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INTRODUCTION TO THE SERIES

The aim of the Handbooks in Economics series is to produce Handbooks for various
branches of economics, each of which is a definitive source, reference, and teaching
supplement for use by professional researchers and advanced graduate students. Each
Handbook provides self-contained surveys of the current state of a branch of economics
in the form of chapters prepared by leading specialists on various aspects of this
branch of economics. These surveys summarize not only received results but also
newer developments, from recent journal articles and discussion papers. Some original
material is also included, but the main goal is to provide comprehensive and accessible
surveys. The Handbooks are intended to provide not only useful reference volumes for
professional collections but also possible supplementary readings for advanced courses
for graduate students in economics.

KENNETH J. ARROW and MICHAEL D. INTRILIGATOR

PUBLISHER’S NOTE

For a complete overview of the Handbooks in Economics Series, please refer to the
listing at the end of this volume.
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PREFACE TO THE HANDBOOK

The primary objective of Volume 5 of the Handbook of Econometrics and its
companion Volume 6, is to collate in one place a body of research tools useful in
applied econometrics and in empirical research in economics. A subsidiary objective
is to update the essays on theoretical econometrics presented in the previous volumes
of this series to include improvements in methods previously surveyed and methods
not previously surveyed.
Part 11 contains four essays on developments in econometric theory. The essay

by Joel Horowitz on the bootstrap presents a comprehensive survey of recent
developments in econometrics and statistics on the application of the bootstrap to
econometric models. With the decline in computing cost, bootstrapping offers an
intellectually simpler alternative to the complex calculations required to produce
asymptotic standard errors for complicated econometric models that sometimes
displays better small properties than conventional estimators of standard errors. In
applications, advice based on simple models is sometimes applied uncritically to
the more complicated models estimated by economists. Horowitz provides a careful
statement of conditions when the bootstrap works and when it fails that is of value to
both theorists and empirical economists, and presents a variety of useful examples.
In the second essay, Manuel Arellano and Bo Honoré update the important essay by

Gary Chamberlain on panel data in Volume 2 of this series to reflect developments in
panel data methods in the past decade and a half. Their essay succinctly summarizes
a large literature on using GMM methods to estimate panel data methods as well as
the new work on nonlinear panel data methods developed by Honoré and his various
coauthors.
In the third essay, William Brock and Steven Durlauf present the first rigorous

econometric analysis of models of social interactions. This field has been an active
area of research in economic theory and empirical work in the past decade but formal
econometric analysis is scanty, although there are close parallels with the identification
problems in this field and those in rational expectations econometrics. Indeed, the
“reflection problem” discussed by Brock and Durlauf is just a version of the familiar
problem of identification in self fulfilling equilibrium or rational expectations models
[see e.g., Wallis (1980)]. Brock and Durlauf establish conditions under which models
of social interactions can be identified and present constructive estimation strategies.
They present a blueprint for future research in this rapidly growing area.



xiv Preface

Gerard van den Berg’s essay updates the essay by Heckman and Singer in Volume 3
of the Handbook to consider developments in the past decade and a half in econometric
duration analysis. His essay presents a comprehensive discussion of multiple spell
duration models which substantially extends the discussion in the published literature
prior to this essay.
The essays in Part 12 present comprehensive surveys of new computational methods

in econometrics. The advent of low cost computation has made many previously
intractable econometric models empirically feasible, and has made Bayesian methods
computationally attractive compared to classical methods. Bayesian methods replace
optimization with integration and integration is cheap and numerically stable while
optimization is neither. The essay by Geweke and Keane surveys a large literature in
econometrics and statistics on computing integrals useful for Bayesian methods as well
as in other settings. Chib focuses his essay on Markov Chain Monte Carlo Methods
(MCMC) which have substantially reduced the cost of computing econometric models
using Bayesian methods. This area has proven to be very fruitful and Chib summarizes
the state of the art.
The essays on Applied Econometrics in Part 13 cover two main topics. The essay

by Dawkins, Srinivasan and Whalley considers calibration as an econometric method.
Calibration methods are widely used in applied general equilibrium theory and have
been a source of great controversy in the econometrics literature. (See the symposium
on calibration in the July, 1996 issue of the Journal of Economic Perspectives).
Dawkins, Srinivasan and Whalley provide a careful account of current practice in
calibrating applied general equilibrium models and the current state of the debate about
the relative virtues of calibration vs. estimation.
The essay by Bound, Brown and Mathiowetz summarizes an impressive array

of studies on measurement error and its consequences in economic data. Focusing
primarily on data from labor markets, these authors document that the model of
classical measurement error that has preoccupied the attention of econometricians
for the past 50 years finds little support in the data. New patterns of measurement
error are found that provide suggestions on what an empirically concordant model of
measurement error would look like.

JAMES J. HECKMAN
University of Chicago, Chicago

EDWARD LEAMER
University of California, Los Angeles
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Abstract

The bootstrap is a method for estimating the distribution of an estimator or test
statistic by resampling one’s data or a model estimated from the data. Under conditions
that hold in a wide variety of econometric applications, the bootstrap provides
approximations to distributions of statistics, coverage probabilities of confidence
intervals, and rejection probabilities of hypothesis tests that are more accurate than
the approximations of first-order asymptotic distribution theory. The reductions in
the differences between true and nominal coverage or rejection probabilities can be
very large. The bootstrap is a practical technique that is ready for use in applications.
This chapter explains and illustrates the usefulness and limitations of the bootstrap in
contexts of interest in econometrics. The chapter outlines the theory of the bootstrap,
provides numerical illustrations of its performance, and gives simple instructions on
how to implement the bootstrap in applications. The presentation is informal and
expository. Its aim is to provide an intuitive understanding of how the bootstrap works
and a feeling for its practical value in econometrics.

Keywords
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1. Introduction

The bootstrap is a method for estimating the distribution of an estimator or test
statistic by resampling one’s data. It amounts to treating the data as if they were
the population for the purpose of evaluating the distribution of interest. Under mild
regularity conditions, the bootstrap yields an approximation to the distribution of an
estimator or test statistic that is at least as accurate as the approximation obtained
from first-order asymptotic theory. Thus, the bootstrap provides a way to substitute
computation for mathematical analysis if calculating the asymptotic distribution of an
estimator or statistic is difficult. The statistic developed by Härdle et al. (1991) for
testing positive-definiteness of income-effect matrices, the conditional Kolmogorov test
of Andrews (1997), Stute’s (1997) specification test for parametric regression models,
and certain functions of time-series data [Blanchard and Quah (1989), Runkle (1987),
West (1990)] are examples in which evaluating the asymptotic distribution is difficult
and bootstrapping has been used as an alternative.
In fact, the bootstrap is often more accurate in finite samples than first-order

asymptotic approximations but does not entail the algebraic complexity of higher-
order expansions. Thus, it can provide a practical method for improving upon first-
order approximations. Such improvements are called asymptotic refinements. One use
of the bootstrap’s ability to provide asymptotic refinements is bias reduction. It is not
unusual for an asymptotically unbiased estimator to have a large finite-sample bias.
This bias may cause the estimator’s finite-sample mean square error to greatly exceed
the mean-square error implied by its asymptotic distribution. The bootstrap can be used
to reduce the estimator’s finite-sample bias and, thereby, its finite-sample mean-square
error.
The bootstrap’s ability to provide asymptotic refinements is also important in

hypothesis testing. First-order asymptotic theory often gives poor approximations to
the distributions of test statistics with the sample sizes available in applications. As a
result, the nominal probability that a test based on an asymptotic critical value rejects
a true null hypothesis can be very different from the true rejection probability (RP) 1.
The information matrix test of White (1982) is a well-known example of a test in which
large finite-sample errors in the RP can occur when asymptotic critical values are used

1 There is not general agreement on the name that should be given to the probability that a test rejects
a true null hypothesis (that is, the probability of a Type I error). The source of the problem is that if
the null hypothesis is composite, then the rejection probability can be different for different probability
distributions in the null. Hall (1992a, p. 148) uses the word level to denote the rejection probability
at the distribution that was, in fact, sampled. Beran (1988, p. 696) defines level to be the supremum
of rejection probabilities over all distributions in the null hypothesis. Other authors [Lehmann (1959,
p. 61); Rao (1973, p. 456)] use the word size for the supremum. Lehmann defines level as a number
that exceeds the rejection probability at all distributions in the null hypothesis. In this chapter, the term
rejection probability or RP will be used to mean the probability that a test rejects a true null hypothesis
with whatever distribution generated the data. The RP of a test is the same as Hall’s definition of level.
The RP is different from the size of a test and from Beran’s and Lehmann’s definitions of level.
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[Horowitz (1994), Kennan and Neumann (1988), Orme (1990), Taylor (1987)]. Other
illustrations are given later in this chapter. The bootstrap often provides a tractable way
to reduce or eliminate finite-sample errors in the RP’s of statistical tests.
The problem of obtaining critical values for test statistics is closely related to that

of obtaining confidence intervals. Accordingly, the bootstrap can also be used to
obtain confidence intervals with reduced errors in coverage probabilities. That is, the
difference between the true and nominal coverage probabilities is often lower when the
bootstrap is used than when first-order asymptotic approximations are used to obtain
a confidence interval.
The bootstrap has been the object of much research in statistics since its introduction

by Efron (1979). The results of this research are synthesized in the books by Beran
and Ducharme (1991), Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall
(1992a), Mammen (1992), and Shao and Tu (1995). Hall (1994), Horowitz (1997),
Jeong and Maddala (1993) and Vinod (1993) provide reviews with an econometric
orientation. This chapter covers a broader range of topics than do these reviews.
Topics that are treated here but only briefly or not at all in the reviews include
bootstrap consistency, subsampling, bias reduction, time-series models with unit roots,
semiparametric and nonparametric models, and certain types of non-smooth models.
Some of these topics are not treated in existing books on the bootstrap.
The purpose of this chapter is to explain and illustrate the usefulness and limitations

of the bootstrap in contexts of interest in econometrics. Particular emphasis is given
to the bootstrap’s ability to improve upon first-order asymptotic approximations. The
presentation is informal and expository. Its aim is to provide an intuitive understanding
of how the bootstrap works and a feeling for its practical value in econometrics.
The discussion in this chapter does not provide a mathematically detailed or rigorous
treatment of the theory of the bootstrap. Such treatments are available in the books by
Beran and Ducharme (1991) and Hall (1992a) as well as in journal articles that are
cited later in this chapter.
It should be borne in mind throughout this chapter that although the bootstrap

often provides smaller biases, smaller errors in the RP’s of tests, and smaller errors
in the coverage probabilities of confidence intervals than does first-order asymptotic
theory, bootstrap bias estimates, RP’s, and confidence intervals are, nonetheless,
approximations and not exact. Although the accuracy of bootstrap approximations is
often very high, this is not always the case. Even when theory indicates that it provides
asymptotic refinements, the bootstrap’s numerical performance may be poor. In some
cases, the numerical accuracy of bootstrap approximations may be even worse than
the accuracy of first-order asymptotic approximations. This is particularly likely to
happen with estimators whose asymptotic covariance matrices are “nearly singular,” as
in instrumental-variables estimation with poorly correlated instruments and regressors.
Thus, the bootstrap should not be used blindly or uncritically.
However, in the many cases where the bootstrap works well, it essentially removes

getting the RP or coverage probability right as a factor in selecting a test statistic or
method for constructing a confidence interval. In addition, the bootstrap can provide
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dramatic reductions in the finite-sample biases and mean-square errors of certain
estimators.
The remainder of this chapter is divided into five sections. Section 2 explains

the bootstrap sampling procedure and gives conditions under which the bootstrap
distribution of a statistic is a consistent estimator of the statistic’s asymptotic
distribution. Section 3 explains when and why the bootstrap provides asymptotic
refinements. This section concentrates on data that are simple random samples from a
distribution and statistics that are either smooth functions of sample moments or can
be approximated with asymptotically negligible error by such functions (the smooth
function model). Section 4 extends the results of Section 3 to dependent data and
statistics that do not satisfy the assumptions of the smooth function model. Section 5
presents Monte Carlo evidence on the numerical performance of the bootstrap in a
variety of settings that are relevant to econometrics, and Section 6 presents concluding
comments.
For applications-oriented readers who are in a hurry, the following list of bootstrap

dos and don’ts summarizes the main practical conclusions of this chapter.

Bootstrap Dos and Don’ts
(1) Do use the bootstrap to estimate the probability distribution of an asymptotically

pivotal statistic or the critical value of a test based on an asymptotically pivotal
statistic whenever such a statistic is available. (Asymptotically pivotal statistics are
defined in Section 2. Sections 3.2–3.5 explain why the bootstrap should be applied
to asymptotically pivotal statistics.)

(2) Don’t use the bootstrap to estimate the probability distribution of a non-
asymptotically-pivotal statistic such as a regression slope coefficient or standard
error if an asymptotically pivotal statistic is available.

(3) Do recenter the residuals of an overidentified model before applying the bootstrap
to the model. (Section 3.7 explains why recentering is important and how to do it.)

(4) Don’t apply the bootstrap to models for dependent data, semi- or nonparametric
estimators, or non-smooth estimators without first reading Section 4 of this
chapter.

2. The bootstrap sampling procedure and its consistency

The bootstrap is a method for estimating the distribution of a statistic or a feature of the
distribution, such as a moment or a quantile. This section explains how the bootstrap
is implemented in simple settings and gives conditions under which it provides a
consistent estimator of a statistic’s asymptotic distribution. This section also gives
examples in which the consistency conditions are not satisfied and the bootstrap is
inconsistent.
The estimation problem to be solved may be stated as follows. Let the data be a

random sample of size n from a probability distribution whose cumulative distribution
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function (CDF) is F0. Denote the data by {X i: i = 1, . . . , n}. Let F0 belong to a
finite- or infinite-dimensional family of distribution functions, I. Let F denote a
general member of I. If I is a finite-dimensional family indexed by the parameter q
whose population value is q0, write F0(x, q0) for P(X ¶ x) and F(x, q) for a general
member of the parametric family. Let Tn =Tn(X 1, . . . ,X n) be a statistic (that is, a
function of the data). Let Gn(t , F0)≡P(Tn¶ t) denote the exact, finite-sample CDF
of Tn. Let Gn(·,F) denote the exact CDF of Tn when the data are sampled from the
distribution whose CDF is F. Usually, Gn(t , F) is a different function of t for different
distributions F. An exception occurs if Gn(·,F) does not depend on F, in which case
Tn is said to be pivotal. For example, the t statistic for testing a hypothesis about
the mean of a normal population is independent of unknown population parameters
and, therefore, is pivotal. The same is true of the t statistic for testing a hypothesis
about a slope coefficient in a normal linear regression model. Pivotal statistics are
not available in most econometric applications, however, especially without making
strong distributional assumptions (e.g., the assumption that the random component of
a linear regression model is normally distributed). Therefore, Gn(·,F) usually depends
on F, and Gn(·,F0) cannot be calculated if, as is usually the case in applications, F0 is
unknown. The bootstrap is a method for estimating Gn(·,F0) or features of Gn(·,F0)
such as its quantiles when F0 is unknown.
Asymptotic distribution theory is another method for estimating Gn(·,F0). The

asymptotic distributions of many econometric statistics are standard normal or chi-
square, possibly after centering and normalization, regardless of the distribution from
which the data were sampled. Such statistics are called asymptotically pivotal, meaning
that their asymptotic distributions do not depend on unknown population parameters.
Let G∞(·,F0) denote the asymptotic distribution of Tn. Let G∞(·,F) denote the
asymptotic CDF of Tn when the data are sampled from the distribution whose CDF
is F. If Tn is asymptotically pivotal, then G∞(·,F)≡G∞(·) does not depend on F.
Therefore, if n is sufficiently large, Gn(·,F0) can be estimated by G∞(·) without
knowing F0. This method for estimating Gn(·,F0) is often easy to implement and
is widely used. However, as was discussed in Section 1, G∞(·) can be a very poor
approximation to Gn(·,F0) with samples of the sizes encountered in applications.
Econometric parameter estimators usually are not asymptotically pivotal (that is,

their asymptotic distributions usually depend on one or more unknown population
parameters), but many are asymptotically normally distributed. If an estimator is
asymptotically normally distributed, then its asymptotic distribution depends on at
most two unknown parameters, the mean and the variance, that can often be estimated
without great difficulty. The normal distribution with the estimated mean and variance
can then be used to approximate the unknown Gn(·,F0) if n is sufficiently large.
The bootstrap provides an alternative approximation to the finite-sample distribution

of a statistic Tn(X 1, . . . ,X n). Whereas first-order asymptotic approximations replace
the unknown distribution function Gn with the known function G∞, the bootstrap
replaces the unknown distribution function F0 with a known estimator. Let Fn denote
the estimator of F0. Two possible choices of Fn are:
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(1) The empirical distribution function (EDF) of the data:

Fn(x) =
1
n

n∑
i = 1

I (Xi ¶ x),

where I is the indicator function. It follows from the Glivenko–Cantelli theorem
that Fn(x)→F0(x) as n→ ∞ uniformly over x almost surely.

(2) A parametric estimator of F0. Suppose that F0(·) =F(·, q0) for some finite-
dimensional q0 that is estimated consistently by qn. If F(·, q) is a continuous
function of q in a neighborhood of q0, then F(x, qn)→F(x, q0) as n→ ∞ at each x.
The convergence is in probability or almost sure according to whether qn → q0 in
probability or almost surely.

Other possible Fn’s are discussed in Section 3.7.
Regardless of the choice of Fn, the bootstrap estimator of Gn(·,F0) is Gn(·,Fn).

Usually, Gn(·,Fn) cannot be evaluated analytically. It can, however, be estimated with
arbitrary accuracy by carrying out a Monte Carlo simulation in which random samples
are drawn from Fn. Thus, the bootstrap is usually implemented by Monte Carlo
simulation. The Monte Carlo procedure for estimating Gn(t , F0) is as follows:

Monte Carlo Procedure for Bootstrap Estimation of Gn(t , F0)
Step 1: Generate a bootstrap sample of size n, {X ∗

i : i = 1, . . . , n}, by sampling the
distribution corresponding to Fn randomly. If Fn is the EDF of the estimation
data set, then the bootstrap sample can be obtained by sampling the estimation
data randomly with replacement.

Step 2: Compute T ∗
n ≡Tn(X ∗

1 , . . . ,X
∗
n ).

Step 3: Use the results of many repetitions of steps 1 and 2 to compute the empirical
probability of the event T ∗

n ¶ t (that is, the proportion of repetitions in which
this event occurs).

Procedures for using the bootstrap to compute other statistical objects are described
in Sections 3.1 and 3.3. Brown (1999) and Hall (1992a, Appendix II) discuss
simulation methods that take advantage of techniques for reducing sampling variation
in Monte Carlo simulation. The essential characteristic of the bootstrap, however, is
the use of Fn to approximate F0 in Gn(·,F0), not the method that is used to evaluate
Gn(·,Fn).
Since Fn and F0 are different functions, Gn(·,Fn) and Gn(·,F0) are also different

functions unless Tn is pivotal. Therefore, the bootstrap estimator Gn(·,Fn) is only an
approximation to the exact finite-sample CDF of Tn,Gn(·,F0). Section 3 discusses
the accuracy of this approximation. The remainder of this section is concerned with
conditions under which Gn(·,Fn) satisfies the minimal criterion for adequacy as an
estimator of Gn(·,F0), namely consistency. Roughly speaking, Gn(·,Fn) is consistent
if it converges in probability to the asymptotic CDF of Tn,G∞(·,F0), as n→ ∞.
Section 2.1 defines consistency precisely and gives conditions under which it holds.
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Section 2.2 describes some resampling procedures that can be used to estimate
Gn(·,F0) when the bootstrap is not consistent.

2.1. Consistency of the bootstrap

Suppose that Fn is a consistent estimator of F0. This means that at each x in the support
of X, Fn(x)→F0(x) in probability or almost surely as n→ ∞. If F0 is a continuous
function, then it follows from Polya’s theorem that Fn →F0 in probability or almost
surely uniformly over x. Thus, Fn and F0 are uniformly close to one another if n
is large. If, in addition, Gn(t , F) considered as a functional of F is continuous in
an appropriate sense, it can be expected that Gn(t , Fn) is close to Gn(t , F0) when
n is large. On the other hand, if n is large, then Gn(·,F0) is uniformly close to the
asymptotic distribution G∞(·,F0) if G∞(·,F0) is continuous. This suggests that the
bootstrap estimator Gn(·,Fn) and the asymptotic distribution function G∞(·,F0) should
be uniformly close if n is large and suitable continuity conditions hold. The definition
of consistency of the bootstrap formalizes this idea in a way that takes account of the
randomness of the function Gn(·,Fn). Let I denote the space of permitted distribution
functions.

Definition 2.1. Let Pn denote the joint probability distribution of the sample {X i:
i = 1, . . . , n}. The bootstrap estimator Gn(·,Fn) is consistent if for each û> 0 and
F0 ∈ I

lim
n → ∞Pn

[
sup
t

|Gn(t ,Fn) − G∞(t ,F0)| > e
]
= 0.

A theorem by Beran and Ducharme (1991) gives conditions under which the bootstrap
estimator is consistent. This theorem is fundamental to understanding the bootstrap.
Let ø denote a metric on the space I of permitted distribution functions.

Theorem 2.1 (Beran and Ducharme 1991). Gn(·, Fn) is consistent if for any û > 0
and F0 ∈ I : (i) lim n→ ∞ Pn[ ø(Fn,F0) > e] = 0; (ii) G∞(t , F) is a continuous
function of t for each F ∈ I; and (iii) for any t and any sequence {Hn} ∈ I such
that lim n→ ∞ ø(Hn,F0) = 0, Gn(t , Hn)→G∞(t , F0).

The following is an example in which the conditions of Theorem 2.1 are satisfied:

Example 2.1. The distribution of the sample average: Let I be the set of distribution
functions F corresponding to populations with finite variances. Let X̄ be the average
of the random sample {X i: i = 1, . . . , n}. Define Tn = n1/2(X̄ − m), where m =E(X ). Let
Gn(t , F0) = Pn

[
n1/2(X̄ − m) ¶ t

]
. Consider using the bootstrap to estimate Gn(t , F0).

Let Fn be the EDF of the data. Then the bootstrap analog of Tn is T ∗
n = n

1/2(X̄ ∗ − X̄ ),
where X̄ ∗ is the average of a random sample of size n drawn from Fn (the bootstrap
sample). The bootstrap sample can be obtained by sampling the data {X i} randomly
with replacement. T ∗

n is centered at X̄ because X̄ is the mean of the distribution
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from which the bootstrap sample is drawn. The bootstrap estimator of Gn(t , F0) is
Gn(t , Fn) = P∗

n

[
n1/2(X̄ ∗ − X̄ ) ¶ t

]
, where P∗

n is the probability distribution induced by
the bootstrap sampling process. Gn(t , Fn) satisfies the conditions of Theorem 2.1 and,
therefore, is consistent. Let ø be the Mallows metric 2. The Glivenko–Cantelli theorem
and the strong law of large numbers imply that condition (i) of Theorem 2.1 is satisfied.
The Lindeberg–Levy central limit theorem implies that Tn is asymptotically normally
distributed. The cumulative normal distribution function is continuous, so condition (ii)
holds. By using arguments similar to those used to prove the Lindeberg–Levy theorem,
it can be shown that condition (iii) holds. „

A theorem by Mammen (1992) gives necessary and sufficient conditions for the
bootstrap to consistently estimate the distribution of a linear functional of F0 when
Fn is the EDF of the data. This theorem is important because the conditions are often
easy to check, and many estimators and test statistics of interest in econometrics are
asymptotically equivalent to linear functionals of some F0. Hall (1990) and Gill (1989)
give related theorems.

Theorem 2.2 (Mammen 1992). Let {Xi : i = 1, . . . , n} be a random sample from
a population. For a sequence of functions gn and sequences of numbers tn
and sn, define ḡn = n−1

∑n
i = 1 gn(Xi) and Tn = (ḡn − tn)/sn. For the bootstrap

sample {X ∗
i : i = 1, . . . , n} , define ḡ∗

n = n
−1
∑n

i = 1 gn(X
∗
i ) and T

∗
n = (ḡ

∗
n − ḡn)/sn.

Let Gn(t) = P(Tn ¶ t) and G∗
n (t) = P

∗(T ∗
n ¶ t), where P∗ is the probability

distribution induced by bootstrap sampling. Then G∗
n (·) consistently estimates Gn if

and only if Tn →d N (0, 1). „
If E[gn(X )] and Var[gn(X )] exist for each n, then the asymptotic normality condition of
Theorem 2.2 holds with tn = E(ḡn) and s 2n = Var(ḡn) or s

2
n = n

−2
∑n

i = 1 [gn(Xi) − ḡn]
2.

Thus, consistency of the bootstrap estimator of the distribution of the centered,
normalized sample average in Example 2.1 follows trivially from Theorem 2.2.
The bootstrap need not be consistent if the conditions of Theorem 2.1 are not

satisfied and is inconsistent if the asymptotic normality condition of Theorem 2.2
is not satisfied. In particular, the bootstrap tends to be inconsistent if F0 is a
point of discontinuity of the asymptotic distribution function G∞(t ,·) or a point of
superefficiency. Section 2.2 describes resampling methods that can sometimes be used
to overcome these difficulties.
The following examples illustrate conditions under which the bootstrap is in-

consistent. The conditions that cause inconsistency in the examples are unusual in
econometric practice. The bootstrap is consistent in most applications. Nonetheless,
inconsistency sometimes occurs, and it is important to be aware of its causes. Donald

2 The Mallows metric is defined by ø(P,Q)2 = inf
{
E||Y − X ||2 : Y ~ P,X ~ Q

}
. The infimum is over

all joint distributions of (Y, X ) whose marginals are P and Q. Weak convergence of a sequence of
distributions in the Mallows metric implies convergence of the corresponding sequences of first and
second moments. See Bickel and Freedman (1981) for a detailed discussion of this metric.
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and Paarsch (1996), Flinn and Heckman (1982), and Heckman, Smith and Clements
(1997) describe econometric applications that have features similar to those of some
of the examples, though the consistency of the bootstrap in these applications has not
been investigated.

Example 2.2. Heavy-tailed distributions: Let F0 be the standard Cauchy distribution
function and {X i} be a random sample from this distribution. Set Tn = X̄ , the sample
average. Then Tn has the standard Cauchy distribution. Let Fn be the EDF of the
sample. A bootstrap analog of Tn is T ∗

n = X̄
∗ − mn, where X̄ ∗ is the average of a

bootstrap sample that is drawn randomly with replacement from the data {X i} and
mn is a median or trimmed mean of the data. The asymptotic normality condition of
Theorem 2.2 is not satisfied, and the bootstrap estimator of the distribution of Tn is
inconsistent. Athreya (1987) and Hall (1990) provide further discussion of the behavior
of the bootstrap with heavy-tailed distributions. „

Example 2.3. The distribution of the square of the sample average: Let {X i:
i = 1, . . . , n} be a random sample from a distribution with mean m and variance s 2. Let
X̄ denote the sample average. Let Fn be the EDF of the sample. Set Tn = n1/2(X̄ 2 − m2)
if m Ñ 0 and Tn = nX̄ 2 otherwise. Tn is asymptotically normally distributed if m Ñ 0,
but Tn/s 2 is asymptotically chi-square distributed with one degree of freedom if m = 0.
The bootstrap analog of Tn is T ∗

n = n
a[(X̄ ∗)2 − X̄ 2], where a= 1/2 if m Ñ 0 and a= 1

otherwise. The bootstrap estimator of Gn(t , F0) =P(Tn¶ t) is Gn(t , Fn) =P∗
n (T

∗
n ¶ t).

If m Ñ 0, then Tn is asymptotically equivalent to a normalized sample average that
satisfies the asymptotic normality condition of Theorem 2.2. Therefore, Gn(·,Fn)
consistently estimates G∞(·,F0) if m Ñ 0. If m = 0, then Tn is not a sample average
even asymptotically, so Theorem 2.2 does not apply. Condition (iii) of Theorem 2.1
is not satisfied, however, if m = 0, and it can be shown that the bootstrap distribution
function Gn(·,Fn) does not consistently estimate G∞(·,F0) [Datta (1995)]. „
The following example is due to Bickel and Freedman (1981):

Example 2.4. Distribution of the maximum of a sample: Let {X i: i = 1, . . . , n} be a
random sample from a distribution with absolutely continuous CDF F0 and support
[0, q0]. Let qn =max(X 1, . . . ,X n), and define Tn = n(qn − q0). Let Fn be the EDF of
the sample. The bootstrap analog of Tn is T ∗

n = n(q
∗
n − qn), where q

∗
n is the maximum

of the bootstrap sample {X ∗
i } that is obtained by sampling {X i} randomly with

replacement. The bootstrap does not consistently estimate Gn(−t , F0) =Pn(Tn¶−t)
(t ¾ 0). To see why, observe that P∗

n (T
∗
n = 0) = 1 − (1 − 1/n)

n → 1 − e−1 as n→ ∞.
It is easily shown, however, that the asymptotic distribution function of Tn is
G∞(−t ,F0) = 1 − exp[−t f (q0)], where f (x) = dF(x)/dx is the probability density
function of X. Therefore, P(Tn = 0)→ 0, and the bootstrap estimator of Gn(·,F0) is
inconsistent. „
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Example 2.5. Parameter on a boundary of the parameter space: The bootstrap
does not consistently estimate the distribution of a parameter estimator when the true
parameter point is on the boundary of the parameter space. To illustrate, consider
estimation of the population mean m subject to the constraint m¾ 0. Estimate m by
mn = X̄ I (X̄ > 0), where X̄ is the average of the random sample {X i: i = 1, . . . , n}.
Set Tn = n1/2(mn − m). Let Fn be the EDF of the sample. The bootstrap analog of
Tn is T ∗

n = n1/2(m∗
n − mn), where m

∗
n is the estimator of m that is obtained from

a bootstrap sample. The bootstrap sample is obtained by sampling {X i} randomly
with replacement. If m > 0 and Var(X )<∞, then Tn is asymptotically equivalent to
a normalized sample average and is asymptotically normally distributed. Therefore,
it follows from Theorem 2.2 that the bootstrap consistently estimates the distribution
of Tn. If m = 0, then the asymptotic distribution of Tn is censored normal, and it can
be proved that the bootstrap distribution function Gn(·,Fn) does not estimate Gn(·,F0)
consistently [Andrews (2000)]. „

The next section describes resampling methods that often are consistent when the
bootstrap is not. They provide consistent estimators of Gn(·,F0) in each of the
foregoing examples.

2.2. Alternative resampling procedures

This section describes two resampling methods whose requirements for consistency
are weaker than those of the bootstrap. Each is based on drawing subsamples of
size m<n from the original data. In one method, the subsamples are drawn randomly
with replacement. In the other, the subsamples are drawn without replacement. These
subsampling methods often estimate Gn(·,F0) consistently even when the bootstrap
does not. They are not perfect substitutes for the bootstrap, however, because they
tend to be less accurate than the bootstrap when the bootstrap is consistent.
In the first subsampling method, which will be called replacement subsampling,

a bootstrap sample is obtained by drawing m<n observations from the estimation
sample {X i: i = 1, . . . , n}. In other respects, it is identical to the standard bootstrap
based on sampling Fn. Thus, the replacement subsampling estimator of Gn(·,F0) is
Gm(·,Fn). Swanepoel (1986) gives conditions under which the replacement bootstrap
consistently estimates the distribution of Tn in Example 2.4 (the distribution of the
maximum of a sample). Andrews (2000) gives conditions under which it consistently
estimates the distribution of Tn in Example 2.5 (parameter on the boundary of the
parameter space). Bickel et al. (1997) provide a detailed discussion of the consistency
and rates of convergence of replacement bootstrap estimators. To obtain some intuition
into why replacement subsampling works, let Fmn be the EDF of a sample of size m
drawn from the empirical distribution of the estimation data. Observe that if m→ ∞,
n→ ∞, and m/n→ 0, then the random sampling error of Fn as an estimator of F0 is
smaller than the random sampling error of Fmn as an estimator of Fn. This makes the
subsampling method less sensitive than the bootstrap to the behavior of Gn(·,F) for
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F’s in a neighborhood of F0 and, therefore, less sensitive to violations of continuity
conditions such as condition (iii) of Theorem 2.1.
The method of subsampling without replacement will be called non-replacement

subsampling. This method has been investigated in detail by Politis and Romano
(1994) and Politis et al. (1999), who show that it consistently estimates the distribution
of a statistic under very weak conditions. In particular, the conditions required for
consistency of the non-replacement subsampling estimator are much weaker than those
required for consistency of the bootstrap estimator. Politis et al. (1997) extend the
subsampling method to heteroskedastic time series.
To describe the non-replacement subsampling method, let tn = tn(X 1, . . . ,X n) be

an estimator of the population parameter q , and set Tn = ø(n)(tn − q), where the
normalizing factor ø(n) is chosen so that Gn(t , F0) =P(Tn¶ t) converges to a
nondegenerate limit G∞(t , F0) at continuity points of the latter. In Example 2.1
(estimating the distribution of the sample average), for instance, q is the population
mean, tn = X̄ , and ø(n) = n1/2. Let {Xij : j = 1, . . . , m} be a subset of m<n observations
taken from the sample {X i: i = 1, . . . , n}. Define Nmn = (nm) to be the total number of
subsets that can be formed. Let tm, k denote the estimator tm evaluated at the kth subset.
The non-replacement subsampling method estimates Gn(t , F0) by

Gnm(t) ≡ 1
Nnm

Nnm∑
k = 1

I [ ø(m)(tm, k − tn) ¶ t]. (2.1)

The intuition behind this method is as follows. Each subsample {Xij} is a random
sample of size m from the population distribution whose CDF is F0. Therefore,
Gm(·,F0) is the exact sampling distribution of ø(m)(tm − q), and

Gm(t ,F0) = E{I [ ø(m)(tm − q) ¶ t]}. (2.2)

The quantity on the right-hand side of Equation (2.2) cannot be calculated in an
application because F0 and q are unknown. Equation (2.1) is the estimator of the right-
hand side of Equation (2.2) that is obtained by replacing the population expectation
by the average over subsamples and q by tn. If n is large but m/n is small, then
random fluctuations in tn are small relative to those in tm. Accordingly, the sampling
distributions of ø(m)(tm − tn) and ø(m)(tm − q) are close. Similarly, if Nmn is large, the
average over subsamples is a good approximation to the population average. These
ideas are formalized in the following theorem of Politis and Romano (1994).

Theorem 2.3. Assume that Gn(t , F0)→G∞(t ,F0) as n→∞ at each continuity point
of the latter function. Also assume that ø(m)/ø(n)→0, m→∞, and m/n→0 as
n→∞. Let t be a continuity point of G∞(t , F0). Then: (i) Gnm(t) →p G∞(t , F0);
(ii) if G∞(·, F0) is continuous, then supt |Gnm(t) − G∞(t ,F0)| →p 0; (iii) let
cn(1 − a) = inf {t : Gnm(t) ¾ 1 − a} and c(1 − a,F0) = inf {t : G∞(t ,F0) ¾ 1 − a} .
If G∞ (·, F0) is continuous at c(1 − a, F0), then P[ ø(n)(tn − q) ¶ cn(1 − a)] → 1 − a,
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and the asymptotic coverage probability of the confidence interval [tn − ø(n)−1

cn(1 − a),∞), is 1 − a.
Essentially, this theorem states that if Tn has a well-behaved asymptotic distribution,
then the non-replacement subsampling method consistently estimates this distribution.
The non-replacement subsampling method also consistently estimates asymptotic
critical values for Tn and asymptotic confidence intervals for tn.
In practice, Nnm is likely to be very large, which makes Gnm hard to compute. This

problem can be overcome by replacing the average over all Nnm subsamples with the
average over a random sample of subsamples [Politis and Romano (1994)]. These can
be obtained by sampling the data {X i: i = 1, . . . , n} randomly without replacement.
It is not difficult to show that the conditions of Theorem 2.3 are satisfied in all

of the statistics considered in Examples 2.1, 2.2, 2.4, and 2.5. The conditions are
also satisfied by the statistic considered in Example 2.3 if the normalization constant
is known. Bertail et al. (1999) describe a subsampling method for estimating the
normalization constant ø(n) when it is unknown and provide Monte Carlo evidence
on the numerical performance of the non-replacement subsampling method with an
estimated normalization constant. In each of the foregoing examples, the replacement
subsampling method works because the subsamples are random samples of the true
population distribution of X, rather than an estimator of the population distribution.
Therefore, replacement subsampling, in contrast to the bootstrap, does not require
assumptions such as condition (iii) of Theorem 2.1 that restrict the behavior of Gn(·,F)
for F’s in a neighborhood of F0.
The non-replacement subsampling method enables the asymptotic distributions of

statistics to be estimated consistently under very weak conditions. However, the
standard bootstrap is typically more accurate than non-replacement subsampling
when the former is consistent. Suppose that Gn(·,F0) has an Edgeworth expansion
through O(n−1/2), as is the case with the distributions of most asymptotically normal
statistics encountered in applied econometrics. Then, as will be discussed in Section 3,
|Gn(t , Fn) −Gn(t , F0)|, the error made by the bootstrap estimator of Gn(t , F0), is
at most O(n−1/2) almost surely. In contrast, the error made by the non-replacement
subsampling estimator, |Gnm(t) −Gn(t , F0)|, is no smaller than Op(n−1/3) [Politis
and Romano (1994), Politis et al. (1999)] 3. Thus, the standard bootstrap estimator
of Gn(t , F0) is more accurate than the non-replacement subsampling estimator in
a setting that arises frequently in applications. Similar results can be obtained for
statistics that are asymptotically chi-square distributed. Thus, the standard bootstrap is
more attractive than the non-replacement subsampling method in most applications in
econometrics. The subsampling method may be used, however, if characteristics of the
sampled population or the statistic of interest cause the standard bootstrap estimator

3 Hall and Jing (1996) show how certain types of asymptotic refinements can be obtained through
non-replacement subsampling. The rate of convergence of resulting error is, however, slower than the
rate achieved with the standard bootstrap.
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to be inconsistent. Non-replacement subsampling may also be useful in situations
where checking the consistency of the bootstrap is difficult. Examples of this include
inference about the parameters of certain kinds of structural search models [Flinn and
Heckman (1982)], auction models [Donald and Paarsch (1996)], and binary-response
models that are estimated by Manski’s (1975, 1985) maximum score method.

3. Asymptotic refinements

The previous section described conditions under which the bootstrap yields a consistent
estimator of the distribution of a statistic. Roughly speaking, this means that the
bootstrap gets the statistic’s asymptotic distribution right, at least if the sample size
is sufficiently large. As was discussed in Section 1, however, the bootstrap often
does much more than get the asymptotic distribution right. In a large number of
situations that are important in applied econometrics, it provides a higher-order
asymptotic approximation to the distribution of a statistic. This section explains how
the bootstrap can be used to obtain asymptotic refinements. Section 3.1 describes
the use of the bootstrap to reduce the finite-sample bias of an estimator. Section 3.2
explains how the bootstrap obtains higher-order approximations to the distributions of
statistics. The results of Section 3.2 are used in Sections 3.3 and 3.4 to show how the
bootstrap obtains higher-order refinements to the rejection probabilities of tests and
the coverage probabilities of confidence intervals. Sections 3.5–3.7 address additional
issues associated with the use of the bootstrap to obtain asymptotic refinements. It
is assumed throughout this section that the data are a simple random sample from
some distribution. Methods for implementing the bootstrap and obtaining asymptotic
refinements with time-series data are discussed in Section 4.1.

3.1. Bias reduction

This section explains how the bootstrap can be used to reduce the finite-sample bias of
an estimator. The theoretical results are illustrated with a simple numerical example. To
minimize the complexity of the discussion, it is assumed that the inferential problem
is to obtain a point estimate of a scalar parameter q that can be expressed as a
smooth function of a vector of population moments. It is also assumed that q can be
estimated consistently by substituting sample moments in place of population moments
in the smooth function. Many important econometric estimators, including maximum-
likelihood and generalized-method-of-moments estimators, are either functions of
sample moments or can be approximated by functions of sample moments with an
approximation error that approaches zero very rapidly as the sample size increases.
Thus, the theory outlined in this section applies to a wide variety of estimators that
are important in applications.
To be specific, let X be a random vector, and set m =E(X ). Assume that the true

value of q is q0 = g(m), where g is a known, continuous function. Suppose that the data
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consist of a random sample {X i: i = 1, . . . , n} of X . Define the vector X̄ = n−1
∑n

i = 1 Xi.
Then q is estimated consistently by

qn = g(X̄ ). (3.1)

If qn has a finite mean, then E(qn) = E[g(X̄ )]. However, E[g(X̄ )] Ñ g(m) in general
unless g is a linear function. Therefore, E(qn)Ñ q0, and qn is a biased estimator of q .
In particular, E(qn)Ñ q0 if qn is any of a variety of familiar maximum likelihood or
generalized method of moments estimators.
To see how the bootstrap can reduce the bias of qn, suppose that g is four times

continuously differentiable in a neighborhood of m and that the components of X have
finite fourth absolute moments. Let G1 denote the vector of first derivatives of g and
G2 denote the matrix of second derivatives. A Taylor series expansion of the right-hand
side of Equation (3.1) about X̄ = m gives

qn − q0 = G1(m)′(X̄ − m) + 1
2 (X̄ − m)

′G2(m)(X̄ − m) + Rn, (3.2)

where Rn is a remainder term that satisfies E(Rn) =O(n−2). Therefore, taking expecta-
tions on both sides of Equation (3.2) gives

E(qn − q0) = 1
2E[(X̄ − m)

′G2(m)(X̄ − m)] + O(n−2). (3.3)

The first term on the right-hand side of Equation (3.3) has size O(n−1). Therefore,
through O(n−1) the bias of qn is

Bn = 1
2E[(X̄ − m)

′G2(m)(X̄ − m)]. (3.4)

Now consider the bootstrap. The bootstrap samples the empirical distribution of the
data. Let {X ∗

i : i = 1, . . . , n} be a bootstrap sample that is obtained this way. Define
X̄ ∗ = n−1

∑n
i = 1 X

∗
i to be the vector of bootstrap sample means. The bootstrap estimator

of q is q∗
n = g(X̄

∗). Conditional on the data, the true mean of the distribution sampled
by the bootstrap is X̄ . Therefore, X̄ is the bootstrap analog of m, and qn = g(X̄ ) is the
bootstrap analog of q0. The bootstrap analog of Equation (3.2) is

q∗
n − qn = G1(X̄ )

′(X̄ ∗ − X̄ ) + 1
2 (X̄

∗ − X̄ )′G2(X̄ )(X̄ ∗ − X̄ ) + R∗
n , (3.5)

where R∗
n is the bootstrap remainder term. Let E

∗ denote the expectation under
bootstrap sampling, that is, the expectation relative to the empirical distribution of
the estimation data. Let B∗

n ≡E∗(q∗
n − qn) denote the bias of q

∗
n as an estimator of qn.

Taking E∗ expectations on both sides of Equation (3.5) shows that

B∗
n =

1
2E

∗[(X̄ ∗ − X̄ )′G2(X̄ )(X̄ ∗ − X̄ )] + O(n−2) (3.6)

almost surely. Because the distribution sampled by the bootstrap is known, B∗
n can be

computed with arbitrary accuracy by Monte Carlo simulation. Thus, B∗
n is a feasible
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estimator of the bias of qn. The details of the simulation procedure are described
below.
By comparing Equations (3.4) and (3.6), it can be seen that the only differences

between Bn and the leading term of B∗
n are that X̄ replaces m in B

∗
n and the empirical

expectation, E∗, replaces the population expectation, E. Moreover, E(B∗
n ) =Bn +O(n

−2).
Therefore, through O(n−1), use of the bootstrap bias estimate B∗

n provides the same bias
reduction that would be obtained if the infeasible population value Bn could be used.
This is the source of the bootstrap’s ability to reduce the bias of qn. The resulting bias-
corrected estimator of q is qn −B∗

n . It satisfies E(qn − q0 −B
∗
n ) =O(n

−2). Thus, the bias
of the bias-corrected estimator is O(n−2), whereas the bias of the uncorrected estimator
qn is O(n−1) 4.
The Monte Carlo procedure for computing B∗

n is as follows:

Monte Carlo Procedure for Bootstrap Bias Estimation
B1: Use the estimation data to compute qn.
B2: Generate a bootstrap sample of size n by sampling the estimation data randomly

with replacement. Compute q∗
n = g(X̄

∗).
B3: Compute E∗q∗

n by averaging the results of many repetitions of step B2. Set
B∗
n =E

∗q∗
n − qn.

To implement this procedure it is necessary to choose the number of repetitions, m,
of step B2. It usually suffices to choose m sufficiently large that the estimate of E∗q∗

n

does not change significantly if m is increased further. Andrews and Buchinsky (2000)
discuss more formal methods for choosing the number of bootstrap replications 5.
The following simple numerical example illustrates the bootstrap’s ability to reduce

bias. Examples that are more realistic but also more complicated are presented in
Horowitz (1998a).

Example 3.1. [Horowitz (1998a)]: Let X~N (0,6) and n= 10. Let g(m) = exp(m). Then
q0 = 1, and qn = exp(X̄ ). Bn and the bias of qn −B∗

n can be found through the following
Monte Carlo procedure:
MC1. Generate an estimation data set of size n by sampling from the N (0,6) dis-

tribution. Use this data set to compute qn.
MC2. Compute B∗

n by carrying out steps B1–B3. Form qn −B
∗
n .

MC3. Estimate E(qn − q0) and E(qn −B∗
n − q0) by averaging the results of many

repetitions of steps MC1–MC2. Estimate the mean square errors of qn and qn −B∗
n by

averaging the realizations of (qn − q0)2 and (qn −B∗
n − q0)

2.

4 If E(qn) does not exist, then the “bias reduction” procedure described here centers a higher-order
approximation to the distribution of qn − q0.
5 It is not difficult to show that the bootstrap provides bias reduction even if m= 1. However, the
bias-corrected estimator of q may have a large variance if m is too small. The asymptotic distribution of
the bias-corrected estimator is the same as that of the uncorrected estimator if m increases sufficiently
rapidly as n increases. See Brown (1999) for further discussion.
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The following are the results obtained with 1000 Monte Carlo replications and
100 repetitions of step B2 at each Monte Carlo replication:

Bias Mean-Square Error

qn 0.356 1.994

qn −B∗
n −0.063 1.246

In this example, the bootstrap reduces the magnitude of the bias of the estimator of q
by nearly a factor of 6. The mean-square estimation error is reduced by 38 percent. „

3.2. The distributions of statistics

This section explains why the bootstrap provides an improved approximation to the
finite-sample distribution of an asymptotically pivotal statistic. As before, the data
are a random sample {X i: i = 1, . . . , n} from a probability distribution whose CDF
is F0. Let Tn =Tn(X 1, . . . ,X n) be a statistic. Let Gn(t , F0) =P(Tn¶ t) denote the
exact, finite-sample CDF of Tn. As was discussed in Section 2, Gn(t , F0) cannot be
calculated analytically unless Tn is pivotal. The objective of this section is to obtain
an approximation to Gn(t , F0) that is applicable when Tn is not pivotal.
To obtain useful approximations to Gn(t , F0), it is necessary to make certain

assumptions about the form of the function Tn(X 1, . . . ,X n). It is assumed in this
section that Tn is a smooth function of sample moments of X or sample moments
of functions of X (the smooth function model). Specifically Tn = n1/2[H (Z̄1, . . . , Z̄J )
−H (mZ1 , . . . , mZJ )], where the scalar-valued function H is smooth in a sense that
is defined precisely below, Z̄j = n−1

∑n
i = 1 Zj(Xi) for each j = 1, . . . , J and some

nonstochastic function Zj , and mZj = E(Zj). After centering and normalization,
most estimators and test statistics used in applied econometrics are either smooth
functions of sample moments or can be approximated by such functions with an
approximation error that is asymptotically negligible 6. The ordinary least-squares
estimator of the slope coefficients in a linear mean-regression model and the
t statistic for testing a hypothesis about a coefficient are exact functions of sample
moments. Maximum-likelihood and generalized-method-of-moments estimators of the
parameters of nonlinear models can be approximated with asymptotically negligible
error by smooth functions of sample moments if the log-likelihood function or moment
conditions have sufficiently many derivatives with respect to the unknown parameters.

6 The meaning of asymptotic negligibility in this context may be stated precisely as follows. Let
T̃ n = T̃ n(X 1, . . . ,X n) be a statistic, and let Tn = n

1/2[H (Z1, . . . ,Zj) −H (mZ1 , . . . ,mZj )]. Then the error

made by approximating T̃ n with Tn is asymptotically negligible if there is a constant c > 0 such that
n2P[n2 |T̃ n − Tn |>c] =O(1) as n→ ∞.
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Some important econometric estimators and test statistics do not satisfy the
assumptions of the smooth function model. Quantile estimators, such as the least-
absolute-deviations (LAD) estimator of the slope coefficients of a median-regression
model do not satisfy the assumptions of the smooth function model because their
objective functions are not sufficiently smooth. Nonparametric density and mean-
regression estimators and semiparametric estimators that require kernel or other forms
of smoothing also do not fit within the smooth function model. Bootstrap methods for
such estimators are discussed in Section 4.3.
Now return to the problem of approximating Gn(t , F0). First-order asymptotic

theory provides one approximation. To obtain this approximation, write H (Z̄1, . . . , Z̄J )
= H (Z̄), where Z̄ = (Z̄1, . . . , Z̄J )′. Define mZ = E(Z̄), ðH (z) = ðH (z)/ðz, and
W = E[(Z̄ − mZ )(Z̄ − mZ )′] whenever these quantities exist. Assume that:

SFM: (i) Tn = n1/2[H (Z̄) − H (mZ )], where H (z) is 6 times continuously partially
differentiable with respect to any mixture of components of z in a neighborhood of
mZ . (ii) ðH (mZ ) Ñ 0. (iii) The expected value of the product of any 16 components of
Z exists 7.
Under assumption SFM, a Taylor series approximation gives

n1/2[H (Z̄) −H (mZ )] = ðH (mZ )′n1/2(Z̄ − mZ ) + op(1). (3.7)

Application of the Lindeberg–Levy central limit theorem to the right hand side of
Equation (3.7) shows that n1/2[H (Z̄) − H (mZ )] →d N (0,V ), where V = ðH (mZ )′

WðH (mZ ). Thus, the asymptotic CDF of Tn is G∞(t ,F0) = F(t /V 1/2), where F is
the standard normal CDF. This is just the usual result of the delta method. Moreover,
it follows from the Berry–Esséen theorem that

sup
t

|Gn(t ,F0) −G∞(t ,F0)| = O(n−1/2).

Thus, under assumption SFM of the smooth function model, first-order asymptotic
approximations to the exact finite-sample distribution of Tn make an error of size
O(n−1/2) 8.

7 The proof that the bootstrap provides asymptotic refinements is based on an Edgeworth expansion of a
sufficiently high-order Taylor-series approximation to Tn. Assumption SFM insures that H has derivatives
and Z has moments of sufficiently high order to obtain the Taylor series and Edgeworth expansions that
are used to obtain a bootstrap approximation to the distribution of Tn that has an error of size O(n

−2).
SFM may not be the weakest condition needed to obtain this result. It certainly assumes the existence
of more derivatives of H and moments of Z than needed to obtain less accurate approximations. For
example, asymptotic normality of Tn can be proved if H has only one continuous derivative and Z has
only two moments. See Hall (1992a, pp. 52–56; 238–259) for a statement of the regularity conditions
needed to obtain various levels of asymptotic and bootstrap approximations.
8 Some statistics that are important in econometrics have asymptotic chi-square distributions. Such
statistics often satisfy the assumptions of the smooth function model but with ðH (mZ ) = 0 and
ð2H (z)/ðzðz′ z = mZ Ñ 0. Versions of the results described here for asymptotically normal statistics are also
available for asymptotic chi-square statistics. First-order asymptotic approximations to the finite-sample
distributions of asymptotic chi-square statistics typically make errors of size O(n−1). Chandra and Ghosh
(1979) give a formal presentation of higher-order asymptotic theory for asymptotic chi-square statistics.
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Now consider the bootstrap. The bootstrap approximation to the CDF of Tn is
Gn(·,Fn). Under the smooth function model with assumption SFM, it follows from
Theorem 3.2 that the bootstrap is consistent. Indeed, it is possible to prove the stronger
result that supt |Gn(t ,Fn) − G∞(t ,F0)| → 0 almost surely. This result insures that
the bootstrap provides a good approximation to the asymptotic distribution of Tn if
n is sufficiently large. It says nothing, however, about the accuracy of Gn(·,Fn) as an
approximation to the exact finite-sample distribution function Gn(·,F0). To investigate
this question, it is necessary to develop higher-order asymptotic approximations to
Gn(·,F0) and Gn(·,Fn). The following theorem, which is proved in Hall (1992a),
provides an essential result.

Theorem 3.1. Let assumption SFM hold. Assume also that

lim sup
‖t‖→∞

|E[exp(it′Z)]| < 1, (3.8)

where i =
√
−1. Then

Gn(t ,F0) = G∞(t ,F0) +
1
n1/2

g1(t ,F0) +
1
n
g2(t ,F0) +

1
n3/2

g3(t ,F0) + O(n−2)

(3.9)
uniformly over t and

Gn(t ,Fn) = G∞(t ,Fn) +
1
n1/2

g1(t ,Fn) +
1
n
g2(t ,Fn) +

1
n3/2

g3(t ,Fn) + O(n−2)

(3.10)
uniformly over t almost surely. Moreover, g1 and g3 are even, differentiable functions
of their first arguments, g2 is an odd, differentiable, function of its first argument, and
G∞, g1, g2, and g3 are continuous functions of their second arguments relative to the
supremum norm on the space of distribution functions.

If Tn is asymptotically pivotal, then G∞ is the standard normal distribution function.
Otherwise, G∞(·,F0) is the N (0,V ) distribution function, and G∞(·,Fn) is the N (0,Vn)
distribution function, where Vn is the quantity obtained from V by replacing population
expectations and moments with expectations and moments relative to Fn.
Condition (3.8) is called the Cramér condition. It is satisfied if the random vector Z

has a probability density with respect to Lebesgue measure 9.

9 More generally, Equation (3.8) is satisfied if the distribution of Z has a non-degenerate absolutely
continuous component in the sense of the Lebesgue decomposition. There are also circumstances in which
Equation (3.8) is satisfied even when the distribution of Z does not have a non-degenerate absolutely
continuous component. See Hall (1992a, pp. 66–67) for examples. In addition, Equation (3.8) can be
modified to deal with econometric models that have a continuously distributed dependent variable but
discrete covariates. See Hall (1992a, p. 266).



3178 J.L. Horowitz

It is now possible to evaluate the accuracy of the bootstrap estimator Gn(t , Fn)
as an approximation to the exact, finite-sample CDF Gn(t , F0). It follows from
Equations (3.9) and (3.10) that

Gn(t ,Fn) − Gn(t ,F0) = [G∞(t ,Fn) − G∞(t ,F0)] +
1
n1/2

[g1(t ,Fn) − g1(t ,F0)]

+
1
n
[g2(t ,Fn) − g2(t ,F0)] + O(n−3/2)

(3.11)
almost surely uniformly over t . The leading term on the right-hand side of
Equation (3.11) is [G∞(t , Fn) −G∞(t , F0)]. The size of this term is O(n−1/2) almost
surely uniformly over t because Fn −F0 =O(n−1/2) almost surely uniformly over the
support of F0. Thus, the bootstrap makes an error of size O(n−1/2) almost surely, which
is the same as the size of the error made by first-order asymptotic approximations. In
terms of rate of convergence to zero of the approximation error, the bootstrap has the
same accuracy as first-order asymptotic approximations. In this sense, nothing is lost
in terms of accuracy by using the bootstrap instead of first-order approximations, but
nothing is gained either.
Now suppose that Tn is asymptotically pivotal. Then the asymptotic distribution of

Tn is independent of F0, and G∞(t , Fn) =G∞(t , F0) for all t . Equations (3.9) and
(3.10) now yield

Gn(t ,Fn) − Gn(t ,F0) =
1
n1/2

[g1(t ,Fn) − g1(t ,F0)]

+
1
n
[g2(t ,Fn) − g2(t ,F0)] + O(n−3/2)

(3.12)

almost surely. The leading term on the right-hand side of Equation (3.12) is
n−1/2[g1(t , Fn) − g1 (t , F0)]. It follows from continuity of g1 with respect to its second
argument that this term has size O(n−1) almost surely uniformly over t . Now the
bootstrap makes an error of size O(n−1), which is smaller as n→ ∞ than the error made
by first-order asymptotic approximations. Thus, the bootstrap is more accurate than
first-order asymptotic theory for estimating the distribution of a smooth asymptotically
pivotal statistic.
If Tn is asymptotically pivotal, then the accuracy of the bootstrap is even greater for

estimating the symmetrical distribution function P(|Tn |¶ t) =Gn(t , F0) −Gn(− t , F0).
This quantity is important for obtaining the RP’s of symmetrical tests and the coverage
probabilities of symmetrical confidence intervals. Let F denote the standard normal
distribution function. Then, it follows from Equation (3.9) and the symmetry of g1,
g2, and g3 in their first arguments that

Gn(t ,F0) − Gn(−t ,F0) = [G∞(t ,F0) − G∞(−t ,F0)] +
2
n
g2(t ,F0) + O(n−2)

= 2F(t) − 1 +
2
n
g2(t ,F0) + O(n−2).

(3.13)
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Similarly, it follows from Equation (3.10) that

Gn(t ,Fn) − Gn(−t ,Fn) = [G∞(t ,Fn) − G∞(−t ,Fn)] +
2
n
g2(t ,Fn) + O(n−2)

= 2F(t) − 1 +
2
n
g2(t ,Fn) + O(n−2)

(3.14)
almost surely. The remainder terms in Equations (3.13) and (3.14) are O(n−2) and
not O(n−3/2) because the O(n−3/2) term of an Edgeworth expansion, n−3/2g3(t ,F), is
an even function that, like g1, cancels out in the subtractions used to obtain Equa-
tions (3.13) and (3.14) from Equations (3.9) and (3.10). Now subtract Equation (3.13)
from Equation (3.14) and use the fact that Fn −F0 =O(n−1/2) almost surely to obtain

[ Gn(t ,Fn) − Gn(−t ,Fn)] − [Gn(t ,F0) − Gn(−t ,F0)]

=
2
n
[g2(t ,Fn) − g2(t ,F0)] + O(n−2)

= O(n−3/2)

(3.15)

almost surely if Tn is asymptotically pivotal. Thus, the error made by the bootstrap
approximation to the symmetrical distribution function P(|Tn |¶ t) is O(n−3/2)
compared to the error of O(n−1) made by first-order asymptotic approximations.
In summary, when Tn is asymptotically pivotal, the error of the bootstrap

approximation to a one-sided distribution function is

Gn(t ,Fn) −Gn(t ,F0) = O(n−1) (3.16)

almost surely uniformly over t . The error in the bootstrap approximation to a
symmetrical distribution function is

[ Gn(t ,Fn) −Gn(−t ,Fn)] − [Gn(t ,F0) −Gn(−t ,F0)] = O(n−3/2) (3.17)

almost surely uniformly over t . In contrast, the errors made by first-order asymptotic
approximations are O(n−1/2) and O(n−1), respectively, for one-sided and symmetrical
distribution functions. Equations (3.16) and (3.17) provide the basis for the bootstrap’s
ability to reduce the finite-sample errors in the RP’s of tests and the coverage
probabilities of confidence intervals. Section 3.3 discusses the use of the bootstrap
in hypothesis testing. Confidence intervals are discussed in Section 3.4.

3.3. Bootstrap critical values for hypothesis tests

This section shows how the bootstrap can be used to reduce the errors in the RP’s of
hypothesis tests relative to the errors made by first-order asymptotic approximations.
Let Tn be a statistic for testing a hypothesis H0 about the sampled population.

Assume that under H0, Tn is asymptotically pivotal and satisfies assumptions SFM
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and Equation (3.8). Consider a symmetrical, two-tailed test of H0. This test rejects H0
at the a level if |Tn | > zn, a/2, where zn, a/2, the exact, finite-sample, a-level critical
value, is the 1 − a/2 quantile of the distribution of Tn 10. The critical value solves the
equation

Gn(zn, a/2,F0) −Gn(−zn, a/2,F0) = 1 − a. (3.18)

Unless Tn is exactly pivotal, however, Equation (3.18) cannot be solved in an
application because F0 is unknown. Therefore, the exact, finite-sample critical value
cannot be obtained in an application if Tn is not pivotal.
First-order asymptotic approximations obtain a feasible version of Equation (3.18)

by replacing Gn with G∞. Thus, the asymptotic critical value, z∞, a/2, solves

G∞(z∞, a/2,F0) −G∞(−z∞, a/2,F0) = 1 − a. (3.19)

Since G∞ is the standard normal distribution function when Tn is asymptotically
pivotal, z∞, a/2 can be obtained from tables of standard normal quantiles. Combining
Equations (3.13), (3.18), and (3.19) gives

[G∞(zn, a/2,F0)−G∞(−zn, a/2,F0)]−[G∞(z∞, a/2,F0)−G∞(−z∞, a/2,F0)]=O(n
−1),

which implies that zn, a/2 − z∞, a/2 = O(n−1). Thus, the asymptotic critical value
approximates the exact finite sample critical value with an error whose size is O(n−1).
The bootstrap obtains a feasible version of Equation (3.18) by replacing F0 with Fn.

Thus, the bootstrap critical value, z∗n, a/2, solves

Gn(z
∗
n, a/2,Fn) −Gn(−z

∗
n, a/2,Fn) = 1 − a. (3.20)

Equation (3.20) 11 usually cannot be solved analytically, but z∗n, a/2 can be estimated
with any desired accuracy by Monte Carlo simulation. To illustrate, suppose, as often

10 Another form of two-tailed test is the equal-tailed test. An equal-tailed test rejects H 0 if Tn > zn,a/2
or Tn < zn, (1 − a/2), where zn, (1 − a/2) is the a/2-quantile of the finite-sample distribution of Tn. If the
distribution of Tn is symmetrical about 0, then equal-tailed and symmetrical tests are the same. Otherwise,
they are different. Most test statistics used in econometrics have symmetrical asymptotic distributions,
so the distinction between equal-tailed and symmetrical tests is not relevant when the RP is obtained
from first-order asymptotic theory. Many test statistics have asymmetrical finite-sample distributions
however. Higher-order approximations to these distributions, such as the approximation provided by the
bootstrap, are also asymmetrical. Therefore, the distinction between equal-tailed and symmetrical tests
is important in the analysis of asymptotic refinements. Note that “symmetrical” in a symmetrical test
refers to the way in which the critical value is obtained, not to the finite-sample distribution of Tn, which
is asymmetrical in general.
11 The empirical distribution of the data is discrete, so Equation (3.20) may not have a solution if Fn
is the EDF of the data. However, Hall (1992a, pp. 283–286) shows that there is a solution at a point an
whose difference from a decreases exponentially fast as n→ ∞. The error introduced into the analysis
by ignoring the difference between an and a is o(n−2) and, therefore, negligible for purposes of the
discussion in this chapter.
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happens in applications, that Tn is an asymptotically normal, Studentized estimator of
a parameter q whose value under H0 is q0. That is,

Tn =
n1/2(qn − q0)

sn
,

where qn is the estimator of q , n1/2(qn − q0) →d N (0, s 2) under H0 and s2n is a consistent
estimator of s 2. Then the Monte Carlo procedure for evaluating z∗n, a/2 is as follows:

Monte Carlo Procedure for Computing the Bootstrap Critical Value
T1: Use the estimation data to compute qn.
T2: Generate a bootstrap sample of size n by sampling the distribution corresponding

to Fn. For example, if Fn is the EDF of the data, then the bootstrap sample can be
obtained by sampling the data randomly with replacement. If Fn is parametric
so that Fn(·) =F(·, qn) for some function F, then the bootstrap sample can be
generated by sampling the distribution whose CDF is F(·, qn). Compute the
estimators of q and s from the bootstrap sample. Call the results q∗

n and s
∗
n . The

bootstrap version of Tn is T ∗
n = n

1/2(q∗
n − qn)/s

∗
n .

T3: Use the results of many repetitions of T2 to compute the empirical distribution
of |T ∗

n |. Set z∗n, a/2 equal to the 1 − a quantile of this distribution.

The foregoing procedure does not specify the number of bootstrap replications
that should be carried out in step T3. In practice, it often suffices to choose a value
sufficiently large that further increases have no important effect on z∗n, a/2. Hall (1986a)
and Andrews and Buchinsky (2000) describe the results of formal investigations of the
problem of choosing the number of bootstrap replications. Repeatedly estimating q in
step T2 can be computationally burdensome if qn is an extremum estimator. Davidson
and MacKinnon (1999a) and Andrews (1999) show that the computational burden can
be reduced by replacing the extremum estimator with an estimator that is obtained by
taking a small number of Newton or quasi-Newton steps from the qn value obtained
in step T1.
To evaluate the accuracy of the bootstrap critical value z∗n, a/2 as an estimator of

the exact finite-sample critical value zn, a/2, combine Equations (3.13) and (3.18) to
obtain

2F(zn, a/2) − 1 +
2
n
g2(zn, a/2,F0) = 1 − a + O(n−2). (3.21)

Similarly, combining Equations (3.14) and (3.20) yields

2F(z∗n, a/2) − 1 +
2
n
g2(z

∗
n, a/2,Fn) = 1 − a + O(n

−2), (3.22)
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almost surely. Equations (3.21) and (3.22) can be solved to yield Cornish–Fisher
expansions for zn, a/2 and z∗n, a/2. The results are [Hall (1992a, p. 111)]

zn, a/2 = z∞, a/2 −
1
n

g2(z∞, a/2,F0)
÷(z∞, a/2)

+ O(n−2), (3.23)

where ÷ is the standard normal density function, and

z∗n, a/2 = z∞, a/2 −
1
n

g2(z∞, a/2,Fn)
÷(z∞, a/2)

+ O(n−2), (3.24)

almost surely. It follows from Equations (3.23) and (3.24) that

z∗n, a/2 = zn, a/2 + O(n
−3/2), (3.25)

almost surely. Thus, the bootstrap critical value for a symmetrical, two-tailed test
differs from the exact, finite-sample critical value by O(n−3/2) almost surely. The
bootstrap critical value is more accurate than the asymptotic critical value, z∞, a/2,
whose error is O(n−1).
Now consider the rejection probability of the test based on Tn when H0 is true. With

the exact but infeasible a-level critical value, the RP is P(|Tn | > zn, a/2) =a. With the
asymptotic critical value, the RP is

P(|Tn| > z∞, a/2) = 1 − [Gn(z∞, a/2,F0) − Gn(−z∞, a/2,F0)]

= a + O(n−1),
(3.26)

where the last line follows from setting t = z∞, a/2 in Equation (3.13). Thus, with the
asymptotic critical value, the true and nominal RP’s differ by O(n−1).
Now consider the RP with the bootstrap critical value, P(|Tn |¾ z∗n, a/2). Because

z∗n, a/2 is a random variable, P(|Tn |¾ z∗n, a/2)Ñ 1 − [Gn(z∗n, a/2,F0) −Gn(−z∗n, a/2,F0)].
This fact complicates the calculation of the difference between the true and nominal
RP’s with the bootstrap critical value. The calculation is outlined in the Appendix of
this chapter. The result is that

P(|Tn| > z∗n, a/2) = a + O(n−2). (3.27)

In other words, the nominal RP of a symmetrical, two-tailed test with a bootstrap
critical value differs from the true RP by O(n−2) when the test statistic is asymptotically
pivotal. In contrast, the difference between the nominal and true RP’s is O(n−1) when
the asymptotic critical value is used.
The bootstrap does not achieve the same accuracy for one-tailed tests. For such

tests, the difference between the nominal and true RP’s with a bootstrap critical value
is usually O(n−1), whereas the difference with asymptotic critical values is O(n−1/2).
See Hall (1992a, pp. 102–103) for details. There are, however, circumstances in which
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the difference between the nominal and true RP’s with a bootstrap critical value is
O(n−3/2). Hall (1992a, pp. 178–179) shows that this is true for a one-sided t test
of a hypothesis about a slope (but not intercept) coefficient in a homoskedastic,
linear, mean-regression model. Davidson and MacKinnon (1999b) show that it is true
whenever Tn is asymptotically independent of g2(z∞, a/2,Fn). They further show that
many familiar test statistics satisfy this condition.
Tests based on statistics that are asymptotically chi-square distributed behave like

symmetrical, two-tailed tests. Therefore, the differences between their nominal and true
RP’s under H0 are O(n−1) with asymptotic critical values and O(n−2) with bootstrap
critical values.
Singh (1981), who considered a one-tailed test of a hypothesis about a population

mean, apparently was the first to show that the bootstrap provides a higher-order
asymptotic approximation to the distribution of an asymptotically pivotal statistic.
Singh’s test was based on the standardized sample mean. Early papers giving results on
higher-order approximations for Studentized means and for more general hypotheses
and test statistics include Babu and Singh (1983, 1984), Beran (1988) and Hall (1986b,
1988).

3.4. Confidence intervals

Let q be a population parameter whose true but unknown value is q0. Let qn be
a n1/2-consistent, asymptotically normal estimator of q , and let sn be a consistent
estimator of the standard deviation of the asymptotic distribution of n1/2(qn − q0).
Then an asymptotic 1 − a confidence interval for q0 is qn − z∞, a/2sn/n1/2¶ q0¶
qn + z∞, a/2sn/n1/2. Define Tn = n1/2(qn − q0)/sn. Then the coverage probability of the
asymptotic confidence interval is P(|Tn |¶ z∞, a/2). It follows from Equation (3.26)
that the difference between the true coverage probability of the interval and the nominal
coverage probability, 1 − a, is O(n−1).
If Tn satisfies the assumptions of Theorem 3.1, then the difference between the

nominal and true coverage probabilities of the confidence interval can be reduced
by replacing the asymptotic critical value with the bootstrap critical value z∗n, a/2.
With the bootstrap critical value, the confidence interval is qn − z∗n, a/2sn/n

1/2¶ q0¶
qn + z∗n, a/2sn/n

1/2. The coverage probability of this interval is P(|Tn |¶ z∗n, a/2). By
Equation (3.27), P(|Tn |¶ z∗n, a/2) = 1 − a +O(n−2), so the true and nominal coverage
probabilities differ by O(n−2) when the bootstrap critical value is used, whereas they
differ by O(n−1) when the asymptotic critical value is used.
Analogous results can be obtained for one-sided and equal-tailed confidence

intervals. With asymptotic critical values, the true and nominal coverage probabilities
of these intervals differ by O(n−1/2). With bootstrap critical values, the differences are
O(n−1). In special cases such as the slope coefficients of homoskedastic, linear, mean-
regressions, the differences with bootstrap critical values are O(n−3/2).



3184 J.L. Horowitz

The bootstrap’s ability to reduce the differences between the true and nominal
coverage probabilities of a confidence interval is illustrated by the following example,
which is an extension of Example 3.1.

Example 3.2. [Horowitz (1998a)]: This example uses Monte Carlo simulation to
compare the true coverage probabilities of asymptotic and bootstrap nominal 95%
confidence intervals for q0 in the model of Example 3.1. The Monte Carlo procedure
is:
MC4: Generate an estimation data set of size n= 10 by sampling from the N (0,6)

distribution. Use this data set to compute qn.
MC5: Compute z∗n, a/2 by carrying out steps T2–T3 of Section 3.3. Determine whether

q0 is contained in the confidence intervals based on the asymptotic and
bootstrap critical values.

MC6: Determine the empirical coverage probabilities of the asymptotic and bootstrap
confidence intervals from the results of 1000 repetitions of steps MC4–MC5.

The empirical coverage probability of the asymptotic confidence interval was 0.886 in
this experiment, whereas the empirical coverage probability of the bootstrap interval
was 0.943. The asymptotic coverage probability is statistically significantly different
from the nominal probability of 0.95 ( p< 0.01), whereas the bootstrap coverage
probability is not ( p> 0.10). „

3.5. The importance of asymptotically pivotal statistics

The arguments in Sections 3.2–3.4 show that the bootstrap provides higher-order
asymptotic approximations to distributions, RP’s of tests, and coverage probabilities of
confidence intervals based on smooth, asymptotically pivotal statistics. These include
test statistics whose asymptotic distributions are standard normal or chi-square and,
thus, most statistics that are used for testing hypotheses about the parameters of econo-
metric models. Models that satisfy the required smoothness conditions include linear
and nonlinear mean-regression models, error-components mean-regression models for
panel data, logit and probit models that have at least one continuously distributed
explanatory variable, and tobit models. The smoothness conditions are also satisfied by
parametric sample-selection models in which the selection equation is a logit or probit
model with at least one continuously distributed explanatory variable. Asymptotically
pivotal statistics based on median-regression models do not satisfy the smoothness con-
ditions. Bootstrap methods for such statistics are discussed in Section 4.3. The ability
of the bootstrap to provide asymptotic refinements for smooth, asymptotically pivotal
statistics provides a powerful argument for using them in applications of the bootstrap.
The bootstrap may also be applied to statistics that are not asymptotically pivotal,

but it does not provide higher-order approximations to their distributions. Estimators of
the structural parameters of econometric models (e.g., slope and intercept parameters,
including regression coefficients; standard errors, covariance matrix elements, and
autoregressive coefficients) usually are not asymptotically pivotal. The asymptotic
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distributions of centered structural parameter estimators are often normal with means
of zero but have variances that depend on the unknown population distribution of the
data. The errors of bootstrap estimates of the distributions of statistics that are not
asymptotically pivotal converge to zero at the same rate as the errors made by first-
order asymptotic approximations 12.
Higher-order approximations to the distributions of statistics that are not asymptoti-

cally pivotal can be obtained through the use of bootstrap iteration [Beran (1987, 1988);
Hall (1992a)] or bias-correction methods [Efron (1987)]. Bias correction methods are
not applicable to symmetrical tests and confidence intervals. Bootstrap iteration is
discussed in Section 4.4. Bootstrap iteration is highly computationally intensive, which
makes it unattractive when an asymptotically pivotal statistic is available.

3.6. The parametric versus the nonparametric bootstrap

The size of the error in the bootstrap estimate of a RP or coverage probability is
determined by the size of Fn −F0. Thus, Fn should be the most efficient available
estimator. If F0 belongs to a known parametric family F(·, q), F(·, qn) should be used
to generate bootstrap samples, rather than the EDF. Although the bootstrap provides
asymptotic refinements regardless of whether F(·, qn) or the EDF is used, the results
of Monte Carlo experiments have shown that the numerical accuracy of the bootstrap
tends to be much higher with F(·, qn) than with the EDF. If the objective is to test a
hypothesis H0 about q , further gains in efficiency and performance can be obtained
by imposing the constraints of H0 when obtaining the estimate qn.
To illustrate, consider testing the hypothesis H0: b1 = 0 in the Box–Cox regression

model

Y (l) = b0 + b1X +U , (3.28)

where Y (l) is the Box and Cox (1964) transformation of Y, X is an observed,
scalar explanatory variable, U is an unobserved random variable, and b0 and b1 are
parameters. Suppose that U ~ N (0, s 2) 13. Then bootstrap sampling can be carried out
in the following ways:
(1) Sample (Y,X ) pairs from the data randomly with replacement.

12 Under mild regularity conditions, the constant that multiplies the rate of convergence of the error of the
bootstrap estimate of the distribution function of a non-asymptotically-pivotal statistic is smaller than the
constant that multiplies the rate of convergence of the error that is made by the normal approximation.
This need not happen, however, with the errors in the RP’s of tests and coverage probabilities of
confidence intervals. See Beran (1982) and Liu and Singh (1987).
13 Strictly speaking, U cannot be normally distributed unless l = 0 or 1, but the error made by assuming
normality is negligibly small if the right-hand side of the model has a negligibly small probability of
being negative. Amemiya and Powell (1981) discuss ways to avoid assuming normality.
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(2) Estimate l, b0, and b1 in Equation (3.28) by maximum likelihood, and obtain
residuals Û . Generate Y values from Y = [ln(b0 + b1X + U ∗) + 1]1/ln , where ln,
b0, and b1 are the estimates of l, b0, and b1; and U ∗ is sampled randomly with
replacement from the Û .

(3) Same as method 2 except U ∗ is sampled randomly from the distribution N (0, s2n),
where s2n is the maximum likelihood estimate of s

2.
(4) Estimate l, b0, and s 2 in Equation (3.28) by maximum likelihood subject to the

constraint b1 = 0. Then proceed as in method 2.
(5) Estimate l, b0, and s 2 in Equation (3.28) by maximum likelihood subject to the

constraint b1 = 0. Then proceed as in method 3.
In methods 2–5, the values of X may be fixed in repeated samples or sampled

independently of Û from the empirical distribution of X.
Method 1 provides the least efficient estimator of Fn and typically has the poorest

numerical accuracy. Method 5 has the greatest numerical accuracy. Method 3 will
usually have greater numerical accuracy than method 2. If the distribution of U
is not assumed to belong to a known parametric family, then methods 3 and 5
are not available, and method 4 will usually have greater numerical accuracy than
methods 1−2. Of course, parametric maximum likelihood cannot be used to estimate
b0, b1, and l if the distribution of U is not specified parametrically.
If the objective is to obtain a confidence interval for b1 rather than to test a

hypothesis, methods 4 and 5 are not available. Method 3 will usually provide the
greatest numerical accuracy if the distribution of U is assumed to belong to a known
parametric family, and method 2 if not.
One reason for the relatively poor performance of method 1 is that it does not impose

the condition E(U X = x) = 0. This problem is discussed further in Section 5.2, where
heteroskedastic regression models are considered.

3.7. Recentering

The bootstrap provides asymptotic refinements for asymptotically pivotal statistics
because, under the assumptions of the smooth function model, supt |Gn(t , Fn)
−Gn(t , F0)| converges to zero as n→ ∞ more rapidly than supt |G∞(t ,F0) −
Gn(t ,F0)|. One important situation in which this does not necessarily happen is
generalized method of moments (GMM) estimation of an overidentified parameter
when Fn is the EDF of the sample.
To see why, let q0 be the true value of a parameter q that is identified by the

moment condition Eh(X, q) = 0. Assume that dim(h)> dim(q). If, as is often the case
in applications, the distribution of X is not assumed to belong to a known parametric
family, the EDF of X is the most obvious candidate for Fn. The sample analog of
Eh(X, q) is then

E∗h(X , q) =
1
n

n∑
i = 1

h(Xi, q),
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where E∗ denotes the expectation relative to Fn. The sample analog of q0 is qn,
the GMM estimator of q . In general, E∗h(X, qn)Ñ 0 in an overidentified model, so
bootstrap estimation based on the EDF of X implements a moment condition that
does not hold in the population the bootstrap samples. As a result, the bootstrap
estimator of the distribution of the statistic for testing the overidentifying restrictions
is inconsistent [Brown et al. (1997)]. The bootstrap does consistently estimate the
distributions of n1/2(qn − q0) [Hahn (1996)] and the t statistic for testing a hypothesis
about a component of q . However, it does not provide asymptotic refinements for the
RP of the t test or the coverage probability of a confidence interval.
This problem can be solved by basing bootstrap estimation on the recentered

moment condition E∗h∗(X, qn) = 0, where

h∗(X , q) = h(X , q) −
1
n

n∑
i = 1

h(Xi, qn). (3.29)

Hall and Horowitz (1996) show that the bootstrap with recentering provides asymptotic
refinements for the RP’s of t tests of hypotheses about components of q and the test of
overidentifying restrictions. The bootstrap with recentering also provides asymptotic
refinements for confidence intervals. Intuitively, the recentering procedure works
by replacing the misspecified moment condition E∗h(X, q) = 0 with the condition
E∗h∗(X, q) = 0, which does hold in the population that the bootstrap samples.
Freedman (1981) recognized the need for recentering residuals in regression models

without intercepts. See also Efron (1979).
Brown et al. (1997) propose an alternative approach to recentering. Instead of

replacing h with h∗ for bootstrap estimation, they replace the empirical distribution of
X with an empirical likelihood estimator that is constructed so that E∗h(X, qn) = 0 14.
The empirical likelihood estimator assigns a probability mass pni to observation
X i (i = 1, . . . , n). The pni’s are determined by solving the problem

maximize
pn1, . . . , pnn

n∑
i = 1

log pni

subject to
n∑
i = 1

pnih(Xi, qn) = 0,
n∑
i = 1

pni = 1, pni ¾ 0.

In general, the solution to this problem yields pni Ñ n−1, so the empirical likelihood
estimator of the distribution of X is not the same as the empirical distribution. Brown
et al. (1997) implement the bootstrap by sampling {X i} with probability weights pni

14 The empirical-likelihood estimator is one of a larger class of estimators of F that are described
by Brown et al. (1997) and that impose the restriction E°h(X , qn) = 0. All estimators in the class are
asymptotically efficient.
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instead of randomly with replacement. They argue that the bootstrap is more accurate
with empirical-likelihood recentering than with recentering by Equation (3.29) because
the empirical-likelihood estimator of the distribution of X is asymptotically efficient
under the moment conditions Eh(X, q) = 0. With either method of recentering, however,
the differences between the nominal and true RP’s of symmetrical tests and between the
nominal and true coverage probabilities of symmetrical confidence intervals are O(n−2).
Thus, the differences between the errors made with the two recentering methods are
likely to be small with samples of the sizes typically encountered in applications.
Brown et al. (1997) develop the empirical-likelihood recentering method only for

simple random samples. Kitamura (1997) has shown how to carry out empirical-
likelihood estimation with dependent data. It is likely, therefore, that empirical-
likelihood recentering can be extended to GMM estimation with dependent data. The
recentering method based on Equation (3.29) requires no modification for use with
dependent data [Hall and Horowitz (1996)]. Section 4.1 provides further discussion of
the use of the bootstrap with dependent data.

4. Extensions

This section explains how the bootstrap can be used to obtain asymptotic refinements
in certain situations where the assumptions of Section 3 are not satisfied. Section 4.1
treats dependent data. Section 4.2 treats kernel density and nonparametric mean-
regression estimators. Section 4.3 shows how the bootstrap can be applied to certain
non-smooth estimators. Section 4.4 describes how bootstrap iteration can be used to
obtain asymptotic refinements without an asymptotically pivotal statistic. Section 4.5
discusses additional special problems that can arise in implementing the bootstrap.
Section 4.6 discusses the properties of bootstrap critical values for testing a hypothesis
that is false.

4.1. Dependent data

With dependent data, asymptotic refinements cannot be obtained by using independent
bootstrap samples. Bootstrap sampling must be carried out in a way that suitably
captures the dependence of the data-generation process. This section describes several
methods for doing this. It also explains how the bootstrap can be used to obtain
asymptotic refinements in GMM estimation with dependent data. At present, higher-
order asymptotic approximations and asymptotic refinements are available only when
the data-generation process is stationary and strongly geometrically mixing. Except
when stated otherwise, it is assumed here that this requirement is satisfied. Non-
stationary data-generation processes are discussed in Section 4.1.3.

4.1.1. Methods for bootstrap sampling with dependent data

Bootstrap sampling that captures the dependence of the data can be carried out
relatively easily if there is a parametric model, such as an ARMA model, that reduces
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the data-generation process to a transformation of independent random variables. For
example, suppose that the series {X t} is generated by the stationary, invertible, finite-
order ARMA model

A(L,a)Xt = B(L, b)Ut , (4.1)

where A and B are known functions, L is the backshift operator, a and b are vectors of
parameters, and {Ut} is a sequence of independently and identically distributed (i.i.d.)
random variables. Let an and bn be n1/2-consistent, asymptotically normal estimators
of a and b , and let {Ût} be the centered residuals of the estimated model (4.1). Then
a bootstrap sample {X ∗

t } can be generated as

A(L,an)X ∗
t = B(L, bn)U

∗
t ,

where {U ∗
t } is a random sample from the empirical distribution of the residuals {Ût}.

If the distribution of Ut is assumed to belong to a known parametric family (e.g., the
normal distribution), then {U ∗

t } can be generated by independent sampling from the
estimated parametric distribution. Bose (1988) provides a rigorous discussion of the
use of the bootstrap with autoregressions. Bose (1990) treats moving average models.
When there is no parametric model that reduces the data-generation process

to independent sampling from some probability distribution, the bootstrap can be
implemented by dividing the data into blocks and sampling the blocks randomly with
replacement. The block bootstrap is important in GMM estimation with dependent
data, because the moment conditions on which GMM estimation is based usually do
not specify the dependence structure of the GMM residuals. The blocks may be non-
overlapping [Carlstein (1986)] or overlapping [Hall (1985), Künsch (1989), Politis
and Romano (1994)]. To describe these blocking methods more precisely, let the data
consist of observations {X i: i = 1, . . . , n}. With non-overlapping blocks of length l,
block 1 is observations {X j: j = 1, . . . , l}, block 2 is observations {X l + j: j = 1, . . . , l},
and so forth. With overlapping blocks of length l, block 1 is observations {X j:
j = 1, . . . , l}, block 2 is observations {X j + 1: j = 1, . . . , l}, and so forth. The bootstrap
sample is obtained by sampling blocks randomly with replacement and laying them
end-to-end in the order sampled. It is also possible to use overlapping blocks with
lengths that are sampled randomly from the geometric distribution [Politis and Romano
(1994)]. The block bootstrap with random block lengths is also called the stationary
bootstrap because the resulting bootstrap data series is stationary, whereas it is not
with overlapping or non-overlapping blocks of fixed (non-random) lengths.
Regardless of the blocking method that is used, the block length (or average block

length in the stationary bootstrap) must increase with increasing sample size n to
make bootstrap estimators of moments and distribution functions consistent. The
asymptotically optimal block length is defined as the one that minimizes the asymptotic
mean-square error of the block bootstrap estimator. The asymptotically optimal block
length and its rate of increase with increasing n depend on what is being estimated.
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Hall et al. (1995) showed that with either overlapping or non-overlapping blocks with
non-random lengths, the asymptotically optimal block-length is l ~ nr , where r = 1/3
for estimating bias or variance, r = 1/4 for estimating a one-sided distribution function
(e.g., P(Tn¶ t)), and r = 1/5 for estimating a symmetrical distribution function (e.g.,
P(|Tn |¶ t)). Hall et al. (1995) also show that overlapping blocks provide somewhat
higher estimation efficiency than non-overlapping ones. The efficiency difference is
likely to be very small in applications, however. For estimating a two-sided distribution
function, for example, the root-mean-square estimation error (RMSE) with either
blocking method is O(n−6/5). The numerical difference between the RMSE’s can be
illustrated by considering the case of a normalized sample average. Let Tn = (X̄ − m)/s ,
where X̄ is the sample average of observations {X i}, m = E(X̄ ), and s 2 = Var(X̄ ). Then
the results of Hall et al. (1995) imply that for estimating P(|Tn |¶ t), the reduction
in asymptotic RMSE from using overlapping blocks instead of nonoverlapping ones
is less than 10 percent.
Lahiri (1999) investigated the asymptotic efficiency of the stationary bootstrap. He

showed that the asymptotic relative efficiency of the stationary bootstrap compared
to the block bootstrap with non-random block lengths is always less than one
and can be arbitrarily close to zero. More precisely, let RMSESB and RMSENR,
respectively, denote the asymptotic RMSE’s of the stationary bootstrap and the block
bootstrap with overlapping or non-overlapping blocks with non-random lengths. Then
RMSENR/RMSESB < 1 always and can be arbitrarily close to zero. Thus, at least in
terms of asymptotic RMSE, the stationary bootstrap is unattractive relative to the block
bootstrap with fixed-length blocks.
Implementation of the block bootstrap in an application requires a method for

choosing the block length with a finite sample. Hall et al. (1995) describe a
subsampling method for doing this when the block lengths are non-random. The
idea of the method is to use subsamples to create an empirical analog of the mean-
square error of the bootstrap estimator of the quantity of interest. Let y denote this
quantity (e.g., a two-sided distribution function). Let yn be the bootstrap estimator of
y that is obtained using a preliminary block-length estimate. Let m<n. Let ym, i(l′)
(i = 1, . . . , n−m) denote the bootstrap estimates of y that are computed using all the
n−m runs of length m in the data and block length l′. Let lm be the value of l′

that minimizes
∑

i [ym, i(l
′) − yn]2. The estimator of the asymptotically optimal block

length is (n/m)rlm, where r = 1/3 for estimating bias or variance, r = 1/4 for estimating
a one-sided distribution function, and r = 1/5 for estimating a two-sided distribution
function.
Kreiss (1992) and Bühlmann (1997) have proposed an alternative to blocking for

use when the data-generation process can be represented as an infinite-order autore-
gression. In this method, called the sieve bootstrap, the infinite-order autoregression
is replaced by an approximating autoregression with a finite-order that increases at a
suitable rate as n→ ∞. The coefficients of the finite-order autoregression are estimated,
and the bootstrap is implemented by sampling the centered residuals from the estimated
finite-order model. Bühlmann (1997) gives conditions under which this procedure
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yields consistent estimators of variances and distribution functions. Bühlmann (1998)
shows that the sieve bootstrap provides an asymptotic refinement for estimating the
CDF of the t statistic for testing a one-sided hypothesis about the trend function in
an AR(∞) process with a deterministic trend. Choi and Hall (2000) show that the
error in the coverage probability of a one-sided confidence interval based on the sieve
bootstrap for an AR(∞) process is O(n−1+e) for any e > 0, which is only slightly larger
than the error of O(n−1) that is available when the data are a random sample.
If the data are generated by a Markov process, then the bootstrap can be implemented

by sampling the process generated by a nonparametric estimate of the Markov
transition density. This approach has been investigated by Rajarshi (1990), Datta and
McCormick (1995), and Paparoditis and Politis (2000). Its ability to achieve asymptotic
refinements for Studentized statistics is unknown.

4.1.2. Asymptotic refinements in GMM estimation with dependent data

This section discusses the use of the block bootstrap to obtain asymptotic refinements
in GMM estimation with dependent data. Lahiri (1992) showed that the block bootstrap
provides asymptotic refinements through O(n−1/2) for normalized sample moments and
for a Studentized sample moment with m-dependent data. Hall and Horowitz (1996)
showed that the block bootstrap provides asymptotic refinements through O(n−1) for
symmetrical tests and confidence intervals based on GMM estimators. Their methods
can also be used to show that the bootstrap provides refinements through O(n−1/2) for
one-sided tests and confidence intervals. Hall and Horowitz (1996) do not assume that
the data-generation process is m-dependent 15.
Regardless of whether overlapping or nonoverlapping blocks are used, block

bootstrap sampling does not exactly replicate the dependence structure of the original
data-generation process. For example, if nonoverlapping blocks are used, bootstrap
observations that belong to the same block are deterministically related, whereas
observations that belong to different blocks are independent. This dependence structure
is unlikely to be present in the original data-generation process. As a result, the
finite-sample covariance matrices of the asymptotic forms of parameter estimators
obtained from the original sample and from the bootstrap sample are different. The
practical consequence of this difference is that asymptotic refinements through O(n−1)
cannot be obtained by applying the “usual” formulae for test statistics to the block-
bootstrap sample. It is necessary to develop special formulae for the bootstrap versions
of test statistics. These formulae contain factors that correct for the differences
between the asymptotic covariances of the original-sample and bootstrap versions of

15 The regularity conditions required to achieve asymptotic refinements in GMM estimation with
dependent data include the existence of considerably more higher-order moments than are needed with
i.i.d. data as well as a modified version of the Cramér condition that takes account of the dependence.
See Hall and Horowitz (1996) for a precise statement of the conditions.
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test statistics without distorting the higher-order terms of asymptotic expansions that
produce refinements.
Lahiri (1992) derived the bootstrap version of a Studentized sample mean for

m-dependent data. Hall and Horowitz (1996) derived formulae for the bootstrap
versions of the GMM symmetrical, two-tailed t statistic and the statistic for testing
overidentifying restrictions. As an illustration of the form of the bootstrap statistics,
consider the GMM t statistic for testing a hypothesis about a component of a
parameter q that is identified by the moment condition Eh(X, q) = 0. Hall and Horowitz
(1996) showed that the corrected formula for the bootstrap version of the GMM
t statistic is

T ∗
n = (Sn/Sb)T̃n,

where T̃n is the “usual” GMM t statistic applied to the bootstrap sample, Sn is the
“usual” GMM standard error of the estimate of the component of q that is being
tested, and Sb is the exact standard deviation of the asymptotic form of the bootstrap
estimate of this component. Sn is computed from the original estimation sample, not
the bootstrap sample. Hansen (1982) gives formulae for the usual GMM t statistic
and standard error. Sb can be calculated because the process generating bootstrap
data is known exactly. An analogous formula is available for the bootstrap version
of the statistic for testing overidentifying restrictions but is much more complicated
algebraically than the formula for the t statistic. See Hall and Horowitz (1996) for
details.
At present, the block bootstrap is known to provide asymptotic refinements for

symmetrical tests and confidence intervals based on GMM estimators only if the
residuals {h(X i, q0): i = 1,2, . . . } at the true parameter point, q0, are uncorrelated after
finitely many lags. That is,

E[h(Xi, q0)h(Xj , q0)′] = 0 if |i − j| > M (4.2)

for some M <∞ 16. This restriction is not equivalent to m-dependence because it does
not preclude correlations among higher powers of components of h that persist at
arbitrarily large lags (e.g., stochastic volatility). Although the restriction is satisfied
in many econometric applications [see, e.g., Hansen (1982), Hansen and Singleton
(1982)], there are others in which relaxing it would be useful. The main problem in
doing so is that without Equation (4.2), it is necessary to use a kernel-type estimator
of the GMM covariance matrix [see, e.g., Newey and West (1987, 1994), Andrews
(1991), Andrews and Monahan (1992)]. Kernel-type estimators are not functions of
sample moments and converge at rates that are slower than n−1/2. However, present

16 Tests and confidence regions based on asymptotic chi-square statistics, including the test of
overidentifying restrictions, are symmetrical. Therefore, restriction (4.2) also applies to them.
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results on the existence of asymptotic expansions that achieve O(n−1) accuracy with
dependent data apply only to functions of sample moments that have n−1/2 rates of
convergence [Götze and Hipp (1983, 1994)]. It will be necessary to extend existing
theory of asymptotic expansions with dependent data before Equation (4.2) can be
relaxed for symmetrical tests and confidence intervals.
Condition (4.2) is not needed for one-sided tests and confidence intervals, where

the bootstrap provides only O(n−1/2) refinements. Götze and Künsch (1996) and Lahiri
(1996) give conditions under which the moving-block-bootstrap approximation to the
distribution of a statistic that is Studentized with a kernel-type variance estimator is
accurate through Op(n−1/2). When the conditions are satisfied,

sup
t

|P(Tn ¶ t) − P∗(T ∗
n ¶ t)| = op(n−1/2), (4.3)

where T ∗
n is the bootstrap analog of the Studentized statistic Tn, and the moving block

bootstrap is used to generate bootstrap samples. In Götze and Künsch (1996), Tn is
the Studentized form of a smooth function of sample moments. In Lahiri (1996), Tn
is a Studentized statistic for testing a hypothesis about a slope coefficient in a linear
mean-regression model. Achieving the result (4.3) requires, among other things, use
of a suitable kernel or weight function in the variance estimator. Götze and Künsch
(1996) show that Equation (4.3) holds with a rectangular or quadratic kernel but not
with a triangular one.

4.1.3. The bootstrap with non-stationary processes

The foregoing results assume that the data-generation process is stationary. Most
research to date on using the bootstrap with non-stationary data has been concerned
with establishing consistency of bootstrap estimators of distribution functions, not
with obtaining asymptotic refinements. An exception is Lahiri (1992), who gives
conditions under which the bootstrap estimator of the distribution of the normalized
sample average of non-stationary data differs from the true distribution by o(n−1/2)
almost surely. Thus, under Lahiri’s conditions, the bootstrap is more accurate than
first-order asymptotic approximations. Lahiri’s result requires a priori knowledge of
the covariance function of the data and does not apply to Studentized sample averages.
Moreover Lahiri assumes the existence of the covariance function, so his result does
not apply to unit-root processes.
The consistency of the bootstrap estimator of the distribution of the slope coefficient

or Studentized slope coefficient in a simple unit-root model has been investigated by
Basawa et al. (1991a,b), Datta (1996), and Ferretti and Romo (1996). The model is

Xi = bXi − 1 +Ui; i = 1, 2, . . . , n, (4.4)

where X 0 = 0 and {Ui} is an i.i.d. sequence with E(Ui) = 0 and E(U 2
i ) = s

2 < ∞.
Let bn denote the ordinary least-squares estimator of b in Equation (4.4):

bn =

∑n
i = 1 XiXi − 1∑n
i = 1 X

2
i − 1

. (4.5)
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Let b0 denote the true but unknown value of b . Consider using the bootstrap to estimate
the sampling distribution of (bn − b0) or the t statistic for testing H0: b = b0. It turns out
that when b0 = 1 is possible, the consistency of the bootstrap estimator is much more
sensitive to how the bootstrap sample is drawn than when it is known that |b0 | < 1.
Basawa et al. (1991a) investigate the consistency of a bootstrap estimator of the

distribution of the t statistic in the special case that U ~N (0,1). In this case, the
t statistic is

tn =

(
n∑
i = 1

X 2i − 1

)1/2
(bn − b0). (4.6)

In Basawa et al. (1991a), the bootstrap sample {X ∗
i : i = 1, . . . , n} is generated

recursively from the estimated model

X ∗
i = bnX

∗
i − 1 +U

∗
i , (4.7)

where X ∗
0 = 0 and {U ∗

i } is an independent random sample from the N (0,1) distribution.
The bootstrap version of the t statistic is

t∗ =

(
n∑
i = 1

(X ∗
i − 1)

2

)1/2
(b∗
n − bn),

where b∗
n is obtained by replacing X i with X

∗
i in Equation (4.5). Basawa et al.

(1991a) show that the bootstrap distribution function P∗
n (t

∗¶ t) does not consistently
estimate the population distribution function Pn(t¶ t). This result is not surprising.
The asymptotic distribution of t is discontinuous at b0 = 1. Therefore, condition (iii) of
Theorem 2.1 is not satisfied if the set of data-generation processes under consideration
includes ones with and without b0 = 1.
This problem can be overcome by specifying that b0 = 1, thereby removing the

source of the discontinuity. Basawa et al. (1991b) investigate the consistency of the
bootstrap estimator of the distribution of the statistic Zn ≡ n(bn − 1) for testing the unit-
root hypothesis H0: b0 = 1 in Equation (4.4). The bootstrap sample is generated by the
recursion

X ∗
i = X

∗
i − 1 +U

∗
i , (4.8)

where X ∗
0 = 0 and {U ∗

i } is a random sample from the centered residuals of
Equation (4.4) under H0. The centered residuals are Ûi = Xi − Xi − 1 − Ū , where
Ū = n−1

∑n
i = 1 (Xi − Xi − 1). The bootstrap analog of Zn is Z

∗
n = n(b

∗
n − 1), where b

∗
n is

obtained by replacing X i with X ∗
i in Equation (4.5). Basawa et al. (1991b) show that

if H0 is true, then |P∗
n (Z

∗
n ¶ z) −Pn(Zn¶ z)| = op(1) uniformly over z.

The discontinuity problem can be overcome without the restriction b0 = 1 by
using bootstrap samples consisting of m<n observations [Datta (1996)]. This
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approach has the advantage of yielding a confidence interval for b0 that is valid
for any b0 ∈ (−∞,∞). Consider model (4.4) with the additional assumption that
E |Ui |2 + d <∞ for some d > 0. Let bn be the ordinary least-squares estimator of b ,
and define tn as in Equation (4.6). Let Ûi = Xi − bnXi − 1 − n−1

∑n
i = 1 (Xi − bnXi − 1)

(i = 1, . . . , n) denote the centered residuals from the estimated model, and let {U∗
i :

i = 1, . . . ,m} be a random sample of {Ûi} for some m<n. The bootstrap sample is
generated by the recursion (4.7) but with i = 1, . . . ,m instead of i = 1, . . . , n. Let b∗

m

denote the ordinary least-squares estimator of b that is obtained from the bootstrap
sample. Define the bootstrap version of tn by

t∗m =

(
m∑
i = 1

(X ∗
i − 1)

2

)1/2
(b∗
m − bn).

Datta (1996) proves that if [m(log log n)2]/n→ 0 as n→ ∞, then |P∗
m(t

∗
m¶ t) −

Pn(tn¶ t)| = o(1) almost surely as n→ ∞ uniformly over z for any b0 ∈ (−∞,∞).
Ferretti and Romo (1996) consider a test of H0: b0 = 1 in Equation (4.4). Let bn be

the ordinary least-squares estimator of b , and let

s 2n =
1
n

n∑
i = 1

(Xi − bnXi − 1)
2. (4.9)

The test statistic is

t̃n =
1
sn

(
n∑
i = 1

X 2i − 1

)1/2
(bn − 1). (4.10)

The bootstrap sample is generated from the centered residuals of the estimated model
by using the recursion (4.8). Let b∗

n denote the ordinary least-squares estimator of b
that is obtained from the bootstrap sample. The bootstrap version of the test statistic,
t̃∗n , is obtained by replacing X i and bn with X

∗
i and b

∗
n in Equations (4.9) and (4.10).

Ferretti and Romo (1996) show that |P∗
n (t̃

∗
n ¶ t) − Pn(t̃n ¶ t)| = o(1), almost surely

as n→ ∞. Ferretti and Romo (1996) also show how this result can be extended to the
case in which {Ui} in Equation (4.4) follows an AR(1) process.
The results of Monte Carlo experiments [Li and Maddala (1996, 1997)] suggest

that the differences between the true and nominal RP’s of tests of hypotheses about
integrated or cointegrated data-generation processes are smaller with bootstrap-based
critical values than with asymptotic ones. At present, however, there are no theoretical
results on the ability of the bootstrap to provide asymptotic refinements for tests or
confidence intervals when the data are integrated or cointegrated.

4.2. Kernel density and regression estimators

This section describes the use of the bootstrap to carry out inference about kernel
nonparametric density and mean-regression estimators. These are not smooth functions
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of sample moments, even approximately, so the results of Section 3 do not apply
to them. In particular, kernel density and mean-regression estimators converge
more slowly than n−1/2, and their distributions have unconventional asymptotic
expansions that are not in powers of n−1/2. Consequently, the sizes of the asymptotic
refinements provided by the bootstrap are also not powers of n−1/2. Sections 4.2.1–
4.2.3 discuss bootstrap methods for nonparametric density estimation. Nonparametric
mean regression is discussed in Section 4.2.4.

4.2.1. Nonparametric density estimation

Let f denote the probability density function (with respect to Lebesgue measure) of
the scalar random variable X . The problem addressed in this section is inferring f
from a random sample of X , {X i: i = 1, . . . , n}, without assuming that f belongs to
a known, finite-dimensional family of functions. Point estimation of f can be carried
out by the kernel method. The kernel estimator of f (x) is

fn(x) =
1
nhn

n∑
i = 1

K

(
x − Xi
hn

)
,

where K is a kernel function with properties that are discussed below and {hn:
n= 1, 2, . . . } is a strictly positive sequence of bandwidths.
The properties of kernel density estimators are described by Silverman (1986),

among others. To state the properties that are relevant here, let r¾ 2 be an even integer.
Assume that f has r bounded, continuous derivatives in a neighborhood of x. Let K be
a bounded function that is symmetrical about 0 and has support [−1, 1] 17. In addition,
let K satisfy

∫ 1

−1
u jK(u) du =

⎧⎨⎩ 1 if j = 0
0 if 1 ¶ j ¶ r − 1
AK Ñ 0 if j = r.

(4.11)

Define

BK =
∫ 1

−1
K(u)2 du.

Also define bn(x) =E[ fn(x) − f (x)] and s 2n (x) = Var[ fn(x)]. Then

bn(x) = h
r
n
AK
r!
f (r)(x) + o(hrn)

17 The results stated in this section do not require assuming that r is even or that K is a symmetrical
function, but these assumptions simplify the exposition and are not highly restrictive in applications.
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and

s 2n (x) =
BK
nhn

f (x) + o[(nh−1n )]. (4.12)

Moreover, if nh2r+1n is bounded as n→ ∞, then

Zn(x) ≡ fn(x) − f (x) − bn(x)
sn(x)

=
fn(x) − E[ fn(x)]

sn(x)
→d N (0, 1). (4.13)

The fastest possible rate of convergence of fn(x) to f (x) is achieved by setting
hn ∝ n−1/ (2r + 1). When this happens, fn(x) − f (x) =Op[n−r/ (2r + 1)], bn(x)∝ n−r/ (2r + 1), and
sn(x) ∝ n−r/ (2r + 1).
A Studentized statistic that is asymptotically pivotal and can be used to test a

hypothesis about f (x) or form a confidence interval for f (x) can be obtained from
Equation (4.13) if suitable estimators of s 2n (x) and bn(x) are available. The need for
estimating an asymptotic variance is familiar. An estimator of s 2n (x) can be formed
by replacing f (x) with fn(x) on the right-hand side of Equation (4.12). However, the
asymptotic expansions required to obtain asymptotic refinements are simpler if s 2n (x)
is estimated by a sample analog of the exact, finite-sample variance of fn(x) instead of a
sample analog of Equation (4.12), which is the variance of the asymptotic distribution
of fn(x). A sample analog of the exact finite-sample variance of fn(x) is given by

s2n(x) =
1

(nhn)2

n∑
i = 1

K

(
x − Xi
hn

)2
−
fn(x)2

n
.

If hn → 0 and nhn → ∞ as n→ ∞, then (nhn)[s2n(x) − s 2n (x)] = Op(1) as n→ ∞. Define
the Studentized form of Zn by

tn =
fn(x) − E[ fn(x)]

sn(x)
. (4.14)

Then tn is the asymptotic t statistic for testing a hypothesis about E[ fn(x)] or
forming a confidence interval for E[ fn(x)]. The asymptotic distribution of tn is
N (0, 1). However, unless the asymptotic bias bn(x) is negligibly small, tn cannot
be used to test a hypothesis about f (x) or form a confidence interval for f (x).
Because s−1n (x) =O[(nhn)

1/2] and s−1n (x) =Op[(nhn)
1/2], bn(x) is negligibly small only

if (nhn)1/2bn(x) = o(1) as n→ ∞. The problem of asymptotic bias cannot be solved by
replacing E[ fn(x)] with f (x) on the right-hand side of Equation (4.14) because the
asymptotic distribution of the resulting version of tn is not centered at 0 unless bn(x)
is negligibly small. Section 4.2.2 discusses ways to deal with asymptotic bias.

4.2.2. Asymptotic bias and methods for controlling it

Asymptotic bias is a characteristic of nonparametric estimators that is not shared by
estimators that are smooth functions of sample moments. As has just been explained,
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asymptotic bias may prevent tn from being suitable for testing a hypothesis about
f (x) or constructing a confidence interval for f (x). Asymptotic bias also affects the
performance of the bootstrap. To see why, let {X ∗

i : i = 1, . . . , n} be a bootstrap sample
that is obtained by sampling the data {X i} randomly with replacement. Then the
bootstrap estimator of f is

f ∗
n (x) =

1
nhn

n∑
i = 1

K

(
x − X ∗

i

hn

)
. (4.15)

The bootstrap analog of s2n(x) is

s2∗n (x) =
1

(nhn)2

n∑
i = 1

K

(
x − X ∗

i

hn

)2
−
f ∗
n (x)

2

n
.

Define the bootstrap analog of tn by

t∗n =
f ∗
n (x) − fn(x)
s∗n (x)

.

It is clear from Equation (4.15) that E∗[ f ∗
n (x) − f n(x)] = 0. Thus, f

∗
n (x) an unbiased

estimator of fn(x) in a finite sample as well as asymptotically, whereas fn(x) is an
asymptotically biased estimator of f (x). It can be shown that the bootstrap distribution
of t∗n converges in probability to N (0, 1). Therefore, despite the unbiasedness of f

∗
n (x),

t∗n is a bootstrap t statistic for testing a hypothesis about E[ fn(x)] or forming a
confidence interval for E[ fn(x)]. It is not a bootstrap t statistic for testing a hypothesis
about f (x) or forming a confidence interval for f (x) unless bn(x) is negligibly small.
There are two ways to overcome the difficulties posed by asymptotic bias so

that tn and t∗n become statistics for testing hypotheses about f (x) and forming
confidence intervals for f (x) instead of E[ fn(x)]. One is the method of explicit
bias removal. It consists of forming an estimator of bn(x), say b̂n(x), that can be
subtracted from fn(x) to form the asymptotically unbiased estimator fn(x) − b̂n(x). The
other method is undersmoothing. This consists of setting hn ∝ n−ú with ú > 1/(2r + 1).
With undersmoothing, (nhn)1/2bn(x) = op(1) as n→ ∞, so that bn(x) is asymptotically
negligible. Neither method is compatible with achieving the fastest rate of convergence
of a point-estimator of f (x). With undersmoothing, the rate of convergence of fn(x) is
that of sn(x). This is n−(1 − ú)/2, which is slower than n−r/ (2r + 1). Explicit bias removal
with hn ∝ n−1/ (2r + 1) and rate of convergence n−r/ (2r + 1) for fn(x) requires f (x) to have
more than r derivatives. When f (x) has the required number of derivatives, the fastest
possible rate of convergence of fn(x) is n−s/ (2s + 1) for some s > r. This rate is achieved
with hn ∝ n−1/ (2s + 1), but the resulting estimator of f (x) is asymptotically biased. Thus,
regardless of the method that is used to remove asymptotic bias, testing a hypothesis
about f (x) or forming a confidence interval requires using a bandwidth sequence that
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converges more rapidly than the one that maximizes the rate of convergence of a
point estimator of f (x). Nonparametric point estimation and nonparametric interval
estimation or testing of hypotheses are different tasks that require different degrees of
smoothing.
Hall (1992b) compares the errors in the coverage probabilities of bootstrap

confidence intervals with undersmoothing and explicit bias removal. He shows that
when the number of derivatives of f (x) is held constant, undersmoothing achieves a
smaller error in coverage probability than does explicit bias removal. This conclusion
also applies to the rejection probabilities of hypothesis tests; the difference between
true and nominal rejection probabilities can be made smaller with undersmoothing than
with explicit bias removal. Thus, undersmoothing is the better method for handling
asymptotic bias when the aim is to minimize differences between true and nominal
rejection and coverage probabilities of bootstrap-based hypothesis tests and confidence
intervals. Accordingly, undersmoothing is used for bias removal in the remainder of
this section.

4.2.3. Asymptotic refinements

The argument showing that the bootstrap provides asymptotic refinements for tests of
hypotheses and confidence intervals in nonparametric density estimation is similar to
that made in Section 3 for the smooth function model. The main step is proving that
the distributions of tn and t∗n have Edgeworth expansions that are identical up to a
sufficiently small remainder. The result is stated in Theorem 4.1, which is proved in
Hall (1992a, pp. 268–282).

Theorem 4.1. Assume that f has r bounded, continuous derivatives in a neighborhood
of x. Let hn→0 and (nhn)/ (log n)→∞ as n→ ∞. Let K be a bounded function that is
symmetrical about 0, has support [−1, 1], and satisfies Equation (4.11) for some r¾ 2.
Also, assume that there is a partition of [−1, 1], u0 = −1 < u1 < . . . < um = 1 such
that K ′ exists, is bounded, and is either strictly positive or strictly negative on each
interval (uj , uj + 1). Then there are even functions q1 and q3 and an odd function q2
such that

P(tn ¶ t)=F(t)+
1

(nhn)1/2
q1(t) +

1
nhn

q2(t) +
(
hn
n

)1/2
q3(t) + O[(nhn)−3/2 + n−1]

(4.16)
uniformly over t . Moreover, there are even functions qn1 and qn3 and an odd
function qn2 such that qnj(t) − qj(t)→0 as n→ ∞ uniformly over t almost surely
( j = 1, . . . , 3), and

P∗(t∗n ¶ t) = F(t) +
1

(nhn)1/2
qn1(t) +

1
nhn

qn2(t) +
(
hn
n

)1/2
qn3(t) + O[(nhn)−3/2 + n−1]

uniformly over t almost surely.
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Hall (1992a, pp. 211–216) gives explicit expressions for the functions qj and qnj .
To see the implications of Theorem 4.1, consider a symmetrical test of a hypothesis

about f (x). The results that will be obtained for this test also apply to symmetrical
confidence intervals. Let the hypothesis be H0: f (x) = f 0. A symmetrical test rejects H0
if | fn(x) − f 0 | is large. Suppose that nhr + 1n → 0 as n→ ∞. This rate of convergence of
hn insures that the asymptotic bias of fn(x) has a negligibly small effect on the error
made by the higher-order approximation to the distribution of tn that is used to obtain
asymptotic refinements 18. It also makes the effects of asymptotic bias sufficiently small
that tn can be used to test H0. Rejecting H0 if | fn(x) − f 0 | is large is then equivalent
to rejecting H0 if |tn | is large, thereby yielding a symmetrical t test of H0.
Now suppose that the critical value of the symmetrical t test is obtained from

the asymptotic distribution of tn, which is N (0, 1). The asymptotic a-level critical
value of the symmetrical t test is za/2, the 1 − a/2 quantile of the standard normal
distribution. Theorem 4.1 shows that P(|tn | > za/2) =a +O[(nhn)−1]. In other words,
when the asymptotic critical value is used, the difference between the true and nominal
rejection probabilities of the symmetrical t test is O[(nhn)−1].
Now consider the symmetrical t test with a bootstrap critical value. The bootstrap

a-level critical value, z∗n, a/2, satisfies P
∗(|t∗n |¾ z∗n, a/2) =a. By Theorem 4.1,

P∗(|t∗n | > t) − P(|tn| > t) = o[(nhn)−1] (4.17)

almost surely uniformly over t . It can also be shown that P(|tn | > z∗n, a/2) =a +
o[(nhn)−1]. Thus, with the bootstrap critical value, the difference between the true and
nominal rejection probabilities of the symmetrical t test is o[(nhn)−1]. The bootstrap
reduces the difference between the true and nominal rejection probabilities because
it accounts for the effects of the O[(nhn)−1] term of the Edgeworth expansion of the
distribution of tn. First-order asymptotic approximations ignore this term. Thus, the
bootstrap provides asymptotic refinements for hypothesis tests and confidence intervals
based on a kernel nonparametric density estimator provided that the bandwidth hn
converges sufficiently rapidly to make the asymptotic bias of the density estimator
negligibly small.
The conclusion that first-order asymptotic approximations make an error of size

O[(nhn)−1] assumes that nhr + 1n → 0. If this condition is not satisfied, the error made
by first-order approximations is dominated by the effect of asymptotic bias and is larger
than O[(nhn)−1]. This result is derived at the end of this section.
The bootstrap can also be used to obtain asymptotic refinements for one-sided and

equal-tailed tests and confidence intervals. For one-sided tests and confidence intervals

18 The asymptotic bias contributes a term of size [(nhn)
1/2bn(x)]

2 =O(nh2r + 1n ) to the Edgeworth expansion
of the distribution of |tn |. Because t∗n is unbiased, this term is not present in the expansion of the
distribution of |t∗n |. Therefore, the expansions of the distributions of |tn | and |t∗n | agree through O[(nhn)−1]
only if nhr + 1n → 0 as n→ ∞.
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with bootstrap critical values, the differences between the true and nominal rejection
and coverage probabilities are O[(nhn)−1 + (nhn)1/2hrn]. These are minimized by setting
hn ∝ n−3/ (2r + 3), in which case the errors are O[n−2r/ (2r + 3)]. For equal-tailed tests and
confidence intervals with bootstrap critical values, the differences between the true and
nominal rejection probabilities and coverage probabilities are O[(nhn)−1 + nh2r + 1n + hrn].
These are minimized by setting hn ∝ n−1/ (r + 1), in which case the errors are O[n−r/ (r + 1)].
In contrast, the error made by first-order asymptotic approximations is O[(nhn)−1/2] in
both the one-sided and equal-tailed cases. Hall (1992a, pp. 220–224) provides details
and a discussion of certain exceptional cases in which smaller errors can be achieved.
In contrast to the situation with the smooth function model, the orders of refinement
achievable in nonparametric density estimation are different for one-sided and equal-
tailed tests and confidence intervals.

4.2.3.1. The error made by first-order asymptotics when nhr + 1n does not converge to 0.
The effects of having hn → 0 too slowly are most easily seen by assuming that sn(x)
is known so that tn is replaced by

Zn =
fn(x) − f (x) − bn(x)

sn(x)
.

A symmetrical test of H0 rejects if | fn(x) − f 0 |/s n(x) is large. If H0 is true, then

P

(
fn(x) − f0
sn(x)

¶ z
)
= P

(
Zn ¶ z −

bn(x)
sn(x)

)
for any z , and

P

[ | fn(x) − f0|
sn(x)

¶ z
]
= P

[
Zn ¶ z −

bn(x)
sn(x)

]
−P

[
Zn ¶ −z −

bn(x)
sn(x)

]
. (4.18)

Each term on the right-hand side of Equation (4.18) has an asymptotic expansion of
the form (4.16) except without the q3 term and the O(n−1) remainder term, which arise
from random sampling error in s2n(x). Specifically,

P

[ | fn(x) − f0|
sn(x)

¶ z
]
= F

[
z −

bn(x)
sn(x)

]
− F

[
−z −

bn(x)
sn(x)

]
+

1
(nhn)1/2

{
p1

[
z −

bn(x)
sn(x)

]
− p1

[
−z −

bn(x)
sn(x)

]}
+
1
nhn

{
p2

[
z −

bn(x)
sn(x)

]
− p2

[
−z −

bn(x)
sn(x)

]}
+ O[(nhn)

−3/2],

(4.19)
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where p1 is an even function and p2 is an odd function. Hall (1992a, p. 212) provides
a proof and the details of p1 and p2. A Taylor series expansion of the right-hand side
of Equation (4.19) combined with bn(x) =O(hrn) and s n(x) =O[(nhn)

−1/2] yields

P

[ | fn(x) − f0|
sn(x)

¶ z
]
= F(z) −F(−z) + O[hrn + (nhn)h

2r
n + (nhn)

−1]. (4.20)

The remainder term on the right-hand side of Equation (4.20) is dominated by hrn,
which is the effect of asymptotic bias, unless nhr + 1n → 0. Thus, the error made by
first-order asymptotic approximations exceeds O[(nhn)−1] unless fn(x) is sufficiently
undersmoothed to make the asymptotic bias bn(x) negligible, which is equivalent to
requiring nhr + 1n → 0 as n→ ∞.

4.2.4. Kernel nonparametric mean regression

In nonparametric mean-regression, the aim is to infer the mean of a random variable Y
conditional on a covariate X without assuming that the conditional mean function
belongs to a known finite-dimensional family of functions. Define G(x) =E(Y X = x) to
be the conditional mean function. Let X be a scalar random variable whose distribution
has a probability density function f . This section explains how the bootstrap can
be used to obtain asymptotic refinements for tests of hypotheses about G(x) and
confidence intervals that are based on kernel estimation of G.
Let the data consist of a random sample, {Y i,X i: i = 1, . . . , n}, of the joint

distribution of (Y, X ). The kernel nonparametric estimator of G(x) is

Gn(x) =
1

nhn fn(x)

n∑
i = 1

YiK

(
x − Xi
hn

)
,

where

fn(x) =
1
nhn

n∑
i = 1

K

(
x − Xi
hn

)
,

K is a kernel function and {hn} a sequence of bandwidths. The properties of Gn(x)
are discussed by Härdle (1990). To state the ones that are relevant here, let r¾ 2 be
an even integer. Assume that G and f each have r bounded, continuous derivatives in
a neighborhood of x. Let K be a bounded function that is symmetrical about 0, has
support [−1, 1], and satisfies Equation (4.11). Define BK and AK as in Section 4.2.1.
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Set V (z) =Var(Y X = z), and assume that this quantity is finite and continuous in a
neighborhood of z = x. Also define

bn(x) = h
r
n
AK
r!f (x)

{
ðr

ðxr
[G(x) f (x)] − f (r)(x)

}
and

s 2n (x) =
BK
nhn

V (x)
f (x)

. (4.21)

If nh2r+1n is bounded as n→ ∞, then

Zn(x) ≡ Gn(x) − G(x) − bn(x)
sn(x)

→d N (0, 1).

The fastest possible rate of convergence of Gn(x) to G(x) is achieved by setting
hn ∝ n−1/ (2r + 1). When this happens, Gn(x) −G(x) =Op[n−r/ (2r + 1)], bn(x)∝ n−r/ (2r + 1),
and sn(x) ∝ n−r/ (2r + 1).
The issues involved in converting Zn into an asymptotically pivotal statistic that

can be used to test a hypothesis about G(x) or form a confidence interval for G(x)
are the same as in kernel density estimation. It is necessary to replace sn(x) with
a suitable estimator and to remove the asymptotic bias bn(x). As in kernel density
estimation, asymptotic bias can be removed to sufficient order by undersmoothing.
Undersmoothing for a symmetrical test or confidence interval consists of choosing hn
so that nhr + 1n → 0 as n→ ∞ 19.
Now consider estimation of s 2n (x). One possibility is to replace f (x) with fn(x) and

V (x) with a consistent estimator on the right-hand side of Equation (4.21). The higher-
order asymptotics of Gn(x) are simpler, however, if s 2n (x) is estimated by a sample
analog of the exact finite-sample variance of the asymptotic form of Gn(x) −G(x). With
asymptotic bias removed by undersmoothing, the asymptotic form of Gn(x) −G(x) is

Gn(x) −G(x) =
1

nhn f (x)

n∑
i = 1

[Yi − G(x)]K

(
x − Xi
hn

)
+ op(1). (4.22)

The variance of the first term on the right-hand side of Equation (4.22) is then estimated
by the following sample analog, which will be used here to estimate s 2n (x)

20:

s2n(x) =
1

[nhn fn(x)]2

n∑
i = 1

[Yi − Gn(x)]
2K

(
x − Xi
hn

)2
.

19 It is also possible to carry out explicit bias removal in kernel mean-regression. Härdle et al. (1995)
compare the methods of explicit bias removal and undersmoothing for a one-sided confidence interval.
They show that for a one-sided interval, there are versions of the bootstrap and explicit bias removal
that give better coverage accuracy than the bootstrap with undersmoothing.
20 Hall (1992a, p. 226) proposes an estimator of s 2n(x) that is n1/2-consistent when Y is homoskedastic
(that is, Var(Y X = x) is independent of x). The estimator used here is consistent (but not n1/2-consistent)
when Y has heteroskedasticity of unknown form.
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Now define

tn =
Gn(x) − G(x)

sn(x)
.

With asymptotic bias removed through undersmoothing, tn is asymptotically dis-
tributed as N (0, 1) and is an asymptotically pivotal statistic that can be used to test
a hypothesis about G(x) and to form a confidence interval for G(x). The bootstrap
version of tn is

t∗n =
G∗
n (x) − Gn(x)
s∗n (x)

,

where G∗
n (x) is obtained from Gn(x) by replacing the sample {Y i,X i} with the

bootstrap sample {Y ∗
i ,X

∗
i }, and s∗n (x) is obtained from sn(x) by replacing the sample

with the bootstrap sample, fn(x) with f ∗
n (x), and Gn(x) with G

∗
n (x)

21.
The Edgeworth expansions of the distributions of tn and t∗n are similar in structure to

those of the analogous statistic for kernel density estimators. The result for symmetrical
tests and confidence intervals can be stated as follows. Let E(Y 4|X = z) be finite
and continuous for all z in a neighborhood of x. Let K satisfy the conditions of
Theorem 4.1. Then there are functions q and qn such that qn − q = o(1) uniformly and
almost surely as n→ ∞,

P(|tn| ¶ t) = 2F(t) − 1 +
1
nhn

q(t) + o[(nhn)−1] (4.23)

uniformly over t , and

P∗(|t∗n | ¶ t) = 2F(t) − 1 +
1
nhn

qn(t) + o[(nhn)−1]

uniformly over t almost surely. It follows that the bootstrap estimator of the
distribution of |tn | is accurate through O[(nhn)−1], whereas first-order asymptotic
approximations make an error of this size. Let z∗n, a/2 be the bootstrap a-level critical
value for testing the hypothesis H0: G(x) =G0. Then P∗(|t∗n | > z∗n, a/2) =a, and it can
be shown that P(|tn | > z∗n, a/2) =a + o[(nhn)−1]. Hall (1992a, Section 4.5) discusses the
mathematical details. Thus, with the bootstrap critical value, the true and nominal
rejection probabilities of a symmetrical t test of H0 differ by o[(nhn)−1]. In contrast, it
follows from Equation (4.23) that the difference is O[(nhn)−1] if first-order asymptotic

21 The discussion here assumes that the bootstrap sample is obtained by randomly sampling the empirical
distribution of (Y, X ). If V (z) is a constant (that is, the model is homoskedastic), then bootstrap sampling
can also be carried out by sampling centered regression residuals conditional on the observed values of
X. See Hall (1992a, Section 4.5).
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approximations are used to obtain the critical value. The same conclusions hold for
the coverage probabilities of symmetrical confidence intervals for G(x).

4.3. Non-smooth estimators

Some estimators are obtained by maximizing or minimizing a function that is
discontinuous or whose first derivative is discontinuous. Two important examples are
Manski’s (1975, 1985) maximum-score (MS) estimator of the slope coefficients of
a binary-response model and the least-absolute-deviations (LAD) estimator of the
slope coefficients of a linear median-regression model. The objective function of the
MS estimator and the first derivative of the objective function of the LAD estimator
are step functions and, therefore, discontinuous. The LAD and MS estimators cannot
be approximated by smooth functions of sample moments, so they do not satisfy the
assumptions of the smooth function model. Moreover, the Taylor-series methods of
asymptotic distribution theory do not apply to the LAD and MS estimators, which
greatly complicates the analysis of their asymptotic distributional properties. As a
consequence, little is known about the ability of the bootstrap to provide asymptotic
refinements for hypothesis tests and confidence intervals based on these estimators.
Indeed it is not known whether the bootstrap even provides a consistent approximation
to the asymptotic distribution of the MS estimator.
This section explains how the LAD and MS estimators can be smoothed in a

way that greatly simplifies the analysis of their asymptotic distributional properties.
The bootstrap provides asymptotic refinements for hypothesis tests and confidence
intervals based on the smoothed LAD and MS estimators. In addition, smoothing
accelerates the rate of convergence of the MS estimator and simplifies even its first-
order asymptotic distribution. Smoothing does not change the rate of convergence or
first-order asymptotic distribution of the LAD estimator. The LAD estimator is treated
in Section 4.3.1, and the MS estimator is treated in Section 4.3.2

4.3.1. The LAD estimator for a linear median-regression model

A linear median-regression model has the form

Y = X b +U , (4.24)

where Y is an observed scalar, X is an observed 1×q vector, b is a q×1 vector of
constants, and U is an unobserved random variable that satisfies median(U X = x) = 0
almost surely. Let {Y i,X i: i = 1, . . . , n} be a random sample from the joint distribution
of (Y, X ) in Equation (4.24). The LAD estimator of b , b̃n, solves

minimize
b ∈ B

H̃n(b) ≡ 1
n

n∑
i = 1

|Yi − Xib|

=
1
n

n∑
i = 1

(Yi − Xib)[2I (Yi − Xib > 0) − 1],

(4.25)
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where B is the parameter set and I (·) is the indicator function. Bassett and Koenker
(1978) and Koenker and Bassett (1978) give conditions under which the LAD estimator
is n1/2-consistent and n1/2(b̃n − b) is asymptotically normal.
H̃n(b) has cusps and, therefore, a discontinuous first derivative, at points b such

that Y i =X ib for some i. This non-smoothness causes the Edgeworth expansion of the
LAD estimator to be non-standard and very complicated [De Angelis et al. (1993)].
The bootstrap is known to estimate the distribution of n1/2(b̃n − b) consistently [De
Angelis et al. (1993), Hahn (1995)], but it is not known whether the bootstrap provides
asymptotic refinements for hypothesis tests and confidence intervals based on b̃n 22.
Horowitz (1998b) suggests removing the cusps in H̃n by replacing the indicator

function with a smooth function, thereby producing a modified objective function
whose derivatives are continuous. The resulting smoothed LAD (SLAD) estimator
is first-order asymptotically equivalent to the unsmoothed LAD estimator but has
much simpler higher-order asymptotics. Specifically, let K be a bounded, differentiable
function satisfying K(v) = 0 if v¶−1 and K(v) = 1 if v¾ 1. Let {hn} be a sequence of
bandwidths that converges to 0 as n→ ∞. The SLAD estimator solves

minimize
b ∈ B

Hn(b) ≡ 1
n

n∑
i = 1

(Yi − Xib)

[
2K

(
Yi − Xib
hn

)
− 1

]
. (4.26)

K is analogous to the integral of a kernel function for nonparametric density estimation.
K is not a kernel function itself.
Let bn be a solution to Equation (4.26). Horowitz (1998b) gives conditions under

which n1/2(bn − b̃n) = op(1). Thus, the smoothed and unsmoothed LAD estimators
are first-order asymptotically equivalent. It follows from this asymptotic equivalence
and the asymptotic normality of LAD estimators that n1/2(bn − b) →d N (0,V ), where
V =D−1E(X ′X )D−1, D = 2E[X ′Xf (0 x)], and f (· x) is the probability density function
of U conditional on X = x.
A t statistic for testing a hypothesis about a component of b or forming a confidence

interval can be constructed from consistent estimators of D and E(X ′X ). D can be
estimated consistently by Dn(bn), where

Dn(b) =
2
nhn

n∑
i = 1

X ′
i XiK

′
(
Yi − Xib
hn

)
. (4.27)

E(X ′X ) can be estimated consistently by the sample average of X ′X. However, the
asymptotic expansion of the distribution of the t statistic is simpler if E(X ′X ) is

22 Janas (1993) shows that a smoothed version of the bootstrap provides asymptotic refinements for a
symmetrical t test of a hypothesis about a population median (no covariates).
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estimated by the sample analog of the exact finite-sample variance of ðHn(b)/ðb at
b= b . This estimator is Tn(bn), where

Tn(b) =
1
n

n∑
i = 1

X ′
i Xi

{[
2K

(
Yi − Xib
hn

)
− 1

]
+ 2

(
Yi − Xib
hn

)
K ′

(
Yi − Xib
hn

)}2
.

(4.28)
It is not difficult to show that V is estimated consistently by Vn ≡Dn(bn)−1Tn(bn)
Dn(bn)−1. Now let bnj and b j , respectively, be the jth components of bn and b
( j = 1, . . . , q). Let Vnj be the ( j, j) component of Vn. The t statistic for testing
H0: b j = b j0 is tn = n1/2(bnj − b j0)/V 1/2nj . If H0 is true, then tn →d N (0, 1), so tn is
asymptotically pivotal.
To obtain a bootstrap version of tn, let {Y ∗

i ,X
∗
i : i = 1, . . . , n} be a bootstrap sample

that is obtained by sampling the data {Y i,X i} randomly with replacement. Let b∗
n be

the estimator of b that is obtained by solving Equation (4.26) with {Y ∗
i ,X

∗
i } in place

of {Y i,X i}. Let V ∗
nj be the version of Vnj that is obtained by replacing bn and {Y i,X i},

respectively, with b∗
n and {Y ∗

i ,X
∗
i } in Equations (4.27) and (4.28). Then the bootstrap

analog of tn is t∗n = n
1/2(b∗

nj − bnj)/(V
∗
nj)
1/2.

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that under regularity conditions, tn and t∗n have Edgeworth
expansions that are identical almost surely through O[(nhn)−1]. Horowitz (1998b)
gives the details of the argument. In addition, reasoning similar to that used in
Section 4.2.3 shows that the bootstrap provides asymptotic refinements for hypothesis
tests and confidence intervals based on the SLAD estimator. For example, consider a
symmetrical t test of H0. Let z∗n, a/2 be the bootstrap a-level critical value for this test.
That is, z∗n, a/2 satisfies P

∗(|t∗n | > z∗n, a/2) =a. Then P(|tn | > z∗n, a/2) =a + o[(nhn)−1]. In
contrast, first-order asymptotic approximations make an error of size O[(nhn)−1]. This
is because first-order approximations ignore a term in the Edgeworth expansion of the
distribution of |tn | whose size is O[(nhn)−1], whereas the bootstrap captures the effects
of this term.
The conditions under which this result holds include: (1) for almost every x and

every u in a neighborhood of 0, f (u x) is r − 1 times continuously differentiable
with respect to u; (2) K satisfies Equation (4.11) and has four bounded, Lipschitz
continuous derivatives everywhere; and (3) hn ∝ n−ú , where 2/(2r + 1)< ú < 1/3.
Complete regularity conditions are given in Horowitz (1998b). Condition (3) implies
that r¾ 4. Therefore, the size of the refinement obtained by the bootstrap is O(n−c),
where 7

9 <c< 1.
The bootstrap also provides asymptotic refinements for one-sided tests and con-

fidence intervals and for asymptotic chi-square tests of hypotheses about several
components of b . In addition, it is possible to construct a smoothed version of
Powell’s (1984, 1986) censored LAD estimator and to show that the bootstrap provides
asymptotic refinements for tests and confidence intervals based on the smoothed
censored LAD estimator. Horowitz (1998b) provides details, a method for choosing hn
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in applications, and Monte Carlo evidence on the numerical performance of the t test
with bootstrap critical values.

4.3.2. The maximum score estimator for a binary-response model

The most frequently used binary-response model has the form Y = I (X b + U ¾ 0),
where X is an observed random vector, b is a conformable vector of constants, and U
is an unobserved random variable. The parameter vector b is identified only up to scale,
so a scale normalization is needed. Here, scale normalization will be accomplished by
assuming that |b1 | = 1, where b1 is the first component of b . Let b̃ and b̃ denote the
vectors consisting of all components of b and b except the first. The maximum-score
estimator of b , bn ≡ (bn1, b̃′

n)
′, solves

maximize
b ∈ B

H̃n(b) =
1
n

n∑
i = 1

(2Yi − 1)I (Xib ¾ 0), (4.29)

where {Y i,X i: i = 1, . . . , n} is a random sample from the joint distribution of (Y, X ),
and B is a compact parameter set in which the scale normalization holds.
Manski (1975, 1985) shows that if median(U X = x) = 0 almost surely, the first

component of X is continuously distributed with a non-zero coefficient, and certain
other conditions are satisfied, then (bn1, b̃′

n)
′ → b almost surely. Because bn1 =±1,

bn1 converges to b1 faster than any power of n. Cavanagh (1987) and Kim and Pollard
(1990) show that b̃n converges in probability at the rate n−1/3 and that n1/3(b̃n − b̃) has
a complicated, non-normal asymptotic distribution. The MS estimator is important
despite its slow rate of convergence and complicated limiting distribution because
it is semiparametric (that is, it does not require the distribution of U to belong to
a known, finite-dimensional family) and it permits the distribution of U to have
arbitrary heteroskedasticity of unknown form provided that the centering assumption
median(U X = x) = 0 holds.
The asymptotic distribution of the MS estimator is too complex for use in testing

hypotheses about b or constructing confidence intervals. Manski and Thompson (1986)
suggested using the bootstrap to estimate the mean-square error of the MS estimator
and presented Monte Carlo evidence suggesting that the bootstrap works well for this
purpose. However, it is not known whether the bootstrap consistently estimates the
asymptotic distribution of the MS estimator.
The MS estimator converges slowly and has a complicated limiting distribution

because it is obtained by maximizing a step function. Horowitz (1992) proposed
replacing the indicator function on the right-hand side of Equation (4.29) by a
differentiable function. The resulting estimator is called the smoothed maximum
score (SMS) estimator. It solves

maximize
b ∈ B

Hn(b) =
1
n

n∑
i = 1

(2Yi − 1)K

(
Xib

hn

)
, (4.30)
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where K is a bounded, differentiable function satisfying K(v) = 0 if v¶− 1 and K(v) = 1
if v¾ 1, and {hn} is a sequence of bandwidths that converges to 0 as n→ ∞.
As in SLAD estimation, K is analogous to the integral of a kernel function. Let
b̃ again be the vector of all components of b but the first. Let bn ≡ (bn1, b̃′

n)
′

be the SMS estimator of (b1, b̃ ′)′. Horowitz (1992) gives conditions under which
(nhn)1/2(b̃n − b̃ − hrnl) →d N (0,V ), where r¾ 2 is an integer that is related to the
number of times that the CDF of U and the density function of Xb are continuously
differentiable, nh2r + 1n is bounded as n→ ∞, l is an asymptotic bias, and V is a
covariance matrix. The rate of convergence of the SMS estimator of b̃ is at least n−2/5

and can be arbitrarily close to n−1/2 if the CDF of U and density function of Xb have
sufficiently many derivatives. Thus, smoothing increases the rate of convergence of the
MS estimator.
To obtain an asymptotically pivotal t statistic for testing a hypothesis about

a component of b̃ or forming a confidence interval, it is necessary to remove
the asymptotic bias of b̃n and construct a consistent estimator of V . Asymptotic
bias can be removed by undersmoothing. For first-order asymptotic approximations,
undersmoothing consists of choosing hn so that nh2r + 1n → 0 as n→ ∞. However, for
the reasons explained in the discussion of Equation (4.20), the stronger condition
nhr + 1n → 0 is needed to obtain asymptotic refinements through O[(nhn)−1]. V can be
estimated consistently by Vn =Qn(bn)−1Dn(bn)Qn(bn)−1, where for any b∈B

Qn(b) =
1
nh2n

n∑
i = 1

(2Yi − 1) X̃
′
i X̃iK

′′
(
Xib

nhn

)
, (4.31)

Dn(b) =
1
nhn

n∑
i = 1

X̃ ′
i X̃i

[
K ′

(
Xib

hn

)]2
, (4.32)

and X̃ consists of all components of X but the first.
Now let b̃nj and b̃j , respectively, be the jth components of b̃n and b̃ . Let Vnj

be the ( j, j) component of Vn. The t statistic for testing H0: b̃j = b̃j0 is tn =
(nhn)1/2(b̃nj − b̃j0)/V 1/2nj . If H0 is true, then tn →d N (0, 1), so tn is asymptotically pivotal.
To obtain a bootstrap version of tn, let {Y ∗

i ,X
∗
i : i = 1, . . . , n} be a bootstrap sample

that is obtained by sampling the data {Y i,X i} randomly with replacement. Let b∗
n be

the estimator of b that is obtained by solving Equation (4.30) with {Y ∗
i ,X

∗
i } in place

of {Y i,X i}. Let V ∗
nj be the version of Vnj that is obtained by replacing bn and {Y i,X i},

respectively, with b∗
n and {Y ∗

i ,X
∗
i } in Equations (4.31) and (4.32). Then the bootstrap

analog of tn is t∗n = (nhn)
1/2(b̃∗

nj − b̃nj)/ (V
∗
nj)
1/2.

By using methods similar to those used with kernel density and mean-regression
estimators, it can be shown that tn and t∗n have Edgeworth expansions that are identical
almost surely through O[(nhn)−1]. See Horowitz (1998c) for the details of the argument.
It follows that the bootstrap provides asymptotic refinements for hypothesis tests and
confidence intervals based on the SMS estimator. For a symmetrical t test or confidence
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interval, the true and nominal rejection or coverage probabilities differ by o[(nhn)−1]
when bootstrap critical values are used, whereas they differ by O[(nhn)−1] when first-
order asymptotic critical values are used. First-order approximations ignore a term in
the Edgeworth expansion of the distribution of |tn | whose size is O[(nhn)−1], whereas
the bootstrap captures the effects of this term.
The conditions under which this result holds include: (1) the CDF of U conditional

on X and the density of Xb conditional on X have sufficiently many derivatives; (2) K
satisfies Equation (4.11) for some r¾ 8; and (3) hn ∝ n−ú , where 1/(r + 1)< ú < 1/7.
Complete regularity conditions are given in Horowitz (1998c). Conditions (2) and
(3) imply that the size of the refinement obtained by the bootstrap is O(n−c), where
6
7 <c< 1. The bootstrap also provides asymptotic refinements for one-sided tests and
confidence intervals and for asymptotic chi-square tests of hypotheses about several
components of b̃ . Horowitz (1998c) discusses methods for choosing hn in applications
and gives Monte Carlo evidence on the numerical performance of the t test with
bootstrap critical values.

4.4. Bootstrap iteration

The discussion of asymptotic refinements in this chapter has emphasized the
importance of applying the bootstrap to asymptotically pivotal statistics. This section
explains how the bootstrap can be used to create an asymptotic pivot when one is not
available. Asymptotic refinements can be obtained by applying the bootstrap to the
bootstrap-generated asymptotic pivot. The computational procedure is called bootstrap
iteration or prepivoting because it entails drawing bootstrap samples from bootstrap
samples as well as using the bootstrap to create an asymptotically pivotal statistic.
The discussion here concentrates on the use of prepivoting to test hypotheses [Beran
(1988)]. Beran (1987) explains how to use prepivoting to form confidence regions.
Hall (1986b) describes an alternative approach to bootstrap iteration.
Let Tn be a statistic for testing a hypothesis H0 about a sampled population whose

CDF is F0. Assume that under H0, Tn satisfies assumptions SFM and Equation (3.8)
of the smooth function model. Define F =F0 if H0 is true, and define F to be the
CDF of a distribution that satisfies H0 otherwise. Let Gn(t ,F) ≡ PF (Tn ¶ t) denote
the exact, finite-sample CDF of Tn under sampling from the population whose CDF
is F . Suppose that H0 is rejected if Tn is large. Then the exact a-level critical value
of Tn, zna , is the solution to Gn(zna ,F) = 1 − a under H0. An exact a-level test based
on Tn can be obtained by rejecting H0 if Gn(Tn,F)> 1 − a. Thus, if F were known,
gn ≡Gn(Tn,F) could be used as a statistic for testing H0. Prepivoting is based on the
idea of using gn as a test statistic.
A test based on gn cannot be implemented in an application unless Tn is pivotal

because F and, therefore, gn are unknown. A feasible test statistic can be obtained
by replacing F with an estimator Fn that imposes the restrictions of H0 and is n1/2-
consistent for F0 if H0 is true. Replacing F with Fn produces the bootstrap statistic
g∗
n =Gn(Tn,Fn). Gn(·,Fn) and, therefore, Gn(Tn,Fn) can be estimated with arbitrary
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accuracy by carrying out a Monte Carlo simulation in which random samples are
drawn from Fn. Given any t , let Hn(t ,F0) = PF0 (g

∗
n ¶ t) = PF0 [Gn(Tn,Fn) ¶ t].

An exact test based on g∗
n rejects H0 at the a level if Hn(g

∗
n ,F0)> 1 − a. This test

cannot be implemented because F0 is unknown. If the bootstrap is consistent, however,
the asymptotic distribution of g∗

n is uniform on [0, 1]. Therefore, H0 is rejected at the
asymptotic a level if g∗

n > 1 − a. Now observe that g
∗
n is asymptotically pivotal even if

Tn is not; the asymptotic distribution of g∗
n is U [0, 1] regardless of F0. This suggests

that asymptotic refinements can be obtained by carrying out a second stage of bootstrap
sampling in which the bootstrap is used to estimate the finite-sample distribution of
g∗
n .
The second stage of bootstrapping consists of drawing samples from each of the

first-stage bootstrap samples that are used to compute g∗
n . Suppose that there are M

first-stage samples. The mth such sample yields a bootstrap version of Tn, say Tnm,
and an estimator Fnm of Fn that is consistent with H0. Fnm can be sampled repeatedly to
obtain Gn(·,Fnm), the EDF of Tn under sampling from Fnm, and gnm ≡Gn(Tnm,Fnm).
Now estimate Hn(·,F0) by Hn(·,Fn), which is the EDF of gnm (m= 1, . . . ,M ). The
iterated bootstrap test rejects H0 at the a level if Hn(g∗

n ,Fn)> 1 − a.
Beran (1988) shows that when prepivoting and bootstrap iteration are applied to a

statistic Tn, the true and nominal probabilities of rejecting a correct null hypothesis
differ by o(n−1/2) for a one-sided test and o(n−1) for a symmetrical test even if Tn
is not asymptotically pivotal. By creating an asymptotic pivot in the first stage of
bootstrapping, prepivoting and bootstrap iteration enable asymptotic refinements to
be obtained for a non-asymptotically-pivotal Tn. The same conclusions apply to the
coverage probabilities of confidence intervals. Beran (1988) presents the results of
Monte Carlo experiments that illustrate the numerical performance of this procedure.
The computational procedure for carrying out prepivoting and bootstrap iteration is

given by Beran (1988) and is as follows:
(1) Obtain Tn and Fn from the estimation data {X i: i = 1, . . . , n}, which are assumed

to be a random sample of a possibly vector-valued random variable X .
(2) Let c1, . . . , cM be M bootstrap samples of size n that are drawn from the

population whose distribution is Fn. Let Fnm denote the estimate of Fn that is
obtained from cm. Let Tnm be the version of Tn that is obtained from cm. The EDF
of {Tnm: m= 1, . . . ,M} estimates Gn(·,Fn). Set g∗

n = M
−1
∑M

m = 1 I (Tnm ¶ Tn).
(3) For each m, let cm, 1, . . . , cm,K be K further bootstrap samples of size n, each

drawn from the population whose CDF is Fnm. Let Tnmk be the version of Tn that
is obtained from cmk . Set Gn(Tnm,Fnm) = K−1

∑K
k = 1 I (Tnmk ¶ Tnm). Each of the

Gn(Tnm, Fnm) (m= 1, . . . , n) is a second-stage estimate of gn. Estimate Hn(g∗
n ,F0)

by Hn(g∗
n ,Fn) = M −1

∑M
m = 1 I [Gn(Tnm,Fnm) ¶ g

∗
n ]. Reject H0 at the a level if

Hn(g∗
n ,Fn)> 1 − a.
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4.5. Special problems

The bootstrap provides asymptotic refinements because it amounts to a one-term
Edgeworth expansion. The bootstrap cannot be expected to perform well when an
Edgeworth expansion provides a poor approximation to the distribution of interest.
An important case of this is instrumental-variables estimation with poorly correlated
instruments and regressors. It is well known that first-order asymptotic approximations
are especially poor in this situation [Hillier (1985), Nelson and Startz (1990a,b),
Phillips (1983)]. The bootstrap does not offer a solution to this problem. With poorly
correlated instruments and regressors, Edgeworth expansions of estimators and test
statistics involve denominator terms that are close to zero. As a result, the higher-order
terms of the expansions may dominate the lower-order ones for a given sample size,
in which case the bootstrap may provide little improvement over first-order asymptotic
approximations. Indeed, with small samples the numerical accuracy of the bootstrap
may be even worse than that of first-order asymptotic approximations.
The bootstrap also does not perform well when the variance estimator used for

Studentization has a high variance itself. This problem can be especially severe when
the parameters being estimated or tested are variances or covariances of a distribution.
This happens, for example, in estimation of covariance structures of economic
processes [Abowd and Card (1987, 1989), Behrman et al. (1994), Griliches (1979),
Hall and Mishkin (1982)]. In such cases Studentization is carried out with an estimator
of the variance of an estimated variance. Imprecise estimation of a variance also affects
the finite-sample performance of asymptotically efficient GMM estimators because
the asymptotically optimal weight matrix is the inverse of the covariance matrix
of the GMM residuals. The finite-sample mean-square error of the asymptotically
efficient estimator can greatly exceed the mean-square error of an asymptotically
inefficient estimator that is obtained with a non-stochastic weight matrix. Horowitz
(1998a) shows that in the case of estimating covariance structures, this problem can
be greatly mitigated by using a trimmed version of the covariance estimator that
excludes “outlier” observations. See Horowitz (1998a) for details. Section 5.5 presents
a numerical illustration of the effects of trimming.

4.6. The bootstrap when the null hypothesis is false

To understand the power of a test based on a bootstrap critical value, it is necessary to
investigate the behavior of the bootstrap when the null hypothesis being tested, H0,
is false. Suppose that bootstrap samples are generated by a model that satisfies a
false H0 and, therefore, is misspecified relative to the true data-generation process.
If H0 is simple, meaning that it completely specifies the data-generation process, then
the bootstrap amounts to Monte Carlo estimation of the exact finite-sample critical
value for testing H0 against the true data-generation process. Indeed, the bootstrap
provides the exact critical value, rather than a Monte Carlo estimate, if G(·,Fn)
can be calculated analytically. Tests of simple hypotheses are rarely encountered in
econometrics, however.
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In most applications, H0 is composite. That is, it does not specify the value of a
finite- or infinite-dimensional “nuisance” parameter y. In the remainder of this section,
it is shown that a test of a composite hypothesis using a bootstrap-based critical value
is a higher-order approximation to a certain exact test. The power of the test with a
bootstrap critical value is a higher-order approximation to the power of the exact test.
Except in the case of a test based on a pivotal statistic, the exact finite-sample

distribution of the test statistic depends on y. Therefore, except in the pivotal case,
it is necessary to specify the value of y to obtain exact finite-sample critical values.
The higher-order approximation to power provided by the bootstrap applies to a value
of y that will be called the pseudo-true value. To define the pseudo-true value, let yn
be an estimator of y that is obtained under the incorrect assumption that H0 is true.
Under regularity conditions [see, e.g., Amemiya (1985), White (1982)], yn converges
in probability to a limit y∗, and n1/2(yn −y∗) =Op(1). y∗ is the pseudo-true value of
y.
Now let Tn be a statistic that is asymptotically pivotal under H0. Suppose that its

exact CDF with an arbitrary value of y is Gn(·,y), and that under H0 its asymptotic
CDF is G0(·). Suppose that bootstrap sampling is carried out subject to the constraints
of H0. Then the bootstrap generates samples from a model whose parameter value is
yn, so the exact distribution of the bootstrap version of Tn is Gn(·,yn). Under H0 and
subject to regularity conditions, Gn(·,yn) has an asymptotic expansion of the form

Gn(z,yn) = G0(z) + n−j/2gj(z,y∗) + op(n−j/2) (4.33)

uniformly over z, where j = 1 or 2 depending on the symmetry of Tn. Usually j = 1 if
Tn is a statistic for a one-tailed test and j = 2 if Tn is a statistic for a symmetrical, two-
tailed test. Gn(z,y∗) has an expansion identical to Equation (4.33) through O(n−j/2).
Therefore, through Op(n−j/2), bootstrap sampling when H0 is false is equivalent
to generating data from a model that satisfies H0 with pseudo-true values of the
parameters not specified by H0. It follows that when H0 is false, bootstrap-based critical
values are equivalent through Op(n−j/2) to the critical values that would be obtained if
the model satisfying H0 with pseudo-true parameter values were correct. Moreover, the
power of a test of H0 using a bootstrap-based critical value is equal through O(n−j/2) to
the power against the true data-generation process that would be obtained by using the
exact finite-sample critical value for testing H0 with pseudo-true parameter values.

5. Monte Carlo experiments

This section presents the results of some Monte Carlo experiments that illustrate the
numerical performance of the bootstrap as a means of reducing differences between
the true and nominal rejection probabilities of tests of statistical hypotheses.
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5.1. The information-matrix test

White’s (1982) information-matrix (IM) test is a specification test for parametric
models estimated by maximum likelihood. It tests the hypothesis that the Hessian
and outer-product forms of the information matrix are equal. Rejection implies that
the model is misspecified. The test statistic is asymptotically chi-square distributed,
but Monte Carlo experiments carried out by many investigators have shown that
the asymptotic distribution is a very poor approximation to the true, finite-sample
distribution. With sample sizes in the range found in applications, the true and nominal
probabilities that the IM test with asymptotic critical values rejects a correct model
can differ by a factor of 10 or more [Horowitz (1994), Kennan and Neumann (1988),
Orme (1990), Taylor (1987)].
Horowitz (1994) reports the results of Monte Carlo experiments that investigate the

ability of the bootstrap to provide improved finite-sample critical values for the IM test,
thereby reducing the distortions of RP’s that occur with asymptotic critical values.
Three forms of the test were used: the Chesher (1983) and Lancaster (1984) form,
White’s (1982) original form, and Orme’s (1990) w3. The Chesher–Lancaster form is
relatively easy to compute because, in contrast to the other forms, it does not require
third derivatives of the log-density function or analytic expected values of derivatives
of the log-density. However, first-order asymptotic theory gives an especially poor
approximation to its finite-sample distribution. Orme (1990) found through Monte
Carlo experimentation that the distortions of RP’s are smaller with w3 than with many
other forms of the IM test statistic. Orme’s w3 uses expected values of third derivatives
of the log-density, however, so it is relatively difficult to compute.

Table 1
Empirical rejection probabilities of nominal 0.05-level information-matrix tests of probit and tobit

models 1

n Distribution
of X

RP using asymptotic critical values

White Chesh.-Lan. Orme

RP using bootstrap-based critical values

White Chesh.-Lan. Orme

Binary probit models

50 N (0, 1) 0.385 0.904 0.006 0.064 0.056 0.033

U (−2, 2) 0.498 0.920 0.017 0.066 0.036 0.031

100 N (0, 1) 0.589 0.848 0.007 0.053 0.059 0.054

U (−2, 2) 0.632 0.875 0.027 0.058 0.056 0.049

Tobit models

50 N (0, 1) 0.112 0.575 0.038 0.083 0.047 0.045

U (−2, 2) 0.128 0.737 0.174 0.051 0.059 0.054

100 N (0, 1) 0.065 0.470 0.167 0.038 0.039 0.047

U (−2, 2) 0.090 0.501 0.163 0.046 0.052 0.039

1 Source: Horowitz (1994).
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Horowitz’s (1994) experiments consisted of applying the three forms of the IM test
to Tobit and binary probit models. Each model had either one or two explanatory
variables X that were obtained by sampling either the N (0, 1) or the U [0, 1]
distribution. There were 1000 replications in each experiment. Other details of the
Monte Carlo procedure are described in Horowitz (1994). Table 1 summarizes the
results of the experiments. As expected, the differences between empirical and nominal
RP’s are very large when asymptotic critical values are used. This is especially true
for the Chesher–Lancaster form of the test. When bootstrap critical values are used,
however, the differences between empirical and nominal RP’s are very small. The
bootstrap essentially eliminates the distortions of the RP’s of the three forms of the
IM test.

5.2. The t test in a heteroskedastic regression model

In this section, the heteroskedasticity-consistent covariance matrix estimator (HCCME)
of Eicker (1963, 1967) and White (1980) is used to carry out a t test of a hypothesis
about b in the model

Y = X b + U. (5.1)

In this model, U is an unobserved random variable whose probability distribution is
unknown and that may have heteroskedasticity of unknown form. It is assumed that
E(U X = x) = 0 and Var(U X = x)<∞ for all x in the support of X .
Let bn be the ordinary least-squares (OLS) estimator of b in Equation (5.1), bni and

b i be the ith components of bn and b , and sni be the square root of the (i, i) element
of the HCCME. The t statistic for testing H0: b i = b i0 is Tn = (bni − b i0)/sni. Under
regularity conditions, Tn →d N (0, 1) as n→ ∞. However, Chesher and Jewitt (1987)
have shown that s2ni can be seriously biased downward. Therefore, the true RP of a test
based on Tn is likely to exceed the nominal RP. As is shown later in this section, the
differences between the true and nominal RP’s can be very large when n is small.
The bootstrap can be implemented for model (5.1) by sampling observations of

(Y, X ) randomly with replacement. The resulting bootstrap sample is used to estimate
b by OLS and compute T ∗

n , the t statistic for testing H
∗
0 : b i = bni. The empirical

distribution of T ∗
n is obtained by repeating this process many times, and the a-level

bootstrap critical value for T ∗
n is estimated from this distribution. Since U may be

heteroskedastic, the bootstrap cannot be implemented by resampling OLS residuals
independently of X . Similarly, one cannot implement the bootstrap by sampling U
from a parametric model because Equation (5.1) does not specify the distribution of
U or the form of any heteroskedasticity.
Randomly resampling (Y, X ) pairs does not impose the restriction E(U X = x) = 0 on

the bootstrap sample. As will be seen later in this section, the numerical performance
of the bootstrap can be improved greatly through the use of an alternative resampling
procedure, called the wild bootstrap, that imposes this restriction. The wild bootstrap
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was introduced by Liu (1988) following a suggestion of Wu (1986). Mammen (1993)
establishes the ability of the wild bootstrap to provide asymptotic refinements for the
model (5.1). Cao-Abad (1991), Härdle and Mammen (1993), and Härdle and Marron
(1991) use the wild bootstrap in nonparametric regression.
To describe the wild bootstrap, write the estimated form of Equation (5.1) as

Yi = Xibn +Uni; i = 1, 2, . . . , n,

where Y i and X i are the ith observed values of Y and X , and Uni is the ith OLS
residual. For each i = 1, . . . , n, let Fi be the unique 2-point distribution that satisfies
E(Z |Fi) = 0, E(Z2|Fi) = U 2

ni, and E(Z
3|Fi) = U 3

ni, where Z is a random variable
with the CDF Fi. Then, Z = (1 −

√
5)Uni/2 with probability (1 +

√
5)/ (2

√
5), and

Z = (1 +
√
5)Uni/2 with probability 1 − (1 +

√
5)/ (2

√
5). The wild bootstrap is

implemented as follows:
(1) For each i = 1, . . . , n, sample U ∗

i randomly from Fi. Set Y
∗
i =X ibn +U

∗
i .

(2) Estimate Equation (5.1) by OLS using the bootstrap sample {Y ∗
i ,X i: i = 1, . . . , n}.

Compute the resulting t statistic, T ∗
n .

(3) Obtain the empirical distribution of the wild-bootstrap version of T ∗
n by repeating

steps 1 and 2 many times. Obtain the wild-bootstrap critical value of T ∗
n from the

empirical distribution.
Horowitz (1997) reports the results of a Monte Carlo investigation of the ability

of the bootstrap and wild bootstrap to reduce the distortions in the RP of a
symmetrical, two-tailed t test that occur when asymptotic critical values are used.
The bootstrap was implemented by resampling (Y, X ) pairs, and the wild bootstrap
was implemented as described above. The experiments also investigate the RP of
the t test when the HCCME is used with asymptotic critical values and when a
jackknife version of the HCCME is used with asymptotic critical values [MacKinnon
and White (1985)]. MacKinnon and White (1985) found through Monte Carlo
experimentation that with the jackknife HCCME and asymptotic critical values, the
t test had smaller distortions of RP than it did with several other versions of the
HCCME.
The experiments use n= 25. X consists of an intercept and either 1 or 2 explanatory

variables. In experiments in which X has an intercept and one explanatory variable,
b = (1, 0)′. In experiments in which X has an intercept and two explanatory variables,
b = (1, 0, 1)′. The hypothesis tested in all experiments is H0: b2 = 0. The components
of X were obtained by independent sampling from a mixture of normal distributions
in which N (0, 1) was sampled with probability 0.9 and N (2, 9) was sampled
with probability 0.1. The resulting distribution of X is skewed and leptokurtotic.
Experiments were carried out using homoskedastic and heteroskedastic U ’s. When
U was homoskedastic, it was sampled randomly from N (0, 1). When U was
heteroskedastic, the U value corresponding to X = x was sampled from N (0,Wx), where
Wx = 1 + x2 or Wx = 1 + x21 + x

2
2, depending on whether X consists of 1 or 2 components

in addition to an intercept. Wx is the covariance matrix of U corresponding to the



Ch. 52: The Bootstrap 3217

Table 2
Empirical rejection probabilities of t tests using heteroskedasticity-consistent covariance matrix

estimators 1,2 (n= 25)

Form of test 1-Variable
homoskedastic

model

1-Variable
random coeff.

model

2-Variable
homoskedastic

model

2-Variable
random coeff.

model

Asymptotic 0.156 0.306 0.192 0.441

Jackknife 0.096 0.140 0.081 0.186

Bootstrap (Y, X ) pairs 0.100 0.103 0.114 0.124

Wild bootstrap 0.050 0.034 0.062 0.057

1 Source: Horowitz (1997).
2 Empirical RP at nominal 0.05 level.

random-coefficients model Y = X b + X d + V , where V and the components of d
are independently distributed as N (0, 1). There were 1000 Monte Carlo replications in
each experiment.
Table 2 shows the empirical RP’s of nominal 0.05-level t tests of H0. The differences

between the empirical and nominal RP’s using the HCCME and asymptotic critical
values are very large. Using the jackknife version of the HCCME or critical values
obtained from the bootstrap greatly reduces the differences between the empirical
and nominal RP’s, but the empirical RP’s are still 2–3 times the nominal ones.
With critical values obtained from the wild bootstrap, the differences between
the empirical and nominal RP’s are very small. In these experiments, the wild
bootstrap essentially removes the distortions of RP that occur with asymptotic critical
values.

5.3. The t test in a Box–Cox regression model

The t statistic for testing a hypothesis about a slope coefficient in a linear regression
model with a Box–Cox (1964) transformed dependent variable is not invariant to
changes in the measurement units, or scale, of the dependent variable [Spitzer (1984)].
The numerical value of the t statistic and the finite-sample RP’s of the t test with
asymptotic critical values vary according to the measurement units or scale that is
used. As a result, the finite-sample RP’s of the t test with asymptotic critical values
can be far from the nominal RP’s. The bootstrap provides a better approximation to
the finite-sample distribution and, therefore, better finite-sample critical values.
Horowitz (1997) reports the results of a Monte Carlo investigation of the finite-

sample RP of a symmetrical t test of a hypothesis about a slope coefficient in a
linear regression model with a Box–Cox transformed dependent variable. The model
generating the data is

Y (l) = b0 + b1X + U ,
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Table 3
Empirical rejection probabilities of t tests for Box–Cox regression model 1 (nominal RP = 0.05)

n l Scale factor RP using critical values from

Asymptotic Bootstrap

Empirical
critical values

Bootstrap critical
values

50 0.01 0.2 0.048 0.066 1.930 1.860

1.0 0.000 0.044 0.911 0.909

5.0 0.000 0.055 0.587 0.571

100 0.01 0.2 0.047 0.053 1.913 1.894

1.0 0.000 0.070 1.201 1.165

5.0 0.000 0.056 0.767 0.759

50 1.0 0.2 0.000 0.057 1.132 1.103

1.0 0.000 0.037 0.625 0.633

5.0 0.000 0.036 0.289 0.287

100 1.0 0.2 0.000 0.051 1.364 1.357

1.0 0.000 0.044 0.836 0.835

5.0 0.000 0.039 0.401 0.391

1 Source: Horowitz (1997).

where Y (l) is the Box–Cox transformed value of the dependent variable Y , U~N (0, s 2),
b0 = 2, b1 = 0 and s 2 = 0.0625. X was sampled from N (4, 4) and was fixed in repeated
samples. The hypothesis being tested is H0: b1 = 0. The value of l is either 0.01 or 1,
depending on the experiment, and the scale of Y was 0.2, 1, or 5. The sample sizes
were n= 50 and 100. There were 1000 replications in each experiment.
The results of the experiments are summarized in Table 3. The empirical critical

value of the t test tends to be much smaller than the asymptotic critical value of 1.96,
especially in the experiments with a scale factor of 5. As a result, the empirical RP
of the t test is usually much smaller than its nominal RP. The mean bootstrap critical
values, however, are very close to the empirical critical values, and the RP’s based on
bootstrap critical values are very close to the nominal ones.

5.4. Estimation of covariance structures

In estimation of covariance structures, the objective is to estimate the covariance
matrix of a k×1 vector X subject to restrictions that reduce the number of unique,
unknown elements to r < k(k + 1)/2. Estimates of the r unknown elements can be
obtained by minimizing the weighted distance between sample moments and the
estimated population moments. Weighting all sample moments equally produces
the equally-weighted minimum distance (EWMD) estimator, whereas choosing the
weights to maximize asymptotic estimation efficiency produces the optimal minimum
distance (OMD) estimator.
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The OMD estimator dominates the EWMD estimator in terms of asymptotic
efficiency, but it has been found to have poor finite-sample properties in applications
[Abowd and Card (1989)]. Altonji and Segal (1994, 1996) carried out an extensive
Monte Carlo investigation of the finite-sample performance of the OMD estimator.
They found that the estimator is badly biased with samples of the sizes often found in
applications and that its finite-sample root-mean-square estimation error (RMSE) often
greatly exceeds the RMSE of the asymptotically inefficient EWMD estimator. Altonji
and Segal also found that the true coverage probabilities of asymptotic confidence
intervals based on the OMD estimator tend to be much lower than the nominal coverage
probabilities. Thus, estimation and inference based on the OMD estimator can be
highly misleading with finite samples.
Horowitz (1998a) reports the results of a Monte Carlo investigation the ability

of the bootstrap to reduce the bias and RMSE of the OMD estimator and reduce
the differences between true and nominal coverage probabilities of nominal 95%
confidence intervals based on this estimator. The data-generation processes used in
the Monte Carlo experiments were taken from Altonji and Segal (1994). In each
experiment, X has 10 components, and the sample size is n= 500. The jth component
of X , X j ( j = 1, . . . , 10) is generated by X j = (Zj + øZj + 1)/(1 + ø2)1/2, where Z1, . . . ,Z11
are i.i.d. random variables with means of 0 and variances of 1, and ø = 0.5. The Z’s
are sampled from five different distributions depending on the experiment. These are
U [0, 1], N (0, 1), Student t with 10 degrees of freedom, exponential, and lognormal. It
is assumed that ø is known and that the components of X are known to be identically
distributed and to follow MA(1) processes. The estimation problem is to infer the scalar
parameter q that is identified by the moment conditions Var(X j) = q ( j = 1, . . . , 10)
and Cov(X j ,X j − 1) = øq /(1 + ø2) ( j = 2, . . . , 10). Experiments were carried out with the
EWMD and OMD estimators as well as a version of the OMD estimator that uses a
trimmed estimator of the asymptotically optimal weight matrix. See Horowitz (1998a)
for an explanation of the trimming procedure.
The results of the experiments are summarized in Table 4. The OMD estimator,

qn, OMD is biased and its RMSE exceeds that of the EWMD estimator, qn, EWMD for
all distributions of Z except the uniform. Moreover, the coverage probabilities of
confidence intervals based on qn, OMD with asymptotic critical values are far below
the nominal value of 0.95 except in the experiment with uniform Z’s. Bootstrap bias
reduction greatly reduces both the bias and RMSE of qn, OMD. In addition, the use
of bootstrap critical values greatly reduces the errors in the coverage probabilities of
confidence intervals based on qn, OMD. In the experiments with normal, Student t, or
uniform Z’s, the bootstrap essentially eliminates the bias of qn, OMD and the errors
in the coverage probabilities of the confidence intervals. Moreover, the RMSE of the
bias-corrected qn, OMD in these experiments is 12–50% less than that of qn, EWMD.
When Z is exponential or lognormal, the bootstrap reduces but does not eliminate

the bias of qn, OMD and the errors in the coverage probabilities of confidence intervals.
Horowitz (1998a) shows that the poor performance of the bootstrap in these cases is
caused by imprecise estimation of the OMD weight and covariance matrices. This



3220 J.L. Horowitz

Table 4
Results of Monte Carlo experiments with estimators of covariance structures 1,2

Dist. EWMD

RMSE

OMD without bootstrap

Bias RMSE Cov. 3

OMD with bootstrap

Bias RMSE Cov. 4

Trimmed OMD5

Bias RMSE Cov. 4

Uniform 0.019 0.005 0.015 0.93 0.002 0.014 0.96

Normal 0.024 0.016 0.025 0.85 0.0 0.021 0.95

Student t 0.029 0.024 0.034 0.79 0.002 0.026 0.95

Exponential 0.042 0.061 0.073 0.54 0.014 0.048 0.91 0.004 0.042 0.96

Lognormal 0.138 0.274 0.285 0.03 0.136 0.173 0.76 0.046 0.126 0.91

1 Source: Horowitz (1998a); nominal coverage probability is 0.95; based on 1000 replications.
2 Abbreviations: Dist., distribution; EWMD, equally-weighted minimum distance; OMD, optimal
minimum distance; RMSE, root-mean-square estimation error.
3 Coverage probability with asymptotic critical value.
4 Coverage probability with bootstrap critical value.
5 Trimmed OMD with bootstrap.

problem is largely eliminated through the use of the trimmed estimator of these
matrices. With trimming, qn, OMD with exponential or lognormal Z’s has a RMSE that
is the same as or less than that of the EWMD estimator, and the empirical coverage
probabilities of confidence intervals are close to the nominal values.

6. Conclusions

The bootstrap consistently estimates the asymptotic distributions of econometric esti-
mators and test statistics under conditions that are sufficiently general to accommodate
most applications. Subsampling methods usually can be used in place of the standard
bootstrap when the latter is not consistent. Together, the bootstrap and subsampling
methods provide ways to substitute computation for mathematical analysis if analytical
calculation of the asymptotic distribution of an estimator or test statistic is difficult or
impossible.
Under conditions that are stronger than those required for consistency but still gen-

eral enough to accommodate a wide variety of econometric applications, the bootstrap
reduces the finite-sample biases of estimators and provides a better approximation
to the finite-sample distribution of an estimator or test statistic than does first-order
asymptotic theory. The approximations of first-order asymptotic theory are often quite
inaccurate with samples of the sizes encountered in applications. As a result, the true
and nominal probabilities that a test rejects a correct hypothesis can be very different
when critical values based on first-order approximations are used. Similarly, the true
and nominal coverage probabilities of confidence intervals based on asymptotic critical
values can be very different. The bootstrap can provide dramatic reductions in the
differences between true and nominal rejection and coverage probabilities of tests and
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confidence intervals. In many cases of practical importance, the bootstrap essentially
eliminates finite-sample errors in rejection and coverage probabilities.
This chapter has also emphasized the need for care in applying the bootstrap. The

importance of asymptotically pivotal statistics for obtaining asymptotic refinements
has been stressed. Proper attention also must be given to matters such as recentering,
correction of test statistics in the block bootstrap for dependent data, smoothing, and
choosing the distribution from which bootstrap samples are drawn. These qualifications
do not, however, detract from the importance of the bootstrap as a practical tool for
improving inference in applied econometrics.
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Appendix A. Informal derivation of Equation (3.27)

To derive Equation (3.27), write P(|Tn |¾ z∗n, a/2) in the form
P(|Tn| > z∗n, a/2) = 1 − [P(Tn ¶ z∗n, a/2) − P(Tn ¶ −z∗n, a/2)]

= 1 − {P[Tn − (z∗n, a/2 − z∞, a/2) ¶ z∞, a/2]

− P[Tn + (z
∗
n, a/2 − z∞, a/2) ¶ −z∞, a/2]}.

(A.1)

With an error whose size is almost surely O(n−2), (z∗n, a/2 − z∞, a/2) on the right-hand
side of (A.1) can be replaced with a Cornish–Fisher expansion that retains terms
through O(n−3/2). This expansion can be obtained by applying the delta method to
the difference between Equations (3.23) and (3.24). The result is

z∗n, a/2 − z∞, a/2 = −
1
n

g2(z∞, a/2,F0)
÷(z∞, a/2)

+
1
n3/2

n1/2r3(Z̄) + O(n
−2), (A.2)

where r3 is a smooth function, r3(mZ ) = 0, and n1/2r3(Z̄) = Op(1) as n→ ∞.
Substituting Equation (A.2) into Equation (A.1) yields

P(|Tn| > z∗n, a/2) = 1 − {P[Tn − n−3/2n1/2r3(Z̄) ¶ z∞, a/2 + n
−1r2(z∞, a/2)]

− P[Tn + n
−3/2n1/2r3(Z̄) ¶ −z∞, a/2 − n

−1r2(z∞, a/2)]} + O(n−2),
(A.3)

where

r2(z) = −
g2(z,F0)
÷(z)

. (A.4)

The next step is to replace the right-hand side of Equation (A.3) with an Edgeworth
approximation. To do this, it is necessary to provide a detailed specification of the
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function g2 in Equations (3.9) and (3.13). Let ú j, n denote the jth cumulant of Tn 23.
Under assumption SFM, ú j, n can be expanded in a power series. For a statistic such
as Tn whose asymptotic distribution has a variance of 1,

ú1, n =
k12
n1/2

+
k13
n3/2

+ O(n−5/2),

ú2, n = 1 +
k22
n
+ O(n−2),

ú3, n =
k31
n1/2

+
k32
n3/2

+ O(n−5/2),

and

ú4, n =
k41
n
+ O(n−2),

where the coefficients kjk are functions of moments of products of components of Z .
The function g2 is then

g2(t ,F0) = −t
[
1
2 (k22 + k

2
12) +

1
24 (k41 + 4k12k31)(t

2 − 3) + 1
72k

2
31(t

4 − 10t2 + 15)
]
÷(t).
(A.5)

See Hall (1992a, pp. 46–56) for details. Denote the quantity on the right-hand side of
Equation (A.5) by g̃2(t , ú0), where ú0 denotes the kjk coefficients that are associated
with cumulants of the distribution of Tn. Let ú̂n denote the kjk coefficients that are
associated with cumulants of Tn ± n−3/2n1/2r3(Z̄), and let g̃2(t , ú̂n) denote the version
of g̃2 that is obtained by replacing ú0 with ú̂n. The difference between the + and
− coefficients is asymptotically negligible. Now replace g2(t , F0) in Equation (3.13)
with g̃2(t , ú̂n). Also, replace t with z∞, a/2 + n−1r2(z∞, a/2) in Equation (3.13).
Substituting the result into the right-hand side of Equation (A.3) gives the following
Edgeworth approximation to P(|Tn| > z∗n, a/2) :

P(|Tn| > z∗n, a/2) = 2{1 − F[z∞, a/2 + n
−1r2(z∞, a/2)]}

− 2n−1g̃2[z∞, a/2 + n
−1r2(z∞, a/2), ú̂n] + O(n−2).

(A.6)

A Taylor-series expansion of the right-hand side of Equation (A.6) combined with
Equation (A.4) and the fact that 2[1 −F(z∞, a/2)] =a gives

P(|Tn| > z∗n, a/2) = a +
2
n
[g̃2(z∞, a/2, ú0) − g̃2(z∞.a/2, ú̂n)] + O(n−2). (A.7)

It is not difficult to show that g̃2(z∞, a/2, ú0) − g̃2(z∞, a/2, ú̂n) = o(n−1). (Roughly
speaking, this is because n−1r3(Z̄) = o(n−1) almost surely.) Therefore, the second term
on the right-hand side of Equation (A.7) is o(n−2), which yields Equation (3.27).

23 The cumulants of a distribution are coefficients in a power-series expansion of the logarithm of its
characteristic function. The first three cumulants are the mean, variance, and third moment about the
mean. The fourth cumulant is the fourth moment about the mean minus three times the square of the
variance.
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Abstract

This chapter focuses on two of the developments in panel data econometrics since the
Handbook chapter by Chamberlain (1984).
The first objective of this chapter is to provide a review of linear panel data

models with predetermined variables. We discuss the implications of assuming that
explanatory variables are predetermined as opposed to strictly exogenous in dynamic
structural equations with unobserved heterogeneity. We compare the identification from
moment conditions in each case, and the implications of alternative feedback schemes
for the time series properties of the errors. We next consider autoregressive error
component models under various auxiliary assumptions. There is a trade-off between
robustness and efficiency since assumptions of stationary initial conditions or time
series homoskedasticity can be very informative, but estimators are not robust to
their violation. We also discuss the identification problems that arise in models with
predetermined variables and multiple effects. Concerning inference in linear models
with predetermined variables, we discuss the form of optimal instruments, and the
sampling properties of GMM and LIML-analogue estimators drawing on Monte Carlo
results and asymptotic approximations.
A number of identification results for limited dependent variable models with fixed

effects and strictly exogenous variables are available in the literature, as well as some
results on consistent and asymptotically normal estimation of such models. There are
also some results available for models of this type including lags of the dependent
variable, although even less is known for nonlinear dynamic models. Reviewing the
recent work on discrete choice and selectivity models with fixed effects is the second
objective of this chapter. A feature of parametric limited dependent variable models
is their fragility to auxiliary distributional assumptions. This situation prompted the
development of a large literature dealing with semiparametric alternatives (reviewed
in Powell, 1994’s chapter). The work that we review in the second part of the chapter
is thus at the intersection of the panel data literature and that on cross-sectional
semiparametric limited dependent variable models.

Keywords

JEL classification: C33
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1. Introduction

Panel data analysis is at the watershed of time series and cross-section econometrics.
While the identification of time series parameters traditionally relied on notions of
stationarity, predeterminedness and uncorrelated shocks, cross-sectional parameters
appealed to exogenous instrumental variables and random sampling for identification.
By combining the time series and cross-sectional dimensions, panel datasets have
enriched the set of possible identification arrangements, and forced economists to think
more carefully about the nature and sources of identification of parameters of potential
interest.
One strand of the literature found its original motivation in the desire of exploiting

panel data for controlling unobserved time-invariant heterogeneity in cross-sectional
models. Another strand was interested in panel data as a way to disentangle
components of variance and to estimate transition probabilities among states. Papers
in these two veins can be loosely associated with the early work on fixed and
random effects approaches, respectively. In the former, interest typically centers in
measuring the effect of regressors holding unobserved heterogeneity constant. In
the latter, the parameters of interest are those characterizing the distributions of the
error components. A third strand of the literature studied autoregressive models with
individual effects, and more generally models with lagged dependent variables.
A sizeable part of the work in the first two traditions concentrated on models

with just strictly exogenous variables. This contrasts with the situation in time series
econometrics where the distinction between predetermined and strictly exogenous
variables has long been recognized as a fundamental one in the specification of
empirical models.
The first objective of this chapter is to review recent work on linear panel data

models with predetermined variables. Lack of control of individual heterogeneity could
result in a spurious rejection of strict exogeneity, and so a definition of strict exogeneity
conditional on unobserved individual effects is a useful extension of the standard
concept to panel data (a major theme of Chamberlain, 1984’s chapter). There are many
instances, however, in which for theoretical or empirical reasons one is concerned with
models exhibiting genuine lack of strict exogeneity after controlling for individual
heterogeneity.
The interaction between unobserved heterogeneity and predetermined regressors in

short panels – which are the typical ones in microeconometrics – poses identification
problems that are absent from both time series models and panel data models with
only strictly exogenous variables. In our review we shall see that for linear models it is
possible to accommodate techniques developed from the various strands in a common
framework within which their relative merits can be evaluated.
Much less is known for discrete choice, selectivity and other non-linear models of

interest in microeconometrics. A number of identification results for limited dependent
variable models with fixed effects and strictly exogenous variables are available in the
literature, as well as some results on consistent and asymptotically normal estimation of
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such models. There are also some results available for models of this type including
lags of the dependent variable, although even less is known for nonlinear dynamic
models.
Reviewing the recent work on discrete choice and selectivity models with fixed

effects is the second objective of this chapter. A feature of parametric limited dependent
variable models is their fragility to auxiliary distributional assumptions. This situation
prompted the development of a large literature dealing with semiparametric alternatives
(reviewed in Powell, 1994’s chapter). The work that we review in the second part of the
chapter is thus at the intersection of the panel data literature and that on cross-sectional
semiparametric limited dependent variable models.
Other interesting topics in panel data analysis which will not be covered in this

chapter include work on long T panel data models with heterogeneous dynamics or
unit roots [Pesaran and Smith (1995), Canova and Marcet (1995), Kao (1999), Phillips
and Moon (1999)], simulation-based random effects approaches to the nonlinear
models [Hajivassiliou and McFadden (1990), Keane (1993, 1994), Allenby and Rossi
(1999), and references therein], classical and Bayesian flexible estimators of error
component distributions [Horowitz and Markatou (1996), Chamberlain and Hirano
(1999), Geweke and Keane (2000)], other nonparametric and semiparametric panel
data models [Baltagi, Hidalgo and Li (1996), Li and Stengos (1996), Li and Hsiao
(1998) and Chen, Heckman and Vytlacil (1998)], and models from time series of
independent cross-sections [Deaton (1985), Moffitt (1993), Collado (1997)]. Some of
these topics as well as comprehensive reviews of the panel data literature are covered
in the text books by Hsiao (1986) and Baltagi (1995).

2. Linear models with predetermined variables: identification

In this section we discuss the identification of linear models with predetermined
variables in two different contexts. In Section 2.1 the interest is to identify structural
parameters in models in which explanatory variables are correlated with a time-
invariant individual effect, but they are either strictly exogenous or predetermined
relative to the time-varying errors. The second context, discussed in Section 2.2, is
the time series analysis of error component models with autoregressive errors under
various auxiliary assumptions. Section 2.3 discusses the use of stationarity restrictions
in regression models, and Section 2.4 considers the identification of models with
multiplicative or multiple individual effects.

2.1. Strict exogeneity, predeterminedness, and unobserved heterogeneity

We begin with a discussion of the implications of strict exogeneity for identification
of regression parameters controlling for unobserved heterogeneity, with the objective
of comparing this situation with that where the regressors are only predetermined
variables.
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Static regression with a strictly exogenous variable. Let us consider a linear regression
for panel data including a fixed effect hi and a time effect dt with N individuals
observed T time periods, where T is small and N is large:

yit = bxit + dt + hi + vit (i = 1, . . . , N ; t = 1, . . . , T ). (1)

We assume that ( yi1 · · · yiT , xi1 · · · xiT , hi) is an iid random vector with finite
second-order moments, while b and the time effects are treated as unknown parameters.
The variable xit is said to be strictly exogenous in this model if it is uncorrelated with
past, present and future values of the disturbance vit :

E∗(vit |xTi ) = 0 (t = 1, . . . , T ), (2)

where E∗ denotes a linear projection, and we use the superscript notation zti =
(zi1, . . . , zit)′. First-differencing the conditions we obtain

E∗(vit − vi (t − 1)|xTi ) = 0 (t = 2, . . . , T ). (3)

Since in the absence of any knowledge about hi the condition E∗(vi1|xTi ) = 0 is not
informative about b , the restrictions in first-differences are equivalent to those in levels.
Therefore, for fixed T the problem of cross-sectional identification of b is simply that
of a multivariate regression in first differences subject to cross-equation restrictions,
and b is identifiable with T ¾ 2.
Specifically, letting E∗(hi|xTi ) = l0 + l′xTi , the model can be written as

yit = p0t + bxit + l′xTi + eit with E
∗(eit |xTi ) = 0 (t = 1, . . . , T ). (4)

where p0t = l0 + dt . This T equation system is equivalent to

yi1 = p01 + bxi1 + l′xTi + ei1 E∗(ei1|xTi ) = 0, (5)

Dyit = Ddt + bDxit + Deit E∗(Deit |xTi ) = 0 (t = 2, . . . , T ). (6)

In the absence of restrictions in l Equation (5) is uninformative about b , and as a
consequence asking under which conditions b is identified in Equation (4) is equivalent
to asking under which conditions b is identified in Equation (6) 1.

1 Lack of dependence between vit and x
T
i could also be expressed in terms of conditional independence

in mean E(vit |xTi ) = 0 (t = 1, . . . , T ). In the absence of any knowledge about hi this is equivalent to the
(T − 1) conditional moment restrictions E(vit − vi(t−1)|xTi ) = 0 (t = 2, . . . , T ) which do not depend on
hi [Chamberlain (1992a)]. In the presentation for linear models, however, the use of linear projections
affords a straightforward discussion of identification, and in the context of estimation it allows us to
abstract from issues relating to optimal instruments and semiparametric asymptotic efficiency.
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Partial adjustment with a strictly exogenous variable. In an alternative model, the effect
of a strictly exogenous x on y could be specified as a partial adjustment equation:

yit = ayi (t − 1) + b0xit + b1xi (t − 1) + dt + hi + vit (i = 1, . . . , N ; t = 2, . . . , T ) (7)

together with

E∗(vit |xTi ) = 0 (t = 2, . . . , T ). (8)

Note that assumption (8) does not restrict the serial correlation of v, so that lagged
y is an endogenous explanatory variable. In the equation in levels, yi (t − 1) will be
correlated with hi by construction and may also be correlated with past, present and
future values of the errors vit since they may be autocorrelated in an unspecified
way. Likewise, the system in first differences is free from fixed effects and satifies
E∗(Dvit |xTi ) = 0 (t = 3, . . . , T ), but Dyi (t − 1) may still be correlated with Dvis for all
s.
Subject to a standard rank condition, a, b0, b1 and the time effects will be identified

with T ¾ 3. With T = 3 they are just identified since there are five orthogonality
conditions and five unknown parameters:

E[

⎛⎜⎜⎝
1
xi1
xi2
xi3

⎞⎟⎟⎠ (Dyi3 − aDyi2 − b0D xi3 − b1D xi2 − Dd3)] = 0. (9)

E ( yi2 − ayi1 − b0xi2 − b1xi1 − d2) = 0.

This simple example illustrates the potential for cross-sectional identification under
strict exogeneity. In effect, strict exogeneity of x permits the identification of the
dynamic effect of x on y and of lagged y on current y, in the presence of a fixed
effect and shocks that can be arbitrarily persistent over time [cf. Bhargava and Sargan
(1983), Chamberlain (1982a, 1984), Arellano (1990)].
A related situation of economic interest arises in testing life-cycle models of

consumption or labor supply with habits [e.g., Bover (1991), or Becker, Grossman
and Murphy (1994)]. In these models the coefficient on the lagged dependent variable
is a parameter of central interest as it is intended to measure the extent of habits.
However, in the absence of an exogenous instrumental variable such a coefficient would
not be identified, since the effect of genuine habits could not be separated from serial
correlation in the unobservables.
As an illustration, let us consider the empirical model of cigarette consumption by

Becker, Grossman and Murphy (1994) for US state panel data. Their empirical analysis
is based on the following equation:

cit = qci (t − 1) + bqci (t + 1) + gpit + hi + dt + vi (t + 1), (10)

where cit and pit denote, respectively, annual per capita cigarette consumption in packs
by state and average cigarette price per pack. Becker et al. are interested in testing



3236 M. Arellano and B. Honoré

whether smoking is addictive by considering the response of cigarette consumption to
a change in cigarette prices.
The rationale for Equation (10) is provided by a model of addictive behavior in

which utility in period t depends on cigarette consumption in t and in t − 1. Under
perfect certainty and quadratic utility, the equation can be obtained from the first-
order conditions of utility maximization. The degree of addiction is measured by q ,
which will be positive if smoking is addictive. The current price coefficient g should be
negative by concavity of the utility, and b denotes the discount factor. With certainty,
the marginal utility of wealth is constant over time but not cross-sectionally. The state
specific intercept hi is meant to capture such variation 2. Finally, the dt’s represent
aggregate shocks, possibly correlated with prices, which are treated as period specific
parameters.
The errors vi (t + 1) capture unobserved life-cycle utility shifters, which are likely to

be serially correlated. Therefore, even in the absence of addiction (q = 0) and serial
correlation in prices, we would expect cit to be autocorrelated, and in particular to find
a non-zero effect of ci (t − 1) in a linear regression of cit on ci (t − 1), ci (t + 1) and pit . Current
consumption depends on prices in all periods through the effects of past and future
consumption, but it is independent of past and future prices when ci (t − 1) and ci (t + 1) are
held fixed. Thus, Becker et al.’s strategy is to identify q , b , and g from the assumption
that prices are strictly exogenous relative to the unobserved utility shift variables. The
required exogenous variation in prices comes from the variation in cigarette tax rates
across states and time, and agents are assumed to be able to anticipate future prices
without error.

Partial adjustment with a predetermined variable. The assumption that current values
of x are not influenced by past values of y and v is often unrealistic. We shall say that
x is predetermined in a model like Equation (7) if

E∗(vit |xti , yt−1i ) = 0 (t = 2, . . . , T ). (11)

That is, current shocks are uncorrelated with past values of y and with current
and past values of x, but feedback effects from lagged dependent variables (or lagged
errors) to current and future values of the explanatory variable are not ruled out.
Note that, in contrast with Equation (8), assumption (11) does restrict the serial

correlation of v. Specifically, it implies that the errors in first differences exhibit first-
order autocorrelation but are uncorrelated at all other lags:

E(DvitDvi (t − j)) = 0 j > 1.

Examples of this situation include Euler equations for household consumption
[Zeldes (1989), Runkle (1991), Keane and Runkle (1992)], or for company investment

2 According to the theory g would also be state specific, since it is a function of the marginal utility of
wealth. Thus the model with constant price coefficient must be viewed as an approximate model.
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[Bond and Meghir (1994)], in which variables in the agents’ information sets are
uncorrelated with current and future idiosyncratic shocks but not with past shocks,
together with the assumption that the empirical model’s errors are given by such
shocks.
Another example is the effect of children on female labour force participation

decisions. In this context, assuming that children are strictly exogenous is much
stronger than the assumption of predeterminedness, since it would require us to
maintain that labour supply plans have no effect on fertility decisions at any point
in the life cycle [Browning (1992, p. 1462)].
The implication of Equation (11) for errors in first differences is that

E∗(vit − vi (t − 1)|xt − 1i , yt−2i ) = 0 (t = 3, . . . , T ). (12)

As before, these restrictions are equivalent to those in levels since in the absence of
any knowledge about hi the levels are not informative about the parameters 3. Subject
to a rank condition, a, b0, b1 and the time effects will be identified with T ¾ 3. With
T = 3 they are just identified from the five orthogonality conditions:

E[

⎛⎜⎜⎝
1
yi1
xi1
xi2

⎞⎟⎟⎠ (Dyi3 − aDyi2 − b0D xi3 − b1D xi2 − Dd3)] = 0, (13)

E ( yi2 − ayi1 − b0xi2 − b1xi1 − d2) = 0.

It is of some interest to compare the situation in Equation (13) with that in
Equation (9). The two models are not nested since they only have four moment
restrictions in common, which in this example are not sufficient to identify the five
parameters. The model with a strictly exogenous x would become a special case of the
model with a predetermined x, only if in the former serial correlation were ruled out.
That is, if Equation (8) were replaced with:

E∗(vit |xTi , yt − 1i ) = 0 (t = 2, . . . , T ). (14)

However, unlike in the predetermined case, lack of arbitrary serial correlation is not
an identification condition for the model with strict exogeneity.
In the predetermined case it is still possible to accommodate special forms of serial

correlation. For example, with T = 4 the parameters in the dynamic model are just
identified with E(DvitDvi (t − j)) = 0 for j > 2, which is consistent with a first-order

3 Orthogonality conditions of this type have been considered by Anderson and Hsiao (1981, 1982),
Griliches and Hausman (1986), Holtz-Eakin, Newey and Rosen (1988), and Arellano and Bond (1991)
amongst others.



3238 M. Arellano and B. Honoré

moving average process for v. This is so because in such case there are still three
valid orthogonality restrictions: E( yi1Dvi4) = 0, E(xi1Dvi4) = 0, and E(xi2Dvi4) = 0.
Uncorrelated errors arise as the result of theoretical predictions in a number of

environments (e.g., innovations in rational expectation models). However, even in the
absence of specific restrictions from theory, the nature of shocks in econometric models
is often less at odds with assumptions of no or limited autocorrelation than with the
absence of feedback in the explanatory variable processes 4.
In the previous discussion we considered models for which the strict exogeneity

property was unaffected by serial correlation, and models with feedback from lagged
y or v to current values of x, but other situations are possible. For example, it may be
the case that the strict exogeneity condition (2) for model (1) is only satisfied as long as
errors are unpredictable. An illustration is the agricultural Cobb–Douglas production
function discussed by Chamberlain (1984), where y is log output, x is log labor, h is
soil quality, and v is rainfall. If h is known to farmers and they choose x to maximize
expected profits, x will be correlated with h, but uncorrelated with v at all lags and
leads provided v is unpredictable from past rainfall. If rainfall in t is predictable from
rainfall in t − 1, labour demand in t will in general depend on vi (t − 1) [Chamberlain
(1984, pp. 1258–1259)].
Another situation of interest is a case where the model is (1) or (7) and we only

condition on xti . That is, instead of Equation (11) we have

E∗(vit | xti ) = 0. (15)

In this case serial correlation is not ruled out, and the partial adjustment model is
identifiable with T ¾ 4, but Equation (15) rules out unspecified feedback from lagged y
to current x. As an example, suppose that vit = zit + eit is an Euler equation’s error given
by the sum of a serially correlated preference shifter zit and a white noise expectation
error eit . The v’s will be serially correlated and correlated with lagged consumption
variables y but not with lagged price variables x. Another example is an equation
y∗it = bxit + hi + v

∗
it where v

∗
it is white noise and xit depends on y

∗
i (t − 1), but y

∗
it is measured

with an autocorrelated error independent of x and y∗ at all lags and leads.

Implications of uncorrelated effects. So far, we have assumed that all the observable
variables are correlated with the fixed effect. If a strictly exogenous x were known
to be uncorrelated with h, the parameter b in the static regression (1) would be
identified from a single cross-section (T = 1). However, in the dynamic regression the
lagged dependent variable would still be correlated with the effects by construction,
so knowledge of lack of correlation between x and h would add T orthogonality
conditions to the ones discussed above, but the parameters would still be identified

4 As an example, see related discussions on the specification of shocks in Q investment equations by
Hayashi and Inoue (1991), and Blundell, Bond, Devereux and Schiantarelli (1992).
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only when T ¾ 35. The moment conditions for the partial adjustment model with
strictly exogenous x and uncorrelated effects can be written as

E[

(
1
xTi

)
( yit − ayi (t − 1) − b0xit − b1xi (t − 1) − dt)] = 0 (t = 2, . . . , T ). (16)

A predetermined x could also be known to be uncorrelated with the fixed effects if
feedback occurred from lagged errors but not from lagged y. To illustrate this point
suppose that the process for x is

xit = øxi (t − 1) + gvi (t − 1) + ÷hi + eit , (17)

where eit , vis and hi are mutually uncorrelated for all t and s. In this example x is
uncorrelated with h when ÷ = 0. However, if vi (t − 1) were replaced by yi (t − 1) in
Equation (17), x and h will be correlated in general even with ÷ = 0. Knowledge of
lack of correlation between a predetermined x and h would also add T orthogonality
restrictions to the ones discussed above for such a case. The moment conditions for
the partial adjustment model with a predetermined x uncorrelated with the effects can
be written as

E[

(
1
xti

)(
yit − ayi (t − 1) − b0xit − b1xi (t − 1) − dt

)
] = 0 (t = 2, . . . , T ),(18)

E[ yt−2i
(
Dyit − aDyi (t − 1) − b0D xit − b1D xi (t − 1) − Ddt

)
] = 0 (t = 3, . . . , T ).

Again, the parameters in this case would only be identified when T ¾ 3.
Relationship with statistical definitions. To conclude this discussion, it may be useful
to relate our usage of strict exogeneity to statistical definitions. A (linear projection
based) statistical definition of strict exogeneity conditional on a fixed effect would
state that x is strictly exogenous relative to y given h if

E∗( yit |xTi , hi) = E∗( yit |xti , hi). (19)

This is equivalent to the statement that y does not Granger-cause x given h in the sense
that

E∗(xi (t + 1)|xti , yti , hi) = E∗(xi (t + 1)|xti , hi). (20)

Namely, letting x(t + 1)Ti = (xi (t + 1), . . . , xiT )′ if we have

E∗( yit |xTi , hi) = b ′
t x
t
i + d

′
t x
(t + 1)T
i + gthi (21)

and

E∗(xi (t + 1)|xti , yti , hi) = y ′
t x
t
i + ÷

′
t y
t
i + vthi, (22)

it turns out that the restrictions dt = 0 and ÷t = 0 are equivalent. This result generalized
the well-known equivalence between strict exogeneity [Sims (1972)] and Granger’s

5 Models with strictly exogenous variables uncorrelated with the effects were considered by Hausman
and Taylor (1981), Bhargava and Sargan (1983), Amemiya and MaCurdy (1986), Breusch, Mizon and
Schmidt (1989), Arellano (1993), and Arellano and Bover (1995).
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non-causality [Granger (1969)] 6. It was due to Chamberlain (1984), and motivated
the analysis in Holtz-Eakin, Newey and Rosen (1988), which was aimed at testing
such a property.
Here, however, we are using strict exogeneity relative to the errors of an econometric

model. Strict exogeneity itself, or the lack of it, may be a property of the model
suggested by theory. We used some simple models as illustrations, in the understanding
that the discussion would also apply to models that may include other features
like individual effects uncorrelated with errors, endogenous explanatory variables,
autocorrelation, or constraints in the parameters. Thus, in general strict exogeneity
relative to a model may or may not be testable, but if so we shall usually be able
to test it only in conjunction with other features of the model. In contrast with the
econometric concept, a statistical definition of strict exogeneity is model free, but
whether it is satisfied or not, may not necessarily be of relevance for the econometric
model of interest 7.
As an illustration, let us consider a simple permanent-income model. The observ-

ables are non-durable expenditures cit , current income wit , and housing expenditure xit .
The unobservables are permanent (w pit ) and transitory (eit) income, and measurement
errors in non-durable (xit) and housing (vit) expenditures. The expenditure variables
are assumed to depend on permanent income only, and the unobservables are mutually
independent but can be serially correlated. With these assumptions we have

wit = w
p
it + eit , (23)

cit = bw pit + xit , (24)

xit = gw pit + vit . (25)

Suppose that b is the parameter of interest. The relationship between cit and wit
suggested by the theory is of the form

cit = bwit + vit , (26)

where vit = xit − beit . Since wit and vit are contemporaneously correlated, wit is an
endogenous explanatory variable in Equation (26). Moreover, since E∗(vit |xTi ) = 0, xit
is a strictly exogenous instrumental variable in Equation (26). At the same time, note

6 If linear projections are replaced by conditional distributions, the equivalence does not hold and it turns
out that the definition of Sims is weaker than Granger’s definition. Conditional Granger non-causality
is equivalent to the stronger Sims’ condition given by f ( yt |xT , yt − 1) = f ( yt |xt , yt − 1) [Chamberlain
(1982b)].
7 Unlike the linear predictor definition, a conditional independence definition of strict exogeneity given
an individual effect is not restrictive, in the sense that there always exists a random variable h such
that the condition is satisfied [Chamberlain (1984)]. This lack of identification result implies that a
conditional-independence test of strict exogeneity given an individual effect will necessarily be a joint
test involving a (semi) parametric specification of the conditional distribution.
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that in general linear predictors of x given its past can be improved by adding lagged
values of c and/or w (unless permanent income is white noise). Thus, the statistical
condition for Granger non-causality or strict exogeneity is not satisfied in this example.
A similar discussion could be conducted for a version of the model including fixed
effects.

2.2. Time series models with error components

The motivation in the previous discussion was the identification of regression responses
not contaminated from heterogeneity biases. Another leading motivation for using
panel data is the analysis of the time series properties of the observed data. Models
of this kind were discussed by Lillard and Willis (1978), MaCurdy (1982), Hall and
Mishkin (1982), Holtz-Eakin, Newey and Rosen (1988) and Abowd and Card (1989),
amongst others.
An important consideration is distinguishing unobserved heterogeneity from genuine

dynamics. For example, the exercises cited above are all concerned with the
time series properties of individual earnings for different reasons, including the
analysis of earnings mobility, testing the permanent income hypothesis, or estimating
intertemporal labour supply elasticities. However, how much dependence is measured
in the residuals of the earnings process depends crucially, not only on how much
heterogeneity is allowed into the process, but also on the auxiliary assumptions made in
the specification of the residual process, and assumptions about measurement errors.
One way of modelling dynamics is through moving average processes [e.g., Abowd

and Card (1989)]. These processes limit persistence to a fixed number of periods,
and imply linear moment restrictions in the autocovariance matrix of the data.
Autoregressive processes, on the other hand, imply nonlinear covariance restrictions
but provide instrumental-variable orthogonality conditions that are linear in the
autoregressive coefficients. Moreover, they are well suited to analyze the implications
for identification and inference of issues such as the stationarity of initial conditions,
homoskedasticity, and (near) unit roots.
Another convenient feature of autoregressive processes is that they can be regarded

as a special case of the regression models with predetermined variables discussed
above. This makes it possible to consider both types of problems in a common
framework, and facilitates the distinction between static responses with residual serial
correlation and dynamic responses 8. Finally, autoregressive models are more easily
extended to limited-dependent-variable models.
In the next subsection we discuss the implications for identification of alternative

assumptions concerning a first-order autoregressive process with individual effects in
short panels.

8 In general, linear conditional models can be represented as data covariance matrix structures, but
typically they involve a larger parameter space including many nuisance parameters, which are absent
from instrumental-variable orthogonality conditions.
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2.2.1. The AR(1) process with fixed effects 9

Let us consider a random sample of individual time series of size T , { yTi , i = 1, . . . , N},
with second-order moment matrix E( yTi y

T ′
i ) = W = {wts}. We assume that the joint

distribution of yTi and the individual effect hi satisfies

yit = ayi (t − 1) + hi + vit (i = 1, . . . , N ; t = 2, . . . , T ) |a| < 1, (27)

E∗(vit | yt − 1i ) = 0 (t = 2, . . . , T ), (A1)

where E(hi) = g , E(v2it) = s 2t , and Var(hi) = s 2h . Notice that the assumption
does not rule out correlation between hi and vit , nor the possibility of conditional
heteroskedasticity, since E(v2it | yt−1i ) need not coincide with s 2t . Equations (27) and
(A1) can be seen as a specialization of Equations (7) and (11). Thus, following the
discussion above, (A1) implies (T − 2)(T − 1)/2 linear moment restrictions of the form

E[ yt−2i (Dyit − aDyi (t − 1))] = 0. (28)

These restrictions can also be represented as constraints on the elements of
W . Multiplying Equation (27) by yis for s < t, and taking expectations gives
wts = aw(t − 1) s + cs, (t = 2, . . . , T ; s = 1, . . . , t − 1), where cs = E( yishi). This means
that, given assumption A1, the T (T + 1)/2 different elements of W can be written as
functions of the 2T × 1 parameter vector q = (a, c1, . . . , cT−1,w11, . . . , wTT )′. Notice
that with T = 3 the parameters (a, c1, c2) are just identified as functions of the elements
of W:

a = (w21 − w11)−1(w31 − w21)

c1 = w21 − aw11
c2 = w32 − aw22.

The model based on A1 is attractive because the identification of a, which mea-
sures persistence given unobserved heterogeneity, is based on minimal assumptions.
However, we may be willing to impose additional structure if this conforms to a priori
beliefs.

Lack of correlation between the effects and the errors. One possibility is to assume
that the errors vit are uncorrelated with the individual effect hi given yt − 1i . In a
structural context, this will often be a reasonable assumption if, for example, the vit are
interpreted as innovations that are independent of variables in the agents’ information

9 This section follows a similar discussion by Alonso-Borrego and Arellano (1999).
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set. In such case, even if hi is not observable to the econometrician, being time-
invariant it is likely to be known to the individual. This situation gives rise to the
following assumption

E∗(vit | yt − 1i , hi) = 0 (t = 2, . . . , T ). (A1′)

Note that in a short panel assumption A1′ is more restrictive than assumption A1.
Nevertheless, lack of correlation between vit and { yi (t − 1), . . . , yi (t − J )} implies lack
of correlation between vit and hi in the limit as J → ∞. This will be so as long as

hi = plim
J → ∞

1
J

J∑
j = 1

(
yi (t − j) − ayi (t − j − 1)

)
.

Thus, for a process that started at −∞ we would have orthogonality between hi and
vit , and any correlation between individual effects and shocks will tend to vanish as t
increases.
When T ¾ 4, assumption A1′ implies the following additional T − 3 quadratic

moment restrictions that were considered by Ahn and Schmidt (1995):

E[( yit − ayi (t − 1))(Dyi (t − 1) − aDyi (t − 2))] = 0 (t = 4, . . . , T ). (29)

In effect, we can write E[( yit − ayi (t − 1) − hi)(Dyi (t − 1) − aDyi (t − 2))] = 0 and since
E(hiDvi (t − 1)) = 0 the result follows. Thus, Equation (29) also holds if Cov(hi, vit) is
constant over t.
An alternative representation of the restrictions in Equation (29) is in terms of a

recursion of the coefficients ct introduced above. Multiplying Equation (27) by hi and
taking expectations gives ct = act−1 + ÷, (t = 2, . . . , T ), where ÷ = E(h2i ) = g

2 + s 2h ,
so that c1, . . . , cT can be written in terms of c1 and ÷. This gives rise to a
covariance structure in which W depends on the (T + 3) × 1 parameter vector
q = (a, ÷, c1,w11, . . . , wTT )′. Notice that with T = 3 assumption A1′ does not imply
further restrictions in W , with the result that a remains just identified. One can solve
for ÷ in terms of a, c1 and c2:

÷ = (w32 −w21) − a(w22 −w11).

Time series homoskedasticity. If in addition to A1′ we assume that the marginal
variance of vit is constant for all periods:

E(v2it) = s
2 (t = 2, . . . , T ), (A2)

it turns out that

wtt = a2w(t − 1)(t − 1) + ÷ + s 2 + 2act − 1 (t = 2, . . . , T ).

This gives rise to a covariance structure in which W depends on five free parameters:
a, ÷, c1,w11, s 2. This is a model of some interest since it is one in which the initial



3244 M. Arellano and B. Honoré

conditions of the process are unrestricted (governed by the parameters ÷ and c1), but
the total number of free parameters does not increase with T .

Mean stationarity of initial conditions. Other forms of additional structure that can
be imposed are mean or variance stationarity conditions. The following assumption,
which requires that the process started in the distant past, is a particularly useful mean
stationarity condition:

Cov( yit − yi (t − 1), hi) = 0 (t = 2, . . . , T ). (B1)

Relative to assumption A1, assumption B1 adds the following (T − 2) moment
restrictions on W:

E[( yit − ayi (t − 1))Dyi (t − 1)] = 0 (t = 3, . . . , T ), (30)

which were proposed by Arellano and Bover (1995). However, relative to assump-
tion A1′, assumption B1 only adds one moment restriction which can be written as
E[( yi3 − ayi2)Dyi2] = 0. In terms of the parameters ct , the implication of assumption B1
is that c1 = · · · = cT if we move from assumption A1, or that c1 = ÷/ (1 − a) if we
move from assumption A1′. This gives rise to a model in which W depends on the
(T + 2) × 1 parameter vector q = (a, ÷,w11, . . . , wTT )′. Notice that with T = 3, a is
overidentified under assumption B1. Now a will also satisfy

a = (w22 −w21)−1(w32 −w31).

It is of some interest to note that the combination of assumptions A1 and B1
produces the same model as that of A1′ and B1. However, while A1′ implies
orthogonality conditions that are quadratic in a, A1 or A1 +B1 give rise to
linear instrumental-variable conditions [Ahn and Schmidt (1995)]. While A1 implied
the validity of lagged levels as instruments for equations in first-differences, B1
additionally implies the validity of lagged first-differences as instruments for equations
in levels. The availability of instruments for levels equations may lead to the
identification of the effect of observable components of hi (i.e., time-invariant
regressors), or to identifying unit roots, two points to which we shall return below.
The validity of assumption B1 depends on whether initial conditions at the start

of the sample are representative of the steady state behaviour of the model or not.
For example, for young workers or new firms initial conditions may be less related to
steady state conditions than for older ones.

Full stationarity. By combining A1′ with the homoskedasticity and the mean
stationarity assumptions, A2 and B1, we obtain a model whose only nonstationary
feature is the variance of the initial observation, which would remain a free parameter.
For such a model wtt = a2w(t − 1)(t − 1) + s 2 + ÷(1 + a)/ (1 − a) (t = 2, . . . , T ). A fully
stationary specification results from making the additional assumption:

w11 =
÷

(1 − a)2
+

s 2

(1 − a2)
. (B2)

This gives rise to a model in which W only depends on the three parameters a, ÷,
and s 2. Nevertheless, identification still requires T ¾ 3, despite the fact that with
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T = 2, W has three different coefficients. To see this, note that in their relationship to
a, ÷, and s 2 the equation for the second diagonal term is redundant:

wtt = s 2h∗ + s
2
° (t = 1, 2), w12 = a(w11 − s 2h∗) + s

2
h∗,

where s 2h∗ = s
2
h / (1 − a)

2 and s 2° = s
2/ (1 − a2). The intuition for this is that both

hi and yi (t − 1) induce serial correlation on yit , but their separate effects can only be
distinguished if at least first and second order autocorrelations are observed.
Under full stationarity (assumptions A1, A2, B1, and B2) it can be shown that

E(Dyi (t + 1)Dyit)
E[(Dyit)2]

= −
(1 − a)
2

.

This is a well-known expression for the bias of the least squares regression in first-
differences under homoskedasticity, which can be expressed as the orthogonality
conditions

E{Dyit[(2yi (t + 1) − yit − yi (t − 1)) − aDyit]} = 0 (t = 2, . . . , T − 1).

With T = 3 this implies that a would also satisfy

a = (w22 +w11 − 2w21)−1[2(w32 −w31) +w11 −w22].

2.2.2. Aggregate shocks

Under assumptions A1 or A1′, the errors vit are idiosyncratic shocks that are assumed
to have cross-sectional zero mean at each point in time. However, if vit contains
aggregate shocks that are common to all individuals its cross-sectional mean will not
be zero in general. This suggests replacing A1 with the assumption

E∗(vit | yt − 1i ) = dt (t = 2, . . . , T ), (31)

which leads to an extension of the basic specification in which an intercept is allowed
to vary over time:

yit = dt + ayi (t − 1) + hi + v
†
it , (32)

where v†it = vit − dt . We can now set E(hi) = 0 without lack of generality, since
a nonzero mean would be subsumed in dt . Again, formally Equation (32) is just a
specialization of Equations (7) and (11).
With fixed T , this extension does not essentially alter the previous discussion

since the realized values of the shocks dt can be treated as unknown period specific
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parameters. With T = 3, a, d2 and d3 are just identified from the three moment
conditions 10,

E( yi2 − d2 − ayi1) = 0, (33)

E( yi3 − d3 − ayi2) = 0, (34)

E[ yi1(Dyi3 − Dd3 − aDyi2)] = 0. (35)

In the presence of aggregate shocks the mean stationarity condition in assumption
B1 may still be satisfied, but it will be interpreted as an assumption of mean stationarity
conditional upon an aggregate effect (which may or may not be stationary), since
now E(Dyit) is not constant over t. The orthogonality conditions in Equation (30)
remain valid in this case with the addition of a time varying intercept. With T = 3,
assumption B1 adds to Equations (33–35) the orthogonality condition:

E[Dyi2( yi3 − d3 − ayi2)] = 0. (36)

2.2.3. Identification and unit roots

If one is interested in the unit root hypothesis, the model needs to be specified under
both stable and unit roots environments. We begin by considering model (27) under
assumption A1 as the stable root specification. As for the unit root specification, it is
natural to consider a random walk without drift. The model can be written as

yit = ayi (t − 1) + (1 − a)h∗
i + vit , (37)

where h∗
i denotes the steady state mean of the process when |a| < 1. Thus, when

a = 1 we have

yit = yi (t − 1) + vit , (38)

so that heterogeneity only plays a role in the determination of the starting point of the
process. Note that in this model the covariance matrix of ( yi1, h∗

i ) is left unrestricted.
An alternative unit root specification would be a random walk with an individual

specific drift given by hi:

yit = yi (t − 1) + hi + vit , (39)

but this is a model with heterogeneous linear growth that would be more suited for
comparisons with stationary models that include individual trends.

10 Further discussion on models with time effects is contained in Crepon, Kramarz and Trognon (1997).
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The main point to notice here is that in model (37) a is not identified from the
moments derived from assumption A1 when a = 1. This is so because in the unit
root case the lagged level will be uncorrelated with the current innovation, so that
Cov( yi (t − 2),Dyi (t − 1)) = 0. As a result, the rank condition will not be satisfied for the
basic orthogonality conditions (28). In model (39) the rank condition is still satisfied
since Cov( yi (t − 2),Dyi (t − 1)) Ñ 0 due to the cross-sectional correlation induced by the
heterogeneity in shifts.
As noted by Arellano and Bover (1995), this problem does not arise when we

consider a stable root specification that in addition to assumption A1 satisfies the mean
stationarity assumption B1. The reason is that when a = 1 the moment conditions (30)
remain valid and the rank condition is satisfied since Cov(Dyi (t − 1), yi (t − 1)) Ñ 0.

2.2.4. The value of information with highly persistent data

The cross-sectional regression coefficient of yit on yi (t − 1), øt , can be expressed as a
function of the model’s parameters. For example, under full stationarity it can be shown
to be

ø = a +
Cov(hi, yi (t − 1))
Var( yi (t−1))

= a +
(1 − a)l2

l2 + (1 − a)/ (1 + a)
¾ a (40)

where l = sh /s . Often, empirically ø is near unity. For example, with firm employment
data, Alonso-Borrego and Arellano (1999) found ø = 0.995,a = 0.8, and l = 2. Since
for any 0 ¶ a ¶ ø there is a value of l such that ø equals a pre-specified value,
in view of lack of identification of a from the basic moment conditions (28) when
a = 1, it is of interest to see how the information about a in these moment conditions
changes as T and a change for values of ø close to one.
For the orthogonality conditions (28) the inverse of the semiparametric information

bound about a can be shown to be

s 2T = s
2

{
T − 2∑
s = 1

E( y∗is y
s′
i )[E( y

s
i y
s′
i )]

−1E( ysi y
∗
is )

}−1

(41)

where the y∗is are orthogonal deviations relative to ( yi1, . . . , yi (T − 1))
′ 11. The expres-

sion s 2T gives the lower bound on the asymptotic variance of any consistent estimator
of a based exclusively on the moments (28) when the process generating the data is
the fully stationary model [Chamberlain (1987)].

11 That is, y∗is is given by y
∗
is = cs[ yis − (T − s − 1)

−1( yi (s + 1) + · · · + yi (T − 1))] (s = 1, . . . , T − 2), where
c2s = (T − s − 1)/ (T − s) [cf., Arellano and Bover (1995), and discussion in the next section].
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Table 1
Inverse information bound for a (sT ) when ø = 0.99

T sT a

(0, 9.9) (0.2, 7.2) (0.5, 4.0) (0.8, 1.4) (0.9, 0.7) (0.99, 0)

3 14.14 15.50 17.32 18.97 19.49 19.95

4 1.97 2.66 4.45 8.14 9.50 10.00

5 1.21 1.55 2.43 4.71 5.88 6.34

10 0.50 0.57 0.71 1.18 1.61 1.85

15 0.35 0.38 0.44 0.61 0.82 0.96

Asympt. b 0.26 0.25 0.22 0.16 0.11 0.04

a Values for different (a, l) pairs such that ø = 0.99.
b Asymptotic standard deviation at T = 15,

√
(1 − a2)/15.

In Table 1 we have calculated values of sT for various values of T and for different
pairs (a, l) such that ø = 0.9912. Also, the bottom row shows the time series
asymptotic standard deviation, evaluated at T = 15, for comparisons.
Table 1 shows that with ø = 0.99 there is a very large difference in information

between T = 3 and T > 3. Moreover, for given T there is less information on a
the closer a is to ø. Often, there will be little information on a with T = 3 and the
usual values of N . Additional information may be acquired from using some of the
assumptions discussed above. Particularly, large gains can be obtained from employing
mean stationarity assumptions, as suggested from Monte Carlo simulations reported
by Arellano and Bover (1995) and Blundell and Bond (1998).
In making inferences about a we look for estimators whose sampling distribution

for large N can be approximated by N (a, s 2T /N ). However, there may be substantial
differences in the quality of the approximation for a given N , among different
estimators with the same asymptotic distribution. We shall return to these issues in
the section on estimation.

2.3. Using stationarity restrictions

Some of the lessons from the previous section on alternative restrictions in autoregres-
sive models are also applicable to regression models with predetermined (or strictly
exogenous) variables of the form:

yit = d′wit + hi + vit , (42)

E∗(vit |wti ) = 0,

12 Under stationarity s 2T depends on a, l and T but is invariant to s
2.
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where, e.g., wit = ( yi (t−1), xit)′. As before, the basic moments are E[wt − 1i (Dyit − d′Dwit)]
= 0. However, if E∗(vit |wti , hi) = 0 holds, the parameter vector d also satisfies the Ahn–
Schmidt restrictions

E[( yit − d′wit)(Dyi (t − 1) − dDwi (t − 1))] = 0. (43)

Moreover, if Cov(Dwit , hi) = 0 the Arellano–Bover restrictions are satisfied, encom-
passing the previous ones 13:

E[Dwit( yit − d′wit)] = 0. (44)

Blundell and Bond (1999) use moment restrictions of this type in their empirical
analysis of Cobb–Douglas production functions using company panel data. They
find that the instruments available for the production function in first differences
are not very informative, due to the fact that the series on firm sales, capital and
employment are highly persistent. In contrast, the first-difference instruments for
production function errors in levels appear to be both valid and informative.
Sometimes the effect of time-invariant explanatory variables is of interest, a

parameter g , say, in a model of the form

yit = d′wit + gzi + hi + vit .

However, g cannot be identified from the basic moments because the time-invariant
regressor zi is absorbed by the individual effect. Thus, we could ask whether the
addition of orthogonality conditions involving errors in levels such as Equations (43)
or (44) may help to identify such parameters. Unfortunately, often it would be difficult
to argue that E(hiDwit) = 0 without at the same time assuming that E(ziDwit) = 0, in
which case changes in wit would not help the identification of g . An example in which
the levels restrictions may be helpful is the following simple model for an evaluation
study due to Chamberlain (1993).

An evaluation of training example. Suppose that y0it denotes earnings in the absence
of training, and that there is a common effect of training for all workers. Actual
earnings yit are observed for t = 1, . . . , s − 1, s + 1, . . . , T . Training occurs in period s
(1 < s < T ), so that yit = y0it for t = 1, . . . , s − 1, and we wish to measure its effect on
earnings in subsequent periods, denoted by bs + 1, . . . , bT :

yit = y
0
it + btdi (t = s + 1, . . . , T ), (45)

where di is a dummy variable that equals 1 in the event of training. Moreover, we
assume

y0it = ay
0
i (t − 1) + hi + vit , (46)

13 Strictly exogenous variables that had constant correlation with the individual effects were first
considered by Bhargava and Sargan (1983).
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together with E∗(vit | y0(t − 1)i ) = 0 and Cov(Dy0it , hi) = 0. We also assume that di depends
on lagged earnings yi1, . . . , yi (s − 1) and hi, but conditionally on these variables it is
randomly assigned. Then we have:

yi (s + 1) = a2 yi (s − 1) + bs + 1di + (1 + a)hi + (vi (s + 1) + avis),

yit = ayi (t − 1) + ( bt − abt − 1)di + hi + vit (t = s + 2, . . . , T ).

From our previous discussion, the model implies the following orthogonality
conditions:

E[ yt − 2i (Dyit − aDyi (t − 1))] = 0 (t = 1, . . . , s − 1), (47)

E{ ys − 2i [ yi (s + 1) − (1 + a + a2) yi (s − 1) + a(1 + a) yi (s − 2) − bs + 1di]} = 0, (48)

E

{
ys − 1i

[
yi (s + 2) −

(1 + a + a2)
(1 + a)

yi (s + 1) +
a2

(1 + a)
yi (s − 1)

−

(
bi (s + 2) −

(1 + a + a2)
(1 + a)

bi (s + 1)

)
di

]}
= 0.

(49)

E[ yt − 2i (Dyit − aDyi (t − 1) +D( bt − abt − 1)di)] = 0 (t = s + 3, . . . , T ). (50)

The additional orthogonality conditions implied by mean stationarity are:

E[Dyi (t − 1)( yit − ayi (t − 1))] = 0 (t = 1, . . . , s − 1), (51)

E[Dyi (s − 1)( yi (s + 1) − a2 yi (s − 1) − bs + 1di)] = 0, (52)

E[Dyi (s − 1)( yit − ayi (t − 1) + ( bt − abt − 1)di)] = 0 (t = s + 2, . . . , T ). (53)

We would expect E(Dyi (s − 1) di)< 0, since there is evidence of a dip in the pretraining
earnings of participants [e.g., Ashenfelter and Card (1985)]. Thus, Equation (52)
can be expected to be more informative about bs + 1 than Equation (48). Moreover,
identification of bs + 1 from Equation (48) requires that s ¾ 4, otherwise only changes
in bt would be identified from Equations (47–50). In contrast, note that identification
of bs + 1 from Equation (52) only requires s ¾ 3.

2.4. Models with multiplicative effects

In the models we have considered so far, unobserved heterogeneity enters exclusively
through an additive individual specific intercept, while the other coefficients are
assumed to be homogeneous. Nevertheless, an alternative autoregressive process could,
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for example, specify a homogeneous intercept and heterogeneity in the autoregressive
behaviour:

yit = g + (a + hi)yi (t − 1) + vit .

This is a potentially useful model if one is interested in allowing for agent specific
adjustment cost functions, as for example in labour demand models. If we assume
E(vit | yt − 1i ) = 0 and yit > 0, the transformed model,

yit y
−1
i (t − 1) = g y

−1
i (t − 1) + a + hi + v

+
it ,

where v+it = vit y−1i (t − 1), also has E(v
+
it | yt − 1i ) = 0. Thus, the average autoregressive

coefficient a and the intercept g can be determined in a way similar to the linear
models from the moment conditions E(hi + v+it) = 0 and E( y

t − 2
i Dv+it) = 0. Note that in

this case, due to the nonlinearity, the argument requires the use of conditional mean
assumptions as opposed to linear projections.
Another example is an exponential regression of the form

E( yit |xti , yt − 1i , hi) = exp( bxit + hi).

This case derives its motivation from the literature on Poisson models for count data.
The exponential specification is chosen to ensure that the conditional mean is always
non-negative. With count data a log-linear regression is not a feasible alternative since
a fraction of the observations on yit will be zeroes.
A third example is a model where individual effects are interacted with time effects

given by

yit = bxit + dthi + vit .

A model of this type may arise in the specification of unrestricted linear projections
as in Equations (21) and (22), or as a structural specification in which an aggregate
shock dt is allowed to have individual-specific effects on yit measured by hi.
Clearly, in such multiplicative cases first-differencing does not eliminate the

unobservable effects, but as in the heterogeneous autoregression above there are simple
alternative transformations that can be used to construct orthogonality conditions.

A transformation for multiplicative models. Generalizing the previous specifications
we have

ft(w
T
i , g) = gt(w

t
i , b)hi + vit , E(vit |wti ) = 0, (54)

where git = gt(wti , b) is a function of predetermined variables and unknown parameters
such that git > 0 for all wti and b , and fit = ft(w

T
i , g) depends on endogenous and
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predetermined variables, as well as possibly also on unknown parameters. Dividing by
git and first differencing the resulting equation, we obtain

fi (t − 1) − (g
−1
it gi (t − 1)) fit = v

+
it , (55)

and

E(v+it |wt − 1i ) = 0.

where v+it = vi (t − 1) − (g
−1
it gi (t − 1))vit .

Any function of wt − 1i will be uncorrelated with v+it and therefore can be used as an
instrument in the determination of the parameters b and g . This kind of transformation
has been suggested by Chamberlain (1992b) and Wooldridge (1997). Notice that its
use does not require us to condition on hi. However, it does require gt to be a function
of predetermined variables as opposed to endogenous variables.

Multiple individual effects. We turn to consider models with more than one het-
erogeneous coefficient. Multiplicative random effects models with strictly exogenous
variables were considered by Chamberlain (1992a), who found the information bound
for a model with a multivariate individual effect. Chamberlain (1993) considered
the identification problems that arise in models with predetermined variables when
the individual effect is a vector with two or more components, and showed lack of
identification of a in a model of the form

yit = ayi (t − 1) + bixit + hi + vit , (56)

E(vit |xti , yt − 1i ) = 0 (t = 2, . . . , T ). (57)

As an illustration consider the case where xit is a 0 − 1 binary variable. Since
E(hi|xTi , yT − 1i ) is unrestricted, the only moments that are relevant for the identification
of a are

E(Dyit − aDyi (t − 1)|xt − 1i , yt−2i ) = E( biDxit |xt − 1i , yt − 2i ) (t = 3, . . . , T ).

Letting wti = (xti , y
t
i ), the previous expression is equivalent to the following two

conditions:

E(Dyit − aDyi (t − 1)|wt − 2i , xi (t − 1) = 0) = E( bi|wt − 2i , xi (t − 1) = 0)

× Pr(xit = 1|wt − 2i , xi (t − 1) = 0),
(58)

E(Dyit − aDyi (t − 1)|wt − 2i , xi (t − 1) = 1) = − E( bi|wt − 2i , xi (t − 1) = 1)

× Pr(xit = 0|wt − 2i , xi (t − 1) = 1).
(59)

Clearly, if E( bi|wt − 2i , xi (t − 1) = 0) and E( bi|wt − 2i , xi (t − 1) = 1) are unrestricted, and T
is fixed, the autoregressive parameter a cannot be identified from Equations (58) and
(59).
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Let us consider some departures from model (56–57) under which a would be
potentially identifiable. Firstly, if x were a strictly exogenous variable, in the sense
that we replaced Equation (57) with the assumption E(vit |xTi , yt − 1i ) = 0, a could be
identifiable since

E(Dyit − aDyi (t − 1)|xTi , yt − 2i ,D xit = 0) = 0. (60)

Secondly, if the intercept h were homogeneous, identification of a and h could result
from

E( yit − h − ayi (t − 1)|wt − 1i , xit = 0) = 0. (61)

The previous discussion illustrates the fragility of the identification of dynamic
responses from short time series of heterogeneous cross-sectional populations.
If xit > 0 in model (56–57), it may be useful to discuss the ability of transforma-

tion (55) to produce orthogonality conditions. In this regard, a crucial aspect of the
previous case is that while xit is predetermined in the equation in levels, it becomes en-
dogenous in the equation in first differences, so that transformation (55) applied to the
first-difference equation does not lead to conditional moment restrictions. The problem
is that although E(Dvit |xt − 1i , yt − 2i ) = 0, in general E[(D xit)−1Dvit |xt − 1i , yt − 2i ] Ñ 0.
The parameters a, b = E( bi), and g = E(hi) could be identifiable if x were a

strictly exogenous variable such that E(vit |xTi , yt − 1i ) = 0 (t = 2, . . . , T ), for in this
case the transformed error v+it = (D xit)

−1Dvit would satisfy E[v+it |xTi , yt − 2i ] = 0 and
E[Dv+it |xTi , yt − 3i ] = 0. Therefore, the following moment conditions would hold:

E

[(
Dyit
D xit

−
Dyi (t − 1)
D xi (t − 1)

)
− a

(
Dyi (t − 1)
D xit

−
Dyi (t − 2)
D xi (t − 1)

) ∣∣∣∣ xTi , yt − 3i

]
= 0, (62)

E

(
Dyit
D xit

− a
Dyi (t − 1)
D xit

− b
)
= 0, (63)

E

[(
D( yit /xit)
D(1/xit)

−
D( yi (t − 1)/xi (t − 1))
D(1/xi (t − 1))

)
− a

(
D( yi (t − 1)/xit)
D(1/xit)

−
D( yi (t − 2)/xi (t − 1))
D(1/xi (t − 1))

) ∣∣∣∣ xTi , yt − 3i

]
= 0,

(64)

E

(
D( yit /xit)
D(1/xit)

− a
D( yi (t − 1)/xit)
D(1/xit)

− g
)
= 0. (65)

A similar result would be satisfied if xit in Equation (56) were replaced by
a predetermined regressor that remained predetermined in the equation in first
differences like xi (t − 1). The result is that transformation (55) could be sequentially
applied to models with predetermined variables and multiple individual effects, and
still produce orthogonality conditions, as long as T is sufficiently large, and the
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transformed model resulting from the last but one application of the transformation
still has the general form (54) (i.e., no functions of endogenous variables are multiplied
by individual specific parameters).

A heterogeneous AR(1) model. As another example, consider a heterogeneous
AR(1) model for a 0 − 1 binary indicator yit :

yit = hi + ai yi (t − 1) + vit , (66)

E(vit | yt − 1i ) = 0,

and let us examine the (lack of) identification of the expected autoregressive
parameter E(ai) and the expected intercept E(hi). With T = 3, the only moment that
is relevant for the identification of E(ai) is

E(Dyi3| yi1) = E(aiDyi2| yi1),

which is equivalent to the following two conditions:

E(Dyi3| yi1 = 0) = E(ai| yi1 = 0, yi2 = 1) Pr( yi2 = 1| yi1 = 0), (67)

E(Dyi3| yi1 = 1) = −E(ai| yi1 = 1, yi2 = 0) Pr( yi2 = 0| yi1 = 1). (68)

Therefore, only E(ai| yi1 = 0, yi2 = 1) and E(ai| yi1 = 1, yi2 = 0) are identified. The
expected value of ai for those whose value of y does not change from period 1 to
period 2 is not identified, and hence E(ai) is not identified either.
Similarly, for T > 3 we have

E(Dyit | yt − 3i , yi (t − 2) = 0) = E(ai| yt − 3i , yi (t − 2) = 0, yi (t − 1) = 1)

×Pr( yi (t − 1) = 1| yt − 3i , yi (t − 2) = 0),

E(Dyit | yt − 3i , yi (t − 2) = 1) = −E(ai| yt − 3i , yi (t − 2) = 1, yi (t − 1) = 0)

×Pr( yi (t − 1) = 0| yt − 3i , yi (t − 2) = 1).

Note that E(ai| yt − 3i , yi (t − 2) = j, yi (t − 1) = j) for j = 0, 1 is also identified provided
E(ai| yt − 3i , yi (t − 2) = j) is identified on the basis of the first T − 1 observations.
The conclusion is that all conditional expectations of ai are identified except
E(ai| yi1 = · · · = yi (T − 1) = 1) and E(ai| yi1 = · · · = yi (T − 1) = 0).
Concerning hi, note that since E(hi| yT − 1i ) = E( yTi | yT − 1i ) − yi (T − 1)E(ai| yT − 1i ),

expectations of the form E(hi| yT − 2i , yi (T − 1) = 0) are all identified. Moreover,
E(hi| yT − 2i , yi (T − 1) = 1) is identified provided E(ai| yT − 2i , yi (T − 1) = 1) is identified.
Thus, all conditional expectations of hi are identified except E(hi| yi1 = · · · = yi (T − 1)
= 1).
Note that if Pr( yi1 = · · · = yi (T − 1) = j) for j = 0, 1 tends to zero as T increases,

E(ai) and E(hi) will be identified as T → ∞, but they may be seriously underidentified
for very small values of T .
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3. Linear models with predetermined variables: estimation

3.1. GMM estimation

Consider a model for panel data with sequential moment restrictions given by

yit =x
′
it bo + uit (t = 1, . . . , T ; i = 1, . . . , N ),

uit =hi + vit , E∗(vit | zti ) = 0
(69)

where xit is a k × 1 vector of possibly endogenous variables, zit is a p × 1 vector
of instrumental variables, which may include current values of xit and lagged values
of yit and xit , and zti = (z

′
i1, . . . , z

′
it)

′. Observations across individuals are assumed to
be independent and identically distributed. Alternatively, we can write the system of
T equations for individual i as

yi = Xibo + ui, (70)

where yi = ( yi1, . . . , yiT )′, Xi = (x′i1, . . . , x
′
iT )

′, and ui = (ui1, . . . , uiT )′.
We saw that this model implies instrumental-variable orthogonality restrictions for

the model in first-differences. In fact, the restrictions can be expressed using any
(T − 1)× T upper-triangular transformation matrix K of rank (T − 1), such that Ki = 0,
where i is a T × 1 vector of ones. Note that the first-difference operator is an example.
We then have

E(Z ′
i K ui) = 0, (71)

where Zi is a block-diagonal matrix whose tth block is given by zt′i . An optimal
GMM estimator of bo based on Equation (71) is given by

b̂ = (M ′
zx AMzx)

−1M ′
zx AMzy, (72)

where Mzx =
(∑N

i = 1 Z
′
i K Xi

)
, Mzy =

(∑N
i = 1 Z

′
i K yi

)
, and A is a consistent estimate

of the inverse of E(Z ′
i K ui u

′
iK

′ Zi) up to a scalar. Under “classical” errors (that
is, under conditional homoskedasticity E(v2it | zti ) = s 2, and lack of autocorrelation
E(vit vi (t + j) | zt + ji ) = 0 for j > 0), a “one-step” choice of A is optimal:

AC =

(
N∑
i = 1

Z ′
i K K

′Zi

)−1
. (73)

Alternatively, the standard “two-step” robust choice is

AR =

(
N∑
i = 1

Z ′
i K ũi ũ

′
i K

′ Zi

)−1
, (74)

where ũi = yi − Xib̃ is a vector of residuals evaluated at some preliminary consistent
estimate b̃ .
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Given identification, b̂ is consistent and asymptotically normal as N → ∞ for fixed
T [Hansen (1982)]. In addition, for either choice of A, provided the conditions under
which they are optimal choices are satisfied, the asymptotic variance of b̂ is

Var(b̂)R = {E(X ′
i K

′Zi)[E(Z ′
i K ui u

′
iK

′Zi)]−1E(Z ′
i K Xi)}−1, (75)

which is invariant to K . Under classical errors this becomes 14

Var(b̂)C = s 2{E(X ′
i K

′Zi)[E(Z ′
i K K

′Zi)]−1E(Z ′
i K Xi)}−1.

Moreover, as shown by Arellano and Bover (1995), a GMM estimator of the form
given in Equations (72) and (73) or (74), is invariant to the choice of K provided K
satisfies the required conditions [see also Schmidt, Ahn and Wyhowski (1992)].
As in common with other GMM estimation problems, the minimized estimation

criterion provides an asymptotic chi-squared test statistic of the overidentifying
restrictions. A two-step Sargan test statistic is given by

SR =

[
N∑
i = 1

( yi − Xib̂R)′K ′Zi

]
AR

[
N∑
i = 1

Z ′
i K( yi − Xib̂R)

]
→ c2(q − k), (76)

where b̂R is the two-step GMM estimator 15.

Orthogonal deviations. An alternative transformation to first differencing, which
is very useful in the context of models with predetermined variables, is forward
orthogonal deviations:

u∗
it = ct

[
uit −

1
(T − t)

(ui (t + 1) + · · · uiT )
]
, (77)

where c2t = (T − t)/ (T − t + 1) [Arellano and Bover (1995)]. That is, to each of the
first (T − 1) observations we subtract the mean of the remaining future observations
available in the sample. The weighting ct is introduced to equalize the variances of the
transformed errors. A closely related transformation was used by Hayashi and Sims
(1983) for time series models.
Unlike first differencing, which introduces a moving average structure in the

error term, orthogonal deviations preserve lack of correlation among the transformed
errors if the original ones are not autocorrelated and have constant variance. Indeed,

14 Under classical errors, additional moment restrictions would be available, with the result that a
smaller asymptotic variance could be achieved. The expression above simply particularizes the asymptotic
variance to a situation where additional properties occur in the population but are not used in estimation.
15 Similarly, letting ŝ 2 and b̂C be, respectively, a consistent estimate of s 2 and the one-step estimator,

the one-step Sargan statistic is given by SC = ŝ−2
[∑N

i = 1( yi − Xi b̂C)
′K ′Zi

]
AC

[∑N
i = 1 Z

′
i K( yi − Xi b̂C)

]
.
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orthogonal deviations can be regarded as the result of doing first differences to
eliminate fixed effects plus a GLS transformation to remove the serial correlation
induced by differencing.
The choice of K that produces this transformation is the forward orthogonal

deviations operator A = diag[(T − 1)/T , . . . , 1/2]1/2A+, where

A+ =

⎛⎜⎜⎜⎜⎝
1 −(T − 1)−1 −(T − 1)−1 · · · −(T − 1)−1 −(T − 1)−1 −(T − 1)−1
0 1 −(T − 2)−1 · · · −(T − 2)−1 −(T − 2)−1 −(T − 2)−1
... ... ... ... ... ...
0 0 0 · · · 1 −1/2 −1/2
0 0 0 · · · 0 1 −1

⎞⎟⎟⎟⎟⎠ .

It can be verified by direct multiplication that AA′ = I (T − 1) and A′A = IT − ii′/T ≡ Q,
which is the within-group operator. Thus, the OLS regression of y∗it on x

∗
it will give

the within-group estimator, which is the conventional estimator in static models with
strictly exogenous variables. Finally, since Q = K ′(K K ′)−1K , also A = (K K ′)−1/2K for
any upper-triangular K .
A useful computational feature of orthogonal deviations, specially so when T is not

a very small number, is that one-step estimators can be obtained as a matrix-weighted
average of cross-sectional IV estimators:

b̂ =

(
T − 1∑
t = 1

X ∗ ′
t Zt(Z

′
t Zt)

−1Z ′
t X

∗
t

)−1 T − 1∑
t = 1

X ∗ ′
t Zt(Z

′
t Zt)

−1Z ′
t y

∗
t , (78)

where X ∗
t = (x

∗ ′
1t , . . . , x

∗ ′
Nt )

′, y∗t = ( y
∗
1t , . . . , y

∗
Nt)

′, and Zt = (zt ′i , . . . , z
t ′
N )

′.

An illustration: female labour force participation and fertility. We illustrate
the previous issues with reference to an empirical relationship between female
participation and fertility, discussing a simplified version of the results reported by
Carrasco (1998) for a linear probability model 16.
A sample from PSID for 1986–1989 is used. The data consists of 1442 women aged

18–55 in 1986, that are either married or cohabiting. The left-hand side variable is a
binary indicator of participation in year t. Fertility is also a dummy variable, which
takes the value one if the age of the youngest child in t + 1 is 1. The equation also
includes an indicator of whether the woman has a child aged 2–6. The equations
estimated in levels also include a constant, age, race, and education dummies (not
reported).
In this sample it is observed that women with two children of the same sex have

a significantly higher probability of having a third child. Thus, the sex of the first
two children is used as an instrument for fertility, which is treated as an endogenous

16 We thank Raquel Carrasco for allowing us to draw freely on her dataset and models.
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Table 2
Linear probability models of female labour force participation a,b (N = 1442, 1986–1989)

Variable OLS 2SLSc WITHIN GMMd GMMe

Fertility −0.15 −1.01 −0.06 −0.08 −0.13

(8.2) (2.1) (3.8) (2.8) (2.2)

Kids 2–6 −0.08 −0.24 0.001 −0.005 −0.09

(5.2) (2.6) (0.04) (0.4) (2.7)

Sargan test 48.0 (22) 18.0 (10)

m1 19.0 5.7 −10.0 −10.0 −10.0

m2 16.0 12.0 −1.7 −1.7 −1.6

Models including lagged participation

Fertility −0.09 −0.33 −0.06 −0.09 −0.14

(5.2) (1.3) (3.7) (3.1) (2.2)

Kids 2–6 −0.02 −0.07 −0.000 −0.02 −0.10

(2.1) (1.3) (0.00) (1.1) (3.5)

Lagged participation 0.63 0.61 0.03 0.36 0.29

(42.0) (30.0) (1.7) (8.3) (6.3)

Sargan 51.0 (27) 25.0 (15)

m1 −7.0 −5.4 −13.0 −14.0 −13.0

m2 3.1 2.8 −1.3 1.5 1.2

a Heteroskedasticity robust t-ratios shown in parentheses.
b GMM IVs in bottom panel also include lags of participation up to t − 2.
c External instrument: previous children of same sex.
d IVs: all lags and leads of “kids 2–6” and “same sex” variables (strictly exogenous).
e IVs: lags of “kids 2–6” and “same sex” up to t − 1 (predetermined).

variable. The presence of a child aged 2–6 is the result of past fertility decisions,
and so it should be treated as a predetermined variable [see Carrasco (1998) for a
comprehensive discussion, and additional estimates of linear and nonlinear models].
Table 2 reports the results for two versions of the model with and without lagged

participation as a regressor, using DPD [Arellano and Bond (1988)]. The last column
presents GMM estimates in orthogonal deviations that treat fertility as endogenous,
and the “kids 2–6” and “same sex” indicators as predetermined variables. The table
also reports the results from other methods of estimation for comparisons.
There is a large gap between the OLS and 2SLS measured effects of fertility,

possibly due to measurement errors. Both OLS and 2SLS neglect unobserved
heterogeneity, despite evidence from the serial correlation statistics m1 and m2 of
persistent positive autocorrelation in the residuals in levels. Note that we would expect
the “same sex” instrumental variable to be correlated with the fixed effect. The reason
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is that it will be a predictor of preferences for children, given that the sample includes
women with less than two children.
The within-groups estimator controls for unobserved heterogeneity, but in doing

so we would expect it to introduce biases due to lack of strict exogeneity of the
explanatory variables. The GMM estimates in column 4 deal with the endogeneity of
fertility and control for fixed effects, but treat the “kids 2–6” and “same sex” variables
as strictly exogenous. This results in a smaller effect of fertility on participation
(in absolute value) than the one obtained in column 5 treating the variables as
predetermined. The hypothesis of strict exogeneity of these two variables is rejected
at the 5 percent level from the difference in the Sargan statistics in both panels.
(Both GMM estimates are “one-step”, but all test statistics reported are robust to
heteroskedasticity.)
Finally, note that the m1 and m2 statistics (which are asymptotically distributed as

a N (0, 1) under the null of no autocorrelation) have been calculated from residuals in
first differences for the within-groups and GMM estimates. So if the errors in levels
were uncorrelated, we would expect m1 to be significant, but not m2, as is the case
here [cf., Arellano and Bond (1991)].

Levels and differences estimators. The GMM estimator proposed by Arellano and
Bover (1995) combined the basic moments (71) with E(Dzituit) = 0 (t = 2, . . . , T ).
Using their notation, the full set of orthogonality conditions can be written in compact
form as

E(Z+ ′
i Hui) = 0, (79)

where Z+i is a block diagonal matrix with blocks Zi as above, and Z°i = diag (Dz
′
i2,

. . . , Dz′iT ). H is the 2(T − 1)× T selection matrix H = (K ′, I ′o)
′, where Io = (0

... IT − 1).
With these changes in notation, the form of the estimator is similar to that in
Equation (72).
As before, a robust choice of A is provided by the inverse of an unrestricted

estimate of the variance matrix of the moments N −1
∑N

i = 1 Z
+ ′
i H ũi ũ

′
iH

′Z+i . However,
this can be a poor estimate of the population moments if N is not sufficiently large
relative to T , which may have an adverse effect on the finite sample properties of
the GMM estimator. Unfortunately, in this case an efficient one-step estimator under
restrictive assumptions does not exist. Intuitively, since some of the instruments for
the equations in levels are not valid for those in differences, and conversely, not all
the covariance terms between the two sets of moments will be zero.

3.2. Efficient estimation under conditional mean independence

If lack of correlation between vit and zti is replaced by an assumption of conditional
independence in mean E(vit | zti ) = 0, the model implies additional orthogonality
restrictions. This is so because vit will be uncorrelated not only with the conditioning



3260 M. Arellano and B. Honoré

variables zti but also with functions of them. Chamberlain (1992b) derived the semi-
parametric efficiency bound for this model. Hahn (1997) showed that a GMM estimator
based on an increasing set of instruments as N tends to infinity would achieve the
semiparametric efficiency bound. Hahn discussed the rate of growth of the number of
instruments for the case of Fourier series and polynomial series.
Note that the asymptotic bound for the model based on E(vit | zti ) = 0 will be in

general different from that of E(vit | zti , hi) = 0, whose implications for linear projections
were discussed in the previous section.
Similarly, the bound for a version of the model with levels and differences

restrictions based on conditional mean independence assumptions cannot be obtained
either as an application of Chamberlain’s results. The reason is that the addition of the
level’s conditions breaks the sequential moment structure of the problem.
Let us now consider the form of the information bound and the optimal instruments

for model (69) together with the conditional mean assumption E(vit | zti ) = 0. Since
E(hi | zTi ) is unrestricted, all the information about b is contained in E(vit − vi (t + 1) | zti ) =
0 for t = 1, . . . , T − 1.
For a single period the information bound is J0t = E(dit d ′

it /wit) where dit = E(xit−
xi (t + 1) | zti ) and wit = E[(vit − vi (t + 1))2 | zti ] [cf., Chamberlain (1987)]. Thus, for a single
period the optimal instrument is mit = dit /wit , in the sense that under suitable regularity
conditions the statistic

b̃(t) =

(
N∑
i = 1

mit D x′i (t + 1)

)−1( N∑
i = 1

mit Dyi (t + 1)

)
,

satisfies
√
N (b̃(t) − b) →d N (0, J −10t ). If the errors were conditionally serially

uncorrelated, the total information would be the sum of the information bounds
for each period. So Chamberlain (1992b) proposed the following recursive forward
transformation of the first-differenced errors:

ṽi (T − 1) = vi (T − 1) − viT ,

ṽit = (vit − vi (t + 1))

−
E[(vit − vi (t + 1))ṽi (t + 1)| zt + 1i ]

E(ṽ2i (t + 1)| zt + 1i )
ṽi (t + 1)

−
E[(vit − vi (t + 1))ṽi (t + 2)| zt + 2i ]

E(ṽ2i (t + 2)| zt + 2i )
ṽi (t + 2) (80)

− · · ·

−
E[(vit − vi (t + 1))ṽi (T − 1)| zT − 1i ]

E(ṽ2i (T − 1)| zT − 1i )
ṽi (T − 1),

for t = T − 2, . . . , 1. The interest in this transformation is that it satisfies the same
conditional moment restrictions as the original errors in first-differences, namely

E(ṽit | zti ) = 0, (81)
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but additionally it satisfies by construction the lack of dependence requirement:

E(ṽit ṽi (t + j) | zt + ji ) = 0 for j = 1, . . . , T − t − 1. (82)

Therefore, in terms of the transformed errors the information bound can be written
as

J0 =
T − 1∑
t = 1

E(d̃it d̃
′
it / w̃it), (83)

where d̃it = E(x̃it | zti ) and w̃it = E(ṽ2it | zti ). The variables x̃it and ỹit denote
the corresponding transformations to the first-differences of xit and yit such that
ṽit = ỹit − x̃′it b . Thus, the optimal instruments for all periods are m̃it = d̃it / w̃it , in
the sense that under suitable regularity conditions the statistic

b̃ =

(
N∑
i = 1

T − 1∑
t = 1

m̃it x̃
′
it

)−1( N∑
i = 1

T − 1∑
t = 1

m̃it ỹit

)

satisfies
√
N (b̃ − b) →d N (0, J −10 ).

If the vit’s are conditionally homoskedastic and serially uncorrelated, so that
E(v2it | zti ) = s 2 and E(vitvi (t + j) | z

t + j
i ) = 0 for j > 0, it can be easily verified that the ṽit’s

blow down to ordinary forward orthogonal deviations as defined in Equation (77):

ṽit = vit −
1

(T − t)
(vi (t + 1) + · · · + viT ) ≡ 1

ct
v∗it for t = T − 1, . . . , 1.

In such case m̃it = cts−2E(x∗it | zti ) so that

b̃ =

(
N∑
i = 1

T − 1∑
t = 1

E(x∗it | zti )x∗′
it

)−1( N∑
i = 1

T − 1∑
t = 1

E(x∗it | zti )y∗it

)
, (84)

and

J0 =
1
s 2

T − 1∑
t = 1

E[E(x∗it | zti )E(x∗′
it | zti )]. (85)

If we further assume that the conditional expectations E(x∗it | zti ) are linear, then

J0 =
1
s 2

T − 1∑
t = 1

E(x∗it z
t′
i )[E(z

t
i z
t′
i )]

−1E(zti x
∗′
it ), (86)

which coincides with the inverse of the asymptotic covariance matrix of the simple
IV estimator given in Equation (78) under the stated assumptions. Note that the
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assumptions of conditional homoskedasticity, lack of serial correlation, and linearity
of E(x∗it | zti ) would imply further conditional moment restrictions that may lower the
information bound for b . Here, we merely particularize the bound for b based on
E(vit | zti ) = 0 to the case where the additional restrictions happen to occur in the
population but are not used in the calculation of the bound.

3.3. Finite sample properties of GMM and alternative estimators

For sufficiently large N , the sampling distribution of the GMM estimators discussed
above can be approximated by a normal distribution. However, the quality of the
approximation for a given sample size may vary greatly depending on the quality
of the instruments used. Since the number of instruments increases with T , many
overidentifying restrictions tend to be available even for moderate values of T , although
the quality of these instruments is often poor.
Monte Carlo results on the finite sample properties of GMM estimators for panel

data models with predetermined variables have been reported by Arellano and Bond
(1991), Kiviet (1995), Ziliak (1997), Blundell and Bond (1998) and Alonso-Borrego
and Arellano (1999), amongst others. A conclusion in common to these studies is that
GMM estimators that use the full set of moments available for errors in first-differences
can be severely biased, specially when the instruments are weak and the number of
moments is large relative to the cross-sectional sample size.
From the literature on the finite sample properties of simultaneous equations

estimators, we know that the effect of weak instruments on the distributions of 2SLS
and LIML differs substantially, in spite of the fact that both estimators have the
same asymptotic distribution. While LIML is approximately median unbiased, 2SLS
is biased towards OLS, and in the case of lack of identification in the population it
converges to a random variable with the OLS probability limit as its central value.
In contrast, LIML has no moments, and as a result its distribution has thicker tails
than that of 2SLS and a higher probability of outliers [cf., Phillips (1983)]. Anderson,
Kunitomo and Sawa (1982) carried out numerical comparisons of the distributions of
the two estimators, and concluded that LIML was to be strongly preferred to 2SLS,
specially in cases with a large number of instruments.

LIML analogue estimators. It is thus of interest to consider LIML analogues for our
models, and compare their finite sample properties with those of GMM estimators.
Following Alonso-Borrego and Arellano (1999), a non-robust LIML analogue b̂LIML1
minimizes a criterion of the form

°C( b) =
( y∗ − X ∗b)′M ( y∗ − X ∗b)
( y∗ − X ∗b)′( y∗ − X ∗b)

, (87)

where starred variables denote orthogonal deviations, y∗ = ( y∗′
1 , . . . , y

∗′
N )

′, X ∗ = (X ∗′
1 ,

. . . , X ∗′
N )

′, Z = (Z ′
1, . . . , Z

′
N )

′, and M = Z(Z ′Z)−1Z ′. The resulting estimator is

b̂LIML1 = (X ∗′M X ∗ − °̂ X ∗′X ∗)−1(X ∗′M y∗ − °̂ X ∗′ y∗), (88)
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where °̂ is the minimum eigenvalue of the matrix W ∗′MW ∗(W ∗′W ∗)−1, and W ∗ =
( y∗,X ∗).
The estimator in Equation (88) is algebraically similar to an ordinary single-

equation LIML estimator provided the model is in orthogonal deviations. This is so
in spite of having a system of equations, due to the fact that the errors in orthogonal
deviations of different equations are serially uncorrelated and homoskedastic under
classical assumptions. However, the non-robust LIML analogue does not correspond
to any meaningful maximum likelihood estimator (for example, it does not exploit
the homoskedasticity restrictions). It is only a “LIML” estimator in the sense of
the instrumental-variable interpretation given by Sargan (1958) to the original LIML
estimator, and generalized to robust contexts by Hansen, Heaton and Yaron (1996).
The robust LIML analogue b̂LIML2, or continuously updated GMM estimator in the

terminology of Hansen et al. (1996), minimizes a criterion of the form

°R( b) = ( y∗ − X ∗b)′Z

(
N∑
i = 1

Z ′
i u

∗
i ( b)u

∗
i ( b)

′Zi

)−1
Z ′( y∗ − X ∗b), (89)

where u∗
i ( b) = y∗i − X

∗
i b . Note that LIML2, unlike LIML1, does not solve a

standard minimum eigenvalue problem, and requires the use of numerical optimization
methods 17.
In contrast to GMM, the LIML estimators are invariant to normalization. Hillier

(1990) showed that the alternative normalization rules adopted by LIML and 2SLS
were at the root of their different sampling properties. He also showed that a
symmetrically normalized 2SLS estimator had similar properties to those of LIML.
Alonso-Borrego and Arellano (1999) considered symmetrically normalized GMM
(SNM) estimators for panel data, and compared them with ordinary GMM and LIML
analogues by mean of simulations. The main advantage of robust SNM over robust
LIML is computational, since the former solves a minimum eigenvalue problem while
the latter does not. It also avoids potential problems of non-convergence with LIML2,
as reported by Alonso-Borrego and Arellano (1999).
The Monte Carlo results and the empirical illustrations for autoregressive models

reported by Alonso-Borrego and Arellano (1999) showed that GMM estimates can
exhibit large biases when the instruments are poor, while the symmetrically normalized
estimators (LIML and SNM) remained essentially unbiased. However, LIML and SNM
always had a larger interquartile range than GMM, although the differences were small
except in the almost unidentified cases.

17 Other one-step methods that achieve the same asymptotic efficiency as robust GMM or LIML
estimators are the empirical likelihood [Back and Brown (1993), Qin and Lawless (1994) and Imbens
(1997)] and exponential tilting estimators [Imbens, Spady and Johnson (1998)]. Nevertheless, little is
known as yet on the relative merits of these estimators in panel data models, concerning computational
aspects and their finite sample properties.
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3.4. Approximating the distributions of GMM and LIML for AR(1) models when the
number of moments is large

Within-groups estimators of autoregressive models, and more generally of models with
predetermined variables, are known to be consistent as T tends to infinity, but are
inconsistent for fixed T and large N [cf., Nickell (1981), Anderson and Hsiao (1981)].
On the other hand, the estimators reviewed above are consistent for fixed T but the
number of orthogonality conditions increases with T . In panels in which the value of
T is not negligible relative to N (such as the PSID household incomes panel in the
US, or the balance sheet-based company panels that are available in many countries),
the knowledge of the asymptotic behaviour of the estimators as both T and N tend to
infinity may be useful in assessing alternative methods.
Alvarez and Arellano (1998) obtained the asymptotic properties of within-groups

(WG), one-step GMM, and non-robust LIML for a first-order autoregressive model
when both N and T tend to infinity. Hahn (1998) also obtained the asymptotic
properties of WG under more general conditions. The main results can be summarized
in the following proposition.

Proposition 1. Let yit = ayi (t − 1) + hi + vit , with vit | yt − 1i , hi ~ i.i.d.N (0, s 2),
(t = 1, . . . , T ) and yi0|hi ~ N [hi/ (1 − a), s 2/ (1 − a2)]. Also let hi ~ i.i.d.N (0, s 2h ).
Then, as both N and T tend to infinity, provided T/N → c, 0 ¶ c ¶ 2, within-groups,
GMM1, and LIML1 are consistent for a. Moreover,

√
NT

[
âGMM1 −

(
a −

1
N
(1 + a)

)]
→d N (0, 1 − a2), (90)

√
NT

[
âLIML1 −

(
a −

1
(2N − T )

(1 + a)
)]

→d N (0, 1 − a2). (91)

Also, provided N/T 3 → 0:

√
NT

[
âWG −

(
a −

1
T
(1 + a)

)]
→d N (0, 1 − a2). (92)

Proof: See Alvarez and Arellano (1998) 18.

The consistency result contrasts with those available for the structural equation setting,
where 2SLS is inconsistent when the ratio of number of instruments to sample size
tends to a positive constant [cf., Kunitomo (1980), Morimune (1983), Bekker (1994)].
Here the number of instruments, which is given by T (T − 1)/2, increases very fast
and yet consistency is obtained. The intuition for this result is that in our context as

18 Here, for notational convenience, we assume that yi0 is also observed, so that the effective number
of time series observations will be T + 1.
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T tends to infinity the “simultaneity bias” tends to zero, and so closeness of GMM1
or LIML1 to OLS in orthogonal deviations (ie. within-groups) becomes a desirable
property.
Note that when T/N → 0 the fixed T results for GMM1 and LIML1 remain

valid, but within-groups, although consistent, has an asymptotic bias in its asymptotic
distribution (which would only disappear if N/T → 0). However, when T/N tends to a
positive constant, within-groups, GMM1 and LIML1 exhibit negative biases in their
asymptotic distributions. The condition that c > 2 is not restrictive since GMM1 and
LIML1 are only well defined for (T − 1)/N ¶ 1. Thus, for T < N the GMM1 bias is
always smaller than the within-groups bias, and the LIML1 bias is smaller than the
other two.
Another interesting feature is that the three estimators are asymptotically efficient in

the sense of attaining the same asymptotic variance as the within-groups estimator as
T → ∞. However, Alvarez and Arellano (1998) show that the standard formulae for
fixed T estimated variances of GMM1 and LIML1, which depend on the variance of
the fixed effect, remain consistent estimates of the asymptotic variances as T → ∞.
These results provide some theoretical support for LIML1 over GMM1. They also

illustrate the usefulness of understanding the properties of panel data estimators as
the time series information accumulates, even for moderate values of T : in a fixed
T framework, GMM1 and LIML1 are asymptotically equivalent, but as T increases
LIML1 has a smaller asymptotic bias than GMM1.

The crude GMM estimator in first differences. Alvarez and Arellano (1998) also show
that the crude GMM estimator (CIV) that neglects the autocorrelation in the first
differenced errors (ie., one-step GMM in first-differences with weight matrix equal
to (Z ′Z)−1) is inconsistent as T/N → c > 0, despite being consistent for fixed T . The
result is:

âCIV →p a − (1 + a)
2

(
c

2 − (1 + a)(2 − c)/2

)
. (93)

The intuition for this result is that the “simultaneity bias” of OLS in first differences
(unlike the one for orthogonal deviations) does not tend to zero as T → ∞.
Thus, for fixed T the IV estimators in orthogonal deviations and first differences
are both consistent, whereas as T increases the former remains consistent but the
latter is inconsistent. Moreover, notice that the bias may be qualitatively relevant.
Standard fixed-T large-N GMM theory would just describe the CIV estimator as being
asymptotically less efficient than GMM1 as a consequence of using a non-optimal
choice of weighting matrix.

4. Nonlinear panel data models

The ability to difference out the individual specific effect as was done in the previous
sections relies heavily on the linear or multiplicative way in which it entered the model.
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Many simple cross sectional models have a constant that does not enter in this way.
This is for example true for all the limited dependent variable models discussed in
Chapters 9 and 10 of Amemiya (1985). Introducing an individual specific effect as an
individual specific constant in those models therefore results in models that cannot be
estimated by the methods discussed so far. As will be seen in the following sections,
the currently available methods for dealing with these models, rely on insights that
are model-specific and that do not always seem to be useful for similar, but slightly
different models. The main exception to this is the conditional maximum likelihood
approach which has been used to construct estimators for some exponential family
models. We discuss this method in the next section.
Unfortunately, there are many models for which it is not possible to use the

conditional likelihood approach to eliminate the individual specific effect. For some of
those models, alternative appoaches have been developed. In Sections 6 and 7, we will
review some of the progress that has been made in the area of estimation of limited
dependent variable models with individual-specific, “fixed”, effects 19. This literature
is closely related to the literature that deals with estimation of semiparametric limited
dependent variables models, in that it is usually not necessary to specify a parametric
form for the distribution of the underlying errors. The models are also semiparametric
in the sense that the distribution of the individual specific effects conditional on the
explanatory variable, is left unspecified. It is therefore not surprising that there is a
close relationship between some of the approaches that are discussed here, and some
approaches that have been taken to estimation of semiparametric limited dependent
variables models. Indeed, in some cases the estimators for the panel data models have
preceded the “corresponding” estimators for the cross sectional models.
The main limitation of much of the literature on nonlinear panel data methods, is that

it is assumed that the explanatory variables are strictly exogenous in the sense that some
assumptions will be made on the errors conditional on all (including future) values
of the explanatory variables. As was pointed out earlier in this chapter, many of the
recent advances in estimation of linear panel data models have focused on relaxing this
assumption. In Section 8, we will discuss how some of the methods can be generalized
to allow for lagged dependent variables, but at this point very little is known about
estimation of nonlinear panel data models with predetermined explanatory variables.
The discussion of nonlinear panel data models in the next three sections will focus

entirely on standard nonlinear econometric models in which the parameter that is
usually interpreted as an intercept, is allowed to be individual specific. This seems
like a natural first step in understanding the value and limitations of panel data when
the model of interest is nonlinear. However, it is clear that knowing the “parameters

19 Even though one often imagines a random sample of individuals, and hence random draws of the
individual specific effects, it is customary to call the effect “fixed” when no assumptions are made on
its relationship with other explanatory variables. A random effect is one which has been modelled in
some manner.
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of interest” in the models discussed below does not always allow one to infer all the
quantities of interest. For example, in the fixed effects logit model below, knowing
b will not allow one to infer the effect of one of the explanatory variables on the
probability distribution of the dependent variable, although knowing the vector of b’s
will allow one to infer the relative effects of the explanatory variables. This problem is
due to the semiparametric nature of the nonlinear models considered here, and is not
particular to panel data. On the other hand, if the censoring in Equation (103) below
is due to top – or bottom – coding of the true dependent variable of interest, then the
interpretation of the parameters of the censored regression model is exactly the same
as the interpretation of the parameters of a linear panel data model. The same can
sometimes be said for the selection models discussed below.
Another limitation of most of the discussion here is that it focuses on the extreme

case where no assumptions are made on the relationship between the individual specific
effect and the explanatory variables. Whether a more “random” effects approach where
some assumptions are made on how the distribution of this effect depends on the
explanatory variables is more useful, depends on the context (and one’s taste). In
section 9 we briefly discuss some recent advances in this area. We devote much less
space to that topic because many of the new developments there are by-products
of developments in other areas of econometrics. For example, recent developments
in Bayesian econometrics and in simulation-based inference have implications for
nonlinear random effects panel data models, but the main new insights are more
general, and not really tied to panel data.

5. Conditional maximum likelihood estimation

In a static linear model, one can justify treating the individual specific effects as
parameters to be estimated by reference to the Frisch–Waugh Theorem: OLS (or
normal maximum likelihood) on individual specific dummy variables is numerically
equivalent to OLS on deviations from means. This means that including individual
specific dummies yields a consistent estimator of the slope parameters (as n goes to
infinity), even though the number of parameters is also going to infinity. Unfortunately,
as was pointed in the classic paper by Neyman and Scott (1948), it is generally not the
case that the maximum likelihood estimator will retain its nice asymptotic properties
when the number of parameters is allowed to increase with sample size. This is for
example seen by considering the maximum likelihood estimator of the variance in a
static linear panel data model with normal errors: because the maximum likelihood
estimator does not make the degrees-of-freedom correction, it will be inconsistent if
the number of parameters is of order n.
Conditional maximum likelihood estimation is a method which, when it is

applicable, can be used to construct consistent estimators of panel data models in the
presence of individual specific effects. The idea is as follows. Suppose that a random
variable, yit , has distribution f (·; q ,ai) where q is the parameter of interest and is
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common for all i, whereas ai is a nuisance parameter which is allowed to differ across i.
A sufficient statistic, Ti, for ai is a function of the data such that the distribution of
the data given Ti does not depend on ai. However, it might well depend on q . If that
is the case, then one can estimate q by maximum likelihood using the conditional
distribution of the data given the sufficient statistics. Andersen (1970) proved that the
resulting estimator is consistent and asymptotically normal under appropriate regularity
conditions. In the two subsections below, we give examples of how the conditional
maximum likelihood estimator can be used to construct estimators of the panel data
logit and the panel data Poisson regression models.
The problem with conditional maximum likelihood estimation as a general prescrip-

tion for constructing estimators of nonlinear panel data models is that it is not always
possible to find sufficient statistics such that the conditional distribution of the data
conditional on the sufficient statistic will depend on q . This is the case for many of
the nonlinear models used in econometrics.

5.1. Conditional maximum likelihood estimation of logit models

The simplest interesting nonlinear model for which the conditional likelihood approach
works, is the “textbook” logit model studied in Rasch (1960, 1961). With two time
periods and an individual specific constant we have,

yit = 1 {xitb + ai + eit ¾ 0} t = 1, 2, i = 1, . . . , n

where ei1 and ei2 are independent and logistically distributed, conditional on ai, xi1, xi2.
It follows that

Pr ( yit = 1|xi1, xi2,ai) =
exp (xitb + ai)

1 + exp (xitb + ai)
. (94)

In this case it is easy to see how the conditional likelihood approach “eliminates”
the individual specific effect. Define events A and B by A = { yi1 = 0, yi2 = 1} and
B = { yi1 = 1, yi2 = 0}. It is then an easy exercise to show that

Pr (yi1 = 0, yi2 = 1| yi1 + yi2 = 1, xi1, xi2,ai) = Pr (A|A ∪ B, xi1, xi2,ai)

=
1

1 + exp ((xi1 − xi2) b)
. (95)

In words, if we restrict the sample to the observations for which yit changes, then the
individual specific effects do not enter the distribution of ( yi1, yi2) given (xi1, xi2,ai)
and the distribution of yi1 given (xi1, xi2) has the form of a logit model with explanatory
variable xi1 − xi2 and coefficient b . Intuitively, the implication is that if we restrict the
sample to the observations for which yit changes over time, then b can be estimated
by estimating a logit in the restricted sample without having to specify the distribution
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of the individual specific effects. In a sense, conditioning on yi1 + yi2 = 1 has the same
effect as differencing the data in a linear panel data model.
More generally, if there are T > 2 observations for each individual, the conditional

distribution of ( yi1, . . . , yit) given
∑T

t = 1, yit is

P

(
yi1, . . . , yit |

T∑
t = 1

yit , xi1, . . . , xit ,ai

)
=

exp
(∑T

t = 1 yitxitb
)

∑
(d1, ..., dt )∈B exp

(∑T
t = 1 dtxitb

) ,
(96)

where B is the set of all sequences of zeros and ones that have
∑T

t = 1 dit =
∑T

t = 1 yit .

Formally this means that
∑T

t = 1 yit is a sufficient statistic for ai, and the implication
is that one can use Equation (96) to estimate b . Chamberlain (1980) generalized
Equation (96) by deriving the conditional likelihood for the multinomial logit model.
When T is large, the number of terms in the denominator of Equation (96) will

be large, and and it can be computationally burdensome to calculate the conditional
maximum likelihood estimator. In that case one can estimate b by applying the logic
leading to Equation (95) to all pairs of observations for a given individual. In other
words, one can maximize

n∑
i = 1

(∑
s < t

log

(
exp ( yit (xit − xis) b)
1 + exp ((xit − xis) b)

))
.

Unless T = 2, this objective function is not a (log-)likelihood, and it will generally
be less efficient than the conditional maximum likelihood estimator. The asymptotic
distribution of the estimator can be found by noting that it is an extremum estimator.

5.2. Poisson regression models

The Poisson regression model with individual specific constants provides another
example in which the conditional maximum likelihood estimator can be used. This
is a special case of the multiplicative model discussed earlier. For simplicity, consider
the case where there are two observations for each individual:

yit ~ po (exp(ai + xitb)) t = 1, 2 i = 1, . . . , n. (97)

One way to understand why the conditional likelihood approach will work in this
model, is to recall that if two independent random variables are both Poisson distributed
with means m1 and m2, respectively, then the distribution of one of them given the sum,
has a binomial distribution with probability parameter m1

m1+m2
and trial parameter given

by the sum of the two random variables. It therefore follows that if yi1 and yi2 are drawn
from Equation (97) and we restrict attention to the observations for which yi1 + yi2 = K

(say), then yi1 ~ bi
(
K , exp(xi1b)

exp(xi1b) + exp(xi2b)

)
. Since this distribution does not involve the
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individual specific effects, it can be used to make inference about b . For example, one
could estimate b by maximizing

L =
∑
i

−yi1 ln (1 + exp((xi2 − xi1)b)) − yi2 ln (1 + exp((xi1 − xi2)b))

[see, for example, Hausman, Hall and Griliches (1984)].
Recent papers by Blundell, Griffith and Windmeijer (1997), and Lancaster (1997)

have pointed out that for the Poisson regression model (97), the conditional maximum
likelihood estimator is identical to the maximum likelihood estimator of b based on
maximizing the likelihood function for Equation (97) over b and all the individual
specific effects, ai.

6. Discrete choice models with “fixed” effects

Manski (1987) made the first successful attempt of consistently estimating a nonlinear
panel data model with individual specific “fixed” effects in a situation in which the
conditional maximum likelihood approach cannot be applied. His estimator is based
on the maximum score estimator [see Manski (1975)] for the binary choice model

yi = 1 {xib + ei ¾ 0} . (98)

Since P (yi = 1| xi) = F −ei|xi (xib) it follows that if Median(ei|xi) = 0 (uniquely), then
observations with xib > 0 will have probabilities greater than 1

2 and observations with
xib < 0 will have probabilities less than 1

2 . In other words,

sgn (Pr (yi = 1|xi) − Pr (yi = 0|xi)) = sgn(xib).

Under mild regularity conditions, this implies that E [sgn (2yi − 1) sgn (xib)] is uniquely
maximized at b = b , and the analogy principle therefore suggests estimating b by

b̂ = argmax
b

n∑
i = 1

sgn (2yi − 1) sgn (xib) .

Under mild conditions, this estimator is consistent [see Manski (1985)], but it does
not converge at rate

√
n and it is not asymptotically normal [see Cavanagh (1987) and

Kim and Pollard (1990)] 20.

20 Under assumptions that are slightly stronger than Manski’s, Horowitz (1992) proposed a smoothed
version of the maximum score estimator which does have an asymptotic normal distribution, although
the rate is, again, slower than

√
n. The rate of convergence of Horowitz’s estimator depends on the

assumed degree of smoothness of the distribution of the explanatory variables.
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The insight behind Manski’s (1987) estimator of the (“non-logit”) binary choice
model with individual specific effects, is that under mild conditions, exactly the same
conditioning that leads from the logit model with individual specific fixed effects (94)
to a logit model without the individual specific “fixed” effects, (95), will also lead
from the model

yit = 1 {xitb + ai + eit ¾ 0} t = 1, 2; i = 1, . . . , n, (99)

to a model in which the maximum score estimator can be applied. The key assumption
is that the distribution of eit is stationary, in the sense that ei1 and ei2 are identically
distributed conditional on (xi1, xi2,ai). With this assumption, Manski showed that

Pr (yi2 = 1|xi1, xi2, yi1 + yi2 = 1) Ñ 1/2,

depending on whether

(xi2 − xi1) b Ñ 0.

The intuition for this result is simple. If the distribution of −ei1 (and −ei2) for individual
i is Fi (·), then the probability that yit = 1 for individual i is Fi (xitb + ai); this means
that for a given individual, higher values of xitb are more likely to be associated with
yit = 1.
Mimicking Manski (1975), this suggests a conditional maximum score estimator

defined by

b̂ = argmax
b

n∑
i = 1

sgn ( yi2 − yi1) sgn ((xi2 − xi1)b) . (100)

If the panel is of length longer than 2, one can estimate b by considering all pairs of
observations

b̂ = argmax
b

n∑
i = 1

∑
s<t

(sgn ( yis − yit) sgn ((xis − xit)b)) . (101)

As was the case for the cross sectional maximum score estimator, this estimator
will be consistent under mild regularity conditions. In particular, compared to the logit
model considered earlier, it not only leaves the distribution of the errors unspecified,
but it also allows for general serial correlation and heteroskedasticity across individuals
(but not over time). However, the estimator is not

√
n consistent, and not asymptotically

normal 21.

21 Kyriazidou (1995) and Charlier, Melenberg and van Soest (1995) have shown that the same trick
used by Horowitz (1992) to modify the maximum score estimator can be used to modify the conditional
maximum score estimator. This results in a smoothed conditional maximum score estimator which does
have an asymptotic normal distribution, although the rate is, again, slower than

√
n.
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Since on one hand, Manski’s estimator is not
√
n consistent, but makes very weak

assumptions on the errors, and on the other hand assuming a logistic distribution on the
errors leads to a

√
n consistent and asymptotically normal estimator, it is natural to ask

whether there are alternative assumptions on the errors that lead to a situation where
it is possible to estimate the b-vector at the usual

√
n rate. Perhaps surprisingly, the

answer to that question seems to be negative. Subject to weak regularity conditions
Chamberlain (1993), showed that even if eit in Equation (99) are i.i.d. with known
distribution and independent of (xi1, xi2,ai), b can be estimated

√
n consistently only

in the logit case.
It is clear that scale normalizations are needed in each period in order for b in

Equation (99) to be identified. Both the logit version of Equation (99) and Manski’s
treatment impose such scale normalizations. In the logit case, this normalization
comes from the variance of the logistic distribution. In Manski’s case it is through a
scale normalization on b and through the assumption that the errors are identically
distributed in the two time periods. In addition to these scale normalizations, the
estimators of Equation (99) also assume that the effect of the fixed effect is the same
in the two periods. This is in contrast to the linear model in which it is possible to
estimate time specific coefficients (factor loadings) on the fixed effect. It is clear that
the logic behind the two estimators of the binary choice panel data model discussed
here would break down with such factor loadings, but it is less clear whether they
would make the model unidentified.

7. Tobit-type models with “fixed” effects

7.1. Censored regression models

The censored regression model is given by

y∗i = xib + ei
yi = max {y∗i , c} (102)

In text-book treatments, c is usually 0. Note that for c = −∞, Equation (102) becomes
the linear regression model, and that one can change the max to a min by a simple
change of sign. The censored regression model has been used in many different
contexts. In some, c is the lowest possible value that some economic variable can
take, and y∗ is the desired level of that variable in the absence of this constraint. In
other cases, the censoring is induced by the way the data is constructed. For example,
earnings variables are sometimes top-coded for confidentiality reasons.
In a panel data context, the censored regression model may be described by

y∗it = xitb + ai + eit
yit = max {y∗it , c} (103)

This model was introduced by Heckman and MaCurdy (1980) in the context of female
labor supply.
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Because the individual specific effect ai does not enter linearly or multiplicatively,
it is not possible to “difference” it out as was the case for the linear regression model,
and it is also unclear under what conditions a conditional likelihood approach can be
used to eliminate ai. Honoré (1992) proposed a different approach to estimating b
in this model. The motivation for the estimators given below is different from that
in Honoré (1992) because we want to motivate a larger class of estimators. Honoré
(1992) also considered estimation of the truncated version of the model. The latter is
less interesting and will not be discussed here.
The idea behind the estimator in Honoré (1992) is to artificially censor the dependent

variable in such a way that the individual specific effect can be differenced away. This
is similar to the approach in Powell (1986) who artificially censored the dependent
variable in a cross sectional censored regression model, in such a way that the moment
conditions for OLS apply. Specifically, one can define pairs of “residuals” that depend
on the individual specific effect in exactly the same way. Intuitively, this implies that
differencing the residuals will eliminate the fixed effects.
Define

vist (b) = max {yis, c + (xis − xit) b} −max {c, c + (xis − xit) b}

At b = b , we have

vist ( b) = max {yis, c + (xis − xit) b} − max {c, c + (xis − xit) b}
= max {ai + eis, c − xisb , c − xitb} − max {c − xisb , c − xitb}

The key observation is that vist ( b) is symmetric in s and t. Therefore, if eit ,
t = 1, . . . , T , are independent and identically distributed conditional on (xi,ai), where
xi denotes all the explanatory variables for individual i, then vist ( b) and vits ( b) are
independent and identically distributed (conditional on (xi,ai)). This means that any
function of vist ( b) minus the same function of vits ( b) will be symmetrically distributed
around 0. We therefore have the conditional moment condition

E
[
(x (y (vits ( b)) − y (vist ( b))))| xi,ai

]
= 0, (104)

for any increasing function y(·) and any increasing and odd function x(·), provided
that the expectations are well-defined. The reason why y(·) and x(·) are assumed to
be increasing will become clear shortly.
One could in principle consider estimation of b on the basis of Equation (104). One

problem with this is that although b satisfies Equation (104), it does not follow from
the previous discussion that there are no other values of the parameter that also satisfy
Equation (104). However, Equation (104) implies

E [(x (y (vits ( b)) − y (vist ( b)))) (xit − xis)] = 0, (105)
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which has the form

E [r ( yis, yit , (xis − xit) b) (xis − xit)] = 0, (106)

where r(·, ·, ·) is a monotone function of its third argument, because of the assumption
that y(·) and x(·) are increasing 22. By integrating r(·) with respect to its third
argument, one can typically turn Equation (106) into the first order condition for a
convex minimization problem of the form

min
b
E [R ( yis, yit , (xis − xit) b)] . (107)

The parameter b can then be estimated by minimizing a sample analog of Equa-
tion (107). It follows from standard results about extremum estimators that the resulting
estimator will be consistent and

√
n asymptotically normal.

For example, with x (d) = y (d) = d, c = 0 and T = 2, the function to be minimized
in (107) becomes

E
[
(max{ yi1,D xib} − max{ yi2, −D xib} − D xib)2

+2 · 1{ yi1 < D xib}(D xib − yi1)yi2 + 2 · 1{ yi2 < −D xib}(−D xib − yi2)yi1
]
,

which suggests estimating b by

b̂ = argmin
b

n∑
i = 1

(max{ yi1,D xib} − max{ yi2, −D xib} − D xib) 2

+ 2 · 1{ yi1 < D xib}(D xib − yi1)yi2
+ 2 · 1{ yi2 < −D xib}(−D xib − yi2)yi1.

Letting x (d) = sign (d) and y (d) = d, results in the estimator

b̂ = argmin
b

n∑
i = 1

(1 − 1{yi1 ¶ D xib, yi2 ¶ 0})

· (1 − 1{yi2 ¶ −D xib, yi1 ¶ 0}) | yi1 − yi2 − D xib| .

These are the estimators discussed in detail in Honoré (1992). Honoré and Kyriazidou
(2000b) discuss estimators defined by a general y (d) and x (d) = d as well as
y (d) = d and general x (d). The case with panels of length T > 2 can be dealt with
by considering all pairs of time periods s and t, as in Equation (101).

22 vist (b) = max { yis, c + (xis − xit) b} − max {c, c + (xis − xit) b} is monotone in (xis − xit) b because
yis ¾ c. It therefore follows that x (y (vits (b)) − y (vist (b))) depends on b only through (xis − xit) b and
that it is monotone in (xis − xit) b.
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The moment condition (105) was derived from the assumption that eis and eit
are independent and identically distributed conditional on (xi,ai). This assumption
is stronger than necessary. To see why, assume the conditional exchangeability
assumption that (eis, eit) is distributed like (eit , eis) conditional on (xi,ai). This
implies that (y(vist( b)),y(vits( b))) is distributed like (y(vits( b)),y(vist( b))), which
in turn implies that y(vist( b)) − y(vits( b)) is symmetrically distributed around 0 (all
conditional on (xi,ai)). The moment condition (105) then follows.
The exchangeability condition is useful because it yields symmetry of y(vist( b))−

y(vits( b)), which then yields the moment condition for any choice of the odd
function x. On the other hand, if x is the identity function, then the moment condition
follows if y(vist( b)) is distributed like y(vits( b)), which is implied by eis and eit being
identically distributed. In other words, the stationarity assumption that was the key
to Manski’s estimator for the panel data binary choice model, is also the key to the
class of estimators for the panel data censored regression model based on the moment
condition (106) (and the minimization problem (107)) with x(d) = d, whereas the
larger class of estimators based on Equation (106) with general x seems to require the
stronger assumption that eis and eit are exchangeable.

7.2. Type 2 Tobit model (sample selection model)

Kyriazidou (1997) studied the more complicated model

y∗1it = x1it b1 + a1i + e1it ,
y∗2it = x2it b2 + a2i + e2it ,

where we observe:

y1it = 1 {y∗1it > 0} (108)

y2it =

{
y∗2it if y1it = 1
0 otherwise

. (109)

This is a panel data version of the sample selection model that Amemiya (1985) calls
the Type 2 Tobit Model.
It is clear that b1 can be estimated by one of the methods for estimation of

discrete choice models with individual specific effects discussed earlier. Kyriazidou’s
insight into estimation of b2 combines insights from the literature on estimation of
semiparametric sample selection models with the idea of eliminating the individual
specific effects by first-differencing the data. Specifically, to difference out the
individual specific effects a2i, one must restrict attention to observations for which
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y∗2it is observed. With this “sample selection”, the mean of the error term in period t
is

lit = E ( e2it | e1it > −x1it b1 − a1i, e1is > −x1is b1 − a1i, zi) ,

where zi = (x1is, x2is, x1it , x2it ,ai1,ai2). The key observation in Kyriazidou (1997) is
that if (e1it , e2it , e1is, e2is) and (e1is, e2is, e1it , e2it) are identically distributed (conditional
on (x1is, x2is, x1it , x2it ,ai1,ai2)), then for an individual i, who has x1it b1 = x1is b1,

lit = E ( e2it | e1it > −x1it b1 − a1i, e1is > −x1is b1 − a1i, zi)
= E ( e2is| e1is > −x1is b1 − a1i, e1it > −x1it b1 − a1i, zi)
= lis. (110)

This implies that for individuals with x1it b1 = x1is b1, the same first differencing that
will eliminate the fixed effect will also eliminate the effect of sample selection. This
suggests a two-step estimation procedure similar to Heckman’s (1976, 1979) two-step
estimator of sample selection models: first estimate b1 by one of the methods discussed
earlier, and then, secondly, estimate b2 by applying OLS to the first differences, but
giving more weight to observations for which (x1it − x1is)b̂1 is close to zero:

b̂2 =

[
n∑
i = 1

∑
s < t

(x2it − x2is)
′ (x2it − x2is)K

(
(x1it − x1is)b̂1

hn

)
y1it y1is

]−1

×
[

n∑
i = 1

∑
s < t

(x2it − x2is)
′ ( y2it − y2is)K

(
(x1it − x1is)b̂1

hn

)
y1it y1is

]

where K is a kernel and hn is a bandwidth which shrinks to zero as the sample
size increases. Kyriazidou showed that the resulting estimator is

√
nhn-consistent and

asymptotically normal.
Kyriazidou’s estimator is closely related to the estimator proposed by Powell (1987).

That paper considered a cross sectional sample selection model and applied the
argument leading to Equation (110) to all pairs of observations i and j.

7.3. Other Tobit-type models

As pointed out in Honoré and Kyriazidou (2000b), the estimators proposed in Honoré
(1992) and Kyriazidou (1997) can be modified fairly trivially to cover the other
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Tobit-type models discussed in Amemiya (1985). Consider for example, the Type 3
Tobit model with individual-specific effects,

y∗1it = x1it b1 + a1i + e1it

y∗2it = x2it b2 + a2i + e2it

y1it =

{
y∗1it if y

∗
1it > 0

0 if y∗1it ¶ 0

y2it =

{
y∗2it if y

∗
1it > 0

0 if y∗1it ¶ 0
.

In that model, the event

E = {y1is > max{0, (x1is − x1it)b1}, y1it > max{0, (x1it − x1is)b1}}

is the same as the event{
e1is > max{−x1is b1 − a1i, −x1it b1 − a1i},
e1it > max{−x1is b1 − a1i, −x1it b1 − a1i}

}
.

With the exchangeability assumption that (e1it , e2it , e1is, e2is) and (e1is, e2is, e1it , e2it) are
identically distributed (conditional on (x1is, x2is, x1it , x2it ,ai1,ai2))

e1is − e1it =( y2is − y2it) − (x2is − x2it)b2,

is symmetrically distributed around 0 conditional on E and conditional on (x1is, x2is,
x1it , x2it , ai1, ai2). This suggests a two-step approach, where the first step is estimation
of b1 by one of the estimators of the panel data censored regression, and the second
step estimates b2 by

b̂2 = argmin
b

∑
i

∑
s < t

1
{
y1is > max{0, (x1is − x1it)b̂1}, y1it > max{0, (x1it − x1is)b̂1}

}
· X ((yis − yit) − (xis − xit) b) ,

where X is some symmetric loss function such as X (d) = d2 or X (d) = |d|.
The Type 3 Tobit model was also considered by Ai and Chen (1992) who presented

moment conditions similar to those implied by the two-step estimator above, although
they derived their conditions under the assumption that the errors are independent over
time.
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It is also straightforward to consider panel data versions of Amemiya’s Type 4 and
Type 5 Tobit Models. Let

y∗1it = x1itb1 + a1i + e1it ,
y∗2it = x2itb2 + a2i + e2it ,
y∗3it = x3itb3 + a3i + e3it .

In the Type 4 Tobit model we observe ( y1it , y2it , y3it) from:

y1it = max {0, y∗1it} , (111)

y2it =

{
y∗2it if y∗1it > 0
0 otherwise

, (112)

y3it =

{
y∗3it if y∗1it ¶ 0
0 otherwise

, (113)

and we can estimate the parameters of this model by considering Equations (111) and
(112) as a Type 3 Tobit model and Equations (111) and (113) as a Type 2 sample
selection model.
In the Type 5 Tobit model we observe ( y1it , y2it , y3it) from:

y1it = 1 {y∗1it > 0} , (114)

y2it =

{
y∗2it if y1it = 1
0 otherwise

, (115)

y3it =

{
y∗3it if y1it = 0
0 otherwise

, (116)

and we can treat the two outcome Equations (115) and (116) separately and apply
Kyriazidou’s (1997) estimator to b2 and b3.

7.4. Monotone transformation models

Estimation of b in the cross sectional linear transformation model,

h ( yi) = xib + ei, (117)

has been the topic of a large number of recent papers in econometrics and statistics.
In this model, b is often considered the primary parameter of interest with h and the
distribution of e left unspecified except that h(·) is assumed to be monotone and e
independent of x. In some cases, h is assumed to be strictly monotone, whereas other
papers do not require this, in which case Equation (117) contains both the binary
discrete choice and the censored regression model as special cases. When h is assumed
to be strictly monotone, one might think of Equation (117) as a generalization of the
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Box–Cox model. It is clear that b can only be estimated up to scale, unless a scale
normalization is imposed on h(·) or e. In the following, we will therefore only be
concerned with estimation of b up to scale.
In a recent paper, Abrevaya (1999) proposed an estimator of b in a fixed effects

version of Equation (117),

ht( yit) = x
′
itb + ai + eit , (118)

where ht(·) is assumed strictly increasing. His estimator is similar in spirit to that of
Han (1987) for the cross sectional transformation model. The key insight in Abrevaya’s
paper is to difference across individuals in a given time period, rather than across time
periods for a given individual,

ht( yit) − ht( yjt) = (xit − xjt)
′b + (ai − aj) + (eit − ejt).

Because ht is strictly increasing,

Pr( yit > yjt | xit , xis,ai, xjt , xjs,aj)
= Pr(ejt − eit < (xit − xjt)′b + (ai − aj) | xit , xis,ai, xjt , xjs,aj),

where the motivation for conditioning of the explanatory variables in both time
periods t and s, is that we will compare this probability in time period t to the same
probability in time period s.
Assume that the errors are stationary (given the explanatory variables in all periods

and given the fixed effect). This is the same assumption that was made for the discrete
choice model and for the censored regression model. This assumption, combined with
random sampling, implies that the distribution of ejt − eit (given

(
xit , xis,ai, xjt , xjs,aj

)
)

is the same in the two periods. The right hand side of Equation (119) can then be
written as Fij((xit − xjt)′b + (ai − aj)). On the other hand, by simple inspection it is
clear that

D x′ib > D x
′
jb ⇔ (xit − xjt)

′b + (ai − aj) > (xis − xjs)′b + (ai − aj), (119)

where D x = xt − xs. Combining Equations (119) and (119) we then have 23

D x′ib > D x′jb ⇒
Pr( yit > yjt | xis, xit ,ai, xjs,xjt ,aj) > Pr( yis > yjs | xis, xit ,ai, xjs, xjt ,aj). (120)

Equation (120) implies that the function

S(b) ≡ E
[
sign

((
D xi − D xj

)′
b
) (
1
(
yit > yjt

)
− 1

(
yis > yjs

))]
, (121)

23 Some smoothness of the distribution of the errors is needed for the inequality between the probabilities
to be strict.



3280 M. Arellano and B. Honoré

is maximized at b = b . For the case where there are only two time periods,
Abrevaya therefore proposed an estimator defined by maximizing the sample analog
of Equation (121),

Sn(b) ≡
(
n

2

)−1∑
i Ñ j

sign((D xi −D xj)′b)(1( yi2 > yj2) − 1( yi1 > yj1)). (122)

Abrevaya (1999) showed that his estimator is consistent and
√
n asymptotically

normal under appropriate regularity conditions. He also showed that although there
are n2 terms in the sum in Equation (122), it is possible to calculate the sum using
O(n log(n)) operations. The computational burden associated with the estimator is
therefore much smaller that it appears. The case with T > 2 observations for each
individual can again be dealt with by considering all pairs of time periods.
Abrevaya (2000) proposed an estimator for a model which is more general than

Equation (118). That estimator is based on the same idea as Manski’s (1985) maximum
score estimator of the panel data binary choice estimator. As is the case for the
maximum score estimator, it is possible to show that a smoothed version of Abrevaya’s
estimator is consistent and asymptotocally normal, although the rate of convergence
is slower than

√
n.

7.5. Nonparametric regression and fixed effects

Porter (1997) introduced individual-specific additive effects in a nonparametric
regression model by specifying

yit = mt (xit) + ai + eit , (123)

where eit has mean 0 conditional on all (past, current and future) values of the
explanatory variables xit . Porter noted that Equation (123) implies that the conditional
mean of yit − yis given (xit,xis) is °(xit , xis) ≡ mt(xit) − ms(xis). The latter can be
estimated by standard techniques for nonparametric regression [see e.g., Härdle and
Linton (1994)], and mt(·) can then be recovered (except for an additive constant) by
averaging ° over its second argument.

7.6. Relationship with estimators for some cross sectional models

The estimators for the panel data versions of the discrete choice model, the censored
and truncated regression models, the sample selection model and the monotone
transformation model all have “cousins” for the cross sectional versions of the models.
The relationship is most easily understood by considering a simple cross sectional
linear regression model where the observations consist of i.i.d. draws of

yi = a + xib + ei. (124)

In this model, any two observations have the same intercept a. With some potential
loss of information, one can therefore think of any two observations as if they are
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from a (static) linear panel data model with T = 2. This suggests forming all pairs of
observations, and then estimating the slope-parameters b in Equation (124) by

b̂ = argmin
b

∑
i < j

((
yi − yj

)
−
(
xi − xj

)
b
)2
.

It is an easy exersice to show that this is nothing but the OLS estimator of b in the
regression of Equation (124).
The same logic can be applied to nonlinear models. If the model under consideration

is such that the parameter b can be estimated from a two-period panel by, say, some
minimization problem

b̂ = argmin
b

∑
i

g ( yi1, yi2, xi1, xi2, b) ,

then a cross sectional version of the model can be estimated by

b̂ = argmin
b

∑
i < j

g
(
yi, yj , xi, xj , b

)
.

Honoré and Powell (1994) applied this insight to construct estimators for the cross
sectional censored and truncated regression models based on the panel data estimators
in Honoré (1992).
The panel data estimators for the discrete choice and sample selection models also

have cross sectional versions. If Manski’s (1987) estimator is applied to all pairs of
observations from a cross sectional binary choice model, then the maximum rank
correlation estimator of Han (1987) results (although his motivation was quite different
and his estimator applies to a more general class of transformations models). Likewise,
applying the logic behind Kyriazidou’s (1997) estimator of the sample selection model
to all pairs of observations in a cross sectional sample selection model results in the
estimator proposed by Powell (1987). It is interesting to note that the cross sectional
estimator that uses all pairs of observations is

√
n consistent in both of these cases,

although the corresponding panel data estimator converges at a slower rate.
The situation is a little more complicated for the monotone transformation model

because the panel data estimator of that model is itself based on pairwise comparisons
across individuals. The cross sectional version that treats each pair of observations as
if they came from a panel of length 2, is therefore based on comparing pairs of pairs,
resulting in an estimator defined by a quadruple sum. This estimator is analyzed in
Abrevaya (1999).
Table 3 summarizes the relationship between the panel data estimators and their

pairwise comparison counterparts. It also lists the estimator for the cross sectional
model which we find to be closest in spirit to the panel data estimator.
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Table 3
Relationship between panel data estimators and pairwise comparison estimators

Model ‘Motivating’ estimator Panel data estimator Pairwise comparison

Discrete choice Manski (1975) Manski (1987) Han (1987)

Censored regression Powell (1986) Honoré (1992) Honoré and Powell (1994)

Selection Powell (1987) Kyriazidou (1997) Powell (1987)

Type 3 Tobit Honoré and Kyriazidou
(2000b)

Honoré et al. (1997)

Monotone
transformation

Han (1987) Abrevaya (1999) Abrevaya (1999)

8. Models with lagged dependent variables

With the exception of the models with multiplicative effects, the non-linear models
discussed so far all assume that the explanatory variables are strictly exogenous. This
assumption is in sharp contrast to the discussion in the first part of this chapter
which focused on linear models with predetermined variables. The assumption of strict
exogeneity is important. For example, with two time-periods, the basic idea in the
logit model was to consider the probability that yi1 = 1 conditional on the explanatory
variables in both periods and conditional on yi1 Ñ yi2. If the explanatory variables
include a lagged dependent variable, then the conditioning set includes yi1 and yi1 Ñ yi2.
This means that the probability is either 1 or zero and cannot be used to make inference
about b . By reviewing each of the other methods described in the previous section,
it is clear that the motivation for all of them is based on some statement about the
joint distribution of ( yi1, yi2) given (xi1, xi2). If the explanatory variable in the second
time-period, xi2, includes the lagged dependent variable, yi1, then the arguments fail.
In this section, we will review some recently proposed methods for dealing with

lagged dependent variables in nonlinear models with fixed effects. It will be seen that
some progress has been made in this area, but that the methods that have been proposed
are case-specific and often lead to estimators that do not converge at the usual

√
n rate.

One might conclude from this that it would be more fruitful to take a random effect
approach that makes some assumptions on the distribution of the individual-specific
effects. However, estimation of dynamic nonlinear models is very difficult even in
that case. The main difficulty is the so-called initial conditions problem: if one starts
observing the individuals when the process in question is already in progress, then
the first observation will depend on the dependent variable in the period before the
sample starts. Even if that is observed (or one drops the first observation) one will
have to deal with relationship between the first lagged dependent variable and the
individual-specific effect. That relationship will depend (in a complicated way) on the
parameters of the model, but also on the distribution of the explanatory variables in
periods prior to the start of the sample, which is typically unknown. In practice one
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might “solve” this problem by assuming a flexible functional form for the distribution
of the first observation (see for example Heckman (1981b) for a discussion of this
approach). One case where one can ignore the initial conditions problem is when one
can reasonably assume that the process is observed from the start. For example, if the
dependent variable is labor supply and the sample consists of people observed (say)
from the time they graduated from high school, then there will be no initial conditions
problem.
In the next three sections we discuss some approaches that have been used to

generalize the limited dependent variable models discussed earlier to the case where
one of the explanatory variables is the lagged dependent variable. Very little is
known about how to deal with general predetermined variables in the models that we
consider.

8.1. Discrete choice with state dependence

Including a lagged dependent variable among the explanatory variables in the discrete
choice model with individual specific effects gives the model

yit = 1 {xit b + g yi,t−1 + ai + eit ¾ 0} t = 1, . . . , T ; i = 1, . . . , n. (125)

In its most general setting, this model allows for three sources of persistence
(after controlling for the observed explanatory variable x) in the event described by
yit . Persistence can be the result of serial correlation in the error term e, a result
of the “unobserved hererogeneity” a, or a result of true state dependence through
the term gyi,t−1. Distinguishing between these sources of persistence is important in
many situations because they have very different policy implications. A policy that
temporarily increases the probabality that y = 1 will have different implications about
future probabilities in a model with true state dependence than in model where the
persistence is due to unobserved heterogeneity. See, for example, Heckman (1981a) for
a discussion of this. Distinguishing between persistence due to state dependence and
due to heterogeneity is also important because they sometimes correspond to different
economic models. For example, Chiappori and Salanie (2000) and Chiappori (1998)
argue that it can be used to distinguish between moral hazard and adverse selection.
The pricing system in the French automobile insurance market is such that the
incentives for not having an accident are stronger if the driver has had fewer accidents
in the past. This suggests that accident data should show true state dependence: having
an accident this period should lower the probability of an accident next period. On
the other hand adverse selection suggests that some drivers are permanantly more
likely to have accidents, which corresponds to the individual specific effect ai in
Equation (125).
It is clear that even if the errors are serially independent, the conditions discussed

earlier for conditional maximum likelihood estimation of the fixed effects logit model
are not satisfied because they implied that e in time period t is independent of the
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explanatory variables in time period t − 1, a condition which clearly fails when one
of the explanatory variables is the lagged dependent variable. By the same argument,
the conditions for the conditional maximum score estimator will not be satisfied in
the presence of a lagged dependent variable. On the other hand it is also clear that
the two sources of persistence in Equation (125) have very different implications. For
example consider the case where there are no other explanatory variables: if there is
no “state dependence” (g = 0) then the sequence (0, 1, 0, 1) would be as likely as the
sequence (0, 0, 1, 1). On the other hand, if g < 0 then the first sequence would be more
likely, whereas the second would be more likely if g > 0. As pointed out by Heckman
(1978), this suggests that one should be able to test for “no state dependence” in a
model like Equation (125). As will be seen below, this observation can also be used
to estimate g and b in Equation (125).
Consider first the special case of a logit model where the lagged dependent variable

is the only explanatory variable,

yit = 1 {g yi, t − 1 + ai + eit ¾ 0} t = 1, . . . , T ; i = 1, . . . , n,

where eit is i.i.d., independent of ai, and logistically distributed. Considering only the
first three observations (and the initial condition), we have

Pr
(
yit = 1|ai, yi0, . . . , yi, t − 1

)
=

exp(g yi, t − 1 + ai)
1 + exp(g yi, t − 1 + ai)

t = 1, 2, 3.

It is then an easy exercise to see that

Pr ( yi1 = 0| yi1 + yi2 = 1,ai, yi0, yi3) =
1

1 + exp (g( yi0 − yi3))
,

which does not depend on ai, and which can therefore be used to make inference on
g [Chamberlain (1978)]. More generally, with T observations for each individual, the
conditional distribution of ( yi1, . . . , yiT ) given yi1,

∑T
t = 1 yit and yiT is

P

(
yi1, . . . , yiT | yi1,

T∑
t = 1

yit , yiT ,ai

)
=

exp
(
g
∑T

t = 2 yit yi, t − 1
)

∑
(d1, ..., dt )∈ B exp

(
g
∑T

t = 2 dt dt − 1
) ,
(126)

where B is the set of all sequences of zeros and ones that have
∑T

t = 1 dit =
∑T

t = 1 yit ,
di1 = yi1 and dit = yiT . Magnac (1997) presents similar results for the multinomial logit
version of this model. He also presents the conditional likelihood function for models
with more than one lag.
Honoré and Kyriazidou (2000a) modify the calculations leading to the conditional

maximum likelihood estimator of a fixed effects logit in such a way that it can be
applied to Equation (125). Specifically, assume that eit in Equation (125) are i.i.d.
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logistically distributed and that each observation is observed for at least four periods
(three periods in which both the exogenous variables and the dependent variable are ob-
served, plus the initial value of y). Unlike the case where the lagged dependent variable

is the only explanatory variable, P
(
yi1, . . . , yiT | yi0,

∑T
t = 1 yit , yiT , {xit}

T
t = 1 ,ai

)
will in

general depend on ai, and the conditional likelihood approach will therefore generally
break down. However (considering the case with T = 3 for simplicity), Honoré and
Kyriazidou (2000a) showed that

P

(
yi1, . . . , yi3| yi0,

∑
t = 1

3yit , yi3, {xit}3t = 1 ,ai, xi2 = xi3
)

=
1

1 + exp((xi1 − xi2)b + g( yi0 − yi3))
,

(127)

which does not depend on ai. This suggests estimating b and g by maximizing
a conditional likelihood function based on Equation (127). However, if one of
the explanatory variables is continuously distributed, there will typically be no
observations for which xi1 = xi2. This is similar to the situation when one wants to
estimate a conditional expectation of one random variable given that another takes a
particular value. One remedy in that case is to use a kernel estimator to average over
observations close to the value. Based on this idea, Honoré and Kyriazidou (2000a)
estimate g and b by

( b̂ , ĝ) = argmax
(b,g)

n∑
i = 1

1{ yi1 + yi2 = 1}K
(xi2 − xi3

h

)
× ln

(
exp((xi1 − xi2) b + g(di0 − di3)) yi1

1 + exp((xi1 − xi2) b + g(di0 − di3))

)
, (128)

where K(·) is a kernel 24 which gives the appropriate weight to observation i, and h → 0
as n → ∞. The main limitation of this approach is that it uses only observations
in a neighborhood of xi2 = xi3, so it is necessary to assume that distribution of
xi2 − xi3 to have support in a neighborhood of 0. This rules out time-dummies. Honoré
and Kyriazidou (2000a) give conditions under which this estimator is consistent and
asymptotically normal (although it does not converge at rate

√
n, and they discuss

generalizations to general T , to multinomial models and to models with more lags.

24 The term K
( xi2−xi3

h

)
in Equation (128) plays the same role as the kernel does in non-parametric

regression. In a sample, there will be no two observations for which xi = xj if x is continuously distributed.
However if the object of interest (typically the conditional expectation) is sufficiently smooth, then we
can use observations where xi is close to xj , where “close” is defined appropriately. See, e.g., Härdle
and Linton (1994) for a description of non-parametric regression.
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The same trick as above can be used to modify Manski’s conditional maximum score
estimator in such a way that it applies to the model

yit = 1 {xitb + gyi, t − 1 + ai + eit ¾ 0} t = 1, 2, 3; i = 1, . . . , n,

where eit is i.i.d. (independent of (ai, xi)) with distribution function F. Specifically,

sgn

(
P

(
yi2 = 1| yi0,

3∑
t = 1

yit , yi3, {xit}3t = 1 ,ai, xi2 = xi3
)

− P

(
yi1 = 1| yi0,

3∑
t = 1

yit , yi3, {xit}3t = 1 ,ai, xi2 = xi3
))

= sgn ((xi2 − xi1)b + g(di3 − di0)) .

Mimicking the logic in Manski (1987), this means that we can consistenty estimate b
and g up to scale by(

b̂ , ĝ
)
= argmax

(b,g)

n∑
i = 1

K
(xi2 − xi3

h

)
sgn ( yi2 − yi1)

·sgn ((xi2 − xi1)b + g(di3 − di0)) .

8.2. Dynamic Tobit models

We next turn to the possibility of allowing lagged dependent variables to enter the
censored regression model considered earlier. Depending on the context, the relevant
lagged dependent variable is either the lagged observed variable or the lagged latent
(unobserved variable). Here, we consider only the former case. Specifically, assume
that

yit = max

{
0,ai + xitb +

L∑
° = 1

g° yi,t − ° + eit

}
t = 1, . . . , T i = 1, . . . , n.

(129)
Honoré (1993) demonstrated that for this model, it is possible to obtain moment

conditions that must be satisfied at the true parameter values. To see how this can be
done, assume that g° ≥ 0 for ° = 1, . . . , L, and define “residuals” by

vist(b, g) ≡ max

{
0, (xit − xis)b, yit −

L∑
° = 1

g° yi, t − °

}
−xitb.

Then

vist( b , g) ≡ max

{
0, (xit − xis)b , yit −

L∑
° = 1

g° yi,t − °

}
−xit b

= max {−xit b , −xis b ,ai + eit} .
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If {xit}Tt = 1 is strictly exogenous in the sense that eit and eis are identically distributed
conditional on {xit}Tt = 1 then for any function y(·),

E
[
y (vist( b , g)) − y (vits( b , g))| {xit}Tt = 1

]
= 0, (130)

which suggests that ( b , g) can be estimated by GMM. Honoré and Hu (2001) present
a set of sufficient conditions under which Equation (130) is uniquely satisfied at the
true parameter value. The most restrictive assumption is that xit − xis has support in a
neighborhood around 0, which rules out time-dummies.
Honoré and Hu (2001) also discuss how a modification of the same idea can be used

to construct moment conditions for a model with general predetermined explanatory
variables, and Hu (2000) shows how to generalize the approach so that it can be
used to construct moment conditions for a model in which the lagged variables in
Equation (129) are the lagged uncensored variables. This is, for example, the relevant
model if the censoring is due to top-coding.

8.3. Dynamic sample selection models

Kyriazidou (1999) generalizes her approach to estimation of

y∗it = ø0y∗it−1 + x
∗
itb0 + a

∗
i + e

∗
it

yit = dit y
∗
it

dit = 1 {÷0dit − 1 + witg0 + hi − uit ¶ 0} .

This is the same model that was considered in Kyriazidou (1997), except that the
model is now dynamic, with both the dependent variables, y∗it and dit , depending on
their own lagged value. The key insight is to combine the insights from the dynamic
linear panel data models with the insight in Kyriazidou (1997). For simplicity assume
that

(
e∗it , uit

)
is i.i.d. over time and independent of all other right hand side variables.

Applying the methods discussed in the first part of this chapter to observations for
which y∗it is observed in three consequtive periods (so dit = dit−1 = dit−2 = 1),
will result in a sample selection bias term which after first differencing has the
form E

[
e∗it | uit ¾ ÷0 + witg0 + hi

]
− E

[
e∗it − 1| uit−1 ¾ ÷0 + wit − 1g0 + hi

]
. This sample

selection term will be 0 for observations for whom witg0 = wit − 1g0. The idea therefore
is to apply the methods discussed in the first part of this paper augmented by kernel-
weights that give more weight to observations for which wit ĝ is close to wit − 1ĝ ,
where ĝ is an estimate of g0 [using, for example, the method proposed in Honoré
and Kyriazidou (2000a)].

9. “Random” effects models

Since little is known about how to deal with fixed effects in nonlinear models
other than the ones discussed above, it is often appealing to make assumptions
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on the distribution of the individual effects. When the distribution of the error is
parameterized completely, then the resulting model is usually refered to as random
effects model. As mentioned in the previous section, this approach is problematic in
dynamic models if one does not observe the start of the process. On the other hand,
there are no conceptual difficulties in estimating the parameters of a random effects
model by maximum likelihood or methods of moments if the explanatory variables are
strictly exogenous, and the distribution of the errors, eit , is specified. The downside
is that there might be practical difficulties in implementing these methods, since the
likelihood function and the conditional moments will typically involve multivariate
integration. In that case, simulation based inference can be extremely useful. See for
example Hajivassiliou and Ruud (1994) or Keane (1994). It is also straightforward to
consistently estimate the parameters of certain semiparametric random effects models.
Consider for example the censored regression model in Section 7.1. If the errors and
the individual specific effects are independent of each other and both are independent
of the regressors, then b can be estimated by applying one of the many semiparametric
estimators of the censored regression model to the pooled data set consisting of the
observations for all i and t. The main complication in that case is that one must correct
the variance of the estimator to account for the fact that the observations for a given i
are not independent (because they all depend on the same individual-specific effect).
A number of papers propose estimators of models that make assumptions that fall

between fixed and random effects models. These papers are motivated by the tradeoff
between the difficulties in estimating fixed effects versions of nonlinear models and the
fairly strong assumptions that one must make in a random effects approach. As an ex-
ample, consider the discrete choice model of Section 6. Following Chamberlain (1984),
if the individual specific effect, ai, happens to be of the form ai =

∑T
t = 1 x

′
itgt + ui

where ui and the transitory errors, eit , are jointly independent of (xi1, . . . , xiT ) then
one can apply an estimator of the semiparametric discrete choice model to the data
for each time-period to estimate (g1, g2, . . . , gt − 1, gt + b , gt + 1, . . . , gT ) up to scale.
These can then be combined (via minimum distance) to obtain estimators of {gt}Tt = 1
and b (up to scale). In Chamberlain’s example, the eit’s and the ui’s were assumed to be
normally distributed, so the estimation could be done by probit maximum likelihood.
Although the functional form assumption made on the individual specific effect makes
the model much less general than the fixed effects model, it should be noted that the
approach does not require the transitory errors to be homoskedastic over time. This is
in contrast to the fixed effects estimators which all assumed some kind of stationarity
of the errors.
Newey (1994) considered estimation of Chamberlain’s model but with ai = ø

(xi1, . . . , xiT ) + ui where the function ø is unknown. If Ft is the cumulative distribution
function for ui + eit then

P ( yit = 1| xi1, . . . , xiT ) = Ft ( ø (xi1, . . . , xiT ) + xit b) ,
or

F−1t (P ( yit = 1| xi1, . . . , xiT )) = ø (xi1, . . . , xiT ) + xit b . (131)
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When the errors are jointly normally distributed, this implies

F−1 (P ( yit = 1| xi1, . . . , xiT )) =
√
Var [ui + eis]
V [ui + eit]

F−1 (P ( yis = 1| xi1, . . . , xiT ))

+

√
1

Var [ui + eit]
(xit − xis) b .

Since discrete choice models can only be estimated up to scale, one can nor-
malize Var [ui + eit] = 1 and then estimate b and

√
Var [ui + eis] by regressing

a nonparametric estimate of P (yit = 1| xi1, . . . , xiT ) on a nonparametric estimate
of P (yis = 1| xi1, . . . , xiT ) and on (xit − xis). Newey (1994) derived the limiting
distribution of this estimator. Chen (1998) generalized the model further by allowing
the distribution of the errors u and e to be unknown. His insight is to note that if one

normalizes one of the components (say, the first) of b to be one so b =
(
1
b̃

)
then

Equation (131) implies that

x1it = −ø (xi1, . . . , xiT ) − x̃it b̃ + F
−1
t (P ( yit = 1| xi1, . . . , xiT )) ,

or

x1it − x
1
is = − (x̃it − x̃is) b̃ +F

−1
t (P ( yit = 1| xi1, . . . , xiT )) −F−1s (P ( yis = 1| xi1, . . . , xiT )) .

(132)
Here P (yit = 1| xi1, . . . , xiT ) and P (yis = 1| xi1, . . . , xiT ) can be estimated nonparamet-
rically and b̃ can be estimated by observing that Equation (132) is a partially linear
regression model of the type studied by e.g., Robinson (1988).
The idea of writing the individual specific effect as ai = ø (xi1, . . . , xiT ) + ui where

ui is treated as an error term can also be applied to the other models discussed above.
See for example Jacubson (1988) or Charlier, Melenberg and van Soest (2000) for
applications of this idea in the context of the censored regression model, and Nijman
and Verbeek (1992), Zabel (1992) and Wooldridge (1995) for a discussion of this
approach in sample selection models.
In a linear model, there is no loss of generality in making assumptions of the form

ai =
∑T

t = 1 x
′
itgt + ui because one can always interpret

∑T
t = 1 x

′
itgt as the projection

of ai on (xi1, . . . , xiT ). Making such an assumption in a non-linear model is much
more restrictive. In particular, if ai = ø (xi1, . . . , xiT ) + ui where ui is independent of
(xi1, . . . , xiT ) for some T then the same assumption will typically not be satisfied for
some other T . This means that the model which is estimated (and which is assumed to
be true) depends on the number of time-series observations the econometrician happens
to have.
Other alternatives to the “pure” fixed approach have been proposed. For example,

Lee (1999) makes assumptions on the joint distribution of the regressors and the
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individual specific effects which allow him to construct a maximum rank correlation-
type estimator of the static discrete choice panel data model. Honoré and Lewbel
(2000) exploit the assumption that one of the regressors is independent of the individual
specific effect to construct an estimator of a discrete choice panel data model with
predetermined explanatory variables.

10. Concluding remarks

Our discussion has focused on two of the developments in panel data econometrics
since the Handbook chapter by Chamberlain (1984). In the first part of the paper
we have reviewed linear panel data models with predetermined variables, and in the
second we have discussed methods for dealing with nonlinear panel data models.
Unfortunately, the intersection of these two literatures is very small. With the exception
of multiplicative models and models where the only source of “predeterminedness”
is lagged dependent variables, almost nothing is known about nonlinear models with
general predetermined variables. One step in this direction was taken by Arellano and
Carrasco (1996). This is an exciting area for future research.
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Abstract

This paper describes a range of methods which have been proposed to study
interactions in economic and social contexts. By interactions, we refer to interde-
pendences between individual decisions which are not mediated by markets. These
types of models have been employed to understand phenomena ranging from the
effect of neighborhoods on the life prospects of children to the evolution of political
party platforms. We provide a general choice-based framework for modelling such
interactions which subsumes a number of specific models which have been studied.
This framework illustrates the relationship between interactions-based models and
models in statistical mechanics. Our analysis is then extended to the econometrics
of these models, with an emphasis on the identification of group-level influences on
individual behavior. Finally, we review some of the empirical work on interactions
which has appeared in the social science literature.

Keywords

interactions, identification, binary choice, linear-in-means model, nonlinear models,
dynamic models, treatment effects

JEL classification: C1, C5, D1, J0
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1. Introduction 1

“The principal task of the social sciences lies in the explanation of social phenomena, not the
behavior of single individuals. In isolated cases the social phenomena may derive directly, through
summation, from the behavior of individuals, but more often this is not so. Consequently, the
focus must be on the social system whose behavior is to be explained. This may be as small as
a dyad or as large as a society or even a world system, but the essential requirement is that the
explanatory focus be on the system as a unit, not on the individuals or other components which
make it up.” (p. 2)
“(A)n internal analysis based on actions and orientations of units at a lower level can be

regarded as more fundamental, constituting more nearly a theory of system behavior, than an
explanation which remains at the system level...although an explanation which explains the
behavior of a social system by the actions and orientations of some entities between the system
level and the individual level may be adequate for the purpose at hand, a more fundamental
explanation based upon the actions and orientations of individuals is generally more satisfactory.”
(p. 4)

James Coleman (1990)

The role of interactions in economic outcomes has become an important area of
research over the last decade. By interactions-based models, we refer to a class of
economic environments in which the payoff function of a given agent takes as direct
arguments the choices of other agents. The goal of such an analysis is to provide
an explanation of group behavior which emerges from the interdependences across
individuals.
In some respects, interactions-based models would appear to be nothing but a

variant of game-theoretic formulations of decisionmaking; see Blume (1997) and
Young (1998) for an excellent syntheses of a number of game-theoretic models
from the interactions perspective, and Morris (1998) for a game-theoretic analysis
of interaction structures. Further, [Jones (1984), Cooper and John (1988), Milgrom
and Roberts (1990)], there has been a great deal of work explicitly focusing on how
one type of interaction effects, complementarities, can lead to multiple equilibria and
other interesting aggregate phenomena, including breakdowns of the law of large
numbers [Jovanovic (1985)]. Indeed, following Bryant (1985), macroeconomic models
of complementarities have become a standard research tool. Similarly, analyses such
as Bernheim (1994) have shown how conformity effects can produce customs, fads
and highly different subcultures within a given population.

1 This work has benefited from our interactions over the years with Kenneth Arrow, Lawrence Blume,
James Heckman, Charles Manski, Peter Phillips and H. Peyton Young. We thank seminar participants
at the Brookings Institution, Michigan State University, NBER, Northwestern University, University
of Geneva, University of Lausanne, University of Michigan, University of Texas and the University
of Wisconsin as well as Kenneth Arrow, Arthur Goldberger, Andros Kourtellos, Artur Minkin, Derek
Neal, Eldar Nigmatullin, and the MacArthur Research Network on Social Interactions and Economic
Inequality for providing helpful comments on various drafts of this paper. Financial support from the
John D. and Catherine T. MacArthur Foundation, National Science Foundation, Romnes Fund, and Vilas
Trust is gratefully acknowledged.
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Similarly, social sciences other than economics have a much longer tradition of
looking for interaction effects. One particularly important example is the Coleman
Report of 1966 [Coleman et al. (1966)], which argued that school performance of
the disadvantaged was much more amenable to improvement through manipulation of
peer group influence than by increased per student expenditures. While the Coleman
Report itself has not withstood subsequent scrutiny, its impact on both social science
research and public policy was and is immense [see Heckman and Neal (1996) for
discussion]. See Blalock (1984) for additional discussion of sociological approaches.
Another example is linguistics, where the role of interactions in influencing dialect
choice has been well understood for decades [cf. Labov (1972a,b)].
What distinguishes the new research on interactions-based models is the explicit

attention given to formulating how each individual’s behavior is a function of the
characteristics or behavior of others and then studying what aggregate properties
emerge in the population. This approach typically, though not always, is done in
the form of first specifying a conditional probability measure which describes each
individual’s behavior as a function of the rest of the population and then determining
what joint probability measures are compatible with these conditional measures. This
particular approach means that interactions-based approaches have typically been
deeply reliant on the use of the probability theory which underlies statistical mechanics
methods in physics. (Mathematicians generally refer to statistical mechanics models as
interacting particle systems. These models also fall into the broader class of probability
models known as random fields.) The value of this approach is that it permits one to
specify individual and social aspects of behavior simultaneously, and thereby address
aggregate behavior in a way consistent with the sort of methodological individualism
advocated by Coleman.
Interactions-based models have been applied to a wide range of contexts both within

economics and within social science more generally. A sense of this range can be given
through an admittedly incomplete survey of applications; see Durlauf (1997), Kirman
(1997), and Rosser (1999) for additional overviews.

1.1. Neighborhoods and inequality

Much of the recent literature on persistent income inequality has focused on the role
of neighborhood influences on socioeconomic outcomes. Theoretical models, such
as Bénabou (1993, 1996a,b), Cooper (1998), Durlauf (1996a,b), share a common
assumption that individual human capital acquisition depends on the behaviors and/or
characteristics of community members. These influences may range from peer group
effects, in which the costs to one person from investing effort in education are
decreasing in the effort levels of others [Bénabou (1993)], to role model effects, in
which the aspirations of a student are affected by the observed education/occupation
outcomes among adults in his community [Streufert (1991)], to labor market
connections [Granovetter (1995), Montgomery (1991, 1992)], in which the probability
with which one makes a successful job match depends on the information possessed
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by members of one’s social network. Similar types of spillovers were used much
earlier in Loury (1977) to provide a theory of racial income differences. Examples of
studies which have adduced empirical evidence of neighborhood effects include Crane
(1991a,b), Case and Katz (1991), Haveman and Wolfe (1994). Within the psychology
literature, there is rich evidence on the importance of peer group effects, as illustrated,
for example, in Brown (1990) and Brown et al. (1986). Finally, recent work by Casella
and Rauch (1997, 1998) shows how ethnic social networks can influence patterns of
international trade through similar mechanisms with attendant implications for ethnic
patterns of inequality.

1.2. Spatial agglomeration

The role of interactions effects in determining location decisions has been analyzed
in many contexts. Schelling’s (1971) work on racial segregation, illustrates how
weak preferences by individuals for neighbors of similar ethnicity can lead to
complete segregation. This work is possibly the first interactions-based model to be
studied in the social sciences; see Granovetter and Soong (1988) for a number of
extensions and generalizations of this original framework. Arthur (1987) has shown
how sequential locational decisions, combined with locational spillover effects, can
produce agglomerations of economic activity such as the Silicon Valley. Similar
models, with a richer microeconomic structure, have been subsequently analyzed
by Krugman (1996). In related work, Kelly (1997) has illustrated the evolution of
geographically defined trade networks.

1.3. Technology choice

The adoption of particular technological standards is a well-studied case both by
economic historians and economic theorists. Standard references on technology
adoption and network externalities include Farrell and Saloner (1985) and Katz and
Shapiro (1986). David’s (1985) discussion of how the QWERTY keyboard became
the standard for typewriters is one of the best known examples. Arthur (1989), using
mathematical models which fall within the class of tools which are conventionally
used in interactions-based models, showed how, when adoption decisions are made
sequentially, path dependence in technology choice may occur, which allows inferior
technologies to become locked-in. An and Kiefer (1995) show how similar results can
occur through local interactions. Goolsbee and Klenow (1998) have provided evidence
of the role of interaction effects in home computer adoption.

1.4. Preferences

A number of authors have used interactions-based approaches to study interdependent
preferences. Föllmer (1974), in what appears to be the first explicit use of statistical
mechanics methods in economics, studied an economy in which the probability that
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a given individual has one of two utility functions depends on the utility function of
his neighbors. His work demonstrated how interactions can lead to breakdowns of
the law of large numbers in large economies. Conlisk (1976) showed how to develop
Markov chain models in which the distributions of behaviors at t − 1 determined
transition probabilities at t and thereby are capable of producing fads in demand;
Granovetter and Soong (1986) developed similar results using different methods. Bell
(1995) analyzed a model in which preferences depend on the observed consumption
of neighbors. Her work showed how supply effects, in which higher consumption of a
commodity by others raises the price of a good for an individual, can be combined with
conformity effects, in which higher consumption by others shifts the preferences of
an individual toward that commodity, to produce interesting aggregate price dynamics.
Darrough et al. (1983), Alessie and Kapteyn (1991), Kapteyn et al. (1997), and Binder
and Pesaran (1998b) provide empirical evidence of interaction effects in consumer
expenditures using a variety of modelling approaches; Andreoni and Scholz (1998)
illustrate similar effects in the context of charitable contributions.
In a complementary line of work, recent authors have considered the implications

of concern over relative social position on behavior, an idea whose antecedent is
Duesenberry (1949) and which is explored along many dimensions in Frank (1985).
Recent important contributions include Cole et al. (1992) who show how relative status
concerns can provide a theory of growth, and Clark and Oswald (1996) who show
how such concerns affect the relationship between income and well-being, and Clark
and Oswald (1998) who characterize the relationship between relative status concerns
and emulative behavior. Postlewaite (1997) provides an overview of the relationship
between the incorporation of relative status in utility and economic theory.

1.5. Behavior of political parties

Interactions-based methods have recently proven useful in the study of political parties.
In a series of papers, Kollman et al. (1992, 1997a,b) have examined the ways in which
political parties evolve in response to voter preferences when there are multiple issues
of concern. Their modelling typically considers how a political party will adjust its
platform in response to the preferences of voters and a consideration of the behavior
of the opposing party. This work has illustrated how the convergence of party platforms
to a stable configuration depends sensitively on the distribution of voter preferences
as well as the degree of foresight of the parties themselves.

1.6. Social pathologies

There exists evidence that a number of types of behavior which society regards as
undesirable (pathological) are sustained by interaction effects. One example of this
is cigarette smoking. A number of studies [Bauman and Fisher (1986), Krosnick and
Judd (1982), Jones (1994)] have directly documented a role for friend and peer group
behavior in predicting individual smoking probabilities. Further, well documented
differences in smoking rates between black and white teenagers and between men and
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women within those groupings are highly suggestive of interactions effects. Examples
which are closer to the traditional concerns of economists include crime, labor market
participation, out-of-wedlock births, and school attendance. Recent theoretical models
of interactions and social pathologies include Akerlof and Yellen (1994), Brock and
Durlauf (1995), Nechyba (1996), Lindbeck et al. (1999), Sah (1991) and Verbrugge
(1999). Statistical evidence of these effects has been found in studies such as Crane
(1991a,b), Glaeser et al. (1996), Sampson et al. (1997) and Sucoff and Upchurch
(1998); although see Gottfredson and Hirschi (1990) and Sampson and Laub (1995) for
skepticism concerning the role of peer group effects with respect to the case of juvenile
delinquency. Ethnographic evidence of such interactions may be found in Anderson
(1990) and Duneier and Molotch (1999). Finally, Akerlof and Kranton (1998) develop
a framework for understanding the psychological bases which lead to memberships in
particular reference groups with attendant behavioral implications.

1.7. Information cascades

A number of authors have considered the implications of information aggregation
and behavior when agents possess idiosyncratic knowledge and are attempting to
learn more by observing the behavior of others. Banerjee (1992) and Bikhchandani
et al. (1992) have shown how such behavior can lead to informational cascades and
conformity in group behavior. Caplin and Leahy (1994) show how this idea can lead
to phenomena such as bank runs; Romer (1993) develops similar results in the context
of asset price movements.

1.8. Evolution of science

Since Kuhn’s (1970) analysis of scientific paradigms and the nature of scientific
revolutions, philosophers of science have grappled with the question of how (and
in some cases whether) a community of scientists whose members are subject
to conformity effects and whose objectives include non-epistemic factors such as
professional status as well as epistemic factors such as better predictability succeeds
in shedding scientifically inferior theories for superior ones. Recent work, best
exemplified by Kitcher (1993) has explicitly modelled scientific communities as
collections of interdependent researchers. This work has led authors such as Dasgupta
and David (1994), David (1998), Oomes (1998) and especially Brock and Durlauf
(1999) to consider formal interactions models of scientific theory choice. Using
interactions-based methods, Brock and Durlauf were able to provide conditions under
which scientific evidence will outweigh non-epistemic motivations and thereby provide
a model of scientific progress which takes into account critiques of various social
constructivists.

1.9. Chapter objectives

This chapter is designed to describe a range of methods to study interactions effects.
While the interactions-based models are now fairly well developed from the perspective
of theory [see Blume and Durlauf (1998a) for discussion], the econometrics literature
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is still in its infancy. Most of the existing econometric work has focused on the
identification issues which arise for interactions-based models. The pioneering work
in this regard is Manski (1993a,b, 1995, 1997); see as well recent surveys by Moffitt
(1998) and Duncan and Raudenbusch (1998). Even here, there is substantial work
which remains to be done in terms of the analysis of nonlinear as opposed to linear
models. A major purpose of this chapter will be to explore identification as well as
estimation in the context of structural models of interactions.
In order to facilitate this overview, we will focus on a particular class of interactions-

based models, namely binary choice models with interactions. This framework has
been exploited by a number of authors, including Blume (1993, 1995), Brock (1993),
Brock and Hommes (1998), Durlauf (1993, 1997), and Glaeser et al. (1996). The
specific framework we employ is adopted primarily from Brock and Durlauf (1995).
Its important advantage, from our perspective, is that for this class of models a tight
link exists between the theoretical formulation of various socioeconomic environments
and the econometric analysis of those formulations 2.

2. Binary choice with social interactions

2.1. General framework

In this section, we present a baseline model of interactions. The model is capable,
for particular restrictions on its parameters, of encompassing many of the theoretical
treatments of social interactions which have been developed. An additional purpose of
this approach is to show how these models can be analyzed using natural extensions
of standard economic reasoning. Finally, as initially recognized by Blume (1993) and
Brock (1993), the model is mathematically equivalent to logistic models of discrete
choice. This equivalence will allow us to analyze theoretical and econometric aspects
of interactions in a common framework.
We consider a population of I individuals each of which faces a binary choice.

These choices are denoted by an indicator variable wi which has support {−1, 1}. Each
individual makes a choice in order to maximize a payoff function V . In the standard
binary choice formulation of economics, this payoff function is of course assumed
to depend on the characteristics of the individual in question. These characteristics, in
turn, are assumed to be divided into an observable (to the modeller) vector Zi and a pair
of unobservable (to the modeller, but observable to agent i) random shocks ûi (1), and
ûi (−1). The observable vector can include elements such as family background, role
model or peer group characteristics, and past behavior. The shocks ûi (1) and ûi (−1)
are distinct as various types of unobservable idiosyncrasies are only relevant for one

2 We will not discuss the branch of the interactions literature which uses computer simulation methods
to study various environments. Epstein and Axtell (1996) represent the most ambitious and wide ranging
effort yet undertaken in this regard. See also Axtell et al. (1996) for an analysis of how to assess
simulations of this type.
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of the choices. For example, for the binary choice of whether to remain enrolled or
dropout of school, ûi (1) might refer to a shock which measures unobserved academic
ability and so is only relevant if the person stays in school. Algebraically, the individual
choices represent the solutions to

max
wi ∈ {−1, 1}

V (wi,Zi, ûi (wi)) . (1)

The standard approach to characterizing the behavior of the population of choices,
an approach which renders the model econometrically estimable, is to make some
assumption concerning the distribution of the ûi (wi)’s. One common assumption is
that the unobservables are independent and extreme value distributed both within and
across individuals. This will imply that for a given individual, the difference between
the unobservable components is logistically distributed,

m (ûi (−1) − ûi (1) ¶ z) =
1

1 + exp(−biz)
; bi ¾ 0. (2)

We use m (·) to denote probability measures throughout. The subscript i here and
elsewhere will be used to capture dependence on Zi so that, for example, bi = b (Zi).
The interactions-based approach to binary choice, at least qualitatively, is based upon

studying this same model once explicit attention has been given to the influence of the
expected behavior of others on each individual’s choice. Algebraically, each choice is
described by

max
wi∈ {−1, 1}

V (wi,Zi,mei (w−i) , ûi (wi)) , (3)

where w−i = (w1, . . . , wi−1, wi + 1, . . . , wI ) denotes the vector of choices other than
that of i, and mei (w−i) denotes that individual’s beliefs concerning the choices of other
agents. The nature of these beliefs, whether they are rational, etc., will be specified
below. However, we will assume that beliefs are independent of the realization of any
of the ûi (wi)’s.
At this level of generality, there is of course little that can be said about the properties

of the population as a whole. Hence, we make two parametric assumptions which will
elucidate both basic ideas and will encompass (as special cases) a number of models
which have appeared in the literature. First, we assume that the payoff function V can
be additively decomposed into three terms.

V (wi,Zi,mei (w−i) , ûi (wi)) = u (wi,Zi) + S (wi,Zi,m
e
i (w−i)) + ûi (wi) . (4)

Here u (wi,Zi), represents deterministic private utility, S
(
wi,Zi,mei (w−i)

)
represents

deterministic social utility, and ûi (wi) represents random private utility. The two private
utility components are standard in the econometric formulations of discrete choice.
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The essential difference between recent theoretical work and previous approaches to
studying binary choices is the introduction of social utility considerations.
Second, we assume that this social utility term embodies a generalized quadratic

conformity effect, i.e.,

S (wi,Zi,mei (w−i)) = −Ei
∑
j Ñ i

Ji, j
2
(wi −wj)2. (5)

The term Ji, j
2 represents the interaction weight which relates i’s choice to j’s choice and

is typically assumed to be nonnegative in theoretical models, although there is no need
to do so. We also treat the Ji, j parameters as fixed; see Ioannides (1990, 1997a), Kirman
(1983), and Kirman et al. (1986) for analyses where such parameters are stochastic
using techniques from random graph theory. One can allow the Ji, j’s to depend on the
characteristics of agent j as well as agent i, so that Ji, j = J

(
Zi,Zj

)
.

These assumptions are sufficient to characterize the distribution of aggregate choices
as a function of the distribution of various microeconomic characteristics. As a
preliminary, we make two algebraic manipulations. Observe first that we can, without
loss of generality, replace the private deterministic utility function of each individual
with a linear function,

u (wi,Zi) = hiwi + ki, (6)

where hi = h (Zi) and ki = k (Zi) are chosen so that

hi + ki = u (1,Zi) , (7)

and

− hi + ki = u (−1,Zi) . (8)

This linearization is permissible since the new function coincides with the original
utility function on the support of the individual choices. Hence, it does not readily
generalize when more than two choices are available.
Second, we expand the social utility term (5), using w2i = w

2
j = 1, in that

S (wi,Zi,mei (w−i)) =
∑
j Ñ i

Ji, j
(
wiEi

(
wj
)
− 1

)
, (9)

which makes clear the role of pairwise interactions between each individual choice
and the expected choices of others. Notice that the Ji, j is equal to the cross-partial
derivative of the social utility function, in that

Ji, j =
ð2V

(
wi,Zi,mei (w−i)

)
ðwiðEi

(
wj
) =

ð2S
(
wi,Zi,mei (w−i)

)
ðwiðEi

(
wj
) , (10)

which means that the function measures the strategic complementarity between
individual choices and the expected choices of others. See Cooper and John (1988)
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for a general analysis of complementarities which provides many insights which will
reappear in our framework. Unlike the standard formulation of complementarities, our
interactions are driven by expectations of the behavior of others, rather than by their
actual behavior.
The probability that individual i makes choice wi is equal to the probability that the

utility of the choice exceeds that of −wi,

m (wi | Zi,mei (w−i))
= m (V (wi,Zi,mei (w−i) , ûi (wi)) > V (−wi,Zi,m

e
i (w−i) , ûi (−wi)))

= m
(
hiwi +

∑
j Ñ i

Ji, jwiEi
(
wj
)
+ ûi (wi) > − (hiwi) −

∑
j Ñ i

Ji, jwiEi
(
wj
)
+ ûi (−wi)

)
.

(11)
Letting “~” denote “is proportional to,” the logistic specification of the random utility
terms means that this probability has the feature that

m (wi | Zi, mei (w−i)) ~ exp
(
bihiwi +

∑
j Ñ i

bi Ji, jwiEi
(
wj
))
. (12)

Since the random utility terms are independent across individuals, it must be the case
that the joint set of choices obeys

m (w | Z1, . . . , ZI ,me1 (w−1) , . . . , meI (w−I ))
=
∏
i

m (wi | Zi, mei (w−i)) ~
∏
i

exp
(
bihiwi +

∑
j Ñ i

biJi, jwiEi
(
wj
))
. (13)

Equation (13) provides a general form for the joint probability measure of individual
choices. It has the general form of a Gibbs measure, which is not coincidental. An
important theorem in the statistical mechanics literature, due to Averintsev (1970) and
Spitzer (1971), states that models of stochastic interactions of the type which have been
outlined will generically possess probability measures with Gibbs representations.
To close the model, it is necessary to specify how expectations are determined.

A natural special case of this model occurs when the agents all possess rational
expectations, i.e.,

Ei
(
wj
)
= E

(
wj | Z1, . . . , ZI , Ek (wl) , k = 1, . . . , I , l = 1, . . . , I

)
. (14)

The expectation operator on the right hand side is the mathematical expectation
given by the equilibrium probability measure (13), when these same mathematical
expectations are also the subjective expectations of each of the individual agents.
This means that the expected values of each of the choices is constrained by a set of
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self-consistency conditions. In particular, the expected value of each of the individual
choices for any set of beliefs will equal

E (wi) = tanh
(
bihi +

∑
j Ñ i

bi Ji, jEi
(
wj
))
, (15)

and so rational expectations require that we replace the subjective expectations with
their mathematical counterparts, i.e.,

E (wi) = tanh
(
bihi +

∑
j Ñ i

bi Ji, jE
(
wj
))
. (16)

These equations represent a continuous mapping of [−1, 1] I to [−1, 1] I . Therefore,
it is immediate from Brouwer’s fixed point theorem that there is at least one fixed point
solution, which implies Theorem 1.

Theorem 1. Existence of self-consistent equilibrium. There exists at least one set of
self-consistent expectations consistent with the binary choice model with interactions
as specified by Equations (2), (4) and (5).

By choosing particular specifications for the distribution of Zi one can generate
many of the models of binary choices with interactions which have appeared in
the literature. Perhaps more important, these particular specifications illustrate the
interesting aggregate properties of environments with interdependent decisionmaking.
We now consider some particular Ji, j structures in order to develop more precise

properties of the population’s probabilistic behavior. Page (1997) provides a valuable
analysis of the role of different interaction structures in generating different aggregate
properties which supplements this discussion.

2.2. Global interactions

One version of the binary choice model assumes that interactions across individuals
are global, in the sense that each individual assigns an identical weight to the expected
choice of every other member of the population. Since a person always conforms to
his own behavior, this is equivalent in terms of predicted behavior to assuming that
an individual assigns a common weight to all persons including himself [Brock and
Durlauf (1995)] and so we assume this for expositional purposes. Formally, given i,

Ji, j =
Ji
I

∀ j. (17)

Notice that we normalize the global interaction term Ji by the population size I for
analytical convenience. This specification seems especially plausible when individual
groups are determined by large aggregates such as ethnicity, religion, or region.
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Global interactions imply that an individual’s choice is, outside of individual-
specific characteristics, only influenced by his expectation of the average choice in the
population, since Equation (17) implies that the social utility term may be rewritten
(after taking the square) as

S (wi, Zi, mei (w−i)) = Ji (wiEi (w̄I ) − 1) , (18)

where Ei (w̄I ) denotes the subjective expectation of agent i of the population
average w̄I . The joint probability measure for this case equals

m (w | Z1, . . . , ZI , me1 (w−1) , . . . , meI (w−I )) ~
∏
i

exp ( bihiwi + biJiwiEi (w̄I )) .

(19)
As for the general case, self-consistency requires that each individual’s subjective

belief concerning the average choice equals the mathematical expectation of the
average choice,

Ei (w̄I ) = E (w̄I | Z1, . . . , ZI , me1 (w−1) , . . . , meI (w−I ))∀ i, (20)

which combined with the expected value of each choice, Equation (15), means that
for the global interactions model, any m is a self-consistent solution for the expected
average choice level if it solves

m =
∫
tanh ( b (Z) h (Z) + b (Z) J (Z)m) dFZ , (21)

where dFZ denotes the empirical probability distribution of the observable individual
characteristics. When each individual possesses identical observable characteristics
hi, bi and Ji are constant across the population, which implies that this integral reduces
to the equation

m = tanh ( bh + b Jm) . (22)

This equation is easily analyzed and illustrates how multiple equilibria can emerge in
interactions-based systems. Following the analysis in Brock and Durlauf (1995), these
multiple equilibria can be described by Theorem 2.

Theorem 2. Number of equilibria in the binary choice model with interactions.
i. If bJ > 1 and h = 0, there exist three different values of m which solve
Equation (22). One of these roots is positive, one root is zero, and one root is
negative.

ii. If bJ > 1 and h Ñ 0, there exists a threshold H (which depends on b and J ) such
that
a. for | bh| < H, there exist three solutions m to Equation (22), one of which has
the same sign as h, and the others possessing the opposite sign.
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b. for | bh| > H, there exists a unique solution m to Equation (22) with the same
sign as h.

This theorem can be extended to the more general specification

m =
∫
tanh ( bh (Z) + bJm) dFZ , (23)

which differs from Equation (21) in that here b and J are assumed to be constant across
individuals. The case of heterogeneous hi’s is of particular interest when considering
the econometric implementation of the model.
In order to generalize our theorem, we define the function R(·) by

R (m) =
∫
tanh ( bh (Z) + bJm) dFZ , (24)

so that the integral can be treated as a function of m. Suppose that dFZ is symmetrically
distributed with mean 0 and variance s and that h (Z) is symmetric about the origin.
This implies that R (0) = 0 given tanh (−x) = − tanh (x) and the assumed symmetry in
h and dFZ . Next, define

r (m) =
∫
tanh′ ( bh (Z) + bJm) dFZ . (25)

Observe that

R′ (0) = bJ
∫
tanh′ ( bh (Z)) dFZ = bJr (0) > 0. (26)

This means that for sufficiently small bJ , bJr (0) < 1 but if bJ > r (0)−1then R′ (0) > 1
and hence at least two new equilibria exist besides m = 0. On the other hand, note that
for any pair m1 and m2

|R (m1) − R (m2)| ¶ bJ |m1 − m2| , (27)

using Equation (23), the mean value theorem, and the facts that the tanh function is
bounded between −1 and 1 and dFZ is a probability measure. If bJ < 1, then this
is a contraction mapping and there exists only one solution to Equation (23) in this
case. Hence the m = 0 solution bifurcates into at least three solutions as bJ increases
beyond 1. Notice that unlike the case of homogeneous h’s, we have not ruled out the
possibility that more than three equilibria exist. We summarize this as a corollary.

Corollary 1. Number of equilibria in binary choice model with global interactions
and individual heterogeneity
If h (Z) is distributed symmetrically about the origin, then

i. If bJ < 1, then the self-consistent equilibrium in Equation (23) is unique.
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ii. If bJ > 1, then there exist at least three self-consistent solutions to Equation (23).

2.3. Local interactions

Local interactions models typically assume that each agent interacts directly with only
a finite number of others in the population. For each i, the set of j’s with whom he has
interactions is referred to as his neighborhood and is denoted by ni. While residential
neighborhoods have been a longstanding focus of the interactions literature, the models
we analyze have much broader applicability.
In a local interactions model, the notion of neighborhood-level interactions is

captured by a restriction on the interaction weights Ji, j of the general form

Ji, j = 0 if j /∈ ni. (28)

Of course, the global interactions model can be treated as a special case of a
neighborhoods model, one where all other members of the population are members
of each i’s neighborhood.
Depending on the application, the index i has been interpreted differently. For

example, in Föllmer (1974) or Glaeser et al. (1996), |i − j| measures the distance
between individuals, whereas it is treated as an index of technological similarity as
in Durlauf (1993). This allows one to construct a neighborhood for agent i by taking
all agents within some fixed distance from i. (The distance can vary with direction.)
This latter assumption is the source of the term “local.” For purposes of analysis of
finite systems, it is typical to locate actors on a torus so that distance can be defined
symmetrically for all agents. (A 2-dimensional torus is formed out of a k × k lattice by
connecting the east/west and north/south boundaries so as to ensure that each element
of the resulting system has four nearest neighbors.) For agents located on a torus, one
can rewrite social utility as

S (wi,Zi,mei (w−i)) = −Ei
∑
j ∈ ni

Ji, j
2

(
wi − wj

)2
, (29)

with associated individual probability measure

m (wi | Zi,mei (w−i)) ~ exp
(
bihiwi +

∑
j ∈ ni

biJi, jwiEi
(
wj
))
, (30)

and joint probability measure

m (w | Z1, . . . , ZI ,me1 (w−1) , . . . , meI (w−I ))
=
∏
i

m (wi | Zi, mei (w−i)) ~
∏
i

exp
(
bihiwi +

∑
j ∈ ni

biJi, jwiEi
(
wj
))
. (31)

A special case of the local interactions model occurs when local interactions are
homogeneous, which means 1) all neighborhoods have the same size which we denote
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N , and 2) within a neighborhood, all interaction weights are equal to a common J . In
this special case, social utility will equal

S (wi,Zi,mei (w−i)) = Jwi
∑
j ∈ ni

Ei
(
wj
)
, (32)

where N denotes the number of members of a neighborhood. Under rational
expectations it is immediate that one joint probability measure for agents’ choices
is

m (w) ~ exp
(
bh

∑
i

wi + b N J
∑
i

wiE (w)
)
, (33)

where

E (w) = tanh ( bh + b N J E (w)) = E (wi) ∀ i, (34)

which implies the following theorem:

Theorem 3. Relationship between global and local interactions models. Any
equilibrium expected individual and average choice level m for the global interactions
model is also an equilibrium expected individual and average choice in a homogeneous
local interactions model.

This result might initially appear odd, given the explicit local interaction structure
of preferences. In fact, the equivalence is not surprising. When all expectations are
identical, and the sample mean is required to equal the population mean, then agents
are all implicitly connected to one another through the expectations formation process.
To be clear, the local interactions model can exhibit equilibria which are different from
that of the global case.
Focusing on the case where each individual is required to possess identical E (wi)’s is

not required by the logic of the local interactions model. There has been little work on
the existence and characterization of asymmetric equilibrium E (wi)’s, i.e., equilibria
where the expected values differ across agents. Examples of asymmetric equilibria
of this type may be found in Blume and Durlauf (1998b). A trivial example can be
produced by taking two environments which exhibit global interactions and multiple
equilibria and defining them as a common population.
Finally, it is worth noting that when interactions between decisions are all

intertemporal, then the assumption of extreme-valued random utility increments can
be dropped. The equilibrium properties of the dynamic models in this section can be
recomputed under alternative probability densities such as probit which are popular in
the discrete choice work. In fact, under the mean field analysis of global interactions,
alternative specifications can incorporate probit or other densities as well. In both
cases, the large scale properties of models under alternative error distributions are
largely unknown.
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2.4. Relationship to statistical mechanics

The models we have thus far outlined bear a close relationship to models in statistical
mechanics. A standard question in statistical mechanics concerns how a magnet can
exist in nature. A magnet is defined as a piece of iron in which a majority of the atoms
are either spinning up or down. Since there is no physical reason why atoms should be
more likely to spin up or down when considered in isolation, the existence of a natural
magnet, which requires literally billions of atoms to be polarized towards one type of
spin, would seem extraordinarily unlikely by the law of large numbers. As a result,
statistical mechanics models are based on the primitive idea that the probability that
one atom has a given spin is an increasing function of the number of atoms with the
same spin within the atom’s neighborhood. For the Ising model of ferromagnetism, the
assumption is that atoms are arrayed on a 2- (or higher) dimensional integer lattice,
so that

m (wi | spins of all other atoms in material) =
m
(
wi | wj such that |i − j| = 1

)
~ exp

(
b Jwi

∑
| i − j | = 1

wj
)
. (35)

For the Curie–Weiss model, the physical interaction structure is assumed to be such
that each atom’s spin is probabilistically dependent on the average spin in the system,
so that

m (wi | spins of all other atoms in material) ~ exp ( b Jwiw̄) . (36)

Hence our models of binary choice with social interactions are mathematically quite
similar to physical models of magnetism.
An important difference, however, does exist. While our socioeconomic model

embeds pairwise interactions via the products of individual choices wi with the ex-
pected choices of others, the physical models are based upon conditional probabilities
which depend on the products of the realized individual choices for all pairs of
individuals. Interestingly, the physics literature has also dealt with expectations-based
interactions. It turns out that models with interactions across realizations are extremely
difficult to analyze, so physicists have developed what is referred to as a “mean-
field approximation” to various ferromagnetism models. A mean-field approximation
amounts to replacing certain terms in an original model with their mathematical
expectation. Hence, the mean-field approximation for the conditional probability of
the spin of a given atom for the Curie–Weiss model is

m (wi) ~ exp ( b Jwi E (w̄I )) , (37)

which is of the same form as Equation (12) when agents possess identical Zi’s and
Ji, j = J

I . Of course, what is an approximate model in a physical context is an
exact model in the socioeconomic context we have been analyzing, at least given our
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behavior primitives. This difference occurs because our behavioral assumption is that
individuals interact through their expectations of one another’s behavior, rather than
through realizations.
This last remark relates to a more general consideration in the use of statistical

mechanics methods by social scientists. A basic conceptual difference exists between
social and physical environments which contain interactions. Physical (and many
mathematical) models of interactions typically take as primitives the conditional
probabilities linking elements of a system, i.e., m (w1 | w−1), . . . , m(wI | w−I ). Analysis
of the model considers the existence and (if so) properties of whatever joint probability
measures are consistent with the conditional ones. In socioeconomic contexts, it is
more natural to take preferences, beliefs, and technologies as primitives and from
them determine what conditional probability relationships will hold. Hence, statistical
mechanics and related models cannot be employed in socioeconomic contexts without
determining what socioeconomic primitives will lead to a particular conditional
probability representation. Further, the purposefulness of the objects of analysis in
social science contexts also means that issues of the endogeneity of neighborhoods and
the potential for the existence of institutions which coordinate collective action will
naturally arise. These issues have no analog in physical contexts and are suggestive of
the limitations in importing methods from physics into socioeconomic studies.

2.5. Social planning problem

Our analysis thus far has assumed that individual decisions are not coordinated. An
alternative approach is to examine how decisions would be made when coordinated
by a social planner. Beyond its use in developing welfare comparisons and developing
contrasts with the noncooperative case, the social planner’s solution may have empirical
content in some contexts. As described by Coleman (1988, 1990; Chapter 12) the
evolution of social capital, defined to include aspects of social structure which facilitate
coordination across individuals and which may be embedded either in personal mores
or organizations such as churches or schools, implies that in many types of social
situations, coordinated behavior can emerge.
In order to do this, it is necessary to be more precise in the formulation of the

underlying game played by members of the population. As before, we consider a
population of I individuals each with payoff function V

(
wi,Zi,mei (w−i) , ûi (wi)

)
. The

random functions ûi (·) are assumed to be observed by the members of the population,
so that each agent i knows the realizations of ûj (·)∀ j Ñ i. We further assume that
the distribution of these random components is described by Equation (2). Hence in
terms of timing, nature draws the random functions ûi (·) and reveals them to the entire
population. Second, players play the game G defined by

G = {V (wi,Zi,mei (w−i) , ûi (wi)) , i = 1 · · · I} , (38)

where mei (w−i) denotes their beliefs about the behavior of other agents and is
conditioned on nature’s draw of the random functions.
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With respect to this environment, an obvious benchmark is a perfect foresight Nash
equilibrium. By this, we mean that each player knows the ûi (·) functions for every
agent and forms beliefs about the resultant choices in the population mei (w−i) which
are confirmed in equilibrium. If each player is playing a pure strategy, this means that
mei (w−i) = w−i so that a perfect foresight pure strategy equilibrium is a set of choices w
such that for all i

wi = arg max
g ∈ {−1, 1}

V (g ,Zi,w−i, ûi (g)) . (39)

For the analogous mixed strategy equilibrium, let pi =
(
pi, −1,pi, 1

)
denote the

row vector of probability weights assigned by agent i to the two choices. Then
Pi = (p1 · · · pI ) denotes a perfect foresight Nash equilibrium if each pi is consistent
with

pi = argmax
gi
gi, 1V (1,Zi,P−i, ûi (1)) + gi, −1V (−1,Zi,P−i, ûi (−1))

such that gi, −1, gi, 1 ¾ 0 and gi, −1 + gi, 1 = 1,
(40)

so that agent i plays the mixture gi against the mixtures played by the other
agents, P−i = (p1, . . . , pi−1, pi + 1, . . . , pI ). Mixture gi means that i chooses 1 with
probability gi, 1 and chooses −1 with probability gi, −1. It is a standard result that a
mixed Nash equilibrium of this type will always exist, although a pure strategy Nash
equilibrium may not.
Alternatively, a limited information Nash equilibrium can be characterized when

agents make choices without knowledge of the ûi (·) functions for agents other than
themselves. In terms of timing, one can think of agents forming beliefs mei (w−i) before
any ûi (·)’s are realized, nature then drawing the ûi (·)’s, revealing ûi (·) to agent i, and
each i then choosing wi. For this case,

wi = arg max
g ∈ {−1, 1}

V (g ,Zi,mei (w−i) , ûi (g)) , (41)

when mei (w−i) = m
(
w−i | Zj ∀ j

)
∀ i, so that each agents beliefs are consistent with the

model. This is the equilibrium concept we have employed above.
In contrast to these noncooperative environments, we may characterize a social

planner’s perfect foresight problem as choosing w in order to maximize total utility in
the population, i.e.,

max
w

I∑
i = 1

V (wi,Zi,mei (w−i) , ûi (wi)) . (42)

From Equation (42), one can in principle compute quantities such as the expected
average payoff under a social planner and contrast it with their counterparts under the
two noncooperative environments.
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In order to perform such a comparison, however, analytical tractability becomes a
problem. To see this, notice that for our global interactions model, the social planner’s
problem becomes

max
w

I∑
i = 1

(
hiwi −

J

2
(wi − w̄I )

2 + ûi (wi)
)
. (43)

Unfortunately,
∑I

i = 1 ûi (wi) is not independent and extreme value distributed over the
2I possible configurations of w, even though the individual ûi (wi)’s are distributed that
way. One way around this problem is, following Brock and Durlauf (1995), to replace
this original social planner’s problem with an approximate problem

max
w

I∑
i = 1

(
hiwi −

J

2
(wi − w̄I )

2 + û∗i (wi)
)
, (44)

where û (w) ≡ ∑I
i = 1 û

∗
i (wi) is itself extreme value distributed. One can require that

the variance of the errors in the approximate social planner’s problem equal those in
the original problem in order to achieve some calibration between the two problems.
Under our assumption on û (w), one may use Equation (44) to show that the

probability measure characterizing the joint choice of w equals

m (w) =
exp

(
b
(∑I

i = 1 hiwi +
J
2I

(∑I
i = 1 wi

)2))
∑

n1 ∈ {−1, 1} · · · ∑nI ∈ {−1, 1} exp
(
b
(∑I

i = 1 hini +
J
2I

(∑I
i = 1 ni

)2)) .
(45)

In order to analyze this probability measure, which is known in the statistical
mechanics literature as the Curie–Weiss model, it is necessary to eliminate the(∑I

i = 1 wi
)2
terms in Equation (45). This calculation is complicated and may be found

in the Appendix; further analysis appears in Brock (1993). A result currently exists
only for the case hi = h and only for the large economy limit. However, Amaro de
Matos and Perez (1991) suggest that for the large economy limit generalization to
heterogeneous his is possible. The Appendix verifies Theorem 4.

Theorem 4. Expected average choice under social planner for binary choice model
with interactions. Let m∗ denote the root of m∗ = tanh ( bh + bJm∗) with the same
sign as h. If Equation (39) characterizes the joint distribution of individual choices
as determined by a social planner, then

lim
I ⇒ ∞

E (w̄I ) = m∗. (46)
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One aspect of this theorem is intuitive, in that a planner would choose that average
choice level in which the interaction effects and the private deterministic utility
comparisons work together. What is perhaps surprising is that the social planner’s
equilibrium is sustainable as an equilibrium in the limited information noncooperative
environment. However, this result is somewhat special to the functional form originally
assumed for individual deterministic social utility. If the original social utility term had
been Jwi E (w̄I ), then the noncooperative equilibrium average choice level would be
the same as for the case we have studied, but the analogous social planner’s problem
would choose that root of m∗ = tanh ( bh + 2bJm∗) with the same sign as h [Brock and
Durlauf (1995)], which would mean it is not supportable in the limited information
noncooperative environment.

2.6. Linear-in-means model

Much of the empirical work on interaction effects has assumed that the behavior
variable wi has continuous support and depends linearly on various individual
and neighborhood effects. These assumptions permit a researcher to use ordinary
least squares methods, which will be discussed below. While these empirical
papers generally do not consider what decision problems generate their econometric
specifications, it is straightforward to do so. For a trivial example, suppose that an
individual solves

max
wi ∈ (−∞,∞)

− 12 (wi − w
∗
i )
2 , (47)

where w∗
i is a reference behavior level to which individual i prefers to conform. When

this reference behavior level equals hi + J Ei (w̄I ) + ûi , it is immediate that

wi = hi + J Ei (w̄I ) + ûi. (48)

This is the type of equation studied by Manski (1993a,b), Moffitt (1998), Duncan and
Raudenbusch (1998), among others.

3. Identification: basic issues

In this section, we describe the identification of interactions-based models in cross-
sections. Identification is a concern in these cases because of the likelihood that group
versus individual determinants of individual behavior are correlated. Hauser (1970)
provides an early and clever analysis of how these correlations can, if not properly
accounted for, lead to spurious inferences. We recommend this paper as an example
of how powerful intuitive reasoning (as well as good common sense) can complement
and foreshadow formal analysis.
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Manski (1993a,b, 1997) has pioneered the study of the identification of interaction
effects, and we will follow his treatment closely. In his work, Manski distinguishes
between three explanations for correlated behavior within groups:

“endogenous effects, wherein the propensity of an individual to behave in some way varies
with the behaviour of the group . . . exogenous (contextual) effects, wherein the propensity of
an individual to behave in some way varies with the exogenous characteristics of a group . . .
correlated effects, wherein individuals in the same group tend to behave similarly because they
have similar individual characteristics or face similar institutional environments” [Manski (1993a,
p. 532)]

The treatment of identification problems in terms of the ability to distinguish these
different effects in data seems to us very useful and so we employ it throughout.
For purposes of discussing identification and other econometric aspects of inter-

actions-based models, we begin with a baseline set of data assumptions which will
apply both to the binary choice model and to the linear-in-means model. We assume
that the econometrician has available a set of observations on I individuals. We
assume that each individual is drawn randomly from a set of neighborhoods. Within
each neighborhood, all interactions are global. For notational purposes, we denote
individuals as i and the neighborhood (which means the set of other individuals who
influence i through interactions) as n (i). We assume that our original vector Zi can be
partitioned into an r-length vector of individual-specific observables Xi and an s-length
vector of exogenously determined neighborhood observables Yn(i) associated with each
individual in the sample. This will allow us to replace the private utility component hi
in our theoretical discussion with a linear specification

hi = k + c
′Xi + d ′Yn(i). (49)

Notice that this specification means that none of the individual-specific observables Xi
or neighborhood observables Yn(i) contains a constant term. We will maintain this
assumption throughout. Within a neighborhood, all interactions are assumed to be
global and symmetric, so that there is a single parameter J which indexes interactions.
Recall that men(i) is agent i’s subjective expectation of the average choice in

neighborhood n (i). In the subsequent discussion, it will be useful to distinguish
between men(i) and mn(i), the mathematical expectation of the average choice in a
neighborhood under self-consistency. (We will specify the information sets under
which self-consistency is calculated below.) The reason for this is that we will have
need to distinguish between the data in a statistical exercise and the mathematical
solution to a model. Of course, men(i) = mn(i) is part of our maintained assumption
in the analysis, so there is no loss of generality in doing this. For purposes of
discussion of identification, we are therefore either implicitly assuming that the
neighborhoods are arbitrarily large, so that the neighborhood sample average can
be used in place of the expected value or that accurate survey data are available.
We finally assume that the errors are independent across individuals and that
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m(ûi (wi) − ûi (−wi) | Xi,Yn(i),men(i)) = m (ûi (wi) − ûi (−wi)) for the binary choice model,
and E(ûi | Xi, Yn(i), men(i)) = 0 for the linear-in-means model.
Our strategy of using individual level data has an important advantage: to the extent

that the parameters of the individual model are identified, one can infer whether or
not multiple equilibria exist with respect to population aggregates. This can be done
without consideration of an equilibrium selection rule because population aggregates
are always treated as independent variables in the analysis. Hence we can circumvent
some of the problems described in Jovanovic (1989).

3.1. Binary choice

For the binary choice model, we consider the identification based on a naive estimator
of the parameters of the model. By naive, we refer to the case where a logistic
regression is computed which does not impose the relationships between neighborhood
means. In this case, the conditional likelihood function for the set of individual choices
will have a standard logistic form. Using our theoretical model of global interactions
(and exploiting symmetry of the logistic density function), the likelihood is

L
(
wI | Xi,Yn(i),men(i)∀ i

)
=
∏
i

m
(
wi = 1 | Xi,Yn(i),men(i)

) 1 + wi
2 · m

(
wi = −1 | Xi,Yn(i),men(i)

) 1 − wi
2

~
∏
i

(
exp

(
b k + b c′Xi + b d ′Yn(i) + b Jmen(i)

) 1 + wi
2

· exp
(
−bk − b c′Xi − b d ′Yn(i) − b Jmen(i)

) 1 − wi
2

)
.

(50)

As is standard for logistic models, the complete set of model parameters is not
identified as k , c′, d ′ and J are each multiplied by b . We therefore proceed under
the normalization b = 1.
The reason that identification is a concern in a model like this is the presence of the

term men(i) in the likelihood function. Since this term embodies a rationality condition,
it is a function of other variables in the likelihood function. Specifically, we assume
that

men(i) = mn(i) =
∫
tanh

(
k + c′X + d ′Yn(i) + Jmn(i)

)
dFX | Y n(i) . (51)

Here FX | Y n(i) denotes the conditional distribution of X in neighborhood n (i) given the
neighborhood characteristics Yn(i). What this means is that each agent is assumed to
form the conditional probabilities of the individual characteristics in a neighborhood
given the aggregates which determine his or her payoffs. Since one can always add
elements of Yn(i) with zero coefficients to the payoff equation for agents, this is without
loss of generality.
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Rather than prove identification for the particular case where the theoretical model is
logistic [see McFadden (1974) and Amemiya (1985; Chapter 9) for proofs for this case]
we prove identification for an arbitrary known distribution function for the random
payoff terms. Specifically, we assume that the conditional probability of individual i’s
choice can be written as

m
(
û (wi) − û (−wi) ¶ z | Xi,Yn(i),men(i)

)
= F

(
z | k + c′Xi + d ′Yn(i) + Jmen(i)

)
,
(52)

where F is a known probability distribution function that is continuous and strictly
increasing in z.
We consider identification based on a naive estimator of the parameters of the

model. By naive, we refer to the situation where parameter estimates for the model
are computed which do not impose the rational expectations condition between
neighborhood means and neighborhood characteristics, but rather uses these variables
as regressors. Hence, we assume that men(i) is known to the researcher; see discussion
below for the case when men(i) is not observable.
To formally characterize identification, we employ the following notation. Define

supp(X ,Y ,me) as the joint support of the distribution of (Xi,Yn(i),men(i)). Intuitively,
the definition of identification we employ says that a model is identified if there do
not exist two distinct sets of parameter values each of which produces (for all subsets
of X and Y which occur with positive probability) identical probabilities for individual
choices and which are also self-consistent.

Definition. Global identification in the binary choice model with interactions and
self-consistent expectations: The binary choice model is globally identified if for all
parameter pairs (k , c, d, J ) and (k̄ , c̄, d̄, J̄ )

k + c′Xi + d ′Yn(i) + Jmen(i) = k̄ + c̄
′Xi + d̄ ′Yn(i) + J̄mei , (53)

and
men(i) = mn(i)

=
∫
widF

(
wi | k + c′X + d ′Yn(i) + Jmn(i)

)
dFX | Y n(i)

=
∫
widF

(
wi | k̄ + c̄ ′X + d̄ ′Yn(i) + J̄mn(i)

)
dFX | Y n(i)

(54)

∀
(
Xi,Yn(i),m

e
n(i)

)
∈ supp (X ,Y ,me) ,

imply that (k , c, d, J ) = (k̄ , c̄, d̄, J̄ ).
In order to establish conditions under which identification can hold we follow the

argument in Manski (1988), Proposition 5, and state the following Proposition, whose
proof appears in the Appendix. The assumptions we make are clearly sufficient rather
than necessary; weakening the assumptions is left to future work. In interpreting
the assumptions, note that Assumption i is the one used by Manski to identify this
model when there are no endogenous effects, i.e., if J is known a priori to be 0. The
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assumption, of course, does nothing more than ensure that the individual and contextual
regressors are not linearly dependent. The additional assumptions are employed to
account for the fact that mn(i) is a nonlinear function of the contextual effects.

Theorem 5. Sufficient conditions for identification to hold in the binary choice
model with interactions and self-consistent beliefs. Assume
i. supp

(
Xi,Yn(i)

)
is not contained in a proper linear subspace of Rr + s.

ii. supp
(
Yn(i)

)
is not contained in a proper linear subspace of Rs.

iii. No element of Xi or Yn(i) is constant.
iv. There exists at least one neighborhood n0 such that conditional on Yn0 , Xi is not

contained in a proper linear subspace of Rr.
v. None of the regressors in Yn(i) possesses bounded support.
vi. mn(i) is not constant across all neighborhoods n.
Then, (k , c, d, J ) is identified relative to any distinct alternative (k̄ , c̄, d̄, J̄ ).

3.2. Linear-in-means model

Identification in the binary choice model with interactions can be contrasted with the
case of the analogous linear-in-means model,

wi = k + c′Xi + d ′Yn(i) + Jmen(i) + ûi. (55)

The unique self-consistent solution mn(i) for the linear-in-means model is easily
seen, by applying an expectations operator to both sides of the individual behavioral
equation, to be

mn(i) =
k + c′E

(
Xi | Yn(i)

)
+ d ′Yn(i)

1 − J
, (56)

where E
(
Xi | Yn(i)

)
denotes the expected value of the individual controls given the

neighborhood characteristics. Hence, following the argument in Manski (1993a,b), one
can construct a reduced form expression for individual choices,

wi =
k

1 − J
+ c′Xi +

J

1 − J
d ′Yn(i) +

J

1 − J
c′E

(
Xi | Yn(i)

)
+ ûi. (57)

In this equation, we have 2r + s + 1 regressors and r + s + 2 parameters. The possibility
for identification in this model therefore will depend on which, if any, of the regressors
in the reduced form are linearly independent (i.e., their variance covariance matrix is
of full rank). For example if E

(
Xi | Yn(i)

)
is linearly dependent on Yn(i), then it is

obvious that the model parameters are not identified. More generally, it is necessary
for identification that the dimension of the linear space spanned by the regressors is at
least equal to the number of structural parameters, i.e., r + s + 2; otherwise, one cannot
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map the reduced form coefficients back to the structural parameters. Hence, one can
state the following theorem.

Theorem 6. Necessary conditions for identification in the linear-in-means model
with interactions and self-consistent beliefs. In the linear-in-means model it is
necessary for identification of the model’s parameters that
i. The dimension of the linear space spanned by elements of

(
1,Xi,Yn(i)

)
is r + s + 1.

ii. The dimension of the linear space spanned by the elements of (1,Xi,Yn(i),E
(Xi | Yn(i))) is at least r + s + 2.

Notice that the conditions of this theorem, while analogous to those in the theorem for
identification in the binary choice model, are now necessary and not sufficient. This
is because sufficient conditions will depend on the model parameters. For example,
if c = 0, then the fact that E

(
Xi | Yn(i)

)
is linearly independent of the regressors Xi

and Yn(i) will not eliminate collinearity of mn(i) and Yn(i) in the structural equation (55)
and hence will leave only s + 1 regression coefficients in the reduced form available
to identify k , J and d, which is not enough.
This theorem is an extension of Manski’s (1993a,b) result on the nonidentifiability of

contextual versus endogenous effects. Manski’s analysis assumes that there is a one-to-
one correspondence between the individual control variables Xi and the neighborhood
control variables Yn(i) so that for any individual-level variable that influences behavior,
the neighborhood average of that variable also influences behavior. For example, if
one controls for individual education, one also controls for average neighborhood
education. In this case, E

(
Xi | Yn(i)

)
= Yn(i). Hence, mn(i) is linearly dependent on

Yn(i) and so the model is not identified. Notice as well that the Theorem requires
that E

(
Xi | Yn(i)

)
is a nonlinear function of Yn(i); this is analogous to the condition

for identification of some interaction effect in Manski (1993a,b), Proposition 1 and
Corollary. (Manski’s results have to do with the identification of either an endogenous
or contextual effect in the presence of individual effects, but does not allow for
identification between these two effects, whereas our result gives conditions under
which the two group effects can be distinguished.)
Why is there this difference between the binary choice and the linear-in-means

frameworks? The answer is that the binary choice framework imposes a nonlinear
relationship between the group characteristics and the group behaviors whereas the
linear-in-means model (of course) does the opposite. Intuitively, suppose that one
moves an individual from one neighborhood to another and observes the differences in
his behavior. If the characteristics and behaviors of the neighborhoods always move in
proportion as one moves across neighborhoods, then clearly one could not determine
the respective roles of the characteristics as opposed to the behavior of the group in
determining individual outcomes. This can never happen in the logistic binary choice
case given that the expected average choice must be bounded between −1 and 1.
So, for example, as one moves across a sequence of arbitrarily richer communities,
the percentage of high school graduates cannot always increase proportionately with
income.
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One can develop analogous identification conditions for alternative information
assumptions in the linear-in-means model. For example, suppose that X̄n(i), the sample
average of the individual characteristics in neighborhood n (i), is known to all members
of the neighborhood. In this case,

mn(i) =
k + c′X̄n(i) + d ′Yn(i)

1 − J
. (58)

This equation makes clear that if the elements of X̄n(i) lie in the linear space spanned
by Yn(i), then the linear-in-means model will not be identified. Hence, we have the
following corollary.

Corollary 2. Necessary conditions for identification in the linear-in-means model
when Yn(i) and X̄n(i) are observable
If Yn(i) and X̄n(i) are observable, then a necessary condition for identification in

the linear-in-means model is that the dimension of the linear space spanned by
(1,Xi,Yn(i), X̄n(i)) is at least r + s + 2.

Operationally, this corollary means that for the full information case, one needs
one individual variable whose neighborhood level average is not an element of the
individual behavioral equation. This average can then be used to instrument men(i).

3.3. Instruments for unobservable expectations

The identification condition for the linear-in-means model suggests a set of instruments
which may be used when men(i) is not observable, is measured with error, etc.
Specifically, replacing men(i) with the projection of w̄n(i), the sample average of behaviors
in neighborhood n (i) onto H

(
Yn(i),E

(
Xi | Yn(i)

))
, where H (a, b) denotes the Hilbert

space generated by the elements of vectors a and b, will not affect our identification
results so long as dim(H (Yn(i),E(Xi | Yn(i)))�H (Yn(i))) > 0, where for Hilbert spaces I
and G such that G ⊆ I , I �G denotes the Hilbert space generated by those elements
of I that are orthogonal to all elements of G. An analogous procedure will apply when
X̄n(i) is observable to individuals.
Of course, this assumes that the researcher has prior knowledge of what individual-

level variables affect behavior when their neighborhood averages do not; otherwise,
it would be the case that H

(
E
(
Xi | Yn(i)

))
⊆ H

(
Yn(i)

)
and so may be susceptible

to Sims’ (1980) classic critique of “incredible” identifying restrictions; see Freedman
(1991) for a similar critique of the sorts of regressions we describe here. The point
remains, however, that identification in the linear-in-means model depends on the same
classical conditions as does identification in general simultaneous equations models,
as initially recognized by Moffitt (1998).
At the same time, we would argue that the issue of omitted variables is far from

insuperable. Both the social psychology and sociology literatures have focused a great
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deal of attention as to which types of individual and group control variables are most
appropriate for inclusion in individual level regressions through the determination of
which variables seem to be proximate versus ultimate causes of individual behavior.
Indeed, it is this distinction which is the basis of path analysis [Blau and Duncan
(1967)]; see Sampson and Laub (1995) for what we consider a persuasive example of
such a study. In general, we find it likely that these literatures will be able to identify
examples of individual variables whose group average analogs are not proximate causes
of behavior, and hence are available as instruments. While these literatures are often
not driven by formal statistical modelling and further subjected to Sims/Freedman-
type critiques [e.g., Freedman (1991)] when formal techniques are employed, this
hardly means that these literatures are incapable of providing useful insights. In this
respect, we find arguments to the effect that because an empirical relationship has been
established without justification for auxiliary assumptions such as linearity, exogeneity
of certain variables, etc., one can ignore it, to be far overstated. In our view, empirical
work establishes greater or lesser degrees of plausibility for different claims about
the world and therefore the value of any study should not be reduced to a dichotomy
between full acceptance or total rejection of its conclusions. Hence the determination
of the plausibility of any exclusion restriction is a matter of degree and dependent on
its specific context, including the extent to which it has been studied.

3.4. Identification of individual versus neighborhood contextual effects

We now consider in more detail what is involved for identification of some type
of neighborhood effects. What we mean is the following. Suppose that one wishes
to determine whether any type of neighborhood effect exists, without distinguishing
between endogenous and contextual effects, hence the only regressors in the model
are a constant, Xi, and Yn(i). Operationally, we define this as determining whether, for
a statistical model which only includes contextual effects as controls, the parameters
on these contextual effects are identified3. A Corollary of the general identification
Theorems 5 and 6 highlights the two conditions necessary to distinguish individual
versus neighborhood contextual effects. A related result may be found in Manski
(1993a,b, corollary, p. 535).

Corollary 3. Identification of individual versus neighborhood effects in the binary
choice model and linear-in-means model with global interactions
In either the binary choice or the linear-in-means models with global interactions,

a necessary condition for the identification of some neighborhood effect is that the
dimension of the linear space spanned by the elements of

(
1,Xi,Yn(i)

)
is of higher

dimension than the linear space spanned by the elements of (1,Xi).

3 When Yn(i) = E (Xi | i ∈ n(i)) the corollary can be interpreted as applying to identification of a group
effect for the reduced form of the linear-in-means model.
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While the corollary is trivial, in that it is nothing more than the statement that in
order to identify some sort of neighborhood effect some combination of the expected
neighborhood effects must be linearly independent of the individual controls, it does
have some economic content. Suppose that individuals are sorted into neighborhoods
on the basis of an individual characteristic and that the neighborhood average of
this same characteristic is what constitutes the relevant contextual effect. What this
means is that there exists a neighborhood assignment rule x(·) which relates individual
characteristics to neighborhood characteristics such that nonidentification requires
that (assuming that the set of neighborhood characteristics and the set of individual
characteristics are each internally linearly independent) there exists some linear
combination of individual characteristics which is equal to some linear combination
of neighborhood characteristics, i.e., there exist weights a and g such that

ú + a′Xi = g ′Yn(i). (59)

But if this is so, then if individual observations are chosen randomly from the
neighborhood, it must be the case that individuals are perfectly segregated across
neighborhoods with respect to the composite individual characteristic ú + a′Xi. This is
an extremely strong condition on the neighborhood sorting rule, ruling out any noise
in the sorting process, and is in our judgment implausible. Hence our interpretation
of the identification corollary is that empirical researchers should feel confident that
individual versus neighborhood effects can be at least in principle distinguished. To
be clear however, this does not mean that data sets drawn from highly segregated
communities are not a problem; rather the same reasoning we have applied suggests
how segregation can lead to large standard errors for the estimated parameters of the
model.

3.5. Nonlinear-in-means model

The differences between the binary choice and linear-in-means models suggest that
nonlinearity has a fundamental effect on the identification problem. McManus (1992)
provides a number of general results which indicate that lack of identification is a
nongeneric phenomenon in nonlinear contexts; these contexts do not include self-
consistency conditions of the type which created the identification problem in the
linear-in-means model. (A property is generic to a topological space of objects if it
holds for an open, dense subset of the space.) McManus’ analysis relies on some results
from differential topology, which are beyond the scope of this chapter.
Nevertheless, it is possible to demonstrate a basic role for nonlinearity in identifying

the parameters of interactions-based models by examining deviations from the linear-
in-means model we have studied. Suppose that the individual behavioral equation is

wi = k + c′Xi + d ′X̄n(i) + Jmen(i) + ûi. (60)

Here, the contextual effects X̄n(i) are averages of the individual controls Xi, so we know
that this model is not identified by Theorem 6. In the spirit of McManus (1992), we
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wish to make precise the idea that for the class of models, when the model is not linear
in men(i) but rather is linear in a function of m

e
n(i), lack of identification is pathological.

To do this, let g (m) be a C2 function such that g is nonlinear in m and let

G
(
men(i)

)
= men(i) + xg

(
men(i)

)
, (61)

represent a class of functions which are perturbations around the linear function men(i).
We consider the nonlinear-in-means model

wi = k + c′Xi + d ′X̄n(i) + J G
(
men(i)

)
+ ûi. (62)

Associated with this equation is a conditional mean function H

H
(
Xi, X̄n(i),m

e
n(i)

)
= k + c′Xi + d ′X̄n(i) + J G

(
men(i)

)
. (63)

For this model, self-consistency of men(i) requires

men(i) = mn(i) = k +
(
c′ + d ′) X̄n(i) + J G (

mn(i)
)
. (64)

Our goal is to determine whether the model with x = 0 is special in terms of
nonidentifiability of the parameters in Equation (60). In doing so, we will assume
that when there are multiple solutions to this equation, there is a selection rule which
selects a particular solution mn(i) so that the observed mn(i) = m

(
X̄n(i)

)
.

In analyzing this equation, we will work with a notion of local identification.
The model Equations (61–64) define a “structure” for each particular parameter
vector A = (k , c, d, J ). We focus here on identification at the level of the conditional
mean function (63). Following Rothenberg (1971) or McManus (1992), we say a
parameter point A0 is locally identified if it fulfills the following definition. In
our context, this condition is equivalent to requiring that the gradient vector of
Equation (63) with respect to A to have full rank.

Definition. Local identification in the nonlinear-in-means model with interactions and
self-consistent beliefs: For the model described by Equations (61–64), the parameter
vector A0 is locally identified if there exists an open neighborhood NA0 of A0 such that
no other parameter vector in NA0 gives the same conditional mean in Equation (63)
and such that the self-consistency condition Equation (64) holds as well.

The concept of local identifiability has value as argued in Rothenberg (1971, p. 578),
as

“It is natural to consider the concept of local identification. This occurs when there may be a
number of observationally equivalent structures but they are isolated from each another.”

Rothenberg (1971) demonstrates that there is a close connection between local
identification and the full rank assumption of particular derivative matrices of a
likelihood function. In our context, this means that one must show that the gradient of
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the conditional mean function with respect to A is of full rank. In addition, we need
to account for the self-consistency condition in the sense that the full rank condition
must hold when the gradient is evaluated at a solution mn(i) to the self-consistency
condition. The following Theorem is verified in the Appendix.

Theorem 7. Local identifiability for models in a neighborhood of the linear-in-
means model. Assume
i. supp

(
X̄n(i)

)
is not contained in a proper linear subspace of Rr.

ii. There exists at least one neighborhood n0 such that conditional on X̄n0 , Xi is not
contained in a proper linear subspace of Rr.

iii. J Ñ 1.
iv. The population data

{
X̄n(i),Xi,mn(i)

}
is such that there is an open set O such

that m
(
X̄n(i)

)
is differentiable on O and nonconstant on O. Further, there are two

distinct values in O, call them X̄1 and X̄2, such that m1 = m
(
X̄1
)
Ñ m2 = m

(
X̄2
)

and dg(m1)
dm Ñ dg(m2)

dm .
Then there exists an open neighborhood N of x = 0, such that ∀ x ∈ N − {0}, the

model defined by Equations (61–64) is locally identified.

What is important about this theorem is that it highlights the importance of linearity
in generating nonidentification. For a permutation of the linear-in-means model in the
direction of any nonlinear function g, identification will hold. As nonlinearity seems to
be a very standard feature of models with interactions, this result provides a relatively
optimistic perspective on the identification problem, at least for the case of correctly
specified models.
We believe that it should be relatively straightforward to extend the approach of

McManus to show that identification is a generic property of nonlinear models with
self-consistency constraints and are pursuing this in subsequent work.

3.6. Implications of self-selection for identification

Our discussion thus far has assumed that the rules by which individuals are sorted
into groups has no implications for empirical analysis. Such an assumption implies
that the group formation rule is independent of the determinants of individual choices
and is thus unnatural in many contexts. Given the preferences we have assumed, one
would expect individuals, when possible, to endogenously sort themselves, accounting
for the effects of neighborhood characteristics and expected neighborhood behavior
on payoff functions. Hence, there is the potential for self-selection bias. For decisions
such as nonmarital births or dropping out of school, standard estimation methods may
produce biased estimates due to the correlation of the ûi (wi)’s with the determinants
of sorting. To be clear, we do not explicitly account for equilibrium group formation,
but rather approximate its effects through consideration of selection.
This issue has yet to be addressed in an extended fashion in the interactions

literature. With reference to identification, what appears important is that self-selection
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may actually facilitate identification. Intuitively, self-selection can induce precisely the
sort of nonlinearities or exclusion restrictions which generates identification in the
earlier discussion.
To see this, we develop an example. Suppose that the econometric version of the

linear-in-means model, Equation (55), describes the behavioral rule for all individuals
in a population, but that we only observe those outcomes for individuals who have been
sorted into neighborhoods in the sample. This can be justified by positing the existence
of a reservation neighborhood for each individual. We assume that this means that there
is a latent variable zi which measures a family’s evaluation of the neighborhood and
such that a family is observed in neighborhood n (i) if and only if zi > 0. In turn, this
latent variable can be written as

zi = g ′Ri + hi, (65)

where Ri is a vector of determinants of i’s neighborhood evaluation. Finally, assume
that the errors ûi and hi are zero mean, jointly normal with the variance/covariance
matrix[

s 2û øsû
øsû 1

]
, (66)

and where E(ûi | Xi,Yn(i),men(i),Ri) = E(hi | Xi,Yn(i),men(i),Ri) = 0.
This is precisely the model which is considered in Heckman (1979). Following his

argument, since

E (ûi | zi > 0) = øsûli
(
g ′Ri

)
, (67)

where, letting ÷(·) and F(·) respectively denote the standard normal density and
distribution,

l
(
g ′Ri

)
=
÷ (g ′Ri)
F (g ′Ri)

, (68)

a regression in which the model disturbance is orthogonal to the various regressors
is

wi = k + c′Xi + d ′Yn(i) + Jmen(i) + øsûl
(
g ′Ri

)
+ zi. (69)

What is important for our purposes is that the structure of this equation can facilitate
identification. There are two distinct ways in which this can occur.
First, consider the case where each individual control is matched one-to-one with

a contextual effect so that E
(
Xi | Yn(i)

)
= Yn(i). Assume as well that none of the

variables in Ri are functionally dependent on men(i), so that we may assume that the
reduced form for men(i) depends on Ri. As discussed above, if øsû = 0, so there is no
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selection correction, this is Manski’s (1993a,b) nonidentification example. However, in
the presence of self-selection, the expected average choice within a neighborhood is,
under self-consistency

mn(i) =
k

1 − J
+

(
1

1 − J

)(
c′ + d ′)Yn(i) + øsû

1 − J
E
(
l
(
g ′Ri

)
| i ∈ n (i)

)
, (70)

so that a reduced form for individual behavior may be written as

wi =
k

1 − J
+ c′Xi +

1
1 − J

(
Jc′ + d ′)Yn(i) + øsûl (g ′Ri

)
+
Jøsû
1 − J

E
(
l
(
g ′Ri

)
| i ∈ n (i)

)
+ zi.

(71)

In this reduced form regression, nonidentification when øsû = 0 follows immediately
from observing that there are 2r + 1 parameters and only 2r regressors. However,
when there is a selection correction, two new regressors are introduced, l (g ′Ri) and
E (l (g ′Ri) | i ∈ n (i)), but only one new parameter, øsû. This allows for identification
so long as l (g ′Ri) and E (l (g ′Ri) | i ∈ n (i)) are not perfectly collinear, which requires
that there is within-neighborhood variation in l (g ′Ri). Notice that the nonlinearity of
l(·) ensures that the appearance of regressors in Ri which appear in either Xi or Yn(i)
does not imply nonidentification due to multicollinearity of the correction term with
the other variables in the model.
This route to identification through selection correction is an example of the general

identification condition stated in Theorem 6. In order to achieve identification, one
needs an individual control whose neighborhood average is not a contextual effect. This
is precisely what occurs when l (g ′Ri) is introduced into the linear-in-means model,
since E (l (g ′Ri) | i ∈ n (i)) is not an element of the model even when selection is
controlled for.
Second, identification may be achieved if mn(i) is a component of Ri. Suppose that

the expected average choice level is the only element in Ri. The selection-corrected
linear-in-means model is now

wi = k + c′Xi + d ′Yn(i) + Jmen(i) + øsûl
(
gmn(i)

)
+ zi. (72)

The parameters in this regression will now be identified so long as the joint support
of Xi and Yn(i) does not lie in a proper linear subspace of Rr+s since the nonlinearity
of the selection correction ensures that there is no linear dependence between men(i)
and the individual and neighborhood controls. Notice that this is the same reason
for identification derived for the binary choice model; in both cases, the nonlinear
dependence of men(i) on Xi and Yn(i) produces identification.
Of course, identifiability of model parameters does not say anything about the

precision of the estimates facilitated by selection corrections. Intuitively, one will need
substantial cross-neighborhood variation in men(i) if the nonlinear dependence of the
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correction on this term is the basis for identification. Similarly, substantial variation in
Ri will be needed if elements of this vector are highly correlated with combinations of
Xi and Yn(i), in order for the nonlinearity of the correction to avoid multicollinearity.
Notice in this case, the presence of regressors in Ri which do not appear in Xi or Yn(i)
will likely prove valuable in practice.
To be clear, this discussion hardly exhausts the implications of selection corrections

for identification. One issue concerns the relationship between the selection and
behavior equations. There is no behavioral justification for the selection equation
we have employed whereas ideally the selection equation will reflect individual
optimization over a set of neighborhood choices and account for subsequent behavior
which will occur in the neighborhood. Further, the analysis needs to be extended
to cases where the joint normality of the selection and behavior disturbances is
relaxed. Examples of nonparametric approaches to selection correction include Ahn
and Powell (1993). What this example nevertheless demonstrates is that self-selection
can, when accounted for, work to aid in identification, and hence clearly warrants
further research.

3.7. Implications of multiple equilibria for identification

Finally, we observe that contrary to much of the conventional wisdom, the presence of
multiple steady states can provide identification in and of itself, a possibility suggested
in Manski (1993b, p. 539). To see this, suppose that all neighborhoods are composed
of individuals with identical characteristics, so that yn(i) = ȳ. Suppose that the J is
greater than 1 and that dȳ is small enough relative to J that there are multiple steady
states in a neighborhood. Finally, suppose that a fraction r of neighborhoods exhibit
expected average choices consistent with the largest solution to m = tanh (dȳ + Jm)
and a fraction 1 − r exhibit average choices consistent with the smallest solution. In
this case the determinant of the covariance matrix of yn(i) and mn(i) is ȳ2Var

(
mn(i)

)
which is nonzero unless ȳ is zero. This would imply that in a regression of the form

wi = k + dYn(i) + Jmen(i) + ûi, (73)

J will be identified (although k and d of course will not be). The intuitive point is
that variation in the realized equilibria across observations for a model with multiple
equilibria can provide the leverage required to identify model parameters.

3.8. Dynamic models and rational expectations

Wallis (1980) provides an analysis of identification in classical rational expectations
models that is closely related to the analysis of identification in the linear-in-means
model. Suppose that the linear-in-means model is modified so that it now describes
behavior at points in time, i.e.,

wi, t = c′Xi, t + d ′Yn(i), t + Jmen(i), t + ûi, t . (74)

Let wt denote the column vector of choices at t, Xt and Yt denote matrices whose
columns are the Xi, t’s and Yn(i), t’s respectively, and C and D denote conformable
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matrices whose rows are always c′ and d ′ respectively. Then a panel of observations
on individuals can be written as

wt = C Xt +DYt + Jmet + ût . (75)

When D = 0 and J is not a scalar, but rather a conformable matrix, one has the vector
linear-in-means model version of the Wallis (1980) structural equation (2.1). These
differences between the linear-in-means model and Wallis’ model create new problems
for identification. The identification problems which we have described in the linear-
in-means model occur precisely because of the need to identify D. The identification
problem is particularly acute when the Y matrix consists of neighborhood averages of
Xt , as we have already seen.
Observing the connection between the linear-in-means model and Equation (75)

suggests that fruitful connections exist between the literature we survey here and the
classical rational expectations econometric work of Hansen and Sargent (1991) and
Wallis (1980), among many others, as well as more recent work that extends that
tradition to social interactions [Binder and Pesaran (1998a)] and to spatial rational
expectations econometrics [Fingleton (1999)].
As Equations (74) and (75) make clear, the linear-in-means model is interpretable

as a version of the Wallis model where wt is scalar. The identification problem which
occurs when mn(i) can be expressed as a linear combination of Yn(i)’s will occur in
Wallis’ model when Yn(i) = E

(
Xi | Yn(i)

)
for the various columns of Yt . This connection

between the problem of identification in the linear-in-means model which describes
interactions in “space” with the problem of identification in linear rational expectations
models in “time” suggests integrative future research along these lines should exist.
There are in fact many dimensions along which one can explore links between

interactions-based models and rational expectations models. Hansen and Sargent
(1991, p. 2), remark that

“Work on rational expectations econometrics has divided into two complementary but differing
lines. The first line aims more or less completely to characterize the restrictions that a model
imposes on a vector stochastic process of observables, and to use those restrictions to guide
efficient estimation. This line is a direct descendant of the full system approach to estimating
simultaneous equation models . . .
The second line of work is the application of method of moments estimators to estimating

the parameters that appear in the Euler equations associated with dynamic optimization problems
. . . ”

Our discussion thus far has contrasted the linear-in-means model of social interactions
with what Hansen and Sargent call the “first line” which is treated by Wallis in a
framework particularly suited to comparison. In spatial optimization problems one
could also develop a “second” line that parallels the Euler equation-based, methods of
moments approach.
A key feature of dynamic rational expectations models is the potential for

intertemporal interaction effects to influence identifiability. For example, suppose that
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individuals are affected by lagged group characteristics and lagged expected average
behavior, so that

wi, t = c′Xi, t + d ′Yn(i), t − 1 + Jmen(i), t − 1 + ûi, t . (76)

(We omit the constant k for expositional reasons.) In the case where all individual
characteristics correspond one to one with neighborhood contextual effects (which is
the Manski case of no identification in the linear-in-means model), this equation can
be re-expressed as

mn(i), t = c
′Yn(i), t + d ′Yn(i), t − 1 + Jmn(i), t − 1, (77)

or

mn(i), t =

(
1

1 − JL

)
c′Yn(i), t +

(
1

1 − JL

)
d ′Yn(i), t − 1. (78)

where L denotes a lag operator. (We have assumed | J | < 1 so that the operator 1 − JL
is invertible.) Substituting this expression into Equation (76),

wi, t = c′Xi, t + d ′Yn(i), t − 1 + J
[(

1
1 − JL

)
c′Yn(i), t − 1 +

(
1

1 − JL

)
d ′Yn(i), t − 2

]
+ ûi, t

= c′Xi, t +
(
Jc′ + d ′)Yn(i), t − 1 + ( J

1 − JL

)(
Jc′ + d ′)Yn(i), t − 2 + ûi, t ,

(79)
where the last line in the equation follows from

(
1

1−JL

)
xt = xt +

(
J
1−JL

)
xt−1 . Now, as-

sume that the moment matrix generated by the elements of (Xi, t ,Yn(i), t − 1,Yn(i), t − 2, . . . )
has full rank, so that the coefficient on each of the variables on the right hand side of
Equation (79) is identified. Then the coefficients of the underlying structural model are
also identified. To see this, observe first that c is identified by the coefficients on the
regressors Xi,t . J is identified because the coefficients on any corresponding elements
of Yn(i), t − k and Yn(i), t − k − 1 with k > 1 proportional to J . Once c and J are identified, so
is d from the coefficients on any set of regressors Yn(i), t − 1. Intuitively, the timing of the
interactions breaks the strict collinearity of the contextual and endogenous effects 4.
Finally, as an example of how the substantive economics in a dynamic model can

influence identification, we consider a dynamic model of production complementarities
of the type studied by Binder and Pesaran (1998a). In this model, the capital decisions

4 Manski (1993b, p. 540) conjectures that a lagged linear-in-means model may be identified. Our
verification of this conjecture suggests that the reason is not that the data are out of “temporal equilibrium”
as Manski suggests, but rather that the collinearity of expected group outcomes and contextual effects
is affected by dynamics in the interactions.
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of a set of profit maximizing firms is studied. Each firm possesses a technology such
that

Qi,t = Ti,tK
a
i,t , (80)

where Ti,t measures the level of firm i’s technology and Ki,t measures its capital stock.
The rental price of capital for each firm is Rt . The level of technology of firm i is
assumed to follow

Ti,t = A exp
(
c′ logXi,t + d ′E

(
logXi,t | i ∈ n(i)

)
+ JE

(
logKi,t | i ∈ n(i)

)
+ ûi,t

)
.
(81)

In this formulation, for any w, logw is the vector whose ith element is logwi. The
shock ûi,t is taken to be independent and identically distributed across both firms and
time.
Firms are assumed to maximize the expectation of the present discounted value of

their current and future profits. Each firm observes its own shock ûi,t at the time it
chooses Ki,t but does not observe the shocks of other firms. Given our assumption
that the technology shocks are independent across time, the discounted sum of profits
breaks down into a sum of independent profit terms. Profit maximization with respect
to the choice of firm-specific capital leads to the first-order condition

(1 − a) logKi,t = log(aA) + c′ log(Xi,t) + d ′E
(
logXi,t | i ∈ n(i)

)
+ JE

(
logKi,t | i ∈ n(i)

)
− logRt + ûi,t .

(82)

Suppose that we have data for a cross-section of firms at fixed t. In this case,
Equation (82) is an example of the linear-in-means model for which identification
fails, since the group analog of each individual control appears in the structural
equation; specifically, we have r individual controls logXi,t and r group level
controls E

(
logXi,t | i ∈ n(i)

)
, and the composite constant term log(a) − logRt , so by

Theorem 6, the model is not identified 5.
Alternative routes to identification emerge when one allows for a richer dynamic

structure to technology. Productivity spillovers generated by one firm onto another
plausibly depend only on the current level of that firm’s technology, not the particular
path by which the firm arrived at that technology. On the other hand, the ability of
any firm i to benefit from another firm’s technology plausibly will depend on its own
level of technology in the previous period as well as its characteristics today.

5 Notice that we do not assume in this particular case that the averages of the individual characteristics
logXi,t are known by members of a neighborhood. This has no effect on the analysis.
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Formally, these assumptions on the dynamics of spillovers can be expressed in an
equation for the logarithm of firm i’s technology level such as

Ti, t = T
b
i, t − 1A exp

[
c′ log

(
Xi, t

)
+ d ′E

(
logXi, t | i ∈ n(i)

)
+ J E

(
logKi, t | i ∈ n(i)

)
+ ûi, t

]
.

(83)

The first order conditions for profit maximization now imply, after taking log’s, that
the capital level for each firm obeys

(1 − a) logKi, t = b log Ti, t − 1 + log(aA) + c′ log(Xi, t)
+ d ′E

(
logXi, t | i ∈ n(i)

)
+ J E

(
logKi, t | i ∈ n(i)

)
− logRt + ûi, t .

(84)

What matters from the perspective of identification is that we now have an additional
regressor log Ti, t − 1, whose group average does not appear in the equation. Hence for
this model, we have r + 1 individual effects, whereas we still have only r contextual
effects. Hence, it will be possible to identify c, d, J . Of course, if this variable is not
observable, it will itself have to be instrumented.
This example is only meant to be illustrative. Once one leaves the log linear

framework, recent work, such as Pakes (1999) that treats nonlinearities seriously
in firm dynamics, would be needed for the formulation of the stochastic processes
characterizing firm behavior. Extending this kind of analysis to focus on measuring
spillovers between firms seems to us to be a worthwhile area for future research.
While production spillovers are the driving force behind the new growth theory, it
is remarkable how little firm evidence of such spillovers actually exists. A primary
reason for this is the weakness of the econometric methods which have been employed
to obtain such evidence; Durlauf and Quah (1999) discuss many of the problems which
exist with efforts to identify production externalities using cross-country growth data.
Our belief is that the use of individual level data which follows interactions in the way
we have described will yield much clearer inferences.

4. Further topics in identification

4.1. Panel data

The extension of identification results from cross-sections to panels is important for
several reasons. First, panels will provide an opportunity for dealing with model
misspecification which is not present in cross-sections. Hoffman and Plotnick (1996)
is the only case we are aware of in which this argument is applied in an interactions
context. Second, panels allow for intertemporal interactions which facilitate a richer
notion of belief formation than we have used.
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4.1.1. Fixed effects

To see how panel data can provide a way of dealing with misspecification, we start
with the linear-in-means case. The panel analog to Equation (55) is

wi, t = k + c′Xi, t + d ′Yn (i, t), t + Jmen (i, t), t + ai + ûi, t . (85)

In addition to introducing time subscripts on all variables, an unobservable fixed effect
term ai is now included.
In order to produce consistent estimates of c, d, and J , we follow the suggestion

of Chamberlain (1984) and difference this equation with respect to t,

Dwi, t = c′DXi, t + d ′DYn (i, t), t + JDmen (i, t), t +Dûi, t . (86)

Identification may now be treated in a fashion exactly analogous to that in Section 3,
once first differences replace the levels used in the identification conditions. Notice
that it is important to be careful about the assumption that regressors are orthogonal
to errors in the differenced equation

E
(
Dûi, t | DXi, t ,DYn (i, t), t ,Dmen (i, t), t

)
= 0,

since Dûi, t will not be white noise.
One implication of the panel data case with fixed effects is that variation in Dmen (i, t), t

is useful in facilitating identification. In turn, this suggests that in environments which
are slowly moving, J may be difficult to estimate precisely.
Analogous reasoning may be applied to the binary choice case. Suppose that the

individual payoff function is now

V
(
wi, t ,Zi, t ,mei, t

(
w−i, t

)
, ûi, t

(
wi, t

)
,ai

)
, (87)

where we again introduce time subscripts and a fixed effect ai. We generalize our
earlier development of the individual choice problem by assuming that the differential
payoff between the two choices equals

c′Xi, t + d ′Yn (i, t), t + Jmen (i, t), t + ûi, t(1) − ûi, t(−1) + ai. (88)

So that the probability measure for wi, t obeys

m
(
wi, t = 1 | Xi, t ,Yn (i, t),men (i, t)

)
~ exp

(
bc′Xi, t + bd ′Yn (i, t) + bJmen (i, t), t + ai

)
.
(89)

This equation is in a form which is estimable given methods derived in Honoré
and Kyriazidou (1998). That paper also shows how one can adapt Manski’s (1975,
1985) maximum score estimator so as to allow estimation of the model’s parameters
without assuming a logistic distribution for differences in the random utility terms.
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With respect to the logistic case, Honoré and Kyriazidou (1998) show, extending an
original insight of Chamberlain (1984), that if one has two consecutive observations on
agent i, and if lagged wi, t’s do not appear in the regressor matrix, then the conditional
probability that either wi, t − 1 = −1 or wi, t = 1 given wi, t − 1 + wi, t = 0 is independent
of ai. This is the analogy to the differencing out of the fixed effect in the linear-in-
means case. Honoré and Kyriazidou further show that if lagged wi, t’s do appear in the
regressor matrix, it is possible to modify their procedures and achieve identification so
long as four consecutive observations on each agent are available. With respect to their
conditions for identification, they appear to be consistent with the interactions-models
we have been analyzing, once one allows for differenced rather than levels data.
This discussion has of course assumed that there is no self-selection into groups.

Kyriazidou (1997a,b) provides conditions under which identification can occur for this
case; extension of her methods to interactions-based environments would seem quite
valuable.

4.1.2. Learning

An alternative use of panel data lies in the ability to model the expectations process as
generated by learning. A simple way of doing this is to assume that the beliefs of an
individual concerning the average choice in the population equals the realized average
last period, so that social utility, for example, may be written as

S
(
wi, t ,Xi, t ,w−i, t − 1

)
= −

∑
j Ñ i

Ji, j
2
(wi, t −wj, t − 1)2. (90)

At this level, the dynamic interactions can be interpreted either as reflecting a primitive
assumption either about individual preferences or concerning the way in which
individuals form expectations of the contemporaneous behavior of others. This will
not be so for more sophisticated learning models with interaction effects. Such models
have been studied by Case (1992) and Munshi and Myaux (1998). In complementary
work, Binder and Pesaran (1998a) provide an interesting analysis in which social
interactions can be analyzed in a dynamic model with rational expectations.

4.2. Duration data

For contexts such as out-of-wedlock births or first sexual activity, it seems natural
to consider interactions as they affect the probability of transition from one state to
another; see Brewster (1994a,b) and Sucoff and Upchurch (1998) for empirical studies
using this perspective. For such models, it is necessary to reformulate the nature of
the interactions as they are manifested in a self-consistency condition analogous to
Equation (16) in order to exploit the tools which have been developed to study duration
data; these tools are well surveyed in Heckman and Singer (1984a, 1985) and Lancaster
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(1990). To keep matters concrete, we will use the timing of out-of-wedlock births as
an example.
Following standard notation [e.g., Amemiya (1985, Section 11.2), or Heckman and

Singer (1985)], we let T denote the duration from t = 0 that an unmarried woman
remains childless. The probability that this duration is less than any t, m (T < t) is
denoted as F (t). For any interval dt, the probability that a childless woman at t
becomes pregnant by t + dt is

m (t ¶ T < t + dt | T ¾ t) = m (t ¶ T < t + dt,T ¾ t)
m (T ¾ t)

. (91)

From this conditional probability, two standard functions of interest can be defined.
First, the hazard function l (t) is defined as

l(t) = lim
dt⇒ 0

m(t ¶ T < t + dt, T ¾ t)
dtm(T ¾ t)

=
F ′(t)

1 − F ′(t)
. (92)

Second, the survivor function S(t) is defined as 1 − F(t). If l(t) = l, so that the hazard
is independent of time, then the survivor function is

S(t) = exp (−lt) , (93)

which is the standard exponential form employed in many applications.
In order to make clear the basic identification issues we start with a baseline case. We

assume that the time scale of the duration of interest is short relative to the time scale
over which data are collected, so that all duration “spells” are completed. Formally,
this assumption means that there is no “right censoring” of the data. This will not be
appropriate for out-of-wedlock birth data, since of course not all unmarried females
experience the event; nevertheless, the assumption is useful for exposition. Let ti denote
the time of first birth for individual i. If this timing is associated with probability
density f (·), then the joint density for the I times is ∏i f (ti). This joint probability
will be determined by the individual hazards li.
As before, we assume that the hazard for each individual under analysis depends

on individual characteristics Xi, neighborhood characteristics Yn(i) and an expected
neighborhood behavioral measure men(i). In this context, m

e
n(i) may be the expected value

of either the within-neighborhood duration or the median group duration. We therefore
assume that for each individual

li = l
(
Xi,Yn(i),m

e
n(i)

)
, (94)

so that the associated density for the duration is

f
(
t | Xi,Yn(i),men(i)

)
= l

(
Xi,Yn(i),m

e
n(i)

)
exp

(
−l

(
Xi,Yn(i),m

e
n(i)

)
t
)
. (95)
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The expected duration for individual i, conditional on these controls is

E
(
t | Xi,Yn(i),men(i)

)
= l

(
Xi,Yn(i),m

e
n(i)

)−1
, (96)

and the median of the duration is given by the solution t∗ to F(t∗) = 1
2 which implies

that

1
2 = 1 − F(t

∗) = exp
(
−l

(
Xi,Yn(i),m

e
n(i)

)
t∗
)
, (97)

which implies that t∗ solves

log 2 = l
(
Xi,Yn(i),m

e
n(i)

)
t∗. (98)

Equations (97) and (98) allow us to define self-consistent solutions for this model.
Self-consistency with respect to expected duration times requires that

men(i) = mn(i) =
∫
l
(
Xi,Yn(i),mn(i)

)−1
dFX , (99)

where as before FX is the probability distribution of characteristics within neighbor-
hood n(i). Similarly, self-consistency with respect to the neighborhood median requires
that

men(i) = mn(i) = log 2
∫
l
(
Xi,Yn(i),mn(i)

)−1
dFX . (100)

These two expressions only differ by a constant of proportionality. Notice that we have
assumed that each individual references on her entire neighborhood. It is possible to
consider cases where the reference group is smaller, so that for example, one only
references on individuals with similar individual characteristics. As we have already
seen in the discussion of other models, the “width” of each individual’s reference group
plays a key role in identification.
We first consider identification in the parametric case under the assumption that

the expected value of the duration time within a group is the relevant endogenous
interaction. Following treatments such as Amemiya (1985, Section 11.2.3), we assume
that the hazard function for individual i is exponential, so that

li = exp
(
c′Xi + d ′Yn(i) + Jmen(i)

)
. (101)

We assume that Xi contains a constant term [Amemiya (1985, Equation 11.2.26)]. The
associated likelihood function for the data will therefore be

L =
∏
i

exp
(
c′Xi + d ′Yn(i) + Jmen(i)

)
exp

(
− exp

(
c′Xi + d ′Yn(i) + Jmen(i)

)
ti
)
.

(102)
For this model, choosing parameter estimates for c, d, and J to maximize Equa-
tion (102) without imposing Equation (99) corresponds to the naive estimator we have
described in the binary choice and linear-in-means cases.
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Following the analysis in Amemiya (1985), identification in population requires that
the expected value of the Hessian matrix of log L is nonsingular at the self-consistent
solution (99). Letting b = (c′, d ′, J )′ and Mi = (X ′

i ,Y
′
n(i),m

e
n(i))

′, the expected value of
the Hessian equals

E

(
ð2 log L
ðbðb′ | Mi

)
= −E

(∑
i

ti exp (b
′Mi)MiM

′
i | Mi

)
. (103)

Further, since E(ti | Mi) = l−1i , it is further the case that

− E
(∑

i

ti exp (b
′Mi)MiM

′
i | Mi

)
= −

∑
i

MiM
′
i , (104)

which means, dividing both sides by I , that identification asymptotically depends on
the linear independence of the controls which constituteMi. This is the same condition
which appeared in both the binary choice and linear-in-means. However, if mn(i) is the
within-group mean, then by Equation (99) mn(i) is a nonlinear function of Yn(i) and
FX .
A nonlinear relationship of this type is the key condition for global identification in

the binary choice model. Extensions of the analysis for binary choice may be made to
the exponential hazard model as well as other parametric cases such as the Weibull,
log normal and log-logistic distributions and can further be done for cases such as
right censoring or for Cox’s partial likelihood approach. A formal characterization
of the conditions for identification in these various cases is left for future work. In
particular, we believe that analogous conditions for local identification to those found
in Theorem 7 can be developed for the current case.

4.3. Nonparametric approaches

4.3.1. Treatment effects

Our discussion of identification has assumed that a researcher possesses prior
information concerning the form of the model under study, so that estimation occurs
with respect to a finite set of parameters. In our context, this information has taken
the form of both the functional form for individual behavior and, where selection into
neighborhoods is an issue, the rules for neighborhood self-selection. Dissatisfaction
with the assumption of such strong prior information has led to a vast literature on
semi- and non-parametric approaches to estimation. In the context of interactions-based
models, one can think of a nonparametric approach to estimation in the context of
identifying a role for neighborhood characteristics on individual behavior while making
relatively weak assumptions on the functional forms describing individual behavior. In
turn, one can think of this question as analogous to the nonparametric identification
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of treatment effects, where group influences are the “treatment” whose effect we wish
to uncover.
In this section, we develop approaches to both point and interval identification of

interaction effects under substantially weaker modelling assumptions than we have
employed thus far. First, following Heckman (1997), we show how the assumption
that neighborhood interaction effects act as a “shifted outcome effect” combined
with an exclusion restriction on the determinants of neighborhood membership, can
lead to identification of an interaction effect. Second, following Manski (1995) and
Manski and Pepper (1998), we show how one may relax this exclusion restriction and
nevertheless obtain an upper bound on the interaction effect.
To make our analysis concrete, suppose that, following the work of Steinberg et al.

(1996), we are interested in determining whether a peer group of “brains” (denoted as
group 1) versus a peer group of “nonbrains” (denoted as group 0) affects individual
student performance. Observations are available from G different schools, each of
which contains students who are members of each such group. The variable xi, g tracks
the group of individual i in school g. The goal of the exercise is to determine the effect
of membership in group 1 versus group 0 on a continuous outcome variable wi, g, x .
Notice that we index according to both school and group. Membership in the brains
groups is therefore our “treatment” and so we wish to measure the treatment effect. We
let Xi, g denote those observable individual variables which directly determine wi, g, x
and Ri, g denote those observable variables which determine whether i is a member of
group 1. We refer to the average behaviors in the two groups as mg,0 and mg,1 with
mg = (mg, 0,mg, 1). We have included g in the subscripts so that each observation refers
to both an individual and the school which he attends.
For a given individual i, we assume that wi, g, x obeys

wi, g, x = ÷
(
xi, g ,Xi, g ,Ri, g ,mg

)
+ ûi, g

(
xi, g

)
, (105)

for some function ÷(·, ·, ·, ·) where

E
(
ûi, g

(
xi, g

)
| xi, g ,Xi, g ,Ri, g ,mg

)
= 0. (106)

The identification question therefore refers to what can be learned about Di, g =
wi, g, 1 − wi, g, 0. Following Heckman (1997), one is typically interested in

E
(
Di, g | Xi, g ,Ri, g ,mg

)
= ÷

(
1,Xi, g ,Ri, g ,mg

)
− ÷

(
0,Xi, g ,Ri, g ,mg

)
, (107)

where the equality follows immediately from Equations (105) and (106). This is the
expected value of the treatment for an individual with characteristics Xi, g and Ri, g
in school g and represents the object which we wish to estimate. A distinct quantity
of interest is E

(
Di, g | Xi, g ,Ri, g ,mg , xi, g = 1

)
which Heckman (1997) refers to as the

effect of the “treatment on the treated for persons with characteristics” Xi, g and Ri, g .
Notice that the selection problem holds because there is information about ûi, g(0) and
ûi, g(1) when the treatment, i.e., group membership, is a choice variable.
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In order to identify E
(
Di, g | Xi, g ,Ri, g ,mg

)
, one proceeds as follows. First, assume

that the effect of group membership is additive, so that

wi, g, 1 −wi, g, 0 = k
(
Xi, g ,mg

)
, (108)

for some function k(·, ·) which means that

k
(
Xi, g ,mg

)
= E

(
Di, g | Xi, g ,Ri, g ,mg

)
. (109)

Equation (108) is often referred to as a shifted outcome assumption. Notice that this is
a minor generalization of Heckman (1997), although not Heckman and Robb (1985),
in that we allow the k’s to vary with respect to Xi, g and mg , which is natural if one
thinks the treatment effect varies across individuals.
Next, consider what is estimable from the data. The group means mg are of course

observable. Further, one can estimate the conditional expectations of behavior for
individuals given their group memberships, i.e.,

E
(
wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 0

)
, (110)

and

E
(
wi, g, 1 | Xi, g ,Ri, g ,mg , xi, g = 1

)
. (111)

The identification of an endogenous interaction effect can be thought of as requiring
that one can move from these conditional expectations to E(wi, g, 0 | Xi, g ,Ri, g ,mg)
and E(wi, g, 1 | Xi, g ,Ri, g ,mg). To do this, it is necessary to be somewhat more careful
about the process of group formation. We therefore assume that individuals join groups
at least partially on the basis of the expected behavior in the groups, and that these
expected behaviors are rational. This is nothing more than the self-consistency idea
we have used throughout.
We now can consider the estimation of k

(
Xi, g ,mg

)
. Letting m

(
xi, g | Xi, g ,Ri, g ,mg

)
denote the conditional probability of group membership, it is immediate that

E
(
wi, g, 0 | Xi, g ,Ri, g ,mg

)
= E

(
wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 0

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
+ E

(
wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 1

)
m
(
xi, g = 1 | Xi, g ,Ri, g ,mg

)
,

(112)

and

E
(
wi, g, 1 | Xi, g ,Ri, g ,mg

)
= E

(
wi, g, 1 | Xi, g ,Ri, g ,mg , xi, g = 0

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
+ E

(
wi, g, 1 | Xi, g ,Ri, g ,mg , xi, g = 1

)
m
(
xi, g = 1 | Xi, g ,Ri, g ,mg

)
.

(113)

The right hand terms E(wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 1) and E (wi, g, 1 | Xi, g , Ri, g ,
mg , xi, g = 0) are not observed since they refer to conditional expectations of behavior



Ch. 54: Interactions-Based Models 3343

for individuals were they members of groups which they did not select into. Hence
identification will only occur if some additional assumption overcomes this.
One such assumption is an exclusion restriction with respect to the variables which

affect selection into groups versus variables which affect behavior once one is a
member of a given group. Formally, we need the following. For every set of pairs
Xi, g ,Ri, g , and Xi, g ,R′

i, g ,

E
(
wi, g, 0 | Xi, g ,Ri, g ,mg

)
= E

(
wi, g, 0 | Xi, g ,R′

i, g ,mg
)
, (114)

and

E
(
wi, g, 1 | Xi, g ,Ri, g ,mg

)
= E

(
wi, g, 1 | Xi, g ,R′

i, g ,mg
)
. (115)

What this means is that there is a variable which affects selection but not expected
behavior for each individual once that person is a group member.
Following Heckman (1997) and Manski (1995, p. 144), the shifted outcome

restriction (108) and the exclusion restriction described by Equations (114) and (115)
can be combined to conclude that

E
(
wi, g, 1 | Xi, g ,Ri, g ,mg , xi, g = 1

)
m
(
xi, g = 1 | Xi, g ,Ri, g ,mg

)
+ E

(
wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 0

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
+ k

(
Xi, g ,mg

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
= E

(
wi, g, 1 | Xi, g ,R′

i, g ,mg , xi, g = 1
)
m
(
xi, g = 1 | Xi, g ,R′

i, g ,mg
)

+ E
(
wi, g, 0 | Xi, g ,R′

i, g ,mg , xi, g = 0
)
m
(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)

+ k
(
Xi, g ,mg

)
m
(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)
.

(116)

Other than k
(
Xi, g ,mg

)
, each of the terms in this expression can be estimated

nonparametrically, and so k
(
Xi, g ,mg

)
is identified.

Theorem 8. Nonparametric identification of endogenous interaction effect. In the
presence of self-consistent expectations, shifted outcomes of the form (108), and an
exclusion restriction of the forms (114) and (115), the interaction effect is identified.

Two features of this result are worth noting. First, under Theorem 8, one can estimate
E
(
k
(
Xi, g ,mg

)
| mg

)
and test for the average interaction effect in a population.

Further, if one is willing to assume that

k
(
Xi, g ,mg

)
= Jg

(
mg, 1 − mg, 0

)
, (117)

then the interaction parameter Jg for each school may be identified. In principle, cross-
school variation in Jg could be employed to study the determinants of the strength of
interactions.
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Second, while Theorem 8 makes some progress in terms of relaxing the parametric
assumptions of the interactions model, it is still strong in terms of the underlying
behavioral assumptions. As stated by Heckman (1997, p. 449),

“Any valid application of the method of instrumental variables for estimating these treatment
effects in the case where the response to treatment varies among persons requires a behavioral
assumption about how persons make their decisions about program participation. This issue
cannot be settled by a statistical analysis.”

In our context, the treatment is the membership in group 1 rather than group 0 and
the instrument is characterized by Equations (114) and (115).
One approach to weakening the exclusion restriction on instruments is due to Manski

and Pepper (1998). Following their analysis, we first replace our assumption of a shifted
outcome variable, Equation (108) with

wi, g, 1 −wi, g, 0 = k
(
Xi, g ,mg

)
. (118)

This assumption means that the effect of shifting a person with individual character-
istics Xi, g from group 0 to group 1 is bounded from above by k

(
Xi, g ,mg

)
. Second,

we assume that a monotonic increase in the selection variables Ri, g never decreases
the expected outcome for an individual within a given group. Formally, if R′

i, g ¾ Ri, g ,
then

E
(
wi, g, x | Xi, g ,Ri, g ,mg

)
¶ E

(
wi, g, x | Xi, g ,R′

i, g ,mg
)
, x = 0, 1. (119)

This assumption relaxes Equations (114) and (115) in that a monotonic increase from
Ri, g to R′

i, g may have an effect on the conditional expectation of wi, g, x , but this effect’s
sign must not be negative.
Under these assumptions, we have

E
(
wi, g, 1 | Xi, g ,Ri, g ,mg , xi, g = 1

)
m
(
xi, g = 1 | Xi, g ,Ri, g ,mg

)
+ E

(
wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 0

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
+ k

(
Xi, g ,mg

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
¶ E

(
wi, g, 1 | Xi, g ,R′

i, g ,mg , xi, g = 1
)
m
(
xi, g = 1 | Xi, g ,R′

i, g ,mg
)

+ E
(
wi, g, 0 | Xi, g ,R′

i, g ,mg , xi, g = 0
)
m
(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)

+ k
(
Xi, g ,mg

)
m
(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)
.

(120)

We may now consider the quantity, Q
(
Xi, g ,Ri, g ,mg

)
defined as

Q
(
Xi, g ,Ri, g ,mg

)
= E

(
wi, g, 1 | Xi, g ,Ri, g ,mg , xi, g = 1

)
m
(
xi, g = 1 | Xi, g ,Ri, g ,mg

)
+ E

(
wi, g, 0 | Xi, g ,Ri, g ,mg , xi, g = 0

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
.
(121)



Ch. 54: Interactions-Based Models 3345

This term is an observable analog of the expected outcome of an individual with
observed characteristics Xi, g , Ri, g and mg . Inequality (118) implies that

Q
(
Xi, g ,R

′
i, g ,mg

)
+ k

(
Xi, g ,mg

)
m
(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)

¾ Q
(
Xi, g ,Ri, g ,mg

)
+ k

(
Xi, g ,mg

)
m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
,

(122)

which may be rewritten as

Q
(
Xi, g ,R

′
i, g ,mg

)
− Q

(
Xi, g ,Ri, g ,mg

)
¾ k

(
Xi, g ,mg

) (
m
(
xi, g = 0 | Xi, g ,Ri, gmg

)
− m

(
xi, g = 0 | Xi, g ,R′

i, g ,mg
))
.
(123)

So long as

Q
(
Xi, g ,R

′
i, g ,mg

)
−Q

(
Xi, g ,Ri, g ,mg

)
> 0, (124)

and

m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
− m

(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)
> 0, (125)

one can construct an upper bound on k
(
Xi, g ,mg

)
. Formulating the bound using the

fact that

m
(
xi, g = 0 | Xi, g ,Ri, g ,mg

)
− m

(
xi, g = 0 | Xi, g ,R′

i, g ,mg
)

= m
(
xi, g = 1 | Xi, g ,R′

i, g ,mg
)
− m

(
xi, g = 1 | Xi, g ,Ri, g ,mg

)
,

(126)

we have Theorem 9.

Theorem 9. Construction of upper bound on the endogenous interaction effect.
Assume that Equations (118), (119), (124), and (125) hold. Then

k
(
Xi, g ,mg

)
¶

Q
(
Xi, g ,R′

i, g ,mg
)
− Q

(
Xi, g ,Ri, g ,mg

)
m
(
xi, g = 1 | Xi, g ,R′

i, g ,mg
)
− m

(
xi, g = 1 | Xi, g ,Ri, g ,mg

) .
(127)

A weakness of this result is that when it comes to interaction effects, it is probably more
interesting to obtain a lower bound, since the presence of such effects is controversial.
Notice, however, that the Manski and Pepper (1998) approach does suggest a way of
constructing such a lower bound. In order to do so, one would need to find a variable
which possesses the features that an increase (decrease) in its level would 1) both
increase (decrease) the probability of selection into group 1, and 2) decrease (increase)
the expected outcome for an individual conditional on the variable. Introspection
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suggests that it may be difficult to find such a variable, although there may be contexts
where it holds.
In contrast, the assumption that one can find a variable in which both effects move in

the same direction seems relatively plausible. For example, Manski and Pepper (1998)
consider the question of how to bound the effect of the returns to schooling, using
SAT as an instrument. It seems natural in this case to assume both that higher SAT’s
make additional schooling more likely and higher SAT’s do not reduce the benefit of
additional schooling if chosen.
The self-consistency conditions

mx, g =
∫
E
(
wi, g, x | x,X ,R,mg

)
dFX ,R, g , x = 0, 1, (128)

(where following our previous convention, dFX ,R, g denotes the joint distribution of
X and R in school g), play an essential role in determining the quality of the bound
in Equation (127). To see this, consider the extreme case where all individuals within
a school g have identical values of Xi, g and Ri, g , then the bound is undefined, since
the numerator and denominator of Equation (125) will each equal 0. Alternatively,
suppose that the distribution functions of individual characteristics are identical across
schools, so dFX ,R, g = dFX ,R, g′ . If the solutions to the self-consistency conditions (128)
are unique, then this implies expected average outcomes must also be identical, i.e.,
mg = mg′ . If k

(
Xi, g ,mg

)
= k

(
mg

)
, so that the bound does not depend on individual

characteristics, then one can use cross-school information in that k
(
mg

)
must be

bounded by the inf of the upper bounds computed for each school in isolation. This
type of argumentation seems a valuable area for future research.
At a minimum, this discussion illustrates two points. First, semi- and non-parametric

approaches to inference can be adapted to achieve either point or interval identification
of interaction effects. Second, the conditions required for identification require careful
consideration of the underlying socioeconomic theories under analysis in order to
identify appropriate instruments.

4.3.2. Duration data

Identification can also be considered for nonparametric approaches to duration data.
As compellingly demonstrated by Heckman and Singer (1984b), errors in the assumed
form of the hazard function and in the “mixing distribution” (by which they mean the
distribution of unobservables) can lead to wildly misleading estimates. These problems
of course are also relevant when interaction effects may be present. As far as we
know, the extension of the methods studied by Heckman and Singer and subsequent
authors to models with interactions has yet to be studied and it is beyond the scope
of this paper to do so. However, we do sketch a slight extension to one approach
to nonparametric identification in duration models, due to Elbers and Ridder (1982),
in order to illustrate how such argumentation can in principle proceed; the reader is
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advised to see Heckman and Singer (1984c) for an evaluation of alternative conditions
for nonparametric identification in this context.
Following Elbers and Ridder, suppose that the hazard function may be written as

li(t) = a(t) h (Mi)vi. (129)

Relative to our original treatment of hazards, this incorporates two additional terms:
a(t) which allows for duration dependence, and vi which allows for unobserved
heterogeneity. The vi’s are assumed to be drawn from a common distribution Fv(·)
with associated density fv(·). Elbers and Ridder (1982) show that subject to appropriate
regularity conditions, if F (t | Mi) is nondefective (which means that all spells are
completed), then it is possible to identify a(·), h(·), and fv(·). They do this as follows.
Define the conditional survivor function for individual i as

S (t,Mi, vi) = exp

(∫ t

o
a(r) h (Mi) vidr

)
= exp (A(t) h (Mi) vi) , (130)

where A(t) =
∫ t
o a (r) dr and the conditional survivor function

S (t,Mi) =
∫
S (t,Mi, v) dFv =

∫
exp (tv) dFv, (131)

where t = A(t)h (Mi). The last term in Equation (131) indicates how the conditional
survivor function is the LaPlace transform of dFv. The analyst is assumed to observe
a family of nondefective distribution functions G (t,Mi) = 1 − S (t,Mi) from which
he wishes to recover a(·), h(·), and fv(·). Elbers and Ridder (1982) assume that 1) v
is nonnegative with mean 1, 2) Mi lies in an open set in the k-dimensional reals for
some k , and 3) h(·) is defined on this open set and is non-negative, differentiable, and
nonconstant on the set.
Working through the proof that these conditions allow for identification, reveals

the following. First, if one differentiates G (t,Mi) with respect to t, h (Mi) may be
recovered regardless of whether a self-consistency condition like Equation (99) holds
when mn(i) is a component ofMi. Second, Elbers and Ridder (1982) exploit the LaPlace
transform relationship to obtain a differential equation by assuming, without loss of
generality, that Mi is one-dimensional. This argument requires differentiability and
nonconstancy of h (Mi).
In order to generalize this step to allow for endogenous interactions with a self-

consistency condition such as Equation (99), the reference group for each individual i
must be broad enough to allow differentiability with respect to a nontrivial subvector
of Mi. Specifically, one needs to be able to vary Xi and Yn(i) without mn(i) varying. For
example, suppose that within each neighborhood, all Xi’s are identical. In this case,
the self-consistent average choice level is

mn(i) = E
(
t | Xi,Yn(i),mn(i)

)
=
∫
tdG

(
t,Xi,Yn(i),mn(i)

)
. (132)

Generically, Equation (132) will have only a finite number of self-consistent solutions
(if such solutions exist). Therefore, in this case

(
Xi,Yn(i)

)
cannot be varied indepen-

dently of mn(i) and it is not obvious how to adapt the Elbers and Ridder (1982, p. 405)
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proof to this case. Hence for the case of arbitrarily fine-grained reference groups,
identification is currently problematic.
In contrast, suppose that individuals reference on a coarse group G. In this case the

self-consistency condition is

mn(i) =
∫
X
E
(
t | X ,Yn(i),mn(i)

)
dFX = H

(
mn(i)

)
, (133)

where dFX is the distribution of X ’s within n(i). In this case, it is possible to locate
a nontrivial set of sufficient conditions on dG

(
t,Xi,Yn(i),mn(i)

)
such that the hazard

function is differentiable with respect to
(
Xi,Yn(i)

)
on the self-consistent solutions

defined by Equation (133). This appears to be sufficient to extend Elbers and Ridder’s
identification argument to the case of interactions.

5. Sampling properties

In this section, we develop some asymptotics for the parameter estimates for
interactions-based models and consider the effects on such estimates of omitted
variables. The sampling properties for data generated by interactions-based models are
no different from that associated with standard discrete choice and linear regression
models. The critical property which one needs to verify is that the behavioral data
obey the standard limits theorem necessary for asymptotics when there is sufficient
dependence across observations to induce multiple equilibria. Similarly, the effects of
omitted variables mirror results found in other contexts. We therefore focus on the
binary choice case.

5.1. Laws of large numbers

Despite the dependence introduced by interactions, the data generated by the
noncooperative version of the binary choice model with interactions generates a law of
large numbers. Brock and Durlauf (1995) showed this for the special case where hi = h
∀ i; it is straightforward [cf., Ash (1972, p. 234)] to extend this result to non-identically
distributed choices.

Theorem 10. Law of large numbers for realized average choice levels in
noncooperative version of the binary choice model with interactions. Suppose that
a population of agents holds a common belief that the expected value of the average
population choice is m∗, where m∗ is a solution to Equation (22). Then a weak law
of large numbers holds: I becomes arbitrarily large such that we have

lim w̄I ⇒w m
∗. (134)
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5.2. Naive estimator

The “naive” estimator whose identification properties we have analyzed does not in-
troduce any new econometric issues with respect to asymptotic normality. Theorem 11
is standard; necessary conditions for it are given, for example, in McFadden (1984,
p. 1399). The specific conditions we cite are found in Amemiya (1985, p. 270) 6.

Theorem 11. Consistency and asymptotic normality of naive estimates in
the binary choice model with global interactions. Let b = (k , c, d, J )′ and
Mi = (1,X ′

i ,Y
′
n(i),m

e
n(i))

′. If the binary choice model with interactions is globally
identified, and if
i. b lies in an open, bounded subset of Rr + s + 2.
ii. limI ⇒ ∞ I−1

∑
i∈ I MiM ′

i is a finite nonsingular matrix.
iii. The empirical distribution function of Mi converges to a distribution function.
Then, the maximum likelihood estimates b̂I of the binary choice model with global
interactions are consistent and asymptotically normal with limiting behavior

I 1/2(b̂I − b) ⇒w N (0,ö−1), (135)

where

ö = lim
I ⇒ ∞

I−1
∑
i

exp(b̂′Mi)

(1 + exp(b̂′Mi))2
MiM

′
i . (136)

(ö is of course the suitably normalized information matrix of the likelihood function
and is consistently estimable for this model.)

5.3. Asymptotics for data generated by social planner

Models which incorporate realized contemporaneous interactions between individuals
introduce several mathematical complexities relative to standard econometric models.
As noted before, this occurs because of the quadratic terms which appear in the
likelihood. The following theorem is proved in the Appendix; unlike Theorem 10 it
does not apply to the case of heterogeneous hi’s, although results in Amaro de Matos
and Perez (1991) suggest this can be done.

Theorem 12. Large economy limit for realized average choice levels in social
planner’s version of the binary choice model with interactions. Suppose that the
vector of choices in a population is determined by a social planner with preferences

6 In Amemiya (1985), it is also assumed that the Mi elements are uniformly bounded when asymptotic
normality is proved, which contradicts our identification assumption that the Yn(i)’s are unbounded.
However, as Amemiya points out, the boundedness assumption can be dispensed with.
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consistent with Equation (44). The sample mean of these choices converges weakly,
that is,

lim w̄I ⇒w m
∗, (137)

where m∗ is the solution to m∗ = tanh ( bh + bJm∗) with the same sign as h.

Unfortunately, maximum likelihood estimation has yet to be developed for data
generated by a social planner problem of the type we have studied. While techniques
developed in Amaro de Matos and Perez (1991), Brock (1993), and Ellis (1985)
all suggest that the development of these asymptotics is feasible, the argument
seems sufficiently complicated that we are not comfortable making a conjecture
on the asymptotic distribution of the estimator. In the Appendix, we provide
some initial discussion of these issues to illustrate how such a theory could be
developed.

5.4. Unobserved variables

Perhaps the most serious criticism made of efforts to identify interaction effects
is the difficulty in identifying interaction effects in the presence of unobserved
individual or group characteristics. This is true because the main groupings for
which interactions are conjectured to exist, neighborhoods, schools, firms, etc.,
are endogenously determined. Presumably, neighborhood contextual and endogenous
characteristics influence individual choices as to neighborhood membership. Hence,
it seems very likely that omitted variables which influence individual behavior once
that person is a member of a neighborhood will also be correlated with the various
group effects which are captured in a statistical model. This point is distinct from the
self-selection issues which are discussed above.
In particular, we are interested in determining how omitted variables will affect

inferences concerning J . We do this following a maximum likelihood approach due to
Cameron and Heckman (1998). This approach is straightforward to describe in sample,
rather than population terms which is why we place it here.
In our framework, assume that the binary choices wi are coded 0, 1 and are generated

by the probability model

m
(
wi = 1 | Xi,o,Yn(i), o,Xi,u,Yn(i), u,men(i)

)
= Fû

(
k + c′oXi,o + d

′
oYn(i), o + c

′
uXi,u + d

′
uYn(i), u + Jm

e
n(i)

)
,

(138)

where subscripts o and u refer to observed and unobserved variables, respectively. We
assume that Fû is the logistic distribution.
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Let Q ′ = (k , c′o, d
′
o, J ), Z

′
i = (1,Xi,o,Yn(i),o,m

e
n(i)) and hi = c

′
uXi,u + d

′
uYn(i),u. This

means the true probability structure can be rewritten as

m
(
wi = 1 | Xi,o,Yn(i),o,Xi,u,Yn(i),u,men(i)

)
= Fû

(
Q ′Zi + thi

)
, (139)

which produces a likelihood function of the form

L = I−1
∑
i

(
wi logFû

(
Q ′Zi + thi

)
+ (1 − wi) log

(
1 − Fû

(
Q ′Zi + thi

)))
. (140)

The likelihood function is concave in Q. The derivatives of the likelihood
function (140) may be written as

LQ = I−1
∑
i

Zi
(
wi − Fû

(
Q ′Zi + thi

))
, (141)

LQ ,Q = −I−1
∑
i

fû
(
Q ′Zi + thi

)
Zi Z

′
i , (142)

LQ ,t = −I−1
∑
i

fû
(
Q ′Zi + thi

)
Zihi, (143)

where t = 0 is the case where there are no unobservables and t = 1 is the case where
there are unobservables. The maximum likelihood estimate of Q must obey

LQ (Q (t) , t) = 0, (144)

where we have written the likelihood as a function of the unknown parameters Q and
have allowed the estimate of Q to depend on t . Further,

LQ ,Q (Q (t) , t)
dQ
dt

+ LQ,t (Q (t) , t) = 0, (145)

which implies that

dQ
dt

= −LQ,Q (Q (t) , t)
−1 LQ ,t (Q (t) , t) . (146)

Integrating both sides of this expression produces

Q (0) −Q (1) =
∫ 1

0
LQ,Q (Q (t) , t)

−1 LQ,t (Q (t) , t) dt . (147)

This difference describes the effect of misspecification since, as noted above, t = 0
corresponds to the case of no unobservables whereas t = 1 corresponds to the case
with unobservables as we have formulated them.
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In general, one cannot determine the sign of Q(0) −Q(1); this is not surprising since
it is known in contexts such as measurement error that unambiguous statements about
directions of bias cannot be made. However, as recognized by Bretagnolle and Huber-
Carol (1988), one can determine the sign of this bias in special cases. For example,
if the elements of LQ ,Q are all negative and the elements of LQ ,t are all positive, then
the coefficients in the misspecified model are all biased upwards.
Using the formula (147), one can compute the bias associated with the parameter J .

For the case where the vector Xi is replaced with a scalar xi the vector Yn(i) is replaced
with a scalar yn(i), one can compute

J (0) − J (1) =
∫ 1

0

((
L−1Q ,Q

)
4,1

(
I−1

∑
i

fû
(
Q ′Zi + thi

)
hi
))
dt

+
∫ 1

0

((
L−1Q ,Q

)
4,2

(
I−1

∑
i

fû
(
Q ′Zi + thi

)
xihi

))
dt

+
∫ 1

0

((
L−1Q ,Q

)
4,3

(
I−1

∑
i

fû
(
Q ′Zi + thi

)
yn(i)hi

))
dt

+
∫ 1

0

((
L−1Q ,Q

)
4,4

(
I−1

∑
i

fû
(
Q ′Zi + thi

)
mn(i)hi

))
dt ,

(148)

where
(
L−1Q ,Q

)
i, j
is the i, jth element of L−1Q,Q and we impose self-consistency of beliefs

(i.e., substituting mn(i) for men(i)). The term
(
L−1Q ,Q

)
4,4
is nonpositive whereas the other

inverse elements of these integrals are of ambiguous sign. This is the only sense in
which one might say there is a presumption that estimates of interaction effects are
biased towards finding them because of omitted variables.
Cameron and Heckman (1998) show how the Heckman and Singer (1984b)

nonparametric likelihood estimator can be used to estimate the distribution of the
unobserved hi’s and thereby compute unbiased estimates of the parameters of the
observables. They make a compelling argument that the production of “heterogeneity-
corrected estimates” is essential in conducting assessments of policy experiments. We
are currently pursuing the development of this idea to produce estimates of interaction
effects which are robust to omitted individual and group characteristics.

6. Statistical analysis with grouped data

In this section, we explore some of the approaches to identifying interactions which
have been developed for aggregated data. Our discussion so far has assumed that
individual level observations are available to the researcher. In contexts such as
economic growth or crime rates, it is often the case that only group-level data is
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available. As a result, there has been a distinct literature which deals with uncovering
interactions from aggregated data series.

6.1. Differences in cross-group behavior

One approach to the identification of interactions from group level data is due to
Glaeser et al. (1996) and extended in Glaeser and Scheinkman (1998). The basic
insight of this work focuses on the implications of interactions for the distribution of
cross-group differences in choices. Consider a collection of groups, N1 . . . NI , each
of which has n members. In each of the groups, individuals face a binary choice. If
the individuals within each group are identical, and their choices are independent of
one another, then sample means of choices within each group will scale according to
the law of large numbers. Supposing that the probability of choosing 1 is p, then the
variance of the sample average for each of the two groups is n−1p (1 − p). This means
that the cross-group variance converges weakly to zero at rate n−1. Observations that
the cross-group variance scales at a slower rate, i.e., that the cross-group differences
in average choice vary too much to be consistent with the sample variance under the
null hypothesis of independent and identically distributed choices, is taken as evidence
of social interactions.
Glaeser et al. (1996) apply their analysis to the study of cross-city crime rates.

They find that even after controlling for city-specific socioeconomic variables, there are
cross-city differences in crime rates which are far greater than would be consistent with
individuals making independent choices within cities and conclude that this evidence
is strongly supportive of an interactions approach.

6.2. Spatial patterns

Topa (1997) has attempted to identify and measure interactions through the use of
spatial data. The basic idea of this work is to take seriously the idea that geographic
proximity is a proxy for social proximity. Topa does this by considering the relationship
between unemployment rates in census tracts in Chicago. Since census tracts typically
vary in size between 2000 to 8000 residents, these units would seem to be good proxies
for neighborhoods. Topa further assumes that the social distance between any two
adjacent tracts is 1, the social distance between a tract and another tract that can be
reached by travelling through a single other tract is 2, etc. Using these assumptions,
he formulates the determinants of unemployment in a given tract n at time t, w̄n, t , as

w̄n, t = f
(
c′X̄n, t + J ′w̄n,D, t + ûi, t

)
, (149)

where X̄n, t denotes census tract averages of a set of individual characteristics, w̄n,D, t is
a vector of average unemployment rates for tracts at social distances 1,2, . . . D away
from tract n and f(·) is a nonlinear function generated by the stochastic model (a
contact process) used to motivate the econometrics. Topa estimates this model using
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indirect inference methods and finds evidence of interaction effects in the sense of a
statistically significant J vector.
Conley and Topa (1999) extend this analysis by attempting to identify what

role different measures of distance play in explaining these spatial correlations. In
particular, they construct measures of neighborhood distance based on 1) physical
distance, 2) travel time, 3) ethnicity, and 4) occupation. Their results suggest that
physical and occupational distance explain residual correlations across unemployment
rates within census tracts once intra-tract characteristics have been controlled for.
Akerlof (1997) demonstrates the theoretical importance of integrating social distance
into economic analysis and provides a range of interesting potential applications; the
Conley and Topa work should help produce empirical measures of various types of
social distance.

6.3. Ecological inference

In the political science literature, there have been some efforts to identify group effects
under the rubric of what is known as the ecological inference problem. In the basic
version of this problem, a researcher possesses data on the number of whites and
African Americans in each of a set of I neighborhoods, as well as the number of votes
received by a white and an African American candidate in the same neighborhoods.
The researcher’s goal is to determine the relationship between racial composition of a
neighborhood and the distribution of votes by race. Since the researcher is attempting
to infer individual behavior from aggregate statistics, the inference is referred to as
“ecological”.
Ecological inference has generated a literature which has recently begun to grow

[Goodman (1953), Freedman et al. (1991, 1998), King (1997)]. We follow the
exposition of Freedman et al. (1998). Letting ri denote the percentage of African
Americans in a neighborhood and vi as the percentage of votes accrued by an African
American candidate, the standard ecological regression is

vi = pri + q (1 − ri) + ûi, (150)

where p is the probability with which African Americans vote for an African American
candidate and q is the probability with which whites vote for an African American
candidate. This equation is estimable by ordinary least squares. Alternative approaches
to ecological inference typically modify this equation. For example, King (1997)
proposes treating the racial voting propensities as neighborhood-specific draws from
a common distribution rather than as constants.
From the perspective of the sorts of data sets and models of interest to economists,

we suspect that ecological inference as it has been developed is of limited interest. The
formulation of the regressions fails to correspond in a natural way to the aggregate
of individual decisions into group behavioral percentages in a way consistent with
a choice-theoretic framework. Indeed, the consistency of aggregated voting behavior
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with more than one behavioral model is precisely the basis on which Freedman et al.
(1991) argued that evidence of differences in p and q could not be interpreted in
terms of underlying differences in behavior between white and African American
voters. As far as we know, no one has yet shown that the statistical tools in the
ecological inference literature can complement other techniques for the recovery of
socioeconomic structure. However, Cross and Manski (1999) suggest new directions
along these lines which may both clarify what structural mechanisms can be revealed
by aggregate data as well as show how ecological regression relates to omitted variables
problems in econometrics.

7. Evidence

In this section, we survey some of the evidence which has been adduced to detect the
presence of and to measure the magnitude of interactions. We divide the empirical
literature into two parts. The first part assumes that the regression of individual
outcomes on individual and group level variables represents a correctly specified
model. In particular, the analysis assumes that there are no omitted variables which will
generate coefficient inconsistency. The second approach accounts for the possibility of
such omitted variables and explores ways to correct for inconsistency either through
choice of data sets or econometric techniques.

7.1. Analyses under assumption of correct specification

In this subsection we review some prominent empirical analyses of interactions.

7.1.1. Neighborhood effects in youth and adult outcomes

Perhaps the most widely empirically studied area of interactions concerns the effects
on adults of the neighborhoods in which they grew up. The typical analysis of this
type computes a regression of the form

wi, t + 1 = a + c′Xi, t + d ′Yn(i), t + ûi, t + 1, (151)

where, as before individual family characteristics and neighborhood characteristics are
denoted by Xi,t and Yn(i), t respectively and E(ûi, t + 1 | Xi,t ,Yn(i), t) = 0. Acceptance
of the null hypothesis that d ′ = 0 is interpreted as acceptance of the null that no
interaction effects exist. Examples of this type of regression include Brooks-Gunn
et al. (1993), Corcoran et al. (1992), Rivkin (1997) and Zax and Rees (1998). These
studies typically find some combinations of Yn(i), t which are statistically significant,
although there seems to be no consensus on which of these contextual effects are
most robust. A useful extension of this work would be an analysis which explicitly
attempted to identify robust neighborhood and individual controls, using techniques
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such as Leamer’s (1983) extreme bounds analysis or Bayesian model averaging of the
type advocated by Raftery (1995) and Raftery et al. (1997). While these procedures do
not give a definitive solution to the problem of model uncertainty, they are nevertheless
invaluable in clarifying dimensions along which arbitrary model assumptions (in this
case choice of control variables) matters.
Several complementary strands exist to this class of empirical research. In one

approach, the importance of neighborhood-level interactions effects on inequality is
evaluated by assessing the effects on inequality measures of different sorting rules.
This idea is originally due to Kremer (1997); nonlinear alternatives to Kremer’s original
analysis have been explored by Ioannides (1997b). In a second approach, the notion
of neighborhoods has shifted from geographic proximity to membership in an ethnic
group. Evidence of ethnic group effects has been found by Borjas (1992, 1995) and
Bertrand et al. (1998). Similarly, Cutler and Glaeser (1997) illustrate how segregation
adversely affects a number of socioeconomic outcomes for African Americans. A third
strategy has been employed by Ioannides (1999) who shows how house spatial relations
in price dynamics implicitly reveal neighborhood effects. In yet a fourth approach,
Solon et al. (1999) use within-neighborhood correlations to overcome measurement
problems associated with what neighborhood attributes actually matter for interactions.
They find that once various family background variables are controlled for, within-
neighborhood correlations in educational attainment are low.
Finally, there is a distinct literature on the relationship between interactions and

efficient and/or equilibrium sorting. Becker (1973) and Sattinger (1975) are standard
references; see Legros and Newman (1997) for the state-of-the-art. In addition,
equilibrium sorting has been studied in many contexts using Tiebout type arguments.
Recent contributions include Epple and Romer (1991) and Fernandez and Rogerson
(1996) whose models are directly germane to the study of inequality. In an important
paper, Epple and Sieg (1999) show how to econometrically implement models of this
type. Our belief is that these types of models should be further employed to provide
complementary insights to the main body of literature on interactions, as the strength of
interaction effects should presumably be at least partially revealed by the neighborhood
choices of individuals.

7.2. Analyses which are robust to unobserved correlated heterogeneity

From the perspective of empirical analysis, the main issue which has concerned
researchers is the problem of spurious identification of interaction effects due to the
likelihood of correlated unobservables existing among individuals in endogenously
determined groups.

7.2.1. Matching

One approach to dealing with the possible unobserved correlated heterogeneity has
attempted to identify environments which allow one to match populations subjected to
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different influences in order to assess the effect of changes in group membership. The
most prominent type of matching study falls under the rubric of “natural experiments”.
By natural experiments, we refer to cases where interaction effects are identified by
studying cases where some individuals that would normally be members of one group
are moved to another through an exogenous intervention of some type. Those who are
moved may be thought of as receiving a treatment, whereas those who remain may
be thought of as a control group. While intuitively appealing, there are in fact many
subtleties in analyzing data of this type. Heckman and Smith (1995), Heckman (1996,
1997), Heckman et al. (1998a,b), provide a wide ranging analysis of the salient issues.
Hence an important future exercise is the reconsideration of some of these empirical
studies in light of these recent econometric developments.
Among the most prominent examples of natural experiments of this type, we would

list:

7.2.1.1. Gautreaux Assisted Housing Program. In 1966, the Chicago Housing
Authority was sued for discrimination by public housing residents on the grounds
that both the location of public housing sites and the allocation of slots in these sites
intentionally placed minorities in isolated inner city neighborhoods. In an agreement
worked out between the plaintiffs and defendants, known as the Gautreaux Assisted
Housing Program, housing subsidies and placement services were established for
public housing residents throughout Chicago. Rosenbaum (1995) and Yinger (1995)
provide reviews of the details of the Gautreaux program. For the purposes of studying
interactions, several points of these features are important. The number of participants
each year was fixed and so, due to oversubscription, actual participants, after some
screening, were randomly selected. Families who applied for assistance were randomly
given a single option of moving to another part of Chicago or to moving to a suburb.
(Families who declined the offered option were placed back in the pool of eligible
families from which recipients of aid were drawn.)
A series of papers [Rosenbaum and Popkin (1991), Popkin et al. (1993), Rosenbaum

(1995)], has analyzed the results of surveys of Gautreaux program participants in order
to identify the effects of the differences between the urban and suburban environments
on various socioeconomic measures.
While they are an important source of information on interactions effects, it

is important to recognize that the Gautreaux data are not ideal for this purpose.
Applicants to the program were dropped who either had poor rent paying histories
or who failed a home inspection to determine whether they had mistreated their
public housing. This prescreening eliminated approximately 30% of the program’s
applicants [Rosenbaum (1995)]. Further, the survey efforts conducted by Rosenbaum
and coauthors exhibit some sample selection problems. In particular, those families
who moved to suburbs and then returned to Chicago could not be identified. Hence,
the evidence of neighborhood effects obtained from Gautreaux is, while informative,
not decisive. That being said, recent work such as Rosenbaum et al. (1999), by linking
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Gautreaux interview data to administrative data, should be able to partially address
these concerns.
The Gautreaux program also illustrates the difficulty of identifying policy effects

as well as a limitation in the utility of the naive estimator in predicting the effects
of changes in interaction groups. Suppose that Gautreaux families are described by a
linear-in-means model of the type:

wi = d ′Yn(i) + Jmen(i) + ûi. (152)

Suppose that one new family is moved from the inner city to a suburb. In this case, the
family’s presence in the new location will have no effect on either Yn(i) or men(i) (and
equivalently mn(i)) in the new location and there will be no other Gautreaux families
to reference on. In this case the knowledge of the parameters d ′ and J (which can be
consistently estimated) and the neighborhood variables Yn(i) and men(i) in the old and
new locations of residence will be sufficient to predict the effect on the family of the
move.
However, suppose that the Gautreaux program is expanded to the extent that clusters

of families are moved from an inner city to the new neighborhood. In this case, the
appropriate model is

wi = d ′Yn(i) + Jmen(i) + d
′
G(i)Yn(i),G(i) + JG(i)m

e
n(i),G(i) + ûi. (153)

Here, G(i) denotes Gautreaux families in the neighborhood, so that for example,
men(i),G(i) denotes the mean behavior of Gautreaux families in a community. Predictions
of the effect of a move of a cluster of families must therefore incorporate both
the effects of the move on the mean for the neighborhood as a whole as well
as the possibility that the Gautreaux families will represent a subgroup within the
neighborhood which induces separate interactions. This means that the move of a
cluster may be subject to social multipliers of the type we have described. At a
minimum, the naive estimator is no longer useful for policy and prediction analysis.
The analog of the self-consistency equation (21) must now be estimated along with
the individual level equation (153) in order to permit predictions of the outcomes of
cluster moves.

7.2.1.2. Moving to Opportunity Demonstration. The Moving to Opportunity Demon-
stration is an ongoing experimental demonstration being conducted by the Department
of Housing and Urban Development to evaluate the effects of moving low-income
families out of high-poverty neighborhoods; a detailed discussion of the program
appears in Goering (1996). The demonstration randomly assigned a set of low income
families normally eligible for Section 8 housing assistance vouchers to one of three
groups: 1) those eligible for housing vouchers which are only usable in census tracts
with less than 10% poverty, 2) those eligible for regular Section 8 vouchers with no
locational restrictions, and 3) a group whose assistance is only based on residence in a
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public housing project. The demonstration is being conducted in 5 metropolitan areas:
Baltimore, Boston, Chicago, Los Angeles and New York City. One motivation of the
demonstration was a desire to address some of the self-selection problems associated
with data from the Gautreaux Program. That being said, it is unclear at this stage to
what extent self-selection is better controlled for here than in Gautreaux, given the
voluntary nature of participation in the MTO demonstrations.
Preliminary results on the various experiments are becoming available. Ladd and

Ludwig (1998) report evidence that those families in Baltimore that moved out of
low income census tracts achieved access to superior schools as measured by a range
of criteria. However, they find little evidence that the value added of these schools
for the children in these families is higher than the schools used by families in the
comparison and control groups. For the Boston demonstration, Katz et al. (1997) also
find evidence that the MTO program has been successful in generating relocation of
families, this time defined as movements out of low poverty neighborhoods. They also
find that children in both types of families eligible for vouchers exhibited substantially
higher test scores as well as lower incidences of behavioral problems.

7.2.1.3. Milwaukee School Voucher Program. In 1990, Wisconsin implemented
the nation’s first public school voucher program. In essence, this program made
available school vouchers equal to the average per pupil expenditure by public schools
in Milwaukee. Applicants to the program were required to fulfill several criteria.
Oversubscription to the program has meant that a random subset of eligible applicants
have actually been able to participate in the program. Eligibility for the program was
restricted by two criteria: 1) a family could not have an annual income which exceeded
1.75 times the poverty line, and 2) the student to receive the voucher could not have
previously been enrolled in a private school in the year prior to the use of the voucher.
As the number of applicants greatly exceeded the number of available vouchers,

the randomness of the selection process meant that there existed two groups of
students, namely those who did or did not receive vouchers for private schools, whose
subsequent performance could be compared. Rouse (1998a,b) and Witte (1997) have
both studied this question. Interestingly, they have come to quite different conclusions
concerning the effects of private versus public schools on education. Rouse concludes
that there are some benefits to private schools in this sample whereas Witte does not.
These differences appear to stem from different choices concerning the appropriate
control group for analysis. Rouse uses those students who applied but were not selected
for the program whereas Witte uses citywide average student outcomes. In terms of
differencing out characteristics of the control and treatment groups, Rouse’s approach
seems clearly correct.
While important with respect to the issue of school vouchers and public policy,

there are several grounds for supposing that the Milwaukee evidence has limited
implications in terms of adducing the importance of interactions. As both Rouse
and Witte are aware, since the majority of participants in the program went to one
of only three different schools, the generality of any of the results is questionable.
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Further, it is important to remember that interactions, as conventionally understood,
may not explain the differences either here or for differences between public and
Catholic schools, which are discussed below. Differences in disciplinary standards
or teacher expectations could potentially explain differences with the public schools
independent of any interactions effects such as peer group influences. An interesting
question for future research is therefore the determination of whether observed school
differences occur due to interactions between students or due to alternative educational
and disciplinary standards.

7.2.1.4. Classroom tracking. A standard problem in school organization is whether
students should be tracked, i.e., segregated by ability and/or achievement across
classes. A number of classroom experiments have been conducted in which educational
outcomes for students tracked by initial measures of ability of achievement are
compared to students who are randomly assigned to classrooms.
One such experiment occurred in Montreal and has been analyzed by Henderson

et al. (1978). This paper analyzes data from French speaking students in Montreal
in which children who were segregated on the basis of IQ tests administered in
kindergarten and students who were randomly assigned to classes were compared
in terms of achievement in grades 1–3. Henderson, Mieszkowski and Sauvageau
found significant effects from this type of classroom tracking. Interestingly, while
randomization raised overall average performance, there was a clear diminution of
the performance of students with higher test scores under random assignments.
Hence randomization involves both redistribution as well as an increase in average
achievement scores.
Unsurprisingly, ability grouping has also been studied quite extensively by education

researchers, and has been a source of considerable controversy within the education
literature. Slavin (1990) reviews a large number of tracking versus random assignment
experiments in high schools and concludes that for secondary students “. . . between-
class ability grouping plans have little or no effect on . . . achievement . . . at least
as measured by standardized tests” (p. 494). However, even this survey conclusion
has been disputed by other education scholars as evidenced in the commentaries on
that article. Our limited survey of the education literature suggests that there is little
decisive evidence on this question, and that many of the studies are plagued by poor
controls for individual characteristics; further, much of this literature seems laden
with political concerns on the parts of researchers which make the assessment of the
statistical analysis problematic. These techniques may also facilitate the determination
of which neighborhood characteristics are relevant in generating interaction effects.
Weinberg et al. (1999) show that an analysis employing a broad range of possible
neighborhood controls can lead one to reject peer group and role model effects in
favor of broader socioeconomic characteristics as the determinant of neighborhood
effects.
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7.2.1.5. Siblings. Matching comparisons have also been employed to directly control
for unobserved family effects. Aaronson (1997, 1998) proposes the use of sibling
data to difference out unobserved family characteristics. This is possible under the
assumption that the unobservable characteristics are constant within a family across
time. He then identifies sibling pairs from the National Longitudinal Survey of Youth
in which one sibling was exposed to a different neighborhood than another. This allows
him to estimate models of differences in sibling outcomes which include differences
in neighborhood characteristics. This estimation strategy is therefore equivalent to the
standard one in panel data studies of differencing out unobserved fixed effects. Plotnick
and Hoffman (1996) apply the same idea to a sample of sisters from the Panel Study
of Income Dynamics and consider both continuous and discrete outcomes. Exploiting
Chamberlain (1984) in order to eliminate unobserved fixed effects for binary choices,
they find little evidence of neighborhood effects with respect to either out of wedlock
births or any post-secondary education. This study finds no evidence of neighborhood
effects on a particular income measure.

7.2.2. Instrumental variables

Rather than employ data sets where interaction effects can be identified through the
comparison of otherwise equivalent treatment and control groups, there has been a
parallel literature which has tried to use more conventional econometric methods to
deal with unobserved correlates.

7.2.2.1. Neighborhood socioeconomic influences. Evans et al. (1992) appears to be the
first study of neighborhood influences which formally accounts for the endogeneity of
neighborhood residence. The analysis is specifically concerned with identifying the
role of neighborhood characteristics on the probability of teen pregnancy. Using a
probit framework, this probability is assumed to depend on both a range of individual
characteristics as well as a variable which is the logarithm of the percentage of other
students in an individual’s high school who are categorized as “disadvantaged” as
defined under guidelines of the Elementary and Secondary Education Act. In probit
regressions which treat this measure as exogenous, this measure of disadvantaged
schoolmates is shown to statistically significantly increase the probability of a teen
pregnancy.
In order to deal with the possibility that the neighborhood characteristic measure

is correlated with an unobserved individual characteristic, as would occur if parental
quality is negatively associated with the neighborhood characteristic, Evans, Oates, and
Schwab propose four instrumental variables each of which is measured at the level of
the metropolitan area in which the secondary student lives: 1) the unemployment rate,
2) median family income, 3) the poverty rate, and 4) the percentage of adults who are
college graduates. The implicit assumption in this analysis is that the metropolitan area
of residence is exogenous for families, although location within a metropolitan area
is a choice variable. Employing these instruments, the contextual effect found in the
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univariate analysis disappears both in terms of magnitude and in terms of statistical
significance.

7.2.2.2. Catholic versus public schools. Starting with Coleman et al. (1982), a number
of authors have studied the reasons why student performance in Catholic schools is
on average superior to that found in public equivalents. A critical issue in evaluating
the implications of this fact is determining whether the differences are due to self-
selection with respect to school enrollment versus something about differences in the
school environment per se.
Evans and Schwab (1995) and Neal (1997) attempt to deal with the effect of self-

selection by identifying instrumental variables which correlate with Catholic school
choice but do not correlate with unobservable individual characteristics which would
lead to better school performance. Neal’s analysis seems especially comprehensive.
He proposes two instruments which plausibly correlate with the decision to attend a
Catholic school but not with unobserved individual characteristics which would lead
to superior academic performance regardless of which school was attended: 1) the
fraction of Catholic in county of residence population, which should correlate with
tuition costs since higher percentages lead to greater Church subsidies to schools,
and 2) the number of Catholic secondary schools per square mile within county,
which should correlate negatively with transportation costs. The idea is tuition and
transportation costs are plausibly correlated with the determinants of Catholic school
choice without being correlated with an unobserved student quality variable. Neal finds
that there are substantial educational gains for urban minorities who attend Catholic
schools, but not for suburban students or whites in general.

8. Summary and conclusions

This chapter illustrates both the progress which has been made in utilizing interactions
to understand economic phenomena as well as the many areas in which further
research is required. In our judgment, there currently exists a good understanding of
static interactions-based models both in terms of theory and econometrics. However,
the empirical literature, while containing many insightful approaches to uncovering
interactions, has yet to exploit a full structural estimation approach. Such a step is
particularly important if one wishes to identify the presence of multiple equilibria.
Further, there exist a number of areas in terms of theory and econometric methodology
which have yet to be fully examined. Three examples come readily to mind. First, the
analysis of dynamic interaction models with endogenous neighborhood formation and
their panel data analogs is still in its infancy. This analysis, fortunately, should have
useful antecedents in the urban economics literature such as Miyao (1978). Second,
the theoretical models of interactions currently treat the sources of interactions as
a black box. In understanding phenomena such as social norms or culture, this is
clearly inadequate; see the interesting analysis of Emirbayer and Goodwin (1997) for a
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discussion of the importance of properly accounting for the microfoundations of norms
and culture. Third, the econometric literature has almost exclusively concentrated on
global interactions, and so the analysis of identification and estimation needs to be
extended to alternative interaction structures. Therefore, we are very confident that
interactions-based models will continue to prove to be a productive area of research
for methodologists and empiricists alike.

Appendix A

A.1. Properties of binary choices made under a social planner

A.1.1. Basics

Recalling the discussion in section 2.5 in the text we consider a population of
I individuals whose choices, as determined by a social planner, follow the probability
model

m (w) = exp
(
b
(∑

i

(u (wi,Zi) + S (wi,Zi,w−i))
))
/ ZI . (A.1)

In this case, w−i is substituted for mei (w−i) in the social utility terms of the
noncooperative problems and ZI is a normalizing constant. For the case of symmetric
global interactions (Ji, j = J

I ), employing the same transformations as done in the
noncooperative case means that this probability may be rewritten as

m (w) = exp
(
b
(∑

i

hiwi +
J

2I

(∑
i

wi
)2))

/ ZI , (A.2)

where the normalizing constant ZI is

∑
n1 ∈ {−1, 1}

. . .
∑

nI ∈ {−1, 1}
exp

(
b
( I∑
i = 1

hini +
J

2I

( I∑
i = 1

ni
)2))

. (A.3)

This equation corresponds to Equation (45) in the text.
In order to analyze this model, we make use of the following identity

exp
(
a2
)
= (2p )−1/2

∫ ∞

−∞
exp

(
−
x2

2
+

√
2 xa

)
dx. (A.4)

This identity can be verified immediately by dividing both sides of the expression by
exp(a2) and recalling that the integral of the probability density of a normal (

√
2a, 1)
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random variable over its support is 1. Using the change of variable y = x
(
bJ
I

)1/2
, it

must be the case that

m (w) =
(

I

2p bJ

)1/2 ∫ ∞

−∞
exp

(
−
y2I

2 bJ

)∏
i

exp (( y + bhi)wi) dy/ZI , (A.5)

where

ZI =

(
I

2p bJ

)1/2 ∫ ∞

−∞
exp

(
−
y2I

2 bJ

)∏
i

M ( y + bhi) dy, (A.6)

and

M (s) = exp (s) + exp (−s) . (A.7)

Notice that∫ ∞

−∞
exp

(
−
y2I

2 bJ

)∏
i

M ( y + bhi) dy =
∫ ∞

−∞
exp (IHI ( y)) dy, (A.8)

where

HI ( y) =
1
I

∑
i

ln (exp (vi (1)) + exp (vi (−1))) , (A.9)

and

vi (wi) = bhiwi + ywi −
y2

2 bJ
. (A.10)

Notice that if hi = h ∀ i, then HI (y) does not depend on I .
It is shown rigorously by Amaro de Matos and Perez (1991) that as I ⇒ ∞, integrals

of the form∫ ∞

−∞
exp (IHI ( y)) dy, (A.11)

“pack” all mass onto the global maximizing point

y∗ = argmax
y
(H ( y)) , (A.12)

where

H ( y) =
∫ ∞

−∞
ln

(
exp

(
bh + y −

y2

2 bJ

)
+ exp

(
−bh − y −

y2

2 bJ

))
dF (h) ,

(A.13)
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and F(h) is the cumulative distribution function of h. One therefore expects (and can
prove) that

y∗I = argmaxy
(HI ( y)) ⇒ y∗ = argmax

y
(H ( y)) . (A.14)

Simple algebra reveals that the first order condition for the maximum of H ( bJm)
over m is

m =
∫ ∞

−∞
tanh ( bh + bJm) dF (h) . (A.15)

When hi = h∀ i, this equation also holds for the expected value of each individual i
and hence the sample average by symmetry, which gives us Theorem 4.
Finally, this result suggests that if we replace the integral over y in Equation (A.5)

with a Dirac delta function whose mass is at y∗, we can obtain an approximate
probability for the system of the form

m (w) =
(

I

2p bJ

)1/2
exp

(
−
y∗2I
2 bJ

)∏
i

exp (( y∗ + bhi)wi) / ZI , (A.16)

where ZI is a normalizing constant.

A.1.2. Asymptotic moments: proof of Theorem 11

Let E (wi) denote the expectation of wi with respect to the probability measure (A.2).
In order to determine the behavior of sample averages as I ⇒ ∞, we again consider
the case where hi = h∀ i. Notice that the argument of the previous section implies
that

lim
I ⇒ ∞

E (wi) =
limI ⇒ ∞

∫∞
−∞ exp (IH1 ( y))G1 ( y) dy

limI ⇒ ∞
∫∞
−∞ exp (IH1 ( y)) dy,

(A.17)

where

H1 ( y) = ln (M ( bh + y)) −
y2

2bJ
, (A.18)

and

G1 ( y) =
exp ( bh + y) − exp (−bh − y)

M ( bh + y)
=
M ′ ( bh + y)
M ( bh + y)

. (A.19)

We employ LaPlace’s method [Kac (1968, p. 248) or Ellis (1985, pp. 38, 50–51)] to
obtain the limiting values of these integrals. As described above, intuitively, all mass
in these integrals gets packed onto the global maximizer y∗.
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We restate the following useful result which is proven in Murray (1984, p. 34).

Approximation theorem. Let H (t) be a function on the interval (a, b) which takes
a global maximum at a point a in the interval and let H (t) be smooth enough to
possess a second-order Taylor expansion at point a with H

′′
(a) < 0. Let G(t) denote

a continuous function. Then∫ ∞

−∞
G (t) exp (IH (t)) dt = exp (IH (a))G (a)

(
−2p
IH ′′ (a)

)1/2
+O

(
I−3/2

)
.

(A.20)

This formula states, in a precise way, the sense in which the mass of the integral piles
up at the maximizer a as I ⇒ ∞. Using this formula, letting a = y,

∫∞
−∞ exp (IH1 ( y))G1 ( y) dy∫∞

−∞ exp (IH1 ( y)) dy
=
exp (IH1 (a))G1 (a)

(
−2p
IH ′′
1 (a)

)1/2
+ O

(
I−3/2

)
exp (IH1 (a))

(
−2p
IH ′′
1 (a)

)1/2
+ O

(
I−3/2

) ,

(A.21)
which is easily seen to converge to G1(a) as I ⇒ ∞. Hence we have

lim
I ⇒ ∞

E (wi) = G1 ( y∗) = m∗ =
exp ( bh + y∗) − exp (−bh − y∗)

M ( bh + y∗)

=
M ′ ( bh + y∗)
M ( bh + y∗)

= tanh ( bh + y∗)= tanh ( bh + bJm∗) ,

(A.22)
where y∗ = bJm∗.
The problem that m∗ solves appears mysterious at first glance. However, there is an

interesting connection between our solution to the behavior of a social planner and the
maximization of social surplus as analyzed in McFadden (1981, Chapter 5). Following
McFadden, social surplus will equal

∑
i(u(wi, Xi) −

J
2 (wi − w̄I )

2). If all agents have
common characteristics Xi, then following Equation (A.2), the probability of the social

surplus can be expressed as a function of G (w) =
∑

i hwi +
J
2I

(∑
i wi

)2
. Then it can

be shown [Brock (1993)] that

b
(
lim
I ⇒ ∞

E
(
max
w
I−1G (w)

))
= lim
I ⇒ ∞

(
I−1 ln (ZI )

)
= max

y
ln

(
exp

(
−
y2

2 bJ

)
M ( bh + y)

)
= max

m
ln

(
exp

(
−
( bJm)2

2 bJ

)
M ( bh + bJm)

)
.

(A.23)

As would be expected, one maximizes a notion of social welfare in the large economy
limit in order to find the socially optimal states.
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Now that the expected value for each choice has been analyzed, we can consider
laws of large numbers for data generated in this environment. First, we consider
the sample mean, w̄I = I−1

∑
i wi. Notice that the limiting behavior of the sample

mean in distribution (⇒d) can be inferred from weak convergence (⇒w) since weak
convergence necessarily implies convergence in distribution [see Lukacs (1975, p. 9)
for a typical proof]. By Tchebychev’s inequality,

m (|w̄I − m∗| ¾ û) ¶ Var (w̄I − m∗)
û2

, (A.24)

so it is sufficient to prove limI ⇒ ∞Var (w̄I − m∗) = 0. To do this, it is sufficient to
show that I−2

∑
i wi

∑
j wj ⇒w m∗2. However, this can be verified (after considerable

algebra) by computing I−2
∑

i wi
∑

j wj directly and using LaPlace’s method as

employed in Murray above to verify that I−2
∑

i wi
∑

j wj ⇒w tanh ( bh + y∗)
2 = m∗2.

This proves Theorem 12.

A.1.3. Maximum likelihood theory

Consider g = 1 · · · G distinct neighborhoods with observations Xi,g , i = 1 · · · I and
w̄g = I−1

∑
i wi,g available for each g. Define the likelihood function for the data from

these neighborhoods as
∏
g m

(
wg

)
where wg =

(
w1,g · · · wI ,g

)
. When choices are

consistent with the solution to a social planners problem, the likelihood function within
each neighborhood will have the form

m
(
wg

)
~ exp

(∑
i

(
1
2c

′Xi,g +
J

I

(∑
j

wj,g
))
wi,g

)
, (A.25)

which can be rewritten as(
I

2pbJ

)1/2 ∫ ∞

−∞
exp

(
−w̄2g

I J

2

)∏
i

exp
((
1
2c

′Xi,g + J w̄g
)
wi,g

)
dw̄g. (A.26)

Define the parameter vector q = (c, J ). One can consider the mean log likelihood
over all observations

1
GI

∑
g

ln
(
m
(
wg

))
. (A.27)

For large I , and letting F(x) = exp(x)
1+exp(x) the density of this likelihood will approximately

equal

1
G

∑
g

1
I

∑
i

[(
1 + wi,g
2

)
ln
(
F
(
c′Xi,g + 2 JmI ,g

))
+

(
1 − wi,g
2

)
ln
(
F
(
−
(
c′Xi,g + 2 JmI ,g

)))]
,

(A.28)
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where

mI ,g = argmax
(
HI ,g (m)

)
, (A.29)

and

HI ,g (m) = −
m2J
2
+
1
I

(∑
i

ln
(
exp

(
1
2c

′Xi,g + Jm
))
+ exp

(
−12c

′Xi,g − Jm
))

(A.30)
Note that HI ,g converges to

Hg (m) = −
m2J
2
+
∫
ln
(
exp

(
1
2c

′Xi,g + Jm
)
+ exp

(
−12c

′Xi,g − Jm
))
dFg

(
Xi,g

)
,

(A.31)
so that under regularity conditions such as those described in Newey and McFadden
(1994, p. 2121) it must be the case that

mI ,g ⇒w mg = argmax (HG (m)) . (A.32)

Notice that the naive estimator introduced in Section 3 inserts w̄g in place of
mI ,g in the sample likelihood (A.28) above and selects q to maximize the modified
sample log likelihood function. This means that the naive estimator does not allow
the data to directly address the possibility of discontinuous neighborhood responses
because the standard maximum likelihood theory in logistic models yields a strictly
concave optimization problem. Hence the optimization problem will be continuous in
parameters such as the distribution function of individual characteristics, Fg

(
Xi,g

)
.

This suggests that one might wish to modify this log likelihood by adding a penalty
function of the form

A

G

∑
g

(
w̄g − mI ,g

)2
. (A.33)

A = 0 will correspond to the naive estimator. Intuitively, as A increases the penalty
will push the parameter estimates towards those of the complete estimator, i.e., one
which accounts for the relationship between the neighborhood characteristics and
neighborhood mean behavior.

A.2. Proof of Theorem 5

For a given parameter set (k , c, d, J ), assume by way of contradiction that there exists
an alternative

(
k̄ , c̄, d̄, J̄

)
such that on supp(X , Y , me) we have(

k − k̄
)
+
(
c′ − c̄′

)
Xi +

(
d ′ − d̄ ′)Yn(i) + ( J − J̄)men(i) = 0, (A.34)
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and

men(i) = mn(i) =
∫
widF

(
wi | k + c′X + d ′Yn(i) + Jmn(i)

)
dFX | Yn(i)

=
∫
widF

(
wi | k̄ + c̄′X + d̄ ′Yn(i) + J̄mn(i)

)
dFX | Yn(i) .

(A.35)

Notice the Proposition is true if it is the case that J − J̄ is zero. Otherwise Xi,
and Yn(i) would lie in a proper linear subspace of Rr + s which violates Assumption i.
Equation (A.34) implies that for elements of supp(X , Y , me), conditional on Yn(i)(

c′ − c̄′
)
Xi = ø

(
Yn(i)

)
, (A.36)

where ø(Yn(i)) = −
(
k − k̄

)
−
(
d ′ − d̄ ′)Yn(i) − (J − J̄)men(i). Equation (A.36) must hold

for all neighborhoods, including n0 as described in Assumption iv of the Theorem.
This would mean that, conditional on Yn0 , and given that Xi cannot contain a constant
by Assumption iii, that Xi is contained in a proper linear subspace of Rr and therefore
violates Assumption iv of the Proposition. Hence, c is identified.
Given identification of c, Equation (A.34) now implies, if J Ñ J̄ , that men(i) is a

linear function of Yn(i), unless
(
d ′ − d̄ ′) and/or men(i) is always equal to zero. The latter

is ruled out by Assumption vi. Linear dependence of men(i) on Yn(i) when
(
d ′ − d̄ ′) Ñ 0

contradicts the combination of the requirement that support of men(i) is [−1, 1] with
Assumption v, that the support of each component of Yn(i) is unbounded, since Yn(i)
can, if it is unbounded, assume values with positive probability that violate the bounds
on men(i). So, J is identified. If J is identified and

(
d ′ − d̄ ′) Ñ 0, then Equation (A.34)

requires that(
d ′ − d̄ ′)Yn(i) = − (k − k̄) , (A.37)

for all Yn(i) ∈ supp
(
Yn(i)

)
. This implies, since by Assumption iii Yn(i) does not contain

a constant, that supp
(
Yn(i)

)
is contained in a proper linear subspace of Rs, which

contradicts condition ii of the Theorem. Therefore, d ′ = d̄ ′. This immediately implies
that k = k̄ and the Theorem is verified.

A.3. Proof of Theorem 7

As is done in the text, A denotes the parameter set (k , c, d, J ) and the conditional mean
function is H = k + c′Xi + d ′X̄n(i) + JG (m). To verify the theorem, it is necessary to
show that the components of the gradient vector

dAH =
ðH

ðA
+
ðH

ðm

ðm

ðA
, (A.38)
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define a linearly independent collection of functions of Xi and X̄n(i) on supp
(
Xi, X̄n(i)

)
.

Differentiation implies the following, which we will use,

ðH

ðA
=
(
1,Xi, X̄n(i),G(m)

)
, (A.39)

ðH

ðm
= J

(
1 + x

dg (m)

m

)
. (A.40)

Since J Ñ 1 and g is C2, the neighborhood Nû can always be chosen so that an implicit

function m
(
X̄n(i),A, x

)
exists. Also, define the function J (m, x) = J

(
1 + x dg(m)m

)
.

Rewrite the gradient as

dAH =
1

1 − J (m, x)

(
1,Xi + J (m, x)

(
X̄n(i) − Xi

)
, X̄n(i),m + xg(m)

)
. (A.41)

If x is close enough to zero, J (m, x) cannot equal 1 since J Ñ 1 by Assumption iii. This
is a vector proportional to the form v = (1, v2

(
Xi, X̄n(i)

)
, v3

(
X̄n(i)

)
, v4

(
X̄n(i)

)
). Notice

that we have eliminated m since its implicit function solution makes it a function of
X̄n(i). In order to show linear independence, we must verify that

a1 + a2v2
(
Xi, X̄n(i)

)
+ a3v3

(
X̄n(i)

)
+ a4v4

(
X̄n(i)

)
= 0, (A.42)

implies that a1 = a2 = a3 = a4 = 0.
Since only v2 depends on Xi, Equation (A.42) can only hold if a2 = 0; otherwise

Assumption ii would be violated. Further, if a4 = 0, then Assumption i is violated.
This is true because v3

(
X̄n(i)

)
is proportional to X̄n(i). We can therefore, without loss

of generality assume a4 = −1.
The condition for linear independence can now be written as

m
(
X̄n(i), A, x

)
+ xg

(
m
(
X̄n(i), A, x

))
= a1 + a3X̄n(i). (A.43)

We pair this with the self-consistency condition written as

m
(
X̄n(i), A, x

)
= k +

(
c′ + d ′) X̄n(i) + J (m (

X̄n(i), A, x
))
+ xg

(
m
(
X̄n(i), A, x

))
.

(A.44)
We will verify that Equations (A.43) and (A.44) lead to a contradiction when dg

dm differs
across any two m values, say m1 and m2. Since at least two such values must exist by
Assumption iv, this will complete the proof.
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On the open set O described by Assumption iv, we can differentiate both these
equations with respect to X̄n(i), obtaining(

1 + x
dg

(
m
(
X̄n(i), A, x

))
dm

)
dm

(
X̄n(i), A, x

)
dX̄n(i)

= a3, (A.45)

and

dm
(
X̄n(i), A, x

)
dX̄n(i)

(
1 − J

(
1 + x

dg
(
m
(
X̄n(i), A, x

))
dm

))
=
(
c′ + d ′) . (A.46)

Equating
dm(X̄n(i),A,x)

dX̄n(i)
across these expressions yields(

1 − J

(
1 + x

dg
(
m
(
X̄n(i),A, x

))
dm

))
a3 − (c + d)

(
1 + x

dg
(
m
(
X̄n(i), A, x

))
dm

)
= 0,

(A.47)
or

x
dg

(
m
(
X̄n(i), A, x

))
dm

((c + d) + Ja3) + ((c + d) + Ja3 − a3) = 0. (A.48)

Recall that x and dg
dm are scalars, whereas c, d, and a3 are r× 1 vectors. By construction

of g, we have the existence of two values of m, call them m1 and m2, such that in
the population data, dgdm differs across them. Applying this component by component
to Equation (A.47), one can show that this implies that (c + d) + Ja3 = 0. By
Equation (A.48), this means that a3 = 0. But from Equation (A.49), this would imply
that

m
(
X̄n(i), A, x

)
+ xg

(
m
(
X̄n(i), A, x

))
= a1. (A.49)

But this would contradict the part of Assumption iv that mn(i) in the data is nonconstant.
Therefore, the model and assumptions described by the Theorem require that the
components of the gradient (A.38) are linearly independent when x Ñ 0. Notice that
when x = 0, the gradient will not be of full rank, because m

(
X̄n(i), A, 0

)
is linear in

X̄n(i). Hence the local nonidentification of the linear-in-means model can be perturbed
away by a C2-small change from Jm to Jm + xg(m), which completes the proof.
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Abstract

Since the early 1980s, the econometric analysis of duration variables has become
widespread. This chapter provides an overview of duration analysis, with an emphasis
on the specification and identification of duration models, and with special attention to
models for multiple durations. Most of the chapter deals with so-called reduced-form
duration models, notably the popular Mixed Proportional Hazard (MPH) model and its
multivariate extensions. The MPH model is often used to describe the relation between
the empirical exit rate and “background variables” in a concise way. However, since the
applications usually interpret the results in terms of some economic-theoretical model,
we examine to what extent the deep structural parameters of some important theoretical
models can be related to reduced-form parameters. We subsequently examine the
specification and identification of the MPH model in great detail, we provide intuition
on what drives identification, and we infer to what extent biases may occur because
of misspecifications. This examination is carried out separately for the case of single-
spell data and the case of multi-spell data. We also compare different functional forms
for the unobserved heterogeneity distribution.
Next, we examine models for multiple durations. In the applied econometric litera-

ture on the estimation of multiple-duration models, the range of different models is ac-
tually not very large. Typically, the models allow for dependence between the duration
variables by way of their unobserved determinants, with each single duration following
its own MPH model. In addition to this, the model may allow for an interesting
“causal” effect of one duration on the other, as motivated by an underlying economic
theory. For all these models we examine the conditions for identification. Some of
these are intimately linked to particular estimation strategies. The multiple-duration
model where the marginal duration distributions each satisfy an MPH specification,
and the durations can only be dependent by way of their unobserved determinants, is
called the Multivariate Mixed Proportional Hazard (MMPH) model. For this model,
we address the issue of the dimensionality of the heterogeneity distribution and we
compare the flexibility of different parametric heterogeneity distributions.
On a number of occasions, we incorporate recent insights from the biostatistical

literature on duration analysis, and we contrast points of view in this literature to those
in the econometric literature. Finally, throughout the chapter, we discuss the importance
of the possible collection of additional data.

Keywords

duration analysis, duration model, hazard rate, hazard function, transition rate,
unemployment duration, identification, proportional hazard, failure time, failure rate,
multiple spells, duration dependence, unobserved heterogeneity, treatment effect,
shocks

JEL classification: C41, C51, J64, C24, C20, C23, C34, J63, C33



3384 G.J. van den Berg

1. Introduction

Duration analysis is a core subject of econometrics. Since the early 1980s, the empirical
analysis of duration variables has become widespread. There are a number of distinct
reasons for this development. First of all, many types of behavior over time tend
increasingly to be regarded as movements at random intervals from one state to
another. Examples include movements by individuals between the labor market states
of employment, unemployment and nonparticipation, and movements between different
types of marital status. This development reflects the fact that dynamic aspects of
economic behavior have become more important in economic theories, and that in
these theories the arrival of new information (and thus the change in behavior in
response to this) occurs at random intervals. Secondly, longitudinal data covering more
than just one spell per respondent are widely available in labor economics, as well
as in demography and medical science. Applications of duration analysis include, in
labor economics, the duration of unemployment and the duration of jobs [see e.g.,
the survey by Devine and Kiefer (1991)], strike durations [e.g., Kennan (1985)],
and the duration of training programs [Bonnal, Fougère and Sérandon (1997)]. In
business economics, duration models have been used to study the duration until a
major investment [e.g., Anti Nilsen and Schiantarelli (1998)]. In population economics,
duration analysis has been applied to study marriage durations [Lillard (1993)], the
duration until the birth of a child [Heckman and Walker (1990)], and the duration until
death. In econometric analyses dealing with selective observation, duration models
have been used to study the duration of panel survey participation [e.g., Van den
Berg and Lindeboom (1998)]. In marketing, duration models have been used to study
household purchase timing [e.g., Vilcassim and Jain (1991)], in consumer economics
to study the duration until purchase of a durable or storable product [Antonides (1988),
Boizot, Robin and Visser (1997)], and in migration economics to study the duration
until return migration [e.g., Lindstrom (1996)]. Recently, duration models have been
applied in areas in economics where the unit under consideration is not an individual
or firm. For example duration models have been used in macro economics to study
the duration of business cycles [e.g., Diebold and Rudebusch (1990)], in finance to
study the duration between stock-market share transactions [Engle and Russell (1998)],
in political economics to study the duration of wars [see Horvath (1968)], and in
industrial organization to study the duration of a patent [Pakes and Schankerman
(1984)].
This chapter presents an overview of duration analysis. A substantial part of the

chapter deals with so-called reduced-form duration models, notably the famous Mixed
Proportional Hazard (MPH) model. This model expresses the exit rate to a destination
state as a rather simple function of observed and unobserved explanatory variables
and the elapsed duration in the current state. This model and its special cases, most
notably the Proportional Hazard (PH) model, have been used in hundreds of empirical
studies [see e.g., Devine and Kiefer (1991) for references in micro labor economics].
Parametric versions of the model are included in statistical packages like STATA, SAS,
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S-PLUS and SPSS [see Pelz and Klein (1996) for a comparison of some packages].
We examine the specification and identification of the MPH model in detail, and we
infer to what extent biases may occur because of misspecifications.
The MPH model is often used to describe the relation between the empirical

exit rate and “background variables” in a concise way, and to provide estimates
of the effect of an explanatory variable on the duration variable. However, since
the applications usually interpret the results in terms of some economic-theoretical
model, it is important to examine to what extent the deep structural parameters of
this theoretical model can be related to the reduced-form parameters. As we shall
see, economic theory in general does not lead to a “proportional” specification as in
the MPH duration model, and this complicates the interpretation of the reduced-form
estimates.
Recently, the empirical analysis of multiple durations has become widespread. In

many cases it is simply a necessity to address the issue of whether different durations
(given the observed explanatory variables) are not independently distributed. For
example, if the duration data are censored then it matters for empirical inference
how the time until censoring is related to the duration of interest. More generally,
if a spell under observation can terminate in a number of different ways (“competing
risks”) then it matters whether the latent durations to the different destinations are
related. As we shall see, economic theory often predicts that such durations are
related. In fact, the issue of whether different durations are related is often an
important question in its own right. Because of this, current econometric research
often involves the simultaneous analysis of multiple observed spells of the same
type of duration for a given individual, or multiple observed spells of different types
of durations for a given individual. For example, it may involve simultaneous and
consecutive durations in labor market states and marital states. It may also involve
the analysis of treatment effects on a duration variable, if the duration until treatment
(or the duration of the treatment) is stochastic. In this chapter we therefore pay
special attention to the analysis of multiple durations. We examine different types
of relations between duration variables, as motivated by economic theory. We then
examine the way in which they can be incorporated in multivariate extensions 1 of the
MPH model, and we discuss identification of the determinants of these multivariate
models as well as identification of deep structural parameters. For the case where
the dependence runs by way of related unobserved explanatory variables (in which
case we call the model a multivariate MPH (MMPH) model), we compare different
parametric heterogeneity distributions. One of the main conclusions of the sections
on multiple-duration models is that, in microeconometric research involving self-
selection, duration data are much more informative than binary data. This is important
because economic theory generally predicts the absence of exclusion restrictions based

1 In this chapter, “multivariate” refers to multiple durations and not to multiple explanatory variables.



3386 G.J. van den Berg

on characteristics of the individual under consideration, so that these can not be used
for identification.
So far, we have been vague on the meaning of notions like “state”, “duration”, “exit

rate”, and “explanatory variable”. In Section 2 we provide some formal definitions.
We stress that the economic meaning of these notions is entirely context-dependent:
what distinguishes states or transitions in one study may not be relevant in another
study. Throughout the chapter we will be concerned with the economic insights that
can be obtained from duration analysis. For that reason we outline in Section 3
some motivating underlying economic models for durations. In particular, we examine
search models of individual labor market behavior. After these preparatory sections we
examine the MPH model in Sections 4 and 5. Section 6 deals with the identification of
the MPH model in case the data provide durations of multiple spells in a given state for
a given individual. Such data are called multi-spell data. Again, the meaning of these
notions is rather vague at this stage. Basically, the idea is that the data provide multiple
independent drawings from the individual-specific duration distribution. Sections 7–9
deal with multiple-duration models in general. These constitute a very broad class of
models, and they include, as a special case, the model of Section 6 with durations
of multiple spells in a given state for a given individual. Section 10 concludes and
provides recommendations on empirical approaches.
Throughout the chapter, time is taken to be continuous 2. When specifying a duration

distribution, the point of departure will invariably be the exit rate or hazard rate (this
is motivated in Section 2). This implies that we do not focus on so-called Accelerated
Failure Time models [see e.g., Kalbfleisch and Prentice (1980)], which enjoy some
popularity outside economics. At times, though, we compare the latter models to
models that are based on a specification of the hazard rate.
In this chapter we do not focus on estimation methods or specification tests. Applied

studies generally use well-established estimation methods like Maximum Likelihood,
Cox Partial Likelihood, Conditional Likelihood, or nonparametric methods. The book
by Lancaster (1990), which is the most comprehensive volume on econometric duration
analysis so far, provides an excellent survey on estimation methods and specification
tests for MPH models in econometrics. Andersen et al. (1993) survey the literature
on the modern statistical foundations. Kiefer (1988) and Yamaguchi (1991) lucidly
explain the basics of the empirical analysis of duration models. Finally, the survey by
Neumann (1997) discusses specification tests as well, and also pays attention to the
estimation of structural (search) models.

2 See Meyer (1995) for a survey of discrete-time reduced-form duration models. These models include
continuous-time models where time is aggregated into intervals of unit length, as well as models where
time is genuinely discrete.
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2. Basic concepts and notation

Consider the spells experienced by certain subjects in a certain state. The duration of
the spell is stochastic and is denoted by T , and realizations of T are denoted by t 3.
The cumulative distribution function of T is denoted by F , so F(t) = Pr(T ¶ t), with
F(0) = 0. The survivor function of T is defined as one minus the distribution function
and is denoted by F , so

F(t) = 1 − F(t).

As noted in the introduction, we restrict attention to continuous random variables T ,
and we denote a probability density function of T by f . In fact, F , F , and f will
be used as generic symbols for cumulative distribution functions, survivor functions,
and probability density functions, respectively, and their arguments make clear which
random variable is considered.
In a discrete-time setting, the hazard function of T at t is defined as the probability

that the spell is completed at t given that it has not been completed before t, as a
function of t. With T continuous, we define the hazard function as

q(t) = lim
dt ↓ 0

Pr(T ∈ [t, t + dt)|T ¾ t)
dt

.

So, somewhat loosely, the hazard function is the rate at which the spell is completed at
t given that it has not been completed before, as a function of t. The value of the hazard
function (for a particular t, or for arbitrary t) is called the “hazard rate” or simply “the
hazard”. It is also called the “exit rate” to stress the fact that completion of the spell
is equivalent to exit out of the state of interest. Again, we use q as a generic symbol
for a hazard, and its argument makes clear which random variable is considered. The
hazard function q(t) is said to be duration dependent if its value changes over t. Positive
(negative) duration dependence means that q(t) increases (decreases).
The hazard function provides a full characterization of the distribution of T , just

like the distribution function, the survivor function, and the density function. All of
these can be expressed in terms of one another. For F , F , and f this is well known.
Concerning q , the following relations (which are easy to derive) express q in terms
of the other functions, and vice versa,

q(t) =
f (t)

1 − F(t)
,

F(t) = exp

(
−
∫ t

0
q(u) du

)
t ¾ 0. (1)

The hazard function is the focal point of econometric duration models. That is,
properties of the distribution of T are generally discussed in terms of properties of q .

3 Throughout most of the chapter, we use t to denote the random variable as well as its realization. This
abusive notation has become common in duration analysis because it allows for concise formulations
that are generally unambiguous.
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There are two major reasons for this. First, and most importantly, this approach is
dictated by economic theory. In general, theories that aim at explaining durations focus
on the rate at which the subject leaves the state at duration t given that he has not done
so yet. In particular, they explain the hazard at t in terms of external conditions at t as
well as the underlying economic behavior of the subjects that are still in the state at t.
Theoretical predictions about a duration distribution thus run by way of the hazard of
that distribution. It is obvious that if the completion of a spell is at least partly affected
by external conditions that change over time (e.g., due to external shocks), and if one
attempts to describe behavior of the subject over time in a changing environment, then
it is easier to think about the rate of leaving at t given that one has not done so than
to focus on the unconditional rate of leaving at t. In the next section we provide some
examples of such theories.
It is often stated that a major advantage of using the hazard function as a basic

building block of the model is that it facilitates the inclusion of time-varying covariates.
This is, of course, part of the argument of the previous paragraph; it reformulates the
issue from the point of view of a builder of reduced-form models.
The second major advantage of using the hazard function as the basic building block

of the model is entirely practical. Real-life duration data are often subject to censoring
of high durations. In that case it does not make sense to model the duration distribution
for those high durations.
Whereas the hazard function is the focal point of model building in duration analysis,

the mean of the endogenous variable is the focal point in regression analysis. On some
occasions in the chapter we compare duration models to regression models. For future
reference it is useful to present the equation below. This equation follows directly from
the fundamental result that the integrated hazard function

∫ t
0 q(u) du has an exponential

distribution 4 with parameter 1.

log
∫ t

0
q(u) du = e. (3)

Here, e has an Extreme Value – Type I (EV1) distribution. This distribution does not
have any unknown parameters; its density equals

Extreme Value – Type 1 distribution:

f (e) = ee · e− exp(e), for all −∞ < e < ∞.

Equation (3) therefore again shows that once the hazard function is completely
specified, then so is the duration distribution. Note that the transformation of t on

4 Family of exponential distributions:

f (t) = öe−öt for all t ≥ 0, with ö > 0. (2)
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the left-hand side of Equation (3) can be interpreted as a particular change in the
time measurement scale. The equation states that after this transformation, the only
variation left in the duration concerns the purely random variation that is unrelated
to the determinants of q(t). Note that if one specifies a model for q(t) then a natural
model specification test follows from a comparison of the empirical distribution of
the estimated left-hand side of Equation (3) to the distribution of e [see Lancaster
(1990)].

3. Some structural models of durations

In this section we briefly discuss some economic-theoretical models that predict
distributions of duration variables. These theoretical models have been structurally
estimated using data on such duration variables, and they have been used to interpret
estimates of reduced-form duration models. The common feature of the models is that
they are search models, which describe the duration until an event as the outcome of a
decision on the optimal moment of stopping the search for something desirable 5. For
expositional reasons we phrase the models in terms of search for jobs by individual
agents on the labor market (although they are applicable to many other types of search).
Job search models have been very popular as explanatory theoretical frameworks for
reduced-form econometric duration analyses [see Devine and Kiefer (1991)].

3.1. Standard search model

3.1.1. Stationarity

In this subsection we consider the prototype job search model for the behavior of
unemployed workers. Here, the duration variable of interest is the unemployment
duration. Since this model has been discussed extensively many times [e.g., Mortensen
(1986)], the present exposition is brief.
The model aims to describe the behavior of unemployed individuals in a dynamic

and uncertain environment. Job offers arrive at random intervals following a Poisson
process with arrival rate l. A job offer is a random drawing (without recall) from a
wage offer distribution with distribution function F(w) 6. It is assumed that all jobs
are full-time jobs. Every time an offer arrives, the decision has to be made whether
to accept the offer or reject it and search further. Once a job is accepted it will be

5 There are many other theoretical models that give rise to duration distributions. Examples are learning
models [see e.g., Jovanovic (1984)] and dynamic discrete choice models [see e.g., Rust (1994) for
a survey]. The latter can be considered as generalizations of basic search models although they are
necessarily in discrete time; as such they give rise to discrete duration distributions. These models may
also be used to explain multiple durations for a given subject [see e.g., Van der Klaauw (1996)].
6 Note that F here denotes a distribution of wage offers rather than a duration distribution.



3390 G.J. van den Berg

held forever at the same wage, so job-to-job transitions are excluded. It is assumed
that individuals know l and F but that they do not know in advance when job offers
arrive and what wages are associated with them. During the spell of unemployment
a benefit b is received. Unemployed individuals aim at maximization of their own
expected present value of income over an infinite horizon. The subjective rate of
discount is denoted by ø.
The variables l, w, b and ø are measured per unit time period. It is assumed that

the model is stationary. This means that l, F , b and ø are assumed to be constant,
and, in particular, independent of unemployment duration and calendar time and
independent of all events during unemployment. To ensure that attention is restricted to
economically meaningful cases, and to guarantee the existence of the optimal strategy,
we assume that 0 < l, EF (w), b, ø < ∞. For ease of exposition we take F to be
continuous.
Let R denote the expected present value of search when following the optimal

strategy. Because of the stationarity assumption and the infinite-horizon assumption,
the unemployed individual’s perception of the future is independent of time or
unemployment duration, so the optimal strategy is constant during the spell of
unemployment and R does not depend on the elapsed unemployment duration t. It is
well known [see e.g., Mortensen (1986)] that there is a unique solution to the Bellman
equation for R, satisfying

øR = b + lEw max{0,
w

ø
− R}. (4)

In this equation, the expectation is taken over the wage offer distribution F .
Equation (4) has a familiar structure [see e.g., Pissarides (1990)]. The return of the
asset R in a small interval around t equals the sum of the instantaneous utility flow
in this interval, and the expected excess value of finding a job in this interval. When
an offer of w arrives at t then there are two options: (i) to reject it (excess value
zero), and (ii) to accept it (excess value w/ø − R). It is clear that the optimal policy
is to choose option (ii) iff w > øR. Therefore, the optimal strategy of the worker
can be characterized by a reservation wage ÷: a job offer is acceptable iff its wage
exceeds ÷, with ÷ = øR. Using Equation (4), ÷ can be expressed in terms of the model
determinants,

÷ = b +
l
ø

∫ ∞

÷
F(w) dw.

Note that this equation has a unique solution for ÷.
The hazard (or exit rate out of unemployment, or transition rate from unemployment

into employment) q equals the product of the job offer arrival rate and the conditional
probability of accepting a job offer,

q = lF(÷).
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As a result of the stationarity assumption, q does not depend on the elapsed duration
of unemployment. Consequently, the duration of unemployment t has an exponential
distribution (see Equation 2) with parameter q .
Versions of this model have been structurally estimated with individual data on

unemployment durations and wages. “Structural” here means that the theoretical
framework is assumed to describe the empirical distribution of durations and wages.
This enables estimation of the determinants l, F , . . . of individual behavior. See Yoon
(1981), Flinn and Heckman (1982a), Narendranathan and Nickell (1985) and Van den
Berg (1990b) for examples of this, and Wolpin (1995) for a survey.

3.1.2. Nonstationarity without anticipation

The stationarity assumption made in the previous subsection is often unrealistic. The
values of the structural determinants may change because of duration dependence of
the amount of unemployment benefits, a stigma effect of being long-term unemployed,
policy changes, or business cycle effects. Sooner or later these features of the labor
market and personal characteristics of job searchers are recognized and used in
determining the optimal strategy. So, generally, the optimal strategy is not constant
in case of nonstationarity.
To proceed, assume that the individual’s search environment is subject to unantic-

ipated changes in the values of the structural determinants. Thus, the values of these
determinants may change over the duration, but the individual always thinks that they
will remain constant at their current values. This might be a reasonable assumption in
case of a change in l that is due to a random macroeconomic shock, or in case of a
change in b that is due to a sudden change in the benefits system.
By exploiting the analogy to the stationary model, we obtain the following equations

for the reservation wage function ÷(t), giving the reservation wage at time t, and the
hazard function q(t),

÷(t) = b(t) +
l(t)
ø(t)

∫ ∞

÷(t)
F(w|t) dw, q(t) = l(t)F(÷(t)|t),

where F(w|t) denotes the wage offer distribution at time t (so it should not be
interpreted as a distribution conditional on the realization of a random duration
variable). In general, q(t) varies with t. The distribution function for the duration of
unemployment subsequently follows from Equation (1). See Narendranathan (1993)
for a structural empirical analysis of a nonstationary model without anticipation.

3.1.3. Nonstationarity with anticipation

In many cases it is not realistic to assume that individuals do not anticipate changes
in the values of l, F and b. In this subsection we consider nonstationarity with
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anticipation, along the lines of Van den Berg (1990a) 7. The structural determinants l,
F and b are allowed to vary over the duration t in a deterministic way (so dependence
on past offer arrival times or wage levels associated with rejected offers is ruled out).
This entails that the process with which job offers arrive is a non-homogeneous Poisson
process. We assume that job searchers have perfect foresight in the sense that they
correctly anticipate changes in the values of l, F and b. In other words, we expect
people to know how these are related to t. As usual, individuals do not know in advance
when job offers arrive, or which w are associated with them. Finally, we assume that
l, F and b are constant for all sufficiently high t. The latter implies that the optimal
strategy is also constant for sufficiently high t.
Let R(t) denote the expected present value of search if unemployment duration

equals t, when following the optimal strategy. Under regularity conditions, there is
a unique continuous solution to the Bellman equation for R(t), satisfying

øR(t) =
dR(t)
dt

+ b(t) + l(t) · Ew|t max{0,
w

ø
− R(t)},

at points at which R(t) is differentiable in t, where the expectation is taken over the
wage offer distribution F(w|t) at t. Notice the similarity with Equation (4) above. The
return of the asset R(t) in a small interval around t equals the sum of the appreciation of
the asset in this interval, the instantaneous utility flow in this interval, and the expected
excess value of finding a job in this interval. The optimal strategy can be characterized
by a reservation wage function ÷(t) that gives the reservation wage at time t. Using
the fact that ÷(t) = øR(t), it follows that

d÷(t)
dt

= ø÷(t) − øb(t) − l(t)
∫ ∞

÷(t)
(w − ÷(t)) dF(w|t).

This differential equation has a unique solution for ÷(t), given the boundary condition
that follows from the assumption that the model is stationary for all sufficiently high t.
The hazard function q(t) now equals

q(t) = l(t)F(÷(t)|t).

In general, q(t) varies with t. The distribution function for the duration of unemploy-
ment subsequently follows from Equation (1).
For examples of structural empirical analyses of nonstationary models with

anticipation, see Wolpin (1987), Van den Berg (1990a), Engberg (1991) and Garcia-
Perez (1998).

7 Some special cases of this model have been examined earlier; see e.g., Mortensen (1986).
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3.2. Repeated-search model

Models of repeated search allow the economic agent to search further for better
matches after a match has been formed. The best-known model of repeated search is
the so-called on-the-job search model which aims to describe the behavior of employed
individuals who search for a better job [see Mortensen (1986) for an overview]. In the
basic on-the-job search model, a job is characterized by its wage w which is taken to
be constant within a job. For a working individual, the search environment is specified
in exactly the same way as we did in Subsection 3.1.1 for an unemployed individual.
In particular, we assume the model to be stationary. The optimal strategy is constant
during a job spell, and the the expected present value of search R(w) when following
the optimal strategy in a job with wage w satisfies

øR(w) = w + lEw∗ max{0,R(w∗) − R(w)},

where the expectation is taken with respect to the distribution F of wage offers w∗.
Clearly, the optimal strategy is such that one accepts a job if and only if the offered
wage w∗ exceeds the current wage w, so it suffices to compare instantaneous income
flows (i.e., the optimal strategy is “myopic”), and the reservation wage simply equals
the current wage.
For a given current wage w, the hazard of the job duration distribution (or exit rate

out of the present job) equals

q = lF(w).

As a result, the duration of a job with a wage w has an exponential distribution with
this parameter q . Note that models of repeated search are informative on the joint
distribution of consecutive job durations.
If, during employment, exogenous separations occur at a rate d, then this does not

affect the optimal strategy. The exit rate out of the present job then equals lF(w) + d.
See Flinn (1996) for an example of structural estimation of this model with job duration
data 8.
Burgess (1989) introduces a rather manageable type of nonstationarity in this model.

The individual’s search environment (i.e., l and F) is subject to shocks that are not
job-specific but rather such that they act similarly on all employed workers. The shocks
may be anticipated or unanticipated. It is intuitively obvious that this nonstationarity
does not change the optimal strategy: it remains optimal to accept another job if and

8 The empirical analysis of so-called equilibrium search models, which endogenize the wage offer
distribution F , often involves the joint estimation of the distributions of unemployment durations and
job durations. See e.g., Van den Berg and Ridder (1998), Bontemps, Robin and Van den Berg (2000)
and Bowlus, Kiefer and Neumann (2001).
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only if its wage exceeds the current wage. We thus obtain for the job-to-job transition
rate,

q(t) = l(t)F(w|t).

Throughout the remainder of the chapter, it is important to keep in mind that
empirical duration analysis is ultimately interested in structural parameters that
represent determinants of individual behavior. This is also true for empirical analysis
in which reduced-form models are estimated that are not explicitly specified as a
theoretical model. In the sequel we return to this issue.

4. The Mixed Proportional Hazard model

4.1. Definition

For the sake of convenience, we use the term “individual” to denote the subject that
experiences certain spells in a given state. We consider the population of individuals
that consists of the inflow into this given state. This can be the inflow at a given
point of time, or the inflow at any time. We assume that, for a given individual in this
population, the subsequent duration T is an absolutely continuous and positive random
(duration) variable. The distribution of T (or, equivalently, the hazard function) may
vary across individuals. We assume that all individual variation in the hazard function
can be characterized by a finite-dimensional vector of observed explanatory variables
(or “covariates”, or “regressors”) x and an unobserved heterogeneity term v. The latter
term can be interpreted as a function of unobserved explanatory variables 9. In this
subsection we assume that x is time-invariant, and consequently we define the Mixed
Proportional Hazard model as a model with time-invariant explanatory variables. In
the next subsection we introduce time-varying explanatory variables.
For an individual with explanatory variables x and unobserved heterogeneity v, the

hazard function of the random variable T evaluated at the duration t is denoted by
q(t|x, v). This notation highlights the fact that we condition on x and v. The standard
MPH model is now defined by

Definition 1. Standard MPH model: There are functions y and q0 such that for every t
and every x and v there holds that

q(t|x, v) = y(t) · q0(x) · v. (5)

This model was developed by Lancaster (1979), which includes an empirical
application to unemployment duration data, and by Vaupel, Manton and Stallard

9 Lancaster (1990) shows that v to some extent may also represent measurement errors in T and x.
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(1979) 10. The function y(t) is called the “baseline hazard” since it gives the shape
of the hazard function for any given individual. Only the level of the hazard function
is allowed to differ across individuals. The term q0(x) is called the “systematic part”
of the hazard. In applied work, it is common to specify

q0(x) = exp(x′b), (6)

so that q(t|x, v) is multiplicative in all separate elements of x.
For convenience, we make a number of regularity assumptions on the determinants

of the model.

Assumption 1: The vector x is k-dimensional with 1 ¶ k < ∞. The function
q0(x) : X ⊂ Rk is positive for every x ∈ X .

Assumption 2: The function y(t) is positive and continuous on [0,∞), except that
limt ↓ 0 y(t) may be infinite. For every t ¾ 0 there holds that

∫ t
0 y(t) dt < ∞, while

limt→ ∞
∫ t
0 y(t) dt = ∞.

Assumption 3: The distribution G of v in the inflow satisfies Pr(0 < v < ∞) = 1.

Assumption 4: The individual value of v is time-invariant.

It should be stressed that, for virtually all of the results in the chapter, these conditions
are stronger than needed. This is particularly true for Assumption 2. It is often
sufficient that y(t) is integrable, and sometimes it is sufficient that

∫ t
0 y(t)dt < ∞

only on some interval. For expositional reasons, we do not deal with this. On the other
hand, for identification, additional assumptions are needed (see Section 5). We do not
list those here because it is interesting to contrast alternative assumptions in the light
of identifiability issues.
It is useful to examine the special case in which there is no unobserved

heterogeneity (v ≡ 1). In that case the model is called a Proportional Hazard (PH)
model [this model was developed by Cox (1972) and predates the MPH model]. The
PH model specification is regarded to be simple and yet sufficiently rich to capture
many data properties. The popularity of the PH model in reduced-form duration
analysis is comparable to the popularity of the linear regression model in reduced-form
regression analysis. Note that the general regression-type expression for the integrated
hazard function (see Equation 3) reduces to

log
∫ t

0
y(u) du = −x′b + e, (7)

for the PH model, where we substituted Equation (6), and e has an EV1 distribution. It
should again be stressed that e represents the purely random variation in the duration

10 Nickell (1979) contains the first estimation of a discrete-time MPH-type model.
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outcome – it does not capture unobserved individual characteristics. In comparison to
a linear regression model (say log t = x′b + e, with e having an unknown distribution
with mean zero), the left-hand side of Equation (7) has a more general specification,
since it involves an unknown transformation of the duration variable, whereas the right-
hand side has a more restrictive specification, since the distribution of the error term
is completely specified. Thus, the PH model and the regression model are not nested,
and they derive their flexibility from different sources.
The b parameters in the linear regression model are estimated consistently by OLS

under a wide range of distributions of e. Similarly, the b parameters in the PH model
are estimated consistently by Partial Likelihood under a wide range of specifications of
the baseline hazard y(t). More precisely, the b parameters are estimated consistently
by maximization of a partial likelihood function that does not depend on the baseline
hazard function, which can be estimated nonparametrically in a second stage [see
Lancaster (1990) for details]. This is arguably one of the great advantages of the
PH model, but it does not carry over to the MPH model in general.
For the MPH model, Equation (3) reduces to

log
∫ t

0
y(u) du = −x′b − log v + e, (8)

where again we substituted Equation (6), and where again e has an EV1 distribution.
The equation states that the log integrated baseline hazard function given x has the
same distribution as the distribution of a random variable that is the sum of an EV1
random variable and another random variable (namely −x′b − log v given x). Since we
have not made an assumption on the distribution of v, it is clear that specification (8)
is much more general than Equation (7). Now we have a flexible specification for
both the transformation of t and the distribution of the error term. However, the
latter distribution cannot be just any distribution. For example, it cannot be a normal
distribution, because the sum of an EV1 random variable and another random variable
cannot have a normal distribution [see Ridder (1990)]. It turns out that the MPH model
is actually identified under an assumption on the tail of the distribution of v (see
Section 5).
We end this subsection by mentioning some other reduced-form duration models.

Consider the following model,

log z(t) = −x′b + û, (9)

with z(t) positive and increasing in t. This reduces to the MPH model if the “error
term” û is distributed as the sum of an EV1 random variable and another random
variable. If no assumption is made on the distribution of û then Equation (9) is called
a “transformation model” [see Horowitz (1996)]. If it is subsequently imposed that
z(t) = t then we obtain the Accelerated Failure Time (AFT) model,

log t = −x′b + û.
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For future reference it is useful to note that in the AFT model the survivor function
can be written as

F(t|x) = exp
(
−Y

(
t · ex′b

))
, (10)

where Y is the integrated hazard function of the random variable exp(û). Clearly,
the individual characteristics act on the duration distribution by transforming the time
scale from t to t exp(x′b). This may be an accurate description of the actual variation
in the lifetime distributions of complex self-evolving organisms or mechanisms.
Because of the one-to-one relation between a distribution and its hazard function, the
AFT specification can be translated into a specification of the hazard function of t|x.
Obviously, the latter need not be an MPH specification. Note that in the transformation
model and the AFT model, the hazard does not serve as the focal point of model
specification. This has strongly limited the use of these models in social science
duration analyses. We return to this in Subsection 5.6.

4.2. Time-varying explanatory variables

In practice, explanatory variables are often time-varying, and there are often good
reasons to assume that the hazard function is affected by the current value of the
explanatory variable (instead of, e.g., its value at the beginning of the spell). In this
subsection we discuss the incorporation of such explanatory variables in the PH model
and (at the end of the subsection) the MPH model. Given that the chapter avoids
measure theory, the exposition in this subsection is restricted to be rather informal,
and we refer the reader to the references below for more rigorous analyses.
At first sight it may seem that time-varying explanatory variables can be incorpo-

rated in the PH model by replacing x by x(t),

lim
dt ↓ 0

Pr(T ∈ [t, t + dt)|T ¾ t, {x(u)}t0)
dt

= y(t) · q0(x(t)), (11)

where {x(u)}t0 denotes the time path of x up to t, and where q0(x(t)) = exp(x(t)′b),
possibly. However, there are some caveats here. First, the values of the explanatory
variables at t may in some sense be endogenous. The subject under study may have
inside information at t on the future realization of the random variable T , and this
information may affect the values of his observed explanatory variables at t and his
hazard rate at t. It may then be erroneously concluded that the observed explanatory
variables have a causal effect on the duration. Consider an unemployed individual who
knows that he will start to work in a job at a given future date and may for that reason
decide not to enrol in a training program at t. If this is ignored in the empirical analysis
then the effect of the number x(t) of completed training programs at t on the exit rate
out of unemployment at t may be under-estimated. A second caveat concerns the fact
that x(t) could cause the duration distribution to be discontinuous at certain durations.
This would complicate the statistical and empirical analysis.
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To proceed, assume that the time-varying explanatory variables constitute a
stochastic process X = {X (t) : t ¾ 0}. Without loss of generality we take
X (t) to represent all explanatory variables for the hazard rate at t. Note that we
may trivially include time-invariant or fully deterministic explanatory variables in
X , and recall that for the time being we assume that all heterogeneity is observed.
Kalbfleisch and Prentice (1980) develop a classification of duration models with
time-varying covariates, in order to describe classes for which standard econometric
procedures can be applied. This classification is rather vague and not exhaustive
[Heckman and Taber (1994)]. Fortunately, the recent mathematical-statistical literature
on counting processes and martingales has allowed a breakthrough on these issues. The
counting process approach assumes that the durations, the values of the time-varying
explanatory variables, and the observational plan, are all outcomes of stochastic
processes [as such, it allows for quite general censoring schemes; see Fleming and
Harrington (1991), Andersen and Borgan (1985) and Andersen et al. (1993) for
excellent surveys, and Ridder and Tunalı (1999) for an exposition which also avoids
measure theory and includes an econometric application]. The approach focuses on a
PH model framework in which X has the property that:

• X is a predictable process.

Here, predictability basically means that the values of all explanatory variables for
the hazard at t must be known (and observable to the researcher) just before t. In
other words, the values of the variables which capture all individual variation in the
hazard rate at t must be known and observable at t−. In other words, the values of
the explanatory variables at t are influenced only by events that have occurred up to
time t, and these events are observable. The information on the values at time t does
not help in predicting a transition at t. Note that predictability does not mean that
the whole future realization of X can be predicted at some point in time. Below we
give some examples. Ridder and Tunalı (1999) argue that the concept of predictability
is basically the same as the concept of weak exogeneity in time series analysis (and
is thus weaker than the concept of strong exogeneity). In addition to predictability,
we need a technical assumption which basically ensures that the realized outcomes
of X (t) and q0(X (t)) are bounded. Fleming and Harrington (1991) contains a more
precise exposition with explicit use of measure theory. The counting process approach
has been very successful in the derivation of (asymptotic) properties of estimators
and test statistics for general settings, including generalizations of the commonly used
estimators and test statistics in duration analysis (see the references above).
Now consider the stochastic process Pr(T ¶ t|{X (u)}t0), which is a process given

the evolution of X up to t, as a function of t. Assume that this process is absolutely
continuous. Often, sufficient for this (in addition to the predictability of X ) is, basically,
that T does not have a strictly positive probability of occurrence at t, given X up to
t. Given absolute continuity, the counting process model can be expressed as a model
of hazard functions. Conversely, a PH model of hazard functions, with X having the
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above properties, and with absolute continuity of the above process, can be thought of
as being generated by a PH counting process model [Fleming and Harrington (1991),
Arjas (1989)]. It should be noted that these results have been derived for models with

q0(X (t)) = exp(X (t)′b),

and certain other specifications of q0 [see Andersen and Borgan (1985)].
The results imply that if we start off with a PH-type model of a hazard function,

and X has the properties above, then we can perform valid econometric inference
using standard methods, on the basis of specification (11) for the hazard rate. This
is, in a nutshell, why predictability of the time-varying explanatory variable is an
extremely useful property. Given predictability, we may apply the standard tools of
duration analysis 11.
It is useful to examine the predictability for some special cases for X . First, if

X is time-invariant then it is obvious that it is predictable. Now suppose its path is
fully known in advance. For example, the unemployment benefits level as a function
of the elapsed unemployment duration may be determined at the date of inflow into
unemployment, by the institutional setting. Clearly, X is then predictable as well. If X
is stochastic then somewhat loosely one may state that if the current value of X only
depends on past and outside random variation then X is predictable [Andersen and
Borgan (1985)]. Now consider the case in which the individual has inside information
on future realizations of X . For example, an unemployed individual may expect a baby
or may expect participation in a training program at a future date. This information
may be used as input in the individual’s decision problem and as a result may affect
the current hazard rate. If this information is not known to the analyst then X is not
predictable. The same is true if the individual anticipates the realization of T and
if this affects the current hazard. Note that it is intuitively plausible that, in these
cases, standard inference may lead to inconsistent estimates. These cases include so-
called instantaneous feedback effects: predictability is not satisfied if X jumps in
an unexpected way at t. This does not mean that jumps in regressor values are not
allowed at all if one demands predictability. Suppose that one wants to model that an
individual’s hazard rate increases by a certain amount immediately after the realization
of another duration variable t which is otherwise independently distributed from the
duration of interest and from other time-varying covariates. This can be captured by
a time-varying regressor I(t > t), which is predictable.
Now consider the case where a time-invariant explanatory variable is unobserved

(i.e., consider MPH models). If we condition on the unobserved heterogeneity value v
and do as if v is observed, then the above analysis remains valid. If v is treated
as unobserved then v is not predictable. As we shall see in Section 5, ignoring

11 Note that in case of stochastic explanatory variables it does not make sense to talk about “the”
probability distribution of T .
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the unobserved heterogeneity in empirical inference generally leads to inconsistent
inference. In this case, the standard solution is to jointly model the hazard function
and the distribution of v, and to integrate v out of the likelihood.
We end this subsection by making a few comments. First, time-varying explanatory

variables may play a very different role in other reduced-form duration models, such as
the AFT model. This reflects the fact that such models do not take the hazard function
as the point of departure for the model specification 12. Secondly, as noted above, the
counting process approach allows for quite general censoring schemes; in fact, what is
needed is that the observational plan is a predictable process. Thirdly, in the remainder
of the chapter, the focus is mostly on models without time-varying explanatory
variables. The motivation for this is basically the same as the one (implicitly) adopted
in most of the methodological literature on duration models, namely that the analysis
of these models is relatively manageable and that the results create a good starting
point for future analysis of more general models. Below, whenever we encounter time-
varying explanatory variables, we tacitly assume that the conditions that ensure valid
inference with standard methods are satisfied.

4.3. Theoretical justification

As mentioned above, the MPH model and its special cases are often regarded to
be useful reduced-form models for duration analysis. The resulting estimates are
generally interpreted with the help of some economic theory. However, the MPH model
specification is not derived from economic theory, and it remains to be seen whether
the MPH specification is actually able to capture important theoretical relations, and,
conversely, whether the MPH specification can be generated by theory.
The main assumption underlying the MPH model is that the three determinants

of the hazard act multiplicatively on the hazard. This implies that if the elapsed
duration has a positive effect on the hazard, then this effect is stronger for individuals
with characteristics that also have a positive effect on the hazard. Of course, the
distinction between two of the three determinants (the observed and unobserved
explanatory variables) is only relevant from an empirical point of view. If the researcher
could observe all determinants without measurement error, then the unobserved
heterogeneity term can be omitted. Within a theoretical framework it is irrelevant
whether a certain background variable can be observed by the researcher or not.
This means that from a theoretical point of view, the most important assumption

12 For example, consider the formulation (10) of the AFT model. Typically, time-varying explanatory
variables are included in this model by way of

F(t|{X (u)}t0) = exp
(
−Y

(∫ t

0
exp(X (u)′b) du

))
.

In that case, the hazard rate at t depends on the whole history {X (u)}t0 of X .
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of the MPH model is that the elapsed duration and the explanatory variables act
multiplicatively on the hazard.
In economics, this assumption is often hard to justify. We illustrate this by examining

the economic theories discussed in Section 313. First consider the job search model
of Subsection 3.1.2. We allow all structural determinants to differ across individuals,
and this is captured by time-invariant explanatory variables x. We assume that the
analyst observes x (and the duration t) but does not directly observe how the structural
determinants, the optimal strategy, or the acceptance probability change with t. If such
changes would be directly observed then obviously it would make sense to include
them as time-varying explanatory variables. We return to time-varying explanatory
variables towards the end of the subsection.
From Subsection 3.1.2 we obtain the following system of equations, in obvious

notation,

÷(t, x) = b(t, x) +
l(t, x)
ø(t, x)

∫ ∞

÷(t, x)
F(w|t, x) dw, q(t, x) = l(t, x)F(÷(t, x)|t, x).

Intuitively, the main reason for why it is difficult to obtain a multiplicative structure
for q(t, x) is that in general F(÷(t, x)|t, x) is not multiplicative in ÷, which in turn
depends on “everything in the model” in a non-multiplicative fashion. Below are a
few special cases where the resulting q(t, x) is proportional in t and x. Note that these
assume that changes in the structural determinants are unanticipated.

Example 1. Let F be a Pareto distribution,

Family of Pareto distributions:

F(w) = (w0/w)
n for all w > w0, with w0, n > 0,

(12)

where we actually assume n > 1 to ensure that the optimal strategy exists, and where
the parameters w0 and n of F may depend on t and x. Let in addition b ≡ 0. Then

q(t, x) = ø(t, x)(n (t, x) − 1).

Let the discount rate ø vary with x but not with t, and let the shape parameter n vary
with t but not with x (for example, long-term unemployed workers receive on average
lower wage offers). Then the hazard is proportional in t and x. Of course, the same
result applies if ø only varies with t and n only with x. Also, if n is a fixed constant
and ø is proportional in t and x, then the hazard is proportional as well. Note that the
assumption b ≡ 0 is very strong 14.

13 The problem is more general, though.
14 In general, if one is prepared to adopt a linearized specification for the reservation wage ÷(t, x) as a
function of its determinants, and if F has a Pareto distribution or an exponential distribution, then it is
less difficult to obtain a multiplicative specification for q(t, x) [see Lancaster (1985a)].
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Example 2. Let ø = ∞, so that workers do not care about the future. Then ÷ ≡ b,
and

q(t, x) = l(t, x)F(b(t, x)|t, x).

If l(t, x) varies with t (e.g., because the long-term unemployed are stigmatized) but
not with x, and F and b vary with x but not with t, then the hazard is proportional in
t and x. Alternatively, if F and b do not depend on either t or x and l is proportional
in t and x, then the hazard is proportional as well.

Example 3. Let the structural determinants be such that ÷ is always smaller than the
lowest wage in the market (e.g., benefits are so low that the reservation wage is below
the mandatory minimum wage). Then F(÷) = 1 always, and

q(t, x) = l(t, x),

so, if l is proportional in t and x, then the hazard is proportional as well.

Example 4. This case is based on Yoon (1985), which is one of the very few studies to
date on the theoretical justification of the PH model. He examines a model where jobs
have a fixed and common tenure T ∗, after which the individual dies 15. The variable b
is assumed to equal benefits minus search costs, and the model requires that the net
value of b is negative. There is no discounting of the future (so the limiting case ø ↓ 0
is considered). It is straightforward to show that ÷(t) then follows from

−b(t, x) = l(t, x)T ∗
∫ ∞

÷(t, x)
F(w|t, x) dw.

Let F be a Pareto distribution (see Equation 12) with a fixed parameter n > 1 and a
parameter w0(t, x). It follows that

q(t, x) = [l(t, x)]
−1
n−1 [w0(t, x)]

−n
n−1

[
−b(t, x)(n − 1)

T ∗

] n
n−1

.

Obviously, there are many ways to obtain a PH specification from this.

Now consider anticipated changes in the structural determinants, i.e., consider the
nonstationary job search model of Subsection 3.1.3. In particular, for ease of
exposition, consider a special case where the only change concerns a drop in b at a

15 Job separations leading to unemployment rather than death or permanent retirement are hard to
reconcile with unanticipated duration dependence of the structural determinants, because of the repetitive
nature of unemployment.
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duration t (from b1 to b2). There still holds that q(t, x) = l(t, x)F(÷(t, x)|t, x). However,
now the reservation wage ÷(t) for t < t depends on b1 and b2 as well as on t − t. The
smaller the remaining time interval t − t until the drop in b, the more important the
future benefits level b2 is for the current present value. As shown by Van den Berg
(1990a, 1995), there are two reasons for this. First, the discounting of the future means
that the far future carries less weight than the near future. Second, there is a probability
that the individual leaves unemployment before t , and this probability is lower if t is
in the near future. This probability depends on the hazard function itself, in between t
and t . As a result of all this, as the duration t < t proceeds, the effect on the hazard
of b1 diminishes, and the effect of b2 increases (with a magnitude that depends on all
structural determinants). After t , the hazard does not depend on b1 anymore. It seems
to be impossible to justify a PH specification with such a theoretical model, except
for the following limiting case.

Example 5. Let ø → ∞ in the nonstationary job search model, so workers do not
care about the future. In that case, even though an individual does have information
on future changes, this does not affect his optimal strategy, and the exit rate out of
unemployment is the same as in Example 2.

Finally, consider the nonstationary on-the-job search model of Subsection 3.2, and,
in particular, the job-to-job transition rate (which will be our hazard rate). Note that
there is no “feedback” from the structural determinants to the value of the reservation
wage w. There holds that q(t, x) = l(t, x)F(w|t, x), where x may include w, and the
following result emerges.

Example 6. Let F be time-invariant in the nonstationary on-the-job search model.
Then

q(t, x) = l(t, x)F(w|x),

which supports a PH specification if l(t, x) is multiplicative in t and x. If F has a
Pareto distribution (see Equation 12), then its parameter w0 is allowed to depend on
t 16, 17.

The main conclusions of this subsection are as follows. First, the proportionality
restriction of the (M)PH model can in general not be justified on economic-theoretical
grounds. Second, if the optimal strategy is myopic (e.g., because of repeated search, or

16 The proportionality results in Examples 4 and 6 can also be generated with other families of
wage offer distributions than the Pareto family. Notably, F can be exponentially distributed, so
F(w) = exp(−n (w − w0)) on w > w0, with n > 0.
17 Here, as in previous examples, if the job offer arrival rate depends on an optimally chosen search
intensity, then the scope for multiplicative specifications is further reduced. This is because this search
intensity is a second “channel” through which all structural determinants affect the hazard in a non-
multiplicative fashion [see e.g., Mortensen (1986) for a theoretical analysis of such models].
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because the discount rate is infinite), then this restriction often follows from economic
theory.
Despite the first conclusion, the (M)PH model has become very popular in reduced-

form duration analysis, in particular in labor economics. The popularity of a reduced-
form model that does not nest many structural models distinguishes duration analysis
from the reduced-form analysis of wage data with the linear regression model, since
the linear specification has been justified extensively by human capital theory and
traditional labor supply theory. Part of the attractiveness of the (M)PH model stems
from the fact that it is difficult to think of a more parsimonious specification of the
hazard that includes all the single major determinants. (Also, recall that the Partial
Likelihood estimation method allows for estimation of the systematic hazard of the
PH model without the need to parameterize or estimate the baseline hazard.) In
practice, the empirical application at hand does not always dictate a natural theoretical
framework, and sometimes the scope of the application does not warrant a full-blown
theoretical or structural analysis. In such cases, the (M)PH model is a useful framework
whose properties have been thoroughly studied in the literature.
Last but not least, the MPH framework can be extended to a certain extent

to incorporate some features of the theory at hand. Notably, changes over t in
the value of a variable x can be incorporated by the inclusion of time-varying
covariates. For example, in the study of unemployment insurance benefits on exit
out of unemployment, the effect of the remaining benefit entitlement can be included
as a time-varying covariate [see e.g., Solon (1985)]. Also, if the data provide direct
observations on how a structural determinant, the reservation wage, or the acceptance
probability change over time, then these can be included as time-varying covariates.
As an example, consider the models of Subsection 3.1, and suppose that ÷(t, x) is
fully observed and F is a time-invariant Pareto distribution which does not vary with
x. Then q(t, x) = l(t, x)wn0 [÷(t, x)]

−n , so if l(t, x) is multiplicative in t and x then
this supports a PH specification with a time-varying covariate. As another example,
consider the on-the-job model. One may observe business cycle indicators and use
these as representations of l(t, x). Finally, changes in the effect over t of a variable x
can be incorporated by the inclusion of interactions between t and x in the hazard 18.
These extensions lead to less transparent models, and some of the distinct advantages

of the MPH model are lost this way (see Section 5). Moreover, it should be stressed
that the insertion of some time-varying covariates or time-varying parameters into an
MPH model more often than not does not lead to a specification that can be generated
by a theoretical model. This is intuitively clear from the nonstationary model in which
unemployment benefits decrease with the duration of unemployment.
As noted in Subsection 4.1, in applied work it is often assumed that each explanatory

variable acts multiplicatively on the hazard rate (i.e., q0(x) = exp(x′b)). From the

18 One may use a nonparametric estimation method for an unrestricted specification of the hazard
rate q(t, x), allowing for full interactions [see e.g., Dabrowska (1987)].
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discussion above it is clear that economic theory often predicts that the different
structural determinants do not act multiplicatively on the hazard. Thus, if each
determinant is represented by different elements of x, then these elements interact
with each other in the hazard. This can be incorporated to a certain extent in the
MPH model, as inclusion of interaction terms for the different elements of x does not
violate the (M)PH specification 19.
We end this section by noting that the economic justification of other popular

reduced-form duration model specifications is at least as difficult as the justification
of the (M)PH specification. This holds in particular for the Accelerated Failure
Time model, in which the mean of log t is specified as a linear function of x,
so log t = −x′b + û, and also for the additive hazard model, in which q(t|x)
is specified as q(t|x) = y(t) + q0(x). These two types of reduced-form duration
models enjoy popularity in biostatistics, where the relation between theory and
application is less compelling than in econometrics. Discrete-time reduced-form
duration model specifications are also difficult to justify; they often do not follow
from the underlying economic models (like discrete-time search models or dynamic
discrete-choice models).

5. Identification of the MPH model with single-spell data

5.1. Some implications of the MPH model specification

In this section we examine identification of the MPH model with unobserved
heterogeneity 20, if the data provide i.i.d. drawings from the conditional distribution of
t|x. In reality, the observations on t may be right-censored (i.e., for some observations
it is only known that t exceeds a certain value) or interval-censored (e.g., if durations
are grouped into intervals), or the sampling design may be non-random. Heckman and
Singer (1984a), Ridder (1984) and Lancaster (1990) contain extensive examinations of
the implied duration distributions in other sampling designs. Situations in which the
data provide multiple durations for the same individual are discussed in subsequent
sections.
Throughout the section we make the following model assumption,

Assumption 5. Independence of observed and unobserved explanatory variables:
In the inflow, v is independent of x.

19 As an example, job search theory predicts that the elasticity of the exit rate out of unemployment
with respect to unemployment benefits depends on the level of the benefits. This can be captured to
some extent in a reduced-form analysis by including (log b)2 as an additional regressor [see Van den
Berg (1990c) for details].
20 Identification of the determinants of the PH model is trivial if it is known that the data are generated
by a PH model.
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Note that this assumption is stronger than the usual assumption in linear regression
models that x and e are uncorrelated or that they satisfy E(e|x) = 0.
It is useful to examine the distribution F(t|x) of t|x and derive the well-known

result that the duration dependence of the hazard function q(t|x) of this distribution is
more negative than the duration dependence of the hazard function q(t|x, v) [Lancaster
(1979) was the first point out these results; see also the survey in Lancaster (1990) and
Heckman and Singer (1984a), who consider a generalization of the MPH framework].
By definition, we have

F(t|x) =
∫ ∞

0
F(t|x, v) dG(v), (13)

where G is the cumulative distribution function of v in the inflow into the state of
interest, and where F(t|x, v) has the associated hazard function q(t|x, v). Consequently,
q(t|x), which by definition equals f (t|x)/F(t|x), can be written as

q(t|x) =
∫∞
0 q(t|x, v)F(t|x, v) dG(v)

F(t|x) . (14)

By Bayes’ Theorem, we have for every t that

dG(v|T > t, x) = F(t|x, v) dG(v)
F(t|x) . (15)

(Note that here we use T to denote a random variable.) In general, therefore, the
distribution of v|T > t, x depends on x for all t > 0, even though it does not for
t = 0. The composition of the sample of survivors (as captured by the distribution
of v) changes as time proceeds, in a way that that depends on t and x. This is an
important aspect of the dynamic self-selection that occurs if one examines subsamples
of individuals with higher and higher durations.
Substitution of Equation (15) into Equation (14) yields q(t|x) = Ev|T > t, x(q(t|x, v)).

Therefore,

q(t|x) = y(t) · q0(x) · E(v|T > t, x). (16)

Let us denote the integrated baseline hazard at t as z(t),

z(t) =
∫ t

0
y(t) dt .

Of course, − logF(t|x, v) equals v · q0(x) · z(t). By substituting this into Equations (13)
and (15) it follows that we can write

E(v|T > t, x) =
∫∞
0 v · e−v·q0(x)·z(t) dG(v)∫∞
0 e−v·q0(x)·z(t) dG(v)

. (17)
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It is useful to rewrite q(t|x) in some different ways. First, note that the denominator on
the right-hand side of Equation (17) (which equals F(t|x)) is nothing but the Laplace
transform L of the distribution of v, evaluated at q0(x) · z(t),

L(s) =
∫ ∞

0
e−s·v dG(v). (18)

Consequently, the numerator in Equation (17) is nothing but minus the derivative of
L evaluated at q0(x) · z(t). This means that we can rewrite Equation (16) as follows,

q(t|x) = y(t) · q0(x) ·
−L′(q0(x) · z(t))
L(q0(x) · z(t))

. (19)

So all derivatives of this with respect to x and/or t depend on G only by way of
(derivatives of) the Laplace transform of G, evaluated at q0(x) z(t). Equivalently, all
derivatives of q(t|x) with respect to x and/or t depend on G by way of moments of
v|T > t, x. Specifically,

d log q(t|x)
dt

=
y ′(t)
y(t)

−
Var(v|T > t, x)
E(v|T > t, x) ·y(t) q0(x).

Clearly, because of the presence of unobserved heterogeneity (i.e., Var(v) > 0, which
under regularity conditions implies that Var(v|T > t, x) > 0), the duration dependence
in the observed (or “aggregate”) hazard function q(t|x) is more negative than otherwise.
This is because in case of unobserved heterogeneity, the individuals with the highest
values of v (and thus the highest hazards) on average leave the state quickest, so that
the individuals who are still in this state at high durations tend to have lower values of v
and thus lower hazards. This phenomenon has been called “weeding out” or “sorting”.
It occurs in duration models with unobserved heterogeneity in general, and so is not
restricted to the MPH model. The model thus allows for two competing explanations
for observed negative duration dependence. If one ignores the presence of unobserved
heterogeneity (i.e., if one adopts a PH model whereas the data are generated by an
MPH model with Var(v) > 0), then the estimated duration dependence will be too
negative. This result has spurred the literature on the identification of duration models
with unobserved heterogeneity.
Unobserved heterogeneity has a similar effect on the derivative of log q(t|x) with

respect to x,

d log q(t|x)
dx

=
q ′
0(x)
q0(x)

−
Var(v|T > t, x)
E(v|T > t, x) · z(t) q ′

0(x). (20)

Note that in the case q0(x) = exp(x′b), the first term on the right-hand side reduces to b ,
and q ′

0(x) in the second term reduces to q0(x)b . Because of the presence of unobserved
heterogeneity, the semi-elasticity of the observed hazard function q(t|x) with respect
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to x is closer to zero than otherwise. This can be understood as follows. Within the
group of individuals with a high value of q0(x), the weeding out induced by unobserved
heterogeneity goes much faster than within the group of individuals with a low value of
q0(x). This is a consequence of the multiplicative specification of q(t|x, v): a high q0(x)
and a high v reinforce each other in producing a very high hazard. As a result, at a given
duration t > 0, the sample of survivors with high q0(x) has on average lower values
of v than the sample of survivors with low q0(x). This causes the observed average
difference between the hazards of the survivors of these groups to be smaller than the
true average difference between the two groups. It is important to stress that this does
not automatically imply that, if one ignores the presence of unobserved heterogeneity
while estimating the model with Maximum Likelihood, that then the effect of x on
the individual hazard is under-estimated. This is basically because b has one more
element than x, and the ML estimates of b are jointly determined. We return to this
in Subsection 5.6.
Note that if E(v) < ∞ and y(0) < ∞ then for t = 0 the right-hand side of

Equation (16) reduces to y(0) q0(x)E(v), and the function q0(x) is then identified from
data on q(0|x). This makes sense, as at t = 0 there is not yet any self-selection due
to weeding out. Before we proceed with the identification of the full model (i.e., of
the functions y, q0 and G), it is useful to introduce the function h(s), defined as
−L′(s)/L(s) (see Equation 18). Equation (19) can now be rewritten as

q(t|x) = y(t) · q0(x) · h(z(t) q0(x)). (21)

This equation will be useful in Subsection 5.3 and further.

5.2. Identification results

There is a substantial literature on the identification of the MPH model 21. It
is important to stress that no parametric functional form assumptions are made
on the underlying functions q0, y and G, so the literature is concerned with
nonparametric identification. In general, it is assumed that the data provide the
distribution function F(t|x) for all t and x.
It is useful to define identifiability as a property of the mapping from the

determinants y, q0 and G, given their domain, to the data (as summarized in F(t|x)
for all t and x). Consider a given set of assumptions on the three determinants (like
the restriction that their function values must be nonnegative; below we examine
various sets of assumptions). These characterize the domain of the mapping. The
MPH specification then defines the unique mapping from the domain to the data. The

21 Heckman (1991) provides an overview in which the MPH model is embedded in a more general class
of models. Heckman and Taber (1994) list identification proofs for MPH models, non-MPH models, and
more tightly specified MPH models without covariates.
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model is identified if the mapping has an inverse, i.e., if for given data 22 there is a
unique set of functions y, q0 and G in the domain that is able to generate these data 23.
Now let us consider the assumptions that are made on the determinants. These

include the regularity Assumptions 1–4, and Assumption 5 on the independence of
x and v. In addition, we list the following assumptions which will play a role in the
remainder of the chapter:

Assumption 6. Variation in observed explanatory variables: The set X of possible
values of x contains at least two values, and q0(x) is not constant on X .

Assumption 6b. Variation in observed explanatory variables: There is an element xa

of the vector x with the property that the set X a of its possible values contains a non-
empty open interval. For given values of the other elements of x, the value of xa varies
over this interval. Moreover, q0(x) as a function of xa is differentiable and not constant
on this interval.

Assumption 7. Normalizations: For some a priori chosen t0 and x0, there holds that∫ t0
0 y(t) dt = 1 and q0(x0) = 1.

Assumption 8. Tail of the unobserved heterogeneity distribution: E(v) < ∞.

Assumption 8b. Tail of the unobserved heterogeneity distribution: The random
variable v is continuous, and the probability density function g(v) of v has the property
that

lim
v→ ∞

g(v)
v−1−ûS(v)

= 1, (22)

where û ∈ (0, 1) is specified in advance, and where S(v) is a slowly varying function 24,
i.e., S has the property that, for every v > 0,

lim
u→ ∞ S(uv)/S(u) = 1.

For Assumption 6, a single dummy variable x suffices, provided that it has an effect
on the hazard function. In that case q0(x) takes on only two values on X . Note that
we define q0 to be identified if its value is known for each x ∈ X . In practice, one
may start off with a parametric specification of q0(x) and require that all parameters

22 Of course, these data must be in the image of the mapping.
23 In fact, for technical reasons, the identification literature typically focuses on the model determinant z
instead of its derivative y.
24 See Feller (1971) for an exposition on such functions.
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can be recovered from the set of all pairs (x, q0(x)) with x ∈ X . In the case where
q0(x) is (log-)linear in x′b , this implies that the elements of x should not be perfectly
collinear.
Assumption 7 concerns an innocuous normalization of two of the three terms in

the hazard q(t|x, v). Assumptions 8 and 8b require more discussion. Basically, under
Assumption 8, the right-hand tail of G is not allowed to be too fat because otherwise
E(v) = ∞. Now consider Assumption 8b. It is important to stress that the a priori
choice of û determines the assumed class of heterogeneity distributions. Basically, the
smaller û, the fatter the tails. However, for any û ∈ (0, 1), all heterogeneity distributions
have E(v) = ∞ [see Ridder (1990)]. This means that the right-hand tail of G is always
fatter than under Assumption 8.
Elbers and Ridder (1982) were the first to prove the nonparametric identification of

the MPH model, under Assumptions 1–8. Their identification proof is not constructive,
i.e., the proof does not express the underlying functions q0, y and G directly in terms
of observable quantities. Constructive identification proofs are attractive because they
suggest a nonparametric estimation method. Melino and Sueyoshi (1990) provide a
constructive proof for the case where Assumption 6 is tightened (to Assumption 6b,
with the exception that q0(x) does not have to be differentiable). However, this proof
is difficult to use as an inspiration for an attractive estimation strategy because it
relies heavily on the observed duration density at t = 0, and x needs to be a
continuous variable. Recently, Kortram et al. (1995) provided a constructive proof
for the original case with only two possible values for q0(x). Lenstra and Van Rooij
(1998) exploit this to construct a consistent nonparametric model estimator. They do
not provide the asymptotic distribution of their estimator. Under somewhat stronger
model assumptions than above, Horowitz (1999) constructs a nonparametric estimation
method that does not follow an identification proof; rather, it exploits the similarity
between the MPH model and the transformation model (see Subsection 4.1) 25, 26. He
does provide the asymptotic distribution of his model estimator.
Heckman and Singer (1984b) also prove nonparametric identification of the

MPH model. Their result turns out to be particularly interesting for the insights it
generates into fundamental properties of the MPH model. Contrary to Elbers and
Ridder (1982), they make Assumption 6b instead of the weaker Assumption 6, on the
variation in x. More importantly, they make Assumption 8b instead Assumption 8 on
the class of heterogeneity distributions. Assumption 8b rules out that v is degenerate.
This means that the PH model as an underlying model is not included in the set of

25 In fact, Horowitz (1999) assumes that q0(x) = exp(x′b), and he accordingly calls the estimator
a semiparametric estimator. It should be stressed that this estimator and other nonparametric and
semiparametric estimators for the MPH model rely heavily on the shape of the empirical survivor
function for t ↓ 0. For a number of reasons, it is notoriously difficult to assess this shape. For example,
extremely short durations are often under-reported in real-life data.
26 Horowitz (1999) also provides a useful list of existing semiparametric estimation methods where
parametric functional forms are assumed for either y or G.
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MPH models considered by Heckman and Singer (1984b). This is a disadvantage if
the PH model is regarded to be an interesting special case. This result should not be
taken to mean that the MPH models considered by Heckman and Singer (1984b) are
not able to generate a PH specification for the observed hazard q(t|x). Consider the set
of MPH models generated by a particular choice of û in Equation (22), and assume
that v has a Positive Stable distribution. This family of distributions is most easily
characterized by its Laplace transform.

Family of Positive Stable distributions:

L(s) = exp(−sa) with a ∈ (0, 1).

Note that lims ↓ 0L′(s) = −∞, so E(v) = ∞ 27. Using results in Ridder (1990) and Feller
(1971) it can be shown that in fact we have to take a exactly equal to û in order to
obtain a G that satisfies Equation (22). So, let v have a Positive Stable distribution
with parameter û. Then, by Equation (19),

q(t|x) = ay(t)[z(t)]a−1[q0(x)]a , (23)

which is a PH specification, despite the fact that, according to the underlying model,
there is unobserved heterogeneity. For example, if the underlying MPH model has a
constant baseline hazard y(t) = 1, then the observed hazard has the (popular) Weibull
PH specification with baseline hazard ata−1, with 0 < a = û < 1, which displays
negative duration dependence 28. Suppose that q0(x) = exp(x′b). If the true model has
a Positive Stable distribution of unobserved heterogeneity and if the researcher assumes
instead that there is no unobserved heterogeneity and that t|x has a PH specification (an
assumption that is confirmed by the data!) then the parameter of interest b is estimated
by ba, so it is under-estimated in absolute value.

27 The corresponding densities are bell-shaped [see Hougaard (1986)]. Hougaard (1986) provides a
justification of this family as a family of distributions for v in MPH-type models. Suppose that the
individual duration can end for a number of different reasons {1, . . . , n}, with cause-specific individual
hazards that share the same baseline hazard and the same systematic hazard but not the same individual
heterogeneity value vj . The individual hazard, which is the sum of the cause-specific individual hazards,
then equals

∑
y(t) q0(x) vj , and this is an MPH specification with v =

∑
vj . Now suppose that the

vj are i.i.d. positive random variables, and suppose that n → ∞. If the scaled mean of the vj has a
nondegenerate limiting distribution then it must be a Positive Stable distribution [Feller (1971)]. In fact,
for a wide range of distributions of the underlying random variable, the limiting distribution converges
to a Positive Stable distribution. So, if v is an average of many different i.i.d. unobserved heterogeneity
terms, then, in many cases, the distribution of v is approximated by a Positive Stable distribution. Note
however that the underlying assumption that the different cause-specific hazards have the same baseline
hazard and systematic hazard, while perhaps often reasonable in medical science, is often untenably
strong in economics. Moreover, if v has a Positive Stable distribution and the parameter a is not fixed,
then the MPH model is not identified (see below).
28 If the underlying hazard has Weibull duration dependence y(t) = (1/a) t1/a−1 and G is a Positive
Stable distribution with parameter a then the observed hazard does not change with t, so t|x has an
exponential distribution.
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These results have very important implications. First, the MPH model is nonpara-
metrically unidentified if the assumption that E(v) < ∞ is dropped (or, alternatively, if
Assumption 8b is dropped). Moreover, the adoption of a model that is observationally
equivalent to (but different from) the true model leads to biased inference on the
parameters of interest [see also Robins and Greenland (1989)]. This is bad news, as
it is often difficult to make any justified assumption on the tail of the unobserved
heterogeneity distribution. On the other hand, in the case where v represents an
important economic variable, economic theory often provides a justification of
E(v) < ∞. In Subsection 5.5 we discuss some examples of this.
Ridder (1990) addresses the fundamental identification problem in detail. He argues

that for any MPH model with E(v) < ∞ there are observationally equivalent models
with E(v) = ∞. In particular, for any MPH model with E(v) < ∞ there is basically one
observationally equivalent MPH model satisfying Equation (22), for any û ∈ (0, 1).
So, Assumption 8 as well as Assumption 8b for given û can all be interpreted as
different untestable normalizations that impose identifiability on a class of models that
are unidentified.
Let us return to the case where v is degenerate (i.e., the PH model). Van den Berg

(1992) proves that the full set of MPH models that is observationally equivalent to
the PH model consists of models in which v is degenerate or has a Positive Stable
distribution. In the latter case, as is clear from Equation (23), the duration dependence
of the baseline hazard and the absolute size of the effect of x are more positive than in
the resulting PH model. For the general case, Ridder (1990) shows that some aspects
of the MPH model are still identified if no assumptions on the tail of G are made. For
example, the sign of the effect of x is identified.
As we shall see below, one solution to the fundamental identification problem is to

rely on economic theory when choosing a functional form for G. Another solution is
to use information on multiple spells for the same individuals.

5.3. Interaction between duration and explanatory variables in the observed
hazard

In this subsection we examine properties of the observed hazard q(t|x) if the
underlying model has an MPH specification. These provide additional insights into
the identification of the model. Throughout most of this subsection we assume that
E(v) < ∞, i.e., we adopt the MPH framework of Elbers and Ridder (1982). At times
we generalize results by examining the wider class of models where E(v) ¶ ∞.
If there is no unobserved heterogeneity (so v is a constant), then the observed

hazard q(t|x) is multiplicative in t and x. Now suppose there is unobserved
heterogeneity. If the observed hazard q(t|x) would be multiplicative in t and x
then the model would be observationally equivalent to a model without unobserved
heterogeneity. Because of the nonparametric identifiability of the model, we know that
the latter cannot be true. Therefore, the observed hazard cannot be multiplicative in t
and x. As a result, we obtain the fundamental insight that identification of G in MPH
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models comes from nonproportionality of the observed hazard q(t|x) [see Hougaard
(1991), Van den Berg (1992) and Keiding (1998)]. In terms of Equation (21): if there
is unobserved heterogeneity then the function h(z(t) q0(x)) is not multiplicative in t and
x, and the interaction between t and x identifies G. Yet another way to formulate this
is by stating that if there is unobserved heterogeneity then log q(t|x) is not additive in
t and x, so for some t and x

ð2 log q(t|x)
ðtðx

≡ ð2 log h(z(t) q0(x))
ðtðx

Ñ 0, (24)

provided that x varies continuously and the appropriate differentiability conditions are
satisfied.
Now recall from the previous subsection that if the assumption that E(v) < ∞

is dropped then a proportional specification for q(t|x) can also be generated by
MPH models with unobserved heterogeneity. Such models are characterized by the
property that v has a Positive Stable distribution. All other distributions for v with
E(v) = ∞ generate q(t|x) that is not multiplicative in t and x. Consequently,
if Positive Stable distributions are ruled out for v then the result on the relation
between unobserved heterogeneity and nonproportionality of the observed hazard can
be extended to include infinite-mean distributions for v.
In fact, unobserved heterogeneity can not generate just any type of interaction

between t and x in q(t|x). Van den Berg (1992) shows that it is not possible that
there are whole intervals of t and x on which there is no interaction 29. (Whether the
interaction is “large” is an empirical matter; as we shall see below, it is not difficult to
construct examples in which there is virtually no interaction for a wide range of values
of t.) Also, the following simple and appealing specification for q(t|x) that allows for
interaction cannot be generated with an MPH model,

q(t|x) = y(t) q0(x) e−az(t) q0(x),

because the function h(s) = exp(−as) cannot be generated by the model 30. In the next
subsection we also derive restrictions on the sign of the interaction for different t.
All of this evidence implies that the class of models for q(t|x) that is generated by
MPH models is smaller than the general class of interaction models for q(t|x). In
other words, the MPH model is overidentified. The fact that the function h must be
such that it can be generated by a Laplace transform, the fact that z(t) and q0(x) affect

29 This follows because any distribution G that gives a function h such that h(z(t) q0(x)) is multiplicative
in t and x on an interval must be a Positive Stable distribution.
30 This can be seen as follows. If the model is an MPH model then h(s) can be written as −L′(s)/L(s),
with L(s) being the Laplace transform of G. However, the function L(s) that follows from the
candidate h(s) = exp(−as) is not completely monotone and hence cannot be a Laplace transform
[see Feller (1971)].
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the value of h only by way of their product, and the fact that t enters the interaction
term by way of the integral of the multiplicative term y(t), all impose restrictions on
q(t|x) as a function of t and x.
At this stage it is instructive to examine the results in McCall (1996) on the

identification of an extension of the MPH model with E(v) < ∞ and q0(x) = exp(x′b).
Specifically, he allows the parameter b to vary with t. This is an empirically relevant
extension (recall the discussion at the end of Section 4). Note however that the
extension creates a second type of interaction between t and x in the observed hazard,
so the question arises whether the data enable a distinction between them. McCall
(1996) shows that the model is not identified if x can assume only two different possible
values. However, if there is an explanatory variable that attains all possible values
between −∞ and ∞ then the model (i.e., y, G and b(t)) is identified, so then the two
types of interaction can be distinguished empirically.
The inclusion of time-varying covariates (which is another empirically relevant

extension of the MPH model) creates yet another type of interaction between t and
x in the observed hazard. It is clear that in some cases a model with time-varying
covariates is not identified (for example, if q0(x(t)) is multiplicative in t). However,
Honoré (1991) illustrates that in some cases time-varying covariates can also be helpful
for identification. Suppose that x is time-invariant for part of the population; some of
them have the value x1 while others have x2, with q0(x2) Ñ q0(x1). Suppose in addition
that for the other part of the population the value of x changes discretely from x1 to x2 at
duration t∗ > 0, and assume that x satisfies the conditions for time-varying covariates
laid out in Subsection 4.2. Then the model is identified without any assumption on
the tail of G (so E(v) may be finite or infinite). See Heckman and Taber (1994) for a
generalization of this result.
The results in McCall (1996), Honoré (1991) and Heckman and Taber (1994)

illustrate the fact that the interaction generated by the presence of unobserved
heterogeneity is rather specific. It is plausible that as more and more sources of
interaction are included into the model, it becomes more and more difficult to achieve
identification. In the limit, the assumption that the underlying hazard is multiplicative
in t, x and v is essential for identification. If this assumption is dropped then obviously
any nonproportional specification can be generated without the need to allow for
unobserved heterogeneity, and the model would be unidentified [see also Heckman
(1991)]. In particular, the specification (19) can also be generated as an individual
hazard, which equals the observed hazard because of the absence of unobserved
heterogeneity.

5.4. The sign of the interaction

In this subsection we examine the sign of the interaction between t and x in q(t|x).
This sign is a potentially interesting model characteristic, as its empirical counterpart
may be readily observed from the data. Moreover, economic theory sometimes
makes predictions of the sign of the interaction. For example, the ranking model of
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unemployment by Blanchard and Diamond (1994) predicts that the aggregate exit rate
out of unemployment as a function of t decreases more in a “bad” steady state (i.e.,
a steady state where the exit rates are low anyway) than in a good steady state. If the
steady state is represented by a dummy variable x then this means that the interaction
between t and x is predicted to be always positive.
The discussion is facilitated by using q0(x) and x interchangeably. Obviously, this

entails no loss of generality in the examination of the sign of the interaction, provided
that it is kept in mind that x has a positive effect on q(t|x, v). For convenience we take
x to vary continuously, so that the sign of the interaction can be expressed as the sign
of the cross-derivative of log h(z(t) x) with respect to t and x [see Equation (24); recall
that q(t|x) = y(t) · q0(x) · h(z(t) q0(x))].
The derivative of log h(z(t) x) with respect to x equals h′(z(t) x) z(t)/h(z(t) x). The

sign of the cross-derivative of log h(z(t) x) with respect to t and x then equals the sign
of the derivative of sh′(s)/h(s) evaluated at s = z(t) x. The function h(s) is determined
by the Laplace transform L(s) of G. Therefore, the sign of the interaction at a certain t
and x is completely determined by G 31. Given that z(t) x takes on all values in [0,∞),
knowledge of the sign of sh′(s)/h(s) for all s is necessary in order to infer whether this
sign is unambiguous for all t and x. To put this more bluntly, the full specification of the
unobserved heterogeneity distribution determines the sign of the interaction between
duration and explanatory variables in the observed hazard.
The first notable result concerns the sign of the interaction for small t. In general,

the interaction is strictly negative on an interval [0, e) 32. This negative interaction
means that if x is large then the observed duration dependence for small t is more
negative than if x is small. This can be understood as follows. In the sub-population
of individuals with a high value of x, the individuals who also have a high v will have
a disproportionally high hazard. As a result, those individuals leave the state very
quickly, and this has a strong negative duration-dependence effect on the observed
hazard for the individuals with high x. Among the individuals with low x, this weeding
out phenomenon occurs at a much lower speed, so their observed hazard decreases less
strongly. It is important to stress that this intuitive explanation does not work for t > 0,
because the distribution of v among survivors at t > 0 depends on x itself.
Lancaster (1979) shows that if G has a Gamma distribution,

Family of Gamma distributions:

g(v) = cr/G (r) · vr−1 exp(−cv) for all v > 0, with c, r > 0,

then the interaction is negative for all t and x, so the negative interaction sign for small
t can be extended to all t. Unfortunately, this result cannot be generalized to include

31 It follows from the results in Subsection 5.1 that sh′(s)/h(s) at s = z(t) x can be expressed in terms
of the moments of v|T > t, x (specifically, it depends on the first three moments).
32 For example, if Var(v) < ∞ and limt ↓ 0 y(t) ∈ (0,∞] then ð2 log q(t|x)/ðtðx < 0 at t = 0. If
E(v3) < ∞ and limt ↓ 0 y(t) ∈ [0,∞] then ð2 log q(t|x)/ðtðx < 0 on an interval next to t = 0.
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all possible G. To see this, consider discrete distributions for G with a finite number
of mass points (or points of support), each of them positive and finite,

Family of discrete distributions with a finite number of mass points,

each of them positive and finite:

Pr(v = vi) = pi for all i = 1, 2, . . . , n, with

0 < v1 < v2 < · · · < vn < ∞, 0 < p1, p2, . . . , pn < 1,
∑n

i = 1
pi = 1, n < ∞

(this is a popular specification in empirical work; see Subsection 5.5 below). We
shall show that it is intuitively plausible that in this case, as t → ∞, the derivative
ð log q(t|x)/ðx goes to its value at t = 0 (so that this derivative varies with t in a
non-monotone way, i.e., the cross-derivative does not have the same sign everywhere).
When t increases, the group of survivors becomes increasingly more homogeneous,
since the individuals with v > v1 leave unemployment on average earlier than the
individuals with v = v1. In the limit, the group of survivors is homogeneous (all
remaining individuals have v = v1) so the value of ð log q(t|x)/ðx equals the value
in a model without unobserved heterogeneity, which is q ′

0(x)/q0(x) (see Equation 20).
This in turn equals the value that is taken by ð log q(t|x)/ðx in general at t = 0 (see
Equation 20), because at t = 0 the selection due to heterogeneity has not yet taken
place 33.

Example 7. Let v have a discrete distribution with two points of support with
Pr(v = 1

5 ) = Pr(v =
3
5 ) =

1
2 . Then the cross-derivative of log q(t|x) with respect to

t and x equals zero if z(t) q0(x) is about 4.6 and it is positive if and only if z(t) q0(x)
exceeds that number.

In this example, there is a positive value of z(t) q0(x) for which the observed hazard
is multiplicative in t and x (i.e., the cross-derivative is zero) despite the presence of
unobserved heterogeneity. However, the corresponding values of t and x have measure
zero in the set of all possible values of t and x. Note that the above result implies that,
if G is discrete with a finite number of points of support, the observed hazard q(t|x)
can be approximated by a PH specification if t is sufficiently large.
Incidentally, it is not difficult to construct examples where the weeding out of

individuals with high v occurs very quickly after t = 0. If v has two points of support
where one of them is extremely large, then the individuals with large v leave the state
almost immediately. As a result, the magnitude of the interaction between x and t is
virtually zero for almost all t > 0.

33 These results imply that, when comparing an individual with a relatively small x to one with a
relatively large x, the proportionate difference between the observed hazards diminishes as time starts
to run from t = 0 onward, but it ultimately returns to the level at t = 0.
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The family of discrete distributions is not the only family that generates a non-
monotone sign of the interaction. Other examples include uniform distributions with
support [c1, c2] with 0 < c1 < c2 < ∞ as well as many other distributions with a
positive lower bound of the support [see Abbring and Van den Berg (2001) for details].
In general, it seems difficult to derive conditions on G such that the interaction is
always negative 34. In the next subsection we return to this issue, when we examine
the limiting distribution of v|T > t, x as t → ∞, for a wide class of distributions G.
Recall that in general for small t the interaction is negative. It turns out that, even if

the interaction may be positive for larger t, the cumulative interaction remains negative.
With this we mean that (under suitable regularity conditions),

∫ t

0

ð2 log q(t |x)
ðtðx

dt < 0,

for all t and x. This can be seen by noting that this integral equals ð log q(t |x)/ðx at
t = t minus the same expression at t = 0, and, by Equation (20), this is negative.
We end this subsection by noting a remarkable result on the effect of x on the

observed hazard q(t|x) in MPH models 35. One may be tempted to think that this effect
is always positive if x has a positive effect on the underlying hazard q(t|x, v). However,
this is not a general property of the model. Intuitively, if a fraction of individuals has a
very high value of v then, in the sub-population of individuals with high x, the high-v
individuals leave the state extremely quickly. The drop in the mean value of v among
the survivors with high x is then so large that their hazard may on average fall below
the value of those with lower x values. In such a case, the negative effect of the drop in
v on q(t|x) is not offset by the positive effect of the large x. In terms of Equation (20),
the second term on the right-hand side dominates the first one.

Example 8. Consider again the discrete distribution for v with Pr(v= 1
5 ) = Pr(v=

3
5 )

= 1
2 (see Example 7). Then ðq(t|x)/ðx is always positive. However, if the highest mass

point is at 52 instead of
3
5 this derivative is negative for values of t and x such that

z(t)q0(x) is in an interval around 1.

In sum, the observed hazard of a high-x individual can be smaller than that of a low-x
individual. This means that it is not possible to deduce the sign of the effect of x on the
underlying individual hazard from the observed relation between x and the observed
hazard at a certain duration t. It should however be stressed that this remarkable effect
can only occur for some local duration intervals. Specifically, the observed survivor

34 Negative interaction is equivalent to the statement that −L′(ey)/L(ey) is log-concave on y ∈ (−∞,∞),
but this does not seem to correspond to a well-known class of distributions for G.
35 Even though this result is not concerned with the sign of the interaction, its interpretation fits in with
the latter subject.
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function F(t|x) and the observed mean duration E(t|x) are always decreasing in x (iff
q0(x) increases in x). This can be seen from the relations

F(t|x) = Ev(F(t|x, v)) = L(z(t) q0(x)), E(t|x) = EvE(t|x, v) =
∫ ∞

0
L(z(t) q0(x)) dt,

where Ev denotes the expectation with respect to G (note that L decreases in its
argument; see Equation 18).

5.5. Specification of the unobserved heterogeneity distribution

Studies in which parameterized MPH models are estimated have wrestled with the
choice of a functional form for G [see e.g., Heckman and Singer (1984a)]. This choice
is thought to be harder to justify than the choice for a functional form for the baseline
hazard y, as economic theory often suggests a shape for the latter. In this subsection we
examine parametric families of distributions that can be given supporting arguments as
a choice for G. We start with families that can be supported by limit arguments. Next
we show that economic theory sometimes actually does make informative predictions
on important aspects of the shape of G. This typically concerns cases where a key
source of individual heterogeneity is observed by labor market participants but not by
the researcher.

5.5.1. Discrete distributions

Suppose that the baseline hazard and the systematic hazard have parametric functional
forms with a finite number of parameters, but that the only assumption on G is that
it has a finite mean (or satisfies Equation 22). For this case, Heckman and Singer
(1984c) show that the Maximum Likelihood estimator of G is a discrete distribution,
provided that some regularity conditions are met 36. For a given sample, the parameters
of this discrete distribution (the number of points of support, their location, and their
associated probabilities) are chosen such as to maximize the likelihood function. The
result by Heckman and Singer (1984c) illustrates the flexibility of discrete distributions
as heterogeneity distributions. Intuitively, if the number of points of support increases,
then any true underlying distribution G can be approximated well. In practice, it is often
difficult to find more than a few different mass points. Usually, if more than two or
three points of support are taken then the estimates of some of them coincide. Standard
practice in case of discrete G is to estimate the model with a number of mass points that
is either predetermined or equal to the maximum number that could be detected, and
to report standard errors conditional on this choice. It is important to stress that such

36 See Trussell and Richards (1985), Lancaster (1990) and Baker and Melino (2000) for additional
insights into this estimator and for alternative computational strategies.
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approaches are not “nonparametric” in the true sense of the word, and that the standard
errors do not reflect uncertainty with respect to the actual number of mass points.
The fact that it is often difficult to find more than a few mass points may reflect a lack

of informativeness on G in the data. Recall that the data do not provide observations on
drawings from G, but that G enters the likelihood function as a mixing distribution.
The information on G comes from the observed interaction between t and x in the
data, and it may be that a mixing distribution with a few mass points is often able to
capture most of this. The simulations in Heckman and Singer (1984c) strongly confirm
this. They find that the parameters of y and q0 as well as the shape of the distribution
of t|x are well estimated if G is assumed to be discrete with an unknown number of
mass points, even if the true G is continuous. The estimated number of mass points
is typically small.
For G discrete with a finite number of points of support, each of them positive

and finite, we restate the following model properties. First, E(v) < ∞. Secondly, the
interaction between t and x in q(t|x) is not monotone; it is negative for small t and
positive for very large t. Thirdly, the effect of x on q(t|x) is not always monotone even
if the effect on q(t|x, v) is.

5.5.2. Gamma distributions

In applications, the family of Gamma distributions has perhaps been the most popular
choice for G. This stems from the resulting analytic tractability: all relevant properties
of the distribution of t|x can be expressed in closed-form solutions. In their recent
working paper, Abbring and Van den Berg (2001) are the first to provide a less ad-
hoc justification for the choice of the family of Gamma distributions for G. Suppose
that zero is the lower bound of the support of the true (unknown) G, with v being a
continuous random variable (we do not make assumptions on the upper bound of the
support of G). Then, under mild regularity conditions, the unobserved heterogeneity
distribution among the survivors at duration t converges to a Gamma distribution if
t → ∞. In fact, we have to scale the distribution of v among survivors because the
unscaled distribution converges to zero (note that the Gamma family is invariant to
scaling). This result implies that, in many cases, the heterogeneity distribution among
survivors at high durations can be approximated well by a Gamma distribution, and
this provides a motivation to adopt the Gamma family for G(v) itself.
For G(v) equal to a Gamma distribution, we restate the following model properties.

First, E(v) < ∞. Secondly, the interaction between t and x in q(t|x) is monotone and
negative for all t. Thirdly, the effect of x on q(t|x) is always monotone if the effect on
q(t|x, v) is monotone.
The limit result in Abbring and Van den Berg (2001) does not hold if the true G(v)

is a discrete distribution with a finite number of points of support 37.

37 Recall that in such a case the sign of the interaction is positive for large t, whereas in the case of a
Gamma distribution it is negative for large t. The latter suggests that, if in practice a choice must be
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5.5.3. Suggestions from economic theory

Now let us turn to (aspects of) shapes of G(v) that can be justified by economic theory.
First, as a general remark, it should be noted that economic theory often predicts that
the exit rate out of a state is bounded from above. Consider the search theories of
Section 3. In general, the exit rate out of unemployment can be written as lF(÷). The
second term in this expression is a probability which necessarily lies between zero and
one. If the first term is infinite then there are no frictions in the first place, and the
models reduce to standard labor market models with zero unemployment durations.
According to this line of reasoning, q(t|x, v) should be bounded from above, which
implies that the support of G is bounded from above (which in turn implies that
E(v) < ∞) 38.

5.5.3.1. Suggestions from equilibrium search models. Suppose worker behavior is
described by the search models of Section 3. In the literature, these models have
been extended to include employer behavior. For surveys of the theoretical and
empirical analysis of such “equilibrium search models”, see Ridder and Van den Berg
(1997), Mortensen and Pissarides (1999) and Van den Berg (1999). To fix thoughts,
consider the equilibrium search model of Bontemps, Robin and Van den Berg (1999)
where unemployed and employed workers search, and different workers have different
values of leisure b. If the job offer arrival rates are the same in employment and
unemployment, then the reservation wage of an unemployed worker with value of
leisure b is simply equal to b. Now suppose that b has a continuous distribution H (b)
in the population. An employer sets his wage w such as to maximize his steady-state
profits. We assume that the number of firms is fixed, or, alternatively, that an entry
fee has to be paid. It is not optimal for any firm to offer a wage equal to the lower
bound b of the distribution H (b), because then its steady-state labor force and profit
rate are zero. The lowest wage w in the market is strictly larger than b. As a result,
there is a positive fraction of individuals who accept any wage offer (i.e., who have
b < w).
In this model, the individual exit rate out of unemployment equals lF(b). Now

suppose that the researcher wants to estimate a reduced-form model of unemployment
durations. The individual value of leisure b is unobserved, so it is reasonable to take
the unobserved heterogeneity term v to represent the acceptance probability F(b)
(provided that there is no additional source of unobserved heterogeneity). As a result,

made between a discrete G or a Gamma G, it is useful to examine the sign of the interaction between t
and x in the data on q(t|x) for large t [see Hougaard (1991) for an example].
38 One may argue that l is affected by an optimally chosen search intensity, and that the distribution
of structural determinants in the population is such that the resulting distribution of l does not have an
upper bound. However, in search and matching models, l is at least partially determined by the meeting
technology of the labor market; this technology is a market characteristic that cannot be fully dominated
by individual behavior.
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the distribution G(v) has support in [0, 1]. But there is a positive fraction of workers
with F(b) = 1, so G has a mass point at the upper bound of its support (i.e., at v = 1).
If the highest wage in the market w is smaller than the highest level of b then G also
has a mass point at zero. In that case G is a defective distribution; a positive fraction
of individuals is unemployed forever. In practice it may not be difficult to sort out the
latter individuals from the data (i.e., to observe whether b > w), because it does not
make sense for these individuals to search for a job, so they may classify themselves
as being nonparticipants.
It is not difficult to see that this result extends to more general equilibrium search

models. Often, employer behavior is such that a positive fraction of unemployed
workers accepts any wage offer and consequently has the maximum hazard level for
the transition into employment.

5.5.3.2. Suggestions from on-the-job search models. Consider the stationary on-the-
job search model of Subsection 3.2. Published statistics on nationwide job mobility
contain information on the marginal job duration distribution, i.e., on the distribution
of job durations unconditional on the wage in the job. The wage then represents
unobserved heterogeneity in the job duration data.
The distribution of t given the wage w on the job is exponential with density

f (t|w) = (d + l1F(w)) e−(d + l1 F(w)) t . (25)

Consider the job durations t of a cohort of workers who have just left unemployment
for a job (this constitutes the inflow into employment at a given point of time). If
all unemployed workers accept any wage that is offered to them then, in this cohort,
the wage w is distributed according to F(w). To obtain the marginal job duration
distribution for this cohort, we have to integrate Equation (25) with respect to dF(w).
This gives

f (t) =
1
l1

∫ d + l1

d
z e−zt dz,

which is a “mixture of exponentials”, i.e., a mixture of distributions with constant
hazards, with a uniform mixture distribution for the hazards with support on the
interval (d, d + l1) 39. This is not surprising. The conditional hazard of t|w is constant
over the job duration. It is then mixed with respect to a determinant (w) of the

39 This can be further simplified to

f (t) =
e−dt

l1t2

[
1 + dt − (1 + (d + l1) t) e

−l1t
]
.
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conditional hazard. Workers are merely concerned with the ordering of the current
wage and the wage offer, and not with the shape of the underlying wage offer
distribution itself. Their location on the job ladder therefore determines their hazard.
Note that, as a result, the marginal job duration distribution does not depend on F .
In terms of an MPH model, q(t|x) can be thought of as being generated by

q(t|x, v) = v, where v has a uniform distribution on (d, d + l1) 40. This result for a cohort
of newly employed workers can be generalized to other (more relevant) sampling
schemes. Ridder and Van den Berg (1998) apply this approach to study job mobility
with aggregate data.
The argument above also applies to other settings where only the rank of the

individual’s heterogeneity value affects the individual’s hazard rate, and where these
values and their ranks are unobservable. Moscarini (1997) examines a job search
model for the unemployed where individuals are ranked by employers on the value
of some time-invariant characteristic. The rate at which an individual obtains a job
depends on the fraction of the unemployed that has worse characteristics. For a specific
matching technology, this results in an unemployment duration distribution that is again
a mixture of exponential distributions with a uniform mixture distribution.

5.6. Effects of misspecification of functional forms

Generally, in applications, y and/or G(v) are assumed to have a parametric functional
form [see Lancaster (1990) for a catalogue of popular functional forms]. We finish this
section on properties of the MPH model by summarizing some results on the effects of
misspecification of these functional forms on the probability limits of the Maximum
Likelihood (ML) estimates. Throughout the subsection (and in line with this literature)
we assume that

q0(x) = exp(b0 + x′b1),

and that all moments of v exist. The model is normalized by taking E(v) = 1. The only
type of censoring that is considered concerns independent right-censoring at a fixed
duration.
A natural starting point concerns the misspecification due to omission of unobserved

heterogeneity from the model, if it is present in the data-generating process. Recall
that in Subsection 5.1 we argued that the estimated duration dependence will be too
negative, and the effect of x may be inconsistently estimated as well. Gail, Wieand
and Piantadosi (1984) provide the following result. If the baseline hazard y(t) is
known a priori, if one erroneously ignores unobserved heterogeneity in the model

40 Note that if d or l1 depend on t or x, then this is not an MPH model anymore.
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specification, and if there is no censoring, then b1 is consistently estimated with ML.
In fact, it is not difficult to show that

plim b̂0 = b0 − E
(
1
v

)
< b0, plim b̂1 = b1,

where plim b̂i denotes the probability limit of the ML estimator of bi (i.e., the value
to which the estimate converges in probability as the sample size increases). Note
that E(1/v) > 1/E(v) = 1 if and only if Var(v) > 0, i.e., if there is unobserved
heterogeneity 41, 42.
Unfortunately, these welcome results do not generalize in any way to more realistic

settings. Ridder (1987) shows that censoring in the data makes b̂1 inconsistent (unless
the specified G equals the true G or b1 = 0). The asymptotic bias is towards zero if
the specified model assumes absence of unobserved heterogeneity. Lancaster (1985b)
shows that if the baseline hazard is known to have a Weibull specification with an
unknown parameter, one ignores unobserved heterogeneity, and there is no censoring,
then the estimates of both the Weibull parameter and b1 are asymptotically biased
towards zero. In fact, they are all biased in the same proportion. Basically, in this case,
ML gets the regression function for log t right, but we are after the original parameters
of the individual hazard function instead of the elasticities of the mean log duration.
Ridder (1987) also shows that misspecification of the shape of the baseline hazard
results in inconsistency of b̂1.
The results above are all analytically derived. For more general model settings,

the effects of misspecification have been analyzed by way of extensive Monte Carlo
simulations. Ridder (1987) allows for censoring in the Lancaster (1985b) model, and he
allows for misspecified G in the assumed model. It turns out that censoring exacerbates
the asymptotic bias in b̂1 due to misspecification of G, and the results become sensitive
to the assumed specification of G. Moreover, it turns out that the estimates display a
large small-sample bias even if the model specification is correct. This bias disappears
very slowly when the sample size increases. Such small-sample biases are absent for
the PH model without unobserved heterogeneity; see Andersen, Bentzon and Klein
(1996).

41 See also Lancaster (1983). Ridder (1987) generalizes this result by proving the following: if the
baseline hazard is known in advance, the assumed G is fully specified without unknown parameters, the
assumed G is not equal to the true G, and there is no censoring, then b1 is consistently estimated.
42 This is not in conflict with the result in Subsection 5.1 that d log q(t|x)/dx = b1(1 − a) for some a > 0.
Somewhat loosely one may say that b̂0 ensures that the average level of the specified log q(t|x) agrees to
the average level in the data, and that the effect of x in the data is best captured by b̂1 = b1. Note that in this
specific model, E(log z(t)|x, v) is additive in v and x. In particular, E(log z(t)|x, v) = −b0 − x′b1 − log v + c,
with c ≈ −0.58 being the mean of an EV1 random variable, and with the function z(.) completely known.
So by analogy to the regression model, dispersion in v does not affect the estimate of b1.
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Ridder (1987) also examines the performance of ML estimation of an assumed
model with a Weibull baseline hazard and a Gamma distribution for v, if both are
misspecified. The simulations reinforce the negative results above. Ridder (1987)
conjectures that if the baseline hazard is flexibly specified with a sufficient number
of unknown parameters, and if censoring is virtually absent, then it does not matter
which family of distributions is assumed for G in order to obtain a reliable estimate
of b1. However, the simulation results in Baker and Melino (2000) go against this 43.
Most of the biases due to the above problems can be substantial, depending on the
situation at hand. For the Partial Likelihood estimation method, similar results have
been derived [see e.g., Bretagnolle and Huber-Carol (1988)].
By now there are also many studies of real-life single-spell data in which it is

reported that the estimates of (the parameters of) b1, y and G are sensitive to changes
in the assumed family of distributions for G or the assumed set of x or the assumed
functional form of y, even though sometimes the over-all fit of the model does not
change with this in any substantial way [see e.g., Heckman and Singer (1984a), Trussell
and Richards (1985), Hougaard, Myglegaard and Borch-Johnsen (1994)]. Keiding,
Andersen and Klein (1997) provide a survey of studies with biostatistical data.
The recent literature on semiparametric and nonparametric estimation of the

MPH model provides some interesting additional insights on this. First of all, Hahn
(1994) examines models with Weibull duration dependence, and he assumes that
v is a continuous random variable with a finite mean. He shows that with single-
spell data, the information matrix is singular, and that there is no

√
n-consistent

estimator for bi and the Weibull parameter 44. Thus, in a certain sense, there is less
information on the model parameters than what is typically available in econometric
analyses. Secondly, Heckman and Taber (1994) and Kortram et al. (1995) show that
the mapping from the data-generating process to the data is not continuous, so that
two distinct MPH models can generate very similar data 45. Thirdly, the nonparametric
(or semiparametric) estimator developed by Horowitz (1999) has convergence rates
that are smaller than

√
n. In particular, under certain assumptions (including absolute

continuity of an element of x, differentiability of y(t) and the density of v, and
E(v2) < ∞), the convergence rates of bi and y can be at most almost equal to n−2/5,
which is obviously slower than n−1/2. For the heterogeneity distribution and density G
and g, the rate of convergence is (log n)−2, which is very slow.

43 It should be noted, though, that Baker and Melino (2000) do not examine an MPH model but a
discrete-time model where the individual per-period exit probability is a logistic function of y(t)q0(x)v.
Whether these models behave similarly is an issue for further research.
44 See Klaassen and Lenstra (1998) for a generalization of this result.
45 As an example, consider the simplest MPH model, with q0(x) = exp(x) where x is a single dummy
variable, and with absence of duration dependence and unobserved heterogeneity. The distribution of
t|x is virtually the same as the distribution generated by an MPH model with q0(x) = exp(2x), duration
dependence proportional to 2t, and v distributed as a Positive Stable distribution with parameter 12 with
the upper tail replaced by a finite mass point [see Kortram et al. (1995) for details; note the similarity
to the example in the discussion in Subsection 5.2; also note that here E(v) < ∞].
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Together, these results lead to the following conclusion. In the absence of strong
prior information on the determinants of the MPH model, single-spell data do not
enable a robust assessment of the relative importance of these determinants as
explanations of random variation in the observed durations (even if the unobserved
heterogeneity mean is known to be finite). Minor changes in the assumed parametric
specification, leading to a similar over-all fit, may produce very different parameter
estimates. This implies that estimation results from single-spell data are sensitive to
misspecification of the functional forms associated with these determinants. Therefore,
interpretations based on such results are often unstable and should be performed with
extreme caution.
In biostatistics, this state of affairs has led to a renewed interest in Accelerated

Failure Time models for the analysis of single-spell duration data [see Hougaard,
Myglegaard and Borch-Johnsen (1994) and Keiding, Andersen and Klein (1997) for a
survey]. Note that such models allow for robust inference on the effect of x on the mean
of log t 46. In a way, the choice for the AFT model means that all hope is given up on the
attempt to (i) disentangle genuine duration dependence from the effect of unobserved
heterogeneity, and (ii) quantify the effect of covariates on the individual hazard as
opposed to the observed hazard, with single-spell data. From an economic-theoretic
point of view, however, the AFT approach is unsatisfactory, because, as we have seen in
Sections 2 and 4, the parameters of the individual hazard are the parameters of interest.
It may therefore be better to exploit predictions from the underlying economic theory
when specifying the duration model, and/or look for data with multiple spells 47.
If one is only interested in the sign or significance of a covariate effect on the

individual durations then the AFT approach may be useful. Recall from Subsection 5.4
that in MPH models the sign of the effect of x on the mean duration is always the same
as the sign of the effect on the individual hazard, regardless of the specification of y
or G. Regression of log t on x therefore provides robust evidence on this sign [see
Solomon (1984) for proofs; Li, Klein and Moeschberger (1993) provide supporting
Monte Carlo evidence on the performance of test statistics for the significance of
the effect of x]. Such an approach may be useful if one is interested in whether
participation in a treatment program (to be represented by x) has any effect. However,
in economics, data on treatment effects are usually non-experimental and treatment
assignment is selective, so then x is not exogenous (see Subsection 9.2).

46 Indeed, Horowitz (1996) shows that the b parameters in the transformation model (9) can be
consistently estimated with an estimator with convergence rate equal to n−1/2. Recall that the AFT model
is a special case of the transformation model.
47 Another approach would be to estimate the model nonparametrically using methods described in
Subsection 5.2. It is still too early to assess whether this approach is fruitful. Yet another approach is to
use population data (if available). See Van den Berg and Van Ours (1996) for an example of this based
on a discrete-time model.
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6. The MPH model with multi-spell data

6.1. Multi-spell data

This section deals with identification of the MPH model if the data provide durations
of multiple spells in a given state by a given individual, i.e., if the data are multi-spell
data. Here, an individual has a given value of v, and his spell durations are independent
drawings from the univariate duration distribution F(t|x, v), where, of course, v is
unobserved, so that the durations given just x are not independent. We mostly focus
on an “ideal” case in which the data consist of a random sample of individuals and
provide two uncensored durations for each individual in the sample. Actually, the use
of the term “individual” is not very appropriate here, as the setup includes cases in
which physically different individuals are assumed to share the same value of v and we
observe one or more durations for each of these individuals. It is convenient to refer
to such a group of individuals as a stratum. It depends on the context whether one
may assume that v, y and q0 are identical across durations for the same individual or
stratum. In subsequent sections we examine more general models, in which y and q0
may vary across spells, the values of v in different spells may be stochastically related,
and other dependencies between the durations are allowed. It is useful to think of the
present section as being concerned with a model for a single type of duration, where
we have multiple spells of this type of duration for each “individual”, whereas the
subsequent sections are concerned with models for different types of durations with
single or multiple spells of each type for each “individual”.
The empirical analysis of MPH models with multi-spell duration data is widespread.

For example, Newman and McCullogh (1984) use such data to estimate reduced-
form models for birth intervals, while Ham and Rea (1987) and Coleman (1990)
use such data to estimate reduced-form unemployment duration models 48. Lillard
(1993) and Lillard and Panis (1996) estimate marriage duration models with multi-
spell data. In these applications, the multiple spells with a given value of v are
associated with a single physical individual. There are also many applications in
which multiple spells with a given v are associated with different physical individuals
[see e.g., Kalbfleisch and Prentice (1980)]. The heterogeneity term is then assumed
to be identical across individuals within some group or stratum. Typically, different
individuals within a stratum are allowed to have different values of x. As we shall see
below, this may actually be very useful for inference 49. Recent applications include
Guo and Rodrı́guez (1992), Wang, Klein and Moeschberger (1995), Sastry (1997),
Ridder and Tunalı (1999) and Lindeboom and Kerkhofs (2000). Arroyo and Zhang
(1997) survey applications in the analysis of fertility. In studies on lifetime durations
of identical twins, the unobserved heterogeneity terms are often assumed to capture

48 Ham and Rea (1987) use a discrete-time model.
49 Indeed, with stratified partial likelihood inference, estimation of the systematic hazard q0 is driven
by the variation in x (see Subsection 6.2).
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unobserved genetic determinants, so then v is identical within twin pairs [see e.g.,
Hougaard, Harvald and Holm (1992a)].
To proceed, note that the individual hazard function q(t|x, v) is the same for both

durations associated with the “individual”. The value of x may differ between the
corresponding spells. If necessary we denote the values by x1 and x2, respectively.
Conditional on x and v, the two durations t1 and t2 are independent. Conditional on x,
the variables t1 and t2 are independent if there is no unobserved heterogeneity, i.e., if
v is not dispersed.
If q0(x) = exp(x′b) then

log
∫ t1

0
y(u) du = −x′1b − log v + e1,

log
∫ t2

0
y(u) du = −x′2b − log v + e2,

(26)

where e1 and e2 are i.i.d. EV1 distributed. Equations (26) suggest a similarity to
standard panel data models with fixed effects. We return to this below.
The joint density f (t1, t2|x) of t1 and t2 given x can be expressed as

f (t1, t2|x) =
∫ ∞

0

∫ ∞

0
f (t1|x1, v) f (t2|x2, v) dG(v), (27)

in which G denotes the joint distribution of v across “individuals” in the population.
The density f (ti|xi, v) can of course be expressed in terms of the determinants of q
(see Section 2). The joint survivor function of t1 and t2 given x can then be expressed
as

F(t1, t2|x) =
∫ ∞

0
e−[z(t1) q0(x1) + z(t2) q0(x2)]v dG(v).

In many applications, the individual likelihood contribution is based on the
density (27). In terms of panel data analysis, this means that the values of v are treated
as “random effects” when estimating the model with Maximum Likelihood50. An
alternative empirical approach treats v as individual-specific parameters or “incidental”
parameters. The likelihood function is then written for given unknown values of these
(and the other) parameters 51.

6.2. Identification results

One may distinguish between two approaches in the literature on identification of the
MPH model with multi-spell data. The first approach below is concerned with the full

50 Here, as in the model with single spells, standard maximization of the likelihood may be
computationally unfeasible for particular parametric specifications for G and y. In such cases, use
of the EM algorithm may be preferable [see Lancaster (1990) for details].
51 See Lancaster (2000a) for a general overview of incidental parameters in econometrics.
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identification of the model and relies on results that were discussed in Section 5. The
second approach is concerned with the identification of the systematic hazard q0 and
follows from properties of a particular estimation method.
We start with the first approach. Honoré (1993) shows that the MPH model with

multi-spell data is identified under much weaker assumptions than in Section 5. In
fact, we do not need to assume that there are observed explanatory variables x at all.
In other words, the analysis is conditional on a given value of x, and we may allow for
full interaction of the actual value of x with the model determinants: y may depend
on x in an unspecified way, and v and x may be dependent in the population. Note that
here x does not vary across spells for a given individual. We may write

q(t|x, v) = y(t|x) · v, v|x ~ G(v|x).

This includes of course as a special case that y(t|x) can be written as y(t) q0(x).
This model is identified given regularity assumptions corresponding to Assump-

tions 2–4, and given a normalization of the integrated baseline hazard (analogical
to Assumption 7). Thus, if two observations are available for each v, then the
identification of the model does not require an untestable assumption on the tail
of the unobserved heterogeneity distribution G anymore, and, perhaps even more
importantly, v and x are allowed to be dependent. The identification of this distribution
does not come anymore from the interaction between the duration and the observable
explanatory variables in the observed hazard. The identification does however need
proportionality of the duration effect and the unobserved heterogeneity term in the
individual hazard. It should be noted that this model is nevertheless overidentified;
see Subsection 8.2.2.

Example 9. Let y = 1 (so there is no duration dependence) and x1 = x2 (= x), and
suppose that v has a Positive Stable distribution (see Subsection 5.2). Such distributions
have infinite means. As we have seen, the resulting MPH model for single spells is
observationally equivalent to a PH model without unobserved heterogeneity and a
Weibull baseline hazard. However, it is easy to see that the joint survivor function
of t1 and t2 equals

F(t1, t2|x) = exp
(
−[q0(x)]a(t1 + t2)a

)
(with 0 < a < 1), whereas if there is no unobserved heterogeneity and the baseline
hazard has a Weibull specification (y(t) = ata−1) then

F(t1, t2|x) = exp
(
−[q0(x)]a(ta1 + t

a
2 )
)
,

so the two models are observationally distinct, even if q0 = 1.

Now let us turn to the second approach to identification, which focuses on the effect
of observed explanatory variables on the individual hazard function. The systematic
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hazard q0 is identified under very weak conditions if the data contain multiple spells
with the same value of v. This has been known for some time, for the reason that
a nonparametric estimation method exists for q0 in this setup [see Kalbfleisch and
Prentice (1980) and Chamberlain (1985)]. In fact, this estimation method is applicable
to a model setup that is more general than the MPH model. To proceed, it is useful
to distinguish between observed explanatory variables x∗ which do not vary within
strata, and observed explanatory variables x which do vary within strata. We assume
for expositional reasons that the hazard function is multiplicative in a part depending
on x∗ and a part depending on x. In particular,

q(t|x∗, x, v) = y(t|x∗, v) · q0(x), v|x∗, x ~ G(v|x∗, x). (28)

This specification allows for full interaction of the values of v and x∗ with the elapsed
duration t in the hazard function. This implies that we allow the baseline hazard to
differ across strata (i.e., across groups of spells with the same v). Moreover, v, x∗ and
x may be dependent. The basic idea of the estimation method is that a Cox partial
likelihood can be constructed within strata. For a given stratum, the partial likelihood
depends only on q0, and not on G or y or the values of v or x∗. These likelihoods can
be combined to construct an over-all partial likelihood which can be used to estimate
q0 (see the above references for details).
Clearly, the effects of the explanatory variables x∗ cannot be estimated from this. In

other words, to be able to estimate the effect of an observed explanatory variable with
this approach, it is essential that the values of the variable sometimes differ across
spells within a stratum. In case of two spells per stratum, this amounts to x1 Ñ x2. To
see this, note that within such a stratum,

Pr(t1 > t2|x1, x2, v) =
q0(x2)

q0(x1) + q0(x2)
,

which is only informative on q0 if x1 Ñ x2.
The within-stratum baseline hazard y as a function of t can subsequently be

estimated nonparametrically. Yamaguchi (1986) surveys these methods. Kalbfleisch
and Prentice (1980) and Ridder and Tunalı (1999) contain useful expositions on the
inclusion of time-varying covariates.
What does this “stratified partial likelihood” estimation approach imply for the

identification of q0 in the MPH model with multi-spell data? This function is identified
up to a multiplicative constant if q0, y and G in Equation (28) satisfy regularity
assumptions corresponding to Assumptions 1–4, and if x varies between spells within
strata. Again, we do not need independence of observed and unobserved explanatory
variables, and we do not need an assumption on the tail of the distribution of the
unobservables. Note that the identification result is valid under a specification of the
hazard function that is much more general than the MPH specification.
The approach of the previous paragraphs is particularly appealing if the individual v

are regarded as incidental parameters. With full ML, such parameters can in general
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not be estimated consistently if asymptotically the number of strata goes to infinity
with a fixed number of spells per stratum [Lancaster (2000a)]. In the above approach,
however, these parameters cancel out of the partial likelihood. Somewhat loosely one
may say that if multiple durations are available for each v, then duration analysis
becomes similar to standard dynamic panel data analysis, where one can get rid of
the so-called “fixed effects” before estimating the other parameters. This raises the
question to what extent first-differencing of the durations within strata can also be
applied to get rid of v. It seems that this is only feasible if the baseline hazard has
a particular functional-form specification, notably the Weibull specification. Assume
that the duration dependence is described by ata−1 for all spells and strata. In addition,
assume that v is the same for all spells in a stratum, and assume for convenience that
q0(xi) = exp(x′ib). For two spells t1, t2 within a stratum, with observed explanatory
variables x1 and x2, respectively, the difference of Equations (26) gives

log t1 − log t2 = −
b
a
(x1 − x2) +

e1 − e2
a

.

Note that e1 − e2 has a fully specified distribution (as the difference of two i.i.d.
EV1 random variables). Thus, with Weibull duration dependence, first-differencing
results in an equation from which the Weibull parameter and the systematic hazard
can be reliably estimated without the need to make any assumption on the unobserved
heterogeneity distribution. Indeed, v and x are allowed to be dependent.
The identification results discussed in this subsection have been of enormous

importance for applied duration analysis. If two observations are available for each v
then the identification of the model does not require an untestable assumption on the
tail of the unobserved heterogeneity distribution G anymore, and v and x need not
be independent anymore. We only need some fairly innocuous regularity assumptions
and normalizations (of course, in addition to proportionality assumptions on the hazard
function). The recent applied literature contains a number of studies showing that the
estimates of the parameters of interest are robust with respect to the functional-form
specification of G, in case of multiple observed durations for each v [see Nielsen
et al. (1992), Guo and Rodrı́guez (1992), Gönül and Srinivasan (1993) and Bonnal,
Fougère and Sérandon (1997)]. These results are in sharp contrast to those found for
the single-spell model (Section 5). It should also be noted that Hahn (1994) finds
that his result on singularity of the information matrix in the case of single-spell data
(see Subsection 5.6) does not carry over to the case of multi-spell data. Moreover, the
stratified partial likelihood estimators are

√
n-consistent.

We finish this section by mentioning an important caveat with multi-spell data.
This concerns the fact that the analysis of multi-spell data is particularly sensitive to
censoring. With single-spell data, many types of censoring are innocuous in the sense
that their effect can be captured by standard adjustments to the likelihood function
[see Andersen et al. (1993); recall also the discussion in Subsection 4.2]. With multi-
spell data, one has to be more careful. Consider the case where two durations t1 and
t2 follow each other in time, and where the data are subject to right-censoring at a
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fixed duration after the common starting point of the t1 durations. Then the moment
at which t2 is right-censored is not independent from t2 itself. To see this, consider
individuals for which v is large. For these individuals, t1 will on average be short. As
a result, t2 will on average start at a relatively early moment. This in turn implies that
t2 will often be right-censored at a relatively high duration. In sum, t2 and the variable
determining the moment at which it is censored are both affected by the unobserved
characteristic v. This violates the standard censoring assumptions of duration analysis
[see Visser (1996) for general results, and Keiding (1998)]. As a result, standard partial
likelihood estimation methods (like the one above) cannot be applied. Moreover, one
cannot estimate (characteristics of) the distribution of t2 in isolation from t1 [see Ridder
and Tunalı (1999) for an informative exposition]. With censoring in general, first-
differencing (like above) is not possible. Finally, the value of t1 may even affect the
probability that the beginning of the second spell is observed at all, in which case a
subsample of individuals for which both t1 and t2 are observed is selective (this is
even true if there is no unobserved heterogeneity) 52. Of course, with censoring, one
may still use standard ML estimation methods with random effects. However, if the
realization of t2 is often unobserved then the use of multi-spell data does not provide
much gain over the use of single-spell data. In sum, the less censoring in the data, the
larger the advantages of multi-spell data.

7. An informal classification of reduced-form multiple-duration models

In general one may think of many different ways to model a relation between duration
variables. In the applied econometric literature on the estimation of multiple-duration
models, the range of different models is actually not so large. In this section we provide
a rather informal model classification that covers most of the models used in practice 53.
The next sections examine the models in more detail. It should be stressed that we are
not concerned with abstract point processes where the durations between events can
be related for many reasons [see e.g., Snyder and Miller (1991) for a survey]. Also, we
are not concerned with the multiple-duration models in engineering where the lifetime
of a system depends on the lifetimes of its components. The latter models are often
not very useful to describe economic behavior [although they are an important input
in economic analyses of machine maintenance; see e.g., Ryu (1993)]. As we shall see,
some of the models that we consider are more natural when dealing with successive
spells in a given state or with successive spells in different states 54, whereas others
are more natural in the case of competing risks, and yet others are useful in all these

52 In a recent working paper, Woutersen (2000) develops consistent GMM-type estimators that deal
with a number of these problems, while treating unobserved heterogeneity as a fixed effect.
53 See Hougaard (1987) for an older classification, based on statistical model properties.
54 Again, what constitutes a state depends on the application at hand (i.e., depends on the relevant
underlying theoretical framework). It is possible that what in one application are regarded as multiple
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cases. In fact, the recent empirical literature often uses models that simultaneously
allow for two different types of dependence of the duration variables. The MPH model
with multi-spell data (Section 6) can also be interpreted as a multiple-duration model,
as it specifies the joint distribution of the durations in the spells that an individual
experiences. We shall see that this specification is in fact a special case of a popular
type of multiple-duration model. For expositional reasons we shall restrict ourselves
to two duration variables throughout the remainder of this chapter.

“Lagged” durations. The first popular type of dependence concerns an effect of a
realized past duration on the current hazard. This type of dependence was introduced
by Heckman and Borjas (1980). Suppose that two durations t1 and t2 each follow their
own PH model, with q1(t1|x1) = y1(t1) q0, 1(x1) and q2(t2|t1, x2) = y2(t2) q0, 2(x2) x(t1),
where t2 starts at or after the moment at which t1 is realized. Basically, this
dependence is modeled by including t1 as an additional covariate in the hazard for
t2. Usually, the underlying economic theory provides a causal interpretation for this
type of dependence 55. Because of the analogy to a regression model with lagged
endogenous variables among the explanatory variables, this dependence is sometimes
called “lagged-duration dependence”. Obviously, different types of restrictions can be
imposed on the model determinants q0, 1, q0, 2,y1, and y2. For example, if t1 and t2
denote durations in the same state then it may be imposed that y1 ≡ y2, x2 = x1,
and/or q0, 2(x2) = q0, 1(x1).
Instead of including the value of t1 in the individual hazard for t2, one may also use

an indicator of whether the individual has been in the state associated with t1 during
the year before the start of t2, or indeed any other realization of past behavior. In
applied labor economics, these types of dependence have been incorporated in reduced-
form models for the effects of labor market programs on subsequent unemployment
durations and employment durations. It should be stressed however that these studies
also allow for other dependencies; see below for examples.
Recently, in financial econometrics, lagged-duration dependence models have been

used for the analysis of durations between successive market events such as a buy or
sell of a security on a stock market [see e.g., Engle and Russell (1998) and Bauwens
and Giot (1998)]. In these models, the hazard function of the ith duration depends on
the realizations of previous durations by way of an autoregressive scheme. The baseline
hazard is assumed to have a Weibull specification with a single common parameter for
all durations.

durations in the same state, are regarded in another application as durations in different states. In practice,
for a given individual and a given definition of states, the specifications for the marginal distributions of
different spells in a given state are similar, whereas the specifications for the marginal distributions
of spells in different states do not contain common parameters or functions.
55 Here and elsewhere, the relation between the duration variables can be formulated by using the
concept of Granger-noncausality. However, for the basic models examined in this chapter, there is no
gain from doing this [see Abbring (1998)]. See Florens and Fougère (1996) for a formal analysis of
causality in more general continuous-time processes.
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Shocks. The second popular type of dependence concerns situations where two
durations occur simultaneously, and where the realization of one duration variable
has an immediate effect on the hazard of the other duration variable. This type of
dependence has been introduced by Freund (1961). To focus the mind, suppose that
the realization of t1 affects the level of the hazard of t2 afterwards. This can be
captured by the inclusion of an indicator of whether t1 is realized, as a time-varying
regressor in the hazard specification of t2. For example, the hazard of t2 can be
specified as y2(t2) exp(x′2b2 + dI(t1 < t2)), where I(·) denotes the indicator function,
which is 1 if its argument is true and 0 otherwise. From Subsection 4.2 we know that
such a specification requires conditions on t1. Anticipation by the individual of the
future realization of t1 is ruled out. Note that the individual is allowed to know the
(determinants of the) probability distribution of t1.
The underlying economic theory often provides a causal interpretation for the above

type of dependence. Obviously, t1 and t2 denote durations in different states, so it does
not make sense to impose restrictions across the two hazards.
In practice, it may be too restrictive to assume that the realization of t1 merely affects

the level of the hazard of t2. More generally, the realization may be allowed to affect the
whole shape of the hazard of t2 after the realization of t1 56. In applied econometrics,
such types of dependence have been incorporated in reduced-form models for the effect
of certain treatments 57 on worker labor-market behavior; we return to this below. In
addition, the model described above can be seen as a special case of models in which
an individual experiences different stochastic processes which affect each other by way
of shifts in the hazard for one process if the other process generates an event. The latter
type of models have been used to study the interaction between marital status, number
of children, health status, and labor market status. For example, if an unemployed
woman marries then her transition rate to employment may drop. It should again be
stressed that these studies often also allow for other types of dependence between the
duration variables; see below.

Related unobserved determinants. The third type of dependence between duration
variables concerns dependence by way of their unobserved determinants. Specifically,
consider two durations t1 and t2 which each follow their own MPH model, so
qi(ti|xi, vi) = yi(ti) q0, i(xi) vi, with i = 1, 2. Then the dependence between t1 and t2 given
x is modeled by allowing v1 and v2 to be related. In Subsection 8.1 below we provide
a more precise definition. This multivariate extension to the MPH model is called the
Multivariate Mixed Proportional Hazard (MMPH) model. This has in fact been the

56 In an empirical analysis of panel survey attrition, Van den Berg, Lindeboom and Ridder (1994)
examine a slightly different model in which there is a positive probability that t2 is realized immediately
after realization of t1. Here, t1 and t2 are the duration until the individual respondent makes a transition
to another labor market state, and the duration until attrition from the panel, respectively.
57 In biostatistics, q0 is often called the treatment effect if x captures whether the subject has received
a treatment at the beginning of the spell. Here, we avoid that terminology, and we reserve the term
“treatment” for treatments occurring during a spell.
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most popular multiple-duration model by far 58. Note that the relation between the du-
rations is spurious to the extent that it results from the fact that we do not observe vi.
The MMPH model applies to cases where the two durations occur simultaneously

(possibly with the same starting point) as well as to cases where they occur
successively. Again, different types of restrictions can be imposed on the model
determinants q0, 1, q0, 2,y1,y2, and the joint distribution G(v1, v2), depending on the
extent to which t1 and t2 represent durations in the same state. Clearly, the MPH model
of Section 6 with a single state and multi-spell data is the special case with
q0, 1 = q0, 2,y1 = y2, and v1 = v2.
The MMPH model is regarded as a convenient and flexible model for dependent

durations. Of course, there are often good reasons to suspect the presence of important
related unobserved determinants, and by now there is an abundant applied literature
in which MMPH models are estimated. In the econometric contributions to this
literature, the variety of types of states and durations that are considered is vast.
Flinn and Heckman (1982b, 1983), Coleman (1990) and Rosholm (1997) estimate
MMPH models for the durations of unemployment, employment, etc., in order to
study transition rates between different labor market states. Generally, the unobserved
determinants of the durations spent in different states are allowed to be related, and the
unobserved determinants of different durations spent by an individual in the same state
are assumed to be identical. In their studies of attrition in longitudinal panel survey
data Van den Berg, Lindeboom and Ridder (1994), Carling and Jacobson (1995) and
Van den Berg and Lindeboom (1998) estimate MMPH models for the joint durations
of labor-market spells (like a spell of unemployment or a job spell) and the duration
of panel survey participation. Lillard and Panis (1998) include attrition in a similar
way in their model for the joint durations of marriage, non-marriage, and life. Note
that this approach to attrition is in line with the popular modeling setup for sample
selection introduced by Heckman (1979).
As we saw in Section 6, MPH models are sometimes estimated under the assumption

that the unobserved heterogeneity term is identical across different physical individuals
within some group or stratum. Sastry (1997) extends this setup by allowing each
individual to belong to two groups with different aggregation levels (families and
towns). There is unobserved heterogeneity across each type of group. This effectively
amounts to an MMPH specification for the durations of members of different families
living in the same town. Similarly, the approach in studies on lifetime durations where
the unobserved heterogeneity terms are assumed to be identical across siblings can be
generalized to allow v1 and v2 for siblings to be a sum of a common determinant and an
independent person-specific component (see e.g., Petersen (1996), Yashin and Iachine
(1997) and Zahl (1997) for applications] 59. Such a specification for G has gained less

58 Flinn and Heckman (1982b) provide an early analysis of this model.
59 The applications of this paragraph illustrate a disadvantage of the “multi-state/multi-spell”
terminology: sometimes two spells are in the same state but one does not want to impose that the
unobserved heterogeneity terms are identical, so that the multi-spell setup of Section 6 does not apply.
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popularity in econometrics for the obvious reason that in econometric applications the
association of unobserved heterogeneity to genetic factors is less compelling.

Combinations of dependencies. The presence of related unobserved determinants is
particularly important if one is interested in one of the other two types of dependence
that we described above. The estimate of the causal effect will be biased if one ignores
the spurious dependence that results from the related unobserved determinants. To deal
with this, the empirical model should take account of this spurious dependence. The
model should allow both for a causal effect and for related unobserved heterogeneity.
As examples of a combination of lagged duration dependence and related unob-

served heterogeneity, see Heckman, Hotz and Walker (1985), who allow “lagged”
durations between the births of previous children to affect the hazard of the duration
of the current birth interval, and who allow for correlated unobserved heterogeneity
as well [see Omori (1997) and Lancaster (2000b) for other examples]. Lillard (1993),
Lillard and Panis (1996), Abbring, Van den Berg and Van Ours (1997), Eberwein, Ham
and LaLonde (1997) and Van den Berg, Van der Klaauw and Van Ours (1998) analyze
models where the realization of one duration variable has an immediate effect on the
hazard of the other duration variable, allowing for related unobserved heterogeneity in
order to deal with selectivity. Let us examine them in somewhat more detail. Abbring,
Van den Berg and Van Ours (1997) and Van den Berg, Van der Klaauw and Van
Ours (1998) study the effect on the exit rate out of unemployment of a punishment
for insufficient search effort. The duration until punishment is modeled by way of
an MPH model, and the exit rate out of unemployment permanently shifts to another
level at the moment the punishment is applied. Lillard (1993) estimates a model for the
joint durations of marriage and time until conception of a child, and his model allows
the rate at which the marriage dissolves to shift to another level at moments of child
birth. Lillard and Panis (1996) estimate a model on the joint durations of marriage,
non-marriage, and life, and their model allows the death rate to shift to another level at
moments of marriage formation and dissolution. Eberwein, Ham and LaLonde (1997)
estimate a (discrete-time) model for the effect of participation in training programs on
individual labor market transitions, and they allow the exit rate out of unemployment
to shift to another level at the moment of inflow into the program. See Van den
Berg, Holm and Van Ours (2001) for a similar analysis in continuous time. In all
these applications, we need to rule out anticipations of the realizations of t1, but the
individual is allowed to know the (determinants of the) probability distribution of t1.
In the applied literature on the effects of training on unemployment durations,

“training” is often regarded to be a separate labor market state, and the effect of training
on subsequent labor market transitions can then be captured by a model with lagged-
duration dependence (or a model where the fact that one has had any training is allowed
to affect subsequent transitions). In order to deal with selectivity of those who enrol in
training, it is important to allow for related unobserved heterogeneity terms affecting
the inflow into training as well as the other transition rates. Gritz (1993) and Bonnal,
Fougère and Sérandon (1997) contain sophisticated examples of such analyses. Ham
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and LaLonde (1996) use experimental data to estimate models for the effects of training
on individual labor market transition rates.
In the absence of unobserved heterogeneity, the specification, identification, and ML

estimation of models with lagged-duration dependence is relatively straightforward.
The same holds for models with changes in the hazard of one duration in response
to realization of the other duration [given appropriate assumptions on the direction
of the causality; see Florens and Fougère (1996)]. However, models with related
unobserved heterogeneity terms are less transparent. In the next section we therefore
examine MMPH models in detail. Subsequently, in Section 9, we briefly examine the
models where related unobserved heterogeneity is combined with a “causal” effect
of one duration on the other (that is, we examine a combination of lagged duration
dependence and unobserved heterogeneity, and a combination of a shift in the hazard
and unobserved heterogeneity).

Some theoretical considerations. We finish this section by stressing that, like in
Section 4, it is often not clear to what extent the reduced-form specifications of the
dependence between two durations can be justified by economic-theoretical models.
This is particularly true for models where the hazard of one duration immediately
changes in response to the realization of the other duration. In many cases, individuals
may anticipate the realization of the other duration, and the moment at which the
anticipation starts is often unobserved. In applications this has to be examined
carefully.
In the analysis of MMPH models, as a rule, the assumed parametric family of the

joint unobserved heterogeneity distribution G(v1, v2) treats v1 and v2 in a symmetric
way: given the unknown parameters of G, the role of v1 and v2 in G(v1, v2) can be
interchanged without changing G. In particular, if G is continuous then the supports
of v1 and v2 are assumed to be the same, and if G is discrete then the numbers of
points of support are assumed to be the same for v1 and v2. It is sometimes difficult to
justify such symmetric distributions with economic theory. If, according to the theory,
individuals improve their situation when ending one spell and starting another, then the
characteristics associated with the second spell should be “superior” in some sense to
those of the first spell. If v1 represents the characteristics of the first spell and v2 of the
second, then this suggests that the support of v2 should depend on the realization of
v1. Consider for example the on-the-job search model discussed in Subsection 5.5.3.
If one observes two consecutive job spells and if the wages are unobserved, then the
unobserved heterogeneity term of the second spell exceeds the term of the first spell.
Unfortunately, such bivariate heterogeneity distributions have not yet been studied [see
Koning et al. (2000) for an application in a structural analysis of an on-the-job search
model].
Finally, we address whether the hazards of different durations of the same individual

depend on the same set of explanatory variables or not. Economic theory often predicts
that both hazards depend on the individual’s behavior, and that the forward-looking
individual’s optimal strategy depends on all structural determinants. For example, in
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a job search model with two possible employment destination states, the decision on
whether to accept a job offer depends on the arrival rates and wage offer distributions
of both types of employment, regardless of the employment type of the actual offer [see
Thomas (1998)]. In such cases, if the observed explanatory variables are characteristics
of the individual himself, then it does not make sense to exclude elements of x from one
hazard that are included in the other hazard. In other words, in such cases, x1 = x2 [note
incidentally that this provides an argument against the assumption that unobserved
heterogeneity is independent across spells for a given individual; see also Lillard
(1993)]. In the event that the researcher observes a determinant of one of the hazards
whereas this determinant is assumed to be unobserved by the individual, then it makes
sense to include this determinant only in the corresponding hazard. Finally, if one
hazard is mechanical and independent of the individual’s behavior then obviously it
does not need to depend on the determinants of the other hazard [see Van den Berg
(1990b) and Ryu (1993) for examples].

8. The Multivariate Mixed Proportional Hazard model

8.1. Definition

In this subsection we define the MMPH model. Next, Subsection 8.2 deals with
identification of this model under different situations with respect to the timing of
the two underlying spells. We assume that the situation is either such that both
durations always start at exactly the same point of time, or that one duration necessarily
follows the other. In Subsection 8.3 we discuss parametric specifications for the
joint distribution of unobserved heterogeneity and the degree of flexibility of the
corresponding models.
For the sake of convenience, we again use the term “individual” to denote the subject

that experiences certain spells. In the first situation with respect to the timing of the
spells (starting at the same time) we consider the population of individuals in the
inflow into the states corresponding to the duration variables, whereas in the second
situation (successive durations) we consider the population of individuals in the inflow
in the state corresponding to the first duration. Flinn and Heckman (1982b), Chesher
and Lancaster (1983) and Ham and LaLonde (1996) consider less “ideal” sampling
designs.
We assume that all individual differences in the hazard function of t1 can be

characterized by observed explanatory variables x and unobserved characteristics v1.
Similarly, all individual differences in the hazard function of t2 can be characterized
by observed explanatory variables x and unobserved characteristics v2. (Of course, one
may impose exclusion restrictions on the set of elements of x that is allowed to affect
the systematic hazard q0, i(x) associated with exit i.) For an individual with explanatory
variables x, v1, v2, the hazard functions of t1 and t2 conditional on x, v1, v2 are denoted
by q1(t1|x, v1) and q2(t2|x, v2). The MMPH model is now defined by
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Definition 2. MMPH model: There are functions y1, y2, q0, 1, q0, 2 such that for every
t1, t2, x, v1, v2 there holds that

q1(t1|x, v1) = y1(t1) · q0, 1(x) · v1, q2(t2|x, v2) = y2(t2) · q0, 2(x) · v2. (29)

For convenience, we take y1, y2, q0, 1, q0, 2, v1, v2 and the distribution G of v1, v2 in the
population to satisfy the regularity assumptions that correspond to Assumptions 1–4
for y, q0, v, G in the MPH model.
Conditional on x, v1, v2, the durations t1 and t2 are independent. Conditional on x,

the variables t1 and t2 are only dependent if v1 and v2 are dependent. So, in the case of
independence of v1 and v2, the model reduces to two unrelated ordinary MPH models
for t1 and t2.
In terms of a regression specification with q0, i(x) = exp(x′bi), this model can be

rewritten as

log
∫ t1

0
y1(u) du = −x′b1 − log v1 + e1,

log
∫ t2

0
y2(u) du = −x′b2 − log v2 + e2,

(30)

where e1 and e2 are i.i.d. EV1 distributed, but where v1 and v2 may be related.
Now consider the joint distribution of t1 and t2 given x. The joint density f (t1, t2|x)

can be expressed as

f (t1, t2|x) =
∫ ∞

0

∫ ∞

0
f1(t1|x, v1) f2(t2|x, v2) dG(v1, v2),

in which we already implicitly assume that v1, v2 are independent of x, and in which
the probability density function of ti|x, vi is for convenience denoted by fi(ti|x, vi).
The latter density can of course be expressed in terms of the determinants of qi (see
Section 2). Let zi(ti) denote the integrated baseline hazard associated with ti. The joint
survivor function of t1 and t2 can then be expressed as

F(t1, t2|x) =
∫ ∞

0
exp(−z1(t1) q0, 1(x) v1 − z2(t2) q0, 2(x) v2) dG(v1, v2).

In many applications, the individual likelihood contribution is based on the density
above (that is, if the unobserved heterogeneity terms are not treated as incidental
parameters). In terms of panel data analysis, this means that v1, v2 are treated as
“random effects” when estimating the model with Maximum Likelihood.

8.2. Identification results

In this subsection we consider identification results for the MMPH model. It is
important to stress that no parametric functional form assumptions are made on the
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underlying functions q0, i, yi and G, so, as in Subsection 5.2, we are concerned with
nonparametric identification.

8.2.1. Competing risks

Recall from Subsection 8.1 that we consider two different situations with respect to
the timing of the two spells. In the first situation, both spells start at the same point
of time for a given individual, and the individual is observed until the first duration is
completed. This is called a competing-risks model, as one may envisage the individual
having two options to leave the current state, and the realization of one option is
necessary and sufficient for leaving the state. In the second situation with respect to the
timing of the spells, the two spells cannot overlap. Moreover, in the second situation
both durations can be followed until completion, so there is more information available
than in the first situation (see Subsection 8.2.2 below).
In the competing-risks setting, the data provide information on min{t1, t2} and on

argmini ti (i.e., on which duration is the one that ends first). So assume that the data
provide the distribution of this “identified minimum”. It is well known that this does
not suffice to identify the most general competing-risks model (with an arbitrary joint
distribution for t1, t2, without covariates). In particular, for every model with dependent
t1, t2 there is an observationally equivalent model with independent t1, t2 [see e.g.,
Lancaster (1990)].
Now let us assume that t1 and t2 are generated by an MMPH model with

regularity assumptions corresponding to Assumptions 1–4. As in Subsection 5.2, some
additional assumptions are needed for identification. These include the equivalents
of Assumption 5 (so x is independent of v1, v2), Assumption 7 (normalizations), and
Assumption 8 (E(vi) < ∞). In addition, we need to strengthen Assumption 6 on the
dispersion of x.

Assumption 9. Variation in observed explanatory variables in the competing-risks
setting: The functions q0, 1(x), q0, 2(x) attain all values in a set (0, q0, 1)× (0, q0, 2) with
0 < q0, 1, q0, 2, when x varies over the set X of possible values of x.

If q0, i(x) = exp(x′bi) then sufficient for this is that x has two continuous covariates
which affect both hazards qi but with different coefficients for different i, and which
are not perfectly collinear. Moreover, in the population, these covariates must attain
all values ranging to minus infinity.
Heckman and Honoré (1989) prove the nonparametric identification of the model

under these assumptions. In fact, they strengthen Assumption 9 by taking q0, i = ∞,
because they examine a class of models that is somewhat more general than the class
of MMPH models [see Abbring and Van den Berg (2000b)]. In any case, note that
Assumption 9 is stronger than Assumption 6 on the range of values that q0 attains
in the MPH model. This is not surprising. However, it is important to note that the
identification does not require exclusion restrictions on the hazard specification of
either duration. Moreover, identification does not require parametric functional form
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restrictions on the distribution of unobserved heterogeneity. In the case of binary data
on the “identified minimum” (i.e., it is observed which duration ends first but not
when) such restrictions are necessary to achieve identification. This illustrates the fact
that the timing of events in duration data provides a valuable source of information
concerning the underlying model.
It is interesting to obtain some insight into the identification of whether the durations

are dependent or not, since this distinguishes the above identification result from the
earlier literature in which competing risks models without covariates were examined.
In the sequel of this subsection we use T1,T2 to denote the random duration variables,
and t1, t2 to denote realizations of these. We define

q∗
1 (t1|x,T2 > t1),

to be the hazard of the duration T1 at the value t1, conditional on x and conditional on
the duration T2 exceeding t1. More generally, the hazard q∗

1 (t1|x,T2 > t2) corresponds
to the conditional distribution of T1|x,T2 > t2. We evaluate this hazard for given t1
and t2, and in fact we take t2 = t1. Obviously, the hazard q∗

2 (t2|x,T1 > t2) can be
defined analogically. It is important that the “conditional” hazards q∗

1 (t1|x,T2 > t1)
and q∗

2 (t2|x,T1 > t2) are observable quantities, as they can be expressed in terms of
the distribution of the data. (Note that the “marginal” hazards qi(ti|x) are unobserved
due to the competing risks setting.)
If v1 and v2 are independent, then

q∗
1 (t1|x,T2 > t1) = q1(t1|x) and q∗

2 (t2|x,T1 > t2) = q2(t2|x).

The assumption in Heckman and Honoré (1989) on the values that can be attained by
q0, i(x) implies that q0, 1(x) and q0, 2(x) are not perfectly related, and that there is some
independent variation in both. As a result, if v1 and v2 are independent then q0, 2(x)
does not affect q∗

1 (t1|x,T2 > t1), and q0, 1(x) does not affect q∗
2 (t2|x,T1 > t2).

Now let us examine what happens if v1 and v2 are dependent. It is straightforward
to show that

q∗
1 (t1|x,T2 > t1) =

Ev
[
q1(t1|x, v1) exp

(
−
∫ t1
0 q1(u|x, v1) du −

∫ t1
0 q2(u|x, v2) du

)]
Ev

[
exp

(
−
∫ t1
0 q1(u|x, v1) du −

∫ t1
0 q2(u|x, v2) du

)] ,

with qi as in Equation (29), and with Ev denoting the expectation with respect to the
bivariate distribution G(v1, v2). If we differentiate this with respect to q0, 2(x) then the
resulting expression has the same sign as

−Cov(v1, v2|x,T1 > t1,T2 > t1)

(provided that t1 > 0). If v1 and v2 are dependent then in general there are many values
of t1 such that the above expression is nonzero.
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In sum, the derivative of q∗
1 (t1|x,T2 > t1) with respect to q0,2(x) and its mirror

image for t2 are informative on the dependence or independence of the unobserved
heterogeneity terms. This is intuitively very plausible. If the systematic hazard of t2
does not directly affect the individual hazard of t1 but does affect the observed hazard
of t1 then this indicates that there is a spurious relation between the durations by way
of their unobserved determinants. It should again be stressed that this is not based on
an exclusion restriction in the usual sense of the word. All explanatory variables are
allowed to affect (the means of) both duration variables – they are just not allowed to
affect the whole duration distributions in the same way60.
The above results are based on the availability of “single-spell” data. In the present

context, this means that for each individual in the sample there is one observation of
the “identified minimum” (which consists of min{t1, t2} and argmini ti). Now suppose
that the individual-specific value of the v1, v2 pair is invariant over time. In a recent
working paper Abbring and Van den Berg (2000b) show that some of the assumptions
made by Heckman and Honoré (1989) can be weakened substantially if the data provide
multiple observations on the identified minimum for each individual.

8.2.2. Successive durations

If the two spells are successive, and both durations can be followed until completion,
then the data provide the joint distribution F(t1, t2|x). In fact, it is merely for
expositional reasons that we take the spells to be successive: if they occur (partly)
simultaneously and are both observed until completion then the results of this
subsection are valid as well, provided that the durations satisfy the model as defined
in Subsection 8.1.
The most general model specification does not impose restrictions across the

marginal duration distributions, so it allows for y1 Ñ y2, q0, 1 Ñ q0, 2, and v1 Ñ v2.
For both marginal hazard functions in this model we make regularity assumptions
corresponding to Assumptions 1–4. In addition, we adopt the equivalents of the
Assumptions 5–8 that were made to identify the MPH model. Honoré (1993) shows
that under these assumptions the MMPH model is identified. (Assumptions 6 and 8
may be jointly replaced by Assumptions 6b and 8b.)
This result is not surprising, because the data on ti|x identify the determinants of

the MPH model for ti (which are yi, q0, i and the marginal distribution of vi), provided
that the assumptions for identification of this MPH model are satisfied. The relation
between v1 and v2 is subsequently identified from the observed relation between t1 and
t2 given x.
Sometimes it makes sense to impose a priori restrictions across the marginal duration

distributions. The most restrictive specification imposes that y1 = y2, q0, 1 = q0, 2,

60 Of course, the q0, i(x) are not directly observed. Heckman and Honoré (1989) identify these by
examining data at zero durations. Whether this can be used to construct a useful test statistic on
independence remains to be seen.
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and v1 = v2. We already know from Section 6 that this model is identified under
weak assumptions. Now let us consider an intermediate case in which we impose that
v1 = v2 but allow the baseline hazards y1 and y2 to be different. In addition, we do not
assume that there are observed explanatory variables x. In other words, the analysis is
conditional on a given value of x, and we allow for full interaction of the actual value
of x with the model determinants: yi may depend on x in an unspecified way, and v
and x may be dependent in the population (from this point of view we do not consider
an “intermediate” case, as this generalizes the MMPH specification). Thus,

qi(t|x, v) = yi(t|x) · v, v|x ~ G(v|x).

This includes of course as a special case that yi(t|x) can be written as yi(t) q0, i(x). We
make regularity assumptions corresponding to Assumptions 2–4. Honoré (1993) shows
that this model is identified, provided that a normalization is imposed on the integrated
baseline hazard (analogical to Assumption 7). Note that we do not need to make
assumptions corresponding to the previously made Assumptions 5, 6 and 8. Perhaps
the most important issue here is that identification does not require independence
of v and x. In many applications, such independence is difficult to justify. Like in
Section 6, if unobserved heterogeneity values are identical across different durations
then the model is similar to a standard dynamic panel data model.

8.3. Specification of the bivariate unobserved heterogeneity distribution

8.3.1. Dimensionality

The types of justifications used for parametric functional forms of G in MPH models
are often unavailable for MMPH models. This is particularly true for the choice of
a specification for the dependence of v1 and v2. In this subsection we focus on the
choice of the dimensionality of the distribution of G (or more accurately, the dimension
of the support of G). In Subsection 8.3.2 we then examine the types of dependence
that can be generated by different parametric functional forms for a G with a given
dimensionality.
The so-called “one-factor loading specification” has been a popular specification

for a bivariate distribution of unobserved heterogeneity terms in MMPH models [see
Flinn and Heckman (1982b, 1983) for early applications, and Heckman, Hotz and
Walker (1985), Heckman and Walker (1987, 1990) and Bonnal, Fougère and Sérandon
(1997) for subsequent applications]. This specification reduces the dimensionality of
the distribution G from 2 to 1. In particular, it assumes that there is a univariate random
variable z such that

vi = exp(ai + giz) i = 1, 2. (31)

(Note that this z does not refer to the integrated baseline hazard here.) This
specification can be straightforwardly generalized to a higher number of different
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durations as well as a higher dimension of the random variable z. If z is two-
dimensional then we obtain a “two-factor loading specification”, etc.
The two (related) advantages of the “factor loading specifications” are (1) they

restrict the number of unknown parameters, leading to a sparse specification, and
(2) they limit the computational burden of the estimation of the model. The number
of parameters related to G equals the number of parameters of the distribution of
z, plus the number of ai and gi parameters, minus normalizations. This typically
increases linearly with the number of different durations n. If v1, . . . , vn has a genuine
multivariate distribution then the number of parameters related to G typically increases
quadratically with n. To illustrate the computational advantage, consider the case where
log v1, . . . , log vn has a multivariate normal distribution. The evaluation of the joint
density function of t1, . . . , tn then requires the evaluation of an n-dimensional integral.
However, if the vi are related by a one-factor loading specification then the integral is
one-dimensional. See for example Bonnal, Fougère and Sérandon (1997), where n = 8.
Note that computational burden is less of a problem in the case of discrete vi and n
smaller than, say, 4.
Hougaard (1987) stresses that it is too restrictive to assume that v1 ≡ v2 if

the corresponding spells do not concern the same state. If (i) v1 ≡ v2, and
(ii) both durations are always observed, and (iii) each duration is described by
an identified MPH model, then the full unobserved heterogeneity distribution is
completely identified from data on only one of the durations. We now show that
somewhat similar problems may arise in the case of a one-factor loading specification
for G.
Indeed, the main disadvantage of the one-factor loading specification concerns

the relation it imposes on the marginal duration distributions on the one hand, and
the dependence of the durations on the other. If Var(v1) > 0 and Var(v2) > 0
then it automatically follows that Cov(v1, v2) Ñ 0. So if the data provide evidence
for unobserved heterogeneity in the marginal distributions of t1 and t2, then the
model implies that these durations must be dependent. Similarly, if the durations are
independent, then the model implies that there is no unobserved heterogeneity for at
least one of the durations. If the dependence between the durations changes, then
necessarily the marginal duration distributions change as well. Lindeboom and Van
den Berg (1994) show in detail that these may amount to serious restrictions on the
specification of the full model.
To illustrate this issue, suppose that the distribution of z belongs to a parametric

family of distributions with two parameters: a location parameter m and a scale
parameter s (for example, z has a normal distribution with parameters m and s ). Then

z = m + s z̃,

where z̃ has a completely specified distribution. By substituting this into Equation (31),
it is clear that we can only identify a1 + g1m, a2 + g2m, g1s and g2s . This implies that
in effect we only have two parameters at our disposal to capture the 3 second moments
of log v1, log v2 (which are Var(log v1), Var(log v2) and Cov(log v1, log v2)).
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8.3.2. The dependence between the durations

In this subsection we examine the dependence of the two duration variables in the
MMPH model. For this purpose we use some summary measures of the association
between two random variables. For a given association measure we focus on two issues:
first, which range of values of this association measure can be attained by the MMPH
model in general, and secondly, to what extent is this range further narrowed if G is
assumed to belong to specific families of distributions. The first issue is of importance
for a comparison of the MMPH model to other models for the dependence between
duration variables. The second issue is of importance for a comparison of the flexibility
of different families of heterogeneity distributions, and to obtain insight into the range
of bivariate models that can be generated by a specific G. The results in this subsection
are from Van den Berg (1997).
The regression-type specification of the MMPH model (see Equation 30) suggests

that Corr(log z1(t1), log z2(t2)|x) may be an interesting summary measure of the
association between t1 and t2. Unfortunately it turns out that for our purposes it
is not, because it can attain every value in (−1, 1) for given baseline hazards, by
choosing an appropriate G. Moreover, it can attain every value in (−1, 1) within the
popular parametric families of distributions for G. Consider instead Corr(t1, t2|x), and
assume for the moment that the baseline hazards are constant. The correlation of the
duration variables is informative on the strength of the linear relationship between these
variables. It is a commonly used measure that is readily understood. Here, it equals

Corr(t1, t2|x) =
Cov( 1v1 ,

1
v2
)∏2

i = 1

[
Var( 1vi ) + E(

1
v2i
)
]1/2 . (32)

Note that it does not depend on x and that its sign equals the sign of Corr(1/v1, 1/v2).
Van den Berg (1997) shows that

− 13 < Corr(t1, t2|x) < 1
2 ,

regardless of the values of q0, 1(x) and q0, 2(x), and regardless of the shape of G(v1, v2)
(but provided that the right-hand side of Equation (32) exists). The inequalities
are sharp in the sense that they can be approached arbitrarily closely by choosing
appropriate G.
The result above (and most of the results below) can be easily generalized to models

with Weibull baseline hazards. In that case, the upper and lower bound depend on the
parameters of the baseline hazard, but they are always strictly between −1 and 1, and
the lower bound is always closer to zero than the upper bound 61.

61 Similar results can be derived for bivariate accelerated failure time models and bivariate duration
models in discrete time, notably the discretized (i.e., rounded-off) bivariate MPH model and the rather
popular bivariate discrete-time duration model in which the exit probabilities have logistic specifications.
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In the empirical literature, the most frequently used families of distributions for
v1, v2 are (1) the family of bivariate discrete distributions with two points of support
for v1 and for v2, and (2) the family of bivariate normal distributions for log v1, log v2.
These families include as special cases the one-dimensional distributions with perfect
correlations (these can be represented by the one-factor loading specification 31).
Coleman (1990), Van den Berg, Lindeboom and Ridder (1994), Carling and Jacobson
(1995), and Van den Berg and Lindeboom (1998) adopt multivariate discrete
distributions for G 62, whereas Butler, Anderson and Burkhauser (1986), Lillard (1993),
Xue and Brookmeyer (1996), Lillard and Panis (1996, 1998) and Ng and Cook (1997)
adopt multivariate normal distributions 63. It turns out that in the discrete case, every
value in (− 13 ,

1
2 ) can be attained. By implication, this is also true in the case of more

than two points of support for each vi. In the normal case, Corr(t1, t2|x) can only attain
values in [−3 + 2

√
2, 12 ), where the lower bound equals about −0.17.

The lower bound −13 is attained for a discrete distribution for v1, v2 such that
Pr(v1 = c1, v2 = ∞) = Pr(v1 = ∞, v2 = c2) = 1

2 , with 0 < c1, c2 < ∞ 64. In that
case, the bivariate distribution of t1, t2|x is such that, with probability 1

2 , t1|x is zero
and t2|x has an exponential distribution, and with probability 1

2 this holds with t1 and
t2 interchanged. We conclude that in an MMPH model these (and similar) duration
distributions cannot be generated if log v1, log v2 has a normal distribution, which may
be a disadvantage of the latter if one is interested in a flexible specification 65.
For the general model as well as within the parametric families discussed above, the

distributions that give the largest and smallest possible value of Corr(t1, t2|x) are such
that log v1 and log v2 are perfectly correlated. This means that the range of values for
Corr(t1, t2|x) is the same as in the case of a one-factor loading model (see Equation 31)

62 Engberg, Gottschalk and Wolf (1990) estimate a bivariate discrete-time duration model in which the
individual per-period exit probabilities are logistic functions of yi(ti) q0, i(x) vi , and in which G has a
bivariate discrete distribution. Meghir and Whitehouse (1997) estimate a similar discrete-time model,
with a genuine bivariate discrete distribution, but with probit specifications for the exit probabilities.
Heckman, Hotz and Walker (1985), Heckman and Walker (1987, 1990) and Gritz (1993) adopt discrete
distributions for z in a one-factor loading specification. Card and Sullivan (1988), Mroz and Weir
(1990), Ham and LaLonde (1996) and Eberwein, Ham and LaLonde (1997) estimate discrete-time
bivariate duration models with logistic probabilities and a one-factor loading specification for z with a
discrete distribution.
63 Flinn and Heckman (1982b, 1983) and Bonnal, Fougère and Sérandon (1997) adopt normal
distributions for z in a one-factor loading specification. In a sensitivity analysis, the latter study also
adopts a discrete distribution for z.
64 This should not be interpreted as an advantage of discrete random variables for v1, v2 vis-à-vis
continuous random variables, for one can construct families of bimodal continuous distributions for G
such that − 13 can be approached arbitrarily closely.
65 Butler, Anderson and Burkhauser (1989) assume v1, v2 to have a bivariate discrete distribution with
points of support that are fixed in advance. This means that the only parameters of G to be estimated
are the probabilities associated with these points of support. This can be shown to narrow the range of
values of Corr(t1, t2|x) as well, in particular if the points for v1 or v2 are chosen to be relatively close
to one another [see Van den Berg (1997) for examples].
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with an appropriate distribution of z. In other words, a reduction of the class of G
to one-factor loading specifications does not further restrict the range of values that
Corr(t1, t2|x) can attain 66. From this point of view, one-dimensional random variation
in the unobserved heterogeneity terms is sufficient for maximum flexibility in terms
of the correlation of the durations.
As an alternative measure of association, consider Kendall’s t (or “Kendall’s

coefficient of concordance”). This is the most popular global ordinal measure of
association in the literature on multivariate durations [see e.g., Genest and MacKay
(1986), Oakes (1989) and Guo and Rodrı́guez (1992)]. There are several equivalent
ways to formally define it. The definition given by Kendall (1962) is particularly useful
for general multivariate duration models,

t(t1, t2|x) = 4E(F(t1, t2|x)) − 1,

where the expectation is taken with respect to F(t1, t2|x) itself. Kendall’s t only attains
values in [−1, 1]. It is an ordinal measure, and it is informative on the strength of
any monotone relation. It equals 1 (−1) if and only if t2 is a monotone increasing
(decreasing) function of t1. Because it is invariant under monotone transformations of
the random variables, the value of t(t1, t2|x) in the MMPH model does not depend of
the baseline hazards or on the values of the systematic hazards (so the baseline hazards
can be taken as constants, and the conditioning on x can be omitted). As a result, it
only depends on the distribution G of the unobserved heterogeneity terms, which is
exactly the part of the model that causes the dependence of the durations.
For convenience, assume that G(v1, v2) follows a one-factor loading specification,

i.e., suppose Equation (31) holds. It turns out that all values between −1 and 1 can
be attained by t(t1, t2), within any family of continuous distributions for z. However,
if z (and therefore vi) is restricted to have a discrete distribution with n points of
support (n = 2, 3, . . . , ∞), then

−1 + 1
n < t(t1, t2) < 1 −

1
n .

These inequalities are sharp in the sense that they are approached arbitrarily
closely for appropriate values of the parameters in the one-factor loading specifica-
tion (31).
The results for t are clearly quite different from those for the correlation coefficient.

This is because t detects linear and nonlinear monotone relations alike, and it
does not depend on the relative magnitudes of the duration variables, but only
on their ordering. The fact that the range of values of t(t1, t2) is restricted for
discrete distributions with finite n can be explained as follows. In this case, the
population can be subdivided into a finite number of groups of individuals, and

66 Note that if v1 ≡ v2 then this range reduces to (0, 1/2).
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within these groups, all individuals are the same in terms of their v1 and v2. This
implies that there is a positive probability that two random drawings of t1 and t2
are from the same group. Now consider all observations for a single group. Because
they all have the same v1 and v2, there is no relation at all between t1 and t2
within the group. This restricts the population value of t(t1, t2). It does not affect
the range of values of Corr(t1, t2|x) because the “within-group” lack of correlation
can be made quantitatively unimportant by making the “between-group” differences
large.
In all cases, the bounds for t(t1, t2) are attained by “spreading out” the heterogeneity

distribution as much as possible. If z is continuous then the resulting bivariate
distribution of t1, t2|x is such that all probability mass is on a single curve for t1
and t2. We conclude that in an MMPH model such a duration distribution cannot be
generated if z has a discrete distribution with a finite number of points of support.
This suggests that it is useful in empirical applications to try to increase the number
of mass points.
We finish this subsection by noting that in applications it may also be interesting to

examine the dependence of the residual duration variables if one conditions on survival
up to a certain duration. It may also be interesting to examine how the (non-causal)
effect of the realization of one duration variable on the hazard rate of the other changes
with the realized value of the first duration variable. Oakes (1989), Anderson et al.
(1992), Hougaard, Harvald and Holm (1992b) and Yashin and Iachine (1999) provide
analyses for the general case, and they also discuss how the dependence patterns are
affected by the functional form of G.

9. Causal duration effects and selectivity

9.1. Lagged endogenous durations

In this subsection we briefly examine bivariate duration models with lagged-duration
dependence as well as mutually related unobserved heterogeneity terms. Recall from
Section 7 that such models have been used to study the impact of the length of an
unemployment spell on the length of the next unemployment spell. Also recall that
the estimate of the effect of the previous duration is biased if one ignores the spurious
dependence from related unobserved determinants.
In terms of the hazards, the model specification reads

q1(t1|x, v1) = y1(t1) · q0, 1(x) · v1,
q2(t2|t1, x, v2) = y2(t2) · q0, 2(x) · x(t1) · v2,

(33)

and we make the following regularity assumption on the function x:

Assumption 10: The function x(t) is positive for every t ∈ [0,∞).
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If v1 and v2 are independent, then, conditional on x, the durations t1 and t2 are only
dependent if x(t1) is not a constant. In the general case, the joint density of t1 and t2
given x is straightforwardly expressed as

f (t1, t2|x) =
∫ ∞

0

∫ ∞

0
f1(t1|x, v1) f2(t2|t1, x, v2) dG(v1, v2),

in obvious notation. Note that if one allows for more than two consecutive spells then in
practice there may be initial-conditions problems, as one may not observe the duration
of the first spell.
If both durations can be followed until completion, then the data provide the joint

distribution F(t1, t2|x). Honoré (1993) shows that this model is identified from these
data, under some conditions. For both marginal hazard functions in this model we make
regularity assumptions corresponding to Assumptions 1–4, and we adopt regularity
Assumption 10. In addition, we adopt the equivalents of Assumptions 5, 6b and 7 on
vi, q0,i and yi 67. We also normalize the function x, and we replace the equivalent of
Assumption 8 by a slightly different assumption:

Assumption 11. Normalization: For some a priori chosen t0, it holds that x(t0) = 1.

Assumption 12. Tails of the joint unobserved heterogeneity distribution:
E(v1) < ∞ and E(v1v2) < ∞.
Sufficient for Assumption 12 is that E(v2i ) < ∞ for i = 1, 2. In sum, we adopt Assump-
tions 1–4, the equivalents of Assumptions 5, 6b and 7, and Assumptions 10−12.
Here, as in the model with successive durations and v1 Ñ v2 (Subsection 8.2.2),

identification requires assumptions on the tails of the distributions of v1 and v2 (notably,
finiteness of moments), and it requires that the individual hazards are proportional in t
and x. It is plausible that these assumptions can be substantially weakened if the data
provide multiple observations on t1, t2 for each v1, v2 pair [see Woutersen (2000) for
results].

9.2. Endogenous shocks

In this subsection we examine bivariate duration models with the property that the
hazard of the duration t2 moves to another level at the moment at which the other
duration t1 is completed, with mutually related unobserved heterogeneity terms. Recall
from Section 7 that such models have been used to study the effect of punishments and
training on the exit rate out of unemployment and the effect of marriage dissolution
on the death rate. Also recall that the estimate of the change of the hazard is biased if
one ignores the spurious dependence from related unobserved determinants. Finally,

67 In fact, the differentiability condition in Assumption 6b can be weakened to continuity here.
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recall that we need to rule out anticipations of the realizations of t1, but the individual
is allowed to know the (determinants of the) probability distribution of t1.
We adopt a framework where the two durations start at the same point of time,

and where the realization of t1 affects the shape of the hazard of t2 from t1 onwards.
The data provide observations of t2 and x. If t1 is completed before t2 then we also
observe t1; if not then we merely observe that t1 exceeds t2. The model and data are
thus distinctly asymmetric in the two durations. Somewhat loosely, one may say that
t2 is the “main” duration, or the “endogenous duration of interest”, whereas t1 is an
“explanatory” duration, and the causal effect of t1 on t2 is the “treatment effect”.
In terms of the hazards, the model specification reads

q1(t1|x, v1) = y1(t1) · q0, 1(x) · v1,
q2(t2|t1, x, v2) = y2(t2) · q0, 2(x) · edI(t1 < t2) · v2,

(34)

where I(·) denotes the indicator function, which is 1 if its argument is true and 0
otherwise. If v1 and v2 are independent, then, conditional on x, the durations t1 and t2
are only dependent if d Ñ 1. In the general case, the joint density of t1 and t2 given x
is straightforwardly derived as in the previous subsection.
In a recent working paper Abbring and Van den Berg (2000a) provide identification

results for this model. In fact, they allow d to depend on past observables. These
results are similar to those for Subsection 9.1 in that they require independence of x
from v1, v2, and they require an assumption on the first moments of v1, v2. If multiple
observations are available for each v1, v2 pair then such assumptions are not needed.
Contrary to models of binary treatments and binary outcomes, the treatment

effect d is identified without the need to rely on exclusion restrictions or parametric
functional-form assumptions regarding the distribution of v1, v2. In particular, the
set of explanatory variables affecting q0,1 does not have to be larger than the set
affecting q0,2, and the joint distribution of v1, v2 can be any member of a broad
nonparametric class of distributions. These results imply that the timing of events
conveys useful information on the treatment effect. This information is discarded in a
binary framework. In conclusion, duration analysis is useful for the study of treatment
effects in non-experimental settings 68, 69.

10. Conclusions and recommendations

Since the early 1980s the econometric analysis of duration variables has become
widespread. This chapter has provided an overview of duration analysis, with an

68 The model of this subsection does not allow the size of the treatment effect to depend on unobserved
heterogeneity. Given the recent interest in heterogeneity of treatment effects [see e.g., Heckman, LaLonde
and Smith (1999)], it is a challenge for future research to incorporate this into duration analysis. See
Abbring and Van den Berg (2000a) for results on this.
69 Robins (1998) analyzes treatment effects in a different type of duration models where unobserved
determinants of the duration of interest may vary over time and may depend on the treatment.
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emphasis on the specification and identification of duration models, and with special
attention to models for multiple durations.
We have seen that the hazard function of the duration distribution is the focal point

and basic building block of econometric duration models. Properties of the duration
distribution are generally discussed in terms of properties of the hazard function.
The individual hazard function and the way it depends on its determinants are the
“parameters of interest”. This approach is dictated by economic theory. Theories that
aim at explaining durations focus on the rate at which the subject leaves the state at a
certain duration given that the subject has not done so yet. In particular, they explain
this exit rate in terms of external conditions at the point of time corresponding to that
duration and in terms of the underlying economic behavior of the subject given that
he is still in the state at that duration.
The Mixed Proportional Hazard model and its special cases are by far the most

popular duration models based on a specification of the hazard function. We have seen
that the recent mathematical-statistical literature on counting processes has formulated
conditions under which time-varying explanatory variables can be included in MPH
models in such a way that one can still perform valid econometric inference with
standard methods.
The MPH model and its special cases are often regarded to be useful reduced-

form models for duration analysis. The resulting estimates are then interpreted with
the help of some economic theory. Unfortunately, the proportionality assumption of
the (M)PH model can in general not be justified on economic-theoretical grounds.
However, if the optimal strategy of the individual is myopic (e.g., because of repeated
search, or because the discount rate is infinite), then this proportionality can often be
deduced from economic theory.
The MPH model is nonparametrically identified from single-spell data, given an

assumption on the tail of the unobserved heterogeneity distribution, like finiteness of
its mean. However, the model is nonparametrically unidentified if such an assumption
is dropped. Moreover, the adoption of a model that is observationally equivalent to
(but different from) the true model leads to incorrect inference on the parameters of
interest. This is bad news, as it is often difficult to make any justified assumption on the
tail of the unobserved heterogeneity distribution. In applications where the unobserved
heterogeneity term represents an important economic variable, economic theory might
provide a justification of the finite mean assumption.
Let the finite mean assumption be satisfied. The observed hazard function of the

duration given the observed explanatory variables is nonproportional, meaning that it
cannot be expressed as a product of a term depending only on the elapsed duration
and a term depending only on the observed explanatory variables. With single-spell
data, the unobserved heterogeneity distribution in MPH models is identified from
the interaction between the duration and the explanatory variables in the observed
hazard, or, in other words, from the observed type of nonproportionality of the
observed hazard. However, unobserved heterogeneity can not generate just any type
of interaction. The class of models for the observed hazard that is generated by
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MPH models is smaller than the general class of interaction models for the observed
hazard. In other words, the MPH model is overidentified with single-spell data.
In MPH models, the sign of the interaction between the duration and the

explanatory variables in the observed hazard is affected by the type of unobserved
heterogeneity distribution. However, under weak conditions, the sign is always negative
at small durations regardless of the type of heterogeneity distribution. If unobserved
heterogeneity has a Gamma distribution, then the interaction is negative at all durations
and all values of the systematic part of the hazard function. If unobserved heterogeneity
has a discrete distribution with two positive mass points then the interaction is negative
at small durations and positive at large durations.
In MPH models, the effect of an explanatory variable on the observed hazard can

be negative at some durations even if the explanatory variable has a positive effect on
the underlying individual (or systematic) hazard. This means that it is not possible to
deduce the sign of the effect of the explanatory variable on the underlying individual
hazard from the observed effect of the variable on the observed hazard at certain
durations. Fortunately, this remarkable effect can only occur for some local duration
intervals.
By now, there is overwhelming evidence that with single-spell data, minor changes

in the assumed parametric specification of the MPH model, while leading to a
similar over-all fit, may produce very different parameter estimates. Also, very
different models may generate similar data. Estimation results from single-spell data
are sensitive to misspecification of the functional forms associated with the model
determinants, and this sensitivity is stronger than usual in econometrics. In the absence
of strong prior information on the model determinants, single-spell data do not enable
a robust assessment of the relative importance of these determinants as explanations
of random variation in the observed durations. Therefore, interpretations based on
estimation results are often unstable and should be performed with extreme caution.
In biostatistics, this state of affairs has led to a renewed interest in Accelerated

Failure Time models as alternative reduced-form duration models for the analysis of
single-spell duration data. From an econometric point of view, the AFT approach is
unsatisfactory, because it does not focus on the parameters of the individual hazard as
the parameters of interest. However, if one is only interested in the sign or significance
of a covariate effect on the individual durations then the AFT approach may be useful.
In practice, it may be useful to exploit predictions from the underlying economic

theory when specifying the duration model, by imposing these as restrictions on the
functional form of the heterogeneity distribution or the baseline hazard. It may be even
more useful to look for data with multiple spells (see below). Now suppose that these
options are not available. Concerning the baseline hazard, the conceived wisdom is
that a piecewise constant specification is then the most useful. Such a specification is
flexible and convenient from a computational point of view. Concerning the unobserved
heterogeneity distribution, it may be useful to start off with an informal examination of
the sign of the interaction in the observed hazard. If it is negative at all durations then
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a Gamma distribution may give a better fit whereas if it is positive at large durations
then a discrete distribution may give a better fit.
By now, the empirical analysis of MPH models with multi-spell duration data

is widespread. Basically, if two observations are available for each unobserved
heterogeneity value, then the identification of the model does not require an untestable
assumption on the tail of the unobserved heterogeneity distribution anymore, and,
perhaps even more importantly, observed and unobserved explanatory variables are
allowed to be dependent. The identification of this distribution does not come anymore
from the interaction between the duration and the observable explanatory variables in
the observed hazard. Data on multiple spells for the same individual therefore remove
the identification problems associated with single-spell data. Moreover, a consensus has
emerged that multi-spell data allow for reliable inference that is robust with respect
to the specification of the unobserved heterogeneity distribution. Multi-spell duration
data make duration analysis more similar to dynamic panel data analysis. It should
however be stressed that the analysis of multi-spell data is particularly sensitive to
censoring.
The chapter pays special attention to models for multiple durations. Here, the

marginal duration distributions need not be the same. In general one may think of
many different ways to model a relation between duration variables. In the applied
econometric literature on the estimation of multiple-duration models, the range of
different models is actually not so large. Typically, the models allow for dependence
between the duration variables by way of their unobserved determinants, with each
single duration following its own MPH model. In addition to this, the model may
allow for a “causal” effect of one duration on the other, as motivated by an underlying
economic theory. The first popular type of causal effect concerns an effect of a realized
past duration on the current hazard. Basically, this is modeled by including the realized
past duration as an additional covariate in the hazard for the current duration. The
second popular type of causal effect concerns situations where two durations occur
simultaneously, and where the realization of one duration variable has an immediate
effect on the hazard of the other duration variable. This includes models of treatment
effects in the presence of selectivity and in the absence of exclusion restrictions.
For such models, identification results have been derived which are similar in

contents to those for MPH models with single-spell data. The identification conditions
can be weakened substantially if multiple observations are available for each value of
the heterogeneity pair, or if cross-restrictions are imposed on the distributions of the
two durations in the multiple duration model.
The multiple-duration model where the marginal duration distributions each

satisfy an MPH specification, and the durations can only be dependent by way
of their unobserved determinants, is called the Multivariate Mixed Proportional
Hazard (MMPH) model. In the empirical analysis with such models it is important
to assume a genuine multivariate distribution for the unobserved heterogeneity
terms. Here, “genuine” means that there is no deterministic relation between any
two heterogeneity terms. More restrictive specifications, like the one-factor loading
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specification, impose cross-restrictions on the marginal duration distributions and the
dependence of the durations. In such cases, if the data provide evidence for unobserved
heterogeneity in the marginal duration distributions, then the model implies that these
durations must be dependent. Similarly, in such cases, if the durations are independent,
then the model implies that there is no unobserved heterogeneity for at least one of
the durations.
Factor loading specifications have been popular because they restrict the number of

unknown parameters, leading to a sparse specification, and they limit the computational
burden of the estimation of the model. However, the latter can also be achieved by
adopting a (multidimensional) discrete distribution for the unobserved heterogeneity
terms. In fact, discrete heterogeneity distributions are particularly flexible, in the
sense that they are able to generate a relatively wide range of values for the
association measures of the corresponding durations. In empirical applications with
MMPH models, it is therefore useful for computational reasons and for reasons
of flexibility to assume a multidimensional discrete distribution for the unobserved
heterogeneity terms. One may then try to increase the number of mass points. If
the number of duration types is relatively large then one may reduce the number of
parameters of the multidimensional discrete distribution somewhat by imposing, say,
a two-factor loading structure.
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Abstract

Until recently, inference in many interesting models was precluded by the requirement
of high dimensional integration. But dramatic increases in computer speed, and the
recent development of new algorithms that permit accurate Monte Carlo evaluation
of high dimensional integrals, have greatly expanded the range of models that can be
considered. This chapter presents the methodology for several of the most important
Monte Carlo methods, supplemented by a set of concrete examples that show how the
methods are used.
Some of the examples are new to the econometrics literature. They include

inference in multinomial discrete choice models and selection models in which
the standard normality assumption is relaxed in favor of a multivariate mixture of
normals assumption. Several Monte Carlo experiments indicate that these methods are
successful at identifying departures from normality when they are present. Throughout
the chapter the focus is on inference in parametric models that permit rich variation
in the distribution of disturbances.
The chapter first discusses Monte Carlo methods for the evaluation of high

dimensional integrals, including integral simulators like the GHK method, and Markov
Chain Monte Carlo methods like Gibbs sampling and the Metropolis–Hastings
algorithm. It then turns to methods for approximating solutions to discrete choice
dynamic optimization problems, including the methods developed by Keane and
Wolpin, and Rust, as well as methods for circumventing the integration problem
entirely, such as the approach of Geweke and Keane. The rest of the chapter deals
with specific examples: classical simulation estimation for multinomial probit models,
both in the cross sectional and panel data contexts; univariate and multivariate latent
linear models; and Bayesian inference in dynamic discrete choice models in which the
future component of the value function is replaced by a flexible polynomial.

Keywords

Bayesian inference, discrete choice, dynamic optimization, integration, Markov chain
Monte Carlo, multinomial probit, normal mixtures, selection models
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1. Introduction

There are many inferential problems in econometrics for which the evaluation of
high dimensional integrals is essential. The example most familiar to econometricians
is perhaps the classical estimation of discrete choice models, such as multinomial
probit (MNP), when the number of alternatives is large. Construction of the likelihood
function for a discrete choice model requires evaluation of the choice probabilities
generated by the model. Those choice probabilities take the form of integrals over
regions of the disturbance space such that particular choices are generated. In familiar
models like MNP, if there are J alternatives in the choice set the disturbance space is
J − 1 dimensional, and evaluation of J − 1 dimensional integrals is in general required.
For small J this is computationally feasible using highly accurate series expansions or
quadrature methods, which we will not discuss in this chapter. But for large J such
highly accurate numerical methods are computationally infeasible, and the Monte Carlo
methods which are the subject of this chapter become essential 1.
While discrete choice models have received the most attention to date, there are

many other and no less important instances in econometrics where the need for
high dimensional integration arises. A prime example is in Bayesian inference where
evaluation of posterior distributions of model parameters (as well as other posterior
moments of interest) often requires high dimensional integration even when evaluation
of the likelihood does not. For instance, consider models with latent variables or other
nuisance parameters that must be integrated out to form the marginal posterior of the
parameters of interest. The order of integration required to form this marginal posterior
will equal the number of latent variables and/or nuisance parameters. Another example
is the evaluation of marginal likelihoods – the integral of the likelihood with respect to
the prior density of the model parameters – which are critical in Bayesian analysis for
comparing the plausibility of different models. Clearly these integrals have dimension
equal to the number of model parameters, and, except in very special cases where they
have closed forms, they must be evaluated numerically.
Another important area in which difficult integration problems arise is in models

of economic agents who solve optimization problems that include discrete control
variables. Inference in such models generally requires that the econometrician solve,
at many points in the feasible parameter space, the optimization problem assumed to
be solved by the agents. This requires that the value functions at each point in the
state space of the problem be calculated, and these value functions are typically high
dimensional integrals.
Yet another area of interest is in state space models, leading examples of which are

stochastic volatility models. In such models the variance of the stochastic terms is a

1 The order of integration that is feasible using quadrature methods is a function of the speed of available
computers. At the present time the boundary appears to be at about J = 3 or 4, although there is some
controversy on this point.
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latent variable which itself follows a stochastic process. If this process exhibits serial
correlation, the likelihood for any history of the dependent variables takes the form
of a T dimensional integral over the density of the time period specific values of the
variance term, where T is the number of time periods.
Until recently, inference in many interesting models was precluded by the require-

ment of high dimensional integration. But dramatic increases in computer speed, and
the recent development of new algorithms that permit accurate Monte Carlo evaluation
of high dimensional integrals, have greatly expanded the range of models that can be
considered. This chapter will present the methodology for several of the most important
Monte Carlo methods, supplemented by a set of concrete examples that show how the
methods are used.
Some of the examples we present are new to the econometrics literature and in our

view rather significant. For instance, we show how to conduct inference in multinomial
discrete choice models and Heckman selection models in which the standard normality
assumption is relaxed in favor of a multivariate mixture of normals assumption. Several
Monte Carlo experiments indicate that these methods are successful in identifying
departures from normality when they are present.
Throughout this chapter our focus is on inference in parametric models that

permit rich variation in the distribution of disturbances. We take this approach for
several reasons. First, there are many instances in economics in which a complete
model – including distributions for all the relevant stochastic terms – is needed to
predict behavior. One example is a risk averse, expected utility maximizing agent
choosing between two risky income streams: expected utility will depend on the whole
distribution of shocks to each income stream. Another is discrete choice: the effect
on choice probabilities if a covariate or policy variable is changed will depend on
the entire probability distribution of the shock to latent utility. A second reason for
taking this approach is that it is natural to use Bayesian methods in connection with
these likelihood based procedures, and to use Bayes factors to discriminate between
different models of interest and to provide a practical but well grounded guide for the
number of parameters to be used in a given application. These procedures lead to high
dimensional integration problems. The good news is that methods developed in recent
years to attack these problems have led to practical strategies within the reach of most
applied econometricians.
The outline of this chapter is as follows. In Section 2 we discuss Monte Carlo

methods for the evaluation of high dimensional integrals, including integral simulators
like the GHK method, and Markov Chain Monte Carlo methods like Gibbs sampling
and the Metropolis–Hastings algorithm. Section 3 discusses methods for approximating
solutions to discrete choice dynamic optimization problems, including the methods
developed by Keane and Wolpin (1994) and Rust (1997), as well as methods for
circumventing the integration problem entirely, such as Geweke and Keane (1995).
Sections 4 through 7 discuss the application of the integration methods from Sections 2
and 3 to a number of inferential problems. Section 4 deals with classical simulation
estimation for multinomial probit models, both in the cross sectional and panel data
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contexts. Section 5 discusses Bayesian inference in univariate latent linear models.
The emphasis is on computational methods that allow the normality assumption to be
relaxed in favor of more flexible mixture of normals and Student-t error structures.
Section 6 extends the methods of Section 5 to a multi-equation setting. Section 7
considers Bayesian inference in a dynamic discrete choice model in which the future
component of the value function is replaced by a flexible polynomial.

2. Monte Carlo methods of integral approximation

A generic problem that arises often in econometrics is to evaluate an integral of the
form

E [g(x)] =
∫
S
g(x) p(x) dx, (2.1)

where x ∈ S ⊆ Rk and p(·) is a probability density function (p.d.f.) with support
on S. Two leading circumstances in which these problems arise are latent or limited
dependent variable models (regardless of the method of inference) and Bayesian
inference (regardless of the kind of model).
The multinomial probit model provides a classic example of this problem. Suppose

that an individual derives utility uj from choices j = 1, . . . , J − 1, utility 0 from
choice J , and u = (u1, . . . , uJ − 1)′ ~ N (m,S). Then the probability of making
choice j is of the form (2.1), with k = J − 1, x = u, g(u) = 1 if and only if
uj ¾ ui(i = 1, . . . , J − 1) and uJ ¾ 0, and p(u) is the p.d.f. of the N (m,S) density.
Perhaps the most obvious Monte Carlo method of integral approximation in this

example is to draw u(m)
i.i.d.
~ N (m,S) (m = 1, . . . , M ) and set ḡ(M ) = M −1

∑M
m = 1 g(u

(m)).
Then ḡ(M ) −→a.s. ḡ ≡ E[g(x)] and M 1/2

(
ḡ(M ) − ḡ

)
→d N [0, ḡ(1 − ḡ)]. But this crude

frequency simulator, discussed by Albright, Lerman and Manski (1977) and Lerman
and Manski (1981), has well known practical problems: for example, if a nonlinear
function of the choice probability is important, as it is in evaluating a likelihood
function, then a great many simulations may be required, and if choice probability
is small then the approximation of the log choice probability may be quite difficult.
We shall revisit this problem more than once in this chapter.
Bayesian inference begins from a data density p( y|qA,A) in which y ∈ RT denotes

the observable data, qA ∈ QA ⊆ Rk is a vector of unknown parameters, and A
indexes the model. Given a prior density p(qA|A), the model implies the joint density
p( y, qA|A) = p(qA|A) p( y|qA,A). Then the marginal likelihood of the observed data
y = yo conditional on A is

p( yo|A) =
∫
QA
p( yo|qA,A) p(qA,A) dn (qA), (2.2)
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and the posterior density of qA given the data yo in model A is

p(qA| yo,A) = p( yo|qA,A) p(qA|A)/p( yo|A). (2.3)

Typically there is a vector of interest, separate from the particular model A, of the
form w ∈ W ⊆ R°. For example, w could be a future event, the consequence of a
conjectured change in policy, an aspect of tastes like risk aversion, or an aspect of
technology like returns to scale. If the model A has implications for this vector, these
implications can be expressed p(w| y, qA,A). The expectation of any function h(w)
given the data yo, conditional on the model A is

E[h(w)| yo,A] =
∫
W

∫
QA
h(w) p(w| yo, qA,A) p(qA| yo,A). (2.4)

Expression (2.4), which includes most Bayesian inference, implicitly carries forward
the integration problem in Equation 2.2, by means of Equation 2.3, as well as the
integration shown in Equation 2.4.
The most obvious method of Monte Carlo integration in Equation 2.4 would be

to draw q (m)A ~ p(qA|A), y(m) ~ p( y|q (m)A ,A), w(m) ~ p(w| y(m), q (m)A ,A). If y is
discrete and p( y = yo|A) is not too small, this procedure is practical. But if this
probability is small, or if y is continuous so that with probability one y(m) Ñ yo

for all m, then Equation 2.4 cannot be approximated in this way. Kernel density
methods can, in principle, cope with this problem. Let K(u) be a function with property∫∞
−∞ K(u) du = 1 and let d( y1, y2) be a measure of distance between any two
yi ∈ RT . The kernel-smoothed frequency simulator approximates Equation (2.4) by
cM a∑M

m = 1 K[d( y
o, y(m))/cM a]h(w(m)) where 0 < a < 1

2 , a =
1
5 gives optimal results

in some circumstances, and the choice of c is problematic. The approximation is
consistent in simulation size M . [Tapia and Thompson (1978, Chapter 2) provides
analytic detail and practical guidance.] The real difficulty with this procedure is
that kernel density methods are only practical up to dimension 3 or 4; beyond that,
the number of simulations M required is too great. Of course, T is typically much
larger than 3 or 4.
An approach that eliminates the dimensionality of y as a stumbling block is to take

q (m)A ~ p(qA|A), draw w(m) ~ p(w| yo, q (m)A ,A), and then average h(w(m)) weighted
by the likelihood function p( yo|qA,A). This method is an example of importance
sampling, because it makes draws from an incorrect distribution (here, p(qA|A) rather
than p(qA| yo,A) ), and makes a weighting correction (here, p( yo|qA,A) ) to adjust for
the discrepancy. Importance sampling was first suggested in Bayesian econometrics
by Kloek and van Dijk (1978), and is further treated by Geweke (1989, 1996). It
is practical only in situations where qA has only a few elements and the likelihood
function is not too concentrated relative to the prior density. In the vastly more common
situation in which these conditions are not met, practically all draws q (m)A ~ p(qA|A) are
far from the support of the likelihood function and nearly all the weights p( yo|q (m)A ,A)
are negligible.
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These two examples share the common feature that the obvious simulations
have good large sample simulation properties, but are impractical given foreseeable
computing power. Several approaches have been developed that successfully cope with
these and related problems. One approach is to find independent, identically distributed
simulation schemes that concentrate on the support of the distributions, thus addressing
the problem directly. An example of this approach, applied to the first example, is
given in Section 2.1. Often it is impossible to find such i.i.d. simulations, and in this
circumstance Markov chain Monte Carlo simulates have proven very effective. The
rest of this section is devoted to this approach to Monte Carlo integration.
What follows covers only selected points. More detailed recent surveys include

Hajivassiliou and Ruud (1994) and Geweke (1996, 1999). Sections 2.2 through 2.7
are based closely on Geweke (1999, Section 3).

2.1. Independence sampling

In the generic problem (2.1) the crude frequency simulator is x(m) ~ p(x),
g(m) = g(x(m)) (m = 1, . . . , M ), and the simulation approximation of ḡ = E[g(x)]
is ḡ(M ) = M −1

∑M
m = 1 g

(m). The accuracy of this approximation is governed by
M 1/2(ḡ(m) − ḡ) →d N (0, s 2) so long as the second central moment s 2 = varp(g) =∫
S[g(x) − ḡ]

2p(x) dx exists. The difficulty pointed out in the two examples presented
above is the size of s 2, relative to ḡ and the purposes at hand.
More sophisticated independence Monte Carlo approximations to ḡ can be con-

structed by finding g∗ and p∗ such that p∗ is a p.d.f. from which it is practical to draw
i.i.d. synthetic variates, and E[g(x)] =

∫
S g

∗(x) p∗(x) dx (compare Equation 2.1). The
accuracy of approximation is governed by the same central limit theorem but now with
s 2∗ = varp∗ (g∗) in place of s 2. The choice

p∗(x) = p(x) g(x)/ ḡ, g∗(x) = ḡ,

would drive s 2∗ to zero. This choice is impractical, because it requires us to solve the
problem analytically in order to construct the simulator and leaves open the question
of how to draw i.i.d. synthetic variates from p∗. However, it correctly suggests that
very large increases in the accuracy of the Monte Carlo approximation may often be
attained in this way. [For a general approach to reducing s 2∗ , see Geweke (1988)].
To see how more sophisticated independence sampling schemes can be constructed,

return to the multinomial probit example introduced at the start of this section. In
order to motivate the class of iterative conditional probability simulators, consider the
general situation in which x′ = (x1, . . . , xn) has p.d.f. p(x1, . . . , xn). We wish to find
P[ai ¶ xi ¶ bi (i = 1, . . . , n)] for some set of pairs of extended real numbers (ai, bi)
where ai < bi (i = 1, . . . , n). A specific example of such a problem is the multinomial
probit model above. The specific task of evaluating the probability of choice j, for
j < J , corresponds to taking n = J − 1 and defining A: n× n by setting aii = −1 (i Ñ j)
and aij = 1 for i = 1, . . . , n and setting all other elements of A to 0. Then take x = Au,
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ai = 0 and bi = +∞ (i = 1, . . . , n), and take f to be the p.d.f. of the N (Am,AS A′)
distribution.
Let the random variable x̃1 be drawn from the marginal distribution of x1 subject

to a1 ¶ x1 ¶ b1, and let x̃j be drawn from the conditional distribution of xj given
x̃1, . . . , x̃j − 1 subject to aj ¶ xj ¶ bj ( j = 2, . . . , n − 1).

Theorem 2.1.1.

P[ai ¶ xi ¶ bi (i = 1, . . . , n)]

= P(a1 ¶ x1 ¶ b1) · E
[
n∏
i = 2

P(ai ¶ xi ¶ bi|x̃1, . . . , x̃i − 1)
]
.

Proof: Let

p∗(x̃j|x̃1, . . . , x̃j − 1) = p(xj|x̃1, . . . , x̃j − 1)c(aj , bj)(xj)/
∫ bj

aj

p(xj | x̃1, . . . , x̃j − 1) dxj ,

denote the density of x̃j given x̃1, . . . , x̃j − 1 subject to aj ¶ xj ¶ bj .

E

[
n∏
i = 2

P(ai ¶ xi ¶ bi|x̃1, . . . , x̃i − 1)
]

=
∫ b1

a1

· · ·
∫ bn − 1

an − 1

P(a2 ¶ x2 ¶ b2|x̃1)P(a3 ¶ x3 ¶ b3|x̃1, x̃2)

· · ·P(an − 1 ¶ xn − 1 ¶ bn − 1|x̃1, . . . , x̃n − 2)P(an ¶ xn ¶ bn|x̃1, . . . , x̃n − 1)
· p∗(x̃1)p∗(x̃2|x̃1) · · · p∗(x̃n − 2|x̃1, . . . , x̃n − 3) p∗(x̃n − 1|x̃1, . . . , x̃n − 2)
dx̃1dx̃2 · · · dx̃n − 2dx̃n − 1.

(2.5)

The integral over x̃n − 1 in the portion of expression (2.5) involving that term is∫ bn − 1

an − 1

P(an ¶ xn ¶ bn|x̃1, . . . , x̃n − 2, x̃n − 1) p∗(x̃n − 1|x̃1, . . . , x̃n − 2) dx̃n − 1

= P(an ¶ xn ¶ bn|x̃1, . . . , x̃n − 2; an − 1 ¶ xn − 1 ¶ bn − 1) .

Substituting the last expression, the integral over x̃n − 2 and x̃n − 1 in the portion of
expression (2.5) involving those terms is∫ bn − 2

an − 2

P(an ¶ xn ¶ bn|x̃1, . . . , x̃n − 2; an − 1 ¶ xn − 1 ¶ bn − 1)

· P(an − 1 ¶ xn − 1 ¶ bn|x̃1, . . . , x̃n − 2) p∗(x̃n − 2|x̃1, . . . , x̃n − 3) dx̃n − 2
= P

[
ai ¶ xi ¶ bi(i = n − 1, n)|x̃1, . . . , x̃n − 3; an − 2 ¶ xn − 2 ¶ bn − 2

]
.
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Proceeding in this way, the integral over x̃j , . . . , x̃n − 1 in the portion of expression (1)
involving those terms is∫ bj

aj
P
(
ai ¶ xi ¶ bi(i = j + 2, . . . , n)|x̃1, . . . , x̃j; aj + 1 ¶ xj + 1 ¶ bj + 1

)
· P

(
aj + 1 ¶ xj + 1 ¶ bj + 1|x̃1, . . . , x̃j

)
p∗(x̃j|x̃1, . . . , x̃j − 1) dx̃j

= P
[
ai ¶ xi ¶ bi(i = j + 1, . . . , n)|x̃1, . . . , x̃j − 1; aj ¶ xj ¶ bj

]
.

At j = 1 the last expression becomes P[ai ¶ xi ¶ bi (i = 2, . . . , n)]; multiplying by
P(a1 ¶ x1 ¶ b1) gives the result. ƒ

This result can be used to construct a practical simulator so long as it is easy to evaluate
P(ai ¶ xi ¶ bi) and to draw x̃j from the conditional distribution of xj given x̃1, . . . , x̃j − 1
subject to aj ¶ xj ¶ bj( j = 2, . . . , n − 1). Iteration m of the algorithm consists

of drawing x̃(m)1 , . . . , x̃
(m)
n − 1 in succession, computing P

(
aj ¶ xj ¶ bj|x̃(m)1 , . . . , x̃

(m)
j − 1

)
( j = 2, . . . , n), and taking g(m) = P(a1 ¶ x1 ¶ b1)

∏n
j = 2 P

(
aj¶ xj¶ bj|x̃(m)1 , . . . , x̃

(m)
j − 1

)
.

The approximation of g = P [ai ¶ xi ¶ bi(i = 1, . . . , n)] after M steps of this
algorithm is ḡ(M ) = M −1

∑M
m = 1 g

(m). Using the central limit theorem, the standard

error of approximation for g is M −1/2
[
ḡ(M )

(
1 − ḡ(M )

)]1/2
and that for log(g) is

M −1/2
[(
1 − ḡ(M )

)
/ ḡ(M )

]1/2
If the xi are mutually independent, then the error of

approximation is zero. This limiting case establishes a class of situations in which
the iterative conditional probability simulator provides dramatic increases in accuracy
over the crude frequency simulator: the variates xi are nearly independent, and the
probability g is small. In both the crude frequency and iterative conditional probability
simulators, E

[
g(m)

]
= g and 0 ¶ g(m) ¶ 1. The crude frequency simulator maximizes

var
[
g(m)

]
over this class of independent g(m). Therefore, the iterative conditional

probability simulator is always more efficient than the crude frequency simulator, in
this class of problems, given the same number of iterations M . Whether it is more cost
efficient may be an open question, since it could be more time consuming to execute
than the crude frequency simulator for the same number of iterations.
If p(x) is multivariate normal, as in the multinomial probit example, then

the distributions in question are truncated univariate conditional normals, whose
parameters are straightforward to derive [see Keane (1990, 1993, 1994), Geweke
(1991), Borsch-Supan and Hajivassiliou (1993)]. Drawing from these distributions is
also straightforward, although it is important not to use naive acceptance sampling from
the unconstrained normal distribution [Geweke (1991)]. Further discussion is provided
by Hajivassiliou, McFadden and Ruud (1996) and public domain software is available
at http//:www.econ.umn.edu/˜bacc.

2.2. The Gibbs sampler
The Gibbs sampler is an algorithm that has been used with noted success in many
econometric models. It is one example of a wider class of procedures known as
Markov chain Monte Carlo (MCMC). MCMC constructs a Markov chain whose unique
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invariant distribution corresponds to the p.d.f. of the problem at hand. In the context of
Equation (2.1) the invariant distribution has density p(x) with respect to Lebesgue mea-
sure. In much of what follows we shall consider the more general problem arising in
Bayesian inference, of finding a Markov chain with state space QA and a unique invari-
ant distribution with density p(qA| yo,A) with respect to a measure dn (qA). The generic
problem is then to approximate E[ g( yo, qA)| yo,A], where g( y, qA) is a (possibly
random) function with the property E[ g( y, qA)| yo, qA] = E[h(w)| yo,A]. Following an
initial transient or burn-in phase, simulated values from the chain are used to approxi-
mate E[ g( yo, q)| yo,A]. In this generalization qA represents all of the unknown features
of the model. This may include latent variables as well as parameters per se. In the rest
of Section 2 we dispense with the “A” subscript on qA to reduce notational clutter.
Markov chain methods have a history in mathematical physics dating back to the

algorithm of Metropolis et al. (1953). This method, which is described in Hammersly
and Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7), was generalized
by Hastings (1970), who focused on statistical problems, and was further explored by
Peskun (1973). A version particularly suited to image reconstruction and problems in
spatial statistics was introduced by Geman and Geman (1984). This was subsequently
shown to have great potential for Bayesian computation by Gelfand and Smith (1990).
Their work, combined with data augmentation methods [Tanner and Wong (1987)], has
proven very successful in the treatment of latent variables in econometrics. Since 1990
application of MCMC methods has grown rapidly [Chib and Greenberg (1996)].
This section and the next concentrate on a heuristic development of two widely used

variants of these methods, the Gibbs sampler and the Hastings–Metropolis algorithm.
The general theory of convergence is taken up in Section 2.4. Section 2.5 provides a
useful hybrid of the Gibbs and Hastings–Metropolis algorithms. Section 2.6 turns to
the assessment of numerical accuracy.
The Gibbs sampler begins with a partition, or blocking, of q , q ′ = (q ′

(1), . . . , q
′
(B)).

In applications, the blocking is chosen so that it is possible to draw from each of
the conditional p.d.f.’s, p(q(b)| yo, q(a)(a < b), q(a)(a > b),A). This blocking can arise
naturally, if the prior distributions for the q(b) are independent and each is conditionally
conjugate. To motivate the key idea underlying the Gibbs sampler suppose – contrary to

fact – that there existed a single drawing q (0), q ′(0) =
(
q ′(0)
(1) , . . . , q

′(0)
(B)

)
, from p(q | yo,A).

Successively make drawings from the conditional distributions as follows:

q (1)(1) ~ p
(
·| yo, q (0)(2) , . . . , q

(0)
(B),A

)
,

q (1)(2) ~ p
(
·| yo, q (1)(1) , q

(0)
(3) , . . . , q

(0)
(B),A

)
,

. . .

q (1)(b) ~ p
(
·| yo, q (1)(1) , . . . , q

(1)
(b − 1), q

(0)
(b + 1), . . . , q

(0)
(B),A

)
,

. . .

q (1)(B) ~ p
(
·| yo, q (1)(1) , . . . , q

(1)
(B − 1),A

)
.

(2.6)
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This defines a transition process from q ′(0) to q ′(1) = (q ′(1)
(1) , . . . , q

′(1)
(B) ). Since

q (0) ~ p(q | yo,A), (q (1)(1) , . . . , q
(1)
(b − 1), q

(1)
(b) , q

(0)
(b + 1), . . . , q

(0)
(B)) ~ p(q | yo,A) at each step in

Equation (2.6) by definition of the conditional density. In particular, q (1) ~ p(q | yo,A).
Iteration of this algorithm produces a sequence q (0), q (1), . . . , q (m), . . . which is a

realization of a Markov chain with probability density function kernel for the transition
from point q (m) to point q (m + 1) given by

KG
(
q (m), q (m + 1)

)
=

B∏
b = 1

p
[
q (m + 1)(b) | yo, q (m)(a) (a > b), q

(m + 1)
(a) (a < b),A

]
. (2.7)

Any single iterate q (m) retains the property that it is drawn from the posterior
distribution. For the Gibbs sampler to be practical, it is essential that the blocking
be chosen in such a way that one can make the drawings in an efficient manner. In
econometrics the blocking is often natural and the conditional distributions familiar.
Of course, if it really were possible to make an initial draw from the posterior

distribution, then simple frequency simulation would also be possible. An important
remaining task is to elucidate conditions for the distribution of q (m) to converge to the
posterior for any q (0) ∈ Q. This is not trivial, because even if q (0) were drawn from
p(q | yo,A), the argument just given establishes only that any single q (m) is also drawn
from the posterior distribution. It does not establish that a single sequence

{
q (m)

}∞
m = 1

is
representative of the posterior distribution. For example, if Q consists of two disjoint
subsets Q1 and Q2 with q1 > q2 ∀ qj ∈ Qj , then a Gibbs sampler that begins in
Q1 may never visit Q2 and vice versa. This situation clearly does not arise in the
Gibbs samplers for the standard linear and probit models just described, but evidently
a careful development of conditions under which

{
q (m)

}
converges in distribution to

the posterior distribution is needed. We outline these developments in Section 2.4.
Notice that the Gibbs sampler is a method for finding a fixed, or invariant,

distribution corresponding to a well-defined iteration of distributions. It is therefore
analogous to other fixed-point algorithms for solving deterministic systems, such as the
computation of equilibrium. In both cases, the conditions under which the fixed point
is unique, and the conditions under which convergence to this fixed point is known to
occur, are important. We take up these theoretical points below in Sections 2.4 and 2.6,
and further practical guidance is provided in Geweke (1992), Gelman, Carlin, Stern and
Rubin (1995, Chapter 11), and in software available at http://www.econ.umn.edu/˜bacc.
First we turn to a related algorithm that often complements the Gibbs sampler.

2.3. The Hastings–Metropolis algorithm

The Hastings–Metropolis algorithm begins with an arbitrary transition probability
density function q(q1, q2) indexed by q1 ∈ Q and with density argument q2 ∈ Q,
and with an arbitrary starting value q (0) ∈ Q. The random vector q∗ generated from
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q(q (m), q∗) is a candidate value for q (m + 1). The algorithm actually sets q (m + 1) = q∗

with probability

a(q (m), q∗) = min
{
p(q∗| yo,A) q(q∗, q (m))
p(q (m)| yo,A)q(q (m), q∗)

, 1

}
= min

{
p(q∗| yo,A)/q(q (m), q∗)
p(q (m)| yo,A)/q(q∗, q (m))

, 1

}
;

(2.8)
otherwise, the algorithm sets q (m + 1) = q (m). This defines a Markov chain with a
generally mixed continuous-discrete transition probability from q (m) to q (m + 1) given
by

KH
(
q (m), q (m + 1)

)
=

{
q
(
q (m), q (m + 1)

)
a
(
q (m), q (m + 1)

)
if q (m + 1) Ñ q (m),

1 −
∫
Q q

(
q (m), q

)
a
(
q (m), q

)
dn (q) if q (m + 1) = q (m).

This form of the algorithm is due to Hastings (1970). The Metropolis et al. (1953)
form took q

(
q (m), q∗) = q(q∗, q (m)

)
.

There is a simple two-step argument that motivates the convergence of the
sequence

{
q (m)

}
generated by the Hastings–Metropolis algorithm to the posterior.

[This approach is due to Chib and Greenberg (1995a)]. First, observe that if the
transition probability function p

(
q (m), q (m + 1)

)
satisfies the reversibility condition

p
(
q (m)

)
p
(
q (m), q (m + 1)

)
= p

(
q (m + 1)

)
p
(
q (m + 1), q (m)

)
, (2.9)

for stated p(·), then it has p(·) as an invariant distribution. To see this, note that if
Equation (2.9) holds then∫

Q
p
(
q (m)

)
p
(
q (m), q (m + 1)

)
dn

(
q (m)

)
=
∫
Q
p
(
q (m + 1)

)
p
(
q (m + 1), q (m)

)
dn

(
q (m)

)
= p

(
q (m + 1)

) ∫
Q
p
(
q (m + 1), q (m)

)
dn

(
q (m)

)
= p

(
q (m + 1)

)
.

For q (m + 1) = q (m), Equation (2.9) is satisfied trivially. For q (m + 1) Ñ q (m), suppose
without loss of generality that p

(
q (m + 1)

)
/q
(
q (m), q (m + 1)

)
> p

(
q (m)

)
/q
(
q (m + 1), q (m)

)
.

Then

p
(
q (m), q (m + 1)

)
= q

(
q (m), q (m + 1)

)
,

and

p
(
q (m + 1), q (m)

)
= q

(
q (m + 1), q (m)

)
· p

(
q (m)

)
/q
(
q (m + 1), q (m)

)
p
(
q (m + 1)

)
/q
(
q (m), q (m + 1)

)
= p

(
q (m)

)
q
(
q (m), q (m + 1)

)
/p
(
q (m + 1)

)
,

whence Equation (2.9) is satisfied.
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In implementing the Hastings–Metropolis algorithm the transition probability
density function must share two important properties. First, it must be possible to
generate q∗ efficiently from q

(
q (m), q∗). A second key characteristic of a satisfactory

transition process is that the unconditional acceptance rate not be so low that the time
required to generate a sufficient number of distinct q (m) is too great.

2.4. Some Markov chain Monte Carlo theory

Much of the treatment here draws heavily on the work of Tierney (1994), who first
used the theory of general state space Markov chains to demonstrate convergence, and
Roberts and Smith (1994), who elucidated sufficient conditions for convergence that
turn out to be applicable in a wide variety of problems in econometrics.
Let

{
q (m)

}∞
m = 0

be a Markov chain defined on Q ⊆ Rk with transition density
K : Q × Q → R+ such that, for all n -measurable Q0 ⊆ Q ,

P
(
q (m) ∈ Q0|q (m − 1)

)
=
∫
Q0
K
(
q (m − 1), q

)
dn (q) + r

(
q (m − 1)

)
cQ0

(
q (m − 1)

)
,

where r
(
q (m − 1)

)
= 1 −

∫
Q
K
(
q (m − 1), q

)
dn (q).

The transition density K is substochastic: it defines only the distribution of accepted
candidates. Assume that K has no absorbing states, so that r(q) < 1 ∀ q ∈ Q. The
corresponding substochastic kernel over m steps is then defined iteratively,

K (m)
(
q (0), q (m)

)
=
∫
Q
K (m − 1)

(
q (0), q

)
K
(
q , q (m)

)
dn (q)

+ K (m − 1)
(
q (0), q (m)

)
r
(
q (m)

)
+
[
r
(
q (0)

)]m − 1
K
(
q (0), q (m)

)
.

This describes all m-step transitions that involve at least one accepted move. As a
function of q (m) it is the p.d.f. with respect to n of q (m), excluding realizations with
q (n) = q (0) ∀ n = 1, . . . , m. For any n -measurable Q0 let P(m)

(
q (0),Q0

)
denote the m’th

iterate of P,

P(m)
(
q (0),Q0

)
=
∫
Q0
K (m)

(
q (0), q

)
dn (q) +

[
r
(
q (0)

)]m
cQ0

(
q (0)

)
.

An invariant distribution of the transition density K is a function p(q) that satisfies

P(Q0) =
∫
Q0
p(q) dn (q) =

∫
Q
P
(
q (m) ∈ Q0|q (m − 1) = q

)
p(q) dn (q)

=
∫
Q

{∫
Q0
K (q , q∗) dn (q∗) + r(q)cQ0 (q)

}
p(q) dn (q),

for all n -measurable Q0. Let Q∗ = {q ∈ Q : p(q) > 0}. The density K is p-irreducible
if for all q (0) ∈ Q∗,P(Q0) > 0 implies that P(m)

(
q (0),Q0

)
> 0 for some m ¾ 1.
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The transition density K is aperiodic if there exists no n -measurable partition
Q =

⋃r − 1
s = 0 Q̃s(r ¾ 2) such that

P
(
q (m) ∈ Q̃mmod (r)|q (0) ∈ Q̃0

)
= 1 ∀ m.

It is Harris recurrent if P
[
q (m) ∈ Q0 i.o. |q (0)

]
= 1 for all n -measurable Q0 with∫

Q0
p(q) dn (q) > 0 and all q (0) ∈ Q. 2 It follows directly that if a kernel is Harris

recurrent, then it is p-irreducible. A kernel whose invariant distribution is proper, and
that is both aperiodic and Harris recurrent, is ergodic by definition [Tierney (1994,
pp. 1712–1713)].
A useful metric in what follows is the total variation norm for signed and

bounded measures m defined over the field of all n -measurable sets Sn on Q:
|m| = supQ0 ∈ Sn m(Q0) − infQ0 ∈ Sn m(Q0).

Theorem 2.4.1. Convergence of continuous state Markov chains. Suppose
p(q | yo,A) is an invariant distribution of the transition density K (q , q∗).
(A) If K is p(q | yo,A)-irreducible, then p(q | yo,A) is the unique invariant distribution.
(B) If K is p(q | yo,A)-irreducible and aperiodic, then except possibly for q (0) in a set

of posterior probability 0,
∣∣P(m)(q (0), ·) − P(·| yo,A)∣∣ → 0. If K is ergodic (that

is, it is also Harris recurrent) then this occurs for all q (0).
(C) If K is ergodic with invariant distribution p(q | yo,A), then for all g( yo, q)

absolutely integrable with respect to p(q | yo,A) and for all q (0) ∈ Q ,

M −1
M∑
m = 1

g
(
yo, q (m)

)
−→a.s.

∫
Q
g( yo, q) p(q | yo, q) dn (q).

Proof: (A) and (B) follow immediately from Theorem 1, and (C) from Theorem 3 in
Tierney (1994). ƒ

For the Gibbs sampling algorithm we argued informally in Section 2.2 that p(q | yo,A) is
an invariant distribution. More formally, from Equation (2.7) we have for the blocking

q ′ =
(
q ′
(1), q

′
(2)

)
,∫

Q
KG (q , q∗) p(q | yo,A) dn (q)

=
∫
Q
p
(
q∗
(1)| yo, q(2),A

)
p
(
q∗
(2)| yo, q∗

(1),A
)
p(q | yo,A) dn (q)

= p
(
q∗
(2)| yo, q∗

(1),A
) ∫

Q
p
(
q∗
(1)| yo, q(2),A

)
p(q | yo,A) dn (q)

= p
(
q∗
(2)| yo, q∗

(1),A
)
p
(
q∗
(1)| yo,A

)
= p(q∗| yo,A) .

2 The expression “i.o.” in P[q (m) ∈ Q0 i.o. |q (0)] means “infinitely often”. The condition is that
limM → ∞P[

∑M
m= 1 cQ̃ (q

(m)) ¶ L] = 0 ∀ L.
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The general result for more than two blocks follows by induction. Thus, it is the
uniqueness of the invariant state that is at issue in establishing convergence of the
Gibbs sampler. The following result is immediate and is often easy to apply.

Corollary 2.4.2. A first sufficient condition for convergence of the Gibbs sampler.
Suppose that for every point q∗ ∈ Q and every Q0 ⊆ Q with the property
P(q ∈ Q0| yo,A) > 0, it is the case that PG

(
q (m + 1) ∈ Q0| yo, q (m) = q∗,A

)
> 0,

where PG(·) is the probability measure induced by the Gibbs sampler. Then the Gibbs
transition kernel is ergodic.

Proof: The conditions ensure that PG is aperiodic and absolutely continuous with
respect to p(q | yo,A). The result follows from Corollary 1 of Tierney (1994). ƒ
A complement to Corollary 2.4.2 is provided by Roberts and Smith (1994).

Theorem 2.4.3. A second sufficient condition for convergence of the Gibbs sampler.
Suppose that p(q | yo,A) is lower semicontinuous 3 at 0 and

∫
Q (b) p(q | yo) dn

(
q (b)

)
is

locally bounded (b = 1, . . . , B). Suppose also that Q is connected. Then the Gibbs
transition kernel is ergodic. „

Tierney (1994) discusses weaker conditions for convergence of the Gibbs sampler.
However, the conditions of Corollary 2.4.2 or Theorem 2.4.3 are satisfied for a very
wide range of problems in econometrics and are easier to verify.
Tierney (1994) and Roberts and Smith (1994) show that the convergence properties

of the Hastings–Metropolis algorithm are inherited from those of q(q , q∗): if q is ape-
riodic and p(q | yo,A)-irreducible, then so is the Hastings–Metropolis algorithm. This
feature leads to a sufficient condition for convergence analogous to Corollary 2.4.2.

Theorem 2.4.4. A first sufficient condition for convergence of the Hastings–
Metropolis algorithm. Suppose that for every point q∗ ∈ Q and every
Q0 ⊆ Q with the property P(q ∈ Q0| yo,A) > 0, it is the case that∫
Q0
q(q , q∗)a(q , q∗) dn (q∗) + r(q)cQ0 (q) > 0. Then the Hastings–Metropolis density

K (q , q∗) = q(q , q∗)a(q , q∗) is ergodic.

Proof: The conditions ensure that the transition kernel is aperiodic and p(q∗| yo,A)-
irreducible. Thus, by Corollary 2 of Tierney (1994), the Hastings–Metropolis density
is Harris recurrent. Since the kernel is both aperiodic and Harris recurrent, it is
ergodic. ƒ

A complementary sufficient condition for convergence of Hastings–Metropolis chains
is provided by the following result, which is analogous to Theorem 2.4.3 for the Gibbs
sampler.

3 A function h(x) is lower semicontinuous at 0 if, for all x with h(x) > 0, there exists an open
neighborhood Nx ⊃ x and e > 0 such that for all y ⊂ Nx , h( y) ¾ e > 0.
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Theorem 2.4.5. A second sufficient condition for convergence of the Hastings–
Metropolis algorithm. Suppose that for every q ∈ Q, p(q | yo,A) > 0, and for all
pairs

(
q (m), q (m + 1)

)
∈ Q × Q, p

(
q (m)| yo,A

)
and q

(
q (m), q (m + 1)

)
are positive and

continuous. Then the Hastings–Metropolis kernel KH is ergodic.

Proof: See Chib and Greenberg (1995a) or Mengersen and Tweedie (1996). ƒ

Once again, the conditions are sufficient but not necessary, but weaker conditions are
typically more difficult to verify. On weaker conditions, see Tierney (1994).

2.5. Metropolis within Gibbs

There are many variations on these methods, and alone or in combination with
each other they provide a powerful source of flexibility that can be drawn upon in
constructing posterior simulators. Here we briefly review one, which has been quite
useful in econometrics and will be used subsequently in Section 6 of this chapter.
Further discussion can be found in Tierney (1994), Gelman et al. (1995) and Geweke
(1999).
The Metropolis within Gibbs algorithm [Zeger and Karim (1991), Chib and Green-

berg (1996)] provides a neat solution to the problem of a block q(b) in a Gibbs sampler,
in which it is difficult to draw directly from p

(
q(b)| yo, q(a)(a < b), q(a)(a > b),A

)
.

In a two-block Gibbs sampler, suppose that it is straightforward to sample from
p
(
q(1)| yo, q(2),A

)
, but the distribution corresponding to p

(
q(2)| yo, q(1),A

)
is intractable.

The Hastings–Metropolis algorithm can be used in these circumstances, and it often
provides an efficient solution to the problem. In what has become known as the
Metropolis-within-Gibbs procedure, at the (m+ 1)’th iteration first draw q∗

(2) from a

proposal density q
(
q (m)(2) , q

∗
(2)|q

(m + 1)
(1)

)
. Accept this draw with probability

min

⎧⎨⎩ p
(
q (m + 1)(1) , q∗

(2)| yo,A
)
/q
(
q (m)(2) , q

∗
(2)|q

(m + 1)
(1)

)
p
(
q (m + 1)(1) , q (m)(2) | yo,A

)
/q
(
q∗
(2), q

(m)
(2) |q

(m + 1)
(1)

) , 1
⎫⎬⎭ .

If q∗
(2) is accepted then q

(m + 1)
(2) = q∗

(2), and if not then q
(m + 1)
(2) = q (m)(2) . The extension of

this procedure to multi-block Gibbs samplers, with a Hastings–Metropolis algorithm
used at some (or even all) of the blocks is clear. For further discussion see Chib and
Greenberg (1995a), and for a proof that the posterior distribution is an invariant state
of this Markov chain see Chib and Greenberg (1996).

2.6. Assessing numerical accuracy in Markov chain Monte Carlo

In any practical application one is concerned with the discrepancy ḡM − ḡ. A leading
analytical tool for assessing this discrepancy is a central limit theorem, if one can be
obtained. This was accomplished in Section 2.1 for i.i.d. sampling from the posterior



3480 J. Geweke and M. Keane

distribution. The assumption of independence, key to those results, does not apply in
Markov chain Monte Carlo. The weaker assumption of uniform ergodicity yields a
central limit theorem, however. Let P(m)

(
q (0),Q0

)
denote P

(
q (m) ∈ Q0|q (0)

)
for any

q (0) ∈ Q and for any Q0 ⊆ Q for which P(q ∈ Q0| yo,A) is defined. The Markov
chain is uniformly ergodic if supq ∈Q

∣∣P(m)(q , ·) − P(·| yo,A)∣∣ ¶ Mrm for some M > 0
and some positive r < 1. Tierney (1994, p. 1714) provides results that are quite useful
in establishing uniform ergodicity. The main result is the following.

Theorem 2.6.1. A central limit theorem for Markov chain Monte Carlo. Suppose{
q (m)

}
is uniformly ergodic with equilibrium distribution p(q | yo,A). Suppose further

that E
[
g( yo, q) | yo,A

]
= ḡ and var

[
g( yo, q) | yo,A

]
exist and are finite, and let

ḡM = M −1
∑M

m = 1 g
(
yo, q (m)

)
. Then there exists finite s 2 such that

M 1/2(ḡM − ḡ) →d N
(
0, s 2

)
. (2.10)

Proof: Tierney (1994, Theorem 5), attributed to Cogburn (1972, Corollary 4.2(ii)). ƒ

A key difficulty in implementing this result is that useful conditions sufficient for
approximation of the unknown constant s 2 have not yet been developed. That is, there
is no ŝ 2M for which ŝ

2
M → s 2 as there is for independence and importance sampling.

A second difficulty is assessing the sensitivity of q (m) to the initial condition q (0).
For example, if the posterior density is multimodal the Markov chain may be nearly
reducible. Assessing convergence in such situations is clearly nontrivial.
There is an extensive literature on this problem. A good introduction is provided

by the papers of Gelman and Rubin (1992) and Geyer (1992) and their discussants.
Geweke (1992) developed a consistent estimator of s 2 in Equation (2.10), under
the strong condition that conventional time series mixing conditions [for example
Hannan (1970, pp. 207–210) apply to

{
q (m)

}
. There is no analytical foundation for

this assumption, but these methods are now widely used and have proven reliable in
the sense that they predict well the behavior of the Markov chain when it is restarted
with a new initial condition, in econometric models.
It is often useful to compare the estimate ŝ 2 of s 2 in Equation (2.10) with

var
[
g( yo, q) | yo,A

]
. Recall that the latter would replace s 2, if i.i.d. sampling directly

from the posterior distribution were possible and employed. Since var
[
g( yo, q) | yo,A

]
can be approximated from

{
q (m)

}M
m = 1

, it is possible to approximate the relative
numerical efficiency s 2/var

[
g( yo, q) | yo,A

]
. This quantity, introduced in Geweke

(1989), indicates the number of simulations that would have been required under
i.i.d. sampling from the posterior distribution, relative to the number required in the
sampling scheme at hand. In MCMC algorithms low values of RNE indicate strong
serial correlation in the Markov chain.
In practice, some robustness to initial conditions is achieved by discarding initial

iterations: 10% to 20% is common. By drawing q (0) from the prior distribution, using a
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random number generator with a fresh seed each time, several runs may provide some
indication of whether the results are sensitive to initial conditions as they might be, for
example, given near-reducibility of the kind that may arise from severe multimodality.
A formal test for sensitivity to initial conditions was developed by Gelman and Rubin
(1992) and is described in Section 3.8. For other tests for sensitivity to initial conditions
see Geweke (1992) and Zellner and Min (1995).

3. Approximate solution of discrete dynamic optimization problems

Consider an agent who controls the decision dt at each time t = 1, . . . , T < ∞,
where dt ∈ {1, . . . , J}. The agent’s state is characterized by the S × 1 vector It .
The state evolves according to the p.d.f. p(It + 1|It , dt). It also is sometimes useful to
express (equivalently) the evolution of the state variables using the random function
It + 1 = M (It , dt). The current period payoff to decision dt in state It is udt (It). The
agent’s problem is:

max
dt

{
udt (It) + E

[
T∑

t = t + 1

dt − tudt (It ) | It , dt
]}

, (3.1)

where d is the discount factor. The operator E[·|·] denotes the agent’s subjective
expectation over future states, choices and payoffs, given the information set (It , dt).
The agent faces a dynamic optimization problem if this expectation depends on dt in a
nontrivial way. The alternative specific value function associated with the choice dt = j
in state It is:

Vj (It) = uj (It) + E

[
T∑

t = t + 1

dt − tudt (It ) | It , j
]

(t ¶ T ). (3.2)

It will be useful in much of the discussion to refer to the expectation term in
Equation (3.2) as the “future component” of the value function, and to denote it by
Ft + 1(It , dt). This future component, divided by d, is often referred to as the “Emax”
function, for reasons that become obvious if we rewrite it in the form:

Ft + 1(It , dt) = dE

[
max
dt + 1

{
udt + 1 (It + 1) + E

T∑
t = t + 2

dt − t − 1udt (It )

}
| It , dt

]

= dE
[
max
dt + 1

{Vdt + 1 (It + 1)} | It , dt
]
.

Solution of a discrete dynamic optimization problem requires that the Emax
functions be evaluated at every possible (It , dt) combination for t = 1, . . . , T − 1. Note
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that at the terminal period T there is, by definition, no future component of the value
functions, and we simply have:

Vj (IT ) = uj (IT ) .

Hence,

FT (IT − 1, dT − 1) = dE
[
max
dT

{udT (IT )} | IT − 1, dT − 1
]
. (3.3)

Assume for now that expectations are formed rationally, in the sense that the
operator E[·|·] is the mathematical expectation operator. Then, the Emax function
in Equation (3.3) is an integral over the stochastic terms that enter either the payoff
functions {uj (IT )}Jj = 1 or the function M that maps (IT − 1, dT − 1) into IT . Since there is
no future component beyond T , if the functional forms for u and M are known, it is (in
principle) straightforward to evaluate such integrals and construct the FT (IT − 1, dT − 1)
function associated with every possible combination (IT − 1, dT − 1). For this reason, the
standard solution method for finite horizon discrete dynamic optimization problems
such as Equation (3.1) is to “backsolve”. Note that at time T − 1 the alternative specific
value functions are given by

Vj (IT − 1) = uj (IT − 1) + FT (IT − 1, j) .

Since the FT (IT − 1, j) were calculated in the first stage of the backsolving process, it
is (in principle) straightforward to construct the functions

FT − 1(IT − 2, dT − 2) = dE
[
max
dT − 1

{VdT − 1 (IT − 1)} | IT − 2, dT − 2
]

= dE
[
max
dT − 1

{udT − 1 (IT − 1) + FT (IT − 1, dT − 1)} | IT − 2, dT − 2
]
.

(3.4)
Note that the calculations involved in taking the expectation here are no more complex
than those involved in Equation (3.3) since the FT (IT − 1, dT − 1) are known constants at
this stage of the backsolving process. The Emax functions in Equation (3.4) are again
simply integrals over the stochastic terms that enter the payoff functions {uj (IT − 1)}Jj = 1
or the function M mapping (IT − 2, dT − 2) into IT − 1. After evaluating these integrals
for every possible (IT − 2, dT − 2) combination we move back to period T − 2, and so
on until the backsolving process is complete. The fact that a T period problem like
Equation (3.1) can be cast as a series of two period problems in this way is referred
to as the Bellman (1957) principle.
There are two important practical problems that often arise in this context,

however:
(1) If the number of stochastic terms in the payoff functions and the law of motion M

is large then the integration required to construct the Emax functions will be high
dimensional.
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(2) If the number of (state, decision) combinations
{

{(It , j)}Jj = 1
}T − 1
t = 1

is large then the

number of integrals that must be evaluated may be large.
Problem 1 is obviously the type of high dimensional integration problem that is

the focus of this chapter. However, in many contexts the problem of simulating the
Emax function is not severe. Let the state vector It be decomposed as

(
Īt , et

)
, where

Īt and et are the elements that are nonstochastic and stochastic, respectively, from the
perspective of the agent at time t − 1. Keane and Wolpin (1994) find in a number of
numerical examples that if crude frequency simulators of the form

M −1
M∑
m = 1

J∑
j = 1

Vj
(
Īt , emt

)
c
[
Vj
(
Īt , emt

)
> Vk

(
Īt , emt

)
∀ k Ñ j

]
, (3.5)

are substituted for the exact Emax functions then deterioration of the accuracy of the
solution of the optimization problem is small even with fairly small M . But such crude
simulators will be highly inefficient in contexts where one or more alternatives have
low probability of being realized, but where these alternatives deliver extreme (either
very large or very small payoffs) when realized. In such contexts more sophisticated
smooth simulators for the Emax function may be necessary 4. Recently, Rust (1997)
has advocated use of deterministic integration methods based on “low discrepancy”
points rather than draws from random number generators to increase accuracy of Emax
approximations. Finally, we note that a closed form for the Emax function exists in the
special case noted by Rust (1987). This is when there is exactly one stochastic term
entering each payoff function, those terms enter additively, and they are i.i.d. type I
extreme value distributed.
Problem 2 is the main focus of the rest of this section. This problem is often referred

to as the “curse of dimensionality” [see Bellman (1957)] 5. It tends to be severe when

4 For example, a GHK type simulator of the probability that any alternative j = 1, . . . , J is optimal may
be formed provided the J − 1 conditions Vk (Īt , et) − Vj(Īt , et) < 0 ∀ k Ñ j form a sequential partition of
the error space, with tractable conditional densities, so that it is possible to draw, element-by-element,
vectors emt that satisfy all J − 1 conditions. Let p̂GHK,m( j|It) denote the GHK simulator of the probability
that j is optimal, based on the single draw sequence m. Let em( j)t denote the draw for ej in that draw
sequence. If these quantities are obtained for j = 1, . . . , J then the (unbiased) GHK simulator for the
Emax function is:

Êmaxj
{
Vj
(
Ij
)}
= M−1

J∑
j = 1

M∑
m( j) = 1

Vj
(
Īt , e

m( j)
j

)
p̂GHK,m ( j|It) .

(Note that em( j)j Ñ em(k)j for k Ñ j because different draw sequences are constructed to simulate the choice
probabilities for alternatives j and k .)
5 Formally, the curse of dimensionality refers to the exponential rise in computation time as the number
of state and decision variables increases.
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the number of state variables is large and/or some individual state variables take on a
large number of values. Note, however, that in many applications it is only a subset
of the complete set of state variables that is relevant in determining the computational
burden involved in solving the dynamic optimization problem. This is because in
many applications only a subset of the state variables enter the conditioning set in
Equation (3.1) in a non-trivial way. For example, consider a simple labor supply model
with human capital accumulation:

dt ∈ {0, 1} , Xt + 1 = Xt + dt X1 = 0,

lnWt = b0 + b1Xt + et , et ~ i.i.d. N (0, s 2),

It = (Xt , et) , udt (It) = dtWt +(1 − dt) b,

(3.6)

where b is the utility from leisure, and t = 1, . . . , T < ∞. Note that although the
stochastic term et ∈ It , it is not useful for forecasting payoffs at t = t + 1, . . . , T
because of the i.i.d. assumption. Hence, in the backsolving process it is only necessary
that the Emax functions be evaluated at every possible (Xt , dt) combination for
t = 1, . . . , T − 1. Denote by I∗t ⊆ It the subset of state variables which are relevant in
solution of the dynamic optimization problem, in that their values at time t influence
expected payoffs in future periods.
Furthermore, it is often the case that not all possible (I∗t , dt) combinations

need be considered in the backsolving process. For instance, in model (3.6),
Ft + 1(Xt = a, dt = 0) and Ft + 1(Xt = a − 1, dt = 1) are identical, since in both cases
Xt + 1 = a. In the event that the number of (I∗t , dt) combinations that map into unique
I∗t + 1 values is finite, we denote that number by N

S
t + 1, and let N

S =
∑T

t = 2 N
S
t .

An extreme case of the curse of dimensionality arises if one or more of the state
variables in I∗t can take on an infinite number of values. Then exact solution of the
discrete dynamic optimization problem is impossible, because the Emax functions
must be evaluated at an infinite number of (I∗t , dt)

T − 1
t = 1 combinations. In such cases

the available solution methods are discretization [see e.g., Santos and Vigo-Aguiar
(1998)], Rust’s randomization method [see Rust (1997)], and the use of functional
approximations to the Emax functions [see e.g., Bellman, Kalaba and Kotkin (1963),
Keane and Wolpin (1994)].
For a class of problems with continuous decision variables Santos and Vigo-Aguiar

(1998) show, under the assumption that the state variables lie in a polyhedron, that
as the mesh size of the grid used for discretization decreases, the approximate value
function converges quadratically to the true value function, and the approximate
decision rule converges linearly to the true decision rule 6. The Santos and Vigo-Aguiar
results rely on the value function being continuous in the state variables and having
bounded second derivatives, as well as on the decision rule being continuous in the

6 That is, if the mesh size is h the approximation error for the value function is bounded by Mh2 and
that for the decision rule is bounded by Nh, where M and N are positive constants.
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state variables. Thus, their results are not directly applicable to models with discrete
decision and/or state variables which are our main focus.
More generally, all discretization methods suffer from a curse of dimensionality

if multiple state variables can take on an infinite number of values and must be
discretized. Even if only one state variable must be discretized, the dimensionality
problem may be severe if that variable must then be crossed with several other finite-
valued state variables. For this reason, discretization is typically only a practical option
in models with only one or two infinite valued state variables and few additional finite
valued state variables.
Even in cases where the complete state vector {I∗t }T − 1t = 1 takes on only a finite number

of values, calculation of the Emax functions at all NS of the relevant
{
(I∗t , j)

J
j = 1

}T − 1
t = 1

combinations is infeasible if NS is too large. What value of NS is “too large” depends
on the speed of available computers. Also, since at each relevant (I∗t , dt) combination
an integral must be evaluated (or simulated) to construct the Ft + 1(I∗t , dt) function, the
maximum feasible value of NS will be less as the time required per integration is
greater.
In cases where NS is too large to permit evaluation of the complete set of{

{Ft + 1(I∗t , j)}Jj = 1
}T − 1
t = 1

functions, discretization remains an option. However, it then

takes the form of adopting coarser grids for already discrete state variables. An often
neglected point is that, for this procedure to be effective, it is usually the case that
the decision set must also be modified accordingly. For example, in the model (3.6),
assume that the state variable Xt is work experience measured in years, and dt = 1
corresponds to the decision to work for one year. If we set T = 40, then NS for this
model is (40 · 41/2) − 1 = 819. If we group the work experience variable into 5 year
intervals to create the discrete state variable X ∗

t (i.e., X
∗
t = 1 iff Xt ∈ [0, 4], X ∗

t = 2
iff Xt ∈ [5, 9], etc.) and assume that wages depend only on X ∗

t this does not reduce
NS . This is because one must know Xt to determine the value of X ∗

t + 1 generated by
the choice dt . Hence, Xt has not been eliminated as a state variable. To eliminate Xt
requires that one also redefine the choice variable to be whether or not to work for a five
year interval. Still, discretization continues to suffer from the curse of dimensionality
for the same reasons mentioned earlier, and its practical usefulness will therefore be
limited to cases where the number of state variables that must be discretized is small.
Rust (1997) has proposed an ingenious simulation method that breaks the curse of

dimensionality in problems with continuous state variables. The essential features of
Rust’s method can be illustrated using a modified version of model (3.6). Replace
the law of motion Xt + 1 = Xt + dt with the absolutely continuous transition density
p(Xt + 1|Xt , dt). Assume that this density is strictly positive over the whole support of
X 7. Rust’s method requires (without essential loss of generality) that the state variables

7 These assumptions are stronger than necessary for the method to be applicable, but facilitate the
example. In the context of this example, an economic interpretation of the assumptions would be that
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live on the unit hypercube. So assume that Xt ∈ [0, 1], and define the uniform random
variable ht ~ U [0, 1]. We will use the ht to generate the normal wage draws via the
inverse distribution function et = sF−1(ht). Then Rust’s algorithm would proceed as
follows:
(1) Draw {Xm, hm} from the U [0, 1]2 distribution for m = 1, . . . , M . These draws

establish a grid at which the value functions will be calculated for all t.
(2) To commence the backsolving process calculate:

V̂T (X
m
T , h

m
T ) = max

dT
{udT (XmT , hmT )} for m = 1, . . . , M.

(3) At t = T − 1 calculate the alternative specific value functions:

V̂T − 1, dT − 1 (X
m
T − 1, h

m
T − 1) = udT − 1 (X

m
T − 1, h

m
T − 1)

+ d
M∑
l = 1

V̂T
(
X lT , h

l
T

)
pM

(
X lT , h

l
T |XmT − 1, hmT − 1, dT − 1

)
,

where:

pM
(
X lT , h

l
T |XmT − 1, hmT − 1, dT − 1

)
≡ p

(
X lT |XmT − 1, dT − 1

)
p
(
hlT
)∑m

k = 1 p
(
X kT |XmT − 1, dT − 1

)
p
(
hkT
) ,

and set V̂T − 1
(
XmT − 1, h

m
T − 1

)
= maxdT − 1{V̂T − 1, dT − 1

(
XmT − 1, h

m
T − 1

)
} for m = 1, . . . , M .

(4) Continue back to t = T − 2, and so on.
Rust refers to the V̂t (Imt ) functions as “random Bellman operators” and shows that

the expected error in using a random Bellman operator to approximate the true Bellman
operator decreases at rate M 1/2 independent of the number of state variables (S).
This is not sufficient to show that the algorithm breaks the curse of dimensionality,
because the expectation of the Op

(
M −1/2

)
approximation errors might still increase

exponentially fast with S. But Rust derives a bound on the expected error that holds
uniformly (for all M , V , u, P) and that increases only linearly in S. He shows that
the minimal computation cost of solving the hardest problem of dimension S within a
maximum error of e has upper bound S4/ (1 − d)8 e4. Thus, computational cost of the
algorithm grows at only a polynomial rate in S. Since the rate is polynomial rather
than exponential, the curse of dimensionality is removed in a formal sense (although
the S4 term implies that computational burden may still be daunting for problems with
large S).
There is as yet no computational experience with this method, so we cannot

comment on its performance in practice. The number of calculations required to

Xt represents human capital, and that this is continuous and evolves stochastically. From time t to t = 1
any change in human capital is possible, but a reasonable parameterization of p(·|·, ·) would imply that
increases are likely when dt = 1 and decreases are likely when dt = 0.
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implement this procedure is proportional to T · J ·M 2. The M 2 term arises because the
number of draws used to simulate the future components and the number of grid points
at which the future components are evaluated are set equal. This may be problematic,
because in many cases it may be desirable to separately control: (1) the number of grid
points, and (2) the accuracy of the future component approximation at each grid point.
As Santos and Vigo-Aguiar (1998) note “. . . it would not be optimal to operate with
a very fine grid of points in cases where the approximation errors from maximization
and integration [involved in calculating the future component] are large.” And in a set
of numerical experiments on problems with a large but finite number of state points,
Keane and Wolpin (1994) found that the most cost-effective method of achieving
accurate approximate solutions was to use a rather small number of draws to simulate
the Emax functions at each state point, but to include a large number of state points
in the grid of points at which the Emax functions are simulated.
Rust’s method is designed for problems with discrete decision variables and

continuous state variables. It is not applicable to problems with discrete or mixed
discrete/continuous state variables. For instance, it could not be applied to the original
version of problem (3.6), in which the state variable Xt evolves deterministically
according to Xt + 1 = Xt + dt . Then, p(Xt + 1|Xt , dt) is degenerate, and the interpolation
method implicit in step (3) of the algorithm breaks down8. It is then necessary to
employ an algorithm in which a value for V̂t + 1(Xt + 1) is available for any value of

Xt + 1 that might be attained given
{

{Xmt , j}Jj = 1
}M
m = 1

.

Keane and Wolpin (1994) present an algorithm that can be applied to discrete
dynamic optimization problems with either discrete or continuous state variables.
In the discrete case the algorithm involves: (1) using Monte Carlo integration to
simulate the Emax functions at only a subset of the total number NS of relevant
{I∗t , dt} combinations, and (2) interpolation of the non-simulated Emax values using
a regression function. To describe this method more precisely it is necessary to first
establish some notation. Index the set of unique I∗t values by s = 1, . . . , N

S
t and denote

the elements of this set by I∗ts . Choose the number G < N
S
T of state points at which

the Ft functions will be simulated. Note that in many examples NSt is increasing with
t, and for some t∗ it is the case that G ¾ NSt∗ . The backsolving process proceeds as
follows.
(1a) Draw G integers from the multinomial distribution with equal probability on{

1, . . . , NST
}
. Denote the chosen integers by {s(g)}, g = 1, . . . , G.

(1b) Form the simulated Emax functions:

F̂T
(
I∗T , s(g)

)
= dÊ

[
max
dT

{udT (IT )} |I∗T , s(g)
]
for g = 1, . . . , G.

8 Furthermore, even if Xt is continuous, if p (Xt + 1|Xt , dt) is not strictly positive over a substantial part
of the range of X then pM

(
X lt |Xmt − 1, dt − 1

)
will often be zero and, as a practical matter, the interpolation

in step 3 will again break down, unless M is very large.
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(Note: possible methods of forming the simulators Ê were discussed earlier.)

(1c) Run a regression of the F̂T
(
I∗T , s(g)

)
values on functions of the arguments I∗T , s(g).

(2a) Draw G integers from the multinomial distribution with equal probability on{
1, . . . , NST − 1

}
. Again denote the chosen integers by {s(g)}, g = 1, . . . , G.

(2b) Form the simulated Emax functions:

F̂T − 1
(
I∗T − 1, s(g)

)
= dÊ

[
max
dT − 1

{
udT − 1

(
IT − 1, s(g)

)
+ F̂T

(
I∗T − 1, s(g), dT − 1

)}
|I∗T − 1, s(g)

]
.

If F̂T
(
I∗T − 1, s(g), dT − 1

)
was calculated in step (1b); i.e., if

(
I∗T − 1, s(g), dT − 1

)
∈{

I∗T , s(g)
}G
g = 1
; then use that value. If not, then use the regression function fit in

step (1c) to interpolate the needed value.

(2c) Run a regression of the F̂T − 1
(
I∗T − 1, s(g)

)
values on functions of the arguments

I∗T − 1, s(g).
(3) Continue back to T − 2, and so on. If a t∗ is reached such that G ¾ NSt∗ then

the Emax functions are simulated at all state points and steps (a) and (c) are not
necessary.

In the case of continuous state variables step (a) of the algorithm must be modified.
Draw the continuous state variables from a density that has positive mass over the
whole feasible domain of those state variables (e.g., a uniform distribution could
be used as in Rust’s algorithm). Also, in the (b) steps interpolation will always be
necessary, provided there are no atoms in the transition densities p

(
I∗t |I∗t − 1, dt − 1

)
.

Keane and Wolpin (1994) compare the performance of alternative interpolation
functions for use in steps (1c) and (2c). They present numerical examples where
NST = 13 150 and N

S ≈ 130 000, and where a very precise solution to the dynamic
optimization problem required approximately 50 minutes on a Cray-2. Approximate
solutions using their algorithm with G = 500, and with crude frequency simulation of
the Emax functions (as in Equation 3.5) withM = 2000, required only 6 cpu seconds –
a 500 fold speed improvement. When the resulting approximate decision rules were
simulated, they generated choice behavior that was in close agreement with behavior
based on the “true” decision rules (i.e. 96% to 99% choice agreement in the examples
considered). Furthermore, wealth losses from using the approximate rather than “true”
decision rules were on the order of a few tenths of a percent of lifetime wealth for
the simulated agents. When the approximate solution algorithm was embedded in a
maximum likelihood estimation algorithm, and parameter estimates obtained using
data simulated using the “true” decision rules, those estimates were in almost all
cases quite close to the true parameter values. Successful empirical applications of
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the Keane–Wolpin algorithm include Erdem and Keane (1996) and Keane and Wolpin
(1997, 2000a,b) 9.
Rust (1997) notes that the Keane–Wolpin algorithm does not break the curse of

dimensionality in the continuous state variable case because the (c) steps involve fitting
an approximation to a multivariate function, and continuous multivariate function
approximation is subject to a curse of dimensionality [see Traub, Wasilkowski and
Wozniakowski (1988)]. That is, as the number of state variables grows large the
minimum computation time needed to approximate the Emax functions within a
given tolerance may grow exponentially – under a worst case scenario 10. It is
important to stress however, that this worst case analysis applies to very general
classes of functions 11. In fitting approximations to the Emax function in any particular
application we are not dealing with an arbitrary unknown function, but rather with a
function about which a great deal is known [see e.g., Stern (1991)] 12. Hence, additional
research is clearly needed on the properties of polynomial (and other) approximations
to Emax functions.
Another point to note is that the fitting of polynomial or other approximations

to the Emax functions requires a trivial amount of computation time relative to the
calculation of the Emax functions themselves. This was the original motivation behind
the Bellman, Kalaba and Kotkin (1963) and Keane and Wolpin (1994) approaches. In
the case of polynomial approximation, if the number of terms in the polynomial is
increased, the significant increase in computation cost does not arise from additional
time needed to fit the polynomials. Rather, it arises because, in order to obtain sufficient

9 In the Bellman et al. (1963) approach, rather than choosing a random set of points at which to
evaluate the Ft functions, the state variables are assumed to lie in the [0, 1] interval and the Gaussian
quadrature points based on Legendre polynomials are used. The F̂t values calculated at the quadrature
points are then regressed on the polynomial terms in the state variables. Their algorithm shares with
the Keane–Wolpin algorithm the essential feature that the fitted values F̂t are then substituted for the
future component at each successive step of the backsolving process. A key difference is that, if one
uses quadrature points rather than randomly chosen grid points, the number of grid points is RS , where
R is the number of quadrature points, and hence grows exponentially with S.
10 For instance, consider polynomial approximations. With S state variables a fully interacted polynomial
of order k has 1 + Sk + k2S(S − 1) /2 terms. Thus, even if one must set k ∝ S to maintain accuracy
within a given tolerance as S increases, computation time grows only at the polynomial rate S4, not
exponentially. Hence, the Traub et al. (1988) results suggest that a faster rate of growth of K may be
necessary in the worst case.
11 For example, Traub et al. (1988) show that for the class of nonperiodic L2 functions f : [0, 1]

d → R

which are r times continuously differentiable, the worst case computation time to achieve an e
approximation is proportional to e−1 /r

(
lne−1

)d − 1
.

12 A common special case is when the current period payoffs have only additive errors, so
uj(It) = uj(Īt) + etj . Then we can write Vj(It) = Vj(Īt) + etj and the Emax function evaluated at Īt
depends only on the J arguments Vj(Īt) for j = 1, . . . , J , and not on values of the underlying state
variables Īt . Hence, the dimensional of the multivariate function to be approximated remains J regardless
of the number of state variables S.
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data to fit a larger polynomial, it is necessary to evaluate the Emax functions at a larger
sample of state points.
For purposes of econometric work, the approximate solution of dynamic optimiza-

tion models is not an end in itself. Rather, we wish to estimate the parameters of such
models. In some contexts the parameters themselves may be the objects of interest, and
in others the goal may be to use the estimated model to predict or simulate behavior.
The approximate solution of the dynamic optimization problem is merely an input
into the estimation process. Since dynamic optimization models are typically highly
nonlinear, this process will typically involve iterative search – that is, it will require that
the optimization problem be solved, and the resultant econometric objective function
be evaluated, at many trial parameter values.
A radically different approach to econometric work on discrete dynamic optimiza-

tion models is to seek ways to circumvent the solution of the optimization problem
entirely, while still learning about parameters of interest and/or the agent’s decision
rules. Algorithms that cut the Gordian knot in this way were developed in the
pioneering work by Hotz and Miller (1993) and Manski (1991). The basic idea of these
algorithms is to use observed outcomes to estimate the values of the Ft + 1(I∗t , j) for
different state/choice combinations, rather than solving agents’ dynamic optimization
problem to obtain the Ft + 1(I∗t , j). Given such estimates, one can identify the structural
parameters of the current payoff functions.
There are, however, two important limitations of these approaches. First, since actual

outcomes are used to estimate agents’ expectations at the time decisions were made, the
methods require the assumption of a stationary environment 13. Second, since outcomes
for all agents in a given state are used to estimate the expectations of each agent in that
state, the methods cannot accommodate unobserved state variables 14. The stationarity
assumption combined with the no unobserved state variables assumption means that
models estimated using these algorithms cannot be used to predict the impact of policy
interventions or regime changes that are not already present in the data and captured
by observed state variables.
Geweke and Keane (1995) proposed an alternative approach to inference in discrete

dynamic optimization models that also circumvents the need to solve the dynamic
optimization problem. This approach involves polynomial approximation of the future
component in Equation (3.2), and it avoids the stationarity and no unobserved state
variables assumptions of the Hotz–Miller and Manski approaches. Geweke and Keane
consider situations in which the econometrician is willing to assume a parametric
functional form for the current period payoff functions

(
udt (It)

)
and the law of motion

of the state variables (M ). These type of assumptions are also required in all the other

13 Not only must expectations be rational, they must also be fulfilled – a much stronger assumption.
See Manski (1991) and also Keane and Runkle (1990) for further discussion.
14 An exception is the very special case where the unobserved state variable affects only current and
not future payoffs.
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methods we have considered so far. The difference in Geweke and Keane (1995) is in
how the future component is interpreted. In the equation for the future component:

Ft + 1(It , dt) = E

[
T∑

t = t + 1

dt − tudt (It ) |It , dt
]
, (3.7)

all the methods we have reviewed so far assume that E[·|·] is the mathematical
expectation operator. In the present context this is equivalent to assuming that
agents form expectations optimally given the structure of the model (i.e., that they
have rational expectations). In contrast, Geweke and Keane consider a context in
which the econometrician does not make strong assumptions about how subjective
expectations are formed. Rather he/she specifies Ft + 1(It , dt) = Ft + 1

(
I∗t + 1

)
as a flexible

polynomial function of the relevant state variables I∗t + 1. Denote this function by
Ft + 1

(
I∗t + 1(It , j) |p

)
. We then have:

Vj (It) = uj (It |q) + Ft + 1
(
I∗t + 1(It , j) |p

)
. (3.8)

Here, q is the vector of structural parameters of the current period payoff function,
and p is a vector of polynomial coefficients that characterize expectation formation.
The polynomial approximation methods described by Bellman, Kalaba and Kotkin

(1963), Keane and Wolpin (1994), Marcet (1994), Judd (1992) and others, all assume
that E[·|·] in Equation (3.7) is the mathematical expectation operator. This means that
the true Ft + 1(It , dt) is determined by q . These methods seek a p vector that gives
approximations Ft + 1

(
I∗t + 1(It , j) |p

)
that are in some sense close to the projection of

the Ft + 1 on the space spanned by polynomials of given order.
In contrast, the fact that Geweke and Keane do not assume that E[·|·] in

Equation (3.7) is the mathematical expectation operator has an important consequence:
p becomes a free parameter that can be estimated from data, provided q and p
are jointly identified. Given data on choices, along with at least some information
on current payoffs, it is often possible to identify both q and p , and thus to learn
both about the payoff function parameters and the structure of expectations from the
data 15.
A leading example where identification of both q and p will be achieved is when the

payoff is observed if and only if an alternative is chosen. In this case, after substitution
of a flexible polynomial function for the future component as in Equation (3.8),

15 Of course, any combination (q ,p ) can be rationalized as optimal behavior by choosing an appropriate
structure of payoffs at T + 1 and extending the summation in Equation (3.7) out to T + 1, provided the
T + 1 payoffs are allowed to be functions even of “irrelevant” state variables (e.g., the whole history of
choices {d1, . . . , dT } in model (3.6), rather than only XT + 1). One interpretation of our procedure is that
we continue to assume that E[·|·] in Equation (3.7) is the mathematical expectation operator, but that
we leave the payoff functions at T + 1 unspecified.
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the dynamic discrete choice model takes on a form similar to a static Roy (1951)
model augmented to include influences on choice other than the current payoffs, as
in Heckman and Sedlacek (1985). The difference is that Equation (3.8) incorporates
restrictions on the form of the non-payoff components Ft + 1

(
I∗t + 1(It , j) |p

)
that are

implied by the dynamic optimization model and that are not typically invoked in the
estimation of static selection models. First, the model implies that the parameters p
of the non-payoff component of the value function are constant across alternatives.
Second, the model also implies that the regressors I∗t + 1(It , j) that enter the non-payoff
component vary in a systematic way across alternatives that is determined by the law of
motion for the state variables. Typically, these two features of the model are manifested
in cross-equation restrictions on q and p that are not operative in static selection
models.
This point is illustrated in a simple example. Let J = 3 and assume payoffs

are given by Wtj = Xt1 b1j + Xt2 b2j + etj for j = 1, 2 where et ~ N (0,S), and
Wt3 = 0. Further assume that the laws of motion for the scalar state variables Xtj
are Xt + 1, j = Xt,j + c [dt = j] for j = 1, 2, where c [·] is an indicator function. Letting
the future component Ft + 1

(
Xt + 1, 1,Xt + 1, 2

)
be a second order polynomial in the two

state variables, we obtain the alternative specific value functions:

Vit1 = Xit1 b11 + Xit2 b21 + eit1 +(Xit1 + 1) p1 +(Xit1 + 1)
2 p2 + Xit2p3 + X 2it2p4

+(Xit1 + 1) Xit2p5,

Vit2 = Xit1 b12 + Xit2 b22 + eit2 + Xit1p1 + X 2it1p2 +(Xit2 + 1) p3 +(Xit2 + 1)
2 p4

+ Xit1(Xit2 + 1) p5,

Vit3 = Xit1p1 + X 2it1p2 + Xit2p3 + X
2
it2p4 + Xit1Xit2p5,

where i = 1, . . . , I indexes agents. The decision rule is dit = j iff Vij − Vik ¾ 0 for all
k Ñ j. Joint identification of q = (b ,S) and p in this case is obvious. Observe that the
latent indices in the reduced form probit selection rule are:

Zitj ≡ Vitj − Vit3 = ÷1j + Xit1÷2j + Xit2÷3j + eitj for j = 1, 2, (3.9)

and Zit3 = 0, where ÷11 ≡ p1 + p2, ÷21 ≡ b11 + 2p2, ÷31 ≡ b21 + p5, ÷12 ≡ p3 + p4,
÷22 ≡ b12 + p5 and ÷32 ≡ b22 + 2p4. The parameters b11, b21, b12, b22 and S can be
consistently estimated via joint estimation of the selection rule (3.9) with the equations
for {Witj}2j = 1, relying for identification on joint normality of eitj for j = 1, 2, and on the
cross-equation restriction ÷22 − ÷31 = b12 − b21. The later is an example of the type of
restriction in the dynamic model that would not arise in a static selection model 16.

16 As a practical matter, such cross-equation restrictions are critical for identification in the model,
despite the fact that they are not necessary for formal identification. In Section 6, we present Monte-
Carlo results for static selection models which show how, in the absence of parameter restrictions, the
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Next, given the estimates of the payoff function parameters, it is obvious that p1
through p5 are identified from estimation of the “structural” probit model that is
obtained from Equation (3.9) after substituting in the estimates of b11, b21, b12 and
b22 from stage 1. Observe that the latent indices in the structural probit are:

Z∗
it1 =Xit1 b̂11 + Xit2 b̂21 + e

∗
it1 + p1 +(2Xit1 + 1) p2 + Xit2p5

Z∗
it2 =Xit1 b̂12 + Xit2 b̂22 + e

∗
it2 + p3 +(2Xit2 + 1) p4 + Xit1p5.

Thus, the model implies the restriction that the coefficient on Xit2 in the first equation
and the coefficient on Xit1 in the second equation are equal. Note that use of higher
order polynomial approximations to the future component would generate additional
cross-equation restrictions of this type.
The parameters q and p remain jointly identified if the payoffs are given byWitj + hitj

where hitj is a component of the payoff that is never observed by the econometrician,
provided that hitj is distributed independently of the {Witj}2j = 1, for this generates a
switching regression model like that in Lee (1978, 1979).
In Geweke and Keane (1995) and Geweke, Houser and Keane (1998) we present

a series of Monte-Carlo experiments in which this approach of approximating the
future component by a polynomial is applied to data generated from various discrete
dynamic optimization models. Once the future component is specified as a polynomial,
statistical inference via maximum likelihood or use of Bayesian methods is no more
difficult than in static selection or switching regression models. In our experiments, we
find that this approach leads to reliable inferences about the parameters q that enter the
current payoff functions, and about the parameters p that characterize expectations. In
particular, we find that if the true future components are in fact generated by a “correct”
solution of the dynamic optimization problem (i.e., if agents use the optimal decision
rule) the use of reasonably low order polynomial approximation still results in reliable
inferences about q . And the resulting approximations to the optimal decision rules
typically generate present value of lifetime payoff losses on the order of a tenth of
one percent when used in place of the optimal rules. We present some representative
results from these experiments in Section 7.
There are several appealing aspects of the polynomial approximation approach

we have described here. First, for discrete state variables that take on only a finite
configuration of values, a finite order polynomial can generate any (finite valued) future
component exactly. For continuous state variables, the Stone–Weierstrass Theorem
states that if the future component is a continuous function of the state variables whose

likelihood contains little information about either payoff function parameters or the correlation between
payoff and choice equation errors. However, the use of parameter restrictions allows all these parameters
to be pinned down precisely. A nice feature of the approach to estimation of dynamic selection models
that we describe here is that cross-equation restrictions that aid in identification arise naturally from the
structure of the model.
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domain is a compact subset of R2 then a uniform approximation of arbitrary accuracy
can be achieved by use of a sufficiently high order polynomial.
Second, the use of finite order polynomial approximation means that in general

Equation (3.8) will be a misspecification of agents’ decision rules. But it is well
known that in this case the pseudo-MLE converges almost surely to the subset of
the parameter space on which the Kullback–Leibler distance (KL) between the true
data distribution and the distribution generated by the approximate decision rule is
minimized [see Huber (1967), Pfanzagl (1969)]. Recently Bunke and Milhaud (1998)
proved an analogous result for pseudo-Bayes estimators with respect to general loss
functions. They show that in the case of a unique pseudo-true parameter vector that
minimizes KL, pseudo-Bayes estimators are strongly consistent.
Third, unlike the Hotz and Miller and Manski approaches, this method does not

require stationarity assumptions. This is because agents’ expectations of future payoffs
are inferred from current choices and payoffs, rather than future payoff realizations.
Fourth, the method can accommodate unobserved heterogeneity, since parametric
heterogeneity distributions are generally identified in static selection models. Fifth,
the method does not require that each payoff function have a unique additive error,
and it can accommodate flexible specification of error distributions using methods
like those we implement in Section 6 for the static selection model. Sixth, unlike all
the methods we have described so far, this method can be extended to handle joint
discrete/continuous decision variables, as demonstrated in Houser (1998).
Finally, the method allows more flexibility in analysis of regime shifts than do the

Hotz and Miller and Manski approaches. Behavior of agents under regimes not present
in the observed data can be simulated, provided the regime shift can be represented as
a change in observed state variables in agents’ decision rules. That is, the data must
contain some variation along the dimensions of interest, but need not contain the exact
configuration of the state variables that characterize the new regime.

4. Classical simulation estimation of the multinomial probit model

The early work on simulation estimation in econometrics was concerned primarily with
the multinomial probit model (MNP). So we begin with a description of MNP. Let j
index mutually exclusive alternatives from the set {1, . . . , J}. The utility that agent i
receives from choice of alternative j is specified as:

y∗ij = WijGj + e
∗
ij j = 1, . . . , J , i = 1, . . . , N ,

where Wij is a vector of covariates, Gj is a conformable vector of coefficients, and
e∗i ≡

(
e∗i1, . . . , e

∗
iJ

)′
~ N (0,S∗). The econometrician does not observe the utilities{

y∗ij
}J
j = 1

but only the covariates and the decision di where di = j iff y∗ij ¾ y∗ik ∀ k .
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It is useful to distinguish between two types of covariates: those that vary across
alternatives for an individual, and those that vary only across agents. We denote the
former by Zij and latter by Xi and rewrite the model:

y∗ij = Zij gj + Xi b
∗
j + e

∗
ij j = 1, . . . , J , i = 1, . . . , N , (4.1)

where gj and b∗
j are obtained from Gj in the obvious way. Numerical experiments

in Keane (1992) indicate that identification of MNP parameters is extremely tenuous
in the absence of covariates like the Zij , so we include such covariates in all the
MNP examples that we discuss, both here and in Sections 6 and 7.
The parameters of Equation (4.1) are not identified, because only utility differences

affect choices, and choices are invariant to the scale of utilities. A common
normalization is to define J as a base alternative, and define:

yij ≡ y∗ij − y
∗
iJ = Zij gj − ZiJ gJ + Xi

(
b∗
j − b

∗
J

)
+
(
e∗ij − e

∗
iJ

)
= Zij gj − ZiJ gJ + Xi bj + eij j = 1, . . . , J − 1,

yiJ = 0,

where ei ≡ (ei1, . . . , eiJ − 1) ~ N (0,S) and S is a (J − 1) × (J − 1) covariance
matrix obtained from S∗. Further, the scale normalization is usually imposed by setting
S11 = 1.
It will be convenient to write yij = ȳij + eij for j = 1, . . . , J and adopt the convention

that ȳiJ = eiJ = 0. Then, agent i chooses option j iff yik − yij ¶ 0 ∀k , which generates
the J − 1 dimensional partition of the e space eik − eij ¶ ȳij − ȳik ∀k . Define ẽ jik = eik − eij
for k = 1, . . . , J , and further define ẽ ji =

(
ẽ ji1, . . . , ẽ

j
i, j − 1, ẽ

j
i, j + 1, . . . , ẽ

J
iJ

)
~ N (0, S̃ j).

Then, the probability that agent i chooses option j can be written as the J − 1
dimensional integral:

p( j|Zi,Xi, g , b ,S) =
∫ ȳij − ȳi1

−∞
· · ·

∫ ȳij − ȳiJ

−∞
p
(
ẽ j1 , . . . , ẽ

j
J |S̃ j

)
dẽ jJ · · · dẽ j1

= P
(
ȳij − ȳi1, . . . , ȳij − ȳiJ |S̃ j

)
.

(4.2)

Letting d = (d1, . . . , dJ ) the likelihood function is then:

p(d| g , b ,S) =
N∏
i = 1

J∏
j = 1

P
(
ȳij − ȳi1, . . . , ȳij − ȳiJ |S̃ j

)c [dj = j]
. (4.3)

Thus, the key computational problem in MNP estimation is that construction of the
likelihood requires evaluation of J − 1 dimensional integrals. And, unfortunately,
deterministic methods for evaluation of integrals (such as quadrature) suffer from a
curse of dimensionality, in that computation time required to insure a given level
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of accuracy grows exponentially with dimension. Given current computer speeds,
estimation of MNP models using deterministic methods is only feasible for J = 3
or perhaps 4.
This statement may seem surprising, because it is now certainly feasible to evaluate

quite high dimensional integrals to high accuracy within reasonable time using
quadrature. The key point to note, however, is that maximum likelihood estimation of
the MNP requires that the likelihood be evaluated at many trial values for the K × 1
parameter vector q ≡ (g , b ,S). At each trial value qT , the J − 1 dimensional integrals
in Equation (4.2) must be evaluated for all N agents in the population. Furthermore,
note that on each iteration of a derivative based search algorithm designed to locate
q̂ML, it is necessary to evaluate the likelihood at several different values of the
parameter vector. These are 1) the initial trial parameter vector qT , 2) K bumped
parameter values qT + bDk (where Dk for k = 1, . . . , K is a vector with a one in the
kth position and zeros elsewhere, and b is a bump size) in order to construct numerical
derivatives of the likelihood, and 3) the new trial parameter vectors q ′

T , of which a line
search algorithm will always try out at least two. So each iteration will involve at least
K + 3 evaluations of the likelihood.
To give an idea of the computational burden involved, consider a rather small sized

problem in which J = 4 and N = 500. With scalar Zij and Xi there are 12 parameters

({gj}4j = 1, { bj}3j = 1 and the 5 free elements of S). If 50 iterations are required for
convergence, then approximately 50 · (12 + 3) · 500 = 375 000 three-dimensional
integrals must be evaluated. Even if a computer could evaluate 100 such integrals per
cpu second, total computation time would be over an hour 17. The burden increases
rapidly as sample size, number of covariates and number of iterations increase 18.
Recognition of this problem led a number of investigators to consider simulation-

based estimation for the MNP. One approach is to simulate the integrals in
Equation (4.2) using fast Monte-Carlo methods, and to insert these approximations into
the likelihood (4.3). This gives the simulated maximum likelihood (SML) estimator.

17 Such a timing figure is in fact only realistic (given currently available computers) if simulation methods
are employed to evaluate the integrals. For instance, the Fortran code for the GHK simulator discussed
in Section 2, requires approximately .01 cpu seconds to evaluate a three dimensional integral using
100 draws, on a Sparc Ultra-2 workstation. Thus, approximately 100 integrals could be evaluated per
cpu second. If quadrature methods were used instead, far greater computation time would be necessary
to achieve reasonable accuracy.
18 A general expression for the approximate number of integrations required is C ·N · { J · Nz + ( J − 1)
·Nx + J ( J − 1) /2 + 2} where C is the number of iterations, Nz = dim

{
Zij
}
, and Nx = dim {Xi}. Notice

that the number of parameters increases rapidly in J , due to the J 2 term arising through the number
of covariance parameters. This has the side effect of increasing the number of iterations C required for
convergence, and the sample size N required to obtain reliable estimates. There have been proposals
to impose low dimensional factor structures on the covariance matrix to avoid this proliferation of
parameters [see Elrod and Keane (1995), Geweke, Keane and Runkle (1994)].
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Early work on SML was reported by Albright, Lerman and Manski (1977) and Lerman
and Manski (1981). They used crude frequency simulators of the form:

p̂F ( j|Zi,Xi, q) = M −1
M∑
m = 1

c
[
ẽ j(m)1 ¶ ȳij − ȳi1, . . . , ẽ

j(m)
J ¶ ȳij − ȳiJ

]
,

where {ẽ j(m)k }Jk = 1 for m = 1, . . . , M are i.i.d. draws from the joint distribution

ẽ ji ~ N (0, S̃
j). The general consensus regarding this work is that crude frequency

simulation did not perform satisfactorily. The two main problems are: 1) that low
probability events are often simulated to have zero probability, even for reasonably
large M , which sends the likelihood to zero, and 2) that frequency simulators
are not differentiable (or even continuous) functions of q . Hence, the use of
frequency simulation renders the likelihood a step function with jumps at parameter
configurations that produce ties among alternatives. Pakes and Pollard (1989) present
consistency and asymptotic normality results that can be applied in cases where the
objective function is discontinuous. However, as a practical matter, if the objective
function is a step function it precludes use of gradient based search algorithms and
forces the econometrician to resort to non-gradient methods (like simplex) that are
typically much slower. The most notable empirical application of SML using frequency
simulation is by Pakes (1986), who overcame these problems by using very large
simulation sizes.
A further concern with SML is that the simulation errors for the individual choice

probabilities (4.2) enter the likelihood function (4.3) nonlinearly. Hence, if simulation
sizeM is held fixed as sample size N is increased, parameter estimates are inconsistent.
It is necessary that M → ∞ as N → ∞ in order for SML to be consistent [see
Pakes and Pollard (1989)]. But the real issue is that, for fixed N , one must choose M
large enough to render the small sample bias negligible (or tolerable). Crude frequency
simulators are quite imprecise, so very largeM may be necessary to achieve this goal.
A major breakthrough in the simulation estimation literature occurred when

McFadden (1989) proposed the use of probability simulators that are smooth functions
of the model parameters. Smooth simulators have many critical advantages over
crude frequency simulators. They can be constructed so as to be both unbiased and
bounded away from zero for any M , and they deliver a simulated likelihood that is a
differentiable function of the model parameters – thus allowing use of gradient based
search algorithms. Furthermore, smooth simulators can be far more efficient than crude
frequency simulators in terms of the accuracy that is achieved for given computation
time. This opened the possibility that for MNP with large J it would be feasible to
construct SML estimators with tolerably small simulation induced bias.
Lee (1992, 1995) has examined the asymptotic properties of the SML estimator

for discrete choice models when smooth simulators are employed. Since the simulated
likelihood function is differentiable in this case, traditional asymptotic methods can be
used, as opposed to the more sophisticated empirical process methods used in Pakes
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and Pollard (1989). Lee shows that consistency of SML only requires that M → ∞
as N → ∞, with no particular rate required on M . But it is necessary to have
M /

√
N → ∞ as N → ∞ in order for q̂SML to have an asymptotically normal limiting

distribution that is properly centered at zero (this condition also guarantees asymptotic
efficiency). If M increases at a slower rate than

√
N , then

√
N(q̂SML − q) diverges and√

N consistency is not achieved 19. Further, Lee (1995) points out that the leading bias
term in the asymptotic expansion of the MLE is Op

(
N −1/2

)
, while the SML estimator

has an additional bias term that is Op
(
N 1/2M −1

)
. Hence, if M grows at a slower rate

than
√
N , the bias of SML is more severe than for the MLE. For given N and M ,

the expected value of this bias term is a function of the variance of the probability
simulator that is used. Clearly then, the use of a smooth simulator that achieves low
variance with reasonable computational cost is essential for SML to be operational.
There are many varieties of smoothed unbiased probability simulator, of which

McFadden (1989) presents several. Choice of simulator is crucial, because it is easy
to construct realistic examples in which well-known methods produce dismal results
[see Geweke (1989)]. The current consensus of the literature is that the GHK recursive
simulator, which we described in Section 2, is the most reliable and accurate general
purpose smooth simulator among those methods that are currently available. This
method was developed both by Keane (1990, 1993, 1994) and in an independent
line of research due to Geweke (1991) and Borsch-Supan and Hajivassiliou (1993) 20.
Evaluations of the relative performance of GHK versus alternative simulators in terms
of root mean square error (RMSE) per given computation time include Hajivassiliou,
McFadden and Ruud (1996), Vijverberg (1997) and Andrews (1999). These studies
consider experimental designs in which the number of alternatives in the choice set,
covariance structure of the errors, and size of the probability to be simulated are
varied. Ranking methods by the RMSE criterion, GHK is usually first regardless of the
treatment. In cases where GHK is not first it is outperformed only marginally by other
methods. Furthermore, those methods that can marginally outperform GHK under
certain treatments are typically found to perform quite poorly under other treatments.
Andrews (1999) shows that use of antithetic acceleration often leads to substantial
improvements in the performance of GHK. To implement antithetic acceleration,

19 In fact, the rate that is achieved is exactly M . Lee (1995) also shows that if M /
√
N → l as N → ∞,

where l is a positive constant, then
√
N (qSML − q) −→d N (lW m̄,W) where W is the inverse of the

information matrix and m̄ is a term related to the simulation error variance. Thus, SML is consistent
but suffers from an asymptotic bias when M grows at exactly a

√
N rate. We would like to point out

that the Geweke, Keane and Runkle (1994, 1997) papers contain the misleading statement that “SML is
consistent if M /

√
N → ∞ as N → ∞”. This is true, but as the above discussion makes clear, slower

rates suffice for consistency alone. We should have said that SML is
√
N consistent and asymptotically

normal (with a limiting distribution properly centered at zero) if and only if M /
√
N → ∞ as N → ∞.

20 The acronym GHK (Geweke, Hajivassiliou, Keane) was coined by McFadden at the 1990 Invitational
Choice Symposium in Banff, Alberta.
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simply take the average of two GHK simulators, based on the uniform random variables
u and i − u, where i is a conformable vector of ones.
Despite these encouraging results, our main concern is with the small sample

properties of SML when GHK is used to simulate choice probabilities. Specifically,
is GHK sufficiently accurate to render the simulation induced bias in SML tolerably
small? Studies of this question are Keane (1994), Geweke, Keane and Runkle (1994,
1997) and Lee (1995, 1997). The results are generally rather encouraging. For instance,
Geweke et al. (1994) consider a 7 alternative MNP of the form

yij = bj1 + bj2Xi + g
(
Zij − Zi7

)
+ eij j = 1, . . . , 6,

and yi7 = 0, where the covariates and errors are designed to have a structure similar to
the Nielsen scanner data on household ketchup purchases analyzed in Keane (1997).
More specifically, 50 artificial data sets with N = 5000 each were constructed, using
as covariates the household sizes and price variables from the first 5000 purchase
occasions in the Nielsen data, and using as model parameters the brand intercepts,
household size and price coefficients, and covariance matrix elements estimated from
the Nielsen data. Rather than estimating S , estimates were obtained for the elements of

the lower triangular Cholesky decomposition of S 21. Denote these by
{

{ajk}jk = 1
}6
j = 2

and note that the scale normalization was imposed by setting a11 = 1. Choice
probabilities were simulated using M = 30 draws. This is a very difficult example
(perhaps the most stringent test to which SML has been subjected in the literature) for
three reasons: 1) inspection of the {ajk} reveals that the variances are very unequal
across alternatives, a treatment that causes difficulty for all simulators, 2) conditional
choice probabilities for some alternatives (especially 2, 4 and 5) are often quite small,
and 3) the covariates are rather ill-behaved, in that prices of all brands tend to move
together. The results are presented in Table 4.1, which is generated from Geweke et al.
(1994, Table 10).
Note that the t-statistic for the estimated bias is significant for 22 out of 33 model

parameters. Given a large enough number of replications, even a quantitatively small
bias will be significant. One way to gauge the practical importance of the biases is
to look at the ratio of the bias in a parameter to the typical value of its asymptotic
standard error estimate (ASE). This is reported in the last column of the table. For only
two of the brand intercepts is the mean estimate (slightly) more than one ASE away
from the true value. This is never the case for the household size or price coefficients.
The mean estimate is more than one ASE from the true value for 8 out of 20 of the
Cholesky parameters, but differs by (slightly) more than 2 ASE in only 2 cases. By this

21 Note that, when dealing with MNP models with fairly large J , it is always advisable to estimate the
Cholesky elements rather than elements of S . If one iterates on elements of S itself, it is quite common
for them to move outside the range of feasible values for a positive definite covariance matrix during
the course of the iterations. Iteration on the Cholesky elements guarantees that this cannot happen.
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Table 4.1
Simulation estimation for MNP model a

q DGP ¯̂q RMSE ASE t-Bias Bias /ASE

b11 −.307 −.319 0.110 0.091 −0.77 −0.09

b21 −.961 −1.071 0.228 0.182 −3.41∗ −0.60

b31 0.163 −.034 0.289 0.183 −4.82∗ −1.08∗

b41 −.946 −1.591 1.044 0.591 −4.37∗ −1.09∗

b51 1.402 1.226 0.308 0.240 −4.04∗ −0.73

b61 0.954 0.888 0.118 0.097 −3.95∗ −0.68

b12 −.033 −.029 0.018 0.018 1.57 0.22

b22 −.011 −.010 0.032 0.028 0.22 0.04

b32 −.040 −.019 0.035 0.028 4.24∗ 0.75

b42 −.035 0.000 0.068 0.047 3.64∗ 0.74

b52 −.359 −.398 0.097 0.088 −2.84∗ −0.44

b62 −.171 −.171 0.022 0.025 0.00 0.00

g −1.981 −1.997 0.122 0.118 −0.92 −0.14

a21 0.615 0.541 0.214 0.143 −2.45∗ −0.52

a22 1.019 1.032 0.125 0.115 0.74 0.11

a31 0.410 0.457 0.195 0.147 1.70 0.32

a32 0.443 0.339 0.256 0.163 −2.87∗ −0.64

a33 1.407 1.299 0.189 0.150 −4.04∗ −0.72

a41 0.322 0.530 0.453 0.244 3.25∗ 0.85

a42 0.401 0.324 0.420 0.254 −1.30 −0.30

a43 1.483 0.849 0.729 0.268 −6.15∗ −2.37∗

a44 1.096 1.457 0.551 0.313 4.63∗ 1.15∗

a51 0.351 0.293 0.229 0.190 −1.79 −0.31

a52 0.024 0.107 0.337 0.200 1.74 0.42

a53 0.497 0.238 0.406 0.202 −4.51∗ −1.28∗

a54 0.238 0.082 0.286 0.187 −3.86∗ −0.83

a55 0.905 1.004 0.284 0.249 2.46∗ 0.40

a61 0.506 0.510 0.166 0.113 0.17 0.04

a62 0.641 0.368 0.363 0.137 −5.32∗ −1.99∗

a63 0.955 0.726 0.282 0.130 −5.74∗ −1.76∗

a64 0.361 0.197 0.235 0.126 −4.93∗ −1.30∗

a65 −.100 0.053 0.194 0.121 5.58∗ 1.26∗

a66 0.845 1.062 0.247 0.101 6.21∗ 2.15∗

a Abbreviations: ¯̂q , the mean parameter estimate across the 50 replications; RMSE, the root mean square
error of the estimates about the true value; ASE, the mean of the asymptotic standard errors across the

50 replications; t-Bias, the t-statistic for the bias, defined as ( ¯̂q − DGP) / (RMSE /
√
50).
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standard, one would have to conclude that SML based on GHK is delivering reasonably
accurate estimates in a very difficult example 22.
Do the biases we observe in Table 4.1 stem primarily from the fact that simulation

error enters the likelihood nonlinearly? To address this question we turn to the method
of simulated moments (MSM) estimator developed in McFadden (1989). The solution
of the simulated moment conditions:

N∑
i = 1

J∑
j = 1

Wij
[
c
[
dj = j

]
− p̂

(
j|Zi,Xi, q̂

)]
= 0, (4.4)

where Wij is a set of instruments and p̂ is any unbiased simulator (satisfying certain
regularity properties), gives an estimator for q that is root N consistent for fixed
simulation sizeM . The reason is that the simulation errors enter the moment conditions
linearly, and hence tend to cancel across agents as N → ∞ (provided that the
simulation errors are asymptotically uncorrelated with the instruments). Geweke,
Keane and Runkle (1994) also applied MSM to the same 50 artificial data sets
considered in Table 4.1. The estimated biases were very similar for q̂MSM. In fact,
the t tests indicated significant bias for 21 out of the 22 parameters for which q̂SML
had significant bias. Based on this, we conclude that the main source of bias in
the SML estimates is small sample bias, rather than simulation induced bias. This
statement may seem surprising given that N = 5000, but in fact such a sample size is
not very large for a discrete choice model with 7 alternatives [Geweke et al. (1994)
report that for artificial data sets with N = 1000 the various algorithms would often
fail to converge due to numerical problems] 23.
Based on these results, as well as results from a number of other numerical

experiments in Geweke et al. (1994) and in other papers cited earlier, we conclude
that in many contexts the finite sample bias in SML estimates is no more severe than
for MSM estimates – provided that choice probabilities are simulated using the GHK
method with a sufficiently large simulation size (apparently in the range of M = 20 to
50 in most contexts).
The original hope with MSM was that it would provide an inexpensive way

to obtain MNP estimates with good statistical properties, because its simulation
error cancellation property would allow one to rely on quite crude and inexpensive
probability simulators. The Monte-Carlo literature has not born this out, because the
finite sample performance of MSM appears to deteriorate quite substantially when

22 Also encouraging is that there is fairly good agreement between empirical RMSE and the ASE’s, at
least for the b and g parameters. There is some tendency for SML to understate standard errors, and
this is much more severe for the Cholesky elements.
23 Geweke et al. (1994) also applied a Gibbs sampling-data augmentation algorithm to the same data. If
we treat the posterior means as Bayes estimates of the model parameters, estimated bias is in the same
direction as for SML for 25 out of 33 parameters. And if the empirical standard deviation of the Bayes
estimates is used to form t-statistics for the bias, it is significant in 11 out of 33 cases.
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imprecise simulators are used. For instance, Geweke et al. (1994) found that MSM
based on kernel smoothed (KS) frequency simulators [discussed in McFadden (1989)]
produced estimates with much higher RMSEs than either SML–GHK or MSM–GHK.
This was true even when the number of draws used to form the KS simulators was
increased sufficiently to equate computation time with GHK, and regardless of which
of several values of the smoothing parameter was employed. This led them to conclude
“. . . the choice between estimation methods (i.e., MSM versus SML) is of secondary
importance relative to the choice of probability simulator . . . ”
A related point concerns the fact that the optimal weights for MSM are of the form:

W 0
ij =

[
ðp( j|Zi,Xi, q) /ðq

]
/p( j|Zi,Xi, q) . (4.5)

The desirable consistency property of MSM obtains so long as one uses weights

{Wij} that are asymptotically correlated with the
{
W 0
ij

}
and uncorrelated with the

simulated moments. But numerical experiments in Hajivassiliou (1991) indicate that
MSM performs quite poorly unless reasonably accurate approximations to the optimal
weights are employed. This implies that one needs to simulate the probabilities in
Equation (4.5) to a reasonably high degree of accuracy.
There is one context where MSM has been shown to be clearly superior to SML,

and that is in panel data models with serially correlated errors. The MSM estimator
as originally formulated in McFadden (1989) is not practical in the panel data case,
because each possible choice sequence must be treated as a separate alternative,
meaning that J in Equation (4.4) grows exponentially with T . Keane (1990, 1993,
1994) suggested the alternative of factoring the sequence probabilities into transition
probabilities to obtain the simulated moment conditions

N∑
i = 1

T∑
t = 1

J∑
j = 1

Witj
[
c [dit = j] − p̂

(
j|Di, t − 1,Zi,Xi, q̂

)]
= 0,

where J is the number of choice options in each period, Di, t − 1 is the history of
choices {di1, . . . , di, t − 1}, and Xi and Zi are the histories of the Xit and Zitj variables.
The optimal weights are the obvious generalization of Equation (4.5). Keane further
proposed that the transition probabilities be simulated using ratios of GHK simulators:

p̂
(
j|Di, t − 1,Zit ,Xit , q̂

)
=
p̂GHK

(
j,Di, t − 1|Zit ,Xit , q̂

)
p̂GHK

(
Di, t − 1|Zit ,Xit , q̂

) . (4.6)

The resulting estimator is not consistent in N for fixed simulation size M because the
denominator in Equation (4.6) is simulated. Hence simulation error does not enter the
objective function linearly, and one must have M / N 1/2 → ∞ as N → ∞ for this
estimator to be

√
N consistent and asymptotically normal (with a properly centered
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Table 4.2
MSM and SML estimation for the multiperiod probit model a

q DGP MSM

¯̂q RMSE ASE

SML

¯̂q RMSE ASE

ø1 0.800 0.808 0.022 0.018 0.755 0.048 0.014

ø2 0.800 0.790 0.042 0.037 0.680 0.124 0.027

a12 0.500 0.567 0.121 0.107 0.620 0.138 0.067

a22 0.866 0.892 0.109 0.097 1.012 0.161 0.064

b11 0.500 0.500 0.033 0.042 0.499 0.030 0.033

b21 −1.200 −1.176 0.090 0.084 −1.218 0.062 0.070

b12 1.000 0.985 0.028 0.037 0.990 0.023 0.030

b22 1.000 0.989 0.061 0.056 1.003 0.057 0.046

g 1.000 0.982 0.038 0.036 0.991 0.025 0.030

a Abbreviations: ¯̂q , the mean parameter estimate across the 20 replications; RMSE, the root mean square
error of the estimates about the true value; ASE, the mean of the asymptotic standard errors across the
20 replications.

limiting distribution). Nevertheless, this estimator has been found in a number of
experiments to have finite sample properties that are superior to SML. For instance,
Geweke, Keane and Runkle (1997) consider a three alternative model of the form:

yitj = bj1 + bj2Xit + gZitj + eitj j = 1, 2,

and the normalization yit3 = 0, and with the error structure:

eitj = øjei, t − 1, j + nitj j = 1, 2,

where (nit1nit2)
′ ~ N (0,S). The element a11 of the Cholesky decomposition of S

is fixed at 1, while a12 and a22 are estimated. Twenty artificial data sets of size
N = 500 and T = 10 were constructed, for each of twelve alternative configurations
of the true parameter vectors and the serial correlation structure of the covariates [we
refer the reader to Geweke et al. (1997) for more details]. In Table 4.2 we present a
representative set of their results (extracted from their Tables 16 and 17). These results
are for MSM and SML each based on GHK with M = 20.
The severe downward bias of the SML estimates of the AR(1) parameters is

apparent. The SML estimates of the cross-correlation parameters a12 and a22 are also
severely biased. Simulation size had to be increased to about M = 80 or 160 before
the biases became negligible. In contrast, the performance of MSM in this example is
quite impressive, and it continued to produce good results even withM = 10. A similar
pattern holds across all the experiments in Geweke et al. (1997). The pattern of SML
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Table 4.3
SML estimates of Markov model a

T M ø

Mean RMSE

l = 0.2

Mean RMSE

b = 1.0

Mean RMSE

ø = .40

15 50 .383 .042 .214 .055 .994 .044

30 50 .380 .034 .213 .037 .992 .030

50 50 .371 .035 .216 .032 .988 .027

ø = .85

15 50 .837 .024 .214 .070 .979 .055

30 50 .820 .034 .232 .057 .951 .062

50 50 .798 .054 .252 .064 .912 .093

15 15 .812 .045 .236 .078 .948 .072

30 15 .789 .063 .263 .081 .908 .099

50 15 .762 .089 .290 .099 .862 .134

a Abbreviations: mean, the mean estimate across the 300 replications; RMSE, the root mean square
error of the estimates around the true values.

(but not MSM) severely underestimating serial correlation parameters was also found
in Keane (1994).
Lee (1997) presents an extensive series of Monte-Carlo experiments in which SML

based on GHK is applied to all the various dynamic panel data models presented in
Heckman (1981). He finds that SML produces severely biased estimates of the degrees
of serial correlation, heterogeneity and state dependence in many of these models. For
example, Lee considers the Markov model with J = 2 and AR(1) errors:

yit1 = bXit + lc
[
di, t − 1 = 1

]
+ eit t = 1, . . . , T ,

with yit2 = 0, eit = øei, t − 1 + hit , hit ~ N (0, 1), ei0 = 0 and c [di0 = 1] = 0. He generates
300 artificial data sets with N = 200, and experiments with T , M , and the size of
ø. Table 4.3 contains a representative set of his results (extracted from his Table 2).
Notice there is a consistent pattern of downward bias in ø and upward bias in l. These
biases are more severe when ø is high (.85) than when it is low (.40). The bias also
becomes more severe as T increases. Also notice, however, that the bias is greatly
reduced when M is increased from 15 to 50. But bias with M = 50 remains severe in
the high serial correlation case, consistent with the Geweke et al. (1997) results.
Lee (1995) also proposed a bias reduction scheme based on approximating the

leading bias term in the asymptotic expansion of the SML estimator that arises due to
simulation. He implements this in Lee (1997) and concludes that “the bias-correction
procedure reduces bias and RMSE, but the improvements . . . are generally small.”
Further, it appears that the bias correction works best when the initial bias in SML is
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not too great. This makes sense, since the accuracy of the asymptotic expansion will
tend to be poor if one is far from the true q . It appears that in cases of strong serial
correlation it is more promising to simply increase simulation size [i.e., to say M = 80
to 160 as in Geweke et al. (1997)] than to attempt bias correction.
In summary, we conclude that simulation based estimation of MNP models,

as well as other discrete choice models of similar complexity, is quite feasible
using currently available methods. Gauss code to implement the both SML and
MSM estimation of cross sectional and panel MNP models is available at the
web site http://research.mpls.frb.fed.us/˜drunkle/software/GKR/mmp.html. But before
attempting to use simulation based methods to estimate MNP models, it is important
that several cautions and caveats be born in mind:
(1) In most contexts the choice between SML or MSM as the estimation method is

not important (the one known exception being the case of panel data models with
serially correlated errors, where the performance of MSM appears to be superior);

(2) but it is essential to use a highly accurate smooth probability simulator to
implement either SML or MSM. The GHK method appears to be the most accurate
general purpose simulator among those currently available.

(3) Care must be taken to use sufficiently large simulation sizes. For small sized
problems (e.g., pure cross section problems with three or four alternatives)
experience suggests that GHK based on only 10 to 30 draws will work well.
But much larger simulation sizes are often necessary in more complex models.
Geweke, Keane and Runkle (1994, 1997) and Lee (1995, 1997) give some
guidance along these lines. In all cases it is advisable to check sensitivity of results
to moderate increases in the number of draws.

(4) In specification of MNP models it is essential to bear in mind that alternative
specific covariates (i.e., exclusion restrictions) are critical if covariance parameters
are to be identified [see Keane (1992)]. Even so, covariance matrix parameters
will often be poorly identified in models that have large choice sets. Furthermore,
the number of covariance parameters grows rapidly as choice set size increases,
and nonlinear search algorithms typically have difficulty with high dimensional
parameter vectors. Hence, estimation of models with large choice sets will only be
feasible if constraints are placed on the covariance matrix to reduce the number of
free parameters. It is important to recognize that the difficulties described here are
inherent to the MNP model itself, and are not a consequence of use of simulation
methods per se 24.

24 This point may seem obvious, but we have received many inquiries from investigators who concluded
that simulation methods “don’t work” because they could not succeed in estimating a MNP model
that lacked alternative specific covariates. Or because they found it impossible to estimate very high
dimensional MNP models with hundreds of free covariance matrix elements.
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5. Univariate latent linear models

Economic models are often used to study a single decision or outcome. The outcome
variable may be fully observed, continuous, and unrestricted (for example, log
consumption); fully observed and continuous but restricted to an interval (fraction of
expenditure devoted to a certain category of goods); continuous but censored (earnings
subject to known withholding limits for social insurance); a mixture of discrete and
continuous outcomes (earnings of full-time high school students); categorical (income
from survey data known only to be in a designated interval); or discrete (dichotomous
choice, such as labor force participation). Depending on the model and data, other
kinds of outcomes may be observed as well.
In all of these models, it is useful to conceive first of a latent outcome (denoted ỹt ,

for observation t), and then a corresponding set-valued observed outcome, denoted yt .
For example, in the case of a continuous outcome censored from above at c, yt = ỹt if
ỹt ¶ c, and yt = (c,∞) if ỹt > c. In the case of a dichotomous outcome, one observes
yt = (−∞, 0] if ỹt ¶ 0 and yt = (0,∞) if ỹt > 0. This construction is sometimes used
explicitly in introducing the tobit model [Amemiya (1985, Section 10.2) or Greene
(1997, Section 20.3.2)] and probit model [Goldberger (1991, Section 29.1) or Maddala
(1992, Section 8.9)], respectively.
This section treats the linear model ỹt = b ′xt + ut , with observed outcomes of the

form yt = [ct , dt] , yt = [ct , dt), or yt = (ct , dt], it being understood that ct ¶ dt
and that ct and dt are extended real numbers. The disturbances ut (t = 1, . . . , T )
are independent and identically distributed conditional on xt (t = 1, . . . , T ). The
disturbance ut has a normal mixture distribution. We make this assumption because
the normal mixture density can approximate any density arbitrarily well [Ferguson
(1983)], and because it leads to practical methods for inference. It avoids the well-
known problems that arise if the distribution of ut is assumed to be Gaussian when
in fact this assumption is poor. In the specific case of dichotomous choice models the
strategy here has objectives similar to those of nonparametric single-index models 25.
The treatment here differs in that it covers a much wider class of latent variable models,
is fully Bayesian, and is computationally less demanding than methods for single-index
models.
Section 5.1 presents an overview of the univariate latent linear model (ULLM),

leaving technical detail to Appendix A. Section 5.2 provides some results with
artificial data, to establish the practicality of the methods. The ULLM is incorpo-
rated in the Bayesian Analysis, Computation and Communication (BACC) software
system. This system provides extensions to Gauss, Matlab, and S-plus by means
of dynamically linked libraries, making it easy for one familiar with one of these

25 See for example Cosslett (1983), Manski (1985), Gallant and Nychka (1987), Powell, Stock and
Stoker (1989), Horowitz (1992), Ichimura (1993), Klein and Spady (1993) and Lewbel (1997). For a
detailed discussion of the use of mixture of normal models as an alternative to the probit model, see
Geweke and Keane (1999).



Ch. 56: Computationally Intensive Methods for Integration in Econometrics 3507

commercial software packages to apply the model. Detailed information is available
at http://www.econ.umn.edu/˜bacc.

5.1. An overview of the univariate latent linear model

5.1.1. Distribution of disturbances

In the univariate latent linear model

ỹt = b ′xt + ut , (5.1)

the disturbances ut (t = 1, . . . , T ) are i.i.d. conditional on xt (t = 1, . . . , T ). Several
alternative assumptions about the distribution of ut can be made, and here we shall take
up three in detail. The first is the conventional specification ut ~ N (0, s 2), in which
s 2 may be a free parameter (for example, in the censored linear model) or fixed as a
condition of identification (for example, s 2 = 1 in the probit model).
The second alternative assumption about the distribution is ut ~ t (0, s 2; l), a

Student-t distribution with location parameter 0, scale parameter s , and degrees-of-
freedom parameter l. The scale parameter may be fixed as a condition of identification.
The disturbances may be represented ut = s(t)ht , with (s(1), . . . , s(T )) and (h1, . . . , hT )
i.i.d. and mutually independent conditional on (x1, . . . , xT ). The latent variables s 2(t)
have independent inverted gamma distributions, l/s 2(t) ~ c

2(l), and ht ~ N (0, s 2) 26.
They subsequently play an important part for inference in this model.
The third alternative assumption about the distribution is ut ~ N (aj , s 2s 2j ) with

probability pj ( j = 1, . . . , m);
∑m

j = 1 pj = 1. This is a normal mixture model, with
ut drawn at random from one of m “urns”, each urn containing a collection of ut
with a different normal distribution. By increasing the value of m and choosing
the N (aj , s 2s 2j ) distributions appropriately, any univariate p.d.f. can be approximated
arbitrarily well in the L1 topology [Ferguson (1983)]. In this case, the disturbance may
be represented ut = a′z̃t + s(t)ht . In this representation a′ = (a1, . . . , am). The random
variables (h1, . . . , hT ) are i.i.d. conditional on (x1, . . . , xT ): ht ~ N (0, s 2). The latent
random vectors (z̃′t , s(t)) are i.i.d. conditional on (x1, . . . , xT ) and (h1, . . . , hT ). Their
values are governed by a latent state variable s(t) taking on the alternative values
s(t) = j ( j = 1, . . . , m). The s(t) are i.i.d. conditional on (x1, . . . , xT ) and (h1, . . . , hT ),
with P[s(t) = j ] = pj . Conditional on s(t) = j, we have s(t) = sj , z̃tj = 1, and
z̃ti = 0∀ i Ñ j. To identify the model with respect to permutation of the state index, it
is assumed that s1 > · · · > sm. Identification of s separately from sj ( j = 1, . . . , m)
is taken up subsequently as part of the prior distribution.

26 For a derivation of this construction see Johnson, Kotz and Balakrishnan (1995, Section 28.1) or
Geweke (1993).
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All three specifications of the distribution of ut in Equation (5.1) are embedded in

ỹt = a′ z̃t
m× 1

+ b ′ xt
k × 1

+ et , et = s(t)ht ,

in which, conditional on (x1, . . . , xT ), ht ~ N (0, s 2) is i.i.d. and independent of
(z̃′t , s(t)). The three specifications of the distribution of ut in Equation (5.1) are
distinguished by the distribution of s(t). Only when ut has a normal mixture distribution
is m > 0.

5.1.2. Observable outcomes

Models are further distinguished by the observable outcome yt , which in general is
a set-valued function of the latent outcome ỹt . If yt = ỹt (t = 1, . . . , T ) the ULLM
reverts to the linear model. For the dichotomous choice model yt = (−∞, 0] if ỹt ¶ 0
and yt = (0,∞) if ỹt > 0. For an outcome censored from above at c, yt = ỹt if ỹt ¶ c,
and yt = (c,∞) if ỹt > c. In all cases,

p ( yt , ỹt |xt) = p ( ỹt |xt) p ( yt |ỹt) = p ( ỹt |xt) cyt (ỹt) ,

in which cS(z) is the set indicator function: cS(z) = 1 if z ∈ S and cS(z) = 0 if z /∈ S.

5.1.3. Prior distributions

Every model is endowed with a proper prior distribution. This makes it possible to
compare different models for the same data using Bayes factors, as discussed below.
For each model, we specify a benchmark prior distribution with hyperparameters
that can be adjusted to reflect beliefs. These prior distributions are chosen for
their combination of flexibility and analytical simplicity. Beyond the choice of
hyperparameters, these prior distributions may be adjusted further to include prior
distributions not in the benchmark families, by reweighting the output of the posterior
simulator constructed subsequently 27.
The benchmark prior distribution for b is Gaussian, b ~ N ( b ,H−1

b ), and for s
2 it

is inverted gamma, s2 /s 2 ~ c2(n ). If s2 /n = s∗2 and s2 → ∞, then s 2 is degenerate
at s∗2. Thus s 2 = 1 can be enforced by a very large value of s2 = n .
For the Student-t model the benchmark prior for the degrees of freedom parameter

is exponential with mean l, l ~ exp(l). Smaller values of l reflect beliefs that the
distribution is more leptokurtic.
The normal mixture model for the disturbances has three components: p′ =

( p1, . . . , pm), (s 21 , . . . , s
2
m), and a

′ = (a1, . . . , am). The multinomial distribution of the

27 Such reweighting is discussed in Geweke (1999, Section 6) and is easy to carry out in the BACC
software system.
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state index s(t) = j( j = 1, . . . , m) involves the probabilities p1, . . . , pm,
∑m

j = 1 pj = 1.
The benchmark prior distribution is Dirichlet (multivariate beta) with hyperparameters
r1, . . . , rm: p( p) ∝ ∏m

j = 1 p
rj − 1
j . In this distribution pj has mean rj / R and standard

deviation [rj(R − rj)]1/2 / R(R + 1)1/2, where R =
∑m

i = 1 ri.
The benchmark prior distribution for the second component of the normal mixture

model, the variance scaling parameters s 2j , consists of the m inverted gamma
components s2j / s

2
j ~ c

2(n j). These are subject to the restrictions s
2
1 > · · · > s 2m but

otherwise independent. The ordering of the s 2j removes the possibility of permuting
the states, but imposes the restriction s 2i Ñ s

2
j ∀ (i, j). We choose to identify states by

variance, because in our applications this is more convenient than identifying states by
orderings of state probabilities, pj , or state means, aj . The lack of identification in the
likelihood imposed by the fact that the variance in component j is s 2s 2j is resolved
by the proper prior distributions for s 2 and (s 21 , . . . , s

2
m). Identification can also be

achieved in the traditional way by taking s2i → ∞ and n i → ∞ while s2i / n i = 1, for
a selected state i, thereby making s 2 the variance in that state. In either event, in the
prior distribution of variance ratios across states,

s 2s 2k
s 2s 2j

~
s2k /n k
s2j /n j

· F
(
n j , n k

)
,

subject to s 2s 2j / s
2s 2k < 1 if j > k . Thus the prior distribution for the s

2
j incorporates

only beliefs about relative variances. This is convenient in thinking about shapes
(as opposed to scales) of distributions – for example, outliers or other forms of
leptokurtosis.
The third component of the normal mixture distribution, a′ = (a1, . . . , am), is

multivariate normal, a|s ~ N (0, s 2H−1
a ). This prior distribution is taken conditional

on s , and prior variance is proportional to s 2, in order to represent beliefs about the
shape of the disturbance p.d.f. independent of its scale. In all of the illustrations in the
next subsection, Ha = haIm. This restriction requires these prior beliefs about means
to be interchangeable across the mixture components. For example, given the number
of states, m, the greater the precision ha , the more likely is the p.d.f. to be unimodal.

5.1.4. Existence of the posterior

For any particular ULLM the product of the relevant prior densities and data density
is the kernel of the posterior distribution, so long as that product is finitely integrable
over the space of all parameters and latent variables. If the data density is bounded
above, then the integrability condition is met when the prior distribution is proper (as
it is here). For all variants of the ULLM with normal and Student-t densities the data
density is bounded, as it is for all variants in which all outcomes are discrete (i.e.,
ct < dt ∀ t ). If the disturbances are mixed normal and at least some of the ỹt are not
latent (i.e., ct = dt for at least some t) then the data density is unbounded. In this case
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the integrability of the posterior kernel can be demonstrated, but the argument is more
technical and is relegated to Appendix A.

5.1.5. MCMC algorithm for inference

The explicit development of the data density and prior density, whose product is
the posterior density kernel, is given in Appendix A. There is no corresponding
closed form for the posterior distribution of all of the parameters jointly. However,
the Gibbs sampling algorithm described in Section 2.2 can be applied to eight groups
of parameters or latent variables that appear in the posterior kernel: (a, b); s 2;
s 2(t) (t = 1, . . . , T ); l; s(t) (t = 1, . . . , T ) and Z̃ ; p; s 2j ( j = 1, . . . , m); and
ỹt (t = 1, . . . , T ). (Not all parameters appear under each assumption about the
distribution of ut .)
The Gibbs sampling algorithm is practical because the distribution of each parameter

group, conditional on all the others, is simple enough that draws from the conditional
distribution can be made. In particular, the conditional distribution of (a, b) is
multivariate normal; those of s 2 and s 2(t) (t = 1, . . . , T ) are inverted gamma; and
each ỹt is truncated normal. In the Student-t model, the conditional distribution of l
is not standard, but a Metropolis within Gibbs step (Section 2.5) employing a Gaussian
approximation to the conditional distribution as the proposal distribution works well.
(Details are presented in Appendix A.) In the normal mixture model, the conditional
distribution of p is Dirichlet and the state assignments are multinomial. The conditional
distribution of s 2j is inverted gamma, subject to truncation restrictions imposed by the
ordering s1 > · · · > sm.
For seven of the eight groups of parameters in this algorithm, the support of the

conditional posterior distribution is the same as the support of the marginal posterior
distribution. The exception is the group of variance parameters s 2j ( j = 1, . . . , m)
in the normal mixture model. Thus for the normal and Student-t variants of the
ULLM, Corollary 2.4.2 assures convergence of the Gibbs Markov chain to the posterior
distribution.
For the normal mixture model, consider any point in the support of the posterior

density, and any subset of the posterior density support with positive posterior
probability. There exists a finite number of iterations of the algorithm such that the
transition probability from the point to the subset is positive. (The minimum number of
steps will depend on the values of the s 2j ( j = 1, . . . , m) at the point in question, and
their values in the subset. In the normal and Student-t models, this minimum number of
steps is one for any point and any subset combination.) This condition assures that the
transition density of the chain is aperiodic and absolutely continuous with respect to the
posterior density [Tierney (1994)]. From Corollary 1 of Tierney (1994), the sequence
of parameters and latent variables

{
q (m)

}
produced by the Markov chain is ergodic: that

is, if a posterior moment ḡ = E[g(q)|X , y] exists, then ḡM = M −1
∑M

m = 1 g(q
(m)) −→a.s. ḡ.
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5.1.6. Marginal likelihoods

It is useful to be able to compare two alternative specifications of the ULLM – for
example, models with different specifications of the disturbance distribution, with
different covariates X , or with different prior distributions. A formal comparison can
be made by means of a posterior odds ratio. Let A1 and A2 denote the alternative
specifications of the ULLM and p(A1) and p(A2) the prior probabilities of the
alternative model specifications themselves. Then the posterior odds ratio in favor of
the specification A1 is

p (A1|X , y)
p (A2|X , y)

=
p (A1) p ( y|A1)
p (A2) p ( y|A2)

,

in which the marginal likelihoods p( y|Aj) are given by Equation (2.2). The key
technical task is to evaluate the integrals in Equation (2.2).
For the ULLM, a convenient way to approximate the marginal likelihood is to use the

modified harmonic mean method of Gelfand and Dey (1994), as further developed in
Geweke (1999, Section 4.3). This method requires that the prior densities p(q (m)j |Aj)
and data densities p( y|X , q (m)j ,Aj) be evaluated for each iteration m of the MCMC
algorithm. Once this is done, the Monte Carlo approximation of the marginal likelihood
may be carried out using generic software described in Geweke (1999, Section 4.5) 28.
The evaluation of the data density p( y|X , q (m)j ,Aj) is relatively straightforward in the
ULLM, but some care is required in the handling of the latent variables. Details are
given in Appendix A.

5.2. Some evidence from artificial data

Before proceeding to apply the ULLM, a number of practical issues arise. For some
variants of the ULLM, it is simply of interest to see how well the posterior distribution
recovers the underlying population parameters. This is especially true of models with
latent ỹt – for example, what can be learned about the degrees of freedom parameter l
in the Student-t dichotomous choice model, or the conditional means aj in the censored
linear model or dichotomous choice model with mixed normal disturbances?
In all cases, it is important to ascertain some information about computational

efficiency. This is not simply a matter of the computation time required for each
iteration of the MCMC algorithm. It is also driven by the degree of serial correlation
of the parameters drawn from one iteration to the next. The variance of the numerical
approximation of the posterior mean is computed using conventional time series

28 Other methods for Monte Carlo approximation include Chib (1995) and importance sampling as
discussed in Geweke (1996). Neither applies directly to a Gibbs sampling algorithm with Metropolis
steps.
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methods. The method is, essentially, to apply a set of linearly declining weights to
the first 8% of the autocovariances of the sequence

{
g(q (m))

}
, for a given function of

interest g(·) 29.

5.2.1. Parameter posterior moments

Tables 5.1–5.3 provide model specifications, prior distributions, and some posterior
moments for instances of the univariate linear model, censored linear model, and
dichotomous choice linear model, respectively. In each case sample size is T = 2000,
xt1 = 1.0 is an intercept, and x2t and x3t are independent, i.i.d. standard normal variates.
The nine data sets, including covariates, were drawn independently. The MCMC
algorithm was executed for 12 000 iterations in each case, and the last M = 10 000
iterations were used for the computations. Each table shows the parameter values used
to generate the data.
Panel C of Table 5.1 provides posterior moments for the textbook normal linear

model. There are no surprises: the posterior standard deviations of the bj are all about
(2000)−1/2 and that of s is about (1000)−1/2, the values suggested by the design of
the experiment. Given the approximate orthogonality of b and s 2 in the posterior
distribution the MCMC draws should be nearly i.i.d., and this is reflected in RNEs
close to 1.0 30.
The Student-t linear model (Table 5.1, panel D) entails draws of s 2(t) (t = 1, . . . , T )

each iteration. This accounts for the doubling of computation time per iteration,
compared with the normal linear model. There is a modest increase in the posterior
standard deviation of b and s 31. The posterior mean of the degrees of freedom
parameter l is close to the population value and well within one posterior standard
deviation. Additional serial correlation (relative to the normal linear model) is
introduced to the MCMC algorithm by the addition of s 2(t) (t = 1, . . . , T ) and l to
the parameter list. This has at most a modest impact on the RNE of the approximation
of E( bj|X , y). The main impact is on the numerical approximation error for s . This
arises because of the positive posterior correlation of s and l, and the fact that they
are drawn in separate blocks of the MCMC algorithm. The numerical standard error
of l is reduced to 10% of its posterior standard deviation in about 3000 iterations,
requiring about two minutes of computing time.

29 For long simulations, care must be taken to achieve computational efficiency in the computation of
autocovariances. Geweke (1999, Section 3.8) provides details.
30 The same algorithm is applied to this simple normal linear model as is applied in the ULLM
generally. Thus, moment matrices like X ′X are recomputed each iteration. Code designed specifically
for the normal linear model, such as that in the BACC software (http://www.econ.umn.edu/~ bacc) is
substantially more efficient.
31 Note that the population variance of the disturbance in this model is s 2l / (l − 2) = 5 /3. When the
normal linear model is applied to this data set, the posterior standard deviation of the bj is quite close
to the value of [(5 /3) /2000]−1 /2 that one would expect.
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Table 5.1
Univariate linear model (T = 2000)

A. Model specification

yt = b1 +
∑3
j = 2 xjt + ut

Population for all variants: x2t
i.i.d.
~ N (0, 1), x3t

i.i.d.
~ N (0, 1), b1 = 0, b2 = 1, b3 = −1

Normal disturbances: ut
i.i.d.
~ N (0, 1)

Student-t disturbances: ut
i.i.d.
~ t(0, 1;5)

Mixed normal disturbances: ut
i.i.d.
~ N (−.3, 1), p1 = .5; ut

i.i.d.
~ N (.3, .22), p1 = .5

B. Prior distributions and moments

Parameters Prior distribution Prior mean Prior s.d.

bj( j = 1, 2, 3) bj ~ N (0, 1) 0.0 1.0

s 4 /s 2 ~ c2(4) 1.253 0.655

l l ~ exp(5) 5.0 3.162

aj( j = 1, 2) aj ~ N (0, 5s 2) 0.0 2.236s

sj 4 /s 21 ~ c
2(4) 1.253 1.414

0.4 /s 22 ~ c
2(4) 0.396 0.447

p1 Beta(2,2) 0.500 0.224

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .018 sec./iter.

b1 = 0 −.031 0.023 0.808 b3 = −1 −.991 0.022 1.380

b2 = 1 1.014 0.022 1.112 s = 1 1.000 0.016 1.380

D. Student-t disturbances; .037 sec./iter.

b1 = 0 −.026 0.025 0.505 b3 = −1 −1.016 0.024 1.052

b2 = 1 0.968 0.025 0.538 s = 1 0.971 0.029 0.063

l = 5 5.111 0.702 0.032

E. Normal mixture disturbances; .052 sec./iter.

b2 = 1 1.004 0.007 1.054 s · s1 = 1 0.965 0.022 0.745

b3 = −1 −1.019 0.007 0.412 s · s2 = .2 0.193 0.008 0.007

b1 + a1 = −.3 −.303 0.008 0.520 p1 = .5 0.511 0.018 0.107

b1 + a2 = .3 0.260 0.033 0.477

The normal mixture model (Table 5.1, panel E) contains two normal components of
the disturbance, each with the same probability but different means and variances.
(The same mixture is used in the mixed normal censored linear and dichotomous
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choice models.) The variance of the disturbance is .52, smaller than in the normal
models. If the normal linear model is applied to this data set, posterior standard
deviations of b2 and b3 are about .016 = (.52/2000)1/2 as one would expect. If the
states were known, the posterior standard deviations of b2 and b3 would be about
.0062 = (1000/.22 + 1000/12)−1/2. The actual posterior standard deviations are much
closer to the latter value than the former. That they exceed .0062 can be attributed to the
imperfect sorting of observations by state. The posterior means of the intercept values
are well within two posterior standard deviations of population values. Since s1 = 5s2,
var( b1 + a1|X , y) > var( b1 + a2|X , y), but var( b1 + a1|X , y) / var( b1 + a1|X , y) < 5
again due to imperfect sorting by states.
The low value of relative numerical efficiency indicates strong serial correlation in

s2 in the MCMC algorithm. This arises because of high correlation between s2 and
the state classifications s(t). Because of the contrast in standard deviations (s1 = 5s2),
there are only a few observations for which p[et |s(t) = 1] ≈ p[et |s(t) = 2], and therefore
there is substantial persistence in state classification. Simple arithmetic shows that the
reclassification of an observation has a much larger effect on the smaller variance.
Since the effects of changes in other parameters on s1 and s2 is about the same, s2
is more strongly driven by the slowing moving state assignments.
Table 5.2 presents similar information for the censored linear model. In this model

ỹt is observed if and only if ỹt > 0, so about half of the T = 2000 observations
are censored. Compared with the linear model, posterior standard deviations are in
every case higher, reflecting the loss of information in censoring. Since about half the
ỹt must be drawn each iteration, one would expect an increase in serial correlation.
This is reflected in a reduction of RNE for all parameters except s · s2 in the normal
mixture model. Comparisons among panels C, D and E in Table 5.2 are similar to
the comparisons already discussed for their counterparts in Table 5.1. The increase
in RNE for s · s2 is due to the fact that uncertainty about ỹt for those ỹt < 0 now
contributes in a major way to all parameters, and serial correlation in the draws of ỹt
from one simulation to the next contributes to the serial correlation in all parameters
in the MCMC algorithm. Thus, the contrast in the impact of state classification on s1
and s2 is less important, relative to all other factors contributing to serial correlation,
than was the case in the linear model with mixed normal disturbances.
Table 5.3 presents the same information for the dichotomous choice linear model.

Given the parameter values and the distribution of xt , the probabilities of the choices
are .5 for the normal and Student-t disturbances, and the probability of choice one
(ỹt < 0) is .47 for the mixed normal disturbances. With the obvious exception of the
parameters s and s1, which are normalized at 1.0, posterior standard deviations for
all parameters are higher than was the case in the censored linear model. The largest
increases are in the posterior standard deviations of the parameters of the disturbance
distribution (other than s and s1 ). The increase in the posterior standard deviation of
the degrees of freedom parameter l is especially large. Given the increased latency of
ỹt in this model, these developments are unsurprising. There is evidence of increased
serial correlation (relative to the censored linear model) in the MCMC algorithm, in
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Table 5.2
Univariate censored linear model (T = 2000)

A. Model specification

ỹt = b1 +
∑3
j = 2 xjt + ut ; yt = c(0,∞) ( ỹt) ỹt + c(−∞,0) ( ỹt) (−∞, 0)

Data generating process otherwise as in Table 5.1

B. Prior distributions and moments: as in Table 5.1

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .044 sec./iter.

b1 = 0 −.048 0.034 0.101 b3 = −1 −1.013 0.031 0.154

b2 = 1 1.020 0.032 0.234 s = 1 1.009 0.024 0.188

D. Student-t disturbances; .070 sec./iter.

b1 = 0 −.063 0.037 0.181 b3 = −1 −1.036 0.034 0.167

b2 = 1 1.030 0.036 0.262 s = 1 0.943 0.040 0.017

l = 5 4.478 0.708 0.011

E. Normal mixture disturbances; .095 sec./iter.

b2 = 1 1.002 0.015 0.060 s · s1 = 1 0.978 0.031 0.672

b3 = −1 −1.019 0.008 0.839 s · s2 = .2 0.197 0.021 0.107

b1 + a1 = −.3 −.293 0.020 0.038 p1 = .5 0.477 0.025 0.070

b1 + a2 = .3 0.216 0.049 0.139

the form of reduced RNEs, when panels C, D, and E in Table 5.3 are compared with
their counterparts in Table 5.2. This decreased efficiency is most pronounced in the
case of mixed normal disturbances. (Note that now the RNE of s2 is comparable with
that of other parameters.)
Inference in the dichotomous choice linear model with mixed normal disturbances

is reliable, in the sense that for all the parameters the posterior standard deviation
is substantially less than the prior standard deviation, and all posterior means are
within about one posterior standard deviation of the population values. There is very
substantial serial persistence in the MCMC algorithm, but each iteration requires only
about 0.1 seconds. Based on an RNE of .008, numerical standard errors are driven
to one-fourth of posterior standard deviation after about 2000 iterations (about three
minutes), to one-tenth after 12 500 iterations (about 20 minutes), and to 1% after
1.25× 106 iterations (about 1.5 days). The practicality of the procedure thus depends
on one’s standards for accuracy. As we shall now see, a great deal can be learned with
just a few thousand iterations.



3516 J. Geweke and M. Keane

Table 5.3
Dichotomous choice linear model (T = 2000)

A. Model specification

ỹt = b1 +
∑3
j = 2 xjt + ut ; yt = c(0,∞) ( ỹt) (0,∞) + c(−∞,0) ( ỹt) (−∞, 0)

Data generating process otherwise as in Table 5.1

B. Prior distributions and moments

Parameters 1 Prior distribution Prior mean Prior s.d.

s s = 1 1.0 0.0

sj s1 = 1 1.0 0.0

0.4 /s 22 ~ c
2(4) 0.396 0.447

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .067 sec./iter.

b1 = 0 −.035 0.036 0.285 b3 = −1 −1.086 0.050 0.096

b2 = 1 1.040 0.049 0.555

D. Student-t disturbances; .096 sec./iter.

b1 = 0 −.011 0.048 0.018 b3 = −1 −1.283 0.147 0.004

b2 = 1 1.265 0.141 0.004 l = 5 3.639 1.808 0.003

E. Normal mixture disturbances; .139 sec./iter.

b2 = 1 1.032 0.080 0.003 s2 = 0.2 0.302 0.055 0.007

b3 = −1 −1.051 0.080 0.004 p1 = .5 0.462 0.080 0.004

b1 + a1 = −.3 −.361 0.066 0.004

b1 + a2 = .3 0.395 0.129 0.011

1 bj( j = 1, 2, 3), l, aj( j = 1, 2) and p1 as in Table 5.1.

5.2.2. Marginal likelihood approximations

In the case of the ULLM, the additional computations required to produce the marginal
likelihood are trivial. The likelihood function and prior distribution must be evaluated
for those iterations that are used to approximate the marginal likelihood. Since these
evaluations are not used subsequently in the MCMC algorithm they need not be
made every iteration, but doing so in each iteration increases the computation time
only by about 2%. Given the sequence of likelihood and prior evaluations from the
MCMC algorithm, the log marginal likelihood is approximated using the variant of
the Gelfand and Dey (1994) procedure described above. Computing time for this
approximation, using the implementation detailed in Geweke (1999, Section 4.3), is
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Table 5.4
Log marginal likelihoods in some univariate latent linear models with artificial data

Model Data disturbances

Normal Student-t Mixed normal

A. Linear model

Normal −2851.4 −3268.2 −2297.7

Student-t −2855.5 −3207.2 −2155.3

Mixed normal −2857.8 −3213.5 −1900.4

B. Censored linear model

Normal −1821.5 −2037.4 −1575.1

Student-t −1826.3 −2001.8 −1528.6

Mixed normal −1826.5 −2003.3 −1403.3

C. Dichotomous choice model

Normal −802.1 −851.8 −677.4

Student-t −804.5 −847.0 −673.7

Mixed normal −807.8 −849.3 −662.4

essentially proportional to the number of iterations – about 2 seconds for 10 000
iterations.
Table 5.4 shows several patterns of results. First, for each data set (column

headings) the model (row headings) that generates the observations receives the highest
marginal likelihood, and therefore the highest posterior probability, of the three models
compared. The lowest odds ratio in favor of any true model is that in favor of the
Student-t over the mixed normal censored linear model, about 4.5:1. Second, the
highest odds ratios occur when the competitor to a true model does not nest or
approximate the true model – that is, Student-t versus normal when disturbances are
Student-t, and normal mixture versus either normal or Student-t when the disturbances
are normal mixture. Third, odds ratios are usually higher when the outcome ( ỹt) is fully
observed than when it is not: they tend to be highest in the linear model, lowest in the
dichotomous choice model. Fourth, odds ratios in favor of true models against nesting
models (e.g., in favor of normal versus Student-t when disturbances are normal) or
in favor of true models against approximating models (e.g., Student-t versus normal
mixture when disturbances are Student-t) are lower, and the degree of latency has little
effect on the magnitude of the odds ratio.
We conclude that in these examples, discrimination between the three disturbance

distributions is effective. Moreover while the results shown in Table 5.3 are based
on 10 000 MCMC iterations after discarding the first 2000, nearly identical results
are obtained with 900 iterations after discarding the first 100. For these examples,
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an investigator could learn quickly which models account for most of the posterior
probability and then concentrate computing resources on those models.

5.3. Some evidence from real data

Especially in large data sets, it is relatively easy to detect departures from normality and
establish the form of the non-Gaussian distribution with a high degree of precision.
Space constraints do not permit development of these applications in detail, so we
confine this discussion to three examples in our recent work.
Geweke and Keane (2000) estimates a reduced form life cycle earnings model of the

kind introduced by Lillard and Willis (1978) and used in a succession of studies since.
A recurring puzzle in this literature has been the inability of these models to capture
the transition of individual earnings in and out of the lowest quintile of the earnings
distribution. Geweke and Keane (2000) adopts the standard model, but departs from it
in two specific ways. First and most important, it specifies shocks to current earnings to
be a mixture of three normals. Second, it sets up the regression of earnings on age and
education as a high-order polynomial. (There are other elaborations as well, but these
are the most important in the context of the ULLM.) Among the paper’s many findings,
three are important with respect to the ULLM. First, the evidence against normality is
overwhelming: the distribution of the shock to current earnings is strongly skewed and
leptokurtic. When the same model is fit using a normal distribution, the .40 quantile
of the fitted normal corresponds to the .20 quantile of the mixture of three normal
distributions. Second, the normal mixture model implies dynamics for the movement
of individual earnings in and out of the lowest quintile that are quite similar to those in
the data, and much closer than has been captured previously by reduced form life cycle
earnings models in the literature. Third, maximum likelihood estimation in this model
is not possible, because the likelihood function has a multitude of isolated singularities.
[This point is discussed briefly in Appendix A of this chapter, and in greater detail in
on-line Appendix F of Geweke and Keane (2000)].
Two simpler applications appear in Geweke, McCausland and Stevens (2000) and

Geweke and Keane (1999). The former example is a simple hedonic regression model
for residential real estate prices. The sample size is modest (n = 546) and the departure
from normality is small (least squares residual kurtosis 4.02). The Bayes factor in favor
of a mixture of two normals is about 20. The latter example is a dichotomous choice
model of women’s labor force participation (n = 1555) with conventional covariates.
Of a dozen models including the conventional probit model and mixtures of up to five
normals, the model with the highest marginal likelihood is a mixture of four normals.
All the mixture models are highly favored relative to the conventional probit model,
the Bayes factors ranging from 2× 105 to 9× 107.

6. Multivariate latent linear models

The natural extension of the ULLM to multiple decisions or outcomes is ỹt = B′xt + ut ,
in which ỹt has p elements and the p× 1 disturbance vector ut is i.i.d. and independent
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of the xt . Some (or all) of the elements of ỹt may be fully observed, while others
(or all) may be latent subject to known linear restrictions. The fully observed case is
the seemingly unrelated regressions model [Zellner (1962)], the most widely applied
multivariate econometric model. In many of these applications, such as neoclassical
consumer and producer analysis, the observed outcome yt = ỹt is subject to sum
constraints that impose restrictions on B and render the distribution of ut degenerate. In
the multinomial probit model, the elements of ỹt correspond to the unobserved utilities
of p mutually exclusive choices. If choice j is made and observed, then ỹjt > ỹit ∀ i Ñ j,
a set of p − 1 linear restrictions. There must be an additional linear restriction for
identification in this model as well, as detailed below in Section 6.1. In the standard
selection model [Heckman (1979)] there are two equations ( p = 2): in one equation
the outcome ỹ1t is fully observed if the latent variable ỹ2t > 0 in the other, whereas
if ỹ2t ¶ 0 then there is no information about ỹ1t . Extending the notation of Section 5,
one either observes y1t = ỹ1t and y2t = (0,∞), or y1t = (−∞,∞) and y2t = (−∞, 0].
Unifying all of these models, and many more, is the multivariate latent linear model

(MLLM) ỹt = B′xt + ut . This model has several distinguishing characteristics. First,
observed outcomes take the form yt =

[
ỹt : c0t ¶ F0t ỹt ¶ d0t

]
. The vectors c0t and d

0
t

and the p × p nonsingular matrices F0t are all known; elements of c
0
t and d

0
t are

extended real numbers. Strict equalities are subsumed in this formulation. This includes
not only the case of fully observed elements of ỹt , but also identities (for example,
factor share equations) and identifying restrictions (for example, sum restrictions in
the multinomial probit model). A second distinguishing characteristic of the model
is that restrictions on the variance structure of ut can be imposed. Some of these
arise from identities among the elements of ỹt that reduce the rank of var(ut) (e.g.,
share equations) while others are needed for identification (e.g., the selection and
multinomial probit models). A third feature of the MLLM is that the disturbance
distribution can be that of a continuous or finite mixture of multivariate normals. This
extends the specification of the disturbance in the ULLM in a natural way.
As in the case of the ULLM, the treatment of the MLLM is entirely Bayesian with

proper priors. This permits the full development of Bayes factors for comparing non-
nested models with different assumptions about the distribution of the disturbances.
Section 6.1 presents an overview of the MLLM, leaving technical detail to Appendix B.
Section 6.2 provides some results with artificial data, to study the practicality of the
methods.

6.1. An overview of the multivariate latent linear model

6.1.1. Linear restrictions in the multivariate latent linear model

In the MLLM the i.i.d. disturbances have a possibly degenerate scale mixture of
normals distribution. The degeneracy arises if there is a p × g matrix G0 such that
G′
0ỹt = g0 ∀ t. For example, this may occur when ỹt is an exhaustive set of input cost
shares in production, or when ỹt is an unobserved vector of utilities for all possible
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discrete choices. The potential degeneracy of the unconditional distribution for ỹt has
a number of implications for the MLLM. For the disturbances, G′

0et ≡ 0 ∀ t. Take
q = p − g and let G be any p× q orthonormal matrix of rank q such that G′

0G = 0. For
example, when G′

0 = (1, 1) then G
′ = (1 /

√
2, −1 /

√
2) or G′ = (−1 /

√
2, 1 /

√
2). The

nondegenerate components of et are e∗t = G
′et , and the conditionally nondegenerate

components of ỹt are ỹ∗t = G
′ỹt .

The restrictions G′
0ỹt = g0 that reduce the rank of var(ut) also have implications

for the row of B corresponding to the intercept term in xt . Linear restrictions on B
can arise from other sources as well, however. For example in the multinomial probit
model the need for additional, identifying restrictions on B arise if some covariates
are specific to individuals. Additional restrictions may be implied by the underlying
theory in any MLLM. Given °1 consistent and non-redundant linear restrictions on the
pk elements of B, there remain °2 = pk − °1, free parameters in B.
With these restrictions in mind, rewrite the MLLM in the form

ỹ∗t = B
∗′xt + u∗

t , (6.1)

in which ỹ∗t = G
′ỹt , B

∗ = BG, and u∗
t = G

′ut .

6.1.2. Distribution of disturbances

In the MLLM the disturbance vectors u∗
t (t = 1, . . . , T ) are i.i.d conditional on

xt (t = 1, . . . , T ). The model subsumes several alternative assumptions about the
distribution of u∗

t , and we take up three in detail. The first is u
∗
t ~ N (0,S), in which

S may be entirely free, or subject to a number of restrictions discussed in detail below
and in Appendix B.
The second alternative assumption about the disturbance vector is u∗

t ~ t(0,S ; l),
the multivariate Student-t distribution with location vector 0, scale matrix S , and
degrees of freedom parameter l. The matrix S may again be free or subject to
restrictions. The disturbances under this assumption may be represented u∗

t = hts(t),
with

(
s(1), . . . , s(T )

)
and the p × 1 vectors h1, . . . , hT each i.i.d. and mutually

independent conditional on (x1, . . . , xT ). The parameters s 2(t) have the same inverted
gamma distribution as in the ULLM, l /s 2(t) ~ c

2(l); ht ~ N (0,S) 32.
The third alternative assumption about the distribution of u∗

t is u
∗
t ~ N

(
a∗
j , s

2
j∗S

)
with probability pj ( j = 1, . . . , m);

∑m
j = 1 pj = 1. This multivariate normal mixture

model is an extension of the one used in the ULLM – in fact, the marginal distribution
of any linear combination a′u∗

t has a univariate normal mixture distribution. The
specification that the variance matrices in the mixture are all proportional to S
is a restriction on the full multivariate normal mixture distribution, which would
assign positive definitive matrices S1, . . . , Sm as the variances of the respective states.

32 For this construction see Johnson and Kotz (1972, Section 37.2).
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We adopt the more restrictive assumption here because it allows some important
simplifications in the MCMC algorithm constructed subsequently, and because our
experience with the computations suggests that the full mixture model is poorly
estimated in latent variable models with samples of the type and size typically available
in economics.
In the normal mixture model the disturbances may be represented

u∗
t = A

∗′z̃t + s(t)ht .

The random vectors h1, . . . , hT are i.i.d. conditional on (x1, . . . , xT ): ht ~ N (0,S). The
latent random vectors

(
z̃′t , s(t)

)
are i.i.d. conditional on (x1, . . . , xT ) and (h1, . . . , hT ).

Their values are governed by a latent state variable s(t). The joint distribution of s(t),
z̃t and s(t) is exactly the same as in the ULLM. Permutation of states is again prevented
by means of the inequalities s1 > · · · > sm.
All three specifications of the distribution of u∗

t in Equation (6.1) are embedded in

ỹ∗t
p×1

= A∗′ z̃t
m×1

+B∗′ xt
k×1

+ e∗t
p×1
, e∗t = hts(t),

in which ht ~ N (0,S) is i.i.d. and independent of
(
z̃′t , s(t)

)
, conditional on (x1, . . . , xT ).

The normal, Student-t, and normal mixture models are distinguished by the distribution
of s(t). Only when u∗

t has a normal mixture distribution is m > 0.

6.1.3. Observed outcomes

As in the ULLM, corresponding to the latent outcomes ỹt there is an observed, set-
valued outcome yt such that ỹt ∈ yt . The outcome yt is determined solely by ỹt so
that

p ( yt , ỹt |xt) = p ( ỹt |xt) p ( yt |ỹt) = p ( ỹt |xt) cyt ( ỹt) .

In the MLLM we take the form of yt to be

ct ¶ Ft ỹt ¶ dt (t = 1, . . . , T ), (6.2)

in which ct and dt are q× 1 vectors of extended real numbers with ct ¶ dt , and Ft is
a q× p matrix of rank q.
This assumption subsumes quite a few models. The conventional seemingly

unrelated regressions model (possibly with sum restrictions over equations, by means
of G′

0ỹt = g0 ) is indicated by means of ct = −∞, dt = +∞, Ft =
[
Iq
... 0
]
. The

multinomial probit model with p exhaustive discrete choices has q = p − 1. If choice j
is observed at t then ct = 0, dt = +∞; each row i of Ft has two nonzero entries: +1
in column j, and −1 in column i if i < j but in column i + 1 if i ¾ j. In addition,
G′
0 = (1, . . . , 1) and g0 = 0. The sample selection model introduced by Heckman
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(1979) has p = q = 2 and Ft = I2 ∀ t. With the outcome equation first, c1t = −∞,
d1t = +∞, c2t = −∞, d2t = 0 if the outcome is unobserved; whereas c1t = d1t = ỹt ,
c2t = 0, d2t = +∞ if the outcome is observed. Many other models are possible. For
example, a selection model with a dichotomous choice outcome has the same setup
as the last example except that the first equation has either c1t = −∞, d1t = 0 or
c1t = 0, d1t = +∞ if c2t = 0 and d2t = +∞.
Augmenting Equation (6.2) with the constraints G′

0ỹt = g0,(
ct
g0

)
¶
[
Ft
G′
0

]
ỹt ¶

(
dt
g0

)
.

Since[
Ft
G′
0

]
ỹt =

[
Ft
G′
0

][
G ...G0

(
G′
0G0

)−1] [ G′

G′
0

]
ỹt =

[
FtGG′ỹt + FtG0

(
G′
0G0

)−1
g0

g0

]
,

the constraints on the conditionally nondegenerate vector ỹ∗t = G
′ỹt are

ct −FtG0
(
G′
0G0

)−1
g0 ¶ FtGỹ∗t ¶ dt −FtG0

(
G′
0G0

)−1
g0.

6.1.4. Prior distributions

Let b∗
2 contain the free parameters in B remaining after imposition of °1 linear

constraints. The benchmark prior distribution for b2 is b∗
2 ~ N

(
b∗
2
,H−1

b∗
2

)
. Since this

may not be a convenient or natural representation of prior information, Appendix B
derives b∗

2
and H b∗

2
, beginning from °1 linear restrictions, and independent normal

prior distributions on at least pk − °1 linear combinations of b = vec(B).
The prior distribution for S must account for the fact that in some important variants

of the MLLM, scale restrictions on equations are necessary for identification. The best
known example is the multinomial probit model, in which ỹ∗t is a vector of latent
utilities. Scaling the utilities by a common positive factor produces no changes in yt ,
and so some convention is required to resolve the corresponding ambiguity in A, B,
and S . So as not to require prior information that a certain coefficient is non-zero,
and so as to maintain symmetry across equations, we normalize on the trace of the
corresponding rows and columns of S . At the same time, we wish to cope with similar
situations: for example, a multinomial probit model together with a selection equation;
or, more generally, any situation in which the MLLM includes one or more sets of
exhaustive discrete choices.
Including all of these cases requires some structure on G and S . Suppose that

equations i1, . . . , in in Equation (6.1) represent an exhaustive set of discrete choices.
(There may be more than one such set.) Then there is a column of G0 with jth entry∑n

s = 1 dj, is ( j = 1, . . . , p). Corresponding to this column of G0 , choose G to have a
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subset of n − 1 columns, say j1, . . . , jn − 1, in which the only non-zero entries occur
in those rows for which the corresponding columns of G0 have non-zero entries. All
other columns of G can be chosen so that these rows have entries zero. For example, if
p = 6, equations 1, 2, and 3 of the MLLM correspond to one set of exhaustive choices,
and rows 5 and 6 correspond to another set, then the values of G0 and g0, and one
choice for G, are

G0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0
1 0
1 0
0 0
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , g0 =

(
0
0

)
, G =

⎡⎢⎢⎢⎢⎢⎢⎣

2 /
√
6 0 0 0

−1 /
√
6 1 /

√
2 0 0

−1 /
√
6 −1 /

√
2 0 0

0 0 1 0
0 0 0 1 /

√
2

0 0 0 −1 /
√
2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that when G is chosen this way, entries j1, . . . , jn − 1 of e∗t are the nondegenerate
disturbances associated uniquely with the set of exhaustive discrete choices in each
case. Because G is orthonormal,

∑n − 1
s = 1 var

(
e∗t, js

)
is invariant to the particular choice

of G within the constraints just described.
To indicate these entries of e∗t explicitly, construct the q × q matrix U as follows:

uij = 0 ∀ j if entry i of e∗t does not correspond to any exhaustive set of discrete choices;
uij = 1 if entries i and j of e∗t correspond to the same exhaustive set of discrete choices;
and uij = 0 if entry i corresponds to an exhaustive set of discrete choices to which
j does not correspond. Let v be a q × 1 vector with entry vi = 0 if entry i of e∗t
corresponds to an exhaustive set of discrete choices and vi = 1 otherwise.
We enforce a scaling constraint on each group of exhaustive discrete choices by

requiring the sums of the variances of the corresponding entries of e∗t to be equal to
one less than the number of choices in the group. We accomplish this by setting

S = D (S∗) · S∗ · D (S∗) .

The q× q matrix S∗ is positive definite with typical element
[
s∗
ij

]
. The q× q matrix

D (S∗) is diagonal, with ith entry(
vi +

∑q
j = 1 uij

vi +
∑q

j = 1 uijs
∗
jj

)1 /2
.

Thus, if entries j1, . . . , jn − 1 of e∗t correspond to a set of exhaustive discrete choices,
then

∑n − 1
s = 1 sjs js = n − 1; and if entry j of e

∗
t does not correspond to such a group,

sjj = s∗
jj .

Finally, we employ a conventional inverted Wishart prior distribution, S∗ ~ W (S, n ),
for S∗. Appendix B shows that if S = s2Iq, then when q < p the implied prior
distribution for S is invariant to the particular choice of the orthonormal matrix G.
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This completes the prior distribution when the disturbances are normal, because in
that case B and S are the only parameters in the model. The Student-t MLLM has one
additional parameter, l. The prior for l is the same exponential distribution used in
the ULLM, l ~ exp (l). The normal mixture model has three additional parameters:
the vector of state probabilities p, the state variances s 2j ( j = 1, . . . , m), and the matrix
of state mean vectors A. The first two of these play the same role in the MLLM and
in the ULLM, and their prior distributions are of the same form. For p the distribution
is Dirichlet: p( p) ∝ ∏m

j = 1 p
rj − 1
j . For the s 2j the prior distributions are independent

inverted gamma, s2j /s
2
j ~ c

2
(
n j
)
, subject to the ordering restrictions s1 > · · · > sm.

For the same reasons discussed in the case of the ULLM it is productive to take
the prior distribution of a∗ = vec(A∗) to be Gaussian with mean 0, and variance
proportional to S : a∗ ~ N

(
0,S ⊗H−1

a∗
)
.

6.1.5. Existence of the posterior distribution

The existence of the posterior distribution in the MLLM follows in the same way
that it does in the ULLM. In the normal and Student-t models, the data density is
bounded. In the normal mixture model the data density is unbounded as a function
of A and s 2j ( j = 1, . . . , m), but the existence of the posterior distribution can be
demonstrated as in Section 5 and Appendix A, with minor variations. Similarly, as
detailed in Appendix A, posterior moments exist if the corresponding prior moments
exist, after infinitesimal reduction in the hyperparameters of the prior distributions of
s 2j ( j = 1, . . . , m).

6.1.6. MCMC algorithm for inference

The explicit development of the posterior density kernel is presented in Appendix B.
Due to the analytical intractability of the entire kernel, and the simple form of most
of the conditional kernels, the Gibbs sampling algorithm is attractive here just as it is
in the ULLM. There are eight groups of parameters or latent variables to which the
algorithm is applied: (A∗,B∗); S∗; s 2(t) (t = 1, . . . , T ); l; s(t) (t = 1, . . . , T ) and Z̃ ; p;
s 2j ( j = 1, . . . , m) and ỹt (t = 1, . . . , T ). As in the ULLM, not all parameters appear
under each distributional assumption.
With one exception, the conditional posterior distributions in the MLLM come

from the same families as their ULLM counterparts, although the parameters of
these distributions are somewhat more involved as detailed in Appendix B. The
conditional distribution of (A∗,B∗) is multivariate normal; those of s 2(t) (t = 1, . . . , T )
are either trivial (normal and mixed normal) or are inverted gamma (Student-t).
The ỹ∗t are conditionally independent truncated normal, so the algorithm in Geweke
(1991) can be applied. In the Student-t model the functional form of the conditional
posterior kernel for l is the same as in the ULLM. In the normal mixture model the
conditional distribution of p is Dirichlet, state assignments are multinomial, and the
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s 2j are respectively inverted gamma subject to the truncation restrictions imposed by
s1 > · · · > sm.
The exceptional conditional posterior distribution is that of S∗ whenever there is

degeneracy in ỹ∗t (i.e., q < p). This distribution is far from being inverted Wishart,
and is of a non-standard form. We employ a Metropolis within Gibbs step, based
on a tailored Gaussian approximation of the conditional posterior kernel. Details are
furnished in Appendix B.

6.1.7. Marginal likelihoods

The Gelfand–Dey algorithm is used to approximate the marginal likelihood, just as
in the ULLM. Once again, care is required in the handling of latent variables. In
particular, it is essential to integrate across ỹ∗t . This is trivial in the ULLM, but in
the MLLM the computations, which are based on the GHK algorithm described in
Section 2.1, are computationally more demanding. Details are given in Appendix B.

6.2. Some evidence from artificial data

Experiments with artificial data can provide some indication of how much information
about the population is conveyed in the posterior distribution given a sample design.
They can also provide a guide to the efficiency of the MCMC algorithm set forth in
Section 6.1. Here we report the outcomes of experiments involving five variants of
the MLLM. The first two involve no latent variables and serve as benchmarks for the
other three. They are a three-equation multivariate regression model (Table 6.1) and
a three-equation multivariate regression model in which the outcome variables always
sum to unity (Table 6.2). The third variant of the MLLM is a multiple choice model
(a multinomial probit model, when disturbances are normal) with three choices and
covariates to mimic income and prices (Table 6.3). The fourth variant is a selection
model, consisting of a dichotomous choice selection equation and an outcome equation
with a continuously distributed dependent variable (Table 6.4). The final variant is also
a selection model, but with a dichotomous dependent variable in the outcome equation
(Table 6.5).

6.2.1. Multivariate linear model

Given the results for the ULLM in Table 5.1, there are few surprises in Table 6.1.
Posterior standard deviations for coefficients consistently reflect the fact that T = 2000
in Table 5.1 and T = 1000 in Table 6.1. The same is true for the elements of S (the sij)
once account is taken of the fact that the posterior standard deviation of s 2 in Table 5.1
is approximately twice that of s . The most notable contrast in comparing the MLLM
fully observed outcome model with its ULLM counterpart is in the greatly increased
computational efficiencies for p1 and s2 in the normal mixture model. This reflects
the fact that classification by state is substantially more certain for a vector of random
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Table 6.1
Multivariate full rank linear model (T = 1000)

A. Model specification

yt =

⎛⎜⎝ y1t
y2t
y3t

⎞⎟⎠ =

⎡⎢⎣ b11 b21b12 b22
b13 b23

⎤⎥⎦(
1

x2t

)
+

⎛⎜⎝ u1t
u2t
u3t

⎞⎟⎠ = B′xt + hts(t); ht
i.i.d.
~ N (0,S);S =

[
sij
]
= I3

Population for all variants: x2t
i.i.d.
~ N (0, 1), bij = 1 ( j = 1, 2, 3; i = 1, 2)

Normal disturbances: s(t) ≡ 1

Student-t disturbances: 4 /s 2(t)
i.i.d.
~ c2(4)

Mixed normal disturbances: s 2(t) = 1( p = .6) or s
2
(t) = .04( p = .4)

B. Prior distributions and moments

Parameters Prior distribution Prior mean Prior s.d.

bij ( j = 1, 2, 3; i = 1, 2) bij ~ N (0, 25) 0.0 5.0

S = S∗ S∗ ~ IW (5I3, 5) 5I3 ∞
l Exponential 4 2.828

a a∗ ~ N (0,S ⊗ 5I2) 0 2.236 (sjj)1 /2

s 2j 5 /s 21 ~ c
2(5) 1.189 1.291

.2 /s 22 ~ c
2(5) 0.238 0.258

p1 Beta(5,5) 0.500 0.204

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .384 sec./iter.

b22 = 1 0.951 0.032 0.876 s11 = 1.0 1.020 0.046 0.744

s12 = 0.0 0.043 0.033 1.811

D. Student-t disturbances; .400 sec./iter.

b22 = 1 0.945 0.031 0.828 s11 = 1.0 1.029 0.061 0.237

l = 4 4.392 0.361 0.095 s12 = 0.0 0.043 0.033 0.581

E. Normal mixture disturbances; .416 sec./iter.

b22 = 1 1.010 0.009 0.329 s 21 · s11 = 1.0 1.029 0.061 0.237

b13 + a1 = 3 3.003 0.043 1.177 s 21 · s21 = 0.0 0.043 0.033 0.581

b13 + a2 = 1.4 1.383 0.009 0.763 s 22 · s11 = .04 0.038 0.002 1.221

p1 = .6 0.577 0.015 1.685 s 22 · s21 = 0 −.002 0.001 2.989
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Table 6.2
Degenerate multivariate linear model (T = 1000)

A. Model specification

yt = B
′xt + h̃ts(t); ht

i.i.d.
~ N (0,Y ); Y =

[
yij

]
Population for all variants: x1t = 1; x2t

i.i.d.
~ N (0, 1); B =

[
.3 .2 .5

1 −.5 −.5

]
;Y =

⎡⎢⎣ 1 −.5 −.5

−.5 .5 0

−.5 0 .5

⎤⎥⎦
Normal disturbances: s(t) ≡ 1

Student-t disturbances: 3.5 /s 2(t)
i.i.d.
~ c2(3.5)

Mixed normal disturbances: s 2(t) = 1 ( p = .6) or s
2
(t) = .02 ( p = .4)

B. Prior distributions and moments

Parameters Prior distribution Prior mean Prior s.d.

bij ( j = 1, 2, 3;i = 1, 2) bij ~ N (0, 25) 0.0 5.0∑3
j = 1 b1j = 1,

∑3
j = 1 b2j = 0

S = S∗ S∗ ~ IW (5I2, 5) 2.5I2 2.236 (i = j);
1.673 (i Ñ j)

l,a, sj , p1 As in Table 6.1

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .278 sec./iter.

b21 = 1.0 0.989 0.016 1.248 y11 = 1.0 1.044 0.046 1.096

b22 = −0.5 −.501 0.012 1.731 y21 = −0.5 −.538 0.029 0.866

b23 = −0.5 −.488 0.011 0.810 y31 = −0.5 −.506 0.028 2.077

D. Student-t disturbances; .289 sec./iter.

b21 = 1.0 0.981 0.019 0.524 y11 = 1.0 1.027 0.073 0.173

b22 = −0.5 −.487 0.014 1.356 y21 = −0.5 −.502 0.038 0.302

b23 = −0.5 −.494 0.014 0.511 y31 = −0.5 −.526 0.041 0.188

l = 3.5 3.808 0.350 0.161

E. Normal mixture disturbances; .309 sec./iter.

b21 = 1.0 0.993 0.005 1.172 s 21 ·y11 = 1.0 0.975 0.057 0.702

b22 = −0.5 −.494 0.004 1.356 s 21 ·y21 = −0.5 −.492 0.038 0.312

b23 = −0.5 −.499 0.004 0.764 s 21 ·y31 = −0.5 −.483 0.042 0.288

b11 + a1 = 0.3 0.239 0.042 1.522 s 22 ·y11 = .04 0.039 0.003 0.457

b11 + a2 = 0.3 0.318 0.012 0.589 s 22 ·y21 = −.02 −.020 0.002 0.652

p1 = .6 0.569 0.020 0.489 s 22 ·y31 = −.02 −.019 0.002 0.539
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variables than for a scalar, given the same underlying mixture of normals population.
For much the same reason, there is substantially more information about the degrees
of freedom parameter l in the Student-t distribution in the multivariate case than in the
univariate. This is borne out in the reduced posterior standard deviation and increased
RNE for l in Table 6.1, panel D, as opposed to its counterpart in panel D of Table 5.1.
It reflects substantially reduced posterior uncertainty for the latent variables s(t).

6.2.2. Degenerate multivariate linear model

The second variant of the MLLM is the degenerate three-equation linear model
described in Table 6.2. For each observation the dependent variables always sum
to one, as they do in share equations for producer factor demand. In the notation
of Section 6.1, G′

0 = (1, 1, 1) and g0 = 1. The prior distribution imposes the
corresponding restrictions on the intercepts, b11 + b12 + b13 = 1, and the covariate
coefficients, b21 + b22 + b23 = 0. The posterior means for the covariate coefficients
shown in panels C, D, and E of Table 6.2 of course reflect these restrictions. The
coefficient posterior standard deviations are lower than for the coefficients in Table 6.1.
This reflects both the reduction in disturbance variance (tr(S) = 3 in Table 6.1 whereas
tr(Y ) = 2 in Table 6.2) and also the additional information provided by the coefficient
sum restrictions. Posterior moments for the first column of Y = var(et) are provided in
Table 6.2. Posterior means sum to zero, reflecting the degeneracy in yt . The posterior
standard deviation of y11 in Table 6.2 is about the same as that of s11 = 1 in Table 6.1,
reflecting the fact that y11 = s22 + s33 = 1. That for y21 is smaller than for s21, because
y11 · y22 = 1

2 whereas s11 · s22 = 1 in Table 6.1.

6.2.3. Multiple discrete choice model

The third variant of the MLLM considered here is a three-choice linear model. In this
model, the latent ỹt can be interpreted as a vector of utilities for each of p discrete
choices. The sample size is T = 2000. Panel A of Table 6.3A provides the model
specification. The sample design implies equal unconditional choice probabilities. The
covariate xt2 mimics an income variable: observations with high x2t tend to choose 3,
while low values tend to make choice 1 or 2. The covariates xt3, xt4 and xt5 mimic
prices, with choice 2 being more price responsive than choices 1 or 3. Overall, choices
are strongly driven by the covariates, with the disturbance providing 20% of the
variance in the utility differential between choices 1 and 2, 7.7% for choices 1 and
3, and 3.3% for choices 2 and 3.
The prior distribution incorporates identifying restrictions, using the approach

developed in Section 6.1. Coefficients on the common covariates (the intercept and
x2t) and the disturbances (ejt) must sum to zero, or equivalently ỹ1t + ỹ2t + ỹ3t = b31xt3
+ b42xt4 + b53xt5. This prevents systematic addition of multiples of any covariate(s)
to any equations(s) without changing the probabilities of the choices. The 2 × 1
nondegenerate shock e∗t with variance S is subject to the restriction that tr(S) = 2,
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using the transformation presented in Section 6.1 33. Notice that these identifying
restrictions are symmetric across all three equations, as are the prior distributions set
out in panel B of Table 6.3A.
In the MLLM, it is important to monitor the convergence of the MCMC algorithm

when there is substantial latency in the outcome variables, as is the case here. As
currently implemented, the MCMC algorithm takes as initial values prior means of
parameters. About 9000 iterations are required for convergence of all parameters, as
assessed informally by examining the simulations. The posterior moments in panels C,
D and E of Table 6.3B are computed from the last 10 000 iterations out of 22 000. The
RNEs reported are based on every tenth iteration; RNEs based on every iteration would
be lower, and direct comparisons of the RNEs in Table 6.3B with those in Tables 6.1
or 6.2 cannot be made.
As must be the case, posterior means reflect the identifying restrictions on the bij .

The identifying adding up restriction leads to posterior means of column sums of Y =
var(et) being zero, and the posterior mean of tr(Y ) = tr(S) being identically two. The
substantial information about covariate coefficients in the sample design is reflected
in posterior standard deviations that are one-tenth or less of posterior mean in most
cases. All posterior means in Table 6.3B are within two posterior standard deviations
of population values.
The posterior standard deviations of the covariate coefficients in this model are

nearly an order of magnitude higher than in the linear models with fully observed
outcomes (Tables 6.1 and 6.2). There is no such increase in the case of the ULLM
(Table 5.3 versus Table 5.1). By contrast, the posterior standard deviations of the
variances and covariances yij are about the same for the three choice models as
they were in the linear models described in Tables 6.1 and 6.2. Of course, these
standard deviations reflect uncertainty after the imposition of the trace and singularity
constraints on Y , which leaves only two free parameters.
Comparison of panels C, D and E in Table 6.3B reveals that posterior standard

deviations of common parameters are about the same, for the three different
distributions of the disturbances. This observation, combined with the comparison with
the linear models in Tables 6.1 and 6.2, strongly suggests that the latency of ỹt is the
dominant source of uncertainty about the parameters, and that additional uncertainty
contributed by a more flexible distribution of the disturbances is minor by comparison.
On the other hand, for the common parameters RNE is highest for normal disturbances
(panel C) and lowest for mixed normal disturbances (panel E), without exception.
This reflects the additional steps introduced into the Gibbs sampling algorithm for
the Student-t and normal mixture models, increasing serial correlation in the draws of
the parameters.

33 In the current computer code that implements the MLLM, the transformations to deal with degeneracy
and the variance trace restrictions can be made transparent to the user. The user need only indicate the
restrictions on the coefficients, the fact that the disturbances sum to zero, and the fact that the trace of
the variance matrix sums to two.
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Table 6.3A
Multiple discrete choice model (T = 2000)

A. Model specification

yt = B
′xt + h̃ts(t); h̃t

i.i.d.
~ N (0,Y ); Y =

[
yij

]
; yt =

∑3
j = 1 cSj ( ỹt) Sj ; Sj =

{
ỹt : ỹtj ¾ ỹti (i = 1, 2, 3)

}
Population for all variants: x1t = 1; x2t

i.i.d.
~ N (1, 1), xjt ~ N (0, 1) ( j = 3, 4, 5);

B′ =

⎡⎢⎣ 1 −1 −1 0 0

2 −2 0 −2 0

−3 3 0 0 −1

⎤⎥⎦ ;Y =

⎡⎢⎣ 1 −.5 −.5

−.5 .5 0

−.5 0 .5

⎤⎥⎦
Normal disturbances: as in Table 6.2

Student-t disturbances: as in Table 6.2

Mixed normal disturbances: as in Table 6.2

B. Prior distributions and moments

Parameters Prior distribution Prior mean Prior s.d.

bij (i ¶ 2) bij ~ N (0, 25) 0.0 5.0

bi + 2, i bij ~ N (−1, 25) −1.0 5.0

bij (i > 2 and i Ñ j + 2) bij = 0 0.0 0.0∑3
j = 1 b1j =

∑3
j = 1 b2j = 0

sj s1 = 1 1.0 0.0

.2 /s 22 ~ c
2(5) 0.238 0.258

S∗ As in Table 6.2

l, a, p1 As in Table 6.1

6.2.4. Continuous selection model

The fourth variant taken up in these experiments is the conventional selection model
due to Heckman (1979). Table 6.4 presents the model specification and posterior
moments for a particular set of variants on this model. There are two equations.
The first equation is an outcome equation with a continuously distributed dependent
variable. (For example, this dependent variable could be a wage rate.) The second
equation is a dichotomous choice equation. (In the example, this choice could be the
decision to take a job.) The dependent variable in the outcome equation is observed
or not depending on the value taken by the choice variable in the choice equation.
(In the example, the wage rate is observed only if the job is taken.) If there is
correlation between the disturbances in the two equations then conventional single
equation methods for inference applied to the outcome equation, ignoring the sample
selection process, are misleading. In the example presented in Table 6.4 each equation
has an intercept but the covariates are different and independent.
The artificial data set is designed so that fewer than half of the outcomes are actually

observed. This is achieved by means of the negative value of the intercept in the choice
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Table 6.3B
Multiple discrete choice model (T = 2000), continued

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .985 sec./iter.

b21 = −1.0 −.883 0.112 0.153 b31 = −1 −1.048 0.069 1.170

b22 = −2.0 −2.097 0.111 0.252 b42 = −2.0 −2.126 0.108 0.243

b23 = 3.0 2.979 0.143 0.156 b53 = −1.0 −1.061 0.071 0.208

y11 = 1.0 0.965 0.051 0.508 y21 = −0.5 −.599 0.065 0.050

y22 = 0.5 0.634 0.072 0.068 y31 = −0.5 −.366 0.072 0.068

y33 = 0.5 0.401 0.065 0.050 y32 = 0.0 −.035 0.065 0.508

D. Student-t disturbances; 1.01 sec./iter.

b21 = −1.0 −.922 0.125 0.062 b31 = −1 −1.005 0.097 0.095

b22 = −2.0 −2.077 0.177 0.064 b42 = −2.0 −2.110 0.182 0.048

b23 = 3.0 2.998 0.215 0.069 b53 = −1.0 −1.019 0.103 0.132

y11 = 1.0 1.031 0.048 0.343 y21 = −0.5 −.533 0.070 0.045

y22 = 0.5 0.502 0.077 0.056 y31 = −0.5 −.498 0.077 0.055

y33 = 0.5 0.467 0.070 0.045 y32 = 0.0 0.031 0.048 0.343

l = 3.5 3.645 0.882 0.055

E. Normal mixture disturbances; .784 sec./iter.

b21 = −1.0 −1.001 0.127 0.024 b31 = −1 −1.068 0.087 0.013

b22 = −2.0 −2.007 0.163 0.009 b42 = −2.0 −2.054 0.157 0.009

b23 = 3.0 3.008 0.261 0.008 b53 = −1.0 −1.091 0.095 0.011

b11 + a1 = 1.0 1.091 0.154 0.011 b12 + a1 = 2.0 1.935 0.186 0.009

b11 + a2 = 1.0 0.944 0.186 0.009 b12 + a2 = 2.0 2.039 0.165 0.008

y11 = 1.0 0.993 0.060 0.147 y21 = −0.5 −.546 0.079 0.025

y22 = 0.5 0.553 0.078 0.039 y31 = −0.5 −.447 0.078 0.039

y33 = 0.5 0.454 0.079 0.025 y32 = 0.0 −.007 0.060 0.147

s2 = 0.2 0.208 0.057 0.122 p1 = 0.6 0.624 0.072 0.014

equation, and in the artificial sample of size 1000, only 254 outcomes in the first
equation are actually observed. The posterior standard deviations in the probit choice
equation are comparable to those in the probit model (Table 6.4, panel C compared with
Table 5.3, panel C), if one keeps in mind the difference in sample size (T = 1000 here,
but T = 2000 in the ULLM experiments). In the Student-t model they are somewhat
lower, and in the normal mixture model, somewhat higher. In the outcome equation
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Table 6.4
Continuous outcome selection model (T = 1000)

A. Model specification

ỹt = B
′xt + hts(t); ht

i.i.d.
~ N (0,S); yt = c (0,∞) ( ỹ1t)

(
ỹ1t
(0,∞)

)
+ c (−∞, 0) ( ỹ2t)

(
(−∞,∞)
(−∞, 0)

)

Population for all variants: xjt ~ N (0, 1) ( j = 2, 3); B′ =

[
1 1 0

−1 0 1

]
; S =

[
1 .5

.5 1

]
Normal disturbances: s(t) ≡ 1

Student-t disturbances: 4 /s 2(t)
i.i.d.
~ c2(4)

Mixed normal disturbances: s 2(t) = 1 ( p = .6) or s
2
(t) = .04 ( p = .4)

B. Prior distributions and moments

Parameters Prior distribution Prior mean Prior s.d.

b11, b12, b21, b32 bij ~ N (0, 25) 0.0 5.0

b31, b22 bij = 0 0.0 0.0

S∗ S∗ ~ IW (5I2, 5) 2.5I2 2.236 (i = j),
1.673 (i Ñ j)

l, a, sj , p1 As in Table 6.1

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .385 sec./iter.

b11 = 1.0 0.973 0.114 0.012 b12 = −1.0 −.923 0.056 0.095

b21 = 1.0 0.977 0.055 0.038 b32 = 1.0 0.951 0.065 0.050

s11 = 1.0 0.988 0.108 0.018 s21 = .5 0.582 0.102 0.012

D. Student-t disturbances; .398 sec./iter.

b11 = 1.0 1.289 0.124 0.016 b12 = −1.0 −1.099 0.089 0.026

b21 = 1.0 1.070 0.073 0.084 b32 = 1.0 1.209 0.103 0.023

s11 = 1.0 0.889 0.154 0.026 s21 = .5 0.241 0.104 0.017

l = 4.0 3.29 0.618 0.013

E. Normal mixture disturbances; .400 sec./iter.

b11 + a1 = 1.0 0.907 0.076 0.031 b21 = 1.0 0.951 0.022 0.104

b11 + a2 = 1.0 1.035 0.024 0.115 b32 = 1.0 1.131 0.074 0.005

s11 = 1.0 1.100 0.112 0.026 s21 = .5 0.577 0.100 0.017

s2 = 0.2 0.203 0.021 0.032 p1 = 0.6 0.625 0.038 0.018
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coefficient posterior standard deviations are about triple what they were in Table 5.1, in
all three models (panels C, D and E). This is somewhat higher than that accounted for
by the difference between the sample size in Table 5.3 and the observed first equation
outcomes in Table 6.4.
The posterior mean of the covariance between the disturbances in the choice and

outcome equations is within two posterior standard deviations of the population value,
when the disturbances are normal or mixed normal. In the Student-t model the posterior
mean is 2.5 posterior standard deviations less than the population value, perhaps a
reflection of the low posterior mean for l. The uncertainty about this parameter, as
well as the variance in the outcome equation, is about the same for all three variants of
the disturbance specification. The posterior information about the degrees of freedom
parameter l in the selection model, is about the same as in the univariate linear model
with double the number of observations (Table 5.1, panel D), and substantially greater
than in the binary choice model (Table 5.3, panel D). The comparison with Table 5.1
indicates that the increased information about alternatives to normality in a vector (as
opposed to a scalar, noted previously) carries over to situation in which the additional
component is only partially observed. After accounting for sample sizes there is a
similar comparison for the parameters of the mixed normal distribution (Panel E of
Table 6.4 compared with its counterparts in Tables 5.1 and 5.3).

6.2.5. Discrete choice selection model

The final variant of the MLLM is similar to the conventional selection model, except
that the outcome is a discrete binomial choice rather than a continuous random
variable. For example, the second equation could model the decision to take a job,
as in the previous example. The first equation could indicate the selection of public or
private transit as the mode of commuting. This example could be extended to the case
of multinomial choice conditional on selection – for example, transit choices could be
divided more finely (train, bus, automobile, other private). Beyond the dichotomous
outcome, the econometric structure of this example differs from the previous one in
the inclusion of the first covariate in both equations. With two covariates, one in the
outcome equation and both in the selection equation, this structure corresponds to the
simplest selection model. Because the outcome equation is a dichotomous choice, the
variance of each equation is normalized to 1.0. This provides the simplest example
of restrictions on the traces of two subsets of the parameter matrix S∗ described in
Section 6.1.
Compared with the continuous selection model, there is a loss in information in

the discrete choice selection model due to the fact that even when the outcome is
selected, only the sign of ỹt1 is observed. There is a gain in information because
the outcome equation variance is normalized to one. On the whole, there appear
to be no systematic differences in posterior standard deviations given normal or
Student-t disturbances (panels C and D of Table 6.5 compared with their counterparts
in Table 6.4). In the mixed normal model there is substantially increased uncertainty
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Table 6.5
Dichotomous choice selection model (T = 2000)

A. Model specification

ỹt = B
′xt + hts(t); ht

i.i.d.
~ N (0,S);

yt = c (0,∞) ( ỹ1t)

(
c (0,∞) ( ỹ1t) (0,∞) + c (−∞, 0) ( ỹ1t) (−∞, 0)

(0,∞)

)
+ c (−∞, 0) ( ỹ2t)

(
(−∞,∞)
(−∞, 0)

)

Population for all variants: xjt ~ N (0, 1) ( j = 2, 3); B′ =

[
1 1 0

−1 −0.8 1

]
; S =

[
1 .5

.5 1

]
Normal disturbances: s(t) ≡ 1

Student-t disturbances: 4 /s 2(t)
i.i.d.
~ c2(4)

Mixed normal disturbances: s 2(t) = 1 ( p = .6) or s
2
(t) = .04 ( p = .4)

B. Prior distributions and moments

Parameters Prior distribution Prior mean Prior s.d.

b11, b12, b21, b22, b32 bij ~ N (0, 25) 0.0 5.0

b22 b22 = 0 0.0 0.0

S∗, l, a, sj , p1 As in Table 6.2

Some posterior moments

Parameter Mean Stan. dev. RNE Parameter Mean Stan. dev. RNE

C. Normal disturbances; .410 sec./iter.

b11 = 1.0 0.951 0.084 0.067 b12 = −1.0 −1.013 0.066 0.395

b21 = 1.0 1.017 0.059 0.145 b22 = −0.8 −.837 0.044 0.605

s12 = 0.5 0.535 0.039 0.008 b32 = 1.0 0.989 0.046 0.280

D. Student-t disturbances; .725 sec./iter.

b11 = 1.0 1.240 0.145 0.038 b12 = −1.0 −1.098 0.113 0.199

b21 = 1.0 1.061 0.089 0.068 b22 = −0.8 −.831 0.080 0.147

s12 = 0.5 0.260 0.129 0.028 b32 = 1.0 1.022 0.086 0.170

l = 4.0 4.526 2.038 0.075

E. Normal mixture disturbances; .400 sec./iter.

b11 + a1 = 1.0 0.907 0.200 0.005 b21 = 1.0 0.928 0.148 0.004

b11 + a2 = 1.0 0.944 0.167 0.005 b22 = −0.8 −.797 0.100 0.004

s12 = 0.5 0.509 0.131 0.011 b32 = 1.0 1.003 0.124 0.004

s2 = 0.2 0.207 0.045 0.022 p1 = 0.6 0.550 0.064 0.005
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about most parameters, and posterior standard deviations are greater in every case.
This is consistent with the sharp increase noted between the degenerate multivariate
linear model and the multiple discrete choice model, in the case of mixed normal
disturbances, and can be attributed to the failure to ever fully observe any element of
the outcome vector ỹt .

6.2.6. Marginal likelihood approximations

In the case of the MLLM, marginal likelihood approximations are trivial when ỹt is
fully observed, because the likelihood function can be evaluated in closed form. When
this is the case, as it is in the first two of the five examples taken up here, the prior
and data density can be evaluated every iteration with negligible increase in computing
time. In general, when ỹt has latent components, a simulation algorithm like the GHK
algorithm described in Section 2.1 must be applied. The GHK algorithm, as well as
variants on this algorithm and various alternatives to it, produce simulation consistent
rather than unbiased evaluations of the log data density. Thus it is necessary to embed
an iterative procedure within an iterative procedure, and computation time can become
prohibitive if data density evaluations are made each iteration. Whether or not this is
the case depends on the structure of the latency in ỹt . For example, in the selection
model with a fully observed outcome, an essentially closed form evaluation of the data
density is still possible. The extended GHK algorithm described in Appendix B ex-
ploits this fact and converges in a single iteration. At the other extreme, the three choice
models with Student-t distributions have data density evaluations that are by far the
most time consuming using the methods presented here: on average, a single evaluation
required 15 minutes. For normal and normal mixture distributions average evaluation
time was about four minutes. To make the procedure practical, data density evaluations
were made every 100th iteration. For data density evaluation, the MCMC algorithm
was executed for 22 000 iterations in the case of the multiple discrete choice model and
single discrete choice outcome selection model, and 12 000 iterations in the case of
the continuous outcome selection model. In every case, the last 10 000 iterations were
used, so the results presented here are based on 100 evaluations of the prior and data
densities. The loss in information due to using every 100th iteration (as opposed to
each iteraton) is quite small, because of the serial correlation in the MCMC iterations.
Parallel to the presentation in the previous section (Table 5.4), Table 6.6 provides

log marginal likelihood approximations for each of the fifteen models considered,
applied in each case to the artificial data set generated under each of the distributional
assumptions. The purpose is to gain some evidence on how well Bayes factors can
discriminate among models. When outcomes are fully observed (panels A and B of
Table 6.6), the Bayes factors draw very sharp and correct distinctions among models.
The results parallel those for the univariate models. The greater contrast arises from
the increase in information with the number of dimensions. The lowest odds ratio in
favor of a true model in panels A and B is that in favor of the normal multivariate
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Table 6.6
Log marginal likelihoods in some multivariate latent linear models with artificial data

Model Data disturbances

Normal Student-t Mixed normal

A. Multivariate linear model

Normal −4323.7 −5266.4 −4328.1

Student-t −4335.1 −5031.3 −4162.4

Mixed normal −4328.1 −5069.5 −2998.2

B. Degenerate multivariate linear model

Normal −2205.5 −3009.3 −1672.5

Student-t −2213.4 −2770.7 −1452.1

Mixed normal −2211.7 −2803.1 −1298.4

C. Multiple discrete choice model

Normal −890.0 −1124.3 −788.8

Student-t −891.5 −1110.8 −782.6

Mixed normal −897.2 −1122.0 −780.3

D. Continuous outcome selection model

Normal −764.1 −926.4 −1018.1

Student-t −765.4 −885.1 −989.3

Mixed normal −768.2 −891.5 −964.1

E. Single discrete choice outcome selection model

Normal −1445.4 −1622.2 −730.0

Student-t −1447.1 −1615.0 −731.2

Mixed normal −1451.8 −1624.2 −730.0

linear model against the mixed normal linear model, about 80:1. The odds against
alternative models that do not nest true models are overwhelming.
For the multiple discrete choice model, no component of the outcome vector ỹt

is ever observed directly and the contrasts are much weaker, but the true model is
always favored. However, the Student-t distribution provides a close competitor when
the true model is normal (4.5:1 in favor of normal) or mixed normal (10:1 in favor of
mixed normal). Misspecified models – ones that do not nest the true model – are
clearly rejected: for example Student-t is preferred by 7.3 × 106 : 1 over normal
when disturbances are Student-t, and mixed normal by 4900:1 over normal when
disturbances are mixed normal.
In the continuous outcome selection model one component of ỹt is observed in

somewhat less than half the sample. Again, odds ratios always favor the true model.
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For alternative models that nest, or approximately nest, true models odds ratios in favor
of the true model are similar here to those seen in all panels. This is not surprising,
since the outcome springs from the penalty for more complex models implicit in the
prior distribution, and prior distributions are similar across all models. For models
that inappropriately restrict the true model, odds ratios for the continuous outcome
selection model are substantially higher than those in panels C or E.
In the single discrete choice outcome model, odds ratios favor the correct model in

the case of the normal and Student-t distributions, but in the case of the mixed normal
distribution the odds do not discriminate against the normal distribution. Overall,
contrasts are lower for these models than was the case for the multiple discrete choice
model. This is unsurprising. In both models the shock distribution is two-dimensional,
but whereas in the multiple discrete choice model the data always provide two linear
inequality restrictions, in the discrete choice selection model the data provide two
such restrictions in fewer than half the observations and only one in the remaining
observations.

6.2.7. Prospects for applications and future development

These results indicate that the Bayesian approach to multivariate latent linear models
can successfully recover the underlying structure in a variety of situations, when the
distribution of the disturbances is substantially more complex than multivariate normal.
It can also discriminate between competing, non-nested disturbance distribution
specifications.
When the outcome is fully observed, as in the case of the first two of the five

examples considered here, maximum likelihood is straightforward. In large sample
sizes like those used here the asymptotic sampling distribution provides a good
approximation to the posterior distribution, so long as the prior is uninformative
relative to the data. When there is actual latency in the outcomes, our Bayesian
approach to inference in discrete models appears to be competitive with non-Bayesian
alternatives that have been developed. In particular, in the multinomial probit model
and the continuous outcome selection model with normal disturbances computation
time and complexity appear comparable [Geweke, Keane and Runkle (1994)]. Of
course, our approach also permits non-Guassian distributions in these latent variable
models, and for these specifications there are presently no widely applied non-Bayesian
approaches to inference.
Extension of classical methods to likelihood-based inference for the non-Gaussian

distributions taken up here would be awkward. In addition, the applicability of
asymptotic theory in typical sample sizes is in doubt, and in the case of the normal
mixture distribution the likelihood function is unbounded so long as at least one
constituent of ỹt is fully observed in part of the sample. The nonparametric approaches
to dichotomous discrete choice models discussed in Section 5 – in particular, single-
index models – have not been applied to multiple discrete choice problems. We
conclude that the approach taken here appears to be on the forefront in the development
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of flexible models when outcomes are partially observed. Further development and
investigation is warranted.

7. Bayesian inference for a dynamic discrete choice model

In this section we present an example of Bayesian inference for a dynamic discrete
choice model. The model we consider is dynamic in the sense that current period
decisions affect the next period’s state variables, and hence the distribution of next
period’s payoffs. But the inferential procedure we describe here does not require
solution of agents’ dynamic optimization problem. Instead, we adopt an approach
(discussed in Section 3) in which we assume the future components of the value
functions lie along a flexible polynomial in the state variables – a polynomial whose
arguments are determined by the structure of the model and the laws of motion of
the state variables. Then, we form the joint posterior of the polynomial coefficients
and the parameters of agents’ payoff functions using a Gibbs sampling algorithm. Our
discussion is based on Geweke, Houser and Keane (1998), and is based on a model
that is very similar to the one analyzed by Keane and Wolpin (1997).
In the model we consider, agents chose among four mutually exclusive alternatives

in each of t = 1, . . . , 40 periods. The first two alternatives are to work in one of two
alternative occupations, the third is to attend school and the fourth to remain home.
One component of the current period payoff in each of the two occupational

alternatives is the associated wage: (wijt), j = 1, 2. The log-wage equation is:

lnwijt = boj + b1jXi1t + b2jXi2t + b3jSit + b4jX 2ijt + eijt
= Y ′

ijtbj + eijt j = 1, 2,

where Yijt is the obvious vector, Xijt is periods of experience in occupation j, Sit
is periods of school completed, and the eijt are serially independent productivity
shocks, with (ei1t , ei2t)′ ~ N (0,Se). Each occupational alternative also has a stochastic
nonpecuniary payoff, nijt , so the complete current period payoffs are uijt = wijt + nijt
( j = 1, 2).
The schooling payoffs include tuition costs. Agents begin with a 10th grade

education, and may complete two additional grades without cost. We assume there
is a fixed undergraduate tuition rate for attending grades 13 through 16 (a1), and a
fixed graduate tuition rate for each year of schooling beyond 16 (a2). We assume a
“return to school” cost that agents face if they did not choose school the previous
period (a3). Finally, school has both a nonstochastic nonpecuniary benefit (a0), and a
mean zero stochastic nonpecuniary payoff ni3t . Thus we have

ui3t = a0 + a1c (12 ¶ Sit ¶ 15) + a2c (Sit ¾ 16) + a3c (di, t − 1 Ñ 3) + ni3t
= D′

ita + ni3t ,
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where Dit is a vector of zeros and ones, according to the values of the indicator
functions c . Lastly, we assume that option 4, “home”, has both a nonstochastic
nonpecuniary payoff (÷), and a mean zero stochastic nonpecuniary payoff ni4t , so that:

ui4t = ÷ + ni4t .

It will be convenient to write uijt = ūijt + nijt ( j = 1, 4). We assume the nijt are serially
independent.
The state of the agent at the time of each decision is

Iit =
{(
Xijt

)
j = 1, 2

, Sit , t, c
(
di, t − 1 = 3

)
,
(
eijt
)
j = 1, 2

,
(
nijt

)
j = 1, ..., 4

}
,

and, in the notation of Section 3, we have:

I∗it =
{(
Xijt

)
j = 1, 2

, Sit , t, c
(
di, t − 1 = 3

)}
.

The number of “home” choices is excluded from the state-space as it is linearly
dependent on the level of education, the period, and experience in the two occupational
alternatives.
The value of an alternative is the sum of its current period payoff, and the future

component:

Vijt (Iit) = ūijt (Iit) + nijt + F
(
Xi1t + i1j ,Xi2t + i2j , Sit + i3j , t + 1, i3j

)
,

j = 1, . . . , 4, t = 1, . . . , 40,

where ikj = 1 if k = j and is zero otherwise. The function F represents agents’ forecasts
about the effects of their current state and choice on their future payoff stream. The
function is fixed across alternatives, so that the forecasts vary across alternatives only
because different choices lead to different future states.
The future component’s arguments reflect restrictions implied by the model. For

instance, because the productivity and preference shocks are serially independent, they
contain no information useful for forecasting future payoffs and do not appear in the
future component’s arguments. Also, many forms of path dependence that are not
consistent with the model are ruled out. In particular, given a state, the order in which
occupations one and two were chosen does not bear on future payoffs. Accordingly,
only their aggregate occurrence enters the future component. It is worthwhile to point
out that these restrictions can be viewed as providing logical consistency to the agents’
behavior in relation to the model’s assumptions.
Since choices depend only on relative alternative values, rather than their levels, we

define for j ∈ {1, 2, 3}:
Zijt ≡ Vijt − Vi4t

= ūijt + nijt + F (I∗it , j) − ūi4t − ni4t − F (I
∗
it , 4)

= ũijt + f (I
∗
it , j) + hijt ,

where ũijt ≡ ūijt − ūi4t , f
(
I∗it , j

)
≡ F

(
I∗it , j

)
− F

(
I∗it , 4

)
, and hijt ≡ nijt − ni4t . We assume

hit ≡ (hi1t , . . . , hi3t)
′ ~ N (0,Sh). Importantly, after differencing, the parameter ÷ of the
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home payoff is subsumed in f , the relative future component. Clearly, if an alternative’s
relative future component has an intercept (as each of ours does) then it and the current
period return to home cannot be separately identified.
The Zit are unobserved by the econometrician. The econometrician only observes

the agents’ choices {dit}40t = 1 and, in periods when the agent works, the wage for
the chosen alternative. Thus, payoffs are never completely observed, both because
wages are censored and because the nonpecuniary components of the payoffs (nijt)
are never observed. Nevertheless, given observed choices and partially observed
wages, along with the functional form assumptions about the payoff functions, it is
possible to learn both about the future component F(·) and the structural parameters
of the payoff functions without making strong assumptions about how agents form
expectations. Rather, we simply assume that the future component lies along a
polynomial in the relevant state variables. In the Monte Carlo results reported below
we used a polynomial of order four. After differencing to obtain

{
f
(
I∗it , j

)}
j = 1, 2, 3

, the
polynomial we used contained 53 terms of order three and lower [see Geweke, Houser
and Keane (1998, Appendix A) for details].
The relative future component can be expressed:

f (I∗it , j) = Y
′
ijtp j = 1, 2, 3,

whereYijt is a vector of functions of state-variables that appear in the equation for f ( j)
and p is a vector of coefficients common to each choice. Cross-equation restrictions
of this type are a consequence of using the same future component function F for each
alternative, and reflect the consistency restrictions mentioned earlier.
The first step in a Bayesian analysis of this model via a Gibbs sampler with

data augmentation is to form the “complete data” likelihood function. That is,
we consider the likelihood function that could be formed if we had data on N
individuals observed over 40 periods each, and we observed the value function

differences Z =
{(
Zijt

)
j = 1, 2, 3; i = 1,N ; t = 1, 40

}
and the complete set of wages

W =
{(
wijt

)
j = 1, 2; i = 1,N ; t = 1, 40

}
for all alternatives. This is:

L
(
W ,Z |Y ,D, b1, b2,a,p ,Se ,Sh

)
∝
∏
i, t

|Se |−1 /2 (wi1twi2t)−1 exp
{
−12

(
lnwi1t − Y ′

i1tb1
lnwi2t − Y ′

i2tb2

)′
S−1e

(
lnwi1t − Y ′

i1tb1
lnwi2t − Y ′

i2tb2

)}

· |Sh |−1 /2 exp

⎧⎨⎩−12
⎛⎝ Zi1t − wi1t −Y ′

i1tp
Zi2t − wi2t −Y ′

i2tp
Zi3t − D′

ita −Y
′
i3tp

⎞⎠′

S−1h

⎛⎝ Zi1t − wi1t −Y ′
i1tp

Zi2t − wi2t −Y ′
i2tp

Zi3t − D′
ita −Y

′
i3tp

⎞⎠⎫⎬⎭
· c
(
Zijt > max {0,Zikt (k Ñ j)} if dit = j

and j ∈ {1, 2, 3} , {Zijt}j = 1, 2, 3 < 0 otherwise
)
.

(7.1)
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We will assume flat priors on all parameters except the two covariance matrices, for
which we impose the standard noninformative priors [see Zellner (1971, Section 8.1)]:

p
(
S−1e

)
∝
∣∣S−1e ∣∣−3 /2 , p

(
S−1h

)
∝
∣∣S−1h ∣∣−2 . (7.2)

The joint posterior density of the parameters is proportional to the product of
Equation (7.1) and the two densities in Equation (7.2). Geweke, Houser and Keane
(1998) contains a proof that this joint posterior is finitely integrable.
It is not feasible to construct the parameters’ posterior density analytically, because

of the high dimensional integration over the unobserved wages and value function
differences that is involved. Fortunately, it is possible to simulate draws from the
posterior using a Gibbs sampler with data augmentation. As discussed in Section 2,
implementing this algorithm requires us to factor the joint posterior into a set of
conditional posterior densities, in such a way that each can be drawn from easily.
Then, we cycle through these conditionals, drawing a block of parameters from each
in turn. As the number of cycles grows large, the parameter draws so obtained
converge in distribution to their respective marginal posteriors. Our Gibbs sampling-
data augmentation algorithm consists of six steps or “blocks”, which are as follows:

Step 1. Draw the value function differences {Zijt , i = 1,N ; j = 1, 2, 3; t = 1, 40}.
Step 2. Draw the unobserved wages {wijt when dit Ñ j, ( j = 1, 2)}.
Step 3. Draw the log-wage equation coefficients bj .
Step 4. Draw the log-wage equation error-covariance matrix Se .
Step 5. Draw the future component parameters p and school payoff parameters a.
Step 6. Draw the nonpecuniary payoff covariance matrix Sh .

We next briefly describe how each step was carried out. Additional detail can be found
in Geweke, Houser and Keane (1998).

Step 1. Taking everything else in the model as given, it is evident from
Equation (7.1) that the conditional distribution of a single Zijt is truncated Gaussian.
There are three ways in which the distribution might be truncated. In case 1: Zijt is a
value function difference for the chosen alternative. In this case we draw

Zijt > max

{
0, (Zikt) k ∈ {1, 2, 3}

k Ñ j

}
.

In case 2: Zijt is not associated with the chosen alternative, and “home” was not chosen.
In this case, we draw Zijt < Zidit t . In case 3: “home” was chosen. In this case, we draw
Zijt < 0. We draw from the univariate, truncated Gaussian distributions using standard
inverse CDF methods.

Step 2. Drawing unobserved wages is the most time consuming part of the
algorithm. Suppose wi1t is unobserved. Its density, conditional on every other wage,
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future component difference and parameter being known, is from Equation (7.1) given
by:

g (w̃i1t |·) ∝ w̃−1i1t exp

{
−12

(
ln w̃i1t − Y ′

i1tb1
lnwi2t − Y ′

i2tb2

)′
S−1e

(
ln w̃i1t − Y ′

i1tb1
lnwi2t − Y ′

i2tb2

)}

exp

⎧⎨⎩−12
⎛⎝ Zi1t − w̃i1t −Y ′

i1tp
Zi2t − wi2t −Y ′

i2tp
Zi3t − D′

ita −Y
′
i3tp

⎞⎠′

S−1h

⎛⎝ Zi1t − w̃i1t −Y ′
i1tp

Zi2t − wi2t −Y ′
i2tp

Zi3t − D′
ita −Y

′
i3tp

⎞⎠⎫⎬⎭ .
(7.3)

This distribution is nonstandard as wages enter in both logs and levels. Nevertheless,
it is straightforward to sample from this distribution using rejection methods [see
Geweke (1996) for a discussion of rejection sampling]. In brief, we first draw a
candidate wage wc from the distribution implied by the first exponential term of Equa-
tion (7.3), so that lnwc ~ N

(
Y ′
i1tb1 + lit , s

2
∗
)
, where lit ≡ Se(1, 2)ei2t /Se(2, 2) and

s 2∗ ≡ Se(1, 1)
(
1 −

(
Se(1, 2)2/Se(1, 1)Se(2, 2)

))
. This draw is easily accomplished,

and wc is found by exponentiating. We accept the draw with probability equal to
the second exponential term in Equation (7.3), when evaluated at w̃i1t = wc, divided
by the conditional maximum of this term over w̃i1t . If the draw is accepted then
the unobserved wi1t is set to wc. Otherwise, the process is repeated until a draw is
accepted.

Step 3. Given all wages, value function differences, and other parameters, the
density of ( b1, b2) is:

g ( b1, b2) ∝ exp

{
−12

(
lnwi1t − Y ′

i1tb1
lnwi2t − Y ′

i2tb2

)′
S−1e

(
lnwi1t − Y ′

i1tb1
lnwi2t − Y ′

i2tb2

)}
,

so that ( b1, b2) is distributed according to a multivariate normal. In particular, it is
easy to show that

b ~ N
[(
Y ′S−1Y

)−1
Y ′S−1 lnW ,

(
Y ′S−1Y

)−1]
,

where b ≡ ( b ′
1, b

′
2)

′, S = Se ⊗ INT, Y =
[
Y1 0
0 Y2

]
and lnW = [lnW ′

1, lnW ′
2]′, where

Y1 is the regressor matrix for the first log-wage equation naturally ordered through all
individuals and periods, and similarly for Y2,W1, andW2. It is straightforward to draw
b from this multivariate normal density.

Step 4. With everything else known, S−1e has a Wishart distribution. Specifically,

S−1e ~ W (SSTe ,N · T ) ,

where SSTe =
∑

i, t(ei1tei2t)
′(ei1tei2t), and eijt = lnwijt − Y ′

ijt bj . It is easy to draw from
the Wishart and then invert the 2× 2 matrix to obtain the new Se .
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Step 5. It is convenient to draw both the future component p parameters and the
parameters a of the school payoff jointly. Since the future component for school
contains an intercept, it and the constant in a cannot be separately identified.
Hence, we omit a0 as well as the first element from each Dit . Define the vector
p∗ ≡ [p ′,a′]′, where a = (a1,a2,a3)′ and define Y ∗

ijt ≡
[
Y ′
ijt , 0

′
3

]′
( j = 1, 2),

and Y ′
i3t =

[
Y ′
i3t ,D

′
it

]′
. Note that p∗ and the Y ∗

ijt are 56-vectors. Then define
Yk =

[
Y ∗
1k1,Y

∗
1k2, . . . , Y

∗
Nk , T − 1,Y

∗
NkT

]
and set Y = [Y1,Y2,Y3]

′ so that Y is a
(3 · NT × 56) stacked-regressor matrix. Similarly, define the corresponding 3 · NT -
vector G by:

G =
(
{Zi1t − wi1t}′

i = 1,N ; t = 1, 40 {Zi2t − wi2t}′
i = 1,N ; t = 1, 40 {Zi3t}′

i = 1,N ; t = 1, 40

)′
.

It is immediate from Equation (7.1), in which p∗ enters only through the second
exponential expression, that, conditional on everything else in the model known, p∗

has a multivariate normal density given by:

p∗ ~ N
[(
Y ′W−1Y

)−1
Y ′W−1G ,

(
Y ′W−1Y

)−1]
,

where W = Sh ⊗ INT . It is straightforward to draw from this distribution using a
standard, multivariate normal random number generator.

Step 6.With everything else known the distribution of S−1h is Wishart. Specifically,

S−1h ~ W
(
SSTh ,N · T

)
,

where SSTh =
∑

i, t(hi1thi2thi3t)
′(hi1thi2thi3t). It is easy to draw from this distribution

and then invert the 3× 3 matrix to obtain the new Sh .
To investigate the performance of this algorithm, we generated five artificial data

sets with N = 2000 each, using the true parameter values listed in column 2
of Table 7.1. We generated data by solving the dynamic optimization problem
“exactly” under rational expectations given these parameter values, and forming
the optimal decision rule. Thus, the point of this experiment is to gauge if our
method will generate reliable inferences about the structural parameters of the payoff
functions even when the polynomial approximation to the future component is
misspecified.
Starting from an initial guess of the model parameters 34, we ran the Gibbs

algorithm for 40 000 cycles. Visual inspection of graphs of the draw sequences, as

34 We chose to set the initial log-wage equation b equal to the value from an OLS regression on
observed wages. The diagonal elements of Se were set to the variance of observed log-wages, while the
off-diagonal elements were set to zero. The school payoff parameters were all initialized at zero. All of
the future component’s p values were also started at zero, except for the alternative-specific intercepts.
The intercepts for alternatives one, two and three were initialized with −5000, −10 000 and 20 000,
respectively (which were not the true values). These values were chosen with an eye toward matching
aggregate choice frequencies in each alternative. Finally, we also chose an arbitrary initialization for
the Sh covariance matrix. We set all off-diagonal elements to zero, and set each diagonal element to
5× 108. We used large starting variances because doing so increases the size of the initial Gibbs steps,
and seems to improve the rate of convergence of the algorithm.
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well as application of the split sequence diagnostic suggested by Gelman (1996) –
which compares variability of the draws across subsequences – suggest that the
algorithm converged for all five artificial data sets. We then used the last 15 000 draws
from each run to simulate the posterior. Table 7.1 reports the posterior means and
posterior standard deviations of the simulated posterior distribution for each structural
parameter of the current payoff functions (the future component p parameters are not
reported).
The performance of the algorithm is quite impressive. In almost all cases, the

posterior means of the wage function parameters deviate only slightly from the true
values in percentage terms. Also, the posterior standard deviations are in most cases
quite small, suggesting that the data contain a great deal of information about these
structural parameters – even without imposing the assumption that agents form the
future component “optimally”. Finally, despite that fact that the posterior standard
deviations are quite small, the posterior means are rarely more than two posterior
deviations away from the true values. The school payoff parameters are not pinned
down so well as the wage equation parameters, which is not surprising given that
school payoffs are never observed.
These findings are related to those of Lancaster (1997), who considered Bayesian

inference in the stationary job search model. He found that if the reservation wage is
treated as a free parameter, rather than imposing that it is set “optimally” (as dictated
by the offer wage function, offer arrival rate, unemployment benefit and discount
rate), there is little loss of information about the structural parameters of the offer
wage functions. (As in our example, however, identification of the discount factor is
lost.) The stationary job search model considered by Lancaster (1997) has the feature
that the future component is a constant (i.e., it is not a function of state variables).
Our procedure of treating the future component as a polynomial in state variables
can be viewed as extending Lancaster’s approach to a much more general class of
models.
The results of Table 7.1 indicate that in a case where agents form the future

component optimally, we can still obtain reliable and precise inferences about structural
parameters of the current payoff functions using a simplified and misspecified model
that says the future component is a simple 4th order polynomial in the state variables.
But we are also interested in how well our method approximates the decision rule
used by the agents. In Table 7.2 we consider an experiment in which we use the
posterior means for the parameters p that characterize how agents form expectations
to form an estimate of agents’ decision rule. We then simulate 5 new artificial data
sets, using the exact same draws for the current period payoffs as were used to
generate the original 5 artificial data sets. The only difference is that the estimated
future component is substituted for the true future component in forming the decision
rule. The results in Table 7.2 indicate that the mean wealth losses from using the
estimated decision rule range from five-hundredths to three-tenths of one percent.
The percentage of choices that agree between agents who use the optimal versus
the approximate rules ranges from 89.8% to 93.5%. These results suggest that
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Table 7.1
Descriptive statistics for final 15 000 Gibbs sampler parameter draws for several different data sets generated using true future component

Parameter True Data Set 1

Mean SD

Data Set 2

Mean SD

Data Set 3

Mean SD

Data Set 4

Mean SD

Data Set 5

Mean SD

Occ. 1 intercept 9.00000 9.01342 0.00602 9.00471 0.00527 9.01436 0.00584 9.01028 0.00593 9.00929 0.00550

Occ. 1 own
experience

0.05500 0.05427 0.00073 0.05489 0.00071 0.05384 0.00072 0.05394 0.00072 0.05410 0.00071

Occ. 2 experience 0.00000 0.00111 0.00093 0.00092 0.00114 0.00078 0.00126 0.00107 0.00100 0.00051 0.00093

Education 0.05000 0.04881 0.00118 0.05173 0.00126 0.04869 0.00129 0.04961 0.00123 0.05067 0.00124

Occ. 1 exp. squared −0.00025 −0.00023 0.00002 −0.00025 0.00002 −0.00023 0.00002 −0.00022 0.00002 −0.00023 0.00002

Occ. 1 error SD 0.40000 0.39740 0.00200 0.39870 0.00200 0.39850 0.00200 0.39730 0.00200 0.39740 0.00200

Occ. 2 intercept 8.95000 8.90720 0.01704 8.98989 0.01970 8.93943 0.01850 8.93174 0.01649 8.94097 0.01410

Occ. 2 own
experience

0.04000 0.04093 0.00037 0.03967 0.00037 0.03955 0.00038 0.04001 0.00037 0.04060 0.00039

Occ. 2 experience 0.06000 0.06087 0.00178 0.05716 0.00190 0.06200 0.00201 0.06211 0.00179 0.05880 0.00157

Education 0.07500 0.07822 0.00166 0.07338 0.00171 0.07579 0.00165 0.07743 0.00167 0.07613 0.00159

Occ. 2 exp. squared −0.00090 −0.00087 0.00008 −0.00081 0.00008 −0.00098 0.00008 −0.00101 0.00008 −0.00084 0.00007

Occ. 2 error SD 0.40000 0.40850 0.00300 0.39680 0.00300 0.40390 0.00300 0.40240 0.00300 0.39720 0.00300

Error correlation 0.50000 0.51690 0.02300 0.60680 0.02900 0.48420 0.04400 0.52110 0.03500 0.48750 0.02800

Undergraduate
tuition

−5000 −2261 313 −2937 358 −3407 371 −3851 426 −3286 448

Graduate tuition −15000 −10092 1046 −10788 141 −11983 1188 −10119 1380 −11958 1823

Return cost −15000 −14032 482 −16014 431 −16577 500 16168 662 −18863 1065

continued on next page
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Table 7.1, continued

Parameter True Data Set 1

Mean SD

Data Set 2

Mean SD

Data Set 3

Mean SD

Data Set 4

Mean SD

Data Set 5

Mean SD

Preference shock SD

Occ. 1 9082.95 10634.90 423.85 10177.24 165.11 11438.63 438.72 9973.32 371.64 9071.29 509.80

Occ. 2 9082.95 9436.10 372.86 12741.02 405.25 11432.19 287.69 9310.37 718.15 7770.66 555.39

Occ. 3 11821.59 11450.65 338.28 12470.12 259.81 13999.95 351.33 13183.33 471.47 13897.62 533.67

Preference shock
corr.

Occ. 1 with occ. 2 0.89 0.93 0.01 0.98 0.00 0.94 0.01 0.91 0.02 0.86 0.03

Occ. 1 with occ. 3 0.88 0.89 0.01 0.88 0.01 0.90 0.01 0.88 0.01 0.88 0.01

Occ. 2 with occ. 3 0.88 0.87 0.01 0.90 0.01 0.90 0.01 0.89 0.02 0.89 0.02
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Table 7.2
Wealth loss when posterior polynomial approximation is used in place of true future component 1

Data set True EMAX2

Mean PV
of payoffs 3

Posterior EMAX

Mean PV
of payoffs

Mean dollar
equivalent loss

Mean loss (%) Aggregate
choice

agreement

0–35
agreements

(%)

36–39
agreements

(%)

Choosing
same path (%)

1 356796.40 356133.68 662.71 0.19% 90.80% 34.25% 42.65% 23.10%

2 356326.99 355836.27 490.72 0.14% 91.34% 33.00% 44.00% 23.00%

3 355796.91 354746.00 1050.91 0.30% 89.79% 39.00% 38.95% 22.05%

4 355802.85 355449.73 353.12 0.10% 93.48% 24.60% 38.45% 36.95%

5 355660.94 355484.65 176.29 0.05% 93.18% 24.95% 30.50% 44.55%

1 Polynomial parameter values are set to the mean of their respective empirical posterior distributions from data set 5.
2 Each simulation includes 2000 agents that live for exactly 40 periods.
3 “Mean PV of payoffs” is the equal-weight sample average of discounted streams of ex-post lifetime payoffs.
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our estimated polynomial approximations to the optimal decision rule are indeed
reasonably accurate.

Appendix A. The full univariate latent linear model

Core model. The core univariate latent linear model (ULLM) is

ỹt = a′z̃t + b ′xt + et .

The subscript t indexes observations. The k × 1 vector xt consists of observed
covariates, k > 0. The m × 1 vector z̃t consists of latent variables, m ¾ 0. The
m× 1 parameter vector a and the k × 1 parameter vector b are unknown. The outcome
variable ỹt may be either observed, or latent subject to known restrictions. In the core
ULLM the independently and identically distributed (i.i.d.) disturbances et have a scale
mixture of normals distribution, with representation

et = s(t)ht . (A.1)

In Equation (A.1), s(t) is a strictly positive, i.i.d. random variable conditional on
x1, . . . , xT , and (h1, . . . , hT |s(1), . . . , s(T ), x1, . . . , xT ) ~ N (0, s 2IT ). Hence

p
(
{ỹt}Tt = 1 |

{
xt , z̃t , s 2(t)

}T
t = 1

)
= (2ps 2)−T /2

[
T∏
t = 1

(
s 2(t)

)−1 /2]

· exp
{
−

T∑
t = 1

[(
ỹt − a′z̃t − b ′xt

)2
/2s 2s 2(t)

]}
.

(A.2)
Let ỹ′ = ( ỹ1, . . . , ỹT ),X ′ = [x1, . . . , xT ], Z̃ ′ = [z̃1, . . . , z̃T ], and let Q be a T × T
diagonal matrix with entry s 2(t) in position (t, t). Then an alternate representation of
Equation (A.2) is

p
(
ỹ|X , Z̃ ,Q

)
= (2ps 2)−T /2 |Q|−1 /2 exp

[
−
(
ỹ − Z̃a − Xb

)′
Q
(
ỹ − Z̃a − Xb

)
/2s 2

]
.

(A.3)
Distributional assumptions. The core ULLM yields a rich variety of distributions

as specific cases. The treatment here considers three.
When m = 0 and s 2(t) ≡ 1, then ỹ|X ~ N

(
Xb , s 2IT

)
. If ỹ is observed this is the

textbook normal linear regression model. Other assumptions about the observation of
ỹ, discussed subsequently, yield the conventional binomial probit and normal censored
regression models.
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When m = 0 and ls−2(t) |X
i.i.d.
~ c2(l), then

p
(
s 2(t)|l,X

)
=
[
2l /2G (l /2)

]−1
ll /2

(
s 2(t)

)−(l + 2) /2
exp

(
−l /2s 2(t)

)
. (A.4)

In this case,

et |(l,X )
i.i.d.
~ t(0, s 2; l).

In the normal mixture model the number of components is m¾ 2. The random vector(
z̃′t , s

2
(t)

)
is i.i.d., conditional on X . To describe its distribution let s(t) ∈ {1, . . . , m}

be a latent, scalar state index, distributed i.i.d. multinomial conditional on X , with

P[s(t) = j|X ] = pj;
m∑
j = 1

pj = 1. (A.5)

Corresponding to each state j there is a positive parameter s 2j , and s
2
(t) = s

2
s(t). The state

index s(t) also determines z̃t : z̃tj = ds(t), j , where du, v is the Kronecker delta function
du, v = 1 if u = v and du, v = 0 if u Ñ v. Then

p( ỹt |xt , s(t) = j) =
(
2ps 2s 2j

)−1 /2
exp

[
−
(
ỹt − aj − b ′xt

)2
/2s 2s 2j

]
, (A.6)

so that if s(t) = j, then ỹt = b ′xt + ut with ut ~ N (aj , s 2s 2j ). Thus the disturbances ut
follow a full discrete normal mixture distribution.

Observed outcomes. Corresponding to the latent outcome ỹt is an observed,
set-valued outcome yt such that ỹt ∈ yt . The core assumption about yt is that
p ( yt | ỹt , xt) = p ( yt | ỹt): that is, the value of yt is determined solely by ỹt . Thus the
joint conditional distribution of ỹt and yt in the ULLM is

p( ỹt |xt) p( yt | ỹt , xt) = p( ỹt |xt) p ( yt | ỹt) = p( ỹt |xt) cyt ( ỹt) ,

where the indicator function cS(z) = 1 if z ∈ S, cS(z) = 0 if z /∈ S.
In the linear model yt is the singleton yt = ỹt . In the dichotomous choice model

yt = (−∞, 0] if choice 1 is observed and yt = (0,∞) if choice 2 is observed. In
the censored regression model suppose ỹt is observed if and only if ỹt ¾ c. Then
yt = ỹt · c[c,∞) ( ỹt) + (−∞, c) · c(−∞,c) ( ỹt).
All of these models are special instances of the cases yt = [ct , dt], yt = (ct , dt] or

yt = [ct , dt). Correspondingly, conditional on ỹt

P ( yt = (ct , dt]) = P ( yt = [ct , dt)) = P ( yt = [ct , dt]) = c(ct , dt ] ( ỹt) , (A.7)

with the understanding that ct and dt are extended real numbers, and the recognition
that P( ỹt = y∗|xt) = 0 for any single point y∗, including y∗ = +∞ and y∗ = −∞.
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These instances are of course restrictions on the assumption that yt is set valued, but
they include most cases of interest and simplify both software and the representation
of observed data.

Prior distributions. Using Bayes factors to compare different models for the same
data requires proper prior distributions. The prior distributions should be chosen so
that it is easy to make the prior information about the same for the common parts of
alternative models.
The coefficient vector b and disturbance scale parameter s are common to all

models. The benchmark prior distribution for b is b ~ N
(
b ,H−1

b

)
:

p( b) = (2p )−k /2
∣∣H b

∣∣1 /2 exp [−12 ( b − b)′
H b

(
b − b

)]
. (A.8)

The hyperparameters are the mean b ∈ Rk and the positive definite precision matrix
H b . The prior distribution of s

2 is inverted gamma, s2/s 2 ~ c2(n ):

p
(
s 2
)
=
[
2n /2G (n /2)

]−1 (
s2
)n /2 (

s 2
)−(n + 2) /2

exp
(
−s2/2s 2

)
. (A.9)

The hyperparameters are the scaling factor s2 ∈ R+ and the degrees of freedom
parameter n ∈ R+.
For the Student-t model the benchmark prior distribution for the degrees of freedom

parameter l is l ~ exp(l):

p(l) = l−1 exp(−l /l). (A.10)

The hyperparameter l ∈ R+ is the mean of the exponential distribution.
The normal mixture model for the disturbances has three components. The multino-

mial distribution of the state index involves the probabilities p1, . . . , pm,
∑m

j = 1 pj = 1.
The benchmark prior distribution is Dirichlet (multivariate beta) with hyperparameters
r1, . . . , rm:

p( p) =

⎡⎣G
⎛⎝ m∑
j = 1

rj

⎞⎠ / m∏
j = 1

G
(
rj
)⎤⎦ m∏

j = 1

p
rj − 1
j . (A.11)

Conditional on one of the m states, say j, the distribution is N (aj , s 2s 2j ). The
benchmark prior distribution for the second component of the normal mixture model,
the variance scaling parameters s 2j , consists of the m inverted gamma components
s2j /s

2
j ~ c

2(n j). These are subject to the restrictions s
2
1 > · · · > s 2m but otherwise

independent. Thus

p
(
s 21 , . . . , s

2
m

)
= c

(
s21, . . . , s

2
m; n1, . . . , nm

)
·
m∏
j = 1

{[
2n j /2G

(
n j /2

)]−1 (
s2j
)n j /2 (s 2j )−(n j + 2) /2 exp (−s2j /2s 2j )}

· c{s 21 > ···> s 2m}
(
s 21 , · · · , s 2m

)
.

(A.12)
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The constant c(s21, . . . , s
2
m; n1, . . . , nm) is the inverse of P(s

2
1 > · · · > s 2m) for the

independent distributions s2j /s
2
j ~ c

2(n j).
The third component of the normal mixture distribution, a′ = (a1, . . . , am), is

multivariate normal, a|s ~ N (0, s 2H−1
a ):

p(a) = (2ps 2)−m/2 |Ha |1 /2 exp
(
−a′Haa /2s

2
)
. (A.13)

Existence of the posterior distribution and moments. Given proper priors and
a bounded likelihood function the posterior kernel is integrable and the posterior
distribution exists. In the ULLM prior are always proper. The likelihood function is
bounded, except when the disturbances are mixed normal and at least some of the ỹt
are not latent (i.e., ct = dt for at least some t). The problem is that aj can be chosen
to make yt∗ = aj + b ′xt for some t∗, and then s 2j → 0 drives the likelihood to +∞.
There exist separated continua of points where the likelihood function is unbounded.
Thus maximum likelihood estimation for the normal mixture model with at least one
fully observed outcome yt = ỹt is precluded 35.
In this troublesome case the product of prior and data density is still integrable. To

see that this is so, without loss of generality consider the instance in which all ỹt are
observed. Conditional on the state assignments s(1), . . . , s(T ), the posterior density
kernel for a, b , s 2, and s 2j ( j = 1, . . . , m) is the product of Equations (A.6, A.8, A.9,
A.12 and A.13). This product is bounded above by a fixed multiple of

(
s 2
)−(T + n + 2) /2

exp
(
−s2 /2s 2

) m∏
j = 1

(
s 2j
)−(T + n j + 2) /2 exp (−s2j /2s 2j ) , (A.14)

where Tj =
∑T

t = 1 dj, s(t), the number of observations assigned to state j. Expression
(A.14) is the product of the density kernels of s2 /s 2 ~ c2(T + n ) and s2j /s

2
j ~ c

2

(Tj + n j) ( j = 1, . . . , m), and is therefore finitely integrable for given T1, . . . , Tm.
Since the number of possible combinations of the Tj is finite the full posterior kernel,
unconditional on state assignments, is also finitely integrable.
Given the existence of the posterior density, all posterior moments of any function

bounded below and above exist. The posterior moment of an unbounded function of
interest exists if the corresponding prior moment exists (a condition that is typically
easy to check) and the data density is bounded.
To verify the existence of posterior moments in the case of the normal mixture

model with observed outcomes yt = ỹt , express Equation (A.14) as the product

(
s 2
)−(n − e) /2

exp
[
−
(
s2 − t2

)
/2s 2

] m∏
j = 1

(
s 2j
)−(T + n j − e) /2 exp [− (s2j − t2) /2s 2j ]

(A.15)

35 For an early discussion of this problem see Kiefer and Wolfowitz (1956).
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·
(
s 2
)−(T + e + 2) /2

exp(−t2 /2s 2)
m∏
j = 1

(
s 2j
)−(Tj + e + 2) /2 exp (−t2j /2s 2j ) , (A.16)

for some positive e and t2. Expression (A.16) is the product of density kernels of
the distributions t2 /s 2 ~ c2(T + e) and t2j /s

2
j ~ c

2(Tj + e) ( j = 1, . . . , m) and is
therefore finitely integrable. Expression (A.15) is the product of density kernels of the
distributions(

s2 − t2
)
/s 2 ~ c2(n − 2 − e),

(
s2j − t

2
)
/s 2 ~ c2

(
n j − 2 − e

)
( j = 1, . . . , m).

(A.17)
Hence a sufficient condition for the existence of a posterior moment in the normal
mixture model with observed outcomes yt = ỹt is that the corresponding prior
moment exists when the prior distributions of s 2 and s 2j ( j = 1, . . . , m) are changed
to Equation (A.17). For example, n j > 2 + 2q is sufficient for the existence of

E
[(
s 2j
)q | y,X

]
.

Inference in the ULLM. There are eight groups of parameters or latent variables
in the model: (a, b); s 2; s 2(t) (t = 1, . . . , T ); l; s(t) (t = 1, . . . , T ) and Z̃ ; p;

s 2j ( j = 1, . . . , m); and ỹt (t = 1, . . . , T ). These groups organized the Gibbs sampling
MCMC algorithm outlined in Section 5.1.
For the group (a, b), let g ′ = (a′, b ′), W̃ =

[
Z̃ ...X

]
, g ′ = (0′ b ′), and

H g =

[
s−2Ha 0

0 H b

]
.

In the normal and Student-t models, g = b , W̃ = X , g = b , and H g = H b .
The kernel of the conditional posterior density is the product of Equations (A.2,
A.8 and A.13), from which the conditional posterior distribution is g ~ N (ḡ , H̄g )

with H̄g = H g + W̃
′(s 2Q)−1W̃ and ḡ = H̄−1

g [H gg + s
−2W̃ ′Q

−1
ỹ]. Draws from this

distribution are straightforward.
The conditional posterior density kernel for s 2 is the product of Equations (A.2,

A.9, and A.13). This kernel corresponds to the conditional posterior distribution[
s2 + a′Haa +

T∑
t = 1

s−2(t)
(
ỹt − a′z̃t − b ′xt

)2]
/s 2 ~ c2(n +m + T ),

for s 2, from which simulation is simple.
In the normal model s 2(t) ≡ 1, and in the normal mixture model s 2(t) = s

2
s(t). In the

Student-t model, the kernel for s 2(t) (t = 1, . . . , T ) is the product of Equations (A.2
and A.4). Thus in this model the s 2(t) are conditionally independent, with[

l + s−2
(
ỹt − b ′xt

)2]
/s 2(t) ~ c

2(l + 1).
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When the disturbance distribution is Student-t, the conditional posterior density
kernel for l is given by the product of Equations (A.4 and A.10),

k(l) =
[
2l /2G (l /2)

]−T
lTl /2

[
T∏
t = 1

s 2(t)

]−(l + 2) /2
exp

{[
l−1 +

(
1
2

) T∑
t = 1

s−2(t)

]
l

}
.

(A.18)
This is a proper density kernel, but it is not the kernel of any conventional p.d.f.
We therefore incorporate a Metropolis step within the Gibbs sampling algorithm,
as described in Section 2.6. The candidate density q(l) is that of a univariate
normal distribution, with mean at the maximum l̂ of k(l), and precision equal to
−d2 log k(l) /dl2|l = l̂. A draw l∗ is taken from this normal distribution at each step m
of the MCMC algorithm. With probability

min

{
k(l∗) /q(l∗)

k
(
l(m − 1)

)
/q
(
l(m − 1)

) , 1} , (A.19)

l(m) = l∗; otherwise l(m) = l(m − 1).
In the normal mixture model the conditional posterior density kernel for the state

assignments s(t) (t = 1, . . . , T ) is the product of Equations (A.5 and A.6) taken over
t = 1, . . . , T . Thus the s(t) are conditionally independent, with

P[s(t) = j] ∝ pjs−1j exp
[
−
(
ỹt − aj − b ′xt

)2
/2s 2s 2j

]
( j = 1, . . . , m).

Draws from these multinomial distributions are trivial. Following these draws, in
Z̃ = [z̃tj] set z̃tj = ds(t), j .
In the normal mixture model the conditional posterior density kernel for p is

the product of Equations (A.5 and A.11),
∏m
j = 1 p

rj + Tj − 1
j , where Tj is the number

of observations assigned to state j, Tj =
∑T

t = 1 ds(t), j . Thus the conditional
posterior distribution of p is Dirichlet with parameters rj + Tj ( j = 1, . . . , m).
It is straightforward to draw from this distribution; see Johnson and Kotz (1972,
Section 40.5).
The conditional posterior density kernel of (s 21 , . . . , s

2
m) in the normal mixture

model is the product of Equation (A.6) taken over t = 1, . . . , T and Equation (A.12),
which implies that subject to the restriction s 21 > · · · > s 2m, the s 2j are independent
with [

s2j +
T∑
t = 1

ds(t), j
(
ỹt − a′z̃t − b ′xt

)2]
/s 2j ~ c

2
(
n j + Tj

)
( j = 1, . . . , m).

(A.20)
The ordering restriction is enforced by drawing the s 2j in succession from Equa-
tion (A.20). At each step in this succession, if the candidate draw conforms with the
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ordering it is accepted; if not, the current value of s 2j is retained. Each draw in this
succession is thus a Metropolis within Gibbs step.
The latent variables ỹt (t = 1, . . . , T ) appear in the components (A.2 and A.7) of

the likelihood function. Thus they are conditionally independent,

ỹt ~ N
(
a′z̃t + bxt , s 2s 2j

)
subject to ỹt ∈ [ct , dt] .

Marginal likelihoods. The Gelfand–Dey harmonic mean algorithm for approxima-
tion of the marginal likelihood requires that the prior and data densities be evaluated
at each iteration used in the marginal likelihood approximation. The efficiency of the
algorithm can be increased by analytical integration of groups or parameters wherever
possible. In the ULLM, it is easy to integrate latent variables prior to evaluation
of the prior and data densities. When this is done the Gelfand–Dey algorithm is
computationally quite efficient.
For normally distributed disturbances the prior density is the product of Equa-

tions (A.8 and A.9), and the only latent variables are ỹt (t = 1, . . . , T ). Integrating
over the ỹt , the data density is

∏T
t = 1 p

(
yt |xt , b , s 2

)
. If ct = dt then

p
(
yt |xt , b , s 2

)
= s−1÷

[(
yt − b ′xt

)
/s
]
.

If ct < dt ,

p
(
yt |xt , b , s 2

)
= F

[(
dt − b ′xt

)
/s
]
−F

[(
ct − b ′xt

)
/s
]
.

Observe that the last expression integrates the latent ỹt analytically from the vector of
unknown parameters and latent variables.
The MCMC algorithm for the ULLM in the case of Student-t disturbances employs

the auxiliary latent variables s 2(t) (t = 1, . . . , T ). These could be regarded as part of
the parameter vector, but it is more efficient to carry out the integration over the s 2(t)
analytically, just as is done for the ỹt when ct < dt . This yields s−1t

[
( yt − b ′xt) /s ; l

]
for the data density when ct = dt , and T

[
(dt − b ′xt) /s ; l

]
− T

[
(ct − b ′xt) /s ; l

]
when

ct < dt . The prior density is the product of Equations (A.8, A.9 and A.10).
For the normal mixture model it is efficient to integrate analytically across the latent

states s(t) (t = 1, . . . , T ). When this is done, the data density at observation t is

s−1
m∑
j = 1

pjs−1j ÷
[(
yt − aj − b ′xt

)
/ssj

]
,

if ct = dt , and

m∑
j = 1

pj
{
F
[(
dt − aj − b ′xt

)
/ssj

]
− F

[(
ct − aj − b ′xt

)
/ssj

]}
,

if ct < dt .
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Appendix B. The full multivariate latent linear model

Core model. The core multivariate latent linear model (MLLM) is

ỹt = A
′z̃t + B′xt + et (t = 1, . . . , T ). (B.1)

The k × 1 vector xt and m × 1 vector z̃t consist of observed covariates and latent
variables, respectively, just as in the ULLM; k > 0 and m ¾ 0. Take Ỹ ′ = [ ỹ1, . . . , ỹT ],
Z̃ ′ = [z̃1, . . . , z̃T ], X ′ = [x1, . . . , xT ], and E′ = [e1, . . . , eT ]. Then Equation (B.1) may
be expressed

Ỹ = Z̃A + XB + E. (B.2)

Defining ỹ = vec(Ỹ ), a = vec(A), b = vec(B) and e = vec(E), it may also be
expressed 36

ỹ =
(
Ip ⊗ Z̃

)
a +

(
Ip ⊗ X

)
b + e.

The outcome vector ỹt has p elements. Some (or all) of these elements may be
observed, and some (or all) of them may be latent subject to linear restrictions
discussed subsequently. The m × p matrix of parameters A and the k × p matrix of
parameters B are unknown.
Degeneracy in et arises if there is a p × g matrix G0 such that G′

0ỹt = g0 ∀ t, and
hence, G′

0et ≡ 0 ∀ t. Take q = p − g and let G be any p × q orthonormal matrix of
rank q such that G′

0G = 0. The nondegenerate components of et are e∗t = G
′et , and the

conditionally nondegenerate components of ỹt are ỹ∗t = G
′ỹt . The core distributional

assumption may be stated e∗t = hts(t), where s(t) is a strictly positive, i.i.d. random
variable conditional on X , and

ht |
(
s(1), . . . , s(T ),X

) i.i.d.
~ N (0,S).

Hence

p
(
Ỹ |X , Z̃ ,

{
s 2(t)

}T
t = 1

)
= (2p )−q /2 |S |−T /2

[
T∏
t = 1

s 2(t)

]−q /2

· exp
[
−

T∑
t = 1

(
ỹt − A

′z̃t − B′xt
)′
GS−1G′(ỹt − A′z̃t − B′xt

)
/2s 2(t)

]
(B.3)

= (2p )−q /2 |S |−T /2
[
T∏
t = 1

s 2(t)

]−q /2
exp

{
−(1 /2)tr

[(
T∑
t = 1

e∗t e
∗′
t

)
S

]}
, (B.4)

it being understood that the support of the density is limited to Ỹ : Ỹ G0 = g′
0.

36 For any k × m matrix A and m× n matrix B, vec(AB) = (In ⊗ A) vec(B) = (B′ ⊗ Ik ) vec(A). These
facts are used often in this section.
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As in the ULLM, the latent vector z̃t arises in the normal mixture distribution of
the disturbances. The vector z̃t is determined by the state assignment process, which
is multinomial and independent of ht . Hence Ỹ G0 = g′

0 implies AG0 = 0, and if
A∗ = AG is known then so is A. For subsequent purposes it is useful to take a∗ =
vec(A∗) = vec(AG) = (G′ ⊗ Im)a as the vector of unknown parameters in A.
There will be similar restrictions on B, centered on the rows of B corresponding

to the intercept term in xt . The implications for restrictions on B can be considerably
richer and more varied than for those on A, however. For example, in a multinomial
probit model some covariates may be specific to individuals, others to choices. To
incorporate these and perhaps other restrictions, define b = vec(B) and take the linear
restrictions to be of the general form R1 b = r1, where R1 is an °1 × pk matrix of
rank °1. Define the pk × pk matrix P′ = [P′

1
...P′
2] in which P1 = R1, P1P

′
2 = 0, and

P2P′
2 = Ipk − °1 . Then P

−1 = [P′
1(P1P

′
1)
−1 ...P′

2]. Transform b to b∗ = P b . The first
°1 elements of b∗ are b∗

1 = r1, and the remaining °2 = pk − °1 elements are the
unknown parameters b∗

2 = P2b .
Concentrating on the nondegenerate component of the equation system (B.2), let

Ỹ ∗ = ỸG and E∗ = EG; vec(Ỹ ∗) = ỹ∗ and vec(E∗) = e∗. From Ỹ ∗ = Z̃ AG + X BG
+ E∗,

ỹ∗ =
(
Iq ⊗ Z̃

)
a∗ +

(
Iq ⊗ X

)
vec(BG) + e∗. (B.5)

Incorporating the definitions of a∗ and b∗ Equation (B.5) becomes

ỹ∗ =
(
Iq ⊗ Z̃

)
a∗ +

(
Iq ⊗ X

) (
G′ ⊗ Ik

)
P−1b∗ + e∗.

Defining W
qT × pk

=

[
W1
qT × °1

... W2
qT × °2

]
=
(
Iq ⊗ X

)
(G′ ⊗ Ik ) P−1, we have

ỹ∗ −W1r1 =
(
Iq ⊗ Z̃

)
a∗ +W2 b∗

2 + e
∗.

Define Q = diag[s 2(1), . . . , s
2
(T )] just as in the ULLM. Since e

∗|Q ~ N (0,S ⊗ Q),

p
(
ỹ|X , Z̃ ,Q

)
= (2p )−qT /2 |S |−T /2 |Q|−q /2

· exp
{
−12

[(
G′ ⊗ IT

)
ỹ −W1r1 −

(
Iq ⊗ Z̃

)
a∗ −W2 b∗

2

]′ (
S−1 ⊗ Q−1

)
.
[(
G′ ⊗ IT

)
ỹ −W1r1 −

(
Iq ⊗ Z̃

)
a∗ −W2 b∗

2

]}
,

(B.6)
it being understood that the support of Equation (B.6) is ỹ : (G′

0 ⊗ IT ) ỹ = 0.
Distributional assumptions. There is a rich variety of distributions within this

framework. We consider in detail the same three treated in the ULLM: normal,
Student-t, and normal mixture.



Ch. 56: Computationally Intensive Methods for Integration in Econometrics 3557

When m = 0 and s 2(t) ≡ 1, e∗t
i.i.d.
~ N (0,S). When m = 0 and ls−2(t)

i.i.d.
~ c2(l), then

p(s 2(t)|l,X ) is again given by Equation (A.4). The distribution of e∗t is multivariate
Student-t with scale matrix S and l degrees of freedom: e∗t |(l,X )

i.i.d.
~ t(0,S ; l).

The normal mixture distribution is similar to that in the ULLM. There are m ¾ 2
latent states. States are selected independently over the observations, with state j having
probability pj as indicated in Equation (A.5). Conditional on state j, e∗t = G

′et has mean
given by a∗

j (the jth column of G
′A′) and variance s 2j S . Thus

p ( ỹt |xt , s(t) = j) = (2p )−q /2s−qj |S |−1 /2

· exp
[
−12

(
G′ỹt − a

∗
j − G

′B′xt
)′
S−1

(
G′ỹt − a

∗
j − G

′B′xt
)]
.

(B.7)
Prior distributions. For each group of parameters in the MLLM, there is a

benchmark proper prior, much as in the ULLM. The MLLM priors are similar, but
differ in some details because of complications in the MLLM not present in the
ULLM.
To complement the set of °1 linear restrictions R1 b = r1 imposed on b = vec(B),

take the remaining prior distribution for b in the form R2 b ~ N (r2,V2). The matrix[
R′
1
...R′

2

]
must be of rank pk , so R2 : °2 × pk must have °2 ¾ pk − °1. Referring to

the definition of b∗ = P b above, it follows that b∗
1 = r1 and b

∗
2 ~ N

(
b∗
2
,H−1

b∗
2

)
,

p ( b∗
2 ) = (2p )

−°2 /2
∣∣∣H b∗

2

∣∣∣1 /2 exp[−12 ( b∗
2 − b

∗
2

)′
H b∗

2

(
b∗
2 − b

∗
2

)]
, (B.8)

with

H b∗
2
= P2R

′
2V

−1
2 R2P

′
2 and b

∗
2
= H−1

b∗
2
P2R

′
2V

−1
2

[
r2 − R2P

′
1

(
P1P

′
1

)−1
r1
]
. (B.9)

Clearly the representation R2 b ~ N (r2,V2) is not unique: all that matters is H b∗
2
and

b∗
2
. However, it is often convenient to represent prior information about b in individual,

independent components, so that V2 is diagonal.
We employ a conventional inverted Wishart prior distribution, S∗ −1 ~ W (S−1, n ),

for S∗:

p (S∗) = 2−nq /2p−q(q − 1) /4
q∏
j = 1

G [(n + 1 − j) /2]−1

· |S∗|n /2 |S∗|−(n + q + 1) /2 exp
[
−12 trS

∗S∗ −1] .
(B.10)

If all elements of ỹ∗t are observed, then the prior distribution is the conditionally
conjugate one for the variance matrix in a system of seemingly unrelated regressions;
see Chib and Greenberg (1995b) for discussion.



3558 J. Geweke and M. Keane

When q < p then interactions between the choice of G and the prior distribution for
S must be taken into account. Consider the alternative ẽ∗t = G̃

′et to e∗t = G
′et where G̃

is also orthonormal and G̃′G0 = 0. Then var(ẽ∗t ) = S̃ = G̃
′GS G′G̃. The q× q matrix

G̃′G is orthonormal of rank q, so if S∗ ~ IW (s2Iq, n ), then S̃∗ ~ IW (s2Iq, n ), as well.
Since trS̃∗ = trS∗ it follows that in the multinomial probit case the prior distribution
S∗ ~ IW (s2Iq, n ) is invariant to the choice of G. Given the arbitrary scaling in the
model, it is convenient to take s2 = n . Note that in the multinomial probit model
var(e∗t ) ∝ Iq corresponds to a construction in which e0t ~ N (0, Ip), et = e

0
t − ep p

−1e′pet ,
for any choice of G. Thus, S∗ ~ IW (nIq, n ) is an attractive benchmark prior for the
multinomial probit model: larger values of n correspond to prior beliefs that choice-
specific random components of utility are more nearly independent 37.
Given our construction of G in the more general case in which one or more proper

subsets of the p equations corresponds to a set of exhaustive discrete choices, these
considerations apply to each set considered separately. The rows and columns of S
corresponding to each set are of the form nI , and S has a block diagonal structure
reflecting the sets of exhaustive discrete choices.
This completes the prior distribution when the disturbances are normal, because in

that case b = vec(B) and S are the only parameters in the model. The Student-t MLLM
has one additional parameter, l. The prior for l is the same exponential distribution
used in the ULLM (Equation A.10). The normal mixture model has three additional
parameters: the vector of state probabilities p, the state variances s 2j ( j = 1, . . . , m),
and the matrix of state mean vectors A. The first two of these play the same role
in the MLLM and in the ULLM, and their prior distributions are of the same form:
Dirichlet for p (Equation A.11), and independent inverted gamma for the s 2j subject
to the ordering restrictions (A.12).
The rows of the m× p matrix A are the means of the disturbance vectors in each of

the m states. Restrictions of the form G′
0ỹt = g0 imply restrictions on means and (more

generally) on the coefficients of covariates. Earlier in this section we have adopted the
convention that the restrictions G′

0ep = g0 are enforced explicitly through components
of the linear restrictions R1 b = r1, leaving the restrictions AG0 = 0, and therefore a∗

= vec(AG) = (G′ ⊗ Im)a as the vector of unknown parameters in A. For the same
reasons discussed in the ULLM it is useful to condition on S , and take the mean to
be 0 and the variance proportional to S : a∗ ~ N (0,S ⊗H−1

a∗ ):

p(a∗) = (2p )−mq /2 |S |−m/2 |Ha∗ |q /2 exp
[(
−12

)
a∗′ (S−1 ⊗Ha∗

)
a∗] . (B.11)

The form S ⊗ H−1
a is consistent with the prior distribution employed in the ULLM,

leads to a tractable conditional posterior distribution for S subsequently, and is

37 In the conventional treatment [see Danise (1985), Bunch (1991) or Geweke, Keane and Runkle
(1994)], an arbitrary “last choice” equation is subtracted from the others. This yields a matrix G with
G′G0 = 0, but since the columns of G are not orthonormal, prior distributions must change with the
choice of which choice is “last”.
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invariant to the choice of the orthonormal matrix G. In all of the work described here,
Ha∗ = ha∗Im. Prior beliefs about unimodality are reflected in the choice of ha∗ in the
MLLM just as they are in the choice of ha in the ULLM.

Inference in the MLLM. There are eight groups of parameters or latent variables
in the model: (a∗, b∗

2 ); S
∗; s 2(t) (t = 1, . . . , T ); l; s(t) (t = 1, . . . , T ) and Z̃ ; p;

s 2j ( j = 1, . . . , m) and ỹt (t = 1, . . . , T ). As in the ULLM, not all parameters appear
under each distributional assumption. The posterior density kernel is the product of
the prior and data densities that apply in the model at hand. As in the ULLM, we
construct a MCMC posterior simulator to access the posterior distribution.
For a∗ and b∗

2 let

g∗ =
(
a∗

b∗
2

)
, g∗ =

(
0
b∗
2

)
, and H g∗ =

[
S−1 ⊗Ha∗ 0

0 H b∗
2

]
,

with b∗
2
and H b∗

2
defined in Equation (B.9). The conditional posterior density kernel

is the product of Equations (B.6, B.8 and B.11), implying the conditional distribution
is g∗ ~ N (ḡ∗, H̄g∗ ) with

H̄g∗ =

[
S−1 ⊗

(
Ha∗ + Z̃ ′Q

−1
Z̃
) (

S−1 ⊗ Z̃ ′Q
−1
)
W2

W ′
2

(
S−1 ⊗ Q−1Z̃

)
H b∗

2
+W ′

2

(
S−1 ⊗ Q−1

)
W2

]
,

ḡ∗ = H̄−1
g∗

{(
S−1 ⊗Ha∗

H b∗
2
b∗
2

)
+

(
Iq ⊗ Z̃ ′

W ′
2

)(
S−1 ⊗ Q−1

)[(
G′ ⊗ IT

)
ỹ −W1r1

]}
.

For computational purposes it is useful to write ḡ∗ = H̄−1
g∗ c̄g∗ , define

[
W̃11 W̃12 W̃13

W̃21 W22 W̃23

]
=

[
Z̃ ′Q

−1
Z̃ Z̃ ′Q

−1
X Z̃ ′Q

−1
Z̃ Ỹ

X ′Q−1Z̃ X ′Q−1X X ′Q−1Z̃ Ỹ

]
,

and then derive[
H̄g∗

... c̄g∗
]
=

[
Iqm 0
0 P2′ (G ⊗ Ik )

]
·
[
S−1 ⊗ W̃11 S−1 ⊗ W̃12 S−1 ⊗ W̃13

S−1 ⊗ W̃21 S−1 ⊗W22 S−1 ⊗ W̃23

]

·

⎡⎣ Iqm 0 0
0 (G′ ⊗ Ik )P2 − (G′ ⊗ Ik )P1r1
0 0 vec (G)

⎤⎦ .
There are no unknowns in the first and third matrices on the right side of the
last equation, so these matrices only need be computed once, at the start of the
MCMC algorithm. New computations each iteration are confined to the second
matrix.



3560 J. Geweke and M. Keane

The conditional posterior density kernel for S∗ is the product of the like-
lihood (B.4) and the prior densities (B.10 and B.11), it being understood that
S = D(S∗) · S∗ · D(S∗). Thus, the conditional density kernel is

h (S∗) = |S∗|−(n + q +m + T + 1) /2 |D (S∗)|−(m + T )

· exp
〈
−12 tr

{[
S∗ + D (S∗)−1 S̃D (S∗)−1

]
S∗ −1

}〉
,

(B.12)

where S̃ = A∗′Ha∗A∗ +
∑T

t = 1 e
∗
t e

∗′
t . If there are no exhaustive sets of discrete choices

represented in the MLLM then D(S∗) = Iq and Equation (B.12) is the kernel of an
inverted Wishart distribution for S∗. If D(S∗) Ñ Iq then Equation (B.12) is finitely
integrable in S∗, and is therefore a conditional density kernel, but is not of any familiar
form. We cope with Equation (B.12) by using a Metropolis within Gibbs step. The
candidate distribution is multivariate normal. The mean of the candidate distribution
is the vector of nonredundant elements of Ŝ∗ = argmax h(S∗), and the precision is
the negative of the Hessian of h(·) evaluated at Ŝ∗ 38. Drawing from the candidate
distribution and evaluating h(·) and the multivariate normal kernel at the candidate
draw is considerably less time consuming than determining Ŝ∗. It is therefore not
unreasonable to undertake many Metropolis steps for S∗ at each iteration, drawing
candidates and replacing the previous draws or earlier candidates according to the
usual Metropolis arithmetic analogous to Equation (A.19). In the work reported in
Section 6.2, we have used 400 such iterations. Even with this number, finding Ŝ∗ and
making the draws consumes less time than drawing Ỹ in a typical application with
more than a few hundred observations.
As in the ULLM, s 2(t) ≡ 1 when disturbances are normal, and s 2(t) = s

2
s(t) in the

normal mixture model. In the Student-t model, Equations (B.3 and A.4) imply the
conditional distribution for s 2(t)(

l + e∗′
t S

−1e∗t
)
/s 2(t) ~ c

2(l + q) (t = 1, . . . , T ),

and the conditional posterior density kernel for the degrees of freedom parameter l is
again given by Equation (A.18).
The conditional posterior density for the state assignments s(t) (t = 1, . . . , T ) in the

normal mixture model is similar to that in the ULLM. From Equations (A.5 and B.7),
the s(t) are conditionally independent, with

P [s(t) = j] ∝ pjs
−q
j exp

[
−
(
G′yt − a

∗
j − G

′B′xt
)′
S∗ −1 (G′yt − a

∗
j − G

′B′xt
)
/2s 2j

]
.

Given s(t) = j, z̃tj = ds(t), j . The conditional posterior distribution for p is again Dirichlet
with parameters (rj + Tj), Tj being the number of observations assigned to state j.

38 Analytic first derivatives of h(·) are straightforward. The maximum of h(·) is found using a quasi-
Newton method with a positive definite approximation of the Hessian. The Hessian at Ŝ∗ is approximated
using finite differences of the gradient. See Dennis and Schnabel (1983, Appendix A) and IMSL (1994,
Chapter 8).
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From Equations (B.7 and A.12), the joint conditional distribution of s 2j ( j = 1, . . . , m)
consists of the components(

s2j +
T∑
t = 1

dj, s(t)e∗′
t S

−1e∗t

)
/s 2j ~ c

2
(
n j + qTj

)
( j = 1, . . . , m),

independent but subject to the ordering restriction s 21 > · · · > s 2m. The ordering
restriction is enforced through the same Metropolis rejection procedure used in the
ULLM.
In the MLLM, the latent vectors ỹ∗t (t = 1, . . . , T ) are conditionally independent,

with distribution (B.3) restricted by Equation (6.2):

ỹ∗t ~ N
(
A′z̃t + G′B′xt , s 2(t)S

∗) subject to c∗t ¶ F∗
t ỹ

∗
t ¶ d

∗
t ,

where c∗t = ct − FtG0(G′
0G0)

−1g0, d∗
t = dt − FtG0(G′

0G0)
−1g0 and F∗

t = FtG.
The problem of drawing ỹ∗t can be broken down into drawing successively from the
individual components of z̃∗t = F∗

t ỹ
∗
t , each of which is conditionally normal. (Of

course, if ctj = dtj , then ỹ∗tj is fixed.) Details are given in Geweke (1991).
The continuous state Markov chain defined by this algorithm is ergodic, for the

same reasons the ULLM Markov chain is ergodic. Except for the parameters s 2j
( j = 1, . . . , m) in the normal mixture model the transition probability from any point
to any subset of positive posterior probability in a single iteration is positive. This is
so even for ỹ∗t , because draws are made successively for the z̃

∗
t , and for each of the

latent variables in z̃∗t the support of the conditional coincides with the support of the
marginal posterior distribution.

Marginal likelihoods. The algorithm used to evaluate the marginal likelihood in
the ULLM can also be used in the MLLM. The key additional technical difficulty
in the MLLM is the evaluation of the data density. This can be accomplished by the
following extended GHK algorithm.
Referring to the inequality constraints (6.2), let z̃t = Ft ỹt . Without loss of generality,

partition the q elements of ct , z̃t and dt each into q1t , q2t and q3t components so that
c′t = (c

′
1t , c

′
2t , c

′
3t), z̃

′
t = (z̃

′
1t , z̃

′
2t , z̃

′
3t) and d

′
t = (d

′
1t , d

′
2t , d

′
3t), with

c1t = z̃1t = d1t , c2t ¶ z̃2t ¶ d2t , −∞ ¶ z̃3t ¶ +∞.

Then the data density for the set-valued outcome zt = {z̃t : ct ¶ z̃t ¶ dt} may be
expressed

p (zt |q) = p (z̃1t |q) · P (c2t ¶ z̃2t ¶ d2t |z̃1t , q) , (B.13)

where q is the vector of model parameters and any other relevant conditioning
information. The construction of zt and z̃t , and the partition of ct , z̃t and dt depends
on the data, and not on the distributional assumptions or other features of the model.
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Consequently evaluating the density of zt , as opposed to yt , will change the data density
by the same multiplicative factor in all models and thus leave the marginal likelihood
unaffected. The partition of z̃t may be different from one observation to the next:
in particular, z̃3t will arise when observations on one or more components of yt are
completely missing. Since the data density depends only on the first two components
of z̃t , it is convenient to denote z̃′∗t = (z̃

′
1t , z̃

′
2t).

With normally distributed disturbances, conditional on q , z̃∗t ~ N (m,S) with m and
S both known. Let S = TT ′, where T is the unique lower triangular Choleski factor
of S , and write

m =
(
m1
m2

)
, z̃∗t − m =

(
z̃1t − m1
z̃2t − m2

)
=

[
T11 0
T21 T22

](
h1t
h2t

)
= Tht . (B.14)

Then z̃1t = c1t is equivalent to h1t = T−111 (c1t − m1) and

p (z̃1t = c1t) = (2p )−q1 /2
q1∏
i = 1

t−1ii exp
(
−h′

1th1t /2
)
.

Likewise c2t ¶ z̃2t ¶ d2t , given z̃1t = c1t , is equivalent to

c2 − m2 − T21h1t ¶ T22h2t ¶ d2 − m2 − T21h1t . (B.15)

The random vector in Equation (B.15) is h2t , and the probability of the event (B.15)
is the second component on the right side of Equation (B.13). This probability may
be approximated by the GHK algorithm discussed in Section 2.1.
In the case of the multivariate Student-t distribution, z̃∗t ~ t(m,S ; l). The

relations (B.14) still obtain, except that now ht ~ T (0, Iq1 + q2 ; l). The marginal
distribution of z̃1t is z̃1t ~ t(m1,T11T ′

11; l) so that

p (z̃1t = c1t) = G [(l + q1) /2]G
(
l
2

)−1
(lp )q1 /2

q1∏
i = 1

t−1ii
(
1 + h′

1th1t /l
)−(l + q1) /2 .

The conditional distribution of z̃2t is also Student-t, with location vector

m2 − S21S−111 (z̃1t − m1) = T21T
−1
11 (c1t − m1) = m2 + T21h1t .

The scale matrix is

(1 + q1 /l)
−1 [1 + (c1t − m1)′ S−111 (c1t − m1) /l] (S22 − S21S−111S12)

=

(
l + h′

1th1t
l + q1

)
T22T

′
22,
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and the degrees of freedom parameter is l + q1 39. Hence the probability we seek is
that of the event

c2 − m2 − T21h1t ¶
(
l + h′

1th1t
l + q1

)1 /2
T22h2t ¶ d2 − m2 − T21h1t (B.16)

where h2t ~ t(0, Iq2 ; l + q1). By construction, h2t = w
−1 /2h∗

2t , where w and h
∗
2t are

independent, (l + q1)w ~ c2(l + q1), and h∗
2t ~ N (0, Iq2 ). Hence the probability of the

event (B.16) is the same as that of the event

c2 − m2 − T21h1t ¶ T22h∗∗
2t ¶ d2 − m2 − T21h1t , (B.17)

where first w∗ ~ c2(l + q1) and then

h∗∗
2t ~ N

{
0,
[(
l + h′

1th1t
)
/w∗] · Iq2

}
. (B.18)

The probability of Equation (B.17) with h∗∗
2t having distribution (B.18), can be

approximated by the GHK algorithm.
In the mixed normal distribution, z̃t ~ N (m j , s 2j Iq1 + q2 ) with probability pj . Let

h jt1 = T
−1
11 (c̃1t − m

j
1). Using this notation and that developed previously,

p (z̃1t = c1t) = (2p )−q1 /2
q1∏
i = 1

t−1ii

m∑
j = 1

pjs
−q1
j exp

(
−h j′1th

j
1t /2s

2
j

)
.

Conditional on z̃1t = c1t and state j, Pj(c2t ¶ z̃2t ¶ d2t) is the probability of the event

c2t − m
j
2 − T21h

j
t1 ¶ T22h

j
2t ¶ d2t − m

j
2 − T21h

j
t1,

where h j2t ~ N (0, s 2j Iq2 ). This probability can be approximated using the GHK
algorithm. Removing the conditioning on state j,

p (z1t) = p (z̃1t = c1t) ·
m∑
j = 1

p̃jPj (c2t ¶ z̃2t ¶ d2t) ,

where p̃j ∝ pjs−1j exp
(
−h j′t1h

j
t1 /2s

2
j

)
and

∑m
j = 1 p̃j = 1.

40

39 On conditional distributions in the multivariate Student-t distribution, see Johnson and Kotz (1972,
pp. 134–135).
40 An alternative algorithm is simply to apply the algorithm for the normal distribution to each state,
then weight the outcomes by the probability parameters pj . The method described in the text is more
efficient – sometimes by a factor of ten or more – when combined with optimal allocation of simulation
over states to minimize the time required to achieve a specified standard error of approximation of
log [ p(zt)].



3564 J. Geweke and M. Keane

References

Albright, R., S. Lerman and C.F. Manski (1977), “Report on the development of an estimation program
for the multinomial probit model”, Report prepared by Cambridge Systematics for the Federal Highway
Administration.

Amemiya, T. (1985), Advanced Econometrics (Harvard University Press, Cambridge).
Andrews, D.W.K. (1999), “An improved simulator for multivariate normal rectangle probabilities and
their derivatives”, Working paper (Yale University).

Bellman, R. (1957), Dynamic Programming (Princeton University Press, Princeton).
Bellman, R., R. Kalaba and B. Kotkin (1963), “Polynomial approximation – a new computational technique
in dynamic programming: allocation processes”, Mathematics of Computation 1:155−161.

Borsch-Supan, A., and V. Hajivassiliou (1993), “Smooth unbiased multivariate probability simulators
for maximum likelihood estimation of limited dependent variable models”, Journal of Econometrics
58:347−368.

Bunch, D. (1991), “Estimability in the multinomial probit model”, Transportation Research B 25:1−12.
Bunke, O., and X. Milhaud (1998), “Asymptotic behavior of Bayes estimates under possibly incorrect
models”, Annals of Statistics 26(2):617−644.

Chib, S. (1995), “Marginal likelihood from the Gibbs output”, Journal of the American Statistical
Association 90:1313−1321.

Chib, S., and E. Greenberg (1995a), “Understanding the Metropolis\erndash;Hastings algorithm”, The
American Statistician 49:327−335.

Chib, S., and E. Greenberg (1995b), “Hierarchical analysis of sur models with extensions to correlated
serial errors and time-varying parameter models”, Journal of Econometrics 68:339−360.

Chib, S., and E. Greenberg (1996), “Markov chain Monte Carlo simulation methods in econometrics”,
Econometric Theory 12:409−431.

Cogburn, R. (1972), “The central limit theorem for Markov processes”, in: Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability 2 (University of California Press,
Berkeley) 485–512.

Cosslett, S.R. (1983), “Distribution-free maximum likelihood estimator of the binary choice model”,
Econometrica 51:765−782.

Danise, B. (1985), “Parameter estimability in the multinomial probit model”, Transportation Research
B 19:526−528.

Dennis Jr, J.E., and R.B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Prentice-Hall, Englewood Cliffs).

Elrod, T., and M. Keane (1995), “A factor-analytic probit model for representing the market structure in
panel data”, Journal of Marketing Research 32:1−16.

Erdem, T., and M. Keane (1996), “Decision making under uncertainty: capturing dynamic brand choice
processes in turbulent consumer goods markets”, Marketing Science 15(1):1−20.

Ferguson, T.S. (1983), “Bayesian density estimation by mixtures of normal distributions”, in: H. Rivizi
and J. Rustagi, eds., Recent Advances in Statistics (Academic Press, New York) 287–302.

Gallant, A.R., and D.W. Nychka (1987), “Semi-nonparametric maximum likelihood estimation”,
Econometrica 55:363−390.

Gelfand, A.E., and D.K. Dey (1994), “Bayesian model choice: asymptotics and exact calculations”,
Journal of the Royal Statistical Society Series B 56:501−514.

Gelfand, A.E., and A.F.M. Smith (1990), “Sampling based approaches to calculating marginal densities”,
Journal of the American Statistical Association 85:398−409.

Gelman, A. (1996), “Inference and monitoring convergence”, in: W.R. Gilks, S. Richardson and
D.J. Spiegelhalter, eds., Markov Chain Monte Carlo in Practice (Chapman and Hall) 131–140.

Gelman, A., and D.B. Rubin (1992), “Inference from iterative simulation using multiple sequences”,
Statistical Science 7:457−472.



Ch. 56: Computationally Intensive Methods for Integration in Econometrics 3565

Gelman, A., J.B. Carlin, H.S. Stern and D.B. Rubin (1995), Bayesian Data Analysis (Chapman and Hall,
London).

Geman, S., and D. Geman (1984), “Stochastic relaxation, Gibbs distributions and the Bayesian restoration
of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721−741.

Geweke, J. (1988), “Antithetic acceleration of Monte Carlo integration in Bayesian inference”, Journal
of Econometrics 38:73−90.

Geweke, J. (1989), “Bayesian inference in econometric models using Monte Carlo integration”,
Econometrica 57:1317−1340.

Geweke, J. (1991), “Efficient simulation from the multivariate normal and student-t distributions subject
to linear constraints”, in: E. M. Keramidas, ed., Computing Science and Statistics: Proceedings of
the Twenty-Third Symposium on the Interface (Interface Foundation of North America, Inc., Fairfax)
571–578.

Geweke, J. (1992), “Evaluating the accuracy of sampling-based approaches to the calculation of posterior
moments”, in: J.O. Berger, J.M. Bernardo, A.P. Dawid and A.F.M. Smith, eds., Proceedings of the Fourth
Valencia International Meeting on Bayesian Statistics (Oxford University Press, Oxford) 169–194.

Geweke, J. (1993), “Bayesian treatment of the independent Student-t linear model”, Journal of Applied
Econometrics 8:S19–S40.

Geweke, J. (1996), “Monte Carlo simulation and numerical integration”, in: H.M. Amman, D.A. Kendrick
and J. Rust, eds., Handbook of Computational Economics (Amsterdam, North-Holland) 731–800.

Geweke, J. (1999), “Using simulation methods for Bayesian econometric models: inference, development,
and communication (with discussion and reply)”, Econometric Reviews 18:1−127.

Geweke, J., and M. Keane (1995), “Bayesian inference for dynamic discrete choice models without the
need for dynamic programming”, Working paper (Federal Reserve Bank of Minneapolis). Also in:
Mariano, Schuermann and Weeks, eds., Simulation Based Inference and Econometrics: Methods and
Applications (Cambridge University Press, Cambridge) forthcoming.

Geweke, J., and M. Keane (1999), “Mixture of normals probit models”, in: C. Hsiao, K. Lahiri, L.-F. Lee
and H. Pesaran, eds., Analysis of Panels and Limited Dependent Variable Models: An Edited Volume
in Honor of G.S. Maddala (Cambridge University Press) 49–78.

Geweke, J., and M. Keane (2000), “An empirical analysis of earnings dynamics among men in the PSID:
1968–1989”, Journal of Econometrics 92:293−356.

Geweke, J., M. Keane and D.E. Runkle (1994), “Alternative computational approaches to statistical
inference in the multinomial probit model”, Review of Economics and Statistics 76(4):609−632.

Geweke, J., M. Keane and D.E. Runkle (1997), “Statistical inference in the multinomial multiperiod
probit model”, Journal of Econometrics 80:125−165.

Geweke, J., D. Houser and M. Keane (1998), “Simulation based inference for dynamic multinomial
choice models”, in: B.H. Baltaji, ed., Companion for Theoretical Econometrics (Basil Blackwell,
London) forthcoming.

Geweke, J., W. McCausland and J. Stevens (2000), “Using simulation methods for Bayesian econometric
models”, in: D. Giles, ed., Computer Aided Econometrics (Marcel Dekker, New York) forthcoming.

Geyer, C.J. (1992), “Practical Markov chain Monte Carlo”, Statistical Science 7:473−481.
Goldberger, A.S. (1991), A Course in Econometrics (Cambridge, Harvard University Press).
Greene, W.H. (1997), Econometric Analysis, 3rd edition (Prentice Hall, Upper Saddle River).
Hajivassiliou, V. (1991), “Simulation estimation methods for limited dependent variable models,” Cowles
Foundation discussion paper 1007 (Cowles Foundation for Research in Economics, Yale University).

Hajivassiliou, V., and P.A. Ruud (1994), “Classical estimation methods for ldv models using simulation”,
in R.F. Engle and D.L. McFadden eds., Handbook of Econometrics, vol IV (Amsterdam, Elsevier)
2384-2443.

Hajivassiliou, V., D. McFadden and P.A. Ruud (1996), “Simulation of multivariate normal rectangle
probabilities and their derivatives: theoretical and computational results”, Journal of Econometrics
72:85−134.

Hammersly, J.M., and D.C. Handscomb (1964), Monte Carlo Methods (Methuen, London).



3566 J. Geweke and M. Keane

Hannan, E.J. (1970), Multiple Time Series Analysis (Wiley, New York).
Hastings, W.K. (1970), “Monte Carlo sampling methods using Markov chains and their applications”,
Biometrika 57:97−109.

Heckman, J.J. (1979), “Sample selection bias as a specification error”, Econometrica 47:153−161.
Heckman, J.J. (1981), “Statistical models for discrete panel data”, in: C. Manski and D. McFadden, eds.,
Structural Analysis of Discrete Data with Econometric Applications (MIT Press, Cambridge).

Heckman, J.J., and G. Sedlacek (1985), “Heterogeneity, aggregation and market wage functions: an
empirical model of self-selection in the labor market”, Journal of Political Economy 93:1077−1125.

Horowitz, J.L. (1992), “A smoothed maximum score estimator for the binary response model”,
Econometrica 60:505−531.

Hotz, V.J., and R.A. Miller (1993), “Conditional choice probabilities and the estimation of dynamic
programming models”, Review of Economic Studies 60:497−530.

Houser, D. (1998), “Bayesian analysis of a dynamic, stochastic model of labor supply and saving”,
Working paper (University of Arizona).

Huber, P. (1967), “The behavior of maximum likelihood estimates under nonstandard conditions”, in:
Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability 1 (University of
California Press, Berkeley) 221–233.

Ichimura, H. (1993), “Semiparametric least squares (SLS) and weighted SLS estimation of single-index
models”, Journal of Econometrics 58:71−120.

IMSL (1994), IMSL Math Library: FORTRAN Subroutines for Mathematical Applications (Visual
Numerics, Inc., Houston).

Johnson, N.L., and S. Kotz (1972), Distributions in Statistics: Continuous Multivariate Distributions
(Wiley, New York).

Johnson, N.L., S. Kotz and N. Balakrishnan (1995), Continuous Univariate Distributions, Vol. 2,
2nd edition (Wiley, New York).

Judd, K.L. (1992), “Projection methods for solving aggregate growth models”, Journal of Economic
Theory 58:410−452.

Keane, M. (1990), “Four essays in empirical macro and labor economics”, Ph.D. dissertation (Brown
University).

Keane, M. (1992), “A note on identification in the multinomial probit model”, Journal of Business and
Economic Statistics 10(2):192−200.

Keane, M. (1993), “Simulation estimation for panel data models with limited dependent variables”,
in: G.S. Maddala, C.R. Rao and H.D. Vinod, eds., The Handbook of Statistics (North-Holland,
Amsterdam) 545–572.

Keane, M. (1994), “A computationally practical simulation estimator for panel data”, Econometrica
62(1):95−116.

Keane, M. (1997), “Modeling heterogeneity and state dependence in consumer choice behavior”, Journal
of Business and Economic Statistics 15(3):310−327.

Keane, M., and D.E. Runkle (1990), “Testing the rationality of price forecasts: new evidence from panel
data”, American Economic Review 80(4):714−735.

Keane, M., and K.I. Wolpin (1994), “The solution and estimation of discrete choice dynamic programming
models by simulation: Monte Carlo evidence”, Review of Economics and Statistics 76(4):648−672.

Keane, M., and K.I. Wolpin (1997), “The career decisions of young men”, Journal of Political Economy
105(3):473−522.

Keane, M., and K.I. Wolpin (2000a), “Equalizing race differences in school attainment and labor market
success”, Journal of Labor Economics 18:614−652.

Keane, M., and K.I. Wolpin (2000b), “The effect of parental transfers and borrowing constraints on
educational attainment”, International Economic Review, forthcoming.

Kiefer, J., and J. Wolfowitz (1956), “Consistency of the maximumm likelihood estimator in the presence
of infinitely many incidental parameters”, Annals of Mathematical Statistics 27:887−906.



Ch. 56: Computationally Intensive Methods for Integration in Econometrics 3567

Klein, R.W., and R.H. Spady (1993), “An efficient semiparametric estimator for binary response models”,
Econometrica 61:387−421.

Kloek, T., and H.K. van Dijk (1978), “Bayesian estimates of equation system parameters: an application
of integration by Monte Carlo”, Econometrica 46:1−20.

Lancaster, T. (1997), “Exact structural inference in optimal job search models”, Journal of Business and
Economic Statistics 15(2):165−179.

Lee, L.-F. (1978), “Unionism and wage rates: a simultaneous equation model with qualitative and limited
dependent variables”, International Economic Review 19:415−433.

Lee, L.-F. (1979), “Identification and estimation in binary choice models with limited (censored)
dependent variables”, Econometrica 47:977−996.

Lee, L.-F. (1992), “On efficiency of methods of simulated moments and maximum simulated likelihood
estimation of discrete response models”, Econometric Theory 8:518−552.

Lee, L.-F. (1995), “Asymptotic bias in maximum simulated likelihood estimation of discrete choice
models”, Econometric Theory 11:437−483.

Lee, L.-F. (1997), “Simulated maximum likelihood estimation of dynamic discrete choice statistical
models: some Monte Carlo results”, Journal of Econometrics 82:1−35.

Lerman, S., and C.F. Manski (1981), “On the use of simulated frequencies to approximate choice
probabilities”, in: C.F. Manski and D. McFadden, eds., Structural Analysis of Discrete Data with
Econometric Applications (MIT Press, Cambridge).

Lewbel, A. (1997), “Semiparametric estimation of location and other discrete choice moments”,
Econometric Theory 13:32−51.

Lillard, L.A., and R.J. Willis (1978), “Dynamic aspects of earnings mobility”, Econometrica 46:
985−1012.

Maddala, G.S. (1992), Introduction to Econometrics, 2nd edition (Macmillan, New York).
Manski, C.F. (1985), “Semiparametric analysis of discrete response: asymptotic properties of the maximum
score estimator”, Journal of Econometrics 27:313−333.

Manski, C.F. (1991), “Nonparametric estimation of expectations in the analysis of discrete choice under
uncertainty”, in: W. Barnett, J. Powell and G. Tauchen, eds., Nonparametric and Semiparametric
Methods in Econometrics and Statistics (Cambridge University Press, Cambridge).

Marcet, A. (1994), “Simulation analysis of dynamic stochastic models: application to theory and
estimation”, in: C. Sims, ed., Advances in Econometrics, Sixth World Congress, Vol. II (Cambridge
University Press, Cambridge) 81–118.

McFadden, D. (1989), “A method of simulated moments for estimation of multinomial probits without
numerical integration”, Econometrica 57:995−1026.

Mengersen, K.L., and R.L. Tweedie (1996), “Rates of convergence of the Hastings and Metropolis
algorithms,” Annals of Statistics 24:101−121.

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller (1953), “Equation of state
calculations by fast computing machines”, The Journal of Chemical Physics 21:1087−1092.

Pakes, A. (1986), “Patents as options: some estimates of the value of holding European patent options,”
Econometrica 54:755−785.

Pakes, A., and D. Pollard (1989), “Simulation and the asymptotics of optimization estimators”,
Econometrica 57(5):1027−1058.

Peskun, P.H. (1973), “Optimum Monte-Carlo sampling using Markov chains”, Biometrika 60:607−612.
Pfanzagl, J. (1969), “On the measurability and consistency of minimum contrast estimators”, Metrika
14:249−272.

Powell, J.L., J.H. Stock and T.M. Stoker (1989), “Semiparametric estimation of index coefficients”,
Econometrica 57:1403−1430.

Ripley, R.D. (1987), Stochastic Simulation (Wiley, New York).
Roberts, G.O., and A.F.M. Smith (1994), “Simple conditions for the convergence of the Gibbs sampler
and Metropolis–Hastings algorithms”, Stochastic Processes and Their Applications 49:207−216.

Roy, A.D. (1951), “Some thoughts on the distribution of earnings”, Oxford Economics Papers 3:135−146.



3568 J. Geweke and M. Keane

Rust, J. (1987), “Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher”,
Econometrica 55:999−1033.

Rust, J. (1997), “Using randomization to break the curse of dimensionality”, Econometrica 65:487−516.
Santos, M.S., and J. Vigo-Aguiar (1998), “Analysis of a numerical dynamic programming algorithm
applied to economic models”, Econometrica 66:409−426.

Stern, S. (1991), “Approximate solutions to stochastic dynamic programming problems”, Mimeo
(University of Virginia).

Tanner, M.A., and W.H. Wong (1987), “The calculation of posterior distributions by data augmentation”,
Journal of the American Statistical Association 82:528−550.

Tapia, R.A., and J.R. Thompson (1978), Nonparametric Probability Density Estimation (Johns Hopkins
University Press, Baltimore).

Tierney, L. (1994), “Markov chains for exploring posterior distributions (with discussion and rejoinder)”,
Annals of Statistics 22:1701−1762.

Traub, J.F., G.W. Wasilkowski and H. Wozniakowski (1988), Information-Based Complexity (Academic
Press, Amsterdam).

Vijverberg, W.P.M. (1997), “Monte Carlo evaluation of multivariate normal probabilities”, Journal of
Econometrics 76:281−307.

Zeger, S.L., and M.R. Karim (1991), “Generalized linear models with random effects: a Gibbs sampling
approach”, Journal of the American Statistical Association 86:79−86.

Zellner, A. (1962), “An efficient method of estimating seemingly unrelated regressions and tests of
aggregation bias”, Journal of the American Statistical Association 57:500−509.

Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics (Wiley, New York).
Zellner, A., and C. Min (1995), “Gibbs sampler convergence criteria”, Journal of the American Statistical
Association 90:921−927.



Chapter 57

MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION
AND INFERENCE

SIDDHARTHA CHIB°

John M. Olin School of Business, Washington University, Campus Box 1133, 1 Brookings Dr.,

St. Louis, MO 63130, USA

Contents

Abstract 3570
Keywords 3570
1. Introduction 3571

1.1. Organization 3573
2. Classical sampling methods 3573

2.1. Inverse transform method 3573
2.2. Accept–reject algorithm 3575
2.3. Method of composition 3576

3. Markov chains 3576
3.1. Definitions and results 3577
3.2. Computation of numerical accuracy and inefficiency factor 3579

4. Metropolis–Hastings algorithm 3580
4.1. The algorithm 3581
4.2. Convergence results 3584
4.3. Example 3585
4.4. Multiple-block M–H algorithm 3587

5. The Gibbs sampling algorithm 3589
5.1. The algorithm 3590
5.2. Connection with the multiple-block M–H algorithm 3591
5.3. Invariance of the Gibbs Markov chain 3592
5.4. Sufficient conditions for convergence 3592
5.5. Estimation of density ordinates 3592
5.6. Example: simulating a truncated multivariate normal 3594

6. Sampler performance and diagnostics 3595
7. Strategies for improving mixing 3596

7.1. Choice of blocking 3597

° email: chib@olin.wustl.edu

Handbook of Econometrics, Volume 5, Edited by J.J. Heckman and E. Leamer
© 2001 Elsevier Science B.V. All rights reserved



3570 S. Chib

7.2. Tuning the proposal density 3597
7.3. Other strategies 3598

8. MCMC algorithms in Bayesian estimation 3599
8.1. Overview 3599
8.2. Notation and assumptions 3600
8.3. Normal and student-t regression models 3602
8.4. Binary and ordinal probit 3604
8.5. Tobit censored regression 3607
8.6. Regression with change point 3608
8.7. Autoregressive time series 3610
8.8. Hidden Markov models 3612
8.9. State space models 3614
8.10. Stochastic volatility model 3616
8.11. Gaussian panel data models 3619
8.12. Multivariate binary data models 3620

9. Sampling the predictive density 3623
10. MCMC methods in model choice problems 3626
10.1. Background 3626
10.2. Marginal likelihood computation 3627
10.3. Model space-parameter space MCMC algorithms 3633
10.4. Variable selection 3636
10.5. Remark 3639

11. MCMC methods in optimization problems 3639
12. Concluding remarks 3641
References 3642

Abstract

This chapter reviews the recent developments in Markov chain Monte Carlo sim-
ulation methods. These methods, which are concerned with the simulation of
high dimensional probability distributions, have gained enormous prominence and
revolutionized Bayesian statistics. The chapter provides background on the relevant
Markov chain theory and provides detailed information on the theory and practice
of Markov chain sampling based on the Metropolis–Hastings and Gibbs sampling
algorithms. Convergence diagnostics and strategies for implementation are also
discussed. A number of examples drawn from Bayesian statistics are used to illustrate
the ideas. The chapter also covers in detail the application of MCMC methods to the
problems of prediction and model choice.
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1. Introduction

This chapter is concerned with the theory and practice of Markov chain Monte
Carlo (MCMC) simulation methods. These methods which deal with the simulation
of high dimensional probability distributions, have over the last decade gained
enormous prominence, sparked intense research interest, and energized Bayesian
statistics [Tanner and Wong (1987), Casella and George (1992), Gelfand and Smith
(1990, 1992), Smith and Roberts (1993), Tierney (1994), Chib and Greenberg (1995a,
1996), Besag, Green, Higdon and Mengersen (1995), Albert and Chib (1996), Tanner
(1996), Gilks, Richardson and Spiegelhalter (1996), Carlin and Louis (2000), Geweke
(1997), Gammerman (1997), Brooks (1998), Robert and Casella (1999)]. The idea
behind these methods is simple and extremely general. In order to sample a given
probability distribution that is referred to as the target distribution, a suitable Markov
chain is constructed with the property that its limiting, invariant distribution is the
target distribution. Depending on the specifics of the problem, the Markov chain can
be constructed by the Metropolis–Hastings algorithm, the Gibbs sampling method, a
special case of the Metropolis method, or hybrid mixtures of these two algorithms.
Once the Markov chain has been constructed, a sample of (correlated) draws from the
target distribution can be obtained by simulating the Markov chain a large number
of times and recording its values. In many situations, Markov chain Monte Carlo
simulation provides the only practical way of obtaining samples from high dimensional
probability distributions.
Markov chain sampling methods originated with the work of Metropolis, Rosen-

bluth, Rosenbluth, Teller and Teller (1953) who proposed an algorithm to simulate
a high dimensional discrete distribution. This algorithm found wide application in
statistical physics but was mostly unknown to statisticians until the paper of Hastings
(1970). Hastings generalized the Metropolis algorithm and applied it to the simulation
of discrete and continuous probability distributions such as the normal and Poisson.
Outside of statistical physics, Markov chain methods first found applications in
spatial statistics and image analysis [Besag (1974)]. The more recent interest in
MCMC methods can be traced to the papers of Geman and Geman (1984), who
developed an algorithm that later came to be called the Gibbs sampler, to sample
a discrete distribution, Tanner and Wong (1987), who proposed a MCMC scheme
involving “data augmentation” to sample posterior distributions in missing data
problems, and Gelfand and Smith (1990), where the value of the Gibbs sampler was
demonstrated for general Bayesian inference with continuous parameter spaces.
In Bayesian applications, the target distribution is typically the posterior distribution

of the parameters, given the data. If M denotes a particular model, p(y|M), y ∈ Rd ,
the prior density of the parameters in that model and f ( y|y,M) the assumed sampling
density (likelihood function) for a vector of observations y, then the posterior density
is given by

p (y| y,M) ∝ p(y|M) f ( y|y,M), (1)
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where the normalizing constant of the density, called the marginal likelihood,

m( y|M) =
∫

Rd

p(y|M) f ( y|y,M) dy,

is almost never known in analytic form. As may be expected, an important goal of the
Bayesian analysis is to summarize the posterior density. Particular summaries, such
as the posterior mean and posterior covariance matrix, are especially important as are
interval estimates (called credible intervals) with specified posterior probabilities. The
calculation of these quantities reduces to the evaluation of the following integral∫

Rd

h(y)p (y| y,M) dy,

under various choices of the function h. For example, to get the posterior mean, one
lets h(y) = y and for the second moment matrix one lets h(y) = yy ′, from which the
posterior covariance matrix and posterior standard deviations may be computed.
In the pre MCMC era, posterior summaries were usually obtained either by analytic

approximations, such as the method of Laplace for integrals [Tierney and Kadane
(1986)], or by the method of importance sampling [Kloek and van Dijk (1978),
Geweke (1989)]. Although both techniques continue to have uses (for example, the
former in theoretical, asymptotic calculations), neither method is sufficiently flexible
to be used routinely for the kinds of high-dimensional problems that arise in practice.
A shift in thinking was made possible by the advent of MCMC methods. Instead of
focusing on the question of moment calculation directly one may consider the more
general question of drawing sample variates from the distribution whose summaries
are sought. For example, to summarize the posterior density p (y| y,M) one can
produce a simulated sample {y (1), . . . , y (M )} from this posterior density, and from
this simulated sample, the posterior expectation of h(y) can be estimated by the
average

M −1
M∑
j = 1

h(y ( j)). (2)

Under independent sampling from the posterior, which is rarely feasible, this
calculation would be justified by classical laws of large numbers. In the context of
MCMC sampling the draws are correlated but, nonetheless, a suitable law of large
numbers for Markov chains that is presented below can be used establish the fact
that

M −1
M∑
j = 1

h(y ( j)) →
∫

Rd

h(y)p (y| y,M) dy, M → ∞.

It is important to bear in mind that the convergence specified here is in terms of the
simulation sample size M and not in terms of the data sample size n which is fixed.
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This means that one can achieve any desired precision by taking M to be as large as
required, subject to the constraint on computing time.
The Monte Carlo approach to inference also provides elegant solutions to the

Bayesian problems of prediction and model choice. For the latter, algorithms are
available that proceed to sample over both model space and parameter space, such
as in the methods of Carlin and Chib (1995) and Green (1995), or those that directly
compute the evidential quantities that are required for Bayesian model comparisons,
namely marginal likelihoods and their ratios, Bayes factors [Jeffreys (1961)]; these
approaches are developed by Gelfand and Dey (1994), Chib (1995), Verdinelli and
Wasserman (1995), Meng and Wong (1996), DiCiccio, Kass, Raftery and Wasserman
(1997), Chib and Jeliazkov (2001), amongst others. Discussion of these techniques is
provided in detail below.

1.1. Organization

The rest of the chapter is organized as follows. Section 2 provides a brief review of
three classical sampling methods that are discussed or used in the sequel. Section 3
summarizes the relevant Markov chain theory that justifies simulation by MCMC
methods. In particular, we provide the conditions under which discrete-time and
continuous state space Markov chains satisfy a law of large numbers and a central
limit theorem. The Metropolis–Hastings algorithm is discussed in Section 4 followed
by the Gibbs sampling algorithm in Section 5. Methods for diagnosing convergence are
considered in Section 6 and strategies for improving the mixing of the Markov chains
in Section 7. In Section 8 we discuss how MCMC methods can be applied to simulate
the posterior distributions that arise in various canonical statistical models. Bayesian
prediction and model choice problems are presented in Sections 9 and 10, respectively,
and the MCMC-based EM algorithm is considered in Section 11. Section 12 concludes
with brief comments about new and emerging directions in MCMC methods.

2. Classical sampling methods

We now briefly review three sampling methods, that we refer to as classical methods,
that deliver independent and identically distributed draws from the target density.
Authoritative surveys of these and other such methods are provided by Devroye (1985),
Ripley (1987) and Gentle (1998). Although these methods are technically outside the
scope of this chapter, the separation is somewhat artificial because, in practice, all
MCMC methods in one way or another make some use of classical simulation methods.
The ones we have chosen to discuss here are those that are mentioned or used explicitly
in the sequel.

2.1. Inverse transform method

This method is particularly useful in the context of discrete distribution functions and
is based on taking the inverse transform of the cumulative distribution function (hence
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its name). Suppose we want to generate the value of a discrete random variable with
mass function

Pr(y = yj) = pj , j = 1, 2, . . . ,
∑
j

pj = 1,

and cumulative mass function

Pr(y ¶ yj) ≡ F(yj) = p1 + p2 + · · · + pj.

The function F is a right-continuous stair function that has jumps at the point yj equal
to pj and is constant otherwise. It is not difficult to see that its inverse takes the form

F−1(u) = yj if p1 + · · · + pj − 1 ¶ u ¶ p1 + · · · + pj. (3)

A random variate from this distribution is obtained by generating U uniform on (0, 1)
and computing F−1(U ) where F−1 is the inverse function in Equation (3). This method
samples yj with probability pj because

Pr(F−1(U ) = yj) = Pr( p1 + · · · + pj − 1 ¶ U ¶ p1 + · · · + pj)
= pj.

An equivalent version is available for continuous random variables. An important
application is to the sampling of a truncated normal distribution. Suppose, for example,
that

y ~ T N (a, b)(m, s 2),

a univariate truncated normal distribution truncated to the interval (a, b), with
distribution function

F(t) =

⎧⎨⎩
0 if y < a
1

p2 − p1

(
F( t − ms ) − F(

a − m
s )

)
if a < y < b

1 if b < y
, (4)

where

p1 = F
(a − m
s

)
; p2 = F

(
b − m
s

)
.

To generate a sample variate from this distribution one must solve the equation
F(t) = U , where U is uniform on (0, 1). Algebra yields

t = m + sF−1 ( p1 + U ( p2 − p1)) . (5)

Although the inverse distribution method is useful it is rather difficult to apply in the
setting of multi-dimensional distributions.



Ch. 57: Markov Chain Monte Carlo Methods: Computation and Inference 3575

2.2. Accept–reject algorithm

The accept–reject method is the basis for many of the well known univariate
random number generators that are provided in software programs. This method is
characterized by a source density h(y) which is used to supply candidate values and
a constant c, that is determined by analysis, such that for all y

p (y) ¶ ch(y).

Note that the accept–reject method does not require knowledge of the normalizing
constant of p because that constant can be absorbed in c. Then, in the accept–reject
method, one draws a variate from h, accepting it with probability p (y)/{ch(y)}. If the
particular proposal is rejected, a new one is drawn and the process continued until one
is accepted. The accepted draws constitute an independent and identically distributed
(i.i.d.) sample from p .
In algorithmic form, the accept–reject method can be described as follows.

Algorithm 1: Accept–reject
(1) Repeat for j = 1, 2, . . . , M .

(a) Generate

y ′ ~ h(y); U ~ Unif (0, 1).

(b) Let y ( j) = y ′ if

U ¶
p (y ′)
ch(y ′)

,

otherwise go to step 1(a).
(2) Return the values {y (1),y (2), . . . , y (M )}.

The idea behind this algorithm may be explained quite simply using Figure 1. Imagine
drawing random bivariate points in the region bounded above by the function ch(y)
and below by the x-axis. A point in this region may be drawn by first drawing y ′ from
h(y), which fixes the x-coordinate of the point, and then drawing the y-coordinate of
the point as Uch(y ′). Now, if Uch(y ′) ¶ p (y ′), the point lies below p and is accepted;
but the latter is simply the acceptance condition of the AR method, which completes
the justification.
Below we shall discuss a Markov chain Monte Carlo version of the accept–reject

method that can be used when the condition p (y) ¶ ch(y) does not hold for all values
of y.
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Fig. 1. Graphical illustration of the accept–reject method.

2.3. Method of composition

This method is based on the observation that if the joint density p (y1,y2) is expressed
as

p (y1,y2) = p (y1)p (y2|y1),

and each density on the right hand side is easily sampled, then a draw from the joint
distribution may be obtained by
(1) drawing y ( j)1 from p (y1) and then
(2) drawing y ( j)2 from p (y2|y ( j)1 ).
Because (y ( j)1 ,y

( j)
2 ) is a draw from the joint distribution it follows that the second

component of the simulated vector is a draw from the marginal distribution of y2:

y ( j)2 ~ p (y2) =
∫
p (y2|y1)p (y1) dy1.

Thus, to obtain a draw y ( j)2 from p (y2), it is sufficient to produce a sample from the
joint distribution and retain the second component. This method is quite important and
arises frequently in the setting of MCMC methods.

3. Markov chains

Markov chain Monte Carlo is a method to sample a given multivariate distribution
p∗ by constructing a suitable Markov chain with the property that its limiting,
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invariant distribution, is the target distribution p∗. In most problems of interest, the
distribution p∗ is absolutely continuous and, as a result, the theory of MCMC methods
is based on that of Markov chains on continuous state spaces outlined, for example, in
Nummelin (1984) and Meyn and Tweedie (1993). Tierney (1994) is the fundamental
reference for drawing the connections between this elaborate Markov chain theory
and MCMC methods. Basically, the goal of the analysis is to specify conditions
under which the constructed Markov chain converges to the invariant distribution, and
conditions under which sample path averages based on the output of the Markov chain
satisfy a law of large numbers and a central limit theorem.

3.1. Definitions and results

A Markov chain is a collection of random variables (or vectors) F = {Fi : i ∈ T}
where T = {0, 1, 2, . . .}. The evolution of the Markov chain on a space W ⊆ Rp is
governed by the transition kernel

P(x,A) ≡ Pr(Fi + 1 ∈ A|Fi = x,Fj , j < i)
= Pr(Fi + 1 ∈ A|Fi = x), x ∈ W , A ⊂ W ,

which embodies the Markov assumption that the distribution of each succeeding state
in the sequence, given the current and the past states, depends only on the current
state.
In general, in the context of Markov chain simulations, the transition kernel has both

a continuous and a discrete component. For some function p(x, y) : W ×W → R+, the
kernel can be expressed as

P(x, dy) = p(x, y) dy + r(x) dx(dy), (6)

where p(x, x) = 0, dx(dy) = 1 if x ∈ dy and 0 otherwise, r(x) = 1 −
∫
W p(x, y) dy. This

transition kernel specifies that transitions from x to y occur according to p(x, y) and
transitions from x to x occur with probability r(x).
The transition kernel is thus the distribution of Fi + 1 given that Fi = x. The nth-

step-ahead transition kernel is given by

P(n)(x,A) =
∫
W
P(x, dy)P(n − 1)( y,A),

where P(1)(x, dy) = P(x, dy) and

P(x,A) =
∫
A
P(x, dy). (7)

The objective is to elucidate the conditions under which the nth iterate of the transition
kernel converges to the invariant distribution p∗ as n → ∞. The invariant distribution
satisfies

p∗(dy) =
∫
W
P(x, dy)p (x) dx, (8)

where p is the density of p∗ with respect to the Lebesgue measure (thus, p∗(dy) =
p ( y) dy). The invariance condition states that if Fi is distributed according to p∗, then
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all subsequent elements of the chain are also distributed as p∗. It should be noted that
Markov chain samplers are invariant by construction and therefore the existence of
the invariant distribution does not have to be checked in any particular application of
MCMC methods.
A Markov chain is said to be reversible if the function p(x, y) in Equation (6)

satisfies

f (x) p(x, y) = f ( y) p( y, x), (9)

for a density f (·). If this condition holds, it can be shown that f (·) = p (·). A reversible
chain has p∗ as an invariant distribution [see Tierney (1994)]. To verify this we
evaluate the right hand side of Equation (8):∫

P(x,A)p (x) dx =
∫ {∫

A
p(x, y) dy

}
p (x) dx +

∫
r(x) dx(A)p (x) dx,

=
∫
A

{∫
p(x, y)p (x) dx

}
dy +

∫
A
r(x)p (x) dx,

=
∫
A

{∫
p( y, x)p ( y) dx

}
dy +

∫
A
r(x)p (x) dx,

=
∫
A
(1 − r( y))p ( y) dy +

∫
A
r(x)p (x) dx,

=
∫
A
p ( y) dy.

(10)

A minimal requirement to ensure that the Markov chain satisfies a law of large
numbers is that of p∗-irreducibility. This is the requirement that the chain is able to
visit all sets with positive probability under p∗ from any starting point in W . Formally,
a Markov chain is said to be p∗-irreducible if for every x ∈ W ,

p∗(A) > 0 ⇒ P(Fi ∈ A|F0 = x) > 0,

for some i ¾ 1. If the space W is connected and the function p(x, y) is positive and
continuous, then the Markov chain with transition kernel given by Equation (7) and
invariant distribution p∗ is p∗-irreducible.
Another important property of a chain is aperiodicity, which ensures that the

chain does not cycle through a finite number of sets. A Markov chain is aperiodic
if there exists no partition of W = (D0,D1, . . . , Dp − 1) for some p ¾ 2 such that
P(F i ∈ Dimod( p)|F0 ∈ D0) = 1 for all i.
These definitions allow us to state the following results [see Tierney (1994)], which

form the basis for Markov chain Monte Carlo methods. The first of these results gives
conditions under which a strong law of large numbers holds and the second gives
conditions under which the probability density of the M th iterate of the Markov chain
converges to its unique, invariant density.
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Theorem 1. Suppose {Fi} is a p∗-irreducible Markov chain with transition kernel
P(·, ·) and invariant distribution p∗, then p∗ is the unique invariant distribution of
P(·, ·) and for all p∗-integrable real-valued functions h,

1
M

M∑
i = 1

h(Fi) →
∫
h(x)p (x) dx as M → ∞, a.s.

Theorem 2. Suppose {Fi} is a p∗-irreducible, aperiodic Markov chain with transition
kernel P(·, ·) and invariant distribution p∗. Then for p∗-almost every x ∈ W , and all
sets A

‖ PM (x,A) − p∗(A) ‖→ 0 as M → ∞,
where ‖ · ‖ denotes the total variation distance.
A further strengthening of the conditions is required to obtain a central limit theorem
for sample-path averages. A key requirement is that of an ergodic chain, i.e., chains
that are irreducible, aperiodic and positive Harris-recurrent [for a definition of the
latter, see Tierney (1994)]. In addition, one needs the notion of geometric ergodicity.
An ergodic Markov chain with invariant distribution p∗ is a geometrically ergodic if
there exists a non-negative real-valued function (bounded in expectation under p∗) and
a positive constant r < 1 such that

‖ PM (x,A) − p∗(A) ‖¶ C(x) rn,
for all x and all n and sets A. Chan and Geyer (1994) show that if the Markov
chain is ergodic, has invariant distribution p∗, and is geometrically ergodic, then
for all L2 measurable functions h, taken to be scalar-valued for simplicity, and any
initial distribution, the distribution of

√
M (ĥM − Eh) converges weakly to a normal

distribution with mean zero and variance s 2h ¾ 0, where

ĥM =
1
M

M∑
i = 1

h(Fi)

Eh =
∫
h(F)p (F) dF ,

and

s 2h = Var h(F0) + 2
∞∑
k = 1

Cov {h(F0), h(Fk )} . (11)

3.2. Computation of numerical accuracy and inefficiency factor

Let F1,F2, . . . , FM denote the output from a Markov chain, possibly collected after
discarding the iterates from an initial burn-in period, and suppose that, as above,
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ĥM = 1
M

∑M
i = 1 h(Fi) denotes the sample average of the scalar function h. Then, in

this context, the variance of ĥM based on {h(F1), . . . , h(FM )} is an estimate of s 2h
where the square root of the variance of ĥM is referred to as the numerical standard
error.
To describe consistent in M estimators of s 2h , let Zi = h(Fi) (i ¶ M ). Then, due to

the fact that {Zi} is a dependent sequence

Var(ĥM ) = M
−2
∑
j, k

Cov(Zj ,Zk )

= s2M −2
M∑

j, k = 1

ø| j − k |

= s2M −1

{
1 + 2

M∑
s = 1

(1 −
s

M
)øs

}
,

where s2 is the sample variance of {Zi} and øs is the estimated autocorrelation
at lag s [see Ripley (1987, Ch. 6)]. If øs > 0 for each s, then this variance is
larger than s2/M which is the variance under independence. Another estimate of the
variance can be found by consistently estimating the spectral density f of {Zi} at
frequency zero and using the fact that Var(ĥM ) = t2/M , where t2 = 2p f (0). Finally,
a traditional approach to finding the variance is by the method of “batch means.” In
this approach, the data (Z1, . . . , ZM ) is divided into k batches of length m with means
Bi = m−1[Z(i − 1)m + 1 + · · · + Zim] and the variance of ĥM estimated as

Var(ĥM ) =
1

k(k − 1)

k∑
i = 1

(Bi − B̄)
2, (12)

where the batch size m is chosen to ensure that the first order serial correlation of the
batch means is less than 0.05.
Given the numerical variance it is common to calculate the inefficiency factor, which

is also called the autocorrelation time, defined as

úĥ =
Var(ĥM )
s2 /M

. (13)

This quantity is interpreted as the ratio of the numerical variance of ĥM to the variance
of ĥM based on independent draws, and its inverse is the relative numerical efficiency
defined in Geweke (1992). The inefficiency factor serves to quantify the relative
efficiency loss in the computation of ĥM from correlated versus independent samples.

4. Metropolis–Hastings algorithm

The Metropolis–Hastings (M–H) method is a general MCMC method to produce
sample variates from a given multivariate density [Tierney (1994), Chib and Greenberg
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(1995a)]. It is based on a candidate generating density that is used to supply a proposal
value and a probability of move that is used to determine if the proposal value should
be taken as the next item of the chain. The probability of move is based on the ratio
of the target density (evaluated at the proposal value in the numerator and the current
value in the denominator) times the ratio of the proposal density (at the current value in
the numerator and the proposal value in the denominator). Because ratios of the target
density are involved, knowledge of the normalizing constant of the target density is
not required. There are a number of special cases of this method, each defined either
by the form of the proposal density or by the form in which the components of y are
revised, say in one block or in several blocks. The method is extremely general and
powerful, it being possible in principle to view almost any MCMC algorithm, in one
way or another, as a variant of the M−H algorithm.

4.1. The algorithm

The goal is to simulate the d-dimensional distribution p∗(y), y ∈ Y ⊆ Rd that has
density p (y) with respect to some dominating measure. To define the algorithm, let
q(y,y ′) denote the candidate generating density, also called a proposal density, that is
used to supply a candidate value y ′ given the current value y, and let a(y,y ′) denote
the function

a(y,y ′) =

{
min

[
p (y′) q(y′,y)
p (y) q(y,y′) , 1

]
if p (y) q(y,y ′) > 0;

1 otherwise.
(14)

Then, in the M–H algorithm, a candidate value y ′ is drawn from the proposal density
and taken to be the next item of the chain with probability a(y,y ′). If the proposal
value is rejected, then the next sampled value is taken to be the current value.
In algorithmic form, the simulated values are obtained by the following recursive
procedure.

Algorithm 2: Metropolis–Hastings
(1) Specify an initial value y (0):
(2) Repeat for j = 1, 2, . . . , M .

(a) Propose

y ′ ~ q(y ( j)).

(b) Let

y ( j + 1) =
{
y ′ if Unif (0, 1) ¶ a(y ( j),y ′);
y ( j) otherwise.

(3) Return the values {y (1),y (2), . . . , y (M )}.
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Fig. 2. Original Metropolis algorithm: higher density proposal is accepted with probabability one and
the lower density proposal with probability a.

The M–H algorithm delivers variates from p under general conditions. Of course,
the variates are from p only in the limit as the number of iterations becomes large
but, in practice, after an initial burn-in phase consisting of (say) n0 iterations, the
chain is assumed to have converged and subsequent values are taken as approximate
draws from p . Because theoretical calculation of the burn-in is not easy it is important
that the proposal density be chosen to ensure that the chain makes large moves
through the support of the invariant distribution without staying at one place for many
iterations. Generally, the empirical behavior of the M–H output is monitored by the
autocorrelation time of each component of y and by the acceptance rate, which is the
proportion of times a move is made as the sampling proceeds.
One should observe that the target density appears as a ratio in the probability

a(y,y ′) and therefore the algorithm can be implemented without knowledge of the
normalizing constant of p (·). Furthermore, if the candidate-generating density is
symmetric, i.e., q(y,y ′) = q(y ′,y), the acceptance probability only contains the ratio
p (y ′) /p (y); hence, if p (y ′) ¾ p (y), the chain moves to y ′, otherwise it moves with
probability given by p (y ′) /p (y). The latter is the algorithm originally proposed by
Metropolis et al. (1953). This version of the algorithm is illustrated in Figure 2.
Different proposal densities give rise to specific versions of the M–H algorithm,

each with the correct invariant distribution p . One family of candidate-generating
densities is given by q(y,y ′) = q(y ′ − y). The candidate y ′ is thus drawn according
to the process y ′ = y + z, where z follows the distribution q. Since the candidate is
equal to the current value plus noise, this case is called a random walk M–H chain.
Possible choices for q include the multivariate normal density and the multivariate-t.
The random walk M–H chain is perhaps the simplest version of the M–H algorithm
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[and was the one used by Metropolis et al. (1953)] and quite popular in applications.
One has to be careful, however, in setting the variance of z; if it is too large it is possible
that the chain may remain stuck at a particular value for many iterations while if it is
too small the chain will tend to make small moves and move inefficiently through the
support of the target distribution. Both circumstances will tend to generate draws that
are highly serially correlated. Note that when q is symmetric, the usual circumstance,
q(z) = q(−z) and the probability of move only contains the ratio p (y ′) /p (y). As
mentioned earlier, the same reduction occurs if q(y,y ′) = q(y ′,y).
Hastings (1970) considers a second family of candidate-generating densities that are

given by the form q(y,y ′) = q(y ′). Tierney (1994) refers to this as an independence
M–H chain because, in contrast to the random walk chain, the candidates are drawn
independently of the current location y. In this case, the probability of move becomes

a(y,y ′) = min
{
w(y ′)
w(y)

, 1

}
,

where w(y) = p (y) /q(y) is the ratio of the target and proposal densities. For this
method to work and not get stuck in the tails of p , it is important that the proposal
density have thicker tails than p . A similar requirement is placed on the importance
sampling function in the method of importance sampling [Geweke (1989)]. In fact,
Mengersen and Tweedie (1996) show that if w(y) is uniformly bounded then the
resulting Markov chain is ergodic.
Chib and Greenberg (1994) discuss a way of formulating proposal densities in the

context of time series autoregressive-moving average models that has a bearing on the
choice of proposal density for the independence M–H chain. They suggest matching
the proposal density to the target at the mode by a multivariate normal or multivariate-t
distribution with location given by the mode of the target and the dispersion given
by inverse of the Hessian evaluated at the mode. Specifically, the parameters of the
proposal density are taken to be

m = argmax logp (y) and

V = t
{
−
ð2 log p (y)
ðyðy ′

}−1
y = ŷ

,
(15)

where t is a tuning parameter that is adjusted to control the acceptance rate. The
proposal density is then specified as q(y ′) = f (y ′|m,V ), where f is some multivariate
density. This may be called a tailored M–H chain.
Another way to generate proposal values is through a Markov chain version of

the accept–reject method. In this version, due to Tierney (1994), a pseudo accept–
reject step is used to generate candidates for an M–H algorithm. Suppose c > 0
is a known constant and h(y) a source density. Let C = {y : p (y) ¶ ch(y)}
denote the set of value for which ch(y) dominates the target density and assume that
this set has high probability under p∗. Now given y (n) = y, the next value y (n + 1)
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is obtained as follows: First, a candidate value y ′ is obtained, independent of the
current value y, by applying the accept–reject algorithm with ch(·) as the “pseudo
dominating” density. The candidates y ′ that are produced under this scheme have
density q(y ′) ∝ min{p (y ′), ch(y ′)}. If we let w(y) = c−1p (y) /h(y) then it can be
shown that the M–H probability of move is given by

a(y,y ′) =

⎧⎨⎩ 1 if y ∈ C,
1 /w(y) if y /∈ C,y ′ ∈ C,
min {w(y ′) /w(y), 1} if y /∈ C,y ′ /∈ C.

(16)

The choices mentioned above are not exhaustive. Other proposal densities can be
generated by mixing over a set of proposal densities, using one proposal density for a
certain number of iterations before switching to another.

4.2. Convergence results

In the M–H algorithm the transition kernel of the chain is given by

P(y, dy ′) = q(y,y ′)a(y,y ′) dy ′ + r(y) dy (dy ′), (17)

where dy (dy ′) = 1 if y ∈ dy ′ and 0 otherwise and

r(y) = 1 −
∫
W
q(y,y ′)a(y,y ′) dy ′.

Thus, transitions from y to y ′ (y ′ Ñ y) are made according to the density

p(y,y ′) ≡ q(y,y ′)a(y,y ′), y Ñ y ′,

while transitions from y to y occur with probability r(y). In other words, the density
function implied by this transition kernel is of mixed type,

K(y,y ′) = q(y,y ′)a(y,y ′) + r(y) dy (y ′), (18)

having both a continuous and discrete component where now, with change of notation,
dy (y ′) is the Dirac delta function defined as dy (y ′) = 0 for y ′ Ñ y and∫
W dy (y

′) dy ′ = 1.
Chib and Greenberg (1995a) provide a way to derive and interpret the prob-

ability of move a(y,y ′). Consider the proposal density q(y,y ′). This proposal
density q is not likely to be reversible for p (if it were then we would be
done and M–H sampling would not be necessary). Without loss of generality,
suppose that p (y) q(y,y ′) > p (y ′) q(y ′,y) implying that the rate of transitions
from y to y ′ exceed those in the reverse direction. To reduce the transitions
from y to y ′ one can introduce a function 0 ¶ a(y,y ′) ¶ 1 such that
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p (y) q(y,y ′)a(y,y ′) = p (y ′) q(y ′,y). Solving for a(y,y ′) yields the probability
of move in the M–H algorithm. This calculation reveals the important point that the
function p(y,y ′) = q(y,y ′)a(y,y ′) is reversible by construction, i.e., it satisfies the
condition

q(y,y ′)a(y,y ′)p (y) = q(y ′,y)a(y ′,y)p (y ′). (19)

It immediately follows, therefore, from the argument in Equation (10) that the M–H
kernel has p (y) as its invariant density.
It is not difficult to provide conditions under which the Markov chain generated

by the M–H algorithm satisfies the conditions of Propositions 1–2. The conditions of
Proposition 1 are satisfied by the Metropolis–Hastings chain if q(y,y ′) is positive
for (y,y ′) and continuous and the set y is connected. In addition, the conditions of
Proposition 2 are satisfied if q is not reversible (which is the usual situation) which
leads to a chain that is aperiodic. Conditions for ergodicity, required for use of the
central limit theorem, are satisfied if in addition p is bounded. Other similar conditions
are provided by Robert and Casella (1999).

4.3. Example

To illustrate the M–H algorithm consider count data taken from Hand et al. (1994)
on the number of seizures for 58 epilepsy patients measured first over a eight week
baseline period and then over four subsequent two week intervals. At the end of the
baseline, each patient is randomly assigned to either a treatment group, which is given
the drug Progabide, or a control group which is given a placebo. The model for these
data on the ith patient at the jth occasion is taken to be

yij|M, b ~ Poisson(lij),

ln(lij) = b0 + b1x1ij + b2x2ij + b3x3ij + ln tij ,

b ~ N4(0, 10 I4),

where x1 is an indicator for treatment status, x2 is an indicator of period, equal to
zero for the baseline and one otherwise, x3 = x1x2 and tij is the offset that is equal to
eight in the baseline period and two otherwise. Because the purpose of this example is
illustrative, the model does not incorporate the obvious intra-cluster dependence that
is likely to be present in the counts.
The target density in this case is the Bayesian posterior density

p ( b| y,M) ∝ p ( b)
58∏
i = 1

4∏
j = 0

exp(−lij) l
yij
ij ,

where b = ( b0, b1, b2, b3) and p ( b) is the density of the N (0, 10 I4) distribution. To
draw sample variates on b from this density we apply the AR–M–H chain.
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Fig. 3. Marginal posterior distribution of b1 in Poisson count example. Top left, simulated values by
iteration; top right, autocorrelation function of simulated values; bottom left, histogram and superimposed
kernel density estimate of marginal density; bottom right, empirical cdf with .05 percentile, 50th percentile

and 97.5th percentile marked.

Let b̂ and V denote the maximum likelihood estimate and inverse of observed
information matrix, respectively. Then, the source density h( b) for the accept–reject
method is specified as fT ( b|b̂,V , 15), a multivariate-t density with fifteen degrees of
freedom. The constant c is set equal to 1.5 which implies that the probability of move
in Equation (16) is defined in terms of the weight

w( b| y,M) =
p ( b)

∏58
i = 1

∏4
j = 0 exp(−lij)l

yij
ij

1.5fT ( b|b̂,V , 15)
.

The MCMC sampler is now run for 10 000 iterations beyond a burn-in of 200 itera-
tions. Of interest in this case is the marginal posterior of b1 which is summarized in
Figure 3.
The figure includes a time series plot of the sampled values, against iteration,

and the associated autocorrelation function. These indicate that there is no sign of
serial correlation in the sampled values. Although mixing of this kind is often not
achieved, this example shows that it is sometimes possible to have a MCMC algorithm
produce virtually i.i.d. draws from the target distribution. We also summarize the
marginal posterior distribution by a histogram/kernel smoothed plot and the empirical
cumulative distribution function. Because the entire distribution is concentrated on
negative values it appears that the drug Progabide tends to lower the seizure counts,
conditional on the specified model.
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4.4. Multiple-block M–H algorithm

In applications when the dimension of y is quite large it is preferable to construct
the Markov chain simulation by first grouping the variables y into p blocks
(y1, . . . , yp), with yk ∈ Wk ⊆ Rdk , and sampling each block, conditioned on the
rest, by the M–H algorithm. Hastings (1970) considers this general situation and
mentions different possibilities for constructing a Markov chain on the product space
W = W1 × · · · ×Wp.
Let y−k = (y1, . . . , yk − 1,yk + 1, . . . , yp) denote the variables (blocks) excluding yk ,

in order to describe the multiple-block M–H algorithm. Also let p (yk ,y−k ) denote
the joint density of y, regardless of where yk appears in the list (y1, . . . , yp).
Furthermore, let {qk (yk ,y ′

k |y−k ), k ¶ p} denote a collection of proposal densities,
one for each block yk , where the proposal density qk may depend on the current value
of the remaining blocks and is specified along the lines mentioned in connection with
the single-block M–H algorithm. Finally, define

ak (yk ,y ′
k |y−k ) = min

{
p (y ′

k ,y−k ) qk (y
′
k ,yk |y−k )

p (yk ,y−k ) qk (yk ,y ′
k |y−k )

, 1

}
, (20)

as the probability of move for block yk conditioned on y−k . Then, in the multiple-block
M–H algorithm, one cycle of the algorithm is completed by updating each block, say
sequentially in fixed order, using a M–H step with the above probability of move, given
the most current value of the remaining blocks. The algorithm may be summarized as
follows.

Algorithm 3: Multiple-block Metropolis–Hastings
(1) Specify an initial value y (0) = (y (0)1 , . . . , y

(0)
p )

(2) Repeat for j = 1, 2, . . . , M
(a) Repeat for k = 1, 2, . . . , p

(i) Propose

y ′
k ~ q(y

( j)
k ,y

′
k |y−k ).

(ii) Calculate

ak (y
( j)
k ,y

′
k |y−k ) = min

{
p (y ′

k ,y−k ) qk (y
′
k ,y

( j)
k |y−k )

p (y ( j)k ,y−k ) qk (y
( j)
k ,y

′
k |y−k )

, 1

}
.

(iii) Set

y ( j + 1)k =

{
y ′
k if Unif (0, 1) ¶ ak (y

( j)
k ,y

′
k |y−k )

y ( j)k otherwise.

(3) Return the values {y (1),y (2), . . . , y (M )}.
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Before we examine this algorithm, some features of this method should be noted.
First, the version of the algorithm presented above assumes that the blocks are revised
sequentially in fixed order. This is not necessary and the blocks may be updated in
random order. Second, at the moment block k is updated in this algorithm, the blocks
(y1, . . . , yk − 1) have already been revised while the blocks (yk + 1, . . . , yp) have not.
Thus, at each step of the algorithm one must be sure to condition on the most current
value of the blocks in y−k . Finally, if the proposal density qk is determined by tailoring
to p (yk ,y−k ), as in Chib and Greenberg (1994), then this implies that the proposal
density is not fixed but varies across iterations.
To understand the multiple-block M–H algorithm, first note that the transition kernel

of the kth block, conditioned on y−k , may be expressed as

Pk (yk , dy ′
k |y−k ) = q(yk ,y ′

k |y−k )a(yk ,y ′
k |y−k ) dy ′

k + r(yk |y−k ) dyk (dy ′
k ), (21)

where the notation is similar to that of Equation (17). It can be readily shown that, for
a given y−k , this kernel satisfies what may be called the local reversibility condition

p (yk |y−k ) q(yk ,y ′
k |y−k )a(yk ,y ′

k |y−k ) = p (y ′
k |y−k ) q(y ′

k ,yk |y−k )a(y ′
k ,yk |y−k ).

(22)
As a consequence, the transition kernel of the move from y = (y1,y2, . . . , yk ) to
y ′ = (y ′

1,y
′
2, . . . , y

′
k ), under the assumption that the blocks are revised sequentially

in fixed order, is given by the product of transition kernels

P(y, dy ′) =
p∏
k = 1

Pk (yk , dy ′
k |y−k ). (23)

This transition kernel is not reversible, as can be easily checked, because under fixed
sequential updating of the blocks updating in the reverse order never occurs. The
multiple-block M–H algorithm, however, satisfies the weaker condition of invariance.
To show this, we follow Chib and Greenberg (1995a). Consider for notational
simplicity the case of two blocks, y = (y1,y2), where yk : dk × 1. Now, due to the
fact that the local moves satisfy the local reversibility condition (22), the transition
kernel P1(y1, dy1|y2) has p∗

1|2(·|y2) as its local invariant distribution (with density
p1 | 2(·|y2)), i.e.,

p∗
1 | 2(dy1|y2) =

∫
P1(y1, dy1|y2)p1 | 2(y1|y2) dy1. (24)
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Similarly, the conditional transition kernel P2(y2, dy2|y1) has p∗
2 | 1(·|y1) as its

invariant distribution, for a given value of y1. Then, the kernel formed by multiplying
the conditional kernels is invariant for p∗(·, ·):∫ ∫

P1(y1, dy ′
1|y2)P2(y2, dy ′

2|y ′
1)p (y1,y2) dy1 dy2

=
∫
P2(y2, dy ′

2|y ′
1)

[∫
P1(y1, dy ′

1|y2)p1|2(y1|y2) dy1
]
p2(y2) dy2

=
∫
P2(y2, dy ′

2|y ′
1)p

∗
1 | 2(dy

′
1|y2)p2(y2) dy2

=
∫
P2(y2, dy ′

2|y ′
1)
p2 | 1(y2|y ′

1)p
∗
1 (dy

′
1)

p2(y2)
p2(y2) dy2

= p∗
1 (dy

′
1)
∫
P2(y2, dy ′

2|y ′
1)p2 | 1(y2|y ′

1) dy2

= p∗
1 (dy

′
1)p

∗
2 | 1(dy

′
2|y ′

1)

= p∗(dy ′
1, dy

′
2),

where the third line follows from Equation (24), the fourth from Bayes theorem, the
sixth from assumed invariance of P2, and the last from the law of total probability.
The implication of this “product of kernels” result is that it allows us to take draws

in succession from each of the kernels, instead of having to run each to convergence
for every value of the conditioning variable.

5. The Gibbs sampling algorithm

Another MCMC method, which is a special case of the multiple-block Metropolis–
Hastings method, is called the Gibbs sampling method and was brought into statistical
prominence by Gelfand and Smith (1990). An elementary introduction to Gibbs
sampling is provided by Casella and George (1992). In this algorithm the parameters
are grouped into p blocks (y1, . . . , yp) and each block is sampled according to the
full conditional distribution of block yk , defined as the conditional distribution under
p of yk given all the other blocks y−k and denoted as p (yk |y−k ). In parallel with
the multiple-block M–H algorithm, the most current value of the remaining blocks
is used in deriving the full conditional distribution of each block. Derivation of
the full conditional distributions is usually quite simple since, by Bayes theorem,
p (yk |y−k ) ∝ p (yk ,y−k ), the joint distribution of all the blocks. In addition, the
powerful device of data augmentation, due to Tanner and Wong (1987), in which latent
or auxiliary variables are artificially introduced into the sampling, is often used to
simplify the derivation and sampling of the full conditional distributions.



3590 S. Chib

5.1. The algorithm

To define the Gibbs sampling algorithm, let the set of full conditional distributions
be

{p (y1|y2, . . . , yp); p (y2|y1,y3, . . . , yp); . . . , p (yp|y1, . . . , yd − 1)}.

Now one cycle of the Gibbs sampling algorithm is completed by simulating {yk}pk = 1
from these distributions, recursively updating the conditioning variables as one moves
through each distribution. When d = 2 one obtains the two block Gibbs sampler that
is featured in the work of Tanner and Wong (1987). The Gibbs sampler in which each
block is revised in fixed order is defined as follows.

Algorithm 4: Gibbs sampling
(1) Specify an initial value y (0) = (y (0)1 , . . . , y

(0)
p )

(2) Repeat for j = 1, 2, . . . , M
Generate y ( j + 1)1 from p (y1|y ( j)2 ,y

( j)
3 , . . . , y

( j)
p ).

Generate y ( j + 1)2 from p (y2|y ( j + 1)1 ,y ( j)3 , . . . , y
( j)
p ).

...
Generate y ( j + 1)p from p (yp|y ( j + 1)1 , . . . , y ( j + 1)p − 1 ).

(3) Return the values {y (1),y (2), . . . , y (M )}.

Thus, the transition of yk from y ( j)k to y ( j + 1)k is effected by taking a draw from the
conditional distribution

p
(
yk |y ( j + 1)1 , . . . , y ( j + 1)k − 1 ,y

( j)
k + 1, . . . , y

( j)
p

)
,

where the conditioning elements reflect the fact that when the kth block is reached, the
previous (k − 1) blocks have already been updated. The transition density of the chain,
again under the maintained assumption that p is absolutely continuous, is therefore
given by the product of transition kernels for each block:

K
(
y ( j),y ( j + 1)

)
=

p∏
k = 1

p
(
yk |y ( j + 1)1 , . . . , y ( j + 1)k − 1 ,y

( j)
k + 1, . . . , y

( j)
p

)
. (25)

To illustrate the manner in which the blocks are revised, we consider a two block
case, each with a single component, and trace out in Figure 4 a possible trajectory of
the sampling algorithm. The contours in the plot represent the joint distribution of y
and the labels “(0)”, “(1)”, etc., denote the simulated values. Note that one iteration
of the algorithm is completed after both components are revised. Also notice that
each component is revised along the direction of the coordinate axes. This feature
can be a source of problems if the two components are highly correlated because then
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Fig. 4. Gibbs sampling algorithm in two
dimensions starting from an initial point and then
completing three iterations.

the contours become compressed and movements along the coordinate axes tend to
produce only small moves. We return to this issue below.

5.2. Connection with the multiple-block M–H algorithm

A connection with the M–H algorithm can be drawn by noting that the full conditional
distribution by Bayes theorem is proportional to the joint distribution, i.e.,

p (yk |y−k ) ∝ p (yk ,y−k ).

Now recall that the probability of move in the multiple-block M–H algorithm from
Equation (20) is

ak (yk ,y ′
k |y−k ) = min

{
p (y ′

k ,y−k ) q(y
′
k ,yk |y−k )

p (yk ,y−k ) q(yk ,y ′
k |y−k )

, 1

}
,

so if one substitutes

q(yk ,y ′
k |y−k ) = p (y ′

k ,y−k ),

q(y ′
k ,yk |y−k ) = p (yk ,y−k ),

in this expression all the terms cancel implying that the probability of accepting the
proposal is one. Thus, the Gibbs sampling algorithm is a special case of the multiple-
block M–H algorithm.
It should be noted that a multiple-block M–H algorithm in which only some of the

blocks are sampled using the full conditional distributions are sometimes called hybrid
samplers or Metropolis-within-Gibbs samplers. These names are not very informative
or precise and it is preferable to continue to refer to such algorithms as multiple-block
M–H algorithms. The only algorithm that should properly be referred to as the Gibbs
algorithm is the one in which each block is sampled directly from its full conditional
distribution.
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5.3. Invariance of the Gibbs Markov chain

The Gibbs transition kernel is invariant by construction. This is a consequence of the
fact that the Gibbs algorithm is a special case of the multiple-block M–H algorithm
which is invariant as was established in the last section. A direct calculation also reveals
the same result. Consider for simplicity the situation of two blocks when the transition
kernel density is

K(y,y ′) = p (y ′
1|y2)p (y ′

2|y ′
1).

To check invariance we need to show that∫
K(y,y ′)p (y1,y2) dy1dy2 =

∫
p (y ′

1|y2)p (y ′
2|y ′

1)p (y1,y2) dy1dy2,

is equal to p (y ′
1,y

′
2). This is easily verified because p (y

′
2|y ′

1) comes out of the
integral, and the integral over y1 and y2 produces p (y ′

1). This calculation can be
extended to any number of blocks in the same way. In addition, the Gibbs Markov
chain is not reversible. Reversible Gibbs samplers are discussed by Liu, Wong and
Kong (1995).

5.4. Sufficient conditions for convergence

Under rather general conditions, which are easy to verify, the Markov chain generated
by the Gibbs sampling algorithm converges to the target density as the number of
iterations become large. Formally, if we let K(y,y ′) represent the transition density
of the Gibbs algorithm and let K (M )(y0,y ′) be the density of the draw y ′ after
M iterations given the starting value y0, then

‖ K (M )
(
y (0),y ′) − p (y ′) ‖→ 0 as M → ∞. (26)

Roberts and Smith (1994) [see also Chan (1993)] have shown that the conditions of
Proposition 2 are satisfied under the following conditions: (i) p (y) > 0 implies there
exists an open neighborhood Ny containing y and û > 0 such that, for all y ′ ∈ Ny ,
p (y ′) ¾ û > 0; (ii)

∫
f (y) dyk is locally bounded for all k , where yk is the kth block

of parameters; and (iii) the support of y is arc connected.
It is difficult to find non-pathological problems where these conditions are not

satisfied.

5.5. Estimation of density ordinates

We mention that if the full conditional densities are available, whether in the context of
the multiple-block M–H algorithm or that of the Gibbs sampler, then the MCMC output
can be used to estimate posterior marginal density functions Tanner and Wong (1987)
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and Gelfand and Smith (1990). One possibility is to use a non-parametric kernel
smoothing method which, however, suffers from the curse of dimensionality problem.
A more efficient possibility is to exploit the fact that the marginal density of yk at the
point y∗

k is

p (y∗
k ) =

∫
p (y∗

k |y−k )p (y−k )dy−k ,

where as before y−k = y\yk . Provided the normalizing constant of p (y∗
k |y−k ) is

known, we can estimate the marginal density as an average of the full conditional
density over the simulated values of y−k :

p̂ (y∗
k ) = M

−1
M∑
j = 1

p (y∗
k |y ( j)−k ).

Then, under the assumptions of Proposition 1,

M −1
M∑
j = 1

p (y∗
k |y ( j)−k ) → p (y∗

k ), as M → ∞.

Gelfand and Smith (1990) refer to this approach as “Rao–Blackwellization” because
of the connections with the Rao–Blackwell theorem in classical statistics. That
connection is more clearly seen in the context of estimating (say) the mean of yk ,
E(yk ) =

∫
ykp (yk ) dyk . By the law of the iterated expectation,

E(yk ) = E{E(yk |y−k )},

and therefore the estimates

M −1
M∑
j = 1

y j
k ,

and

M −1
M∑
j = 1

E(yk |y ( j)−k ),

both converge to E(yk ) asM → ∞. Under i.i.d. sampling, and under Markov sampling
provided some conditions are satisfied [see Liu, Wong and Kong (1994), Geyer (1995),
Casella and Robert (1996) and Robert and Casella (1999)], it can be shown that the
variance of the latter estimate is smaller than that of the former. Thus, it can help to
average the conditional mean E(yk |y−k ), if that were available, rather than average
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the draws directly. Gelfand and Smith appeal to this analogy to argue that the Rao–
Blackwellized estimate of the density is preferable to that based on the method of
kernel smoothing. Chib (1995) extends the Rao–Blackwellization approach to estimate
“reduced conditional ordinates” defined as the density of yk conditioned on one or
more of the remaining blocks. More discussion of this is provided below in Section 10
on Bayesian model choice. Finally, Chen (1994) provides an importance weighted
estimate of the marginal density for cases where the conditional posterior density does
not have a known normalizing constant. Chen’s estimator is based on the identity

p (y∗
k ) =

∫
w(yk |y−k )

p (y∗
k ,y−k )

p (yk ,y−k )
p (y) dy,

where w(yk |y−k ) is a completely known conditional density whose support is equal
to the support of the full conditional density p (yk |y−k ). In this form, the normalizing
constant of the full conditional density is not required and given a sample of draws
{y (1), . . . , y (M )} from p (y), a Monte Carlo estimate of the marginal density is given
by

p̂ (y∗
k ) = M

−1
M∑
j = 1

w(y ( j)k |y ( j)−k )
p (y∗

k ,y
( j)
−k )

p (y ( j)k ,y
( j)
−k )
.

Chen (1994) discusses the choice of the conditional density w. Since it depends on
y−k , the choice of w will vary from one sampled draw to the next.

5.6. Example: simulating a truncated multivariate normal

To illustrate the Gibbs sampling algorithm consider the question of sampling a
trivariate normal distribution truncated to the positive orthant. In particular, let the
target distribution be

p (y) =
1

Pr(y ∈ A) fN (m,S) I (y ∈ A) ∝ fN (m,S) I (y ∈ A),

where m = (.5, 1, 1.5)′, S is in equi-correlated form with units on the diagonal and 0.7
on the off-diagonal, A = (0,∞) × (0,∞) × (0,∞) and Pr(y ∈ A) is the normalizing
constant which is difficult to compute. Following Geweke (1991), one may define the
Gibbs sampler with the blocks y1,y2,y3 and the full conditional distributions

p (y1|y2,y3); p (y2|y1,y3); p (y3|y1,y2),
where each of the these full conditional distributions is univariate truncated normal
restricted to the interval (0,∞):

p (yk |y−k ) ∝ fN
(
yk |mk + C ′

kS
−1
−k (y−k − m−k ),Sk − C

′
kS

−1
−kCk

)
I (yk ∈ (0,∞)).

(27)
In this expression we have utilized the well known result about conditional normal
distributions and have let Ck = Cov(yk ,y−k ), S−k = Var(y−k ) and m−k = E(y−k ). Note
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Fig. 5. Marginal distributions of y in truncated multivariate normal example (top panel). Histograms of
the sampled values and Rao–Blackwellized estimates of the densities are shown. Autocorrelation plots
of the Gibbs MCMC chain are in the bottom panel. Graphs are based on 10 000 iterations following a

burn-in of 500 cycles.

that, unfortunately, the use of singleton block sizes is unavoidable in this problem
because the conditional distribution of any two components given the third is not easy
to simulate.
Figure 5 gives the marginal distribution of each component of yk from a Gibbs

sampling run ofM = 10 000 iterations with a burn-in of 100 cycles. The figure includes
both the histograms of the sampled values and the Rao–Blackwellized estimates of the
marginal densities based on the averaging of Equation (27) over the simulated values of
y−k . The agreement between the two density estimates is close. In the bottom panel of
Figure 5 we plot the autocorrelation function of the sampled draws. The rapid decline
in the autocorrelations for higher lags indicates that the sampler is mixing well.

6. Sampler performance and diagnostics

In implementing a MCMC method it is important to assess the performance of the
sampling algorithm to determine the rate of mixing and the size of the burn-in, both
having implications for the number of iterations required to get reliable answers.
A large literature has now emerged on these issues, for example, Robert (1995), Tanner
(1996, Section 6.3), Cowles and Carlin (1996), Gammerman (1997, Section 5.4),
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Brooks, Dellaportas and Roberts (1997) and Robert and Casella (1999), but the ideas,
although related in many ways, have not coalesced into a single prescription.
One approach for determining sampler performance and the size of the burn-in

time is to employ analytical methods to the specified Markov chain, prior to sampling.
This approach is exemplified in the work of, for example, Meyn and Tweedie (1994),
Polson (1996), Roberts and Tweedie (1996) and Rosenthal (1995). Two factors have
inhibited the growth and application of these methods. The first is that the calculations
are difficult and problem-specific, and second, the upper bounds for the burn-in that
emerge from such calculations are usually highly conservative.
At this time the more popular approach is to utilize the sampled draws to assess

both the performance of the algorithm and its approach to the stationary, invariant
distribution. Several such relatively informal methods are now available. Gelfand and
Smith (1990) recommend monitoring the evolution of the quantiles as the sampling
proceeds. Another quite useful diagnostic, one that is perhaps the simplest and most
direct, are autocorrelation plots (and autocorrelation times) of the sampled output.
Slowly decaying correlations indicate problems with the mixing of the chain. It is
also useful in connection with M–H Markov chains to monitor the acceptance rate of
the proposal values with low rates implying “stickiness” in the sampled values and
thus a slower approach to the invariant distribution.
Somewhat more formal sample-based diagnostics are also available in the literature,

as summarized in the CODA routines provided by Best, Cowles and Vines (1995).
Although these diagnostics often go under the name “convergence diagnostics” they
are in principle approaches that detect lack of convergence. Detection of convergence
based entirely on the sampled output, without analysis of the target distribution, is
extremely difficult and perhaps impossible. Cowles and Carlin (1996) discuss and
evaluate thirteen such diagnostics [for example, those proposed by Geweke (1992),
Raftery and Lewis (1992), Ritter and Tanner (1992), Gelman and Rubin (1992),
Zellner and Min (1995), amongst others] without arriving at a consensus. Difficulties in
evaluating these methods stem from the fact that some of these methods apply only to
Gibbs Markov chains [for example, those of Ritter and Tanner (1992) and Zellner and
Min (1995)] while others are based on the output not just of a single chain but on that
of multiple chains specifically run from “disparate starting values” as in the method
of Gelman and Rubin (1992). Finally, some methods assess the behavior of univariate
moment estimates [as in the approach of Geweke (1992) and Gelman and Rubin
(1992)] while others are concerned with the behavior of the entire transition kernel
[as in Ritter and Tanner (1992) and Zellner and Min (1995)]. Further developments in
this area are ongoing.

7. Strategies for improving mixing

In practice, while implementing MCMC methods it is important to construct samplers
that mix well, where mixing is measured by the autocorrelation time, because such
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samplers can be expected to converge more quickly to the invariant distribution. Over
the years a number of different recipes for designing samplers with low autocorrelation
times have been proposed although it may sometimes be difficult, because of the
complexity of the problem, to apply any of these recipes.

7.1. Choice of blocking

As a general rule, sets of parameters that are highly correlated should be treated as
one block when applying the multiple-block M–H algorithm. Otherwise, it would be
difficult to develop proposal densities that lead to large moves through the support of
the target distribution and the sampled draws would tend to display autocorrelations
that decay slowly. To get a sense of the problem, it may be worthwhile for the reader to
use the Gibbs sampler to simulate a bivariate normal distribution with unit variances
and covariance (correlation) of 0.95.
The importance of coarse, or highly grouped, blocking has been highlighted in a

number of different problems for example, the state space model, hidden Markov
model and longitudinal data models with random effects. In each of these situations,
which are further discussed below in detail, the parameter space is quite large on
account of the fact that auxiliary variables are included in the sampling (the latent
states in the case of the state space model and the random effects in the case of the
longitudinal data model). These latent variables tend to be highly correlated either
amongst themselves, as in the case of the state space model, or with a different set of
variables as in the case of the panel model.
Blocks can be combined by the method of composition. For example, suppose

that y1,y2 and y3 denote three blocks and that the distribution y1|y3 is tractable
(i.e., can be sampled directly). Then, the blocks (y1,y2) can be collapsed by first
sampling y1 from y1|y3 followed by y2 from y2|y1,y3. This amounts to a two block
MCMC algorithm. In addition, if it is possible to sample (y1,y2) marginalized over
y3 then the number of blocks is reduced to one. Liu (1994) and Liu, Wong and Kong
(1994) discuss the value of these strategies in the context of a three-block Gibbs
MCMC chains. Roberts and Sahu (1997) provide further discussion of the role of
blocking in the context of Gibbs Markov chains used to sample multivariate normal
target distributions.

7.2. Tuning the proposal density

As mentioned above, the proposal density in a M–H algorithm has an important bearing
on the mixing of the MCMC chain. Fortunately, one has great flexibility in the choice
of candidate generating density and it is possible to adapt the choice to the specific
context of a given problem. For example, Chib, Greenberg and Winkelmann (1998)
develop and compare four different choices in the context of longitudinal random
effects for count data. In this problem, each cluster (or individual) has its own random
effects and each of these has to be sampled from an intractable target distribution.
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If one lets n denote the number of clusters, where n is typically large, say in excess
of a thousand, then the number of blocks in the MCMC implementation is n + 3 (n
for each of the random effect distributions, two for the fixed effects and one for the
variance components matrix). For this problem, the multiple-block M–H algorithm
requires n + 1 M–H steps within one iteration of the algorithm. Tailored proposal
densities are therefore computationally quite expensive but one can use a mixture
of proposal densities where a less demanding proposal, for example a random walk
proposal, is combined with the tailored proposal to sample each of the n random effect
target distributions. Further discussion of mixture proposal densities for the purpose
of improving mixing is contained in Tierney (1994).

7.3. Other strategies

In some problems it is possible to reparameterize the variables to make the blocks
less correlated. See Hills and Smith (1992) and Gelfand, Sahu and Carlin (1995)
where under certain circumstances reparameterization is shown to be beneficial for
simple one-way analysis of variance models, and for general hierarchical normal linear
models.
Another strategy that can prove useful is importance resampling in which the

MCMC sampler is applied not to the target distribution p but to a modified
distribution p∗, for which a well mixing sampler can be designed, and which is
close to p . Now suppose {y (1), . . . , y (M )} are draws from the target distribution p∗.
These can be made to correspond to the target distribution p by attaching the weight
wj = p (y ( j))/p∗(y ( j)) to each draw and then re-sampling the sampled values with
probability given by {wj /

∑M
g = 1 wg}. This strategy was introduced for a different

purpose by Rubin (1988) and then employed by Gelfand and Smith (1992) and Albert
(1993) to study the sensitivity of the posterior distribution to small changes in the
prior without involving a new MCMC calculation. Its use for improving mixing in the
MCMC context is illustrated by Kim, Shephard and Chib (1998) where a nonlinear
state space model of stochastic volatility is approximated accurately by a mixture of
state space models; an efficient MCMC algorithm is then developed for the latter target
distribution and the draws are finally re-sampled to correspond to the original nonlinear
model.
Other approaches have also been discussed in the literature. Marinari and Parisi

(1992) develop the simulated tempering method whereas Geyer and Thompson (1995)
develop a related technique that they call the Metropolis-coupled MCMC method.
Both these approaches rely on a series of transition kernels {K1, . . . , Km} where
only K1 has p∗ as the stationary distribution. The other kernels have equilibrium
distributions pi, which Geyer and Thompson take to be pi(y) = p (y)1/i, i = 2, . . . , m.
This specification produces a set of target distributions that have higher variance than
p∗. Once the transition kernels and equilibrium distributions are specified then the
Metropolis-coupled MCMC method requires that each of the m kernels be used in
parallel. At each iteration, after the m draws have been obtained, one randomly selects



Ch. 57: Markov Chain Monte Carlo Methods: Computation and Inference 3599

two chains to see if the states should be swapped. The probability of swap is based
on the M–H acceptance condition. At the conclusion of the sampling, inference is
based on the sequence of draws that correspond to the distribution p∗. These methods
promote rapid mixing because draws from the various “flatter” target densities have
a chance of being swapped with the draws from the base kernel K1. Thus, variates
that are unlikely under the transition K1 have a chance of being included in the chain,
leading to more rapid exploration of the parameter space.

8. MCMC algorithms in Bayesian estimation

8.1. Overview

Markov chain Monte Carlo methods have proved enormously popular in Bayesian
statistics [for wide-ranging discussions of the Bayesian paradigm see, for example,
Zellner (1971), Leamer (1978), Berger (1985), O’Hagan (1994), Bernardo and Smith
(1994), Poirier (1995), Gelman, Meng, Stern and Rubin (1995)], where these methods
have opened up vistas that were unimaginable fifteen years ago. Within the Bayesian
framework, where both parameters and data are treated as random variables and
inferences about the parameters are conducted conditioned on the data, the posterior
distribution of the parameters provides a natural target for MCMC methods. Sometimes
the target distribution is the posterior distribution of the parameters augmented by
latent data, in which case the MCMC scheme operates on a space that is considerably
larger than the parameter space. This strategy, which goes under the name of data
augmentation, is illustrated in several models below and its main virtue is that it
allows one to conduct the MCMC simulation without having to evaluate the likelihood
function of the parameters. The latter feature is of considerable importance especially
when the model of interest has a complicated likelihood function and likelihood based
inference is difficult. Admittedly, in standard problems such as the linear regression
model, there may be little to be gained by utilizing MCMC methods or in fact by
adopting the Bayesian approach, but the important point is that MCMC methods
provide a complete computational toolkit for conducting Bayesian inference in models
that are both simple and complicated. This is the central reason for the current growing
appeal of Bayesian methods in theoretical and practical work and this appeal is likely
to increase once MCMC Bayesian software, presently under development at various
sites, becomes readily available.
Papers that develop some of the important general MCMC ideas for Bayesian

inference appeared early in the 1990’s. Categorized by topics, these include, normal
and student-t data models [Gelfand et al. (1990), Carlin and Polson (1991)]; binary
and ordinal response models [Albert and Chib (1993a, 1995)]; tobit censored
regression models [Chib (1992)]; generalized linear models [Dellaportas and Smith
(1993), Mallick and Gelfand (1994)]; change point models [Carlin et al. (1992),
Stephens (1994)]; autoregressive models [Chib (1993), McCulloch and Tsay (1994)];
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autoregressive-moving average models [Chib and Greenberg (1994)]; hidden Markov
models [Albert and Chib (1993b), Robert et al. (1993), McCulloch and Tsay (1994),
Chib (1996)]; state space models [Carlin, Polson and Stoffer (1992), Carter and
Kohn (1994, 1996), Chib and Greenberg (1995b), de Jong and Shephard (1995)];
measurement error models [Mallick and Gelfand (1996)]; mixture models [Diebolt
and Robert (1994), Escobar and West (1995), Muller, Erkanli and West (1996)];
longitudinal data models [Zeger and Karim (1991), Wakefield et al. (1994)].
More recently, other model and inference situations have also come under scrutiny.

Examples include, ARMA models with switching [Billio, Monfort and Robert (1999)];
CART models [Chipman, George and McCulloch (1998), Denison, Mallick and Smith
(1998)]; conditionally independent hierarchical models [Albert and Chib (1997)];
estimation of HPD intervals [Chen and Shao (1999)]; item response models [Patz
and Junker (1999)]; selection models [Chib and Hamilton (2000)]; partially linear and
additive regression models [Lenk (1999), Shively, Kohn and Wood (1999)]; sequential
Monte Carlo for state space models [Liu and Chen (1998), Pitt and Shephard (1999)];
stochastic differential equation models [Elerian, Chib and Shephard (1999)]; models
with symmetric stable distributions [Tsionas (1999)]; neural network models [Muller
and Insua (1998)]; spatial models [Waller, Carlin, Xia and Gelfand (1997)].
MCMC methods have also been extended to the realm of Bayesian model choice.

Problems related to variable selection in regression models, hypothesis testing in nested
models and the general problem of model choice are now all amenable to analysis by
MCMC methods. The basic strategies are developed in the following papers: variable
selection in regression [George and McCulloch (1993)]; hypothesis testing in nested
models [Verdinelli and Wasserman (1995)]; predictive model comparison [Gelfand
and Dey (1994)]; marginal likelihood and Bayes factor computation [Chib (1995)];
composite model space and parameter space MCMC [Carlin and Chib (1995), Green
(1995)]. These developments are discussed in Section 10.
We now provide a set of applications of MCMC methods to models largely drawn

from the list above. These models serve to illustrate a number of general techniques,
for example, derivations of full conditional distributions, use of latent variables in the
sampling (data augmentation) to avoid computation of the likelihood function, and
issues related to blocking. Because of the modular nature of MCMC methods, the
algorithms presented below can serve as the building blocks for other models not
considered here. In some instances one would only need to combine different pieces
of these algorithms to fit a new model.

8.2. Notation and assumptions

To streamline the discussion we collect some of the notation that is used in the rest
of the paper.
The d-variate normal distribution with mean vector m and covariance matrix W is

denoted by Np(m,W). Its density at the point t ∈ Rd is denoted by ÷d(t|m,W). The
univariate normal density truncated to the interval (a, b) is denoted by T N [a, b](m, s 2)
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with density at the point t ∈ (a, b) given by ÷(t|m, s 2)/ [F((b − m)/s ) −F((a − m)/s )],
where ÷ is the univariate normal density and F(·) is the c.d.f. of the standard normal
random variable.
A d-variate random vector distributed according to the multivariate-t distribution

with mean vector m, dispersion matrix S and x degrees of freedom has density
fT (t|m,W, x) given by

G ((x + 1)/2)G (x/2)
(xp )1/2|W|1/2

{
1 +

1
x
(t − m)′W−1(t − m)

}−(x + d)/2
.

The gamma distribution is denoted by G (a, b) with density at the point t by
fG(t|a, b) ∝ ta − 1 exp(−bt) I [t > 0], where I [A] is the indicator function of the event A.
The inverse gamma distribution is the distribution of the inverse of a gamma variate.
A random symmetric positive definite matrix W : p× p is said to follow a Wishart

distribution Wp(W |v,R) if the density of W is given by

c
|W |(n − p − 1)/2

|R|n /2
exp

{
−12 tr (R

−1W )
}
, |W | > 0,

where c is a normalizing constant, R is a hyperparameter matrix and “tr” is the trace
function. To simulate the Wishart distribution, one utilizes the expressionW = LTT ′L′,

where R = LL′ and T = (tij) is a lower triangular matrix with tii ~
√
c2v − i + 1 and

tij ~ N (0, 1).
In connection with the sampling design of the observations and the error terms

we use “ind” to denote independent and “i.i.d.” to denote independent and identically
distributed. The response variable (or vector) of the model is denoted by either yi or
yt , the sample size by n and the entire collection of sample data by y = ( y1, . . . , yn).
In some instances, we let Yt = ( y1, . . . , yt) denote the data upto time t and
Y t = ( yt , . . . , yn) to denote the values from t to the end of the sample. The covariates
are denoted as xi if the corresponding response is a scalar and as Xi or Xt if the response
is a vector. The regression coefficients are denoted by b and the error variance (if yi
is a scalar) by s 2 and the error covariance by W if yi is a vector. The parameters of
the model are denoted by q and the variables used in the MCMC simulation by y
(consisting of q and other quantities).
When denoting conditional distributions only dependence on random quantities,

such as parameters and random effects, is included in the conditioning set. Covariates
are never included in the conditioning. The symbol p is used to denote the prior density
if general notation is required.
It is always assumed that each distinct set of parameters, for example, regression

coefficients and covariance elements, are a priori independent. The joint prior
distribution is therefore specified through the marginal distribution of each distinct
set of parameters. Distributions for the parameters are chosen from the class
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of conditionally conjugate distributions in keeping with the existing literature on
these models. The parameters of the prior distributions, called hyperparameters,
are assumed known. These will be indicated by the subscript “0.” In some cases,
when the hyperparameters are unknown, hierarchical priors, defined by placing prior
distributions on the prior hyperparameters, are used.

8.3. Normal and student-t regression models

Consider the univariate regression model defined by the specification

yi|M, b, s 2 ~ N (x′
ib , s

2), i ¶ n,
b ~ Nk (b0,B0),

s 2 ~ IG
(
v0
2
,
d0
2

)
.

The target distribution is

p ( b , s 2|M, y) ∝ p( b) p(s 2)
n∏
i = 1

f ( yi|x′
ib , s

2),

and MCMC simulation proceeds by a Gibbs chain defined through the full conditional
distributions

b| y,M, s 2; s 2| y,M, b.

Each of these distributions is straightforward to derive because conditioned on s 2 both
the prior and the likelihood have Gaussian forms (and hence the updated distribution
is Gaussian with moments found by completing the square for the terms in the
exponential function) while conditioned on b , the updated distribution of s 2 is inverse
gamma with parameters found by adding the exponents of the prior and the likelihood.

Algorithm 5: Gaussian multiple regression
(1) Sample

b ~ Nk

⎛⎝Bn
(
B−10 b0 + s

−2
n∑
i = 1

xiyi

)
,Bn =

(
B−10 + s

−2
n∑
i = 1

xix
′
i

)−1⎞⎠
(2) Sample

s 2 ~ IG
{
v0 + n
2

,
d0 +

∑n
i = 1( yi − x

′
ib)

2

2

}
(3) Goto 1.
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This algorithm can be easily modified to permit the observations yi to follow a
Student-t distribution. The modification, proposed by Carlin and Polson (1991), utilizes
the fact that if

li ~ G
(
x
2
,
x
2

)
,

and

yi|M, b , s 2, li ~ N (x′
ib, l

−1
i s

2),

then

yi|M, b , s 2 ~ fT ( yi|x′
ib , s

2, x), i ¶ n.

Hence, if one defines y = ( b, s 2, {li}) then, conditioned on {li}, the model is
Gaussian and a variant of Algorithm 5 can be used. Furthermore, conditioned on
( b, s 2), the full conditional distribution of {li} factors into a product of independent
Gamma distributions.

Algorithm 6: Student-t multiple regression
(1) Sample

b ~ Nk

⎛⎝Bn, l
(
B−10 b0 + s

−2
n∑
i = 1

lixiyi

)
, Bn, l =

(
B−10 + s

−2
n∑
i = 1

lixix′
i

)−1⎞⎠ .
(2) Sample

s 2 ~ IG
{
v0 + n
2

,
d0 +

∑n
i = 1 li( yi − x

′
ib)

2

2

}
.

(3) Sample

li ~ G
[
x + 1
2

,
x + s−2( yi − xib)2

2

]
, i ¶ n.

(4) Goto 1.

Another modification of Algorithm 5 is to Zellner’s seemingly unrelated regression
model (SUR). In this case a vector of p observations are generated from the model

yt |M, b,W ~ N (Xtb ,W), t ¶ n,
b ~ Nk ( b0,B0),

W−1 ~ Wp(n0,R0),

where yt = ( y1t , . . . , ypt)′, Xt = diag(x′
1t , . . . , x

′
pt), b = (b

′
1, . . . , b

′
p)

′ : k × 1, and
k =

∑
i ki.
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To deal with this model, a two block MCMC approach can be used as proposed by
Blattberg and George (1991) and Percy (1992). Chib and Greenberg (1995b) extend
that algorithm to SUR models with hierarchical priors and time-varying parameters of
the type considered by Gammerman and Migon (1993).
For the SUR model, the posterior density of the parameters is proportional to

p (b)p (W−1)×
∣∣W−1∣∣n/2 exp{−12 n∑

t = 1

( yt − Xtb)′W−1( yt − Xtb)

}
,

and the MCMC algorithm is defined by the full conditional distributions

b| y,M,W−1; W−1| y,M, b .

These are both tractable, with the former a normal distribution and the latter a Wishart
distribution.

Algorithm 7: Gaussian SUR
(1) Sample

b ~ Nk

⎛⎝Bn
(
B−10 b0 +

n∑
t = 1

X ′
tW

−1yt

)
,Bn =

(
B−10 +

n∑
t = 1

X ′
tW

−1Xt

)−1⎞⎠ .
(2) Sample

W−1 ~ Wp

⎡⎣n0 + n,
{
R−10 +

n∑
t = 1

( yt − Xtb)( yt − Xtb)′
}−1

⎤⎦ .
(3) Goto 1.

8.4. Binary and ordinal probit

Suppose that each yi is binary and the model of interest is

yi|M, b ~ F(x′
ib), i ¶ n; b ~ Nk ( b0,B0).

The posterior distribution does not belong to a named family of distributions. To
deal with the problem, Albert and Chib (1993a) introduce a technique that has
formed the basis for a unified methodology for univariate and multivariate binary and
ordinal response models and led to many applications. The Albert–Chib algorithm
capitalizes on the simplifications afforded by introducing latent or auxiliary data into
the sampling.
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Instead of the specification above, the model of interest is specified in equivalent
form as

zi|M, b ~ N (x′
ib, 1), yi = I [zi > 0], i ¶ n, b ~ Nk (b0,B0).

Now the MCMC Gibbs algorithm proceeds with the sampling of the full conditional
distributions

b| y,M, {zi}; {zi}| y,M, b ,

where

b| y,M, {zi} =d b| M, {zi},

has the same form as in the linear regression model with s 2 set equal to one and yi
replaced by zi and

{zi}| y,M, b =d
n∏
i = 1

zi| yi,M, b,

factor into a set of n independent distributions with each depending on the data only
through yi. The distributions zi| yi,M, b are obtained by reasoning as follows. Suppose
that yi = 0, then from Bayes theorem

f (zi| yi = 0,M, b) ∝ fN (zi|x′
ib , 1) f ( yi = 0|zi,M, b)

∝ fN (zi|x′
ib , 1) I [zi ¶ 0],

because f ( yi = 0|zi,M, b) is equal to one if zi is negative and equal to zero otherwise,
which is the definition of I [zi ¶ 0]. Hence, the information yi = 0 simply serves to
truncate the support of zi. By a similar argument it is shown that the support of zi is
(0,∞) when conditioned on the event yi = 1. Each of these truncated distributions is
simulated by the formula given in Equation (5). This leads to the following algorithm.

Algorithm 8: Binary probit
(1) Sample

b ~ Nk

⎛⎝Bn
(
B−10 b0 +

n∑
i = 1

xizi

)
,Bn =

(
B−10 +

n∑
i = 1

xix
′
i

)−1⎞⎠
(2) Sample

zi ~

{
T N (−∞, 0](x′

ib , 1) if yi = 0,
T N (0,∞)(x′

ib , 1) if yi = 1,
i ¶ n.

(3) Goto 1.
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Albert and Chib (1993a) also extend this algorithm to the ordinal categorical data case
where yi can take one of the values {0, 1, . . . , J} according to the probabilities

Pr( yi ¶ j|b, g) = F(gj − x′
ib), j = 0, 1, . . . , J. (28)

In this model the {gj} are category specific cut-points with g0 normalized to zero and
gJ to infinity. The remaining cut-points g = (g1, . . . , gJ − 1) are assumed to satisfy the
order restriction g1 ¶ · · · ¶ gJ − 1 which ensures that the cumulative probabilities are
non-decreasing. For given data y1, . . . , yn from this model, the likelihood function is
given by

f ( y|M, b , g) =
J∏
j = 0

∏
i:yi = j

[
F(gj − x′

ib) − F(gj − 1 − x
′
ib)

]
, (29)

and the posterior density, under the prior p( b, g), is proportional to p( b , g) f ( y| b , g).
Posterior simulation is again feasible with the the introduction of latent variables
z1, . . . , zn, where zi| b ~ N (xib, 1). A priori, we observe yi = j if the latent variable zi
falls in the interval [gj − 1, gj). Now the basic Albert and Chib MCMC scheme draws
the latent data, regression parameters and cut-points in sequence. Given yi = j, the
sampling of the latent data zi is from T N [gj − 1, gj](x

′
ib , 1) and the sampling of the

parameters b is as in Algorithm 8. For the cut-points, Cowles (1996) and Nandram
and Chen (1996) proposed that the cut-points be generated by the M–H algorithm,
marginalized over z. Subsequently, Albert and Chib (1998) simplified the latter
step by transforming the cut-points g so as to remove the ordering constraint. The
transformation is defined by the one-to-one map

d1 = log g1; dj = log(gj − gj − 1), 2 ¶ j ¶ J − 1. (30)

The advantage of working with d instead of g is that the parameters of the tailored
proposal density in the M–H step for d can be obtained by an unconstrained
optimization and the prior p(d) on d can be an unrestricted multivariate normal. The
algorithm is defined as follows.

Algorithm 9: Ordinal probit
(1) M-H

(a) Calculate

m = argmax
d
log f ( y|M, b , d),

and V = {−ð log f ( y|M, b , d) /ðdðd′}−1, the negative inverse of
the hessian at m.
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(b) Propose

d′ ~ fT (d|m,V , x).

(c) Calculate

a = min
{
p(d′) f ( y|M, b, d′)
p(d) f ( y|M, b , d)

fT (d|m,V , x)
fT (d′|m,V , x) , 1

}
.

(d) Move to d′ with probability a. Transform the new d to g via
the inverse map gj =

∑j
i = 1 exp(di), 1 ¶ j ¶ J − 1.

(2) Sample

zi ~ T N [gj − 1, gj](x
′
ib, 1) if yi = j, i ¶ n.

(3) Sample

b ~ Nk

⎛⎝Bn
(
B−10 b0 +

n∑
i = 1

xizi

)
,Bn =

(
B−10 +

n∑
i = 1

xix
′
i

)−1⎞⎠ .
(4) Goto 1.

8.5. Tobit censored regression

Consider now a model in the class of the Tobit family in which the data yi is generated
by

zi|M, b, s 2 ~ N (x′
ib , s

2).

yi = max(0, zi), 1 ¶ i ¶ n,

indicating that the observation zi is observed only when zi is positive. This model gives
rise to a mixed discrete-continuous distribution with a point mass of [1 − F(x′

ib /s )]
at zero and a density fN ( yi|x′

ib , s
2) on (0,∞). The likelihood function is given by

∏
i∈C

{1 − F(x′
ib/s )}

∏
i∈C′

(s−2) exp
{
−
1
2s 2

( yi − x
′
ib)

2

}
,

where C is the set of censored observations and F is the c.d.f. of the standard normal
random variable.
A MCMC procedure for this model is developed by Chib (1992) while Wei

and Tanner (1990a) discuss a related approach for a model that arises in survival
analysis. A set of tractable full conditional distributions is obtained by including
the vector z = (zi), i ∈ C in the sampling. Let yz = ( yzi) be a n × 1 vector
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with ith component yi if the ith observation is not censored and zi if it is censored.
Now apply the Gibbs sampling algorithm with blocks ( b , s 2, z) and associated full
conditional distributions

b| y,M, z, s 2; s 2| y,M, z, b and z| y,M, b , s 2.

The first two of these distributions follow from the results for linear regression with
Gaussian errors (with yzi used in place of yi) and the third distribution, analogous to
the probit case, is truncated normal on the interval (−∞, 0].

Algorithm 10: Tobit censored regression
(1) Sample

b ~ Nk

⎛⎝Bn
(
B−10 b0 + s

−2
n∑
t = 1

x′
t yzi

)
,Bn =

(
B−10 + s

−2
n∑
t = 1

xtx
′
t

)−1⎞⎠ .
(2) Sample

s 2 ~ IG
{
v0 + n
2

,
d0 +

∑n
i = 1( yzi − x

′
ib)

2

2

}
.

(3) Sample

zi ~ T N (−∞, 0](x
′
ib, s

2), i ∈ C.

(4) Goto 1.

8.6. Regression with change point

Suppose that y = { y1, y2, . . . , yn} is a time series such that the density of yt given
Yt − 1 = ( y1, . . . , yt − 1) is specified as

yt |M,Yt − 1, b1, b2, s 21 , s
2
2 , t ~

{
N (x′

tb1, s
2
1 ) if t ¶ t ,

N (x′
tb2, s

2
2 ) if t < t,

where t is an unknown change point. The objective is to estimate the parameter vectors
b = ( b1, b2), the regression variances s 2 = (s 21 , s

2
2 ) and the change point t .

An analysis of such models from a MCMC perspective was initiated by Carlin,
Gelfand and Smith (1992). It is based on the inclusion of the change point t in the
MCMC sampling. Stephens (1994) generalized the approach of Carlin, Gelfand and
Smith for models with multiple change points by including each of the unobserved
change points in the sampling. In this generalization, however, the step that involves
the simulation of the change points conditioned on the parameters and the data can be
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computationally very demanding when the sample size n is large. A different approach
to multiple change point problems which is computationally simpler is developed by
Chib (1998). An important aspect of the MCMC approach for change point problems
is that it can be easily adapted for binary and count data.
Assume that

bj ~ Nk ( b0,B0); s 2j ~ IG
(
n0
2
,
d0
2

)
; t ~ Unif{a0, a0 + 1, . . . , b0},

where t follows a discrete uniform distribution on the integers {a0, b0}. Then the
posterior density is

p ( b, s 2, t | y,M) ∝ p( b) p(s 2) p(t)
∏
t ¶ t

÷( yt |x′
tb1, s

2
1 )
∏
t < t

÷( yt |x′
tb2, s

2
2 ).

Conditional on t the data splits into two parts and the conditional distributions of the
regression parameters are obtained from the regression updates of Algorithm 5. On
the other hand, given the regression parameters, the full conditional distribution of t
is concentrated on {a0, b0} with mass function

Pr(t = k| y,M, b, s 2) ∝
∏
t ¶ k

÷( yt |x′
t b1, s

2
1 )
∏
k < t

÷( yt |x′
t b2, s

2
2 ).

The normalizing constant of this mass function is the sum of the right hand side
over k .

Algorithm 11: Regression with change point
(1) Sample for j = 1, 2

bj ~ Nk ( b̂j ,Bj),

b̂j = Bj

⎛⎝B−10 b0 + s−2j uj∑
t = lj

x′
t yt

⎞⎠ ,
Bj =

⎛⎝B−10 + s−2 uj∑
t = lj

xtx
′
t

⎞⎠−1 ,
lj = 1 + ( j − 1)t ; uj = t + ( j − 1)(n − t).

(2) Sample for j = 1, 2

s 2j ~ IG
{
v0 + nj
2

,
d0 +

∑uj
t = lj
( yt − x′

tbj)
2

2

}
,

nj = t + ( j − 1)(n − 2t).
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(3) Calculate for k = a0, a0 + 1, . . . , b0

pk ∝
∏
t ¶ k

÷( yt |x′
tb1, s

2
1 )
∏
k < t

÷( yt |x′
tb2, s

2
2 ).

(4) Sample

t ~ { pa0 , pa0 + 1, . . . , pb0}.

(5) Goto 1.

8.7. Autoregressive time series

Consider the model

yt = x
′
tb + ût , 1 ¶ t ¶ n,

where the error is generated by the stationary AR( p) process

ût − ÷1ût − 1 − · · · − ÷pût − p = ut or ÷(L) ût = ut ,

where ut ~ i.i.d. N (0, s 2) and ÷(L) = 1 − ÷1L − · · · − ÷pL p is a polynomial in
the lag operator L. One interesting complication in this model is that the parameters
÷ = (÷1, . . . , ÷p), due to the stationarity assumption, are restricted to lie in the region S÷
of Rp where the roots of ÷(L) are all outside the unit circle. Chib and Greenberg
(1994), based on Chib (1993), derive a multiple-block Metropolis–Hastings MCMC
algorithm for this model in which the proposal densities for b and s 2 are the respective
full conditional densities while that of ÷ is a normal density constructed from the
observations yt , t ¾ p + 1.
Denote the first p observations as Yp = ( y1, . . . , yp)′ and Xp = (x1, . . . , xp)′ and

let y∗t = ÷(L) yt and x
∗
t = ÷(L)xt , t ¾ p + 1. Also define the p dimensional matrix Sp

through the matrix equation

Sp = FSpF ′ + e1( p) e1( p)′,

where

F =

(
÷′
−p ÷p

Ip − 1 0

)
,

e1( p) = (1, 0, . . . , 0)′ and ÷−p = (÷1, . . . , ÷p − 1)′. Let the cholesky factorization of Sp
be QQ′ and define Y ∗

p = Q
−1Yp and X ∗

p = Q
−1Xp which are functions of ÷. Finally

define et = yt − x′
tb , t ¾ p + 1.
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One can now proceed by noting that given ÷, updates of b and s 2 follow from the
model

y∗t |M, b , s 2 ~ N (x∗′
t b, s

2), t ¾ 1,
b ~ Nk ( b0,B0),

s 2 ~ IG
(
v0
2
,
d0
2

)
,

while conditioned on (b, s 2), and the assumption that the prior density of ÷ is
N (÷0,G0) truncated to the region S÷, the full conditional of ÷ is

p (÷| y,M, b , s 2) ∝ Y (÷)× Np(÷̂,V ) IS÷ ,

where

Y (÷) = |Sp|−1/2 exp
{
−
1
2s 2

(Yp − Xpb)S−1p (Yp − Xpb)
}
,

÷̂ = V (G−10 ÷0 +
∑n

t = p + 1 Etet), V = (G
−1
0 + s

−2
∑n

t = p + 1 EtE
′
t )
−1, Et = (et − 1, . . . , et − p)′.

To sample this density the proposal density is specified as

q(÷| y,M, b, s 2) = Np(÷|÷̂,V ).

With this tailored proposal density the probability of move just involves Y (÷), leading
to a M–H step that is both fast (because it entails the calculation of a function based
on the first p observations and not the entire sample) and highly efficient (because the
proposal density is matched to the target).

Algorithm 12: Regression with autoregressive errors
(1) Calculate ( y∗t , x

∗
t ), t ¶ n.

(2) Sample

b ~ Nk

(
Bn(B

−1
0 b0 + s

−2
n∑
t = 1

x∗′
t y

∗
t ),Bn = (B

−1
0 + s

−2
n∑
t = 1

x∗
t x

∗′
t )

−1

)
.

(3) Sample

s 2 ~ IG
{
v0 + n
2

,
d0 +

∑n
i = 1( y

∗
t − x

∗′
i b)

2

2

}
.

(4) M-H
(a) Calculate

÷̂ = V (G−10 ÷0 + s
−2

n∑
t = p + 1

E′
t et); V = (G−10 + s

−2
n∑

t = p + 1

EtE
′
t )
−1.
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(b) Propose

÷′ ~ Np(÷̂,V ).

(c) Calculate

a = min

{
1,
Y (÷′) IS÷′
Y (÷)

}
.

(d) Move to ÷′ with probability a.
(5) Goto 1.

8.8. Hidden Markov models

In this subsection we consider the MCMC-based analysis of hidden Markov models (or
Markov mixture models or Markov switching models). The general model is described
as

yt |Yt − 1,M, st = k , q ~ f ( yt |Yt − 1,M, qk ), k = 1, . . . , m,

st |st − 1,P ~ Markov(P,p1),
q ~ p ,

pi ~ Dirichlet (ai1, . . . , aim), i ¶ m,

where st ∈ {1, . . . , m} is an unobservable random variable which evolves according
to a Markov process with transition matrix P = { pij}, with pij = Pr(st = j|st − 1 = i),
and initial distribution p1 at t = 1, f is a density or mass function, q = (q1, . . . , qm)
are the parameters of f under each possible value of st , and pi is the ith row of P that
is assumed to have a Dirichlet prior distribution with parameters (ai1, . . . , aim). For
identifiability reasons, the Markov chain of st is assumed to be time-homogeneous,
irreducible, and aperiodic.
The MCMC analysis of such models was initiated by Albert and Chib (1993b) in the

context of a more general model than the one above where the conditional density of
the data depends not just on st but also on the previous values {st − 1, . . . , st − r}, as in
the model of Hamilton (1989). The approach relies on augmenting the parameter space
to include the unobserved states and simulating p (Sn, q ,P| y,M) via the conditional
distributions

st | y,M,S(−t), q ,P(t ¶ n); q| y,M,Sn,P; { pi}| y,M, q ,Sn,

where Sn = (s1, . . . , sn) denotes the entire collection of states. Robert, Celeux and
Diebolt (1993) and McCulloch and Tsay (1994) developed a similar approach for the
simpler model in which only the current state st appears in the density of yt while
Billio, Monfort and Robert (1999) consider ARMA models with Markov switching.



Ch. 57: Markov Chain Monte Carlo Methods: Computation and Inference 3613

Chib (1996), whose approach we now follow, modifies the first set of blocks of the
above scheme to sample the states jointly from

Sn| y,M, q ,P,

in one block. This leads to a more efficient MCMC algorithm. The sampling of Sn
is achieved by one forward and backward pass through the data. In the forward pass,
one recursively produces the sequence of mass functions { p(st |Yt ,M, q ,P)} (t ¶ n) as
follows: assume that the function p(st − 1|Yt − 1,M, q ,P) is available. Then, one obtains
p(st |Yt ,M, q ,P) by calculating

p(st |Yt − 1,M, q ,P) =
m∑
l = 1

p(st | st − 1 = l, q ,P)× p(st − 1 = l|Yt − 1, q ,P),

followed by

p(st |Yt ,M, q ,P) =
p(st |Yt − 1,M, q ,P)× f ( yt |Yt − 1,M, qst ,P)∑m

l = 1 p(st = l|Yt − 1,M, q ,P)× f ( yt |Yt − 1,M, ql ,P)
.

These forward recursions can be initialized at t = 1 by setting p(s1|Y0,M, q ,P) to
be the stationary distribution of the chain (the left eigenvector corresponding to the
eigenvalue of one).
Then, in the backward pass one simulates Sn by the method of composition, first

simulating sn from sn| y,M, q ,P and then the st’s using the probability mass functions

p(st = k| y,M,S t + 1, q ,P) =
p(st = k|Yt ,M, q ,P)× p(st + 1|st = k ,P)∑m
l = 1 p(st = l|Yt ,M, q ,P)× p(st + 1|st = l,P)

,

k ¶ m, t ¶ n − 1,

where S t + 1 = (st + 1, . . . , sn) consists of the simulated values from earlier steps and
the second term of the numerator is the Markov transition probability, which is picked
off from the column of P determined by the simulated value of st + 1.
Given the simulated vector Sn, the data separates into m non-contiguous pieces and

the simulation of qk is from the full conditional distribution

p (qk )
∏
t : st = k

f ( yt |Yt − 1,M, q ,P).

Depending on the form of f and p this may belong to a named distribution. Otherwise,
this distribution is sampled by a M–H step. Finally, the last distribution depends simply
on Sn with each row pi of P independently an updated Dirichlet distribution:

pi|Sn ~ D(ai1 + ni1, . . . , ai1 + nim), (i ¶ m),

where nik is the total number of one-step transitions from state i to state k in the
vector Sn.
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Algorithm 13: Hidden Markov model
(1) Calculate and store for t = 1, 2, . . . , n

p(st |Yt ,M, q ,P).

(2) Sample

sn ~ p(sn| y,M, q ,P).

(3) Sample for t = n − 1, n − 2, . . . , 1

st ~ p(st | y,M,S t + 1, q ,P).

(4) Sample for k = 1, . . . , m

qk ∝ p (qk )
∏
t : st = k

f ( yt |Yt − 1,M, q ,P).

(5) Sample for i = 1, 2, . . . , m

pi ~ D(ai1 + ni1, . . . , ai1 + nim).

(6) Goto 1.

8.9. State space models

Consider next a linear state space model in which a scalar observation yt is generated
as

yt |M, qt ~ N (x′
tqt , s

2),

qt |qt − 1 ~ Nm(Gq t − 1,Y ), 1 ¶ t ¶ n,

s 2 ~ IG
(
v0
2
,
d0
2

)
,

Y −1 ~ Wm( ø0,R0),

where qt is an m × 1 state vector and G is assumed known. For nonlinear versions
of this model, a MCMC fitting approach is provided by Carlin, Polson and Stoffer
(1992). It is based on the inclusion of the variables {qt} in the sampling followed by
one-at-a-time sampling of qt given q−t (the remaining qt’s) and (s 2,Y ). For the linear
version presented above, Carter and Kohn (1994) and Fruhwirth-Schnatter (1994) show
that a reduced blocking scheme involving the joint simulation of {qt} is possible and
desirable, because the qt’s are correlated by construction, while de Jong and Shephard
(1995) provide an important alternative procedure called the simulation smoother that
is particularly useful if Y is not positive definite or if the dimension m of the state
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vector is large. Carter and Kohn (1996) and Shephard (1994) also consider models,
called conditionally Gaussian state space models, that have Gaussian observation
densities conditioned on a discrete or continuous variable st . An example of this is
provided below in Section 8.10. Chib and Greenberg (1995b) consider hierarchical and
vector versions of the above model while additional issues related to the fitting and
parameterization of state space models are considered by Pitt and Shephard (1997).
The MCMC implementation for this model is based on the distributions

q1, . . . , qn| y,M, s 2,Y ; s 2| y,M, {qt},Y ; Y −1| y,M, {qt}.

To see how the qt’s are sampled, write the joint distribution as

p(qn| y,M, s 2,Y )× p(qn − 1| y,M, qn, s 2,Y )

× · · · × p(q1| y,M, q2, . . . , qn, s 2,Y ),

where, on letting qs = (qs, . . . , qn), Ys = ( y1, . . . , ys) and Y s = ( ys, . . . , yn) for s ¶ n,
the typical term is

p(qt | y,M, q t + 1, s 2,Y ) ∝ p(qt |Yt ,M, s 2,Y ) p(qt + 1|qt ,M, s 2,Y ),

due to the fact that (Y t + 1, q t + 1) is independent of qt given (qt + 1, s 2,Y ). The first
density on the right hand side is Gaussian with moments given by the Kalman filter
recursions. The second density is Gaussian with moments Gq t and Y . By completing
the square in qt the moments of p(qt | y,M, q t + 1, s 2,Y ) can be derived. Then, the joint
distribution q1, . . . , qn| y,M, s 2,Y can be sampled by the method of composition.

Algorithm 14: Gaussian state space
(1) Kalman filter

(a) Calculate for t = 1, 2, . . . , n

q̂t | t − 1 = Gq̂ t − 1 | t − 1, Rt | t − 1 = GRt − 1 | t − 1G′ +Y ,
ft | t − 1 = x′

tRt | t − 1xt + s
2, Kt = Rt | t − 1xt f −1t | t − 1,

q̂t | t = q̂t | t − 1 + Kt( yt − x′
t q̂t | t − 1), Rt | t = (I − Ktx

′
t )Rt | t − 1,

Mt = Rt | tG′R−1t + 1 | t , Rt = Rt | t −MtRt + 1 | t M ′
t .

(b) Store

q̂t | t ; Mt ; Rt .

(2) Simulation step
(a) Sample

qn ~ Nm(q̂n | n,Rn | n).
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(b) Sample for t = n − 1, n − 2, . . . , 1

qt ~ Nm(q̂t ,Rt), q̂t = q̂t | t +Mt

(
qt + 1 − Gq̂ t | t

)
.

(3) Sample

s 2 ~ IG
{
v0 + n
2

,
d0 +

∑n
i = 1( yt − x

′
iqt)

2

2

}
.

(4) Sample

Y −1 ~ Wm

⎡⎣ ø0 + n,
{
R−10 +

n∑
t = 1

(qt − Gq t − 1)(qt − Gq t − 1)′
}−1

⎤⎦ .
(5) Goto 1.

8.10. Stochastic volatility model

Suppose that time series observations {yt} are generated by the stochastic volatil-
ity (SV) model [see, for example, Taylor (1994), Shephard (1996), and Ghysels, Harvey
and Renault (1996)]

yt = exp(ht/2)ut , ht = m + ÷(ht − 1 − m) + sht , t ¶ n,

where {ht} is the latent log-volatility of yt and {ut} and {ht} are white noise standard
normal random variables. This is an example of a state space model in which the
state variable ht appears non-linearly in the observation equation. The model can
be extended to include covariates in the observation and evolution equations and
to include a heavy-tailed, non-Gaussian distribution for ut . The MCMC analysis of
this model was initiated by Jacquier, Polson and Rossi (1994) based on the general
approach of Carlin, Polson and Stoffer (1992). If we let q = (÷,m, s 2), then the
algorithm of Jacquier, Polson and Rossi (1994) is based on the (n + 3) full conditional
distributions

ht | y,M, h−t , q , t = 1, 2, . . . , n,

÷| y,M, {ht},m, s 2; m| y,M, {ht}, ÷, s 2; s 2| y,M, {ht}, ÷,m,

where the latent variables ht are sampled by a sequence of Metropolis–Hastings steps.
Subsequently, Kim, Shephard and Chib (1998) discussed an alternative approach that
leads to considerable improvements in the mixing of the Markov chain. The latter
approach has been further refined by Chib, Nardari and Shephard (1998, 1999).
The idea behind the Kim, Shepard and Chib approach is to approximate the

SV model by a conditionally Gaussian state space model with the introduction of
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Table 1
Parameters of seven-component Gaussian mixture to approximate the distribution of log c21

st q mst v2st

1 0.00730 −11.40039 5.79596

2 0.10556 −5.24321 2.61369

3 0.00002 −9.83726 5.17950

4 0.04395 1.50746 0.16735

5 0.34001 −0.65098 0.64009

6 0.24566 0.52478 0.34023

7 0.25750 −2.35859 1.26261

multinomial random variables {st} that follow a seven-point discrete distribution.
Conditioned on {st}, the model is Gaussian and the variables ht appear linearly in the
observation equation. Then, the entire set of {ht} are sampled jointly conditioned on q
and {st} by either the simulation smoother of de Jong and Shephard (1995) or by the
algorithm for simulating states given in Algorithm 14. Once the MCMC simulation is
concluded the parameter draws are reweighted to correspond to the original non-linear
model.
To begin with, reexpress the SV model as

y∗t = ht + zt , ht = m + ÷(ht − 1 − m) + sht ,

where y∗t = ln( y2t ) and zt = log e2t is distributed as a log of chi-squared random
variable with one degrees of freedom. Now approximate the distribution of y∗t |ht by a
mixture of normal distributions. A very accurate representation is given by the mixture
distribution

y∗t |ht , st ~ N (mst + ht , v2st ), Pr(st = i) = qi, i ¶ 7, t ¶ n,

where st ∈ (1, 2, . . . , 7) is an unobserved component indicator with probability mass
function q = {qi} and the parameters {q,mst , v2st} are as reported in Table 1. Now the
parameters and the latent variables can be simulated by a two block MCMC algorithm
defined by the distributions

(q , h1, . . . , hn)|{y∗t }, {st},
{st}|{y∗t }, {ht}, q .

where the first block is sampled by the method of composition by first drawing q from
p (q|{y∗t }, {st}) by a M–H step followed by a draw of {ht} by the simulation smoother.
In the former step the target distribution is

p (q|{y∗t }, {st}) ∝ p(q) f ( y∗1 , . . . , y
∗
n |{st}, q)

= p(q)
n∏
t = 1

f ( y∗t |F∗
t − 1, {st}, q),
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where each one-step ahead density f ( y∗t |F∗
t − 1, {st}, q) can be derived from the output

of the Kalman filter recursions, adapted to the differing components, as indicated by
the component vector {st}, and p(q) is the prior density. For ÷ the prior can be taken
to be the scaled beta density

p(÷) = c (0.5(1 + ÷))÷
(1) − 1 (0.5(1 − ÷))÷

(2) − 1 , ÷(1), ÷(2) > 0.5, (31)

where

c = 0.5
G (÷(1) + ÷(2))
G (÷(1))G (÷(2))

,

with prior mean of 2÷(1)/ (÷(1) + ÷(2) − 1), while those on m and s 2 can be normal and
inverse gamma densities, respectively.

Algorithm 15: Stochastic volatility
(1) Initialize {st}
(2) M-H

(a) Calculate m = argmaxq l(q) where

l(q) = − 12

n∑
t = 1

ln ft | t − 1 − 1
2

n∑
t = 1

( y∗t − mst − ĥt | t − 1)
2

ft | t − 1

and V =
{
−ð2l(q)/ðqðq ′}−1, the negative inverse of the

hessian at m, where ft | t − 1 and ĥt | t − 1 are computed from the
Kalman filter recursions

ĥt | t − 1 = m + ÷(ĥt − 1 | t − 1 − m), Rt | t − 1 = ÷2Rt − 1 | t − 1 + s 2,
ft | t − 1 = Rt | t − 1 + v2st , Kt = Rt | t − 1 f −1t | t − 1,
ĥt | t = ĥt | t − 1 + Kt( y∗t − mst − ĥt | t − 1), Rt | t = (1 − Kt)Rt | t − 1.

(b) Propose

q ′ ~ fT (q|m,V , x).

(c) Calculate

a = min
{
p(q ′) l(q ′)
p(q) l(q)

fT (q|m,V , x)
fT (q ′|m,V , x) , 1

}
.

(d) Move to q ′ with probability a.
(3) Sample {ht} using algorithm 13, or the simulation smoother

algorithm, modified to include the components of the
mixture selected by {st}.
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(4) Sample

st ~ Pr(st | y∗t , ht ,y) ∝ Pr(st) fN ( y
∗
t |mst + ht , v2st ).

(5) Goto 2.

8.11. Gaussian panel data models

For continuous clustered or panel data a common model formulation is that of Laird
and Ware (1982)

yi|M, b , bi, s 2 ~ Nni (Xib +Wibi, s 2Ini ), bi|D ~ Nq(0,D),

D−1 ~ Wp( ø0,R0), b ~ Nk ( b0,B0), s 2 ~ IG
(
n0
2
,
d0
2

)
,

where yi is a ni vector of observations and the matrix Wi is a subset of Xi. If Wi is a
vector of units, then the model reduces to a panel model with intercept heterogeneity.
If Wi = Xi, then the model becomes the random coefficient panel model.
Zeger and Karim (1991) and Wakefield et al. (1994) propose a Gibbs MCMC ap-

proach for this model that is based on including {bi} in the sampling in conjunction
with full blocking. This blocking scheme is not very desirable because the random
effects and the fixed effects b tend to be highly correlated and treating them as
separate blocks creates problems with mixing Gelfand, Sahu and Carlin (1995). To
deal with this problem, Chib and Carlin (1999) suggest a number of reduced blocking
schemes. One of the simplest proceeds by sampling b and {bi} in one block by the
method of composition: first sampling b marginalized over {bi} and then sampling {bi}
conditioned on b . What makes reduced blocking possible is the fact that the distribution
of yi marginalized over bi is also Gaussian:

yi|M, b ,D, s 2 ~ Nni (Xib ,Vi), Vi = s 2Ini +WiDW
′
i .

The updated distribution of b , marginalized over {bi} is, therefore, easy to derive.
The rest of the algorithm follows the steps of Wakefield et al. (1994). In particular,
the sampling of the random effects is from independent normal distributions that
are derived by treating ( yi − Xib) as the “data,” bi as the regression coefficient and
bi ~ Nq(0,D) as the prior. The sampling of D−1 is from an Wishart distribution and
that of s 2 from an inverse gamma distribution.

Algorithm 16: Gaussian Panel
(1) Sample

b ~ Nk

(
Bn(B

−1
0 b0 +

n∑
i = 1

XiV
−1
i yi),Bn = (B

−1
0 +

n∑
i = 1

XiV
−1
i Xi)

−1

)
.



3620 S. Chib

(2) Sample

bi ~ Nq

(
DiW

′
i s

−2( yi − Xib),Di = (D + s−2W ′
iWi)

−1
)
, i ¶ n.

(3) Sample

D−1 ~ Wp

⎧⎨⎩ ø0 + n,
(
R−10 +

n∑
i = 1

bib
′
i

)−1⎫⎬⎭ .
(4) Sample

s 2 ~ IG
(
n0 +

∑
ni

2
,
d0 +

∑n
i = 1 ‖ yi − Xib −Wibi ‖2

2

)
.

(5) Goto 1.

8.12. Multivariate binary data models

To model correlated binary data a canonical model is the multivariate probit (MVP).
Let yij denote the binary response on the ith observation unit and jth variable, and let
yi = ( yi1, . . . , yiJ )′, 1 ¶ i ¶ n, denote the collection of responses on all J variables.
Then, under the MVP model the marginal probability of yij = 1 is

Pr( yij = 1|M, b) = F(x′
ijbj),

and the joint probability that Yi = yi conditioned on the parameters ( b ,S) is

Pr(Yi = yi|M, b,S) ≡ Pr( yi|M, b ,S) =
∫
AiJ

· · ·
∫
Ai1

÷J (t|0,S) dt,

where as in the SUR model, b ′ = (b ′
1, . . . , b

′
J ) ∈ Rk , k =

∑
kj , but unlike the

SUR model, the J− matrix S = {sjk} is in correlation form (with units on the
diagonal), and Aij is the interval

Aij =

{
(−∞, x′

ijbj) if yij = 1,[
x′
ijbj ,∞

)
if yij = 0.

To simplify the MCMC implementation for this model Chib and Greenberg (1998)
follow the general approach of Albert and Chib (1993a) and employ latent variables.
Let

zi ~ NJ (Xib ,S),

with the observed data given by the sign of zij:

yij = I (zij > 0), j = 1, . . . , J ,

where I (A) is the indicator function of the event A. If we let s = (s21, s31, s32, . . . , sJJ )
denote the J (J − 1)/2 distinct elements of S , and let z = (z1, . . . , zn) denote the latent
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values corresponding to the observed data Y = {yi}ni = 1, then the algorithm proceeds
with the sampling of the augmented posterior density

p ( b,s , z| y,M) ∝ p( b) p(s) f (z|M, b,S) Pr( y|z, b ,S)

∝ p( b) p(s)
n∏
i = 1

{÷J (zi|Xib,S) Pr( yi|zi, b ,S)} , b ∈ Rk ,s ∈ C,

where

Pr( yi|zi, b,S) =
J∏
j = 1

{I (zij > 0) I ( yij = 1) + I (zij ¶ 0) I ( yij = 0)} ,

p(s) is a normal density truncated to the region C, and C is the set of values of s
that produce a positive definite correlation matrix S .
Conditioned on {zi} and S , the update for b is as in the SUR model, while

conditioned on (b,S), zij can be sampled one at a time conditioned on the other latent
values from truncated normal distributions, where the region of truncation is either
(0,∞) or (−∞, 0) depending on whether the corresponding yij is one or zero. The key
step in the algorithm is the sampling of s , the unrestricted elements of S , from the
full conditional density p (s |M, z, b) ∝ p(s)

∏n
i = 1 ÷J (zi|Xib ,S). This density, which

is truncated to the complicated region C, is sampled by a M–H step with tailored
proposal density q(s |M, z, b) = fT (s |m,V , x) where

m = arg max
s ∈C

n∑
i = 1

ln ÷J (zi|Xib,S),

V = −

{
ð2

∑n
i = 1 ln ÷J (zi|Xib ,S)
ðsðs ′

}−1
s =m

,

are the mode and curvature of the target distribution, given the current values of the
conditioning variables. Note that, as in Algorithm 12, no truncation is enforced on the
proposal density.

Algorithm 17: Multivariate probit
(1) Sample for i ¶ n, j ¶ J

zij ~

{
T N (0,∞)(mij , vij) if yij = 1,
T N (−∞,0])(mij , vij) if yij = 0,

mij = E(zij|Zi(−j), b,S),
vij = Var(zij|Zi(−j), b,S).
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(2) Sample

b ~ Nk

⎛⎝Bn
(
B−10 b0 +

n∑
i = 1

X ′
i S

−1zi

)
,Bn =

(
B−10 +

n∑
i = 1

X ′
i S

−1X −1i

)−1⎞⎠ .
(3) M-H

(a) Calculate the parameters (m,V ).
(b) Propose

s ′ ~ fT (s |m,V , x).

(c) Calculate

a = min
{
p(s ′)

∏n
i = 1 ÷J (zi|Xib ,S ′) I [s ′ ∈ C]

p(s)
∏n
i = 1 ÷J (zi|Xib,S)

fT (s |m,V , x)
fT (s ′|m,V , x) , 1

}
.

(d) Move to s ′ with probability a.
(4) Goto 1.

As an application of this algorithm consider a data set in which the multivariate binary
responses are generated by a panel strucure. The data is concerned with the health
effects of pollution on 537 children in Stuebenville, Ohio, each observed at ages 7, 8,
9 and 10 years, and the response variable is an indicator of wheezing status [Diggle,
Liang and Zeger (1995)]. Suppose that the marginal probability of wheeze status of
the ith child at the jth time point is specified as

Pr( yij = 1| b) = F( b0 + b1x1ij + b2x2ij + b3x3ij), i ¶ 537, j ¶ 4,

where b is constant across categories, x1 is the age of the child centered at nine
years, x2 is a binary indicator variable representing the mother’s smoking habit during
the first year of the study, and x3 = x1x2. Suppose that the Gaussian prior on
b = ( b1, b2, b3, b4) is centered at zero with a variance of 10 Ik and let p(s) be the
density of a normal distribution, with mean zero and variance I6, restricted to region
that leads to a positive-definite correlation matrix, where (s21, s31, s32, s41, s42, s43).
From 10 000 cycles of Algorithm 17 one obtains the following covariate effects and
posterior distributions of the correlations.
Notice that the summary tabular output in Table 2 contains not only the posterior

means and standard deviations of the parameters but also the 95% credibility intervals,
all computed from the sampled draws. It may be seen from Figure 6 that the
posterior distributions of the correlations are similar suggesting that an equicorrelated
correlation structure might be appropriate for these data. This issue is considered more
formally in Section 10.2 below.
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Table 2
Covariate effects in the Ohio wheeze data: MVP model with unrestricted correlations 1

b Prior

Mean Std. dev.

Posterior 2

Mean NSE Std. dev. Lower Upper

b1 0.000 3.162 −1.108 0.001 0.062 −1.231 −0.985

b2 0.000 3.162 −0.077 0.001 0.030 −0.136 −0.017

b3 0.000 3.162 0.155 0.002 0.101 −0.043 0.352

b4 0.000 3.162 0.036 0.001 0.049 −0.058 0.131

1 The results are based on 10 000 draws from Algorithm 17.
2 NSE denotes the numerical standard error, lower is the 2.5th percentile and upper is the 97.5th
percentile of the simulated draws.

Fig. 6. Posterior boxplots of the correlations in the Ohio wheeze data: MVP model.

9. Sampling the predictive density

A fundamental goal of any statistical analysis is to predict a set of future or unobserved
observations yf given the current data y and the assumed model M. In the Bayesian
context this problem is solved by the calculation of the Bayesian prediction density
which is defined as the distribution of yf conditioned on ( y,M) but marginalized over
the parameters q . More formally, the predictive density is defined as

f ( yf | y,M) =
∫
f ( yf | y,M, q)p (q| y,M) dq , (32)
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where f ( yf | y,M, q) is the conditional density of yf given ( y,M, q) and the
marginalization is with respect to the posterior density p (q| y,M) of q . In general,
the predictive density is not available in closed form. However, in the context of
MCMC problems that deliver a sample of (correlated) draws

q (1), . . . , q (M ) ~ p (q| y,M),

this is hardly a problem. One can utilize the posterior draws in conjunction with the
method of composition to produce a sample of draws from the predictive density. This
is done by appending a step at the end of the MCMC iterations where for each value
q ( j) one simulates

y( j)f ~ f ( yf | y,M, q ( j)), j ¶ M , (33)

from the density of the observations, conditioned on q ( j). The collection of simulated
values { y(1)f , . . . , y

(M )
f } is a sample from the Bayes prediction density f ( yf | y,M).

The simulated sample can be summarized in the usual way by the computation of
sample averages and quantiles. Thus, to sample the prediction density one simply has
to simulate the data generating process for each simulated value of the parameters.
In some problems, that have a latent data structure, a modified procedure to sample

the predictive density may be necessary. Suppose that zf denotes the latent data in the
prediction period and z denote the latent data in the sample period. Let y = (q , z) and
suppose that the MCMC sampler produces the draws

y (1), . . . , y (M ) ~ p (y| y,M).

In this situation, the predictive density can be expressed as

f ( yf | y,M) =
∫
f ( yf | y,M, zf ,y)p (zf | y,M,y)p (y| y,M) dzf dy, (34)

which may again be sampled by the method of composition where for each value
y ( j) ~ p (y| y,M) one simulates

z( j)f ~ p (zf | y,M,y ( j)), y( j)f ~ f ( yf | y,M, z( j)f ,y
( j)).

The simulated values of yf from this two step process are again from the predictive
density.
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To illustrate the one step procedure, suppose that one is interested in predicting
yf = ( yn + 1, yn + 2) from a regression model with autoregressive errors of order two
where

yt |Yt − 1,M, b , ÷, s 2 ~ N (÷1 yt − 1 + ÷2 yt − 2 + (xt − ÷1xt − 1 − ÷2xt − 2)′b , s 2).

Then, for each draw ( b ( j), ÷( j), s 2( j)) from Algorithm 12, one simulates yf by
sampling

y( j)n + 1 ~ N (÷( j)1 yn + ÷
( j)
2 yn − 1 + (xn + 1 − ÷

( j)
1 xn − ÷

( j)
2 xn − 1)

′b ( j), s 2( j))

and

y( j)n + 2 ~ N (÷( j)1 y
( j)
n + 1 + ÷

( j)
2 yn + (xn + 2 − ÷

( j)
1 xn + 1 − ÷

( j)
2 xn)

′b ( j), s 2( j)).

The sample of simulated values { y( j)n + 1, y
( j)
n + 2} from repeating this process is a sample

from the (joint) predictive density.
As an example of the two step procedure consider a specific hidden Markov model

in which

yt |Yt − 1,M, b0, g , s 2 ~ N ( b0 + gst , s 2),

where st ∈ {0, 1} is a unobserved state variable that follows a two-state Markov process
with unknown transition probabilities

P =

(
p00 p01
p10 p11

)
.

In this case, suppose that Algorithm 13 has been used to deliver draws on
y = ( b0, g , s 2, a, b, Sn). As described by Albert and Chib (1993b), to predict yn + 1
we take each draw of y ( j) and sample

s( j)n + 1 ~ p(sn + 1|s( j)n , p
( j)
11 , p

( j)
22 )

from the Markov chain (this is just a two point discrete distribution), and then sample

y( j)n + 1 ~ N ( b ( j)0 + g ( j)s( j)n + 1, s
2( j)).

The next value y( j)n + 2 is drawn in the same way after s
( j)
n + 2 is simulated from the Markov

chain p(sn + 2|s( j)n + 1, p
( j)
11 , p

( j)
22 ). These two steps can be iterated for any number of periods

into the future and the whole process repeated for each simulated value of y.
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10. MCMC methods in model choice problems

10.1. Background

Consider the situation in which there are K possible models M1, . . . , MK for the
observed data defined by the sampling densities { f ( y|qk ,Mk )} and proper prior
densities { p(qk |Mk )} and the objective is to find the evidence in the data for the
different models. In the Bayesian approach this question is answered by placing prior
probabilities Pr(Mk ) on each of the K models and using the Bayes calculus to find
the posterior probabilities {Pr(M1| y), . . . , Pr(MK | y)} conditioned on the data but
marginalized over the unknowns qk . Specifically, the posterior probability of Mk is
given by the expression

Pr(Mk | y) =
Pr(Mk )m( y|Mk )∑K
l = 1 Pr(Ml)m( y|Ml)

∝ Pr(Mk )m( y|Mk ), (k ¶ K),

where

m( y|Mk ) =
∫
f ( y|qk ,Mk ) p(qk |Mk ) dqk , (35)

is the marginal density of the data and is called the marginal likelihood of Mk . In
words, the posterior probability of Mk is proportional to the prior probability of Mk

times the marginal likelihood of Mk . The evidence provided by the data about the
models under consideration is summarized by the posterior probability of each model.
Often the posterior probabilities are summarized in terms of the posterior odds

Pr(Mi| y)
Pr(Mj| y)

=
Pr(Mi)
Pr(Mj)

m( y|Mi)
m( y|Mj)

,

which provides the relative support for the two models. The ratio of marginal
likelihoods in this expression is the Bayes factor of Mi vs Mj .
If interest centers on the prediction of observables then it is possible to mix over

the alternative predictive densities by utilizing the posterior probabilities as weights.
More formally, the prediction density of a set of observations yf marginalized over
both {qk} and {Mk} is given by

f ( yf | y) =
K∑
j = 1

Pr(Mk | y) f ( yf | y,Mk ),

where f ( yf | y,Mk ) is the prediction density in Equation (34).
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10.2. Marginal likelihood computation

A central problem in estimating the marginal likelihood is that it is an integral of
the sampling density over the prior distribution of qk . Thus, MCMC methods, which
deliver sample values from the posterior density, cannot be used to directly average
the sampling density because that estimate would converge to∫

f ( y|qk ,Mk ) p(qk | y,Mk ) dqk ,

which is not the marginal likelihood. In addition, taking draws from the prior density
to do the averaging produces an estimate that is simulation-consistent but highly
inefficient because draws from the prior density are not likely to be in high density
regions of the sampling density f ( y|qk ,Mk ). A natural way to correct this problem
is by the method of importance sampling. If we let h(qk |Mk ) denote a suitable
importance sampling function, then the marginal likelihood can be estimated as

m̂I ( y|Mk ) = M
−1

M∑
j = 1

f ( y|q ( j)k ,Mk ) p(q
( j)
k |Mk )

h(q ( j)k |Mk )
,

q ( j)k ~ h(q ( j)k |Mk ) ( j ¶ M ).

This method is useful when it can be shown that the ratio is bounded, which can
be difficult to check in practice, and when the sampling density is not expensive to
compute which, unfortunately, is often not true. We mention that if the importance
sampling function is taken to be the unnormalized posterior density then that leads to

m̂NR =

⎡⎣ 1
M

M∑
j = 1

{
1

f ( y|q (j)k ,Mk ) p(q
( j)
k |Mk )

}⎤⎦−1 ,
the harmonic mean of the likelihood values. This estimate, proposed by Newton and
Raftery (1994), can be unstable because the inverse likelihood does not have finite
variance. Gelfand and Dey (1994) propose a modified stable estimator

m̂GD =

⎡⎣ 1
M

M∑
j = 1

{
h(q ( j))

f ( y|q ( j)k ,Mk ) p(q
( j)
k |Mk )

}⎤⎦−1 ,
where h(q) is a density with tails thinner than the product of the prior and the
likelihood. Unfortunately, this estimator is difficult to apply in models with latent or
missing data.
The Laplace method for integrals can be used to provide a non-simulation based

estimate of the marginal likelihood. Let dk denote the dimension of qk and let q̂k
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denote the posterior mode of qk , and Sk the inverse of the negative Hessian of
ln { f ( y|qk ,Mk ) p(qk |Mk )} evaluated at q̂k . Then the Laplace estimate of marginal
likelihood, on the customary log base ten scale, is given by

log m̂L( y|Mk ) = (dk /2) log(2p ) + (1/2) log det(Sk ) + log f ( y|q̂k ,Mk ) + log p(q̂k |Mk ).

The Laplace estimate has a large sample justification and can be shown to equal the
true value upto an error that goes to zero in probability at the rate n−1.
Both the importance method and the Laplace estimate may be considered as the

traditional methods for computing the marginal likelihood. More recent methods
exploit two additional facts about the marginal likelihood. The first that the marginal
likelihood is the normalizing constant of the posterior density and therefore under this
view the Bayes factor can be interpreted as the ratio of two normalizing constants.
There is a large literature in physics (in a quite different context, however) on precisely
the latter problem stemming from Bennett (1976). This literature was adapted in
the mid 1990’s for statistical problems by Meng and Wong (1996) utilizing the
bridge sampling method and by Chen and Shao (1997) based on umbrella sampling.
The techniques presented in these papers, although based on the work in physics,
contain modifications of the ideas to handle problems such as models with differing
dimensions. DiCiccio, Kass, Raftery and Wasserman (1997) present a comparative
analysis of the bridge sampling method in relation to other competing methods of
computing the marginal likelihood. At this time, however, the bridge sampling method
and its refinements have not found significant use in applications perhaps because the
methods are quite involved and because simpler methods are available.
Another approach that deals with the estimation of Bayes factors, again in the

context of nested models, is due to Verdinelli and Wasserman (1995) and is called
the Savage–Dickey density ratio method. Suppose a model is defined by a parameter
q = (w,y) and the first model M1 is defined by the restriction w = w0 and the second
model M2 by letting w be unrestricted. Then, it can be shown that the Bayes factor
is given by

B12 =
p (w0| y,M2)
p (w0|M2)

E

{
p(y|M1)

p(y|M1,w0)

}
,

where the expectation is with respect to p (y| y,M2,w0). If p (w0| y,M2,y) is avail-
able in closed form then p (w0| y,M2) can be estimated by the Rao–Blackwell method
and the second expectation by taking draws from the posterior p (y| y,M2,w0), which
can be obtained by the method of reduced runs discussed below, and averaging the ratio
of prior densities. This method provides a simple approach for nested models but the
method is not efficient if the dimensions of the two models are substantially different
because then the ordinate p (w0| y,M2) tends to be small and the simulated values
used to average the ratio tend to be in low density regions.
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The second fact about marginal likelihoods, highlighted in a paper by Chib (1995), is
that the marginal likelihood by virtue of being the normalizing constant of the posterior
density can be expressed as

m( y|Mk ) =
f ( y|qk ,Mk ) p(qk |Mk )

p (qk | y,Mk )
. (36)

This expression is an identity in qk because the left hand side is free of qk . Chib (1995)
refers to it as the basic marginal likelihood identity (BMI). Based on this expression
an estimate of the marginal likelihood on the log-scale is given by

log m̂( y|Mk ) = log f ( y|q∗
k ,Mk ) + log p(q∗

k |Mk ) − log p̂ (q∗
k | y,Mk ), (37)

where q∗
k denotes an arbitrarily chosen point and p̂ (q

∗
k | y,Mk ) is the estimate of the

posterior density at that single point. Two points should be noted. First, this estimate
requires only one evaluation of the likelihood function. This is particularly useful
in situations where repeated evaluation of the likelihood function is computationally
expensive. Second, to increase the computational efficiency, the point q∗

k should be
taken to be a high density point under the posterior.
To estimate the posterior ordinate one utilizes the MCMC output in conjunction with

a marginal/conditional decomposition. To simplify notation, drop the model subscript k
and suppose that the parameter vector is blocked into B blocks as q1, . . . , qB. In
addition, let z denote additional variables (latent or missing data) that may be included
in the simulation to clarify the structure of the full conditional distributions. Also let
yi = (q1, . . . , qi) and y i = (qi, . . . , qB) denote the list of blocks upto i and the set of
blocks from i to B, respectively. Now write the posterior ordinate at the point q∗ by
the law of total probability as

p (q∗| y,M) = p (q∗
1 | y,M)× · · · ×p (q∗

i | y,M,y∗
i−1)× · · · ×p (q∗

B | y,M,y∗
B−1),

(38)
where the first term in this expression is the marginal density of q1 evaluated at q∗

1 ,
and the typical term is of the form

p (q∗
i | y,M,y∗

i − 1) =
∫
p (q∗

i | y,M,y∗
i − 1,y

i + 1, z)p (y i + 1, z| y,M,y∗
i − 1) dy

i + 1 dz.

This may be called a reduced conditional ordinate. It is important to bear in mind that
in finding the reduced conditional ordinate one must integrate only over (y i + 1, z) and
that the integrating measure is conditioned on y∗

i − 1.
Assume that the normalizing constants of each full conditional density is known,

an assumption that is relaxed below. Then, the first term of Equation (38) can be
estimated by the Rao–Blackwell method. To estimate the typical reduced conditional
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ordinate, Chib (1995) defines a reduced MCMC run consisting of the full conditional
distributions{

p (qi| y,M,y∗
i − 1,y

i + 1, z); · · · ; p (qB| y,M,y∗
i − 1, qi, . . . , qB − 1, z);

p (z| y,M,y∗
i − 1,y

i)
}
,

(39)

where the blocks in yi − 1 are set equal to y∗
i − 1. By MCMC theory, the draws on

(y i + 1, z) from this run are from the distribution p (y i + 1, z| y,M,y∗
i − 1) and so the

reduced conditional ordinate can be estimated as the average

p̂ (q∗
i | y,M,y∗

i − 1) = M
−1

M∑
j = 1

p (q∗
i | y,M,y∗

i − 1,y
i + 1, ( j), z( j)),

over the simulated values of y i + 1 and z from the reduced run. Each subsequent reduced
conditional ordinate that appears in the decomposition (38) can be estimated in the
same way though, conveniently, with fewer and fewer distributions appearing in the
reduced runs. Given the marginal and reduced conditional ordinates, the Chib estimate
of the marginal likelihood on the log scale is defined as

log m̂( y|M) = log f ( y|q∗,M) + log p(q∗) −
B∑
i = 1

log p̂ (q∗
i | y,M,y∗

i − 1), (40)

where f ( y|q∗,M) is the density of the data marginalized over the latent data z.
It is worth noting that an alternative approach to estimate the posterior ordinate is

developed by Ritter and Tanner (1992) in the context of Gibbs MCMC chains with
fully known full conditional distributions. If one lets

KG(q , q∗| y,M) =
B∏
i = 1

p (q∗
k | y,M, q∗

1 , . . . , q
∗
k − 1, qk + 1, . . . , qB),

denote the Gibbs transition kernel, then by virtue of the fact that the Gibbs chain
satisfies the invariance condition p (q∗| y,M) =

∫
KG(q , q∗| y,M)p (q| y,M) dq , one

can obtain the posterior ordinate by averaging the transition kernel over draws from
the posterior distribution:

p̂ (q∗| y,M) = M −1
M∑
g = 1

KG(q (g), q∗| y,M).

This estimate only requires draws from the full Gibbs run but when q is high
dimensional and the model contains latent variables, this estimate is less accurate than
Chib’s posterior density decomposition method.
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It should be observed that the above methods of estimating the posterior ordinate
require knowledge of the normalizing constants of each full conditional density.
What can be done when this condition does not hold? DiCiccio, Kass, Raftery and
Wasserman (1997) and Chib and Greenberg (1998) suggest the use of kernel smoothing
in this case. Suppose, for example, that the problem occurs in the distribution of the
ith block. Then, the draws on qi from the reduced MCMC run in Equation (39) can
be smoothed by kernel methods to find the ordinate at q∗

i . This approach should only
be used when the dimension of the recalcitrant block is not large. A more general
technique has recently been developed by Chib and Jeliazkov (2001). The first main
result of the paper is that if sampling is done in one block by the M–H algorithm then
the posterior ordinate can be written as

p (q∗| y,M) =
E1 {a(q , q∗| y,M) q(q , q∗| y,M)}

E2 {a(q∗, q| y,M)} ,

where the numerator expectation E1 is with respect to the distribution p (q| y,M) and
the denominator expectation E2 is with respect to the proposal density of q conditioned
on q∗, q(q∗, q| y,M), and a(q , q∗| y,M) is the probability of move in the M–H step.
This expression implies that a simulation consistent estimate of the posterior ordinate
can be defined as

p̂ (q∗| y) =
M −1

∑M
g = 1 a(q

(g), q∗| y,M) q(q (g), q∗| y,M)

J −1
∑M

j = 1 a(q
∗, q ( j)| y,M)

, (41)

where {q (g)} are the given draws from the posterior distribution while the draws q ( j) in
the denominator are from q(q∗, q| y,M), given the fixed value q∗. The second main
result of the paper is that in the context of the multiple block M–H algorithm the
reduced conditional ordinate can be expressed as

p (q∗
i | y,M, q∗

1 , . . . , q
∗
i − 1)

=
E1

{
a(qi, q∗

i | y,M,y∗
i − 1,y

i + 1)qi(qi, q∗
i | y,M,y∗

i − 1,y
i + 1)

}
E2 {a(q∗

i , qi| y,M,y∗
i − 1,y i + 1)}

,
(42)

where E1 is the expectation with respect to p (qi,y i + 1| y,M,y∗
i − 1) and E2 that with

respect to the product measure p (y i + 1| y,M,y∗
i ) qi(q

∗
i , qi| y,M,y∗

i − 1,y
i + 1). The

quantity a(qi, q∗
i | y,M,y∗

i − 1,y
i + 1) is the usual conditional M–H probability of move.

The two expectations can be estimated from the output of the reduced runs in an
obvious way. An example of this technique in action is provided next.
Consider the data set that was introduced in Section 8 in connection with the

multivariate probit model. In this setting, the full conditonal density of the correlations
is not in tractable form. Assume as before that the marginal probability of wheeze is
given by

Pr( yij = 1|Mk , b) = F( b0 + b1x1ij + b2x2ij + b3x3ij), i ¶ 537, j ¶ 4,

where, as before, the dependence of b on the model is suppressed for convenience, x1 is
the age of the child centered at nine years, x2 is a binary indicator variable representing
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the mother’s smoking habit during the first year of the study, and x3 = x1x2. Now
suppose that interest centers on three alternative models generated by three alternative
correlation matrices. Let these models be defined as
• M1: Unrestricted S except for the unit constraints on the diagonal. In this case s
consists of six unknown elements.

• M2: Equicorrelated S where the correlations are all equal and described by a single
parameter ø.

• M3: Toeplitz S wherein the correlations depend on a single parameter w but under
the restriction that Corr(Zik ,Zil) = w|k−l|.
Assume that the prior on b = ( b0, b1, b2, b3) is independent Gaussian with a mean

of zero and a variance of ten. Also let the prior on the correlations s be normal with
mean of zero and covariance equal to the identity matrix (truncated to the region C)
and that on ø and w be normal truncated to the interval (−1, 1).
For each model, 10 000 iterations of Algorithm 17 are used to obtain the posterior

sample and the posterior ordinate, using M1 for illustration, is computed as

p (s∗, b∗| y,M1) = p (s∗| y,M1)p ( b∗| y,M1,S∗).

To estimate the marginal ordinate one can apply Equation (42) leading to the estimate

p̂ (s∗| y,M1) =
M −1

∑M
g = 1 a(s

(g),s∗| y, b (g), {z(g)i }) q(s∗| y, b (g), {z(g)i })
J −1

∑J
j = 1 a(s

( j)| y, b ( j), {z( j)i })
, (43)

where a is the probability of move defined in Algorithm 17, {b (g), {z(g)i },s (g)} are
values drawn from the full MCMC run and the values {b ( j), {z( j)i },s ( j)} in the
denominator are from a reduced run consisting of the densities

p ( b| y,M1, {zi},S∗); p ({zi}| y,M1, b,S∗), (44)

after S is fixed at S∗. In particular, the draws for the denominator are from the
distributions

b ( j), z( j) ~ p ( b , z| y,M1,S∗),
s ( j) ~ q(s∗,s | y,M1, b ( j), z( j)), j ¶ J.

The sampled variates { b ( j), z( j)} from this reduced run are also used to estimate the
second ordinate as

p̂ ( b∗| y,M1,S∗) = M −1
M∑
j = 1

÷J ( b∗| b̂ ( j),B∗
n ), (45)

where b̂ ( j) = Bn(B−10 b0 +
∑n

i = 1 X
′
i S

∗−1z( j)i ) and B
∗
n = (B

−1
0 +

∑n
i = 1 X

′
i S

∗−1Xi)−1. It
should be noted that estimates of both ordinates are available at the conclusion of the
single reduced run.
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Table 3
Log-likelihood and log marginal likelihood by the Chib method of three models fit to the Ohio wheeze

data 1

M1 M2 M3

ln f ( y | M, q∗) −795.1869 −798.5567 −804.4102

lnm( y | M) −823.9188 −818.009 −824.0001

1 M1, MVP with unrestricted correlations; M2, MVP with an equicorrelated correlation; M3, MVP
with Toeplitz correlation structure.

The marginal likelihood computation is completed by evaluating the likelihood
function at the point ( b∗,S∗) by the Geweke–Hajivassiliou–Keane method. The
resulting marginal likelihoods of the three alternative models are reported in Table 3.
On the basis of these marginal likelihoods we conclude that the data tend to support
the MVP model with equicorrelated correlations.

10.3. Model space-parameter space MCMC algorithms

When one is presented with a large collection of candidate models {M1, . . . , MK},
each with parameters qk ∈ Bk ⊆ Rdk , direct fitting of each model to find the marginal
likelihood can be computationally expensive. In such cases it may be more fruitful
to utilize model space-parameter space MCMC algorithms that eschew direct fitting
of each model for an alternative simulation of a “mega model” where a model index
random variable, denoted as M, taking values on the integers from 1 to K , is sampled
in tandem with the parameters. The posterior distribution of M is then computed as
the frequency of times each model is visited.
In this section we discuss two general model space-parameter space algorithms that

have been proposed in the literature. These are the algorithms of Carlin and Chib
(1995) and the reversible jump method of Green (1995).
To explain the Carlin and Chib (1995) algorithm, write q = {q1, . . . , qK} and

assume that each model is defined by the likelihood f ( y|qk ,M = k) and (proper)
priors p(qk |M = k). Note that each model is non-nested. Now by the law of total
probability the joint distribution of the data, the parameters and the model index is
given by

f ( y, q ,M = k) = f ( y|qk ,M = k) p(qk |M = k) p(q−k |qk ,M = k) Pr(M = k).
(46)

Thus, in addition to the usual inputs, the joint probability model requires the
specification of the densities {p(q−k |qk ,M = k), k ¶ K}. These are called pseudo
priors or linking densities and are necessary to complete the probability model but
play no role in determining the marginal likelihood of M = k since

m( y,M = k) =
∫
f ( y, q ,M = k) dq ,
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regardless of what pseudo priors are chosen. Hence, the linking densities may be
chosen in any convenient way that promotes the working of the MCMC sampling
procedure. The goal now is to sample the posterior distribution on model space and
parameter space

p (q1, . . . , qK ,M| y) ∝ f ( y, q ,M),

by MCMC methods.

Algorithm 18: Model space MCMC
(1) Sample

qk ~ p (qk | y,M = k) ∝ f ( y|qk ,M = k)p (qk |M = k), M = k ,
q−k ~ p(q−k |qk ,M = k), M Ñ k.

(2) Model jump
(a) Calculate

pk =
f ( y|qk ,M = k) p(qk |M = k) p(q−k |qk ,M = k) Pr(M = k)∑K
l = 1 f ( y|ql ,M = l) p(ql |M = l) p(q−l |ql ,M = l) Pr(M = l)

, k ¶ K.

(b) Sample

M ~ { p1, . . . , pK}.
(3) Goto 1.

Thus, when M = k , we sample qk from its full conditional distribution and the
remaining parameters from their pseudo priors and the model index is sampled from
the a discrete point distribution with probabilities { pk}.
Algorithm 18 is conceptually quite simple and can be used without any difficulties

when the number of models under consideration is small. When K is large, however,
the specification of the pseudo priors and the requisite generation of each qk within
each cycle of the MCMC algorithm can be a computational burden. We also mention
that the pseudo priors should be chosen to be close to the model specific posterior
distributions. To understand the rationale for this recommendation suppose that the
pseudo priors can be set exactly equal to the model specific posterior distributions
as

p(q−k |qk ,M = k) =
∏
l Ñ k

p (ql | y,M = l).

Substituting this choice into the equation of pk and simplifying we get

pk =
m( y|M = k) Pr(M = k)∑K
l = 1m( y|M = l) Pr(M = l)

, (47)

which is Pr(M = k| y). Therefore, under this choice of pseudo priors, the Carlin–Chib
algorithm generates the model move at each iteration of the sampling according to
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their posterior probabilities, without any required burn-in. Thus, by utilizing pseudo
priors that are close to the model specific posterior distributions one promotes mixing
on model space and more rapid convergence to the invariant target distribution
p (q1, q2, . . . , qK ,M| y).
Another point in connection with the above algorithm is that the joint distribution

over parameter space and model space can be sampled by the M–H algorithm.
For example, Dellaportas, Forster and Ntzoufras (1998) suggest that the discrete
conditional distribution on the models be sampled by M–H algorithm in order to avoid
the calculation of the denominator of pk . Godsill (1998) considers the sampling of
the entire joint distribution in Equation (46) by the M–H algorithm. Suppose that the
proposal density on the joint space is specified as

q {(M = k , qk , q−k ), (M = k ′, q ′
k′ , q ′

−k′ )} = q1(k , k ′) q2(qk , q ′
k′ |k , k ′) p(q ′

−k′ |q ′
k′ ,M = k ′),

(48)
where the pseudo prior is the proposal density of the parameters q−k′ not in the
proposed model k ′. It is important that q1 not depend on the current value (qk , q−k )
and that q2 not depend on the current value of qk′ in the model being proposed. Then,
the probability of move from (M = k , qk , q−k ) to (M = k ′, q ′

k′ , q ′
−k′) in the M–H step,

after substitutions and cancellations, reduces to

min

{
1,
f ( y|q ′

k′ ,M = k ′) p(q ′
k′ |M = k ′) Pr(M = k ′)

f ( y|qk ,M = k) p(qk |M = k) Pr(M = k)
q1(k ′, k) q2(q ′

k′ , qk |k , k ′)
q1(k , k ′) q2(qk , q ′

k′ |k , k ′)

}
,

(49)
which is completely independent of the pseudo priors. Thus, the sampling, or
specification, of pseudo priors is not required in this version of the algorithm but the
requirement that the parameters of each model be proposed in one block rules out
many important problems.
We now turn to the reversible jump algorithm of Green (1995) which is designed

primarily for nested models. In this algorithm, model space and parameter space moves
from the current point (M = k , qk ) to a new point (M = k ′, q ′

k′) are made by
a Metropolis–Hastings step in conjunction with a dimension matching condition to
ensure that the resulting Markov chain is reversible. An application of the reversible
jump method to choosing the number of components in a finite mixture of distribution
model is provided by Richardson and Green (1997). The parameter space in this
method is based on the union of the parameter spaces Bk . To describe the algorithm
we let q denote a discrete mass function that gives the probability of each possible
model given the current model and we let u′ denote an increment/decrement random
variable that takes one from the current point qk to the new point q ′

k′ .

Algorithm 19: Reversible jump model space MCMC
(1) Propose a new model k ′

k ′ ~ q1(k , k ′).
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(2) Dimension matching
(a) Propose

u′ ~ q2(u′|qk , k , k ′).

(b) Set

(q ′
k′ , u) = gk ,k′(qk , u′),

where gk ,k′ is a bijection between (q ′
k′ , u) and (qk , u′) and dim(qk )

+ dim(u′) = dim(q ′
k′) + dim(u).

(3) M-H
(a) Calculate

a = min
{
1,
f ( y|q ′

k′ ,M = k ′) p(q ′
k′ |M = k ′) Pr(M = k ′)

f ( y|qk ,M = k) p(qk |M = k) Pr(M = k)
q1(k ′, k) q2(u|qk , k , k ′)
q2(k , k ′) q2(u′|qk , k , k ′)

· J
}
,

where

J =

∣∣∣∣ðgk ,k′ (qk , u′)
ð(qk , u′)

∣∣∣∣ .
(b) Move to (k ′; q ′

k′ , u′) with probability a.
(4) Goto 1.

In the reversible jump method most of the tuning is in the specification of the proposal
distribution q2; a different proposal distribution is required if k ′ is a model with more
parameters than model k than for the case when model k ′ has fewer parameters. This
is the reason for the dependence of q2 on not just qk but also on (k , k ′). In addition, the
algorithm as stated by Green (1995) is designed for the situation where the competing
models are nested and obtained by the removal or addition of different parameters, as
for example in a variable selection problem.

10.4. Variable selection

Model space MCMC methods described above can be specialized to the problem of
variable selection in regression. We first focus on this problem in the context of linear
regression models with conjugate priors before discussing a more general situation.
Consider then the question of building a multiple regression model for a vector of

n observations y in terms of a given set of covariates X = {x1, . . . , xp}. The goal is
to find the “best” model of the form

Mk : y = Xk bk + se,

where Xk is a n× dk matrix composed of some or all variables from X , s 2 is a variance
parameter and e is N (0, In). Under the assumption that any subset of the variables in
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X can be used to form Xk it follows that the number of possible models is given by
K = 2p, which is a large number even if p is as small as fifteen. Thus, unless p is small,
when the marginal likelihoods can be computed for each possible Xk , it is helpful to
use simulation-based methods that traverse the space of possible models to determine
the subsets that are most supported by the data.
Raftery, Madigan and Hoeting (1997) develop one approach that is based on the

use of conjugate priors. Let the parameters qk = ( bk , s 2) of model Mk follow the
conjugate prior distributions

bk |M = k , s 2 ~ Ndk (0, s
2B0k ); s 2|M = k ~ IG

(
n0
2
,
d0
2

)
, (50)

which implies after some algebra that the marginal likelihood of Mk is

m( y|M = k) =
G {(n0 + n)/2}
G (n0/2)(d0p )n/2

|Bk |1/2 ×
(
1 +

1
d0
y′Bk y

)−(n + n0)/2
,

where

Bk = In − Xk (B
−1
0k + X

′
kXk )

−1X ′
k .

Raftery, Madigan and Hoeting (1997) specify a MCMC chain to sample model space in
which the target distribution is the univariate discrete distribution with probabilities

Pr(M = k| y) = pk ∝ m( y|M = k) Pr(M = k), k ¶ K. (51)

Although this distribution can in principle be normalized, the normalization constant
is computationally expensive to calculate when K is large (but one can argue that
expending the necessary computational effort is always desirable). This motivates the
sampling of Equation (51) by the Metropolis–Hastings algorithm. For each model
M = k define a neighborhood nbd(M = k) which consists of the model M = k
and models with either one more variable or one fewer variable than M = k . Define
a transition matrix q1(k , k ′) which puts uniform probability over models k ′ that are in
nbd(M = k) and zero probability for all other models. Given that the chain is currently
at the point (M = k) a move to the proposed model k ′ is made with probability

min

{
m( y|M = k ′) Pr(M = k ′)
m( y|M = k) Pr(M = k)

q1(k ′, k)
q1(k , k ′)

, 1

}
. (52)

If the proposed move is rejected the chain stays at M = k .
When conjugate priors are not assumed for qk , or when the model is more

complicated than multiple regression, it is not possible to find the marginal likelihood
of each model analytically. It then becomes necessary to sample both the parameters
and the model index jointly as in the general model space-parameter space algorithms
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mentioned above. The approaches that have been developed for this case, however,
treat the various models as nested.
Suppose that the coefficients attached to the p possible covariates in the model are

denoted by h = {h1, . . . , hp}, where any common noise variances or other common
parameters are suppressed from the notation and the discussion. Now associate with
each coefficient hj an indicator variable dj which takes the value one if the coefficient
is in the model and the value zero otherwise and let hd denote the set of active hj’s
given a configuration d and let h−d denote the complementary hj’s. For example, if
p = 5 and d = {1, 0, 0, 1, 1}, then hd = {h1, h4, h5} and h−d = {h2, h3}. A variable
selection MCMC algorithm can now be developed by sampling the joint posterior
distribution p (d1, h1, . . . , dp, hp| y). Particular implementations representing different
blocking schemes to sample this joint distribution are discussed by Kuo and Mallick
(1998), Geweke (1996) and Smith and Kohn (1996). For example, in the algorithm of
Kuo and Mallick (1998), the posterior distribution is sampled by recursively simulating
the {h1, . . . , hp} from the distributions

hj ~ p (hj| y, h−j , d) ∝
{
f ( y|hd , d) p(hd |d) if dj = 1,
p(hj|h−j , d) if dj = 0,

where p(hj|h−j , d) is a pseudo prior because it represents the distribution of hj when
hj is not in the current configuration. Next, the variable indicators {d1, . . . , dp} are
sampled one at a time from the two point mass function

dj ~ Pr(dj| y, h−j , d−j) ∝ f ( y|hd , d) p(hd |d) p(h−d |hd , d) p(dj),

where p(h−d |hd , d) is the pseudo prior. These two steps are iterated. Procedures to
sample (dj , hj) in one block given all the other blocks are presented by Geweke (1996)
and Smith and Kohn (1996).
George and McCulloch (1993, 1997) develop an important alternative simulation-

based approach for the variable selection problem that has been extensively studied
and refined. In their approach, the variable selection problem is cast in terms of a
hierarchical model of the type

y ~ X b + se, bj|gj ~ (1 − gj)N (0, t2j ) + gjN (0, c2j t2j ),
Pr(gj = 1) = 1 − Pr(gj = 0) = pj ,

where t2j is a small positive number and cj a large positive number. In this specification
each component of b is assumed to come from a mixture of two normal distributions
such that gj = 0 corresponds to the case where bj can be assumed to be zero. It should
be noted that in this framework a particular covariate is never strictly removed from
the model; exclusion from the model corresponds to a high posterior probability of
the event that gj = 0. George and McCulloch (1993) sample the posterior distribution
of (b, {gj}) by the Gibbs sampling algorithm.
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10.5. Remark

We conclude this discussion by pointing out that convergence checks of the Markov
chain in model space algorithms is quite difficult and has not been satisfactorily
addressed in the literature. When the model space is large, as for example in the
variable selection problem, one cannot be sure that all models supported by the data
have been visited according to their posterior probabilities. Of course if the model
space is diminished to ensure better coverage of the various models it may happen that
direct computation of the marginal likelihood becomes feasible, thereby removing any
justification for considering a model space algorithm in the first place. This tension in
the choice between direct computation and model space algorithms is real and cannot
be adjudicated in the absence of a concrete problem.

11. MCMC methods in optimization problems

Suppose that we are given a particular function h(q), say the log likelihood of a given
model, and interest lies in the value of q that maximizes this function. In some cases,
this optimization problem can be quite effectively solved by MCMC methods. One
somewhat coarse possibility is to obtain draws {q ( j)} from a density proportional to
h(q) and to find the value of q that corresponds to the maximum of {h(q ( j)}. Another
more precise technique goes by the name of simulated annealing which appears in
Metropolis et al. (1953) and is closely related to the Metropolis simulation method. In
the simulated annealing method, which is most typically used to maximize a function
on a finite but large set, one uses the Metropolis method to sample the distribution

p (q) ∝ exp {h(q)/T} ,

where T is referred to as the temperature. The temperature variable is gradually
reduced as the sampling proceeds [for example, see Geman and Geman (1984)]. It can
be shown that in the finite case, the values of q produced by the simulated annealing
method concentrate around the local maximum of the function h(q).
Another method of interest is a MCMC version of the EM algorithm which can

be used to find the maximum likelihood estimate in certain situations. Suppose that z
represents missing data and f ( y|M, q) denotes the likelihood function. Also suppose
that

f ( y|M, q) =
∫
f ( y, z|M, q) dz,

is difficult to compute but that the complete data likelihood f ( y, z|M, q) is available,
as in the models with a missing data structure in Section 8. For this problem, the
standard EM algorithm [Dempster, Laird and Rubin (1977)] requires the recursive
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implementation of two steps: the expectation or E-step and the maximization or
M-step. In the E-step, given the current guess of the maximizer q ( j), one computes

Q(q ( j), q) =
∫
ln f ( y, z|M, q) f (z| y,M, q) dz,

while in the M-step the Q function is maximized to obtain a revised guess of the
maximizer, i.e.,

q ( j + 1) = argmax
q
Q(q ( j), q).

Wu (1983) has shown that under regularity conditions the sequence of values {q ( j)}
generated by these steps converges to the maximizer of the function f ( y|M, q).
The MCEM algorithm is a variant of the EM algorithm, proposed by Wei and Tanner

(1990b), in which the E-step, which is often intractable, is computed by Monte Carlo
averaging over values of z drawn from f (z| y,M, q), which in the MCMC context
is the full conditional distribution of the latent data. Then, the revised value of q is
obtained by maximizing the Monte Carlo estimate of the Q function. Specifically, the
MCEM algorithm is defined by iterating on the following steps:

Q̂M (q ( j), q) = M −1
M∑
j = 1

ln f ( y, z( j)|M, q),

z( j) ~ f (z| y,M, q), q ( j + 1) = argmax
q
Q̂(q ( j), q).

As suggested by Wei and Tanner (1990b), these iterations are started with a small value
of M that is increased as the maximizer is approached. One point to note is that in
general, the MCEM algorithm, similar to the EM algorithm, can be slow to converge
to the mode but it should be possible to adapt the ideas described in Liu, Rubin and
Wu (1998) to address this problem. Another point to note is that the computation of
the Q̂M function can be expensive when M is large. Despite these potential difficulties,
a number of applications of the MCEM algorithm have now appeared in the literature.
These include Chan and Ledolter (1995), Chib (1996, 1998), Chib and Greenberg
(1998), Chib, Greenberg and Winkelmann (1998) and Booth and Hobert (1999).
Given the modal value q̂ , the standard errors of the MLE are obtained by the formula

of Louis (1982). In particular, the observed information matrix is given by

−E

{
ð2 ln f ( y, z|M, q)

ðqðq ′

}
− Var

{
ð ln f ( y, z|M, q)

ðq

}
,
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where the expectation and variance are with respect to the distribution z| y,M, q̂ . This
expression is estimated by taking an additional J draws {z(1), . . . , z(J )} from z| y,M, q̂
and computing

− J −1
J∑
k = 1

ð2 ln f ( y, z(k)|M, q∗)
ðqðq ′

− J −1
J∑
k = 1

(
ð ln f ( y, z(k)|M, q∗)

ðq
−m

)(
ð ln f ( y, z(k)|M, q∗)

ðq
−m

)′
,

where

m = J −1
J∑
k = 1

ð ln f ( y, z(k)|M, q̂)
ðq

.

Standard errors are equal to the square roots of the diagonal elements of the inverse
of the estimated information matrix.

12. Concluding remarks

In this survey we have provided an outline of Markov chain Monte Carlo methods
with emphasis on techniques that prove useful in Bayesian statistical inference. Further
developments of these methods continue to occur but the ideas and details presented
in this survey should provide a reasonable starting point to understand the current and
emerging literature. Two recent developments are the slice sampling method discussed
by Mira and Tierney (1998), Damien et al. (1999) and Roberts and Rosenthal (1999)
and the perfect sampling method proposed by Propp and Wilson (1996). The slice
sampling method is based on the introduction of auxiliary uniform random variables
to simplify the sampling and improve mixing while the perfect sampling method uses
Markov chain coupling to generate an exact draw from the target distribution. These
methods are in their infancy and can be currently applied only under rather restrictive
assumptions on the target distribution but it is possible that more general versions of
these methods will eventually become available.
Other interesting developments are now occurring in the field of applied Bayesian

inference as practical problems are being addressed by the methods summarized in this
survey. These applications are appearing at a steady rate in various areas. For example,
a partial list of fields and papers within fields include: biostatistical time series analysis
[West, Prado and Krystal (1999)]; economics [Chamberlain and Hirano (1997), Filardo
and Gordon (1998), Gawande (1998), Lancaster (1997), Li (1998), Kiefer and Steel
(1998), Kim and Nelson (1999), Koop and Potter (1999), Martin (1999), Paap and van
Dijk (1999), So, Lam and Li (1998)]; finance [Jones (1999), Pastor and Stambaugh
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(1999)]; marketing [Allenby, Leone and Jen (1999), Bradlow and Zaslavsky (1999),
Manchanda, Ansari and Gupta (1999), Montgomery and Rossi (1999), Young, DeSarbo
and Morwitz (1998)]; political science [King, Rosen and Tanner (1999), Quinn, Martin
and Whitford (1999), Smith (1999)]; and many others.
One can claim that with the ever increasing power of computing hardware, and the

experience of the past ten years, the future of simulation-based inference using MCMC
methods is secure.
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Abstract

We discuss the use of calibration techniques in economic models. Calibration contrasts
with estimation in relying on deterministic calculation of model parameter values
consistent with data, rather than econometric estimation. The reasons why calibrators
use these methods, as well as the main arguments in debates between calibrators
and econometricians are set out. We draw a distinction between the calibration
methods used in dynamic macro models of the Kydland–Prescott type and micro
models of the Shoven–Whalley variety. We highlight the ways in which calibration
techniques are evolving including double calibration, the use of data pre-adjustments,
and the incorporation of model estimation consistent elasticities. We conclude with a
discussion of what constitutes best practice in calibration.
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1. Introduction

Thirty years ago, the suggestion that non-econometrically estimated numerical models
with parameter values taken partly from other studies and the remainder determined
so as to be consistent with observed data, could pass as serious empirical work in
economics would have been greeted with a certain amount of incredulity. Econometric
theory seemed to be advancing towards ever more completeness and, despite the
continued theoretical focus on deterministic modelling, a statistical component to any
economic model applied to data was assumed to be indispensable.
But in the late 1990s, despite the substantial controversy over their use, so-

called “calibrated” models, which are best described as numerical models without
a complete and consistent econometric formulation, have become a central element
of empirical work in economics. This growth has occurred even though the term
“calibration” has been used to denote a variety of procedures. First, in applying general
equilibrium microeconomic models to policy evaluation, and later in a variety of
other areas including stochastic general equilibrium non-monetary macroeconomic
models seeking to investigate the causes and consequences of business cycles, models
incorporating some form of calibration procedure have spread through the literature.
One survey of applied work in macroeconomics, Gregory and Smith (1991), even
declared such models to be the predominant tool in contemporary macroeconomics
for empirical investigation.
The use of calibration in economics has generated deep controversy in the profession

about the relative merits of calibrated and estimated models. While we offer a brief
summary of the accompanying debate, our main objective here is to move beyond
it. In our view, calibrated models are here to stay. We ask what is calibration, and
how does it relate to econometric estimation and/or testing. We note that while many
authors describe their procedures for determining parameter values as calibration, few
are explicit about what calibration actually involves. What comprises best practice in
calibration? What is to be calibrated to what? Is calibration really as radically different
from econometric procedure as has often been asserted in the literature? Should the
use of the word calibration be restricted to procedures which ensure that a complete
base case or benchmark equilibrium data set is always reproduced as an equilibrium of
the calibrated model, or can it also be extended to situations where parameter values
in models are set in a more arbitrary manner? Does the best form of calibration also
depend on the question to be explored in the research? What are the weakest links in
calibration procedures, and what can be said about the notoriously imprecise use in
calibrated models of elasticities drawn from the literature? Finally, what are some of
the new directions in calibration?
Section 2 of this chapter explores the meaning of the term, and presents some early

examples of calibration. Section 3 outlines the debate surrounding calibrated models.
Section 4 provides concrete illustrations and discusses how calibration procedures are
implemented in more recent work. Section 5 highlights current issues in calibration,
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and Section 6 sets out some of the new calibration procedures being used. Section 7
concludes.

2. Calibration: its meaning and some early examples

The term calibration denotes the setting of the origin and choice of scale for a
measuring instrument; a thermometer calibrated to read 0C and 100C when water
freezes and boils, can be used to measure temperature. Calibration of an economic
model involves the setting of specified parameters to replicate a benchmark data set
as a model solution 1. Once calibrated, the model can be used to assess the effects of
an unobservable or counterfactual change in policies or other parameters: a change in
a tax rate, the removal of a quota, or changes in the values of parameters exogenous to
the model such as the prices of traded goods in a model of a small, open economy. The
model’s counterfactual solution provides a measure of what the change may produce.
It offers a prediction of the way in which the economy is likely to respond to the
change, while the model’s base case or pre-change solution is the reference point –
the observed outcome from the economy under the existing policy regime and values
of the exogenous parameters.
The driving force behind the use of calibration in economics is the belief that

any counterfactual analysis is impossible without a coherent theoretical framework
and that models which are consistent with economic theory are the place to start. In
empirical research one often tests how well a particular model describes the data or,
more generally, one selects the model that best describes the data. But models that
are estimable as a single entity and permit testing or selection are usually relatively
simple. Policy analysis often requires the specification of more complex models which
preclude estimation or testing. Such models, viewed as “theory with numbers”, involve
the empirical task of parameterizing rather than testing models. If parameters are not
available in the literature, and if the model as a single entity is unestimable, parameter
values must still be obtained somehow. The term calibration generally indicates the
use of procedures that implement this parameterization requirement.
Calibration, however, remains an imprecise term despite its widespread use. No

single set of calibration procedures exists, nor does the term indicate what is being
calibrated to what. Thus, micro general equilibrium modellers frequently calibrate
models to a single (constructed) equilibrium observation. The idea is to generate a
model specification capable of reproducing the constructed data as a model solution
(a computed general equilibrium). However, basic data, typically drawn from several

1 In calibrating a general equilibrium model, for example, the numerical values of some model parameters
are typically set exogenously, while others, the calibrated parameters, are endogenously determined so as
to reproduce the benchmark data as an equilibrium of the model. The exogenously specified parameters
are typically the elasticities of substitution in constant elasticity of substitution (CES) functional forms,
which are usually set on the basis of estimates drawn from the literature.
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sources, will not satisfy the equilibrium conditions of the model 2, and adjustments
have to be made in the basic data prior to calibration to construct a microconsistent
equilibrium data set. This adjustment procedure is usually called “benchmarking”
and the adjusted data set, the “benchmark” data set. In addition to generating model
specifications, this type of calibration exercise also allows the benchmarked data to be
used as a consistency check for the model solution procedures.
Highly aggregated business cycle models specify structures that include stochastic

elements of the model which influence behaviour. Their structure typically includes a
steady-state or long run joint distribution of the aggregate variables of the model that
is described parametrically. Calibration in this context, consists of asking whether, for
plausible values of its parameters, the steady-state distribution generated by the model
corresponds to that of the data.
To calibrators in economics, econometric procedures often appear to be based on

theoretically poorly specified models of behaviour and seldom appear to produce
conclusive results. Policy and other issues of the day cannot wait until the theoretical
models needed to analyze them are well developed in the literature. All that is needed
is to specify an appropriate model, and choose values for its parameters. Calibration
is a process that produces this outcome, even if it sometimes yields parameter values
which are not derived from time series or cross section estimation.

2.1. Two examples

Two well known early examples in the literature illustrate the rationale for and
procedures used in calibration. In one of the earliest calibration exercises, Shoven and
Whalley (1972), were attempting to refine Harberger’s earlier (1962) calculations of the
welfare cost of differential tax treatment of capital income by sector in the US. They
used Harberger’s earlier model and data (averaged over years in the late 1950s and early
1960s, with 1959 as the mean), but applied Scarf’s (1973) algorithm to solve the model
for exact equilibria rather than the approximate equilibria that Harberger had obtained
by linearizing around an initial pre-tax change equilibrium. They took Harberger’s data
and extended it via a few simple adjustments into a benchmark equilibrium data set.
Initially they tried to generate numerical values for the parameters of their model by

adjusting initial values iteratively, and seeing how closely the model solutions reflected
the constructed equilibrium data set. Early working paper versions presented diagrams
which illustrated the distance between the data and the model solutions arising from
the use of various combinations of parameters. Shoven and Whalley then realized
that instead of simply trying alternative combinations of parameters, they could use
the equations characterizing an equilibrium solution of the model to solve for the
values of the parameters whose values had not been set exogenously. In essence, their

2 Equilibrium conditions include, for example, demand-supply equalities and zero-profit conditions,
whenever constant returns to scale and pure competition prevail.
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procedure converted these parameters into variables, and solved for their values by
trivially imposing equilibrium as an identifying restriction, using benchmark data.
One reason why Shoven and Whalley adopted this procedure in their work was that

other fledgling numerical general equilibrium models of the time had relied exclusively
on literature based estimates for all parameter values, and importantly had used them
in the base case specification of the model. Thus, in an economy contemplating tax
reform, such a model specification might give a base case solution in which, for
example, 50% of employment was in manufacturing, when the data clearly showed
the figure to be 25%. Thus, the actual performance of the economy in the base case,
which was known from national accounts data, was in no way reflected in the base
case solution of the model with all parameter values taken from the literature. Their
observation that model outcomes differed from data led them to reject the exclusive
use of literature based values for all parameters and to allow, instead, the values of
a subset of parameters to be generated by the model structure and the requirement
that the benchmark data represent an equilibrium solution of the model. Thus, in
their calibration procedure they used the equilibrium solution of their model as an
identifying restriction to obtain numerical values for a subset of parameters. Their
calibration had no predictive power since a variety of models, functional forms, and
alternative subsets of free parameters could be calibrated to the same data. However,
the first requirement of the model was to reproduce exactly or closely the known base
data as an equilibrium in what has become known as the replication test 3. Failure to
do so, caught many coding or other errors. This approach is reflected in the natural
sciences, where the performance of equipment is tested by having it replicate the
known solution to a problem.
A second early example of calibration is that of Kydland and Prescott (1982) in

their first real business cycle model. It is a simple one sector growth model with
labour–leisure choice and non-time separable preferences, which they argued could be
used to explain the autovariances of real output and the covariances of cyclical output
with other aggregate time series for the post-war US economy. The crucial element
of their structure, given their purpose, was the assumption that more than one time
period is needed to construct newly productive capital. They contrasted this treatment
with the then more conventional aggregate investment functions based on an assumed
adjustment cost as a function of the value of investment, criticizing the adjustment
cost approach on the grounds that the time required to complete investment projects is
not short relative to the business cycle. Labour supply and new investment decisions
at time t were thus contingent on the past history of productivity shocks, the capital
stock at time t, and the marginal utility of leisure parameter.
Kydland and Prescott then introduced stochastic technology shocks into their

structure, through a Hicks neutral shock to the aggregate production function which
consisted of a permanent and a transitory component. The permanent component

3 The replication test is undertaken assuming the absence of multiple equilibria.
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was, by definition, highly persistent; and so the transitory component was equal to
the transitory shock. A third shock was a disturbance to productivity. This generated
a recursive informational structure, and the general structure followed a vector
autoregressive process with independent normal innovations.
Kydland and Prescott argued that a test of their structure was whether a set of

parameters existed for which the model’s co-movements for both the smoothed series
and the deviations from the smoothed series were quantitatively consistent with the
observed behaviour of the corresponding series for the post-war US economy. They
added the further requirement that the parameters chosen should not be inconsistent
with the relevant micro observations, including the reported construction periods for
new plants and cross-sectional observations on consumption and labour supply. They
suggested that the closeness of their specification of preferences and technology to
those used in related applied work facilitated comparisons to other work.
They first specified their model so that its steady state properties were consistent

with long term trend data for the US. Quantitatively explaining the co-movements
of the deviations from trend remained as the test of the underlying theory. They
emphasized some of these key co-movements; investment varied three times as much
as output while for consumption the variation was only one half; variations in output
largely reflected variations in hours worked per household, not capital stocks or labour
productivity.
Kydland and Prescott provide a three page discussion of how they calibrated their

model, by choosing the majority of their parameter values and leaving other parameters
free to be determined by a model fit to data. The first bloc of parameters was
largely chosen by appealing to plausible values for key aggregates and literature
estimates. Two parameters affecting the intertemporal substitutability of leisure and
three variance parameters on productivity shocks were left free, with the sum of the
variance parameters restricted so that the model estimate of the variance of cyclical
output equalled that of the US economy.
For each set of parameter values, the autocorrelation of cyclical output for up to six

periods was computed, along with standard deviations of cyclical variables of interest
and their correlations with cyclical output. These were compared to the same statistics
for the US economy. Kydland and Prescott chose what they considered to be the best fit
and then examined the actual model solutions. Comparing estimated autocorrelations
for real output from the model with sample values for the US economy, Kydland and
Prescott concluded that the fit was surprisingly good. On this basis, they suggested
that the model loosely met a goodness of fit criterion, and could be accepted as a
reasonable structure to use to analyze macro issues in the US. Put another way, in
their model closeness to observed values of a specified set of autocorrelations and
correlations was the identifying restriction, just as the requirement that the model
solution reproduces the benchmark data as an equilibrium served as the identifying
restriction in the Shoven–Whalley models of Walrasian general equilibrium.
These two early examples serve both to illustrate the calibration approach and

to highlight the diversity in its application and the inferences drawn. Subsequent
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calibrators using micro policy evaluation models, like Shoven and Whalley, frequently
construct microconsistent data sets which are fully compatible with the equilibrium
conditions of their model, and then calibrate their models to these exactly. They choose
values for parameters of preferences and technology in their models, so that once
all parameter values, specified and as well as calibrated, are entered into the model,
solving the model yields an equilibrium solution which is identical to the benchmark
microconsistent data. This “replication check” is analogous to testing an algorithm
for problem solving by checking that it can solve a problem to which the answer is
already known. A failed replication check can signal coding or other errors. Thus, the
microconsistent data sets are used twice: the equilibrium conditions embedded in them
are first used for the calibration exercise of solving for the numerical values of free
parameters; then for the second time in the replication exercise to verify that there
are no errors either in the calibration exercise or in the model solution algorithm and
procedure.
Calibrators using dynamic macro models typically take a different tack. They check

the value of model parameters for their ability to generate equilibrium stochastic time
paths for steady-states (as well as transitions) that are consistent with the stochastic
properties of the joint distribution of the observed data on the same aggregate. Thus,
they evaluate their model structure on the basis of how closely the model solution
approximates real data. Observed data are not, and indeed cannot, be used to infer
parameter values which exactly replicate base data, nor are equations characterizing
the model solution used to solve for model parameters with the role of endogenous
and exogenous parameters reversed. Furthermore, unlike the micro policy evaluators,
they make no preadjustments to their basic data, assuming in effect, that the data
represent realizations of the equilibrium path of some model with the same structure
as the one they use. This type of calibration has its origins in the real business cycle
literature which followed Kydland and Prescott’s contribution, where the closeness of
particular moments in the model solutions and the data is the key. Unlike in micro
policy analyses, where no stochastic disturbances are admitted, an important feature
of macro modelling is to recognize that the economy is subject to random shocks so
that observed data are stochastic. Hence, they look for model parameter values that
generate stochastic distributions matching those implied by the data.

2.2. Reasons for using calibration

The factors which have caused researchers to adopt these and other calibration methods
are many, and as can be seen from the two cases discussed above, vary substantially
from case to case. One factor has been the growing interest of applied economists in
models with richer structures than are currently found in many econometric models.
The unsatisfactory state of play with macro econometric models, and the desire to have
models which are consistent with observed co-variation between output, consumption
and investment, were a key factor for Kydland and Prescott. Finding little in the
conventional literature that suited their purpose, they developed a new approach.
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Equally, Shoven and Whalley, finding no estimated general equilibrium models which
could be used for policy investigation, also developed their own approach.
Calibration has come into play because the economics in econometrics, and the

economics in pure theory seem to have progressively drifted apart. A description,
or perhaps a caricature of some of the recent applied econometric work would be
as follows: an elaborate non-linear deterministic theoretical model is first discussed,
and then linearized (often without clearly specifying around what point the model is
linearized), stochastic disturbances are added before proceeding to estimation with
data. Substantial econometric sophistication is brought to bear on the specification
of the stochastic properties of the disturbances, which are in reality only ad hoc
additions to the basic model. The underlying economics in such econometric work is
often so simple that without the statistical component, the model would be rapidly
discarded. Yet the momentum to further these econometric refinements continues.
Thus, demand estimation has advanced from single commodity demand functions to
systems of demand functions; but combined demand and supply systems are rarely
estimated, multi-consumer demand systems seemingly not at all, and the two person
pure exchange economy remains without any econometric application. Econometric
models of demand, until recently, typically did not incorporate such features as product
quality, product characteristics and other features – many of which are issues that
numerical modellers feel they have to incorporate into their models.
Calibrated models have long been employed in disciplines other than economics,

such as physics, resulting in an interplay between theoretical developments and
attempts to assess whether new theoretical structures account for actual observations
by applying the latest best guesses for parameter values to theoretical structures. Their
growth in use in economics to some degree reflects this evolution in other disciplines
and should not be seen as an aberration, but rather as an empirically focussed
scientific investigation parallel to and supportive of, if different from, econometric
investigation.

3. The debate about calibration

As the calibration literature has developed, the use of calibration has been accompanied
by substantial controversy. Why are calibrated models not estimated and subjected
to econometric testing, like other empirically based models in economics? How
much reliance can be placed on the use of literature based parameters since these
are frequently unavailable, and where they exist have wide ranges, or are often
contradictory? Is not calibration clearly inferior to estimation?
This controversy has resulted in a series of recent papers and symposia in

major journals in most cases centering on the use of calibration in macro models.
A symposium on calibration in the 1996 Journal of Economic Perspectives saw
Kydland and Prescott set out their interpretation of calibration, with commentary from
Hansen and Heckman, and Sims. Symposia in the 1995 Economic Journal, edited by



3662 C. Dawkins et al.

Quah, and the 1994 Journal of Applied Econometrics, edited by Pagan, are further
contributions. Some papers with provocative titles (such as Hoover’s (1995) “Facts
and Artifacts” paper), have appeared. De Jong, Ingram and Whiteman (1996), who
discuss a Bayesian approach to calibration, indicate new approaches. To Gregory and
Smith (1991), the issue is calibration as estimation.

3.1. Lines of the debate

Hoover (1995) sets out some of the lines of the debate on calibration; discussing the
empirical value of calibrated models over estimation. The criticisms of calibration
range from claims of casual empiricism – that parameters from unrelated econometric
studies are used and the fact that models are not formally tested – to assertions
that reduced form methods deliver more empirically. Watson (1993), for instance,
emphasizes that in macro calibrations the metric used to determine the distance
between the simulated and actual moments in data is often left unspecified 4. Sims
(1996) explains why, in his view, dynamic stochastic general equilibrium modelling has
delivered little by way of empirical payoff; macroeconomists have developed a variety
of other approaches to compressing time series data using only informal theoretical
approaches 5.
Hoover cites Lucas (1987) as providing key counter arguments. Lucas argues that the

question of whether a model is true is not particularly interesting, because all models
are clearly abstractions. They are meant to be workable tools to answer a limited set of
questions. But a model which is not true can still be used to derive useful quantitative
guides to policy. Consequently for Lucas, and for Kydland and Prescott, testing a model
is uninformative. This position contrasts with that of Sargent as a representative of
the school of estimation, which holds that testing is necessary to evaluate alternative
models.
Hoover, however, presents two criticisms of the practice of calibration in Kydland

and Prescott. The first is that of “casual empiricism”. In contrast to the calibration of
micro models described in Mansur and Whalley (1984), which relies on systematic
literature searches to find values for elasticity parameters, Kydland and Prescott’s
approach to choosing selected parameters seems casual to Hoover. Other macro
modellers have acknowledged this criticism. The recent discussion in Browning et al.
(1999) explores and responds more fully to this concern. The second criticism is that
Kydland and Prescott do not provide any formal measure of the performance of their
model, although this issue has been addressed in recent literature such as Watson
(1993), who presents a measure of fit for calibrated models.

4 This point does not apply to micro calibrators, because they calibrate their models to data exactly.
5 But again, in the micro areas, numerous insights on the significance of policy measures have been
generated by calibrated models. These range from the efficiency and distributional impacts of tax policies,
to the impacts of trade policies in various economies.
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The debate between estimators and calibrators has also revealed other key differ-
ences in approach. Estimators, Hoover argues, pursue a competitive strategy in which
“theories compete with one another for the support of data” [Hoover (1995, p. 29)].
The rejection of a model on statistical grounds casts doubt on the validity of its
underpinning theory. In contrast, calibrators use an adaptive strategy which has at its
heart a parsimonious, idealized model derived from theory. The calibrator extracts all
possible information from that model. Where simulation outcomes do not match data
to the extent desired by the modeller, the underlying theory is not rejected, but instead
the modeller adds features in an attempt to improve the match. The merits of adding
specific features is gauged by the subsequent improvements in the model’s performance
in such matching. Hoover notes that unlike econometric models, calibrated models
cannot shed light on which of two fundamentally different models is best, because
they are not subjected to formal testing.
Despite the growth in its use, Hoover argues that no compelling defence has been

made for the calibration methodology. He turns to the concept of a model advocated
by Lucas for the elements of such a defence: to be comprehensible and useful, a
model must be simple, and hence abstract; but on the other hand it must capture
sufficient features of reality to inspire confidence in its ability to shed light on
empirical questions. Underlying the econometric approach, with its concern about
issues such as omitted variable bias and specification error, is the assumption that
any empirical methodology which does not strive towards fully articulated models,
will generate misleading results. However, the answers to some questions, such as
welfare or efficiency changes, are not always easily subjected to statistical tests. In
these cases, simple models which mimic salient features of the real world can offer
otherwise unavailable quantitative insights.

3.2. Calibration is estimation, estimation is calibration

Despite their portrayal in the literature our position is that calibration and estimation
are in less conflict than one might suppose. If calibration is the setting of the numerical
values of model parameters relative to the criterion of an ability to replicate a base case
data set as a model solution, and estimation is the use of a goodness of fit criterion in
the selection of numerical values of model parameters, the two procedures are closely
related. In both cases a selection of model parameter values which is thought to be
reasonable (or best) relative to some criterion applied to data is involved. In one sense,
both procedures lead to identical outcomes.
Suppose in an econometric estimation exercise, say estimating a linear regression,

there are more explanatory variables, and hence more regression parameters, than the
number of observations. In general, in this situation of underidentification, there will
be more than one set regression coefficients that will explain the data exactly and lead
to an R2 of 1. The situation of parameter calibration applied to general equilibrium
models is analogous, since the models typically have more parameters than data and,
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as such, an exact fit is possible. Furthermore, more than one set of parameter values
will typically fit the data exactly.
Where the differences lie is in the type of models used and the criteria applied in

the process of fitting models. Estimation is applied to models that often have a limited
economic structure, but for which the statistical extension can be complex. The criteria
used in estimation are many and, like the maximization of likelihood functions, can
be highly sophisticated. These structures allow practitioners to undertake a variety of
statistical tests about the properties of the estimated parameters and the performance of
the model in light of the data. All statistical tests, however, are necessarily conditional
on some maintained, but untested, hypotheses.
Calibrators also use their models for different purposes than econometricians.

Whalley (1985b) suggests that micro general equilibrium models may well be
impossible to estimate in conventional terms, except perhaps in a situation where
an economy with unchanged parameters is observed in equilibrium several times
as observed exogenous variables change. Even the basic two-person pure exchange
economy remains unestimated, because the cross-equation restrictions implied by
the central model solution concept of equilibrium are too complex to impose on
conventional estimation. A pure exchange economy requires excess demands which
satisfy the conditions for the Brouwer fixed point theorem; an economy with production
requires supply correspondences and demand functions which satisfy the conditions for
the Kakutani fixed point theorem. Any estimation of a model of a general equilibrium
economy must generate parameter estimates that satisfy market clearing, zero profit
conditions, and Walras Law. Thus the growth of calibration, in part, reflects the relative
lack of fully estimated models for use in applications of the theory held by theorists
to be so central to policy and other analyses.
Furthermore, the implications of viewing the data as representative of a behavioural

equilibrium or some well specified disequilibrium dynamic process are typically not
imposed as constraints in estimation. In many econometric models the stochastic error
terms are ad hoc additions, which are not formally part of the decision making of
the agents which the models purport to represent. Like Lucas, Prescott (1986) rejects
the notion of testing econometric models as unhelpful on the basis that any economic
model is a simplified abstraction from a more complex reality, and hence any model can
be nested within a more complex, but more realistic, variant. Testing models against
each other is not the issue; the question is which simplified model to use; which best
captures the essence of the economic processes one wants to analyze. Judgement based
on the model’s use, is an essential ingredient in this choice.
What is implicitly advocated in both of these cases is a different approach instead of

the replacement of estimation by calibration. The objective is the same, the best fit of a
model to data; the difference lies in the criteria and the model structures, and hence the
procedures employed. Because in the case of Whalley, the unestimable or unestimated
nature of models central to economic theory is taken as the starting point, and in
the case of Prescott, model testing is rejected, both appeal to other criteria for model
selection. These criteria do not rely on econometric or statistical techniques. Whalley
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argues for selecting models that are widely used in the theoretical literature but have
no econometric analogue. Prescott advocates selecting models which are theoretically
well grounded, and standard in the theoretical literature.
The choice of model structure, in the absence of either econometric estimation or

meaningful tests between models, is therefore based on appeals to widespread use
in theoretical work. This, as much as anything else, is the growing divide between
calibration and applied econometrics. The purpose of empirical investigation using
models is less to test them, than it is to assess their numerical implications. Model
structures, in turn, need a numerical specification; leading directly to calibration.

3.3. The Jorgenson–McKitrick critique of micro model calibration

Despite the interrelationships between calibration and estimation we discuss above,
micro calibration, in particular, has nonetheless been criticized in Jorgenson (1984)
and more recently by McKitrick (1995) on several counts. One is that the data pre-
adjustments in the process of implementing calibration introduce untraceable bias
into the data and hence, into the model results. The use of a benchmark year for
calibration also enters their critique. Because calibration relies on a single observation,
any anomalies in the economy for that year can be transmitted to the model results, and
may taint the conclusions. They highlight the inadequacies of the elasticity estimates
in applied models, and argue that the reliance on CES, Leontief, and Cobb–Douglas
functional forms is restrictive and unrealistic. This restrictive class of functional
forms precludes complementarities, incorporates elasticities of substitution that are
independent of prices and which, thus, unrealistically constrain behavioural responses
in counterfactual simulations.
In response to these shortcomings, they suggest the simultaneous estimation of all

of a model’s elasticities and share parameters using time series data. This estimation of
general equilibrium parameters is, however, largely undertaken for model subsystems,
rather than by incorporating the full set of cross-equation equilibrium restrictions into
the procedure. Such an explicit econometric approach to general equilibrium modelling
has thus far been limited to a handful of papers: Clements (1980), Jorgenson (1984),
Jorgenson, Slesnick and Wilcoxen (1992), and McKitrick (1995). This approach, they
suggest, allows for elasticity estimation which is fully consistent with the definitions of
variables employed in the model and does not require the use of restrictive functional
forms. The statistical basis of their estimation isolates systematic effects from random
noise and the use of unadjusted time series data precludes the introduction of pre-
adjustment bias.
If this approach is superior to calibration, the question which arises is why has it not

been more widely adopted. One issue is the estimability of equilibrium models, raised
above. How is the equilibrium solution concept central to general equilibrium analysis
actually going to be imposed as a series of cross-equation restrictions in complete
model estimation? A second involves the use of statistical rather than deterministic
models. If a stochastic growth model of the form used in the real business cycle
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literature is calibrated to data, but not tested, the calibration in applying goodness
of fit criterion is really only a variant of estimation, and vice versa. Other reasons for
the limited use of econometric methods in the parameterization of general equilibrium
models lie in the paucity of time series data on the variables of interest for the questions
that are addressed in calibrated models. Estimating large dimensional models, or
models which focus on variables that are not measured in national accounts data,
may be intractable. The effort required to generate the single observation required
for calibration can itself be formidable, and extending the process to include time
series observations may be close to impossible. For example, modellers must frequently
update an earlier year’s input–output matrix as an approximation to that of the
benchmark year, because in many economies annual input–output tables are not
produced. Furthermore, where they are produced, they are often generated by updating
a previous year’s table rather than by undertaking new production surveys.
The econometric approach also precludes the use of some simplifying techniques

commonly employed in applying general equilibrium models. One such technique is
the Harberger (1962) convention, whereby the units of quantities defined in the model
are given by that quantity which sells for one unit of currency in base period data.
This convention allows the modeller the simplification of representing heterogenous
quantities in a homogenous manner, both in data and in the model. For example, if
labour inputs were to be measured as hours worked, some correction would have to
be made for different levels of labour efficiency and skill. The use of this assumption
also reduces the number of variables required in the model; the modeller need only
collect data in value terms, rather than in separate price and quantity terms. Such a
convention, however, creates time-dependent units and makes time series estimation
all but impossible.
Modellers have responded to certain elements of the Jorgenson–McKitrick critique,

within their calibration paradigm. The weakness of the elasticity estimates has been
addressed via the sensitivity analysis procedures in Wigle (1991), Pagan and Shannon
(1985, 1987), DeVuyst and Preckel (1997), Harrison and Vinod (1992), and Harrison
et al. (1992), discussed in Section 6 below. Modellers need no longer rely on restrictive
functional forms; a fully flexible, globally regular functional form, has been developed
by Perroni and Rutherford (1998).
The issues of the adjustments made to data for calibration purposes have been largely

ignored in the modelling literature, but the pitfalls of drawing conclusions from a single
and possibly unrepresentative, single year benchmark observation have been explored
in several papers. Roberts (1994) examines the significance of this in a model of Poland
by calibrating to five different benchmark years, and concludes that model results
are robust to the choice of benchmark year. Adams and Higgs (1990) also address
this problem, arguing that the effects can be mitigated by averaging several years’
data into a single observation. They also illustrate how using agricultural data from
an abnormal “year of record” affects policy conclusions derived from the Australian
ORANI model. Dawkins (1997) develops a methodology for undertaking sensitivity
analysis with respect to the initial data values.
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The introduction of untraceable bias to the model parameterization through pre-
adjustments remains a largely unaddressed issue. The only example to our knowledge
is Wiese (1995), who derives two benchmark equilibrium data sets using alternative
accounting assumptions for employer contributions to health insurance and traces the
effects of these assumptions on model results. His experiments indicate that the model
results are indeed affected by the accounting conventions used in the data. Different
accounting conventions could, in principle, also affect econometric estimates in so far
as such conventions serve as identifying restrictions. The bias introduced into model
results through the use of algorithms employed in the systematic component of data
adjustments has been recently explored in Dawkins (1998).
Through calibration, any adjustment of data potentially has implications for the

model’s results, but these biases may be virtually indiscernible where adjustments
are performed on an ad hoc basis. While escaping the piecemeal approach to data
preadjustment entirely may be impractical, a move towards more systematic and better
reported data adjustment is desirable so that ways of addressing these bias issues can
be developed within the calibration framework.

4. Making calibration more concrete

4.1. Calibrated macroeconomic models

Calibration entered the macroeconomics literature with Kydland and Prescott’s 1982
paper. Apart from its technical dexterity, the extraordinary originality in both approach
and execution in this paper continues to galvanize interest more than a decade and a
half later. Few other papers over the last fifty years have made such a strong impact,
drawn so much admiration, and from other quarters, perhaps had so much misinformed
adverse comment targeted their way. Although much of the subsequent debate over
Kydland and Prescott’s paper has been about calibration, calibration was not their main
focus. The word itself does not appear until the latter half of the paper, and then it
only appears once, in the subheading “Model Calibration”. Nowhere does the word
appear in the text of the published paper, and no explanation of the term is offered.
As discussed above, Kydland and Prescott sought to show how a stochastic growth

model could be developed and fitted to post-war US quarterly data in which the co-
movements of the fitted model are quantitatively consistent with the corresponding co-
movements found in US data. Their objective was to show that an essential component
of explaining aggregate fluctuations is the recognition that producing and installing
capital equipment and bringing it into use cannot occur in the same period as the
original decision to invest. Kydland and Prescott noted that macro-econometric models
offered them little help with model parameterization; wholesale estimation of the
model appeared infeasible and choosing parameters as they did, seemed to be a
reasonable approach for the problem at hand.
The technique they used was to construct a model with technology and non-time

separable preferences, setting out the time required to build new productive capital, and
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an aggregate production function incorporating technology shocks. They characterized
the steady state of their system, and showed how its general structure was akin to
a vector autoregressive process with independent, multivariate normal innovations.
Steady state behaviour of the model was tied down by the specification of aggregate
functions, and its stochastic structure was chosen to fit as closely as possible to the
actual covariation in the data. As noted earlier, given their specification of preferences,
production structure and stochastic structure, Kydland and Prescott concluded that the
fit of model results to actual data was surprisingly good.
The Kydland and Prescott calibration set off debate on an ever-widening set of

questions concerning the calibration of macro models. Which models should be
considered as admissible for the purposes of such an investigation, and how should
these be calibrated? Should calibration be restricted to the long run growth path of
the economy, and how should it be implemented? Only limited reference was made to
the earlier exact calibration procedures used by the micro-based policy modellers. In
the original Kydland and Prescott scheme, for instance, if stochastic shocks were to
apply to a wider range of parameters, such as Cobb–Douglas shares in production and
demand parameters, with sufficient freedom over the specification of the stochastic
processes involved, exact calibration to the distribution of observed aggregate data
could likely have been performed.
Cooley and Prescott (1995) have recently set out in more detail what such

calibrations imply and have suggested that since the underlying structure used in real
business cycle models is the neoclassical growth framework, choosing parameters and
functional forms through calibration is only designed to ensure that the underlying
model economy will display steady-state or balanced growth behaviour that is
consistent with actual data. They suggest preserving this calibration standard in studies
of business cycles, although they stress that this standard does not imply that the model
economy, in its stochastic form, will reproduce actual business cycle behaviour.
As an example, they present an economy with a single, infinitely lived, dynastic

consumer whose size grows at the rate h; where g is the long term growth
rate of labour-augmenting technical change. Preferences and technology are both
assumed to be Cobb–Douglas. The dynastic consumer maximizes expected utility
from consumption, and forms expectations on future prices to enable it to do so. The
dynastic optimization problem is set out by Cooley and Prescott as

max E

[ ∞∑
t = 0

b t(1 + h)t[(1 − a) log ct + a log(1 − ht)]

]
, (1)

s.t. ct + xt = e
zt (1 − g)t(1 − q)kqt h

(1 − q)
t , (2)

(1 + g)(1 + h) kt + 1 = (1 − d) kt + xt , (3)

zt + 1 = øzt + ût , (4)

where b is a time discount factor, a and (1 − a) are Cobb–Douglas consumption shares,
xt is time t investment per head, ct is time t consumption per head, kt is capital per
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unit of effective labour, zt is a random productivity parameter, ht are hours supplied
at time t, q and (1 − q) are share parameters in Cobb–Douglas technology, d is the
depreciation rate, and ût a productivity process error term.
Cooley and Prescott move sequentially through this model to calibrate it. q is

capital’s share in output, which from (modified) national accounts data is 0.40; labour’s
share (1 − q) is 0.60. Substituting the constraints into the objective function and taking
first order conditions, Cooley and Prescott obtain

(1 + g)(1 + h)
ct

=
b(1 + h)

[
qkq − 1t + 1 h

1 − q
t + 1 + (1 − d)

]
ct + 1

. (5)

So that the steady-state is a stationary distribution in which kt , ct , and yt (output per
effective worker) grow at the same rate (and dropping the t subscripts) 6,

(1 + g)
b

+ d − 1 = q
y

k
. (6)

Along a balanced growth path, first order conditions for hours yield

(1 − q)
y

c
=

a
(1 − a)

h

(1 − h)
. (7)

Cooley and Prescott show the laws of motion for capital stock growth imply that in a
steady state

(1 + g)(1 + h)
k

y
= (1 − d)

k

y
+
x

y
, (8)

or,

d =
x

k
+ 1 − (1 + g)(1 + h). (9)

Equation (9) allows d, the depreciation rate, to be determined once the growth rates g
and h are known, and data on the investment to capital ratio is selected. Once d is
determined, Equation (6) allows b (the discount factor) to be determined, given that
q (the Cobb–Douglas preference share parameter in production) has been determined
from factor share data. Equation (7) allows a, the Cobb–Douglas share parameter to be
determined, if h (hours worked) are known from data. Cooley and Prescott cite time
use survey data referenced in Ghez and Becker (1975) as showing that households
devote about one third of their discretionary (non-sleep) time to market activity, and

6 With 0 < ø < 1 there will be a stationary distribution for the levels of k , c and y.
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use a value of h = 0.31. They also calibrate to a steady-state, output to consumption
ratio of 1.33, implying that h(1 − a) has a value of 1.78.
Cooley and Prescott complete their calibration by determining parameters of the

process that generates the shocks to technology in Equation (4). They assume a value
for ø of 0.95 which, from data on measured GNP for the US, implies innovations to
technology that have a standard deviation of about 0.007.
Recent literature on calibrated macro models has been concerned with related

issues that these forms of calibration raise. One is how to solve recursive dynamic
programming problems; den Haan and Marcet (1990) present a method of parameter-
ized expectations; Judd (1991) uses a minimum weighted residuals technique. King,
Plosser and Rebelo (1988a,b) simplify their model for this purpose by using a linear
approximation to the first order conditions characterizing equilibrium, a procedure
reminiscent of Johansen’s (1960) linearized general equilibrium model of Norwegian
growth on which micro modellers have built.
Another is how best to represent the data on business cycles which these models

seek to explain. A key component of the literature has been the use of Hodrick–Prescott
filters [see Hodrick and Prescott (1980)]. These are parameters, l, which embody the
relative variance of the growth component to the cyclical component in data, and are
chosen so as best to trade off the extent to which the growth component tracks the
actual series, against the smoothness of the trend. As l → ∞, the growth component
approaches a linear trend. Hodrick–Prescott filters pre-adjust data, but in ways different
from the micro-based policy calibration literature.
Further work discusses how best to assess the performance of calibrated models.

Watson (1993) provides measures of fit for calibrated models, based on the size of the
stochastic error needed to match the second moments of actual data exactly. Christiano
and Eichenbaum (1992) offer a generalized method of moments interpretation of
calibration exercises, which provides a metric for assessing the difference between
model predictions and the data.
Real business cycle models have also been elaborated on in terms of structure

and coverage. Rupert, Rogerson and Wright (1995) discuss models with a more
extensive treatment of household production, a structure subsequently further explored
in McGrattan, Rogerson and Wright (1997). Andolfatto (1996) discusses the qualitative
implication of labour market search for fluctuations in a real business cycle model,
while Coleman (1996) addresses the correlation between money and output in a model
where the quantity of money is endogenously determined and, in the long run, neutral.
Although the origins of macro-type calibration lie in the real business cycle

literature, these techniques have also been applied to other economic questions. One
such field of application has been asset pricing. Mehra and Prescott (1985) use a
calibrated model to show that under reasonable restrictions, standard competitive
theory cannot explain both the low average real returns to debt and the high returns to
stocks; the so-called equity premium puzzle. Other anomalies in asset prices have been
uncovered using calibrated models, and these are surveyed in Kocherlakota (1996).
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Calibrated models are also tools employed in the endogenous growth literature. For
example, King and Rebelo (1993) assign numerical values to the parameters of a
neoclassical growth model and conclude that the model’s predictions are inconsistent
with interest rate, asset price and factor share observations. Importantly, they find that
when the initial capital stock is sufficiently low, capital accumulation makes a large
contribution to growth but the marginal product of capital in the early stages of growth
is unrealistically high.
Tax analysis in the real business cycle context has also been a focus of attention.

Greenwood and Huffman (1991) use a calibrated model to examine the welfare effects
of distortionary taxes relative to the costs of volatility in aggregate variables and
conclude that the welfare costs of taxation in their model are greater than those of
fluctuations over the business cycle. Cooley and Hansen (1989) incorporate cash-in-
advance constraints in their real business cycle analysis. Their simulations suggest that
the level of expected inflation does not affect the business cycle, although it does have
an impact on long run values of aggregate variables.
Calibrated business cycle and endogenous growth models have also been used

to examine fiscal policy issues. Papers surveyed in Stokey and Rebelo (1995) use
endogenous growth models calibrated to US data to infer the effects of income taxes
on the growth rate, and conclude variously that tax reform would have little impact
on growth [Lucas (1990)], modest impact on growth [King and Rebelo (1990)] and a
large impact on growth [Jones et al. (1993)]. Stokey and Rebelo undertake sensitivity
analysis with respect to the numerical specification of several parameters to uncover
the source of the discrepancy in these various conclusions.

4.2. Calibrated microeconomic models

The real business cycle macro models deal with a small number of aggregate
variables and their dynamics include relatively few parameters, so that the number
of observations far exceeds the number of parameters. In contrast, the approach to
calibration in policy-oriented micro models is usually exact. Given the disaggregation
used in these models for goods, factors and agents (producers, consumers and
governments), they typically have many more parameters than can be inferred from
the data. Hence, modellers exogenously specify the values for a sufficient number
of parameters (usually the elasticities), so that the remaining free parameters can be
calibrated to fit the data exactly. Thus, by definition the minimized distance criterion
defined over the difference between data and model outcomes is zero in these models,
since the data are in fact pre-adjusted to conform to the equilibrium solution concept
of the model.
In calibration for policy evaluation, values for the model parameters are recovered

from adjusted data in a deterministic manner. Parameters, and hence calibration of their
numerical values, are thus viewed differently in real business cycle macro models and
policy evaluation oriented micro models. In the former, the parameters are often the
so-called “deep” parameters of technology and tastes that are viewed as unlikely to
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change over long periods. They are of interest on their own, and calibration is, in
effect, an attempt to recover them from aggregate data. In the latter, the focus is on
the comparative static or, less often, comparative dynamic effects of policy changes,
on equilibria.
Micro modellers typically see their simulations largely as numerical implementa-

tions of theoretical structures. To them, the widespread use of a particular structure in
the theoretical literature is an indication of its worth, so that they seek less to test
or validate models and more to explore the numerical implications of a particular
model, conditional on having chosen it. Policy modellers tend to be agnostic about
particular models, accepting that many alternative structures relevant to an issue exist
in the theoretical literature, sometimes producing different results. Thus, unlike the real
business cycle modellers, the focus of micro modellers is to generate insights about
the effects of policy or other changes conditional on a particular theoretical structure,
rather than to test theory itself.
An illustration is provided by the customs union issue. In the 1950s, when faced with

the Treaty of Rome and what today is the European Union, trade economists began to
explore the implications of regional trade agreements. Following Jacob Viner’s (1950)
work on the customs union issue, theoretical trade economists began to debate the
relative importance of the trade diversion and trade creation effects that Viner had
identified as stemming from a Union. These two effects clearly operated in opposite
directions, and so for any individual country contemplating joining a union, numerical
calculations of equilibria were needed.
In later work, modellers developed a calibration methodology that forces model

parameters to reproduce data exactly as a base case. This type of calibration, set out in
Mansur and Whalley (1984) and Shoven and Whalley (1992), is widely used in micro
models. It can be illustrated by considering a simple general equilibrium model with
consumption and production in which two consumers are endowed with two factors
of production. These factors combine to produce two goods using CES technology,
and the consumers have Cobb–Douglas preferences over the two goods. Consumers’
demands reflect utility maximization subject to a budget constraint.
The endogenously determined variables in this model are X hi , consumer h’s demand

for good i; Qi, the quantity of good i produced; Pi, the price of output i; F
j
i , the use

of factor j in the production of good i; and wi the price of factor i. Here, the price of
factor 2, w2, is arbitrarily chosen as the numeraire and is set equal to 1. Consumer h’s
endowment of factor j, Ehj , is exogenously given.
An equilibrium for this model is a set of goods and factor prices such that

(i) Factor markets clear:∑
i

F ji −
∑
h

Ehj = 0 ( j = 1, 2), (10)

(ii) Goods markets clear:∑
h

X hi −Qi = 0 (i = 1, 2), (11)
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Table 1
An example of a microconsistent data set used in calibration of a simple general equilibrium model

Production of Good 1 Production of Good 2

Production

Value of production 20 26

Value of input use of factor 1 12 10

Value of input use of factor 2 8 16

Consumer 1 Consumer 2

Demands

Value of demand for good 1 9 11

Value of demand for good 2 9 17

Income 18 28

Income sources

Value of endowment of factor 1 10 12

Value of endowment of factor 2 8 16

Income 18 28

(iii) Zero profit conditions hold:

PiQi −
∑
j

w jF ji = 0 (i = 1, 2). (12)

Because consumer demands reflect utility maximizing behaviour, they will satisfy
budget balance so that

∑
i PiX

h
i =

∑
j w

jEhj and Walras’ Law holds.
A micro calibration of this model uses equilibrium data to find the values of the

share parameters in the consumer utility functions and the share and scale parameters
in the production functions. To be used as input data to calibration, however, data must
be consistent with an equilibrium solution to the model, that is, they must satisfy the
equilibrium conditions. Table 1 provides an example of such data: the value of inputs
equals the value of outputs in each sector, the value of consumption equals that of
production of each good, and the consumers are on their budget constraints.
Table 1 reports observations in value terms, but to undertake calibration the value

observations need to be separated into price and quantity observations. This is done
through the choice of units. A units convention originally adopted by Harberger (1962),
and widely followed since, is that for both goods and services, quantities can be defined
as those which sell for one unit of currency. This convention allows all base case prices
in the economy to be set to 1. It also implies that the values of transactions in Table 1
denote quantities transacted.
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The utility functions in this example are Cobb–Douglas. If Uh is the utility of
consumer h, and X hi is consumer h’s demand for good i, each consumer’s utility can
be written as

Uh =
∏
i

(
X hi

)bhi , (h = 1, 2), (13)

where bhi is the expenditure share of good i for consumer h and
∑

i b
h
i = 1.

Production functions in this model use the CES functional form so that the output
of good i, Qi, is given by

Qi = li

⎛⎝∑
j

a ji
(
F ji

)(si − 1)/si⎞⎠si / (si − 1)

(i = 1, 2), (14)

where Fji is the input of factor j into the production of good i, li is a scale parameter,
si is the constant elasticity of substitution, a

j
i is the CES share parameter in the

production of good i, and
∑

j a
j
i = 1.

With Cobb–Douglas demands and CES production there are twelve parameters in
this model. These are for the shares for goods in each consumer’s preferences bhi ; the
CES share parameters for factor j in the production of good i, a ji ; the scale parameters
in the production function for good i, li; and the two elasticities of substitution in the
CES production functions, si.
Cobb–Douglas demands are given by

X hi =
bhi I

h

Pi
(h = 1, 2; i = 1, 2), (15)

where Ih is consumer h’s income and is defined as Ih =
∑

j w
jEhj . For known solutions

values X hi , I
h, and Pi, calibrated demand parameters are given by

bhi =
PiX hi
Ih

(h = 1, 2; i = 1, 2). (16)

On the production side, the CES factor demand functions are

F ji =
Qi

(
a ji
)s i

li(w j)s
i

[∑
j

(
a ji
)s i
(w j)1 − s

i

]s i / (s i − 1) (i = 1, 2; j = 1, 2). (17)

In calibrating production parameters the usual procedure is to set values for the
elasticity parameters s i. First order conditions from profit maximization then yield
calibrated factor share parameters as

a ji =
w j

(
F ji

)1/s i
∑

j w
j
(
F ji

)1/s i (i = 1, 2; j = 1, 2). (18)
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Table 2
Calibrated parameter values for Cobb–Douglas general equilibrium model using the microconsistent data

from Table 1 a

Utility function share parameters b11 = 0.50

b12 = 0.50

b21
.
= 0.39

b22
.
= 0.61

Production function share parameters a11
.
= 0.58

a21
.
= 0.42

a12
.
= 0.36

a22
.
= 0.64

Production function scale parameters l1
.
= 1.97

l2
.
= 1.93

a .=, approximately equal to.

Substituting the a ji into the production function allows the calibration of the scale
parameters li,

li =
Qi[∑

j a
j
i

(
F ji

)(s i − 1)/s i]s i / (s i − 1) (i = 1, 2). (19)

If we suppose that either econometric estimation or a literature search have yielded
elasticity values s 1 = 1.2, and s 2 = 0.8, the calibrated parameter values using the data
from Table 1 and the elasticities are given in Table 2.
If the calibrated parameter values set out in Table 2 are used in solving the model,

the equilibrium solution values will be those given by the data in Table 1. This
replication test is used by micro-modellers to ensure that no errors are present, either
in the calibration calculations or in the model coding. One issue discussed by some
modellers is the possibility of multiple equilibria, so that the replication test fails
because the model solves for an equilibrium other than that of the base case data.
Numerical examples of multiple equilibria have been constructed by Kehoe (1985)
for simple Cobb–Douglas economies with a small number of production activities,
which have caused some disquiet because of the presence of multiplicity in seemingly
simple models. However, where smooth production functions of the Cobb–Douglas
or CES variety are used, most modellers believe that uniqueness is the more likely
outcome [see Kehoe and Whalley (1985)]. Ad hoc tests undertaken with applied
models, seem to confirm this view. Such tests include setting the model’s starting values
to a slightly displaced version of the initial equilibrium solution and checking that the
model calculates the initial equilibrium as a solution, and approaching equilibria at
different speeds and from different starting points.
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Although the example used here is simple, the same calibration approach can
be followed in larger scale models. Piggott and Whalley (1985) use a general
equilibrium model of the UK with 100 households, 33 productive sectors, and 29 traded
goods. Including the intermediate production structure, the model uses around 20 000
parameter values. Models of these dimensions are not exceptional. An even larger
model, the ORANI model of the Australian economy, identifies 115 commodities and
113 industries in its base period input–output data [Dixon, Parmenter, Sutton and
Vincent (1982, p. 202)].
Micro general equilibrium models are inevitably more concerned with disaggregated

representations of economies than is true of the real business cycle models. For
example, the Whalley (1985a) global trade model considers four trade blocs, each
of which produces 33 commodities, and has a government and several household
types as consumers. This scope for accommodating detail enables modellers to address
focussed policy questions which, by virtue of their disaggregated data requirements,
are difficult using an econometric approach. Questions that have been examined in
such a framework include the impact of the Canada–US Free Trade Agreement [Cox
and Harris (1985)], the effects of the Uruguay Round of GATT negotiations [Nguyen
et al. (1996)], tax incidence in Côte d’Ivoire [Chia et al. (1992)], and the potential
impact of carbon taxes [Whalley and Wigle (1990)].
The data requirements of micro-based policy models can be large. In the Whalley

(1985a) model, they include trade between regions, trade barriers within regions,
factor endowments and consumption by household type in each region, factor inputs
and the value of output for each production sector by region; all in consistent units
and for a specified benchmark year. Such data are derived from several sources,
including trade data, household expenditure surveys, input–output tables, government
administrative records, statistics from taxation departments and national income
accounts. Some information, such as some of the trade barrier data, is either missing
or incomplete; and worse, key elasticity parameters need to be specified for which
literature based estimates may be non-existent, or if they exist may be contradictory.
A further problem is that the structure of econometric models from which elasticity
parameters may have been estimated is likely to be dissimilar to that of the micro
model in which they are used, since the estimation procedures are unlikely to have
imposed a general equilibrium structure on the data. Hence, a precise match between
collected parameter estimates and the model’s input requirements for calibration
seldom exists.
Reconciling and adjusting these diverse data sources so that they form a consistent

data set can pose challenges, and these are set out in some detail in St. Hilaire and
Whalley (1983). The levels of sectoral, household or product aggregation can differ
among data sources. Definitions of terms can vary, and do not necessarily accord
with the model requirements. Gaps can occur, with no estimate available for some
components of the required data. Measurement errors abound; an estimate of the same
variable in one data source may differ sharply from that in another. Data sources
themselves also vary in their reliability because collection techniques and methods
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of analysis differ among researchers and institutions. Including more than one country
in a data set compounds these consistency problems.

4.3. Deficiencies of micro calibration

The use of data adjustments and the absence of statistical structures in the micro
models precludes the use of these models for forecasting. Despite basing conclusions
on the best available data, modellers do not pretend that their model results yield
anything other than indications of the relative orders of magnitude for possible policy
adjustments in the economy. Often modellers seek quantitatively informed insights.
Are effects large or are they small; are they opposite to received wisdom, and if so
why. Paradoxically, the framework that allows a detailed specification of the economic
system introduces uncertainty into the model conclusions by virtue of its requirement
for highly disaggregated and, inevitably, approximate data.
The dimensionality of these models is another issue. In some circles, due to

their detail, micro models have developed reputations as black boxes into which a
policy change is fed as an input and from which a set of results emerges with little
explanation. In these models, the key interactions that drive the model results can easily
become obscured. The data requirements of a detailed model can also be a constraint
in the implementation of calibration. Model detail often centres on the sectors and
agents most likely to be affected by the policy question at issue, while the remainder
of the economy is modelled at a relatively more aggregated level.
The calibration of such models also implies no model testing. Many different

models with different structures could, in principle, be calibrated to the same data
set. Modelling efforts are seen as solely theory with numbers, the aim of which is
to provide model conditional insights, such as which effects are large and which
small, which positive and which negative; either for policy input or for the better
understanding of economic processes. Typically, model structures are sufficiently
complex that estimating their parameters in a form which imposes the equilibrium
solution concept of the model is infeasible. Econometrically estimated models generate
conditional inferences, since they maintain assumptions about stochastic distributions,
but their statistical basis allows greater rigour to be attached to insights. In contrast,
results from micro simulation models are not based on any formal statistical criteria
since they do not aim to provide forecasts. Model results are suggestive, and their
interpretation subjective.

4.4. Some recent examples of calibrations

Far from being a passing trend, calibration continues to spread as a numerical
technique used in economics. Some recent examples of calibrated models, together
with summaries of their structures, calibration procedures, data sources, key parameters
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and main conclusions are given in Table 3. As this Table indicates, the distinction
between macro-oriented and micro-based models persists in current modelling practice.
Macro models are based on a dynamic growth structure and employ calibration
techniques which have their foundations in the Kydland and Prescott calibration,
whereas the static, general equilibrium models continue largely to calibrate parameters
following the approach from Shoven and Whalley.
The four recent dynamic models in Table 3 exhibit greater variation in their

approaches to calibration than do the three static models; Greenwood, Hercowitz
and Krusell (1997) use a dynamic growth model to examine the quantitative effects
of technological change in equipment, which is investment specific, on US growth,
and conclude that it accounts for a larger proportion of growth than does neutral
productivity change. Their simulations are undertaken using a representative consumer
model with Cobb–Douglas production. Investment-specific technological change is
introduced in the evolution of the stock of equipment, one of the factors in the
production function; the contribution of investment to the changing stock of equipment
is scaled by a technology parameter. The technology parameter is modelled as a random
process with a known average growth rate which is calculated from an exogenous
data series. Depreciation rates and marginal tax rates of labour and capital income are
likewise assigned from non-model sources. The remaining model parameters, including
preference parameters and factor shares in production, are calibrated so that the model
reproduces features of long-run US data.
Cooley, Hansen and Prescott (1995) examine the effects of idle resources on business

cycle fluctuations in the US. They also use a dynamic growth model. Production in
their model is undertaken in a continuum of plants that vary in both location and stock
of physical capital, where each plant is indexed by a technology parameter added to a
random shock. Below some threshold value of the technology parameter, a plant is no
longer profitable and will shut down – a mechanism which allows for the possibility of
idle resources in the economy. The value of the technology parameter is set in one case
to mimic the standard business cycle model, and in other cases to match literature based
data on average capacity utilization. The remaining parameters are calibrated so that
the non-stochastic steady-state behaviour of the model matches features of US data.
Huggett (1996) uses an overlapping generations model where consumers differ in

their stage in the life-cycle, to examine how models with uncertainty in earnings
and lifetimes match US data on the age-wealth distribution. In contrast to the two
previous papers, the focus of the model structure is on the consumer rather than the
producer specification. Calibration of the model relies heavily on values taken from
other published sources and includes actuarial estimates of survival probabilities for
different age groups, published population growth and labour force participation rates,
previous estimates of relative risk aversion and depreciation. The age–earnings profile
is calibrated from data for the US.
The calibration in the Huggett model uses literature-based parameter values almost

exclusively, whereas the remaining modellers choose some parameters so that the
model outcome matches data and draw others from the literature. This use of the term
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Table 3
Calibration procedures used in some recent modelling exercises

Reference Model focus Model structure Calibration
procedure

Primary data
sources

Key parameters Main conclusions

Greenwood,
Hercowitz and
Krusell (1997)

Role of
investment-specific
technological change
on growth in the US.

Dynamic growth
model with vintage
capital in production.

Growth rate of new
equipment
productivity,
depreciation rates,
and labour tax rates
matched to literature
values. Remaining
parameters
calibrated to match
features of US data.

National Income
and Products
Accounts for the
US. Literature
estimates for
specific parameter
values.

Productivity of a
new unit of
equipment changes
over time and is
given by direct
observation.

Investment-specific
technological
change accounts for
about 60% of
growth in the US
over the post-war
period.

Cooley, Hansen
and Prescott
(1995)

Effects of idle
resources on
business cycle
fluctuations in the
US.

Dynamic growth
model with firms
which have plants
that are defined as a
location and physical
capital. Technology
shocks determine the
fraction of idle
capital in each
period.

Parameters
calibrated to be
consistent with
capital-output ratio,
investment share in
output, the share of
income paid to
capital and the
average share of
time in market
labour for the US.

National Accounts
Data for the US.
Literature estimates
for specific
parameter values.

Average rate of
capacity utilization
taken from
literature.
Consumption
parameters and
depreciation
calibrated to long
run growth values.

Inclusion of variable
capacity utilization
and idle resources
does not affect
cyclical properties
of the model
significantly, but
does give variation
in factor shares.

continued on next page
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Table 3, continued

Reference Model focus Model structure Calibration
procedure

Primary data
sources

Key parameters Main conclusions

Huggett (1996) How life-cycle
economies with
uncertainty in
earnings and lifetime
match aggregate and
transfer wealth in the
US.

Overlapping
generations model
with shocks to
labour productivity.

Parameters set to
match values from
the literature.

Various literature
estimates.
Handbook of Labor
Statistics, Social
Security Bulletins.

Preference,
technology,
demographic and
tax parameters.

Including earnings
and lifetime
uncertainty in
lifecycle models
replicates aggregate
and transfer wealth
distributions for the
US.

Parente and
Prescott (1994)

Role of barriers to
technology adoption
in cross-country
income disparity.

Dynamic growth
model where firms
invest to improve
technology, but
results are hampered
by barriers.
Behaviour of
Japanese and US
modelled economies
differs only in
barriers to
technology adoption.

Parameters
calibrated to US
balanced growth
path are contingent
on a technology
capital share
parameter derived
from postwar
Japanese
development.
Several numerically
feasible values for
this parameter exist,
but the value is
chosen on
plausibility criteria.

US national income
and product
accounts. Literature
values for specific
parameter values.

Parameter for
barrier to
technology adoption
normalized to 1 for
US. Simultaneous
growth rates and
business physical
capital stock from
literature.
Depreciation, tax
rates, consumption
parameters and
rental rates are
calibrated from
data.

Development
miracles and the
disparity in
cross-country
incomes can be
reasonably
explained by
changes in barriers
to technology
adoption.

continued on next page



C
h.
58:

C
alibration

3681
Table 3, continued

Reference Model focus Model structure Calibration
procedure

Primary data
sources

Key parameters Main conclusions

Various GTAP1

models in Hertel
(1997)

Various including the
benefits of abolishing
the MFA, effects of
climate change on
agriculture, issues on
multilateral vs
preferential free
trade in the Pacific
Rim.

All are adaptations
of the static,
24 regions,
37 sectors GTAP
global trade model.

Aggregation of
general GTAP
database to meet
specific model
focus. Calibration
of shares is to 1992
levels data and
elasticities to
changes data.

GTAP multiregional
database derived
from individual
country
input–output tables,
bilateral trade data,
and Uruguay Round
GATT data.

Elasticities of
substitution and
income elasticities
derived from
literature. Constant
difference elasticity
function calibrated
to approximate own
price elasticities.

Various conclusions
including: MFA
reform leads to
large global welfare
gains; including the
link between CO2
and crop growth in
models mitigates
estimates of the
damaging impact of
climate change on
welfare; reciprocity
of non-APEC
members for
nonpreferential
trade liberalization
affects whether
benefits are
conferred on APEC
or non-member
countries.

Piggott and
Whalley (1998)

Role of self supply
and underground
economy in analysis
of VAT options in
Canada.

Static, 2 consumers,
3 goods, single
region model.
Includes self supply
and underground
production.

Calibration to 1993
levels data and
changes data
following 1989
Canadian tax
changes.

National accounts
data, Time Use
Survey, tax data,
combined into
single consistent
data set.

Supply elasticities
inferred from
changes data.
Literature based
demand elasticities.
Calibrated share
parameters.

The presence of
self-suppliable
goods can reverse
the result that
broadening the VAT
base is welfare
improving.

continued on next page
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Table 3, continued

Reference Model focus Model structure Calibration
procedure

Primary data
sources

Key parameters Main conclusions

Lee and
Roland-Holst
(1997)

Environmental
implications of tax
and trade policies in
Indonesia.

Static, 3 region,
19 goods model.
Includes
10 pollutants from
production and
emissions taxes.

Calibrated to 1985
levels data for
Indonesia and
Japan.

Industrial Pollution
Projection System
database used.
Input–output matrix,
employment and
capital stock data
combined into
single consistent
data set.

Taxes and tariff
share parameters
calibrated from data
set. Effluent
coefficients
calibrated from
pollution database.

A uniform effluent
tax is the most cost
efficient option for
abating emissions
and its use together
with trade
liberalization can
counteract the
negative
environmental
effects of output
growth.

1 GTAP is the acronym for the Global Trade Analysis Project, a project designed to facilitate the general equilibrium analysis of global trade issues.
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calibration to include parameters drawn from literature contrasts with the use of the
term in micro-based models where a model’s “calibrated” parameters are restricted
to those derived from the benchmark data set and the literature-based parameters
such as elasticities are considered parameters with assigned values. Including assigned
parameter values that have been derived outside the model structure under the
calibration rubric is a potential source of confusion in the communication between
micro and macro calibrators.
In contrast to Huggett (1996), Parente and Prescott (1994) employ a more model-

dependent approach to calibrating parameters. They use a dynamic general equilibrium
model to show how barriers to the adoption of technology in different countries
lead to differences in per capita income. Data on the US and Japanese economies
form the basis of their calibration. In their model structure, firms in each country
are differentiated by their technology levels. To move from one technology level to
another, firms must invest. The technological advancement from a particular level of
investment, however, depends crucially on two parameters – one relates to country-
specific technology adoption barriers (p ), and the other, qz, which is not country-
specific, relates to the firm’s current level of technology relative to world knowledge.
In the case of the US, the value of p is set to 1. Calibration of model parameters is
undertaken with respect to long run balanced growth data for the US. Such calibration
requires, however, the specification of a value for qz. This value is found by calculating
(p , qz) pairs for the Japanese economy, finding the implied income level relative to the
US for each pair, and choosing the pair which is most consistent with data.
Table 3 also summarizes how calibration has been used in three recent static

applied general equilibrium modelling exercises relating to trade, tax and environment
issues. The static models exhibit greater variety in dimensions than their dynamic
counterparts, but offer a more uniform approach to calibration. The large scale, highly
disaggregated Hertel (1997) models, which are the product of long-term modelling
efforts, are designed to be sufficiently realistic representations of the global economy
that they can be used for policy analysis. They contrast with the small, focussed
model of the Canadian economy in Piggott and Whalley (1998) which is designed
to investigate a specific proposition about tax reform.
The models included in the Hertel (1997) volume focus on a range of issues related

to international trade, including the effects of abolishing the Multi Fibre Arrangement
[Yang, Martin and Yanagishima (1997)], the effects on relative wages in industrial
countries of developing country expansion [McDougall and Tyers (1997)], the effects
of global climate change on agriculture [Tsigas, Frisvold and Kuhn (1997)], and a
comparison of multilateral and preferential free trade in the Pacific Rim [Young and
Huff (1997)]. All of these models use the data base developed under the Global
Trade Analysis Project (GTAP) as a basis for calibration, although each of the issues
addressed requires the modellers to aggregate and adapt the basic GTAP model and
data framework to match the problem under consideration.
The disaggregation of the GTAP data base is the feature that allows it to form the

basis of such a variety of trade oriented policy analyses. Perhaps more than any of
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the other models listed in Table 3, the GTAP models illustrate how calibration has
given policy modellers the flexibility to address issues which would be infeasible
in an econometric framework. The GTAP data base is large, identifying production,
consumption, trade flows and tariffs among 24 regions each with 37 production sectors.
The derivation of the single 1992 observation, which comprises the data base, was itself
a large undertaking. Obtaining sufficient time series to estimate the model parameters
would be close to impossible.
In contrast, Piggott and Whalley (1998) calibrate a small, 2 consumer, 3 goods

model in which labour is the only factor of production. They use the model, calibrated
to Canadian data, to show how the presence of self-supplied goods and the underground
economy can reverse the conventional wisdom that broadening the base of a VAT is
welfare improving. The direction of welfare change in their model hinges crucially on
the supply elasticity for non-market goods. Instead of using literature-based estimates
or using a “best guess” approach as is the traditional approach for finding elasticity
parameters in micro-based models, they use information on the actual response of the
Canadian economy to the imposition of the VAT to calibrate its value.
The disaggregation of the GTAP models and focussed approach of the Piggott and

Whalley model represent two ends of the spectrum of micro models. The dimensions
and structure of the final model in Table 3 are perhaps more representative of the
majority of micro-based, static models. Lee and Roland-Holst (1997) use a standard
general equilibrium framework with perfect competition, constant returns to scale
production technologies, fixed stocks of capital and labour, and endogenous trade
flows to examine the environmental implications of tax and trade policies in Indonesia.
They deviate from the standard model by including detailed specification of sectoral
emissions, in which emissions are linear in sectoral output. Data from a pollution
database is used to calibrate the effluent coefficients.

5. Best practice in calibration

Given the widespread use of calibrated models in modern economics, the question of
what comprises best practice naturally arises. In econometric work, debate centres on
estimation procedures, the properties of estimators, the appropriateness of tests and the
development of test statistics, as well as other issues of implementation. With calibrated
models, authors have largely been content to describe their model parameterization
procedures by appealing to the term calibration, giving few or sometimes no details
about their procedures. To our knowledge, no discussion exists in the literature as to
whether one set of calibration procedures is to be preferred to another.

5.1. The choice of model for calibration

Perhaps the major Achilles’ heel in the use of calibrated models for empirical
investigation is the choice of model, both because models are not tested against
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one another, and because the precise model form can have a major influence on
results. Reference to widely used theoretical structures is usually an insufficient basis
on which to choose models, especially since much of the theoretical discussion is
oriented towards showing how changes in model structure can often change the
qualitative model predictions. Model selection based on theoretical literature may
sound appealing, but the literature does not offer guidance on the precise specification
of the model to be used, nor does it provide the criteria under which such a choice
should be made.
An example of how the conclusions of calibrated models can change substantially

with model structure may help to illustrate the point. In 1962, Harberger performed
some of the earliest general equilibrium simulations, implicitly calibrating a two sector
model of the US economy and evaluating counterfactuals to show that a tax on one
factor in one sector (the tax on capital in the corporate sector) was borne fully by that
factor even if it was mobile between the two sectors. In fifteen years of subsequent
literature, the addition of more sectoral disaggregation, partially mobile factors and
other features failed to change the basic result; capital still bore the burden of the
corporate tax.
In the late 1970s, however, simulations showed that if the US economy were

modelled as facing a perfectly elastic supply function for capital, instead of the fixed
endowment, inelastic supply function, assumption of Harberger, this result would
reverse. Capital could not bear the burden of the tax in such a situation, and it must
be shifted elsewhere. Two model structures could yield this feature – one with perfect
international capital mobility, or one with an intertemporal structure with savings
(consumption smoothing) where the savings elasticity and hence, the supply elasticity
for capital within a period, is high. Modifying the original Harberger structure in either
of these two directions changes the essential result.
Ambiguities in the theoretical literature revealed that even qualitative results depend

upon assumptions and these are not avoided by merely using a calibrated model.
Calibrating a model gives no guide as to how to choose it. The model serves
as a maintained hypothesis as in econometric analysis: it enables calibration and
subsequent policy evaluation, but these are conditioned on the model chosen, just as the
choice of tests and inferences for econometric models are conditioned on the chosen
maintained hypotheses. Unfortunately, for calibration procedures, no analogue exists
to the econometric testing of alternative models; nor to the more general model choice
techniques such as those employed by Pesaran (1974). Model choice for calibration
remains a subjective judgement call.
Does a best practice exist for the model choice element of calibration? As

long as calibrators reject the notion of model testing, and see model selection as
based on a reading of theoretical literature, objective criteria in this area may be
unattainable. Modellers can, however, more forcefully state that all their results
are conditional upon the choice of model. They can identify which features of
their model results are sensitive to which assumptions from theoretical literature,
and then modify these assumptions to assess numerical sensitivity. Developing this
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direction in calibration allows modellers to explore the structural sensitivity of model
results 7.

5.2. The calibration of what to what?

Even if the model to be used has been selected with sound judgement, the issue remains
in calibration of what is calibrated to what. Typically, a complete specification of
all model parameters is not determined through calibration; a subset of parameters
is determined in this way, while a further subset is not. Calibration also sometimes
only involves a partial determination of model parameter values. Some modellers
appeal to the word calibration to legitimize what appears to be an ad hoc setting
of model parameter values, with some based on literature values and some on
intuition. Which parameters are calibrated is crucial for the usefulness of the modelling
exercise.
As an example, in the micro-based modelling areas of public finance and trade,

the conventional approach is to calibrate models to a single, constructed, equilibrium
observation, as discussed above. We term this approach a “levels” calibration; once
calibrated the model reproduces the equilibrium observation as a full solution to the
model. However, if the model is to be used for comparative static purposes, the
important component in the model specification is how the behaviour in the model
changes as policy parameters or other exogenous parameters change. To the extent the
calibrated level parameters, which are typically the share parameters in preferences and
technology, are deemed “deep” parameters à la Lucas, this approach may seem sensible
since these parameters are unaffected by policy changes. The elasticities, however,
rather than these deep parameters, typically determine the comparative static behaviour
of the model. The Lucas critique of econometric modelling applies to calibration here,
since with the setting of elasticities or other assigned parameters, parameters drawn
from a diverse literature are likely to be dependent on the policy framework applicable
to the data from which they were estimated.
However, the choice of parameters to be calibrated should also depend upon the

question to be asked with the model. If the issue is the welfare effects in money
metric terms from a policy change, both levels parameters and changes parameters
will influence the size of welfare effects. If the issue is welfare effects as a proportion
of GDP, elasticity parameters are the more crucial parameters. Hence, the value of a
particular calibration is a function of the particular question which the model-driven
research seeks to answer.
The use of econometric estimates of elasticities from literature in calibrated models

faces several problems. Large gaps exist in the literature; classifications and commodity
and industry definitions between literature and models can differ widely; and where
present, estimates may be contradictory. In some calibration exercises, modellers

7 Structural sensitivity analysis is distinct from the parametric sensitivity analysis that we discuss later.
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use both levels and changes elements in their calibration; in effect substituting the
calibration of elasticity related parameters for the use of literature based econometric
estimates.
In recent work on the effect of a sales tax reform in Canada in 1990, Piggott and

Whalley (1998) note that the use of their model is not for counterfactual analysis, since
data are available both before and after the reform. They use a model which, unlike
others, incorporates self supply and underground economy features, and in which the
effect of tax reform on welfare is ambiguous. Through a double calibration to data
from before and after the reform, they are able to infer preference and other model
parameters, and on this basis determine whether the tax change was welfare worsening
or welfare improving. In the process, they calibrate both levels and changes parameters
to more than one data observation.

5.3. The choice of functional form

The issue of best practice in calibration also arises with the choice of functional
forms in a model. Modellers typically follow the family of so-called convenient
functional forms for which the solutions to optimization problems can be obtained
analytically. Demand functions corresponding to the maximization for Cobb–Douglas,
Constant Elasticity of Substitution (CES), and Stone–Geary, or Linear Expenditure
System (LES), functions are commonly used.
Cobb–Douglas functions, which are the simplest, have the unfortunate properties

that uncompensated own-price elasticities of demand are unity, that uncompensated
cross-price elasticities are zero, and that all income elasticities of demands are unity.
In contrast, CES functions relax the unitary uncompensated own-price and zero cross-
price elasticities, but do so only by adding an additional parameter to the functional
form relative to the Cobb–Douglas case. Typically, modellers have literature-based
or other elasticity estimates to which they wish to calibrate their models. Where
more than one of these elasticities exists, extra parameters are added through nested
CES functions, with additional elasticity parameters entering at the various levels of
nesting. A key but relatively unknown result about elasticities is that “if the demand
functions are such as to satisfy the budget constraint with strict inequality . . . constant
price elasticities can only assume the values −1 for all own-priced elasticities and 0
for all cross-price elasticities” [Koopmans and Uzawa (1990, pp. 3–4)]. Thus, in this
case assuming constant elasticities is equivalent to assuming a Cobb–Douglas utility
function.
However, both CES and Cobb–Douglas preferences are homothetic and yield

demand functions that have unitary income elasticities. If income elasticities are
thought to be significantly different from unity some other functional form is needed,
and a Stone–Geary/Linear Expenditure System with a displaced origin for utility
measurement is commonly used. The minimum requirements in such a system, which
can be combined with either Cobb–Douglas or CES, are typically calibrated so as to
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reproduce literature estimates of income elasticities of demand in the neighbourhood
of the base case equilibrium.
Some modellers have moved beyond this class of convenient functional forms

to use variants of flexible functional forms, typically trans-log. The basis for
rejecting the convenient forms revolves around the empirical results of econometric
studies which reject the separability implicit in Cobb–Douglas and CES functions.
The major drawback to using more flexible functional forms is that they are not
always globally convex. Because the policy changes analyzed in many models
can lead to counterfactual equilibria that are far from the initial equilibrium,
the use of globally convex functions is often necessary to compute a model
solution.
How do these considerations translate into best practice in the choice of functional

forms? Obviously a trade-off exists between simplicity and realism; but other
considerations such as computational feasibility also enter the choice. As with the
choice of model structure, the choice of functional form should be influenced by the
issue to be investigated.
For example, a trade model which explores the claimed long-term decline in

the terms of trade of commodity-exporting developing countries, and builds on the
argument from Prebisch (1962) and Singer (1950) that developing country exports
are necessities and their imports (capital goods) are luxuries, will need to incorporate
income elasticities of demands different from one. This is because the model needs the
feature that growth in both the developed and the developing countries will adversely
affect the developing country’s terms of trade. This feature follows directly if developed
countries have income elasticities of import demands less than one while developed
countries have values that are greater than one. Using models with either Cobb–
Douglas or CES preferences will not meet this requirement, and a different functional
form is needed. On the other hand, if the income effects from the change considered
in the model are thought to be small compared to the relative price effects, a model
with homothetic preferences may suffice.
Another illustration also serves to make the same point. In analyzing tax preferences

towards housing, the knee-jerk reaction would be that a general equilibrium model
must be superior to a partial equilibrium model. But if the literature clearly points
to an own-price elasticity of say, 0.5, a partial equilibrium analysis built around
this parameter value would almost certainly attract more confidence than a general
equilibrium model using Cobb–Douglas preferences.
Best practice thus involves selecting functional forms by considering the uses of the

model, and deciding on which simplifications are acceptable for the purposes of the
analysis, the complexity of the analysis, and the model’s solvability. Violations of best
practice arise with the misapplication of models, and when the model’s performance
is clearly contrary to the empirical literature.
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5.4. The use of elasticity parameters

The quantity and quality of literature-based elasticity parameter estimates for use in
calibrated models is another Achilles’ heel of calibration. Some years ago, one of us
[Whalley (1985b, p. 27)] noted that

It is quite extraordinary not only how little we know about numerical values of elasticities, given
the significance that we attach to these in introductory courses in Economics, but how the little
we think we know changes as quickly as it does. In the savings area, for instance, 10 years ago,
elasticities were thought to be small, five years ago they were thought to be large, and now once
again they are thought to be smaller. For many years labour supply elasticities were thought to
be small, and now they are in the process of being revised upwards. In the international trade
area researchers commonly use import price elasticities in the neighbourhood of unity, even for
small economies, even though elasticity estimates as high as nine appear in the literature. In
many areas elasticity estimates differ in both size and sign, while for a number of the issues in
which applied modellers are interested in, no relevant elasticity estimates exist. The choice of
elasticity values in applied models is therefore frequently based on contradictory, or little or no
empirical evidence. This obviously undermines confidence in model results.

Unfortunately, little has changed in the intervening years. Faced with a relative
absence of elasticity estimates, somewhat arbitrarily assigned low and high values
(sometimes with a mid-range) are often used. A low value of 0.5 and a high value
of 2.0 seem to be popular choices. Elasticities estimated for different classifications
are routinely adopted for model use, so that for example, an estimate for the demand
elasticity for food might be used to provide the demand elasticity for cheese, even
though inter-food substitution is a key feature in the model. Where estimates are
deemed implausible, such as trade elasticities, they are often either ignored, or
arbitrarily scaled, sometimes by as much as 50%.
Faced with all this arbitrariness, it is hardly surprising that micro modellers, at least,

stress that the value of their modelling results lies in providing insights, rather than
point estimates or forecasts. They use the model results to answer broad questions.
What are the relative magnitudes of effects? Do the results confirm or conflict with
prior thinking and if so why? If no previous studies of an effect exist, what might be
an initial estimate? The theme, somewhat paradoxically, is that qualitative insights are
derived using a quantitative approach.
Users of real business cycle models face fewer of these problems because they are

less interested in comparative statics and can restrict themselves to simple functional
forms, such as Cobb–Douglas, for which these elasticity issues do not arise. This
approach, of course, raises the inevitable question of why such restrictions are
employed, when at a more micro level there seems no reason that they should hold.
Faced with this situation, why do policy modellers continue with their work? The

response is usually that to contribute to debate on the social issues of the day a
modeller must make the best of the available information, rather than refraining from
any analysis until every parameter is definitively tied down. Model use is not testing
in the Friedmanian/Popperian positivist tradition, but instead is a way of harnessing
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available information to contribute to policy making by raising the level of debate as
in the Lindholm tradition of policy sciences.
Modellers such as Mansur and Whalley (1984) have even suggested that model use

has generated a demand for parameter values, particularly elasticities. They advocate
a reorientation of empirical work in economics away from hypothesis testing towards
parameter generation, an activity which currently yields little professional reward.
Mansur and Whalley even go so far as to suggest establishing an elasticity bank,
to archive and grade estimates, and make them more widely available. But as noted
earlier, given that these estimates are often generated from models with structures that
are different from the ones the user of the elasticities imposes, this suggestion may
not be practical.
Elasticity parameters in calibrated models, and especially the micro, policy-oriented

models, are key parameters for model results since they are crucial in determining
comparative static behaviour in models. The elasticities at issue are typically own-
and cross-price elasticities and income elasticities. Importantly, in models based on a
single levels calibration, these parameter settings are not endogenously determined
by calibration. Instead they are typically set, either with some form of literature
justification or by an appeal to intuitive plausibility.
The current situation with elasticity estimates for use in calibrated models is poor.

No estimates exist for large areas of elasticities such as, for example, production
functions in service sectors. There are other areas where multiple but at times
contradictory estimates exist within wide ranges. Furthermore, classifications in
models do not necessarily match those from which the literature-based values are
derived. Modellers refer to the “idiot’s law of elasticities” where all elasticities are
one until someone shows them to be otherwise, or “coffee table elasticities” where
informal discussions and opinions around the coffee table determine whether a value
of, say, 0.5 or 2.0 is chosen.
The number and range of surveys of elasticity estimates remain surprisingly small.

Table 4 reports estimates of demand elasticities by product used by Piggott and
Whalley (1985) in discussing their model parameterization, which still remain widely
referred to by other modellers. These draw on literature estimates which they classify
by estimation method and by product. Other surveys exist in the trade area for
import and export demand elasticities [Stern, Francis and Schumacher (1976)], and
on the production side [Caddy (1976)]. Few such surveys exist in the recent literature,
indicating, in part, the relatively small professional pay-off involved with parameter
generation.
Browning et al. (1999) provide an extensive overview of some of the problems

associated with using elasticity parameter values from microeconometric studies in
dynamic macro models, and several of these are worth highlighting. One difficulty
with using parameters from microeconometric studies in macro models is the mismatch
between definitions of the parameters in the two types of models. Browning et al. use
a simple dynamic model to illustrate how a broadly inclusive term such as “labour
supply elasticity”, for example, can encompass several distinct concepts.



Ch. 58: Calibration 3691

Table 4
Central tendency values for own-price elasticities of household demand functions used by Piggott and

Whalley (1985) in their U.K. tax model 1,2

Industry LES estimates Log-linear demand
estimates

Other Total

Agriculture and fishing 0.334 (17, .03) 0.420 (25, .05) 0.562 (44, .08) 0.468 (86, .07)

Coal mining − 0.321 (1, 0) 1.265 (2, .01) 0.950 (3, .76)

Other mining and
quarrying

0.425 (1, 0) 0.905 (3, .06) 0.257 (2, .01) 0.609 (6, .13)

Food 0.353 (15, .03) 0.580 (30, .19) 0.476 (27, .08) 0.494 (72, .13)

Drink 0.617 (5, .07) 0.780 (12, .25) 0.464 (15, .06) 0.607 (32, .16)

Tobacco − 0.611 (8, .15) 0.431 (11, .04) 0.507 (19, .10)

Mineral oils 0.425 (1, 0) 0.905 (3, .07) 0.257 (2, .01) 0.609 (6, .13)

Other coal and
petroleum products

1.283 (2, .01) 1.404 (3, .80) 1.978 (3, 1.41) 1.589 (8, .90)

Chemicals 0.685 (1, 0) 0.890 (1, 0) 0.680 (3, .07) 0.724 (5, .05)

Metals − 1.522 (19, .42) 0.989 (18, .40) 1.083 (51, .48)

Mech. engineering − 1.296 (16, .61) 1.068 (15, .43) 1.005 (45, .48)

Instr. engineering 0.606 (14, .15) 1.099 (17, .57) 1.240 (11, .54) 0.972 (42, .49)

Elec. engineering − 1.388 (19, .377) 1.049 (17, .41) 1.060 (50, .44)

Vehicles 0.606 (14, .15) 1.137 (19, .55) 1.099 (18, .40) 0.985 (51, .44)

Clothing 0.277 (16, .03) 0.491 (26, .16) 0.564 (19, .15) 0.458 (61, .18)

Timber, furniture, etc. 0.570 (14, .09) 1.258 (19, .23) 0.974 (20, .39) 0.969 (53, .33)

Paper, printing,
publishing

0.191 (1, 0) 0.343 (5, .02) 0.416 (5, .02) 0.362 (11, .02)

Other manufacturing 0.578 (14, .02) 0.527 (7, .11) 0.626 (17, .12) 0.592 (38, .09)

Gas, electricity, water 1.203 (1, 0) 0.921 (9, .02) 0.369 (10, .01) 0.659 (20, .10)

Transport 0.761 (4, .23) 1.027 (14, .26) 0.994 (10, .16) 0.977 (28, .23)

Banking and insurance − 0.559 (3, .02) 0.894 (1, 0) 0.642 (4, .04)

Housing services
(private)

0.461 (15, .11) 0.550 (29, .45) 0.434 (9, .09) 0.505 (53, .29)

Professional services,
other services

0.488 (7, .08) 1.090 (16, .39) 0.946 (16, .39) 0.961 (50, .48)

1 All uncompensated own-price elasticity estimates; figures in parentheses refer to the number of studies
included and the variance of the estimate.
2 Source: Piggott and Whalley (1985).
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They specify a single agent model with a labour–leisure choice so that at time t, the
agent is assumed to choose non-durable consumption ct and hours of work, ht = T − lt ,
where lt is the choice of leisure at time t. While preferences are assumed to be
intertemporally separable, utility at time t, U (ct , ht) is not.
The labour supply function at time t, h(·), can be expressed as function of the price

of consumption, pt , the wage rate, wt , and the marginal utility of income, lt :

h = h ( pt ,wt , lt) . (20)

Browning et al. proceed to derive three distinct labour supply elasticities. The first,
the Frisch elasticity, q , conditions on the marginal utility of income – that is, it holds
l constant. Dropping the t subscripts, it is given by

q = hw( p,w, l)(w/h), (21)

where hw denotes the derivative of h(·), the labour supply function in Equation (20)
with respect to the wage rate. This elasticity incorporates the intertemporal response
to wage changes.
The remaining two elasticities capture within period responses only. Browning et al.

define the total net expenditure within a period as e = pc − wh, and then show that the
uncompensated labour supply function, denoted here by h∗(·) can also be expressed
as

h = h∗( p,w, e), (22)

implying a second labour supply elasticity, q∗, which is conditioned on e:

q∗ = h∗
w( p,w, e)(w/h). (23)

Finally, they show that the labour supply function, h∗∗(·), can be derived as a function
of current consumption:

h = h∗∗( p,w, c), (24)

and, hence, the third labour supply elasticity, q∗∗, is conditioned on consumption and
is given by

q∗∗ = h∗∗
w ( p,w, c)(w/h). (25)

In general, the values of these three labour supply elasticities will differ. Because
q∗ and q∗∗ are within-period responses, their values provide lower bounds for the
intertemporal elasticity, q . The handful of estimates of the intertemporal elasticity of
labour supply and the static elasticity estimates given in Browning et al. support this
relationship.
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To be used in macro models, the econometric estimates of labour supply elasticities
should be conditioned on either consumption, expenditure or the marginal utility of
income, and the calibrator must ensure that the conditioning variables in the elasticity
estimation coincide with the use of the parameter in the model. Browning et al.
indicate, however, that many of the static microeconometric estimates of labour supply
condition on none of the three relevant variables and are thus not suitable for use in
calibrated macro models.
Labour supply elasticities are, of course, not the only parameters for which this issue

of consistency of definitions arises. Within the context of the Browning et al. model,
the consumption elasticities are also subject to conditioning variables, but the point
is more general – good calibration practice demands that the conditions under which
parameter values are estimated match the conditions under which they are used in the
model.
Browning et al. (1999, p. 127) also argue that calibrators should “. . . build the

dynamic economic models so that the formal incorporation of microeconomic evidence
is more than an afterthought.” Microeconomic evidence suggests, for example, that
considerable demographically-based heterogeneity exists in parameter values relating
to agents’ preferences, constraints, labour supply and human capital accumulation,
which is not included in the calibrated models. Empirical evidence summarised in their
paper strongly suggests heterogeneity in parameter values for the discount rate and the
elasticity of intertemporal substitution in consumption. For example, the discount rate
for consumption has been shown to vary with household size [Zeldes (1989)], and
income level [Lawrance (1991)].
Browning et al. also highlight the choice of functional forms as area in which

macro model calibrators can incorporate micro evidence in the specification of
their models. Many macro models rely on Cobb–Douglas functional forms which,
as Browning et al. note, may be consistent with the constant capital share in the
US economy, but not necessarily consistent with other observed phenomena. In
general, the reliance on additively separable functional forms in macro models is
not empirically substantiated. Browning et al. point to several econometric studies,
including Attanasio and Weber (1993), and Attanasio and Browning (1995) to illustrate
this point.
Best practice with respect to the use of microeconometric parameters in calibrated

macro models thus also requires calibrators to verify the consistency between the
definitions of the estimated parameters and the model specification. Despite the large
number of microeconomic studies, this consistency requirement leads Browning et al.
(1999, p. 127) to conclude that “. . . the shelf of directly usable numbers [is] virtually
empty.”
Given the dearth of appropriate parameter estimates, how then should the dynamic

general equilibrium macro modellers proceed? The prescription we suggest mirrors
that for micro calibrators. Where possible, calibrators should be economical in the
number of parameters used in their model specification. Where uncertainty surrounding
the parameter values exists, sensitivity analysis is appropriate. Canova (1995) presents
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a methodology for undertaking such sensitivity analysis with respect to the distribution
of parameter values in calibrated macro models.

6. New directions in calibration

Although calibration is well established in model-based quantitative work, it is by
no means a static set of procedures. In current work, new directions are evident,
both in the problems to which calibrated models are being applied, and in the scope
of applications which fall under the calibration rubric. The recent use of calibration
techniques in ex post analysis, which decomposes a gross change into its constituent
causes, is one example. Here, the use of two data sets, one for an initial year and
one for a terminal year, allows modellers to undertake double calibration subject to
constraints on which parameters may or may not be allowed to change over time.
In such applications calibration is moving ever closer to estimation. Another set of
developments expands the narrow definition of calibration from deriving parameters
to replicate data, to analyzing the sensitivity of model results to both the parameter
values and to the data adjustments undertaken in their derivation.

6.1. Expost decomposition and double or multiple calibration

The traditional use of micro-based calibrated models is to assess, ex ante, the potential
impact of a policy change. The model’s parameters are calibrated so that they replicate
a base year equilibrium. Insights about the effects of a prospective policy change are
then derived by introducing the policy change into the model via a parameter change,
solving the model and comparing the resulting solution to the base year solution.
Recently, however, the use of these types of models has spread to decompositional
analysis where the modeller wishes to decompose the individual impacts from a series
of simultaneous shocks to an economic system. Abrego and Whalley (1998) represents
an application of these techniques to the trade and wages debate; the controversy over
whether the increased dispersion of skilled versus unskilled wage rates in the US is
due more to the influence of trade shocks or to technological change.
This form of analysis differs from ex ante policy analysis in so far as the shocks

affecting an economy and the outcome of those shocks are observable in principle,
even though data problems may make their joint effects imprecisely known in practice.
Double calibration exploits knowledge of the outcome under the joint shock to analyze
the effects of each component separately. To undertake such analysis, the modeller
uses both the ex ante and the ex post equilibria and attempts to identify the effects
of each component over the interval between the two. If the double calibration is
exact, it identifies and finds values for parameters that are exogenous in single period
calibration, such as technological parameters, or, as in the case of Piggott and Whalley
(1998), elasticities which are consistent with the observed changes over time.
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If the model’s elasticities are derived exogenously from the literature, as in single
period calibration, two period calibration can only be exact if all model parameters
in technology and preferences are free to vary across time. Typically, modellers
may wish to impose a constraint that technology and/or demand parameters remain
unchanged over time. In this case the calibration will be inexact, and is undertaken
by applying a criterion, such as minimizing the sum of squared deviations between
predicted and actual variables in the two periods, to the data. Such a least squares
minimization criterion, employed in Abrego and Whalley (1998), moves calibration
closer to estimation.
Analyzing the effects of a specific shock, such as technological change, can then be

undertaken either by allowing all of the other shocks to the economy to occur and
solving the model in the absence of the shock of interest, or by only introducing
the single shock to the calibrated ex ante, base case model. A comparison of the
counterfactual model solution and the true ex post equilibrium gives an assessment
of the effects of the isolated shock. An equivalent experiment could be undertaken
by using the ex post equilibrium as the initial equilibrium, and setting the shock of
interest to its ex ante equilibrium value.
In such analyses, the effects of shocks are not typically additive, so that the effects

of a policy shock on the ex ante equilibrium differs from the effects of removing it
from the ex post equilibrium. A double calibrated model can be used to analyze how
shocks interact.
An early example of double calibration is found in Hill (1995). Hill employs a

simple general equilibrium model in an attempt to isolate the injury to the Canadian
economy, measured by employment changes, caused by changes in the world price of
imports. Between 1972 and 1980, the Canadian economy was subjected to changing
tax rates, factor endowments, preferences and technology as well as world price shocks.
While changes to tax rates, factor endowments and world prices were discernable from
statistical publications, technological progress proved more elusive. The parameters for
technical change were calibrated by Hill so that when all the shocks are introduced to
the 1972 economy, the 1980 benchmark data is reproduced as a solution to the system.
In the counterfactual simulation, Hill allows all the changes to take place, but fixes
the world price of industry output so that the share of domestic goods in domestic
consumption remains at 1972 levels. The impact of the trade shocks is obtained from
comparing the actual trade shock inclusive data to the counterfactual trade shock free
solution.

6.2. Sensitivity analysis

The uncertainties which surround the configuration of exogenous parameter values
have also attracted attention. One of the ways in which modellers have responded
to such uncertainties is to undertake sensitivity analysis. The overwhelming majority
of these analyses focus on the effects of the choice of model elasticities, rather
than the values for other model parameters. Modellers have addressed the issue of
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model sensitivity to elasticity estimates by identifying key model elasticities, and
reporting results for alternative elasticity configurations. This approach is termed
“limited sensitivity analysis” [Wigle (1991)]. While this procedure can give some sense
of whether model results are fragile, it provides no meaningful quantitative measure
of robustness.
More rigorous statistical sensitivity analysis procedures have been developed by

Wigle (1991) who discusses two classes of systematic elasticity sensitivity analysis
used in reporting applied general equilibrium model results. Conditional systematic
sensitivity analysis (CSSA) develops a distribution for model results by computing
a series of solutions as each elasticity is varied while the others remain constant.
Unconditional systematic sensitivity analysis (USSA) computes model results over the
entire grid of elasticity configurations. USSA is the most thorough and therefore, the
more preferable response to criticisms of elasticity specification, but for most models
the computational requirements of such a procedure are prohibitive 8.
Pagan and Shannon (1985) develop an approximation method for performing

unlimited systematic sensitivity analysis. Instead of solving the model for each point
in the elasticity space explicitly, their procedure analyzes the effects of altering
elasticity parameters in a region surrounding the model solution. Because their
sensitivity procedure relies on calculations made using a linear approximation of the
model solution (which is a function of the elasticity parameters), the computational
requirements are considerably less than in unconditional systematic sensitivity analysis,
while the procedure retains the flexibility to examine the effects of simultaneous
elasticity variations. Pagan and Shannon (1985, 1987) apply their sensitivity analysis
to linearized models, while Wigle (1991) demonstrates its use in comparison to
conditional and unconditional systematic sensitivity analyses using a levels formulation
model.
Other sensitivity procedures in which modellers map a priori information about

elasticities into the model results have also been developed recently. Harrison and
Vinod (1992) and Harrison et al. (1992), develop and apply a global sensitivity
analysis procedure in which the model is solved for a sample of elasticities. Their
procedure relies on sampling from discrete representations of what are usually
continuous elasticity probability density functions. DeVuyst and Preckel (1997) argue
that the proposed methodology of Harrison and Vinod introduces an identifiable
source of bias into the sampling procedure and propose an alternative way of finding
discrete approximations to the continuous pdfs, based on Gaussian quadrature. In
both approaches, the model results are weighted by the probability of each elasticity
configuration used in their derivation. Repeated sampling allows the modellers to build
expected values for the model results.

8 Wigle (1991) calculates that a USSA using 5 values for each elasticity in an 18 elasticity parameter
model would require more than 3 trillion model solutions.
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These sensitivity analysis procedures, which have been developed for a model’s
exogenously specified elasticities, all systematically perturb individual parameter
values. Such an approach cannot be applied to the model’s calibrated parameters since
they are jointly determined from a microconsistent data set – perturbing one calibrated
parameter would require the others to readjust to maintain equilibrium, but no unique
readjustment exists. Dawkins (1997) develops a sensitivity analysis procedure for the
joint set of calibrated parameters by holding the data adjustment process constant and
systematically perturbing the unadjusted data from which the calibrated parameters are
derived.

6.3. Preadjusting data

Another area of calibration which is coming under scrutiny is the role of data
adjustments. Implementing the exact calibration procedures used in micro models
requires that the input data be consistent with an initial model equilibrium. However,
the basic data which modellers usually rely on does not meet these consistency
requirements and modellers undertake adjustments so that it does. The procedures
which modellers use are largely ad hoc and seldom well documented, but recent work
by Dawkins (1998) suggests that the choice of adjustment procedure can affect the
statistical properties of the model results.
These data adjustments involve two intertwined processes. The first is selecting

single values of each required data point for model calibration. Decisions on these
are undertaken when data is collected, and include the choice of one data source over
another, the approximation of a desired classification with one found in the data, and
the method of aggregation. This process is typically model and data specific. The
second is one of deriving consistent data from these point estimates – of ensuring
that the data meet the equilibrium conditions of the model. Deriving consistent data
sets involves adjusting data starting from an initial estimate. This second process can
be executed in a systematic way.
Although no formalized statement of these procedures exists in the literature, the

reconciliation of initial data estimates into a benchmark data set for large applied
models is typically undertaken in two stages. The first finds consistent values for
aggregates: consumption, intermediate demands, and production. At this stage, matrix
biproportionality is the paramount restriction on data. So, for example, the total supply
of each good in the model must equal the total demand, typically defined as the
sum of government consumption, exports, intermediate demand and private domestic
consumption. The initial, unadjusted values of these aggregates rely heavily on national
accounts data.
The second stage draws on formal adjustment algorithms for balancing a matrix

subject to consistency with respect to a set of control totals. The approach is to use
the aggregate values derived in the first stage as control totals for the adjustment
of submatrices in the model. So, for example, where the model identifies more than
one private consumer, the aggregate private domestic consumption for each good can
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serve as the row control totals for the household consumption submatrix, and the
total disposable income by household type can provide the column totals. Similarly,
aggregate intermediate demand for a good gives the row totals for the intermediate
demand matrix, and total expenditures on intermediate goods by sector (typically found
as the residual of total receipts and expenditures on value added) provide the column
control totals. Because the control totals are consistent with the biproportionality
constraint, the values of the submatrices that are consistent with those control totals
also fulfil the biproportionality constraint for the benchmark data set as a whole.
The information required to specify the submatrices in the benchmark data set

is typically more detailed than is true for the aggregate values. Initial estimates
for the elements of the intermediate demand matrix can be derived from input–
output matrices, while those for the household consumption matrix can be derived
from household expenditure surveys. Unlike national accounts, such detailed data are
unlikely to be collected annually and matrix adjustment is achieved by updating earlier
years’ estimates so that they are consistent with the benchmark year control values.
Micro modellers do not employ any common approach to data adjustments. They do,

however, typically employ ad hoc algorithms to derive consistent aggregate values, and
resort to formal algorithms, particularly the RAS (Row and Column Scaling) algorithm
to derive consistent consumption and production submatrices. RAS is an adjustment
algorithm attributed to Bacharach (1970) in which the rows and columns of a matrix
are scaled and sequentially updated by the ratio of the matrix row or column sum to
the control total row or column sum. This algorithm allows large initial data entries
to deviate relatively more from their initial values than small entries.
Other algorithms, most notably those using weighted constrained quadratic mini-

mization, are also employed when making these adjustments. One algorithm, the Stone
(1978) and Byron (1978) algorithm is particularly appealing in that it incorporates
information about the reliability of the data so that the least reliable data changes
more from its initial values than does the more reliable data.

7. Conclusion

In this chapter we discuss rather than debate calibration in its various guises in modern
economics. What is it? Why is it used? What is best practice in calibration? How is
it evolving?
Calibration, we suggest, is the choice of parameter values subject to a goodness of

fit criterion with respect to data, and as such, is conceptually similar to conventional
estimation. The common practice has been to apply standards to parameterization
which are not used in the econometric literature, such as consistency with a particular
base-case, economy-wide model solution for a general equilibrium model, or a long-
run, balanced growth path for a dynamic economy. The reason calibrators use these
standards, rather than those in more conventional econometric models, is to stay
close to particular theoretical models which, in turn, are either hard to estimate, not
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estimated, or even unestimable. We note that calibration is also a widely used technique
in natural and life sciences.
Despite its extensive use, the term calibration is nowhere fully described or defined.

We describe the process by discussing in detail some of the calibrations used in the
literature, going back to the early 1970s. Not only must the model form be preselected,
which can affect results heavily, but typically key parameters, such as elasticities, must
be specified. All these decisions affect model results, and consequently, the findings
from calibration exercises must be qualified; the interpretation should be suggestive,
rather than definitive. Results are conditional on the model structure, the choice of
functional form, and key exogenous parameters.
Calibrated models have become a mainstream form of empirical investigation in

macroeconomics in recent years, and we also set out how calibration is evolving and
changing as a technique in modern economics, drawing contrasts between calibration
in macro and micro models. Best practice, we suggest, involves attuning model cali-
bration to questions asked, the choice of appropriate functional forms, and sensitivity
analysis of results. New developments in the area focus on double calibration, data
preadjustments, and the use of model-estimation consistent elasticities.
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d’Ivoire”, Poverty and Social Policy Series Paper 2 (The World Bank).

Christiano, L.J., and M. Eichenbaum (1992), “Current real business cycle theories and aggregate labor
market fluctuations”, American Economic Review 82:430−450.

Clements, K.W. (1980), “A general equilibrium econometric model of an open economy”, International
Economic Review 21:469−488.



3700 C. Dawkins et al.

Coleman II, W.J. (1996), “Money and output: a test of reverse causation”, American Economic Review
86:90−111.

Cooley, T.F., and G.D. Hansen (1989), “The inflation tax in a real business cycle model”, American
Economic Review 79(4):733−748.

Cooley, T.F., and E.C. Prescott (1995), “Economic growth and business cycles”, in: T.F. Cooley, ed.,
Frontiers of Business Cycle Research (Princeton University Press, Princeton) 1–38.

Cooley, T.F., G.D. Hansen and E.C. Prescott (1995), “Equilibrium business cycles with idle resources
and variable capacity utilization”, Economic Theory 6(1):35−49.

Cox, D.R., and R. Harris (1985), “Trade liberalization and industrial organization: some estimates for
Canada”, Journal of Political Economy 93(1):115−145.

Dawkins, C. (1997), “Extended sensitivity analysis for applied general equilibrium models”, Warwick
Economic Research Papers No. 491.

Dawkins, C. (1998), “Choosing a microconsistency algorithm for applied general equilibrium model
data”, Mimeo (University of Warwick, UK).

De Jong, D.N., B.F. Ingram and C.H. Whiteman (1996), “A Bayesian approach to calibration”, Journal
of Business and Economic Statistics 14(1):1−9.

den Haan, W.J., and A. Marcet (1990), “Solving the stochastic growth model by parameterizing
expectations”, Journal of Business and Economic Statistics 8(1):31−34.

DeVuyst, E.A., and P.V. Preckel (1997), “Sensitivity analysis revisited: a quadrature-based approach”,
Journal of Policy Modeling 19:175−185.

Dixon, P.B., B.R. Parmenter, J. Sutton and D.P. Vincent (1982), ORANI: A Multi sectoral Model of the
Australian Economy (North-Holland, Amsterdam).

Ghez, G.R., and G.S. Becker (1975), The Allocation of Time and Goods over the Life Cycle (Columbia
University Press, New York).

Greenwood, J., and G. Huffman (1991), “Tax analysis in a real-business-cycle model: on measuring
Harberger triangles and Okun gaps”, Journal of Monetary Economics 27:167−190.

Greenwood, J., Z. Hercowitz and P. Krusell (1997), “Long-run implications of investment-specific
technological change”, American Economic Review 87(3):342−362.

Gregory, A.W., and G.W. Smith (1991), “Calibration as testing: inference in simulated macroeconomic
models”, Journal of Business and Economic Statistics 9:297−303.

Harberger, A.C. (1962), “The incidence of the corporation income tax”, Journal of Political Economy
70:215−240.

Harrison, G.W., and H.D. Vinod (1992), “The sensitivity analysis of applied general equilibrium
models: completely randomized factorial sample designs”, The Review of Economics and Statistics
74:357−362.

Harrison, G.W., R.C. Jones, L.J. Kimbell and R.M. Wigle (1992), “How robust is applied general
equilibrium analysis?”, Journal of Policy Modeling 15:99−115.

Hertel, T.W., ed. (1997), Global Trade Analysis, Modeling and Applications (Cambridge University
Press, New York).

Hill, R. (1995), “Trade shocks and employment change in Canadian manufacturing industries: an applied
general equilibrium approach”, International Economic Journal 9:73−88.

Hodrick, R.J., and E.C. Prescott (1980), “Post-war US business cycles: an empirical investigation”,
Working Paper (Carnegie-Mellon University).

Hoover, K.D. (1995), “Facts and artifacts: calibration and the empirical assessment of real business cycle
models”, Oxford Economic Papers 45:24−45.

Huggett, M. (1996), “Wealth distribution in life-cycle economies”, Journal of Monetary Economics
38(3):469−494.

Johansen, L. (1960), A Multisectoral Study of Economic Growth (North-Holland, Amsterdam).
Jones, L.E., R.E. Manuelli and P.E. Rossi (1993), “Optimal taxation in models of endogenous growth”,
Journal of Political Economy 101:485−517.



Ch. 58: Calibration 3701

Jorgenson, D.W. (1984), “Econometric methods for applied general equilibrium analysis”, in: H.E. Scarf
and J.B. Shoven, eds., Applied General Equilibrium Analysis (Cambridge University Press,
Cambridge).

Jorgenson, D.W., D.T. Slesnick and P.J. Wilcoxen (1992), “Carbon taxes and economic welfare”, Brookings
Papers on Economic Activity, Microeconomics 1992:393−441.

Judd, K.L. (1991), “A review of recursive methods in economic dynamics”, Journal of Economic
Literature 29(1):69−77.

Kehoe, T.J. (1985), “Multiplicity of equilibria and comparative statics”, Quarterly Journal of Economics
10(1):119−147.

Kehoe, T.J., and J. Whalley (1985), “Uniqueness of equilibrium in large-scale numerical general
equilibrium models”, Journal of Public Economics 28(2):247−254.

King, R.G., and S.T. Rebelo (1990), “Public policy and economic growth: developing neoclassical
implications”, Journal of Political Economy 98(5):S126−S150.

King, R.G., and S.T. Rebelo (1993), “Low frequency filtering and real business cycles”, Journal of
Economic Dynamics and Control 17(1–2):207−231.

King, R.G., C.I. Plosser and S.T. Rebelo (1988a), “Production, growth, and business cycles I. The basic
neoclassical model”, Journal of Monetary Economics 21:195−232.

King, R.G., C.I. Plosser and S.T. Rebelo (1988b), “Production, growth and business cycles II. New
directions”, Journal of Monetary Economics 21:309−341.

Kocherlakota, N.R. (1996), “The equity premium: it’s still a puzzle”, Journal of Economic Literature
34(1):42−71.

Koopmans, T.C., and H. Uzawa (1990), “Constancy and constant differences of price elasticities of
demand”, in: J.S. Chipman, D. McFadden and M.K. Richter, eds., Preferences, Uncertainty and
Optimality: Essays in Honor of Leonid Hurwicz (Westview Press, Boulder, Oxford).

Kydland, F.E., and E.C. Prescott (1982), “Time to build and aggregate fluctuations”, Econometrica
50(6):1345−1370.

Lawrance, E. (1991), “Poverty and the rate of time preference”, Journal of Political Economy 99:54−77.
Lee, H., and D.W. Roland-Holst (1997), “Trade and the environment”, in: J.F. Francois and K.A. Reinert,
eds., Applied Methods for Trade Policy Analysis (Cambridge University Press, New York).

Lucas Jr, R.E. (1987), Models of Business Cycles (Blackwell, Oxford).
Lucas Jr, R.E. (1990), “Supply side economics: an analytical review”, Oxford Economic Papers
42:293−316.

Mansur, A., and J. Whalley (1984), “Numerical specification of applied general equilibrium models:
estimation, calibration, and data”, in: H.E. Scarf and J.B. Shoven, eds., Applied General Equilibrium
Analysis (Cambridge University Press, Cambridge).

McDougall, R., and R. Tyers (1997), “Developing country expansion and relative wages in industrial
countries”, in: T.W. Hertel, ed., Global Trade Analysis, Modeling and Applications (Cambridge
University Press, New York).

McGrattan, E.R., R. Rogerson and R. Wright (1997), “An equilibrium model of the business cycle with
household production and fiscal policy”, International Economic Review 38:267−290.

McKitrick, R.R. (1995), “The econometric critique of applied general equilibrium modelling: the role
of parameter estimation”, Discussion Paper 95/27 (University of British Columbia, Department of
Economics).

Mehra, R., and E.C. Prescott (1985), “The equity premium: a puzzle”, Journal of Monetary Economics
15(2):145−161.

Nguyen, T.T., C. Perroni and R.M. Wigle (1996), “Uruguay round impacts on Canada”, Canadian Public
Policy 22(4):342−355.

Pagan, A.R., and J.H. Shannon (1985), “Sensitivity analysis for linearized computable general equilibrium
models”, in: J. Piggott and J.Whalley, eds., NewDevelopments in Applied General EquilibriumAnalysis
(Cambridge University Press, Cambridge).



3702 C. Dawkins et al.

Pagan, A.R., and J.H. Shannon (1987), “How reliable are ORANI conclusions?”, Economic Record
63:33−45.

Parente, S.L., and E.C. Prescott (1994), “Barriers to technology adoption and development”, Journal of
Political Economy 102(2):298−321.

Perroni, C., and T.F. Rutherford (1998), “A comparison of the performance of flexible functional forms
for use in applied general equilibrium modelling”, Computational Economics 11(3):245−263.

Pesaran, M.H. (1974), “On the general problem of model selection”, Review of Economic Studies
41(2):153−171.

Piggott, J., and J. Whalley (1985), U.K. Tax Policy and Applied General Equilibrium Analysis (Cambridge
University Press, Cambridge).

Piggott, J., and J. Whalley (1998), “VAT base broadening and self supply”, Working Paper (NBER).
Prebisch, R. (1962), “The economic development of Latin America and its principal problems”, Economic
Bulletin for Latin America 7:1-22. First published in 1950 as an independent booklet by UN ECLA.

Prescott, E.C. (1986), “Theory ahead of business cycle measurement”, Research Department Staff
Report 102 (Federal Reserve Bank of Minneapolis).

Roberts, B.M. (1994), “Calibration procedure and the robustness of CGE models: simulations with a
model for Poland”, Economics of Planning 27:189−210.

Rupert, P., R. Rogerson and R.Wright (1995), “Estimating substitution elasticities in household production
models”, Economic Theory 6:179−193.

Scarf, H.E., and T. Hansen (1973), The Computation of Economic Equilibria (Yale University Press,
New Haven).

Shoven, J.B., and J. Whalley (1972), “A general equilibrium calculation of the effects of differential
taxation of income from capital in the U.S.”, Journal of Public Economics 1:281−322.

Shoven, J.B., and J. Whalley (1992), Applying General Equilibrium (Cambridge University Press,
Cambridge).

Sims, C.A. (1996), “Macroeconomics and methodology”, Journal of Economic Perspectives 10(1):
105−120.

Singer, H.W. (1950), “The distribution of gains between investing and borrowing countries”, American
Economic Review Papers and Proceedings 40:473−485.

St. Hilaire, F., and J. Whalley (1983), “A microconsistent equilibrium data set for Canada for use in tax
policy analysis”, Review of Income and Wealth 29:175−204.

Stern, R.M., J. Francis and B. Schumacher (1976), Price Elasticities in International Trade: An Annotated
Bibliography (Macmillan, London, for the Trade Policy Research Centre).

Stokey, N.L., and S.T. Rebelo (1995), “Growth effects of flat-rate taxes”, Journal of Political Economy
103(3):519−550.

Stone, R. (1978), “The development of economic data systems”, in: G. Pyatt and J. Round, eds., Social
Accounting for Development Planning (Cambridge University Press, New York) foreword.

Tsigas, M.E., G.B. Frisvold and B. Kuhn (1997), “Global climate change and agriculture”, in: T.W. Hertel,
ed., Global Trade Analysis, Modeling and Applications (Cambridge University Press, New York).

Viner, J. (1950), The Customs Union Issue (Carnegie Endowment for International Peace, New York).
Watson, M.W. (1993), “Measures of fit for calibrated models”, Journal of Political Economy 101(6):
1011−1041.

Whalley, J. (1985a), Trade Liberalization Among Major World Trading Areas (MIT Press, Cambridge,
MA).

Whalley, J. (1985b), “Hidden challenges in recent applied general equilibrium exercises”, in: J. Piggott and
J. Whalley, eds., New Developments in Applied General Equilibrium Analysis (Cambridge University
Press, New York).

Whalley, J., and R.M. Wigle (1990), “The international incidence of carbon taxes”, in: R. Dornbusch
and J. Poterba, eds., Economic Policy Responses to Global Warming (MIT Press, Cambridge).

Wiese, A.M. (1995), “On the construction of the total accounts from the U.S. national income and



Ch. 58: Calibration 3703

product accounts: how sensitive are applied general equilibrium results to initial conditions”, Journal
of Policy Modeling 17:139−162.

Wigle, R.M. (1991), “The Pagan–Shannon approximation: unconditional systematic sensitivity in
minutes”, in: J. Piggott and J.Whalley, eds., AppliedGeneral Equilibrium (Physica Verlag, Heidelberg).

Yang, Y., W. Martin and K. Yanagishima (1997), “Evaluating the benefits of abolishing the MFA in the
Uruguay round package”, in: T.W. Hertel, ed., Global Trade Analysis, Modeling and Applications
(Cambridge University Press, New York).

Young, L.M., and K.M. Huff (1997), “Free trade in the Pacific rim: on what basis?”, in: T.W. Hertel,
ed., Global Trade Analysis, Modeling and Applications (Cambridge University Press, New York).

Zeldes, S.P. (1989), “Consumption and liquidity constraints: an empirical investigation”, Journal of
Political Economy 97:305−346.



This Page Intentionally Left Blank



Chapter 59

MEASUREMENT ERROR IN SURVEY DATA

JOHN BOUND°

University of Michigan and NBER

CHARLES BROWN

University of Michigan and NBER

NANCY MATHIOWETZ

University of Maryland

Contents

Abstract 3707
Keywords 3707
1. Introduction 3708
2. The impact of measurement error on parameter estimates 3710

2.1. Special cases 3712
2.2. General results – linear model 3715
2.3. Differential measurement error – an example 3716
2.4. Bounding parameter estimates 3721
2.5. Contaminated and corrupted data 3723
2.6. Measurement error in categorical variables 3724
2.7. Nonlinear models 3727

3. Correcting for measurement error 3728
3.1. Instrumental variables in the bivariate linear model 3729
3.2. Multivariate linear model 3733
3.3. Nonlinear models 3735
3.4. The contribution of validation data 3737

4. Approaches to the assessment of measurement error 3740
5. Measurement error and memory: findings from household-based surveys 3743

5.1. Cognitive processes 3743
5.2. Social desirability 3745

° We are grateful to Joe Altonji, Dan Hamermesh, Jeff Wooldridge, Michael Baker, Gary Solon,
Shinichi Sakata, participants at the conference for this volume and especially to Jim Heckman and
Ed Leamer for extremely helpful comments on previous versions of this paper and to Mari Ellis for help
with the preparation of the manuscript.

Handbook of Econometrics, Volume 5, Edited by J.J. Heckman and E. Leamer
© 2001 Elsevier Science B.V. All rights reserved



3706 J. Bound et al.

5.3. Essential survey conditions 3746
5.4. Applicability of findings to the measurement of economic phenomena 3747

6. Evidence on measurement error in survey reports of labor-related phenomena 3748
6.1. Earnings 3748

6.1.1. Annual earnings 3748
6.1.2. Monthly, weekly, and hourly earnings 3766

6.2. Transfer program income 3770
6.3. Assets 3779
6.4. Hours worked 3784
6.5. Unemployment 3791

6.5.1. Current labor force status, and transitions to and from unemployment 3792
6.5.2. Retrospective unemployment reports 3799

6.6. Industry and occupation 3802
6.7. Tenure, benefits, union coverage, size of establishment, and training 3805
6.8. Measurement error in household reports of health-related variables 3811

6.8.1. Health care utilization, health insurance, and expenditures 3811
6.8.2. Health conditions and health/functional status 3817

6.9. Education 3823
7. Conclusions 3830
References 3833



Ch. 59: Measurement Error in Survey Data 3707

Abstract

Economists have devoted increasing attention to the magnitude and consequences
of measurement error in their data. Most discussions of measurement error are
based on the “classical” assumption that errors in measuring a particular variable are
uncorrelated with the true value of that variable, the true values of other variables in
the model, and any errors in measuring those variables. In this survey, we focus on both
the importance of measurement error in standard survey-based economic variables and
on the validity of the classical assumption.
We begin by summarizing the literature on biases due to measurement error,

contrasting the classical assumption and the more general case. We then argue that,
while standard methods will not eliminate the bias when measurement errors are not
classical, one can often use them to obtain bounds on this bias. Validation studies allow
us to assess the magnitude of measurement errors in survey data, and the validity of
the classical assumption. In principle, they provide an alternative strategy for reducing
or eliminating the bias due to measurement error.
We then turn to the work of social psychologists and survey methodologists which

identifies the conditions under which measurement error is likely to be important.
While there are some important general findings on errors in measuring recall of
discrete events, there is less direct guidance on continuous variables such as hourly
wages or annual earnings.
Finally, we attempt to summarize the validation literature on specific variables:

annual earnings, hourly wages, transfer income, assets, hours worked, unemployment,
job characteristics like industry, occupation, and union status, health status, health
expenditures, and education. In addition to the magnitude of the errors, we also focus
on the validity of the classical assumption. Quite often, we find evidence that errors
are negatively correlated with true values.
The usefulness of validation data in telling us about errors in survey measures can be

enhanced if validation data is collected for a random portion of major surveys (rather
than, as is usually the case, for a separate convenience sample for which validation
data could be obtained relatively easily); if users are more actively involved in the
design of validation studies; and if micro data from validation studies can be shared
with researchers not involved in the original data collection.

Keywords

measurement error, validation studies, survey data, validity, reliability, retrospective
recall, income, earnings, health, errors in variables, instrumental variables,
attenuation

JEL classification: C10, C33, C42, C81, J00
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1. Introduction

Empirical work in economics depends crucially on the use of survey data. The evidence
we have, however, makes it clear that survey responses are not perfectly reliable. Even
such salient features of an individual’s life as years of schooling seem to be reported
with some error. While economists have been aware of the errors in survey data
for a long time, until recently most empirical studies tended to ignore it altogether.
However, perhaps stimulated by increases in the complexity of the models we have
been estimating, and in particular, with the increasing use of panel data that can
seriously exacerbate the effect of measurement error on our estimates, economists have
been paying an increasing amount of attention to measurement error 1.
Most assessments of the consequences of measurement error and methods for

correcting the biases it can cause have emphasized models that make strong –
and exceedingly convenient – assumptions about the properties of the error. Most
frequently, measurement error in a given variable is assumed to be independent of
the true level of that and all other variables in the model, measurement error in
other variables, and the stochastic disturbance. We will refer to such purely random
measurement error as “classical” measurement error. In some applications – such as
the case where the error is a sampling error in estimating a population mean – these
assumptions can be justified. But in most micro data analyses using survey data, they
reflect convenience rather than conviction.
From these assumptions comes much of the conventional wisdom about the effects

of measurement error on estimates in linear models: (i) error in the dependent variable
neither biases nor renders inconsistent the parameter estimates but simply reduces the
efficiency of those estimates; (ii) error in the measurement of an independent variable
produces downward-biased (attenuated) and inconsistent parameter estimates of its
effect, while inadequately controlling for the confounding effects of this variable on
the well measured variables; and (iii) the inclusion of other independent variables that
are correlated with the mis-measured independent variable accentuates the downward
bias 2.
In fact, these conclusions need to be qualified. The bias introduced by measurement

error depends both on the model under consideration (e.g., whether it is linear) and on
the joint distribution of the measurement error and all the variables in the model. The

1 Thus, for example, the volatility of earnings and consumption data have often been attributed
measurement error [MaCurdy (1982), Abowd and Card (1987, 1989), Hall and Mishkin (1982), Shapiro
(1982)]. On the other hand a variety of authors have rationalized a dramatic drop in the magnitude of
coefficient estimates associated with the move to fixed effects models in terms of measurement error
in key variables and have used a variety of techniques to undo the presumed damage [Freeman (1984)
and Card (1996) follow this kind of strategy when using fixed effect models to estimate union premia,
Krueger and Summers (1988) do so when estimating industry premia, and Ashenfelter and Krueger
(1994) do so when estimating educational premia].
2 The notion that fixed effect models tend to seriously accentuate the effect of measurement error on
parameter estimates represents an important special case of this last point.
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effect of measurement error can range from the simple attenuation described above
to situations where (i) real effects are hidden; (ii) observed data exhibit relationships
that are not present in the error free data; and (iii) even the signs of the estimated
coefficients are reversed.
Standard methods for correcting for measurement error bias, such as instrumental

variables estimation, are valid when errors are classical and the underlying model is
linear, but not, in general, otherwise. While statisticians and econometricians have been
quite clear about the assumptions built into procedures they have developed to correct
for measurement error, empirical economists have often relied on such procedures
without giving much attention to the plausibility of the assumptions they are explicitly
or implicitly making about the nature of measurement error. Not only can standard fixes
not solve the underlying problem, they can make things worse!
Twenty years ago, analysts would typically have ignored the possibility that the

data they were using was measured with considerable error. Rarely, if ever would
such researchers acknowledge, let alone try to justify their tacit assumption that
measurement error in the data they were using was negligible. More recently, it has
become quite common for analysts to correct for measurement error. However, when
doing so, researchers virtually always rely on the assumption that measurement error is
of the classical type, usually with no justification at all. If we are to be serious regarding
measurement error in our data, we need to understand the relationship between the
constructs that enter our models and the measures we use to proxy them. This is a tall
order. However, even when this “gold standard” is unattainable it will often be possible
to put some kind of plausible bounds on the extent and nature of the measurement error
of key variables, and use these bounds to work out bounds for estimated parameters
of interest.
In addition to providing some evidence about the magnitude of measurement errors,

validation studies that compare survey responses to more accurate data such as payroll
records permit one to determine whether measurement errors are indeed uncorrelated
with other variables. In principle – though this possibility has been realized only
incompletely in practice – validation studies can provide more general information on
the relationships among errors in measuring each variable, its true value, and the errors
and true values in each of the other variables. The research summarized in this chapter
is based on direct observation of the measurement error properties of interview reports
for a wide range of economic measures. The evidence provides much information to
challenge the conventional wisdom.
One general conclusion from the available validation evidence is that the possibility

of non-classical measurement error should be taken much more seriously by those
who analyze survey data, both in assessing the likely biases in analyses that take no
account of measurement error and in devising procedures that “correct” for such error.
A second result is that it is important to be at least as explicit about one’s model of
the errors in the data as about the relationship among the “true” variables that we seek
to estimate. Unless one is comfortable assuming that the classical assumptions apply,
arguing informally based on that standard case may be dangerous, and writing out the
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alternative model that better describes one’s data can often give real insight into the
biases one faces and the appropriateness of traditional cures. A third finding is that, all
too often, validation studies are not as helpful to data analysts as they ought to be. Even
for the relatively simple goal of assessing the extent of measurement error in individual
variables, the “extent” of the error is often not summarized in ways that are suggested
by the simple models that guide our thinking. Too few studies take the next step of
relating errors in one variable to true values and errors in other variables. We hope
that by contrasting the information that is often provided with that which would be
most helpful to analysts, we can increase the contribution made by future validation
studies. Given the difficulty of mounting a successful validation effort, maximizing
the payoff from such efforts is important. In addition to these general themes, we
present a variable-by-variable summary of what is known about the accuracy of survey
measures.
We begin by reviewing what is known about the impact of measurement error on

parameter estimates in Section 2, and possible corrections for the effect of such error
in Section 3. This review is not meant as an exhaustive survey the large statistical
literature on this subject, but rather is meant to introduce the reader to various issues
and to set the stage for our discussion of the validation studies we review3. What
summary measures of the errors in survey data would be most valuable to an analyst
for deciding how important such errors are for his/her analysis? How appropriate are
standard techniques for “correcting” for measurement errors, given what validation
studies can tell us about such errors? In Section 4 we briefly discuss the design of
validation studies, while Section 5 reviews what is known about the circumstances
under which phenomena are likely to be well reported by survey respondents. Finally,
Section 6 reviews validation studies across a large range on substantive areas. This
review is organized by variable, so readers can concentrate on the variables that are
most important in their own research. We offer some conclusions in Section 7.

2. The impact of measurement error on parameter estimates

We start with the presumption that we are interested in using survey data to estimate
some parameters of interest. These parameters might be means or medians, as is the
case when we are interested in tracking the unemployment rate or median earnings,
but will often represent more complicated constructs such as differences in means
between groups or regression slope coefficients. Measurement error in survey data
will typically introduce biases into such estimates. If what we are interested in is the

3 Fuller (1987) contains a thorough discussion of the biases measurement error introduces into parameter
estimates and on standard methods for correcting such biases within the context of the linear model,
when measurement error is random (classical). Carroll, Ruppert and Stefanski (1995) contains a more
general discussion of the same issues within the context of non-linear models, with considerable attention
to models in with errors are not purely random.
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estimate of simple means, then, as long as measurement error is mean 0, it will not
bias our estimates. However, as is well known, if we are interested in parameters that
depend on relationships between variables, then even mean 0 measurement error will
typically bias our estimates.
In what follows we will focus primarily on the impact of measurement on

parameter estimates within the context of the linear model 4. Most of the statistics and
econometrics literature on the subject has dealt with this case, presumably because it
is in this case that the impact of measurement error on parameter estimates can be well
characterized 5. There is a growing literature focusing on the impact of measurement
error on parameter estimates within the context of non-linear models; however it
remains unclear the extent to which the intuitions we develop within the context of
the linear model remain true within this context (see Sections 2.7 and 3.3 for further
discussion of this point).
Assume the true model is

y∗ = X ∗b + û, (1)

where y∗ and û are both scalars and X ∗ and b are vectors. We will maintain the
assumption that û is uncorrelated with X ∗. The motivation for this assumption is largely
strategic – we are interested in the impact that measurement error has on our estimates
and so focus on the case where our estimates would be unbiased in its absence. Instead
of X ∗ and y∗, we observe X and y, where

X = X ∗ + m; y = y∗ + n . (2)

In general, we will not assume m and n are uncorrelated with X ∗, y∗ or û. We will use
the term classical measurement error to refer to the case where m and n are assumed to
be uncorrelated with X ∗, y∗ or û 6, and the term nondifferential [Carroll, Ruppert and
Stefanski (1995)] measurement error (in explanatory variables) to refer to the case
where, conditional on X ∗, X contains no information about y∗ 7 implying that m is
uncorrelated with either y∗ or û 8.

4 The framework we present here derives from Bound et al. (1994).
5 Fuller’s excellent monograph focuses solely on the linear model.
6 For the more general case (i.e., nonlinear modes), this condition needs to be strengthened to refer to
the case where m and n are assumed to be independent of X ∗, y∗ or û.
7 More technically, measurement error in X ∗ is referred to a non-differential if the distribution of y∗

given X ∗ and X depends only on X ∗ (i.e., f ( y∗ | X ∗,X ) = f ( y∗ | X ∗)).
8 A few examples may clarify the kind of contexts in which differential measurement can occur.
Kaestner, Joyce and Wehbeh (1996) estimate the effect of maternal drug use on an infant’s birth weight.
They find that self-reported drug use has a larger estimated effect on birth weight than does drug use as
assessed from clinical data. They argue that this is because casual users tend to under-report drug use.
Thus, if X ∗ is a binary measure of drug use based on clinical data and X the self report, and y∗ is birth
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Measurement error in the above sense can occur for a number of reasons that are
worth keeping distinct. Respondents can simply misreport on a measure because, for
example, their memory is flawed. Here it is possible to imagine obtaining a perfectly
measured and therefore valid measure of the quantity in question. An example of
this might be pre-tax wage and salary income (i.e., earnings) for a specific calendar
year. Alternatively we may be using X and y to proxy for the theoretical constructs of
our economic models. Thus, for example, we might use reported years of educational
attainment as a proxy for human capital. In this case, the errors will importantly include
the gap between what the survey intended to measure and our theoretical construct.
While something of the same statistical apparatus can be used to analyze the impact
of either kind of error on parameter estimates, clearly validation data can shed light
on only the first kind of error.
In the absence of validation data, the analyst observes only X and y. We will be

primarily interested in the effect of measurement error on the consistency of our
estimates. For this reason, we will not distinguish between populations and samples.
The “least squares estimator” of b is

byX = [X ′X ]−1X ′y. (3)

2.1. Special cases

We will present a general approach to dealing with measurement errors in X ∗ and y∗

which are correlated with the true X , y and û. Before doing so, however, it is useful
to highlight a few results that can be derived from the general approach for the biases
due to measurement errors when convenient assumptions hold. To simplify discussion
of the various biases, we assume throughout that the X ’s have been defined so that
byX ¾ 0. Consider three special cases.
First, if there is classical measurement error in only one independent variable xj , the

proportional bias in estimating bj depends on the noise to total variance ratio, s 2mj /s
2
xj .

In particular, with only one independent variable in the regression, the proportional
bias is just equal to this ratio,

byxj = b

[
1 −

s 2uj
s 2x∗j + s

2
uj

]
. (4)

weight, E( y∗ | X ∗,X ) is decreasing in X . It is also plausible for measurement error to be differential in
the context in which X does not merely represent a mismeasured version of X ∗, but is a separate variable
representing a proxy for X ∗ [Carroll, Ruppert and Stefanski (1995)]. Thus, for example, if there are
contextual effects, the use of aggregate proxies for micro level constructs can exaggerate causal effects
[Loeb and Bound (1996), Geronimus, Bound and Neidert (1996)].
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With other variables in the regression:

byxj · Z = bj

⎡⎣1 − s 2uj

s 2x∗j

(
1 − R2x∗j , Z∗

)
+ s 2mj

⎤⎦ , (5)

where Z∗ represents the elements of X ∗ other then x∗j (X
∗ = [x∗j | Z∗]), R2x∗j , Z∗

represents the R2 from the regression of x∗j on the remaining elements of X
∗, and byxj , Z

represents the least squares regression of y on xj holding Z constant. Thus, classical
measurement error in just one explanatory variable attenuates estimates of the effect of
this variable on outcomes. The magnitude of this attenuation depends both on the noise
to signal ratio and on the extent of multi- collinearity between the error ridden variable
and the other variables in the equation [Levi (1973), Garber and Klepper (1980)].
The measurement error in xj biases not just estimates of bj , but also the coefficients

on the accurately measured variables. Letting P represent the coefficient vector from
the least squares regression of x∗j on Z

∗, then

byZ · xj = bi Ñ j +
(
bj − byxj · Z

)
P . (6)

Thus, classical measurement error in x∗j implies that using xj as a proxy for x
∗
j will

partially, but only partially, control for the confounding effects of x∗j on the estimates of
the effect of other variables on outcomes [McCallum (1972), Wickens (1972), Garber
and Klepper (1980)].
Second, even if the error, mj , is correlated with the true x∗j (or other X

∗’s), but
is uncorrelated with û, the proportional downward bias is equal to the regression
coefficient from a hypothetical regression of mj on the set of measured X ’s. If there
is only one independent variable in the model, this reduces to the simple regression
coefficient bmX ,

byx = b [1 − bux] .

When m and X ∗ are uncorrelated, bmX is equal to the variance ratio s 2m / (s
2
X∗ + s 2m ) and,

as such, will be between 0 and 1. More generally, this will not be true. In particular if
m and X are negatively correlated (the error m is “mean reverting”), bmX will typically
be smaller than in the classical case (this happens as long as s 2m < s

2
X∗ ) and can even

be negative – that is, byX > b . More generally, if the error in one variable is correlated
with other variables in the model, the biases on various coefficients depend on the
direction of the partial correlation between the error and the various variables in the
model.
Third, if the dependent variable y is measured with error, and that error is correlated

with the true y∗ (where n = dy + n∗ and n∗ is uncorrelated with X ∗ and û), and the
X ∗’s are measured without error, then the proportional bias in estimating b is just equal
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to d. To emphasize the similarity to the previous case, note that d is just the regression
coefficient bny.
Each of the above results applies to cross-section analysis, and to panel data by

substituting DX ∗ for X ∗, etc. But when one uses Dy and DX as one’s dependent and
independent variables, respectively, another aspect of the data becomes important –
the correlation over time in the true values (the correlation between y at time t and
at time t − 1, and similarly for X ) and in the measurement errors (the correlation
between n at time t and at time t − 1, and similarly for m). A general result is that, if
the variance of a variable (say, X ∗) is the same in both years, the variance of DX ∗ is
equal to 2s 2X∗ (1 − rX∗

t , X
∗
t − 1
) which is greater or less than s 2X∗ as rX∗

t , X
∗
t − 1
is less than or

greater than one-half. A common concern, usually expressed in the context of classical
measurement errors, is that true values of X will be highly correlated over time, while
the measurement errors will be more or less uncorrelated. In this case, s 2D X∗ will
be less than s 2X∗ , while s 2Dm will be greater than s

2
m , so that moving from “levels” to

“changes” intensifies the bias due to errors in measuring the independent variable(s) 9.
There is one more special case worth noting. Suppose that xj represents a component

of x∗j
10, with rmj , xj = 0, and that other variables (both y

∗ and the other X ∗’s) are
measured without error. Take first the case where x∗j represents the only explanatory
variable in the model. Equation (1) can now be rewritten:

y = b
[
xj + mj

]
+ û

= bxj +
[
bmj + û

]
.

(7)

Since, by assumption, mj is orthogonal to xj , the composite error in Equation (7) will
be orthogonal to xj and byxj will consistently estimate bj . With other variables in the
equation, OLS will no longer consistently estimate b . Rewriting Equation (1) in this
case we have:

y = bj
[
xj + mj

]
+ Zg + û

= bjxj + Zg +
[
bjmj + û

]
.

(8)

While mj is orthogonal to xj , we do not expect mj to be orthogonal to Z . Thus, in
this case the exclusion of mj from our estimating equation represents a specification
error, and both byxj · Z and byZ · xj will be biased. If the signs of the partial correlations

9 See Griliches and Hausman (1986) for an illuminating discussion of these issues.
10 This variance component framework fits many different kinds of contexts. Thus, for example, we
might imagine that x∗j represents schooling, with xj representing the observed quantity of schooling
obtained and mj representing the unobserved quality of this schooling (here one might question the
orthogonality of mj and xj). Alternatively, xj might represent cell means of x∗j (we use industry specific
injury rates as proxies for job specific injury rates). Here mj and xj are orthogonal by construction. More
detailed discussions of this latter case can be found in Dickens and Ross (1984) and Geronimus, Bound
and Neidert (1996).
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between mj and Z are the same as signs of the partial correlations between xj and Z ,
then using xj as a proxy for x∗j will only partially control for the confounding effect
of Z on b – as an estimate of b , byxj · Z will be still be biased in the same direction as
is byxj

11.

2.2. General results – linear model

Having highlighted some special cases in which the consequences of measurement
error can be summarized succinctly, we turn to a more general model. With m and n
potentially correlated with X ∗ and y∗, the least squares regression coefficient can be
rewritten as

byX = (X ′X )−1X ′(X ′b − mb + n + û)
= b + (X ′X )−1X ′(−mb + n + û).

(9)

Therefore, the bias of the least squares estimator of b is

byX − b = (X ′X )−1X ′(−mb + n + û). (10)

It is useful to collect the measurement errors and their coefficients. Define

g ≡

⎡⎣ −b1
1

⎤⎦ , w ≡ [m|n |û].

Then Equation (10) can be rewritten as

byX − b = (X ′X )−1X ′wg ≡ Ag .

If there are k separate variables in the independent-variable matrix X , then A is k by
k + 2. It can be rewritten in a more intuitive form as

A =
[
bmX |bnX |bûX

]
,

where the jth column of bmX consists of the coefficients from regressing mj on X , and
bnX and bûX represent the set of coefficients from regressing n and û on X .
If there is measurement error in only one independent variable X ∗

j and if this error
is uncorrelated with û, only one column of A will be nonzero, and Ajj = bmj Xj , as
claimed in our discussion of special cases. If n = dy + n∗ = dX b + dû + n∗, and n∗

is uncorrelated with the other variables of the model, and the independent variables

11 The direction of this bias is easy to work out. If, for example, the partial correlations between each
element of Z and xj are positive, then byZ · xj > g and byxj ·Z < bj .



3716 J. Bound et al.

are measured without error, then bmX and bûX are a matrix and vector of zeros, and
bnX = db . Thus, the proportional bias for each coefficient equals d.
As the above expression makes clear, with measurement error in more that one

explanatory variable, the bias on any particular coefficient will involve multiple terms,
and is hard to characterize. What should be clear is that without some knowledge of
the distribution of the errors (m and n ), the situation is hopeless – the data put no
restrictions on possible values of b .
Even with classical assumptions, measurement error in more than one explanatory

variable does not necessarily attenuate the coefficients on the variables measured with
error. Theil (1961) derives a useful approximation to the bias in the context of where
two variables are measured with error. He imagines we are interested in estimating the
relationship:

y∗ = b1x∗1 + b2x
∗
2 + û, (11)

but observe only error ridden proxies for the x∗’s, x1 (x1 = x∗1 + m1) and x2
(x2 = x∗2 + m2). The errors (the m’s) are assumed to be independent of each other,
the x’s and û and the x∗’s are scaled to have unit variance. Theil shows that when the
errors are small

byx1 · x2 − b1 ≈ −
b1l1
1 − ø2

+
b2l2ø
1 − ø2

,

byx2 · x1 − b2 ≈ −
b2l2
1 − ø2

+
b1l1ø
1 − ø2

,
(12)

where ø represents the correlation between the x∗’s, and the l’s represent the error to
total variance ratios for the two variables (lj ≡ s 2mj /s

2
x∗i
). Thus, in the multivariate case,

the bias on a particular coefficient depends on factors that, as long as ø is positive, tend
to offset each other. In fact, it should be clear that in the two variable case, the bias on
the estimated coefficient on the variable measured with less error can be positive 12.

2.3. Differential measurement error – an example

In many cases, assuming that measurement error is classical is a simple (and potentially
dangerous) expedient when we have little a priori reason to believe that any other
particular assumption would be more plausible. In other situations, however, we have
good reason to believe that the errors are differential, and the basis for this belief
can help us write down relatively detailed but still manageable models. The growing

12 When more than one variable is measurement with error, not only is it no longer true that the
coefficients on these variables are necessarily attenuated but it is also no longer true that the inclusion of
one of the error ridden variables will necessarily reduce the bias on coefficients on accurately measured
variables. See Garber and Klepper (1980) for a succinct discussion of these issues.
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literature on labor supply of older workers provides a useful example, both because it
is relevant for our discussion of survey measures of health and because doing so will
allow us to highlight the potential importance of differential measurement error 13.
A large fraction of the men and women who leave the workforce before the age of

62 report health as the reason they do so. Though health is, no doubt, an important
determinant of the age at which men and women retire, there are a variety of reasons
not to take these self-reports at face value. It seems plausible that men and, to a
lesser extent women, rationalize retirement in terms of health even when they retire
primarily for other reasons 14. Myers (1982) has gone so far as to argue that there
is no useful information in self-evaluated health. At the same time, for want of
alternative measures, econometric analyses of the labor supply decisions of older men
and women have generally used respondents’ self-assessment of their health. There
remain important questions about the validity of self-reported measures of health and
therefore of the inferences that can be drawn from studies that use them.
The most common health measures used in retirement research have been global

questions such as, “Does health limit the amount or kind of work you can perform?” or
“How would you rate your health? Is it excellent, very good, good, fair or poor?” There
are a number of reasons to be suspicious of such survey measures [Parsons (1982),
Anderson and Burkhauser (1984, 1985), Bound (1991), Waidmann et al. (1995)]. First,
respondents are being asked for subjective judgments and there is no reason to expect
that these judgments will be entirely comparable across respondents. Second, responses
may not be independent of the labor market outcomes we may wish to use them to
explain. Third, since health may represent one of the few “legitimate” reasons for
a working aged man to be out of work, men out of the labor force may mention
health limitations to rationalize their behavior. Lastly, since early retirement benefits
are often available only for those deemed incapable of work, men and women will
have a financial incentive to identify themselves as disabled, an incentive that will be
particularly high for those for whom the relative rewards from continuing to work are
low.
Each of these problems will lead to a different kind of bias. The lack of

comparability across individuals represents measurement error that is likely to lead
to our underestimating the impact of health on labor force participation, while the
endogeneity of self-reported health is likely to lead to our exaggerating its impact.
Biases in our estimation of health’s impact on outcomes will also induce biases on
coefficients of any variables correlated with health. Finally the dependence of self-
reported health on the economic environment will induce a bias on estimates of the
impact of economic variables on participation, regardless of whether we correctly
measure the impact of health itself.

13 The discussion here follows Bound (1991) closely.
14 Plausibly, this rationalization is not entirely conscious.
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As an alternative to using global self-reported health measures, a variety of authors
have argued for the use of what have been perceived to be more objective indicators of
health: responses to questions about specific health conditions or limitations 15, doctors’
reports or information on subsequent mortality 16. Such proxies are presumed to be
more objective than self-reported health measures, though this does not mean that
reports of specific conditions are completely reliable (see Section 6.8.2). Moreover,
even with perfectly accurate measures of health conditions or mortality, it is not clear
that their use as proxies for health give us an accurate indication of the impact of health
on labor supply. Part of the problem with “objective” measures is that they measure
health rather than work capacity. As long as these health proxies are not perfectly
correlated with work capacity – the aspects of health that affect an individual’s capacity
of work – they will suffer from errors in variables problems. With self-reported health
measures we have biases working in opposite directions and, as such, they will have a
tendency to cancel each other out. With objective measures there is only one bias, and,
as long as the correlation between the proxy and actual health isn’t close to perfect,
the bias will be quite substantial.
The issues here are important for our understanding not only of the importance

of health, but also of the impact of economic variables on early retirement. Both
subjective and objective health indicators are correlated with such things as education,
race, pre-retirement earnings, and pre-retirement occupation. These factors are also
important indicators of early labor market withdrawal. One interpretation of these
correlations is that it is those in poor health who leave the workforce before normal
retirement age. Alternatively these correlations could be interpreted as reflecting the
fact that poor labor market prospects induce men to leave the labor force, but that they
then rationalize this behavior by identifying themselves as limited in their ability to
work.
The literature that has compared results using a variety of different health measures

has tended to find that health seems to play a smaller role and economic variables a
greater one when the more objective proxies are used. Most authors have interpreted
these results as an indication of the biases inherent in using self-reported measures
[Parsons (1982), Anderson and Burkhauser (1984, 1985), Chirikos and Nestel (1981),
Lambrinos (1981)]. These authors have typically either ignored the possible biases
inherent in the use of a proxy, or have assumed that these biases are small in
comparison to the ones introduced by the use of self-reported measures.
Others have argued in favor of using self-reported information [Burtless (1987),

Sickles and Taubman (1986)]. These authors emphasize the flaws inherent in most

15 While responses to questions about specific health conditions or limitations still represent self-
reports, the presumption has been that such measures are less susceptible to measurement and endogeneity
problems since the questions are narrower and more concrete and, unlike questions about work limitations,
are not linked to employment behavior.
16 For a review of the literature on the effects of health on labor supply decisions see Currie and Madrian
(1999).
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objective measures of health while pointing to the clinically oriented research
supporting the reliability and predictive validity of self-reported health measures [Idler
and Benyamini (1997), Nagi (1969), Maddox and Douglas (1973), LaRue et al. (1979),
Ferraro (1980), Mossey and Shapiro (1982), Manning et al. (1982)]. These authors
ignore the fact that even if self-reported health is a reliable indicator of actual health,
this may not be enough to guarantee that it will give sensible results when used as
a proxy for health in retirement equations. At issue is whether self-reported health
measures are systematically biased, with those out of work being substantially more
likely to report health problems than those working. Were this the case, the use of self-
reported measures might give misleading information on the reasons why men retire
early even if these measures were highly correlated with actual health.
To make these comments precise, we consider a simple model for the labor supply of

older men or women. The choice of hours of work, y, depends on the relative rewards
of doing so; w, exogenous income (which for simplicity we ignore); unobserved health
status, h; and other random components 17, û:

y = b1w + l1h + û. (13)

We are interested in consistently estimating b1 and l1. We expect b1 to be positive.
Since h is unobserved, the sign of l1 is arbitrary, but if larger values of h are associated
with better health then we would expect that l1 should be positive as well.
We also have an indicator of h, self-reported health h. h depends on health status h,

but also on the economic rewards for continuing to work, w, and, again on other
random components m1,

h = b2w + l2h + m1. (14)

We expect both b2 and l2 to be positive.
We assume that h is orthogonal to both û and m1 but, as long as there are common

unobserved components that affect both h and y, as there will be if the two are
definitionally related or if health limitations act as a rationalization for retirement, û
and m1 will be positively correlated.
As long as h and w are positively correlated, ignoring h in estimating Equation (13)

will lead to overestimates of the importance of economic incentives in determining
labor force participation. The obvious alternative would be to use h as a proxy for
h but there are a variety of econometric problems with doing so. The correlation
between û and m1 introduces a simultaneity bias while variance in m1 introduces errors-
in-variables biases on l̂1. Errors in estimates of l1 translate into errors in estimates of

17 The notational conventions we use in this section are somewhat different than the conventions we use
elsewhere. To focus attention on the impact of differential measurement error in our health measure, we
are abstracting from potential measurement error in other variables. Thus, the reader should think of y
as representing well-measured hours and w as well-measured compensation. On the other hand, h and
d represent error ridden measures of health, h.
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b1, while the dependence of h on w introduces an additional bias on b̂1. In particular,
treating y and h as if they were observable, letting rh,w represent the correlation
between h and w, and ø the correlation between û and m1 and normalizing l2 to equal 1,
it is easy to show that:

l̂1 =
l1s 2h (1 − r

2
h,w) + sûsm1ø

s 2h (1 − r2h,w) + s 2m1
,

b̂1 = b1 +
(
l1 − l̂1

) sh,w
s 2w

− l̂1b2.

As long as ø > 0, this correlation will impart an upward bias on l̂1, while s 2m1 will

impart the standard errors-in-variables downward bias on l̂1. Which one dominates
depends on the relative strength of these two forces. The bias on b̂1 will depend both
on the bias on l̂1 and on b2. Thus, even if the errors-in-variables and the simultaneity
biases on l̂1 were to cancel, we might still tend to underestimate b1.
The above expressions make clear that the biases on l̂1 and b̂1 may be quite

substantial even when h is a reliable measure of h (i.e., even when s 2m1 is quite small).
They also make clear that the magnitude and even the direction of the bias depends on
the magnitude of several different correlations. Even if self-reported health is highly
correlated with actual health estimates using it as a proxy for health may not give
reliable results. Likewise, even if self-reported health often represents rationalization,
the use of self-reports may not necessarily exaggerate the role of health in retirement.
Beliefs about the kinds of bias involved using self-reported health as a proxy for
actual health implicitly reflect judgments about all quantities involved in the above
expressions.
Now consider a somewhat more complete model where we have added an equation

to make explicit the correlation between w and h and have some more objective
indicator of health status, d, which for concreteness sake we will imagine to be
subsequent mortality. We have

y = l1h + b1w + û, (15)

h = l2h + b2w + m1, (16)

d = l3n + m2, (17)

w = l4h + z , (18)

h = n + x. (19)

In this model, health h has two components – n , which influences both longevity and
work capacity (e.g., heart problems), and x, which influences only the capacity for
work (e.g., arthritis). The implicit assumption imbedded in the variance components
formulation (h = n + x) is that, up to factors of proportionality (l1/l2 and l4/l2), n and
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x enter the labor force, health and compensation equations with identical coefficients.
This assumption seems a natural one as we are thinking of h as capacity for work, and
h as a self-report on this capacity. û, m1 and m2 are assumed to be uncorrelated with
w, while all four errors (û, the m’s, and z) are assumed to be uncorrelated with h or its
components n and x. m2 is assumed to be uncorrelated with either û, m1 or z . These
assumptions imply that z is also uncorrelated with either û or m1. Lastly, n and z are
assumed to be uncorrelated with each other. This assumption is mostly definitional –
x is the piece of h that is uncorrelated with d.
d is objective in two ways that h is not: d does not depend directly on w nor is m2

correlated with û. Still, as long as the date of death is not perfectly correlated with
an individual’s capacity for work, using it as a proxy for health will not adequately
control for health, in a regression of y on w (and d). In particular, normalizing l3 to
equal 1 we have

l̂1 = l1
s 2n (1 − r

2
n ,w)

s 2n (1 − r2n ,w) + s 2m2
,

b̂1 = b1 +
(
l1 − l̂1

) sn ,w
s 2w

− l̂1
s 2x,w
s 2w
.

As long as there are disabling conditions that are not life threatening (e.g., severe back
problems, mental illness), controlling for d will still leave an omitted variable bias on
b̂1, while as long as current capacity for work does not perfectly predict date of death
there will be errors-in-variables biases on both l̂1 and b1.
To summarize, using mortality information as a health proxy will tend to

underestimate the effects of health and overestimate the effects of economic variables
on the labor force participation decision. In contrast, using self-reported health status
can either over- or underestimate the impact of either health or economic variables on
such decisions.

2.4. Bounding parameter estimates

While, without some restrictions on the nature of the measurement error, the data puts
no bounds on b , there has been considerable work done putting bounds on b under the
assumption that measurement error is classical. The oldest, and best known of such
results is due to Gini (1921). Working with the simple bivariate regression (eqs. 1 and
2, p. 3711) and under the assumption that the errors n and m are uncorrelated with
each other, with y∗ and x∗, and with û, it is easy to show that

1
bxy

= b
[
1 +

s 2û + s
2
n

b2s 2x∗

]
. (20)

Thus

byx ¶ b ¶
1
bxy
. (21)
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Under the assumptions of classical measurement error, byx and 1/bxy bound b , with the
tightness of the bounds being a function of the R2 between y∗ and x∗. More generally,
if we allow rx∗, m Ñ 0 but maintain the other assumptions, it is possible to show that
as long as the correlation between x and x∗ is positive, byx will be correctly signed
[Weinberg, Umbach and Greenland (1994)].
Under the assumption that only one of the explanatory variables is measured with

error, it is easy to generalize Gini’s result to regressions with multiple explanatory
variables. On the other hand, in the context in which multiple explanatory variables
are all measured with error, the situation is more complex. Klepper and Leamer (1984)
derive results under the assumption that the errors are independent of each other and
of the unobserved correctly measured variables 18.
We start by illustrating Klepper and Leamer’s result within the context of a model

with two explanatory variables,

y∗ = b1x∗1 + b2x
∗
2 + û. (22)

For ease of discussion, we will assume that x∗1 and x
∗
2 have been normalized in such

a way that b1 and b2 are both are non-negative. We can imagine several possible
“estimates” of b1 and b2. The estimates from the direct regression

b̂01 = byx1 · x2 , b̂02 = byx1 · x2 ,

the estimates from the reverse regression of x1 on y and x2,

b̂11 =
1

bx1 y · x2
, b̂12 = −

bx1 x2 · y
bx1 y · x2

,

and the estimates from the regression of x2 on y and x1,

b̂21 = −
bx2 x1 · y
bx2 y · x1

, b̂22 =
1

bx2 y · x1
.

These three estimates of b1 and b2 represent three points on a two dimensional plane.
Klepper and Leamer’s results imply that if all three sets of estimates are non-negative,
b1 and b2 must lie within the triangle defined by these three points and, as a result,
min[ b̂1] ¶ b1 ¶ max[ b̂1] and min[ b̂2] ¶ b2 ¶ max[ b̂2]. If, on the other hand, one
or more of these estimates is negative, then the first and second moments of the data
put no bounds on possible values of b1 and b2 19. Klepper and Leamer show that in

18 Some of the results developed by Klepper and Leamer had been developed previously by Koopmans
(1937), Reiersol (1945), Dhondt (1960), and Patefield (1981), however Klepper and Leamer’s treatment
of these issues is both the clearest and the most complete.
19 Klepper and Leamer show that, if all the variables involved are normal, the bounds they derive
are tight and that every point within these bounds represents a maximum likelihood estimate of the
regression parameters.
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the two variable case all possible reverse regression coefficients will be positive if and
only if r1r2 > ø, where r1 and r2 represent the simple correlations between the two
measured explanatory variables and y, and ø represents the correlation between the two
measured explanatory variables. Thus, the higher is the simple correlation between the
two explanatory variables and the dependent variable and the lower is the correlation
between explanatory variables, the more likely it is that the data will put bounds on
the regression parameters.
More generally, in the context where one has k potentially mismeasured explanatory

variables, imagine the set of all possible k reverse regressions, one with each of the k
potentially mismeasured variables treated as the dependent variable, as well as the usual
direct regression. Put these reverse regressions into a common normalized form with
the dependent variable on the left-hand side. One now has k + 1 vectors of regression
estimates for the k mismeasured variables. Klepper and Leamer show that if these k + 1
regressions are all positive 20, then their convex hull bounds the true parameters 21.
Krasker and Pratt (1986) take a different approach. In the context of multiple

regression where only one of the variables is measured with error, they ask how highly
correlated must the error ridden proxy, xj , be to the unobserved correctly measured
variable x∗j to guarantee that by xj · Z will be of the correct sign. No assumptions are
made about possible correlations between the error (mj) and either y∗ or any of the
elements of X ∗. Krasker and Pratt show that as long as

r2xj , x∗j > R
2
x∗j , Z∗ +

(
1 − R2x∗j , y∗, Z∗

)
, (23)

by xj · Z will have the correct sign. For the two variable case (where only one is measured
with error) they also derive results for byZ · xj . Here, correlations often have to be quite
high to guarantee that estimates will be correctly signed.

2.5. Contaminated and corrupted data

The measurement error represented in the typical text book and that has received the
most treatment in the statistics literature represents “chronic errors” that affect every
observation (the error distributions have no mass point at 0). On the other hand, there
are situations in which it may be natural to assume that, while in general a variable is
well measured, occasional observations are afflicted with potentially gross errors 22.

20 Recall that we have normalized X ∗ in such a way that b ¾ 0. More generally, the condition that
Klepper and Leamer (1984) derive implies that the data puts bounds on b only if the coefficients from
all k possible reverse regressions (regressions of xj on y and all the other x’s) have the pattern of signs
as does the original regression of y on X .
21 Klepper and Leamer also show that, if all the variables involved are normal, every vector of parameter
estimates within the convex hull represents a maximum likelihood estimate of the model parameters.
22 To mention some trivial examples, interviewer errors such as recording that a person was paid
10 dollars per year, rather than per hour, or that person has roughly 10 000, rather than 10 dollars in the
bank can lead to occasional gross errors. Imputations for missing data when the researcher is not told
which observations include the imputations would be another.
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While, formally speaking, our treatment of measurement error in the proceeding
sections encompasses this case, intermittent errors are worth some attention on their
own.
If one has some notion as to the probability that intermittent errors occur, it is

often possible to put bounds on the distribution of the variable of interest. Horowitz
and Manski (1995) formalize some quite intuitive ideas. They study the situation in
which the researcher is interested in making inference about the marginal distribution
of a variable, y1. However, the researcher does not observe y1, but rather a random
variable y,

y = y1z + y0(1 − z),

where z represents a random variable that takes on the value of 1 with probability p,
0 with probability 1 − p; and y0 a random variable whose distribution is unknown.
Horowitz and Mansky refer to the case in which z is independent of y1 as
“contaminated sampling”, while the case in which this is not true is referred to as
“corrupted sampling” 23.
To see how it is possible to put bounds on the distribution of y1, imagine we are

interested in estimating the median of y1, m, and suppose we know that p < 0.1. It is
intuitively clear that, under “contaminated sampling” that m must lie within the closed
interval between the 45th and the 55th percentiles of the y distribution (i.e., between the
medians of the bottom and top 90% of the y distribution). Under “corrupted sampling”,
where the missing part of the y1 distribution could be anything, the bounds are looser.
Here, m must lie in the closed interval between the 40th and 60th percentiles of the
y distribution.
Horowitz and Manski focus estimating parameters of the marginal distribution of a

random variable. It is, however, difficult to apply similar ideas within even the simplest
regression context 24. Thus, for example, if the explanatory variables are potentially
“contaminated” in no more than 10% of the sample, one could imagine bounding
parameter estimates by throwing out every possible 10% combination of observations.
However, with even moderate sample sizes, this procedure would exceed the capacity
of current computers.

2.6. Measurement error in categorical variables

While, strictly speaking, the analysis presented in the previous sections applies to
both continuous and categorical variables, errors in categorical variables are more

23 As Horowitz and Manski note, their discussion relates quite closely to discussions within this statistics
literature of estimators that are designed to minimize the impact of “contaminated” or “corrupted” data
on parameter estimates [Huber (1981), Hampel, Ronchetti, Rousseeuw and Stahel (1986)].
24 It is possible to see how similar techniques could be used to put bounds on regression coefficients
in the context in which the dependent variable suffers from “contaminated” or “corrupted sampling”
[Hotz, Mullin and Sanders (1997)]. It is not clear there are practical ways to apply similar ideas in the
context in which the items that are “contaminated” or “corrupted” are explanatory variables.
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naturally thought of as classification errors. Thus, for example, if x∗ is a dichotomous,
0/1 variable, it seems natural to think in terms of the probabilities of false positives
(p10 ≡ prob(x = 1 | x∗ = 0)) and false negatives (p01 ≡ prob(x = 0 | x∗ = 1)). In
this context, measurement error cannot be classical. If x∗ = 1, then x − x∗ ¶ 0, while
if x∗ = 0, x − x∗ ¾ 0, so it must be the case that sx∗, m < 0. Thus, errors in binary
variables must be mean reverting. More generally, if x∗ has a limited range, as is often
the case with the constructs we deal with (e.g., educational attainment) there will be
a tendency for sx∗, m < 0 since when x∗ is at the maximum (minimum) of its range,
reporting errors can only be negative (positive) 25.
Nondifferential measurement error in this context implies that, conditional on the

truth, reporting errors are independent of y. In particular,

Pr(x = zj | x∗ = zk , y) = Pr(x = zj | x∗ = zk ), (24)

where zi ∈ 0, 1. This is a strong and often implausible assumption. Suppose, for
example, that x represents a chronic health condition – x∗ = 1 if a person suffers
from the chronic condition and is 0 otherwise. It seems plausible that the severity of a
person’s condition will have an effect on the probability that a person recognizes that
they suffer from the condition as well as on outcomes. In this case Pr(x = 1 | x∗ = 1, y)
will be a function of y, and the random error assumption is violated.
At any rate, under the nondifferential measurement error assumption Aigner (1973)

shows that

byx = b[1 − Pr(x∗ = 1 | x = 0) − Pr(x∗ = 0 | x = 1)]

= b
[
1 −

p01p
p01p + (1 − p10)(1 − p )

−
p10(1 − p )

p10(1 − p ) + (1 − p01)p

]
,

(25)

where p represents the true fraction of 1’s in the population (p = Pr(x∗ = 1)) and
the second line is derived using Bayes rule 26. Since all the p ’s lie between 0 and 1,
the expression in parenthesis must be less than 1 and byx will be biased towards 0.
In fact, for sufficiently high mis-classification rates (i.e., if p01 + p10 > 1), byx can be
wrong signed. Bollinger (1996) has worked out bounds for byx in this model. Under
the assumption that p01 + p10 < 1 and the normalization that b > 0, Bollinger shows
that

byx ¶ b ¶ max
([
bxymx + byx (1 − mx)

]
,
[
byxmx + bxy (1 − mx)

])
,

where mx ≡ Pr(x = 1). Bollinger also shows how these bounds can be tightened when
prior information exists about p01 and p10.

25 As far as we know Siegal and Hodge (1968) were the first to make this point.
26 If the two kinds of classification error are of the same magnitude (i.e., if p01p = p10(1 − p )), then
the expression in square brackets in Equation (25) simplifies considerably to 1 − p10 − p01.
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Classification error in a dependent variable will also typically bias estimates. Take
the case where y∗ is a dichotomous, 0/1 variable, and we are interested in estimating
Pr( y∗ = 1 | x∗). We have accurate measures of x∗ (x = x∗) but y suffers from
classification error that is independent of x∗, with p10 ≡ Pr( y = 1 | y∗ = 0)
and p01 ≡ Pr( y = 0 | y∗ = 1). Since, in this context, the measurement error in
the dependent variable is negatively correlated with the accurately measured variable,
it should come as no surprise that classification error in a dichotomous dependent
variable will tend to bias downward estimates of the effect of y∗ on x∗. In fact, it is
easy to see that

ð Pr( y = 1 | x)
ðx

= [1 − (p10 + p01)]
ð Pr( y∗ = 1 | x∗)

ðx∗
. (26)

More generally, random misclassification of the dependent variable in a discrete-
response setting will bias downwards estimated response functions [Hausman, Abre-
vaya and Scott-Morton (1998), Abrevaya and Hausman (1997)].
Categorical variables are often thought of as the discrete indicators of continuous

latent variables. Thus, we might imagine that y∗ = 1 if x > 0 and 0 otherwise. We are
interested in estimating Prob( y∗ = 1 | x∗), but do not observe y∗. Instead we observe
y, where y = 1 if x + n > 0 and 0 otherwise. We assume that n represents normally
distributed random “measurement error” in x (i.e., n is assumed to be independent of
both x and x∗). The probability of classification error in this model depends not just
on y∗, but also on x and thus on x∗. To keep things simple, we assume that

x = bx∗ + û, (27)

where û is a normally distributed, mean 0, random variable. We also assume that x∗ is
well measured (x = x∗). Were we to directly observe y∗, we could consistently estimate
b/sû. As it is, however, we can consistently estimate only b/ (

√
sû2 + sn 2). Retrieving

b/sû requires estimated knowledge of s 2n .
Alternatively, imagine that we have a categorical indicator of a latent continuous

right hand side variable. Here we imagine the underlying model in terms of the latent
variables

y∗ = bh + û. (28)

We have a reliable indicator of y∗, y ( y = y∗), but observe only a categorical indicator
of h, x, where x = 1 if h > 0 and 0 otherwise. In this case, E( y | x = 1) =
bE(h |h > 0), while E( y |x = 0) = bE(h |h ¶ 0). Thus, byx consistently estimates
b[E(h |h > 0) − E(h |h ¶ 0)]. Now suppose x only imperfectly indicates whether
h > 0. In particular, we assume that x = 1 if h + m > 0, where m represents random
measurement error. In this case

byx = b
[
E (h |h + m > 0) − E (h |h + m ¶ 0)

]
< b

[
E (h |h > 0) − E (h |h ¶ 0)

]
.
(29)

Thus, once again, the use of a noisy explanatory variable tends to lead to an
underestimation of the magnitude of the parameter of interest.
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2.7. Nonlinear models

While there is growing literature on the impact of measurement error on parameter
estimates within the context of non-linear models, discussions universally occur within
the context of specific models. For this reason, it is not possible to summarize results
in quite the same way as we were when talking about the linear model. Broadly
speaking, the results that do exist suggest that (i) results based on linear models are
often approximately true within the context of the non-linear models that have been
explicitly studied, and (ii) if anything, non-linearities tend exacerbate biases introduced
by measurement error.
We have seen that with multiple covariates measured with error, even in the context

of the linear model, the effects of measurement error are not easily summarized. On
the other hand, in the context of classical measurement error in one variable the bias
is always in the form of attenuation. With multiple variables measured with error or
if measurement error is not classical, attenuation may not hold.
Weinberg, Umbach and Greenland (1994) study the effect of non-differential

measurement error in an explanatory variable within the context of a simple
bivariate model, f ( y∗ |x∗), where the “dose-response” is monotonic (i.e., E( y∗ |x∗)
monotonicaly increases (decreases) with x∗). Recall that non-differential measurement
error in x∗ implies that f ( y∗ | x∗, x) = f ( y∗ | x∗). Weinberg, Umbach and Greenland
show that as long as E(x | x∗) increases monotonicaly with x∗, sy∗, x∗ and sy∗, x must
have the same sign. To paraphrase Weinberg, Umbach and Greenland, as long as the
measurement of x∗ is good enough that the population mean of measured “exposure”
goes up when true “exposure” does, trend reversal can not occur.
While Weinberg, Umabach and Greenland’s results suggest that in simple models

non-differential measurement error of the kind they describe can not cause trend
reversal, monotonicity is not necessarily maintained. Hwang and Stefanski (1994)
show that even within the context of classical measurement error, it is possible to find
situations where the regression of y∗ on x∗, E( y∗ | x∗), is monotonically increasing
(decreasing) in x∗, but that the regression of y∗ on x, E( y∗ | x) is not.
There is also evidence within the context of specific models that non-linearities tend

to exacerbate the magnitude of the bias introduced by measurement error. Griliches
and Ringstad (1970) analyzed the situation where y∗ is a quadratic function of x∗

y∗ = b0 + b1x∗ + b2x∗2 + û. (30)

y∗ is assumed to be well measured ( y = y∗), but x∗ is not (x = x∗ + m). Under the
assumption that both x∗ and m are normally distributed and that m is uncorrelated with
either x∗ or û, Griliches and Ringstad showed that

byx · x2 = b1(1 − l), byx2 · x = b2(1 − l)
2, (31)

where, as before, l = s 2m /s
2
x . Thus, the coefficient on the quadratic term is more

severely biased than is the coefficient on the linear term.
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Yatchew and Griliches (1985) derive results for the probit model with one
mismeasured explanatory variable. Once again, assuming all variables are distributed
normally and that measurement error is classical, they show that simply using x in
place of x∗ produces estimates that converge to

b
s 2x∗ /

(
s 2x∗ + s

2
m

)√
s 2û + b2

s 2m s
2
x∗

s 2x∗+s
2
m

. (32)

As is evident from Equation (32), the usual bias towards zero that is present in
the linear model is compounded by the term appearing after the plus sign in the
denominator.
In the linear model, biases due to measurement error do not depend on whether that

error is normal or homoskedastic. However, in non-linear models, this is potentially
important, and can induce biases that run counter to our intuitions in the linear case.
Consider, for example, a Tobit model

y∗ = x∗b + û, y =

{
y∗ if y∗ > 0,
0 otherwise.

Our explanatory variable x∗ is measured with error, and suppose the error m is
heteroskedastic. Then we can re-write the model for the latent variable y∗ as

y∗ = xb + (−mb + û),

where the “error term” in parentheses is heteroskedastic. Given that heteroskedasticity
by itself leads to inconsistent parameter estimates in Tobit models, and can in plausible
cases lead to over-estimating b [Maddala (1983, p. 179)], it seems quite possible that
heteroskedastic measurement error could lead to upward-biased parameter estimates.

3. Correcting for measurement error

Under the assumption that measurement error is classical, statisticians and econometri-
cians have developed a number of methods to deal with the biases introduced into our
estimators when measurement error is present. In particular, under such assumptions,
knowing the marginal distribution of the uj’s is sufficient to allow the researcher to
undo the biases introduced by measurement error. Alternatively, if one has exogenous
determinants of the error ridden explanatory variables or, in some cases, multiple
indicators of the same outcome, one can use these as instruments 27, 28.

27 The focus of this section is on point estimation. As such, we ignore sampling variability of the
various estimators we discuss. In many cases, the estimators are or can be interpreted as instrumental
variable estimators. More generally a discussion of the distribution of these estimators can be found in
Fuller (1987), Carroll, Ruppert and Stefanski (1995) and Newey and McFadden (1994).
28 The methods mentioned all involve introducing external information. As long as the measurement
error in X ∗ is classical, and X ∗, itself, is not normally distributed, b is formally identified [Reiersol
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We wish to emphasize three points about such general strategies. The first is that
these strategies are not as distinct as they might first seem. The second is that these
strategies for obtaining consistent estimates of the parameters of interest work if
measurement is classical, but do not, in general do so otherwise. Third, even when
the correction does not produce consistent estimates, it may produce a bound; and
if OLS and IV are biased in different directions or IV is less biased than OLS, this
additional information may be very valuable.

3.1. Instrumental variables in the bivariate linear model

To illustrate these points we will focus on the bivariate linear regression model.
To further simplify things, we will also assume that all variables are measured as
deviations around their respective means. Thus our model becomes

y∗ = bx∗ + û. (33)

We assume that we measure y∗ without error ( y = y∗). On the other hand, we have
two error ridden indicators of x∗, x1 = x∗ + m1 and x2 = x∗ + m2, with m1 and m2
uncorrelated with x∗.
Using either x1 or x2 as proxies for x∗ will lead to estimates of b that are biased

towards 0. One alternative would be to use the multiple measures of x to first gauge
the magnitude of the errors and then to correct the bias introduced by these errors.
In particular, under the assumptions that m1 and m2 are uncorrelated with all the other
variables in the system (including each other), sx1, x2 = s

2
x∗ . Define

l1 ≡ s 2x∗
s 2x∗ + s 2m1

=
sx1, x2
s 2x1

, (34)

where l1 represents the signal to total variance ratio for x1. Similarly,

l2 ≡ s 2x∗
s 2x∗ + s 2m2

=
sx1, x2
s 2x2

. (35)

byx1 = l1b and byx2 = l2b . Under the assumptions of the model, data on y, x1 and x2
allow one to consistently estimate byx1 , byx2 , l1 and l2 and thence b . In fact, two such

(1950), Kapteyn and Wansbeek (1983)]. Under the assumption that X ∗ is not normal a number of authors
have suggested instrumental variable estimators that use third or higher moments of the various variables
as instruments for X [Geary (1942), Pal (1980), Cragg (1997), Dagenais and Dagenais (1997), Lewbel
(1997)]. However, these methods depend crucially on the assumption that E( y∗ | X ∗) is a strict linear
function of X ∗, and, as such, estimates will be sensitive to specification error. At any rate, such methods
have seldom been used in practice. Alternatively, Wald (1940) suggested an estimator of b that involved
grouping the data. However, unless one has some external information that can be used to form groups
(i.e., an instrument), the resulting estimator will typically be no less biased than OLS [Pakes (1982)].
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estimates are available, giving us some capacity to test the underlying assumptions of
the model. In particular, our assumption that m1 and m2 are uncorrelated with x∗ and
û implies sx1, y = sx2, y, which is testable.
Alternatively, one might choose to use x2 to instrument x1 29

b1iv =
sy, x2
sx1, x2

. (36)

Notice that b1iv ≡ byx2 /l2. Thus, using x2 to instrument x1 is equivalent to regressing y
on x2 and then using an estimate of l2 to disattenuate the resulting estimate of b 30.
Under what circumstances will b1iv represent a consistent estimate of b? To see, we

first write out b1iv in terms of the x
∗

b1iv =
b
[
s 2x∗ + sx∗, m2

]
+ sm2, û[

s 2x∗ + sx∗, m2
]
+ sx∗, m1 + sm1, m2

. (37)

Thus, b1iv = b if sm2, û = sx∗, m1 = sm1, m2 = 0. In other words b
1
iv = b if x2 is exogenous,

the measurement in x1, m1, the measurement error in x1, is uncorrelated with x∗, and
the measurement errors in x1 and in x2 are uncorrelated with each other. These are
clearly strong assumptions 31.
The assumption that sm2, û = 0 means that reporting errors in x2 are unrelated to

factors other than the x∗ affecting y. There are circumstances where this assumption
may be a sensible one, but others in which it is clearly not. For example, if x1 and x2
represent two self-reported measures of health, and y represents a measure of labor
supply, we might expect that reporting (the m’s) would be correlated with the equation
error (û).
The assumption that the two errors in reporting x∗ are uncorrelated (i.e., that

sm1, m2 = 0) will also often be open to question. For example, if x1 and x2 represent
two reports on x∗ taken from the same individual but at different times, it seems
likely that the two errors will be positively correlated. Even if x1 and x2 represent
two reports on x∗ taken from different individuals it will often be possible that the
errors will be positively correlated. Thus, for example, two siblings’ reports on their

29 Of course, instruments don’t necessarily have to be alternative indicators of x∗. Any variable w, such
that sx∗ ,w Ñ 0, sw, û = 0, and sw,m = 0 represents a valid instrument for x.
30 We have been talking as if y, x1 and x2 all come from the same sample, but what is often the case
is that a researcher has only one measure of x∗ in the primary data set of interest, but has an estimate
of l from some other data set which included multiple measures of x. Using an estimate of l based on
one sample to correct regression estimates from another is fine as long as one can justifiably interpret
the samples as representing similar samples from similar populations.
31 Fuller (1987) states these conditions somewhat differently. Using x2 to instrument x1 will consistently
estimate b if (1) sx2, û = 0 and (2) sx2,m1 = 0. sx∗ ,m1 = sm1,m2 = 0 ⇒ sx2,m1 = 0. Since sx∗ ,m1 = 0 and
sm1,m2 = 0 represent conceptually distinct conditions, we think it makes sense to distinguish the two
when discussing conditions for the consistency of the IV estimator.
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parent’s education will usually both be based on what that parent told the two. If the
parent exaggerates her educational attainment (e.g., claims to have finished college,
even though she did not), it seems likely that this exaggeration will be common to
both siblings’ reports as well as to the parent’s. Moreover, if part of the problem is not
simply that individuals inaccurately report x, but that our measures do not accurately
reflect our constructs (we are interested in human capital, but ask about educational
attainment in years), once again it seems likely that the errors from the separate reports
will be positively correlated. In all these situations we expect sm1, m2 > 0.
Thus, it seems likely that in many situations reporting errors will be positively

correlated with each other. The good news here is that, as long as it is true that
sm2, û = sx∗, m1 = 0, then b ¾ b1iv ¾ byx1 . Thus, correcting for measurement error will
tighten our bounds on the true parameter. In addition, with more than two measures
of x∗ it is possible to begin to relax some, but not all of the assumptions regarding
the independence of reporting errors.
Finally, what about the assumption that sx∗, m1 = 0? This assumption is really at the

heart of classical measurement error model. There are situations where this assumption
seems quite reasonable. Thus, for example, if x represents a sample mean and x∗

a population mean, then there may be good reason to believe that m = x − x∗ is
independent of x∗. Alternatively, if x∗ represents IQ and x the performance on a specific
test, then again it may be natural to assume that m (testing error) is uncorrelated with
the truth (here one might want to claim that this is true by construction). However,
in the context of survey measurements, there does not seem to be any compelling
reason to believe that measurement error is uncorrelated with the truth. Moreover,
there are a number of circumstances where it seems likely that reporting errors are
negatively correlated with the truth sx∗, m < 0. For example, if, as may often be the
case, x represents a component of x∗, it may be as natural to assume that m and x are
uncorrelated as it does that m and x∗ are uncorrelated. Of course, sx, m = 0 implies that
sx∗, m < 0.
As we have already mentioned, if sx∗, m1 < 0, then it is no longer necessarily the

case that byx1 < b . If it is still true that sm2, û = sm1, m2 = 0, then b
1
iv ¾ b . More generally,

if all we know is that sx∗, m1 Ñ 0, then byx1 could either over or under estimate b and
exactly the same could be said for b1iv. Short of some clear notions regarding the nature
of measurement error, it is unclear whether standard methods of correcting for biases
introduced into our estimates by such errors take us any closer to the truth.
An interesting example of the situation where sx∗, m1 < 0 occurs in the situation

discussed above where x∗ is dichotomous, and errors are therefore errors of
classification. Now suppose one has two indicators of x∗ available, x1 and x2 32. We

32 There are situations in which the researcher knows or has estimates of p01 and p10 from external
information. Thus, for example, researchers studying the impact of training programs on the employment
and earnings of those trained sometimes do not have an explicit control group, but use nationally
representative samples instead. In this context, the control group sample will be “contaminated” with
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assume that, conditional on x∗, the two measures are independent of each other and
of y. In particular this implies

Pr
(
x1 = zj | x∗ = zk , y, x2

)
= Pr

(
x1 = zj | x∗ = zk

)
, (38)

and

Pr
(
x2 = zj | x∗ = zk , y, x1

)
= Pr

(
x2 = zj | x∗ = zk

)
. (39)

In other words, we are assuming the measurement error in x∗ is nondifferential. Here,
one might be tempted to use x2 to instrument x1; however, as our discussion above
will have made clear, this procedure will tend to produce estimates of b that are too
large in magnitude. In fact, it is easy to show that

b1iv = b
1

1 − (p01 + p10)
, (40)

which will be greater than b as long as there is any measurement error in x1.
However, under the specified assumptions, it is possible to derive consistent

estimates of b using GMM methods [Kane, Rouse and Staiger (1999) and Black,
Berger and Scott (2000) also mention this possibility]. To see the plausibility that
this is the case, it is sufficient to count parameters and moments. The “structural”
model includes three parameters: the constant term, the slope coefficient and the error
variance. In addition, there are four distinct error rates as well as the probability
that x∗ = 1, a total of eight parameters in all. With data on y, x1 and x2 we have
8 independent moments. The cross tabulation of x1 and x2 give us three, the mean of
y conditional on x1 and x2 gives us four more, and the variance of y gives us one –
eight in all 33.
More generally, if one is working with a linear model that includes categorical

variables and if one has multiple, error-ridden indicators of such variables where the

individuals who received training. However, in these situations, the researcher will typically have reliable
information on the fraction of the population that receives training, and can use this as an estimate of
p01. At any rate, in this kind of situation it is reasonably straightforward to derive consistent estimators of
the parameters of interest. For a discussion of the case where misclassification occurs in an explanatory
variable, see Aigner (1973), Freeman (1984), Heckman and Robb (1985) and Heckman, LaLonde and
Smith (1999). For the case where the misclassification occurs in the dependent variable, see Poterba and
Summers (1986, 1995).
33 Kane, Staiger and Rouse’s work echoes earlier work of Goodman (1974a,b), Haberman (1977),
Andersen (1982) and others on what Goodman refers to as latent structural models. Goodman showed
that in a context in which one observed multiple independent discrete indicators of a (latent) discrete
random variable it was often possible to identify the distribution of both the underlying latent variable
and the transition matrices that stochastically map the latent variable into observable indicators. The
correspondence between latent structural models and the model proposed by Kane, Rouse and Staiger
is remarkably close. However, the models that Goodman and his colleagues worked with involve solely
discrete variables and have been mostly ignored by economists.
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errors are independent of either the outcome or the other explanatory variables in the
system, it is possible to get consistent estimates of the parameter of the model using
GMM techniques [Kane, Rouse and Staiger (1999)] 34.
While the assumption that sm2, û = sx∗, m1 = sm1, m2 = 0 is sufficient to identify b ,

it is not sufficient to fully identify the model. Counting sample covariances makes
this clear. Var( y, x1, x2) contains a total of 6 separate terms. However, even with the
stated restrictions, our model includes seven distinct parameters ( b , s 2x∗ , s

2
û , s

2
m1 , s

2
m2 ,

sx∗, m1 and smi , û). In particular, the conditions necessary for the consistent estimation
of b are not sufficient to allow us to separately identify s 2x∗ , s

2
û , s

2
m1 and smi , û. The

IV estimator allows us to solve both the pure errors in variable and the endogeneity
problems associated with the use of x1 as a proxy for x∗, but does not allow us to
separate out these two effects. If, in addition to the assumptions we have already made,
we assume that m2 is uncorrelated with x∗ (sx∗, m2 = 0), or that m1 is uncorrelated with
û (sm1, û = 0) then the model is fully identified.
As Goldberger (1972) and Griliches (1974, 1986) have emphasized, it is often also

possible to consistently estimate errors in variables models in a multi equation setting.
We illustrate with an extremely simple model. Suppose

y1 = b1x∗ + û1,
y2 = b2x∗ + û2,
x = x∗ + m.

(41)

The error terms (the û’s and m) are assumed to be uncorrelated with each other and
with x∗. Under these assumptions, b1 can be consistently estimated by using y2 as
an instrument for x in the regression of y1 on x ( biv = Cov( y1, y2)/Cov(x, y2)). b2
can be estimated in a similar fashion. Chamberlain and Griliches (1975) used more
sophisticated multi-equation models to control for “ability” when estimating the effect
of education on earnings. However, as Griliches has emphasized, estimates based
on such models are only as good as the models themselves. In this kind of setting,
minor specification errors can have significant effects on parameter estimates. Griliches
(1986) and Aigner et al. (1984) include excellent discussions of these kind of models.

3.2. Multivariate linear model

The methods we have been discussing generalize to the multivariate case. Suppose, for
example, one is willing to assume that errors in both the outcome and the explanatory

34 It is worth noting that the discussion has been of models in which x∗ is, itself, categorical. Such
models need to be distinguished from models in which x∗ is conceptualized as continuous (e.g., health
status), but we have only categorical indicators of x∗. If x represents an error ridden categorical indicator
of x∗ (i.e., if x = k iff ck − 1 < x

∗ + m ¶ ck ) there may be no particular reason to believe that m is
correlated with x∗. In fact, in this case, the models are linear in latent variables. For this reason, the
intuitions and insights obtained from work on the linear errors in variables model still holds. The case
where x represents a categorical indicator of an underlying continuous variable has been extensively
analyzed [e.g., Heckman (1978), Lee (1982a,b), Muthen (1983)].



3734 J. Bound et al.

variables (n and m) are uncorrelated with both the actual (accurately measured)
outcome and the explanatory variables and that one has prior knowledge of their joint
distribution, then

b̂ =
(
SXX − Ŝm, m

)−1 (
SXy − Ŝm, n

)
, (42)

will consistently estimate b , where SXX represents the sample variance of X , SXy the
sample covariance of X and y, Ŝm, m a consistent estimate of the variance of the m’s
and Ŝm, n a consistent estimate of the covariance between m and n .
Alternatively, if one has as many instruments (W ’s) as one has as one has explanatory

variables (X ’s) 35, n is uncorrelated with y∗, and sW , m = sW , n = sW , û = 0 then the
IV estimator,

bIV =
[
W ′X

]−1
W ′y, (43)

consistently estimates b . Of course, if the assumptions are violated andW is correlated
with m, n or û, biv will be inconsistent. One special case is worth noting. Take the
situation where only one element of X is measured with error (denote this variable as
x) while the rest are accurately measured (denote this vector as Z∗). We are interested
in estimating the equation

y∗ = bx∗ + Z∗′g + û. (44)

We have a proxy for x∗, x (x = x∗ + m), but accurately observe Z∗ (Z = Z∗). We also
have available factors that help predict x∗, w. w is uncorrelated with m, n , or û. To
estimate ( b , g) we use W = w : Z as an instrument for x : Z . Under these assumptions,
the IV estimator will consistently estimate b , but will consistently estimate g only if
Z is also uncorrelated with m. Thus, if reporting behavior depends not just on x∗, but
also on Z , then the instrumental variables estimator will not consistently estimate g .
Precisely this kind of situation arises within the context of the example discussed at

some length in Section 2.3 above where we were interested in estimating the effect
of health and financial factors on retirement behavior. Here x∗ represents overall
health, x a self-reported indicator of overall health, and Z∗ represents other factors
including financial ones that effect retirement behavior. As discussed above, it is
natural in this context to imagine that measurement error in x∗ will be differential –
poor health will be used to rationalize behavior. Compared with the global measures,
more detailed health indicators available in some surveys (e.g., the Health and
Retirement Survey) such as reports of specific chronic conditions or functional
limitations may be less susceptible to measurement and endogeneity problems, since
the questions are narrower and more concrete. However, as long as such measures

35 Accurately measured x’s can be included as elements of W.
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represent only a component of health using such measures directly in labor supply
equations is, for the reasons discussed above [see also Bound, Schoenbaum and
Waidmann (1995)], likely to lead researchers to underestimate the effect of health
and overestimate the effect of financial incentives on retirement behavior. As an
alternative to either using the global or detailed health measures in estimating
equations, some researchers [Stern (1989), Bound et al. (1999)] have used detailed
measures as instruments. However, in this context it would seem natural to worry
about the possibility that the rewards for continued work would influence reporting
behavior (e.g., those with low rewards for continued work might be particularly
likely to report themselves in poor health to justify labor force exit) – x depends
not just on x∗, but also on Z∗. In this context, using some exogenous determinants
of health along with Z to instrument x : Z will consistently estimate b , but not
g 36.

3.3. Nonlinear models

Correcting for the bias created by errors in variables is more difficult in non-linear
than in linear models. Typically, instrumental variable methods work well only when
errors are relatively small in magnitude [Amemiya (1985, 1990)]. Thus, for example,
suppose one is interested in estimating the non-linear model,

y = g(x∗; q) + û, (45)

where we assume that û is independent of x∗, and that q is a parameter vector. We
observe a proxy for x∗, x, where m = x − x∗ is independent of x∗. We also have available
instruments, w, that are correlated with x∗, but are independent of both m and û. We

36 Following the example of Section 2.3 in detail, with two indicators of h we might be tempted to use
one to instrument the other, but this will not work. As long as b2 Ñ 0 using d∗ to instrument h∗ will purge
h∗ of its dependence on û and so will correctly estimate l1 but will tend to underestimate b1 by b2l1. The
intuition that we should be able to use d∗ to instrument h∗ arises from the similarity of this model to the
classical errors-in-variables model, in which one error-prone measure can be used to instrument another.
This model differs from the classical errors-in-variables model in that the endogeneity of h∗ causes
the error in this indicator to be correlated with the other regressor in the model, w. The instrumental
variable procedure uses the projection of h∗ onto w and d∗ as a proxy for h. What we need, instead,
is the projection of h on w and d∗. With h∗ as the dependent variable, the estimated coefficient on w
will reflect not only the errors in d∗ but also w’s direct effect on h∗, b2. This, in turn, will induce the
downward bias on b1 of b2l1. We could sort all of this out if we had a consistent estimate of b2, but this
requires either knowledge of the reliability of d∗ as a proxy for h or another indicator of h. Thus, using
mortality information to instrument self-reported disability status will correctly estimate the impact of
health but tend to underestimate the impact of economic variables on such decisions. In contrast, using
mortality information alone to construct a health proxy will tend to underestimate the effects of health
and overestimate the effects of economic variables on the labor force participation decision, while using
self-reported health status can either over- or underestimate the impact of either health or economic
variables on such decisions [Bound (1991)].
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might imagine trying to estimate q by non-linear instrumental variables Amemiya
(1974)]. However, if g is non-linear not just in parameters, but in variables, this
procedure will not consistently estimate q [Amemiya (1985, 1990), Hsiao (1989)].
For linear models there is a close tie between simultaneous equations and errors in

variables models. However, for non-linear models, the analogy breaks down. To see
why, imagine that x∗ is a linear function of w, x∗ = pw + n , with n orthogonal to w
by construction. For the linear model we have:

y = x∗b + û
= pwb + bn + û.

(46)

bn is orthogonal to w, so using pw in place of x∗ will consistently estimate b . For the
nonlinear model we have

y = g(x∗; q) + û
= g(pw; q) + [g(x∗; q) − g(pw; q)] + û.

(47)

[g(x∗; q) − g(pw; q)] will not, in general, be a linear function of n and thus there is
no guarantee that it will be orthogonal to g(pw; q) 37.
In general, consistent estimation of non-linear errors-in-variables models requires

the researcher to know or be able to consistently estimate the conditional distribution
of x∗ given x, f (x∗ | x; d). With f known, the mean of y conditional on x becomes

E( y | x) =
∫
g(x∗; q) f (x∗ | x; d) dx∗

= G(x; g),
(48)

where g = (q , d). Substituting G(x; g) for g(x∗; q), we obtain a model in terms of
observables

y = G(x; g) + u , (49)

where

u = û + g(x∗; q) −G(x; g). (50)

By construction E(u | x) = 0. In principle this model can be estimated by maximum
likelihood38. Hsiao (1989) proposed computationally simpler minimum distance and
two step estimators of the model. Alternatively, one can imagine using multiple

37 Amemiya (1985) and Hsiao (1989) give more formal versions of this argument.
38 Simulation techniques can greatly facilitate such estimation [Lavy, Palumbo and Stern (1998),
Stinebrickner (1999)].
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imputation techniques [Rubin (1987), Little and Rubin (1987), Brownstone (1998)]
to first impute estimates of x∗ and then use these in a second stage to estimate q .
The availability of an instrument, w, is not sufficient to allow the researcher to

estimate the distribution of x∗ conditional on x (or w, for that matter). We have
x = x∗ + m = pw + n + m. The regression of x on w allows us to consistently estimate
p , but not the distribution of n . Thus, this first stage regression does not allow us to
identify the distribution of x∗ conditional on w. Without knowledge of the distribution
of x∗ conditional on observables, it is not possible to consistently estimates q . However,
the estimator that simply uses p̂w as a proxy for x∗ often works well [Amemiya (1985),
Carroll and Stefanski (1990)] as an approximation 39.

3.4. The contribution of validation data

So far we have been discussing approaches to measurement error that use multiple,
possibly error ridden, indicators of the key variables we are interested in, to gauge
the reliability of these measures. As we have seen, estimates of the reliability of key
measures can be used to gauge the effect of measurement error on our estimates under
the assumption that measurement error is, in one way or another, independent of the
constructs that enter our models. An alternative is to compare the survey estimate
with other, more accurate empirical data. The promise of validation studies is that
they give some direct evidence on the nature of the measurement error in survey data,
by allowing comparison of survey responses to “true” values if the same variables.
Often, the “true” values are obtained from employer or administrative records. Thus,
X ∗ will be referred to as the “record” data.
Consider first the simplest case, where the required validation data is quite modest.

Suppose we wish to consistently estimate the effect of a single explanatory variable,
x∗, on y∗, but our survey measure for x∗ is measured with error. If the error is classical
we know byx = b[1 − s 2m / (s

2
x∗ + s

2
m )]. Data from a validations study, which includes

both the survey response, x, and an accurate measure of x∗, xr (for example, based on
checking reliable administrative records) can give us estimates of s 2m or s

2
m /s

2
x∗ which

can be used to correct the estimate based on the original survey data. Even better,
we could not assume the measurement error is classical; as long as it is uncorrelated
with y∗, we know that byx = b(1 − bmx). The validation data allows us to estimate bmx
directly.
More ambitiously, validation data allows us to identify parameter estimates in the

presence of arbitrary patterns of measurement error. Suppose that we have error ridden
data for a random (primary) sample of the population. For a distinct random sample
of the population we have validation data. We are imagining that this validation data

39 Amemiya (1985) studies the asymptotic behavior of the nonlinear instrumental variables estimator as
s 2m converges to 0, and finds that with standard regularity conditions, the estimator approaches consistency
as s 2m approaches 0.
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contains both the error ridden and error free data. We can then use the validation data
to compute the distribution of y∗, X ∗ given y, X ( f ( y∗,X ∗ | y,X )). This conditional
distribution can then be used to impute the distribution of y∗ and X ∗ in the primary data
set. What is clearly crucial for such a procedure to be valid is that the distribution of
y∗, X ∗ given y, X be the same in the primary and validation data set [Carroll, Ruppert
and Stefanski (1995), refer to this as transportability].
To be somewhat more concrete within the context of the linear model, validation

data allow us to calculate empirical analogues to bmX , bnX and bûX , bmX , bnX and bûX .
Assume to begin with that one’s measure of y in the primary data set is error free
and that X is exogenous ( bûX = 0). Also let bX∗, X represent the matrix of regression
coefficients from the regression of X ∗ on X in the validation sample ( bX∗, X ≡ I − bmX ).
A consistent estimate of b can be obtained by first using bX∗, X calculated in the
validation sample to transform X in the primary sample, X̂ = bX∗, X X , and then
regressing y on X̂ . Note that under these circumstances consistent estimation of b
requires validation data on X , but does not require validation data on y. In fact, as the
expressions make clear, the validation data on X can come from a separate sample that
contains no information on y, as long as both the primary sample and the validation
sample are random samples from the same population.
More generally, if bnX Ñ 0 and bûX Ñ 0, then one can obtain consistent estimates

of b by transforming y as well as X . Let ŷ = y − [ bnX + bûX ]X . Then

b̂ =
[
X̂ ′X̂

]−1
X̂ ′ŷ, (51)

consistently estimates b 40.
Lee and Sepanski (1995) generalize Equation (51) to the nonlinear context. They

consider the nonlinear regression

y∗ = g(x∗, q) + û. (52)

In the primary data set, the researcher has a random sample of error-ridden versions
of y∗ and x∗, which, following our general notation, we will refer to as y and x. The
researcher also has available a validation data set that contains a random sample of
both accurately measured and error ridden versions of y∗ and x∗, yv, xv, x∗v , y

∗
v , where

the v subscript is used to indicate the data come from the validation data.
Consider first the case where either y∗ is accurately measured ( y = y∗) or where

measurement error in y is classical and so can be absorbed in the error term and where
the measurement error in x∗ is nondifferential. Lee and Sepanski (1995) propose an
estimator of q that minimizes

q̂ ≡ min
q

[
y − x(x′v xv)

−1x′vg(x
∗
v ; q)

]2
. (53)

They show that under standard regularity assumptions, q̂ consistently estimates q
and derive its asymptotic distribution. In the context where y∗ suffers from non-

40 These ideas are developed formally and generalized to the non-linear setting in Lee and Sepanski
(1995).
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classical measurement error or where the measurement error in x∗ is differential,
Equation (53) can be modified to consistently estimate q . Define w = [ y : x] and
ŷ = y − w′(w′

nwn )
−1w′

n ( yn − y
∗
n ). Then

q̂ ′ ≡ min
q

[
ŷ − x(x′vxv)

−1 x′vg(x
∗
v ; q)

]2
, (53′)

will consistently estimate q .
Measurement error in key variables can be thought of as a special case of missing

data – in a literal sense the researcher is missing valid data on the variables measured
with error. Much of the voluminous literature on handling missing data has focused
on the case where data are missing for a subset of the data. Within the context of
measurement error this is akin to having validation data available. Thus, the techniques
that have been developed to deal with missing data [Little (1992)] could be applied to
estimating models with error ridden data as well 41.
In the general context, the impact of measurement error on parameter estimates is

model dependent. As we have seen, within the context of the linear model, the impact
will depend on the association between the measurement error in the key variables and
all the other variables included in a model. More generally, one needs to be able to
estimate f ( y∗,X ∗ | y,X ), where y∗ and X ∗ include all the variables of interest. Thus,
the value of validation studies is enhanced if they include not just data on the key
variables being validated but also on other variables that researchers would typically
use in conjunction with these variables.
Validation studies report information regarding the magnitude of the measurement

error involved in survey measures – typically the mean and some measure of the
dispersion in the measure. Correlations between the survey and validation study
measures of the same variable will also often be reported and can be thought of
as measures of the validity of the survey measures (the validity of a measure is the
correlation between the measure and the actual underlying construct that the measure
is intended to be a measure of). While information on the marginal distributions of
the error is sufficient to allow researchers to use such studies to estimate the impact
of measurement error on parameter estimates if measurement error is classical, our
discussion should make clear that one of the real values of a validation study is to allow
us to relax such assumptions. Studies sometimes report not only summary statistics
but also sample regressions. However, even these regressions will provide information
regarding the impact of measurement error on estimates only for models similar to
the ones reported on in the validation study report. Perhaps such tabulations should be
seen as illustrative. While, in general, it will not make sense or be possible to report
f ( y∗,X ∗ | y,X ), it will often be possible to make the validation study data available to

41 See Carroll, Ruppert and Stefanski (1995) for a discussion of the link between missing data and
measurement error models. See Brownstone and Valletta (1996) for the implementation of these ideas
within the context of an economic example.
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researchers, thus allowing individual researchers to study the impact of measurement
error on whatever kind of model they are interested in estimating. Indeed some of the
most interesting results in the literature using validation studies have been done by
individuals who were not originally involved in collecting the validation data but who
use such data to examine the impact of measurement error on parameter estimates
within the context of a specific research question.
While validation data has considerable promise, it is important to bear in mind the

limitations of such data as well. We have in mind two distinct issues. First validation
data presumably has higher validity than survey measures – indeed the very value
of such data depends on this presumption – however this does not mean that it is
completely without error. Even administrative data or payroll records will include
errors. Equally important, validation data may not tap exactly the same construct
as does the survey measure and some of the discrepancies between the survey and
validation data measures may involve discrepancies between the constructs the two
capture. Neither the survey measure nor the validation study measure may adequately
capture the construct we are interested in.
Second, validation study data collected in one context, may not generalize to

another 42. In some contexts the issues are obvious. Thus, for example, data collected
from a single firm may not be that informative about the nature of measurement error
in nationally representative data both because of idiosyncracies regarding the firm and
because the data misses any between-firm variation. In other cases, issues are more
subtle. Existing methodological work (see Section 5) suggests that for many items the
extent of measurement error will be context dependent. For example, the extent of
measurement error in reported earnings and employment status appears to depend on
the business cycle (see Section 6.1).

4. Approaches to the assessment of measurement error

In order to use the procedures outlined in Section 3, one needs either data that include
multiple indicators of variables measured with error or validation data that include both
accurate and error ridden versions of the analysis variables. As the above discussion
should make clear, the use of multiple measures to correct for biases introduced by
measurement error requires the use of strong assumptions about the nature of the

42 Carroll, Ruppert and Stefanski (1995) emphasize the value of having validation data collected on
a random sub-samples of the primary data (“We cannot express too forcefully that if it is possible to
construct an internal validation data set, one should strive to do so. External validation can be used . . .
but one is always making an assumption when transporting such models to the primary data.”). Validation
data collected as a subsample of the primary data is practically nonexistent in the data typically used by
economists, but such data has sometimes been collected in other contexts (see the examples discussed
by Carroll, Ruppert and Stefanski).
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measurement error involved. What is nice about validation data is that it allows the
researcher to relax such assumptions.
Multiple indicator or validation data is sometimes collected as part of the primary

data collection effort. However, more commonly, such data comes from external
independent studies. It should be clear that internal multiple indicator or validation
data is to be preferred over external data. With the use of external data one is always
making an assumption about the transportability of models from the external to the
primary data.
Most of the research involving validation data incorporates one of two designs:

(1) obtaining external data for the individuals included in the survey, or (2) comparing
external population-based parameters or estimates with those derived from the survey.
We examine empirical studies that encompass four separate approaches to the
assessment of the quality of household reported economic phenomena:
(i) Validation studies which involve micro-level comparisons of household-reported

data with external measures of the phenomena, such as employer’s records or
administrative records;

(ii) Micro-level comparisons of response variance which involve the comparison of
individual survey respondents’ reports at time t with reports obtained at time t + x,
under the same essential survey conditions;

(iii) Micro-level comparisons of response differences involving the comparison of
the individual survey respondents’ reports at time t with reports obtained at
time t± x, involving either administrative records (e.g., comparison to tax returns)
or the collection of survey data under different (and supposedly preferred) survey
conditions; and

(iv) Macro-level comparisons of estimates based on survey reports with aggregate
estimates generated under different (and supposedly preferred) survey conditions
or from aggregate administrative records.

Each of these approaches to the assessment of data quality suffers from potential
limitations; these limitations are outlined in the discussion that follows.
Validation studies which permit micro-level comparisons can be classified as one

of three types of studies: (1) a reverse record check, in which elements are sampled
from the administrative (or validation) records and then interviewed; (2) prospective
record checks in which elements are interviewed and then administrative records are
checked to confirm the reported behaviors; or (3) complete record check studies, in
which all elements in the population have a probability of selection into the sample
and administrative records or other validation information are obtained for all sampled
elements, regardless of whether the behavior of interest has been reported or not. If
the measure of interest is a discrete event (e.g., hospitalization, industrial accident
related to a particular job), reverse record check studies are quite adequate in measuring
underreporting, but are often insensitive to overreports, since the administrative records
may not include the complete universe of events. Prospective record checks attempt
to verify affirmative survey responses; thus these designs are better for assessing
overreporting of discrete events but less adequate than reverse record check studies for
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assessing underreporting of events since it may be difficult to obtain validation data
from all potential sources. A complete or full record check, provided all of the relevant
records can be located, provides the best means for assessing both underreporting as
well as overreporting. However, such studies are rare, requiring a closed universe from
which one can obtain the validation information and be confident that the records
include an accounting for the entire universe of behaviors.
Regardless of the design of the validation study, most empirical investigations

incorporating validation data attribute differences between the respondent report and
the validation data to the respondent and thus may overstate the level of response
error. There are two separate issues here. First, various factors may contribute to
measurement error, including the interviewer, the wording of a particular question, the
context of the questionnaire, as well as the essential survey conditions such as the mode
of data collection; however, differences between survey reports and administrative
records are often discussed in terms of response error. Recognizing the alternative
sources of errors is a first step in modeling them properly. Second, as noted above,
differences between respondent reports and the validation data may reflect deficiencies
in the latter. Most record check studies fail to assess or even discuss the level of
potential error in the records or the error introduced via the matching of survey and
record reports. Comparisons of survey reports with self-reported administrative records
(e.g., tax records) may show discrepancies because of errors in the administrative
records. Finally, it is rare to see a thorough discussion of the impact of definitional
differences between the two sources of information on the level of apparent error.
In contrast to most validation studies, micro-level comparisons of survey reports for

discrete events occurring before time t obtained at two points in time under the same
essential survey conditions focus on simple response variance over time. However,
the accuracy of the data at either time t or time t + x can not be assessed. Empirical
investigations of this type usually attribute differences in the two estimates to error in
the reports obtained at time t + x (under the assumption that the quality of retrieval
declines over time).
Micro-level comparisons which entail survey estimates produced as a result of

different survey designs similarly tend to attribute differences in the estimates to
response error for the estimates produced under the less optimal design. Hence, the
later comparison requires a priori knowledge of the design most likely to produce the
most accurate data.
Macro-level comparisons are fraught with several potential confounding factors,

including differences in the population used to generate the estimates, definitional
differences, and differences in the reference period of interest. Benchmark data are
themselves potentially subject to various sources of errors and omissions, complicating
the interpretation of differences between the two sources. Finally, whereas micro-level
validation can compare survey responses to external data, comparisons of survey data
with aggregate benchmark data requires some assumptions about non-response, either
reweighting the available responses or imputing values for non-respondents. Perfectly
accurate survey responses can appear to diverge from benchmark totals if the handling
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of non-respondents is in error; incorrect survey responses could even add to correct
control totals if response error and errors in nonresponse corrections are offsetting.

5. Measurement error and memory: findings from household-based surveys

The assessment of measurement error across various substantive disciplines has
provided a rich empirical foundation for understanding under what circumstances
survey responses are most likely to be subject to measurement error. The theoretical
framework for most of these investigations draws from the disciplines of cognitive
and social psychology. Although these investigations have provided insight into the
factors associated with measurement error, there are few fundamental principles which
inform either designers of data collection efforts or analysts of survey data as to the
circumstances, either individual or design-based, under which measurement error is
most likely to be significant or not. Those tenets which appear to be robust across
substantive areas are outlined below.

5.1. Cognitive processes

Tourangeau (1984) as well as others [see Sudman, Bradburn and Schwarz (1996)
for a review] have categorized the survey question and answer process as a four-
step process involving comprehension of the question, retrieval of information from
memory, assessment of the correspondence between the retrieved information and the
requested information, and communication. In addition, the encoding of information,
a process outside the control of the survey interview, determines a priori whether
the information of interest is available for the respondent to retrieve from long-term
memory.
Much of the measurement error literature has focused on the retrieval stage of

the question answering process, classifying the lack of reporting of an event as
retrieval failure on the part of the respondent, comparing the characteristics of
events which are reported to those which are not reported. One of the general
tenets from this literature concerns the length of the recall period; the greater
the length of the recall period, the greater the expected bias due to respondent
retrieval and reporting error. This relationship has been supported by empirical
data investigating the reporting of consumer expenditures and earnings [Neter and
Waksberg (1964)]; the reporting of hospitalizations, visits to physicians, and health
conditions [e.g., National Center for Health Statistics (1961, 1967), Cannell, Fisher
and Bakker (1965), Woolsey (1953)]; reports of motor vehicle accidents [Cash and
Moss (1972)], crime [Murphy and Cowan (1976)]; and recreation [Gems, Ghosh
and Hitlin (1982)]. However, even within these studies the findings with respect to
the impact of the length of recall period on the quality of survey estimates are not
consistent. For example, Dodge (1970) found that length of recall was significant
in the reporting of robberies but had no effect on the reporting of various other
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crimes, such as assaults, burglaries, and larcenies. Contrary to theoretically justified
expectations, the literature also offers several examples in which the length of the
recall period had no effect on the magnitude of response errors [see for example,
Mathiowetz and Duncan (1988), Schaeffer (1994)]. These more recent investigations
point to the importance of the complexity of the behavioral experience over time, as
opposed to simply the passage of time, as the factor most indicative of measurement
error.
Another tenet rising from the collaborative efforts of cognitive psychologists and

survey methodologists concerns the relationship between true behavioral experience
and retrieval strategies undertaken by a respondent. Recent investigations suggest
that the retrieval strategy undertaken by the respondent to provide a “count” of
a behavior is a function of the true behavioral frequency. Research by Blair and
Burton (1987) and Burton and Blair (1991) indicate that respondents choose to
count events or items (episodic enumeration) if the frequency of the event/item is
low and they rely on estimation for more frequently occurring events. The point
at which respondents switch from episodic counting to estimation varies by both
the characteristics of the respondent as well as characteristics of the event. As
Sudman et al. (1996, p. 201) note, “no studies have attempted to relate individual
characteristics such as intelligence, education, or preference for cognitive complexity
to the choice of counting or estimation, controlling for the number of events”. Work
by Menon (1994) suggests that it is not simply the true behavioral frequency that
determines retrieval strategies, but also the degree of regularity and similarity among
events. According to her hypotheses, those events which are both regular and similar
(brushing teeth) require the least amount of cognitive effort to report, with respondents
relying on retrieval of a rate to produce a response. Those events which occurred
irregularly and which were dissimilar require more cognitive effort on the part of the
respondent.
The impact of different retrieval strategies with respect to the magnitude and

direction of measurement error is not well understood; the limited evidence suggests
that errors of estimation are often unbiased, although the variance about an estimate
(e.g., mean value for the population) may be large. Episodic enumeration, however,
appears to lead to biased estimates of the event or item of interest, with a tendency
to be biased upward for short recall periods and downward for long recall periods.
In part, the direction of the estimation error related to episodic enumeration is a
function of the misdating of the dates of retrieved episodes of behavior, a phenomenon
referred to in the literature as telescoping [e.g., Sudman et al. (1996)]. The evidence
for telescoping comes from studies which have examined respondent’s accuracy in
reporting dates of specific events. Forward telescoping refers to the phenomena in
which respondents report the occurrence of an event as more recent than is true;
backward telescoping refers to misdating in the opposite direction, that is, reporting
the event as occurring earlier in time than is true. The direction of the misdating
appears to be a function of the length of the reference period. Forward telescoping
is most evident when the reference period is short (one or two weeks), whereas
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backward telescoping is more common for longer (one year or more) reference
periods 43.
The misdating of episodic information in panel data collection efforts has given rise

to a particular type of response error referred to as the “seam effect” [Hill (1987)].
Seam effects refer to the phenomena of a disproportionate number of changes in
respondent status (e.g., employment status) change at the “seam” between the end
of the reference period for wave x of a study and the start of the reference period for
wave x + 1 of a study. For example, a respondent will report being employed at the
time of the wave x interview; at wave x + 1, the respondent reports being unemployed
for the entire reference period. Hence his or her change in employment status occurred
at the seam of the reference periods. Although the seam effect may arise as a function
of the misdating of the start or end of a particular status, some have speculated that
the effect is a result of respondents minimizing the level of effort associated with the
respondent task by projecting the current status back to the beginning of the reference
period of interest.
Finally, a third tenet springing from this same literature concerns the salience or

importance of the behavior to be retrieved. Salience is hypothesized to affect the
strength of the memory trace and subsequently the effort involved in retrieving the
information from long-term memory. The stronger the trace, the lower the effort needed
to locate and retrieve the information. In a study on the reporting of hospitalizations,
Cannell, Fisher and Bakker (1965) found that hospitalizations of longer duration were
subject to lower levels of errors of omission than hospitalizations of one or two
days in length; Waksberg and Valliant (1978) report a similar pattern with respect
to injuries. Although salient information may be subject to lower levels of errors of
omission, other research has indicated that salience may lead to overestimation on
the part of the respondent [e.g., Chase and Harada (1984)]. As is evident from the
literature, overestimation or overreporting on the part of the respondent can result
from either forward telescoping of events, that is, the misdating the event of interest
counting events which occurred prior to the start of the reference period, or from
misestimation, in part, due to the salience of the event of interest. Unfortunately,
empirical investigations of response error in which overreporting is evident have not
addressed the relative importance of forward telescoping and salience as the source of
the response error.

5.2. Social desirability

In addition to asking respondents to perform the difficult task of retrieving complex
information from long-term memory, survey instruments often ask questions about

43 The work on telescoping has focused on the effect of telescoping on the time of individual events.
However, it seems likely that when respondents are asked to retrospectively recall the timing of various
events in their past, errors in the reported timing of various events are correlated, creating something of
a spurious coincidence of events. This is a potentially serious issue for event history analysis.
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socially and personally sensitive topics. It is widely believed and well documented that
such questions elicit patterns of underreporting (for socially undesirable behavior and
attitudes) as well as overreporting (for socially desirable behaviors and attitudes). The
determination of social desirability is a dynamic process, a function of the question
topic, the immediate social context, and the broader social environment at the time the
question is asked. Some topics are deemed, by social consensus, to be too sensitive
to discuss in “polite” society. In the 1990s this is a much shorter list than was true
in the 1950s, but most would agree that topics such as sexual practices, impotence,
and bodily functions fall within this classification. Some hypothesize that questions
concerning income also fall within this category [e.g., Tourangeau, Rips and Rasinski
(2000)]. Other questions may concern topics which have strong positive or negative
normative responses (e.g., voting, the use of pugnacious terms with respect to racial
or ethnic groups) or for which there may be criminal retribution (e.g., use of illicit
drugs, child abuse).
The sensitivity of the behavior or attitude of interest may affect both the encoding

of the information as well as the retrieval and reporting of the material; little of
the survey methodological research has addressed the point at which the distortion
or measurement error occurs with respect to the reporting of sensitive material. The
encoding of emotionally charged behaviors is hypothesized to include an encoding of
the emotion associated with the event. The presence of the emotion may affect further
retrieval of that information. Cognitive dissonance may lead the respondent to “undo”
the details of the event, distorting the event in subsequent rehearsals, thereby encoding
the distorted information with the behavior [Loftus (1975)]. Even if the respondent is
able to retrieve accurate information concerning the behavior of interest, he or she may
choose to edit this information at the response formation stage as a means to reduce
the costs, ranging from embarrassment to potential negative consequences beyond the
interview situation, associated with revealing the information.

5.3. Essential survey conditions

The measurement process and the quality of survey data can also be affected by
design features such as the mode of data collection (e.g., face-to-face, telephone, self-
administered), the method of data collection (e.g., paper and pencil, computer assisted
interviewing), the nature of the respondent (self vs. proxy response), characteristics of
the interviewer (e.g., gender, race, voice quality), cross section vs. longitudinal design,
the frequency and time interval between interviews for longitudinal data collection, as
well as the data collection organization and survey sponsor. Groves (1989) provides a
thorough review of empirical literature related to these various sources of error. While
there is evidence that at times, each of these factors may affect the quality of the data,
the empirical literature is inconsistent as to the direction and magnitude of the error
attributable to each of these design features.
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5.4. Applicability of findings to the measurement of economic phenomena

One of the problems in drawing inferences from other substantive fields to that of
economic phenomena is the difference in the nature of the measures of interest. As
noted earlier, much of the assessment of the quality of household-based survey reports
concerns the reporting of discrete behaviors; many of the economic measures that
are the subject of survey inquiries are not necessarily discrete behaviors or even
phenomena that can be linked to a discrete memory. Some of the phenomena of
interest could be considered trait phenomena. Consider the reporting of occupation.
We speculate that the cognitive process by which one formulates a response to a query
concerning current occupation is different from the process related to reporting number
of doctor visits during the past year.
For other economic phenomena, it is likely that individual differences in the

approach to formulating a response impact the magnitude and direction of error
associated with the measurement process. Consider the reporting of current earnings
related to employment. For some respondents, the request to report current earnings
requires little cognitive effort – it may almost be an automatic response. For these
individuals, wages may be considered a characteristic of their self identity, a trait
related to how they define themselves. For other individuals, the request for information
concerning current wages may require the retrieval of information from a discrete
episode (the last paycheck), a recent rehearsal of the information (the reporting of
wages in an application for a credit card), or the construction of an estimate at the
time of the query based on the retrieval of information relevant to the request.
Given both the theoretical and empirical research conducted within multiple

branches of psychology and survey methodology, what would we anticipate are the
patterns of measurement error for various economic measures? The response to that
question is a function of how the respondent’s task is formulated and the very nature
of the phenomena of interest. For example, asking a respondent to provide an estimate
of the number of weeks of unemployment during the past year is quite different
from the task of asking the respondent to report the starting and stopping dates of
each unemployment spell for the past year. For individuals who are in a steady-
state (constant employment or unemployment), neither task could be considered a
difficult cognitive process. For these individuals, unemployment is not a discrete event
but rather may become encoded in memory as a trait which defines the respondent.
However, for the individual with sporadic spells of unemployment throughout the year,
the response formulation process would most likely differ for the two questions. While
the response formulation process for the former task permits an estimation strategy
on the part of the respondent, the latter requires the retrieval of discrete periods
of unemployment. For the reporting of these discrete events, we would hypothesize
that patterns of response error evident in the reporting of episodic behavior across
other substantive fields would be observed. Similar patterns of differences may be
observed as a function of requesting the respondent to report current earnings as
compared to directing them to think about their last paycheck and report the gross
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earnings. With respect to social desirability, we would anticipate patterns similar to
those evident in other types of behavior, overreporting of socially desirable behaviors
and underreporting of socially undesirable behaviors.

6. Evidence on measurement error in survey reports of labor-related
phenomena

6.1. Earnings

Empirical evaluations of household-reported earnings information include the as-
sessment of annual earnings, usual earnings (with respect to a specific pay period),
most recent earnings, and hourly wage rates. Validation data are generally based on
employers’ or administrative records. Gradually, the focus of such studies has shifted.
Early studies tended to focus on whether the mean error was near zero, and so whether
the survey reports were unbiased. More recent studies focus on the variance of the
error relative to true variation and, more generally, on the bias caused by errors when
survey measures of individual earnings are used in linear models. As a result, it is hard
to report results from the various studies we review in a consistent fashion. Ideally,
we would like to report information on the distribution of errors (e.g., the mean and
variance of errors) together with some measure of the potential biases introduced into
simple models by the error. Our preferred measure of this potential bias is the slope
coefficient from the regression of the record values on the survey values of the same
variable. As we have seen, under the assumption that the record values are valid, one
minus this coefficient gives a measure of the proportional downward bias introduced
by the measurement error for simple bivariate linear regression models that use the
variable in question as the explanatory variable 44. The range of summary measures in
Table 1 reflects the considerable variation in what can be computed from studies from
different disciplines that are motivated by different questions.
Overall, the findings suggest that annual earnings are reported with less error than

hourly wage rates or weekly earnings. Mean estimates of annual earnings appear to
be subject to relatively small levels of response error, whereas absolute differences
indicate significant over- and underreporting at the individual level. We also find
consistent evidence that errors are mean-reverting, but less consistent evidence that
errors are correlated with standard human capital and demographic variables.

6.1.1. Annual earnings

Nine of the studies reported in Table 1, representing six different data collection
efforts 45, examine the quality of reports of annual earnings. For each of these studies,

44 The measure will be valid if the employer’s or administrative records are valid and error free or if
the errors in such records are completely random.
45 The Panel Study of Income Dynamics (PSID) Validation study is represented three times; see Duncan
and Hill (1985), Rodgers, Brown and Duncan (1993), and Bound, Brown, Duncan and Rodgers (1994);
the CPS-SSA matched study is reported in Bound and Krueger (1991) and Bollinger (1998).
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Table 1
Assessment of measurement error: earnings

Reference Variables of interest Validation source Findings

Keating, Paterson and Stone
(1950)

Weekly wages on jobs held
in previous year (survey of
currently unemployed)

Employers’ records r(interview, record) = .90 (men) and .93 (women)

Miller and Paley (1958) Annual earnings (decennial
census post-enumeration
survey)

IRS tax forms Receipt of earnings/wages: underreported at 2% to 6%;
Comparison of median income indicates small (1%) net bias;
underreporting for families (3%), overreporting for unrelated
individuals (4%)

Hardin and Hershey (1960) 1 Weekly earnings (salaried
workers)

Employers’ records r(interview, record) = .98 for men and .99 for women;
Those who had recently received a raise were more likely to
underreport their earnings

Borus (1966) 1 Weekly earnings Employers’ records Mean (household report): $67.37;
Mean (employer report): $63.98;
Mean (simple difference): $3.39;
r(household, employer) = .95;
Difference higher for males and those with higher reported
earnings and hours; and for older workers and those with
more education

Borus (1970) 2 Annual earnings
(comparison of two
methods: 2 broad questions
concerning earnings and
summation of work
histories)

Employers’ reports of wages
to Indiana Employment
Security Division

Mean annual earnings: $2500;
Work history reports: mean error = $46.67, s.d. = $623.49;
Broad questions: mean error = $38.57, s.d. = $767.14;
Over 15% of responses misreported $1000 or more;
Work history approach resulted in smaller response errors
among those with some college education and for persons
with average or above average earnings while the broad
questions resulted in more accurate data among poor persons
with no college education

Dreher (1977) 1 Monthly salary (nine $500
intervals)

Employers’ records r(interview, record) = .91

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Carstensen and Woltman
(1979)

Rate of pay, usual weekly
earnings (CPS special
supplement)

Employers’ report Those reporting pay per hour:
Mean (household): $4.21;
Mean (employer): $4.44;
Mean (difference): −$.23 (s.e. = $.02);

Those reporting pay per week:
Mean (household): $203;
Mean (employer): $217;
Mean (difference): −$14 (s.e. = $2.70);

Those reporting pay per month:
Mean (household): $1173;
Mean (employer): $1068;
Mean (difference): $104 (s.e. = $14.90);

Those reporting pay per year:
Mean (household): $16 868;
Mean (employer): $16 068;
Mean (difference): $800 (s.e. = $403);

When pay reported per hour, both self- and proxy reports
have small mean error; when pay reported per week,
self-reports have small mean error but proxy reports are 20%
below true values

Greenberg and Halsey
(1983)

Quarterly earnings
(participants in Gary and
Seattle–Denver
income-maintenance
experiments)

Employer reports to state
unemployment-insurance
agency

Controls in S–D experiment slightly overreported earnings
whereas Gary controls significantly underreported earnings
(28, 37, and 36% for husbands, wives, and female “heads”,
respectively);
Those eligible for experimental income-maintenance payments
tended to underreport earnings (except for husbands in S–D);
Earnings difference between experimentals and controls
exaggerated by misreporting for all groups, ranging from
2–3% of earnings (husbands at both sites) to 16% (young
non-heads in S–D)

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Mellow and Sider (1983) 3 Wage per hour (CPS) Employers’ records ln (employer reported wage) – ln (worker reported wage):
mean = .048; variance = .167;
Regression with employer–worker wage difference as the
dependent variable, no significant coefficients;
Wage equations based on employer vs. worker reported wages
indicated no difference in structure of wage determination

Duncan and Hill (1985) 1 Annual earnings, year t and
t − 1 (PSID Validation
Study)

Employers’ records 1982 earnings : Annual Hourly

Mean (interview) : $29 917 $16.31

Mean (record) : $29 972 $16.97

Mean (difference) : −55 −.63

Mean (absolute difference) : $2313 $2.68

Error/ record variance ratio : .154 2.801

1981 Earnings :

Mean (interview) : $29 579 $14.71

Mean (record) : $29 873 $15.39

Mean (difference) : −294 −.66

Mean (absolute difference) : $2567 $2.13

Error/ record variance ratio : .301 1.835

1982−1981 Change :

Mean (interview) : $426 $1.61

Mean (record) : $179 $1.57

Mean (difference) : 247 .03

Mean (absolute difference) : $2477 $2.82

Error/ record variance ratio : .501 2.920

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Bound and Krueger (1991) Annual earnings, previous
calendar year (CPS)

Social Security
Administration records

Men: annual earnings (household report): mean = $15 586;
ln interview earnings – ln record earnings: mean = .004,

variance = .114;
Women: annual earnings (household report): mean = $7906;
ln interview earnings – ln record earnings: mean = −.017,

variance = .051;
(above based on sample with record earnings below
SS maximum)
1977 ln (earnings) : Men Women

variance (interview) .437 .666

variance (record) .529 .625

variance (difference) .116 .051

r(interview, record) .884 .961

r(error, record) −.420 −.028

b(record on interview) .974 .962

1977−1976 change in ln (earnings) :

variance (interview) .186 .437

variance (record) .223 .394

variance (error) .121 .089

r(interview, record) .707 .894

r(error, record) −.481 −.123

b(record on interview) .775 .848

Mismeasurement of earnings leads to little bias when CPS
earnings on left-hand side of regression (errors weakly related
to regressors); positive autocorrelation between errors in CPS
reported earnings; coefficient of .40 for men and .10 for
women

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Coder (1992, Tables A, B) Sum of husband’s and wife’s
annual wage and salary
income (SIPP)

Matched tax return
information (from joint
returns)

For sample with unimputed SIPP earnings:
Earnings ln (earnings)

mean (interview) $40 030

mean (record) $42 060

variance (interview) 787× 106 1.290

variance (record) 1446× 106 .822

variance (error) 454× 106
r(interview, record) .834

r(error, record) −.687

b(record on interview) 1.130

Mean error larger (in absolute value) when SIPP earnings are
partially of completely imputed.

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Rodgers, Brown and
Duncan (1993) 1,3

Earnings and hourly wage
(each measured three ways):
annual; most recent pay
period; usual (PSID
Validation Study)

Employers’ records Correlation between interview and record
ln Earnings ln Hourly wage

Annual .784 .651

Most recent .675 .437

Usual .456 .258

Correlation between error and record
ln Earnings ln Hourly wage

Annual −.216 .066

Most recent −.301 −.150

Usual −.436 −.191

Wage rates calculated from reported earnings and hours;
variance of the errors can be decomposed into three parts:
variance in errors in reported earnings, variance in errors in
reported hours, and minus the covariance of those two errors.
For annual wage rates, contribution due to error in annual
earnings and annual hours are about equal (.93 and .80);
errors are positively correlated (r = .43); covariance is
negative (−.74); for wage rate based on most recent pay
period, errors in reported earnings are about twice as
important as errors in reported hours (1.36 and .62);
covariance again is negative (−.98). Based on usual pay the
estimates are 1.26, .32, and −.58;
Mean error significantly different from zero (albeit small);
significantly related to true values (negative), impact the
magnitude of regression coefficients when wages are on the
left hand side of the equation; and are correlated (weak,
positive) across time

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Bound, Brown, Duncan and
Rodgers (1994) 1,3

Annual earnings and wage
per hour (PSID Validation
Study); wage per hour for
hourly workers only

Employers’ records Mean differences between record and interview values of ln
(earnings) small and statistically insignificant for both annual
earnings and hourly wage
1986 ln Earnings ln Wage/hour

variance (interview) .0488 .0204

variance (record) .0416 .0085

variance (difference) .0108 .0121

r(interview, record) .8862 .6350

r(error, record) −.0785 −.0109

b(record on interview) .8180 .4085

1986−1982 change in :

variance (interview) .0365 .0433

variance (record) .0357 .0112

variance (difference) .0164 .0376

r(interview, record) .7738 .3786

r(error, record) −.3219 −.1404

b(record on interview) .7657 .1930

Branden and Pergamit
(1994)

Starting wages (NLSY-79) Respondent’s reports in
year t compared to
year t + 1

Mean absolute difference in ln(starting wage) = .10;
42% of respondents report the same starting wage at the two
points in time. Consistency related to the time unit used for
reporting, with the highest rate of consistency among those
reporting starting wage as an hourly or daily rate (47% and
52%, respectively); lowest among those reporting a biweekly
wage rate (13% consistent)

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

Barron, Berger and Black
(1997, Table 5.1)

Starting wages (Upjohn
Institute Survey)

Employers’ records Mean (interview) = $8.84; Mean (record) = $9.95;
difference in means not significant (t = 1.31);
r(interview, record) = .974

Bollinger (1998) Annual earnings, previous
calendar year (CPS)

Social Security
Administration records

Measurement error more severe (larger mean error for men,
larger error variance for women) in single cross-section than
in two-year panel;
Negative relationship between error and true value (for men)
driven by small number of cases with low record earnings;
Median error unrelated to true earnings at all levels of
earnings

Angrist and Krueger
(1999) 3

Hourly wage (CPS) Employers’ records ln (employer reported wage) – ln (employee reported wage):
mean .017

variance (interview) .355

variance (record) .430

variance (difference) .238

r(interview, record) .650

r(error, record) −.489

b(record on interview) .770

Recoding lowest (highest) one percent of employee-reported
wages to the 1st (99th) percentile value increased b(record on
interview) to .88

1 Sample limited to a single employer.
2 Small sample (n = 300) in single geographic area; assessment of the accuracy of reports of annual earnings based on 173 persons for whom household
reports could be linked to state employment records.

continued on next page
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Table 1, continued

Reference Variables of interest Validation source Findings

3 Respondent not asked to report hourly wage rate directly. Wages (Mellow and Sider; Angrist and Krueger) or hourly earnings (Rodgers, Brown and
Duncan, and Bound, Brown, Duncan and Rodgers) calculated from earnings divided by hours worked; error in reported hours therefore contributes to
error in hourly wage rate.
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comparisons are made between the survey reports and either administrative data
(IRS tax forms, Social Security Administration records) or employers’ records.
Miller and Paley (1958) compared 1950 Census reports and IRS data for a sample

of Census respondents 46. Limiting attention to families for which each member over
age 14 could be matched to an income tax report (including spouses on joint filings) 47,
they found that median earnings were $3412 in the Census reports and $3570 in the
IRS data. Moreover, the two distributions appear quite similar (see Table 10 in the
original paper). While Miller and Paley do not ask whether the errors in the Census
reports are mean reverting, the similarity of the two distributions suggests they must
be.
By focusing on IRS records for validation, Miller and Paley excluded those with

earnings low enough that they do not file an income-tax report. In contrast, Borus
(1970) focused on survey responses of residents in low-income Census tracts in Fort
Wayne, Indiana. He experimented with two methods for collecting annual earnings
from respondents, a set of two relatively broad questions concerning earnings and
a detailed set of questions concerning work histories. The responses from both sets
of questions were compared to data obtained from the Indiana Employment Security
Division for employment earnings covered by the Indiana Unemployment Insurance
Act (e.g., excludes agricultural employees, self-employed, and those working for
relatives). The mean annual earnings among the respondents was $2500; although the
mean error for the two question types was relatively small, $47 and $39 for the work
history and broad questions, respectively, the standard deviation of the mean error was
large ($623 and $767). Over 10% of the respondents misreported annual earnings by
$1000. While these individual-level errors seem large relative to the mean values, they
are similar in magnitude to more recent estimates based on nationally representative
samples [e.g., Bound and Krueger (1991)].
In contrast to one of Borus’s conclusions, Smith (1997) finds that, among low-

income individuals eligible to participate in federal training, earnings data based on
adding up earnings on individual jobs leads to significantly higher values than data
based on direct questions about annual earnings. In Smith’s data, this difference is
due to higher values for hours worked and for irregular earnings (overtime, tips, and
commissions). Comparisons with administrative data for the same individuals lead
Smith to conclude that the estimates based on adding up earnings across jobs leads to
overreporting, rather than more complete reporting.
Carstensen and Woltman (1979) compared reports of annual earnings obtained in

a special supplement to the January (1977) Current Population Survey (CPS) with

46 Of 7091 families, only 3903 were completely matched. One important reason for non-matches is
income low enough that no Federal tax would be owed; except for this difference, Miller and Paley
(1958) find the matched sample representative of the larger Census sample.
47 Note that for families with more than one earner, we are really comparing family rather than individual
earnings.
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employers’ reports. Respondents in rotation group 7 (1/8 of the entire CPS sample) 48

were asked to report earnings as well as report his or her employer’s complete name and
address. While one of the major strengths of the design is the nationally-representative
sample of household respondents, the effective response rate of 61% raises questions
as representativeness of the sample of matched employer–employee information 49.
The use of a mail questionnaire to obtain information from the employer suggests
that comparisons between the employer and employee information must consider
measurement (or reporting) error in the validation data as a potential source of the
discrepancy. The study includes comparisons of annual earnings, as well as hourly,
weekly, and monthly rates of pay and usual hours worked. With respect to annual
earnings, the absolute difference in the two earnings sources was $800 (s.e. = $403),
or about 5% of the mean annual earnings 50.
The Panel Study of Income Dynamics (PSID) Validation Study consisted of two

waves of interviews with respondents sampled from a single large manufacturing firm
and the corresponding record information for those respondents 51. Cooperation by the
firm essentially eliminated problems of matching validation data to each respondent
and allowed for the resolution of anomalies in the validation data. The questionnaire
used at both waves requested that the respondent provide information for the previous
two calendar years. At the time of the initial interview (1983), the firm’s hourly
workforce was fully unionized and virtually all employees, both hourly and salaried,
worked full-time. The workforce was considerably older and had more job tenure than
was true of national sample of workers, in part due to layoffs and few new hires in
the two years prior to the initial interview. These deviations were offset by a sampling
procedure that disproportionately sampled younger and salaried workers. Comparisons
between the two validation samples and data from the Panel Study of Income Dynamics
for the respective years indicates that, with respect to annual and hourly earnings, the
validation sample respondents have considerably higher means and lower variance than
a national sample.

48 Note that each rotation group of the CPS sample is a nationally-representative sample.
49 Of the 6791 eligible persons in the CPS, 5591 (82%) provided complete employer address data.
Among the employers for whom address information was provided by the CPS respondent, 4166 (75%)
responded to the mail survey which included the same earnings and hours questions asked of the CPS
household respondent, resulting in an effective response rate of 61%.
50 Respondents in the Carstensen and Woltman study could report earnings in the time unit of their
choice, that is, annual, weekly, monthly, or hourly. The comparison of annual earnings was limited to
those respondents for whom both the respondent and the employer reported the earnings as annual
earnings.
51 The PSID-VS was conducted by telephone with workers at their homes, rather than administered
at the workplace. Similar to other household-based studies, the PSID-VS suffered from nonresponse.
The initial wave of interviewing was conducted in the summer of 1983 with 418 of the 534 sampled
employees (78.3%). A second wave of interviewing was conducted in the summer of 1987. The sample
consisted of respondents to the initial wave and a fresh sample of hourly workers; the response rate
among the initial wave respondents was 82.4% and 74.7% among the new sample of hourly workers,
resulting in an overall sample size of 492 completed interviews.
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Using data from the first validation study, Duncan and Hill (1985) compared reports
of annual earnings for calendar year 1981 and 1982 with information obtained from the
employer’s records. For neither year is the mean of the simple difference between the
two data sources statistically significant, although the absolute differences for each year
indicate significant under- and overreporting. The average absolute difference between
the interview and record reports of earnings for 1982 was $2123, approximately 7%
of mean earnings. The report of earnings for 1981 was of lower quality than for
1982; the absolute difference of the two reports of earnings for 1981 was $2567, or
approximately 8.5% of mean earnings. The error-to-true variance ratio showed a larger
difference between the two years: for calendar year 1982 annual earnings it was quite
small (.154) but significantly larger for 1981 (.301).
While the margin of difference depends on the measure employed, by all indications

previous-year’s earnings are reported more accurately than those of two years prior to
the interview. While this is consistent with greater error for longer recall periods, it
may also reflect the fact that 1981 was a year of economic disruption both for the
economy and for this firm.
Comparison of measures of change in annual earnings based on the household report

and the employer records indicate no difference in means. Error to true variance ratios
are higher for changes than for levels (.50 vs. .15–.30), even though mean absolute
errors are similar for changes and levels. Errors in reported changes would be higher
but for the positive correlation between the errors in the two years, .43. Duncan and
Hill (1985) emphasize that these changes are obtained from differencing reports for
two calendar years in the same interview, not differencing reports of last year’s earnings
from two interviews in a longitudinal survey.
Although the findings noted above are often based on small samples drawn from

either a single geographic area [Borus (1970)] or a single firm [Duncan and Hill
(1985)], the results parallel the findings from nationally representative samples. Bound
and Krueger (1991) created a longitudinal linked file based on the 1977 and 1978
March CPS questionnaires and earnings histories from Social Security Administration
files 52. The study is restricted to those respondents classified as heads of households
for whom information for March of 1978 was successfully matched to data reported
in March of 1977 and the Social Security records. Of the 27 485 persons classified as
heads of households in matchable rotation groups (50% of the CPS rotation groups),
the three-way link was made for 9137 persons. Other limitations (e.g., private, covered
employment and positive (non-imputed) CPS and SSA earnings in both years) further
reduced the effective sample to approximately 3500 persons. Bound and Krueger note

52 As part of a joint project of the Census Bureau and the Social Security Administration, survey
responses for persons in the March (1978) CPS Annual Demographic File were linked to their respective
earnings information in SSA administrative records to create the CPS-Social Security Records Exact
Match File (CPS-SER). To create a longitudinal data set, the CPS-SER was matched to the (1977) March
CPS Annual Demographic File, based on the respondent’s unique CPS identification number, age,
education, sex, and race.
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that the matching process tends to eliminate those who misreport their Social Security
number or other matching data, and so those who tend to give inaccurate responses
to other questions (e.g., earnings) may be under-represented. Another caveat is that
the Social Security earnings data refer to earnings taxable under the payroll tax, and
nearly half of the males in their sample reach this limit. Consequently, many of the
estimates reported below are based on models that correct for this truncation, based
on the assumption that ln earnings are normally distributed.
Bound and Krueger (1991) examined error in annual ln earnings reports separately

for men and women. Although the error was distributed about a near-zero mean for
both men and women, the magnitude of the error was substantial. For men, the error
variance exceeded .10 and represented 27.6% of the total variance in CPS earnings;
for women the error variance was approximately .05 and represented less than 9%
of the total variance in CPS earnings for women. One striking feature of the errors
is that while they appear to be unimodal and symmetric, the tails are substantially
thicker than one would expect with a normal distribution. Indeed, for those for whom
errors were directly observable (those below the Social Security earnings limit), the
standard deviation of the errors was three times the interquartile range. In addition
the distributions show a large spike near 0. For those below the earnings limit, 12%
of men and 14% of women report earnings that exactly match their Social Security
records, while more than 40% of each gender report earnings within 2.5%.
Despite these errors, the correlation between interview and record ln earnings is high

in Bound and Krueger’s data (.88 for men and .96 for women). Errors are negatively
related to the record value for men (−.42), and essentially uncorrelated for women
(−.03). Because errors for men are mean-reverting and errors for women are small, they
find that measurement error should not appreciably bias the coefficient of ln earnings
in linear models. The regression of record on interview values gives coefficients very
close to 1 (.97 for men and .96 for women).
Because their data include two CPS waves, they can compare interview and record

reports of changes in earnings as well. Consistent with the conventional wisdom,
differencing increases the error variance (from .1 to .12 for men, and from .05 to
.09 for women), and reduces the true variance by about half. Positive correlation
in the errors (.4 for men, .1 for women) limits the increase in error variance
due to differencing. Consequently, although the ratio of error to total variance is
substantial (.65 for men, .2 for women) the regression of record changes on interview
changes (.77 and .85) suggest that the bias due to measurement error when the change
in ln earnings is an explanatory variable is not overwhelming.
Bollinger (1998) extended the work of Bound and Krueger (1991), examining the

measurement error associated with each of the cross-sectional samples encompassing
Bound’s and Krueger’s panel sample, expanding the sample to include women who
were not heads of households, and incorporating nonparametric estimation procedures.
To a large extent, Bollinger’s findings confirm those of Bound and Krueger. In addition,
he finds higher measurement error in the cross-section samples as compared to the
panel used by Bound and Krueger, suggesting that constructing a panel from CPS
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lead to the selection of respondents who appear to be better reporters. Bollinger also
finds that the negative correlation between measurement error in reports of annual
earnings and record earnings appears to be driven by a small proportion of men with
low income who grossly overreport their earnings – or whose earnings are largely
unrecorded by Social Security. Of additional interest in the work by Bollinger is the
finding that although mean response error is negatively related to earnings, median
response error is zero across earnings levels, suggesting median wage regression to be
more robust to the effects of response error.
Coder’s (1992) analysis compares reports by respondents to the Survey of Income

and Program Participation and Federal tax returns. The study is limited to SIPP
respondents who were married couples as of March 1991, who met the following
criteria: (1) valid Social Security numbers were reported for both the husband and the
wife; (2) the couple could be matched to a married-joint tax return; and (3) nonzero
wage and salary income amount was reported either during the SIPP interview or on
the tax return. Of the approximately 9200 husband–wife couples in the SIPP, 62%
(or approximately 5700 couples) met the criteria. Coder finds little difference between
mean estimates of annual earnings and the respective validation source. He reports a
simple correlation between earnings reported in SIPP and IRS data as .83; the mean
annual earnings based on SIPP averaged approximately 4% less than the mean based
on matched tax records. Coder’s data has an unusually large discrepancy between the
variance of interview and record data, with the former smaller; this in turn implies a
very strong negative correlation between the “error” (SIPP–IRS) and the “true” (IRS)
value – so strong that the effects of earnings on other variables would be overstated
due to (mean-reverting) errors in earnings. Alternatively, it is possible that errors in
the IRS data contribute to these results [Rodgers and Herzog (1987, p. 408)].
Bound, Brown, Duncan and Rodgers (1994) analyze data from both 1983 and 1987

waves of the PSID Validation Study. The correlation between interview reports and
company-record data on ln earnings is about .9 (.92 for 1982 earnings, .89 for 1986),
but the negative correlation between error and record values is weaker for 1986 (−.08
vs −.30). Consequently, the regression of record on interview value is closer to 1.0 for
1982 than for 1986 (.96 vs .82).
The distribution of errors for the PSID validation study appear to be quite different

than that found by Bound and Krueger (1991) using the matched CPS–Social Security
Earnings data. Since virtually all the individuals in the PSID validation study are
men, it seems natural to compare PSID validation study results to those for men
using the CPS–SSE matched data. The two error distributions have similar means and
interquartile ranges, but the PSID validation study data shows neither the spike at 0
nor the thick tails shown by the CPS–SSE matched data. As a result of the thick tails
in the CPS–SSE data the variance of errors is an order of magnitude larger in the
CPS–SSE data than it is in the PSID validation study data! What accounts for the
difference in the distribution of errors between the PSID validation study and CPS–
SSE data is unclear [see Bound, Brown, Duncan and Rodgers (1994, p. 357) for a
further discussion of these issues].
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Given that the change in ln earnings computed from the PSID Validation Study
covers four years rather than one, the findings for this variable should be seen as
complementing rather than replicating Bound and Krueger’s. The general patterns are
strikingly similar – increased error variance, with the increase somewhat limited by the
correlation in the errors over time; negative correlation between the error and the true
value of the change (−.32), and regression of true change on interview reports of .77.
One interesting difference is that the correlation between the errors is lower in Bound
et al.’s (1994) data (.14) than in Bound and Krueger’s (1991). To some extent, this
might be expected if the factors that produce this error change gradually over time;
on the other hand, it may also reflect the difference between economy wide and single
firm samples.
Three of these studies – Duncan and Hill (1985), Bound and Krueger (1991) and

Bound, Brown, Duncan and Rodgers (1994) – explore the implications of measurement
error for earnings models. Duncan and Hill’s model relates the natural logarithm
of annual earnings to three measures of human capital investment: education, work
experience prior to current employer, and tenure with current employer, using both the
error ridden self-reported measure of annual earnings and the record-based measure
as the left-hand-side variable. A comparison of the ordinary least squares parameter
estimates based on the two dependent variables suggests that measurement error in
the dependent variable has a sizeable impact on the parameter estimates. For example,
estimates of the effects of tenure on earnings based on interview data were 25% lower
than the effects based on record earnings data. Although the correlation between error
in reports of earnings and error in reports of tenure was small (.05) and insignificant,
the correlation between error in reports of earnings and actual tenure was quite
strong (−.23) and highly significant, leading to attenuation in the estimated effects
of tenure on earnings based on interview information.
Bound and Krueger (1991) also explore the ramifications of an error-ridden left-

hand-side variable by regressing error in reports of earnings on a number of human
capital and demographic variables, including education, age, race, marital status,
region, and SSA. Similar to Duncan and Hill (1985), the model attempts to quantify the
extent to which the correlation between measurement error in the dependent variable
and right-hand-side variables biases the estimates of the parameters. However, in
contrast to Duncan and Hill, Bound and Krueger conclude that mismeasurement of
earnings leads to little bias when CPS-reported earnings are on the left-hand-side of
the equation.
Bound, Brown, Duncan and Rodgers (1994) estimate separate earnings functions

using both interview and record earnings for both waves of the Validation Study. They
find some evidence that errors in reporting ln earnings are negatively related to tenure
in 1982, and positively related to education in 1986. Overall, though, they find no
consistent pattern. Rodgers, Brown and Duncan (1993) note, however, that if annual
hours are included as an explanatory variable, its coefficient is severely biased by a
number of factors (e.g., correlation between errors in reporting hours and earnings, in
addition to problems with the reliability of hours per se, as discussed in Section 6.1.2).
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While there is not much evidence that errors in reported earnings are strongly related
to standard explanatory variables in earnings functions, two cautions should be noted.
First, the tendency for errors in reported earnings to be mean-reverting means that, if
there are no other problems, coefficients of all explanatory variables are biased toward
zero. This bias is about 20% of the true coefficient in both studies. Second, errors in
other variables may be correlated with earnings, but there is very little evidence one
way or the other on this score.
The CPS–SSA matched data and the PSID validation data can also be used to shed

some light on the impact of measurement error on earnings dynamics. The short nature
of the CPS–SSA matched data panel limits its usefulness for this purpose, but the
PSID validation study includes a total of six years of data. Using these data Pischke
(1995) found that a relatively simple model in which measurement error in earnings
stems from the under reporting of transitory earnings fluctuations together with a white
noise component did a good job of explaining basic patterns in the PSID validation
study data 53.
Pischke’s model rationalizes a number of the stylized facts that have emerged

from recent earnings validation studies. In particular his model accounts for the
finding that despite mean reversion, measurement error in earnings does not seem
to significantly bias the coefficients on explanatory variables in earnings regressions –
the explanatory variables in such regressions would be expected to explain permanent,
but not transitory earnings.
In terms of the estimation of earnings dynamics, Pischke’s estimates imply relatively

good news. The negative correlation of measurement error with transitory earnings
attenuates the role of the white-noise component. Pischke estimates that surveyed
earnings tend to exaggerate the actual fluctuation in earnings by between 20 and 45%
depending on the year, but do a reasonably good job identifying the relative importance
of the permanent component to earnings changes 54.
There are a few things that are important to note about the Pischke study. First, his

model implies reporting errors will tend to be more severe at some points in time as
against others (i.e., reporting errors will tend to rise in magnitude as the transitory
component of earnings rises). Second, as Pischke emphasizes, it is hard to know how
to generalize his results to more representative samples. Even were the PSID validation
study establishment representative of establishments in the country as a whole, earnings

53 With 11 free parameters, Pischke fits 28 free covariances quite well. He reports an overall chi-square
statistic on the model of 23.8 ( p-value: 0.124).
54 It is certainly possible to doubt the general validity of Pischke’s conclusion. His estimates are based on
a tightly parameterized model that was estimated on data from a single firm. However, Baker and Solon
(1998) have recently estimated earnings dynamic patterns using administrative data that are remarkably
similar to patterns other authors [Baker (1997), Haider (2001)] have found using survey data. These
estimates would seem to confirm Pischke’s finding that measurement error does not have dramatic effects
on estimated earnings dynamics.
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dynamics in the sample would miss the component that arises when individuals move
across firms.
On balance, the validation evidence suggests little bias in estimating mean annual

earnings, and this is quite consistent with the fact that survey-based estimates
of earnings aggregated up to economy-wide estimates correspond quite closely to
earnings as measured in the National Income and Product Accounts 55. Moreover,
despite significant absolute differences between household reports and record reports
of earnings as well as significant error to record variance ratios, the correlation between
the various sources of data are quite high. Several of the studies indicate coefficients
for the regression of household reports on record reports of annual earnings near 1.0,
reflecting a negative correlation between error in the household reports and the record
value for annual earning. Only one study addressed the deterioration of the quality of
reports of annual earnings as a function of time [Duncan and Hill (1985)]; similar to
empirical investigations in other fields, their findings provide support for less accurate
reporting for longer reference periods. The evidence with respect to the impact of error
in household reports of earnings is mixed; Duncan and Hill (1985) report significant
attenuation in a model examining the effects of human capital investment, whereas
Bound and Krueger (1991) conclude that misreporting of earnings leads to little bias
for models incorporating CPS-earnings on the left-hand-side of the equation.
What can account for the significant individual differences between household and

record-reported annual earnings? The reporting of annual earnings within the context
of a survey is most likely aided by the number of times the respondent has rehearsed
the retrieval and reporting process for this information. We contend that the memory
for one’s annual earnings is reinforced throughout the calendar year, for example, in
the preparation of federal and state taxes or the completion of applications for credit
cards and loans. To the extent that these requests have motivated the respondent to
determine and report an accurate figure, such information should be encoded in the
respondent’s memory. Indeed, both CPS and PSID time their collection of annual
earnings data to coincide with the time when households would have received earnings
reports from employers and might have begun preparing their taxes. Subsequent survey
requests should therefore be “routine” in contrast to many of the types of questions
posed to a survey respondent. Hence we would hypothesize that response error in such
situations would result from retrieval of the wrong information (e.g., annual earnings
for calendar year 1996 rather than 1997), social desirability issues (e.g., overreports
related to presentation of self to the interviewer), or privacy concerns, which may lead
to either misreporting or item nonresponse.
However, several cognitive factors may affect the quality of reports of annual

earnings. Comprehension may impact the quality of the information; for example,

55 For example, CPS-based estimates of total wage and salary income were 97% of independent estimates
based on NIPA in 1990 [U.S. Census Bureau (1993)]. As noted earlier, such a comparison reflects several
factors besides the mean level of error in the individual reports, such as the accuracy of CPS adjustments
for non-response.
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respondents may misinterpret the request for earnings information as a request
for net earnings as opposed to gross earnings. In addition, the wording of most
earnings questions does not stress the need for the reporting of exact earnings; hence
respondents may interpret the question as one in which they are to provide estimates
as opposed to precise reports of earnings. Estimation on the part of the respondents,
as noted by Sudman, Bradburn and Schwarz (1996), often leads to reports that are
noisy at the individual level but unbiased at the population level. Retrieval of earnings
information for any one year may also be subject to interference with respect to stored
information concerning earnings in previous years. If the source of the misreporting
by respondents was due to social desirability bias, we would anticipate that the
direction of the error would be toward overreporting of annual earnings, especially
among those with low levels of earnings and possibly, underreporting among those
at the highest levels of earnings. Although there is evidence of a negative correlation
between response error and the true value overall, there is little evidence to support
the existence of social desirability bias with respect to the reporting of annual earnings
[e.g., Bollinger (1998)].

6.1.2. Monthly, weekly, and hourly earnings

In contrast to the task of reporting annual earnings, the survey request to report most
recent earnings or usual earnings is more likely to be a relatively unique request and
one which may involve the attempted retrieval of information that may not have been
encoded by the respondent, the retrieval of information that has not been accessed by
the respondent before, or the calculation of an estimate “on the spot”. Hence, we would
anticipate that requests for earnings in any metric apart from a well-rehearsed metric
would lead to significant differences between household reports and validation data.
Moreover, the extent of rehearsal is likely to differ by type of worker; for example,
those paid a monthly salary are more likely to have accessed information about monthly
earnings than are those paid by the hour, while the reverse is likely for earnings per
hour.
While annual earnings is the most frequently studied measure of labor market

compensation in validation studies, Table 1 makes it clear that significant effort has
also been devoted to validating other measures. Roughly speaking, we can divide these
studies into two groups: those that study weekly or monthly pay, and those that study
pay per hour.
Four of the earliest studies in Table 1 focus on the correlation between weekly

or monthly earnings as reported by workers and their employer’s reports. All four
(Keating, Paterson and Stone’s (1950) study of jobs held in the past year by unemployed
workers in St. Paul; Hardin and Hershey’s (1960) study of salaried workers at an
insurance company; Borus’s (1966) study of average weekly earnings of training-
program participants; and Dreher’s (1977) study of average salary of workers at an oil
company) report correlations of .90 or higher. Mean reports by workers are close to
record values, with modest overreporting in some studies and underreporting in others.
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Broadly speaking, these results parallel those reported above for annual earnings,
except that the issues of mean reversion and accuracy of changes in panel surveys
were not addressed 56.
Carstensen and Woltman (1979) compare worker and employer reports, using a

supplement to the January (1977) CPS. Their survey instruments allowed both workers
and employers to report earnings in whatever time unit they preferred (e.g., annual,
monthly, weekly, hourly). As noted earlier, comparisons are limited to those reports
for which the respondent and the employer reported earnings using the same metric.
Curiously, when earnings are reported by both worker and employer on a weekly basis,
workers underreport their earnings by 6%; but when both report on a monthly basis,
workers overreport by 10%. When the various reports are converted to a common time
unit (usual weekly earnings), they find workers report earning 11.7% less per week
than their employers’ reports. Unfortunately, they do not report correlations between
worker and employer reports.
Studies of hourly wages or earnings per hour are less common, in part because it

is difficult to obtain validation data for salaried workers. Typically, their pay is stated
in weekly, monthly, or annual terms, and employers often do not have records of the
weekly hours of their salaried workers (see Section 6.4).
In their study of wages, Mellow and Sider (1983) utilized the January (1977)

CPS data first analyzed by Carstensen and Woltman (1979) 57. Hourly wages calculated
from the CPS reported earnings and hours compared to employers’ records indicate a
small, but significant, rate of underreporting (ln hourly wage as reported by the worker
lower by .048). The variance of the difference between interview and record reports
is .148, which is larger than Bound and Krueger’s error variances for the logarithm of
annual earnings in CPS data (.114 and .051 for men and women).
In a reanalysis of the same data used by Mellow and Sider, Angrist and Krueger

(1999) report more details. In their basic sample they find that the variance in the
difference between interview and record values of ln hourly earnings to be .24. In
comparison they report the variance in the ln of survey earnings to be .36. While the
ratio of these two numbers suggests a signal to total variance ratio of one third, Angrist

56 Keating, Peterson, and Stone show a cross-tabulation of interview vs. record reports which displays
at least weak mean reversion for men. However, from their grouped data, in which 70% of the 115 cases
are on the diagonal, it is hard to say anything more precise.
57 In the CPS sample, validation data could be obtained only where the worker provided the name
and address of the employer, and the employer provided the relevant data. Mellow and Sider note that
validation data could be obtained for only about two thirds of the eligible sample. However, reported
CPS earnings of those who refused to provide employer contact, or whose employers refused to provide
validation data, were similar to earnings of those who did not refuse. The EOPP was actually two
large studies: a survey of approximately 5000 establishments and the other of approximately 30 000
households. Because of the geographic overlap between the two studies, it was possible to link a limited
number (n = 3327) of worker and employer responses. The representativeness of the resulting sample is
unclear, and was not discussed by Mellow and Sider (1983).
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and Krueger’s tabulations suggest very substantial mean reversion. The regression of
record on surveyed ln earnings suggests attenuation of about 25%.
Duncan and Hill’s (1985) analysis of PSID Validation Study data investigates the

accuracy of earnings per hour values calculated from workers’ reports of annual
earnings, weeks worked, and average hours per week. Because hours data were
available only for hourly workers, their analysis excludes the firm’s salaried workers.
On average, calculated earnings per hour are relatively accurate (underreported by
about 4%). But the error to true variance ratio of 2.8 leads the authors to characterize
the extent of measurement error as “enormous” – the unhappy result of annual earnings
being less accurately reported for hourly than for salaried workers and substantial error
in reports of annual hours (see below).
Bound, Brown, Duncan and Rodgers (1994) report similarly discouraging results

for the logarithm of earnings per hour – error to true variance ratios of about 1.5 in
both 1982 and 1986, and correlations between interview and record values of .51 and
.64. Predictably, matters only get worse for the change in the logarithm of earnings
per hour.
The correlations between interview and record values are strikingly lower than those

for weekly or monthly earnings in company-based samples noted above. The earlier
company-based studies focused on salaried workers, whereas the PSID Validation
Study’s hourly earnings information is available only for hourly workers. As it happens,
these workers are unionized and the number of hours per week is relatively compressed.
In a sense, the poor results for hourly pay occur not because the reporting errors are
so large (the standard deviations of the errors are .11 and .16 in the two years) but
because true variation is so limited (standard deviations of .09 and .13).
Rodgers, Brown and Duncan (1993), using data from the second wave of the

PSID validation study, analyze the accuracy of the logarithm of reported earnings and
calculated earnings per hour over three time intervals – annual, most recent pay period,
and “usual” 58. Their analysis is restricted to hourly workers, since record data on hours
per week were unavailable for salaried workers. Two generalizations are evident from
Table 1: the correlation between worker and record reports declines as one moves from
annual to pay period to “usual”; and for any given time interval, earnings per hour are
less accurately reported than earnings.
Since wage rates were calculated from reported hours and earnings the variance

in the error associated with the wage rate can be decomposed into three parts: the
variance of the error in reported earnings, the variance of the error in reported hours,
and the covariance of those two reports. While the details vary with the time interval,
in general all three of these components are important 59.

58 Operationally, they define “usual” as the average over the preceding six two-week pay periods. They
report, however, that their results are not very sensitive to the precise definition.
59 Rodgers, Brown, and Duncan report these components normalized as shares of the relevant error
variance. For wage rates derived from reports of annual earnings and annual hours, the contribution due
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Two studies focus on the accuracy of reports of starting wage in a particular job.
Branden and Pergamit (1994) evaluated the consistency of respondents’ reports of
starting wages in the National Longitudinal Study by comparing responses reported
at time t to those reported one year later. Only 42% of those studied reported the
same starting wage for a particular job across the two years 60. Consistency varied
as a function of the time unit used for reporting, with higher rates of consistency
among those reporting their starting wage as an hourly or daily rate (47% and 52%
consistent, respectively) as compared to a consistency rate of approximately 13%
for those reporting a biweekly wage rate. In contrast, Barron, Berger and Black
(1997) 61 find a high correlation between employers’ and employees’ reports of starting
wages (.974). Differences in the length of the recall period (one year vs. at most
four weeks) most likely contributes to the differences in the findings from the two
studies. Unfortunately, given these relatively short recall periods, neither study gives
much evidence on the question of recall accuracy for starting wages of those who have
been employed for longer periods (e.g., typical of information collected as part of a
retrospective event-history question sequence).
On the whole, the evidence suggests that reporting of weekly or monthly earnings

are highly correlated with employer reports. Available evidence on earnings per hour
is much less reassuring. Unfortunately, the cautions from the various PSID Validation
Studies are – as their authors indicate – likely to be overly dramatic because the true
variance of hourly earnings is considerably smaller in one firm than in a broader
sample.
As was true for annual earnings, a few of the studies in Table 1 attempt to assess

the importance of measurement errors in frequently-estimated linear models. Mellow
and Sider (1983) examined the impact of measurement error in wage equations; they
concluded that the structure of the wage determination process model was unaffected
by the use of respondent- or employer-based information, although the overall fit of the

to error in annual earnings and annual hours are about equal (.93 and .80). The errors are positively
correlated (r = .43) and so the covariance is negative (−.74). For wage rates based on the most recent
pay period, errors in reported earnings are about twice as important as errors in reported hours (1.36
and .62, respectively); the covariance is again negative (−.98). Based on usual pay, the contribution due
to error in reports of earnings is 1.26, from error in reports of hours is .32, and the covariance is −.58.
60 Only those who reported their pay in the same time unit in both interviews are included.
61 The study reported by Barron, Berger, and Black was based on a sample of establishments with
100 or more employees, screened to determine whether they were hiring at the time of the initial
interview. The data collection encompassed three interviews with the firm and three with the newly
hired employee of the firm. Of the 5000 establishments originally sampled, no attempt was made to
contact 1603 establishments due to budgetary restrictions. Of the 1554 establishments classified as
eligible and for whom interviews were attempted, complete information was obtained from 258 (16.6%)
employer–employee pairs. The low response rate, coupled with the lack of information for over 32%
of the originally sampled establishments, raises serious concerns with the inferential limitations of the
study. The authors report that the sample for which they could obtain information was similar to the
original 5000 establishments in size and industry, but completions were more likely to come from rural
areas and the Mountain and Pacific regions.
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model was somewhat higher with employer-reported wage information. Bound, Brown,
Duncan and Rodgers (1994) report estimates of simple “labor supply” equations (ln
hours regressed on ln earnings per hour and demographic controls). Here, a number of
potential biases are at work – due to the unreliability of hours reported as well as errors
in hourly earnings – and their impact depends on the true supply elasticity. In the end,
their results suggest such estimates may be badly biased, though the direction of the
bias and the contribution of errors in measuring earnings per hour are less clear 62.
The studies reported in Table 1 provide conflicting indications of the relative

accuracy of survey reports of monthly or weekly earnings, with some relatively old
studies showing quite high correlations with record values. The calculation of hourly
earnings appears to be most prone to error; the correlations between interview and
record values are significantly lower for hourly earnings than for weekly, monthly,
or annual earnings. In most of the studies, however, hourly earnings are calculated
from separate reports of earnings and hours rather than based on direct reports of
hourly earnings by respondents. The error in hourly earnings is therefore a function
not only of misreporting of earnings (annual, weekly, or monthly) but also a function
of the reporting of hours worked, the later being subject to high levels of response
error (see Section 6.4). An empirical investigation that has not been reported to date
is the comparison of the accuracy of direct reports of hourly earnings by household
respondents with the hourly earnings reports calculated from reports of earnings and
hours.

6.2. Transfer program income

Transfer program income can be categorized broadly as falling within one of two
categories: relatively consistent recipiency status and income levels once eligibility has
been established, and highly volatile recipiency status as well as income. As with most
other episodic events, we expect that relatively stable behavioral experiences will be
reported relatively accurately whereas complex behavioral experience (e.g., month to
month changes in the receipt of AFDC transfer income) would be subject to high levels
of response error. Respondents experiencing complex patterns of on/off recipiency
status will most likely err on the side of failing to recall exceptions to the rule (e.g., the
two months out of the year in which they were not covered by a particular program).

62 French (1998) uses the PSID-VS data to correct estimates of the inter-temporal labor supply elasticity
for measurement error. Within the context of his model, the covariance of the change in hours and the
once lagged change in wages scaled by the variance in the transitory component of wages should give an
estimate of the inter-temporal labor supply elasticity. The covariance terms involve covariances between
current and twice lagged hours and wages. French allows for individuals to under-report the transitory
component of wages and the transitory component of hours caused by the transitory component of wages
to be under-reported, and for errors in wages and hours to be correlated, but otherwise that measurement
error is classical. With these assumptions, French is able to use the PSID-VS to correct for measurement
error. His results suggest that measurement error can not explain the failure of inter-temporal labor
supply effects to explain short term movements in hours.



Ch. 59: Measurement Error in Survey Data 3771

Depending upon the usual status quo for these respondents (receipt or nonreceipt),
both under- and overreporting may be evident. In addition, for some transfer program
income subject to social desirability bias, we would hypothesize that respondents
would err on the side of underreporting receipt. Finally, misunderstanding as to the
exact type of transfer program income received by the respondent may lead to the
misidentification of recipiency, leading to underreporting of one type of income receipt
and a corresponding overreport of another type of income receipt.
For most surveys, the reporting of transfer program income is a two-stage process

in which respondents first report recipiency (or not) of a particular form of income
and then, among those who report recipiency, the amount of the income. One of the
shortcomings of many studies which assess response error associated with transfer
program income is the design of the study, in which the sample for the study is
drawn from those known to be participants in the program. Responses elicited from
respondents are then verified with administrative data. As noted earlier, retrospective
or reverse record check studies limit the assessment of response error, with respect
to recipiency, to determining the rate of underreporting; prospective or forward record
check studies which only verify positive recipiency responses are similarly flawed since
by design they limit the assessment of response error only to overreports. In contrast, a
“full” design permits the verification of both positive and negative recipiency responses
and includes in the sample a full array of respondents. Validation studies which sample
from the general population and link all respondents, regardless of response, to the
administrative record of interest, represent full study designs. These would include
the studies by Bancroft (1940), Oberheu and Ono (1975), Halsey (1978), Hoaglin
(1978), and the more recent studies by Marquis and Moore (1990), Grondin and
Michaud (1994), Dibbs, Hale, Loverock and Michaud (1995), Moore, Marquis and
Bogen (1996), and Yen and Nelson (1996). The findings from the other studies cited
in Table 2, many of which indicate a preponderance for underreporting by respondents
with respect to receipt of a particular type of income, are to some extent an artifact of
the study design. Rather than interpret the findings from these studies as indicative of
a consistent underreporting bias on the part of the respondents, a more conservative
conclusion may be to view the findings as illustrative of the types and magnitude of
errors recipients can make with respect to program receipt.
There are several different ways of summarizing the frequency of reporting errors,

which can give very different impressions of the accuracy of the data. One is the
fraction of cases for which interview and record data disagree. Another is the difference
between the fraction reporting receipt in the interview data and the corresponding
proportion according to the records, which is the extent of net under- or overreporting.
A third is the pair of conditional probabilities, p01 = Prob (interview = no | record =
yes) and p10 = Prob (interview = yes | record = no) that determines the extent of bias
when recipiency is used as a variable in a regression (Section 2.5).
These three measures are related: the probability of disagreement = pp01 + (1 − p )

p10, and net underreporting = pp01 − (1 − p )p10. The probability of disagreement
tends to be lower for programs with low true participation rates as long as p01 > p10;



3772
J.
B
ound

et
al.

Table 2
Assessment of measurement error: transfer program income

Reference Variables of interest Validation source Findings

Bancroft (1940, Table 1) Public relief Administrative records Pr(interview = currently receiving record = currently
receiving) = .92;
Pr(interview = never received record = never received) = .84;
(this biased down because records miss receipt > 2.5 years prior
to interview)

David (1962) Public assistance Administrative records 7% of recipients (according to records) reported not receiving
public assistance;
Mean (interview) = $2334;
Mean (record) = $2758;
Mean (error) = −$424, or 18% of record;
r(interview, record) = .30;
Errors unrelated to respondent race, sex, age (but N = 46)

Haber (1966, Tables 1, 3) Social Security income of
“beneficiary unit” (couple
or non-married individual)

Administrative records Mean (interview) = $991;
Mean (record) = $1052;
Mean (error) = −$51, or 5% of record (s.e. = $5);
Underreporting greatest for youngest (62–64) respondents, the
institutionalized, and those with high (true) benefit levels

Livingston (1969) 1 Several types of “public
assistance” reported in
special census

Administrative records
in Dane County (WI)

22% of known recipients failed to report receipt;
Over 50% of those reporting receipt in census could not be
matched to an administrative record;
Among those who report assistance and receipt is corroborated in
records: median reported in inteview is 73% of median in
records. For old age assistance and AFDC separately,
corresponding ratios are 80 and 70%, respectively

Hu (1971) Cash and medical assistance Administrative records 27% of recipients failed to report assistance receipt

continued on next page
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Table 2, continued

Reference Variables of interest Validation source Findings

Oberheu and Ono (1975) AFDC participation “last
month”, annual AFDC, and
Food Stamp receipt “last
month” among low-income
households with children

Administrative records Reporting of AFDC recipient for last month:
Pr(interview = yes record = yes) = .68;
Pr(interview = no record = no) = .77;
Net underreporting of receipt = 2%;
Among those who correctly report having received benefits, mean
underreport = $89/month;
Similar findings for AFDC receipt for last year;
Reporting of Food Stamp participation for last month:
Pr(interview = yes record = yes) = .70;
Pr(interview = no record = no) = .85;
Net overreporting of receipt = 6%

Vaughan and Yuskavage
(1976)

Social Security income
(CPS)

Administrative records Among cases where both record and interview showed a positive
amount received:
54% of interviews exceed record amount;
39% of interviews are less than record amount;
7% of cases agree within $10;
Mean error = $68 (5% of average benefit);
Mean absolute error = $225 (15% of average benefit)

Halsey (1978) 1 AFDC, Unemployment
Insurance

Administrative records Among cases where record and/or interview showed a positive
amount received:
Mean amount of AFCD underreported by 25–30%;
Mean amount of Unemployment Insurance underreported by
50%;
r(interview, record) are in .40–.60 range

Hoaglin (1978) 1 Social Security income,
Supplementary Security
Income, “welfare”

Administrative records Median response error is $0 for “welfare” (combines AFDC,
general assistance and other programs), SSI, and unemployment
insurance reports; slightly negative for reports of monthly Social
Security amounts

continued on next page
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Table 2, continued

Reference Variables of interest Validation source Findings

Vaughan (1978) Social Security income Administrative records Pr(interview = yes record = yes) = .87;
Most of the remaining 13% appear to misreport SSI income as
Social Security rather than failing to report any transfer income
at all

Klein and Vaughan (1980) 1 AFDC receipt Administrative records Pr(interview = yes record = yes) = .86

Goodreau, Oberheu and
Vaughan (1984,
Tables 1,3,4)

AFDC receipt Administrative records
in California, North
Carolina, Pennsylvania
and Wisconsin

91% report receiving cash assistance, but only 78% correctly
identify the payment of AFDC per se;
Amount last month (those receiving any cash assistance):
Mean (record): $286;
Mean (household report): $276;
Simple difference: $10 (3.5%);
Reporting error negatively related to record amount;
Among those receiving AFDC;
74% reported as AFDC;
13% reported as other transfers;
4% underreported by those reporting receipt;
9% received by those reporting no cash transfers

Marquis and Moore (1990) AFDC, Food stamps,
Unemployment Insurance
Benefits, Workers
Compensation, Social
Security (OASDI),
Supplemental Security
Income and Veteran’s
benefits as reported in SIPP

Administrative records
in Florida, New York,
Pennsylvania and
Wisconsin

Underreporting by known recipients (A) (Pr(interview = no
record = yes)) and relative net underreporting (B) (1 −
Pr(interview = yes)/Pr(record = yes)) by program:
Program A B

AFDC .49 −.39

Unemployment insurance .39 −.20

Food Stamps .23 −.13

Supp. Security Income .23 −.12

Veterans′ benefits .17 −.03

Social Security .05 +.01

continued on next page



C
h.
59:

M
easurem

ent
E
rror

in
Survey

D
ata

3775
Table 2, continued

Reference Variables of interest Validation source Findings

Grondin and Michaud
(1994)

Unemployment benefits Canadian tax returns 4–6% of reports on recipiency are in error;
Net underreporting rate 3–4% for recipiency;
Pr(interview = no record = yes) = .11–.16;
Pr(interview = yes record = no) = .005–.011;
Discrepancy between record and interview report exceeds 5% for
approximately a third of those with non-zero amounts for both

Dibbs, Hale, Loverock and
Michaud (1995) 1

Unemployment benefits Tax returns Mean (record) = $5600
Mean (interview) = $5300
Mean (error) = $300, or 5%

Moore, Marquis and Bogen
(1996) 1

AFDC, Food Stamps,
Unemployment Insurance,
and Supplemental Security
Income as reported in SIPP;
two experimental
questionnaires

Administrative records
in Wisconsin

Underreporting by known recipients (A) (Pr(interview = no
record = yes)) and overreporting by non-recipients (B)
(Pr(interview = yes) Pr(record = no)), by program:
Program A B

AFDC .10−.12 .03−.04

Unemployment insurance .41−.44 .01

Food Stamps .12−.17 .02−.03

Supp. Security Income .08−.13 .03

70% to 80% report AFDC, Food Stamps, and SSI within 5% of
record; 20 to 30% accurately report unemployment insurance

Yen and Nelson (1996) 1 AFDC Administrative records
in Washington

93% of the 49 000 eligible person-months reported correctly;
Survey-based estimates of monthly participation exceeded
record-based estimates of participation by approximately
1 percentage point

continued on next page
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Table 2, continued

Reference Variables of interest Validation source Findings

Bollinger and David (1997) Food Stamp participation
(SIPP) individual records
aggregated to the household
level

Administrative records Pr(interview = yes record = yes) = .88
Pr(interview = yes record = no) = .003

1 Unpublished paper, reported in Moore, Stinson and Welniak (2000).
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relatively high values of both p01 and p10 can lead to near-zero net underreporting but
imply significant biases in a regression context.
Focusing our attention first on reporting of receipt of a particular transfer program,

among the full design studies, there does appear to be a tendency for respondents
to underreport receipt, although there are also examples of overreporting recipiency
status. For example, Oberheu and Ono (1975) report a low correspondence between
administrative records and household report for receipt of AFDC (monthly and annual)
and Food Stamps (p10 ≈ .2, p01 ≈ .3), but relatively low net rates of under- and
overreporting 63. In the study reported by Marquis and Moore (1990), respondents were
asked to report recipiency status for eight months (in two successive waves of SIPP
interviews). Although Marquis and Moore report a low error rate of approximately 1%
to 2% (not shown in table), the error rate among true recipients is significant, in the
direction of underreporting. For example, among those receiving AFDC, respondents
failed to report receipt in 49% of the person-months. Underreporting rates were
lowest among OASDI beneficiaries, for which approximately 5% of the person-months
of recipiency were not reported by the household respondents. The mean rates of
participation based on the two sources suggest little difference; absolute differences
between the two sources differed by less than one percentage point for all income types.
However, the rareness of some of these programs means that small absolute biases
mask high rates of relative bias among true participants, ranging from +1% for OASDI
recipiency to almost 40% for AFDC recipiency. In a follow-up study, Moore, Marquis
and Bogen (1996) compared underreporting rates of known recipients to overreporting
rates for known non-recipients and found underreporting rates to be much higher than
the rate of false positives by non-recipients. They also note that underreporting on the
part of known recipients tends to be due to failure to ever report receipt of a particular
type of income rather than failure to report specific months of receipt.
In contrast, Yen and Nelson (1996) found a slight tendency among AFDC recipients

to overreport receipt in any given month, such that estimates based on survey reports
exceeded estimates based on records by approximately 1 percentage point. Oberheu
and Ono (1975) also note a net overreporting for AFDC (annual) and Food Stamp
recipiency (annual), 8% and 6%, respectively.
The studies vary in their conclusions with respect to the direction and magnitude

of response error concerning the amount of the transfer, among those who report
receiving it. Several studies report a significant underreporting of assistance amount
[e.g., Livingston (1969), Oberheu and Ono (1975), Halsey (1978)] or significant
differences between the survey and record reports [Grondin and Michaud (1994)].
Other studies report little to no difference in the amount based on the survey and record

63 Oberheu and Ono’s sample is restricted to low-income households. This is likely to lead to a larger
value of p01 than would be obtained in samples with the full range of household incomes. For example,
p01 would be increased by mis-reporting other transfers, and these would be more common in low-income
households.
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reports. Hoaglin (1978) finds no difference in median estimates for welfare amounts
and only small negative differences in the median estimates for monthly Social Security
income. Goodreau, Oberheu and Vaughan (1984) found that 65% of the respondents
accurately report the amount of AFDC support; the survey report accounted for 96%
of the actual amount of support. Although Halsey (1978) reported a net bias in the
reporting of Unemployment Insurance amount of −50%, Dibbs, Hale, Loverock and
Michaud (1995) conclude that the average household report of unemployment benefits
differed from the average true value by approximately 5% ($300 on a base of $5600).
In general, studies that assess the accuracy of transfer data from household surveys

do not provide analyses of how such errors affect the parameters of behavioral models.
An exception is Bollinger and David (1997), who estimate a parsimonious model of
response error from validation data and then combine this information into a model
of Food Stamp participation using a broader sample. They find that estimated effects
of wealth and predicted earnings are increased by such corrections, though they note
that these results depend on the model of response error based on a relatively small
validation sample (N = 2685, but with only 181 participants). They also note that low
income households are much more likely to mis-report Food Stamp receipt because
they confuse Food Stamps with other transfers they receive; high-income respondents
do not have other transfer programs to confuse Food Stamps with. Thus, while many
examples of differential measurement error in survey reports of transfers are due to
deliberate under-reporting, Bollinger and David’s example shows that differential errors
may also occur inadvertantly.
Studies of receipt of transfer payments are often interested not only in which groups

are receiving transfers and how much they receive at one point in time, but also in the
duration of receipt, and so in the transitions into and out of recipiency. Marquis and
Moore (1990) matched data from SIPP interviews to administrative records for major
transfer programs. They find that the number of transitions (those starting to receive
benefits, and those whose benefits end) are overstated by interview respondents for
some benefit programs and understated for others. A more consistent pattern is that
such transitions are over-stated when one compares the last month of the reference
period of one interview with the first month of the next – the so-called “seam” –
and understated when one compares reports for two months collected in the same
interview64.
Comparing the findings for transfers with those for earnings suggests several broad

conclusions. First, there is evidence of under-reporting of transfers, in contrast to the
approximately zero-mean errors we found for earnings, and such underreporting seems
more important for AFDC and other public assistance than for Social Security. This is
quite consistent with comparisons of aggregate estimates based on survey reports to

64 The finding of more transitions at the “seam” than at other points in a retrospective history pieced
together from a series of interviews has been documented repeatedly [Moore and Kasprzyk (1984),
Burkhead and Coder (1985), Hill (1987)].
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independent estimates of aggregate amounts received 65. Second, both non-reporting
and underreporting by those who report receiving positive transfer benefits contribute
to this underreporting, though it is hard to draw firm conclusions about the relative
importance of these two sources of error. Third, accuracy of reports for individual
transfers is reduced by mis-classification; i.e., respondents who report receiving a
transfer, and may even report the amount correctly, but incorrectly identify the program
that provided the benefit. Fourth, the focus on extent of underreporting in most studies
leaves us with very little evidence on the likely effects of errors in reporting transfers
when benefits from individual programs are used as either dependent or explanatory
variables in behavioral models 66.

6.3. Assets

The literature on accuracy of reports of individual assets (and so, implicitly, of net
worth) is similar in important ways to the literature on transfer income. Comparisons of
aggregate values based on survey reports to independent estimates of these aggregates
suggests that underreporting is likely to be a problem [Curtin, Juster and Morgan
(1989)] 67. The literature has therefore focused on the extent of such underreporting,
rather than on the variance of the error relative to the variance of the true (record)
value, or the correlation between errors and true values.
A limited number of studies have focused on the assessment of measurement

error related to the reporting of assets and only one of these, the study by Grondin

65 In 1990, CPS totals amounted to 97% of independently-estimated levels of Social Security and railroad
retirement benefits, and 89% of Supplemental Security Income payments. In comparison, CPS captured
only 72% of AFDC and 86% of other public assistance [U.S. Census Bureau (1993, Table C-1)].
66 Since benefits received depend in part on choices made by the recipient, analysts often use some
sort of instrumental variable procedure to account for this endogeneity; for example, the level of AFDC
benefits available in a state might be used as an instrument for the reported benefit level. While one
might hope that instrumenting would undo the bias from measurement error as well, we have stressed
that this hope depends on the reporting error being “classical”. Given that benefits are bounded (at zero)
and zero benefits are in fact common, we suspect errors are likely to be mean-reverting. Particularly
for programs such as AFDC where reporting seems least accurate, the effect of reporting error on the
consistency of IV estimates deserves explicit discussion.
67 Curtin, Juster and Morgan report that the 1983 Survey of Consumer Finances produces aggregate
net worth estimates that are close to those based on external (flow-of-funds) sources. This “adding up”,
however, reflects a balance between substantial discrepancies on particular wealth components (e.g., SCF
shows “too little” liquid assets but “too much” housing), and a close look at these discrepancies suggests
that the external totals are often not very accurate benchmarks for the survey data (e.g., because of
difficulties in the flow-of-funds accounts in separating household and business asset holdings). However,
alternative wealth surveys show substantially lower levels of net worth than does SCF (PSID and SIPP
being roughly 80 and 60% of SCF, respectively). Juster, Smith and Stafford (1999) report that wealth
surveys conducted in the 1960s typically found about two thirds of the net wealth found in the external
sources. CPS reports of interest and dividend income were 51 and 33% of NIPA totals [U.S. Census
Bureau (1993)]. Thus, comparisons with external totals suggest that under-reporting is likely to be the
norm, although failure to sample the wealthiest households also contributes to these discrepancies.
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and Michaud (1994), focuses specifically on interest and dividend income generated
from asset ownership. Several studies conducted during the 1960s examine the
extent to which respondents accurately reported savings account and stock ownership,
comparing survey reports with financial institution reports for a sample of respondents
known to own the particular asset of interest. As noted above, reverse record check
studies by design limit the detection of response error to underreports. Hence, one
should be cautious in drawing conclusions concerning the direction of response
error based on these studies. As noted in Table 3, between 5% and almost 50% of
respondents fail to report existence of a savings account; 30% of those who own stock
failed to report ownership. The high rate of underreporting is also evident in the full
design validation study reported by Grondin and Michaud (1994).
Among those who report ownership of a savings account or stocks, the findings are

mixed with respect to the accuracy of account amounts. Maynes (1965) and Ferber,
Forsythe, Guthrie and Maynes (1969a) report a small amount of net bias for reports of
savings account amounts (−5% and 0.1%, respectively), while Ferber, Forsythe, Guthrie
and Maynes (1969b) report that 80% of respondents are accurate in their reports of
stock holdings. In contrast, Ferber et al. (1969a) indicate that there is a large degree
of response error, with only 40% of respondents reporting the account amount within
10% of the true value. Similarly, Lansing, Ginsburg and Braaten (1961) indicate an
absolute discrepancy of almost 50% between financial records and household survey
respondents’ reports of saving account amounts, a discrepancy similar to that reported
by Grondin and Michaud (1994).
A few studies attempt to validate survey responses to questions about the value of

owner-occupied housing, a very important component of wealth for most households.
Kish and Lansing (1954) find that owners’ estimates are close to appraisers’ on average
(mean discrepancy = 4%) but the two estimates differ by 30% or more in a quarter of
the cases. Scrutinizing cases with the largest discrepancies – which a typical survey,
without validation data, could not do – they find that the largest discrepancies were
due to coding errors (e.g., omitting a zero or misreading a lead digit in moving
from the interview form to the data record). Rodgers and Herzog (1987) find that
differences between household estimates of assessed value and property-tax records
of assessed value are positively related to the record value. This contrasts with the
negative correlation they find for other variables, and which is typically found in other
studies.
Related perhaps to respondents’ difficulty in providing accurate responses to

questions about asset holdings is the substantial level of item non-response – it is not
uncommon for 30% of those who report owning an asset to either refuse to provide or
claim to not know the value of the asset [Juster and Smith (1997)]. In response, surveys
have increasingly used “unfolding brackets”: questions of the form “would it be more
or less than X”, where a “yes” (“no”) to the first such followup leads to a second
with a higher (lower) value of X. Thus, respondents unwilling or unable to provide a
dollar amount are induced to specify a range in which they believe the value of their
asset holding lies. Since those who are initially unwilling or unable to give a dollar
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Table 3
Assessment of measurement error: assets 1

Reference Variables of interest Validation source Findings

Kish and Lansing (1954) House value (1950 Survey
of Consumer Finances)

Appraisals (conducted
specifically for
validation)

Mean value reported by owner = $9560
Mean value reported by appraiser = $9210
Difference = $350 (s.e. = 170)
Owner’s and appraiser’s estimates differed by at least 30% in
24% of the cases;
Largest discrepancies ultimately traced to coding errors

Lansing, Ginsburg and
Braaten (1961) 2

Savings account ownership 3 Financial institution
records

Ownership of savings account:
Pr(interview = yes record = yes) = .75

Conflicting evidence on extent of underreporting by those who
report having accounts:
In one sample, mean (record) = $3310, mean (error) = −500

or −14%; mean abs error = $1571
In second sample, mean error = +2%

Maynes (1965) Savings account ownership 4 Financial institution
records

Ownership of savings account:
Pr(interview = yes record = yes) = .95

Of those who report an account and the amount in it:
Mean(record) = 1827, mean error = −83 or 5%
Mean error = −1% for those who consult records, −10% for

those who do not;
Error negatively related to record amount;
Savings over 9 months also underreported, with errors

negatively related to record savings

Ferber (1966) 2 Savings account ownership Financial institution
records

Ownership of savings accounts: in three samples, Pr(interview =
yes record = yes) = .81, .78, and .65
Among those reporting an account and the amount in it, mean
errors = −20%, 0.3%, and 8% of record means

continued on next page
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Table 3, continued

Reference Variables of interest Validation source Findings

Ferber, Forsythe, Guthrie
and Maynes (1969a,
Tables 1–3)

Savings account ownership Financial institution
records

46% of known accounts not reported; 32% of families known to
have at least one account reported not having any;
Owners of larger accounts less likely to participate in survey, but
more likely to report accounts if they participate;
For accounts reported and matched to record data, mean error
negligible (record = $3040, interview = $3042) but interview
reports differ from record by ±50% for 28% of respondents;
Reporting error negatively related to record value

Ferber, Forsythe, Guthrie
and Maynes (1969b)

Stock ownership (in shares
of particular cooperating
firms)

Financial institution
records

Ownership of stock (in a particular firm):
Pr(interview = yes record = yes) = .70

Those who own more shares less likely to participate in survey;
among participants, reporting owning (any of) the stock not
monotonically related to shares actually owned;
For stocks reported and matched to record data, mean error
negligible (record = 63.8 shares, interview = 63.9); interview
reports differ from record by ±50% for 13% of respondents;
Those with largest holdings tend to underreport, but otherwise
relationship between error and record values is irregular

Rodgers and Herzog (1987) Assessed value of house
(Study of Michigan
Generations)

Property tax records r(error, record) = .242 (s.e. = .138)
error uncorrelated with age, education, marital status, or race;
correlation with income = .224 (s.e. = .123)

continued on next page
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Table 3, continued

Reference Variables of interest Validation source Findings

Grondin and Michaud
(1994)

Asset ownership; interest
and dividend income

Canadian tax returns 22% and 11% of survey respondents (in two studies,
paper-and-pencil and computer assisted, resp.) misreport whether
interest and dividend income was received;
Net underreporting rate of 19 and 6 percentage points, resp.
Pr(interview = yes record = yes) = .58 and .78, resp.
Pr(interview = no record = no) = .98 and .96, resp.
Of those with positive amount of income and dividend income in
both interview and record, approx. 70% agree within 5% on the
amount

1 Most validation studies involving assets have focused on the respondent’s ability to report the ownership of the asset and the amount of the asset rather
than the income generated from the asset.
2 Reported in Moore, Stinson and Welniak (2000).
3 Two samples, one limited to accounts ¾ $500, one limited to accounts ¾ $1000.
4 Sampling rate higher for large accounts; accounts <10 guilders excluded. Reported statistics unweighted. Data from Netherlands.
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value for the asset tend to be those with higher true values 68, brackets help to reduce
the underreporting typically found by comparing asset levels as reported in household
surveys to external (aggregate) values. For example, Juster and Smith (1997, Table 8)
report that bracket-based imputations produce 6–12% higher estimates of mean net
worth than imputations not based on bracket information.
However, experiments in which the bracket boundaries are varied randomly find

that the distribution of amounts that comes out of the brackets depends on the bracket
boundaries themselves. For example, in one study the fraction of cases with savings
accounts less than $10 000 was 49% with the first bracket question set X equal to
$1000 but only 37% when the first bracket question set X = $20 000. This, in turn,
has led to several attempts to obtain “corrected” estimates by jointly modeling the
determinants of the asset value and the effect of the (randomized) bracket boundaries
[e.g., Hurd et al. (1998), Hurd and Rodgers (1998)]. Both studies find responses are
pulled toward the boundary in the first bracket question. Setting bracket boundaries
with an eye toward maximizing the fraction of the variance in the asset that can be
accounted for by the categorical responses will tend to place the first bracket boundary
toward the middle of the distribution of the asset in question [Heeringa, Hill and Howell
(1995)]. Consequently, it is likely that the error induced by “anchoring” effects is likely
to be mean-reverting in most applications. Lacking validation data, however, it is hard
to say much about the effects of using bracket-based imputed values in regressions
that use wealth as either dependent or explanatory variable.

6.4. Hours worked

Obtaining validation data for workers’ reports of how many hours they work per week
has proved more difficult than obtaining earnings data. In general, the administrative
records – income tax, unemployment insurance, and Social Security payroll tax –
used in many of the studies in Table 1 include no comparable data on hours worked.
The largest Federal establishment survey of payroll and hours collects hours only for
production workers in manufacturing and non-supervisory workers in other industries.
A Bureau of Labor Statistics study that considered obtaining hours information for all
workers noted “Hours data are less available than total payroll for most categories of
workers” [U.S. Bureau of Labor Statistics (1983, p. 22)].
While the number of empirical investigations concerning the quality of household

reports of hours worked is limited, one finding consistently emerges. Regardless of
whether the measure of interest is hours worked last week, annual work hours, usual
hours worked, or hours associated with the previous or usual pay period, comparisons
between company records and respondents’ reports indicate that interview responses
overestimate the number of hours worked. The findings from seven studies in which

68 Hurst, Luoh and Stafford (1998) attribute to Donald Trump the observation that those who know
how much their assets are worth can’t be worth very much.
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household reports of hours worked are compared to employer’s records are reported
in Table 4; all of these studies were also represented in Table 1. Findings from three
studies in which the quality of the reports of hours worked is compared to time-use
diary estimates are also reported in Table 4.
Carstensen and Woltman (1979) compared reports of “usual” hours worked per

week. They found that compared to company reports, estimates of the mean usual
hours worked were significantly overreported by household respondents, 38.4 hours
vs. 37.1 hours, respectively, a difference on average of 1.33 hours, or 3.6% of the
usual hours worked. Similarly, Mellow and Sider (1983) report that the mean difference
between the natural logarithm of worker reported hours and the natural logarithm of
employer reported hours was .039. They also report that the measurement error has
a non-trivial variance (.064) but do not compare that variance to that of either the
interview or the record hours variable.
In their reanalysis of this same data, Angrist and Krueger (1999) report a variance

of the difference in ln hours of .083. This compares to the variance in ln survey hours
of .195 or a signal to total variance ratio of roughly .8. Again, mean reversion will
tend to reduce the implied attenuation to less than the .2 this number suggests.
Duncan and Hill (1985) find that worker reports of hours worked in the previous

year (from the first wave of the PSID Validation Study) exceed company reports
by 90 hours per year, nearly 6% of mean hours. The average absolute error was
157 hours. Recall of hours worked two years ago were less accurate, as expected,
with a mean absolute error of 211 hours. More readily related to the discussion of
biases in Section 2 is their finding that the ratio of error to record variance is .37.
Bound, Brown, Duncan and Rodgers (1989) also find hours are overreported in the
second wave of the Validation Study, though the mean error for ln (annual hours)
is only .012, which is not statistically significant. However, the variance of the error
is about .6 of the variance of record ln hours. Once again, there is evidence of
significant mean reversion (correlation between error and true hours of −.37). Rodgers,
Brown and Duncan (1993) consider various time intervals – hours worked in the
previous year, hours worked in the previous pay period, and “usual” hours worked.
They find the correlation between interview reports and company records is .61 to .66
for all three measures; and, for all three measures, the correlation between error and
company records is −.31 to −.37. It is worth recalling that the PSID Validation Study
obtained data from one manufacturing firm with few part-time workers and therefore,
limited variation in hours per week, but (at least at the first wave) less than full-year
employment for many workers. Moreover, hours data were unavailable for salaried
workers. Barron, Berger and Black (1997) report a correlation between employers’
records and respondents’ reports of hours last week, .769; but this correlation falls to
.61 for ln (hours).
One might wonder whether, in the case of hours, the company reported values should

be treated as “true”. For those who are paid by the hour, accurate recording of hours
is essential for correctly paying the worker, and for those who “punch a clock” the
company presumably has at least accurate records of the worker’s coming and going.
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Table 4
Assessment of measurement error: hours worked

Reference Variables of interest Validation source Findings

Carstensen and Woltman
(1979)

Usual hours worked per
week (CPS special
supplement)

Employers’ records Mean (household): 38.43
Mean (employer): 37.10
Mean (difference): 1.33 (s.e. = .10)
Compared to company records, estimates of the mean “usual
hours worked” significantly overreported by household
respondents

Stafford and Duncan (1980) Average work week (Time
Use Study) and Hours
worked last week (CPS)

Time-diary reports of
various work activities

Mean (average hours/week): 41.8
Mean (time-diary reports): 36.8 [37.5 eliminating 11 outliers];
Change in mean work hours per week between 1965 and 1975
larger in time-use data than CPS reports of hours worked last
week:

CPS hours Time diary

Married men −1.3 −3.4

Married women −0.5 −7.8

[Time-use means exclude those working <10 hours/week]

Mellow and Sider (1983) 1 Hours worked (CPS) Employers’ records ln (worker report) – ln (employer report):
mean = .039, variance = .064

Regression model predicting difference indicates that professional
and managerial workers report more hours than their employers;
overreports also associated with educated and nonwhite
employees, while females tend to underreport hours

continued on next page
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Table 4, continued

Reference Variables of interest Validation source Findings

Duncan and Hill (1985) 2 Annual hours worked, year t
and t − 1 hourly workers
only (PSID Validation
Study)

Employers’ records Mean 1982 annual hours (interview) : 1693

Mean 1982 annual hours (record) : 1603

Mean difference : 90 ( p < .01)

Mean 1981 annual hours (interview) : 1880

Mean 1981 annual hours (record) : 1771

Mean difference : 115 ( p < .01)

Mean 1982−1981 simple change (interview) : −185

Mean 1982−1981 simple change (record) : −167

Mean difference : −17

Mean absolute |1982−1981| change (interview) : 357

Mean absolute |1982−1981| change (record) : 286

Mean difference : 70

Significant overreporting of hours worked for both years with an
average absolute error of ≈ 10%;
Error-to-record variance ratio: ln 1982 annual hours: .366

Hamermesh (1990) Hours worked last week
(Time use studies)

Time diary data Average hours worked from CPS-like question on hours worked
last week exceed time-diary estimates by 1.5 hours in 1975 and
3.6 hours in 1981

Rodgers, Brown and
Duncan (1993) 2

Hours worked: annual; most
recent pay period; usual pay
period. Hourly workers only
(PSID Validation Study)

Employers’ records Correlation between self-report and company records: .66, .66,
and .61 for annual, most recent, and usual pay periods,
respectively, after deleting outliers. Relative ranking sensitive to
this decision and so unclear, overall;
Correlation between error and company records: −.31, −.36, and
−.37 for annual, most recent, and usual pay periods, resp.
Weak positive correlation (.061, not significant) of errors in
annual earnings over time (1986 and 1982)

continued on next page
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Table 4, continued

Reference Variables of interest Validation source Findings

Robinson and Bostrom
(1994)

Hours worked last week
(Time Use Study)

Time diary data Hours worked last week exceed time-diary estimates of hours
worked per week by 1 hour in 1965, by 4 hours in 1975, and by
7 hours in 1985

Bound, Brown, Duncan and
Rodgers (1994) 2

Annual hours worked
(PSID Validation Study)

Employers’ reports Mean interview reports of ln hours insignificantly higher than
record values;
A = ln annual hours 1986; B = 1986–1982 change in ln annual
hours;

A B

variance (interview) .0180 .0620

variance (record) .0174 .0529

variance (error) .0104 .0237

r(interview, record) .7033 .7962

r(error, record) −.3701 −.2061

b(record on interview) .6828 .7355

Correlation between 1986 and 1982 errors positive but very
small (.064)

Barron, Berger and Black
(1997, Table 5.1)

Hours worked per week
(Upjohn Institute Survey)

Employers’ records Mean (interview) = 38.5, Mean (record) = 37.0;
difference in means statistically significant (t = 3.95);
for ln (hours), difference in means = .031
r(interview, record) = .769
for ln (hours), r(interview, record) = .61

continued on next page
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Table 4, continued

Reference Variables of interest Validation source Findings

Angrist and Krueger (1999,
Table 10) 1

Hours worked (CPS) Employers’ records ln (employee-reported hours) – ln (employer reported hours):
mean = .043
variance (interview) .195

variance (record) .182

variance (difference) .083

r(interview, record) .780

r(error, record) −.149

b(record on interview) .870

Recoding lowest (highest) one percent of employee-reported
wages to the 1st (99th) percentile value increased b(record on
interview) to .91

1 It is unclear from the empirical findings as to the time reference used for the reporting of hours worked.
2 Sample limited to a single employer. Hours worked calculated from the respondents’ account of each week of the year (working, sick or annual leave,
etc.).
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For other workers, the link between hours worked and pay is much less tight, and as
noted above some employers may not even keep records of their hours.
Three of the studies represented in Table 4 take a different approach to assessing the

worker’s report of hours worked. In addition to CPS-like questions on hours worked
per week, the time use studies obtained time diaries from respondents. These diaries
involved detailed reporting of activities at each time in the previous day. While only a
few days’ time diaries were collected from each respondent, when aggregated across
respondents, work hours reported in the time diaries should add up to those reported
in CPS-like questions. All three studies in Table 4 that used time use data [Stafford
and Duncan (1980), Hamermesh (1990), Robinson and Bostrom (1994)] report that
CPS-style questions lead to higher estimates of work time than are obtained from the
time diaries. The discrepancies are, if anything, larger than those between worker and
employer reports, and the gap between CPS-like questions and the time-diary based
estimates is growing over time.
Evidence on the importance of measurement error in interview-based measures of

change in hours is available in the studies based on the PSID-VS. Duncan and Hill
(1985) find that constructing the change in annual hours by differencing reports for
two previous years asked in a single interview (the first PSID-VS wave) leads to a
relatively noisy measure, with an error to true variance ratio of .8. While sizeable errors
in changes calculated in this way are likely to be reduced by a positive correlation
between the errors in the two years [Rodgers, Brown and Duncan (1993) report that
correlation as .36 in the second PSID-VS]. Bound, Brown, Duncan and Rodgers (1989)
calculate the change in ln hours as one would in a longitudinal survey, as the difference
between the logarithm of 1986 hours (reported in 1987) and 1982 hours (reported in
1983). Whether measured by the error to true variance ratio, the correlation between
interview and record values, or the regression of record value on interview, the change
in hours data are slightly more reliable than the levels data.
Examination of a model with earnings as the left-hand-side variable and hours

worked as one of the predictor variables indicates that the high correlation between
the errors in reports of earnings and hours (ranging from .36 for annual measures to
.54 for last pay period) seriously biases parameter estimates. For example, regressions
of reported and company record ln annual earnings on record or reported ln hours,
age, education, and tenure with the company provide a useful illustration of the
consequences of measurement error. Based on respondent reports of earnings and
hours, the coefficient for ln hours is less than 60% of the coefficient based on company
records while the coefficient for age is 50% larger in the model based on respondent
reports. In addition, the fit of the model based on respondent reports is less than half
that of the fit based on company records (R2 of .352 vs .780).
The small number of studies validating worker reports of work hours against

employer reports provide little guidance on the relationship between errors in reporting
hours and other variables. Mellow and Sider’s (1983) regression explaining the
difference between the two sources indicates that professional and managerial workers
were more likely to overestimate their hours, as were respondents with higher levels



Ch. 59: Measurement Error in Survey Data 3791

of education and nonwhite respondents. In contrast, female respondents tended to
underreport usual hours worked.
In contrast to the findings with respect to annual earnings, we see both a bias in

the population estimates as well as bias in the individual reports of hours worked
in the direction of overreporting. This finding persists across different approaches
to measuring hours worked, regardless if the respondent is asked to report on hours
worked last week (CPS) or account for the weeks worked last year, which are then
converted to total hours worked during the year (PSID). The consistent direction of
misreporting coupled with what appears to be a trend toward increasing discrepancy
over time suggests that (1) respondents misinterpret the question (monthly CPS);
(2) incorrectly account for weeks worked (March CPS supplement and PSID); or
(3) overreport as a result of social desirability bias in the direction of wanting to
appear to be working more than is true. The monthly CPS questions concerning hours
worked ask the respondent to report the total number of hours worked, not hours
spent at the employer’s site or hours of paid work. One potential source of error
may be a difference in the underlying concept of interest, with users of the CPS
data examining hours of paid employment and respondents indicating total number
of hours, regardless of location or pay. The approach used in the March CPS and
PSID to obtaining hours worked requires that the respondent report the number of
weeks worked in the previous year. The March CPS question even includes the word
“about” suggesting that the respondent can provide a rough estimate of the number of
weeks worked. Here we would speculate that once again, the bias is in the direction
of errors of omission related to exceptions to the rule. That is, if the respondent
has been fully employed during the previous year, short spell deviations will not
be reported. Either approach to the collection of hours worked are subject to social
desirability bias, if respondent’s perceive the reporting of more hours as socially
desirable.

6.5. Unemployment

Concern about the reliability of survey reports relating to unemployment focuses on
a number of distinct but related issues. One question is how accurate are reports of
current labor force status, in which individuals are classified as employed, unemployed,
or not in the labor force. A related issue is how errors in reporting labor force
status in one month affect estimates of various labor force transitions (e.g., leaving
unemployment by finding a job or leaving the labor force), and estimates of the
duration of spells of unemployment that are calculated from such transitions. Other
studies have focused on the accuracy of retrospective reports, including the number
of spells of unemployment, the duration of such spells (including on-going spells)
and the total length of time unemployed in a particular period. Unlike the variables
considered in previous sections, there are no employer or administrative records that
allow one to verify whether non-working individuals are unemployed or not in the
labor force.
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6.5.1. Current labor force status, and transitions to and from unemployment
The most widely used data on current employment status come from the Current
Population Survey, which asks a series of questions each month and on the basis of the
responses classifies individuals as employed, unemployed (roughly, looking for work),
or not in the labor force (not working and not seeking work) 69. Correctly classifying
individuals involves taking proper – according to official definitions – account of
complications such as wanting to work but believing none is available, search for a
new job while on paid vacation from another job, school teachers on summer vacation,
etc. Concerned with the accuracy of these responses, CPS regularly re-interviews a
subsample of its respondents, re-asking the standard questions (about the reference
week covered by the original interview) and attempting to reconcile any differences
that the re-interview uncovers.
Several of the studies in Table 5 report estimates of the probability that an individual

initially classified as unemployed (or employed, or not in the labor force) will be
judged as unemployed following the re-interview process. A consistent finding of these
studies [Poterba and Summers (1984, 1986), Abowd and Zellner (1985), Chua and
Fuller (1987)] is that 11–16% of those classified as unemployed are likely to be mis-
classified, with most of the re-classifications being to not in the labor force rather than
to employed 70.
A distinct but related problem with the classification of labor market status is that

those in households that are interviewed by CPS for the first time are more likely to be
classified as unemployed than they are in later months. There is also a weaker tendency
for fewer of those in their sixth and seventh months to be counted as unemployed 71.

69 The CPS is collected each month from a probability sample of approximately 50 000 households;
interviews are conducted during the week of the month containing the 19th day of the month and
respondents are questioned concerning labor force status for the previous week, Sunday through Saturday,
which includes the 12th of the month. In this way, the data are considered the respondent’s current
employment status, with a fixed reference period for all respondents, regardless of which day of the
week they are interviewed. The design is a rotating panel design in which households selected for
participation are interviewed for four consecutive months, followed by eight months of no interviews,
and then interviewed for the same four months one year later. In any one month, 1/8 of the sample is
being interviewed for the first time, 1/8 for the second time, etc.
70 Poterba and Summers, and Abowd and Zellner take the reconciled status from the re-interview
as the “true” status. Chua and Fuller note that initial reports on the re-interview survey are more
consistent with the initial CPS interview for the fraction of the sample where reconciliation is carried
out than on the fraction where it is not. This suggests that, contrary to instructions, those conducting
the re-interviews are aware of the initial CPS response before the respondent has answered the initial
re-interview status. Poterba and Summers speculate that knowing the initial report leads re-interviewers to
minimize discrepancies (and hence the work required to reconcile them). This would imply the reconciled
responses are biased toward the original reports, and so taking them as true leads to underestimate the
extent of error in the regular CPS.
71 Bailar (1975) reports that in 1968–69, the number counted as unemployed was 20% higher for those
in their first month than the average regardless of month. This fell to 9% in 1970–72 [Bailar (1975)]
and 8% in 1974–83 [Solon (1986)]. Over these same time periods, the number counted as unemployed
is 5–7% lower in month 7 than overall, and 3–4% lower in month 6.
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Table 5
Assessment of measurement error: unemployment

Reference Variables of interest Validation source Findings

Morgenstern and Barrett
(1974) 1

Annual number of person
years of unemployment
(1964–71) (CPS; WES from
March Supplement)

None; comparison of
estimate based on annual
report (WES) vs. recall
for previous week (CPS)

Average percentage discrepancies between CPS and WES
(standard errors in parentheses):
White males : 3.25 (6.23)

Black males : 4.32 (6.45)

White females : 23.95 (6.45)

Black females : 21.56 (7.43)

WES (annual recall) tends to underestimate unemployment, with
the greatest discrepancy for women and youths. In high
unemployment years, tendency for WES to overstate the amount
of unemployment;
Some indication of overreporting of unemployment among males
age 25–44 and females age 45 and older

Horvath (1982) 1 Average estimate of weekly
unemployment (CPS; WES
from March Supplement)

None; comparison of
annual unemployment
data with average
computed from monthly
CPS

Underestimate of unemployment based on annual WES measure
ranged from about 9 to 25%; underestimate smallest for periods
of increasing unemployment;
Unemployment during the first six months of the year less likely
to be reported in WES than unemployment in second six months
of the year

continued on next page
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Table 5, continued

Reference Variables of interest Validation source Findings

Bowers and Horvath
(1984) 1,2

Duration of unemployment
spell (CPS)

None; reporting of
continuous
unemployment spell one
month later compared to
report at time t

Approximately 25% of respondents consistent in their report of
unemployment duration;
Percent consistent in reports of unemployment duration as a
function of spell duration:
< 5 weeks : 32.8%−40.0%

5−10 weeks : 23.3%−28.3%

11−14 weeks : 16.0%−21.2%

15−26 weeks : 18.6%−29.8%

27−51 weeks : 20.0%−23.1%

52 weeks : 0.0%−10.7%

53−99 weeks : 8.7%−18.6%

The longer the spell reported at time t, the smaller the increase in
reported duration one month later

Poterba and Summers
(1984, Table 1)

Employment status (CPS,
May 1976)

CPS Reinterview Survey
(after reconciliation with
initial reports)

Pr(CPS report Re-interview Status), May 1976; A = reinterview
after reconciliation; B = initial CPS interview
A B(employed) B(unemployed) B(not in LF)

Employed .991 .002 .008

Unemployed .036 .860 .104

Not in LF .005 .003 .992

Poterba and Summers
(1984, Table 2)

Unemployment duration
(CPS, June 1996)

Consistency with
May 1976 interview

Only 32% of June duration reports were “consistent” with (i.e.,
3–5 weeks greater than) May report. Inconsistent reports about
evenly divided between those with June–May difference greater
than 5 weeks and those less than 3 weeks;
Difference between reports tended to be too large for those who
reported being unemployed <20 weeks in May, and too small for
those unemployed >20 weeks in May.

continued on next page
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Table 5, continued

Reference Variables of interest Validation source Findings

Abowd and Zellner (1985,
Tables 6,7)

Employment status (CPS,
1987–1982)

CPS Reinterview Survey
(after reconciliation with
initial reports)

Pr(CPS report Re-interview Status), 1977–1982; A = reinterview
after reconciliation; B = initial CPS interview
A B(employed) B(unemployed) B(not in LF)

Employed .988 .002 .010

Unemployed .019 .886 .095

Not in LF .005 .003 .992

Assuming classification errors are independent from one month
to the next, correcting for such errors increases the fraction
unemployed one month who remain unemployed the next from
54% to 64%, and the fraction moving from unemployment to not
in the labor force falls from 21% to 13%

Akerlof and Yellen (1985) 1 Average estimate of weekly
unemployment (CPS; WES
from March Supplement)

None; comparison of
annual unemployment
data with average
computed from monthly
CPS

Previous-year unemployment reports from the WES average 90%
of those obtained from the monthly CPS for the same calendar
year;
WES–CPS difference has grown more negative over time;
Underreporting on WES most severe for those under 25 and for
women 25–54

continued on next page



3796
J.
B
ound

et
al.

Table 5, continued

Reference Variables of interest Validation source Findings

Duncan and Hill (1985) 3 Unemployment hours, year t
(1982) and t − 1 (PSID
Validation Study)

Employers’ records Annual unemployment hours
1982 1981 1982−1981

Mean (interview) 169 39 131

Mean (record) 189 63 126

Mean (error) −11 −16 5

Mean (absolute error) 52 45 77

Mean of the difference between interview and record data not
significantly different from zero in either year;
Average absolute difference was large relative to average amount
of unemployment in each year – about one-third the mean
unemployment for 1982 and two-thirds for year 1981 (one- and
two-year recall, resp.)

Poterba and Summers
(1986, Tables II, V)

Employment status (CPS,
1977–1982)

CPS Reinterview Survey
(after reconciliation with
initial reports)

Pr(CPS report Re-interview Status), 1981; A = reinterview after
reconciliation; B = initial CPS interview
A B(employed) B(unemployed) B(not in LF)

Employed .982 .003 .015

Unemployed .038 .887 .075

Not in LF .024 .018 .958

Assuming classification errors are independent from one month
to the next, correcting for such errors increases the fraction
unemployed one month who remain unemployed the next from
54% to 73%, and the fraction moving from unemployment to not
in the labor force falls from 21% to 9%

continued on next page
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Table 5, continued

Reference Variables of interest Validation source Findings

Chua and Fuller (1987,
Tables 1–3, 6–7)

Employment status (CPS,
1976–1978)

CPS Reinterview Survey
(not reconciled with
initial reports)

Pr(CPS report Re-interview report), 1976–1978; B = initial CPS
interview
Re − interview B(employed) B(unemployed) B(not in LF)

Employed .967 .007 .026

Unemployed .099 .661 .240

Not in LF .042 .019 .939

Assuming classification errors are independent from one month
to the next, correcting for such errors increases the fraction
unemployed one month who remain unemployed the next from
48% to 67%, and the fraction moving from unemployment to not
in the labor force falls from 21% to 7%

Mathiowetz and Duncan
(1988) 4, Mathiowetz
(1986) 4

Unemployment spells (PSID
Validation Study)

Employers’ records Overall, 66% of spells unreported;
Accurate reporting of spells associated with the amount of
unemployment in a given month and the temporal complexity of
the spell

Torelli and Trivellato
(1989) 5

Unemployment duration
(youth 14–29 in Italy’s
quarterly labor force survey)

None; consistency in
reporting duration of
unemployment spell
between quarterly
surveys and actual
elapsed duration

Around 40% of reports of unemployment duration are consistent;
tendency to under- or overreport duration related to actual length
of spell – the longer the duration of unemployment, the greater
the propensity to underreport the duration. “Rounding” or
“heaping” accounts for approximately one-third of the
inconsistencies

continued on next page
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Table 5, continued

Reference Variables of interest Validation source Findings

Levine (1993) 1 Unemployment rate (CPS
and WES from March
Supplement)

None; comparison of
contemporaneous rate
and one year
retrospective recall

Unemployment rate underreported by 7% to 24% when
comparing retrospective rate to contemporaneous rate;
35% to 60% of persons failed to report unemployment one year
after the event. Misreporting rate related to length of
unemployment spell;
Error correlated with economic cycle – less underreporting
during recessionary periods, greater underreporting during
expansionary periods

1 Estimates based on the monthly CPS unemployment rate used as the “gold” standard for comparison. Comparison involves the use of different
questionnaires and different questions to obtain measure of unemployment.
2 The authors note that the findings may, in part, reflect rounding by those with very long (>6 months) unemployment spells.
3 Sample limited to a single employer. Hours unemployed calculated from the respondents accounting for each week of the year (working, sick or annual
leave, etc.).
4 Sample limited to a single employer. Spell-level information obtained by asking the respondent to report the month in which he or she was unemployed
for at least part of the month. Company plagued by sporadic unemployment during years of interest.
5 Sample limited to those ages 14–29 living in the Lombardy region of Italy.
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This pattern of “rotation group bias” is also present in the re-interview data [Bailar
(1975)], which serves as a reminder that the re-interview data should not be regarded
as error-free.
If those who are mis-classified in one month are correctly classified (or misclassified

in a different way) in the next month, the number of transitions from one state
to another will be exaggerated. For example, some of those who appear to move
from unemployed to not in the labor force will in fact have been out of the labor
force in both months. The extent to which classification error in one month biases
estimates of transitions between statuses depends on whether the errors are persistent
or independent from one month to the next. Lacking direct evidence on this score,
analysts assume that the errors in one month are unrelated to errors in the next. On
this assumption, a significant fraction of the apparent transitions – in particular, .10–.18
of the roughly .5 probability of leaving unemployment from one month to the next –
appear to be due to errors in classifying workers in each of the months; transitions from
unemployment to not in the labor force are exaggerated more than are transitions from
unemployment to employment.
While there has been significant effort devoted to gauging the likely effects of

errors in measuring labor force status on transition rates, there is much less evidence
on how such errors might affect analyses of the effects of various factors on such
transitions. Poterba and Summers (1995) explore the consequences of errors in
reporting employment status for estimates of the effects of unemployment insurance
and welfare receipt on the probability of leaving unemployment. Initially, they
model the reporting errors as fixed probabilities, independent of the explanatory
variables. Correcting for reporting errors based on re-interview evidence has little
effect on the estimated effects of unemployment insurance, but substantially increases
the effect of welfare receipt on labor force withdrawal. They note, however, that
previous work suggests reporting errors in one month are higher for those who were
unemployed in the previous month. They present alternative estimates intended to
capture this intuition, albeit informally. If these alternative estimates of the probability
of classification error are correct, effects of unemployment insurance and welfare
receipt on transitions out of unemployment are significantly underestimated due to
such error.

6.5.2. Retrospective unemployment reports

A substantial number of studies have examined directly the quality of unemployment
reports. These studies, reported in Table 5, encompass a variety of unemployment
measures including annual number of person years of unemployment, weekly unem-
ployment rate, occurrence and duration of specific unemployment spells, and total
annual unemployment hours. Only one study reported in the literature, the PSID
validation study [Duncan and Hill (1985), Mathiowetz (1986), Mathiowetz and Duncan
(1988)], compares respondents’ reports with validation data; the majority of the
studies reported in Table 5 rely on comparisons of estimates based on alternative



3800 J. Bound et al.

study designs or examine the consistency in reports of unemployment duration across
rounds of data collection. In general, the findings suggest that retrospective reports of
unemployment by household respondents underestimate unemployment, regardless of
the unemployment measure of interest.
Several of the studies reported in Table 5 compare unemployment statistics based

on reports to the monthly Current Population Survey (CPS) to those obtained from
the Work Experience Survey (WES), a set of questions included in the March
Supplement to the CPS. The studies by Morgenstern and Barrett (1974), Horvath
(1982), and Levine (1993) compare the contemporaneous rate of unemployment as
produced by the monthly CPS to the rate resulting from retrospective reporting of
unemployment during the previous calendar year. The measures of interest vary
from study to study; Morgenstern and Barrett focus on annual number of person
years of unemployment, Horvath on average estimates of weekly unemployment, and
Levine on the unemployment rate. Regardless of the measure of interest, the empirical
findings from the three studies indicate that when compared to the contemporaneous
measure, retrospective reports of labor force status result in an underestimate of the
unemployment rate. The rate of underreporting, depending upon both the measure
of interest, the population, and the year, ranged from as low as 3% to as high
as 25%. The discrepancy between the retrospective WES and the contemporaneous
reports is generally taken as evidence of recall error. Note, however, that the
monthly status reports are based on a complex algorithm that combines answers to
a series of questions, while the WES allows the respondent greater freedom in self-
classifying.
Across the three studies, the underreporting rate is significant and appears to be

related to demographic characteristics of the individual. For example, Morgenstern
and Barrett (1974) report discrepancy rates of 3 to 24%, with the highest discrepancy
rates among women (22% for black women; 24% for white women). Levine compared
the contemporaneous and retrospective reports by age, race, and gender. He found the
contemporaneous rates to be substantially higher relative to the retrospective reports
for teenagers, regardless of race or sex, and for women. Across all of the years of
the study, 1970–1988, the retrospective reports for white males, ages 20 to 59, were
almost identical to the contemporaneous reports.
One of the strengths of these three studies is the ability to examine the underreport-

ing rates across many years of data and the impact of economic cycle on the quality of
the retrospective reports of unemployment. The findings suggest a relationship between
economic cycle and the quality of retrospective reports; Morgenstern and Barrett’s
(1974) analyses indicate that in years of high unemployment, retrospective reports of
unemployment from the WES overstate the amount of unemployment. Horvath (1982)
found that in periods of increasing unemployment, discrepancies between estimates of
the average weekly unemployment rate based on concurrent and retrospective reports
were smaller than during other economic periods. Levine’s (1993) findings were similar
to those of Horvath; he found that underreporting declined during recessionary periods
and increased during expansionary periods.
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In contrast to the findings comparing the estimates of unemployment from CPS and
the WES, Duncan and Hill (1985) found that the overall estimate of mean number of
hours unemployed one and two years prior to the survey based on employee reports
and company records did not differ significantly. However, micro-level discrepancies,
reported as the average absolute difference between the two sources, were large relative
to the average amount of unemployment in each year.
In addition to studies which examine rates of unemployment, person-years of

unemployment, or annual hours of unemployment, several empirical investigations
have focused on spell-level information, examining reports of the specific spell and
duration of the spell. Using the same data as presented in Duncan and Hill (1985),
Mathiowetz and Duncan (1988) found that at the spell level, respondents failed to
report over 60% of the individual spells. Levine (1993) found that between 35% and
60% of persons failed to report an unemployment spell one year after the event. In both
studies, failure to report a spell of unemployment was related, in part, to the length of
the unemployment spell; short spells of unemployment were subject to higher rates of
underreporting.
With respect to reporting the duration of a spell of unemployment, there is some

evidence that the direction and magnitude of response error is a function of the length
of the unemployment spell. For continuous spells of unemployment (that is, those
that had begun in month x and which were ongoing at month x + 1) Bowers and
Horvath (1984) compared reports of spell duration to the actual amount of time that had
elapsed between the two interviews. They found, on average, that the increase in the
reported duration of the unemployment spell exceeded the actual elapsed time between
interviews. Torelli and Trivellato (1989) used a similar approach for a quarterly survey
and found that approximately 40% of the reported spell durations were consistent with
the actual elapsed time and that the magnitude of response error was a function of
the actual length of the spell. Specifically, they found that the longer the duration of
unemployment, the greater the propensity to underreport the duration. Approximately
one-third of the inconsistent reports was attributed to rounding by the authors. Poterba
and Summers (1984) also find that the increase in spell length between interviews is
smaller for those with longer durations of unemployment.
The findings suggest that, similar to other types of discrete behaviors and events,

the reporting of unemployment is subject to deterioration over time. The passage of
time alone however may not be the fundamental factor affecting the quality of the
reports. Some evidence suggests that the complexity of the behavioral experience
is a significant factor affecting the quality of retrospective reports. Both the micro-
level comparisons as well as the comparisons of population estimates suggest that
behavioral complexity interferes with the respondent’s ability to accurately report
unemployment for distant recall periods. Hence we see greater underreporting among
population subgroups who traditionally have looser ties to the labor force (teenagers,
women). Although longer spells of unemployment were subject to lower levels of
errors of omission, a finding that supports other empirical research with respect to
the effects of salience, at least one study found that errors in reports of duration were
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negatively associated with the length of the spell. Whether this is indicative of an
error in cognition or an indication of reluctance to report extremely long spells of
unemployment (social desirability) is unresolved.

6.6. Industry and occupation

The measures discussed thus far are ones in which discrepancies between the gold
standard, whether administrative records or reports obtained from preferred designs,
have been attributed to the response process. In that process, the respondent, the
interviewer, and the question wording as well as the content of the questionnaire
can all contribute to that which is often labeled “response” error. Evaluation of error
associated with the measurement of industry and occupation must consider yet another
factor which could contribute to the overall quality of a measure, the error potentially
introduced through the coding process. The literature on response error, however,
contains little discussion of the extent to which coding (as well as other post data
collection processing) contributes to the overall error associated with a particular
measure, or specifically with the classification of industry and occupation. Therefore,
in the discussion that follows, the reader is cautioned that although disagreement
between household reported industry and occupation and administrative records is
often classified as response error, coding/classification errors most likely contribute
to the overall level of discrepancy.
Based on the small set of studies which have examined the quality of industry and

occupation reports, the findings presented in Table 6 indicate that, in general, industry
is reported more accurately than occupation. For both industry and occupation, not
surprisingly, the agreement rate between employees’ and employers’ reports classified
according to a single-digit coding scheme are higher than the resulting reports
categorized according to the more detailed three-digit classification. Mellow and Sider
(1983) report agreement rates between 84% and 92% for industry classification and
between 58% and 81% for the classification of occupation (three-digit and one-
digit classification schemes, respectively) in their Current Population Survey sample.
Agreement rates are lower in the EOPP data, but Mellow and Sider indicate there
is reason here to doubt the accuracy of the record report. Brown and Medoff
(1996) compared industry classification of workers’ reports to the SIC codes for
the employer, as listed by Dun and Bradstreet. Using fourteen industry groups, their
comparison yielded an agreement rate of 79%. The findings from Mathiowetz (1992)
are similar to those of Mellow and Sider, with occupational agreement rates of 52%
to 76%, for three-digit and one-digit classifications, respectively. In the study by
Mathiowetz, two sets of coders independently coded the reports of the employers
and the employees while a third set of coders examined the two reports jointly to
determine if the occupation could be considered the same occupation, that is, result
in the same three-digit code. The direct comparison yielded an agreement rate of
over 87%, suggesting that a significant proportion of the inconsistency in three-digit
classification may be due to very subtle effects related to specific words used by the
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Table 6
Assessment of measurement error: industry and occupation

Reference Variables of interest Validation source Findings

Weiss, Dawis, England and
Lofquist (1961) 1

Occupation classification:
3-digit level

Employers’ responses to
independent
questionnaire

Self-reports agreed with company reports for 67% of the jobs
reported during the past five years; Agreement rate for current
occupation 70%; for occupations more than 4 years ago,
agreement rate drops to 60%; Agreement rate higher for older
workers, but not related to education or broad occupation

Dreher (1977) 2 Tenure (nine 5-year
intervals)

Employers’ records r(interview, record) = .97

Mellow and Sider (1983) Industry classification:
1- and 3-digit level (CPS
and Employment
Opportunity Pilot Project
(EOPP))

Employers’ reports CPS (N = 4523):
Agreement rate: 1-digit, 92.3%; 3-digit, 84.1%;
Agreement rates only slightly higher for self- than for proxy

reports;
EOPP (N = 3327):
Agreement rate: 1-digit, 87.5%; 3-digit, 71.1%

Mellow and Sider (1983) Occupation classification:
1- and 3-digit level (CPS)

Employers’ records Agreement rate: 1-digit, 81.0%; 3-digit, 57.6%;
Agreement rates only slightly higher for self- than for proxy
reports

Mathiowetz (1992) 2 Occupation classification:
1- and 3-digit level; direct
comparison (PSID
Validation Study)

Employers’ records Agreement rate: 1-digit, 75.7%; 3-digit, 51.8%;
Direct comparison (coder looks at worker and employer
description at same time) agreement rate: 87.3%

Brown and Medoff (1996) 3 Industry classification:
14 industry groups

Dun and Bradstreet Workers’ reports and D&B SIC code agreed 79% of the time

1 Sample limited to the first 325 persons of the Work Adjustment Project (Minneapolis–St. Paul metropolitan area) for whom both interview and employer
work histories were obtained.
2 Sample limited to a single employer.
3 Sample limited to those respondents for whom respondents’ reports of employer could be matched to D&B files. Successfully matched employers
tended to be larger and in business longer than employers in the overall sample.
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respondent to describe his or her occupation or used by the coder to classify the
occupation.
For variables like industry or occupation with multiple classifications, the effect of

measurement error on estimated parameters depends critically on the details of the
discrepancies. For example, if those in high-wage industries misreport themselves to
be in other high-wage industries, the bias in estimating industry wage effects will
be less than if the misreporters are spread randomly across the remaining categories.
Angrist and Krueger (1999, Table 11) calculate wage-weighted industry and occupation
indices, based alternatively on worker and employer data, from Mellow and Sider’s
CPS sample. In univariate regressions, the effect of the industry index is biased
downward by 8%, and occupation by 16%; controlling for standard covariates like
education, potential experience, race, and sex leads to estimated biases of 10 and 25%,
respectively. Hence, the general finding that occupation is measured “less accurately”
than industry does seem to translate into larger biases, at least when the relative
size of the coefficients associated with the various categories are constrained in this
way.
With respect to the reporting of occupations, the evidence of the deleterious effect

associated with longer recall periods is mixed. Weiss et al. (1961) report a decline in
the agreement rate of occupational classification by employee’s and employer’s from
70% for the current occupation to 60% for occupations held more than four years
prior to the date of the interview. Mathiowetz (1992) found no effect on length of
recall period in the agreement between household and employer reports of occupation.
Agreement rates between the two data sources for occupations held one year prior
to the interview were 49% (3 digit) and 74% (1 digit) compared to 52% and 76%,
respectively 72.
Given the difficulties in obtaining accurate measures of industry and occupation

at one point in time, and the tendency of most workers to change industry and
occupation only infrequently, there is general concern that measurement error will
exaggerate the occurrence of changes in industry and occupation when estimates of
such changes are obtained by comparing reports of industry and occupation obtained at
two points in time. The extent of such exaggeration depends on the extent to which the
measurement errors are independent (for a given individual) over time. Biases induced
when change in industry or occupation is an explanatory variable will depend as well
on the pattern of mis-classification (e.g., are those who in a high-wage industry but
are mis-classified assigned to another high-wage industry). We have no direct evidence
on the independence of such errors over time. Krueger and Summers (1988) assume
an error rate for one-digit industries half as large as reported by Mellow and Sider
(1983) (but with the same pattern of mis-classification as Mellow and Sider found),

72 Because the respondents in the study by Mathiowetz were older, with more tenure, than a nationally
representative sample, these estimates should be seen as conservative estimates of the decline in the
quality of reporting occupation associated with an increase in the length of the recall period.
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and assume such errors are independent over time73. They find such a correction has
a more important effect on estimated industry wage differentials estimated from two
successive years of CPS data (in which true changes are relatively infrequent, and
so the fraction due to classification errors is probably high) than in data from the
Displaced Worker Survey (where true changes are more common, and so the fraction
due to classification errors is lower) 74. The CPS results point clearly to the value of
evidence on pattern of errors in measuring changes in industry and occupation.

6.7. Tenure, benefits, union coverage, size of establishment, and training

In addition to questions concerning earnings, hours employed or unemployed, and
industry and occupation, many labor-related studies query the respondent as to their
employment tenure, union membership, establishment or firm size, and the nature
of various employment-related benefits. Few studies have investigated the quality of
these various measures; Table 7 provides a summary of available findings. The lack
of replication with respect to most of the measures of interests suggests that we err
on the side of being conservative when drawing inferences from these studies.
We could locate only two studies of tenure with employer in which workers’ reports

are compared to employer records, and these are studies of individual firms. Agreement
on starting date for current employer ranged from 71% [Weiss et al. (1961)] to over
90% in the the first wave of the PSID-VS [Duncan and Mathiowetz (1985)]; however,
agreement in the former study was defined as a reported start date within one month
of the company records and in the later study, as within one year of the actual start
date. Bound et al. (1994) report that, in both PSID-VS waves, the correlation between
interview and record data was .99 75. In contrast, Brown and Light (1992) find that
tenure reports in longitudinal surveys are often inconsistent – indeed, it is difficult
to infer which survey years a worker was employed by the same employer from the
tenure data alone. They consider a number of ways of resolving these inconsistencies
(in tenure reports) and ambiguities (about when a worker has begun working for a
new employer). Their main finding is that recoding the tenure values (so that tenure
increases by the elapsed time between surveys if one infers that the worker has
remained with the same employer) is important in applications where there are fixed
effects for each worker or for each spell with a particular employer.

73 Their taking half of Mellow and Sider’s rate is intended as a rough correction for the fact that the
employer reports in Mellow and Sider’s include some errors, and for the fact that errors for an individual
are probably not independent over time.
74 For example, the wage difference between workers in manufacturing and otherwise similar workers
in retail and wholesale trade is .07 in the CPS before correcting for measurement error, and .23 after
correcting. For displaced workers, the difference changes from .11 to .13.
75 Estimates of returns to tenure are about .002 higher (on a base of .01) in cross-section regressions
when record rather than interview data are used. However, this difference is due to a correlation between
tenure and errors in reporting earnings [Duncan and Hill (1985)].
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Table 7
Assessment of measurement error: union coverage, tenure, firm/establishment size, and miscellaneous benefits

Reference Variables of interest Validation source Findings

Weiss, Dawis, England and
Lofquist (1961) 1

Starting date Employers’ responses to
independent
questionnaire

Reported starting date agreed with company records (within one
month) for 71% of the jobs in past 5 years;
Validity significantly declines as a function of the length of time
between start date and date of interview

Mellow and Sider (1983) Coverage under union
contract (CPS and
Employment Opportunity
Pilot Project (EOPP)) 2

Employers’ reports CPS (N = 4523) sample proportions (B = Employer report):
Worker report B(covered) B(not covered)

Covered .235 .030

Not covered .041 .694

EOPP (N = 1708) sample proportions:
Worker report B(covered) B(not covered)

Covered .362 .051

Not covered .098 .489

Duncan and Hill (1985) 3 Coverage under union
contract (PSID Validation
Study)

Employers’ records Less than 1% disagreement, all in the direction of workers
claiming coverage when employer did not

Duncan and Hill (1985) 3 Union membership (PSID
Validation Study)

Employers’ records Less than 1% disagreement

Duncan and Hill (1985) 3 Health insurance, dental
benefits, life insurance
(PSID Validation Study)

Employers’ records Health Insurance: <1% disagreement;
Dental Benefits: 5% disagreement (workers claim no benefits
when employer indicates benefit);
Life Insurance: 10% disagreement (workers claim no benefits
when employer indicates benefit)

Duncan and Hill (1985) 3 Paid time off for vacation
days, sick days (PSID
Validation Study)

Employers’ records Vacation: <1% disagreement;
Sick Leave: 9% disagreement (3% claiming benefit when
company record indicates no benefit; 6% employer claims benefit
and employee reports no benefit)

continued on next page
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Table 7, continued

Reference Variables of interest Validation source Findings

Duncan and Mathiowetz
(1985) 3

Tenure (PSID Validation
Study)

Employers’ records 90% of respondents report hire date within one year of date
recorded by company

Bound, Brown, Duncan and
Rodgers (1994) 3

Tenure (PSID Validation
Study)

Employers’ records Correlation between worker and employer reports of tenure with
employer = .99 in both 1982 and 1986

Brown and Medoff (1996) 4 Establishment and company
size

Dun & Bradstreet Correlation between worker report and D&B value: .82 (ln
establishment size) and .86 (ln company size)

Brown and Medoff (1996) 4 Age of firm Dun & Bradstreet Correlation between worker report and D&B value: .56 (years
firm in business) and .50 (ln years firm in business)

Barron, Berger and Black
(1997, Table 5.1)

Union coverage Employers’ reports Correlation between worker and employer report = .689

Barron, Berger and Black
(1997, Table 5.1)

Eligibility for health and
life insurance, and
retirement plan

Employers’ reports Correlation between worker report and employer record:
When first hired After 2 years with firm

Health insurance .590 .469

Life insurance .516 .508

Retirement plan .312 .327

Barron, Berger and Black
(1997, Table 5.1)

Eligibility for paid vacation
and sick pay

Employers’ reports Correlation between worker report and employer record:
When first hired After 2 years with firm

Paid vacation .247 .490

Sick pay .294 .428

Barron, Berger and Black
(1997, Table 5.1)

Hours of training Employers’ reports Correlation between workers’ reports and employers for various
types of training:
On − site formal training .398

Off − site formal training .457

Informal, managerial .176

Informal, coworker .379

Total training .475

continued on next page
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Table 7, continued

Reference Variables of interest Validation source Findings

Berger, Black and Scott
(1998, Table 2)

Covered by
employer-provided health
insurance (March CPS)

Covered by
employer-provided
health insurance
(April/May CPS
Supplements)

March 1988 vs May 1988 CPS (N = 10 070) (B = March 1988
CPS):
May 1988 CPS B(not covered) B(covered)

Not covered .094 .034

Covered .073 .799

March 1993 vs April 1993 CPS (N = 11 603) (B = March 1993
CPS):
April 1993 CPS B(not covered) B(covered)

Not covered .141 .040

Covered .071 .748

Berger, Black and Scott
(1998, Table 3)

Eligible for health insurance
(Upjohn Institute Survey)

Employers’ reports Employee vs employer reports (N = 257) (B = Workers’ report):
May 1988 CPS B(ineligible) B(eligible)

Ineligible .459 .156

Eligible .054 .331

1 Sample limited to the first 325 persons of the Work Adjustment Project (Minneapolis–St. Paul metropolitan area) for whom both interview and employer
work histories were obtained.
2 In EOPP data, union coverage coded as yes if employer reports majority of (non-supervisory) workers are covered.
3 Sample limited to a single company.
4 Sample limited to those respondents for whom respondents’ reports of employer could be matched to D&B files. Successfully matched employers tended
to be larger and in business longer than employers in the overall sample. The authors note that due to potential inaccuracies in D&B counts of employer
size, correlations listed above “probably understate the correlation between worker reports and perfectly accurate measures of employer size” (p. 280).
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Several of the studies indicate that employees’ reports of coverage under a union
contract, union membership, insurance benefits, and vacation and sick leave are
accurate. With respect to coverage under a union contract, Mellow and Sider (1983)
report discrepancy rates of approximately 7% (CPS, national sample) and 15% (EOPP,
national sample), and Barron, Berger and Black’s (1997) estimate is 6%. This compares
to a 1% disagreement rate reported by Duncan and Hill (1985) in their unionized
single-employer sample. The EOPP disagreement rates are, however, inflated by the
fact that the employer report is coded as covered or not depending on whenever a
majority of the workers are covered. Freeman (1984) and Card (1996), using the
Mellow–Sider CPS data but different sample definitions, find employers and workers
disagreeing 3.5 and 5% of the time (respectively); like Mellow and Sider, they find
the discrepancies about evenly divided between workers but not employers reporting
coverage and the reverse 76.
In a simple bivariate regression of wages on union coverage, random zero-mean

errors in measuring coverage would lead to an estimate whose proportional bias is
equal to the sum of the two mis-classification rates (Prob(x = 0 | x∗ = 1) +
Prob(x = 1 | x∗ = 0)). This bias is .19 and .31 in Mellow’s CPS and EOPP data,
respectively; .10 in Freeman’s and .12 in Card’s sample of Mellow and Sider’s CPS
data. Freeman stresses the extent to which this bias is inflated in longitudinal analyses.
If measurement errors are independent over time, and the misclassification rates sum
to .10, the bias becomes 29% in a fixed-effect model if 19% of the sample reports
changing union status (as is true over 1970–79 in PSID); with smaller fractions of the
sample changing coverage status (as would be true in studying one-year changes) the
bias would be larger still. Of course, if the errors are positively correlated over time,
the bias due to measurement error in a fixed-effect model would be smaller than under
independence 77.
Card argues that, instead of treating the employer reports as “true”, one should

treat both employer and worker reports as subject to measurement error. He finds that
the estimated impact of union status on wages is very similar using either worker or
employer report, whereas the latter should have a larger effect if only the worker reports
were subject to error. Indeed, he argues that both the wage equations and the patterns
of agreement across industry are consistent with the hypothesis that both worker and
employer reports are equally prone to error, with error rates (independent of true union
status) of 2.5 to 3.0%. His model makes the common assumption that the error in
reporting union status is uncorrelated with the error term in the wage equation. This
rules out a number of plausible scenarios; for example workers who are not aware of

76 Freeman also finds that, in two supplements to the May 1979 CPS (in which union coverage was
asked in each), the responses given by workers are inconsistent 3.2% of the time. The inconsistencies
were about equally distributed between those who said they were covered only on the first supplement
and only on the second.
77 Indeed, Freeman reports that misclassification rates summing to .10 would predict more changes of
reported union status due to error alone than one observes in his 1974–1975 CPS panel.
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being covered by a union contract being those in weak unions which fail to deliver
high wages.
There appears to be considerable disagreement on the accuracy of employee

reports of various fringe benefits. Duncan and Hill (1985) also report high levels
of agreement for reports of health insurance (less than 1% disagreement), dental
benefits (5% disagreement, all underreporting by the respondent), life insurance
(10%, all in the form of underreporting by the respondent), number of vacation
days (less than 1%), and number of sick days (9%, split between over- and
underreporting). In contrast, Barron, Berger and Black (1997) report disagreement
rates of 35% and 25% (with respect to initial benefits) and 19% and 13% (with
respect to benefits after two years) for sick pay and life insurance, respectively.
Berger, Black and Scott (1998) compare March CPS reports of employer-provided
coverage to reports one or two months later in special CPS supplements. They find
11% of the reports are inconsistent, with lower overall coverage rates in the March
surveys. Comparing employer and worker reports, they find that three fourths of the
disagreements are workers who report they are eligible but whose employer reports
them ineligible.
The focus of Mitchell’s (1988) research was the respondent’s knowledge of pension

plan provisions. Using a match sample of household respondents and pension providers
identified as part of the 1983 Survey of Consumer Finances, Mitchell finds pension
misinformation as well as respondent’s inability to answer questions concerning
pension benefits to be quite widespread. The highest rates of inaccuracy by household
respondents concerned knowledge of early retirement provisions; one third of the
respondents could not answer the questions and among those who did respond,
less than one third understood (or more specifically, could accurately report) the
requirements for early retirement benefits.
These errors are likely to be particularly damaging in structural models that relate

retirement decisions to pension incentives. As Gustman and Steinmeier (1999) note,
workers with defined benefit pension plans do much better if they leave the firm at
the early retirement age rather than even one year earlier. Thus, mis-reporting the age
of early retirement eligibility by even one year can make it look like an individual is
retiring at precisely the age at which economic incentives suggest retirement should
not occur, and lead researchers to severely underestimate the importance of pension
incentives. Gustman and Steinmeier also note that workers may in fact base their
behavior on their perceptions rather than “true” incentives; for such workers, survey
responses may be a better approximation for the variable that motivates behavior than
is the “true” variable as calculated from the pension plans.
Using Dun and Bradstreet data as the record for comparison, Brown and Medoff

(1996) examined the quality of household reports of establishment and company size
as well as age of firm (i.e., how long the firm had been in business). Correlations ranged
from .56 (correlation between worker report and D&B report of age of firm) to .82 (for
ln establishment size) and .86 (ln company size). The authors note in their findings
that potential inaccuracies in the Dun and Bradstreet records “probably understate the
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correlation between the worker reports and perfectly accurate measures of employer
size”.
Only one study reported in Table 7 examines the accuracy of respondents’ reports of

training hours. Barron, Berger and Black (1997) compared workers’ and employers’
reports of hours of training for several different types of training: formal training,
training by co-workers, and training related to others performing the job. The
correlation between the two reports was highest for off-site, formal training (.457)
and for total number of hours of training (.457) and lowest for informal training by
managers (.176).
The empirical research concerning the quality of respondent’s reports of benefits,

tenure, and industry characteristics is limited; in many cases we have only a single
study to inform us as to the error properties of these measures. Although the findings
suggest that the reporting of tenure and union coverage is highly correlated with
administrative records, caution should be taken in drawing any conclusions from this
limited literature. With respect to the reporting of fringe benefits, the findings are
mixed. Based on the PSID-V, it appears that employees are well informed as to the
characteristics of benefits whereas the studies by Barron, Berger and Black (1997) as
well as Mitchell (1988) suggest high rates of inaccurate reporting.

6.8. Measurement error in household reports of health-related variables

While the examples discussed so far tend to be drawn from surveys that are most
often used by economists, the empirical literature in several other substantive areas is
rich with examples of the misreporting of autobiographical information. An important
example is health, where work typically done by those in other fields provides evidence
on the validity of health-related measures often used by economists and other social
scientists.

6.8.1. Health care utilization, health insurance, and expenditures

As previously noted, much of the early work with respect to the assessment of the
quality of retrospective reporting by survey respondents focused on the reporting of
health care utilization, usually as reverse record check studies in which respondents
were sampled from those with known hospitalizations or visits to physician offices. The
design of these studies makes them well suited for investigating errors of omissions;
however, many of these studies are uninformative with respect to overreporting errors.
Table 8 presents the findings from a selection of studies assessing either the

reporting of health care utilization, characteristics of health insurance, or health care
expenditures. Once again, we find evidence that response errors appear to be a function
of the nature of the response task facing the individual, the length of the recall period,
and the salience of the information to be retrieved.
Two of the studies reported in Table 8 assess the quality of reports of hos-

pitalizations. Cannell, Fisher and Bakker (1965) describe a reverse record check
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Table 8
Assessment of measurement error: health care utilization, expenditures, and insurance

Reference Variables of interest Validation source Findings

Cannell and Fowler (1963) Physician visits Physician records Errors of omission increase as a function of the length of recall:
15% unreported for one-week recall; 30% unreported for
two-week recall

Cannell, Fisher and Bakker
(1965)

Hospitalization utilization Hospital records Overall, 12% of hospitalizations not reported for one year recall
period. Errors of omission related to:
length of the recall period, ranging from 3% for

hospitalizations within 10 weeks of interview, to 40% not
reported for those occurring 52 weeks prior to interview;
length of hospital stay, with longer stays (30+ days) subject to

lower rates of omissions (~ 5%) than shorter stays (26%
underreporting for stays of 1 day);
perceived threat of the condition associated with the stay; 10%

rate of omission for conditions judged to not be threatening, to
21% of those judged most threatening;
Sample size of 1505 persons with 1833 hospital discharges
during the past year.

continued on next page
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Table 8, continued

Reference Variables of interest Validation source Findings

Yaffe and Shapiro (1979) Hospitalizations, physician
visits, dental visits,
prescription medicines

Provider records (Note:
agreement rates are for
population estimates and
not at the person level;
data provided for two
separate geographical
areas)

Agreement rates for utilization:
Office-based physician visits 72%−83%

Clinic visits 39%−54%

Emergency room 94%−96%

Dental visits 82%−86%

Prescribed medicines 61%−75%

Hospitalizations 94%−97%

Agreement rates for expenditures:
Office-based physician visits 68%−78%

Clinic visits 31%−38%

Emergency room 65%−90%

Dental visits 89%−99%

Prescribed medicines 65%−77%

Hospitalizations 87%−99%

Based on completed interviews with 802 families with
information for 2300 persons

continued on next page
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Table 8, continued

Reference Variables of interest Validation source Findings

Walden, Horgan and
Cafferata (1982)

Health insurance
characteristics

Health insurance plan
information collected
from insurance provider

Percent for whom agreement between two sources of information:
Existence of out-of-pocket payments 78%

Amount of out-of-pocket payments 32%

Sources of premium payments 74%

Amount of premium paid by others 28%

Agreement on coverage characteristics:
Semi-private hospital room 86%

Physician in-patient surgery 88%

Other in-patient physician 80%

Maternity 55%

Eye exam for glasses 73%

Routine dental care 78%

Orthodontia 69%

Ambulatory x-rays; diagnostic tests 70%

Ambulatory physician 54%

Ambulatory prescriptions 54%

Outpatient mental health care 29%

Inpatient mental health care 32%

Nursing home/ similar facility 33%

Based on data for 20 001 individuals

continued on next page
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Table 8, continued

Reference Variables of interest Validation source Findings

Cohen and Carlson (1994) Health care expenditures Medical records Expenditures by type of utilization (standard errors in
parentheses):
Inpatient hospital stays (n = 1050; 19% of hosptializations)
Mean (household) $5228 (630)

Mean (record) $4975 (451)

Mean (simple diff .) $252 (451)

Mean (absolute difference) $847 (210)

Emergency room visits (n = 1765; 21% of emergency visits):
Mean (household) $155 (10.7)

Mean (record) $153 (7.1)

Mean (simple diff .) $2 (8.9)

Mean (absolute difference) $59 (9.0)

Outpatient Department visits (n = 2609; 13% of outpatient visits):
Mean (household) $227 (15.4)

Mean (record) $238 (15.2)

Mean (simple diff .) −$10 (17.1)

Mean (absolute difference) $132 (17.0)

Medical provider contacts (n = 17 169; 11% of medical provider
visits):
Mean (household) $47 (1.0)

Mean (record) $53 (1.7)

Mean (simple diff .) −$5.5 (1.6)

Mean (absolute difference) $23 (1.5)
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study 78 in which approximately 1500 respondents were asked to report on hospi-
talizations occurring during the previous 12 months. Overall, approximately 13% of
hospitalizations were not reported. Response error, as measured by the percent of
hospitalizations not reported by the respondent, increased as a function of the length of
time between the date of the hospitalization and the date of the interview. For example,
for hospitalizations occurring within 10 weeks of the interview, the underreporting
rate was 3% whereas among hospitalizations occurring a year prior to the interview,
40% were unreported. The duration of the hospitalization was related to the rate of
underreporting; 5% of longer hospital stays (e.g., those lasting 30 or more days) were
unreported by the household respondent as compared to 26% of one-day stays.
Other studies have examined the quality of the reports related to utilization of

office-based physician services. For example, Cannell and Fowler (1963) found that
a significant proportion of office-based physician visits were unreported by the
household respondent, even for recall periods as short as one week (15% unreported)
and that the underreporting rate increased sharply with an increase in the reference
period to two weeks (30% underreporting rate).
The Medical Economics Survey reported by Yaffe and Shapiro (1979) was designed

to test the feasibility and effectiveness of several different survey design features
to obtain information concerning health care utilization, expenditures, and health
insurance coverage. The study included an assessment of face-to-face vs. telephone
mode, as well as monthly vs. bimonthly interviews over a six month data collection
period. In addition to the monthly or bimonthly interview, respondents were asked to
maintain a diary (after the initial interview) to serve as a record-keeping system and
memory aid for subsequent interviews. Prior to each follow-up interview and at the
end of the study period, a cumulative summary of previously reported information was
mailed to each household. Respondents were asked to review the report and to make
any necessary additions or corrections, including entries about bills received since
the time of the last interview. All medical care providers identified by the respondent
as having provided care for anyone in the family during the study period as well as
providers identified as the usual source of care, were contacted after the household
data collection.
Several of the design features, specifically, the multiple rounds of data collection,

coupled with the relatively short reference period, the use of a household diary, and
the use of a summary were all included so as to minimize response error. These
design features may account, in part, for the higher levels of agreement reported in
Table 8 for this study as compared to other studies. In addition, Yaffe and Shapiro
only report agreement rates for population estimates, that is, (Yhh/Ymed)∗100, where Yhh
represents the population estimate based on the household report and Ymed represents
the population estimate based on the medical records. The estimates are provided for

78 The sample consisted of persons selected from hospital records as well as a supplementary sample
of persons without hospitalizations, so as to blind the interviewers as to the purpose of the study.
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the two distinct geographical areas studied. As can be seen from the table, agreement
rates for utilization are quite high for the most salient events (and less frequent)
such as hospitalizations and emergency room visits, with agreement rates in excess
of 90%. Agreement rates were lowest for clinic visits, 39 to 54%. With respect to
expenditures, we once again see a high level of agreement between the two data sources
for hospitalizations (87 to 99%) and the lowest agreement rates for hospital clinic
visits (31 to 38%).
Cohen and Carlson (1994), using data from the National Medical Expenditure

Survey, also examined the quality of household reports of medical expenditures. The
entries in Table 8 present the mean household estimate, the mean medical record
estimate, the mean of the simple difference and the mean of the absolute difference
between household and medical record reports of total expenditures for each of four
categories of utilization. The sample sizes provided in the table represent the number
of events on which the estimates are made; the percent indicates what proportion of
all household events of that type are included in the analysis. Due to the design of the
NMES (which included a medical record component for a sample of all households) as
well as provider nonresponse and inability to match events reported by the household
with events abstracted from medical records, not all events reported by the household
respondent were included in the analyses. In addition, the analysis is limited to those
events for which there was expenditure data from both the household and medical
record files. The comparison of the two data sources indicate that although the simple
differences tend not to be statistically significant, the absolute differences clearly
indicate significant disagreement between the two data sources.
Very few studies have examined the ability of household respondents to report

detailed information concerning features of their health insurance. Knowledge of the
existence of out-of-pocket payments and sources of premium payments was quite
high (78% and 74%, respectively), but quite low with respect to amounts of out-of-
pocket payments and amount of insurance premiums paid by others (less than 30% for
each) [Walden, Horgan and Cafferata (1982)]. As we would expect, the majority of
respondents were able to accurately report the standard major categories of coverage
(hospital room, physician in-patient surgery, other in-patient physician services, and
dental services). Knowledge of coverage associated with richer benefit plans was
much lower, however, with less than one-third of the respondents correctly identifying
whether or not their insurance covered outpatient mental health, in-patient mental
health or nursing home services.

6.8.2. Health conditions and health/functional status

Measurement error in health surveys is not limited to the reporting of utilization,
expenditures, and health insurance characteristics, but is also evident in the reporting
of medical conditions as well as the reporting of health and functional status. Findings
from a sampling of the literature which addresses the validity and reliability of self
reports of health conditions and functional status are presented in Table 9.
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Table 9
Assessment of measurement error: health conditions and health/functional status

Reference Variables of interest Validation source Findings

National Center for Health
Statistics (1961)

Chronic conditions Medical records Correspondence between medical records and household reports
of chronic conditions ranged from 20% to 44%. Higher rates of
correspondence between two data sources associated with:
use of a checklist rather than free recall
higher number of physician visits during the past year

associated with the condition
most recent physician service within the past two weeks

No differences in the quality of the report by self/proxy status,
age, gender, or race;
Sample of approximately 1400 families; medical records indicate
4648 chronic conditions among respondents

National Center for Health
Statistics (1967)

Chronic conditions Medical records Errors of omission as a function of time since last visit and
response task:
Time Recall Recognition

< 2wks 58% 32%

2wk −4mo. 79% 51%

> 4mo. 84% 66%

Katz, Downs, Cash and
Grotz (1970)

Index of Activities of Daily
Living; study of
270 patients at discharge

Correlation between
index scores and other
assessment scales

Correlation coefficient of .50 with mobility scale and .39 with
house confinement measure

Madow (1973) Chronic conditions Medical records 46.8% of conditions recorded in medical records unreported in
household interview (underreporting) while 40.4% of household
reported conditions were not listed in medical record
(overreporting);
Interviews with approximately 5000 persons with over 15 000
conditions obtained from the two data sources

continued on next page
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Table 9, continued

Reference Variables of interest Validation source Findings

Bergner, Bobbitt, Carter and
Gilson (1981)

Sickness Impact Profile
(SIP); various trials of
different samples

Test–retest reliability;
internal consistency
reliability
(Cronbach’s a)

Test–retest reliability scores ranged from .97 for
interviewer-administered, to .87 for self-administered forms.
Alpha coefficients for 136-item version = .94 (interviewer
administered) and .81 (self administered)

Johnson and Sanchez (1993) Health conditions Medical records Percent of medical events for which there is agreement between
household and medical record report:
3-digit condition classification 40.4%

131-condition summary grouping 54.4%

20 category summary grouping 68.2%

Based on 33 514 health events for which information was
available from both the medical records and the household
respondent.

McHorney, Ware, Lu and
Sherbourne (1994)

Eight scales from the SF-36
instrument; study conducted
among 3443 patients with
one or more chronic
conditions

Internal consistency
reliability
(Cronbach’s a)

Physical functioning .93

Role physical .84

Bodily pain .82

General health .78

Vitality .87

Social functioning .85

Role emotional .83

Mental health .90

continued on next page
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Table 9, continued

Reference Variables of interest Validation source Findings

McHorney, Kosinski and
Ware (1994)

Eight scales from the SF-36
instrument; study conducted
among national sample of
adults, n = 1692;
self-administered

Internal consistency
reliability
(Cronbach’s a)

Physical functioning .94

Role physical .89

Bodily pain .88

General health .83

Vitality .87

Social functioning .63

Role emotional .81

Mental health .82
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In two reverse record check studies [National Center for Health Statistics (1961,
1967)], respondents were asked to report on the prevalence of chronic conditions. The
second study also included an experiment designed to address the difference in the
quality of data obtained from free recall as opposed to recognition from a checklist of
conditions. The findings from these studies suggest that underreporting is a function
not only of the length of the recall period (measured as the time since the last physician
visit related to the condition), but also of the response task. Questions which frame
the task as one of recognition as opposed to free recall resulted in lower rates of
underreporting. However, for both response tasks, the underreporting rate was quite
high, ranging from 32% underreporting for the recognition task related to the events
occurring within the previous two weeks to an underreporting rate of 84% for free
recall of events occurring four or more months prior to the interview. The improved
reporting related to the recognition task is predictable; the presence of a cue provides
both additional context for the respondent to understand the goal of the questions and
an additional means for accessing the associated network of memory. The study by
Madow (1973) is a complete record check design, limited to respondents in a specific
health plan. As can be seen from the table, almost half of the conditions recorded in
the medical records were not reported by the household respondent whereas over 40%
of the conditions reported in the household interview were not identified in the medical
record.
As part of the National Medical Care Expenditure Survey (NMES), Johnson and

Sanchez (1993) examined the congruence between medical conditions as reported
by the household respondent and medical conditions as reported by the medical
care provider. These data are based on the same matched sample of household
reported events and provider reported events used by Cohen and Carlson (1994)
in their analyses of the quality of household reports of health care expenditures.
Household reports reflect conditions associated with hospitalizations, visits to emer-
gency rooms, outpatient departments, as well as office based physician visits.
Household reported conditions, which reflect a mix of self and proxy collected
information, were coded to three-digit level of detail by experienced coders using
the International Classification of Diseases, Version 9 (ICD-9). ICD-9 condition
codes were abstracted from the medical records, independent of the knowledge of
the condition described by the respondent. Household reports of utilization were
linked to the medical record abstracted records via a probabilistic match function.
One of the variables used in the probabilistic match was a one-digit collapsed
classification of the condition related to the utilization. As a result, the agreement
rates – which indicate the percent of medical events reported by the household
respondent for which the two condition codes (household based and medical record
based) agree – are likely to be optimistic. At the three-digit level of detail, there
is agreement between the condition codes as reported by the household and the
medical condition recorded in the medical records for less than half of the medical
events. As we would expect, grosser levels of aggregation result in higher rates of
agreement.
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While the lack of congruence between survey data and medical records is disturbing,
we want to emphasize that this information alone tells us very little about the effect of
this measurement error on parameters estimates. First, it seems plausible that reporting
errors decline with the severity of the condition (severe arthritis is more likely to be
reported than is mild arthritis). Second, in many cases researchers will be interested
in modeling jointly effects of various conditions on outcomes. In such cases, it is
hard to say much about either the magnitude or the direction of the bias on a single
coefficient, since the coefficient on any one condition will be biased not only by the
under and overreporting of that condition, but also by the under and over reporting of
other conditions (see the discussion in Section 2.2).
Table 9 also examines the reliability, and to the extent possible, the validity of several

measures of health and functional status. The measures examined include the Index
of Activities of Daily Living [Katz, Ford, Moskowitz, Jacobsen and Jaffe (1963)], the
Sickness Impact Profile [Bergner, Bobbitt, Kressel, Pollard, Gilson and Morris (1976)],
and the SF-36 [Ware, Snow, Kosinski and Gandek (1993)]. In contrast to the validation
studies presented earlier, no external measure of validity exists for the majority of
the measures related to health or functional status. Rather, as with most psychometric
scales, the interests lies in the reliability of the measure (that is, test–retest reliability
or internal consistency) or the validity of the index, measured as the correlation or
consistency with other subjective scales.
Despite its broad use, there has been little published with respect to the assessment of

the validity or reliability of the Index of Activities of Daily Living, especially within
the general population. Katz, Downs, Cash and Grotz (1970) applied the Index of
ADLs as well as other indexes to a sample of patients discharged from hospitals for
the chronically ill and report a correlation between the index and a mobility scale and
a confinement measure of .50 and .39, respectively. Most assessments of the Index of
ADL have examined the predictive validity of the index with respect to independent
living [e.g., Katz and Akpom (1976)] or length of hospitalization and discharge to
home or death [e.g., Ashberg (1987)]. These studies indicate relatively high levels of
predictive validity.
Despite these findings, there is a growing body of literature that suggest that

the measurement of functional limitations via the use of ADL scales is subject to
substantial amounts of measurement error and that measurement error is a significant
factor in the apparent improvement or decline in functional health observed in
longitudinal data. For example, Mathiowetz and Lair (1994) found that conditions
of the interview, characteristics of the interviewer, and type of respondent (self or
proxy) were predictive of improvement in functional status over the 18 months of
interest whereas the individual’s demographic characteristics and health status were
indicative of decline in functional status. Rodgers and Miller (1997) examined the
consistency with which respondents reported functional limitations, using alternative
sets of question wording. Consistent with other findings in the literature, they found
that minor differences in the wording of questions resulted in significant variation in
the proportion of respondents identified as being limited in one or more functional
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activities, ranging from a low of 6% (based on a single question) to more than 25%
of the respondents 79 (based on a set of six to nine ADL questions).
The Sickness Impact Profile (SIP) measures health status by assessing the way

sickness changes daily activities and behavior and consists of 136 statements grouped
into twelve categories of activities. The profile focuses on actual performance as
opposed to capacity. Bergner, Bobbitt, Carter and Gilson (1981) report on the reliability
of the profile for both interviewer administered questionnaires and self-administered
forms, with reliability higher for the interviewer administered form (.97) than for the
self-administered form (.87). Internal consistency, as measured by Cronbach’s alpha 80

was similarly lower for the self-administered form (.81) than for the interviewer-
administered form (.94).
The SF-36 is a generic health status measure, one that is not specific to age, disease,

or treatment, that focuses on health-related quality of life outcomes. The index covers
eight areas of health: physical functioning, role limitations due to physical health
problems, bodily pain, general health, vitality, social functioning, role limitations due to
emotional problems, and mental health. The measure is designed for both interviewer
administration as well as self-administration and both modes of data collection have
been assessed with respect to validity and reliability. Reliability of the SF-36 has been
assessed in numerous studies [see Ware et al. (1993) for summary of these studies];
across the various scales of the SF-36 and across the various studies, the median
of the reliability coefficients equals or exceeds .80 (Cronbach’s alpha). The findings
from two of the more recent studies examining the SF-36 are reported in Table 9.
McHorney, Ware, Lu and Sherbourne (1994) examined the internal consistency of the
SF-36 among approximately 3500 patients with one or more chronic conditions; as
can be seen from the table the coefficients range from .78 for general health to .90 for
mental health. A self-administered version of the questionnaire study conducted among
a nationally representative sample of noninstitutionalized adults found similarly high
measures of internal consistency [McHorney, Kosinski and Ware (1994)].

6.9. Education

Despite the importance of schooling as both an outcome and as an explanatory variable
in economic models, relatively little effort has been devoted to assessing the accuracy
of survey reports of years of schooling or similar measures of educational attainment.

79 Rodgers and Miller’s study is based on the respondents to the first wave of the AHEAD study.
80 Cronbach’s alpha provides an estimate of internal-consistency reliability based on the average inter-
item correlation and the number of items in the scale, expressed as k r/ [1 + (k − 1)r] where k equals the
number of items in the scale and r is the average correlation between items. The coefficient alpha will be
higher (1) the more questions asked about the topic, and (2) the higher the average correlation between
the scores for all possible combinations of the entire set of questions. In most applied studies, the lowest
acceptable level of internal consistency reliability is .70 for group data and .90 for individual-level
analysis [Nunnally and Bernstein (1994)].
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The literature which is available, however, illustrates a number of interesting issues
that are potentially relevant for other variables as well.
Typically, these studies (summarized in Table 10) have two interview-based

measures of education, each of which is plausibly measured with error. In assessing
what we can learn from such data, recall that the OLS bias in estimating b in the model
y = bx∗ + û when instead of x∗ we use x1 = x∗ + m1 depends on 1 − l1 = 1 − (sx∗, x1 /s

2
x1 ).

If we have another measure of x∗, x2 = x∗ + m2 then l1 = sx1, x2 /s
2
x1 as long as m2 is

uncorrelated with x∗ and with m1. In other words, as long as the error in measuring x2
is “classical” whether x2 is itself a particularly reliable indicator of x∗ is unimportant.
If, in contrast, m1 and m2 are positively correlated, the covariance between the two
measures of x∗ will overstate l1, and holding that correlation constant, the larger the
measurement error in x2 the worse the overstatement will be.
An early study of the reliability of reported years of schooling is Siegal and Hodge’s

(1968) analysis of 1960 Census data. Validation data came from the Post-Enumeration
Survey (PES), a re-interview conducted to assess the accuracy of the original Census
reports. They found that the Census reports and PES data on individual years of
schooling are highly correlated. They also noted, however, that the variance of the
Census report is slightly smaller than that of the PES education variable, which is
inconsistent with the usual assumption that the Census report is equal to the true (PES)
variable plus an uncorrelated measurement error. The discrepancy between the two
reports was in fact negatively related to the PES value (r = −.20). They argued that
one should expect errors to be negatively related to true values for bounded variables,
since for those with the highest (lowest) true level of education, errors must be negative
(positive). Given that the variances of the Census and PES variable are essentially
equal, the bPES, Census = .93, so the bias due to errors in measuring education as an
explanatory variable is small (as long as other explanatory variables are not highly
correlated with education).
Siegal and Hodge (1968) recognized the possibility that the PES measure of

education is also measured with error and considered several relatively elaborate
models in which both years of schooling and income are mis-measured. These relied
on rather arbitrary identifying assumptions, and Siegal and Hodge concluded “we have
not been able to devise an entirely plausible solution”.
Bishop (1974) presents a comprehensive summary of the reliability of Census and

CPS reports of education. Estimates of the correlation between Census and other
measures of education center on .9, as do the alternative estimates of l1. Bishop notes
that mean reversion would tend to reduce the bias caused by measurement error, while
positive correlation in the errors would lead the values of l1 to be too high.
Bielby, Hauser and Featherman (1977) compare Current Population Survey reports

to subsequent interviews and re-interviews of the same households approximately six
to seven months later as part of the Occupational Change in a Generation (OCG) study.
Focusing on the sample of non-black males that participated in both the OCG interview
and re-interviews, they find inter-correlations among the three measures of years of
schooling of .80–.92. The OCG shows both lower correlation with the other two
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Table 10
Assessment of measurement error: education

Reference Variables of interest Validation source Findings

Siegal and Hodge (1968,
Table 2.1, Figure 2.1)

Years of schooling,
1960 Census

Post-enumeration Survey
(PES)

variance (interview) = 12.82
variance (record) = 13.03
r(inteview, record) = .933
r(error, record) = −.205

Bishop (1974, Table 1) Years of Schooling, Census,
1950–70

Current Population
Survey (CPS);
Post-enumeration Survey
(PES); Census
Reinterview Survey
(CRS)

1970 Census
r(Census, CPS) = .88 (males), .88 (females)
b(CPS, Census) = .88 (males), .86 (females)
b(Census, CPS) = .89 (males), .89 (females)

1960 Census
r(Census, PES) = .93; r(Census, CRS) = .91
b(PES, Census) = .94; b(CRS, Census) = .91
b(Census, PES) = .93; b(Census, CRS) = .92

1950 Census
r(Census, PES) = .86
b(PES, Census) = .85
b(Census, PES) = .87

Bielby, Hauser and
Featherman (1977,
Tables 2, 3)

Years of schooling, March
1973 CPS

1973 Occupation
Changes in a
Generation (OCG) and
OCG re-interview
(OCG-R)

mean variance

CPS 12.18 8.24

OCG 11.98 11.70

OCG − R 12.12 8.58

r(CPS, OCG) = .801
r(CPS, OCG-R) = .921
r(OCG, OCGR) = .838

Ashenfelter and Krueger
(1994, Tables 1, 2, 8)

Years of schooling, twins
attending twin festival

Twins’ report MZ twins DZ twins

variance (own report) 4.67 4.04

variance (twin report) 4.58 4.28

r(own report, twin report) .90 .91

r(Down report, Dtwin report) .57 .74

continued on next page
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Table 10, continued

Reference Variables of interest Validation source Findings

Kane, Rouse and Staiger
(1999, Appendix Table 1)

Years of schooling, National
Longitudinal Class of 1972

Transcript data Sample proportions (self-reported data):
Transcript data No College Some College BA+

No College .376 .048 .005

Some College .039 .271 .014

BA+ .000 .005 .244

Miller, Mulvey and Martin
(1995, Tables 1, 2)

Years of schooling,
Australian Twin Register

Twins’ report MZ twins DZ twins

variance (own report) 6.25 5.86

variance (twin report) 5.39 4.72

r(own report, twin report) .88 .82

r(Down report, Dtwin report) .36 .60

Rouse (1999, Table 1;
Appendix Tables 1a,b)

Years of schooling, twins
attending twin festival

Twins’ report MZ twins

variance (own report) 4.24

variance (twin report) 4.28

r(own report, twin report) .92

r(Down report, Dtwin report) .62
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measures and higher variance, suggesting it is the least reliable of the three measures.
A rather complicated measurement model – which allows errors to be correlated with
true values for OCG and OCG-R but not CPS81, and assumes errors in the three
measures are uncorrelated – produces reliability estimates of .89, .70, and .96 for CPS,
OCG, and OCG-R, respectively. The lower reliability of OCG is perhaps attributable
to it being a mailback survey, while the others were telephone or personal interviews.
If we take the estimates of the first three studies in Table 10 at face value, their

implication is that biases in estimating the effect of education on other variables due
to errors in measuring years of schooling are not likely to be large. There are, however,
two important qualifications: (i) taking these estimates at face value means assuming
that the errors in the alternative reports are (at least roughly) uncorrelated, (ii) as noted
in Section 2, biases due to measurement error become more important if other (well-
measured) explanatory variables are correlated with years of schooling.
A relatively extreme context for illustrating the latter point are recent “twin” studies

that relate wage or earnings differences between twins to differences in their schooling.
In effect, this strategy for estimating returns to education adds a set of dummy
variables, one for each pair of twins, to a standard wage or earnings equation. Such
between-twin differencing has much the same effect as the first-differencing in panel
data – most of the variation in schooling is between rather than within twin pairs, and
if reporting errors are not highly correlated the reliability of differences in education
within twin pairs is likely to be lower than the reliability of reports of education in
general.
Ashenfelter and Krueger (1994) obtained the usual information on wages and

schooling in a sample of twins, and each sample member’s report of the years of
schooling completed by his or her twin. This report of one’s twin’s schooling is highly
correlated with the twin’s own report (r = .9); assuming (as Ashenfelter and Krueger
do) that errors in their own and twin reports are uncorrelated, this correlation is
consistent with the reliability estimates in the earlier literature. However the correlation
between twin 1’s report of own schooling minus twin 2’s report of own schooling and
twin 2’s report of 1’s schooling minus twin 1’s report of 2’s schooling is only .57 in
their sample of MZ (monozygotic, or “identical” twins) and .74 in a small sample of
DZ (dizygotic, or “fraternal” twins). This suggests, for the MZ twins, that estimates
of returns to schooling based on differencing wages and schooling between twins are
likely to underestimate the true returns by over 40%. IV estimates, using the difference
in reports of twin’s schooling as an instrument for one’s own reports, are consistent
with this calculation 82.

81 Bielby et al. argue that with true scores unobserved, the units of the “true” variable are arbitrary
and regard the unit coefficient on the CPS measure as a normalization. Their estimates suggest a slight
positive correlation between error and true value for the two OCG measures.
82 The IV estimate reproduces this calculation if the maintained assumption that the covariance between
the difference in wages and the difference in years of schooling is the same using either measure of the
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The assumption that reporting errors are uncorrelated with each other is subject to
challenge on a number of grounds. First, one might anticipate that the error made,
for example, by twin 1 in reporting own schooling would be positively related with
the error in twin 2’s report of 1’s schooling 83, so that errors in the own- and cross-
reports of the difference in schooling would be positively related. This would lead the
covariance between differences in years of schooling based on own reports and on
twin reports to be greater than the variance of the true difference, and the bias due
to measurement error understated by the classical model. A second possibility is that
errors in one twin’s report of own and twin’s schooling are positively related. This
would imply that twin 1’s report of own schooling would be more highly correlated
with his/her report of 2’s schooling than with 2’s report of own schooling, and the data
support this conjecture. Ignoring such a correlation would lead the standard correction
for the bias due to measurement error to be too large.
A solution to the second problem is to use one twin’s report of the difference in

schooling as an instrument for the other’s report. This leads to a downward revision,
as expected, in the estimated return to schooling. Behrman and Rosenzweig (1999), in
contrast, find no evidence in their sample from the Minnesota Twin registry that errors
in reports of own and twin’s schooling are correlated, and so find estimated returns to
schooling are unaffected by allowing for such a correlation.
A subsequent paper by Rouse (1999), using four waves of twin surveys rather than

the first wave used by Ashenfelter and Krueger, found somewhat different substantive
results 84 but quite similar conclusions as regards the importance of measurement error
in the schooling variable 85.
Miller, Mulvey and Martin (1995) conducted a similar analysis using a larger sample

of Australian twins. Their findings differ from the U.S. twin studies in two respects.
First, the correlation between the difference in own reports and the difference in twin
reports of education is substantially lower, at least for MZ twins. Second, the variance
of schooling using twin reports is lower than using own reports. This suggests that the
twin reports are more accurate or the errors are more mean-reverting, neither of which
seem likely on a priori grounds.

difference in years of schooling. As Ashenfelter and Krueger note, this is approximately true in their
data.
83 While we lack a firm understanding of the situations which lead to errors in reporting schooling, it
seems reasonable that there would be certain situations in which errors are particularly frequent, and if
there is an error it is particularly likely to go in one direction. For example, if one ends one’s schooling
after a not-particularly-successful sophomore year of college, “true” years of schooling might be 17,
with the most likely error reporting 18 instead. If twin 1 is in this situation, both twin 1 and twin 2
would be more likely to over-report schooling (by one year) than to make some other error.
84 Unlike other twin studies, Ashenfelter and Krueger (1994) found that a first-differenced specification
(not corrected for measurement error) leads to larger estimates of the returns to schooling than is obtained
without fixed (twin) effects; Rouse’s larger sample reaffirms the conventional wisdom in this regard.
85 Ashenfelter and Rouse (1998) use the first three waves of the twin survey; their correlations between
own and twin reports are very similar to those from Rouse’s study which uses four.
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Kane, Rouse and Staiger (1999) return to the “standard” framework for estimating
wage equations, simple cross-sections with no (identifiable) twins. They focus instead
on the assumption that the error in reporting years of schooling is unrelated to the true
value. As noted above, for binary variables (e.g., has graduated from college vs. has
not graduated), any error must be negatively related to the true value. The same sort
of negative correlation is likely (though not inevitable) for bounded variables such as
schooling.
Kane, Rouse and Staiger (1999) analyze schooling as reported by respondents in the

National Longitudinal Study of the Class of 1972, virtually all of whom graduate from
high school. Their focus is on reports of education beyond high school, as reported
by NLS72 respondents and as recorded in transcripts of all post-secondary schools
they reported attending (which were collected as part of the NLS72 study). While one
might be tempted to take the latter as an indicator of “true” schooling, internal evidence
suggests this is unlikely: holding constant BA receipt or non-receipt according to the
transcript data, those who self-report having one earn higher wages than those who do
not (and, less surprisingly, holding constant self-reported BA status, those who have
a BA according to the transcript data earn higher wages than those who do not).
This provides the basis for a method-of-moments estimation strategy that does not

rely on the standard IV assumption that measurement errors are uncorrelated with true
values. Kane, Rouse and Staiger (1999) do, however, maintain the standard assumption
that errors in reporting schooling are uncorrelated with wages, with each other, and
(in models with covariates) with the covariates. In the simplest case, with schooling a
binary variable and no covariates, there are seven unknowns: the intercept and BA-
premium in the ln-wage equation, the true probability of having a BA, and four
parameters of the “measurement” model (which has each measure of schooling as
a linear function [with intercept] of true schooling). There are also seven observable
means or sample proportions: if we define a two-by-two table for combinations of self-
and transcript-reported BA status, there is one mean ln wage in each of these cells
and four (but only three independent) sample proportions. This equivalence provides
the basis for jointly estimating wage equations and the measurement model by GMM.
Kane, Rouse, and Staiger show how this intuition can be extended to many educational
categories, and to include covariates (which lead to the model being over-identified).
Substantively, they find that most differences between self-reports and transcript

data – and most of the error, according to their GMM estimate – occur where one or
the other of the reports claims some college, but less than a BA degree. This means
that the extent to which OLS under-estimates and traditional IV overstates the return to
schooling is largest as a proportion of the true value for those reporting some college.
According to their estimates, OLS is less than the GMM estimate of returns to some
college and a BA by about .02 (on a base of .125 and .308, respectively) while IV
over-estimates each return by about the same amount [Kane, Rouse and Staiger (1999,
Table 6)].
On balance, the studies in Table 10 support four general conclusions. First, evidence

on the reliability of survey reports of educational attainment rely more on multiple
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measures, each of which is likely to contain non-negligible error, and less on direct
validation evidence than is true for most of the other variables considered in this
paper. Second, unless there is substantial positive correlation of the errors in these
multiple measures, the bias due to errors in measuring years of schooling in traditional
applications such as cross-sectional earnings functions is unlikely to be large. Third,
while it is generally assumed that the errors are uncorrelated with each other and with
the dependent variable (typically, ln wage or ln earnings), there is no direct evidence
on this score. Most discussions in the literature treat positive correlations as the most
likely alternative; if positive is more likely than negative, there is every reason to
fear that positive is more likely than zero. Fourth, here as elsewhere, differencing (in
this case, differences within twin pairs) greatly exacerbates the bias due to errors in
measuring schooling, but the availability of reports of one’s twin’s schooling as well
as one’s own provides some leverage for undoing such bias.

7. Conclusions

Empirical research in economics has increasingly used individual- or household-level
data derived from surveys. Unlike aggregate data based on surveys where one might
hope that the errors would “cancel out”, the move to micro data requires a continuous
concern about measurement error as a likely source of bias 86. Some variables (transfer
income, wealth holdings, medical care utilization and expenditures) are sufficiently
difficult to measure that such concerns would arise even in estimating simple bivariate
regressions; others (union coverage, schooling, and perhaps earnings) that seem to be
reported with reasonable accuracy become candidates for concern when panel data are
used in ways that effectively difference out much of the true variation while increasing
the noise.
The impact of measurement error on parameter estimates depends on the magnitude

of the error relative to the true variation, but more generally on the joint distribution
of the measurement errors and the true variables. If we are going to use data on
X and y in order to study the impact of X ∗ on y∗, in principle we need to know
the entire data-generating mechanism; that is., f ( y,X , y∗,X ∗). Standard methods for
“correcting” for measurement error such as instrumental variables procedures typically

86 Our comments should not be taken to suggest we think aggregate data is without significant error.
While response errors are presumably less important in aggregate data than they are in individual- or
household-level survey data, there are certainly other important sources of error. Many aggregate series
(e.g., unemployment rates) are based on survey data and, as such, are subject to sampling error. More
fundamentally, much aggregate data is constructed using procedures that are likely to introduce systematic
error into data series. Thus, for example the Department of Commerce’s Bureau of Economic Analysis
(BEA) uses procedures to construct value added [Peterson (1987)] that, outside of manufacturing and
a few other industries are likely to underestimate the growth in output and thus productivity [Griliches
(1994)] and to create spurious correlations between growth and productivity [Waldmann (1991)]. Any
discussion of such issues is well beyond the scope of this chapter.
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involve strong assumptions regarding the nature of the data-generating mechanism
(i.e., that errors are classical) that are rarely discussed or defended. Short of detailed
knowledge of the data-generating mechanism, the theoretical literature suggests that
when the correlations between our measures and our constructs is high and when
our models are simple, we can be reasonably confident regarding the robustness, in
qualitative terms, of our inferences. This is the situation where standard methods for
correcting for measurement error have little effect on our estimates. In contrast to this,
in situations where we have reason to believe that measurement error on key variables
is sufficiently large as to have qualitative effects on our estimates, serious sensitivity
analysis is in order.
Validation data has provided considerable evidence on the magnitude of measure-

ment error. Gradually, the focus has shifted from the extent of under- or overreporting
(i.e., on the mean error) to the ratio of the variance of the reporting error to the
variance of the true value, and more recently to consideration of whether errors are,
as is so often assumed, uncorrelated with true values. Such evidence as we have
suggests that errors are often negatively related to true values and, indeed, this must
be so for binary variables. Fewer studies focus on the correlation between errors in
measuring one variable and either measured or true values of other variables. The very
limited evidence we have suggests that such correlations do not lead to appreciable or
predictable biases except in contexts where variables are definitionally related (e.g.,
hours worked per week and earnings per hour defined as weekly earnings/weekly
hours).
Despite the effort that has gone into validating various survey measures, it is striking

to us how little is known about the accuracy of much of the data that is routinely
collected in household surveys. To take a simple example, there is no hard evidence
on how reliably hourly earnings are reported for men and women paid by the hour.
Nor is there much data on the accuracy with which individuals report wealth or
consumption expenditures. In other contexts, such as for health conditions, we know
something about the accuracy of such reports, but virtually nothing about the impact
that misreporting has on parameter estimates. Similarly, there are many studies of
the accuracy of retrospective reporting of events, but few clues as to how the (often
important) errors found in such studies will bias parameter estimates of event-history
studies.
Increasing use of panel data has been accompanied with a heightened awareness of

the tendency of such estimation to increase the importance of measurement error. The
panel-data literature has benefitted from simple, intuitive results that alert analysts to
situations where such errors are likely to be most harmful. Unfortunately, even the most
rudimentary corrections for measurement error in such contexts depend on knowing
the correlation between errors¾for an individual’s wage over time, for twins’ reports
of their education, etc. – and there is almost no direct evidence on such correlations.
Obtaining validation data sufficient to calculate such correlations requires at least
two rounds of survey data and either two rounds of validation data (e.g., the PSID
Validation Study) or the good fortune to be able to obtain validation of two rounds of
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survey data in a single step (e.g., the matched CPS–SSA data, and matches of transfer
program records to SIPP data). Hopefully, in the future, it will be possible to merge
administrative data to existing panel data.
As with panel data, there is good reason to fear that parameter estimates in non-

linear models are likely to be more sensitive to measurement error than those in
simple (linear) models. Unfortunately, the analysis of non-linear models has proceeded
on a case-by-case basis, and it has not highlighted any key feature of the error
distribution for validation studies to assess. Thus, analysts must often choose between
less ambitious linear models for which the consequences of measurement error is better
understood and more elaborate models which may well be more vulnerable to such
errors. At a minimum, assessment of the relative benefits of the two approaches needs
to put greater weight on this vulnerability.
One reason for remaining gaps in our knowledge about the inaccuracies of survey

data is that users of the data are rarely involved in the validation studies 87. As a result,
it is natural for them to focus on the accuracy of the reports rather than the effect
of inaccuracies on parameter estimates. Since different researchers are interested in
different parameters, researchers conducting validation studies will never be able to
satisfy all audiences. However, researchers can sometimes make their data publically
available. It is interesting to note that both the CPS–SSA data by Bound and Krueger
and the PSID-V data have been put to very good use by researchers outside the teams
that originally developed the two data sets [e.g., Bollinger (1998), Pischke (1995),
French (1998), Brownstone and Valletta (1996)]. In addition, there are clear payoffs
to greater involvement of users in the design of validation studies.
While in general we believe that more effort devoted to collecting and analyzing

validation data would significantly enhance the value of survey data, it is important to
recognize the limitations of such initiatives. Those collecting validation data usually
begin with the intention of obtaining “true” values against which the errors of survey
reports can be assessed; more often than not we end up with the realization that the
validation data are also imperfect. While much can still be learned from such data,
particularly if one is confident the errors in the validation data are uncorrelated with
those in the survey reports, this means replacing one assumption (e.g., errors are
uncorrelated with true values) with another (e.g., errors in survey reports uncorrelated
with errors in validation data).
Many of the validation studies reported in this chapter are based on small

convenience samples (workers in a firm which cooperates by providing payroll records,
households with accounts at cooperating financial institutions). The use of small
samples means the reliability of the data is itself assessed with considerable sampling
error. Moreover, the distribution of the variables of interest may well differ in the
smaller validation sample and the large sample about which one wishes to make

87 These comments echo somewhat similar comments often made by Griliches (e.g., 1986, 1994) that
economists should become more involved in the generation of the data they use.
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inferences (e.g., true wage variation will be smaller within one firm than in the
economy). Even when validation data is provided for a sizeable share of a larger survey,
concerns about representativeness are hard to dismiss (are those who underreport
transfers less likely to cooperate in validating their responses?).
A final limitation of validation studies is that, even if the validation corresponds

exactly to the “correct” answer to the survey question, it may not correspond to the
“true” value of the variable in question. On the one hand, the construct we wish to test
may be more subtle than questions that our surveys can ask. For example, earnings
presumably depend on the interaction of years of schooling, school quality, and student
effort that produce “education” or “learning”; the gap between “education” and “years
of schooling” will remain no matter how successful we are in inducing individuals to
accurately report their years of schooling. On the other hand, in some cases it may be
the respondent’s perception of a variable rather than the “true” value of the variable
that motivates behavior. Thus, for example, savings behavior of smokers may depend
on their own estimate of their life-expectancy, not the Surgeon General’s.
It is widely recognized that survey data – and, indeed, other types of data – are often

imperfect. Analyzing such data requires an understanding of their most significant
shortcomings. Validation data are often imperfect, too. But they give important clues
about these shortcomings – clues that would otherwise be unavailable – and suggest
strategies for dealing with them. As econometricians create more complicated tools,
understanding the effects of imperfect data on the performance of these tools becomes
more important. Validation studies are an essential part of that enterprise.
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