designed general purpose simulation modeling tools should be able to represent
any spatial or temporal scale, depending for visual clarity only upon suitable carto-
graphic generalization in the representation of the landscape and of its agents. For
example, each GeoGraph node or agent can be scaled visually from the tiniest dots
to a fully detailed graphic image. Similarly, nodes in a network landscape may be in-
terpreted, and represented, as anything from tables in a café to world cities or even
planets. Agents for each landscape may be scaled in proportion to the geographic scale,
enlarged to facilitate visualization of the model’s behavior, or reduced to avoid visual
clutter.
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The maximum number of nodes and agents for an agent-based simulation model de-
pends upon the fidelity of the respective node and agent classes. Specifically, it depends
upon the CPU time and memory requirements for the behavior and visualization of each
agent and for each of the other components of the model. Interactive display of the land-
scape and its agents generally places a greater burden on the computer and thus limits
the number of nodes and agents by approximately one order of magnitude, compared
with running the equivalent simulation with visualization of real-time data charts but
with the landscape graphics hidden.

The demographic and geographic resolution of an agent-based simulation model may
be confused informally with scale, yet resolution refers in each case to the number of
simulated units per unit in the real world. For example, to study diffusion processes in a
true population of 1 000 000 people, we could run models that have resolutions of 1000,
10 000, or 1 000 000 agents.

Although CPU time and memory requirements may determine the maximum number
of nodes or agents for simulations on any given computer, it could be a grave mistake
to assume that more of either is necessarily desirable. Higher resolution should be used
only when it turns out to be important to the behavior of the model. Unnecessary de-
mographic or spatial resolutions that extend the duration of each simulation impose an
opportunity cost by limiting the number of research questions, scenarios, and stochas-
tic replicates that can be explored. Sufficient lower bounds for the resolution may be
specific to each model or to each research question. These can be established by com-
paring simulation outcomes from controlled simulations that are identical except for
their levels of resolution.

6.4. Visualization and data collection

In our own laboratory work, we typically develop and debug each model using a 2-
dimensional or 3-dimensional graphical user interface with a landscape and population
of agents comfortable for visualization. After we are thoroughly comfortable with the
model and have tested it extensively, we can turn off the visual landscape display and
scale up the numbers of nodes and especially the numbers of agents for batch-mode
experiments, if that turns out to be important scientifically for the model’s results. De-
pending upon the model and upon the level of abstraction and resolution appropriate for
rigorous results, very large numbers of agents can be available but are not necessarily
required.

For batch-mode experiments, each simulation logs at least one record—and often
several detailed files—to a text file for subsequent analysis. Log files can be inspected
visually, but are best read into a more powerful database management system such as
the Statistical Analysis System (SAS www.sas.com). SAS’s macro capabilities are es-
pecially effective for reading tens of thousands of log files at a time, and SAS’s plotting,
regression, data management, and data filtering capabilities support statistical inference,
quality control, and exploration of anomalies and other surprises.

http://www.sas.com
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6.5. Practical advice for implementation and testing

“This problem, too, will look simple after it is solved.”
(Charles Francis Kettering)

The ACE web site provides links to currently available comp lab platforms
[Tesfatsion (2006b)]. Look for the comp lab that has the best comparative advantage
for your purposes. In particular, look for class hierarchies that best support the agents,
interaction structures, and laboratory tools you plan to employ. In many cases, existing
demonstration models and prototypes may provide classes for types of agents that can
be modified to develop early proof-of-concept models.

A comp lab development platform that is widely used serves an important role as
standardized laboratory equipment, which provides scientific advantages for publica-
tion, evaluation, and replication of results. So far, Swarm (www.swarm.org), RePast
(repast.sourceforge.net), and AnyLogic (www.xjtek.com) have played key roles in this
regard. Agent-based comp lab research is still quite new, however, so it is important to
balance the advantages of standardized equipment against important comparative ad-
vantages due to specialized or extended comp lab platforms such as the Trade Network
Game (TNG) and SimBioSys [McFadzean and Tesfatsion (1999), McFadzean et al.
(2001)] or GeoGraphs [Dibble and Feldman (2004)].

6.5.1. Testing model components

The most exciting phrase to hear in science, the one that heralds new discoveries,
is not ‘Eureka!’ (I found it!) but ‘That’s funny...’

(Isaac Asimov)

Test everything. Put proto-agents and each model agent through its paces one at a
time, to test their responses under controlled conditions. Then test agents and agent
interactions again within the smallest possible controlled groups to test whatever in-
teractions with other agents may be part of the model. Test their landscape or other
interaction structure. Test the agents’ ability to gather local or global info, to make ap-
propriate choices, to move about within the structure, and, if relevant, to endogenously
modify their landscape or interaction structure.

One of the essential yet often overlooked practices in comp lab work is to have a
careful look at the raw data. Of course this is essential for superficial quality control: Did
every simulation run correctly? Did anything go wrong, break down, turn up missing,
or behave pathologically?

Yet examinations of raw data serve a far deeper scientific purpose than mere quality
control. Although we may expect scientific surprises and insights to occur as a result
of analytical procedures such as statistical analyses, they may also occur at the level
of the raw data. Consequently, this basic step can be central to the scientific process
of observation, insight, and understanding. Do the outcomes make sense? When they
don’t make sense, are we sufficiently alert to their “that’s funny” intimations, however
inconvenient they may be for our preconceived immediate purpose?

http://www.swarm.org
http://repast.sourceforge.net
http://www.xjtek.com
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7. Genetic algorithm inference, optimization, and risk analysis

Miller (1998) proposed to use a supervisory genetic algorithm to perform what he called
“active nonlinear tests” (ANTs) by using the genetic algorithm to challenge each sim-
ulation model by seeking outcomes that provide exceptions or counter-examples to its
usual results. This section briefly discusses a generalization of Miller’s ANTs to the
broader problem of providing effective search and optimization across both treatments
and outcomes for a model.

7.1. Exploring model behavior

Systematic analysis of model behavior may involve millions of simulation runs, each
controlled by sweeping across discrete lists of values for sensitive model parameters,
for each treatment variable of interest, and for seeds to control one or more random
number series for stochastic simulations. For example, consider even a very simple
model that has four parameters, each with three levels to evaluate for sensitivity, and two
treatment variables, each with five levels to evaluate for an experiment. This requires
3 × 3 × 3 × 3 × 5 × 5 = 2025 simulation runs, even for a deterministic model where a
single simulation is sufficient to evaluate each combination.

When stochastic behavior, synthetic landscapes, synthetic agent populations, and
stochastic initial conditions are involved, even minimal evaluation of representative
outcomes for each vector of parameters and treatment variables may require multi-
ple seed values for one or more separate random number series. For example, in our
GeoGraph framework, even a basic evaluation of epidemic outcomes requires analy-
sis of combinations of three sets of random number seeds. For synthetic landscapes
such as globalization networks, one random number seed determines landscape details
(geoSeed). Another random number seed determines stochastic initial conditions such
as population distributions and the locations of initial cases of the disease (iniSeed).
A third controls all stochastic actions such as who travels where and who infects whom
(actSeed).

Such controls enable us to replicate experiments to systematically evaluate the effects
of stochastic events under controlled conditions. Yet even ten histories for each of the
three random number seeds would require running 10 × 10 × 10 = 1000 stochastic
replications for each of the 2025 distinct combinations of parameter and treatment levels
in the example above, for a total of 2 025 000 simulations just for one simple experiment.

Of far greater importance scientifically, the standard focus on exploring model be-
havior via combinatorial sweeping across regularly spaced parameter values is a blind
search for significant outcomes. As illustrated in Figure 3, regularly spaced parameter
values may be entirely unrelated to the truly important parameter values where model
behavior may reach significant extrema.

Ideally, we would like to be able to search for interesting behavior in the outcome
space rather than sweeping blindly in parameter space. As illustrated in Figure 4, a su-
pervisory genetic algorithm allows us to do precisely that, and with far greater efficiency
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Figure 3. Running only a few stochastic replicates of each treatment level can result in variances so large
that the signal becomes lost in the noise. Similarly, selecting treatment levels blindly via random or regular

spacing may completely miss important local and global extrema.

Figure 4. In contrast, an ideal experimental design runs enough stochastic replicates for reliable inference.
Similarly, data-driven experimental designs may provide guidance for identification of key values for treat-

ment variables and for basins of attraction leading to common outcomes.

than brute force combinatorial sweeping of parameter spaces. To do so, the genetic algo-
rithm can be set up to search across combinations of key parameters for extreme values
of single or multiple combinations of outcome variables, based on results from one or
more stochastic replications of the scenario that is associated with each combination
of key parameters. In addition, the greater economy in searching for key scenarios re-
leases computational resources that may in turn be used to simulate sufficient stochastic
replications for each to be able to distinguish statistically significant differences among
scenario outcomes.
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7.2. Inference and discovery of key exceptions

Using supervisory genetic algorithms to discover highly effective treatments or to search
for exceptional or surprising simulation outcomes has the potential to profoundly en-
hance our ability to make the most effective use of limited computational and analytical
resources. It permits us to discover and test incisive empirical insights, effective norma-
tive designs or interventions, and surprising heuristic insights. Once such treatments or
outcomes have been identified by the genetic algorithm, subsequent ordinary batches of
simulations can be carefully targeted in order to evaluate the accuracy, uncertainty, risk,
and inference power of results obtained from any well-specified agent-based simulation
model.

Finally, a supervisory genetic algorithm can be used to thoroughly explore the robust-
ness with respect to risk of promising designs or interventions. When used to discover
effective designs or interventions, the genetic algorithm searches across combinations of
scenarios or intervention parameters for those that perform best across the population of
simulations that is run to evaluate each string. In contrast, when the genetic algorithm is
used to evaluate the stochastic risks associated with each intervention that corresponds
to specific values for the treatment variables: it holds constant the model’s sensitive pa-
rameters and treatment variables, and instead searches across random number seeds for
“Murphy’s Law” worst-case combinations of stochastic events, where everything that
could go wrong does go wrong. Some interventions may be far more resistant to worst
case outcomes, which may be crucial to evaluate when stakes are high.

Figure 5 illustrates a supervisory GA where fitness for each GA string of model
parameters is determined by the outcomes of large numbers of agent-based simulations
based upon those parameters.

Figure 5. A supervisory Genetic Algorithm evolves populations of strings of simulation parameters by eval-
uating combinations of simulation parameters according to the results of one or more simulation runs based

on those parameters.
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8. Opportunities, challenges, and resources

Most of the comp lab issues discussed in this chapter have addressed support for rela-
tively abstract theoretical research with spatial agent-based models. Yet comp lab mod-
els and tools such as supervisory genetic algorithms for exploration, optimization, and
risk analysis can potentially support policy-relevant computational spatial social sci-
ence. Spatial agent-based models are beginning to be used to provide decision-support
for complex emergencies such as controlling the spread of infectious diseases.

In many cases, research on abstract landscapes provides sufficient insight to support
real-world decisions. For this, synthetic landscapes such as those introduced in Section 4
provide powerful scientific leverage. Comp labs would benefit from corresponding tools
for populating agent-based models with initial distributions of carefully calibrated syn-
thetic demographic populations.

Nevertheless, one of the most important methodological challenges facing comp labs
for spatial agent-based models is to provide easy-to-use tools for importing real-world
geographic landscapes from Geographic Information Systems (GIS) or satellite remote
sensing data. In turn, closer interoperability between comp labs and GIS would provide
spatial agent-based modeling researchers with access to the powerful tools for spatial
analysis, visualization, and mapping that are incorporated in modern GIS.

A complementary methodological frontier, for both spatial and aspatial agent-based
modeling, would provide comp lab tools to streamline the art of developing families
of models ranging from highly abstract parsimonious theoretical models to highly cali-
brated models for policy and testing against empirical data.

We may also cross the ultimate boundary from modeling cognitive agents in our
comp lab models to incorporating live human cognitive agents in our spatial agent-
based models. This blurs the distinction between experimental economics with humans
under controlled conditions in a laboratory versus experimental economics with humans
under controlled conditions interacting within a virtual spatial environment in a comp
lab [Macmillan (1996)].

Finally, as hinted at in the thought experiment on pandemics in Section 1, we may be-
gin to combine policy-relevant comp lab simulations and inference with near real-time
collection and relevance filtering of real-world surveillance data. This would permit us
to improve our models in general and, more importantly, to learn how to signal when
it is appropriate to begin, modify, or conclude a specific intervention. Pure comp lab
experiments with spatial agent-based models on geographic landscapes may pave the
way for new and effective uses of near real-time remote sensing satellite data or social
systems sensing data [Gelernter (1992)] as it arrives.

For example, comp lab simulations may be used to identify sensitive empirical indi-
cators and corresponding critical thresholds for phase transitions in complex dynamic
processes such as pandemics of infectious diseases, civil violence, or business cycles.
When is an epidemic in danger of flaring into a full global pandemic? When and where
should interventions to control the outbreak begin? What are the early warning signs
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that an outbreak of disease or civil violence or a downturn in the business cycle has
turned the corner toward successful containment or recovery?

To return to our original thought experiment, global pandemics of infectious diseases
have been infrequent events that create considerable disruption and are extraordinarily
difficult to study, much less to control or to repeat in order to explore the effects of
chance events. Spatial agent-based computational laboratories allow us to learn from
virtual experience by creating and studying millions of simulated pandemics under con-
trolled conditions, to evaluate risks and to explore effective methods for their prevention
and control.

In turn, as illustrated by Section 5, pandemics are merely one example of broad
classes of complex social and environmental spatial dynamic processes. Effective spa-
tial agent-based models and fully equipped computational laboratories provide oppor-
tunities to learn from far more extensive and better controlled virtual experience than
could ever be generated by real-world systems: to understand the fundamental driving
forces within such systems, and to discover and evaluate wiser designs, more effective
interventions, and the risks or resilience associated with each.
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Abstract

Standard neoclassical economics asks what agents’ actions, strategies, or expectations
are in equilibrium with (consistent with) the outcome or pattern these behaviors ag-
gregatively create. Agent-based computational economics enables us to ask a wider
question: how agents’ actions, strategies, or expectations might react to—might endoge-
nously change with—the patterns they create. In other words, it enables us to examine
how the economy behaves out of equilibrium, when it is not at a steady state.

This out-of-equilibrium approach is not a minor adjunct to standard economic the-
ory; it is economics done in a more general way. When examined out of equilibrium,
economic patterns sometimes simplify into a simple, homogeneous equilibrium of stan-
dard economics; but just as often they show perpetually novel and complex behavior.
The static equilibrium approach suffers two characteristic indeterminacies: it cannot
easily resolve among multiple equilibria; nor can it easily model individuals’ choices of
expectations. Both problems are ones of formation (of an equilibrium and of an “ecol-
ogy” of expectations, respectively), and when analyzed in formation—that is, out of
equilibrium—these anomalies disappear.

Keywords

agent-based, out-of-equilibrium economics, evolutionary economics, indeterminacy,
complexity

JEL classification: B41, C63, C65
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Over the last twenty years a different way of doing economics has been slowly emerg-
ing. It goes by several labels: complexity economics, computational modeling, agent-
based modeling, adaptive economics, research on artificial economies, generative so-
cial science—each of these with its own peculiarities, its own followers, and its own
nuances. Whatever the label, what is happening, I believe, is more than just the accu-
mulation of computer-based or agent-based studies. It is a movement in economics.1

Why this movement? One answer all its practitioners agree on is that agent-based
modeling came along in the 1980s because at that time economists got desktop work-
stations. For the first time we could not just study equilibria but ask how they form.
Agent-based modeling is about how patterns in the economy form (I like Joshua Ep-
stein’s term generative explanation for this (Epstein, 2006)), and usually such formation
is too complicated to be handled analytically—hence the resort to computer simulation.
This is fine. But does it mean agent-based computational economics is merely an ad-
junct to conventional economics that adds something about pattern formation? And if
it relies mainly on simulating economic processes on the computer, isn’t this a retreat
from theory? What does this way of doing economics really provide?

In this overview essay I want to argue that this movement is not a minor adjunct
to neoclassical economics; it is something more than this. It is a shift from looking at
economic problems at equilibrium to looking at such problems out of equilibrium, a
shift to a more general economics—an out-of-equilibrium economics.

Before I begin, a caveat to the reader. This essay is a line of reasoning about the nature
of agent-based economics; it makes no attempt to review the agent-based computation
literature, nor does it give instructions on how to carry out agent-based computation.
Both topics have been well covered elsewhere.

I will start not by discussing agent-based modeling, but the economy itself.

1. Beyond equilibrium

Economic agents—banks, consumers, firms, investors—continually adjust their market
moves, buying decisions, prices, and forecasts to the situation these moves or decisions
or prices or forecasts together create. To put this another way, individual behaviors col-
lectively create an aggregate outcome; and they react to this outcome. There is nothing
new in saying this. Economists have seen the economy this way at least since Adam
Smith. Behavior creates pattern; and pattern in turn influences behavior.

It might be natural in such a setting for economic theorists to study the unfolding
of patterns that economic agents create. But this obviously is complicated. And there-
fore to seek analytical solutions, historically economics chose to simplify its questions.

1 The progression of the subject can be seen by comparing the volumes: Anderson et al. (1988); Arthur et al.
(1997b); Blume and Durlauf (2005); and this volume of Tesfatsion and Judd (2006). For other commentaries
on this approach see: Lane (1993a, 1993b); the introduction to Arthur et al. (1997a); Colander (2000); and
Tesfatsion (2006).
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It asked instead what behavior caused an outcome or pattern that leads to no incen-
tive to change that behavior. In other words, it asked what patterns in the economy
would look like if they were at equilibrium—were consistent with the micro-behavior
(actions, strategies, expectations) that creates them. Thus, for example, general equi-
librium theory asks: What prices and quantities of goods produced and consumed are
consistent with—would pose no incentives for change to—the overall pattern of prices
and quantities in the economy’s markets? Game theory asks: What strategies, moves,
or allocations are consistent with—would be the best course of action for an agent (un-
der some criterion)—given the strategies, moves, allocations his rivals might choose?
Rational expectations economics asks: What forecasts (or expectations) are consistent
with—are on average validated by—the outcomes these forecasts and expectations to-
gether create? Partial-equilibrium economics—say in international trade theory—asks:
what local behaviors would produce larger patterns that would support (be consistent
with) those local behaviors.

This equilibrium approach lends itself to expression in equation form. And because
an equilibrium by definition is a pattern that doesn’t change, in equation form it can
studied for its structure, its implications, and the conditions under which it obtains.
Of course the simplicity that makes such analytical examination possible has a price.
To ensure tractability we usually have to assume homogeneous (or identical) agents,
or at most two or three classes of agents. We have to assume that human behavior—
a notoriously complicated affair—can be captured by simple mathematical functions.
We have to assume agent behavior that is intelligent but has no incentive to change;
hence we must assume that agents and their peers deduce their way into exhausting
all information they might find useful, so they have no incentive to change. Still, as a
strategy of advancement of analysis, this equilibrium approach has been enormously
successful. As it evolved into the neoclassical structure we know today, it has built a
degree of understanding that is the envy of other social sciences.

I believe that economics is currently pushing beyond this equilibrium paradigm. It
is natural to ask how agents’ behavior might not just be consistent with the aggregate
pattern it creates, but how actions, strategies, or expectations might in general react to—
might endogenously change with—the patterns they create. In other words, it is natural
to ask how the economy behaves when it is not at a steady state—when it is out of
equilibrium. At this more general level, we can surmise that economic patterns might
settle down over sufficient time to a simple, homogeneous equilibrium. Or, that they
might not: they might show ever-changing, perpetually novel behavior. We might also
surmise they might show new phenomena that do not appear in steady state.

By its very nature this approach calls for detailed instructions on how individual be-
havior adjusts as the situation unfolds; therefore it is algorithmic. And since there is
considerable scope for learning or reacting in different ways, this approach sees no rea-
son to treat adjustments in behavior as identical. Agents must therefore be separately
considered; hence the approach is based on individual agents. Consideration of eco-
nomic patterns out of equilibrium therefore naturally introduces algorithmic updating
and heterogeneity of agents. On both these counts it is best handled by computation.
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One possible objection to doing economics this way is that because the approach is
computational, it does not constitute theory. But this statement is too facile. If work-
ing out the implications of a set of assumptions is theory, then whether this is done by
hand or by computer does not matter. Both methods yield theory. But certainly there
is a difference in style. Equation-based methods call for equation-based dissection of
the results—and equation-based discovery of telling implications—and this dissection
and analysis can be accomplished rigorously. Of course often the rigor is specious.
Implications match reality only as well as the chosen assumptions and chosen func-
tional forms do; and functional forms are always abstractions of reality—often gross
ones when closely examined—so there is plenty of scope for rigorous deduction based
upon faulty assumptions. Computer-based modeling is different but parallel in these
regards. It calls for statistical dissection of the phenomena discovered, and in many
computer-based models it may be difficult to discern phenomena through the thicket of
events. There is also scope for unrealistic assumptions and for needless complication.
And doing computer-based economics well is not necessarily easier than doing analyt-
ical economics well. Good work here shows an eye for elegance of experiment for the
telling, simple, computational model that demonstrates a phenomenon clearly; and for
extracting a phenomenon from the jumble of other data that obscure it.

The two styles can of course be mixed. If a phenomenon shows up computationally,
often it can be reproduced in a simpler analytical model. If it shows up analytically,
it can be probed computationally. Properly carried out, computation does not replace
theory. It allows more realistic assumptions and accommodates out-of-equilibrium be-
havior. It thereby extends theory. It is also good to remember—and I want to emphasize
this—that exploring the economy out of equilibrium does not require computation. That
could be done in principle by analytical methods, as it has in some particular cases, espe-
cially those involving learning mechanisms (Samuelson, 1997; Fudenberg and Levine,
1998; Brock and Hommes, 1998). But for most agent-based situations analytical for-
mulations are highly complicated, hence the resort to computation.

A different objection is that because out-of-equilibrium studies require detailed mod-
eling of how individual behavior adjusts (and how agents interact), they encourage
behavioral assumptions that are ad hoc. The point has some merit: assumptions are
sometimes adopted for convenience. But we need to remember that the standard as-
sumptions of “rational behavior” themselves are highly stylized versions of reality. If
modeling agent adjustments forces us to study and think rigorously about actual human
behavior, this is actually a strength.

Out-of-equilibrium studies of course do not answer all possible questions. They do
not tell us usually about the formation of tastes, or of technologies, or of structure.
David Lane (1993a, 1993b) notes that such studies “offer only very limited scope to the
emergence of new structures—and, so far, none at all to the emergence of higher-level
entities.” What emerges is pattern, not hierarchical structure.

One thing noticeable about agent-based studies is that they are nearly always evolu-
tionary in approach. Why should this be? I said earlier that an assumption common to
most studies is that agents differ in the way they react to aggregate patterns; they have
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different circumstances, different histories, different psychologies. That is, agents are
adaptive and heterogeneous. On first thought, this might seem to yield at most a triv-
ial extension to standard homogeneous theory. But consider. If heterogeneous agents
(or heterogeneous strategies or expectations) adjust continually to the overall situation
they together create, then they adapt within an “ecology” they together create. And in
so adapting, they change that ecology. So providing we use “evolution” in the broad-
est sense of the word, which I interpret as elements adapting their state to the situation
they together create, we see that in this sense evolution emerges naturally from the very
construction of such modeling. It need not be added as an adjunct. (Of course in any
particular case we would need to define precisely what we mean by “elements,” “adapt-
ing,” “states,” and “situation.”) Because out-of-equilibrium economics is by its nature
evolutionary, it resembles modern evolutionary biology more than it does 19th century
physics.

Agent-based, non-steady-state economics is also a generalization of equilibrium
economics. Out-of-equilibrium systems may converge to or display patterns that are
consistent—that call for no further adjustments. If so, standard equilibrium behavior
becomes a special case. It follows that out-of-equilibrium economics is not in competi-
tion with equilibrium theory. It is merely economics done in a more general, generative
way.

I have made a large claim so far, namely that a new form of economics is a-birthing—
a generative or out-of-equilibrium economics. If the reader accepts this, a natural ques-
tion to ask is what it delivers. What novel phenomena do we see when we do economics
out of equilibrium? Are there questions that equilibrium economics can not answer, but
that this more general form of economics can? In Kuhnian language, are there anomalies
that this new paradigm resolves?

The answer to this last question is yes. In the remainder of this essay I want to look
at two characteristic anomalies—two indeterminacies, to be precise—in equilibrium
economics and show that these disappear under the new approach. Along the way, I
want to point to some characteristic phenomena that arise in the new approach. I will
base the discussion mainly on a study by Lindgren and on three topics I have been
heavily involved with, because these address directly the points I want to make (and
because I am most familiar with them). There are certainly other studies that widen
the scope of agent-based economics beyond the discussion here.2 These also, I believe,
corroborate the arguments I will make here.

2 For some early studies see: Bak et al. (1993); Durlauf (1993); Lindgren (1992); Marimon et al. (1990);
Sargent (1994); and Schelling (1978). See also Young (1998). The earliest agent-based studies I know of
were by Miller (1988), and Marks (1989). From the most recently available collection (Arthur et al., 1997a),
the reader might consult the papers of Blume (1997), Durlauf (1997), Kirman (1997), Kollman et al. (1997),
Ioannides (1997), Lane and Maxfield (1997), and Tesfatsion (1997). The forthcoming collection of Blume
and Durlauf (2005) and this volume contain more recent work. For the literature on network interactions, see
Wilhite (2006, this volume).
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2. Perpetual novelty

Let me begin with a phenomenon, one often we see in this sort of economics. That
is the absence of any equilibrium, or more positively, the presence of ever-changing,
perpetually novel behavior. For an example, consider the classic study of Kristian Lind-
gren (1992). Lindgren sets up a computerized tournament where strategies compete
in randomly chosen pairs to play a repeated prisoner’s dilemma game. The elements
in his study are therefore strategies rather than human agents. Strategies that do well
replicate and mutate. Ones that lose eventually die. Strategies can “deepen” by using
deeper memory of their past moves and their opponent’s. A strategy’s success of course
depends on the current population of strategies, and so the adaptive elements here—
strategies—react to, or change with, the competitive world they together create.

In his computerized tournament Lindgren discovered that the simple strategies in use
at the start went unchallenged for some time. Tit-for-tat and other simple strategies
dominated at the beginning. But then other, deeper strategies emerged that were able to
exploit the mixture of these simple ones. In time, yet deeper strategies emerged to take
advantage of those, and so on. If strategies got “too smart”—that is, too complicated—
sometimes simple ones could exploit these. In this computer world of strategies, Lind-
gren found periods with very large numbers of diverse strategies in the population, and
periods with few strategies. And he found periods dominated by simple strategies, and
periods dominated by deep strategies. But nothing ever settled down. In Lindgren’s
world the set of strategies in use evolved and kept evolving in a world of perpetual nov-
elty. This is unfamiliar to us in standard economics. Yet there is a realism about such
dynamics with its unpredictable, emergent, and complicated sets of strategies. Chess
play at the grand master level evolves over decades and never settles down. Lindgren’s
system is simple, yet it leads to a dynamic of endless unfolding and evolution.

When, in general, do we see perpetually novel behavior in the economy? There is no
precise rule, but broadly speaking perpetual novelty arises in two circumstances. One
is where there is frustration (to use a physics term) in the system. Roughly this means
that it is not possible to satisfy the needs of all the agents (or elements) at the same
time and that these jostle continually to have their needs fulfilled. The other is where
exploration is allowed and learning can deepen indefinitely—can see better and better
into the system it is trying to understand. In this case collective behaviors can explore
into constantly new realms, sometimes mutually complicate, sometimes simplify, but
not settle down.

3. Equilibrium indeterminacy and the selection process

In the Lindgren case, the situation shows no equilibrium; it is always in perpetual nov-
elty. In other cases equilibrium is possible, but there may be more than one natural
pattern of consistency: there may be multiple equilibria. This situation arises naturally
in the presence of positive feedbacks or increasing returns—or more technically, under
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non-convexity. Here multiple equilibria are the norm. At first sight this does not seem
to pose any major difficulty to equilibrium economics. Instead of a unique equilibrium
there are several. But there is a difficulty. Equilibrium economics can identify consistent
patterns, but can not tell us how one comes to be chosen. Standard economics therefore
runs up against an indeterminacy.

This indeterminacy has been an embarrassment to economics over the years. “Mul-
tiple equilibria,” wrote Schumpeter (1954), “are not necessarily useless, but from the
standpoint of any exact science the existence of a uniquely determined equilibrium is, of
course, of the utmost importance, even if proof has to be purchased at the price of very
restrictive assumptions; without any possibility of proving the existence of uniquely
determined equilibria—or at all events, of a small number of possible equilibria—at
however high a level of abstraction, a field of phenomena is really a chaos that is not
under analytical control.” Faced with this potential “chaos,” different subfields of eco-
nomics took different approaches. Some—especially within game theory in the 1960s
and ’70s—added restrictive (and somewhat artificial) assumptions until only a single
solution remained. Others, contrary to Schumpeter, accepted the chaos. They statically
determined the possible equilibria in a problem and left the choice of equilibrium open
and therefore indeterminate. An example is the international trade theory of Helpman
and Krugman (1985) which allowed increasing returns and settled for multiple static,
but indeterminate, equilibria.

A more natural approach, I believe, is to tackle the issue generatively (Arthur 1989,
1994a, 1994b): to see the problem not as one of equilibrium selection but as one of
equilibrium formation. Economic activity is quantized by events that are too small to
foresee, and these small “random” events—who sits next to whom on an airplane, who
tenders an offer when, who adopts what product when—can over time cumulate and
become magnified by positive feedbacks to determine which solution was reached. This
suggests that situations with multiple equilibria can best be modeled by looking at what
happens over time—what happens in formation. That is, they are best modeled not
as static deterministic problems, but as dynamic processes with random events, with
natural positive feedbacks or nonlinearities. With this strategy the situation can then be
“observed” theoretically as its corresponding process unfolds again and again to “select”
or determine an outcome. Sometimes one equilibrium will emerge, sometimes (under
identical conditions) another. It is impossible to know in advance which of the candidate
outcomes will emerge in any given unfolding of the process, but it is possible to study
the probability that a particular solution emerges under a certain set of initial conditions.
In this way the selection problem can be handled by modeling the situation in formation,
by translating it into a dynamic process with random events. With an out-of-equilibrium
approach, the anomaly disappears.

In this sense a whole realm of economics—increasing returns problems—requires an
out-of-equilibrium approach. This realm, by the way, is not small. Increasing returns
arise in economic geography, finance, economics of markets, economic development,
economics of technology, and economics of poverty; and the literature in these areas
is becoming large. Interestingly, in most of the important cases the work has been an-
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alytical, not computational. The reason is that most increasing returns problems lend
themselves to sufficient homogeneity of agents to be handled by analysis.

Whatever their topic of focus, increasing returns studies tend to show common
properties: a multiplicity of potential “solutions”; the outcome actually reached is not
predictable in advance; it is “selected” by small events; it tends to be locked in; it is
not necessarily the most efficient; it is subject to the historical path taken; and while
the problem may be symmetrical, the outcome is usually asymmetrical. These proper-
ties have counterparts in a different science that emphasizes the formation of pattern:
solid-state physics. What economists call multiple equilibria, non-predictability, lock-
in, inefficiency, historical path dependence, and asymmetry, physicists call multiple
meta-stable states, unpredictability, phase- or mode-locking, high-energy ground states,
non-ergodicity, and symmetry breaking. Some of these properties can be identified by
static analysis (multiplicity, possible non-efficiency, non-predictability, and lock-in).
But to see how they come about, and to see symmetry breaking, selection, and path-
dependence in action, requires looking at the situation as the solution forms—out of
equilibrium.

4. Expectational indeterminacy and inductive behavior

Multiple equilibria cause one type of indeterminacy in static economics. Expectations
can cause another, and this also requires out-of-equilibrium resolution. Let me explain.

All economic actions are taken on the expectation of some outcome. And in many
situations this outcome is determined collectively—it depends upon the results of other
people’s actions. Thus an entrepreneur may have to decide on whether to invest in a
new semiconductor fabrication plant today, based upon what he forecasts supply in the
market to be like in two years’ time. And his competitors may have to make similar
decisions. But the collective result of their choices today will determine the aggregate
supply (and hence prices and profits) in two years’ time.

In cases like this, agents attempt to forecast what the outcome will be; but their ac-
tions based on their forecasts determine this outcome. So the situation is self-referential:
agents are trying to form expectations about an outcome that is a function of their expec-
tations. Or, to collapse this further, their choices of expectation depend on their choices
of expectation. Without some additional conditions imposed, there is no logical or de-
ductive way to settle this self-referential choice. This is a fundamental indeterminacy in
static economics.

It is tempting to dismiss this as a minor anomaly, but the situation that causes it per-
vades economics: it occurs anywhere agents’ decisions affect other agents.3 It confronts
economics with a lacuna—how expectations might logically be formed in multi-agent
situations. And it is the main reason economists feel uneasy about problems with ex-
pectations.

3 For some history and commentary on this indeterminacy see Koppl and Rosser (2002).
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Static economic theory, of course, does deal with problems where multi-agent ex-
pectations must be considered; it has evolved a theoretical method—a sort of analytical
workaround—to do this: the rational expectations approach. Rational expectations asks,
within a given economic problem, what expectational model (if everyone adopted it)
would lead to actions that would on average validate that expectational model. If such a
model existed, agents’ expectations would be on average upheld, and this would solve
the problem of selecting suitable expectations.

Actually, this last assertion came too fast. To be rigorously exact, if such a model ex-
isted it would demonstrate at least one set of expectations consistent with the outcome.
Whether this translates into a theory of expectations formation matched by reality is
another question, one that leaves even supporters of this approach uncomfortable. To
suppose that this solution to a given problem would be reached in a one-off non-repeated
problem, we would need to assume that agents can somehow deduce in advance what
model will work, that everyone “knows” this model will be used, and everyone knows
that everyone knows this model will be used, ad infinitum. (This is the common knowl-
edge assumption.) And we would further require a unique solution; otherwise agents
might coordinate on different expectations.

The net effect is that unless there is good reason for agents to coordinate somehow
on a single set of expectations, rational expectations become theoretically singular: they
resemble a pencil balanced on its point—logically possible but in reality unlikely. The
situation worsens when agents differ. They must now form expectations of an outcome
that is a function of expectations they are not privy to. Whether behaviorally or theo-
retically, barring some obvious coordinating set of expectations, the indeterminacy can
not be avoided. Deductive equilibrium economics therefore faces an anomaly.

As a theory of expectations formation, rational expectations begin to look better if
the situation is repeated over time, because we might suppose that agents “learn” their
way over time into on-average correct expectations. In this case rational expectations
would at least form a solution to which expectations converge. But it is possible to
construct repeated situations in economics where rational expectations are not a guide—
where in fact they must fail. Consider the El Farol bar problem (Arthur, 1994a, 1994b).
One hundred people must decide independently each week whether to show up at their
favorite bar (El Farol in Santa Fe, say). The rule is that if a person predicts that more
that 60 (say) will attend, she will avoid the crowds and stay home; if she predicts fewer
than 60 she will go. We see at once the self reference I mentioned above: agents attend
based on their predictions of how many agents will attend.

Will rational expectations work here? Suppose for a moment they do. Suppose that a
rational expectations prediction machine exists and all agents possess a copy of it. Such
a machine would take a given history of attendance (say, ten weeks back) and map it
into a forecast of the coming week’s attendance, and by definition it would on average
predict correctly. Suppose now this machine predicts one week that 74 will attend. But,
knowing this nobody shows up, negating that forecast. Suppose the next week it predicts
44. Then 100 people go, negating that forecast as well. In El Farol, expectations that are
shared in common negate themselves. Therefore forecasts that are on average consistent
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with the outcome they predict do not exist and can not be statically deduced. As a theory
of expectations formation, rational expectations fails here. The indeterminacy is also
manifest in this case. Any attempt to deduce a reasonable theory of expectations that
applies to all is quickly confounded.4

The anomaly resolves itself in this case (and in general) if we take a generative ap-
proach and observe expectations in formation. To do this we can assume agents start
each with a variety of expectational models or forecasting hypotheses, none of them
necessarily “correct.” We can assume these expectations are subjectively arrived at and
therefore differ. We can also assume agents act as statisticians: they test their forecast-
ing models, retain the ones that work, and discard the others. This is inductive behavior.
It assumes no a-priori “solution” but sets out merely to learn what works. Such an
approach applies out of equilibrium (expectations need not be consistent with their out-
come) as well as in equilibrium; and it applies generally to multi-agent problems where
expectations are involved. (See Holland et al. (1986), and Sargent (1994).)

Putting this into practice in the case of El Farol means assuming that agents individ-
ually form a number of predictive hypotheses or models, and each week act on their
currently most accurate one. (Call this their active predictor.) In this way beliefs or hy-
potheses compete for use in an ecology these beliefs create. Computer simulation then
shows that the mean attendance quickly converges to 60. In fact, the predictors self-
organize into an equilibrium pattern or “ecology” in which, on average, 40% of the
active predictors are forecasting above 60 and 60% below 60. And while the population
of active predictors splits into this 60/40 average ratio, it keeps changing in membership
forever. There is a strong equilibrium here, but it emerges ecologically and is not the
outcome of deductive reasoning.

My point in this discussion is not just that it is possible to construct problems that
confound rational expectations. It is this: In multi-agent situations the formation of ex-
pectations introduces a fundamental indeterminacy into equilibrium economics; but if
we allow expectations to form out of equilibrium in an inductive, agent-based way, the
indeterminacy disappears. Expectation formation then becomes a natural process.

If we apply this generative approach to standard problems, do expectations indeed
usually converge to the rational expectations norm? The answer is mixed: sometimes
they do and sometimes they don’t, depending on whether there is a strong attractor to
the rational expectations norm or not. Interestingly both answers can obtain in the same
problem. Different parameter sets can show different behaviors. In one set (or phase or
regime) simple equilibrium behavior might reign; in another complex, non-converging
pattern-forming behavior might obtain. My guess is that such phases will turn out to be
common in agent-based models.

Consider as an example the Santa Fe artificial stock market (Palmer et al., 1994;
Arthur et al., 1997a). The model is essentially a heterogeneous-agent version of the

4 This El Farol situation of preferring to be in the minority occurs in the economy anywhere pre-committed
decisions have to be made under diminishing returns (to the numbers committing). In its minority game
formulation, the problem is much studied among physicists (see Challet et al., 2004; and Coolen, 2005).



1562 W.B. Arthur

classic Lucas equilibrium model (Lucas, 1978). In it heterogeneous agents, or artificial
investors, form a market within the computer where a single stock is traded. Each mon-
itors the stock price and submits bids and offers which jointly determine tomorrow’s
price. Agents form (differing) multiple hypotheses of what moves the market price, act
on the most accurate, and learn by creating new hypotheses and discarding poorly per-
forming one. We found two regimes: if agents update their hypotheses at a slow rate,
the diversity of expectations collapses into a homogeneous rational expectations regime.
The reason is simple: if a majority of investors believes something close to the rational
expectations forecast it becomes a strong attractor; others lose by deviating from these
expectations and slowly learn their way to them. But if the rate of updating of hypothe-
ses is tuned higher, the market undergoes a phase transition into a “complex regime.”
Here it displays several properties seen in real markets. It develops a rich “psychology”
of divergent beliefs that do not converge over time. Expectational rules such as “If the
market is trending up, predict a 2% price rise” appear randomly in the population of
hypotheses and become temporarily mutually reinforcing. (If enough investors act on
these, the price will indeed go up.) In this way sub-populations of mutually reinforcing
expectations arise, and fall away again. This is not quite perpetual novelty. But it is a
phenomenon common to such studies: patterns that are self-reinforcing arise, lock-in
for some time (much as clouds do in meteorology), and disappear.

We also see another phenomenon, again common to out-of-equilibrium stud-
ies: avalanches of change of varying sizes. These arise because individual out-of-
equilibrium behavior adjusts from time to time, which changes the aggregate, which
in turn may call for further behavioral changes among agents. As a result in such sys-
tems cascades of change—some small and some large—can ripple through the system.
In artificial markets this phenomenon shows up as agents changing their expectations
(perhaps by exploring new ones) which changes the market slightly, and which may
cause other agents to also change their expectations. Changes in beliefs then ripple
through the market in avalanches of all sizes, causing random periods of high and low
price volatility. This phenomenon shows up in actual financial market data but not in
equilibrium models. One interesting question is whether such avalanches show prop-
erties associated with phase boundaries in physics, namely power laws where the size
of the avalanche is inversely proportional to its frequency. Systems that display this be-
havior may be technically critical: they may lie precisely between ordered and chaotic
behavior. We might conjecture that in certain economic situations behavior ensures that
the outcome remains poised in this region—technically that self-organized criticality
(Bak et al., 1988) arises.

5. Conclusion

After two centuries of studying equilibria—patterns of consistency that call for no
further behavioral adjustments—economists are beginning to study the emergence of
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equilibria and the general unfolding of patterns in the economy. That is, we are start-
ing to study the economy out of equilibrium. This way of doing economics calls for an
algorithmic approach. And it invites a deeper approach to agents’ reactions to change,
and a recognition that these may differ—and therefore that agents are naturally het-
erogeneous. This form of economics is naturally evolutionary. It is not in competition
with equilibrium theory, nor is it a minor adjunct to the standard economic theory. It is
economics done in a more general, out-of-equilibrium way. Within this, standard equi-
librium behavior becomes a special case.

When viewed out of equilibrium, the economy reveals itself not as deterministic, pre-
dictable and mechanistic; but as process-dependent, organic and evolving. Economic
patterns sometimes simplify into a simple, homogeneous equilibrium of standard eco-
nomics. But often they do not. Often they are ever-changing, showing perpetually novel
behavior.

One test of a different fundamental approach is whether it can handle certain
difficulties—anomalies—that have stymied the old one. Certainly this is the case with
out-of-equilibrium economics. Within the static approach, both the problem of equilib-
rium selection and of choice of expectations are in general indeterminate. These two
indeterminacies should not be surprising, because both problems are in essence ones
of formation—of coming into being—that can not be resolved by static analysis. Both
have been the source of considerable discomfort in economics. But when analyzed out
of equilibrium they fall into their proper setting, and the difficulties they cause dissolve
and disappear.
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Abstract

Using the author’s own experiences, this chapter shows how agent-based modeling
(ABM) can address research questions common to many disciplines, facilitate inter-
disciplinary collaboration, provide a useful multidisciplinary tool when the math is
intractable, and reveal unity across disciplines. While ABM can be a hard sell, con-
vergence within the agent-based community can enhance the interdisciplinary value of
the methodology.
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1. Introduction

This chapter describes some of my experiences with agent-based modeling (ABM) as
a bridge between disciplines. I offer these experiences to provide concrete examples
of how agent-based modeling can help overcome the somewhat arbitrary boundaries
between disciplines. I do not claim that my experiences are typical, or that my style
would work well for others.

Although I am occasionally mistaken for an economist, my PhD is in political sci-
ence. In graduate school, I took the micro-macro sequence designed to socialize the
economic doctoral students into their discipline. I distinctly remember an occasion when
the professor—a future Nobel Prize winner—was presenting a formal model of con-
sumer behavior. A student remarked, “But that’s not how people behave.” The professor
replied simply, “You’re right,” and without another word, turned back to the blackboard
and continued his presentation of the model. We all got the idea.

I have undertaken ABM projects that both draw on and contribute to economics.
Although I often work alone, or with a graduate student, I have also collaborated on
ABM projects with political scientists, evolutionary biologists, computer scientists, and
economists. This chapter draws on those experiences.

This chapter is organized in terms of five propositions, followed by some suggestions.
First, here are the propositions and the research projects that I will use to illustrate
them.

1. ABM can address certain problems that are fundamental to many disciplines. To
illustrate how agent-based modeling can address a fundamental problem, I will use
my computer tournaments for the iterated Prisoner’s Dilemma that addressed the
question of what it takes for egoists to cooperate with each other. I will describe
how computer tournaments originated from a link between game theory and arti-
ficial intelligence, how the entries drew on the strategic understanding of theorists
from many disciplines, and how the results had a wide range of applications in the
social sciences and beyond.

2. ABM facilitates interdisciplinary collaboration. An informative example is the
interdisciplinary collaboration between a political scientist and an evolutionary
biologist, namely myself and William Hamilton. Using Hamilton’s published
memoirs, I will be able to compare and contrast his perspective with mine on
how our relationship got started, and what happened along the way.

3. ABM provides a useful multidisciplinary tool when the math is intractable. My
second collaboration with William Hamilton began when he told me about his
explanation for one of the most important evolutionary puzzles: why do almost
all large animals and plants reproduce sexually even at the cost of allowing only
half the adults to have offspring? Hamilton had a highly original explanation, but
had been unable to demonstrate its plausibility. I showed Bill how agent-based
modeling could easily simulate the evolutionary effects of a dozen or more genes.
Together we were able to build an agent-based model that demonstrated that Bill’s
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theory was indeed a biologically plausible explanation for the origin and mainte-
nance of sexual reproduction.

4. ABM can reveal unity across disciplines. My example of this point is an agent-
based model I designed based on the principle that when possible, agents will
tend to align themselves into groups that are self-organized and minimize the
“stress” each agent faces in its relationships with the each of the others. Scott Ben-
nett, then a graduate student in political science, and I developed, operationalized
and validated this model with alignments among the seventeen European nations
that participated in World War II. Two economists, Will Mitchell and Robert E.
Thomas, at my university’s Business School and their graduate student, Erhard
Bruderer, heard me present this theory, and immediately suggested we work to-
gether to apply it to a specific example of computing business alliances. We found
that the agent-based model about military alignments could also successfully pre-
dict strategic alignments of computer companies.

5. ABM can be a hard sell. Since most formal theorists equate models with mathe-
matical models, it is not surprising that some of them are hard to convince about
the appropriateness and value of an agent-based simulation. This point is demon-
strated by the kind of objections that Bill Hamilton and I met when we tried to
publish what we thought were compelling results from our simulation of his evo-
lutionary theory.

This chapter concludes with some suggestions for enhancing the interdisciplinary value
of agent-based modeling.

From my perspective, agent-based modeling is not only a valuable technique for ex-
ploring models that are not mathematically tractable; it is also a wonderful way to study
problems that bridge disciplinary boundaries.

2. ABM can address fundamental problems seen in many disciplines

Agent-based modeling has proven helpful in exploring issues that arise in two or more
disciplines. Examples of such issues are path dependency, the effects of adaptive versus
rational behavior, the consequences of heterogeneity among agents, the design of insti-
tutional mechanisms to achieve specific goals in a population of autonomous agents, the
effects of network structure, cooperation among egoists, provision of collective goods,
the diffusion of innovation, and the tradeoff between exploiting current best practice
and exploring for new knowledge.

My own experience includes work on the possibility of cooperation among egoists.
My work on computer tournaments for the iterated Prisoner’s Dilemma, for example,
drew upon strategic ideas from the different disciplines of the entrants, including eco-
nomics, political science, psychology, sociology, and mathematics. Simulation results
and my related mathematical theorems then proved applicable to an even wider range of
disciplines, as illustrated in some of my own subsequent work and that of many others.
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But where did the idea for a computer tournament come from? In retrospect, I realize
that it came from my interest in artificial intelligence that started while I was in high
school, and an interest in game theory that started in college. In high school, a just-
published article I came across fascinated me with its description of a checker playing
program that learned to improve its own play (Samuel, 1959). Afterwards, I followed
the development of computer chess through the 1960s, and as well as the computer
chess tournaments that began in 1970.

In college, I was a math major with a growing interest in international politics and
especially the risk of nuclear war. While studying a then-standard text (Luce and Raiffa,
1957), I came across the iterated Dilemma Prisoner’s. To me, the Prisoner’s Dilemma
seemed to capture the essence of the tension between doing what is good for the in-
dividual (a selfish defection) and what is good for everyone (a cooperative choice). In
graduate school, while pursuing a PhD in political science, I read the intriguing research
on how human subjects played the game, and how game theorists were still arguing with
each other about the best way to play the game.

The literature on the iterated Prisoner’s Dilemma left me somewhat frustrated be-
cause there was no clear answer to the question of how to avoid conflict, or even how
an individual (or country) should play the game for itself.2 Apparently, my frustration
stayed with me because I started thinking about the problem again a dozen years later.
This time I came up with the tournament idea as a means of studying these questions.

I somehow put two and two together, and realized that a good way to find a successful
strategy for the iterated Prisoner’s Dilemma was to hold a tournament and see what
strategy would win. While I could not have articulated it then, my interest in finding out
how sophisticated individuals would play to maximize their own score was probably
based on the implicit belief that one would then be able to learn about the conditions
under which even egoistic players would choose to cooperate.

I solicited entries from both game theorists and amateurs. Using computer chess pro-
grams as a guide, I expected the most successful strategy would have to take into account
a wide variety of considerations and hence be very complicated. I was surprised when

2 I learned about the “solution” by backwards induction that says it pays both players to defect on the last
move, hence on the next to last move, and so forth right to the beginning of the game. To me, the foresight
required for a long backwards induction does not seem very realistic. I doubted that even if someone under-
stood this logic, he or she would expect the other player to understand it, and hence the fully rational reasoning
might not apply to real people. In fact, in my first computer tournament, it was common knowledge that the
game would be exactly 200 moves, and I provided the entrants with an excerpt from Luce and Raiffa (1957)
on backward induction in the finite iterated Prisoner’s Dilemma. Although I did not realize it at the time, this
design provided a test of what sophisticated and well informed researchers would expect of each other. In the
event, the strategy that always defected was not entered, and three of the entrants submitted strategies that
automatically defected on the last three moves, apparently because they predicted that others would do back-
wards induction for only two moves. In any case, reasoning by backwards indication does not apply when the
players do not know when the iterated game will end, as was true for the second round of the tournament.
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Tit for Tat, the simplest of all the submitted strategies, and one of the simplest possible
strategies, won the tournament.3

Since entries came from professors of economics, political science, psychology, so-
ciology, and mathematics, the tournament itself illustrates how ABM can provide the
means to bridge disciplines. These were mostly people who had published treatments
of the iterated Prisoner’s Dilemma in their own disciplinary journals. The tournament
provided a way for their strategic ideas to be evaluated in the common setting, namely
the rich environment that they would provide for each other. Among the most interest-
ing results was that Tit for Tat, a strategy that could never score better than the other
guy it was playing with, nonetheless won both tournaments. Wanting to reach people
in many fields, I published the results in an interdisciplinary journal, the Journal of
Conflict Resolution (Axelrod, 1980a, 1980b).

Seeing that Tit for Tat was quite robust, I used my math background to formulate
and test a series of theorems about the conditions under which cooperation based upon
reciprocity can emerge in a population of egoists, and then resist invasion by mutant
strategies. This time I aimed for my major reference group by publishing the theorems
in a disciplinary journal, The American Political Science Review (Axelrod, 1981).

What happened next was quite fortuitous. Following my usual practice of scanning
a wide range of journals, I saw a review in a sociology journal of a fascinating study
based on soldiers’ diaries from World War I. The book focused on the “live and let
live” system that spontaneously arose between the two sides fighting each other in the
trenches. Upon reading the book, I realized that this example, in all its richness, was
an apt illustration of my theory about when and how cooperation among egoists can
emerge. What made the example so useful was that it showed cooperation where you
might least expect it, between opposite sides in the midst of a brutal war. Yet, when
viewed from the perspective I was proposing, the cooperation in trench warfare made
perfect sense. When I came across this wonderful case, I thought I just might be able to
write a book that could speak to a wide audience.4

I had no trouble finding illustrations from a wide range of fields. For instance, in
economics, issues of cooperation among egoists arose in battles over barriers to trade,
attainment of microcredit for those without tangible assets, strategic alliances between
businesses, and the possibilities for tacit cooperation in a duopoly.

Seeing that the results of my computer tournaments, and the related theorems that
I had provided, could address a very wide range of problems, I started to think about
writing a book. When I discovered that people with little or no social science training
were able to understand the basic theory and the trench warfare example, I decided to

3 See Axelrod (1984). Now that I have better understanding of the effects of errors in perception and imple-
mentation, I would recommend adding a little generosity or contrition to a strategy of strict reciprocity. See
Wu and Axelrod (1995).
4 The readers of The Evolution of Cooperation often found the trench warfare case to be the most persuasive

part of the book. I am still pondering why a single case study can be more persuasive than quantitative analysis,
proofs of theorems, or a host of diverse illustrations.
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try it. It took me over a year to transform and extend four of my journal articles and
some new research into a book that had a chance of being read with interest by scholars
and graduate students in different disciplines, and perhaps even by undergraduates and
some members of the educated public. Based on its sales and citations, The Evolution
of Cooperation succeeded beyond my hopes. From my perspective, agent-based mod-
eling, as exemplified by the computer tournaments for the iterated Prisoner’s Dilemma,
demonstrated its ability to illuminate fundamental questions of interest far beyond any
single discipline such as economics or political science.

One conclusion I drew from this and similar experiences was that following my own
interests regardless of where they led could occasionally be not only fun, but also
productive. I also realized that three of the fields that have been especially helpful to
me—evolutionary biology, artificial intelligence, and game theory—I had studied on
my own. I now suggest to graduate students that they should never let coursework inter-
fere with their education.

3. ABM facilitates interdisciplinary collaboration

I did not feel the need for a collaborator to conduct and analyze the tournaments. Nor
did I feel the need for a collaborator to prove some general theorems about how co-
operation based on reciprocity could get started and could resist invasion.5 However,
when I thought about the potential implications for evolutionary biology, I knew I was
in over my head. I wrote to an entrant in one of my tournaments who happened to be a
well-known evolutionary biologist, Oxford professor Richard Dawkins. He pointed me
to another evolutionary biologist who happened to be at my own university, William
Hamilton. I already knew of Hamilton’s very influential theory of inclusive fitness.6 So
I gave him a call.

In his memoirs, Bill describes his reactions to this phone call.7

One day in the Museum of Zoology at Ann Arbor there came a phone call from
a stranger asking what I knew about evolutionarily stable strategies and for some
guidance to relevant literature. (p. 118)

Now on the phone to me was someone out of political science who seemed to have
just the sort of idea I needed. A live games theorist was here on my own campus!
Nervously, and rather the way a naturalist might hope to see his first mountain
lion in the woods, I had long yearned for and dreaded an encounter with a games

5 See Axelrod (1981).
6 Dawkins himself had written a lucid exposition of Hamilton’s theory of inclusive fitness in a book entitled

The Selfish Gene (Dawkins 1976, 1989). Once you read this book, you will see why your genes can be
considered “selfish” and how your selfish genes use you to get themselves reproduced—but not necessarily
in ways that are to your advantage. Spooky.
7 All quotes are from William D. Hamilton (2002).
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theorist. How did they think? What were their dens full of? Axelrod on the phone
sounded nice and, very surprising to me, he was more than a bit biological in his
manner of thinking. I sensed at once a possibility that the real games theorists
might be going to turn out to be a kind of kindred to us [biologists]. (p. 120)

Had Bill known of my long-standing interest in evolutionary theory, he might not
have been quite so surprised that my thinking was more than a bit biological. For ex-
ample, in high school I wrote a computer simulation to study hypothetical life forms
and environments.8 This early interest in evolution was nurtured during college by a
summer at the University of Chicago’s Committee on Mathematical Biology.

That first phone call led to a lunch where he proposed that we work together.

Soon after the lunch again I proposed that the work seemed so interesting bi-
ologically we might try writing it up for a joint paper in Science; [Axelrod’s]
contribution would be the basic ideas plus the description of his tournaments, and
mine to add a natural scientist’s style and some biological illustrations. (p. 122)

I was delighted to accept Bill’s invitation to collaborate. Despite coming from differ-
ent disciplines, Bill and I shared not only mathematical training, but also a desire to get
at the heart of things. Bill had even published some work on the Prisoner’s Dilemma,
although he was hoping to get away from that when I dragged him back.

Bill’s proposed division of labor turned out to be a reasonable description of how
the collaboration developed. I gradually realized, however, just how much was included
by Bill’s modest formulation of adding “a natural scientist’s style and some biological
illustrations.” Bill’s naturalist’s style included having at his fingertips an astonishing
knowledge of species from bacteria to primates. His knowledge would be equivalent to
an economist knowing much of what there is to know about hundreds, if not thousands,
of companies of every type from GM and Microsoft to a self-employed sidewalk vendor.

His experience as a naturalist often gave him the capacity to check out the plausibility
of an idea with pertinent examples right off the top of his head. It also helped him to
generate surprising new ideas.

Bill’s disciplinary training as an evolutionary biologist and a naturalist proved essen-
tial to making our theoretical work compelling to biologists. He was able to identify and
exploit pertinent biological examples so that biologists could see what we were talking
about. While not all of his proposed applications have been borne out, he was able to
demonstrate the potential relevance of agent-based computer tournaments for the major

8 The recognition I received for this work from the Westinghouse (now Intel) Science Talent Search con-
tributed to my readiness ever since to follow my own instincts and not worry about what was in the mainstream
of any particular discipline. The simulation had agents who responded to their environment, but was not an
agent-based model because the agents neither interacted with each other, nor changed over time. In 1960–61,
Northwestern University gave me some time on their one and only machine, an IBM 650 the size of four
refrigerators. It had only 20k memory—about a millionth of my current laptop’s memory.
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biological puzzle of why individuals cooperate with unrelated others.9 Second, he was
able to explain what our contribution added to what was already understood about evo-
lution. Specifically, he showed how our modeling work provides a solid foundation for
many of the insights about altruism formulated years earlier by Rabert Trivers (1971).
Bill was also able to show how our model could be used by other evolutionary biolo-
gists to formulate and test new hypotheses about animal behavior,10 as well as explore
dozens of variants of the simple iterated Prisoner’s Dilemma.11

At the beginning, Bill and I took a while to get used to each other’s style. For example,
when I asked Bill a question he sometimes thought long and hard before saying a word.
His face took on a blank look, his gaze was in the distance, and I could almost hear the
wheels spinning inside his head for the longest time. I learned to be patient. When he
finally spoke, it would be either a deep insight, or casual remark on a totally different
subject.

Here is how Bill saw us working together.

That brilliant cartoonist of the journal American Scientist, Sidney Harris, has a pic-
ture where a mathematician covers the blackboard with an outpouring of his formal
demonstration. ... [I]t starts top left on the blackboard and ends bottom right with
a triumphant ‘QED’. Halfway down, though, one sees a gap in the stream where
is written in plain English: ‘Then a miracle occurs’, after which the mathematical
argument goes on. Chalk still in his hand, the author of this quod est demonstran-
dum now stands back and watches with a cold dislike an elderly mathematician
who peers at the words in the gap and says: ‘But I think you need to be a bit more
explicit-here in step two.’ I easily imagine myself to be that enthusiast with the
chalk and I also think of many castings for the elderly critic. Yet how easy it is
to imagine a third figure-Bob-in the background of this picture, saying cheerfully:
‘But maybe he has something all the same, maybe that piece can be fixed up. What
if...’ (p. 123)

I shared Bill’s surprise at how well we worked together. As he put it,

I would have thought it a leg-pull at the time if someone had told me of a future
when I would find it more rewarding to talk ‘patterns’ to political scientists rather
than to fellow biologists. (p. 126)

Perhaps the most important thing we shared was our aesthetic sense.

9 Bill was already well known for his rigorous treatment of how evolution might cause an individual to
be altruistic toward a close relative (Hamilton, 1964). Because Hamilton showed how to treat the unit of
selection as the gene rather than the individual to the gene, this work has been called “the only true advance
since Darwin in our understanding of natural selection” (Trivers, 2000).
10 For early confirmations in bats, fish and primates, as well as early extensions of the iterated Prisoner’s
Dilemma framework, see the sources cited in Axelrod and Dion (1988). Recently, even viruses have been
found to play the Prisoner’s Dilemma (Turner and Chao, 1999).
11 For early developments of the theoretical framework, see Axelrod and Dion (1988). For a twenty year
retrospective, see Hoffmann (2000).
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[A]n intuitive understanding between us was immediate. Both of us always liked
to be always understanding new things and to be listening more than talking; both
of us had little inclination for the social manoeuvring, all the ‘who-should-bow-
lowest’ stuff, which so often wastes time and adrenalin as new social intercourse
starts. Bob is the more logical, but beyond this what we certainly share strongly
is a sense for a hard-to-define aesthetic grace that may lurk in a proposition, that
which makes one want to believe it before any proof and in the midst a confusion
and even antagonism of details. Such grace in an idea seems often to mean that it
is right. Rather as I have a quasi-professional artist as my maternal grandmother,
Bob has one closer to him-his father. Such forebears perhaps give to both of us the
streak that judges claims not in isolation but rather by the shapes that may come
to be formed from their interlock, rather as brush strokes in a painting, shapeless
or even misplaced considered individually, are overlooked as they join to create a
whole... (p. 122)

I see a further connection between art and modeling. My father painted to express
how he saw the world that day, highlighting what was important to him by leaving out
what was not. Likewise, I see my modeling, especially my agent-based modeling, as an
expression of how I see some social dynamic, highlighting what I regard as important,
and leaving out everything else.

Our differing disciplinary backgrounds would show up in surprising ways, such our
reactions to visiting the church where Shakespeare is buried. I pondered the social sci-
ence question of why Shakespeare might have wanted others to read a mediocre poem
on his gravestone, and Bill pondered the biological puzzle of why a very rare plant was
growing on the fence outside the church.

Anyway, between us and with surprisingly little difficulty we pushed our paper into
Science.12 Once published it drew so much interest that it won us the Newcomb-
Cleveland Prize as Science’s supposed best paper for its year, 1981. (p. 123, 124)

4. ABM provides a useful multidisciplinary tool when the math is intractable

Agent-based modeling can also be useful for discovering regularities that might suggest
theorems that can then be proved. For example, my finding that Tit for Tat did well
playing with a wide variety of other strategies, led me to expect that something very
general could be proved about the conditions under which Tit for Tat could withstand
“invasion” by any other strategy. And so it turned out.13

12 Axelrod and Hamilton (1981).
13 See Proposition 2 in (Axelrod 1984, pp. 207–209). Taylor (1976) had already proved that Tit for Tat could
resist invasion by several specific strategies, but the success of Tit for Tat with a wide range other strategies
in the tournaments suggested to me that it was worthwhile to seek a theorem that would apply to all other
strategies. By viewing Tit for Tat as a two-state finite automaton, I was able to prove such a general result.
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A second collaboration with Bill Hamilton demonstrates another valuable charac-
teristic of agent-based modeling: its ability to analyze problems by simulation when
mathematical analysis is impossible.

When Bill took a very prestigious position at Oxford, we still kept in touch. We shared
our on-going thinking. One day, about five or six years after our first collaboration
was finished, Bill told me about a truly amazing theory he was developing. The theory
proposed an answer to one of biology’s largest unresolved puzzles: why have most large
animals and plants evolved to reproduce sexually? The reason this is such a puzzle is
that sexual reproduction has a huge cost: only half the population has offspring. What
might be the advantage of sexual reproduction that is so great that it can overcome this
two-fold cost compared to asexual reproduction?

There was already a serious contender whose leading advocate was the Russian ge-
neticist Alexei Kondrashov. Kondrashov’s explanation was based on the possibility that
sexual reproduction might be helpful for bearing the cumulative burden of many gen-
erations of deleterious mutations. Bill’s theory was completely different. Put simply, he
thought of sexual reproduction as an adaptation to resist parasites.14 This struck me as
a totally bizarre, but intriguing idea.15

Bill explained to me that there was a serious problem with convincing others that
his theory could, in fact, account for the two-for-one burden of sexual reproduction.
The problem was that the equations that described the process were totally intractable
when the genetic markers had more than more than two or three loci. Yet, the whole
idea relies on there being many loci so that it would not be trivial for the parasites to
match them. When I heard this, I responded to Bill with something like, “No problem.
I know a method to simulate the evolution of populations with a lot of genetic markers.
The method is called the Genetic Algorithm, and I’ve already used it to simulate a
population of individuals each of whom has seventy genes.“16

I explained to Bill that a computer scientist, John Holland, had been inspired by the
success of biological evolution in finding “solutions” to difficult problems by means
of competition among an evolving population of agents.17 Based on the evolutionary
analogue, including the possibility for sexual reproduction, Holland developed the Ge-
netic Algorithm as an artificial intelligence technique. I could simply turn this technique

14 Bill liked this formulation of mine, and we used it as the title of our paper.
15 Bill’s reasoning was that parasites are ubiquitous, and their short life spans give them the advantage of
being able to adapt quickly to an ever-changing host population. If the host population reproduced asexually,
a line of parasites that had evolved to mimic the genetic markers on the cells of one host would automatically
be well adapted to mimic the genetic markers of its offspring. On the other hand, if the hosts reproduced
sexually, their offspring would not be virtual carbon copies of either of their parents, and thus would not be as
vulnerable to a line of parasites that had become adapted to match the genetic loci of one parent or the other.
16 I used this evolutionary technique to avoid having to run new tournaments indefinitely. See Axelrod (1987).
I had earlier developed a technique now known as replicator dynamics, to study an interacting population with
many different types of individuals, but without any mutation to introduce new types (Axelrod, 1980b, and
Axelrod, 1984, pp. 48–54).
17 See Holland (1975, 1992), and Riolo (1992).
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around and help Bill simulate biological evolution, with or without sex. Since Bill was
used to thinking in terms of heterogeneous populations of autonomous individuals, he
readily grasped the idea of agent-based modeling. He also grasped without difficulty
that an agent-based simulation was capable of demonstrating that certain assumptions
are sufficient to generate certain results, even if the same results could not be proven
mathematically.18

So, working with a computer science graduate student, Reiko Tanese, we built an
agent-based model with two co-evolving populations: hosts with long life spans, and
parasites with short life spans. If a parasite interacted with a host of similar marker
genes, it killed the host and reproduced. In the simulation, the parasite population would
tend to evolve to concentrate in the region of the “genetic space” where there were
many hosts. Thus, successful hosts tended to suffer from increasing numbers of deadly
parasites, reducing the numbers of those hosts. Meanwhile, other types of hosts with
very different genetic markers might thrive. Then the process would repeat itself as
the population of parasites tracked the ever-changing population of hosts. The system
would always be out of equilibrium.19

Bill was pleased with the results of our agent-based simulations. He felt that

the notion I had started with, that even against sex’s full halving inefficiency the
problem could be solved by looking at the need of a population to manoeuvre
against its many rapidly evolving parasites, with these differentiating resistance
tendencies at many host loci (the more the better), had been vindicated. (p. 561)

Returning to the story of the work, once Reiko under Bob’s guidance had done the
program, I experimented with it by e-mailing her or Bob with requests for chosen
runs. At one point I visited the University of Michigan at Ann Arbor and worked
for a fortnight intensively on modifications to the program with Reiko-this came
after a bad patch of misunderstandings and unpromising runs that had caused us
all to become somewhat pessimistic. (p. 606)

It seems to me that agent-based modeling is quite vulnerable to misunderstanding,
even among the collaborators themselves. In our case the problem arose while we were
exploring different ways to model host-parasite interaction. At one point Bill sent an
e-mail from Oxford asking Reiko and me to undo our recent changes and try some-
thing else that he described. It wasn’t until a month or so later that Bill noticed the
unpromising runs might be caused by our simulation program not doing quite what he
had in mind. We eventually traced the problem to a misunderstanding between us about

18 Not proven by humans at least. Epstein, in this volume, points out that the premises of simulations can
themselves be regarded as mathematical statements, and results as deductions derived from those statements.
19 Agent-based models are convenient for studying out-of-equilibrium dynamics. Real economies may be
perpetually out of equilibrium, for instance if there is continual innovation (Nelson and Winter, 1982). Sys-
tems far from equilibrium are notoriously difficult to analyze mathematically, and perhaps for that reason are
often downplayed in neoclassical economics. Agent-based modeling allows the analysis systems that are far
from equilibrium.
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whether Bill’s request to remove our recent changes referred to the previous day’s work,
or the previous week’s work.20

Daily Reiko sprinkled me and Bob, like tender house plants, with her floppy disks
bearing her updated codes... (p. 607)

Our model had achieved results that others had stated impossible with the tools
we were allowing ourselves. Many of the dragons that had oppressed individual-
advantage models in the past seemed to us to be slain. ...[O]ur explicit modeling
of a large number of loci in a Red Queen situation21 certainly was [new] and the
increase of stability of sex that came with the growth of numbers of loci made the
most dramatic feature in our results. (p. 602)

It is the paper that I regard as containing the second most important of all my con-
tributions to evolution theory.22 That second joint paper of 1990 (actually mainly
written some three or so years before) was to be the first model where sex proved
itself able to beat any asex competitor immediately and under very widely plausible
assumptions. (p. 560)

5. ABM can reveal unity across disciplines

So far, I have described my experiences of using agent-based modeling to bridge disci-
plines by addressing fundamental problems, by facilitating collaboration, and by avoid-
ing intractable mathematics. Finally, I want to discuss an example of how an agent-based
model designed for a specific problem in one discipline can sometimes be applied di-
rectly to an apparently quite different problem in another discipline.

My own specialty in political science is international security affairs. I wanted to
predict alignments in war. I did not want to beg the question by taking into account any
alliances the countries might have already formed. The problem is exemplified by the
mutual hatred on the eve of World War II between Germany, Britain, and the Soviet

20 While a mathematical proof can usually be checked for accuracy without great difficulty, the same can not
be said for an agent-based simulation program. The frequency of this problem became evident when I was
part of a team that tried to replicate the results from the published description of the eight agent-based models
(Axtell et al., 1996). We found that in most cases it was not easy. In one case, it took us about four months to
track the problem to an inconsistency between the published account and the actual code used to implement it.
Results from macro-economic models are also notoriously difficult to replicate from published descriptions,
even when the identical data set is used.
21 Bill is referring here to the character in Alice Through the Looking Glass who says, “It takes all the running
you can do, to keep in the same place.”
22 Hamilton et al. (1990). Bill regarded his most important paper to be the one that presented his formal
theory of inclusive fitness (Hamilton, 1964). As mentioned earlier, Dawkins (1976, 1989) provides a lucid
exposition of Hamilton’s theory of inclusive fitness.
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Union. If they all hated each other, what would predict their alignment into just two
opposing sides when the war came?

The model began by assigning countries at random to one of two sides, and giv-
ing each country, one at a time, the opportunity to change sides if it would reduce the
“stress” of its being aligned with countries they were repelled from and/or not aligned
with countries they were attracted to. Naturally, the felt stress would also have taken into
account the relative importance of each of the other countries. Scott Bennett, a political
science graduate student, and I operationalized the pairwise propensities by combining
five previously identified factors causing attraction or repulsion. These factors included
things like shared religion and border disputes. We operationalized the importance of
each country by the magnitude of its relative strength at the time. We then simulated
the process using the seventeen European countries that became involved in World War
II. No matter which of the 65 536 different alignments we started with, the agents al-
ways organized themselves into one of just two alignments. One of these two is almost
exactly what happened in World War II.23

Around this time, I was invited to present my latest research at Michigan’s Business
School. After my talk, two economists from the school, Will Mitchell and Robert E.
Thomas, came up to Scott and myself. They told us that our work reminded them of
the business coalitions that often form to compete over whose preferred standard will
dominate an industry. They said they had in mind the specific case in which eight com-
puter companies joined one of the two coalitions that competed over which version of
the UNIX operating system would prevail. We decided to see if we could account for
the specific alignment of companies in the UNIX case. We used exactly the same the-
ory, and simply adapted the measures of pairwise propensity and relative size so they
made sense for the UNIX case. For example, we assumed that a company would find it
more stressful to align with a company that was largely in the same market as it was,
compared to a company that was mainly in a completely different market. We were de-
lighted to find that the agent-based model of military alignments was also successful
at predicting the pattern of strategic alignments among the eight computer companies
involved in the UNIX case.24

6. ABM can be a hard sell

As noted earlier, my collaboration with Bill Hamilton on cooperation in biological sys-
tems was accepted for publication with little problem. Just the opposite was true of our

23 See Axelrod and Bennett (1993). The one mistaken prediction was that Portugal with its fascist government
would side with Germany and Italy, but it actually stayed with its long-term ally, Britain. The other alignment
was essentially a pro-vs.-anti Communist alignment. On another point, economists sometimes ask me why the
agents in this model might not keep switching sides forever. The short answer is that the pairwise propensities
are symmetric, so “stress” provides a Lyapunov function.
24 See Axelrod et al. (1995).
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second collaboration. Our simulation of Bill’s theory that sexual reproduction could be
an adaptation to resist parasites had a hard time getting published.

First, we tried Nature, a leading scientific journal closely followed by biologists of all
types. The referees had many complaints, chiefly about the robustness of our results. So,
we did many more runs under a broad range of parameters to show that the explanation
worked under a wide range of realistic conditions. We thought our second try had nailed
our point.

Nevertheless when the revised paper went back to the referees with these new
experiments included, but with no change to our centralizing of the Homo-like life
history, we found all our new points left uncommented and the manuscript rejected
by the referees even more curtly than before. Two of them indeed dug out new
objections they hadn’t thought of [the] first time and claimed to see no substantial
changes in the rest... (p. 608)

After our revised version was rejected at Nature, we submitted our paper to Science,
another leading scientific journal widely read by biologists. We were also rejected by
Science, which left us a little dejected.

Failing with these I sent it in preliminary way to an editor of the Royal Society
journals to see if they would be interested, but the comments I received were as
discouraging as the rest. It particularly shamed me to have to tell Bob that even the
society that supported me in general believed me to be over the hill on this topic...
(p. 609)

One of the puzzles about the dislike, even contempt, the work ... seemed to arouse
in my evolutionary peers is that it was as if we had been unable to explain what
we were thinking. ...And yet while one referee praised our style, another described
the paper as written very badly; because neither said anything good about the ideas
or content I presume that even the one that liked the writing found it a kind of
eloquent twittering. (p. 601, 602)

[T]he only intelligible claim in [one review] was that we had not reported on any
simulations outside the range we had studied in detail. ... If one criticized every
paper studying some feature of one-locus population genetics, for example, on
grounds that it hadn’t yet probed into even just possible two-locus complications
(or hadn’t reported having done so), a substantial fraction of the literature of pop-
ulation genetics would have stayed unpublished. (p. 613).

Our statement that we had tested the model much more widely than we covered
in the states we reported evidently wasn’t believed, as also was the case with our
description of the model. Several referees said this wasn’t adequate; and yet it was
quite as thoroughly described as models usually are in papers whose results rely
on simulation. ... [In fact] a subsequent team (Richard Ladle and Rufus Johnstone,
later joined by Olivia Judson) reproduced and extended our model purely [from]
the paper’s specification. Ladle and Johnstone did not even tell me they were work-
ing on this until our major results had been verified. (p. 610)
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Bill was surprised by the difficulties we were having.

The above record of rejections probably actually isn’t long compared with some
that much more revolutionary yet valid papers have received from journals. What,
for example, about the attempts of Alfred Wegener to publish on continental drift,
or Ignaz Semmelweiss to publish on puerperal fever, or Richard Altmann on the
symbiotic origin of the mitochondrion? On the other hand, at the time we were
submitting neither Bob nor I was an unknown scientist and neither of us had a rep-
utation for mistaken or trivial ideas. The number of suspicious and hostile referees
we found had come, therefore, as a considerable surprise. (p. 609)

...my efforts to remould [our simulation] to appease the latest whims of referees

...never worked: the referees always had new objections; dislike for our solution
seemed to be unbounded. (p. 562).

Nevertheless, we were dogged. We kept revising the paper to take into account, as
best we could, the reviewers’ criticisms. Finally, the fifth version was successful at the
Proceedings of the National Academy of Sciences, USA. At last, two reviewers saw the
point of our paper, and one was even enthusiastic.

Why was our agent-based model (Hamilton et al., 1990) such a hard sell? It was not
because our model was less realistic than analytic models of evolution that had already
been published, or our work did not break new ground, or that the problem was not
important. So what was it? Bill thought about it this way:

Simulation in itself admittedly isn’t understanding and various previous papers,
including some of my own..., had already drawn attention to the kinds of possibili-
ties we were now testing. The simpler analytical discussions and models, however,
including again my own, all had had severe snags and none showed any chance to
be general. Besides treating many loci and many parasites at once-obviously much
closer to the real situation (and the importance of our studying truly many loci,
not just three or four, cannot be overstated)-we had brought in a variable life his-
tory that I consider to be much more realistic than is typical in most evolutionary
modelling... (p. 603)

Nor could anyone pretend that this theme of evolution of sex was a narrow one
nor of specialist interest only: from Erasmus Darwin to the present time, sex has
repeatedly been saluted as one of biology’s supreme problems, perhaps its very
greatest. Hence Bob Axelrod and I at first believed that our model, with its realism
and its dramatic success under conditions others had deemed impossible for it, was
virtually sure to be acceptable to one of the major general scientific journals such
as Science or Nature. (p. 604, 605)

We suspected that part of the problem was that the reviewers were threatened by our
application of Bill’s theory to the case of human-like organisms—organisms similar to
the reviewers themselves. It must not have been easy for them to accept that their own
sexuality derived from the selective pressure of parasites.
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Since we wanted to demonstrate that his theory could explain sexual reproduction
in humans, Bill thought it was important that we include the salient characteristics of
human reproduction. For instance, he wanted to include the fact that humans are not
fertile for the first dozen or so years of their life. I, however, wanted our model to be
as simple as possible to make it easier to understand and appreciate. This was the only
significant disagreement we ever had. Since it was Bill’s theory and Bill’s audience, I
deferred to his preferences in this regard. So one reason our model might have been so
hard to sell is that it included some realistic details that may have obscured the logic
of the simulation. On the other hand, Bill was probably right that had we not included
these details, the reviewers would complain that we had not demonstrated the theory
could account for sexual reproduction in humans. Sometimes you just can’t win.25

Agent-based modeling is not alone in suffering from the inevitable trade-off between
realism and clarity. Analytic models of economic, political, and social phenomena must
deal with the same tradeoff.

There are at least two factors, however, which make it harder to sell an agent-based
model than a model that can be analyzed mathematically. The first problem is that most
reviewers (and potential readers) of theoretical work are familiar with the logic of de-
ductive mathematics, but not with logic of agent-based modeling. Indeed, they often
demand that the results of an agent-based model must be as general as the results of an
analytic model. This point is illustrated by neoclassical economic models that rigorously
demonstrate that (under certain assumptions) raising the minimum wage will lower to-
tal employment. Now suppose that an agent-based model demonstrates the same effect
under less restrictive assumptions about the uniformity of the labor market, but much
greater specificity about the value of the parameters describing the situation. A math-
ematically inclined reader is likely to want to know how robust the results are, and
agent-based modeling may not be able to provide a definitive answer to that question.

A typical mathematical result might take the form “For all A > 0 and all B > 0,
f (A,B) > 0” where f is some given function. An agent-based model typically needs
to assume specific values for certain parameters in order for the simulation to run. The
simulation might be run many times, with a range of positive values for A and B, and
get the same result each time. But the reviewer can always say, “but have you tried
A = 1/9, or B = 10 000 000? And if it works for those values, what about A = B2

where B is some integer multiple of pi?” In general, there is always a question of the
robustness of the results of a simulation, unless the simulation results suggest a theorem
that can be proved analytically.

Even if the reviewer is satisfied with the range of parameter values that have been
tested, he or she might think up some new variations of the model to inquire about.

25 We might have tried another tactic. We could have first introduced a minimal version of the model to
highlight the essential mechanisms to demonstrate that Bill’s theory could, in principle, explain how sexual
reproduction could overcome its two-fold cost. We could then have provided a more realistic and detailed
simulation to show the theory also applied to situations characteristic of human life spans. Unfortunately, the
journals we aimed for had such strict page limits that we were not able to write our paper this way.
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Demands to check new variants of the model as well as new parametric values in the
original model can make the review process seem almost endless. What is worse is
that a reviewer with a not-so-legitimate problem with the submission can always use
“insufficient” checks for robustness as a cover for a negative review.

Years later, Bill noticed that other researchers doing work related to his theory of
sexual reproduction met with the same problem we did. Bill put a positive spin on it.

[I]nsinuations of unreliability [i.e. insufficient checks for robustness] so extremely
similar to those being directed at my work with Bob and Reiko ... tended to reassure
me that our rejection didn’t necessarily mean that... I’d completely lost my marbles.
(p. 614)

7. Convergence within the ABM community can enhance the interdisciplinary
value of ABM

In closing, I have three suggestions to facilitate interdisciplinary work with agent-based
modeling.26

First, the agent-based modeling community should converge on standards for testing
the robustness of an agent-based model. My own experience suggests that the lack of
such standards can make agent-based modeling a hard sell. Just as the social sciences
have converged on 0.05 as the minimal standard of statistical significance, the agent-
based modeling community should converge on standards appropriate to the kinds of
simulations we do.27

Second, the agent-based modeling community should converge on its tools. Just as
there is a convergence on regression as one of the standard tools of statistics in the social
sciences, there should be convergence on the basic tools for agent-based modeling. This
is already underway. For instance, in models with a two-dimensional space, there is
already something close to a consensus that unless there is a stated reason not to, the
borders of the space should wrap around, e.g. making the top row adjacent to the bottom
row. On the other hand, there is less consensus on whether the default assumption about
whether a given cell should have four neighbors (the cells to the north, south, east and
west) or eight neighbors (those four plus the diagonal cells).28 Greater standardization
of programming tools would also be helpful.29

26 For my suggestions on how to actually do agent-based modeling, see Axelrod (1997a).
27 For example, one might halve and double the base values of each parameter to see if the results hold up
across this wide range. John Miller has proposed another possibility (Miller, 1998). He suggests searching
for the largest and smallest values of each parameter that will maintain the central result. In other words, we
should report what extreme values cause for the model to “break.”
28 These are called the Von Neumann neighborhood and the Moore neighborhood, respectively.
29 This is easier said than done. An early attempt called Swarm has had limited success. With object ori-
ented programming and sharable languages like Java, the prospects are better at least for shared libraries of
commonly used procedures. Repast is a good example.
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Finally, the agent-based community should converge on a set of fundamental con-
cepts and results. Just as the content of a microeconomics course at any given level has
become largely standardized, it would be helpful if the same would become possible
for courses in agent-based modeling. Textbooks are one way in which this convergence
could be promoted. Before then, however, candidates for the shared set of fundamen-
tals could take the form of a topics or even specific readings that anyone interested in
the field could be expected to know. An example of a strong candidate for inclusion is
Schelling’s well-known model of residential mobility that demonstrates how an emer-
gent property like segregation can occur even if everyone is quite tolerant (Schelling,
1978).

Agent-based modelers actually know quite a bit about the possibilities for conver-
gence in a heterogeneous population of autonomous agents—such as themselves.30

Fortunately, the bottom-up form of convergence is already underway, but we need to be
wary of convergence taking place only within rather than across disciplines.31 As a step
in this direction, Axelrod and Tesfatsion (2006) have developed a Guide to Newcom-
ers to Agent-Based Modeling.32 Perhaps we are approaching the time when it becomes
possible to develop a more or less authoritative statement of proposed core readings and
best practices. This volume itself is a major step in that direction, thereby facilitating
the potential of agent-based modeling to serve as a bridge between disciplines.
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1. Generative explanation

The scientific enterprise is, first and foremost, explanatory. While agent-based modeling
can change the social sciences in a variety of ways, in my view its central contribution is
to facilitate generative explanation [see Epstein (1999)]. To the generativist, explaining
macroscopic social regularities, such as norms, spatial patterns, contagion dynamics, or
institutions requires that one answer the following question:

How could the autonomous local interactions of heterogeneous boundedly rational
agents generate the given regularity?

Accordingly, to explain macroscopic social patterns, we generate—or “grow”—them
in agent models. This represents a departure from prevailing practice. It is fair to say
that, overwhelmingly, game theory, mathematical economics, and rational choice po-
litical science are concerned with equilibria. In these quarters, “explaining an observed
social pattern” is essentially understood to mean “demonstrating that it is the Nash equi-
librium (or a distinguished Nash equilibrium) of some game.”

By contrast, to the generativist, it does not suffice to demonstrate that, if a society
of rational (homo economicus) agents were placed in the pattern, no individual would
unilaterally depart—the Nash equilibrium condition. Rather, to explain a pattern, one
must show how a population of cognitively plausible agents, interacting under plausible
rules, could actually arrive at the pattern on time scales of interest. The motto, in short,
is [Epstein (1999)]: If you didn’t grow it, you didn’t explain it. Or, in the notation of
first-order logic:

(1)∀x(¬Gx ⊃ ¬Ex).

To explain a macroscopic regularity x is to furnish a suitable microspecification that suf-
fices to generate it.1 The core request is hardly outlandish: To explain a macro-x, please
show how it could arise in a plausible society. Demonstrate how a set of recognizable—
heterogeneous, autonomous, boundedly rational, locally interacting—agents could ac-
tually get there in reasonable time. The agent-based computational model is a new, and
especially powerful, instrument for constructing such demonstrations of generative suf-
ficiency.

2. Features of agent-based models

As reviewed in Epstein and Axtell (1996) and Epstein (1999), key features of agent-
based models typically include the following:2

1 In slightly more detail, if we let M = {i: i is a microspecification} and let G(i, x) denote the proposition
that i generates x, then the proposition Gx can be expressed as ∃iG(i, x). Then, longhand, the motto becomes:
∀x(¬∃iG(i, x) ⊃ ¬Ex).
2 I do not claim that every agent-based model exhibits all these features. My point is that the explana-

tory disiderata enumerated (heterogeneity, local interactions, bounded rationality, etc.) are easily arranged in
agent-based models.
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• Heterogeneity. Representative agent methods—common in macroeconomics—are
not used in agent-based models. Nor are agents aggregated into a few homoge-
neous pools. Rather, every individual is explicitly represented. And these individu-
als may differ from one another in myriad ways: by wealth, preferences, memories,
decision rules, social network, locations, genetics, culture, and so forth, some or
all of which may adapt or change endogenously over time.

• Autonomy. There is no central, or “top down,” control over individual behav-
ior in agent-based models. Of course, there will generally be feedback between
macrostructures and microstructures, as where newborn agents are conditioned by
social norms or institutions that have taken shape endogenously through earlier
agent interactions. In this sense, micro and macro will, in general, co-evolve. But
as a matter of model specification, no central controllers (e.g., Walrasian auction-
eers) or higher authorities are posited ab initio.

• Explicit space. Events typically transpire on an explicit space, which may be
a landscape of renewable resources, as in Epstein and Axtell (1996), an n-
dimensional lattice, a dynamic social network, or any number of other structures.
The main desideratum is that the notion of “local” be well-posed.

• Local interactions. Typically, agents interact with neighbors in this space (and
perhaps with sites in their vicinity). Uniform mixing (mass action kinetics) is
generically not the rule. Relatedly, many agent-based models, following Herbert
Simon, also assume:

• Bounded rationality. There are two components of this: bounded information and
bounded computing power. Agents have neither global information nor infinite
computational capacity. Although they are typically purposive, they are not global
optimizers; they use simple rules based on local information.

• Non-equilibrium dynamics. Non-equilibrium dynamics are of central concern to
agent modelers, as are large-scale transitions, “tipping phenomena,” and the emer-
gence of macroscopic regularity from decentralized local interaction. These are
sharply distinguished from equilibrium existence theorems and comparative stat-
ics, as is discussed below.

3. Recent expansion

The literature of agent-based models has grown to include a number of good collec-
tions (e.g., The Sackler Colloquium, Proceedings of the National Academy of Sciences,
2002), special issues of scholarly journals (Computational Economics, 2001, The Jour-
nal of Economic Dynamics and Control, 2004), numerous individual articles in aca-
demic journals (such as Computational and Mathematical Organization Theory), the
science journals (Nature, Science), and books [e.g., Epstein and Axtell (1996), Axelrod
(1997), Cederman (1997)]. New journals (e.g., The Journal of Artificial Societies and
Social Simulation) are emerging, computational platforms are competing (e.g., As-
cape, Repast, Swarm, Mason). International societies for agent-based modeling are
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being formed. Courses on agent-based modeling are being offered at major universi-
ties. Conferences in the U.S., Europe, and Asia are frequent, and agent-based modeling
is receiving considerable attention in the press. The landscape is very different than it
was a decade ago.

4. Epistemological issues

Einstein wrote that, “Science without epistemology is—in so far as it is thinkable at
all—primitive and muddled.” [Pais (1982)]. Given the rapid expansion of agent-based
modeling, it is an appropriate juncture at which to sort out and address certain episte-
mological issues surrounding the approach. In particular, and without claiming compre-
hensiveness, the following issues strike me as fundamentally important, and in need of
clarification, both within the agent modeling community and among its detractors.

(1) Generative sufficiency vs. explanatory necessity.
(2) Generative agent-based models vs. explicit mathematical models.
(3) Generative explanation vs. deductive explanation.
(4) Generative explanation vs. inductive explanation.
(5) Generality of agent models.

I will attempt to address these and a variety of related issues. At several points, there will
be a need to distinguish claims from their converses. The first example of this follows.

4.1. Generative sufficiency

The generativist motto (1) cited above was:

∀x(¬Gx ⊃ ¬Ex).

If you didn’t grow it, you didn’t explain it. It is important to note that we reject the
converse claim. Merely to generate is not necessarily to explain (at least not well).
A microspecification might generate a macroscopic regularity of interest in a patently
absurd—and hence non-explanatory—way. For instance, it might be that Artificial
Anasazi [Axtell et al. (2002)] arrive in the observed (true Anasazi) settlement pattern
stumbling around backward and blindfolded. But one would not adopt that picture of
individual behavior as explanatory. In summary, generative sufficiency is a necessary,
but not sufficient condition for explanation.

Of course, in principle, there may be competing microspecifications with equal gen-
erative sufficiency, none of which can be ruled out so easily. The mapping from the set
of microspecifications to the macroscopic explanandum might be many-to-one. In that
case, further work is required to adjudicate among the competitors.

For example, if the competing models differ in their rules of individual behavior,
appropriate laboratory psychology experiments may be in order to determine the more
plausible empirically. In my own experience, given a macroscopic explanandum, it is
challenging to devise any rules that suffice to generate it. In principle, however, the
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search could be mechanized. One would metrize the set of macroscopic patterns, so that
the distance from a generated pattern to the target pattern (the pattern to be explained)
could be computed. The “fitter” a microspecification, the smaller the distance from its
generated macrostructure to the empirical target. Given this definition of fitness, one
would then encode the space of permissible micro-rules and search it mechanically—
with a genetic algorithm, for example (as in Crutchfield and Mitchell, 1995).

In any event, the first point is that the motto (1) is a criterion for explanatory candi-
dacy. There may be multiple candidates and, as in any other science, selection among
them will involve further considerations.3

4.2. The indictment: no equations, not deductive, not general

Plato observed that the doctors would make the best murderers. Likewise, in their heart
of hearts, leading practitioners of any approach know themselves to be its most capable
detractors. I think it is healthy for experienced proponents of any approach to explicitly
formulate its most damaging critique and, if possible, address it. In that spirit, it seems
to me that among skeptics toward agent modeling, the central indictment is tripartite:
First, that in contrast to mathematical “hard” science, there are no equations for agent-
based models. Second, that agent models are not deductive;4 and third, that they are ad
hoc, not general. I will argue that the first two claims are false and that, at this stage in
the field’s development, the third is unimportant.

4.3. Equations exist

The oft-claimed distinction between computational agent models, and equation-based
models is illusory. Every agent model is, after all, a computer program (typically coded
in a structured or object-oriented programming language). As such, each is clearly Tur-
ing computable (computable by a Turing machine). But, for every Turing machine, there
is a unique corresponding and equivalent partial recursive function [see Hodel (1995)].

This is precisely the function class constructible from the zero function, the successor
function, and the “pick out” or projection function (the three so-called initial functions)
by finite applications of composition (substitution), bounded minimization, and—the
really distinctive manipulation—primitive recursion. This, as the defining formula (Fig-
ure 1) suggests, can be thought of as a kind of generalized induction.

[See Hamilton (1988), Boolos and Jeffrey (1989), Epstein and Carnielli (1989), or
Hodel (1995) for a technical definition of this class of functions.] So, in principle, one

3 As noted, empirical plausibility is one such. Theoretical economy is another. In generative linguistics, for
example, S.D. Epstein and N. Hornstein (Epstein and Hornstein, 1999) convincingly argue that minimalism
should be central in selecting among competing theories. See pp. ix–xviii.
4 Not everyone who asserts that computational agent modeling is non-deductive necessarily regards it as a

defect. See, for example, Axelrod (1997).
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h( x, 0) = f ( x)

h( x, n + 1) = g
( x, n, h( x, n)

)
Figure 1. Scheme for primitive recursion.

could cast any agent-based computational model as an explicit set of mathematical for-
mulas (recursive functions). In practice, these formulas might be extremely complex
and difficult to interpret. But, speaking technically, they surely exist. Indeed, one might
have called the approach “recursive social science,” “effectively computable social sci-
ence,” “constructive social science,” or any number of other equivalent things. The use
of “generative” was inspired by Chomsky’s usage [Chomsky (1965)]. In any case, the
issue is not whether equivalent equations exist, but which representation (equations or
programs) is most illuminating.

To all but the most adept practitioners, the recursive function representation would
be quite unrecognizable as a model of social interaction, while the equivalent agent
model is immediately intelligible as such. However, at the dawn of the calculus, the
same would doubtless have been true of differential equations. It is worth noting that
recursive function theory is still very young, having developed only in the 1930s. And,
it is virtually unknown in the social sciences. It is the mathematical formalism directly
isomorphic [see Jeffrey (1991)] to computer programs, and over time, we may come
to feel as comfortable with it as we now do with differential equations. Moreover, it
is worth noting that various agent-based models have, in fact, been revealingly math-
ematized using other, more familiar, techniques. [See Dorofeenko and Shorish (2002),
Pollicot and Weiss (2001), Young (1998).]

In sum, the first element of the indictment, that agent models are “just simulations”
for which no equations exist, is simply false. Moreover, even if equivalent equations
are not in hand, computational agent models have the advantage that they can be run
thousands of times to produce large quantities of clean data. These can then be analyzed
to produce a robust statistical portrait of model performance over the parameter ranges
(and rule variations) of interest.

This critique, moreover, betrays a certain naiveté about contemporary equation-based
modeling in many areas of applied science, such as climate modeling. The mathemat-
ical models of interest are huge systems of nonlinear reaction diffusion equations. In
practice, they are not solved analytically, but are approximated computationally. So, the
opposition of analytically soluble mathematical models on the one hand, and computa-
tional models on the other, while conceptually enticing, is quite artificial in practice.

4.4. Agent models deduce

Another misconception is that the explicit equation-based approach is deductive,
whereas the agent-based computational approach is not. This, too, is incorrect. Every re-



1592 J.M. Epstein

alization of an agent model is a strict deduction. There are a number of ways to establish
this. Perhaps the most direct is to note that it follows from the previous point.

Every program can be expressed in recursive functions. But recursive functions are
computed deterministically from initial values. They are mechanically (effectively)
computable—in principle by hand with pencil and paper. Given the nth (including the
initial) state of the system, the (n+ 1)st state is computable in a strictly mechanical and
deterministic way by recursion. Since this mechanical procedure is obviously deductive,
so is each realization of an agent model.

A more sweeping equivalence can be established, in fact. It can be shown that Tur-
ing machines, recursive functions, and first-order logic itself (the system of deduction
par excellence) are all strictly intertranslatable [see Hodel (1995)]. So, in a rigorous
sense, every state generated in an agent model is literally a theorem. Since, accepting
our motto, to explain is to generate (but not conversely), and to generate a state is to
deduce it as a theorem, we are led to assert that to explain a pattern is to show it to be
theorematic.

A third, slightly less rigorous way to think of it is this. Every agent program begins
in some configuration x—a set of initial (agent) states analogous to axioms—and then
repeatedly updates by rules of the form; if x then y. But, {x, x ⊃ y} is just modus
ponens, so the model as a whole is ultimately one massive inference in a Hilbert-type
deductive system. To “grow” a pattern p (and to explain a pattern p) is thus to show
that it is one of these terminal y’s—in effect, that it is theorematic, very much as in the
classic hypothetico-deductive picture of scientific explanation.

4.5. What about randomness?

If every run is a strict deduction, what about stochasticity, a common feature of many
agent models? Stochastic realizations are also strict deductions. In a computer, random
numbers are in fact produced by strictly deterministic pseudo-random number genera-
tors. For example, the famous linear congruential method [Knuth (1998)] to generate a
series of pseudo-random numbers is as follows:

Define: m, the modulus (m > 0); a, the multiplier (0 ≤ a ≤ m); c, the increment
(0 ≤ c ≤ m), and x(0), the seed, or staring value (0 ≤ x(0) ≤ m). Then, the (recursion)
scheme for generating the pseudo-random sequence is given in Figure 2, for n ≥ 0:

This determinism is why, when we save the seed and re-run the program, we get
exactly the same run again.

x(n + 1) = (
ax(n) + cmod m

)
Figure 2. Linear congruential method.
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4.6. What types of propositions are deduced?

In principle, the only objects we ever technically deduce are propositions. When we
deduce the Fundamental Theorem of Calculus, we deduce the proposition: “The definite
integral of a continuous real-valued function on an interval is equal to the difference of
an anti-derivative’s values at the interval’s endpoints.” The result is normally expressed
in mathematical notation, but, in principle, it is a proposition statable in English.5 In
turn, we explain an empirical regularity when that regularity is rendered as a proposition
and that proposition is deduced from premises we accept. For example, we explain
Galileo’s leaning Tower of Pisa observation (i.e., that objects of unequal masses dropped
from the same height land simultaneously) by strictly deducing, from Newton’s Second
Law and the Law of Universal Gravitation, the following proposition: “The acceleration
of a freely falling body near the surface of the earth is independent of its mass.”

Well, if agent models explain by generating, and thus deducing, and if, as I have
just argued, the only deducible objects are propositions, the question arises: what sorts
of propositions are deduced when agent models explain? In many important cases, the
answer is: a normal form.

4.7. Social science as the satisfaction of normal forms

We explain a pattern when the pattern is expressed as a proposition and the proposition is
deduced from premises we accept. Seen in this light, many of the macroscopic patterns
we, as social scientists, are trying to explain are expressible as large disjunctive normal
forms, DNFs. In general a DNF, δ has the logical form below

δ =
n∨

i=1

m∧
j=1

φij

where φij is a statement form [see Hamilton (1988)]. Clearly, this discussion applies to
arbitrarily large, but finite, populations.

5 In principal, it can be further broken down into statements about limits of sums, and so forth. As a com-
pletely worked out simple example, consider the mathematical equation

(2)lim
x→2

x2 = 4.

It asserts: “The limit of the square of x, as x approaches two, is four.” In further detail, it is the following
claim:

(3)∀(ε > 0)∃(δ > 0)[0 < |x − 2| < δ ⇒ |x2 − 4| < ε].
In English, “For every number epsilon greater than zero, there exists a number delta greater than zero such that
if the absolute value of the difference between x and 2 is strictly between zero and delta, then the absolute
value of the difference between the square of x and four is less than epsilon.” The fact that it is easier to
manipulate and compute with mathematical symbols than with words may say something interesting about
human psychology, but it does not demonstrate any limit on the precision or expressive power of English.
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Example 1. Distributions

Suppose, then, that we are trying to explain a skewed wealth distribution observed in
some finite population of agents. For simplicity’s sake, imagine three agents: A, B, and
C. And suppose we observe that 6 indivisible wealth units (the country’s GNP) are
distributed as 3 : 2 : 1. That is the empirical target; and our model will be deemed a
success if it grows that distribution, regardless of who has what. What that means is
that the successful model will generate any one of the six conjunctions in the following
DNF, shown in braces (where A3 means “Agent A has 3 units,” and so forth):

{
(A1 ∧ B2 ∧ C3) ∨
(A1 ∧ B3 ∧ C2) ∨
(A2 ∧ B1 ∧ C3) ∨
(A2 ∧ B3 ∧ C1) ∨
(A3 ∧ B1 ∧ C2) ∨
(A3 ∧ B2 ∧ C1)

}
The model succeeds if it grows any one of these conjuncts, that is, a conjunction whose
truth makes the DNF true.

Example 2. Spatial patterns

Likewise, suppose we are trying to model segregation in a population composed of two
white and two black agents (W1, W2, B1, B2) arranged on a line with four positions:
1, 2, 3, 4. The model works if it generates two contiguous agents of the same color,
followed by two contiguous agents of the other color. As above, we don’t care who is
where so long as we get segregation on the line. The truth of any of the eight conjunc-
tions of the following DNF will therefore suffice (here W12 denotes the proposition:
“white agent 1 occupies position 2”):

{
(W11 ∧ W22 ∧ B13 ∧ B24) ∨
(W11 ∧ W22 ∧ B23 ∧ B14) ∨
(W21 ∧ W12 ∧ B13 ∧ B24) ∨
(W21 ∧ W12 ∧ B23 ∧ B14) ∨
(B11 ∧ B22 ∧ W13 ∧ W24) ∨
(B11 ∧ B22 ∧ W23 ∧ W14) ∨
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(B21 ∧ B12 ∧ W13 ∧ W24) ∨
(B21 ∧ B12 ∧ W23 ∧ W14)

}.
Again, success in generating “segregation” consists in generating any one of these

conjunctions. That suffices to make the DNF true. While this exposition has been
couched in terms of wealth distributions and distributions of spatial position, it ob-
viously generalizes to distributions of myriad sorts (e.g., size and power), and with
straightforward modification, to sequences of patterns over time. A dynamic sequence
of patterns would, in fact, be a Conjunctive Normal Form (CNF), each term of which is
a DNF of the sort just discussed.6

4.8. Generative implies deductive, but not conversely: nonconstructive existence

A generative explanation is a deductive one. Generative implies deductive. The con-
verse, however, does not apply. It is possible to deduce without generating. Not all
deductive argument has the constructive character of agent-based modeling. Noncon-
structive existence proofs are clear examples. Often, these take the form of reductio ad
absurdum7 arguments, which work as follows.

Suppose we wish to prove the existence of an x with some property (e.g., that it is an
equilibrium). We take as an axiom the so-called Law of the Excluded Middle (LEM),
implying that either x exists or x does not exist. Symbolically:

∃x ∨ ¬∃x.

One of those must be true. Next, we assume that x does not exist and derive a contra-
diction. That is, we show that

¬∃x ⊃ [p ∧ ¬p].
Since contradictions are always False, this has the form:

¬∃x ⊃ F.

But this implication can be True only if the antecedent, ¬∃x, is False. From this it
follows from the LEM that ∃x is True and voila: the x in question must exist!

But we have failed to exhibit x, or specify any algorithm that would generate it,
patently violating our generative motto (1). We have failed to show that x is generable at
all, much less that it is generable on time scales of interest. But, the existence argument
is nonetheless deductive.

6 The general problem of satisfying an n-term CNF is NP-Complete. Garey and Johnson (1979). Based
on this observation, it is tempting to conjecture that nonequilibrium social science—suitably cast as CNF
satisfaction—is computationally hard in a rigorous sense.
7 Reduction to an absurdity.
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Now, there are deductive and nonconstructive existence proofs that do not use re-
ductio ad absurdum. One of my favorites is the beautiful and startling index theoretic
proof that, in regular economies, the number of equilibria must be an odd integer [see
Mas-Colell et al. (1995), Epstein (1997)]. This proof gives no clue how to compute the
equilibria. Like reductio, it fails to show the equilibria to be generable at all, much less
on time scales of interest. But, the existence argument is nonetheless deductive.

Hence, if we insist that explanation requires generability, we are led to the position
that deductive arguments can be non-explanatory. Generative explanation is deductive,
but deduction is not necessarily explanatory.

We have addressed the first two points of the indictment: that there are no equations,
and that agent modeling is not deductive. The third issue was the generality of agent
models. I would like to approach this topic by a seemingly circuitous route, extending
the preceding points on existence and generability into the areas of incompleteness and
computational complexity.

4.9. Incompleteness (attainability at all) and complexity (attainability on time scales
of interest) in social science

As background, in mathematical logic, there is a fundamental distinction between a
statement’s being true and its being provable. I believe that in mathematical social
science there is an analogous and equally fundamental distinction between a state of
the system (e.g., a strategy distribution) being an equilibrium and its being attainable
(generable). I would like to discuss, therefore, the parallel between the following two
questions: (1) Is every true statement provable? and (2) Is every equilibrium state at-
tainable?

In general, we are interested in the distinction between satisfaction of some criterion
(like being true, or being an equilibrium) and generability (like being provable through
repeated application of inference rules, or being attainable through repeated application
of agent behavioral rules).

Now, mathematico-logical systems in which every truth is provable are called com-
plete.8 The great mathematician David Hilbert, and most mathematicians at the turn
of the Twentieth Century, had assumed that all mathematical systems of interest were
complete, that all truths statable in those systems were also provable in them (i.e., were
deducible from the system’s axioms via the system’s inference rules). A major objective
of the so-called Hilbert Programme for mathematics was to prove precisely this. It came
as a tremendous shock when, in 1931, Kurt Godel proved precisely the opposite: all suf-
ficiently rich9 mathematical systems are incomplete. In all such systems, there are true
statements that are unprovable! Indeed, he showed that there were true statements that

8 Sometimes the terms adequate or analytical are used.
9 For a punctilious characterization of precisely those formal systems to which the theorem applies, see

Smullyan (1992).
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were neither provable nor refutable in the relevant systems—they were undecidable.10

[See Godel (1931), Smullyan (1992), Hamilton (1988)].
Now, truth is a special criterion that a logical formula may satisfy. For example,

given an arbitrary formula of the sentential calculus, its truth (i.e., its tautologicity) can
be evaluated mechanically, using truth tables. Provability, by contrast, is a special type
of generability. A formula is provable if, beginning with a distinguished set of “start-
ing statements” called axioms, it can be ground out—attained, if you will–by repeated
application of the system’s rule(s) of inference.

Equilibrium (Nash equilibrium, for example) is strictly analogous to truth: it too is a
criterion that a state (a strategy distribution) may satisfy. And the Nash “equilibrium-
ness” of a strategy configuration (just like the truth of a sentential calculus formula) can
be checked mechanically.

I venture to say that most contemporary social scientists—analogous to the Hilber-
tians of the 1920s—assume that if a social configuration is a Nash equilibrium, then it
must also be attainable. In short, the implicit assumption in contemporary social science
is that these systems are complete.

However, we are finding that this is not the case. Epstein and Hammond (2002) offer a
simple agent-based game almost all of whose equilibria are unattainable outright. More
mathematically sophisticated examples of incompleteness include Prasad’s result, based
on the unsolvability of Hilbert’s 10th problem:

For n-player games with polynomial utility functions and natural number strategy
sets the problem of finding an equilibrium is not computable. There does not exist
an algorithm which will decide, for any such game, whether it has an equilibrium
or not. . . When the class of games is specified by a finite set of players, whose
choice sets are natural numbers, and payoffs are given by polynomial functions,
the problem of devising a procedure which computes Nash equilibria is unsolvable.
[Prasad (1997)]

Other examples of uncomputable (existent) equilibria include Foster and Young (2001),
Lewis (1985, 1992a, 1992b), and Nachbar (1997). Some equilibria are unattainable out-
right.

A separate issue in principle, but one of great practical significance, is whether attain-
able equilibria can be attained on time scales of interest to humans. Here, too, we are
finding models in which the waiting time to (attainable) equilibria scales exponentially
in some core variable. In the agent-based model of economic classes of Axtell et al.
(2001), we find that the waiting time to equilibrium is exponential in both the number
of agents and the memory length per agent, and is astronomical when the first exceeds
100 and the latter 10. Likewise, the number of time steps (rounds of play) required to
reach the attainable equilibria of the Epstein and Hammond (2002) model was shown
to grow exponentially in the number of agents.

10 Importantly, he did so constructively, displaying a (self-referential) true statement that is undecidable; that
is, neither it nor its negation are theorems of the relevant system.
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One wonders how the core concerns and history of economics would have devel-
oped if, instead of being inspired by continuum physics and the work of Lagrange
and Hamilton [see Mirowski (1989)]—blissfully unconcerned as it is with effective
computability—it had been founded on Turing. Finitistic issues of computability, learn-
ability, attainment of equilibrium (rather than mere existence), problem complexity, and
undecidability, would then have been central from the start. Their foundational impor-
tance is only now being recognized. As Duncan Foley summarizes,

The theory of computability and computational complexity suggest that there are
two inherent limitations to the rational choice paradigm. One limitation stems from
the possibility that the agent’s problem is in fact undecidable, so that no computa-
tional procedure exists which for all inputs will give her the needed answer in finite
time. A second limitation is posed by computational complexity in that even if her
problem is decidable, the computational cost of solving it may in many situations
be so large as to overwhelm any possible gains from the optimal choice of action.
[See Albin (1998).]

For fundamental statements, see Simon (1982, 1987), Hahn (1991), and Arrow (1987).
Of course, beyond these formal limits on canonical rationality, there is the body of
evidence from psychology and laboratory behavioral economics that homo sapiens just
doesn’t behave (in his decision-making) like homo economicus.

Now, the mere fact that an idealization (e.g., homo economicus) is not accurate in
detail is not grounds for its dismissal. To say that a theory should be dismissed because
it is “wrong” is vulgar. Theories are idealizations. There are no frictionless planes, ideal
gases, or point masses. But these are useful idealizations in physics. However, in social
science, it is appropriate to ask whether the idealization of individual rationality in fact
illuminates more than it obscures. By empirical lights, that is quite clearly in doubt.

This brings us to the issue of generality. The entire rational choice project, if you
will, is challenged by (1) incompleteness and outright uncomputability, by (2) compu-
tational complexity (even of computable equilibria), and by (3) powerful psychological
evidence of framing effects and myriad other systematic human departures from canon-
ical rationality. Yet, the social science theory that enjoys the greatest formal generality11

(and mathematical elegance) is precisely the rational choice theory.

4.10. Generality is quantification over sets

Now, generality has to do with quantification. Universal gravitation says that for any
two masses whatsoever, the attractive gravitational force is inversely proportional to
the square of the separation distance. Mechanics quantifies over the set of all masses.
Axiomatic general equilibrium theory quantifies over the set of all consumers in the

11 Here, I mean generality in the theory’s formal statement, not in its range of successful empirical applica-
tion.
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economy, positing constrained utility maximization for every agent in the system. Ra-
tional choice theory likewise posits expected utility maximization for all actors.

Clearly, agent modelers do not quantify over sets this big. There is a great deal of
experimentation with tags, imitation, evolution, learning, bounded rationality, and zero-
intelligence traders, for example. In many cases, however, the experiment is motivated
by responsiveness to data. Empirically successful (generatively sufficient) behavioral
rules for the Artificial Anasazi of 900 A.D. probably should not look much like the
agent rules in the Axtell–Epstein (Axtell and Epstein, 1999) model of U.S. retirement
norms, which in turn may have little relation to the rules governing agents in Axtell’s
(Axtell, 1999) model of firms, or the Epstein et al. (2004) model of smallpox response,
or the zero-intelligence traders of Farmer et al. (2003). Yet, despite their diversity, these
models are impressive empirically. If reasonable fidelity to data requires us to be ad hoc
(i.e., to quantify over smaller sets), with different rules for different settings, then that
is the price of empirical progress.

4.11. Truth and beauty

All of this said, the real reason some mathematical social scientists don’t like compu-
tational agent-based modeling is not that the approach is empirically weak (in notable
areas, it’s empirically stronger than the neoclassical approach). It’s that it isn’t beauti-
ful. When theorists, such as Frank Hahn, lament the demise of “pure theory” in favor of
computer simulation [Hahn (1991)], they are grieving the loss of mathematical beauty.
I would argue that reports of its death are premature. Let us face this aesthetic issue
squarely.

On the topic of mathematical beauty, none have written more eloquently than
Bertrand Russell (1957):

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a
beauty cold and austere, like that of sculpture, without appeal to any part of our
weaker nature, without the gorgeous trappings of painting or music, yet sublimely
pure, and capable of a stern perfection such as only the greatest art can show.

Later, in the same essay, Russell writes:

In the most beautiful work, a chain of argument is presented in which every link is
important on its own account, in which there is an air of ease and lucidity through-
out, and the premises achieve more than would have been thought possible, by
means which appear natural and inevitable. (emphasis added)

Hahn (1991) defines “pure theory” as “the activity of deducing implications from a
small number of fundamental axioms.” And when he writes that “with surprising fre-
quency this leads to beauty (Arrow’s Theorem, The Core, etc.),” it is clear that it is
Russell’s beauty he has in mind.

Generality (mathematical unification) for its own sake satisfies this fine impulse to
beauty and has proven to be highly productive scientifically. Physics is highly general,
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and so is mathematical equilibrium theory. And, as Mirowski (1989) has documented,
“physics envy” was quite explicitly central to its development. This is entirely under-
standable. Any scientist who doesn’t have physics envy is an idiot. I am not advocating
that we abandon the quest for elegant generality in favor of a case by case narrative (i.e.,
purely historical) approach. By comparison to a beautiful (Newton-like) generalization,
actual history is just this particular apple bobbling down this particular hill. To me, the
mathematical theory of evolution is more beautiful than any particular tiger. One of
the most miraculous results of our own evolution is that our search for beauty can lead
to truth. But there are different kinds of beauty. An analogy to music history may be
apposite.

Just as the German classical composers had the dominant 7th and circle of fifths
as harmonic propulsion, so the neoclassical economists have utility maximization to
propel their analyses. And it is a style of “composition” subscribed to by an entire
school of academic thought. We agent modelers are not of this school. We don’t have
the Germanic dominant 7th of utility maximization to propel every analysis forward—
more like the French impressionists, we must in each case be inventive to solve the
problem of social motion, devising unique agent rules model by model. If that makes us
ad hoc, then so was Debussy, and we are in good artistic company.

Schelling’s (Schelling, 1971) segregation model is important not because it’s right
in all details (which it doesn’t purport to be), and it’s beautiful not because it’s visu-
ally appealing (which it happens to be). It’s important because—even though highly
idealized—it offers a powerful and counter-intuitive insight. And it’s beautiful because
it does so with startling Russellian parsimony. The mathematics of chaos is beautiful
not because of all the pretty fractal pictures it generates, useful as these are in stimulat-
ing popular interest. What’s beautiful in Russell’s sense is the startlingly compact yet
sweepingly general Li–Yorke (Li and Yorke, 1975) theorem that “period three implies
chaos.” And when an agent-based model is beautiful in this deep sense, it has nothing
to do with the phantasmagorical “eye candy”—Russell’s gorgeous trappings—of ani-
mated dot worlds. Rather, its beauty resides in the far-reaching generative power of its
simple micro-rules, seemingly remote from the elaborate macro patterns they produce.
Precisely as Russell would have it: “the premises achieve more than would have been
thought possible, by means which appear natural and inevitable.”

The musical parallels are again irresistible. To be sure, Bach’s final work, The Art
of the Fugue, is gorgeous music, but to Bach, the game was to explore the generative
power of a single fugue theme. Bach wrote nineteen stunningly diverse fugues based on
this single theme, this “premise,” if you will.12 In Bach’s hands, it certainly “achieves
more than would have been thought possible.” While its musical beauty is clear, the
intellectual beauty lies not in the sound, but in its silent unified structure. Perhaps the
best agent models unfold as “social fugues” in which the apparent complexity is in fact
generated by a few simple individual rules.

12 Bach died before completing this work, and doubtless could have composed countless further fugues.
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In any case, and whatever one’s aesthetic leanings, agent modelers are in good scien-
tific company trading away a certain degree of generality for fidelity to data. The issue
of induction arises in this connection.

4.12. Induction over theorem distributions

As noted earlier, one powerful mode of agent-based modeling is to run large numbers of
stochastic realizations (each with its own random seed), collect clean data, and build up
a robust statistical portrait of model output. One goal of such exercises is to understand
one’s model when closed form analytical expressions are not in hand (though these
exist in principle, as discussed). A second aim of such exercises is to explain observed
statistical regularities, such as the distribution of firm sizes in the U.S. economy [Axtell
(1999, 2001)]. In either case, one builds up a large sample of model realizations. But, as
emphasized earlier, each realization is a strict deduction. So, while I have no objection
to calling such activity inductive, it is induction over a sample distribution of theorems,
in fact. And it has quite a different flavor from “inductive” survey research, where one
collects real-world data and estimates it by techniques of aggregate regression.

5. Summary

A number of uses of agent-based models have not been touched on here. These include
purely exploratory applications and those related to mechanism design, among others
[see Epstein (1999)]. My focus has been on computational agent models as instruments
in the generative explanation of macroscopic social structures. In that connection, the
main epistemological points treated are as follows:

(1) We distinguish the generative motto from its converse. The position is:

∀x(¬Gx ⊃ ¬Ex).

If you didn’t grow it, you didn’t explain it. But not conversely. A microspeci-
fication that generates the explanandum is a candidate explanation. Generative
sufficiency is explanatorily necessary, but not explanatorily sufficient. There may
be more than one explanatory candidate, as in any science where theories com-
pete.

(2) For every agent model, there exist unique equivalent equations. One can express
any Turing Machine (and hence any agent model) in partial recursive functions.
Many agent models have been revealingly mathematized in other ways, as sto-
chastic dynamical systems, for example.

(3) Every realization of an agent model is a strict deduction. So, (Gx ⊃ Dx), but
not conversely, as in non-constructive (reductio ad absurdum) existence proofs.
One can have (Dx ∧¬Gx) and hence, by (1), (Dx ∧¬Ex). Not all deduction is
explanatory.
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(4) We often generate, and hence deduce, conjuncts satisfying Disjunctive Normal
Forms, as when we grow distributions or spatial settlement patterns in finite agent
populations.

(5) We carefully distinguish between existence and attainability in principle. And
we furthermore carefully distinguish between asymptotic attainability and at-
tainability on time scales of interest. In short, we are attentive to questions of
incompleteness (á la Godel) and of computational complexity (as in problems
whose time complexity is exponential in key variables). These considerations,
when combined with powerful psychological evidence, cast severe doubt on the
rational choice picture as the most productive idealization of human decision-
making, and serve only to enforce the bounded rationality picture insisted on by
Simon (1982).

(6) Generality, while a commendable impulse, is not of paramount concern to agent-
based modelers at this point. Responsiveness to data often requires that we quan-
tify over smaller sets than physics or neoclassical economics. If that is ad hocism,
I readily choose it over what Simon (1987) rightly indicts as an empirically obliv-
ious a priorism in economics.

(7) Empirical agent-based modeling can be seen as induction over a sample of real-
izations, each one of which is a strict deduction, or theorem, and comparison of
the generated distribution to statistical data. This differs from inductive survey
research where we assemble data and fit it by aggregate regression, for example.

6. Conclusion

As to the core indictment that agent models are non-mathematical, non-deductive, and
ad hoc, the first two are false, and the third, I argue, is unimportant. Generative ex-
planation is mathematical in principle; recursive functions could be provided. Ipso
facto, generative explanation is deductive. Granted, agent models typically quantify
over smaller sets than rational choice models and, as such, are less general. But, in many
cases, they are more responsive to data, and in years to come, may achieve greater gen-
erality and unification. After all, a fully unified field theory has eluded even that most
enviable of fields, physics.
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Abstract

Economic growth depends not only on how people make decisions but also upon how
their decisions are coordinated. Because of this, aggregate outcomes can diverge from
individual intentions. I illustrate this with reference to the modern literature on eco-
nomic growth, and also with reference to an older literature on the stability of full-
employment equilibrium. Agent-based computational methods are ideally suited for
studying the aspects of growth most affected by coordination issues.
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1. Introduction

Economic growth, like most economic phenomena, depends on the incentives that
people face when making decisions. Measured in per-capita terms, growth cannot be
sustained indefinitely unless some combination of capital, skills and knowledge grows
without bound. So we cannot understand long-term growth without some understand-
ing of what induces people to invest in capital, skills and knowledge. Reduced-form
AK theories focus on the intertemporal choices by households that underlie capital ac-
cumulation. Innovation-based growth theories of the sort that Philippe Aghion and I
have been working on for some time1 focus on the R&D decisions of profit-seeking
business firms that lead to the innovations that raise the stock of disembodied techno-
logical knowledge. Human-capital based theories focus on the time-allocation decisions
of households investing in education and training. In all cases, changes that impinge on
the incentives of the decision makers affect an economy’s long-run growth rate.

Some writers have gone so far as to make incentives the sine qua non of growth eco-
nomics. Thus Easterly (2001, p. 289) states that “Prosperity happens when all the play-
ers in the development game have the right incentives,” and quotes approvingly (p. xii)
from Steven Landsburg that “People respond to incentives; all the rest is commentary.”
To Lucas (2002, p. 17) what matters above all is the incentives facing household deci-
sion makers:

For income growth to occur in a society, a large fraction of people must experi-
ence changes in the possible lives they imagine for themselves and their children,
and these new visions of possible futures must have enough force to lead them to
change the way they behave, the number of children they have, and the hopes they
invest in these children: the way they allocate their time.

My purpose in this essay is to take issue with this exclusive focus on incentives and
the logic of choice. Not to deny that incentives matter for economic growth but to assert
that much else matters also, and that much of what also matters is ideally suited for
study by computational methods.

Economies are large complex systems that can be studied at different levels. Macro-
economic issues, which involve the functioning of the system as a whole, need to be
studied at a coarser level than microeconomic issues involving the behavior of just one
market or just a small group of individuals, households or business firms. A clear un-
derstanding of the entire system would be obscured by focusing on a detailed analysis
of these constituent working parts, just as a clear understanding of ocean tides would
be obscured by focusing on the molecules of water in the ocean, or a clear view of a
pointillist painting would be obscured by examining each dot one at a time. The system
as a whole is not a macrocosm of its individual parts and the parts are not microcosms
of the whole. Instead, as Schelling (1978) has argued forcefully, macro behavior can

1 Aghion and Howitt (1998a).
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depart radically from what the individual units are trying to accomplish. So when you
stand back the details become hard to see but patterns emerge that were not visible from
up close.

Thus my primary objection to the agenda laid out by Lucas and others is that it is
likely to involve a fallacy of composition. Incentives and decision-making are properties
of the constituent parts of an economy, whereas economic growth is a property of the
system as a whole. If the economy functioned as a macrocosm of its parts then focusing
on incentives would yield a clear picture of the growth process. But I believe it is not.
What matters at the macro level is not just how individual transactors formulate their
plans but also the nature of their interactions with each other and with their environment.
In short, an economy’s growth performance often depends not so much on how people
make their decisions as it does on how those decisions are coordinated, or in some cases
how the decisions become uncoordinated.

One of the virtues of the ACE approach to economics, as outlined by Tesfatsion
(2006), is that it forces one to make explicit the mechanisms through which individual
actions are coordinated, for better or worse. That is, in order to make a model “dynam-
ically complete,” in Tesfatsion’s terminology, one has to specify what will happen from
any given set of initial conditions, including those in which different people are acting
on the basis of inconsistent beliefs and hence in which aggregate outcomes will neces-
sarily diverge from individual intentions. Another virtue of the ACE approach is that it
provides a method for discovering a system’s “emergent properties,” i.e. those proper-
ties that are not inherent in the individual components. Thus it seems ideally suited for
studying those aspects of the growth process that go beyond the Lucas agenda.2

2. The representative agent model and its limitations3

The idea that the economy as a whole can behave very differently from what the indi-
vidual transactors are trying to accomplish is hardly original. Indeed one of the oldest
themes of economic theory is that things are not as they seem to the individual. The
classical economists delighted in pointing out how the unconstrained pursuit of maxi-
mal profit by competing sellers would end up minimizing their profit. Smith’s attack on
mercantilism was based on the idea that although the accumulation of precious metals
would make an individual wealthy it would not do the same for a nation. Keynes argued
that the unemployment rate was determined not by individual labor-supply decisions but
by what was happening in product markets and in the financial system. The first text-
books promoting the Keynesian revolution highlighted the paradox of thrift, according
to which the attempt by individual households to save more could end up reducing the

2 Work that has used the ACE approach for studying technological change, the ultimate mainspring of long-
run growth, is surveyed by Dawid (2006).
3 The limitations of the representative agent model have been examined extensively by Kirman (1992).
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economy’s overall level of saving. One of Friedman’s central arguments in promoting
Monetarism was that people who favor a policy of cheap money don’t realize that in
the long run this will cause higher interest rates. Thus what happens to profits, wealth,
unemployment, saving or interest rates depends not so much on individual choices and
intentions as on how those choices and intentions are coordinated. Focusing on the in-
centives faced by individuals trying to influence the variable would produce the wrong
answer. A broader perspective is needed.

But by the start of the 21st Century, the education of a macroeconomist no longer
included any warnings against the fallacy of composition. On the contrary, the very
foundations of modern macroeconomics, as practiced in academic research and taught
to graduate students, is the belief that macro variables are best understood by focusing
on the details of decision-making by individual households and firms. In such theories,
macroeconomic variables such as interest rates, wage rates and unemployment rates
reflect intertemporal substitution and time-allocation decisions on the part of a repre-
sentative household, whose behavior is indeed a small-scale replica of the system as a
whole. High unemployment reflects a disincentive to work, low saving a disincentive to
abstain from current consumption, and high interest rates a high rate of individual time
preference or a low elasticity of intertemporal substitution in consumption. The fallacy
of division that this approach entails is just the dual of the fallacy of composition. In
effect, these twin fallacies play an even bigger role in a macroeconomist’s education
than they did a generation ago; the difference is that instead of being taught as pitfalls
to be avoided they are now presented as paradigms to be emulated.

How this transformation in economics took place is a long story that I cannot begin
to unravel here. The transformation is clearly related to the rational-expectations revo-
lution started by Lucas’s celebrated Journal of Economic Theory paper (Lucas, 1972),
which provided a micro-foundation for a macro theory that claimed to reconcile the
long-run neutrality of money with short-run non-neutrality. When rational expectations
was adopted by the advocates of Keynesian economics as well as by its critics, the gap
between micro and macro became not bridged but papered over. For the very idea that
individual actions could have unforeseen consequences does not sit easily with the idea
that everyone acts rationally, guided by an accurate model of how the overall economy
works. Moreover, the very terminology of “rational” expectations draws one’s attention
to individual thought processes, obscuring the fact that the achievement of rational ex-
pectations is really a collective process requiring the coordination of what must initially
have been non-rational expectations.

But clearly there is more to this transformation than rational expectations. The history
of the development of Keynesian macroeconomics from the end of World War II was
one of providing a choice-theoretic underpinning to the behavioral functions that com-
prise the IS-LM system. The representative household and firm played as much a part in
this pre-rational-expectations theoretical development as they have since 1972. It seems
that in seeking to provide a bridge between micro and macro, economists have been
driven by a reductionist imperative to bring everything down to the level of individual
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choices and by an “irrational passion for dispassionate rationality.”4 Conventional ac-
ceptance of these attitudes makes it easy to dismiss as ad hoc or poorly grounded any
theory that starts with behavioral rules not explicitly derived from rational foundations.
Adherence to this standard makes it necessary to use something like the representative
agent just to keep manageable a model of the whole economy that focuses sharply on
the constituent parts. It also makes it necessary to assume away most of the coordination
problems that would get in the way of rational expectations by blurring the link between
individual choices and their consequences.

To be sure, not all macroeconomists accept this representative-agent view of short-run
macroeconomics, and much progress has been made recently in studying the coordina-
tion problems that might impede the formation of rational expectations (see for example
Sargent, 1993 or Evans and Honkapohja, 2001). But there is still a widespread belief
that the importance of coordination problems is limited to short-run theory, like the
price-stickiness that can keep the economy away from its natural rate of unemployment
in the short run or the informational imperfections that permit a short-run Phillips curve
to be exploited by policy-makers. It is generally regarded as uncontroversial to model
long-run phenomena like economic growth by assuming that aggregate variables are
chosen rationally by some representative agent, whose incentives are therefore all that
really matter for understanding the economy’s performance.

Economics being an empirical science, the first question to ask of the agenda that
Lucas and others have laid out is whether there is a prima facie case for believing that
overall economic performance reflects the intentions of the individual decision makers.
Is it really true that, to a first approximation, rich nations are those whose citizens have
a lot of education, save a large fraction of their incomes and work long hours? More to
the point, is it really true that nations that grow rapidly are those in which there is high
investment in physical capital, education and R&D?

The evidence from the recent “development accounting” literature is not all that con-
vincing. Although Mankiw et al. (1992) tried to argue that 75 percent or more of the
cross-country variation in per-capita GDP was accounted for by a simple Solow–Swan
model in which the main variables were investment rates in physical capital and en-
rollment rates in education, the vast literature spawned by this provocative article has
shown that these rates are themselves endogenous to income levels and also highly
correlated with productivity. Thus it seems that countries with high investment and en-
rollment rates tend to be rich to a large extent just because they are also nations in which
more output can be produced from any given amount of physical capital and education.
Klenow and Rodríguez-Clare (1997) estimate that more than 60 percent of the cross-
country variation of per-worker GDP is attributable to productivity rather than to the
accumulation of physical and human capital.

When it comes to accounting for differences in growth rates, which is after all the
primary objective of growth theory, the evidence for the incentive agenda is even less

4 The phrase, which I first heard from David Laidler, is commonly attributed to J.M. Clark.



Ch. 35: Coordination Issues in Long-Run Growth 1611

convincing. According to Klenow and Rodríguez-Clare, over 90 percent of the cross-
country variation in growth rates of per-worker GDP is attributable to differences in
productivity-growth rates rather than to differences in investment rates or enrollment
rates. Thus it seems that almost everything to be explained by the theory lies in the
Solow residual, which Abramowitz once called nothing more than a measure of our
ignorance.

This is part of the evidence that inclines me towards innovation-based growth theory,
since most of the effects of innovation work through productivity-growth rates. So is
it really countries that spend a large proportion of their GDP on R&D that have the
fastest productivity-growth rates? Coe and Helpman (1995) and Coe et al. (1997) have
examined the cross-country relationships between growth rates and R&D intensities
(the fraction of GDP spent on R&D) and found that there is indeed a powerful relation-
ship, but what matters to an individual country is not so much its own R&D intensity
as that of its major trading partners. This mirrors at the country level the result that one
typically finds at the industry level (see for example Zachariadis, 2003). That is, the
research efforts undertaken by firms in one country or one industry aimed at enhancing
their own productivity end up enhancing productivity in other countries and industries.
Presumably this reflects a process of technology spillover, or what is sometimes called
“technology transfer.” So here again, the behavior of a variable (one country’s produc-
tivity or one industry’s productivity) is an unintended consequence of the incentives
faced at the individual level, a consequence that involves the channels through which
individual transactors interact rather than the manner in which they decide to act.

3. Externalities and unintended side effects

As I have already observed, the professional consensus in macroeconomics seems to be
that coordination issues are more important for short-run theory than for the theory of
long-run growth. This is a legacy of the neoclassical synthesis, according to which sticky
prices and informational imperfections are just transitory impediments to the smooth
coordination of rational choices. More generally it reflects what Clower and Howitt
(1998) have called the “classical stability hypothesis,” to the effect that in the long run
the economy will converge to a coordinated state. Yet there are sound theoretical reasons
for thinking that the process of economic growth brings with it a set of forces that widen
the gap between individual intentions and aggregate outcomes rather than the reverse,
and reasons for thinking that the growth process often exacerbates the impediments to
smooth coordination rather than the reverse. The present section of the paper and the
next elaborate on this point.

One reason why the growth process can widen the intention-output gap is the central
role that externalities play in the process. The ultimate mainspring of growth is tech-
nological change, which is known to involve significant external effects: the empirical
work on technology spillovers referred to above corroborates a plausible theoretical
presumption that the ideas generated by R&D are hard to appropriate. Thus as Arrow
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(1969) argued, innovation tends to go under-rewarded because it confers much of its
benefits on third parties. To complicate matters, Schumpeter’s notion of creative de-
struction, which Aghion and I have developed in our work, involves a negative spillover
that tends to give people too strong an incentive to perform R&D. That is, the firm
performing R&D takes into account the prospective rents that would be created by a
new product or process but does not take into account the rents that would be destroyed
through obsolescence by the same innovation.

Externalities are hard to ignore in growth theory not just because of these substantive
reasons but also because of the technical difficulties of coping with increasing returns
to scale. That increasing returns is involved in one form or another once technology
becomes endogenous has been recognized at least since Allyn Young (1928). In modern
innovation-based theory increasing returns takes the form of a setup cost of research,
which is independent of the size of the market to be served by the resulting innovations.
Producing the first unit of a new product takes so much resource input for the original
innovation and so much for the variable production cost. Producing each subsequent
unit requires only the variable cost. Average cost is thus decreasing with the amount
produced.

Indeed the upsurge of endogenous growth theory in the past two decades can ar-
guably be attributed not so much to the new substantive ideas that it has produced as
to the progress it has made in dealing with the technicalities of increasing returns. In
particular, we know that a competitive equilibrium without externalities generally fails
to exist in a world with ubiquitous decreasing cost. You need to introduce some combi-
nation of either pecuniary externalities (imperfect competition) or direct non-pecuniary
externalities. What endogenous growth theory did was to borrow techniques for dealing
with these externalities from other areas of economics (the Dixit–Stiglitz–Ethier model
for dealing with imperfect competition and the concept of symmetric anonymous Nash
equilibrium for dealing with non-pecuniary externalities) in order to develop manage-
able models of ideas that have been common among economic historians and specialists
in the economics of technology for several generations.

How the growth theories that have been developed on these grounds can generate
aggregate outcomes that contradict individual intentions is illustrated by a central result
of Aghion et al. (2001) concerning the effects of intellectual property protection on an
economy’s overall level of R&D and hence on its overall rate of technological progress.
Weaker patent protection reduces the direct incentive for a firm in any given situation to
perform R&D. Yet it can actually raise the aggregate level of R&D and hence raise the
overall rate of technological progress. It does this through a “composition effect,” which
works as follows. Innovation takes place at the greatest rate in those industries where the
leading firms are neck-and-neck; that is, where they produce using similar technologies.
This is because profits are lowest in such industries and hence the incentive to escape
competition by innovating is strongest. If patent laws were weakened, a firm with any
given technological lead over its rivals would have its incentive to innovate blunted, but
the steady-state distribution of lead sizes would also be changed; specifically, more firms
would find themselves in the R&D-intensive situation of neck-and-neck competition
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because of a rival’s success in imitating their technological capability. As a result, it can
be shown theoretically that under a wide variety of circumstances there is a point up to
which weaker patent laws will raise the economy’s overall growth rate, even though the
incentive for a firm in any given situation goes in the opposite direction.

Likewise, as Mokyr (1990) has argued, nations that experience the most rapid growth
are not necessarily those in which people have the strongest incentive to develop new
technologies but those which have developed the greatest tolerance for, and capacity
to adjust to, the many negative side-effects of economic growth. Those negative side-
effects are almost always the result of obsolescence—the destructive side of creative
destruction. Because of obsolescence, technological change is a game with losers as
well as winners. From the handloom weavers of early 19th century Britain to the former
giants of mainframe computing in the late 20th century, many people’s skills, capital
equipment and technological knowledge have been devalued and rendered obsolete by
the same inventions that have created fortunes for others. The conflict between winners
and losers from new technologies is a recurrent theme in economic history, and the
difficulty of mediating the conflict affects society’s willingness to foster and tolerate
economic growth.

Thus for example, ever since the introduction of machinery into manufacturing
processes in the early part of the industrial revolution, people have been worried that
economic growth could cause technological unemployment. Mainstream professional
economists have tended to regard such popular concerns as fallacious, with a few noto-
rious exceptions like Ricardo’s (Ricardo, 1821) chapter “On Machinery”. The classical
stability hypothesis leads one to believe that the unemployment created by any one tech-
nological innovation should be short-lived; those rendered unemployed will eventually
find employment elsewhere. But this is not true if we look at an increase in the rate
at which new technologies are being introduced rather than at a single innovation. As
Aghion and Howitt (1994) have argued, a faster pace of job-destroying innovations will
raise the flow into unemployment in any given situation, and can thereby increase the
steady-state (natural?) rate of unemployment.

Unemployment is more of a social problem in some countries than others. In the
United States, for example, where wages are more flexible and employment regulations
less restrictive, technologically induced unemployment is likely to be less of a social
problem than in many European countries. But this just tends to exacerbate another
common side-effect of rapid technological progress, namely rising wage-inequality. As
many have pointed out, the last quarter of the 20th Century was a period of rapidly
rising inequality, especially in the United States. Although public opinion often blames
globalization for this rise in inequality, the culprit to which academic research points
more often is skill-biased technological change. In short, the same phenomenon that
caused high unemployment levels in Europe by destroying jobs seems to have caused
high wage-inequality in the US by enriching those who can work with new technologies
and driving those whose jobs are destroyed into less remunerative jobs.

To some extent this side effect is one that can be dealt with by more investment in
education—by raising the number of people able to work profitably with new technolo-
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gies instead of being displaced by new technologies. In principle this should help not
just those whose skills are enhanced by more education but also those who remain rel-
atively less skilled, whose wages should be lifted by their increasing relative scarcity.
But recent theoretical research suggests at least two problems with this approach. One
is that not all of the increase in inequality is explained by an increasing educational
premium. Instead, roughly half of the overall increase is attributable to a rise in resid-
ual inequality, the inequality that is unexplained by education, experience or any other
observable individual characteristic.

Aghion et al. (2002), have argued that this is because whether or not someone is able
to work with new technologies is often a matter of pure luck rather than of education
levels. The luck factor is always there in the wage distribution; indeed we know that in-
come inequality between identical twins tends to be about as large as within the whole
population. But it was greatly leveraged by the IT revolution, not only because this was
a general purpose technology that hastened the pace of technical change, and hence fur-
ther raised the wages of those lucky enough to have just the right skills, but also because
of the nature of IT. That is, because of the generality of computer technology and the
associated reduction in communication costs, many of those lucky enough to be able to
work on the leading edge of technology today have skills that can easily be marketed
throughout the entire economy, rather than in just one sector, and they receive a com-
pensation that is correspondingly enhanced. There is nothing that increased investment
in human capital can do to counteract this particular side effect of economic growth.

The other problem that has been raised by theoretical research is the “market-size
effect” that Acemoglu (2002) has explained. That is, because the cost of R&D takes
the form of a setup cost, researchers tend to direct their efforts towards enhancing the
productivity of factors that are relatively abundant in the economy rather than those that
are relatively scarce; although the cost of either type of effort might be the same, the
payoff is larger from enhancing a factor that is more widely used. Acemoglu shows how
this can produce a positive feedback loop, whereby more education induces even more
innovations that enhance the relative productivity of educated workers and hence in-
crease their relative wage, which in turn induces even more people to become educated.
This is just fine for those who are capable of joining in, but for the old and less able
the situation is one of increasing relative poverty, one that would just be exacerbated by
policies raising the incentive to acquire education.

Societies that are willing to cope with and possibly mitigate high unemployment
and/or high inequality are thus likely to be those that put up the fewest impediments
to the introduction and adoption of new technologies, and hence to be those that have
the highest long-run growth rates. Of course incentives matter in this story, but not those
that we would be led to examine by simple representative-agent models. What promotes
growth in these stories is not the willingness of households to accumulate physical or
human capital or the willingness of firms to engage in R&D but rather the willingness
of politicians to permit side effects to persist or to devise institutions like unemploy-
ment insurance, redistributive schemes, relocation subsidies, etc., that alleviate the side
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effects. In short, economic growth is at least as much about mediating social conflict as
it is about the individual virtues of thrift, study and hard work.

4. Uncertainty and the classical stability hypothesis

The main reason for thinking that the growth process can exacerbate coordination prob-
lems is the fundamental uncertainty of technological progress. Technological innovation
is a destabilizing force that is constantly disrupting established patterns of economic
activity, much like the disturbance term in a time-series process. But the path that
technology follows is a highly non-stationary one which, while it may exhibit some
aggregate patterns, is virtually unpredictable in its details. Thus from the point of view
of the individual decision maker, an innovation is not something that simply alters the
initial condition in some well understood dynamic game, but one that destroys the value
of previous information and starts an adaptive learning process all over again. The more
rapid the pace of innovation the more chaotic the process becomes, the less confidence
people are able to place in history as a guide to the future, and therefore the more likely
their individual plans are to be thwarted by unsuspected macro forces.

The unpredictability of technological progress is a major theme in the writing of
Nathan Rosenberg, who has pointed out how technologies that were developed for one
purpose very often had their major impact on something their discoverer was unaware
of. Bell Labs, for example, where scientists invented the laser, was reluctant to patent it
because in their opinion it had no conceivable industrial uses in the telephone industry
(Rosenberg, 1994, p. 223). Thomas Watson Sr., the founder of IBM, at first regarded the
computer as a highly specialized scientific instrument with no potential commercial uses
(Rosenberg, 1994, p. 220). Technological developments in the sewing machine industry
ended up having a major effect on automobiles, which had not yet been invented at the
time of the discoveries (Rosenberg, 1963).

Writers like Brian Arthur (1989) have observed that because of this fundamental
uncertainty, the pace and direction of innovation are necessarily guided by short-term
considerations, even though they can lead society down irreversible paths whose long-
run consequences are of great import, especially when there are “network externalities”
involved. That is, the course of technological progress, rather than reflecting the in-
tentions of those individuals that create it, is a social process driven by the largely
unforeseen consequences of individual decisions. If these aggregate consequences are
unforeseen at the level of the individuals involved then surely we have little chance our-
selves of understanding them unless we look at them from a different level, presumably
from the level of the system as a whole.

The disruptiveness of technological change is something that writers like Freeman
and Perez (1988) and David (1990) have analyzed extensively. They argue that major
technological changes come in waves, driven by what are now commonly called gen-
eral purpose technologies (GPTs); that is, new technologies that are used throughout
the economy, have a profound effect on the way economic life is organized, and give
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rise to a wave of complementary innovations. In the long run our standard of living has
been greatly enhanced by the succession of GPTs introduced since before the first In-
dustrial Revolution, including such things as the steam engine, electric power, and the
computer.5 However, the period during which a new GPT is being introduced can be a
period of wrenching adjustment, not just at the level of the individual firm but for the
economy as a whole.

There are many aspects to this adjustment cost that have been studied in the litera-
ture. Helpman and Trajtenberg (1998) emphasize the lost output that can occur because
a GPT never arrives fully developed but instead requires the subsequent invention of a
set of complementary components. During the period when the components are being
developed, the new GPT will not yet be used to its full effect. Meanwhile the labor that
is drawn into developing new components will be drawn out of producing final output.
The result can be a fall in the overall level of output. Others have pointed out a variety of
additional channels through which the cost of adjusting to a new GPT can show up at the
macroeconomic level. Greenwood and Yorukoglu (1997) argue that real resources are
used up in learning to operate the new GPT. Aghion and Howitt (1998b) point out that
the process of reallocating labor from sectors using older technologies to those using the
new GPT may involve a rise in unemployment, for the same reason that any large reallo-
cation of labor often entails unemployment in a less than frictionless economic system.
Howitt (1998) calibrates to U.S. data a Schumpeterian model with capital-embodied
technological change, and shows numerically that the speedup in the rate of innovation
induced by a new GPT can reduce the rate of output growth by increasing the rate of
induced capital obsolescence, both human and physical. In this calibration, the intro-
duction of a new GPT that raises the productivity of R&D by 50 percent until overall
productivity has doubled will reduce the level of per-capita GDP below the path it would
otherwise have followed for a period of about two decades, before eventually resulting
in a level of GDP twice as high as it would otherwise have been.

A full account of how an economy copes with these adjustments is something that
goes beyond incentives, and involves the institutional mechanisms that determine the
extent to which the economy is a self-regulating mechanism. This is because the more
often an economy is disturbed by major shocks that require people to learn new patterns
of behavior, the harder it is for the “invisible hand” to keep it near a harmonious state of
smoothly coordinated plans and actions. That is, the more unlikely it is that the classical
stability hypothesis implicit in the neoclassical synthesis will be valid.

The self-regulating mechanisms of a modern free-market economy like that of any
OECD country are obviously very powerful and robust, because they manage to coordi-
nate the activities of millions of independent transactors, at least most of the time. At the
microeconomic level, surpluses and shortages are relatively rare, small and short-lived.
At the macro level the system seems to maintain itself within five or ten percent of a

5 Carlaw et al. (2005) develop a comprehensive analysis of economic growth based on general purpose
technologies.
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full-employment growth path, except for a few dramatic exceptions such as the Great
Depression. But surely there are limits to the power of any regulatory mechanism, not
matter how skillfully designed or how far evolved, to cope with unusually large and
frequent shocks.6 One of the big challenges that economic growth poses to economic
theory is to understand how the regulatory mechanisms of a modern economy work,
what their limitations are, and what kinds of collective interventions might be needed to
help them cope with circumstances that challenge their efficacy.

All of these questions remain largely unanswered. Almost all of modern economic
theory proceeds by assuming that they do not need to be addressed, for it starts from the
unexamined premise that observed prices and quantities are generated by a system in
equilibrium. In micro theory the convention is to assume that Nash equilibrium prevails
in static contexts, or that some form of subgame perfect equilibrium prevails in dynamic
settings. In either case, everyone’s actions generally depend on expectations of everyone
else’s and the assumption is that at every node of the tree there are no surprises, in the
sense that everyone does what everyone had expected they would do if this state of
the world were to prevail. In macro theory the analogous convention is to assume that
the economy is always in a rational-expectations equilibrium, where again there are no
surprises given the state of the world. It is now widely understood that to assume rational
expectations is to assume not just that people are efficient users of information but also
that their expectations are perfectly coordinated. My actions in any state of the world
will depend on my expectations in that state. For everyone to have anticipated those
actions correctly their expectations must have been consistent with mine. How people
could acquire a mutually consistent set of expectations is something that we typically
don’t ask. We just assume they have them.

There have been attempts, in both micro and macro theory to examine the disequi-
librium foundations of those equilibrium notions. For example there was a literature on
the stability of general equilibrium that flourished in the 1950s and 1960s. But noth-
ing in that literature in any way establishes a presumption of stability. All that can be
shown is that there are hypothetical sufficient conditions for stability, such as univer-
sal gross substitutability. When theorists discovered what a messy subject they had on
their hands they just dropped it, although they had hardly begun to deal with expecta-
tions. In fact, most of the literature analyzes only nonmonetary economies in which no
one has to trade until the auctioneer has succeeded in arriving at an equilibrium, that
is, economies in which effective demand, unemployment, bankruptcy, debt-deflation,
endogenous money supply, and so forth have no meaning.

There is also a macroeconomic literature on the stability of full-employment equi-
librium, going back to the famously neglected chapter 19 of Keynes’s General Theory.
Thus Tobin (1947, 1975) and Patinkin (1948) both supported Keynes’s view that ad-
verse distributional and expectational effects were likely to make it difficult for an
economy to converge upon full employment through the unaided market forces of wage

6 Cf. Leijonhufvud (1973).
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and price adjustment. In recent years it has come to be recognized that the stability
of a rational-expectations equilibrium depends on the convergence of a self-referential
learning process in which peoples’ attempts to learn about a system lead them to take
actions that effectively change the system itself. Several years ago (Howitt, 1992) I ar-
gued that whether or not this process would converge would depend on the nature of
the monetary policies being pursued, and in particular that convergence would require
the monetary authority to obey what has subsequently come to be called the Taylor
Principle of making the nominal interest rate rise more than point-for-point when infla-
tion increases. This has been shown by a subsequent literature (recently summarized by
Evans and Honkapohja, 2001; and Woodford, 2003) to be a valid proposition about the
stability of equilibrium under a wide variety of different assumptions.

But all of this work is in its infancy and none of it has reached the position of accepted
wisdom, judged by the fact that it has not filtered down to introductory economics text-
books, which are filled with stories of perfectly coordinated individual choices and have
nothing to say about how those choices come to be coordinated. Thus it appears that the
long-run wealth of a nation depends to a large extent on the convergence properties of a
regulatory mechanism about which we as economists know very little.

Moreover, there are good reasons for thinking that policies and institutions that raise
the pace of technological progress make it less likely that the mechanism will converge.
This is not just because of the increased frequency and amplitude of the shocks with
which the system must cope, and not just because of the dangers of financial bubbles and
crashes that seem inevitably to be associated with major technological developments,7

but also because the process of economic growth brings with it a deeper coordination
problem that has not yet been addressed in the endogenous growth literature, one which
lies at the heart of the growth process.

A particular form of this problem is what motivated Harrod (1939, 1948) and Domar
(1946, 1947) to make the contributions that originally gave rise to the modern literature
on economic growth. This “Harrod–Domar” problem is the problem of how to ensure
enough effective demand so that the increased productive potential created by economic
growth will be fully utilized, rather than becoming excess capacity and causing unem-
ployment. It is a question of coordinating the expectations of investors with the yet
unarticulated future demands of savers. As long as the marginal propensity to consume
is less than unity, business firms will somehow have to see it in their interests to in-
crease their investment outlays each year, and by just the right amount. Harrod rightly
perceived that this brought into question the stability of equilibrium. Under his assump-
tions, any time entrepreneurs found they had overestimated the growth of final sales,
they would scale back their collective investment outlays, and the subsequent multiplier
effects of this cutback would cause actual sales to fall even more than anticipated. A vi-
cious circle would be created, whereby shortfalls in investment demand would feed on
themselves in cumulative fashion.

7 On this, see Minsky (1992) and Nabar (2004).
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One response to this problem is to invoke the classical stability hypothesis—to say
that if entrepreneurial expectations don’t respond appropriately, then sooner or later
wages will have to fall, and the problem will go away. But this response begs the fur-
ther questions of whether recovery will really be promoted by a debt deflation that will
drive many firms out of existence, possibly bringing down with them some of the fi-
nancial intermediaries whose services will be needed to finance adjustment, whether
it will be possible for central banks preoccupied with exchange rates, and controlling a
shrinking fraction of the means of payment, to avoid a monetary contraction once prices
start falling, and what will counteract the destabilizing expectational and distributional
effects upon which Keynes rested his instability case in the General Theory.

As Fazzari (1985) and Sen (1960) have made clear, the Harrod–Domar problem is a
particularly intractable one because it involves a positive feedback loop between expec-
tations and outcomes. That is, under the assumptions of the model if entrepreneurs are
overly pessimistic in their growth expectations—expecting a rate of growth less than the
economy’s equilibrium (in Harrod’s terms “warranted”) rate of growth—then the sim-
ple investment multiplier of the Keynesian–Cross model implies they will experience
an actual rate of growth even less than they were expecting. In other words, the interac-
tions involved in the multiplier process are such that entrepreneurs will be receiving the
wrong signal. Instead of learning that they were too pessimistic they will learn that they
were too optimistic. Any sensible attempt to correct this expectational error will lead
them to reduce their expectations by even more, thus leading the economy even further
from its equilibrium.

I know of no modern attempt to resolve this Harrod–Domar problem. The literature
starting with my 1992 contribution and recently summarized by Woodford would seem
to imply that as long as the monetary authority obeys the Taylor Principle the economy
should be able to converge to its rational-expectations equilibrium. But my own recent,
as yet unpublished, research shows that this is not the case, that when the economy’s
capacity output is growing then this principle is still necessary but no longer sufficient
for stability of equilibrium. Instead the monetary authority must generally also react
with sufficient vigour to changes in the level of output, not just to the rate of inflation.

Moreover, the aggregate stability problems that Harrod raised constitute the tip of an
iceberg, because adjustment to technological change requires far more than the right
level of overall investment demand. We know that Engel curves are not straight lines
through the origin. As incomes grow, marginal expenditures are devoted to new and dif-
ferent goods. Full adjustment in a multi-good economy requires entrepreneurs to create
the sort of productive capacity and the sort of jobs, in many cases to create entirely new
goods and markets, that will enable them ultimately to satisfy the yet unknown wants
that people will have when their incomes are higher. Until people have that increased
income, or at least enough of a prospect of increased income that they are induced to
run down their liquid assets even faster, how are they to make their demands effective,
especially if technological change has made them unemployed?

Entrepreneurs not only have to anticipate demands that have not yet been articulated,
they have to anticipate the decisions that other entrepreneurs are making, because pay-
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ing the setup cost of hiring people and capital and developing a market to produce and
sell any particular range of goods will only pay off if that range is compatible with the
standards, techniques, and strategies that others are developing. And of course these
decisions have to be coordinated somehow with those of the unemployed and young
workers trying to choose occupations, find sectors, and acquire skills to anticipate the
job opportunities of the future.

More generally, in order to accomplish the social objective of exploiting an increased
productive potential each year, new trading relationships have to be established that in-
volve literally millions of people. How are these arrangements going to be made when
none of the transactors can possibly have a detailed understanding of what is going on,
none of them is in direct communication with all the others, and all of them are guided
by purely private interests? What signals are going to induce business firms collectively
to provide the kind of capital equipment, job opportunities, products, processes and mar-
kets that will profitably absorb the potential increases in purchasing power wrought by
technological change? How much time, bankruptcy, mismatch and unemployment will
it take? Or will adjustment ever be complete without some form of collective guidance,
and if so what kind?

5. Looking ahead

I conclude by elaborating on what I said in the introduction, and what should by now
be apparent, namely that the coordination issues raised by economic growth are ideally
suited for investigation by computational methods. Indeed the computer has already
been used by various authors to address some of these questions, mostly by writers in
the evolutionary tradition pioneered by Nelson and Winter (1982),8 but there is much
more to be done.

One reason for turning to the computer is that when aggregate outcomes differ from
individual intentions it is typically because of a complex set of interactions that are
hard to characterize in analytical terms. To illustrate, the above-mentioned result of
Aghion et al. (2001) to the effect that weaker intellectual property protection would, up
to some point, raise aggregate R&D even though it would always have a negative effect
on the R&D of a firm in any given situation depended on how the steady-state cross-
industry distribution of technology gaps between leading and lagging firms reacted to
parameter changes. Except in very special cases the behavior of this distribution was
just too complicated for us to sign the comparative-static effect analytically. But the
parameter space was simple enough that we were able to demonstrate numerically with
reasonable certainty that the effect was always present. And this model was an extremely
simple one, with exactly two firms in each industry and all industries ex-ante identical.
We really need to examine richer models to test the robustness of such results. The

8 A good sample of this literature can be found in the book by Dosi et al. (1988).
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complex web of externalities that growth theory has uncovered makes it highly unlikely
that as we go to even richer models we will be able to dispense with the computer for
the purpose of discovering robust comparative-static effects.

Another reason for going to the computer in growth theory is to get an idea of the
likely size of different effects. Thus in Howitt (1998) I was able to state analytically
under what conditions there would be a downturn in overall economic activity follow-
ing the introduction of a new GPT. But it was only through computational calibration
methods that I was able to argue that this is an effect likely to last for many years rather
than just a few weeks. These results would have to be replicated in much richer models
before they could become generally accepted as true. Again there is no way to do this
without computational methods.

The biggest challenge posed by all of these coordination problems is to characterize
the mechanisms that keep a modern economic system reasonably near a fully coordi-
nated state most of the time, and hence to deal with the generalized Harrod–Domar
problem. We can deal analytically with the stability properties of two-dimensional,
sometimes even three-dimensional systems, but beyond this we are lost without the
computer.

In addition to the issue of dimensionality, no study of the coordination properties of
an economic system will be fully satisfactory if it does not come to grips with the el-
ementary fact that most transactions in actual economies are coordinated not by some
unspecified agent like the Walrasian auctioneer but by an easily identified set of agents;
namely, specialist trading enterprises. Economic transactions do not take place on a do-
it-yourself basis but always involve such agents as grocers, department stores, realtors,
car dealers, legal firms, accounting firms, and so forth. These are specialist traders that
reduce the costs of search, bargaining and exchange, by using their expertise and by
setting up trading facilities that enable non-specialists to trade on a regular basis. Col-
lectively they coordinate the exchange process, for better or worse, by setting prices,
holding buffer-stock inventories, announcing times of business, entering into implicit or
explicit contracts with customers and suppliers, and taking care of logistical problems
that arise in delivery, inspection, payment, and other aspects of the transaction process.
When there are imbalances between demand and supply, specialist traders typically are
responsible for making whatever adjustments are needed to ensure that non-specialists
can continue their activities with minimal interruption. Those that do the job poorly do
not survive competition.

The job that these trading specialists perform is the “procurement process” that
Tesfatsion (2006) argues ACE modeling is ideally designed to study. Howitt and Clower
(2000) show how the ACE approach can be used to study the formation and perfor-
mance of a network of such specialists. In that paper Clower and I imagined a world
with a large number of people who could potentially benefit from trading with one an-
other but who lacked the information and the organizational infrastructure necessary to
realize those benefits. We asked what would happen if some of the people from time
to time were inspired to set up a trading facility, or “shop” that others could use, from
which the shopkeeper might also profit by charging different buying and selling prices.
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We realized early on that the only sensible approach to modeling how a coordination
network might evolve from such a foundation was to write a computer program. For we
did not want to impose on people any beliefs or information that implied some kind of
prior coordination. Instead we wanted coordination to emerge from the basic assump-
tions of the model. Thus we needed a model that specified what would happen from any
conceivable initial position, no matter what sorts of expectations people started with
and no matter how incompatible their plans were to begin with. In short, our model
had to constitute a multi-agent system that would generate observed outcomes from any
given initial position. This to me is the essential characteristic of ACE methodology
that distinguishes it from other uses of the computer in economic theory; in other uses
computer programs approximate the behavior of a model, whereas with the ACE ap-
proach the program is the model. Since we were going to create a program anyway it
seemed sensible to run it on the computer and study its behavior directly rather than
seek what would at best be a partial and not very helpful analytical characterization of
its properties.

What Clower and I discovered was that even though no one in the world we were
describing ever possessed a reliable model of the overall system in which they were
participating, nevertheless their interactions often resulted eventually in the emergence
of a stable set of shops, each with a stable set of customers and suppliers, and everyone
engaging in a pattern of exchange that can be described as a general (Nash) equilibrium
in prices and quantities. Moreover, what we found was that whenever such a stable
pattern emerged it took on a monetary structure. That is, one of the commodities traded
would emerge as a universal medium of exchange, used in every single transaction in
the economy, even by people that had no direct use for the commodity and were not
capable of producing it.

The fact that this particular application of ACE methodology is capable of growing9 a
coordination network which is sometimes capable of leading people into an equilibrium
pattern of exchange, at least in the very simple setting that we postulated, and is also
capable of growing some of the ancillary institutions of real-world economic systems,
such as monetary exchange, gives me hope that the methodology will some day be
capable of shedding light on the big coordination issues raised by economic growth.
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Abstract

Acceptance of computer modeling and experimentation has spread slowly at best in eco-
nomics in large part because agent-based models often seem foreign to the neoclassical
core of economics, as that core is understood today. But in its beginnings neoclassical
economics was not built from choice theory, did not represent decisions as solutions to
constrained optimization problems, made no strong assumptions about the rationality
of agents, and did not view the world as always in equilibrium. Agent-based economics
can tap into this older neoclassical economics of adaptive behavior and ongoing market
processes while circumventing the technical obstacles which forced the forerunners to
adopt the “static” method.

Agent-based process analysis will finally make it possible to tackle the central prob-
lem of macroeconomics, namely, the self-regulating capabilities of a capitalistic econ-
omy. Keynes challenged the presumption that flexibility of all prices guaranteed the
stability of general equilibrium, arguing that effective demand failures meant that Say’s
Law did not hold. When supply did not create its own demand, stabilization policy in
the form of aggregate demand management was required to restore full employment.
In modern general equilibrium based macroeconomics, in contrast, Say’s Law always
holds, only “frictions” stand in the way of full employment, and stabilization policy
lacks any tenable rationalization.

Agent-based computational methods provide the only way in which the self-
regulatory capabilities of complex dynamic models can be explored so as to advance
our understanding of the adaptive dynamics of actual economies.

Keywords

adaptive behavior, market processes, effective demand failure, stability of equilibrium,
Say’s Law, natural rate of unemployment, Marshall, Keynes
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The first responsibility of a macroeconomist, surely, is to work towards an under-
standing of major economic disasters, of how to avoid them and of what to do when,
unavoidably, they occur. Macroeconomics originally emerged as a distinct subdiscipline
because the Great Depression was not well explained as a manifestation of efficient al-
location theory. Disasters keep happening. The last fifteen years have seen the great
break in the astonishing growth of Japan, the crises that forced Britain and Sweden to
devalue, the Mexican ‘tequila’ crisis and its repercussions elsewhere, the East Asian
and Russian crisis, and the Argentinian default crisis, for example. In the same period,
macroeconomics has been reabsorbed into the theory of efficient resource allocation.
Many people in the field see this development as having healed an unhealthy rift in the
fabric of general economic theory. But this modern macroeconomics fails to throw light
on disasters.

An economy is an evolving, complex, adaptive dynamic system. Much progress has
been made in the study of such systems in a wide variety of fields, such as medicine
and brain research, ecology and biology, in recent years. To people from one of these
fields who come to take an interest in ours, economists must seem in the grips of an
entirely alien and certainly unpromising methodology. In these other fields, computer
modeling and experimentation is accepted without much question as valuable tools. It
was possible, already 15 years ago, to hope that economists would find them valuable
as well [Leijonhufvud (1993)]. But the intervening years have not witnessed a stampede
into agent-based economics.

In fact, macroeconomists are more apt than most to be suspicious, if not outright hos-
tile, to the agent-based approach. The apparent threat of cognitive loss is perhaps steeper
in macro than in other areas. Each generation of scholars inherits a knowledge base of
theory, of empirically confirmed “facts” and of investigative techniques. Inherent in this
base are directions for future work—which problems are interesting and which ones
not, what facts are puzzling and which ones can be taken for granted, what methods of
investigation are approved and not approved, and so forth. The macroeconomics of the
last quarter century, from Lucas through Prescott to Woodford, has been very strongly
wedded to stochastic intertemporal general equilibrium theory. It is the well-developed
knowledge base with which the last couple of generations of macroresearchers have
been equipped. Acquiring it required a large investment. But then recruits to this re-
search program are confident that their technical equipment is the best in the business.

Agent-based economics, in contrast, is in its technical infancy. The tendency, more-
over, is to use it to tackle analytically intractable problems, thus making limited use
of the treasured skills of modern macroeconomists. ACE models can claim to handle
multitudes of heterogenous agents, which intertemporal general equilibrium models do
not, but these simple agents, heterogenous though they be, have one thing in common,
namely, “bounded rationality”—which runs afoul of how the neoclassical tradition is
most often understood. It is also difficult to impose some analytical discipline or em-
pirical constraint on complex dynamic behavior that systems of such agents tend to
exhibit—and thus difficult to prevent such models from deteriorating into some species
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of computer games. There is also some guilt by association: complex simulation models
have a bad track record in economics (Rosser, 1999, pp. 171–175).

The allegiance to modern macroeconomics is also very much fortified by a strong
sense of tradition, of carrying on an economics that was ‘always’ built on ‘rational
choice’, on ‘optimizing behavior’, on equilibrium, a tradition that you stray from at
your peril. But this sense of tradition is in large measure based on a misreading (or,
more likely perhaps, a lack of reading) of the history of our subject. What is today
commonly thought of as neoclassical economics is really the hypertrophy of optimizing
choice theory—the branch of neoclassicism which at one stage in the development of
economics happened to be the most easily formalized. There is an earlier tradition of
neoclassical economics, in some respects a more interesting one, which could not be
adequately formalized and therefore gradually fell into neglect. This tradition could be
revived with agent-based methods. It would be worth doing.

1. Two traditions

The British Classical writers, including Marx, sought to deduce how society would de-
velop and the income distribution among classes change with time. The theory was
inherently dynamic, driven by basic behavior propositions that were really verbal dif-
ferential equations of the type “population will grow as long as real wages are above
subsistence” or “capitalists will accumulate as long as profits are positive.” But no one
could handle systems of differential equations, of course. The best that could be done
“rigorously” was to deduce the properties of the long-run equilibrium where these laws
of motion ceased to operate, i.e., the stationary state of the Dismal Science.

The early neoclassicals shared this general outlook. Micro-behavior was thought of
as adaptive. People sought to maximize utility or profit, but these were propositions
about motivation, not performance. Certain agents in certain roles in certain social set-
tings would be more calculating and better at calculating than others but in general no
ambitious claims were made about the ‘rationality’ of people. Agents were capable of
learning and most would be fairly efficient in situations with which they had a lot of
experience. Since they were not super-rational, individuals would rely on a framework
of institutions constraining the behavior of others so as to make the utility-relevant out-
come of effort reasonably predictable. What people would learn from interacting with
others would also depend on the institutions governing their transactions. Some coun-
tries (Western countries, of course) would do better than others.

The modern theory focuses on the principles of efficient resource allocation. Its core
is choice theory, formalized in terms of constrained optimization. When used to explain
observed behavior, constrained optimization models attribute substantive rationality to
agents. Thus, in this theory utility or profit maximization is a statement about actual per-
formance not just motivation. For this to be the case, decision-makers must be assumed
to know their true opportunity sets in all their dimensions. Applying this behavior de-
scription to all agents implies that all choices made must be consistent. The theory does
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not leave room for failures to realize the relevant optima. Consistency of plans is the de-
finition of equilibrium in this younger tradition. Set in a temporal context, substantive
optimization requires that agents know all future prices (among other things) in draw-
ing up their plans. Thus all choices have to be reconciled before anyone’s choice can
be made. Intertemporal general equilibrium theory may be ‘rigorous’ but it pays little
attention to the sequencing of decisions in time.

In this theory, the ‘rationality’ of agents knows no bounds. Consequently, they have
no very obvious need of institutions. Why they should use money or organize production
in firms become riddles, not easily answerable within competitive general equilibrium
theory.

2. The ambivalence of neoclassical economics

How the earlier neoclassicism which dominated until the 1930’s or 1940’s metamor-
phosed into the modern version is a long and complex story not to be attempted here
[cf. Leijonhufvud (2004a)]. What needs to be noted is that neoclassical economics is
not one coherent tradition. There is a strong conceptual tension between the older and
the modern versions. The older neoclassical economics has a strong affinity to complex
systems theory that general equilibrium theory entirely lacks.

Central concepts of complex systems theory, which have caused some excitement in
other fields, are old themes in economics. Emergent order we have known about since
Adam. The troubles with top-down control we have known about since Lu and Fritz.
Parallel processing is what methodological individualism should have committed us to
long ago.

Complex systems are generally hierarchical, often with multiple layers. Each sys-
tem consists of interrelated components or modules that are systems in themselves.
The components are simpler than the system of which they are parts. In general,
they also have to work on a different time-scale (faster) than the higher-level system
[Leijonhufvud (1995)].

All these statements fit naturally into the analytical mode of the older neoclassical
tradition. They do not fit into the intertemporal general equilibrium framework of mod-
ern macroeconomics. (And the practitioners of modern macro tend to view references
to these matters as irritating, wooly-headed talk.) The representative agent that has been
made to do such heavy duty in Real Business Cycle theory is a case in point. This myth-
ical figure is not a component, simpler than the system of which he is part. Although the
poor man may suffer from multiplicity of equilibria, his ‘rationality’ is fully adequate
to the complexity of the entire system. It is trite to note that the representative agent
model leaves no room for supply and demand or “market forces.” But the reason why
this is thought to be adequate is of some interest, namely, that interactions at modular
interfaces are considered inessential in this theory.

Agent-based economics should be used to revive the older tradition. So far the agent-
based models that have gotten the most favorable—or at least most tolerant—reception
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by the profession at large have tended to tackle problems neglected by the mainstream,
such as the work by Kollman et al. (1997) on Tiebout’s ‘voting with your feet’, and the
work by Axtell (2001) on the size-distribution of firms. These serve the cause by show-
ing that agent-based economics can solve problems for which economists previously
have not had the requisite tools. But it is not with new problems but with the oldest that
agent-based methods can help us the most. We need to work on the traditional core of
economics—supply and demand interactions in markets—for, to put it bluntly, econo-
mists don’t know much about how markets work.1

3. Tapping into the older tradition

If the older neoclassical economics made more sense than today’s, why did it decline
and why did the “modern” take over? The answer, in brief, is that the older tradition
in its time came to face insuperable technical obstacles while optimal choice theory
did point a way forward to the solution of many problems and ambiguities in received
theory. The story is a perfect illustration of both the negative and the positive side of
Robert Lucas’s (Lucas, 1987, p. 272) thesis that “purely technical developments that
enlarge our ability to construct analogue economies” are one of the main forces driving
the evolution of economics.

Alfred Marshall is the right representative of the older neoclassicism for the purposes
of agent-based economics. Over the last half-century or more, Marshall’s influence has
steadily declined while that of Walras has been in the ascendance. Marshall’s reputation
has suffered at the hands of people who read him as a sloppy Slutsky or a Walras unable
to attain anything more than a partial equilibrium. But this is judging him by a standard
that is conceptually quite alien to his theory. Marshall did not build from choice theory,
did not represent decisions as solutions to constrained optimization problems, and made
no strong assumptions about the ‘rationality’ of decision-makers.

Recall that Marshall drew his supply-and-demand diagrams with quantity on the hori-
zontal and price on the vertical axis. He was a conventional man and convention dictated
that the independent variable go on the horizontal and the dependent on the vertical axis.
(Convention dictates so still, but respect for conventions is not what it used to be.) Mar-
shall started from supply prices and demand prices as functions of quantities. His ps(q)

and pd(q) schedules are not loci of optimal points but indicate minimum and maximum
prices, respectively, at which the decision-maker would be disposed to transact.

The “quantity-into-price” constructions [Hicks (1956)] do not state correspondences
between price and most preferred quantity. They provide, rather, routines of adaptation
in a constantly changing market environment. We may refer to them as “Marshall’s laws
of motion”:

For the consumer:

1 In all fairness, experimentalists and market designers have made important contributions to the understand-
ing of market processes. But macroeconomics is still mired in unclear notions of “flexibility” or the lack of
it.
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If demand price exceeds the market price, buy more; in the opposite case, buy less.

For the producer:

If market price is above supply price, increase production; in the opposite case,
cut back.

To which we should add the requisite rules for the middleman/market maker:

If demand exceeds supply, raise prices to both consumers and producers; in the
opposite case, lower prices.

And a second rule for the producer:

If quasi-rents are positive, add to capacity; in the opposite case, let it depreciate.

These behavior rules fall short of the ‘substantive rationality’ attributed to agents in
general equilibrium models. But gradient rules of this sort qualify at least for a measure
of ‘procedural rationality’ [Simon (1976)] in settings where continuity and convexity
can be taken for granted.

The combination of these ‘laws of motion’ makes an almost prototypical agent-based
model. As with most such models, the combination of several differential or difference
equations makes a non-linear dynamical system that may not be at all well behaved. Cer-
tainly, it was well beyond what could be handled with analytical methods in Marshall’s
time. He improvised his “static method” to tame the potentially unruly dynamics—but
he did not trust it very far, although he seems to have thought that what he called the
‘continuity principle’ (Natura non facit saltum) gave some considerable assurance that
it would work.

The static method was to take each of the ‘laws of motion’ separately, rank them
in rough order from the speediest to the slowest, and then for each of them find the
conditions under which the ‘law’ would cease to operate, assuming that all processes
slower than the one under investigation could be treated as (approximately) constant.
This amounts, of course, to assuming that each process will always converge to a well-
defined point-attractor, an assumption for which there can be no general warrant, since
when all these ‘laws of motion’ are operating on more or less the same time-scale, the
system might well go, for example, to a complex attractor.

4. Taking supply and demand seriously

A simple market model of this general type will help point out a number of items for
the agenda of agent-based theory. The first lesson is that the ‘laws of motion’ are not
enough. One must also specify some minimal institutional structure within which they
can be shown to operate. A fish market was the favored vehicle for generations of Mar-
shallian pedagogues. It may serve here as well.



1632 A. Leijonhufvud

We assume a fishing fleet operating out of a port city. Each night, T , the boats go out
and return in the morning. The entire catch of the fleet, qT , is brought to the local fish
auction house and sold at auction.

Let lower case t denote clocktime and let capital T denote dates. The adjustment
speed of price is assumed qualitatively faster than that of output. Price finds the market
clearing level within each market day; output finds its equilibrium over a sequence of
days. Assume a stationary demand function:

(1)qd = D(p).

The catch landed on day T , qT , is auctioned off:

pt+1 = f [D(pt ) − qT ] + pt ;
(2)pt+2 = f [D(pt+1) − qT ] + pt+1;

etc.

By assumption, the algorithm (2) will converge on:

(3)p∗
T = p∗(qT ), the market clearing price for day T .

The expected size of the catch for any one boat depends simply on the amount of labor
input during the night. The j -th boatowner’s supply price is given by his marginal cost
schedule:

(4)ps
j = sj (qj ).

He compares his supply price for the catch most recently landed to the market price
received and adjusts his rate of production accordingly:

(5)qT+1,j = hj

[
sj (qT ,j ) − p∗

T

]+ qT,j , . . . etc.

Industry output (the catch of the fleet) evolves according to:

(6)qT = �qT,j

and the condition for short-run equilibrium is (temporary) stationarity of output:

(7)�qT = 0.

Equation (7) presumes, without explicit rationale, that the dynamic system will go to
a simple point attractor. This attractor defines one point on Marshall’s industry supply
schedule. To get the rest of it, one has repeatedly to shift the demand function (1) and
let the feedback loops (2) and (5) run to find the successive short-period equilibria.

The model has the virtue of portraying a market process with distinct laws of motion
for both price and for output. It shows a rivalrous competitive process free of the infi-
nitely elastic demand nonsense of ‘perfect competition’. In several other ways, however,
it is contrived to simplify matters that are seldom so simple. Here the market is a market
place where well-defined sets of buyers and sellers meet for a limited time at defined
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intervals. The price must clear the market at each meeting and the meaning of market
clearance is reasonably well-defined since inventory carry-over is ruled out (no frozen
fish in Marshall’s time!). However, the tâtonnement process in (2) is neither Marshallian
nor realistic. Marshall would have assumed a double auction and argued that the final
price would normally end up the same as in (3) above.2

In a normal, ongoing market, transactors are not all brought together in a single
location and at the same time. Without centralization and synchronization, the supply-
equal-demand condition “cannot be used to determine price, in Walras’s or Marshall’s
manner” (Hicks, 1989, p. 11). But this also means that Marshall’s “static method” will
not work after his manner. Instead, ongoing markets require market makers who an-
nounce their prices and maintain inventories to handle customers arriving at irregular
intervals. Virtually all manufactured goods are produced under increasing returns, not
the diminishing returns of Marshall’s fishermen and corn farmers. In markets where the
producer operates under increasing returns, he often becomes the market maker and has
to set a price based on speculation on what volume of sales he may achieve. The gradi-
ent climbing of Marshall’s law of motion is then obviously inapplicable and a different
algorithm has to be found to represent the producer’s strategy.3

Combining the laws of motion for price and output makes a non-linear market
process. Marshall tamed it by his ranking of adjustment speeds and corresponding hi-
erarchy of equilibria. Agent-based modeling has no need for these conceptual crutches.
When they are abandoned, however, one has to explain why markets normally do
not fluctuate as much as the old laws of motion would suggest. The basic reason is
simple. Consider again the fish market. The demand side is made up of middlemen—
wholesalers and perhaps some retailers. They would have learned that the housewives,
who are the ultimate buyers, will readily change their menus in response to rather small
variations in the price of fish. Intertemporal substitution would keep short-period price
fluctuations quite constrained. Similarly, fishermen will learn not to respond immedi-
ately to every little tick in the market price. Thus, the short-period demand price and
supply functions will be much less elastic than the steady-state ones deduced from sta-
tic utility and production functions. Agent-based methods should enable us to show
the coevolution of the strategies of consumers, middlemen and producers that normally
keep the tendencies of such systems to oscillate under pretty tight control. The theory
should show the tendencies to be present although suppressed, rather than assume them
away, for in certain situations the control will break down and make them boil to the
surface. Under conditions of high inflation, for example, they show up in the extreme
volatility of relative prices (Heymann and Leijonhufvud, 1995, pp. 169–182).

Marshall’s adaptive theory avoids the perfect coordination trap which prevents mod-
ern optimization/equilibrium theory from helping us understand macroeconomic disas-
ters. However, his ‘static method’, with its hierarchy of market day, short period and

2 Much experimental evidence would nowadays support him on this point. But then the double-auction
experiments are most often set up so as to conform to the assumptions of the fish-market discussed in the text.
3 When sales occur in discrete quantities at discrete intervals, the monitoring of demand conditions becomes

a non-trivial problem. How long a run of observations is needed to determine whether demand has changed?
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long period equilibria, was a set of logical crutches that allowed him to hobble onward
a piece with the theory of a complex dynamic economy. We can abandon Marshall’s
crutches. When that is done, a large, interesting and do-able agenda, of which the items
above are only a sample, opens up for agent-based economics.

All this, however, deals with the microfoundations of an agent-based macro. It re-
mains to consider an agenda for macroeconomics proper. The main item concerns the
stability properties of the macrosystem—a topic that general equilibrium theorists gave
up on some decades ago.

5. Keynes and all that

Prior to Keynes’s General Theory, economists were quite generally convinced that, if
only all agents in an economy obeyed Marshall’s “laws of motion”, that economy must
most surely home in on a full employment equilibrium. Most particularly, of course,
this would have to include the willingness of workers to let wages “flex” in the face
of unemployment. It was generally accepted that the adjustment process would involve
“frictions” of various sorts, but the overall stability of general equilibrium was not in
doubt. This view of the matter is the one that we have returned to in the last thirty years
or so.

The Great Depression persuaded Keynes that these beliefs must be wrong and that
received theory, therefore, stood in need of a fundamental reappraisal. Keynes was a
Marshallian and his reappraisal came to involve two departures from that tradition. The
first was an argument directed against Marshall’s “continuity principle”. Natura non
facit saltum did not hold for investment expectations. These were not solidly founded
and could, therefore, shift both abruptly and drastically.

The second departure was more far-reaching. Keynes rejected the proposition that
“Supply creates its own Demand” which apparently went under the label of “Say’s
Law” in Cambridge oral tradition [Clower (2004)]. Say’s Law was taken to mean that
any excess supply somewhere in the system would be balanced by an excess demand
elsewhere. It was conjectured that Say’s Law guaranteed the stability of full employment
equilibrium as long as all prices (including wages) responded appropriately to excess
demands and supplies in the respective markets. Keynes had come to realize that this
conjecture was not generally true. (He thought, in fact, that it was always false, but in
that he himself was mistaken.)

The problem was that excess supplies might not be balanced by effective excess de-
mands, that is, by excess demands that would trigger the ‘laws of motion’ and cause
market participants to change prices and activity levels. The General Theory stressed
two such effective demand failures. The first concerns the coordination of consumption
and production over time. An increase in savings creates an immediate excess supply
of present goods but does not by itself signal an excess demand for consumption goods
in the future. Thus, argued Keynes, “investment causes saving” (by changing income)
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“but saving does not cause investment”—two propositions that make no sense within si-
multaneous equation models but that could be rendered meaningful within the modular
architecture of a process model written in an object-oriented program.

The second effective demand failure can occur because the offer of labor services is
not in itself an effective demand for consumer goods. In a monetary economy, “goods
buy money and money buys goods, but goods do not buy goods” [Clower (1967)]. When
labor is thrown out of work, consumption declines and the recessionary impulse is am-
plified.

The two effective demand failures interact. When a negative shock to long-term ex-
pectations reduces investment, the intention of savers is to accumulate more ‘bonds’
than the business sector intends to issue. If then the Central Bank’s policy or ruling
opinion on the stock market prevents the interest rate from falling sufficiently, output
and real income will fall until saving no longer exceeds investment. There is then no
growing market pressure for a correction of the interest rate. At that point, however, we
have unemployment at wage rates which would be consistent with full employment had
only saving and investment been brought into equality by a decline in the rate of interest
rather than by falling output.

The resulting state of the economy, therefore, is one where one price (the interest
rate) is inconsistent with general equilibrium, but excess demand in that market is zero
so there is no automatic tendency for that price to change. At the same time, a second
price (the money wage) is consistent with general equilibrium, but there is excess supply
(unemployment) in that market that tends to drive it away from that level. Declining
money wages would not cure the situation in Keynes’s view. If wages and prices were
very flexible downwards, a Wicksellian deflation would wreck the financial system and
make matters far worse.

Keynes called this state of the economy an “equilibrium” with “involuntary unem-
ployment.” Semantic confusion has been unending ever since. His unemployment state
will qualify as a Marshallian (short-period) equilibrium in the sense that the time-
derivatives of output and employment are zero, but it obviously cannot be a Walrasian
equilibrium. Similarly, the notion of “involuntariness” makes no sense within a choice-
theoretical framework. What Keynes meant by it was essentially that this unemployment
had emerged without any intentional interference with the laws of motion in labor
markets. Economists have long been used to the invisible hand bringing about a coordi-
nated state that was not part of anyone’s intention. Keynes’s involuntary unemployment
should be understood in the same way as a different and less favorable emergent prop-
erty of money-using market systems.

6. Decline and fall

When Say’s Law fails to hold, so that Supply does not create its own Demand, a readily
understandable case can be made for stabilization policy, in the sense made familiar in
the Keynesian era, namely, aggregate demand management. Keynes certainly thought
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that effective demand failures were ever present and Keynesian economics has probably
been overly addicted to aggregate demand management.

The natural rate of unemployment (NAIRU) postulate of Phelps and Friedman served
in effect to reinstate Say’s Law in macroeconomics. It was predicated on the old notion
that departures of observed from equilibrium unemployment must be due to lags in
the adjustment of wages. This was accepted also by confessed Keynesians since they
had long ago left behind Keynes’s worries about troubles in financial markets coming
in the way of saving-investment coordination. With full employment saving equalling
investment, all that is needed for full employment is wage flexibility. As macromodels
incorporating the postulate conquered the field, it gradually became clear that they could
not provide any rationale for aggregate demand policies. When Supply creates its own
Demand, macropolicy—if any—has to be supply-side policy.

Marshall was well aware that his static method falsified the dynamics of the processes
on which his theory focused and frequently expressed his doubts about how far the
method could be trusted even when dealing just with the isolated market. Keynes, for
lack of any feasible alternative, tried to use Marshall’s method to tame the adaptive
dynamics of the multidimensional macrosystem. In so doing, he was in effect trying to
“talk” his way through the analytically completely intractable dynamics of a system of
multiple markets with ‘laws of motion’ operating at different speeds, with some agents
hampered by liquidity constraints, with volatile investment expectations and sluggish
interest rate expectations, and so on. This was operating far, far beyond the limits of
what could reasonably be expected of Marshall’s method. Keynes was a very clever
man and he managed to make it work after a fashion. But it is hardly surprising that the
effort left a legacy of never-ending controversy over “what Keynes meant” and whether
what he meant made sense. Nor is it surprising, in retrospect, that his theory could not
survive when forced into the even tighter straitjacket of Walrasian general equilibrium.

7. Conclusion

The issues could not be of more importance. If NAIRU-based macrotheories are correct,
aggregate demand has had nothing to do with the differences in performance between,
say, the United States, the European Union countries and Japan in the 1990’s. It has all
been a matter of flexibility in the labor market, lower taxes, and government staying out
of the way of business. If Keynes was at least partly right—and he certainly was not
completely right—it is not so surprising that a country that manages to invest a lot and
save hardly at all outperforms those where the opposite is more nearly the case. And the
two views of the world differ on a host of other issues as well [Leijonhufvud (2004b)].

Keynes’s theory of how a monetary market economy can fail to coordinate activities
“automatically” was flawed. But what we have on the other side is little more than
blind belief in the stability of general equilibrium.4 The matter cannot in all intellectual

4 Cf. Clower and Howitt (1996) and their discussion of the status of the “Classical Stability Postulate.”
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decency be left there. Agent-based methods provide the only way in which we can
explore the self-regulatory capabilities of complex dynamic models and thus advance
our understanding of the adaptive dynamics of actual economies.
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Sometime in the 1960s I wanted to teach my classes how people’s interactions could
lead to results that were neither intended nor expected. I had in mind associations or
spatial patterns reflecting preferences about whom to associate with in neighborhoods,
clubs, classes, or ballparks, or at dining tables. Whether racial or linguistic differences
or differences in age or income and wealth were what I had in mind, I’m not sure now.
I spent a summer at RAND and took advantage of RAND’s library to thumb through a
few decades of sociological journals, looking for illustrative material that I could assign
to my students. I found nothing I could use, and decided I’d have to work something out
for myself.

One afternoon, settling into an airplane seat, I had nothing to read. To amuse myself
I experimented with pencil and paper. I made a line of x’s and o’s that I somehow
randomized, and postulated that every x wanted at least half its neighbors to be x’s and
similarly with o’s. Those that weren’t satisfied would move to where they were satisfied.
This was tedious because I had no eraser, but I persuaded myself that the results could
prove interesting.

At home I took advantage of my son’s coin collection. He had quantities of pennies,
both copper and the gray zinc one’s we had all used during the war. I spread them out
in a line, either in random order or any haphazard way, gave the coppers and the zincs
their own preferences about neighbors, and moved the discontents—starting at the left
and moving steadily to the right—to where they might inject themselves between two
others in the line and be content. The results astonished me. But as I reflected, and as I
experimented, the results became plausible and ultimately obvious.

Just to remind you, a line of randomly distributed coppers and zincs that looks like
this,

0+000++0+00++00+++0++0++00++00++00++0+0+00+++0++00000+++000+00++
0+0++0,

when each wants at least four out of the eight nearest neighbors to be one’s own type,
becomes after two “rounds” of moving:

00000000+++++++++++++++0000000000+++++++++++++++0000000000000000
++++++.

I experimented with different sizes of “neighborhoods”—the six, eight, or ten sur-
rounding coins, different preferences—half like oneself, one-quarter like oneself, and
different majority–minority ratios, and got results that fascinated me.

A one-dimensional line couldn’t take me very far. But in two dimensions it wasn’t
clear how to intrude a copper or a zinc into the midst of coppers and zincs. I mentioned
this problem to Herb Scarf, who suggested I put my pennies on a checkerboard leaving
enough blank spaces to make search and satisfaction possible.

So I made a 16 × 16 checkerboard, located zincs and coppers at random with about
a fifth of the spaces blank, got my twelve-year-old to sit across from me at the coffee
table, and moved discontented zincs and coppers to where their demands for like or
unlike neighbors were met. We quickly found out it didn’t matter much in what order
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we selected the discontents to move—from middle outward, from out inward, from left
to right or diagonally. We kept getting the same kind of results. The dynamics were
sufficiently intriguing to keep my twelve-year-old engaged.

I found things I hadn’t expected. Usually, once found, they appeared obvious. If zincs
and coppers were majority and minority, or if zincs and coppers had greater and lesser
demands for like neighbors, the sizes of eventual clusters and the densities of the differ-
ent clusters varied accordingly.

And when we postulated that zincs and coppers had positive desires for unlike neigh-
bors, especially if they were minority and majority, we got results that appeared weird
until we saw what was happening. (The minority, desired as neighbors, had to become
“rationed” among the majority.)

I had an interesting experience with computers at that time. I knew nothing about
what computers could do, or how they did it, but I knew that RAND had people who
did. I approached RAND and asked to be in touch with somebody who could program
what I’d been doing. Somebody was put in touch with me. I quickly learned something
crucial: programmer and experimenter must work closely, the former understanding
what the latter wants, the latter understanding how programs work. Three thousand
miles apart we didn’t work that way. For me the results were perplexing. I eventually
caught on that I had individuals counting themselves as their own “neighbors”, had
individuals on edges of the board or in corners miscounting how many neighbors they
had, and in other ways had inadequately stipulated exactly how the zincs and coppers
were to respond.

I later got James Vaupel to program things in Basic, but he was about to leave for
the summer and I needed to know how to reprogram myself. We met on a Sunday,
with sandwiches and beer, and in about five hours he taught me how to program with
whatever parameters I wanted. He left the next day, but I was prepared.

Incidentally, the person at RAND who did the programming for me was John Casti.
Thirty years later—I had never met him—he mentioned, in the course of a presentation
that I attended, that his experience with my neighborhood patterning had initiated him
into a career in simulation.

I published, along with the “checkerboard” model, a purely analytical model that I
called the “bounded neighborhood” model [Schelling (1971)]. That model postulated a
finite location that a person was either in or not in, positions within the neighborhood
not being of concern. (It could be a model of membership or enrollment or participation,
not necessarily location.) I thought the results I got from that model were as interesting
as those from the checkerboard, but nobody else appeared to think so. I also explored the
nature of a collective “tipping point” in a chapter in Tony Pascal’s book, published about
a year later, with a purely analytical model [Pascal (1972)]. It got little attention. In that
“bounded neighborhood” model it became clear that an important phenomenon can be
that a too-tolerant majority can overwhelm a minority and bring about segregation.

I’ve never been sure why my little simulation got so much attention after so many
years. I discovered twenty-five years later that I’d been some kind of pioneer. It must
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be some limitation of my scientific imagination that I’d no idea I was doing something
generic, something with promise beyond my neighborhood application.

I’ve had one experience that others may have had, in publishing a much abbreviated
version of that model in a book [Schelling (1978)], believing that the full treatment in
the Journal of Mathematical Sociology [Schelling (1971)] might be more than readers
of the book would need. References to my model are usually to the version in the book,
not to the original. I’ve seen no reference, for example, to the results I got when I pos-
tulated a strong preference for neighbors of opposite type. If one is interested in the
“neighborhood” effects of differences other than in color or race, especially with indi-
viduals of one type much scarcer than individuals of the other type, the “integrationist”
preferences become highly plausible. (I put “neighborhood” in quotation marks because
residence is not the only interpretation.)

Another interesting result in the original, but not in the book version, a result that
somewhat surprised me until I saw how it worked—an advantage of doing it manually
instead of on a computer—is that if one subjects all the actors to a fairly strict limit on
movement the results are usually that everyone becomes satisfied with less travel and
more integration. For example—the linear case is adequate to illustrate—if we impose
on all the +’s and 0’s a restriction that no one may move more than five spaces, moving
to the best available position if satisfaction cannot be achieved within five spaces, the
original random line we used above becomes, in one round,

00000++++++000000+++++++++000000++++++00000+++++0000000000+++++++
++000,

All except two of the three on the right are satisfied, on average individuals traveled
less than half the distance, and this is much more “integrated.” The total number of
unlike neighbors in this “restricted travel” version is twice that of the original equilib-
rium. And in the original, 30 of the 70 individuals ended up with no neighbors at all of
opposite type; in this case of restricted movement, only 5.

This restricted-movement example is one of several results that may be unanticipated
but become obvious with a little experience. Analytically one might say that restricting
movement is a substitute for collaboration or anticipation. Unrestricted—and in the ab-
sence of collaboration or anticipation—an individual 0 will move to the nearest cluster
of 4 or more 0’s, passing numerous lonely 0’s in what may be a long journey. Suffi-
ciently restricted, the lonely 0 may be able only to join the nearest lonely 0, far from
satisfactory; but the next lonely 0 looking for company can now join the two, making it
three, and shortly a fourth will arrive and a fifth. (Increasing the “price” of travel may
reduce the “cost” of travel.) By moving, individuals both add and subtract externalities
where they leave, and add and subtract where they settle.

A similar principle is observed if the 0’s are a minority and the +’s a majority. I re-
member being so confident that the smaller the minority relative to the majority, the
smaller would be the minority clusters, that I wrote that before I tried it. When I tried
it, it didn’t work; the opposite occurred: the minority clusters became absolutely larger
as the minority itself became smaller. What I had originally thought to be so obvious I
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needn’t bother to demonstrate it turned out, upon demonstration, to be just as obviously
the opposite.

Now that computers can display all the movement in “real time” there is, I suppose,
little advantage in doing this kind of thing manually, but when I was doing it computers
could compute but not display, and I often got computer results I could make little sense
of until I worked it by hand.
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1. Purpose of the guide

The purpose of this guide is to suggest a short list of introductory readings to help new-
comers become acquainted with agent-based modeling (ABM). Our primary intended
audience is graduate students and advanced undergraduate students in the social sci-
ences. Teachers of ABM might also find this guide of use.

Unlike established methodologies such as statistics and mathematics, ABM has not
yet developed a widely shared understanding of what a newcomer should learn. For
decades, concepts such as the level of significance in statistics and the derivative in
mathematics have been common knowledge that newcomers could be expected to learn.
We hope that our selected readings will promote a shared understanding of ABM in the
social sciences, not only among newcomers to ABM but also among researchers who
already use ABM.

As a clarifying note on terminology, although this guide is directed specifically to
social scientists, researchers in a wide range of disciplines are now using ABM to study
complex systems. When specialized to computational economic modeling, ABM re-
duces to Agent-based Computational Economics (ACE).

For the convenience of readers, a parallel on-line guide for newcomers to ABM is
available at http://www.econ.iastate.edu/tesfatsi/abmread.htm that includes links to our
suggested readings, as well as demonstration software, as availability permits.

2. Agent-based modeling and the social sciences1

The social sciences seek to understand not only how individuals behave but also how
the interaction of many individuals leads to large-scale outcomes. Understanding a po-
litical or economic system requires more than an understanding of the individuals that
comprise the system. It also requires understanding how the individuals interact with
each other, and how the results can be more than the sum of the parts.

ABM is well suited for this social science objective. It is a method for studying
systems exhibiting the following two properties: (1) the system is composed of interact-
ing agents; and (2) the system exhibits emergent properties, that is, properties arising
from the interactions of the agents that cannot be deduced simply by aggregating the
properties of the agents. When the interaction of the agents is contingent on past experi-
ence, and especially when the agents continually adapt to that experience, mathematical
analysis is typically very limited in its ability to derive the dynamic consequences. In
this case, ABM might be the only practical method of analysis.

1 For more detailed discussions of many of the points raised in this section, see Robert Axelrod, Complexity
of Cooperation (1997, Princeton University Press, Princeton, NJ), especially pp. 206–221, and Leigh
Tesfatsion, “Agent-Based Computational Economics: A Constructive Approach to Economic Theory”, in this
Handbook.

http://www.econ.iastate.edu/tesfatsi/abmread.htm
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ABM begins with assumptions about agents and their interactions and then uses
computer simulation to generate “histories” that can reveal the dynamic consequences
of these assumptions. Thus, ABM researchers can investigate how large-scale effects
arise from the micro-processes of interactions among many agents. These agents can
represent people (say consumers, sellers, or voters), but they can also represent so-
cial groupings such as families, firms, communities, government agencies and na-
tions.

Simulation in general, and ABM in particular, is a third way of doing science in
addition to deduction and induction. Scientists use deduction to derive theorems from
assumptions, and induction to find patterns in empirical data. Simulation, like deduc-
tion, starts with a set of explicit assumptions. But unlike deduction, simulation does not
prove theorems with generality. Instead, simulation generates data suitable for analysis
by induction. Nevertheless, unlike typical induction, the simulated data come from a
rigorously specified set of assumptions regarding an actual or proposed system of inter-
est rather than direct measurements of the real world. Consequently, simulation differs
from standard deduction and induction in both its implementation and its goals. Sim-
ulation permits increased understanding of systems through controlled computational
experiments.

The specific goals pursued by ABM researchers take four forms: empirical, norma-
tive, heuristic, and methodological. The goal of empirical understanding asks: Why
have particular large-scale regularities evolved and persisted, even when there is little
top-down control? Examples of such regularities include standing ovations, trade net-
works, socially accepted monies, mutual cooperation based on reciprocity, and social
norms. ABM researchers seek causal explanations grounded in the repeated interactions
of agents operating in specified environments. In particular, they ask whether particular
types of observed global regularities can be reliably generated from particular types of
agent-based models.

A second goal is normative understanding: How can agent-based models be used
as laboratories for the discovery of good designs? ABM researchers pursuing this
objective are interested in evaluating whether designs proposed for social policies, in-
stitutions, or processes will result in socially desirable system performance over time.
Examples include design of auction systems, voting rules, and law enforcement. The
general approach is akin to filling a bucket with water to determine if it leaks. An agent-
based world is constructed that captures the salient aspects of a social system operating
under the design. The world is then populated with privately motivated agents with
learning capabilities and allowed to develop over time. The key issue is the extent to
which the resulting world outcomes are efficient, fair, and orderly, despite attempts by
these privately motivated agents to gain individual advantage through strategic behav-
ior.

A third goal is heuristic: How can greater insight be attained about the fundamental
causal mechanisms in social systems? Even if the assumptions used to model a social
system are simple, the consequences can be far from obvious if the system is composed
of many interacting agents. The large-scale effects of interacting agents are often sur-
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prising because it can be hard to anticipate the full consequences of even simple forms of
interaction. For example, one of the earliest and most elegant agent-based models—the
city segregation (or “tipping”) model developed by Thomas Schelling (see Section 4.1
below)—demonstrates how residential segregation can emerge from individual choices
even when everyone is fairly tolerant.

A fourth goal is methodological advancement: How best to provide ABM researchers
with the methods and tools they need to undertake the rigorous study of social sys-
tems through controlled computational experiments? ABM researchers are exploring a
variety of ways to address this objective ranging from careful consideration of method-
ological principles to the practical development of programming and visualization tools.

In summary, ABM applied to social processes uses concepts and tools from social
science and computer science. It represents a methodological approach that could ul-
timately permit two important developments: (1) the rigorous testing, refinement, and
extension of existing theories that have proved to be difficult to formulate and evaluate
using standard statistical and mathematical tools; and (2) a deeper understanding of fun-
damental causal mechanisms in multi-agent systems whose study is currently separated
by artificial disciplinary boundaries.

3. Selection criteria

We decided at the outset to offer a short list of readings rather than make any attempt at
comprehensiveness. We based our selections on two criteria: (i) the educational value
of the reading for newcomers to ABM in the social sciences; and (ii) the accessibility
of the reading. The specific choice of topics and readings is our own. We recognize that
our selections are personal and necessarily somewhat arbitrary.

4. Suggested readings

4.1. Complexity and ABM

Vicsek, Tamas (2002), “Complexity: The Bigger Picture”, Nature, Vol. 418, p. 131.
In this short essay, Vicsek describes how computer simulation fits into the scientific en-
terprise. The goal is to “capture the principal laws behind the exciting variety of new
phenomena that become apparent when the many units of a complex system interact.”

Callahan, Paul, “What is the Game of Life?”
Accessible online at http://www.math.com/students/wonders/life/life.html, this interac-
tive website explains and demonstrates a delightful “game” invented by John Conway
in 1970. Although the Game of Life is not an agent-based model, it is a fascinating
illustration of how just three simple behavioral rules can lead to extremely complicated
outcomes.

http://www.math.com/students/wonders/life/life.html
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Schelling, Thomas C. (1978), Micromotives and Macrobehavior, Norton, New York,
pp. 137–157.
This classic work demonstrates what can happen when behavior in the aggregate is more
than the simple summation of individual behaviors. The highlighted pages present an
agent-based model that shows how a high degree of residential segregation can emerge
from the location choices of fairly tolerant individuals.

4.2. Emergence of collective behavior

Granovetter, Mark (1978), “Threshold Models of Collective Behavior”, American
Journal of Sociology, Vol. 83, pp. 1420–1442.
Threshold models are a class of mathematically tractable models that do not require
ABM to determine the global behavior that will emerge from individual choices. In a
threshold model, the key specification is each agent’s threshold for each of its possible
actions, i.e., the proportion of other agents who must take a particular action before the
given agent will prefer to take this action. Granovetter develops a threshold model in
which each agent has the same two alternative actions and the thresholds for these ac-
tions differ across agents. For a given frequency distribution of thresholds, the model
calculates the equilibrium number of agents taking each action. One suggested appli-
cation is to civil violence, in which each agent must decide whether or not to join a
riot. It is interesting to compare Granovetter’s threshold model outcomes to the richer
outcomes obtained for an agent-based model of civil violence in the following article
by Joshua Epstein.

Epstein, Joshua M. (2002), “Modeling Civil Violence: An Agent-Based Computa-
tional Approach”, Proceedings of the National Academy of Sciences, USA, Vol. 99,
pp. 7243–7250.
Epstein uses a spatial agent-based model to explore civil violence. A central authority
uses “cops” to arrest (remove) actively rebelling citizens from the society for a speci-
fied jail term. In each time step, each agent (cop or citizen) randomly moves to a new
unoccupied site within its limited vision. A rebelling citizen’s estimated arrest proba-
bility is assumed to fall as the ratio of actively rebelling citizens to cops that the citizen
perceives in its vicinity increases. Each citizen in each time step decides whether to
actively rebel or not depending on this perceived ratio. Epstein shows how the complex
dynamics resulting from these simple assumptions can generate empirically interesting
macroscopic regularities that are difficult to analyze using more standard modeling ap-
proaches.

Cederman, Lars-Erik (2003), “Modeling the Size of Wars”, American Political Sci-
ence Review, Vol. 97, pp. 135–150.
Power-law distributions, scaling laws and self-organized criticality are features of many
frequency distributions, from word usage to avalanches, and from firms to cities. A set
of events is said to behave in accordance with a power law distribution if large events
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are rarer than small events, and specifically if the frequency of an event is inversely
proportional to its size. An example is the distribution of the sizes of wars. Cederman
uses an agent-based model of war and state formation in the context of technological
change to account for this observed regularity. His paper is a good example of how a
fairly complicated model and its implications can be clearly presented, with details left
to an appendix.

Miller, John, and Scott E. Page (2004), “The Standing Ovation Problem”, Com-
plexity, Vol. 9, No. 5, May/June, pp. 8–16.
Miller and Page use audience ovation to introduce many key ABM themes, in particular
the emergence of collective behavior, and to provide specific modeling suggestions suit-
able for implementation by newcomers to the field. As a public performance draws to a
close, and audience members begin to applaud and some even tentatively to stand, will
a standing ovation ensue or not? This is the famous Standing Ovation Problem (SOP)
inspired by the seminal work of Thomas Schelling on the relationship between micro
decisions and macro behaviors (see Section 4.1 above). Miller and Page use the SOP to
illustrate how complex social dynamics can arise from the interactions among simple
personal choices, in this case to stand or not. They argue (p. 9) that the success of the
SOP as an expository device is that it forces modelers “to confront the core methodolog-
ical issue in complex adaptive social systems, namely, how does one model a system of
thoughtful, interacting agents in time and space.”

4.3. Evolution

Dawkins, Richard (1989), The Selfish Gene, New Edition, Oxford University Press,
Oxford, UK, pp. 1–45.
If you are going to read only one book on evolution, this delightful and insightful book
is a good choice. You will be amazed at the implications of the inclusive fitness per-
spective.

Sigmund, Karl (1993), Games of Life: Explorations in Ecology, Evolution, and Be-
havior, Oxford University Press, Oxford, UK, pp. 155–206.
Writing in a lively and engaging style, Sigmund provides a non-technical introduction
to models of evolution. Topics include population ecology and chaos, random drift and
chain reactions, population genetics, evolutionary game theory, and the evolution of co-
operation based on reciprocity. The highlighted pages cover the latter two topics, of
most relevance to social scientists.

4.4. Learning

Clark, Andy (1998), Being There: Putting Brain, Body, and World Together Again,
The MIT Press, Cambridge, MA, pp. 179–192.
This delightfully written book addresses foundational questions about how people (and
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robots) can make sense of the confusing world in which they live. The highlighted pages
apply this perspective to markets.

Holland, John H. (1992), “Genetic Algorithms”, Scientific American, Vol. 267, July,
pp. 66–72.
The genetic algorithm is a search technique inspired by the evolutionary effectiveness
of mutation and differential reproduction. The algorithm provides a convenient way to
model agents of limited rationality that adapt and/or evolve over time. Each agent might
be responding to a fixed environment, or to an ever-changing social environment con-
sisting of many agents who are continually adapting to each other. The article by Rick
Riolo in the same issue shows how to incorporate a genetic algorithm in one’s own
agent-based model.

Vriend, Nicolaas (2000), “An Illustration of the Essential Difference Between In-
dividual and Social Learning, and its Consequence for Computational Analyses”,
Journal of Economic Dynamics and Control, Vol. 24, pp. 1–19.
Vriend focuses on the importance of the level of learning for computational agents. An
agent is said to employ individual-level learning when it learns from its own past expe-
riences, and to employ population-level learning when it learns from other agents, e.g.,
through mimicry of their observed behaviors. Using a simple market model for concrete
illustration, Vriend demonstrates that substantially different outcomes can result when
profit-seeking firms use individual-level genetic algorithm learning versus population-
level genetic algorithm learning.

4.5. Norms

Hofstadter, Douglas (1983), “Computer Tournaments of the Prisoner’s Dilemma
Suggest How Cooperation Evolves”, Scientific American, May, pp. 18–26.
Hofstadter explains Robert Axelrod’s computer tournaments, which explored the evolu-
tion of cooperation in the iterated Prisoner’s Dilemma. For the original work, including
agent-based models, formal theorems, and many real-world applications, see Robert
Axelrod, Evolution of Cooperation (1984, NY: Basic Books).

Axelrod, Robert (1986), “An Evolutionary Approach to Norms”, American Politi-
cal Science Review, Vol. 80, pp. 1095–1111.
This article develops an agent-based model with a simple form of learning using the
genetic algorithm to explore what can happen when many agents adapt to each other’s
behavior over time. Agents can be more or less bold (say by cheating), and more or
less vengeful (say by reporting cheaters). The model shows the conditions under which
a collective action problem can be solved by a self-sustaining metanorm: punish those
who do not enforce the norm because others might punish you for not doing so.
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Nowak, Martin A., Karen M. Page, and Karl Sigmund (2000), “Fairness Versus
Reason in the Ultimatum Game”, Science, Vol. 289, September 8, pp. 1773–1775.
The authors consider the Ultimatum Game in which two players are offered a chance
to win a certain sum of money. One player, the proposer, gets to offer a portion of the
sum to the other player, retaining the rest. The second player gets to accept or reject
the offer, with rejection resulting in no money for either player. The rational solution,
according to game theory, is for the proposer to offer as little as possible and for the
other player to accept. When humans play the game, however, the most frequent offer is
an equal (“fair”) share. The authors employ evolutionary dynamics to explain how this
“irrational” anchoring on fair shares might have evolved among humans in part through
a rational concern for reputation. Specifically, accepting low offers, if generally known
and remembered, increases the chances of receiving low offers in subsequent encoun-
ters; and making low offers becomes irrational if low offers are not accepted.

Epstein, Joshua M. (2001), “Learning to be Thoughtless: Social Norms and Indi-
vidual Competition”, Computational Economics, Vol. 18, pp. 9–24.
Epstein uses an agent-based model to study experimentally an important observed as-
pect of social norm evolution: namely, that the amount of time an individual devotes to
thinking about a behavior tends to be inversely related to the strength of the social norms
that relate to this behavior. In the limit, once a behavioral norm is firmly entrenched in a
society, individuals tend to conform to the norm without explicit thought. Epstein’s in-
novative model permits agents to learn how to behave (what behavioral norm to adopt),
but it also permits agents to learn how much to think about how to behave.

4.6. Markets

Albin, Peter, and Duncan K. Foley (1992), “Decentralized, Dispersed Exchange
Without an Auctioneer: A Simulation Study”, Journal of Economic Behavior and
Organization, Vol. 18, pp. 27–51.
Albin and Foley simulate pure exchange among geographically dispersed utility-
seeking traders with endowments of two distinct types of goods, and with bounds to
rationality and calculation. Exchange is entirely decentralized. The authors show that
this decentralized exchange process achieves a substantial improvement in trader wel-
fare relative to randomly allocated goods.

Gode, D.K., and S. Sunder (1993), “Allocative Efficiency of Markets with Zero
Intelligence Traders: Market as a Partial Substitute for Individual Rationality”,
Journal of Political Economy, Vol. 101, pp. 119–137.
Gode and Sunder report on continuous double-auction experiments with computational
traders. They find that high market efficiency is generally attained even when the traders
randomly select bids and offers from within their budget sets as long as these “zero in-
telligence” traders abide by certain protocols restricting the order of executed trades.
The authors conclude that the high market efficiency typically observed in continuous
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double-auction experiments with human subjects is due to the structure of the auction
and not to learning. Their seminal work has highlighted an important issue now being
actively pursued by many other researchers: what are the relative roles of learning and
institutional arrangements in the determination of economic, social, and political out-
comes?

LeBaron, Blake (2002), “Building the Santa Fe Artificial Stock Market”, Work-
ing Paper, Brandeis University, June, http://www.econ.iastate.edu/tesfatsi/blake.
sfisum.pdf
LeBaron provides an insider’s look at the construction of the Santa Fe Artificial Stock
Market model. He considers the many design questions that went into building the
model from the perspective of a decade of experience with agent-based financial mar-
kets. He also provides an assessment of the model’s overall strengths and weaknesses.

4.7. Institutional design

Kollman, Ken, John H. Miller, and Scott E. Page (1997), “Political Institutions and
Sorting in a Tiebout Model”, American Economic Review, Vol. 87, pp. 977–992.
The authors develop an agent-based model to explore how social outcomes are affected
by the political institutions used to aggregate individual choices on local public goods
issues, such as whether or not to finance a community swimming pool. Examples of
such political institutions are referenda, two-party competition, and proportional repre-
sentation. For each tested political institution, assumed to be commonly in use across
all jurisdictions, citizens “vote with their feet” in each time period regarding which ju-
risdiction they wish to inhabit. The policy positions resulting in any given jurisdiction
depend on the preferences of the citizens located within that jurisdiction, in a man-
ner determined by the political institution in force. Citizens can continue to relocate
in response to changing local policy positions, and local policy positions can continue
to change in response to citizen relocations. The authors find that social efficiency is
highest under political institutions such as two-party competition or proportional repre-
sentation that initially induce citizens to undertake a suitable degree of experimentation
among alternative jurisdictions.

Lansing, Stephen, and James N. Kremer (1993), “Emergent Properties of Balinese
Water Temple Networks: Coadaptation on a Rugged Fitness Landscape”, Ameri-
can Anthropologist, Vol. 95, pp. 97–114.
Over hundreds of years, Balinese farmers have developed an intricate hierarchical net-
work of “water temples” dedicated to agricultural deities in parallel with physical trans-
formations of their island deliberately undertaken to make it more suitable for growing
irrigated rice. The water temple network plays an instrumental role in the coordination
of activities related to rice production. Representatives of different water temple con-
gregations meet regularly to decide cropping patterns, planting times, and water usage,
thus helping to synchronize harvests and control pest populations. Lansing and Kremer

http://www.econ.iastate.edu/tesfatsi/blake.sfisum.pdf
http://www.econ.iastate.edu/tesfatsi/blake.sfisum.pdf
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develop an ecological simulation model to illuminate the system-level effects of the wa-
ter temple network, both social and ecological. Their anthropological study illustrates
many important ABM concepts, including emergent properties, fitness landscapes, co-
adaptation, and the effects of different institutional designs.

Simon, Herbert (1982), “The Architecture of Complexity”, pp. 193–230 in The Sci-
ences of the Artificial, Second Edition, The MIT Press, Cambridge, MA.
Simon informally defines a “complex system” to be a system made up of a large number
of parts that interact in a non-simple way. He considers a number of complex systems
encountered in the behavioral sciences, from families to formal organizations, and de-
scribes features that are common in a wide variety of such systems. His central theme
(p. 196) is that “complexity frequently takes the form of hierarchy and that hierarchic
systems have some common properties independent of their specific content.” He dis-
cusses the design advantages of nearly decomposable subsystems with a hierarchical
organization of their parts. He also conjectures that complex systems evolve from sim-
ple systems much more rapidly if there are stable intermediate forms along the way,
hence evolution favors hierarchic over non-hierarchic systems.

4.8. Networks

Wilhite, Allen (2001), “Bilateral Trade and ‘Small-World’ Networks”, Computa-
tional Economics, Vol. 18, No. 1, pp. 49-64.
Wilhite develops an agent-based computational model of a bilateral exchange econ-
omy. He uses this model to explore the consequences of restricting trade to different
types of networks, including a “small-world network” with both local connectivity and
global reach. His key finding is that small-world networks provide most of the market-
efficiency advantages of completely connected networks while retaining almost all of
the transaction cost economies of locally connected networks.

Kirman, Alan P., and Nicolaas J. Vriend (2001), “Evolving Market Structure: An
ACE Model of Price Dispersion and Loyalty”, Journal of Economic Dynamics and
Control, Vol. 25, Nos. 3–4, pp. 459–502.
Social scientists typically study the implications of given interaction networks, e.g.,
friendship or trade networks. An important aspect of many social systems, however,
is how agents come to form interaction networks. Kirman and Vriend address this is-
sue in the context of an agent-based computational model capturing salient structural
aspects of the actual wholesale fish market in Marseilles, France. Two features charac-
terizing this actual market are: (a) loyalty relationships (persistent trade partnerships)
between particular buyers and sellers; and (b) persistent price dispersion unexplain-
able by observable characteristics of the fish. The simulation results show that loyalty
relationships can indeed emerge naturally between particular buyer-seller pairs as the
buyers and sellers co-evolve their trading rules over time. Buyers learn to become loyal
to particular sellers while, at the same time, sellers learn to offer higher payoffs (lower
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prices and more reliable supplies) to their more loyal buyers. Moreover, this evolving
trade network supports persistent price dispersion over time.

4.9. Modeling techniques

Macy, Michael W., and Robert Willer (2002), “From Factors to Actors: Computa-
tional Sociology and Agent-Based Modeling”, Annual Review of Sociology, Vol. 28,
pp. 143–166.
While written for sociologists, this review article should be of value to all agent-based
modelers. It places ABM in its historical context, explains its meaning and goals, pro-
vides many good examples, and offers useful advice to those who want to try it for
themselves. Other articles with explicit modeling advice include LeBaron (2002) and
Miller and Page (2004) cited above.

5. What to do next

• Browse the comprehensive website at http://www.econ.iastate.edu/tesfatsi/ace.htm
to find agent-based researchers in your neck of the woods, links to specific topics
in ABM, course syllabi, demonstration software, and much more.

• Use the chapters in this handbook to help you explore specific topics.
• Explore the journals that publish a good deal of ABM: Journal of Artificial So-

cieties and Social Simulation (on-line); Computational Economics; Journal of
Economic Behavior and Organization; Games and Economic Behavior; Journal
of Economic Dynamics and Control; and Complexity. For weekly news items, in-
cluding upcoming conferences, see the Complexity Digest (online).2

• Master the mathematical and statistical tools that are commonly used in ABM
by studying basic mathematical analysis (especially probability theory and non-
linear dynamics), game theory, and elementary statistics (e.g., hypothesis testing
and regression).

• Learn a programming language so that you can try your hand at building and
running your own agent-based models. For younger beginners, we recommend
StarLogo.3 For older beginners, we recommend a language with object-oriented
capabilities such as Java, C++, or C#,4 supplemented with an agent-based toolkit

2 See http://www.econ.iastate.edu/tesfatsi/publish.htm for links to these journals as well as to many other
journals and book publishers that support the publication of ABM-related work.
3 StarLogo is a programmable modeling environment for exploring the workings of decentralized systems

that has been specifically designed to be user-friendly for K-12 students. Extensive support materials for
StarLogo can be found at http://education.mit.edu/starlogo/ .
4 ABM is increasingly being implemented using languages with object-oriented programming (OOP) ca-

pabilities, such as Java, C++, and C#. A good introduction to OOP is Matt Weisfeld, The Object-Oriented
Thought Process (2000, SAMS Publishing, Division of Macmillan, Indianapolis, Indiana). This book is de-

http://www.econ.iastate.edu/tesfatsi/ace.htm
http://www.econ.iastate.edu/tesfatsi/publish.htm
http://education.mit.edu/starlogo/
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(see below). Another possibility is Matlab, which is steadily increasing its ABM
capabilities.

• Explore the agent-based toolkits that are available to assist agent-based modelers
with common tasks such as constructing agents and displaying output in the form
of tables, charts, graphs, and movies.5 For example, Repast is specifically designed
for agent-based modeling in the social sciences and supports model development
in many different programming languages and on virtually all modern computing
platforms.6 Another possibility is NetLogo, a cross-platform multi-agent program-
ming environment.7 Both Repast and NetLogo are actively maintained and freely
available, and their relative ease of use has attracted growing communities of users.

• Explore special journal issues devoted to agent-based modeling and related
themes. These include: American Behavioral Scientist (Vol. 42, August 1999); Sci-
ence (Vol. 284, April 1999); Journal of Economic Dynamics and Control (Vol. 25,
Nos. 3–4, 2001), Computational Economics (Vol. 18, No. 1, 2001); and the Pro-
ceedings of the National Academy of Sciences, USA (Vol. 99, Supplement 3,
2002).8

• For a wonderful introduction to computational aspects of complex systems,
including fractals, chaos, cellular automata, neural networks, and a helpful glossary
of terms, we highly recommend Gary William Flake, The Computational Beauty
of Nature (1998, MIT Press, Cambridge, MA).9

signed to help newcomers learn OOP guidelines for solid class design and master the major OOP concepts of
inheritance, composition, interfaces, and abstract classes. The author motivates and illustrates his points by
taking readers step by step through simple concrete examples.
5 See http://www.econ.iastate.edu/tesfatsi/acecode.htm for annotated pointers to a wide variety of program-

ming languages and agent-based toolkits currently being used for ABM.
6 See http://www.econ.iastate.edu/tesfatsi/repastsg.htm for detailed information about Repast.
7 See http://ccl.northwestern.edu/netlogo for detailed information about NetLogo.
8 See http://www.econ.iastate.edu/tesfatsi/avolumes.htm for an annotated list of special ABM-related journal

issues together with volumes of ABM-related readings.
9 See http://mitpress.mit.edu/books/FLAOH/cbnhtml/ for detailed information and supporting materials for

Flake’s book.

http://www.econ.iastate.edu/tesfatsi/acecode.htm
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– networks 1529
aspiration level 913, 931
aspiration-based reinforcement learning models

977
asset price bubbles and crashes 965
asset pricing model 1165
associative problems 1312
assortive matching 1069
asynchronous updating 1026, 1027, 1029,

1031, 1033
auctions for electro-magnetic spectrum 1341
automated trading 1405
autonomous agent 843
autonomy 843, 844, 1387
avoidable costs 962

backwards induction 1569
Balinese water temple networks 1656
bandwagon expectations 1120
bandwidth 1395
bargaining 1442
– norms 1100

I-27
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barriers to trade 1570
barter 1036
base network 1529
batch-control tools 1521
Bayesian learning 922, 1196
bear market 1117, 1135
behavioral economics 1175, 1178
behavioral finance 1124, 1175, 1178, 1193,

1226
behavioral uncertainty 856
behavioralism 1438
belief discovery 1398
belief learning 918, 941
belief pattern 851
belief-based learning 979–984, 1348
Bertrand duopoly 1345
best-responses 1053
biased belief 1169
biases 1111, 1112
bidding strategies 1360
bimodal distribution 1143, 1144
binary choice model 1148, 1149
binary classification problems 1314
blinker 1028, 1029, 1034
block-diagonal interaction structure 1304
bottom-up design 1349
bounded neighborhood model 1642
bounded rationality 1050, 1083, 1111–1114,

1123, 1129, 1165, 1175, 1178, 1189, 1281,
1294, 1295, 1331, 1333, 1349, 1354, 1358,
1588, 1627

bubbles 1115
bull market 1117, 1135
Bush–Mosteller model 906

calibration 938, 1211, 1214, 1500
(CARA) utility 1125, 1172
carrying capacity 851
catastrophe theory 1116, 1118
cellular automata 1496
central bank intervention 1220
Central Bank’s policy 1635
centralization 1296, 1302, 1303, 1309, 1633
centralized organization 1298, 1302
chaos 1114, 1131, 1135, 1139, 1163, 1164,

1170, 1171, 1600
characteristic path length 1529
chartists 1116, 1117, 1121, 1122, 1131, 1138,

1142, 1145, 1152, 1153, 1175
choice theory 1628
civil violence 1652

Classical Stability Postulate 1636
classification of learning models 900
classifier 1206
– system 925, 999–1001, 1198
clearinghouse (or call) market 1363
climate change 1491
cluster coefficient 1529
co-evolution 1300, 1326, 1345, 1352, 1527,

1576, 1633
coalitions 1455
cobweb model 1160
coevolution of strategies 1633
cognitive capacity 929
cognitive constraints 1296
cognitive learning 898, 918
cognitive loss 1627
collective action 1436
collective interest 1439
Colonel Blotto 1441
combinatorial auction 1401, 1403, 1418
combinatorial markets 1399
combinatorial sweeping 1542
complex systems, computational aspects 1659
complexity 1651, 1657
common-pool resources 1479
communication 1061
– classes 1086
– complexity 1402
– network resources 1394
companion modeling 865, 1495
comparisons of genetic algorithm and reinforce-

ment learning 998, 999
comparisons of reinforcement and belief-based

learning 979, 984, 985
competing technologies 1092
competition and consumer search 1299
competitive contracts 1105
competitive equilibrium 1103, 1105, 1224,

1399, 1401, 1415
competitive process 1632
complementarities 1292, 1399, 1401, 1403,

1412
complete network 1017, 1026
complex adaptive system 836, 1175, 1471
complex dynamics 1131
complex systems 1114
complex systems theory 1629
complexity 1296, 1302, 1315, 1344, 1460,

1553
– of learning models 934
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computational complexity 1596
computational laboratory 1512, 1514
computational resources 1394
computationally intensive methods 888
computer chess 1569
computer industry 1261
computerized electricity exchanges 1359
conditioning 898
conflicts 1436
conformity 1101–1105
congestion 1395
conjunctive normal form 1595
consistency of plans 1629
constructive mathematics 865
consumer demand 1266
contagion 1152
continuity principle 1631, 1634
continuous double auction (CDA) 1354, 1409
continuous market 1363
continuum of steady states 1155
contraction factor 1530
contractual customs 1100
contrarians 1175
controlled laboratory experimentation 951
conventions 861, 1024
cooperation 1022, 1067, 1476
coordination 1022, 1056, 1309, 1609–1611,

1620–1622
– game 1083
– of expectations 1177
– problem 861, 1483, 1484, 1534
corporate finance 1220
correlated errors 1106
costly rational expectations 1168
costs of processing information 1311
Cournot learning 979, 980
crashes 1213
critical neighborhoods 1039
critical nodes 1039
cropsharing contracts 1100
cross-departmental interdependence 1305
(CRRA) utility 1172
CSS–ZI agents 971
cultural differences 1447
cultural theory 1488
culture 1282
currency crises 1216
cycle 1028, 1034, 1169

dealer 1220
decentralization 1296, 1298, 1302, 1303, 1309

decentralized exchange 1655
decision rules 1070
decomposability 1315
– and hierarchy 1306
decomposable interactions 1303
defections 1063, 1069
deliberation 1458
demand prices 1630
design 1383, 1388
– of agents 1351
– of markets 1349
– space 1350
– structures 1222
destabilizing force 1163, 1175
destabilizing speculation 1128, 1129, 1132
deviation from fundamental 1167
differentiated products 1253
diffusion 1244, 1258, 1536
– of innovation 1568
– processes 1534
directed learning 1348
directed random search 1075
disasters 1633
discovery services 1391
discrete choice model 1148, 1160, 1162
discriminatory auction 1366
discriminatory-price auctions 1353
discriminatory-price Bertrand game 1368
discriminatory-price k-double auction 1360
disease 1525
disequilibrium 1131, 1345, 1354, 1356
disjunctive normal form 1593
distance decay 1531
distributed artificial intelligence 1357
distributed dynamic systems 1515
distributed Nash equilibrium 1535
distributed problem solving 1311, 1312
dividend–price ratio 1215
double auction 955, 962, 1352, 1633
– experiments 1633
duopoly 1570
dynamic spatial processes 1515
dynamically complete 837

ecological innovation 1534
economic contracts 1100
economic disasters 1627
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economic growth 851, 1246, 1257, 1259, 1264,
1607, 1608, 1610–1614

ecosystem dynamics 1491
education 1613
effective computability 1598
effective demand 1634, 1635
efficiency 1092, 1390, 1515
efficient 1106
– markets hypothesis 1189, 1349
– norms 1092
– resource allocation 1627, 1628
El Farol 1056
– bar problem 1560
election operator 1203
electoral competition 1448
electoral landscape 1451
electoral systems 1436
electricity market analysis 1357
electricity pool rules 1362
electronic payment mechanisms 1405
embodied agents 844
EMCAS 1369
emergence 1447, 1539
– of cooperation 1345
emergent hierarchy 1330
emergent order 1629
emergent properties 836, 1056, 1241, 1258,

1539, 1635, 1649
empirical game 1417, 1419, 1420
empirical validity 838, 953, 981, 991, 1002–

1003, 1216, 1267, 1331, 1650
endogenous interaction 1048
endogenous switching 1138, 1139, 1159
endogenously generate internal hierarchy 1328
energy markets 1397
entrepreneurial regime 1247
environmental economics 1341, 1468, 1469
epistemological issues 1589
EPRI 1368
– Power Market Simulator 1360, 1363, 1364
equilibrium 850, 1050, 1628, 1629, 1632,

1634, 1635
– formation 1558
– selection 1558
– strategies 1362
equity 1516
– premium 1191
ergodic 1086
errors of perception 1083

event-driven simulation 1470
evolution 1112, 1344
– of biological populations 845
evolution of cooperation 1570–1571, 1583
evolution of norms 1083
evolutionary 1051
– algorithms 915
– algorithms as models of agent behavior 986,

987
– approach 1114
– competition 1175
– computing 1371
– control 1217
– dynamics 1159, 1627
– economics 1243–1248
– finance 1176
– mechanism design 1370
– (or learning) game theory 1354
– programming 1196
– selection 1160, 1167
– selection of expectations 1159, 1175
– strategies 916, 1196
– switching 1170
EWA model 917
excess capacity 859
excess demand 859, 1131, 1137
excess supply 859
excess volatility 1113, 1178
exchange on networks 1035
exchange rate model 1122, 1138
expectational indeterminacy 1559
expectations 1111, 1115, 1118, 1122, 1145,

1559, 1619
– formation 1560
explicit communication 1370
exploitation 1325
exploration 1325
explosive expectations 1121
exposure problem 1411
external threats 1474
external validity 838, 953, 981, 991, 1002–

1003, 1216, 1267, 1331, 1650
externalities 1053, 1443, 1516, 1611, 1621
externality payoff 1098
extramarginal 1364
extrapolative expectations 1120
extrapolative trading rules 1115
extreme value distribution 1098, 1149

face-to-face communication 1478
farmers 1499
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fat tails 1151, 1156, 1176, 1192, 1207
feedback traders 1175
feedbacks 861
few-type 1214, 1219
– examples 1168
– models 1199
fictitious play 921, 979, 980
field experiments 1481
finite size effect 1156
finite state automaton 1062, 1574
First AI Debate 844
First Welfare Theorem 834, 847, 1515
fish market 1069, 1631
fitness landscape 1656
fitness measure 1059, 1153, 1161, 1168
fixed networks 1015
fluctuating environment 1299
focal points 1100
forecasting 1216, 1222
fractional integration 1213
free riding 1163, 1323, 1324
frictions 1634
Friedman 1609
– hypothesis 1112, 1123, 1124, 1128, 1129,

1163, 1170
full employment equilibrium 1634
fundamental 1115
– price 1131, 1133, 1166
– risk 1126
– traders 1199
– value 1123, 1126, 1135, 1138, 1139, 1145,

1153, 1156
fundamentalists 1116, 1117, 1121, 1122, 1131,

1138, 1142, 1145, 1152, 1153, 1168, 1169,
1175

fuzzy logic system 1207

Game of Life 1651
(G)ARCH-models 1151
general purpose technologies 1615
generalized Nash equilibrium 1535
generative 1585
– explanation 1587, 1589
– models 1537
– sufficiency 1589
genetic algorithm 916, 989–998, 1059, 1196,

1201, 1252, 1319, 1320, 1344, 1358, 1490,
1544, 1575

genetic programming 924, 1001–1003, 1196,
1209, 1371

Genoa artificial market 1209

Geographic Information Systems (GIS) 1520
geographic landscapes 1516
geographic space 1098
geographical neighbors 1101
GeoGraphs 1541
geography 1445
geometric random walk 1215
Gibbs representation 1099, 1102
global custom 1103
global diversity 1105
global exploitation of local knowledge 1325
global interaction 1148
globalization processes 1534
governance of common-pool resources 1485
gradient climbing 1633
Great Depression 1627, 1634
grid 1030
– network 1019
growth 1246, 1257, 1259, 1264, 1607, 1608,

1610–1614
– path 851
– theory 1612

habituation 906, 930
Hamming distance 1072, 1290
heterogeneity 1178, 1240, 1255, 1263, 1588
heterogeneous agent model (HAM) 1109–

1111, 1175–1179, 1368, 1627
heterogeneous behavior 1060
heterogeneous beliefs 1165, 1167
heterogeneous expectations 1113, 1139
heuristic-strategy 1372
heuristics 1111, 1112
Hewlett-Packard 1368, 1372
hierarchy 1633
– and team 1314
– of equilibria 1633
Hilbert’s 10th problem 1597
hill-climbing 1298
– algorithm 1295
history friendly models 1260, 1262
history of modelling learning 897
history-replication 1262
Homo economicus 844
Hopf bifurcation 1169, 1170
hybrid modelling approach 984
hybrid spatial networks 1529
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IBM 1370
ideologies 1452
imitation 911, 1025, 1073, 1126, 1152, 1158,

1246, 1256
implementation 1517
implicit collusion 1366
impossibility result 1353
impossibility theorem 1371
inclusive fitness 1571
income distribution 1039, 1628
increasing returns 1300, 1558, 1633
indeterminacy 1558, 1559, 1561
individual learning 937, 1348
individual reinforcement learning 1372
individual-based modeling 1470
inductive 1225
– behavior 1559
– reasoning 954
industrial policy 1262
inequality 1614
inflation 1216
information 857
– cost 1161
– gathering costs 1158
– processing 1310, 1311
– processing networks 1311
– sharing 1211
informed investors 1128
inframarginal 1364
inherit 1520
innovation 1073, 1237, 1246, 1256, 1607,

1612, 1615
– dynamics 1238
– networks 1250
insolvency protocol 849
insolvency risk 853, 859
institutional structure 1631
institutions constraining behavior 1628
integrated 1053
– theories 864
intensity of choice 1149, 1160, 1162, 1170,

1174
inter-store learning 1298
interaction 1051, 1056, 1142, 1175, 1291
– pattern 1057
internal model 1252
internal stability 1474
intertemporal equilibrium 1263
intertemporal general equilibrium 1629
investment expectations 1634
invisible hand 1635

involuntary unemployment 1635
irregular networks 1530
Iterated Prisoner’s Dilemma (IPD) 857, 1476
iterative market design 1369

Java 1658

keep-it-simple-stupid (KISS) principle 954,
961, 978

knowledge base 1238, 1248–1251
knowledge transfer 1289, 1309
kurtosis 1192, 1216

labor market 996, 1266, 1613, 1614, 1634–
1636

laboratory experiments 1115, 1177, 1404,
1417, 1479, 1493, 1498

landscape 1290
Large Type Limit (LTL) 1172
lattice 1050
laws of motion 1628, 1631, 1633, 1634, 1636
learned tacit collusion 1362
learning 856, 1053, 1492, 1628, 1654
– automata 1358
– direction theory 909
– method 849
– model 897, 928, 932, 938
– processes 897, 902
– rate 1206
learning-how-to-forecast design 994
learning-how-to-forecast model 1355
learning-how-to-optimize 1355
least-squares learning 923
Lerner Index 869
life cycle 1253–1255, 1259
life-boat ethics 860
limiting distribution 1086
limits to arbitrage 1124, 1154
linear forecasting rules 1168, 1169
liquidity 1137
– constraints 1636
– traders 1124, 1154
live and let live system 1570
local adaptation 1483
local conformity 1105
local conformity/global diversity effect 1106
local custom 1101
local interactions 1106, 1142, 1148, 1588
local stakeholders 1484
locational game 1534
logistic distribution 1098, 1149
logit model 1149, 1162
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long-run behavior 1106
long-run distribution 1099
long-term expectation 1121
loyalty 1059, 1071

M-form 1282, 1300
macroeconomic fundamental 1050, 1119, 1214
many-type 1172, 1200
market 1049
– clearing 851, 1632
– design 1349
– efficiency 1113, 1172, 1361, 1364, 1365
– evolution 1358
– fluctuations 1299
– impact function 1135, 1137
– institutions 1341
– interfaces 1408
– maker 1131, 1133, 1135, 1137, 1154, 1172,

1633
– mechanism 1386, 1387, 1389, 1418
– microstructure 1385, 1410
– organization 1049, 1071
– power 1360, 1363, 1365, 1367
– process 1632
– psychology 1111, 1124
– structure 1299, 1385, 1410, 1657
Markov process 850, 1086
Marseille 1069, 1657
Marshall’s laws of motion 1630
master equation 1155
matching 1065
mean field theory 1149
mean matching 988
mean reversion 1115, 1120, 1178
mean variance utility 1143
mean-variance theory 1165
mechanism design 1396
mediated mechanism 1385
medium of exchange 1083
medium-run dynamics 1286
melioration learning 910
memory 1176, 1212
– length 1218
– parameter 1168
mental models 919
Mersenne Twister 1521
meta-theoretical framework 1480
metabolism 1055
methodological advancement 842, 1651
micro interaction 1241
microspecification 1050

microstructure 1226
min max set 1449
minimum stochastic potential 1090, 1096
minority game 1222
mitigation of market power 1357
mobile blinker 1030
model selection 1482
modified Roth–Erev (MRE) model 1365
modular architecture 1635
modular programming 1520
monetary exchange 1083, 1622
Monte Carlo sampling 889
Monte Carlo simulations 887
Moore neighborhood 1052
Moore’s law 883, 884
moving average 1116, 1138
multi asset markets 1176
multi-agent search 1294
– mechanism 1295
multinomial logit model 1160, 1168, 1173
multiple equilibria 1146, 1150, 1558, 1559,

1629
mutation 915, 1083, 1092, 1575
myopic expectations 1150

naive expectations 1161
Nash equilibrium 1353, 1477, 1535
natural rate of unemployment (NAIRU) 1636
natural resources 1468–1469
near decomposability 1306
nearest neighbor forecast 1171, 1172
negotiation 1393
neighborhood 1015, 1019, 1020, 1023, 1052,

1053
neoclassical description of a firm 1279
neoclassical economics 1103–1105, 1280,

1285, 1162, 1334, 1627
– and ACE 1334
nested governance systems 1502
NetLogo 1659
network 851, 1019, 1021, 1037, 1073, 1446,

1457, 1501, 1528, 1541
– externalities 1088, 1094
– growth 1075
– structure 1076, 1493
networking payoffs 1092
network topology 1037
neural network 926, 1198, 1210, 1215, 1495
neuro-science 899
new financial instruments 1341
new growth theory 1264
no-trade theorems 1113, 1176
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noise amplification 1156
noise trader 1124–1127, 1154, 1191, 1219
– risk 1126
non-conscious learning 903, 938
non-convex dynamics 1469
non-equilibrium 1050, 1131, 1345, 1354, 1356,

1555–1556, 1562, 1588
non-ergodic 1086
non-linear dynamical system 1114, 1631
non-rational agents 1114, 1115, 1129
non-segregated absorbing state 1096
non-steady-state economics 1556
nonconstructive existence 1595
normative analysis 1084, 1266, 1522
normative understanding 839, 1650
novelty perpetual 1557

object-oriented 1519
– program 1635
– programming (OOP) 836, 1357, 1658
objective-C 1207
observational learning 912
obsolescence 1613
oligopolistic competition 1345
on-line markets 1342
online scheduling 1398
opinion formation 1142, 1143
opinion index 1152
options 1224
order-book 1195, 1218
organization 861, 1281
– theory 1276, 1277
– code 1326
– firm performance 1297
– norms 1282, 1325
– search 1288
– structure 1281, 1299
out of sample forecasting 1222
out-of-equilibrium 1050, 1131, 1345, 1354,

1356, 1555–1556, 1562, 1588
overlapping generations 834, 1202
overshoot and collapse 1470

pandemic 1514
parallel processing 1629
parameter sensitivity 1220
parameter sweeping 1521
parasites 1575
– and sexual reproduction 1576–1581
Pareto dominant equilibrium 1091
Pareto efficient technology 1089

Pareto improving trades 1095
parsimonious modeling 1538
partial recursive functions 1601
participatory modeling 865, 1495
patents 1265
path dependence 1106, 1186, 1444, 1471,

1527, 1559
patronage 1059, 1060
perfect coordination 1633
perfect foresight 1161, 1168
performance landscape 1294
performance measure: see fitness measure

1159
performance space 1350
period doubling bifurcation 1162
periodic 1170
persistence 1105
persistent 1106
– heterogeneity 1258
– volatility 1207
personnel turnover 1315
perturbed dynamical process 1089
perturbed Markov process 1095
phase transition 1035
pickiness 1063, 1066
pie-splitting 1436
point attractor 1631, 1632
Poisson random variable 1098, 1101
pollution emissions 1341, 1468–1469
population learning 937
population thinking 1244
portfolio insurance 1200
portfolio managers 1122
positive feedback 1527, 1531
– traders 1128, 1129
postdictive accuracy 1538
potential 1099
– function 1100, 1102
power law 1075, 1192, 1652
power network 1021, 1034
precautionary savings 868
predictions 1056, 1415, 1538
– equilibrium selection 983
– replicator dynamics 987
preference elicitation 1402
preferential partner selection 1061
price adjustment rule 1135, 1137
price convergence 1038
price determination 1194
price discovery process 849
price limits 1220
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price prediction error 1211
primitive recursion 1590
Prisoner’s Dilemma 1024, 1061, 1456, 1557,

1568–1574, 1654
prisoner’s dilemma tournaments 1568, 1574
procedural rationality 1631
procedural uncertainty 1239
procurement processes 834
product landscape 1252
profit allocation method 849
program trading 1407
programming skills 865
property rights 1105, 1478
pseudo-random numbers 844
psychology 898
public goods 1479, 1497
public information 1128
public infrastructure providers 1473
punctuated equilibrium 1105
– effect 1084, 1106

Q-learning 979
qualitative insight and theory generation 840
quasi-hyperbolic discounting 855
quasi-Monte Carlo sampling 890
quasi-periodic fluctuations 1170

random 1069
– networks 1312
– number seed 1522, 1542
– number series 1521
– order flow 1219
– perturbations 1083
Random Queue Rationing Method 875
random sample 1084
– utility 1148
– utility model 1159
– walk 1190
rational arbitrageurs 1124, 1175
rational choice 1439, 1598, 1628
rational expectations 856, 1112, 1150, 1159–

1161, 1166, 1560, 1561
rational route to randomness 1163, 1174
rational speculators 1124, 1128
rationing 860
– method 849
real business cycle theory 1629
reciprocity 1570
recruitment model 1142
recurrence class 1086, 1089
recursive functions 851, 1591, 1601

Red Queen effect 1577
regional custom 1104, 1105
regular perturbed Markov process 1090
reinforcement 1071
– and belief-based models 972
– learning 869, 898, 904, 972–979, 1059, 1346,

1364, 1367
– machine learning 979
remote sensing 1520
Repast 1369, 1541, 1659
replicator dynamics 914, 987–989, 1163, 1370,

1420
representative agent 1240, 1588, 1608, 1629
reproduction, sexual 1567, 1575
reputation 1392
residential pattern 1052–1053
residential segregation 1106
resilience 1487
resource availability 1054–1056
Revenue Equivalence Theorem 1373
ring 1027
– network 1019
risk 1544
– dominance criterion 1100
– dominant equilibrium 1093
– dominant technologies 1106
role-playing game 1484
rooted trees 1091
Roth–Erev reinforcement learning 870, 871,

904, 905, 973, 1364
roulette wheels 1308, 1521
routine-based learning 907, 939
routines 1245
routinized regime 1247
rugged landscape 1290
rule learning 926
rule of thumb 1158

S&P 500 1215
Santa Fe Artificial Stock Market, SF-ASM

1205, 1561, 1656
SAS 1540
satisficing 913, 1352, 1525
Say’s Law 1634, 1635
scale 1539
– effect 1259, 1265
scale-free 1076
– network 1021, 1528
scaling laws 1156
scheduling 1397, 1412, 1418
– tools 1521
Schelling Segregation Model xiv, 1094
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Schumpeterian competition 1246
sealed-bid single auction 1372
search 1064, 1251, 1254, 1263, 1391
– and stability 1301, 1303
– for counterexamples 888
– landscapes 1290
– over the profit landscape 1298
– space 1289
search-and-learn perspective 1288, 1295
Second Welfare Theorem 1516
segregated 1053
– absorbing state 1096
segregation 1022, 1053
selection 1243, 1244
selection-mutation equation 915
self-confirming expectations 1120
self-consistent equilibrium 1150
self-fulfilling belief 1175
self-organized 1059
– criticality 1562
self-regulatory capabilities 1637
self-reinforcing 1146
sensitivity analysis 1521
SEPIA 1369
shirking 1323
shopping behavior 1072
short-memory 1212, 1215
short-run dynamics 1106
short-term expectation 1121
shortcuts 1034, 1042
shortest-path 1529
signals 1059
SimBioSys 1541
simulated annealing 1252, 1319
simulation, a third way of doing science 1650
simulation models 1628
simulation techniques 1343
simultaneous ascending auction 1410
simultaneous equation models 1635
size-distribution of firms 1630
small worlds 1033, 1075
small-world network 1020, 1528, 1657
smart markets 1383, 1394
smart money trader 1124
social choice function 1387
social communication 843
social coordination 1105
social dilemmas 1475
social evolutionary learning algorithms 1372
social influence weights 1101
social influences 913

social interaction 898, 1142, 1146, 1150
social learning 1198, 1209, 1252, 1348, 1364
social multiplier 1146, 1151
social networks 1457
social norms 1100
social sciences
– objectives 1649
social systems sensing 1545
social utility 1148
social value orientation 1481
social-ecological systems 1468, 1472
socialization 1326
sociology 1658
software agents 1383
soil productivity index 1101
sophisticated traders 1125
spatial 844, 1042
– advantage 1039
– agent-based model 1512, 1514, 1517
– networks 1043, 1530
– technologies 1527
specific skills 1250
speculation 1117, 1633
speculative bubble 1120, 1170, 1172
speed of adjustment 1106, 1135, 1154
stability 1611, 1615–1619, 1634, 1635
– of general equilibrium 1634, 1636
stabilizing expectations 1120
stabilizing force 1123, 1139, 1163, 1175
stable limit cycle 1133
standard setting 1578, 1584
Standing Ovation Problem 1653
star network 1017, 1026
StarLogo 1658
stationary distribution 1087, 1089, 1099
statistical mechanics 1098, 1149
stochastic belief learning 927
stochastic dynamical systems 1601
stochastic interaction 1142
stochastic intertemporal general equilibrium the-

ory 1627
stochastic models 1521
stochastic potential function 1106
stochastic process 1143, 1154
stochastic shocks 1105, 1106
stochastic stability 1092, 1100
stochastically stable outcome 1091, 1092
stochastically stable states 1088, 1090, 1093,

1096, 1097, 1106
stock market 1561
stock share redistribution method 849
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stock-out risk 854
strange attractor 1114, 1140, 1163, 1164, 1170,

1171
strategic interactions 1516
strategy 1025, 1032, 1158
– adaptation 1247
– method 1004
– selection 1126, 1127
– switching 1153
strategy-proofness 1371
structural uncertainty 856
stylized facts 1151, 1176, 1241, 1257, 1258
sub-markets 1254
sub-populations 937
subsidization constraint 969
subsistence needs 853, 873
substantive rationality 1628, 1631
substantive uncertainty 1239, 1251
Sugarscape 1036, 1054
super-agent processes 1284
supervisory genetic algorithm 1544
supply-side policy 1636
survey data 1115, 1118, 1177
survey forecasts 1216
SWARM 1207, 1369, 1541
switching probability 1152, 1153
symmetric Cournot game 1318
synchronization 1633
synchronous updating 1026
synergetics 1152, 1155
synthetic agent populations 1522
synthetic landscapes 1520

tags 1063
taxonomies of representative agents 863
Taylor Principle 1619
technical analysis 1121, 1191
technical analysts: see chartists 1116
technical traders 1175, 1199
technical trading rule 1115, 1167
technological change 1237
technological convergence 1258
technological diffusion 1023
technological spillovers 1248
technological standards 1105
technology landscape 1252
Thorndike’s Law of Effect 1347
threshold 1061, 1214
Tiebout 1454
tipping point 1084, 1089, 1106, 1642

Tit for Tat; see also reciprocity 857, 1025,
1570, 1574

top cycle set 1449
top-down control 1629
top-down design 1349
topology of interaction 1106, 1496
tournaments: see Prisoner’s Dilemma 1568–

1574
trade networks 851, 1541
trade-off between centralization and decentral-

ization 1296
trading agent 1406, 1408, 1413, 1418
– competition 1413
trading taxes 1220
tragedy of the commons 1323
transaction services 1405
transition probabilities 1086, 1089
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