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Preface 

This Hundbook contains  thirty-one  chapters by distinguished  econometri- 
cians and statisticians  from  many  countries.  It is dedicated to the  memory  of 
Professor Viren K Srivastava,  a  profound and innovative contributor in  the 
fields of econometrics and statistical inference. Viren Srivastava was most 
recently a  Professor and  Chairman in the  Department  of Statistics at 
Lucknow  University,  India. He  had  taught  at  Banaras  Hindu University 
and  had been a visiting professor or scholar at various  universities,  including 
Western Ontario,  Concordia,  Monash.  Australian  National, New South 
Wales, Canterbury,  and  Munich.  During his distinguished  career, he pub- 
lished more  than 150 research  papers in various  areas of statistics and 
econometrics  (a selected list is provided).  His  most  influential  contributions 
are in finite sample  theory of structural  models  and  improved  methods of 
estimation in linear  models.  These  contributions have provided  a new direc- 
tion not only in econometrics and statistics but also in other  areas of applied 
sciences. Moreover, his work on seemingly unrelated regression models, 
particularly his book Seemingly  Unrelated  Regression  Equations  Models: 
Estimation  and  Inference, coauthored with David  Giles  (Marcel Dekker, 

V 



V i  Preface 

Inc., 1987), has laid the  foundation of much  subsequent  work in this area. 
Several topics  included in this  volume are directly or indirectly influenced by 
his work. 

In recent years  there  have been many  major developments  associated 
with  the  interface between applied  econometrics and statistical inference. 
This is true especially for  censored  models,  panel data models. time series 
econometrics, Bayesian inference, and  distribution  theory.  The  common 
ground  at  the interface between statistics and econometrics is of  consider- 
able  importance  for  researchers,  practitioners,  and  students of both subjects, 
and it is also  of  direct  interest to those  working in other  areas of applied 
sciences. The crucial  importance of this  interface  has been reflected in sev- 
eral  ways. For example,  this was part of the  motivation  for  the  establish- 
ment of the  journal Econometric TI?~ory (Cambridge  University Press); the 
Hctmibook of Storistics series (North-Holland). especially Vol. 11 ;  the  North- 
Holland  publication Hcrrldbook of Econonretrics, Vol. I-IV, where the 
emphasis is on  econometric  methodology;  and  the  recent Hnrdbook sf 
Applied Ecollornic Stntisrics (Marcel  Dekker,  Inc.), which contains  contribu- 
tions  from  applied  economists  and  econometricians.  However,  there 
remains  a  considerable  range  of  material  and recent research  results  that 
are of direct  interest to  both of the  groups  under discussion here,  but are 
scattered  throughout  the  separate  literatures. 

metrics and statistics.  It is a  consolidated and comprehensive reference 
source  for  researchers and  students whose  work  takes  them to the  interface 
between these two disciplines. This  may lead to  more  collaborative  research 
between members of the  two disciplines. The  major recent developments in 
both  the applied  econometrics and statistical inference techniques that have 
been covered are of direct  interest to researchers,  practitioneres,  and  grad- 
uate  students,  not only in econometrics and statistics  but in other  applied 
fields such as medicine,  engineering,  sociology, and psychology. The  book 
incorporates  reasonably  comprehensive  and  up-to-date reviews of recent 
developments in various key areas of applied  econometrics and statistical 
inference, and it also contains  chapters  that set the scene for  future research 
in these areas.  The emphasis  has been on research contributions with acces- 
sibility to  practitioners  and  graduate  students. 

The  thirty-one  chapters  contained in this Hmdbook have been divided 
into seven major  parts, viz.. Statistical  Inference and  Sample Design, 
Nonparametric  Estimation  and Testing,  Hypothesis  Testing,  Pretest  and 
Biased Estimation,  Time Series Analysis, Estimation  and Inference in 
Econometric  Models,  and Applied Econometrics. Part I consists of five 
chapters  dealing with issues related  to  parametric inference procedures 
and  sample design. In Chapter 1,  Barry Arnold,  Enrique  Castillo,  and 

1 This Hcrrzdbook aims to disseminate significant research  results  in  econo- 

4 



Preface vii 

Josk Maria  Sarabia give a  thorough overview of the  available  results on 
Bayesian inference using  conditionally specified priors.  Some guidelines 
are given for  choosing  the appropriate values for  the  priors’  hyperpara- 
meters, and the  results are  elaborated with the  aid of a  numerical  example. 
Helge Toutenburg,  Andreas Fieger, and  Burkhard Schaffrin,  in Chapter 2. 
consider  minimax  estimation of regression coefficients in a  linear regression 
model  and obtain a confidence ellipsoid based on  the minimax  estimator. 
Chapter 3, by Pawel Pordzik  and  Gotz Trenkler. derives necessary and 
sufficient conditions  for  the best linear  unbiased  estimator of the  linear 
parametric  function  of  a  general  linear  model,  and  characterizes  the sub- 
space of linear  parametric  functions which can  be  estimated with full effi- 
ciency. In  Chapter 4, Ahmad  Parsian  and Syed Kirmani  extend  the  concepts 
of unbiased  estimation,  invariant  estimation, Bayes and minimax  estimation 
for  the  estimation  problem  under  the  asymmetric LINEX loss function. 
These  concepts  are  applied in the  estimation of some specific probability 
models.  Subir Ghosh, in Chapter 5 ,  gives an overview of  a wide array of 
issues relating to the design and implementation of sample surveys over 
time, and utilizes a  particular survey application  as  an  illustration of the 
ideas. 

The  four  chapters of Part I1 are concerned with nonparametric  estima- 
tion and testing  methodologies. Ibrahim  Ahmad in Chapter 6 looks  at  the 
problem of estimating  the  density,  distribution, and regression functions 
nonparametrically when one gets only  randomized responses. Several 
asymptotic  properties,  including  weak,  strong,  uniform,  mean  square,  inte- 
grated  mean  square.  and  absolute  error consistencies as well as  asymptotic 
normality,  are considered in each  estimation  case.  Multinomial choice mod- 
els are the  theme of Chapter 7, in which Jeff Racine  proposes  a new 
approach  to the  estimation of these models  that  avoids  the specification 
of a  known index function, which can be problematic in certain  cases. 
Radhey Singh and Xuewen Lu in Chapter 8 consider  a  censored nonpara- 
metric  additive regression model, which admits  continuous  and categorical 
variables in an  additive manner.  The concepts of marginal  integration  and 
local linear fits are  extended to  nonparametric regression analysis with cen- 
soring  to  estimate  the low dimensional  components in an additive  model.  In 
Chapter 9, Mezbahur  Rahman  and  Aman Ullah  consider  a  combined para- 
metric and  nonparametric regression model, which improves  both  the  (pure) 
parametric  and  nonparametric  approaches in the sense that  the  combined 
procedure is  less biased than  the  parametric  approach while simultaneously 
reducing  the  magnitude of the  variance that results  from  the  non-parametric 
approach. Small sample  performance of the  estimators is examined via a 
Monte  Carlo experiment. 
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In  Part 111, the  problems  related to hypothesis testing are addressed in 
three  chapters. Ani1 Bera and  Aurobindo  Ghosh in Chapter 10 give a com- 
prehensive survey of the  developments in the  theory of Neyman’s smooth 
test with an emphasis on its  merits, and  put  the case for  the inclusion of this 
test in mainstream  econometrics. Chapter 11  by  Bill Farebrother outlines 
several  methods for  evaluating probabilities  associated with the  distribution 
of a quadratic  form in normal  variables and illustrates  the  proposed tech- 
nique  in  obtaining  the  critical values of the lower and  upper  bounds of the 
Durbin-Watson  statistics. It is well known  that the  Wald test for  autocor- 
relation  does not always  have  the  most  desirable  properties in finite samples 
owing to such  problems  as  the lack of invariance to equivalent  formulations 
of  the null  hypothesis, local biasedness, and power  nonmonotonicity. In 
Chapter 12, to overcome these problems, Max  King  and  Kim-Leng  Goh 
consider  the use of bootstrap  methods  to find more  appropriate critical 
values and modifications to the  asymptotic  covariance  matrix of the esti- 
mates used in  the test statistic.  In Chapter 13, Jan  Magnus studies  the 
sensitivity  properties of a  “t-type”  statistic based on a  normal  random 
variable  with  zero  mean  and  nonscalar  covariance  matrix.  A  simple  expres- 
sion  for  the even moments of this t-type random variable is given, as  are  the 
conditions  for  the  moments  to exist. 

Part IV presents  a  collection of papers  relevant  to  pretest and biased 
estimation.  In  Chapter 14, David  Giles  considers  pretest and Bayes estima- 
tion  of  the  normal  location  parameter with the loss structure given by a 
“reflected normal”  penalty  function,  which  has  the  particular merit of being 
bounded.  In  Chapter 15, Akio  Namba  and  Kazuhiro  Ohtani consider  a 
linear regression model with multivariate t errors  and derive  the finite sam- 
ple moments  and predictive  mean  squared error of a  pretest  double k-class 
estimator of the regression coefficients. Shalabh, in Chapter 16. considers  a 
linear regression model  with  trended  explanatory  variable  using  three dif- 
ferent  formulations  for  the  trend, viz., linear.  quadratic,  and  exponential, 
and studies  large  sample  properties of the  least  squares and Stein-rule esti- 
mators. Emphasizing  a  model  involving  orthogonality of explanatory  vari- 
ables and  the noise component,  Ron  Mittelhammer  and  George  Judge in 
Chapter 17 demonstrate  a  semiparametric  empirical  likelihood  data based 
information  theoretic  (ELDBIT)  estimator  that  has finite sample  properties 
superior to those of the  traditional  competing  estimators.  The  ELDBIT 
estimator  exhibits  robustness with respect to ill-conditioning implied by 
highly correlated  covariates  and  sample  outcomes  from  nonnormal. 
thicker-tailed  sampling processes. Some possible extensions of the 
ELDBIT  formulations have  also been outlined. 

Time series analysis  forms  the subject matter of Part V. Judith Giles in 
Chapter 18 proposes  tests  for  two-step  noncausality  tests in a  trivariate 
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VAR  model when the  information set contains  variables that  are  not 
directly involved in the  test.  An issue that  often  arises in the  approximation 
of an  ARMA process by a  pure  AR process is the lack of appraisal  of  the 
quality of the  approximation.  John  Galbraith  and Victoria  Zinde-Walsh 
address  this issue in Chapter 19, emphasizing  the  Hilbert  distance as a 
measure of the  approximation’s  accuracy. Chapter 20 by Anoop 
Chaturvedi,  Alan  Wan,  and  Guohua  Zou  adds  to the  sparse  literature on 
Bayesian inference on  dynamic regression models, with allowance  for  the 
possible existence of nonnormal  errors  through  the Gram-Charlier  distribu- 
tion.  Robust  in-sample  volatility  analysis is the  substance of the  contribu- 
tion of Chapter 21, in which Xavier Yew, Michael  McAleer, and Shiqing 
Ling examine  the sensitivity of  the  estimated  parameters of the GARCH 
and asymmetric GARCH models  through recursive estimation  to  determine 
the  optimal  window size. In  Chapter 22, Koichi  Maekawa  and  Hiroyuki 
Hisamatsu  consider  a  nonstationary SUR system and investigate  the  asymp- 
totic  distributions of OLS and  the restricted and unrestricted SUR estima- 
tors.  A  cointegration test based on the SUR residuals is also  proposed. 

Part VI comprises five chapters  focusing  on  estimation and inference of 
econometric  models.  In Chapter 23, Gordon Fisher and Marcel-Christian 
Voia consider  the  estimation of stochastic coefficients regression (SCR) 
models with missing observations.  Among  other things,  the authors present 
a new geometric  proof of an extended  Gauss-Markov  theorem.  In  estimat- 
ing  hazard  functions,  the  negative  exponential regression model is com- 
monly  used,  but  previous  results on  estimators  for  this  model  have been 
mostly asymptotic.  Along  the lines of their  other  ongoing research in this 
area,  John  Knight  and Stephen  Satchell,  in Chapter 24, derive some  exact 
properties  for  the log-linear least squares  and  maximum  likelihood  estima- 
tors  for  a negative exponential  model with a constant  and a dummy vari- 
able.  Minimum  variance  unbiased  estimators  are  also  developed.  In  Chapter 
25, Murray Smith  examines  various  aspects of double-hurdle  models, which 
are used frequently in demand  analysis.  Smith  presents  a  thorough review of 
the  current  state of the  art  on this  subject, and  advocates the use of the 
copula  method  as  the  preferred  technique  for  constructing these models. 
Rick Vinod in Chapter 26 discusses how  the  popular  techniques of general- 
ized linear  models and generalized estimating equations in biometrics can be 
utilized in econometrics in the  estimation of panel data models.  Indeed, 
Vinod’s paper spells out the  crucial  importance of the  interface between 
econometrics and  other  areas of statistics.  This  section  concludes with 
Chapter 27 in which William Griffiths,  Chris Skeels, and  Duangkamon 
Chotikapanich  take  up the important issue of sample size requirement in 
the  estimation of SUR models.  One broad conclusion  that  can be drawn 



X Preface 

from  this  paper is that the usually stated  sample size requirements  often 
understate  the  actual  requirement. 

The last part includes  four  chapters  focusing on applied  econometrics. 
The panel data model is the  substance of Chapter 28, in which Aman  Ullah 
and  Kusum  Mundra  study  the so-called immigrants  home-link effect on 
U.S.  producer  trade flows via a  semiparametric  estimator which the authors 
introduce.  Human development is an  important issue faced by many devel- 
oping  countries.  Having been at the  forefront of this line of research, 
Aunurudh  Nagar, in Chapter 29, along  with  Sudip Basu,  considers  estima- 
tion of human development indices and investigates  the  factors in determin- 
ing human  development. A  comprehensive  survey of the recent 
developments of structural  auction models  is  presented in Chapter 30, in 
which  Samita  Sareen  emphasizes  the usefulness of Bayesian methods in the 
estimation  and testing of these models. Market switching  models  are  often 
used in business cycle research.  In Chapter 31, Baldev Raj provides  a thor- 
ough review of the  theoretical  knowledge on this  subject. Raj’s extensive 
survey  includes  analysis of the  Markov-switching approach  and generaliza- 
tions to a  multivariate  setup  with  some  empirical  results being presented. 

Needless to say, in preparing  this Handbook, we owe a  great  debt  to  the 
authors of the  chapters  for  their  marvelous  cooperation.  Thanks  are also 
due to the  authors,  who were not  only  devoted to their  task of writing 
exceedingly high quality  papers  but  had  also been willing to sacrifice 
much  time and energy to review other  chapters of the  volume.  In this 
respect, we would  like to  thank  John  Galbraith,  David Giles,  George 
Judge,  Max King, John  Knight, Shiqing  Ling,  Koichi  Maekawa, Jan 
Magnus,  Ron  Mittelhammer,  Kazuhiro  Ohtani, Jeff Racine,  Radhey 
Singh,  Chris Skeels, Murray  Smith, Rick Vinod,  Victoria  Zinde-Walsh, 
and  Guohua Zou. Also,  Chris Carter  (Hong  Kong University of Science 
and Technology), Hikaru Hasegawa (Hokkaido University),  Wai-Keong Li 
(City  University of Hong  Kong),  and  Nilanjana  Roy (University of 
Victoria)  have refereed several papers in the  volume.  Acknowledged  also 
is the  financial support  for visiting appointments  for  Aman  Ullah  and 
Anoop  Chaturvedi at the  City  University of Hong  Kong  during  the  summer 
of 1999 when the idea of  bringing  together  the  topics of this Handbook was 
first conceived.  We  also wish to  thank Russell Dekker  and Jennifer Paizzi of 
Marcel  Dekker,  Inc.,  for  their  assistance  and  patience with us in the  process 
of  preparing  this Handbook, and  Carolina  Juarez  and Alec Chan  for secre- 
tarial  and clerical support. 

Aman Ullah 
Alan T. K. Wan 
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1. INTRODUCTION 

Suppose we are given a  sample  of size I I  from  a  normal  distribution with 
known  variance  and  unknown  mean p, and  that,  on  the basis of  sample 
values . x l ,  x ? ,  . . . , x,,, we wish to  make inference about p. The Bayesian 
solution of this problem  involves specification of an  appropriate  representa- 
tion  of  our  prior beliefs about p (summarized in a  prior  density  for w )  which 
will be  adjusted  by  conditioning  to  obtain  a  relevant  posterior  density  for p 
(the  conditional  density  of p, given X = xJ. Proper  informative  priors  are 
most easily justified but  improper  (nonintegrable)  and  noninformative 
(locally uniform)  priors  are  often  acceptable in the analysis and may be 
necessary  when  the  informed scientist insists on  some degree  of  ignorance 
about  unknown  parameters.  With  a  one-dimensional  parameter, life for  the 
Bayesian  analyst is relatively straightforward.  The  worst  that  can  happen is 
that the analyst will need to use  numerical  integration  techniques to  normal- 
ize and  to  quantify measures of central  tendency of the resulting posterior 
density. 

1 



2 Arnold et al. 

Moving to higher diniensional parameter spaces immediately compli- 
cates matters. The “curse of dimensionality” begins to manifest some of 
its implications even in the bivariate case. The use of conditionally 
specified priors, as advocated in this chapter, will not in any sense 
eliminate the “curse” but it will ameliorate some difficulties in, say, 
two and three dimensions and is even practical for some higher dimen- 
sional problems. 

Conjugate priors, that is to say, priors which combine analytically 
with the likelihood to give recognizable and analytical tractable poster- 
ior densities, have been and continue to be attractive. More properly, 
we should perhaps speak of priors with convenient posteriors, for their 
desirability hinges mostly on the form of the posterior and there is no 
need to insist on the prior and posterior density being of the same form 
(the usual definition of conjugacy). It turns out that the conditionally 
specified priors that are discussed in this chapter are indeed conjugate 
priors in the classical sense. Not only do they have convenient poster- 
iors but also the posterior densities will be of the same form as the 
priors. They will prove to be more flexible than the usually recom- 
mended conjugate priors for multidimensional parameters, yet still man- 
ageable in the sense that simulation of the posteriors is easy to program 
and implement. 

Let us return for a moment to our original problem involving a sample 
of size IZ from a normal distribution. This time, however, we will assume 
that both the mean and the variance are unknown: a classic setting for 
statistical inference. Already, in this setting, the standard conjugate prior 
analysis begins to appear confining. There is a generally accepted conju- 
gate prior for (p, t) (the mean p and the precision (reciprocal of the 
variance) t). It will be discussed in Section 3.1, where it will be contrasted 
with a more flexible conditionally conjugate prior. A similar situation 
exists for samples from a Pareto distribution with unknown inequality 
and scale parameters. Here too a conditionally conjugate prior will be 
compared to the usual conjugate priors. Again, increased flexibility at little 
cost in complexity of analysis will be encountered. In order to discuss these 
issues, a brief review of conditional specification will be useful. It will be 
provided in Section 2. In Section 3 conditionally specified priors will be 
introduced; the normal and Pareto distributions provide representative 
examples here. Section 4 illustrates application of the conditionally speci- 
fied prior technique to a number of classical inference problems. In Section 
5 we will address the problem of assessing hyperparameters for condition- 
ally specified priors. The closing section (Section 6) touches on the possi- 
bility of obtaining even more flexibility by considering mixtures of 
conditionally specified priors. 
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2. CONDITIONALLY SPECIFIED DISTRIBUTIONS 

In efforts to describe a two-dimensional density function, it is undeniably 
easier to visualize conditional densities than it is to visualize marginal den- 
sities. Consequently, it may be argued that joint densities might best be 
determined by postulating appropriate behavior for conditional densities. 
For example, following Bhattacharyya [l], we might specify that the joint 
density of a random vector (X, Y )  have every conditional density of X given 
Y = y of the normal form (with mean and variance that might depend on y )  
and, in addition, have every conditional density of Y given X = x of the 
normal form (with mean and variance which might depend on x). In other 
words, we seek all bivariate densities with bell-shaped cross sections (where 
cross sections are taken parallel to the x and y axes). The class of such 
densities may be represented as 

where A = (u!!I):j=o is a 3 x 3 matrix of parameters. Actually, noo is a norm- 
ing constant, a function of the other ads chosen to make the density inte- 
grate to 1. The class (1) of densities with normal conditionals includes, of 
course, classical bivariate normal densities. But it includes other densities; 
some of which are bimodal and some trimodal! 

This normal conditional example is the prototype of conditionally speci- 
fied models. The more general paradigm is as follows. 

Consider an ll-parameter family of densities on R with respect to p l ,  a 
measure on R (often a Lebesgue or counting measure), denoted by (fi(x; Q) : 
- 8 E O} where 0 5 R'I. Consider a possible different &-parameter family of 
densities on Iw with respect to p2 denoted by cf2(j;z) : t E 7') where 
T R'?. We are interested in all possible bivariate distributions which 
have all conditionals of X given Y in the familyf, and all conditionals of 
Y given X in the fainilyh. Thus we demand that 

and 

Here S ( X )  and S ( Y )  denote, respectively, the sets of possible values of X 
and Y .  

In order that (2) and (3) should hold there must exist marginal densities 
fx andfy for X and Y such that 



4 Arnold et al. 

To identify the  possible  bivariate  densities with conditionals in the two 
prescribed families, we  will need to solve the  functional  equation (4). This is 
not  always  possible. For some  choices offl  andf2  no solution exists except 
for  the trivial solution with independent  marginals. 

One  important class of  examples in which the  functional  equation (4) is 
readily  solvable are  those in which the  parametric families of densitiesfl  and 
f2 are  both  exponential families. In this case  the class of all densities with 
conditionals in given exponential families is readily  determined and is itself 
an exponential family of densities.  First. recall the  definition of an exponen- 
tial family. 

Definition 1 (Exponential family) A I I  e l  -parmtleter f h l i l y  of demities v;(s; Q )  : Q E @}, with  respect to p l  on S ( X ) ,  sf tlzeforw 

is called an exponential f h d l j  of  distributions. 
Here 0 is the naturul parameter space  and the ql,(x)s are nssunzed to be 

liilearly  independent. Frequently, p l  is a Lebesglre meust(re or counting weu- 
sure and often S ( X )  is some subset of Euclidean space  oj'jinite  dimension. 

Note  that Definition 1 contines  to be  meaningful if we underline x in 
equation (5) to emphasize  the  fact that x can  be  multidimensional. 

In  addition  to  the  exponential family (5 ) ,  we  will  let (f2(v; x) : r E T ]  
denote  another  12-parameter  exponential family of densities  with respect 
to p2 on S( Y ) ,  of the  form 

where T is the  natural  parameter  space  and,  as is customarily done, the 
qr,(y)s are assumed to be linearly  independent. 

The general class of the  bivariate  distributions  with  conditionals in the 
two  exponential families (5 )  and (6) is provided by the  following  theorem 
due  to  Arnold  and  Strauss [2]. 

Theorem 1 (Conditionals in exponential families) Let f ( . ~ .  11) be a bivcwiare 
density whose  conditional  densities satisLv 

m y )  = f ,  (-x; eCv)) (7) 
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where ql( , (s)  = q1oCv) = 1 ortd M is a matris of parameters of appropriate 
climensions (i.e., ( e ,  + I )  x (C, + 1)) subject to the  requirement that 

For convenience we can partition  the  ntntrix hl as follows. 

- Note that the cctse of irzdependence  is included; it corresponds to tlze choice 
M E 0. 

Note  that densities of the  form (9) form an exponential family with (el + 
I)([? + 1) - 1 parameters (since moo is a  normalizing constant determined by 
the  other m, ,s ) .  

Bhattacharyya's [I]  normal  conditionals  density  can be represented  in  the 
form (9) by suitable  identification of the q0s. A second  example, which will 
arise again in our Bayesian analysis of normal  data, involves normal-gamma 
conditionals (see Castillo and  Galambos [3]). Thus we, in  this case. are 
interested in all bivariate  distributions with X (  Y = y having a normal dis- 
tribution  for  each ,I* and with YIX = .x having  a  gamma  distribution  for  each 
s. These  densities will  be given by (9) with  the  following  choices  for  the rs 
and qs. 
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The  joint  density is then given  by 
t 

Certain  constraints  must be placed on  the mas, the  elements  of M ,  
appearing in (12) and  more generally in (9) to  ensure  integrability of the 
resulting density, Le., to identify the natural  parameter  space.  However, in a 
Bayesian context, where improper  priors  are  often  acceptable,  no  con- 
straints need  be  placed on  the mas. If the  joint  density is  given  by (12), 
then  the specific forms of the  conditional  distributions  are  as follows: 

where 

! 

and 

A typical density  with  normal-gamma  conditionals is shown in Figure 1. 
It  should be remarked  that  multiple  modes  can  occur  (as in the  distribution 
with normal  conditionals). 

Another  example  that will  be useful in a  Bayesian  context is one with 
conditionals  that  are  beta densities (see Arnold  and  Strauss [ 2 ] ) .  This  corre- 
sponds  to  the following  choices for rs and qs in (9): 
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Figure 1. Example of a normal-gamma  conditionals  distribution with n z o 2  

ing (left) the  probability  density  function and (right) the  contour  plot. 
= - 1 ,  11201 = I .  /l?lo = 1.5, 11112 = 2, 1171 I = I ,  11?20 = 3, 17122 = / t?21 0, show- 

This yields a joint density of the  form 

f(.u. y) = [.u(l - .Y)~(I - JV)]" exp{ 1111 I l o g s  log], + m I 2  log x log(] - y) 
+ m l  log( 1 - x) logy + in2? log( 1 - s) log( 1 - y )  

+ 11210 log .Y + 1n20 log( 1 - x) 

+ 11201 logy + 11702 log( 1 - Y) 

+ Ii200}z(o < X,)' < 1) (18) 

In this case  the  constraints  on  the ?nos to ensure  integrability of (17) are 
quite simple: 

There  are some  non-exponential family cases in which the  functional 
equation (4) can be solved. For example,  it is possible to identify all joint 
densities with zero  median  Cauchy  conditionals (see Arnold et al. [4]). They 
are  of  the form 

, f ( .Y ,  J') 0: (11100 + i1?10.Y2 + 1??01J)2 + HZII.X-])-) 7 1 - 1  
(20) 

Extensions  to higher dimensions are  often possible (see Arnold et al. [5]). 
Assume that X is a X--dimensional random vector with coordinates (Xl, 

X?,  . . ., X k ) .  For each coordinate  random variable X, of X we define the 
vector to be the (k - I)-dimensional  vector  obtained  from X by deleting 
X;. We use the  same  convention  for real vectors, Le., s[,) is obtained  from s 
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by deleting s,. We  concentrate  on  conditional specifications of the  form “ X i  
j given &).” 
i Consider k parametric families of  densities on 08 defined by 

V;(.v; e,,,) : e(,, E 0,). i = 1. 2 .  . . . , k (21) 

where e,, is of dimension L ,  and where  the  ith  density is understood  as being 
with respect to  the measure p l .  We are interested in k-dimensional  densities 
that  have all their  conditionals in  the  families (21). Consequently, we require 
that  for  certain  functions e,,, we have, for i = 1, 2 ,  . . . . k, 

L \ ~ , ~ z 8 , ( - y ; k ~ ~ ~ )  =f;(.yi; Q ( l ) ( ~ ( l ) ) )  ( 2 2 )  

If these equations  are  to  hold,  then there must exist marginal  densities  for 
the &,s such that 

f-.(,,(x(,,)fl(-yl; !9&(,,)) = f 3 , , ( - Y ( 2 ) l f 2 ( . ~ 2 ;  8(2,(S(2,,> 

. . . =f.,,,(s(k)Ifk(xk; 8 ( k ) ( S ( k , ) )  J ( 2 3 )  

Sometimes  the array of functional  equations (23) will  be solvable.  Here, 
as in two  dimensions, an  assumption  that the families of densities (21) are 
exponential families will allow for  straightforward  solution. 

Suppose  that  the k families of densities f I ,  f ? ,  . . . ,fx- in (21) are e l .  e?, 
. . . , Lk parameter  exponential families of the  form 

(here 8, denotes thejth  coordinate of e(,) and, by convention, qlo(t )  = 1, Vi). 
We wish to identify all joint  distributions  for X such that (22) holds  with  the 
.As defined as in (24) (i.e., with conditionals in the prescribed exponential 
families). 

By taking  logarithms  in (23) and differencing with respect to x I ,  x 2 ,  . . . , 
xk we may  conclude that  the  joint density  must  be of the  following  form: 

The dimension of the parameter space  of  this  exponential family is 

[-(t, + l)] - 1 since ~ ~ z o o , , , o  is a  function of the  other m‘s, chosen to  ensure 

that  the density  integrates  to 1 .  Determination of the  natural  parameter 
space  may  be very difficult and we may well be  enthusiastic  about accepting 
non-integrable versions of (25) to avoid  the necessity of identifying which ~ n s  
correspond  to  proper densities [4]. 
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3. CONDITIONALLY SPECIFIED PRIORS 
Suppose  that we have data, X, whose  distribution is governed by the family 
of densities Cf(2; e) : E 0)  where 0 is k-dimensional (k  > 1). Typically,  the 
informative  prior used in this analysis is a  member of a  convenient family of 
priors  (often  chosen to be a  conjugate family). 

Definition 2 (Conjugate family) A furnil]* 3 of priors for e is .wid to he a 
conjugate funtily if any member  of 3, when contbined  with  the  likelihood  of the 
datu, leads to  a posterior  density whicl1 is clguill u member  of 3. 

One  approach  to  constructing a family of conjugate  priors is to consider 
the possible posterior  densities  for e corresponding to all possible samples of 
all possible sizes from  the given distribution  beginning with a locally uni- 
form  prior on 0. More often than  not, a  parametric  extension of this class is 
usually considered. For example,  suppose that XI,  . . . X,, are  independent 
identically distributed  random variables  with  possible values 1,2,  3. Suppose 
that 

P(X,  = 1) = el. P(X ,  = 2) = e?, P(X,  = 3) = I - el - e2 
Beginning with a locally uniform  prior  for (e,, el) and considering all 

possible samples of all possible sizes leads to a family of Dirichlet (a I ,   a? ,  
a3)  posteriors  where a l ,  a?, a3 are positive integers.  This  could be used as a 
conjugate  prior family but it is more  natural to use the  augmented family of 
Dirichlet densities  with aI. a2, cy3 E Rf. 

If we apply  this approach  to i.i.d.  normal random variables  with 
unknown  mean p and  unknown precision (the  reciprocal of the  variance) 
t, we are led to a conjugate  prior family of the  following  form (see, e.g., 
deGroot [6]).  

where a > 0.0 < 0, c E [w, d < 0. Densities such as (26) have a gamma 
marginal  density  for t and a  conditional  distribution  for p, given t that is 
normal with precision depending on t. 

It is not  clear why we should  force  our  prior  to  accommodate  to  the 
particular  kind of dependence  exhibited by (26). In  this  case, if t were 
known, it would be natural to use a  normal  conjugate  prior  for p. If p 
were known,  the  appropriate  conjugate  prior  for t would be a  gamma 
density.  Citing  ease  of assessment arguments,  Arnold  and  Press [7] advo- 
cated use of independent  normal  and  gamma  priors  for ,LL and t (when both 
are  unknown). They  thus  proposed  prior  densities  of  the  form 
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f ( ~ ,  r )  0: exp(n  log r + br + CF + dp2) (27) 

where CI > 0, b < 0, c E R, d < 0. 1 
The family (27) is not a conjugate family and in addition  it, like (26). 

involves a specific assumption  about the  (lack of) dependence between prior 
beliefs about p and r. 

It will be  noted that densities  (26) and (27), both have  normal  and  gamma 
conditionals.  Indeed  both  can  be  embedded in the full class of  normal- 
gamma  conditionals  densities  introduced  earlier (see equation ( 1  2)). This 
family is a conjugate  prior family.  It is richer than (26) and (27) and it can 
be argued  that  it  provides us with  desirable  additional flexibility at little cost 
since the  resulting  posterior  densities  (on which our inferential  decisions will 
be made) will continue  to have  normal  and  gamma  conditionals  and  thus  are 
not difficult to deal  with.  This is a  prototypical  example of what we call a 
conditionally specified prior.  Some  practical  examples,  together with their 
corresponding  hyperparameter  assessments,  are given in  Arnold  et  al. [8]. 

If  the possible densities  for X are given by (f(5: e E @]where 
0 c Rk,  k > 1, then specification of a joint  prior  for e involves describing 
a  k-dimensional  density. We argued in Section 2 that densities are  most 
easily visualized in terms of conditional  densities.  In  order  to  ascertain an 
appropriate  prior density  for e it  would  then seem appropriate to question 
the  informed scientific expert  regarding  prior beliefs about 8,  given specific 
values of the  other 8;s. Then, we would  ask about  prior beliefs about Q2 

given specific values of e(,, (the  other Ois), etc. One clear  advantage of this 
approach is that we are only  asking about  univariate  distributions, which 
are  much  easier  to visualize than  multivariate  distributions. 

pin down  prior beliefs using  a  conditional  approach.  Suppose  that  for each 
coordinate 8; of e, if the  other 8,s (i.e. e,,)) were known,  a  convenient  con- 
jugate  prior family, sayf,(O,lp). p, E A , ,  is available.  In  this notation  the g,s 
are  "hyperparameters"  of  the  conjugate  prior families. If this is the  case, we 
propose to use, as a  conjugate  prior family for e. all densities which have  the 
property  that,  for each i, the  conditional  density of O, ,  given e,, belongs to 
the  familyf,.  It is not difficult to verify that this is a  conjugate  prior family 
so that the  posterior  densities will also  have  conditionals in the  prescribed 
families. 

1 

1 Often we can still take  advantage  of  conjugacy  concepts in our effort  to 

3.1 Exponential  Families 
If, in the  above  scenarios,  each of the  prior  familiesf,  (the  prior  for Oi, given 
- e(,,) is an C,-parameter exponential family, then,  from  Theorem 1, the  result- 
ing conditionally  conjugate  prior family will itself be an  exponential family. 
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It will have a large number of hyperparameters  (namely n(t, + 1) - 1), 

providing flexibility for  matching informed or vague  prior beliefs about @. 
Formally, if for  each i a natural  conjugate  prior  for 0, (assuming e(,) is 

known) is an [,-parameter  exponential family of the  form 

x- 

i= 1 

then  a  convenient family of  priors  for  the full parameter  vector @ will be  of 
the  form 

where,  for  notational  convenience, we have introduced  the  constant func- 
tions Tio(6,) = 1. i = 1.2. . . . . k. 

This family of densities includes all densities for @ with  conditionals  (for e, 
given e,,, for  each i) in the given exponential families (28). The  proof is based 
on a simple extension of Theorem 1 to  the rz-dimensional case. 

Because each1; is a  conjugate  prior  for 0, (given e,,), it follows that.f(@), 
given by (29), is a  conjugate  prior family and  that all posterior  densities  have 
the  same  structure as  the  prior.  In  other words,  a  priori and a  posteriori. 0, 
given e(,) will have a  density  of  the  form (28) for  each i. They  provide 
particularly  attractive  examples of conditionally  conjugate  (conditionally 
specified) priors. 

As we shall see, it is usually the  case  that  the  posterior  hyperparameters 
are related to the  prior  hyperparameters in a  simple  way.  Simulation of 
realizations  from  the  posterior  distribution  corresponding  to  a  conditionally 
conjugate  prior will  be quite  straightforward  using rejection or  Markov 
Chain  Monte  Carlo (MCMC) simulation  methods (see Tanner [9]) and, in 
particular.  the Gibbs  sampler  algorithm since the  simulation will only 
involve one-dimensional  conditional  distributions which are themselves 
exponential families. Alternatively,  it is often possible to use some  kind of 
rejection algorithm  to simulate  realizations  from  a  density  of  the  form  (29). 

Note  that the family (29) includes the “natural”  conjugate  prior family 
(obtained by considering all possible posteriors  corresponding  to all possible 
samples,  beginning with a locally uniform  prior). In  addition, (29) will 
include  priors with independent  marginals  for  the 8,s, with the  density  for 
8, selected from  the  exponential family (28),  for  each i .  Both classes of these 
more  commonly  encountered  priors  can be recognized as subclasses of (29). 
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. 4  obtained by setting  some of the  hyperparameters  (the n ? , , J 2 . . .  . j ks )  equal  to 
zero. 

Consider  again  the  case in which our  data consist  of n independent 
identically distributed  random  variables  each  having  a  normal  distribution 
with mean p and precision t (the reciprocal of the  variance). The  corre- 
sponding  likelihood  has  the  form 

If t is known,  the  conjugate  prior family for p is the  normal  family. If p is 
known,  the  conjugate  prior family for t is the  gamma family. We are  then 
led to consider, as  our  conditionally  conjugate family of prior densities for 
(p ,  t). the set of densities  with  normal-gamma  conditionals given above in 
(12). We will rewrite this in an equivalent but  more convenient  form as 
follows: 

,f(p. t)  ccexp[mIOp + nr20p9 + m12p log t + n?22p9 logs] 

x exp[nrO, t + m O 2  log t + inl l p t  + n ~ ~ ~ p ’ t ]  (31) 

For such  a  density we have: 

1.  The  conditional density  of p given t is normal  with  mean 

1 and precision 
I 

l/var(plt) = - 2 ( n ~ ~ ~  + mlt + / w 2  log r )  (33) 

2. The  conditional density of t given p is gamma  with  shape  parameter 
a(p) and intensity parameter A(@). i.e., 
f ( t [ p )  t 4 4 - ~ ~ - w ~  (34) 

with mean and variance 

1 + m o 2  + m12p + nt22p’ 

(!?to, + ml1p + nz21p?)2 
var(slp) = (36) 

In order  to  have a  proper  density,  certain  constraints  must be placed on 
the m,,s in (3 1)  (see for  example  Castillo and  Galambos [ 101). However, if we 
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are willing to accept improper  priors we can allow each of them to  range 
over [w. 

In order  to easily characterize  the  posterior  density which will arise when 
a  prior of the  form (31) is combined with the likelihood (30), i t  is convenient 
to rewrite the  likelihood as follows: 

A  prior of the  form (31) combined with the  likelihood (37) will  yield a 
posterior  density  again in the family (31) with  prior  and  posterior  hyper- 
parameters  related  as  shown in Table 1 .  From  Table 1 we may  observe that 
four of the  hyperparameters  are  unaffected by the data.  They  are  the  four 
hyperparameters  appearing  in  the first factor in (31). Their influence on the 
prior is eventually  “swamped” by the data  but, by adopting  the  condition- 
ally conjugate  prior family, we do not  force  them  arbitrarily to be zero as 
would  be done if we were to use the “natural”  conjugate  prior (26) .  

Reiterating.  the choice 11100 = t w o  = i n l 2  = m 2 2  = 0 yields the  natural 
conjugate  prior.  The choice lnI1  = i n l 2  = = n12? = 0 yields priors  with 
independent  normal  and  gamma  marginals.  Thus  both  of  the  commonly 
proposed  prior families are  subsumed by (31) and in all cases we end up 
with a posterior  with  normal-gamma  conditionals. 

3.2 Non-exponential Families 
Exponential families of priors play a very prominent  role in Bayesian sta- 
tistical analysis.  However,  there are interesting cases which fall outside  the 

Table 1. Adjustments in the  hyperparameters in 
the  prior family (31),  combined with likelihood (37) 

Parameter  Prior value Posterior value 
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exponential family framework.  We will present  one such example  in this 
section.  Each one must  be  dealt  with on a  case-by-case basis because 
there will  be no analogous  theorem in non-exponential family cases that is 
a  parallel  to  Theorem I (which allowed us to clearly identify the  joint 
densities  with specified conditional  densities). 

Our example involves classical Pareto  data.  The  data  take  the  form  of a 
sample of size 17 from  a classical Pareto  distribution with inequality para- 
meter a and precision parameter  (the reciprocal of the scale parameter) r. 
The likelihood is then 

11 

.fx(s; a, r )  = n ra(r.xi)-(a+’)z(r.xl > I )  
i= 1 

which can be conveniently  rewritten in the  form 

(39) 

If r were known,  the  natural  conjugate  prior family for a would be the 
gamma  family. If a were known,  the  natural  conjugate  prior family for r 
would  be  the Pareto family. We are  then led to  consider  the  conditionally 
conjugate  prior family which will include  the joint densities  for (a ,  r )  with 
gamma  and  Pareto  conditionals.  It is not difficult to verify that this is a six 
(hyper)  parameter family of priors  of  the  form 

.f(a, r )  o( exp[mol  log r + r r l z l  log a log r] 
x exp[mIoa + n720 loga + /??lIalog r]Z(rc > 1) (40) 

It will  be obvious  that this is not  an exponential family of priors.  The 
support  depends  on  one of the  hyperparameters.  In (40). the  hyperpara- 
meters in the first factor  are  those which are  unchanged in the  posterior. 
The  hyperparameters in the  second  factor are  the  ones  that  are affected by 
the  data. If a  density is of the  form (40) is used as a  prior in conjunction  with 
the likelihood (39), i t  is evident  that  the  resulting  posterior  density is again in 
the family (40). The  prior  and  posterior  hyperparameters  are related in the 
manner  shown in Table 2. 

The density (40). having  gamma and  Pareto  conditionals, is readily simu- 
lated using a Gibbs  sampler  approach.  The family (40) includes the  two 
most  frequently suggested families of joint  priors  for (a. r) ,  namely: 
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Table 2. Adjustments in the  parameters in the 
prior (40) when  combined  with the likelihood (39) 

Parameter  Prior value  Posterior  value 

1 The “clcrssicnl” corljugute prior  family. This  was  introduced by  Lwin 
[ l  I]. It corresponded  to the case in which mol and inZl were both 
arbitrarily set equal  to 0. 

2 The indeperdent gumma and Pareto  priors. These were suggested by 
Arnold  and  Press [7] and  correspond  to  the  choice m l l  = nzzl = 0. 

4. SOME CLASSICAL  PROBLEMS 
4.1 The Behrens-Fisher  Problem 

In this  setting we wish to  compare the means  of two or more  normal  popu- 
lations  with  unknown  and  possibly different precisions. Thus  our  data  con- 
sists of k independent  samples  from  normal  populations  with 

X ,  - N(,u, ,  r,), i = 1 . 2 ,  . . . , k ;  j = 1 , 2 ,  . . . , izi (41) 

Our interest is in the  values  of the pis. The ris (the precisions) are here 
classic examples  of  (particularly  pernicious)  nuisance  parameters. Our like- 
lihood will involve 2k parameters. If all the parameters save pJ are  known, 
then  a  natural  conjugate  prior for pJ would be a  normal  density. If all the 
parameters  save rJ are  known,  then  a  natural  conjugate  prior  for rj will be  a 
gamma density. Consequently,  the  general  conditionally  conjugate  prior  for 
( p ,  z) will be one in which the conditional  density of each p J ,  given the  other 
2k - 1 parameters, is normal  and  the  conditional  density  of rj, given the 
other 2k - 1 parameters, is of the gamma type. The resulting family  of joint 
priors in then given by 
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where 

Y I O ( c ( , )  = 1 f 

Y,I(PLi)=P,. 

q ; & 4  = P? 

q:,”(ri) = 1, 
s:s1(r1,) = - r l , ,  
q;.2(t,.) = log t,, . 

There  are  thus 32k - 1 hyperparameters.  Many of these will  be unaffected 
by the  data.  The  traditional Bayesian prior is a  conjugate  prior in which 
only  the 4k hyperparameters  that  are affected by the data  are given non-zero 
values.  An easily assessed joint  prior in the family (42) would be one in 
which the 11s are taken to be independent of the t s  and  independent  normal 
priors  are used for  each p., and  independent gamnla  priors are used for  the 
t J s .  This  kind of prior will also  have 4k of the  hyperparameters in (42) not 
equal  to  zero. 

Perhaps  the  most  commonly used joint  prior in this setting is one in 
which the pjs are assumed  to have independent locally uniform densities 
and, independent of the pJs ,  the t ls  (or  their  logarithms) are assumed to have 
independent locally uniform  priors. All three of these types of prior will lead 
to  posterior densities in the family (42). We can  then use a Gibbs  sampler 
algorithm  to  generate  posterior  realizations of ( p ,  I). The  approximate  pos- 
terior  distribution of C;=,(p, - I;)’ can be perused  to  identify evidence for 
differences among the p,s. A specific example of this program is described in 
Section 5.1 below. 

4.2 2 x 2 Contingency Tables 

In  comparing  two medical treatments, we may  submit I? ,  subject to  treat- 
ment i. i = 1,2 and observe  the  number of successes (survival  to  the  end of 
the  observation  period)  for  each  treatment.  Thus  our  data  consists of two 
independent  random variables ( X , .   X , )  where X ,  - bi~zomicrl(n,, p , ) .  
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The  odds  ratio 
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is of interest in this setting.  A natural  conjugate  prior  for p l  (if p., is known) 
is a  beta  distribution.  Analogously,  a beta prior is natural  for p z  (if pI is 
known).  The  corresponding  conditionally  conjugate  prior  for ( p , , p 2 )  will 
have beta conditionals (cf. equation (18)) and is given by 

. f ( P I . P ? )  = b I ( 1  --PI)P.,(l -P2)1-I 
x exp[tnII logpl logp2 + t n 1 2  logpl log(1 - p z )  
+ m . , l  log(l - PI) logp: + 11122 log(1 - PI) log( 1 - p z )  

+ I H O ]  logp., + n10., log( 1 - p2) + moo] 
x Z(0 <PI < 1)1(0 < p2 < 1) (44) 

+ ti110 logy1 + li720 IOg(1 -PI) 

When such a  prior is combined with the  likelihood  corresponding to the 
two  independent  binomial X,s ,  the  posterior  density is again in the family 
(44). Only  some of the  hyperparameters  are affected by the  data. 

The usual prior in this situation involves independent  beta  priors  for pI 
and p z .  Priors of this  form are of course included as special cases  in (44) but 
it is quite  reasonable  to expect non-independent  prior beliefs about  the 
efficacy of  the two treatment regimes. Observe  that  simulated  realizations 
from  a  posterior of the  form (44) are readily generated  using  a Gibbs  sam- 
pler algorithm  (with  beta  conditionals).  This  permits  ready  simulation of the 
posterior  distribution  of  the  parametric  function  of  interest  (the  odds  ratio 
(43)). 

4.3 Regression 

The conditionally specified prior  approach  can  also be  used  in other classical 
situations. We will describe  an  example involving simple  linear regression. 
but  analogous  ideas  can  be  developed  in  more complex settings. 

Assume that we have I I  independent  random  variables XI .X2. . . . , X,, 
whose marginal  distributions  follow  a  linear regression model.  Thus 

X ,  - ~ ( a  + pt,. 2 ) ,  i = 1 , .  7 . .  . . , I T  (45) 

where the t ,s  are known  quantities  and  the  parameters CY, p, and 0' are 
unknown.  Here CY E 0 8 ,  b E R and 0' E R'. Often (Y and j3 are  the  parameters 
of interest  whereas a2 is a nuisance  parameter.  As we have done in previous 
sections, we reparameterize in terms of precision t ( = 1 /02).  If and r were 
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known, we would use a  normal  prior  for CY. If CY and r were known,  a  normal 
prior  for @ would be used. If CY and B were known,  a  routinely used prior  for 
r would be a  gamma  distribution.  Our  conditional specification route would 
then lead to a joint  prior with normal,  normal,  and  gamma  conditionals. 
Thus we would use 

I 

I 

The two  factors on the  right-hand  side of (46) involve, respectively, 
hyperparameters which are  not  and  are affected by the  data.  The seven 
hyperparameters  that  are  affected by the data  are  changed in value as dis- 
played in Table 3. 

The classical Bayesian approach would set all hyperparameters in the first 
factor of (46) equal  to zero.  This  7-parameter  conjugate  prior  might be 
adequate  but i t  clearly lacks flexibility when compared with the full prior 

I Table 3. Adjustments in the  parameters in the 
prior family (46), combined with the  likelihood 
corresponding  to  the model (45) 

Parameter  Prior value Posterior  value 

I 

I ’  I . . ,  
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family (46). It is not easy to justify  the  dependence structure  that is implicitly 
assumed when using such a  restrictive  prior. 

Another possibility would involve independent  priors  for a, p, and r. 
Whether we pick a  prior in the full family (46) or from  some  subfamily, 
we  will still be  able to use a  simple Gibbs  sampler  approach  to simulating 
realizations  from  the  posterior  density with its  normal,  normal,  and  gamma 
conditionals. 

5. HYPERPARAMETER ASSESSMENT STRATEGIES 

If  we have agreed  to use a  conditionally specified prior  such  as (29). (40), 
etc., we will  be faced with the  problem of selecting suitable values of the 
hyperparameters  to  match  as closely as possible the  prior beliefs of our 
informed  expert  who is supplying  the  a  priori  information. It must be 
emphasized  that use of  conditionally specified priors  (as is the  case with 
use of other  convenient flexible families of priors)  does  not imply that we 
believe that our expert’s beliefs will precisely match  some  distribution in the 
conditionally specified family. What we hope  to be the  case is that  the 
conditionally specified family will  be  flexible enough  to  contain a  member 
which will approximate  the  informed expert’s belief quite  adequately. 

In  order to select a  conditionally specified prior  to  represent our expert’s 
prior beliefs about a  multidimensional  parameter Q ,  it will  be necessary to 
elicit quite a bit of information. 

The  information  provided by a human expert will typically be inconsistent. 
That is to say, there probably will not exist c r y  distribution which matches 
exactly all of the  many  prior pieces of probabilistic  information  provided by 
the  expert.  What we will try  to do is to find a  conditionally specified prior  that 
is.  in some sense. least at variance with the given information. 

There will  be some  arbitrariness in how we measure such discrepancies 
but we take  comfort in the  fact  that  eventually  the data will outweigh any 
unwarranted  prior  assumptions. 

Our knowledge of the  one-dimensional  conditional  distributions involved 
in our conditionally specified prior will usually allow us to  compute a  variety 
of conditional  moments  and percentiles explicitly as  functions of the  hyper- 
parameters in the  conditionally specified prior.  Armed with this informa- 
tion, we will then elicit from  our informed  expert  the subjective evaluations 
of the  true  prior values of a selection of  conditional  moments  and percen- 
tiles. We will usually ask  for  more values of conditional  moments  and 
percentiles than  there are  hyperparameters in the  model. We reiterate that 
we don’t expect to find a  choice of hyperparameters  that will match the 
expert’s elicited moments  and percentiles exactly (they  probably won’t 
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even be consistent).  However we do  plan  to  choose values of the  hyperpara- 
meters to  make  the  conditional  moments  and percentiles of the  prior  agree 
as  much  as possible with the  information  provided by the  expert. 

We  can  illustrate  this  technique by returning  to  the  normal example 
discussed in Section  3.1. In  that example we had n i.i.d.  observations with 
a common  normal density  with  mean p and precision t. The conditionally 
specified prior is of the  form (31) with conditional  means  and  variances in 
terms of the  hyperparameters explicitly available in equations (32)-(36). 

For several  different  values of t, say t l ,  t 2 , .  . . , tJIl, we ask  the  informed 
expert to provide his or her informed best guesses for  conditional  means  and 
variances of p given r. Suppose  that the  following  information is provided 
(the subscript A denotes assessed value) 

! 

Next,  for several different values of p, say pl, p2, . . . , pt. assessed values 
are provided for  conditional  moments of t given F: 

i. . . - . . . . 

warA(rlp = p,) = t j , , j  = 1 ,2 , .  . . , e.  (50) 

One  approach  to selecting appropriate values of  the  hyperparameters  (to 
make  the assessed values (47)-(50) as close as possible to the  actual  condi- 
tional  moments  provided by (32)-(36)).  is to set up  an objective  function  of 
the  form 

! 

6 . .  . .  . 

I l l  

(where  the  conditional  moments are given in (32)-(36)) and, using a reliable 
optimization  program,  choose values of m to minimize D(m) in (51). The 
objective  function D(m) is admittedly  somewhat arbitrary  and a refined 
version might well involve some  differential weighting of the  terms on  the 
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right-hand side of ( 5  I) .  However,  some version of this approach  can be used 
for  many of the assessment problems  that will  be encountered in the  appli- 
cation of conditionally specified priors. 

In  the  particular  example  at  hand,  a  simpler  alternative is available. By 
referring to  equations (32)-(36) we can verify that if the assessed moments 
(47)-(50) are  approximately  equal  to  the  corresponding  conditional 
moments  written as  functions of 111, then the following array of approximate 

Least-squares  evaluations of the  hyperparameters  can  then be obtained 
using a standard regression program.  Concrete examples are given in 
Arnold et al. [8,12,13]. 

In this  section we have  not been concerned with selecting hyperpara- 
meters  that will ensure  a  proper (i.e., integrable)  prior. For reasonable  sam- 
ple  sizes and  for  priors which are  not “heavily” improper  the  posterior 
distributions will normally turn  out  to be proper. Specific details  regarding 
the  constraints necessary to  guarantee  proprietry of prior  and/or posterior 
densities of conditionally specified form may be found in Arnold et al. [4] 
and  the references cited there. In  order  to rationally use the Gibbs  sampler 
for  posterior  simulations we  will need a  proper  posterior  density (see Hobert 
and Casella [14] for discussion of  this  topic). 

5.1 An Example 

Samples of nitrogen  from two different  sources are to be compared. Twelve 
samples are taken  from  the air  and eight samples are  obtained by chemical 
reaction in a  container  at  standard  temperature  and pressure. The masses of 
the  samples are  as follows (as  reported by Jeffreys [15]): 

Population 1 (Air  samples) 

2.31035 2.31026 2.31024 2.31012 3.31027 2.31017 
3.30986 2.31010 3.31001 2.31024 2.31010 2.31028 

Population 2 (Chemical  samples) 

2.30143 2.29890 2.29816 2.30182 2.29869 2.29940 
2.29849 2.29889 
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Our modelling  assumptions  are  that  observations  in  population 1 are 
i.i.d.  normal N ( p l ,  rl) and  observations in population  2  are  i.i.d.  normal N 
(P2. r2) . 

Our interest focuses on the difference between the  means u = p I  - p2. To 
this  end, we will specify a  conditionally  conjugate joint  prior  for (pl,  p2. 
r l ,  r2) and  update it with the given data  to  obtain a  posterior  density  for 
( p l ,  p?, T I ,  r2)  that is still conditionally specified. Using Gibbs  sampler simu- 
lations  from  this  posterior  density, we  will be able  to  generate  an  approxima- 
tion to  the posterior  density of the difference between the  mean masses for 
the  two  types of samples.  In  addition we  will observe  the  approximate  poster- 
ior  density of { = r 1 / r 2 ,  to determine  whether or  not we are in a Behrens- 
Fisher  situation (Le., whether { = 1). 

From  (43,  our conditionally  conjugate  prior family for ( p l ,  p2* rl , r2) is 
given by 

A 

A 

f ( lA.1 ,  CL?, 51, r d  fx (51 r 2 r 1  exPt~~.tloooPl + 'nolOoP.2 - ~ ~ ~ 0 0 1 0 ~ l  
I 

7 1  - nzOOOl r2 + . . . + /??222?/1ip: log rl log rz] (53) 

which has 34 - 1 = 80 hyperparameters.  Only 8 of these, namely 

~ ~ 0 0 1 0 ,  t~20001. 1110020, lnooo2.  IOIO, IO, ' ~ 0 1 0 1 ,  ' ~ 2 0 1 0 ,  and tt10201 

will be  changed  from  prior to  posterior by the  likelihood of the data  set.  The 
classical Bayesian analysis of this data set would give nonzero values to 
some or all of these eight  hyperparameters  and set the  remaining 72 equal 
to 0. Considerable  additional flexibility will be  provided by the full 80 
hyperparameter family. 

For illustrative  purposes we will analyze our nitrogen data assuming 
diffuse prior  information. i.e., we will initially set all I ~ , S  equal  to  zero. 
For comparison, reference can  be  made  to  Arnold  et  al. [13], where  with 
a  similar data set two  alternative  informative  prior  analyses  are  described, 
namely: 

'. . , IC ' I . . ,  I 

1. Independent  conjugate  priors  for  each  parameter  (the  only  nonzero nts 
in (53) are q 0 0 0 ,  '110100. q 0 1 0 ,  '?70001, ~ ~ O O O ,  ~ O ~ O O .  ~ O O Z O .  and ~ o o o ~ ) ;  
and 

2. A classical analysis that assumes that only the  hyperparameters  that 
will  be affected by the  data  are  nonzero (i.e., moo lo ,  m0ooI, 1??0020, nzooo2, 
'nlolo, '~10101~ 'n2010. and mo201). 

In the  diffuse prior case, our prior is of  the  form 
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The posterior  distribution becomes 

f (p ,  xldata) 0: (TI r2)-l exp  log rl + -log rz '12 

2 - 
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and the  posterior  conditional  distributions to be used in the  Gibbs  sampler 
are 

Using  the data  reported by Jeffreys [15], the  nonzero  hyperparameters in  the 
posterior  density of (p , ,   p2 ,  r l ,  r2) are 

n?OOlO = 6 
i??o020 = -32.0213 
1111020 = 27.722 
0??020 = -6 
111000~ = 4 
070002 = -21.1504 
~ 1 0 1 0 2  = 18.3958 
1n0202 = 4 

Gibbs  sampler  simulation for the  posterior  densities of u = p~ - 11.2 and 
< = r l / r 2  were based on 1300 iterations,  discarding  the first 300. Smooth 
approximate  posterior  densities were then constructed using kernel density 
estimates. The resulting  posterior  density  approximations are displayed in 
Figures 2 and 3 .  
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. .  

Figure 2. Diffuse  priors:  simulated  density of ,ul - ,uz using  the Gibbs 
sampler with 1000 replications and 300 starting  runs. 

The  corresponding  approximate  posterior means and variances  are 

E(u)  = 0.01074 
ZW(V) = 0.000046 I5 

E( t )  = 2.3078 
~ J U V ( ~ )  = 4.3060 

From Figure 2 we see that F~ - ,u? is slightly positive  (air  samples have 
more  mass  than chemically produced  samples). The  shortest 90% interval 
for u would  not  include u = 0. It is also evident that we really are in a 

0 . 0 5 .  

0; 
0 2 4 6 8 10 

Figure 3. Diffuse  priors:  simulated  density of s l / t2  using the  Gibbs sam- 
pler with 1000 replications and 300 starting  runs. 

L 
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BehrenssFisher  situation since the  posterior  distribution of 6 = rl/r2 is 
centered  considerably to the  right of 6 = 1. 

6. MIXTURES 

Conditionally specified priors  form flexible families for modeling  a broad 
spectrum of prior beliefs. But they do have their limitations.  They will often 
be inadequate  to model  multimodal  prior densities. In such settings. as is 
commonly  done in routine  conjugate Bayesian analysis,  resort  can be made 
to  the use of priors  that  are finite mixtures of conditionally  conjugate  priors. 
Conjugacy will  be lost,  as will the  ability to use the  Gibbs  sampler,  but, in 
the case of conditionally specified priors which form  an  exponential family 
(as in Section 3.1), approximate  evaluation of posterior  moments  corre- 
sponding  to  finite-mixture  priors will not be unusually difficult. We will 
pay  a relatively high price for  added flexibility. but if faced with definitely 
multimodal  prior beliefs, we must  pay. 

7. ENVOI 

For many classical data analysis  situations,  conditionally  conjugate  priors 
offer a  tractable  and  more flexible alternative  to the  usual  rather restrictive 
conjugate  priors.  They  are  not  a  panacea  but  certainly they merit  space  in 
the  practicing Bayesian's prior  distributional  tool case. 
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1. INTRODUCTION 

In statistical  research of the  linear  model  there  have been many attempts  to 
provide  estimators of f i  which use sample  and prior  information  simulta- 
neously.  Examples are  the  incorporation  of  prior  information in the  form of 
exact or  stochastic restrictions (see [l-31) and  the use of inequality restric- 
tions which leads to  the  “minimax”  estimation. 

Minimax  estimation is based on the idea that the quadratic risk function 
for  the  estimate is not minimized over  the  entire  parameter  space RL,  but 
only  over an area B(B) that is restricted by a  priori  knowledge. For this,  the 
supremum of the risk is minimized over B(@) in relation to  the  estimate 
(minimax principle). 

In  many of the  models used in practice,  knowledge of a  priori  restrictions 
for  the  parameter vector B is available in a  natural way. Reference [4] shows 
a  variety of examples  from  the field of economics (such as  input-output 
models), where the  restrictions for  the  parameters  are so-called workability 

27 
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conditions  of  the  form Pi 2 0 or Pi E (ai. 6,) or E(v,lX) I a, and.  more 
generally, 

A B 5 0  
Minimization of S(B) = ( y  - XB)’(y  - Xg) under  inequality  restrictions 

can  be done with  the simplex algorithm.  Under general  conditions we obtain 
a  numerical  solution. The  literature deals  with this problem  under the gen- 
eric  term of inequality  restricted least squares (see [5-81). The  advantage  of 
this  procedure is that a  solution is found  that fulfills the  restrictions. The 
disadvantage is that  the  statistical  properties  of  the  estimates are  not easily 
determined and  no general  conclusions about superiority  can be made. If all 
restrictions define a  convex area, this  area can often  be  enclosed in an 
ellipsoid of the  following  form: 

B(B) = { B  : B’TB I k} 

B(B9 Bo)  = { B  : (B  - Bo)’T(B - B o )  I 4 
with the  origin as center  point or in 

with the  center  point  vector Po. 

2. CONFIDENCE REGIONS ON THE  BASIS OF THE 
OLSE 

We  consider  the  linear regression model 

J’ = X B  + E ,  E - N(O,a?I) (1) 
with nonstochastic  regressor  matrix X of full column  rank K .  The sample 
size is T .  The restriction of uncorrelated errors is not essential since it is easy 
to give the  corresponding  formulae  for  a  covariance  matrix o2 W # a’I. If 
no further  information is given, the  Gauss-Markov  estimator is OLSE: the 
ordinary  least-squares  estimator 

6 = ( X ’ ) - Y J  = S-IX’y = N(B. a2S”) (2) 
with S = X’X. The variance  factor o2 is estimated by 

i 

2.1 Confidence  Regions for p on the Basis of b 

From ( 2 )  we get 

a”Sl’’(6 - B)  = N(0 ,  I )  
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whence it follows that 

As this x' variable is independent of s', we may  observe  that 

From the  central FK.T-K distribution we define the (1 - a )  fractile FK,T-K 
(1 - ff) by 

P(F 5 FK,T-K( 1 - a)) = 1 - (7) 

Using these results we have 

This  characterizes  a  simultaneous confidence region for B which is formed 
by the  interior of the  K-dimensional ellipsoid (see Figure 1) 

In practice, besides the  simultaneous  confidence  region,  one  may  often be 
interested  in  the  resulting intervals for the conlporze~lts B,. They  are deduced 
in the  Appendix and  the interval for  the  ith  component Pi (i = 1,. . . , K )  is 
given by 

bi - gi P B, 5 bi + g, (10) 

with 

Figure 1. Region of the  components X, and x 2  of an ellipsoid .Y'Ax = r.  
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where is the  ith  diagonal  element of S-l and bj is the  ith  component 
of b. The length of the  interval (10) is 

t 

I, = 2gj (12) 

The  points of intersection  of  the ellipsoid (9) with the Bi-axes result from 
(A3) as 

In  the special case of a  diagonal  matrix S = X ' X  (as,  e.g., in the  case of 

in this case  the  points of intersection (13) with  the &axes coincide  with  the 
end-points of the  confidence  intervals  (10).  However,  in general we have 

I orthogonal regressors), S" is diagonal  and we have (S-'),; = l / ( S ) j j .  Hence 

(SI;)-' i (S-I),,. 
! i 

3. MINIMAX-LINEAR  ESTIMATION 

3 Under the  additional  condition 

BIBB 5 I' (14) 

with a positive definite ( K  x K) matrix B and a constant I' 2 0, the mini- 
max-linear estimation ("LE) is of the  form 

b* = (,.-I a 2 B + S ) - ' X ' y  = D-IX'y (1 5 )  

where D = (r"a2B + S); see, e.g., [9], Theorem  3.19.  This  estimator is 
biased, with bias vector 

! 
h = bias(b*, B)  = E(b*) - B = (D"S - BB)B = -r.-la'D"BB (16) 

and  the  covariance  matrix 

J v = ~ [ ( b *  - ~ ( b * ) ) ( b *  - ~ ( b * ) ) ' ]  = a 2 ~ - l ~ ~ - '  

Assuming  normal  distribution of E ,  it is observed that 

b* - B X N(h ,  u2 V )  (1 8) 

V+*(b - B) N (  V"/?i, a?) (19) 

a"@* - B)'V"(b* - B) - X i ( 6 )  (20) 

with the  noncentrality  parameter 

I . .. ' . ..., . . /. . 
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6 = a-2h'V"h (21) 

As the MMLE b' (15) is dependent  on  the  unknown  parameter a', this 
estimator is not  operational. 

3.1 Substitution of c2 

We confine ourselves in the  substitution  to a' with a positive constant c and 
obtain  the feasible estimator (see [lo]) 

br = D,'X'J~ (22) 

with 

D, = (Y-'cB + S) (23) 

and 

02(b: - B)'V,"(b," - B) - xi,(&,) (26)  

where  the  noncentrality  parameter 6,. is given by 

6 c -  - o - - ~ c ~ ; l  1 1  = a - 2 ~ I ( ~ ~ ; '  - z)D,s-'D,(D;~s - z ) ~  (27) 

= a-2B'(S - Dc)S-'(S - D,)B = (a'r')"c'p'B'S-'BB (28) 

We note  that 6, is unknown,  too,  along with  the  unknown a-'B. 
The choice of c has  to be  made such that  the feasible MMLE hr is super- 

ior to  the  Gauss-Markov  estimator b. Based on the  scalar  quadratic risk of 
an  estimator j 

R(B. a) = a%[ (j - B) (B - B) I ]u  

with a fixed K x 1 vector a # 0, it holds that 

W b ,  a) 2 sup{R(b:, C a) : B'BB 5 1.)  

if (see  [2]) 

c 5 2a2 (31) 

This (sufficient) condition follows from  a general lemma on  the  robust- 
ness of the MMLE against misspecification of the  additional  restriction 
B'BB 5 Y since the  substitution of a2 by c may be interpreted  as  a mis- 
specified ellipsoid of the  shape 
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B’BD 5 ra’c-’ (32) 

The  condition (31) is practical if a lower bound  for a’ is known: 

ai 5 0- ? ?  
(33) 

resulting  in  the  choice 

c = 2a; (34) 

for c. Such  a lower bound  may be reclaimed using  the  estimator s’ of a?: 

Hence one  may  choose a; 5 s’(T - K)/&  at a 1 - CY level  of significance. 
The  estimator 6: with c = 2a: is called the  two-stage minimax-linear esti- 
mator (2SMMLE). 

4. APPROXIMATION OF THE NONCENTRAL x* 
DISTRIBUTION 

From  formula (24.31) in [l  11, a  noncentral x’ distribution  may be approxi- 
mated by a  central x’ distribution  according to 

K + 26, (K + 6,)’ 
K + S ,  ’ K + 26, 

a=- d =  

where, due  to  the  unknown S,, the  factor a and  the  number of degrees of 
freedom d are also  unknown. 

With  the  approximation (36), formula (26) becomes 

a-‘a-’(b,* - p)’v,-l(b: - p)  M x; (38) 

i.e.,  approximately (in the  case of independence of 3’) we have 

The desired  confidence region for ,9 at the level 1 - CY is defined by the 
interior of the ellipsoid 

(h: - B)’v,-’(b: - B) < ads‘F,I,,-,(l - CY) (40) 

b . . . . , , . . 
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Since 6,, CI and d are  unknown, relation (40) cannot be applied  directly. To 
overcome this problem we use the following approach, which is essentially 
based on  an  approximation. 

4.1 Bounds for 6, 
We rewrite the  noncentrality  parameter 6, (27) as follows. From 

bias(bf, B)  = A,. = (OF'S - 1)B = -r-'cD,'BB (41) 

we get 

Let &,,,,(A) denote  the minimal and &,,,,(A) the maximal eigenvalue of a 
matrix A .  Then  it is well known  that "Raleigh's inequalities" 

o I B'BBA,~,(B~/'S-'B'/~) - < B ' B S - ~ B B  5 ,A , , , , , (B~/~s-~B~/~  ) (43) 

hold  true, yielding for  a  general c and with the  inequality (33) at first 

o I B'BBA~,~(B'I 'S- 'B'/~) - < ,&BS-'BB 5 ~A,, , , , (B~/~s-~B'/~) (44) 

and  for c = 2af especially 

6,. 5 ~~~-'A., , , (B'I~s- 'B'~')  = 6o (45) 

Hence,  the  upper  bound So for 6, can be calculated  for any c. 

cients N and d of the  approximation (36) 
Using this  inequality, we get the following upper  bounds  for  the coeffi- 

and 

Replacing a and d by no and do respectively, the  approximate  confidence 
region for B becomes 

{ B  : (b: - B)'V,- 'K - B) < ( K  + 6o)s'&,,T-K(l - 4 )  (49) 
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We  have ( K  + 6,) 5 ( K  + do), but  Fd.T-K(l - a) 2 FdL,.T-K(l - a), for realis- 
tic choices of a and T - K 2 3 .  Thus  the  impact of changing  the  actual 
parameter to its  maximal  value A0, on the  volume of the confidence region 
(49) used in practice.  has to be analysed  numerically.  Simulations (see 
Section 5 )  were carried out which showed that using  instead of 6, 
would  increase  the  volume of the confidence region. 

With  the  abbreviation 

gP = J F d J - d l  - + 60)(V,);; ( 50) 

i t  follows, from (49), that  the confidence  intervals for the  components  from 
p may be written  as 

Kli = [hr, - gP 5 B, P hZ, + gP] (51) 

5. PROPERTIES  OF  EFFICIENCY 

Let us now investigate  the efficiency of the  proposed  solution.  Assume  that 
the  confidence level 1 - a is fixed. Replacing 6, by the least favourable value 

influences the  length of the confidence intervals 

(a)  True.  but  unknown confidence region (40) on the  basis of 6,. 
Length of the  confidence  interval: 

2gf = ?,/F~,T-K(~ - a)s’(K + 6c)(V,)j, 

(b)  Practical  confidence region (49) on  the base  of a0. 
Length of the  confidence  interval  according to (50): 

By defining the  ratio 

Length  of the interval on the basis of a0 
Length of the  interval on  the basis of 6, 

we get (for  all i = 1, . . . , K )  the  same  stretching  factor 

For given values of 6, (where 6, = 0.1 and 6, = 1) for  the T - K = 10 and 
T = K = 33, respectively, we have  calculated the stretching  factor in depen- 
dence of So and varying values of K (Figures 2-4). The stretching  factor 
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l ' 0 9 f i  1.08 

Figure 2. Stretching  factor f (vertical axis) depending  on K (horizontal 
axis).  With  increasing K the  stretching  factor decreases. Results are  pre- 
sented for 6, = 1 ,  T = 33, and  additionally  varying  starting  from 6, + 
0.1 (solid line, step 0.1). With  increasing difference (ao - 6,) the  stretching 
factor increases; see also  Figure 4. 

decreases  with  increasing K (number  of regressors) and increases  with  the 
distance (Jo - 6,). 

Another  means of rating  the  quality of the  practical  confidence  region 
(49) is to  determine the equivalent  confidence level I - 01 of the true  (but 
unknown) confidence  region (40). The  true  confidence  region is defined 
approximately  through 

The replacement of 6, by its maximum A0 leads to  an increased  confidence 
interval given  by 
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Figure 3. Stretching  factor f (vertical axis) depending  on K (horizontal 
axis). With  increasing K the  stretching  factor  decreases.  Results  are pre- 
sented  for 6, = 1, T = K + 10, and  additionally  varying 6o from 6, + 0.1 
(solid line, step 0.1). With  increasing difference (ao - 6,) the  stretching  factor 
increases; see also  Figure 4. 

Hence, by combination  of (53) and (54). we find for  the  true  (and  smaller) 
confidence  region 

withf 5 1, from (52). Replacing  the  unknown  noncentrality parameter 6, 
by its  maximum 6,, results in an increase of the  confidence level, as we have 
a I  5 01 Figures 5 and 6 present  values of cxl for  varying  values  of T and K .  
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1 

Figure 4. Stretching  factor f (vertical axis) depending on the difference 
(ao - 6,) (horizontal  axis).  With  increasing difference ( ~ 5 ~  - 6) the  stretching 
factor increases. Results  are  presented for 6, = 1, T = 33, and additionally 
varying K from 1 (solid line) to 5. With  increasing K the  stretching factor 
decreases; see also  Figure 2. 

As a  consequence. in practice we choose  a  smaller confidence level of, 
e.g., 1 - CY = 0.90 to reach a real confidence level of 1 - c r l  < 1 (also  for 
greater  distances a0 - 6c). Both the stretching  factor f and  the  amount by 
which the confidence level increases are increasing  with J0 - 6,. 

60 - 6, 5 60 - 6,, I 60 (56) 

where. according to (42) and (43), 

turns  out  to be  a lower bound of the  true  noncentrality  parameter 6,. The 
upper  bound So is calculated  for  concrete  models,  such that it becomes 
possible to estimate  the  maximum  stretch factor f and  the maximal 
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Figure 5. Confidence level a I  (vertical  axis)  depending on T (horizontal 
axis) forf' = 1.02' and (Y = 0.05. Additionally,  varying K from 1 (solid line) 
to 5, c y l  decreases with increasing K .  

increase of the  confidence level from 1 - (Y to 1 - ( Y ~ .  In this way the 
practicability of the  proposed  method is given in addition to the  estimation 
of its efficiency. 

If the ellipsoid of the  prior  information is not  centered in the  origin  but in 
a general  midpoint  vector Bo # 0, i.e., 

then  the MMLE becomes 

with 

and (see  (1 7)) 

All the  preceding results remain valid if we replace. for h in (1 6) and 6, in  
(24). the  vector B by (B - Bo), provided that 6 in (21) and 6, in (27) are 
defined with  accordingly  changed h and A,. 
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Figure 6. Difference of the confidence level (a - a I )  (vertical axis) depend- 
ing on CY (horizontal axis) for . f2 = 1.02' and K = 3 .  Additionally,  varying 
T = 10 (solid line), 15, 20. 25, and 30, with  increasing T the difference a - 

 CY^ increases. 

6. COMPARING THE VOLUMES 

The definition of a confidence ellipsoid is based on the  assumption  that  the 
unknown  parameter /3 is covered with probability 1 - a  by the  random 
ellipsoid. If one  has  the  choice between alternative ellipsoids, one would 
choose  the ellipsoid with the  smallest  volume.  In other words,  the MDE 
(mean  dispersion error)  superiority of the MMLE with respect to  the 
Gauss-Markov  estimator in the sense of (14) does  not necessarily lead to 
a preference for  the  ellipsoids based on  the  MMLE. Hence in the following 
we determine  the  volume of both ellipsoids. The volume  of  the  T-dimen- 
sional  unit  sphere 

(x being a T x 1 vector) is given as 
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6.1 Gauss-Markov Estimator 

The confidence ellipsoid for j? on the basis of  the  Gauss-Markov  estimator  b 
in (2) is, according  to (8), 

6.2 MMLE 

Based on  the  approximations (36) and (48), the confidence  region  using the 
MMLE br was (see (49)) 

and hence  its  volume is 

VOl(br) = ((K + S O ) S ' F ~ [ , , T - K ( I  - V,"(-'/'Vol E 

Comparison  of  both  volumes gives 

where f ( 0 ,  A0, K ,  T - K )  is the  maximal  stretch  factor (52)  for  the  lower 
bound 6,, = 0 of the  noncentrality  parameters 6,. The case 6,, = 0 corre- 
sponds to T + 00, i.e.. to change  from  the MMLE  to the  Gauss-Markov 
estimator.  The  MMLE b, has smaller  variance  than  the  Gauss-Markov 
estimator 6: 

0 5 ( X ' X ) - l  - V,  (nonnegative  definite) 

i.e., we have 
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or 

V;’ = X’X + C with C 2 0 (nonnegative definite) (69) 

From (69) we may  conclude  that 

and  thus 

So the  relation (68) between both volumes turns out to be  the  product  of  a 
function f 2 1 and  the  expression (70) which is 5 1. 

The  ratio (68) has  to be  investigated for  a  concrete  model  and given data, 
as J0 (and  hencef)  and the quality (70) are  dependent  on  the  data  as well as 
on  the  strength  of  the  additional  condition. 

Let X’X = S and assume the  condition B’SB I r .  Then,  according to 
Section 4, we have 

V(? = (r-%? + 1 + 2r”c)S = (r-IC + 1)% 

and 

I VF’I = ( r - b  + lyKISI 

Analogously,  from (45) with c = 2af, we get 

60 = 2r“c 

This results in a  change of  the  relation  of  the  volumes (68) to 

I K ,  T - K )  q = q(r- c) = 
(r-‘c + 1) (73) 

7. CONCLUSIONS 

In  this  paper we have demonstrated  the use of prior  information in the  form 
of inequalities (c.f. (14)) and  an  approximation of the noncentral  chi-square 
distribution to get practicable  confidence  regions  that  are  based in the  mini- 
max  estimator.  We  have  computed  the  relationship between the  true  (but 
unknown)  and  the  approximated confidence  intervals. Furthermore,  the 
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relationship  between  the  volumes of the  confidence ellipsoids based on  the 
OLSE and  the  minimax  estimator  has  been investigated. 

APPENDIX 

Assume  an ellipsoid 

.x‘A.x = I’ 

with positive definite matrix A and 1 x T vector .x’ = (xI ,  . . . , sT). We 
determine  the  regions of the .X, components  for  the ellipsoid. Without loss 
of  generality, we solve this  problem  for the first component s 1  only; this is 
equivalent  to  finding  an  extremum  under  linear  constraints. 

Let e;  = (1,0, . . . , 0) and p be a  Lagrange  multiplier.  Further, let 

f ( . ~ )  = .xI = e(.y 

g(s) = S’AS - I’ 

and 

F ( s )  =f(x) + pg(s) 

Then we have to solve 

F ( s )  = stationary,,?. 

which leads to  the  necessary  normal equations 

From (Al )  i t  follows that 

s’el + 2fis‘A.x = 0 

thus we get 

2f iZ ”  X ]  

r 

Inserting this into (AI) gives 

el + 2fiA.x = el - - A s  = 0 XI 

4 

or 
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and therefore 

e;.v = .xI = e;A"el - 
s 1 

I' 

or 

with (A") l l  as  the first  diagonal element of the  matrix A - l .  In the  case that 
the ellipsoid is not centered in the origin 

(x - s o ) ' A ( s  - s o )  = I' 

the regions of the x ,  components  become 

The intersection  points of the ellipsoid x ' A s  = r with the coordinate axes 
follow from 

(0, . . . , X, - ~ 0 . i .  0. . . . . O)'A(O, . . . , X; - SO. 0. . . . , 0) 

= (s, - s o , ) Z ( A ) f ;  = r 

as 
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On Efficiently Estimable Parametric 
Functionals in the General Linear Model 
with Nuisance Parameters 
PAWEL  R.  PORDZIK’ Agricultural  University of Poznan,  Poznan, 
Poland 

COTZ TRENKLER? University  of Dortmund,  Dortmund,  Germany 

1. INTRODUCTION AND PRELIMINARIES 

Consider  the  general  linear  models M u  = (y, Wy + Z6, 02V] and 
M = (y. Wy, a2V), in which y is an observable  random vector with  expecta- 
tion Eu(y) = Wy + Z6 in the  former  and E(y)  = Wy in the  latter  model,  and 
with the  same  dispersion  matrix D(y)  = a’V in both cases. The matrices W, 
Z, and V are  known, each allowed to be deficient in rank, while the  positive 
scalar a’ and the  subvectors  in (y ’  : 6’)’ are  unknown  parameters.  Thus it  is 
assumed  that  the  expectation  vector in M u  consists of two  parts. Wy, invol- 
ving main  parameters,  and Z6. comprising  nuisance  parameters (wide 
applicability  of  such  models in statistical  practice is well known).  From 
now on i t  is assumed that neither C(W) c C(Z) nor C(Z) c C(W), where 
C() denotes  the  column  space of a  matrix  argument.  Furthermore,  for  con- 
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sistency of  the  model M,, i t  is assumed  that y E C(W : Z : V); accordingly, 
concerning  the  model M ,  it is assumed  that y E C(W : V). In  the sequel, let 
S, and S denote  the sets that  comprise all vectors y satisfying the consis- 
tency condition  for  the  model M u  and M ,  respectively. 

In  this  paper, the situation is considered in which  there is uncertainty 
about  inclusion of  nuisance  parameters in the  model.  Assuming  that  an 
adequate  model  for  the  experiment may be  given  by M or M,, the  question 
arises  on efficiency of  inference  induced by a  wrong choice. The  problem  of 
comparing  the  model ,A4 with its augmented by nuisance  parameters  coun- 
terpart M u ,  closely related to  the  problem  of  evaluating efficiency of infer- 
ence under  uncertainty  about  model specification, has gained  the attention 
of  many  researchers  and  practitioners.  One  of  the  goals of such  comparisons 
was to characterize  consequences  of  the  presence  of  nuisance  parameters  for 
the  precision  of best linear  unbiased estimator (BLUE) of  a  functional  of 
main  parameters.  Numerous  equivalent  conditions were derived  for  linear 
functions p’y to be estimated  with full efficiency in the  model M,. or.  as 
stressed in [I],  p. 350, under which “ p ’ y  are  variance-robust  with  respect  to 
overspecification  of  the  model  (i.e.,  whose BLUES  under M ,  retain  their 
variances  when M is the  true model).” This aspect  of  evaluating the per- 
formance  of M u  has so far been studied  under  additional  assumptions 
imposed  on  design  and  dispersion  matrices.  For  a  survey of results  and 
extensive  discussion on  the issue under  the  standard  linear  model with 
V = I, I stands  for  an  identity  matrix  of  appropriate  dimension,  and  a 
weakly  singular  model,  where C(W : Z) c C(V), the reader is referred to 
[2] and [l], respectively. 

The  aim of  this  paper is twofold.  First,  another  characteristic  of  the 
problem is presented; it can be  viewed as  an extension  of  the orthogonality 
condition  introduced in the context  of the analysis of  variance  model  for 
two-way classification of data.  Secondly,  the  problem is considered  for  the 
general  linear  model  with no  extra  assumptions imposed on  the  matrices  W, 
Z, and V. In  Section 2, necessary and sufficient conditions  are derived  for 
the  BLUE  of  a  parametric  function p’y in M, to have  the  same  variance as 
the  corresponding  estimator  under  the  model M .  Furthermore,  extending 
the approach presented in [I], the  subspace  of  functionals p’y which  can  be 
estimated  with full efficiency under  the  model  with  nuisance  parameters is 
characterized. 

Given  subspaces U ,  V ,  and W of  the finite dimensional  Euclidean  space 
R”, let dim(U), U n V ,  U + V ,  and U @ V denote  the  dimension  of U ,  the 
intersection,  and  the  sum  and direct sum  of U and V ,  respectively. If W c U ,  
then we have 
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Given  a real matrix A, let A’, A- and r(A) denote the  transpose of A, a 
generalized inverse of A and  the  rank of A, respectively. By the  symbol 
Ci(A) the  orthocomplement of C(A) will  be denoted,  and A’ will represent 
any  matrix such that C’(A) = C(A’). Further, PA and QA will stand  for  the 
orthogonal projectors onto C(A) and C’(A), respectively. Let A and B be 
disjoint  matrices,  i.e., C(A) n C(B) = { O ) .  By the  synlbol PAIB let a  projector 
onto C(Aj along C(B) be denoted, cf. [3]. If C is a  matrix  satisfying  the 
condition C(C) c C(A : B), then we have C(C) = C(C,) @ C(Cl),  where  a 
matrix CI is such that 

c(c,) = C(A) n C(C : B) = c(P,,~c) ( 4  

and C? is defined accordingly.  Finally,  for  the  purposes of this paper,  a 
result given in [4] (Theorem 3) is restated.  Let K = KP be  a vector of para- 
metric  functions  estimable in the  model {y, Xp, a’V), Le.. C(K’) s C(X’), and 
let rG and Lr denote  the best linear  unbiased  estimator of K under  the  above- 
mentioned and restricted model (y, XPlRp = 0, a2V), respectively. Then it 
follows that  the  dispersion  matrices of these two estimators  are identical, 
D(L) = D(L,.), if and  only if 

KGR; = 0 (3) 

where R ,  and G are  any matrices  satisfying C(R;) = C(X’) n C(R’) and 

XGX’ V - vQs(QxvQs>-Qxv (4) 

2. RESULTS 

It is  well known that when augmenting  a  linear  model  with  concomitants, 
the increase of efficiency in estimating  parametric  functions  must  come 
through  substantial decrease in variance of observations. If it is not  the 
case and, consequently.  the inference base is overparameterized.  then  the 
variance  of  the  estimators is inflated. It is of  some  interest to characterize 
functionals of main  parameters which are  variance-robust with respect to 
overparameterization of the  model.  Following  the  notation  introduced  in 
[ 11, let &u denote the class of linear  functions of the  main  parameters y which 
are estimable in the  model with nuisance  parameters M u  = {y, W y  + Z6, 
a’V); that is, let 

E ,  = (p’y : p = w‘q. q E C’(Z)) ( 5 )  

Furthermore,  denote by p’fu and p’f the  BLUE of p’y obtained  under  the 
model M ,  and M = (y ,  W y ,  a’V}. respectively. In this section, we character- 
ize the  subclass of the  functionals p’y for which the  BLUE  under the  model 
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M a  has  the  same variance as  the  corresponding  estimator  under  the  model M ;  
subsequently, we denote  the subclass  of such functionals by Eo: Le., 

Eo = (p’y E E, : Vur(p’?,) = Var(p’P)} (6) 

First  note  that M can be  considered as  the restricted model 
(y, Wy + Z61Z6 = 0, d V } .  Further,  on  account of Theorem 1 in [4], note 
that  to  obtain the best linear  unbiased  estimator  of p’y one  can  replace Z6 = 
0 with  a  subset of restrictions expressed by estimable  parametric  functions 
under  the  model M,. In view of the  relation C(0 : Z)’ n C(W : Z)’ = C C(0 : 
Q,Z)’, a  representation of such  restrictions  takes  the  form Q,Z6 = 0. 
Following this approach,  and  making use of the results stated in (3) and 
(4), necessary and sufficient conditions  for every functional p’y E E, to be 
estimated with the  same  variance  under  the  models M ,  and M can easily be 
proved. 

Theorem 1. The classes E, and Eo coincide if and only if one of the  follow- 
ing  equivalent  conditions  holds: 

PUZIPUWl = PUWIPUZl 

C(W : z )  n c ( v w L )  c c ( z )  

C(W : Z) n C(VZ’) c c ( w )  

where U is a  matrix such that V = U’U. 

Proof. It is clear  that both classes E, and Eo coincide if and only if 

WQzw?) = DiQzW?d (10) 

Assume  for  a moment  that X = (W : Z), = (y’ : 6’)’. K = QzX and 
R = QwX. Considering QzW?, and QzW? as the BLUE of K/3 under  the 
model (y. Xg, a’V} and (y, XglR/3 = 0, a2V}, respectively, due to (3) and (4). 
one  can replace ( I O )  by the  condition 

QzU’(1-  uQx(QxU’UQx)-QxU’)UQw = 0 ( 1  1) 

Further, expressing the last equality by orthogonal  projectors,  one  can write 
equivalently 

P u p  P U W l  = Puzl Pup PUWl (12) 

In view of the  relation C(UX’) c C(UW’) n C(UZ’), the  right-hand  side of 
the  equality (12) simplifies to Puxl, thus establishing  the  condition (7). For 
the  proof  of (8), it is enough  to express  the  equality ( 1  I )  as 

(ZL)’Px,VXLVW~ = 0 
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and  note  that,  due  to ( 2 ) ,  it  holds  that  C(PxIvx~VW’) = C(X) n C(VW’). 
Starting with the  transposition of (1  1). the  proof of the  condition (9) follows 
the  same lines. 

It has to be mentioned that the  equality E, = Eo, as shown  above, being 
equivalent to  commutativity of the  orthogonal projectors PUZ1 and PUwl, is 
consequently  equivalent to  any of (A 2) through (A 46) conditions  presented 
in [5], Theorem 1. Furthermore, i t  is to be noted  that  the  dispersion  equality 
(10) does not imply equality of the  BLUES  of p’y E Eo obtained  under  the 
models M a  and M ,  as it  does when additionally C(W : Z) c C(V) (cf. [ I ]  
Theorem 3 .3 ) .  Instead of this, it follows that (for S # S,), under  the  condi- 
tions given in Theorem 1 ,  the BLUE of every functional p’y E Eo obtained 
i n  the  model M u  continues  to be the BLUE of p ’ y  under  the  model M (in 
other  words,  assuming  that  the  model M is true,  the  equality p’p, = p’p 
holds  almost  surely, Le.. for every y for which the model M is consistent). 
This  statement is a  straightforward  conclusion of (1  1) and  Corollary 1 given 
in [6] .  In  the  context  of  partitioned  models,  it seems to be an independently 
interesting  contribution  to discussion of the  problem when the  BLUE of 
every estimable  parametric  function  under  the general linear  model {y. Xg, 
a’V} continues  to be its BLUE  under  the restricted model  {y, XglRB = 0, 
o’V) (cf. [7, 81). 

To trace  back and gain a  deeper insight into  the  characterization  of  the 
equality E, = Eo. first refer to a  situation when the  consistency  conditions 
for  the  models M and M ,  coincide. Let C(Z) c C(V : W), that is, S, = S, 
then the  projection PvwlIwZ is well defined and, by ( 2 ) ,  the  condition (8) 
can be expressed as C(Pvw~,wZ) c C(Z). Since the  equality 
PvWlIw + Pw,\wl = I holds  true onto  the column  space  of (V : W) (cf. 
[3]), the last inclusion can be rewritten  as 

C(P,,VWJ) c C(Z) (1 3) 

or, equivalently, C(W) n C(VW* : Z) c c(z). 

M,, wherein C(W : Z) c C(V), one  can express  the  condition (13) as 
Further, restricting  the  considerations to the weakly singular  linear  model 

or,  making use of a  general  representation of oblique  projectors (cf. [3]), in 
the  form  stated in [l],  Theorem 3.5; i.e., as 

w’v-P,IvziPwlvwlz = W’V - z 
For further  discussion of E, = Eo under  the  more  restrictive  assumption 
V = I, the  reader is referred to [2, 51. 

In  the next theorem,  the  subclass Eo of functionals p’y that  can be esti- 
mated with full efficiency under  the  general  linear  model M ,  is character- 
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ized. This  extends  the  corresponding  result  obtained in the  context of the 
weakly singular  model (cf. [l],  Theorem 3.1). 

Theorem 2. The subclass Eo of functionals p'y E E ,  for which the  BLUE 
under  the model M ,  has  the  same variance as  the  corresponding  estimator 
under  the model M is given by 

fa  = {p'y : p = w'q, q E C'(Z : vwL) n c ( z  : v)) (14) 

Proof. Let p'y E E,, that is. p = W'q  and q E C(QZ). By the  remark  pre- 
ceding  Theorem 1, consider p'p as  the  BLUE of q'Wy in the  model 
(y. W y  + Z6(QwZ6 = 0. a'V).  Then  putting X = (W : Z), K = q'X,  and 
R = QwX,  and  making use of (3) and (4), one  can write the necessary and 
sufficient conditon  for Vcrr(p'y) = Vor(p'i,) in the  form 

q'PxlvxlVQw = 0 (15) 

On  account of the  relations (2) and C(VX') c C(VQw), it follows that 
C(Pxlvx~VQw) = C(X) n (VQw)  and,  consequently,  the equality (1 5) can 
be expressed as 

4 E C(Qd n [C"(X> + C'WQw)] 
Thus,  applying (??) and  noting  that all q E C*(X) generate  zero  functionals, 
one  obtains 

Eo = (p'y : p = w'q. q E C*(Z : VWL)} 

Now,  to exclude  functionals which are estimated with zero  variance,  observe 
that Vur.(p'p,) = 0 if and only if q E C'(V : Z); this follows from ( 2 ) ,  ( I ) ,  and 
the fact that p'p,, being the  BLUE of q'Xg  under  the  model  (y, X/?, a'V}, 
can be  represented  in  the  form q'PxlvXly (cf. [3], Theorem 3.2. Since the 
relation C'(Z : V) c C"(Z : VW') together  with (1) implies 

cL(z : v w L )  = c'yz : v )  e C(Z : V) n c L ( z  : v w l )  
the  proof  of (14) is complete. 

The dimension of the  subspace  can easily be determined. Let T be any 
matrix  such  that C(T) = C(Z : V) n C'(Z : VW"). Then, by the  equality 
C(W : VW') = C(W : V), it follows that C(T) n Ci(W) = {0)  and, conse- 
quently, 

dh?(&o) = r(W'T) = r(T) 

Further,  making use of  the well-known properties of the  rank of matrices, 
r(AB) = r(A'AB) = r(A) - ditn[C(A) n C'(AB)], with A = (Z  : V) and 
AB = (Z : VW'), one  obtains  the  equality  r(T) = r(Z : V) - r(Z : VW'). 
By r(A : B) = r(A) + r(QAB), this leads to the  following  conclusion. 
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Corollary 1. Let &o be  the  subspace of functionals p'y given in (14), then 

dj177(&0) = di,n[c(VZ') n c(w)] 

3. REMARKS 

The  conditions  stated in  Theorem 1, when referred to  the  standard  parti- 
tioned  model with V = I, coincide with the  orthogonality  condition rele- 
vant  to  the  analysis of variance  context.  Consider  a two-way classification 
mode M J I )  = (11, W y  + Z6, a'I}where W and Z are known design 
matrices for factors, and the  unknown  components of the  vectors y 
and 6 represent  factor effects. An  experimental design, embraced by the 
model M J ) ,  is said to be orthogonal if C(W: Z) n C(W') I C(W: Z) n 
C(Z*) (cf. [9]). As shown in [lo], p.43, this condition  can  equivalently be 
expressed as 

or,  making use of orthogonal projectors, PwPz = PzPw. The concept  of 
orthogonality, besides playing an  important role  when  testing  a set of nested 
hypotheses,  allows  for  evaluating efficiency of a design (by which is meant 
its precision relative to that of an  orthogonal design). For a discussion of 
orthogonality  and efficiency concepts in block designs, the  reader is referred 
to  [ll].  It is  well known  that  one of the  characteristics of orthogonality is 
that  the BLUE of q = W'Q,Wy does  not  depend on the presence of 6 in the 
model M(,(I), or, equivalently, D($) = D(&) (cf. [ 5 ] ,  Theorem 6 ) .  The result 
stated in Theorem 1 can be  viewed as  an extension  of  this  characteristic to 
the  linear  model with possibly singular  dispersion  matrix. First,  note  that 
the role of (8) and (9) is the  same  as  that of (16) and (17). in the sense that 
each of them is a necessary and sufficient condition  for q to be estimated 
with the  same  dispersion  matrix  under  the respective models with and with- 
out nuisance  parameters.  Further, considering  the  case when 
C(Z) c C(V : W), which assures  that S = So, the  conditions of Theorem 1 
are equivalent to the  equality ;7 = 6 ,  almost  surely. Thus,  as in the  analysis 
of variance  context, it provides  a basis for  evaluating  the efficiency of other 
designs  having  the  same  subspaces of design matrices and the  same  singular 
dispersion  matrix. The singular  linear  model,  commonly used for  analyzing 
categorical data, cf. [12, 131. can be mentioned  here as  an example of such a 
context  to which this  remark refers. 
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Estimation under  LINEX Loss Function 
AHMAD  PARSIAN Isfahan  University  of  Technology, Isfahan,  Iran 

S.N.U.A.  KIRMANI University  of Northern  Iowa.  Cedar  Falls, Iowa 

1. INTRODUCTION 

The classical decision  theory approach  to  point  estimation hinges on choice 
of  the loss function. If 8 is the  estimand, S ( X )  the estimator based on  a 
random  observable X ,  and L(8, d) the loss incurred  on  estimating 8 by the 
value d,  then  the  performance of the  estimator 6 is judged by the risk func- 
tion R(8.S) = E(L(O,S(X))}. Clearly,  the  choice of the loss function L may 
be crucial.  It  has  always  been  recognized  that the most  commonly used 
squared  error  loss(SEL)  function 

~ ( 8 ,  c/) = (n - e)’ 
is inappropriate in many  situations. If the  SEL is taken  as  a  measure of 
inaccuracy,  then the resulting risk R(8.S) is often  too sensitive to the 
assumptions  about the behavior  of  the tail of  the  probability  distribution 
of X .  The choice of SEL may be  even more  undesirable if it is supposed  to 
represent  a real financial loss. When  overestimation  and  underestimation  are 
not  equally  unpleasant, the symmetry in SEL  as  a  function of d - 8 becomes 
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a burden.  In practice,  overestimation and  underestimation of the  same 
magnitude  often have different  economic  consequences and  the  actual loss 
function is asymmetric.  There are  numerous such examples in the  literature. 
Varian (1975) pointed  out  that, in  real-estate  valuations,  underassessment 
results in an approximately  linear loss of revenue whereas  overassessment 
often  results in appeals with attendant  substantial litigation and  other costs. 
I n  food-processing  industries it is undesirable to overfill containers, since 
there is no cost recovery for  the overfill. If the  containers  are underfilled, 
however, i t  is possible to incur  a  much  more severe penalty  arising  from 
misrepresentation of the product’s  actual weight or volume, see Harris 
(1992). In dam construction an underestimation  of  the  peak  water level is 
usually  much  more  serious than  an overestimation, see Zellner (1986). 
Underassessment of the  value  of  the  guarantee time devalues  the  true  qual- 
ity, while it is a  serious error, especially from  the business point of view, to 
overassess  the  true  value of guarantee  time.  Further,  underestimation of the 
failure rate  may result in  more  complaints  from  customers  than expected. 
Naturally, it is more serious to  underestimate failure rate  than  to overesti- 
mate failure  rate. see Khattree (1992). Other  examples  may be found in Kuo 
and Dey (1990), Schabe (1992), Canfield (1970), and  Feynman (1987). All 
these examples suggest that  any loss  function  associated with estimation  or 
prediction of such  phenomena  should assign a  more severe penalty for over- 
estimation  than  for  underestimation,  or vice versa. 

Ferguson (1967), Zellner and Geisel (1968), Aitchison and  Dunsmore 
(l975),  Varian (1975), Berger (1980), Dyer and  Keating (1980), and  Cain 
(199  1) have all felt the need to consider  asymmetric  alternatives to  the  SEL. 
A useful alternative  to  the  SEL is the  convex but asymmetric loss function 

L(8. d)  = b exp[cc(d - e)] - c(d - e) - b 

where N, b, c are  constants with -00 < CI < 00, b > 0, and c # 0. This  loss 
function, called the  LINEX  (LINear-Exponential) loss  function, was pro- 
posed by Varian (1975) in the  context of real-estate  valuations. In  addition, 
Klebanov (1976) derived this  loss  function in developing his theory of loss 
functions  satisfying  a Rao-Blackwell condition.  The  name  LINEX is justi- 
fied by the  fact  that  this loss function rises approximately  linearly on one 
side  of  zero and  approximately  exponentially on the  other side. Zellner 
(1986) provided  a  detailed  study of the  LINEX loss function  and initiated 
a  good  deal of interest in estimation  under  this loss function.  The objective 
of  the  present  paper is to  provide  a brief review of the  literature  on  point 
estimation of a real-valued/vector-valued parameter when the loss function 
is LINEX. 

The  outline of this  paper is as follows. The  LINEX loss function  and its 
key properties  are discussed in  Section 2. Section 3 is concerned  with 
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unbiased  estimation  under  LINEX loss; general  results  available in the 
literature  are surveyed and results  for specific distributions listed. The 
same  mode of presentation is adopted in Sections 4 and 5: Section 4 is 
devoted to  invariant  estimation  under  LINEX loss and  Section 5 covers 
Bayes and  minimax  estimation  under  the  same loss function.  The  LINEX 
loss function  has received a  good  deal of attention in the  literature  but. of 
course,  there  remain  a  large  number of unsolved problems.  Some of these 
open  problems  are indicated in appropriate places. 

2. LINEX  LOSS FUNCTION AND ITS PROPERTIES 

Thompson  and Basu (1996) identified a family of loss  functions  L(A),  where 
A is either  the  estimation error 6 ( X )  - 8 or  the relative estimation  error 
( S ( X )  - t9)/8. such that 

0 L (0) = 0 
0 L(A) > (c)L(-A) > 0, for all A > 0 
0 L(.) is twice differentiable  with L’(0) = 0 and  L”(A) > 0 for all A # 0, 

0 0 < L’(A) > ( 0  - L’(-A) > 0 for all A > 0 

Such loss functions  are useful whenever the  actual losses are nonnegative, 
increase with estimation  error, overestimation is more (less) serious  than 
underestimation of the  same  magnitude,  and losses increase at a  faster 
(slower) rate with overestimation error  than with  underestimation  error. 
Considering  the loss function 

and 

L*(A) = b exp(uA) + cA + d 

and imposing  the  restrictions L*(O) = 0, (L*)’(O) = 0, we get cl = -b and 
c = -ob; see Thompson  and Basu (1996). The resulting loss function 

L*(A) = b{exp(aA) - U A  - I }  (2.1) 

when considered as a  function of 8 and S, is called the  LINEX loss function. 
Here, CI and b are  constants with b > 0 so that  the loss function is nonne- 
gative.  Further. 

L’(A) = ab{exp(rrA) - 1 } 

so that  L’(A) > 0 and  L’(-A) c 0 for all A > 0 and all C/ # 0. In  addition. 

L ( A )  - L(-A) = 2b{ sinh(aA) - ctA) 

and 
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L’(A) + L’(-A) = 2ab{cosh(aA) - l }  

Thus, if a > ( 0 0 ,  the  L’(A) > (<) - L’(-A) and  L(A) > (<)L(-A)  for 
A > 0. The  shape  of  the LINEX loss function (2.1) is determined by the 
constant ( I ,  and  the  value  of  b  merely serves to scale the loss function. Unless 
mentioned  otherwise, we  will take  b = 1. 

In  Figure I ,  values of  exp(aA) - aA - 1 are  plotted  against A for selected 
values  of a. It is seen that  for a > 0, the  curve rises almost  exponentially 
when  A > 0 and  almost linearly when A < 0. On  the  other  hand,  for a < 0, 
the  function rises almost  exponentially  when A < 0 and  almost linearly ’ 

when A > 0. So the sign of a reflects the direction  of  the  asymmetry, CI > 
0 ( a  < 0) if overestimation is more (less) serious  than  underestimation;  and 
its magnitude reflects the  degree  of  the  asymmetry.  An important  observa- 
tion is that  for small  values  of la1 the  function is almost  symmetric  and  not 
far  from  a  squared  error loss (SEL). Indeed,  on  expanding 
exp(crA) x 1 + (/A + a2A2/2,  L(A) x a’A2/2,  a SEL  function.  Thus  for 
small  values  of la/, optimal  estimates  and  predictions  are  not  very  different 
from  those  obtained  with  the  SEL  function.  In  fact,  the  results  under 
LINEX loss are  consistent with the “heuristic”  that  estimation  under 

-1 0 4 . 5  0.0 0.5 1 .o .1.0 0.0 0.5 1 0  

a=l a-2 

-1 .o 4 . 5  0 0  0.5 1 .o -1.0 4 . 5  0.0 0.5 1 .o 
a-1 as2 

Figure 1. The LINEX loss function. 
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SEL  corresponds  to  the limiting case a -+ 0. However,  when In1 assumes 
appreciable values, optimal  point  estimates  and  predictions will be quite 
different from  those  obtained  with  a  symmetric  SEL  function, see Varian 
(1975) and Zellner (1986). 

The  LINEX loss function (2.1) can be easily extended to meet the needs 
of multiparameter  estimation  and  prediction. Let Ai be the  estimation  error 
S , (X)  - 8, or the relative error (S i (X)  - 8,)/8, when  the parameter 8, is esti- 
mated by S, (X) ,  i = 1 ,  . . . , y. One possible  extension of (2.1) to  the  y-para- 
meter  problem is the so-called separable  extended  LINEX loss function 
given by 

n 

L(A) = ~ b , ( e x p ( a , A , )  - aiAl - 1 }  
i= I 

where (I, # 0, 6, > 0, i = 1 , .  . . , p  and A = ( A , ,  . . . , Ap)' .  As a  function of 
A, this is convex  with  minimum at A = (0, . . . , 0). The  above loss function 
has been utilized in multi-parameter  estimation  and  prediction  problems, see 
Zellner (1986) and  Parsian (1990a). 

When selecting a loss function  for the problem  of  estimating  a  location 
parameter 8, it is natural  to insist on the  invariance  requirement L(8 + k, 
d + k) = L(8. d), where L(8, d )  is the loss incurred  on  estimating 8 by the 
value d;  see Lehmann  and Casella (1998). The  LINEX loss function  (2.1) 
satisfies this restriction if A = S ( X )  - 8 but  not if A = (6 (X)  -@/e. 
Similarly, the loss function (2.1) satisfies the  invariance  requirement L(k8, 
k d )  = L(8, d )  for A = ( 6 ( X )  - @)/e but  not  for A = 6 ( X )  - 8. Consequently, 
when estimating  a  location (scale) parameter  and  adopting  the  LINEX loss, 
one would  take A = 6 ( X )  - 8 ( A  = (S (X)  - @)/e) in (2.1).  This is the  strategy 
in Parsian et a1 (1993) and  Parsian  and  Sanjari (1993). An  analogous 
approach may be adopted  for  the  y-parameter  problem when  using  the 
separable  extended  LINEX loss function. If the  problem is one  of  estimating 
the  location  parameter p in  a  location-scale  family  parameterized by 
8 = (p .  a), see Lehmann  and  Casella (1998). the loss function (2.1) will 
satisfy the  invariance  requirement L((a + Bp, Pa), (Y + Bd) = L ( ( p ,  a), d)  
on  taking A = ( S ( X )  - p)/a, where /3 > 0. 

For convenience in later discussion, let 

p(t) = b(exp(at) - a t  - I } ,  "00 < t < +GO 
where  a # 0 and  b > 0. Then, p(t) may be described as  the kernel  of the 
LINEX loss function.  In  terms of p(t) ,  the  LINEX loss function  correspond- 
ing to A = S ( X )  - 8 is 

L(e, 8) = P(S(X) - e) (2.2) 
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whereas  the  LINEX loss function  corresponding  to A = ( 6 ( X )  - @)/e is 

u e ,  6) = P ( ( ~ ( x )  - (3.3) 
I 

L 

3. UNBIASED  ESTIMATION UNDER LINEX LOSS 

The  accuracy, or  rather  inaccuracy, of an  estimator 6 in estimating  an 
unknown  parameter 8 E 0 is measured by the risk function 

R(e, 6) = E@{ ~ ( 8 .  ~ ( x ) ) }  (3.1) 

It is  well known  that, in general,  estimators  or  predictors with  uniformly 
minimum risk (UMR) do not exist. One way of  avoiding  this difficulty is to 
restrict the class of estimators by  ruling  out  estimators  that  too  strongly 
favor  one  or  more values  of 8 at  the cost of  neglecting other possible values. 
This  can  be  achieved by requiring  the  estimator  to satisfy some  condition 
enforcing  a  certain  degree  of  impartiality.  One  such  condition  requires  that 
the  “bias”  of  estimation,  sometimes called the systematic  error of  the esti- 
mator 6, be  zero.  The  purpose  of  this section is to  show  that  a  similar  theory 
of  estimation  under  LINEX loss can be obtained. 

The classical notion of  mean-unbiasedness 

E @ ( ~ ( x ) )  = e, ve E o (3.2) 

4 is “symmetric” in the  estimation  error A = 6 ( X )  - 8 and is inappropriate if 
overestimation  and  underestimation  are  not  equally serious. see Andrews  and 
Phillips (1987). Lehmann (195 1) provided  a  valuable insight into  the  concept 
of  unbiasedness.  He  introduced  a  more  general  concept  of  risk-unbiasedness 
which  reduces to  the  usual  notion of  mean-unbiasedness (3.2) in the  case  of 
SEL; see Lehmann (1988)  for  a  detailed  exposition.  Following  Lehmann’s 
definition,  an  estimator & ( X )  of 0 is said to be risk-unbiased if it satisfies 

Eo{@.  ~ ( x ) ) }  5 G{L(o’. 6(x))), ve’ z e (3.3) 

If the loss function is as in (2.3,  then (3.3) reduces to 

~ ~ { e x p [ n 6 ( ~ ) ] }  = exp(oe), ve E o (3.4) 

We  say 6 ( X )  is a  LINEX-unbiased  estimator  (L-UE) of 6’ w.r.t.  the loss 
(2.3) if it satisfies condition (3.4) and we then refer to 8 as  an L-estimable 
parameter. If (3.4) does  not  hold, 6 ( X )  is said  to be biased and we define its 
bias as (see Parsian  and  Sanjari 1999) 
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Intuitively,  condition (3.4) seems to be more  appropriate in the context  of 
LINEX loss than  condition (3.2), which does  not  take  into  account the 
direction  of  the  estimation  error. 

It is easy to verify that if 

E,[g(X)] = exp(a8). Ve E 0 (3.6) 

then S ( X )  = a-' ln[s(X)]  is an  L-UE of 8, provided that  g(X) is positive with 
probability  one.  Also, if 6 is an  L-UE of 8. then  the risk function  with 
respect to the loss (2.2) reduces  to 

zqe, s) = - ~ E , [ G ( x )  - e], ve E o (3.7) 

If the loss function is as in (2.3) with 8 = 0, then (3.3) reduces to 

For  LINEX loss, the  function L(8,6) is convex in &(X). Hence,  a  theory 
of  uniformly  minimum risk unbiased (UMRU) estimation  under  LINEX 
loss can be easily developed on the same lines as the classical theory  of 
uniformly  minimum  variance  unbiased (UMVU)  estimation.  In  particular, 
it follows from the Rao-Blackwell-Lehmann-Scheffe theorem (see 
Lehmann  and Casella1998) that, if T is a  complete sufficient statistic  for 8 
and /?(X) is any  L-UE of y(8), then 

s*(T)  = a" In E{exp[a/?(X)I T }  (3.9) 

is the  unique UMRU estimator  (UMRUE) of y(e) under  LINEX loss (2.2). 
Thus, in presence  of  a  complete sufficient statistic T ,  if g(T) > 0 with prob- 
ability one  and 

E&(T)I = exp(ay(e>), ve E o 
the estimator 6*(T) = a-' ln[s(T)] is UMRUE of y(8). 

It  must be mentioned  here  that  Klebanov (1976), who  did  not  use  the 
name  LINEX, was the first to discuss L-UE  and  some related notions. 
Following up  on Klebanov's  work,  Shafie  and  Noorbaloochi  (1995)  proved 
that  the best LINEX-unbiased  estimators  dominate the corresponding 
UMVU  estimators of  the  location  parameter  of  a  location family. We 
refer to Shafie and  Noorbaloochi (1995) for  proof,  additional  properties, 
and  interesting insights. 

Example. Let X - r (a. a). That is,  let X have  a  gamma distribution with 
shape  parameter (Y and scale parameter 0 so that X has  mean a0 and 
variance au2. Suppose a is known,  and  consider  the  problem of  estimating 
B when  the loss function is the  LINEX loss (2.2) with 8 = B. Define 
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It is easy  to see that 

E,[ff,(X)I = exp(a) 

Since X is complete sufficient for a ,  it follows that,  for u > 0, 

1 &*(X) = -In H,(aX) 
U 

is UMRUE of cr. The  function HJs) defined above is useful in a  number of 
problems  to be considered  later. 

3.1 Special  Probability Models 
Normal distribution 

Let X I ,  . . . , X,, be a random  sample  of size r1 from N(8,  a’). The  problem is 
to find the best L-UE of 8 using LINEX loss (2.2). 

(a )  Variance is k n o ~ w  

It is easy to check that  the UMRUE of 8 is 

&*(X) = X-- - m T L  

2n 

(b )  Vuriance is mknowl  

In this case, based on  the Ha(. )  function,  UMRUE  of 6 does  not exist. 

( c )  Estimation of variunce 

It is well known  that  sample  mean  and  sample  variance  are  jointly  complete 
sufficient for (6, a’) and 

Using  this  fact,  it  can  be  shown  that 

is UMRUE of cr’ if a > 0. a’ is not  L-estimable if a < 0. 



Estimation under LINEX  Loss Function 61 

Poisson distribution 

Let X,, . . . . X, be a  random  sample of size n from  the  Poisson  distribution 
with  mean 8 and  consider the problem  of  estimating 8 using LINEX loss 
(2.2). It is easy to verify that 

is UMRUE of 8 provided  that  a > -n. Obviously 0 is not  L-estimable if 
a < - I ? .  

Binomial  distribution 

Let X - B(n, p ) ,  where rr is known.  To find an  L-UE of y(p), using (3 .6) ,  we 
have to find a  mean-unbiased  estimator  of  exp(ay(p)}.  But it is  well known, 
see Lehmann  and  Casella (1998), that exp{ay@)} has  a  mean-unbiased esti- 
mator if and only if it is a  polynomial  of  degree  at  most 17.  Thus,  L-UEs  of 
yo)) exist only in very restricted cases. In  particular, y(p) = p is not L- 
estimable. 

Exponential distribution 

Let XI, . . . , X,, be a  random  sample  of size n from E ( p ,  c), where E ( p ,  a) 
denotes  an  exponential  distribution  with  location  parameter p and mean 
p + 6. The  problem is to find the best L-UE of  the  unknown  parameter 
using LINEX loss (2.2). 

( a )  Scale  parameter 0 is known 

It is easy to verify that, in this case, the UMRUE of p is 

+ - ln ( l -  a 1 :) 
provided  that UCT < n. If aa > r z ,  the  parameter p is not  L-estimable. 

( b )  Scale  parameter a is ttuknown 

It is easy to verify that, in this case, the UMRUE of p is 

provided  that a < 0. If a > 0, the  parameter p is not L-estimable; see 
Khattree (1992) for  a different discussion  of  this  problem under  the loss 
(2.2). 
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( c )  Location parameter ,u is ktlowz 

It is easy to see that, in this case, T = C(Xi - p)  is complete sufficient for rs 
and  that  the best L-UE  of a is 

1 
- l n [ ~ l l ( ~ n l  a 

provided  that N > 0. rs is not  L-estimable if a < 0. 

(d) Location pararneter ,u is utknoltn 

The  problem is to estimate rs using LINEX loss. when ,u is a  nuisance 
parameter,  and it is easy to see that, in this case, T* = CCX, - Xcl,) is a 
function of complete sufficient statistic  and  that  the best L-UE of rs is 

1 
-ln[Hn-l(aT*)] 
a 

provided that a > 0. rs is not L-estimable if a < 0. 

I Two or more  exponential  distributions 

Let X l l , .  . . , Xlnl and . . , be  independent  random samples  from 
E(,ul.  al) and E(,u2, a:), respectively. The  problem is to find the best L-UE 
of the  unknown  parameter of  interest.  This  problem arises in  life testing  and 
reliability when  a  system  consists of two  independent  components  having 
minimum  guaranteed lives ,ul and ,u2 and  constant  hazard  rates l/al, I / r s2 .  
The  estimators given below are  obtained  and discussed in Parsian  and 
Kirmani (2000). 

( a )  01, 0 2  are known arid pl = 12 = ,u but is utlknown 

Let W = min(Xl(I), XZcI,), where X,( , ,  = min(X,,. . . . , Xi,,,}. Then it can  be 
seen that 

W+-ln(1 1 ") U 

n 0 

is the best L-UE of ,u, provided  that a < rs where rs = ~?,a,' + n2a;'. 
Obviously, p is not  L-estimable if a > rs. 

( b )  pl = 12 = ,u and , u s  al, 0 2  are unknown 

Parsian  and  Kirmani (2000) show  that  the best L-UE of ,u in this  case is 

w + -In( 1 - OG") 
1 
a 
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provided that a < 0. Here G = Cn,(ni - 1)TY' and T, = C(X0 - W).  p is 
not  L-estimable if a > 0. This  problem is discussed  for  the SEL case by 
Ghosh  and  Razmpour (1984). 

and a is not L-estimable if a < 0. On  the  other  hand it can be seen that,  for 
a < 0. the best L-UE of pi. i = 1,3, is 

1 
X I c l ,  + -ln(l - b,T*) 

n 

where bi = a/n,(nl + n2 - 2) and b,. i = 1,2.  are  not L-estimable for n > 0. 
This shows that  quantile  parameters, Le., p, +bo, are  not  L-estimable  for 
any b. 

4. INVARIANT  ESTIMATION UNDER LINEX LOSS 
FUNCTION 

A different impartiality  condition  can be formulated  when  symmetries  are 
present in a  problem.  It is then  natural  to  require  a  corresponding symmetry 
to  hold  for the estimators.  The  location  and scale parameter  estimation 
problems  are  two  important  examples.  These  are  invariant  with respect to 
translation  and  multiplication in the sample  space, respectively. This 
strongly  suggests that  the  statistician  should use an  estimation  procedure 
which  also has the property of being invariant. 

We refer to  Lehmann  and  Casella  (1998)  for  the  necessary  theory  of 
invariant  (or  equivariant)  estimation.  Parsian et al. (1993) proved that, 
under  the  LINEX loss function (3.2), the best location-invariant  estimator 
of  a  location  parameter 8 is 

6 * ( ~ )  = s,(x) - 0-1 In exp .s,(x)~ Y = y ]  1 I [ (  (4.1) 

where 6 , ( X )  is any  location-invariant  estimator  of 8 with finite risk and 
Y = ( Y l , .  . . , Yfl . - l )  with Y,  = X i  - X f l .  i = 1 , .  . . , n  - 1. 

Notice  that 6 * ( X )  can be written explicitly as  a  Pitman-type  estimator 

6 * ( X )  = a"ln  e-""f(X - u)dLr/ f ( X  - u)du 1s s I (4.3) 
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Parsian  et  al. (1993) showed that 6* is, in fact,  minimax  under  the LINEX 
loss function (2.2). 

4.1 Special Probability Models 
Normal distribution 
( a )  K n o ~ w  variance 

Let XI,  . . . , X,, be a random sample of  size 17 from N(8. a2). The  problem is 
to find the best location-invariant  estimator of 8 using LINEX loss (2.2). It 
is easy to see that in this case (4.2) reduces to 

- no 2 
6*(X)  = X - - 

211 

This  estimator is, in fact, a generalized Bayes estimator  (GBE) of 8, it 
dominates 2, and it is the  only  minimax-admissible  estimator  of e in the 
class of estimators  of  the  form c x  + d; see Zellner (1986) . Rojo (1987), 
Sadooghi-Alvandi  and  Nematollahi (1989) and  Parsian (1 990b). 

Exponential distribution 

Let Xi, . . . X,, be  a  random  sample of size n from E ( p ,  a), where a is known. 
The  problem is to find the best location-invariant  estimator  of p using 
LINEX loss (2.2). It is easy to see that in this case (4.2) reduces to 

4 provided that c m  < n. 

Linear  model  problem 

Consider  the  normal regression model Y - Np ( X @ ,  a2Z), where X (p x q) is 
the  known design matrix of rank q(5 p ) ,  B(q x 1) is the vector of unknown 
regression parameters,  and a(> 0) is known.  Then  the best invariant esti- 
mator of e = h’@ is 

6*( Y )  = A’/? - +’(X’X)-lh 
an2 

which is minimax and  GBE, where /? is OLSE of @. Also, see Cain  and 
Janssen (1995) for  a  real-estate  prediction  problem  under  the LINEX loss 
and  Ohtani (1995), Sanjari (1997), and  Wan (1999) for ridge estimation 
under  LINEX loss. 
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An interesting  open  problem  here is to  prove  or  disprove  that &*(X) is 
admissible. 

Parsian  and  Sanjari (1  993) derived  the best scale-invariant  estimator  of  a 
scale parameter 8 under  the modified LINEX loss function (2.3). However, 
unlike the location-invariant case, the best scale-invariant  estimator  has  no 
general explicit closed form.  Also, see Madi (1997). 

4.2 Special  Probability Models 
Normal  distribution 

Let X,, . . . , X,, be a  random  sample of size n from N(8, a2). The  problem is 
to find the best scale-invariant  estimator  of a2 using the modified LINEX 
loss (2.3). 

( a )  Mean known 

It is easy to verify that  the best scale-invariant  estimator of a’ is (take 8 = 0) 

(b )  Mean unknown 

In  this case, the best scale-invariant  estimator of a2 is 

Exponential  distribution 

Let X , .  . . . . X,, be  a  random  sample of size n from E ( 1 ,  a). The  problem is to 
find the best scale-invariant  estimator  of a using  the  modified LINEX loss 
(2.3). 

( a )  Location parameter is known 

In  this  case,  the best scale-invariant  estimator  of u is (take p = 0) 
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(6) Location pcrrameter is known 

The  problem is to estimate using LINEX loss, when /L is a  nuisance 
parameter,  and in this  case  the best scale-invariant  estimator is 

Usually,  the best scale-invariant  estimator is inadmissible  in  the presence 
of a  nuisance  parameter.  Improved  estimators are  obtained in  Parsian  and 
Sanjari (1993). For pre-test  estimators  under  the LINEX loss  functions (2.2) 
and (2.3), see Srivastava  and  Rao (1992), Ohtani (1988, 1999), Giles and 
Giles (1993, 1996) and  Geng  and  Wan (2000). Also, see Pandey (1997) and 
Wan  and  Kurumai (1999) for  more  on  the scale parameter  estimation  pro- 
blem. 

5. BAYES AND  MINIMAX ESTIMATION 

As seen in the  previous  two  sections, in many  important  problems it is 
possible to find estimators which are uniformly (in 8) best among all L- 
unbiased or invariant  estimators.  However,  this  approach of minimizing 
the risk uniformly  in 8 after  restricting  the  estimators to be considered  has 
limited applicability.  An  alternative and  more general approach is to mini- 
mize an overall  measure of the risk function  associated with an  estimator 
without  restricting  the  estimators to be considered.  As is well known in 
statistical  theory,  two natural global  measures of the size of the risk asso- 
ciated with an  estimator 8 are 

(1) the  average: 

for  some  suitably  chosen weight function o and 
(2) the  maximum of the risk function: 

supR(e, 6) 
e c o  (5.2) 

Of course,  minimizing  (5.1) and (5.2) lead to Bayes and minimax  estimators, 
respectively. 
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5.1 General  Form of Bayes  Estimators for LINEX Loss 
In a  pioneering  paper,  Zellner  (1986)  initiated  the  study  of  Bayes  estimates 
under  Varian's  LINEX loss function.  Throughout  the rest of this  paper, we 
will write 8lX to  indicate the posterior  distribution of 8. Then,  the  posterior 
risk for 6 is 

Writing MOi.Y(t) = Ee,x[e'O] for  the  moment-generating  function  of  the  pos- 
terior  distribution of 8, it is easy to see that  the value of S ( X )  that minimizes 
(5.3) is 

AB(X)  = -a- lnMelx(-a) 1 (5.4) 

provided,  of  course  that, MHIs(.) exists and is finite. We  now give the Bayes 
estimator J B ( X )  for  various specific models. 

It is worth  noting  here  that,  for  SEL, the notions  of  unbiasedness  and 
minimizing the posterior risk are  incompatible; see Noorbaloochi  and 
Meeden  (1983) as well as Blackwell and  Girshick (1954). Shafie  and 
Noorbaloochi (1995)  observed the same  phenomenon  when  the loss func- 
tion is LINEX  rather  than SEL. They  also  showed  that if 8 is the  location 
parameter of  a  location-parameter  family  and S ( X )  is the best L-UE of 8 
then 6 ( X )  is minimax relative to  the  LINEX loss and generalized  Bayes 
against  the  improper  uniform  prior.  Interestingly, we can  also  show  that 
if S ( X )  is the  Bayes estimator of a  parameter 8 with  respect to LINEX loss 
and  some  proper  prior  distribution,  and if 6 ( X )  is L-UE  of 8 with finite risk, 
then  the Bayes risk of 6 ( X )  must  be  zero. 

5.2 Special  Probability Models 
Normal  distribution 
( (1 )  Variance known 

Let X , .  . . . , X,, be a  random  sample of size 11 from N(8,  a'). The  natural 
estimator of 8, namely x, is minimax and admissible relative to  a variety of 
symmetric loss functions. 

The  conjugate  family  of  priors  for 8 is N ( p ,  T'). and 

Therefore,  the  unique  Bayes  estimator  of 8 using LINEX loss (2.2) is 
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Notice  that  as t2 -+ 00 (that is, for  the  diffused prior  on (-00. +00) 

6,(X) -+ x - - E 6*(X)  
- a d  

211 
i.e.. 6 * ( X )  is the limiting Bayes estimator  of 8 and it is UMRUE of 8. It is 
also GBE of 8. 

Remarks 

6*(X)  dominates 2 under  LINEX loss; see Zellner (1986). 
Let 6,,d(X) = cy + d; then it is easy to verify that 6c ,d(X)  is admissible 
for 8 under  LINEX loss, whenever 0 5 c < 1 or c = 1 and 
d = -aa?/212; otherwise, it is inadmissible; see Rojo (1987) and 
Sadooghi-Alvandi  and  Nematollhi (1989). Also, see Pandey  and  Rai 
(1992) and  Rodrigues (1994). 
Taking h = a / I Z ~ -  and p = 0. we get 2 7  

Le., 6,(X) shrinks S * ( X )  towards  zero. 
Under  LINEX loss (2.2). 6*(X)  is the  only  minimax  admissible  estima- 
tor of 8 in the class of  all  linear  estimators  of  the  form cJ? + d, see 
Parsian  (1990b).  Also, see Bischoff et a1 (1995)  for  minimax and r- 
minimax  estimation of the  normal  distribution  under  LINEX loss 
function (2.2) when the  parameter space is restricted. 

Variance utknown 

Now  the  problem is to  estimate 8 under  LINEX loss (2.2), when a2 is a 
nuisance parameter. 

If we replace a' by the  sample  variance Sz in 6 * ( X )  to get x - uS2/2n, the 
obtained  estimator is, of  course,  no  longer  a Bayes estimator (it is empirical 
Bayes!);  see Zellner (1986). We  may get a  better  estimator  of 8 by replacing 
a* by the best scale-invariant  estimator  of a'. However,  a  unique  Bayes, 
hence  admissible, estimator of 8 is obtained when 

8lr - N (P,  w - ' )  
i'= 1 / 0 2  - Wa,  B)  

where IG  denotes  the inverse Gaussian  distribution.  This  estimator is 
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provided that a! > a'/(n + A), where LJ = (12  + l)/2, 2y  = nS' + nA(n + A)"/ 
(2 - p)' + alp'. and K J . )  is the  modified Bessel function of the  third  kind; 
see Parsian ( 1  990b). 

An interesting  open  problem here is to see if one  can get a  minimax and 
admissible  estimator of 8. under  LINEX loss (2.3), when 0' is unknown. See 
Zou (1997) for  the necessary and sufficient conditions  for  a  linear  estimator 
of finite population  mean  to be admissible in the class of all linear  estima- 
tors. Also, see Bolfarine (1989) for  further  discussion of finite population 
prediction  under LINEX loss function. 

Poisson distribution 

Let X , ,  . . . , X,, be a  random  sample of size n from P(8). The  natural esti- 
mator of 8 is 2 and it is minimax and admissible  under  the weighted SEL 
with weight 8". The  conjugate family of priors  for 8 is r(a,  p), so that 

e l f  - r(" + 172, p + H) 
and  the  unique Bayes estimator of 8 under  the loss (2.2) is 

where B + /z + u > 0. Note  that S,(X) can be written in the  form 
&c.d(X) = c x  + d. and &,(X) + c*X + d as B +  0 and SB(X)  -+ e** as 
a!. ,!? + 0. where e* = n/nln( 1 + u/n).  Now, it can  be verified that SC,(/  is 
admissible  for 8 using LINEX loss whenever either CI p -H, c > 0, d > 0, 
or a > -11,  0 < c < c* ,  d 2 0. 

Further, i t  can be proved that 8c,d is inadmissible if c > e* or c = e* and 
d > 0, because i t  is dominated by c*X; see Sadooghi-Alvandi (1990 ) and 
Kuo and Dey (1990). Notice  that  the  proof of Theorem 3.2 for c = e* in 
Kuo and Dey (1990) is in error. Also, see Rodrigues (1998) for  an applica- 
tion to software reliability and  Wan  et a1 (2000) for  minimax and  r-minimax 
estimation  of  the  Poisson  distribution  under a LINEX loss function (2.2) 
when the  parameter  space is restricted. 

An  interesting  open  problem  here is to  prove  or disprove  that c*J? is 
admissible. 

Evidently,  there is a need to develop  alternative  methods  for  establishing 
admissibility of an  estimator  under  LINEX loss. In particular,  it would be 
interesting to find the  LINEX  analog of the  "information  inequality" 
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method  for  proving  admissibility  and  minimaxity  when  the loss function is 
quadratic. 

Binomial  distribution 

Let X - B(rt ,p) ,  where I I  is unknown  and y is known.  A  natural class  of 
conjugate  priors for n is NB((r. e) and 

?tlx, e - N B ( ~  + X .  e g )  

where q = 1 - p .  The  unique Bayes estimator of I I  is 

6,(x) = c(e)x + +(e) - 1) 

where c(Q) = 1 + a" In((1 - eqe-")/(l - O q ) ) .  

(1992 ), it  can  be seen that 
Now, let 6,,d(X) = cX + d. Then, see Sadooghi-Alvandi  and  Parsian 

For any c < 1, d 2 0, the  estimator 6, ,d(X)  is inadmissible. 
For any cl 2 0, c = 1, the  estimator 6, ,d(X)  is admissible. 
For  any d 3 0, c > 1, the  estimator cY,,~(X) is admissible if I Inq. 
Suppose o > Inq  and c* = o" In[(eu - q)/(l - q)].  then e* > 1 and 
(a) if 1 < c < e*, then 6c ,d(X)  is admissible; 
(b) if c > c* or c = e* and d > 0, then 6,,,(X) is inadmissible, being 

dominated by c*X. 

Finally,  the  question of admissibility or inadmissibility  of c*X remains an 
open  problem. 

Exponential distribution 

Because of the  central  importance of the  exponential  distribution in relia- 
bility and life testing, several authors have discussed estimation  of  para- 
meters  from  different  points of view. Among them are Basu and 
Ebrahimi (1991), Basu and  Thompson (1992), Calabria  and Pulcini 
(1996), Khattree (1992): Mostert et al. (1998). Pandey (1997), Parsian 
and  Sanjari (1997), Rai (1996), Thompson  and Basu (1996), and 
Upadhyay  et  al (1998). 

Parsian  and  Sanjari (1993) discussed the Bayesian estimation of the  mean 
B of the  exponential  distribution E(0, a) under  the LINEX loss function 
(2.3); also, see Sanjari (1993) and  Madi (1997). To describe  the  available 
results, let X I .  . . . , X,, be  a random sample  from E(0, a) and  adopt  the 
LINEX loss function (2.3) with 6 = a.Then it is known  that 

( I )  The Bayes estimator  of B w.r.t.  the inverse gamma  prior with para- 
meters (Y and q is 
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6,(X) = c(a) x; + d(a. 7) 

where c(a)  = ( 1  - e-‘/(r’+o+l) ) la ,  4% 7) = c(a)7. 
(2) As a -+ 0. c(a) -+ c*, and &,(X) + C* EXi + c*d 6*(X) ,  where 

(3) 6 * ( X )  with d = 0 is the best scale-invariant  estimator of 0 and is mini- 
max. 

(4) Let S, . ,d (X)  = c X J  + d: then 6, ,d(X)  is inadmissible if (a) c < 0 or 
d < 0; OS (b) c > c*, d 2 0; or (c) 0 5 c < c*, d = 0; and it is admissible 
if 0 I c 5 c*, d 2 0: see Sanjari (1993). 

c* = (1 - ,-o/(”+l) )Ill. 

As for Bayes estimation  under  LINEX loss for  other  distributions, 
Soliman (2000) has  compared  LINEX  and  quadratic Bayes estimates  for 
the Rayleigh distribution  and  Pandey et al. (1996) considered  the  case of 
classical Pareto  distribution.  On  a  related  note, it is crucial to have in-depth 
study of the LINEX Bayes estimate  of  the scale parameter of gamma  dis- 
tribution because, in several cases. the  distribution of the  minimal sufficient 
statistic is gamma. For more in this  connection, see Parsian  and 
Nematollahi (1995). 
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5 
Design of Sample Surveys  across Time 
SUBIR GHOSH University of California, Riverside, Riverside, 
California 

1. INTRODUCTION 

Sample  surveys  across time are widely used in collecting social,  economic, 
medical, and  other kinds of data.  The  planning of such surveys is a  challen- 
ging task,  particularly  for  the  reason  that  a  population is most likely to 
change  over time in terms  of  characteristics of its  elements as well as in its 
composition. The purpose of this paper is to give an overview on different 
possible sample surveys across time as well as the issues involved in con- 
ducting these surveys. 

For a  changing  population  over time, the objectives may not be the  same 
for  different surveys over time and there  may be several objectives even for 
the  same  survey.  In  developing  good  designs  for  sample surveys across time, 
the first step is to list the objectives. The objectives are defined in terms of 
desired inferences considering  the  changes in population  characteristics and 
composition.  Kish (1986), Duncan  and  Kalton (1987). Bailar (1989), and 
Fuller (1999) discussed possible inferences from  survey data collected over 
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time and presented  sampling  designs  for  making  those inferences. Table  1 
presents  a list of possible inferences with examples. 

In Section 2, we present  different  designs  for  drawing inferences listed 
in Table 1. Section 3 describes  the data collected using the  designs given 
in Section 2. Section 4 discusses the issues in survey data  quality. A brief 
discussion on statistical inference is presented in Section 5. Section 6 
describes  the Current  Population Survey Design for collecting data  on 
the  United  States  labor market  conditions in the  various  population 
groups.  states,  and even sub-state  areas.  This is a real example of a 
sample  survey for collecting the  economic and social data of national 
importance. 

I 

2. SURVEY DESIGNS ACROSS TIME 

We now  present  different survey designs. 

Table 1. Possible inferences with examples 

Inferences on Examples 

(a) Population  parameters  at distinct  Income by counties in  California 

(b)  Net  change (i.e.,  the  change at the  Change in California yearly 

(c)  Various  components of individual  Change in yearly income  of  a 

time  points during 1999 

aggregate level) income between 1989 and 1999 

change  (gross,  average, and county in California  from 1989 
instability) to 1999 

data over  time  based on the data  from 1989 
(d)  Characteristics  based  on  cumulative  Trend in California  income 

to 1999 
(e) Characteristics  from  the collected Proportion of persons  who 

data  on events  occurring within a experienced a criminal 
given time period victimization in the  past six 

(f) Rare events based on cumulative Cumulate a sufficient number of 
months 

data over  time cases of persons  with 
uncommon  chronic  disease 

and  arrest rates 
(g)  Relationships  among  characteristics  Relationship between crime  rates 
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2.1 Cross-sectional  Surveys 

Cross-sectional surveys are designed to collect data  at a single point in time 
or over  a  particular time period. If a  population  remains  unchanged  in  terms 
of its  characteristics and  composition,  then  the collected information  from  a 
cross-sectional survey at a single point in time or over  a  particular time 
period is valid for  other  points in time or time periods.  In  other  words,  a 
cross-sectional survey provides all pertinent  information  about the  popula- 
tion in this situation.  On the  other  hand, if the  population  does  change in 
terms of characteristics and  composition, then  the collected information  at 
one time point or time period cannot be considered as valid information  for 
other time points or time periods. As a  result,  the net changes,  individual 
changes, and  other objectives described in (b)  and (c) of Table 1 cannot be 
measured by cross-sectional  surveys.  However, in some  cross-sectional  sur- 
veys, retrospective  questions are asked to gather  information  from  the  past. 
The  strengths  and weaknesses of such  retrospective  information  from  a 
cross-sectional  survey will  be discussed in Section 4. 

2.2 Repeated  Surveys 

These  surveys are repeated at different  points of time. The  composition of 
population may be  changing  over time and  thus  the sample  units  may  not 
overlap  at  different  points in time. However,  the  population  structure (geo- 
graphical  locations,  age  groups, etc.) remains  the  same at different time 
points. At each round of data collection,  repeated surveys select a  sample 
of population existing at that time. Repeated surveys may be considered as a 
series of cross-sectional surveys. The individual  changes described in (c)  of 
Table 1 cannot be measured by replicated  surveys. 

2.3 Panel  Surveys 

Panel surveys are designed to collect similar  measurements on the  same 
sample at different  points of time. The  sample units  remain  the  same at 
different time points  and  the  same variables are measured  over  time. The 
interval between rounds of data collection and  the overall  length of the 
survey  can be different in panel  surveys. 

A special kind of panel  studies,  known  as cohort studies,  deals with 
sample universes, called cohorts,  for selecting the  samples. For  another 
kind  of  panel  studies,  the data  are collected from  the  same  units  at  sampled 
time points. 

Panel surveys permit us to measure  the  individual  changes described in (c) 
of Table I .  Panel surveys are  more efficient than replicated surveys in mea- 
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suring  the net changes described in (b) of Table 1 when  the values of the 
characteristic of interest are correlated  over time. Panel surveys collect more 
accumulated  information on each  sampled  unit than replicated surveys. 

In  panel  surveys,  there are possibilities of panel losses from  nonresponse 
and  the  change in population  composition in terms of introduction of  new 
population  elements  as time passes. 

4 2.4 Rotating Panel Surveys 
In  panel  surveys,  samples at two  different  time  points have complete  overlap 
in sample  units.  On  the  other  hand,  for  rotating  panel  surveys,  samples  at 
different time points  have  partial  or no overlap in sampling  units. For 
samples at  any two  consecutive time points,  some  sample  units  are  dropped 
from  the  sample  and some other sample  units are  added  to the  sample. 
Rotating  panel surveys  reduce  the  panel effect or panel  conditioning  and 
the  panel loss in comparison with non-rotating panel  surveys.  Moreover,  the 
introduction of new samples at different waves provides  pertinent  informa- 
tion of a  changing  population.  Rotating panel surveys are  not useful for 
measuring  the  objective  (d) of Table 1. Table 2 presents  a  six-period  rotating 
panel survey design. 

The Yates rotation design 

Yates (1949) gave the  following  rotation  design. 
Part of the  sample  may be replaced at each time point,  the  remainder 

being retained. If there are a  number of time  points,  a  definite scheme of 
replacement is followed; e.g.,  one-third of the  sample  may be replaced.  each 
selected unit being retained (except for  the first two time points)  for  three 
time points. 

Table 2. A six-period rotating panel design 

Time 

Units 1 - 7 3 4 5 6 

1 X X X 
2 X X X 
3 X X X 
4 X X X 
5 X X X 
6 X X X 
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The  rotating panel given in Table 2 is in fact  the  Yates rotation design 
(Fuller 1999). 

The  Rao-Graham rotation design 

Rao  and  Graham (1964) gave the following rotation  pattern. 
We  denote  the  population size by N and  the sample size  by n .  We  assume 

that N and n are multiples  of n 2 ( ?  1). In the Rao-Graham  rotation design,  a 
group of n 2  units  stays in the  sample  for I' time  points (12  = n2r) ,  leaves the 
sample  for 171 time points,  comes  back  into  the  sample  for  another r time 
points,  then leaves the  sample  for I?? time  points,  and so on. 

Table 3 presents  a  seven-period  Rao-Graham rotation design with 
N = 5, n = I' = 2, n2 = 1, and m = 3. Notice  that  the  unit ~ ( 1 1  = 2,3 ,4 ,5)  
stays in the  sample  for  the time points ( u  - I ,  u ) ,  leaves the  sample  for  the 
time points ( u  + 1 , u  + 2, u + 3), and  again comes  back  for  the time points 
( u  + 4, zI + 5 )  and so on. Since we have seven time points, we observe this 
pattern  completely  for ZI = 2 and partially for 21 = 3,4, and 5 .  

For ZI = I ,  the  complete  pattern in fact starts  from  the time points (u  + 4, 
ZI + 5 ) ,  i.e., ( 5 ,  6). Also  note that  the unit u = 1 is in  the  sample at time  point 
1 and leaves the  sample for  the time points (u + I ,  u + 2, u + 3), i.e., (2, 3.4). 
For the  rotation design in Table 2,  we have N = 6, n = I' = 3, nz = 1, and 
111 = 3, satisfying  the  Rao-Graham  rotation  pattern  described  above. Since 
there are only six time points,  the  pattern  can be seen partially. 

One-level rotation pattern 

For the one-level rotation  pattern,  the sample  contains n units at all time 
points.  Moreover, (1 - F )  n of the  units in the  sample  at time t , - l  are 
retained in the  sample  drawn  at time t , .  and the  remaining pn units  are 
replaced with the  same  number of new ones.  At  each time point,  the  enum- 
erated  sample  reports  only  one  period  of data  (Patterson 1950, Eckler 1955). 

Table 3. A seven-period rotating panel design 

Time 

Units 1 2 3 4 5 6 7  

1 X x x x  
2 x x   x x  
3 x x  X 
4 x x  
5 x x  
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For the  rotation design in Table 2. /A = f and tz  = 3, and  for  the  rotation 
design in Table 3, ,u = and 17 = 2. 

Two-level rotation pattern 

Sometimes it is cheaper in surveys to  obtain  the  sample values on  a  sample 
unit  simultaneously  instead  of at two  separate times. In  the two-level rota- 
tion  pattern,  at time ti a new  set of 17 sample  units is drawn from  the 
population  and  the  associated  sample values for  the  times ti and  are 
recorded  (Eckler 1955). 

This idea can be  used to  generate  a  more  than  two-level  rotation  pattern. 

2.5 Split Panel Surveys 
Split panel  surveys are  a  combination  of  a  panel  and  a  repeated  or  rotating 
panel  survey  (Kish 1983, 1986). These  surveys are designed to follow  a 
particular  group of  sample  units  for  a specified period  of  time  and  to  intro- 
duce new groups of  sample  units at each  time  point during  the specified 
period. Split panel  surveys are  also  known as supplemental  panel  surveys 
(Fuller 1999). 

The simplest  version  of  a split panel  survey is a  combination  of  a  pure 
panel  and a set of repeated  independent  samples.  Table 4 presents  an 
example. 

A complicated  version  of  a split panel  survey is a  combination of  a pure 
panel  and  a  rotating  panel.  Table  5  presents an example. 

The  major  advantage  of  split  panel surveys is that of  sharing  the benefits 
of pure  panel  surveys  and  repeated  surveys or  rotating panel surveys. For 

Table 4. The simplest  version of a six-period split 
panel  survey 

Time 

Units 1 - 3 3 4 5  6 

1 X X X X X X 
2 X 
3 X 
4 X 
5 X 
6 X 
7 X 
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Table 5. A complicated version of  a  six-period 
split panel survey 

Time 

Units 1 - 3 3 4 5 6 

1 x x x x x x  
3 X X  X 
3 x x  X 
4 X X  X 
5 X X X 
6 X X X 
7 X X X 

- 

inference (d) of Table 1 only the  pure  panel  part is used. For inference (f) of 
Table 1 only  the  repeated survey or rotating  panel  survey  part is used. But 
for  the  remaining inferences both  parts  are used.  Moreover,  the  drawbacks 
of one  part  are  taken  care of  by the  other  part.  For example,  the new units 
are included in the  second part  and also  the  second part permits us to check 
biases from  panel effects and  respondent losses in the first part. 

Table 6 presents  the  relationship between survey designs across time 
given in the  preceding  sections  and possible inferences presented in Table 
1 (Duncan  and  Kalton 1987, Bailar 1989). 

3. SURVEY DATA ACROSS TIME 

We now explain  the nature of survey data, called longitudinal  data, collected 
by survey designs presented in Sections 2.1-2.5. Suppose  that two variables 

Table 6. Survey designs versus possible inferences 
in Table 1 

Time 

2.1 X X X 
-.- 3 3  x x  x x x  
2.3 x x x x x  X 
2.4 x x x  x x x  
2.5 x x x x x x x  
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X and Y are measured on N sample  units.  In  reality,  there  are possibilities 
of measuring  a single variable as well as  more  than  two variables. 

The cross-sectional survey data  are .yl, . . . s N  and yl, . . . , - v , ~  on N sample 
units.  The repeated  survey data  are .xi, and y,, for  the  ith  sample  unit  at time 
t on two  variables X and Y .  The panel survey data  are s i r  and y,,, 
i = 1, . . . . N .  t = I ,  . . . . T .  There  are T waves of observations  on  two  vari- 
ables X and Y .  The  rotating panel survey data  from  the  rotating panel in 
Table 2 are (x,,, yl,), .v~(~+~)), (xi(,+?). .v,),+:)). i = t + 2, t = I ,  2, 3. 4; 

survey data  from the split panel in Table 5 are ( s l , ,  yl,), t = 1, . . . , 6 ;  (x,,, 
(.X1 1 ,  . ? 1 1 ) ,  (-ylj, .VIS). (S16.  .1'16), ( S Z I ,  y : ~ ) .  ( S p ,  .Yzr) ,  (.X:6, y 2 6 ) .  The Split panel 

I*,,), (.y,(,+l), yic/+I,), (-u;(,+?), )t,),+?)), i = 1 + 3, 1 = 1. 2. 3.4;  ( - ~ z I .  PZI), ( ~ 2 5 ,  

?'?5)>  (-y269  1'26)- (-v3I. ]'?.I), ( s 3 2 -  .1.32)7 (-x363 ?'36). 

4. ISSUES IN SURVEY DATA QUALITY 

We now present  the  major issues in the  data  quality  for surveys across  time. , 
4 

4.1 Panel Conditioning/Panel Effects 

Conditioning  means  a  change in response that occurs at a time point t 
because the  respondent  has  had  the interview waves 1 ,2 ,  . . ., ( I  - 1). The 
effect may  occur because the  prior interviews may influence respondents' 
behaviors and  the way the  respondents  answer  questions.  Panel  condition- 
ing is thus a reactive effect of prior interviews on  current responses. 
Although  a  rotating panel design is useful for  examining  panel  conditioning, 
the  elimination  of  the effects of conditioning is much  more  challenging 
because  of  its  confounding  with  the effects of other  changes. 

4.2 Time-in-Sample Bias 

Panel  conditioning  introduces  time-in-sample  bias  from  respondents.  But 
there are  many  other  factors  contributing  to  the bias. If a significantly 
higher or lower level of response is observed in the first wave than in sub- 
sequent waves, when one would  expect  them to be the same,  then  there is a 
presence of  time-in-sample  bias. 

4.3 Attrition 

A  major  source  of  sample  dynamics is attrition  from  the  sample.  Attrition of 
individuals  tends to be drastically  reduced when all individuals  of  the  ori- 
ginal  households  are followed in the interview waves. Unfortunately,  not all 
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individuals  can be found  or will agree to  participate in the  survey interview 
waves. A simple check on  the  potential bias from  later wave nonresponse 
can be done by comparing  the responses of subsequent  respondents  as well 
as  nonrespondents  to  questions asked on earlier waves. 

4.4 Telescoping 

Telescoping means  the  phenomenon that  respondents tend  to draw  into the 
reference period  events  that  occurred  before  (or  after) the  period.  The extent 
of telescoping can  be  examined in a  panel survey by determining  those 
events  reported  on  a given wave that  had  already been reported on a  pre- 
vious wave (Kalton  et  al. 1989). Internal telescoping is the tendency to shift 
the  timing of events within the recall period. 

4.5 Seam 

Seam refers to a  response error  corresponding  to the fact that  two reference 
periods  are  matched  together  to  produce  a  panel  record. The  number of 
transitions  observed between the last month of one reference period and  the 
first month of another is far  greater  than  the  number of transitions observed 
between months within the  same reference period  (Bailar 1989). It has been 
reported in many  studies that  the  number of activities is far  greater in the 
month closest to the interview than in the  month  far away  from  the 
interview. 

4.6 Nonresponse 

In  panel surveys, the incidence of nonresponse increases as  the  panel wave 
progresses. Nonresponse at the  initial wave is a result of refusals, not-at- 
homes,  inability to  participate, untraced  sample  units and  other  reasons. 
Moreover,  nonresponse  occurs at subsequent waves for  the  same  reasons. 
As a rule, the  overall  nonresponse  rates in panel surveys increase with 
successive waves of data collection.  Consequently.  the risk of bias in survey 
estimates increases considerably,  particularly when nonrespondents  system- 
atically differ from  respondents (Kalton et al. 1989). 

The cumulative nature of this attrition  has an effect on response  rates. 
In  a survey with a within-wave response rate of 94%  that does  not 
return to nonrespondents,  the  number of observations will be  reduced 
to half of the  original  sample  observations by the  tenth wave (Presser 
1989). 
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Unit  nonresponse occurs when no  data  are  obtained  for  one  or  more 
sample  units.  Weighting  adjustments are normally used to  compensate  for 
unit  nonresponse. 

Item  nonresponses  occur when one or more  items are  not completed  for  a 
unit.  The remaining  items of the  unit  provide  responses. Imputation is 
normally used for item nonresponse. 

Wave  nonresponses  occur when one  or  more waves of panel data  are 
unavailable  for  a  unit that  has provided data  for  at least one wave 
(Lepkowski 1989). 

4.7 Coverage  Error 

Coverage  error is associated with incomplete  frames to define the  sample 
population  as well as  the faulty interview. For example,  the  coverage of 
males  could be worse than  that of females in a  survey.  This error results 
in biased survey estimates. 

4.8 Tracing/Tracking 

Tracing  (or  tracking)  arises  in  a  panel survey of persons,  households, and so 
on, when it is necessary to locate  respondents  who  have  moved.  The need 
for  tracing  depends on  the  nature of the survey including  the  population of 
interest,  the  sample  design,  the  purpose of the  survey, and so on. 

4.9 Quasi-Experimental  Design 

We consider  a  panel  survey with one wave of  data collected before a training 
program  and  another wave of data collected after  the  training  program. 
This  panel  survey is equivalent to  the widely used quasi-experimental design 
(Kalton 1989). 

4.10 Dynamics 

In panel  surveys,  the  change  over time is a  challenging  task to consider. 

Target population  dynamics 

When defining the  target  population,  the  consequences of birth,  death,  and 
mobility during  the life of  the  panel  must be considered. Several alternative 
population  definitions can be given that  incorporate  the target  population 
dynamics  (Goldstein 1979). 
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Household  dynamics 

During  the life of a  panel  survey, family and household type units  could be 
created,  could  disappear  altogether,  and  undergo  critical  changes in type. 
Such changes  create challenges in household and family-level analyses. 

Characteristic  dynamics 

The relationship between a  characteristic of an individual,  family, or house- 
hold at  one time and the value of the  same or another characteristic at a 
different time could be of interest in a  panel survey. An example is the 
measurement of income  mobility in terms of determining  the proportion 
of people living below poverty level  in one  period  who  remain  the  same in 
another period. 

Status and behavior  dynamics 

The  status of the  same  person  may  change  over time. For example,  children 
turn  into  adults,  heads of households, wives, parents,  and  grandparents over 
the  duration of a  panel  survey. The  same is also  true for behavior of a 
person. 

4.1 1 Nonsampling  Errors 

Two  broad classes of nonsampling  errors are  nonobservation  errors  and 
measurement errors.  Nonobservation  errors may be further classified into 
nonresponse  errors  and noncoverage errors. Measurement  errors  may be 
further  subdivided  into  response and processing  errors. A major benefit of 
a  panel survey is to measure  such  nonsampling  errors. 

4.12 Effects of Design  Features on Nonsampling 
Errors 

We now discuss four design features of a  panel  survey influencing the  non- 
sampling  errors (Cantor 1989, O'Muircheartaigh 1989). 

Interval  between  waves 

The longer  the  interval between waves, the  longer  the reference period  for 
which the  respondent  must recall the  events.  Consequently,  the  greater is the 
chance  for  errors of recall. 

In  panel surveys, each wave after  the first wave produces  a  bounded 
interview with the boundary  data provided by the  responses on the  previous 
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wave. The longer  interval between waves increases the possibility of migra- 
tion and hence increases  the  number  of  unbounded interviews. For example, 
the interviewed families or individuals  who  move  into  a  housing  unit after 
the first housing  unit  contact  are  unbounded  respondents. 

The longer  interval between waves increases  the  number of people  who 
move between interviews and have to be traced and  found  again. 
Consequently, this increases the  number of people  unavailable to follow up. 

As the  interval between waves decreases, telescoping and panel effects 
tend to increase. 

Respondent selection 

Three  kinds of respondent  categories are normally  present in a  household 
survey. A self-respondent  does  answer  questions on his or her own,  a 
proxy  respondent  does  answer  questions  for  another  person selected in 
the  survey, and a  household  respondent  does  answer  questions  for  a 
household. 

Response  quality  changes when household  respondents  change between 
waves or a  self-respondent  takes  the place of  a  proxy-respondent. 

Respondent  changes  create  problems when retrospective  questions are 
asked and  the previous interview is used as the start-up recall period.  It is 
difficult to eliminate  the  overlap between the  reporter’s  responses. 

Respondent  changes between waves are  also responsible for differential 
response patterns because of different  conditioning effects. 

Mode of data collection 

The  mode of data collection influences the initial and follow-up  cooperation 
of respondents,  the  ability  to effectively track survey respondents  and  main- 
tain high response  quality  and  reliability. The  mode  of  data collection 
includes  face-to-face interviews, telephone interviews, and self-completion 
questionnaires.  The mixed-mode  strategy, which is a  combination of modes 
of data collection, is often used in panel surveys. 

Rules for following sample  persons 

The  sample design for  the first wave is to be supplemented with the follow- 
ing rules for  determining  the  method of generation of the  samples  for  sub- 
sequent waves. The rules specify the  plans  for  retention, dropping  out of 
sample  units  from  one wave to the next wave, and  adding new sample  units 
to the  panel. 
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Longituclinal  individual unit cohort design 

If the rule is to follow all the  sample  individual  units  of  the  first wave in the 
samples  for  the  subsequent waves, then it is an individual  unit cohort design. 
The results from  such  a design are meaningful  only to  the  particular  cohort 
from which the  sample is selected. For example,  the  sample  units of indivi- 
duals with a  particular set of characteristics (a specific age group  and gen- 
der) define a cohort. 

Longitudincrl  individual unit crttribute-based  design 

If the rule is to follow the  sample of individuals.  who are derived from  a 
sample of addresses  (households) or  groups of related  persons with common 
dwellings (families) of the first wave in the samples  for  the  subsequent 
waves, then i t  is an individual  unit  attribute-based  design. The analyses 
from such a design focus on individuals but describe attributes of families 
or households to which they belong. 

Longitudirlcrl  crggregate unit design 

If the rule is to follow the  sample of aggregate  units (dwelling units) of the 
first wave in the  sample  for  the  subsequent waves, then it is an aggregate  unit 
design. The members of a  sample  aggregate  unit  (the occupants of a  sample 
dwelling unit) of the first wave may  change in the  subsequent waves. At  each 
wave, the  estimates of characteristics of aggregate  units are developed to 
represent  the  population. 

Complex  panel surveys are based on individual  attribute-based  designs 
and aggregate unit designs. The samples  consist of groups of individuals 
available at a  particular  point in time, in contrast  to individuals with a 
particular  characteristic in surveys based on individual  unit  cohort  designs. 
Complex  panel surveys attempt  to follow all individuals of the first wave 
sample  for  the  subsequent waves but lose some  individuals due  to  attrition, 
death,  or movement  beyond specified boundaries  and  add new individuals in 
the  subsequent wave samples  due to  birth,  marriage,  adoption  or  cohabita- 
tion. 

4.13 Weighing Issues 

In panel surveys, the  composition of units,  households,  and families changes 
over time. Operational rules should  be defined regarding  the  changes  that 
would allow the  units to be considered in the  subsequent waves of sample 
following the first wave of sample,  the  units to be terminated,  and  the  units 
to be followed over  time.  When new units  (individuals)  join  the  sample in 
the  subsequent waves of sample,  the  nature of retrospective  questions for 
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them  should  be  prepared.  The weighting  procedures  for  finding  unbiased 
estimators  of  the  parameters of interest  should be made.  The  adjustment of 
weights for  reducing  the  variances and biases of the  estimators  resulting 
from  undercoverage and  nonresponse  should  also  be  calculated. 

, .  

5. STATISTICAL  INFERENCE 

Both  design-based and model-based  approaches are used in drawing  infer- 
ences on the  parameters of interest  for  panel surveys. The  details  are avail- 
able in literature  (Cochran 1977, Goldstein 1979, Plewis 1985, Heckman  and 
Singer 1985, Mason  and  Fienberg 1985, Binder and  Hidiroglou 1988, 
Kasprzyk  et  al. 1989, Diggle et  al. ,1994, Davidian  and  Giltinan 1995, 
Hand  and  Crowder 1996, Lindsey 1999). The issues involved in deciding 
one  model  over  the  others are complex.  Some  of these issues and  others will 
be discussed in Chapter 9 of this  volume. 

6. EXAMPLE: THE CURRENT  POPULATION SURVEY 

The  Current  Population Survey (CPS)  provides data  on employment and 
earnings  each  month in the  USA on a  sample  basis.  The  CPS  also  provides 
extensive data  on  the U.S. labor  market  conditions in the  various  popula- 
tion  groups,  states,  and even substate  areas.  The  CPS is sponsored  jointly by 
the U.S. Census  Bureau and  the U.S. Bureau of Labor Statistics (Current 
Population Survey: TP 63). 

The  CPS is administered by the  Census  Bureau. The field work is con- 
ducted  during the week of the  19th of the month.  The  questions refers to  the 
week of  the 12th of  the  same  month.  In the month  of December,  the  survey 
is often  conducted  one week earlier because of the  holiday  season. 

The  CPS sample is a  multistage  stratified  probability  sample of approxi- 
mately 56,000 housing  units  from 792 sample  areas. The  CPS sample  con- 
sists of  independent  samples in each state  and  the District  of  Columbia. 
California  and New York  State  are  further divided into  two  substate 
areas:  the  Los Angeles-Long Beach metropolitan  area  and  the rest of 
California; New York City and  the rest of New York  State.  The  CPS design 
consists  of  independent  designs for  the  states  and  substate  areas.  The  CPS 
sampling uses the lists of  addresses  from  the 1990 Decennial  Census of 
Population  and  Housing. These lists are  updated  continuously  for new 
housing built after  the 1990 census. 

Sample sizes for the CPS sample are determined by reliability require- 
ments expressed in  terms of the coefficient of  variation  (CV). 
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The first stage  of  sampling involves dividing  the  United  States  into  pri- 
mary  sampling  units  (PSUs)  consisting  of  metropolitan  area,  a  large  county, 
or a group of smaller counties within a  state. 

The  PSUs  are then  grouped into  strata  on the basis of independent 
information  obtained  from  the  decennial  census or  other sources. The  strata 
are  constructed so that they are  as  homogeneous  as possible with respect to 
labor  force and  other social and economic  characteristics  that are highly 
correlated with unemployment. One  PSU is sampled  per stratum.  For a self- 
weighting design, the strata  are formed with equal  population sizes. The 
objective of stratification is to  group  PSUs with similar  characteristics 
into  strata having  equal population sizes. The  probability of selection for 
each PSU in  the stratum is proportional  to its  population  as of the 1990 
census.  Some PSUs have sizes very close to the needed equal  stratum size. 
Such PSUs  are selected for  sample with probability  one,  making  them self- 
representing (SR). Each of the SR PSUs included in the  sample is considered 
as a  separate  stratum. 

In the  second  stage of sampling,  a  sample of housing  units within the 
sample  PSUs is drawn. 

Ultimate  sampling  units  (USUS) are geographically  compact  clusters 
of about  four housing  units selected during  the  second  stage of sampling. 
Use of housing  unit  clusters lowers the  travel  costs for field 
representatives. 

Sampling  frames  for  the  CPS are developed  from  the 1990 Decennial 
Census,  the Building Permit  Survey, and  the  relationship between these 
two sources. Four  frames  are  created: the  unit  frame,  the  area  frame,  the 
group  quarters  frame,  and  the permit  frame. A housing  unit is a group of 
rooms or a single room occupied as a  separate living quarter. A group 
quarters is a living quarter where  residents  share  common facilities or 
receive formally  authorized  care.  The  unit  frame  consists of housing  units 
in  census  blocks  that  contain  a very high proportion of complete  addresses 
and  are essentially covered by building  permit offices. The  area  frame  con- 
sists of housing  units and  group  quarters in census  blocks that  contain a 
high proportion of incomplete  addresses, or  are  not covered by building 
permit offices. The  group  quarters  frame consists  of group  quarters in  cen- 
sus  blocks that  contain a sufficient proportion of complete  addresses and  are 
essentially covered by building  permit offices. The permit  frame  consists of 
housing  units  built since the 1990 census, as  obtained  from  the Building 
Permit  Survey. 

The  CPS sample is designed to  be self-weighting by state  or  substate 
area. A systematic  sample is selected from  each PSU at a sampling rate of 
1 in k ,  where k is the  within-PSU  sampling  interval which is equal  to  the 
product of the  PSU  probability of selection and  the  stratum  sampling 
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interval. The  stratum  sampling interval is normally  the  overall state  sam- 
pling interval. 

The first stage of selection of PSUs is conducted  from  each  demographic 
survey  involved in the 1990 redesign.  Sample  PSUs  overlap  across surveys 
and have  different  sampling  intervals. To ensure  housing  units get selected 
for  only  one survey,  the  largest common geographic  areas  obtained when 
intersecting,  sample PSUs in  each  survey are identified. These  intersecting 
areas  as well as residual  areas of those  PSUs,  are called basic PSU  compo- 
nents  (BPCs). A CPS  stratification PSU consists of one  or  more BPCs. For 
each survey. a  within-PSU  sample is selected from  each  frame within BPCs. 
Note  that  sampling by BPCs is not an additional  stage of selection. 

The  CPS  sampling is a  one-time  operation that involves selecting enough 
sample  for  the  decade. For  the  CPS  rotation system and  the phase-in of new 
sample  designs, 19 samples are selected. A systematic  sample of USUs is 
selected and 18 adjacent  sample USUs  are identified. The  group of 19 sam- 
ple USUs is known  as a hit string. The  within-PSU  sort is performed so that 
persons residing in USUs within a hit string  are likely to have  similar  labor 
force  characteristics. The  within-PSU sample selection is performed  inde- 
pendently by BPC and  frame. 

The  CPS  sample  rotation scheme is a  compromise between a  permanent 
sample  and  a  completely new sample  each  month.  The  data  are collected 
using  the 4-8-4 sampling design under  the  rotation scheme. Each month, 
the  data  are collected from  the sample  housing  units. A housing  unit is 
interviewed for  four consecutive months  and  then  dropped  out of the 
sample  for  the  next  eight  months, is brought  back in the following four 
months,  and  then retired  from  the  sample.  Consequently,  a  sample  hous- 
ing  unit is interviewed only eight times. The  rotation scheme is designed so 
that  outgoing  housing  units  are replaced by housing  units  from  the  same 
hit string which have  similar  characteristics. Out of the  two rotation 
groups replaced from  month  to  month.  one is in the  sample  for  the first 
time and  the  other  returns  after being excluded for eight months.  Thus, 
consecutive  monthly  samples  have six rotation  groups in common. 
Monthly samples  one year apart  have  four  rotation  groups in common. 
Households  are  rotated in and  out of the  sample,  improving  the  accuracy 
of the  month-to-month  and year-to-year  change  estimates. The  rotation 
scheme  ensures that in any  one  month, one-eighth of the  housing  units  are 
interviewed for  the first time, another  eighth is interviewed for  the  second 
time, and so on. 

When  a new sample is introduced  into  the  ongoing  CPS  rotation 
scheme. the  phase-in of a new design is also  practiced.  Instead of discard- 
ing  the old CPS  sample  one  month  and replacing  it with a  completely 
redesigned sample  the next month, a  gradual  transition  from  the old sam- 

1 
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ple design to  the new sample design is undertaken  for this phase-in 
scheme. 

7. CONCLUSIONS 

In  this  paper, we present an overview of survey designs across time. Issues in 
survey data  quality  are discussed in detail.  A real example of a  sample 
survey over time for collecting data  on  the United  States  labor market 
conditions in different  population  groups,  states,  and  substate  areas, is 
also given. This complex survey is known  as  the  Current  Population 
Survey and is sponsored by the U.S. Census  Bureau and the U S .  Bureau 
of Labor Statistics. 
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Kernel Estimation in  a Continuous 
Randomized Response Model 
IBRAHIM  A.  AHMAD University  of  Central  Florida, Orlando,  Florida 

1. INTRODUCTION 

Randomized  response  models were developed  as  a  mean of coping with 
nonresponse in surveys, especially when the  data collected are sensitive or 
personal  as is the case in many economic,  health, or social studies. The 
technique  initiated  in  the  work of Warner (1965) for binary data  and 
found  many  applications in surveys. For a review, we refer to  Chaudhuri 
and Mukherjee (1987). Much of this  methodology’s  applications  centered 
on qualitative or discrete data. However,  Poole (1974) was first to give the 
continuous  analog of this methodology in the so-called “product model.” 
Here,  the  distribution of interest is that of a random variable Y.  The inter- 
viewer is asked,  however, to pick a random variable X ,  independent of Y,  
from  a  known  distribution F ( s )  = ( s / T ) ~ .  OsT, f i  L 1 and only  report 
Z = X Y .  Let G(H) denote  the  distribution of Y(Z)  with probability  density 
function  (pdf) g(h). One  can  represent  the  df of Y in terms of that  of Z and X 
as follows (cf. Poole 1974): 

97 
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GCV) = HCvT) - bt//?)hO,T), .V E R1 (1.1) 

Hence 

g(v) = T( 1 - 1 //?)I?CYT) - (yT'//?)h'(yT) ( I  2 )  

Thus, when /? = I ,  this is the  uniform [0, r ]  case,  the  methodology  requires 
to  ask the interviewer to multiply  his/her value of Y by any  number chosen 
between 0 and T and  to  report only the product. Let  the collected rando- 
mized response data be Z , ,  . . . , Z,,. We propose  to  estimate G@) and gb). 
respectively, by 

d,,(,,, = fi,,@T) - (.YT/B)i,,CVT) (1.3) 

&(y) = T(1 - I//?)i,,CVT) - (yT2/j3)&yT) (1.4) 

and 

yhere {,,(-.)A= (w/,,)- I C:i1(z - Z,/u,,), f i , , ( z )  = p, i , , ( ~ ~ ) d w .  and 
= ( d / d ~ ) / z , ~ ( z ) ,  with k(u) a  known  symmetric.  bounded  pdf such that I 

ulk(u) + 0 as 1~11 + 00 and (a ,L)  are  positive constants such that N,, + 0 as 
1 1  + 00. We, note  that f i , , ( z )  = ( l / n )  Cy=l K ( [ z  - Z,]/q,)  with K(u)  = J:m k 
(w)dw and Ij,i(z) = (mi)" Cy=,!'([-. - Z,]/a,,). In  Section 2 ,  we study  some 
sample  properties  of &(I:) and G,,(y), including an  asymptotic  representation 
of the  mean  square  error (mse) and  its integrated  mean square  error (imse) 
and discuss its  relation to  the direct  sampling  situation. A special case of 

using the "naive" kernel, was briefly discussed by Duffy and 
Waterton (1989). where they obtain  an  approximation of the  mean square 
error. 

Since our model is equivalently put  as In Z = In X + In Y ,  we can see that 
the  randomized  response  model  may be  viewed as a special case of the 
"deconvolution  problem." In its  general  setting, this problem relates to 
estimating  a pdf of a random variable U (denoted by p )  based on  contami- 
nated  observations W = U + V ,  where Vis a random variable with known 
pdf q. Let the pdf of W be 1. Thus, / ( w )  = p * q(1t'). To estimate p ( w )  based 
on a  sample Wl . . . . . W,, we let k be a  known  symmetric pdf with character- 
istic function &. and let a,, = N be reals such  that N + 0 and na + 00 as n -+ 
00. Further, let 4p, $q and 4, denote  the  characteristic  functions  correspond- 
ing to C', V. and W ,  respectively. If &[) = ( l / n )  e"":, denote  the 
empirical  characteristic  function of W , ,  . . . , W,,, then  the  deconvolution 
estimate  of p ( . )  is 

Hence, if we let 
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then 

j =  I 

This  estimate  was  discussed by many  authors  including  Barry  and 
Diggle (1999,  Carroll  and  Hall (1988), Fan (1991a, b, 1992). Diggle and 
Hall (1993), Liu and  Taylor (1990a, b)). Masry  and  Rice (1992). Stefanski 
and  Carroll (1990), and  Stefanski (1990). It is clear,  from  this  literature,  that 
the general  case  has, in addition  to  the fact that  the  estimate is difficult to 
obtain since it requires inverting characteristic  functions,  two  major  pro- 
blems. First,  the explicit mean  square  error  (or  its  integrated  form) is  diffi- 
cult to  obtain exactly or  approximately (c.f. Stefanski 1990). Second,  the 
best rate of  convergence in this  mean square  error is slow (cf. Fan 1991a). 
While we confirm  Fan’s  observation here, it is possible in our special case to 
obtain  an expression for  the  mean  square  error  (and its integral)  analogous 
to  the  usual  case  and,  thus,  the  optimal width is possible to  obtain. 

Note  also  that by specifying  the  convoluting densityf,  as  done in (1.1). we 
are able to  provide  an explicit estimate  without  using  inversions  of  charac- 
teristic functions,  which  are  often difficult to  obtain,  thus limiting the usabil- 
ity of  (1.5).  In  this  spirit,  Patil  (1996) specializes the deconvolution  problem 
to  the case  of  “nested”  sampling,  which  also  enables him to  provide  an 
estimate  analogous  to the direct  sampling case. 

Next, let us discuss  regression analysis when one of  the  two  variables is 
sensitive. First,  suppose  the  response is sensitive; let ( U ,  Y) be  a random 
vector  with  df G(u,y) and  pdf g(u,y). Let X - F(.Y) = (S/T)~> 0 5 x _< T ,  
and we can  observe (U,Z) only  where 2 = X Y .  Further, let H(u ,  z )  (h(u. z)) 
denote the df  (pdf) of (U,Z) .  Following the reasoning  of  Poole (1974), we 
have that,  for all (uJ), 

G(u, y )  = H(u ,  y T )  - (JT/B)H‘o.l’(u, yT) ,  (1.8) 

where H(’”)(u. y )  = (d/ay)H(u, y). Thus. the pdf  of (U,T)  is 

g(U, y) = [(I - l/B)T]h(U, J2T) - ~ ~ ‘ / B ) / 2 ‘ o ‘ ‘ ’ ( U ,  JIT) (1.9) 

where /I(’~’)(LL y) = 8 7 ( u ,  y) /dy.  If we let g,(rr) = Jg(u, y)dy, then the regres- 
sion R(u) = Jg(u . y )dy /g l (u )  is equal  to 

[(1 - l/p)T]jz/,(u,z)dz - ( l /TB)r ’h” .o ) (u . ; )~~] /g , (u )  (1.10) 

But, since E(ZI U )  = E(X)E( YI U )  = (BT/B + l)R(u), we get that 
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m.4 = [(I + I/B>/TIi.(4 (1.11) 

where r (u)  is the regression function  of Z on U .  i.e. r ( u )  = E(Z(U = u ) .  If 
( U , ,  Z , ) ,  . . . . (U,,, Z,!) is a random sample  from H(u,  3). then we can esti- 
mate R(u) by 

k l ( 4  = [(I + I / B ) / f l ~ , I ( 4  (1.12) 
where ; f l ( u )  = x:=, Z,k([zl - U;]/o,,)/ x:!, k([tr - Uf]/clfl)  . Note  that &u) is 
a constant multiple of the  usual regression estimate of Nadaraya  (1969,  c.f. 
Scott (1992). 

Secondly, suppose  that  the regressor is the sensitive data.  Thus, we need 
to  estimate Scv) = E(UI Y = y ) .  In  this  case g2(y) = [(l - I / B ) / T ] / 7 2 ~ ~ ~ T )  - 
LvT’/j3]/4(yT) and  thus 

s(J)) = [ T( 1 - 1/B) 1 2 / / 7 ( U ,  JtT)d24 - (J’T’/B) 2 / / 7 ( 0 ” ) ( U ,  .VT)&’ /gz(_V) s I 
(1.13) 

which can  be  estimated by 

I~a,,iZ,,ct.)~ 

(1.14) 
where i2,,@) is as given in (1.4) above. 

In Section 3, we Piscuss theA mse and imse as well as  other large  sample 
properties of both Rff(u) and Sf,()*). Note  that since the  properties of & ( u )  
follow  directly  from  those of the usual Nadaraya :egression estimate (cf. 
Scott (1992) for details) we shall concentrate  on S,,(v). Comparison with 
direct  sampling is also  mentioned. For all estimates  presented in this  paper, 
we also  show  how to  approximate  the  mean  absolute  error (mae) or its 
integrated  form  (imae). 

2. ESTIMATING PROBABILITY DENSITY AND 
DISTRIBUTION  FUNCTIONS 

In this section, we discuss the  behavior of the  estimates g, l (u)  and 6Ju) as 
given in ( 1.4) and (1.3). respectively. We shall  also compare these  proper- 
ties with  those of direct  sampling to try to measure  the amount of infor- 
mation loss (variability increase) due  to using  the  randomized  response 
methodology. 

First, we start by studying g,,@). 
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mse(g,,(y)) = T'( 1 - I/#?)'mse(h,,(yT)) + (y2T4/p2)mse($0,T)) 

- 2 b : ~ ~ ( 1  - ~ / ~ ) / B I E [ ~ ; , , ( ~ T )  - l l O ~ ~ ) ) ~ [ $ , b ~ )  - I~'O,T)I 
(2.1) 

Denoting by amse  the  approximate (to first-order  term)  form of mse we now 
proceed to obtain  amse(i,,(y)). 

It is well known,  c.f.  Scott (1992). that 

amse(i(yT)) = h(vT)R(k)/r?a + aza4(/z"~~9T))2/4  (2.2) 

where R(k)  = J k ' ( ~ . ) h t l .  Similarly, it is not difficult to see that 

arnse(l;;(yT)) = /?(vT)R(P)/na3 + a~a4( /1 '3 '~v~) )2 /4   (2 .3 )  

Next, 

E(i,,(-yT) - /(VT))(i&yT) - It 'bT)) = Ei, ,(vT)i;(yT) - EI;,,(Jd-)/tf(Jd-) 

- EhO, T)i i  (J: T )  + h(y T)h ' (y  T )  
(2.4) 

But 

= J ,  + J3 ,  say 

Now, using " E" to mean  the first-order  approximation, we see that 

and 

Thus 
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Also 

and 

Hence,  the  right-hand side of (2.4) is approximately  equal  to 
4 4  9 Sl(a.)k’(H.)dir + “/?”(JT)/z(3’(J:T) D O  4 (2.5) 

But,  clearly, Jk(rv)k’(rv)dw = liml,,.l+m k2(”) = 0, and this shows that (2.5) is 
equal to 

(2.6) 

Hence, 

The aimse is obtained  from (2.7) by integration  over y .  

reduces to 
In  the special case when randomizing  variable X is uniform [0,1], the amse 

while its imse is 
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R(k’)EZ’  a4a4R(4f’)  
aimse(i,,(x)) = 

no3 + 4  
(2.9) 

where 4‘3’(y) = y I ~ ( ~ ) ( y ) .  Thus,  the smallest value  occurs  at a* = {R(k ’ )EZ2/  
(a’R(4,, ( 4  ) n ) ) ” ’ .  This gives an  order of  convergence in aimse  equal to 17 i4 l7  

instead  of  the customary n-4/5 for direct sampling.  Thus, in randomized 
response  sampling,  one  has  to increase the sample size from, say, 17 in direct 
sampling  to  the  order  of n7/ ’  for  randomized  response to achieve  the  same 
accuracy in density estimation.  This confirms the results of Fan (1991a)  for 
the general  deconvolution  problem. 

Next we state  two  theorems  that  summarize the large sample  properties 
of )$(y). The first addresses  pointwise  behavior while the  second  deals  with 
uniform  consistency (both weak and  strong).  Proofs  are only  sketched. 

Theorem 2.1 

(i)  Let yT be a  continuity  point of I t ( . )  and A’(.) and let na3 -+ 00 as n + 

(ii)  If yT is a  continuity  point  of /z(.) and 12’ (.) and if, for  any E > 0, x:, 
< co. then i,,(~:) + g(v) with  probability  one  as n + co. 

(iii) If nu3 -+ 00 and no7 + 0 as n + 00, then m E . , ( v )  - g(v)] is asymp- 
totically normal  with  mean 0 and  variance a* = /z(J,T)R(k’)(vT’/B)’ 
provided  that 1 7 ( 3 )  (.) exists and is bounded. 

00; then i,,,(v) += g(v) in probability  as n + co. 

e-&la’ 

Proof 
(i)  Since y T  is obviously a continuity  point  of I t ( . )  and Iz’(.). then CJjT)  

+= /r(yT) and iL(yT) + h’(~1T) in probability  as n --f 00 and  the result 
follows  from  the definition of ~,,(y). 

(ii) Using  the  methods  of  Theorem 2.3 of  Singh (1981), on: can  show  that, 
under  the  stated  conditions, L,,(J:T) -+ ItCvT) and hL(J,T) -+ h’(J:T) 
with  probability  one  as 11 + co. Thus,  the result follows. 

(iii) Again.  note  that 

L J (2.10) 

But, clearly, &T) - hCvT) = O,((na)”) + O(a4) and, hence,  the first term 
on the right-hand side of (2.10) is O,,(a/J;;) + O((na7)”*) = o,(l). On  the 
other  hand,  that d&?(iL(yT) - h’(yT)is asymptotically  normal  with  mean 0 
and variancea’  follows from  an  argument similar to that used in density 
estimation, cf. Parzen (1962). 
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Theorem 2.2. Assume that zh'(z) is bounded  and  uniformly  continuous. 

(i) If Jei""k~r)(w)dw and J w e i t i " k ( r ) ( ~ ~ ) d ~ ~  are  absolutely  integrable (in t )  for 
I' = 0,1, then sup,Ik,,,(~:) - g ( y ) /  + 0 in probability  as n -+ 00, pro- 
vided that m ~ ~ ~ + ~  +. 00 as n -+ 00. 

(ii) If J 1d03k'")(0)I < co for r = 0 and 1, and s = 0 and  1, if J ld(k")(O))' 
I < 00. r = 0 and 1,  if EZ' < 00, and if In  In n / ( n ~ " + ~ ) " ~  -+ 0 as tz  + 
00, then sup,. I&(J))  - gb)I -+ 0 with  probability  one  as n + 00. 

Proof 

(i) Recall  the definition of ~,,(.x) from (1.4). In view of the result of  Parzen 
(1962) for weak  consistency and  Nadaraya (1965) for  strong consis- 
tency in the  direct  sampling case, we ne;d only to work  with sup; I z ) )  
I$'(z) - h")(z)I. First,  look  at  supz lzllEh~:)(z) - h'"(z)I. But.  writing \v 
(u)  = u/z(")(z,), we easily see that 

sup:Izl~Ei::)(z) - /F(z)I 5 sup- \v(z - m)P(u)dz, - W(?)I I S  (2.1 1) 

+ asup2Ih(')(z)I ~,ivlk(ivMr5cu 

HTnce, (2.1 1) converges to zero as n --f co. Next,  writing Qn(t)  = J ei" 
z/(:'(z)dz, one  can easily see that 

Q,l( t )  = n " + ' t , , ( t ) w )  + ~ - ' ~ , , ( ~ > P ( 4 7  (2.12) 

where tIl(t) = (l/n) cy=l, and P I n ( ? )  = (1 / n )  cy=I Zje"z~ ,  
v(t)  = I*'e'f'"k(r)(M?)d,i', and p(t) = Je""'k(')(w)dw. Hence, 

Eq,,(t) = q(t) = n"+'t(t)v(at> + a"q(t),u(ar) (2.13) 

where ( ( t )  = E(,,(t) and q ( t )  = Eq,,(t).Thus we  see that 

z ( @ ( z )  - ~ @ ( z )  = 4 elr-(+,,(r> - q(r>)dt. 

Hence, as in Parzen (1962), one  can  show  that 

00 

1 -4, (2.14) 

(2.15) 

The  right-hand side of (2.14) converges to 0 as n --f 00. Part (i) is 
proved. 

(ii) Let HJ-7) and H ( z )  denote  the  empirical  and real cdf s of 2. Note  that 



Next,  using  Cauchy-Schwartz  inequality for signed measures, 

(3.16) 

(2.17) 

where 

/J,,”sup[H,,(w) - H(w)(  
11’ 

From (2.16) and (2.17), we see that I?,, = O,l~l( lnln n/(na”+-) ’ 1/2 ). 
Thus, (ii) is proved and so is the  theorem. 

Next, we study  the  behavior of d,,(y) given in (1.3j. First,  note  that 
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Set z = yT and  note  that 

( ) H(z ) ( l  - H ( z ) )  2u J ( T u  4 4  

amse ITn(=)  = - - - /z(I)  uk(u)K(u)hr + -(/~’(z))~ n I ?  4 
(3.19) 

and 

(2.20) 

Let us evaluate  the  last  term in mse(d,,(?i)). 

EH,,(z)h,,(z) = - E K ( G ) k ( ? )  l t f l  1 
, . A  

+ - - E K ( ~ ) E A - ( ~ )  11 - I? 1 z - 2, 

= J I  + Jz .  say 

*2 a a  4 4  

Jz 2- h ( Z ) H ( Z )  + 7 (/I”(.) + /?’(I)) f -/7’(.7)/2’’(Z) 
I 1  - 4 

and 

Thus 

EH,,(z)/?,,(z) 2 - - - ,. &) ah’(z) J uk(tr)K(u)du 
2n n 

a2 U2 a u  4 4  
+ h(z)H(z)  + ~ (lz’(4 + l ?”(Z) )  + -+)h”(z) 

2 

and 

EL,,(z)H(z) + EZ?,l(~)/?(z) 2: 2h(z)H(z) + ~ (h’(z) + h”(z)) 
0 2 U 2  

2 

Hence, 
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E(E;T,,(z) - H ( z ) )  (EL&) - A(-)) 2 - { 1 - 2H(z ) }  
/ I ( . )  

2il 

U 
- - 12 ' (z )  Irk( u)K( u)du (2.21) n s 

*4u4 + - h ' ( 2 ) h  " (z)  
4 

Hence, 

+ - H(yT)(  1 - HCvT)) - --hCvT)( 1 - 2HCvT)) 
l l  I2 B I YT 

(2.22) 

Again,  the  aimse is obtained  from  (2.20) by integration with respect to y .  
Note  that the  optimal choice of a here is of order n - ' l 3 .  Thus, using rando- 
mized response to estimate G(v) necessitates that we increase  the  sample size 
from IZ to  an  order  of u 5 / 3  to reach  the  same order  of  approximations of n1.w 
or inwe in direct  sampling. 

Finally, we state two  results  summarizing  the  large  sample  properties of 
6, , (v)  both pointwise and  uniform.  Proofs of these results are similar to 
those  of  Theorems 2.1 and 2.2 above  and, hence, are  omitted. 

Theorem 2.3 

(i) Let yT be  a  continuity  point of A(.) and let nn + 00 as I I  + 0 0 ;  then 
d,,(y) -+ G(v) in probability  as 11 + 00. 

(ii)  If VT is a  continuity  point of A(.) and if. for any E > 0, Czl < 
00, then 6,,(1.) -+ G b )  with probability  one as n + 00. 

(iii) If nu -+ cc and nc15 +. 0 as n + 00 and if / I " ( . )  exists and is bounded, 
then Jna(6,,(y) - GCv)) is asymptotically  normal with mean 0 and 
variance (JT/B) ' /Z(J 'T)R(~) .  

Theorem 2.4. Assume that A(Z) is bounded  and uniformly  continuous. 

(i) If J'ei'"k(w)dw and ~e""'MA-(w)dw are absolutely  integrable (in t ) ,  then 
supy 16,1(v) - G(\,)I + 0 in probability  provided  that nu' -+ 0 as 
I 7  -+ 00. 
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(ii) If Idk(8)( < 00, if EZ’ < 00, and if InInn/(no’) + 0 as 11 +. 00 , then 
sup! Id,,(-v) - G(y)I + 0 with  probability  one  as IZ -+ 00. 

Before closing  this  section, let us addr!ss the  representation of the  mean 
absolute  error (mae)  of both in())) and G,,(y), since this  criterion is some- 
times used for  smoothing, cf. Devroye  and Gyrofi (1 986). We shall restrict 
our attention to  the case  when  the  randomizing  variable X is uniform (O,l) ,  
to simplify discussion. In this  case, and using Theorem 2.1 (iii), one  can 
write  for  large 11 

g,,~)) - g o > )  = w + o,) u202 (3) 

2 
(2.23) 

where W is the  standard  normal variable.  Hence we see that,  for large 1 1 ,  

But El W - 81 = 28CP(8) + 2I$(8) - 8. for all 8 and where CP is the  cdf and I$ is 
the  pdf of the  standard  normal. Set 

Then 

Therefore,  for rr large  enough. 

(2.25) 

where S(8) = 28@(8) + 24(8) - 8. Hence,  the  minimum value of a is 
o** = (4hCv)R(k’ )~o / r zo4( /~ ‘3 )~) )? ) ’ ’7 ,  where 80 is the  unique  minimum of 8-7 
S(8). Comparing u*,  the minimizer of amse,  with a**, the  minimizer of amae, 
we obtain the ratio which is independent  of all distributional  para- 
meters. 

Next,  working with d,,(v), again  for  the  uniform  randomizing  mixture, it 
follows from  Theorem 2.3 (iii) that, for  large n. 
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where, as  above, W is the  standard  normal  variate.  Thus  the  amae of G,,(y)  is 

Working  as  above, we see that  the value of a that minimizes (2.27) is ii = 
(4y;;y?hOl)R(k)/no4(lz’(y) - ~ 4 ” ( J ) ) ~ ) f  , where yo is the  unique  minimum of 
y-?6(y). On  the  other  hand,  the value of Q that minimizes the  amse is n%, = 
(!1’1?0:)R(k)/na4(h’~~~) - y/z”(v))’)~. Thus, the  ratio of 0% to is (4y0)-3 , 
independent of all distributional  parameters. 

We  are now  working  on  data-based  choices of the window size a for both 
using  a new concept we call “kernel  contrasts,”  and  the  results 

will appear, hopefully, before long. 

3. ESTIMATING REGRESSION FUNCTIONS 
3.1 Case (i). Sensitive Response 

As noted in the  Introduction,  the regression funtion R(u) = E( YIU = u ) .  is 
proportional  to  the regression function r(u)  = E(ZI U = u ) .  Since the  data is 
collected on (U,Z) ,  one  can  employ  the readily available  literature on ?,,(u) 
to deduce aN properties of kn(u); cf.  Scott (1992). For example, 

Also, (na)i(k)u) - R(u)) is asymptotically  normal with mean 0 and variance 
[( 1 + 1 / ~ ) / T ] 2 ( R ( k ) 0 ’ z ,  rr/nagl(u)). Hence, for sufficiently large rr ,  

(3.2) 
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Collecting  terms and using the formula 

we get,  after  careful simplification, that 

From (3 .5)  and (3.9), the mse of ,?,?@) is approximated by 

R(T(1 - $)uk - (yT' /P)k ' )  
amse = 

izu3g:o,) 

-(.vT2/p) j Z,h'0~3'(Z/, yT)du 

(3.10) 

Next, we offer  some of the large sample  properties  of i,,(.v). Theorem 3.1 
below  is stated  without  proof, while the  proof  of  Theorem 3.2 is only briefly 
sketched. 

Theorem 3.1 

(ij Let h". ')( . ,vT) be continuous  and let rza -+ co as i7 -+ 00 then 

(ii) If, in addition, a 5 Vi 5 b and,  for  any E z 0. C z ,  e-'"' < 00 , then 

(iii) If, in addition  to  (i), i1u7 + 0. then m ( S , , ( y )  - SCv)) is asymptoti- 

$(v) -+ Sot) in probability as -+ co. 1 

.?,,(v) + SO,) with  probability  one  as I t  -+ op. 

cally normal  with  mean 0 and variance 
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Theorem 3.2. Assume that ~ k ( ~ . ' ) ( u ,  z )  is bounded  and uniformly  continu- 
ous. 

(i) Let the  condition (i) of Theorem  2.2  hold; then 
s~p,.,~1$,(y) - Sb)I +. 0 in  probability  for  any  compact  and  bounded 
set C,  as I Z  to 00. 

(ii) If, in addition, the  condition (ii) of Theorem  2.2 is in force, and if 
a 5 U, I b, 1 I i 5 11,  then S U ~ , . ~ ~ ~ ~ , ~ ( ~ V )  - So,)I --f 0 with  probability 
one  as +. 00. 

Proof. By utilizing the  technology of Nadaraya (1970), one  can show that 

Thus, we prove  the  results  for  each of the  two  terms in (3.1 l),  but the 
second term follows from  Theorem 2.2 while the first term follows simi- 
larly by obvious  modifications. For sake of brevity, we do  not reproduce 
the  details. 

If we wish to  have the  L1-norm of & ( y ) ,  we proceed as in the case of 
density or distribution.  Proceeding  as in the  density  case, we see that the 
ratio of the  optimal choice of a relative to  that of amse is for  both cases 
($O0)"', exactly as in the  density  case. 
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Index-Free,  Density-Based Multinomial 
Choice 
JEFFREY S. RACINE University of South  Florida,  Tampa,  Florida 

1. INTRODUCTION 

Multinomial  choice  models  are  characterized by a  dependent  variable which 
can  assume  a limited number of discrete values. Such models are widely used 
in a  number of disciplines and  occur often in economics because the decision 
of an economic  unit  frequently involves choice,  for  instance, of whether or 
not  a  person  joins  the  labor  force,  makes an automobile  purchase, or 
chooses  the  number of offspring in their family unit.  The goal  of  modeling 
such  choices is first to  make  conditional predictions of whether or not  a 
choice will  be made (choice probability) and second  to assess the  response  of 
the  probability of the choice being made  to changes in variables believed to 
influence choice (choice gradient). 

Existing approaches to the  estimation of multinomial  choice  models  are 
“index-based” in nature.  That is, they postulate  models in which choices are 
governed by the value of an “index  function” which aggregates  information 
contained in variables believed to influence choice. For example.  the index 
might represent the  “net  utility” of an  action  contemplated by an economic 
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agent.  Unfortunately. we cannot observe net utility, we only  observe 
whether an action was undertaken  or  not; hence such index-based  models 
are  known  as  “latent variable”  models  in which net utility is a  “latent”  or 
unobserved  variable. 

This  index-centric view of nature  can be  problematic  as  one  must  assume 
that  such an index exists, that  the  form of the index function is known,  and 
typically one  must  also  assume  that  the  distribution of the  disturbance  term 
in the  latent-variable  model is of known  form,  though  a  number of existing 
semiparametric  approaches  remove  the need for  this  last  assumption.  It is the 
norm i n  applied  work  to  assume that a single index exists (“single-index” 
model) which aggregates all conditioning  information*,  however,  there is a 
bewildering variety of possible index combinations  including,  at  one  extreme, 
separate indices for each  variable influencing choice. The mere presence of 
indices  can  create  problems of normalization,  identification,  and specifica- 
tion  which  must be addressed by applied  researchers.  Ahn and Powell (1993, 
p. 20) note  that  “parametric  estimates  are  quite sensitive to  the  particular 
specification of  the index function,”  and the use of an index can give rise to 
identification issues which make i t  impossible  to get sensible estimates of the 
index  parameters  (Davidson  and  Mackinnon 1993, pp. 501-521). 

For overviews of existing  parametric  approaches  to  the  estimation of 
binomial and  multinomial choice  models  the  reader is referred to 
Amemiya (1981), McFadden (1984), and Blundell (1987). Related  work 
on  semiparametric  binomial  and  multinomial choice models  would  include 
(Coslett (1983), Manski (1985), Ichimura (1986), Rudd (1986). Klein and 
Spady (1993). Lee (1995),  Chen and  Randall (1997). Ichimura  and 
Thompson (1998), and Racine (2001). 

Rather  than beginning  from an index-centric view of nature, this  paper 
models  multinomial  choice via direct  estimation of the  underlying  condi- 
tional  probability  structure.  This  approach will  be seen to complement exist- 
ing  index-based  approaches by placing fewer restrictions on the  underlying 
data  generating process (DGP). As will  be demonstrated, there are a  number 
of benefits that follow  from  taking  a  density-based approach.  First, by 
directly  modeling  the  underlying  probability  structure we can  handle  a richer 
set of  problem  domains  than those  modeled with standard index-based 
approaches. Second,  the  notion  of an index is an artificial construct which, 
as will  be seen, is not generally required  for  the sensible modeling of condi- 
tional  predictions  for  discrete  variables. Third,  nonparametric  frameworks 
for  the  estimation of joint densities fit naturally  into the  proposed  approach. 

‘Often,  in multinational choice models, multiple  indices are  employed  but they pre- 
sume  that all conditioning  information  enters  each  index, hence the indices are 
identical  in form apart  from  the  unknown values  of the indices’ parameters. 
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The remainder of the  paper  proceeds  as follows: Section 2 presents  a brief 
overview of  modeling  conditional  predictions with emphasis being placed on 
the role of conditional  probabilities,  Section 3 outlines a density-based 
approach  towards the  modeling of multinomial choice models and sketches 
potential  approaches  to  the  testing of hypotheses,  Sections 4 and 5 consider 
a  number of simulations  and  applications  of  the  proposed  technique  that 
highlight  the flexibility of the  proposed  approach relative to  standard 
approaches  towards  modeling  multinomial  choice,  and  Section 6 concludes. 

2. BACKGROUND 

The statistical  underpinnings of models of conditional  expectations and 
conditional  probabilities will  be  briefly reviewed, and  the role played by 
conditional  probability  density  functions (PDFs) will  be highlighted since 
this object forms  the basis for  the  proposed  approach. 

The  estimation  of models of conditional  expectations for  the  purpose of 
conditional  prediction of continuous  variables  constitutes  one  of  the  most 
widespread approaches in applied  statistics, and is commonly referred to  as 
“regression  analysis.” Let Z = ( Y ,  X) E Rk+’ be a random vector for which 
Y is the  dependent  variable  and X E Rk is a set of conditioning  variables 
believed to influence Y ,  and let z, = ( y i ,  x,) denote  a  realization of Z. When 
Y is continuous,  interest typically centers on models of the  form m(s,) = 
E[ Yls,] where, by definition, 

?.‘i = E[ Y l s , ]  + 11, 

wheref[ YI.x,] denotes  the  conditional  density of Y ,  and where 21, denotes  an 
error process.  Interest  also typically lies in modeling  the  response of E[ Yls;]  
due  to changes in x ,  (gradient), which is defined as 

i3E[ Y I s , ]  
VS,E[ Yls ,]  = 7 asi 

Another  common modeling exercise involves models of choice  probabil- 
ities for  the  conditional  prediction of discrete  variables.  In the simplest such 
situation of binomial choice 0; E (0, l)) ,  we are interested in models  of  the 
form I I Z ( S , )  =,f[Yls , ]  where we predict  the  outcome 
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1 iff[Yl.s,] > 0.5 (.f[Yls;] > 1 -f[Yl.v,l) . 
I = 1.. . . , I ?  (3 )  

while, for  the  case of multinomial choice 01, E (0 ,  I ,  . . . , p ) ) ,  we are again 
interested i n  models of the  form m ( . Y , )  =f [  Yls,]  where  again we predict the 
outcome 

v, = j  i f f [ Y  =jls,] > , f [ Y  = Ils,] I = 0 , .  . . , p ,  I # j ,  i = 1 , .  . . , 11 

(4) 
Interest  also lies in modeling  the  response off[Yls,]  due  to changes in X,, 

which is defined as 

and this  gradient is of  direct  interest to applied  researchers since it tells us 
how choice probabilities  change  due to changes in the  variables  affecting 
choice. 

It  can be seen that  modeling  conditional  predictions involves modeling 
both  conditional  probability  density  functions  (“probability  functions”  for 
discrete Y) f [  Yls;] and  associated  gradients af[ Y Ix,]/as,  regardless of the 
nature of the  variable being predicted, as  can be seen by examining equa- 
tions (l) ,  (2), (3). and (5). When Y is discrete f[Yls;] is referred to  as a 
“probability  function,”  whereas when Y is continuousf[ Yls , ]  is commonly 
known  as a  “probability  density  function.”  Note  that,  for  the special case of 
binomial  choice  where y, E (0. l ) ,  the  conditional  expectation EIYl.vi] and 
conditional  probability f [  Yls,]  are  one  and  the  same since 

however,  this  does  not  extend  to  multinomial  choice  settings. 
When Y is discrete, both the  choice  probabilities and  the gradient of these 

probabilities with respect to  the  conditioning  variables have been modeled 
parametrically  and  semiparametrically  using  index-based  approaches.  When 
modeling  choice  probabilities via parametric  models, it is typically necessary 
to specify the  form  of  a  probability  function  and  an index function which is 
assumed to influence choice. The  probit  probability model of binomial 
choice given by I I I ( S , )  = CNORM(-s,!B). where CNORM is the  cumulative 
normal  distribution  function, is perhaps  the  most  common example  of 
a  parametric  probability  model.  Note  that  this  model  presumes  that 
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f[ Yls,] = CNORM(-s,’p) and  that V , f [  Ylx;] = CNORM(-.\-,’p)(l - 
CNORM(-s,‘p))B, where these probabilities  arise  from  the  distribution 
function of an  error term  from  a  latent  variable  model  evaluated at  the 
value of the  index. That is, f [ Y l s , ]  is assumed to be given by F[.x(p] 
where F[.] is the  distribution  function of a  disturbance  term  from  the 
model I!; = y: - s,’p; however, we observe v ,  = 1 only when s,’p + 2 1 ,  > 0. 
otherwise we observe y, = 0. Semiparametric  approaches  permit  nonpara- 
metric  estimation of the  probability  distribution  function (Klein and  Spady 
1993), but it remains necessary to specify the  form  of  the  index  function 
when using such approaches. 

We now proceed to modeling  multinomial choice probabilities and choice 
probability  gradients using a  density-based approach. 

3. MODELING CHOICE  PROBABILITIES AND CHOICE 
GRADIENTS 

In  order  to model  multinomial  choice via density-based  techniques, we 
assume  only  that  the  density  conditional  upon  a  choice being made 
cf[.x,I Y = r], I = 0, . . . , p where y + 1 is the  number of choices) exists and 
is bounded  away  from  zero  for at least one choice*.  This  assumption is not 
necessary; however,  dispensing with this assumption raises issues of trim- 
ming which are  not  dealt with at this  point. 

We assume  for the time being that  the  conditioning  variables X are 
continuous t and  that only  the  variable being predicted is discrete.  Thus, 
the  object of interest in multinomial  choice  models is a  conditional  prob- 
ability, fk,]. Letting p + 1 denote the  number of choices, then if 
1’ E {O. . . . . y ) ,  simple  application of Bayes’ theorem yields 

*This simply avoids  the  problem off’[s,] = 0 in equation (7). When  nonparametric 
estimation  methods  are  employed, we may  also  require  continuous differentiability 
and existence of higher-order  moments. 
?When  the  conditioning  variables  are  categorical, we could  employ  a simple dummy 
variable  approach  on  the  parameters  of  the  distribution of the  continuous  variables. 
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The  gradient of this  function with respect to X will  be denoted by V,f[ Y = 
jl.x,] =, f ' [Y  =j l s i ]  E Rk and is given by 

V,yf[ Y =j l .q ]  = ( c;=,f[.Y;l y = = rl)f[Y =ilf'[-y,I y =A 

- f[ Y = jlf[.~, I Y = j I  (X;=of '[-yi I Y = Y = 0) 
( C;=',,.f[.x,I y = m y  = 

(8) 

( C:='=Of[.~,I y = m y  = rl)? 

Now  note  that f [ s i l  Y = I ]  is simply the  joint density of the  conditioning 
variables for  those  observations  for which choice 1 is made.  Having esti- 
mated  this  object  using  only  those  observations  for which choice 1 is made, 
we then evaluate  its  value  over  the  entire  sample.  This  then  permits  evalua- 
tion of  the  choice  probability  for all observations in the  data sample,  and 
permits us to  compute choice probabilities  for  future  realizations of the 
covariates in the  same  fashion.  These  densities  can be estimated  either para- 
metrically  assuming  a  known joint  distribution  or  nonparametrically using. 
for  example.  the  method of kernels if thegmensionality of X is not  too 
large.  We  denote  such an estimate  asf[siI Y = r]. N o G h a t  f[ Y = r] can be 
estimated  with  the  sample relative frequencies f[Y = I ]  = n-' Cyzl Z,b,), 
where I,() is an indicator  function  taking  on  the  value 1 if yi = I and zero 
otherwise. and  whereLis the  totalAumber of responses*. For prediction 
purposes, = j  iff[Y =j ls , ]  > f l y  = ll.x,] V I # j , j  = 0, 1 , .  . . . p .  

Note  that this approach  has  the  property  that, by definition and  con- 
struction, 

Those  familiar  with probit models  for  multinomial choice can  appreciate 
this  feature of this approach since there are  no  normalization  or identifica- 
tion issues arising  from  presumption of an index which must be addressed. 

3.1 Properties 
Given  estimators of f [ s , l  Y = r] and f[ Y = 4 for I = 0, . . . , p ,  the  proposed 
estimator  would be given by 

'This is the maximum  likelihood  estimator 
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Clearly  the  finite-sample  properties off[Y-=jjl.xi] will d e p s d   o n  the  nature 
of the  estimators used to  obtain f [ s , l  Y = r ]  and f [  Y = 4. I = 0, . . . , p .  
However, an  approximation  to  the finite-sample  distribution based upon 
asymptotic  theory  can  be readily obtained.  Noting that,=nditional  upon 
X, the  random variable Y equalsLwith  probabilityf[Y =jls,] and is not 
equal t o j  with probability 1 - f [Y =j ls , ]  (i.e. is a  Bernoulli random variate), 
via simple asymptotic  theory using standard regularity  conditions it can be 
shown that 

I 

A Y  =jls,] 2: A N  f [ Y  =jls,], ( I 1  1 f [ Y  =Jls,](l  -f[Y =jl.x;]) 

Of course.  the  finite-sample  properties are technique-dependent, and this 
asymptotic  approximation  may  provide  a  poor  approximation to the 
unknown finite-sample distribution.  This  remains  the  subject of future 
work  in this area. 

3.2 Estimation 

One  advantage of placing the  proposed  method in a  likelihood  framework 
lies in the  ability to employ  a well-developed statistical  framework  for 
hypothesis  testing  purposes;  therefore we consider  estimation of f[ Yls,] 
using the  method  of  maximum  likelihood*. If one chooses  a  parametric 
route,  then  one first presumes  a joint  PDF for X and  then z i m a t e s  the 
objects  constitutingf[YI.x,] in equation (7), thereby  yieldingf[Ylx,] given in 
equation  (10). If one  chooses  a  nonparametric  route  one  could,  for  example, 
estimate  the  joint densities  using  a  Parzen (1962) kernel  estimator with 
bandwidths selected via likelihood cross-validation  (Stone 1974). The  inter- 
ested reader is referred to Silverman (1986), Hardle (1990), Scott (1992), and 
Pagan  and Ullah (1999) for an overview of  such  approaches.  Unlike  para- 
metric  models,  however, this flexibility typically comes at the  cost of a 
slower rate of convergence which depends  on the  dimensionality of X. 
The benefit of employing  nonparametric  approaches lies in the  consistency 
of the  resultant  estimator  under  much less restrictive presumptions  than 
those  required for consistency of the  parametric  approach. 

3.3 Hypothesis  Testing 

There  are a  number of hypothesis  tests that suggest themselves in this  set- 
ting. We now briefly sketch  a  number of tests  that  could be conducted.  This 
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section is merely intended to be descriptive as these tests are  not  the main 
focus  of  this  paper,  though  a  modest  simulation  involving  the  proposed I 
significance test is carried out in Section 4.5. 

Significance (orthogonality) tests 

Consider  hypothesis tests of  the  form 

Ho : f [ Y  = , j l s ]  = f [ Y  = j ]  for all s E X 
HA : f[Y = j / . x ]  # f [ Y  = j ]  for  some .x E X 

which  would be a test of “joint significance” for  conditional  prediction of a 
discrete  variable. that is, a test of orthogonality  of all conditioning  variables. 
A natural way to  conduct such a  test  would be to impose  restrictions and 
then compare  the restricted  model  with  the  unrestricted  one. The restricted 
model and unrestricted  model are easily estimated as the  restricted  model is 
simplyf[Y =J]. which is estimated via sample  frequencies. 

Alternatively, we could  consider  similar  hypothesis  tests of the  form 

where ss c s ,  which would  be a test of “significance” for a  subset of vari- 
ables believed to influence the  conditional  prediction  of a discrete  variable, 
that is, a test of  orthogonality of a subset of the  conditioning  variables 

A parametric  approach would be based on a test statistic  whose  distribu- 
tion is known  under  the null, and  an  obvious  candidate would be the like- 
lihood-ratio (LR) test.  Clearly  the  conditional PDF of y i  can  always  be 
written as f [  Y = y,lxj]=Jf==,f[ Y = I I s ; ] ~ ’ ~ .  The restricted  log-likelihood 
would be Cy=, 1nAY = y j l $ ] ,  xhereas  the  unrestricted  log-likelihood 
would  be given by x;!-, 1nAY = y i I s i ] .  Under  the null,  the LR statistic 
would be distributed  asymptotically as chi-square withj  degrees of  freedom. 
wherej is the  number of restrictions; that is, if X E Rk and X’ E Rk where 
X’ c X, then  the  number of restrictions is j = k - k’ .  A  simple  application 
of this test is given in Section 4.5. 

Model specification tests 

Consider  taking a parametric  approach  to modeling  multinomial  choice 
using the  proposed  method.  The issue arises as  to  the  appropriate  joint 
distribution of the  covariates to be  used.  Given  that all estimated  distribu- 
tions are of the formf[siI I’ = r ]  and  that these are all derived from  the  joint 
distribution of X ,  then  it is natural to base  model specification tests on 
existing tests for  density  functional specification such as Pearson’s x2  test 
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of  goodness  of fit. For  example, if one assumes an underlying  normal dis- 
tribution  for X ,  then  one,  can  conduct  a test based upon  the difference 
between  observed  frequencies and expected  sample  frequencies if the null 
of  normality is true. 

Index specification tests 

A test for  correct specification of  a standard  probability  model  such  as  the 
probit  can be based  upon  the  gradients  generated  by the probit versus the 
density-based approach. If the model is correctly specified, then  the  gradi- 
ents  should  not differ significantly. Such  a test could be implemented in this 
context by first selecting a test statistic  involving  the  integrated difference 
between the index-based and density-based  estimated  gradients and then 
using  either  asymptotics or resampling  to  obtain  the null distribution of 
the  statistic  (Efron 1983, Hall 1992, Efron  and  Tibshirani 1993). 

3.4 Features and Drawbacks 

One  disadvantage  of  the  proposed  approach to modeling  multinomial 
choice is that  either we require f [ s i l  Y = A , l =  0, . . . , p  to be  bounded 
away  from  zero for  at least one choice or else we would need to  impose 
trimming.  This  does  not  arise when using  parametric  probit  models.  for 
example, since the  probit C D F  is  well-defined whenf[xiI Y = I ]  = 0 by con- 
struction. However,  this does  arise  for  a  number  of  semiparametric 
approaches,  and  trimming  must be  used in the  semiparametric  approach 
proposed by Klein and  Spady (1993). When  dealing  with  sparse  data sets 
this could be an issue for  certain  types  of  DGPs.  Of  course,  prediction in 
regions  where  the  probability  of  realizations is zero  should be approached 
with caution in any event (Manski 1999). 

Another  disadvantage  of  the  proposed  approach arises due  to  the need to 
estimate  the  density f [ s i l  Y = 4, / = 0 ,  1 . . . , p .  for all choices  made. If one 
chooses  a  parametric  route,  for  example, we would  require sufficient obser- 
vations  for which Y = 1 to  enable us to  estimate the parameters of  the 
density  function. If one  chooses  a  nonparametric  route,  one  would clearly 
need even more  observations  for  which Y = 1. For certain  datasets  this  can 
be problematic if, for  instance,  there  are  only  a few observations  for  which 
we observe  a  choice  being  made. 

What  are  the  advantages of  this  approach versus traditional  approaches 
towards  discrete  choice  modeling?  First,  the  need  to specify an index is an 
artificial construct  that  can  create identification and specification problems, 
and  the  proposed  approach is index-free. Second,  estimated  probabilities  are 
probabilities  naturally  obeying rules such as  non-negativity  and  summing  to 
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one over  available  choices  for  a given realization  of  the  covariates x i .  Third, 
traditional  approaches use  a  scalar  index  which  reduces  the  dimensionality 
of the  joint  distribution  to  a  univariate  one.  This  restricts  the types of 
situation  that  can be modeled to  those in which  there is only one  threshold 
which is  given  by the  scalar index. The  proposed  approach explicitly models 
the  joint  distribution, which admits  a richer problem  domain  than  that 
modeled  with standard  approaches.  Fourth, interest typically centers  on 
the  gradient of  the  choice  probability,  and  scalar-index  models  restrict  the 
nature of  this  gradient,  whereas  the  proposed  approach  does  not suffer from 
such  restrictions.  Fifth, if a  parametric  approach is adopted,  model specifi- 
cation tests can be  based  on well-known tests for  density  functional speci- 
fication such  as  the test of  goodness  of fit. 

What  guidance  can be offered to  the  applied  researcher  regarding  the 
appropriate  choice of method? Experience has  shown  that  data  considera- 
tions  are  most likely to guide  this choice. When  faced  with data sets having  a 
large number of explanatory  variables  one is almost  always  forced into  a 
parametric  framework.  When  the  data  permits, however, I advocate  ran- 
domly  splitting  the  data  into  two sets, applying both approaches  on  one  set, 
and  validating their performance  on  the  remaining  set. Experience has  again 
shown  that  the model  with  the best performance  on  the irdependent data will 
also serve as  the  most useful one  for inference  purposes. 

3.5 Relation to Bayesian  Discriminant  Analysis 

It  turns  out  that  the  proposed  approach is closely related to Bayesian dis- 
criminant analysis which is sometimes  used to predict population  member- 
ship.  The goal  of  discriminant analysis is to determine which population  an 
observation is  likely to have  come  from.  We  can  think  of the populations in 
multinomial  choice settings being  determined by the  choice itself. 

By way of  example,  consider the case  of  binary choice. Let A and B be 
two  populations with  observations X known  to have  come from  either 
population.  The classical approach  towards  discriminant analysis (Mardia 
et al. 1979) estimatesfA(X)  and.fE(X) via ML and  allocates  a new observa- 
tion X to  population A if 

f A ( X )  2 f E ( X )  (14) 

A more general  Bayesian approach  allocates X to  population A if 

where c is chosen by considering  the  prior  odds  that X comes from  popula- 
tion A .  
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Suppose  that we arbitrarily let Population A be characterizedd Y = 1 
a n d l b y  Y = 0. An  examination of equation (IO) reveals thatf[ Y = 1 I s , ]  I .  
f [ Y  = Olx,] if and only if 

Therefore, it can  be seen that  the  proposed  approach provides  a link 
between discriminant  analysis and  multinomial  choice  analysis  through 
the  underpinnings  of  density  estimation.  The  advantage  of  the  proposed 
approach relative to discriminant  analysis lies in its  ability to  naturally 
provide  the  choice  probability  gradient  with respect to the  variables influen- 
cing choice which does  not exist in  the  discriminant  analysis  literature. 

4. SIMULATIONS 

We now  consider  a  variety of simulation  experiments wherein we consider 
the widely used binomial and  multinomial  probit  models  as  benchmarks, 
and  performance is gauged by predictive  ability.  We  estimate the model  on 
one  data set drawn  from a given DGP and then evaluate  the  predictive 
ability of the fitted model on  an  independent  data set of the  same size 
drawn  from  the  same DGP. We measure  predictive ability via the percen- 
tage of correct  predictions on  the  independent  data  set.  For illustrative 
purposes,  the  multivariate  normal  distribution is used throughout  for  the 
parametric  version of the  proposed  method. 

4.1 Single-Index Latent Variable DGPs 

The following two experiments compare  the  proposed  method with correctly 
specified binomial and  multinomial index models when the DGP is in  fact 
generated  according  to  index-based  latent  variable  specifications. We first 
consider  a  simple  univariate  latent DGP  for binary  choice, and then we 
consider  a  multivariate  latent DGP for  multinomial  choice.  The  parametric 
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index-based  models serve as  benchmarks  for these simulations  as we 
obviously cannot  do  better  than a  correctly specified parametric  model. 

4.1.1 Univariate binomial Specification 

For the  following  experiment.  the data were generated  according  to  a  latent 
variable specification y: = 0, + f&.y + ui where we observe  only 

y1 = 
1 if 0, + 0 , . ~ ,  + 11; 2 0 . 
0 otherwise I =  I . . . . , i ?  

where s - N(0,  1) and U - N(0. a:). 
We consider  the  traditional  probit  model and then  consider  estimating 

the  choice  probability and gradient  assuming an underlying  normal  distri- 
bution  for X .  Clearly  the  probit specification is a  correctly specified para- 
metric  model hence this serves as  our  benchmark.  The issue is simply to 
gauge  the loss when using the  proposed  method  relative  to  the  probit  model. 

For illustrative  purposes,  the  parametric  version  of  the  proposed  method 
assuming  normality yields the  model 

(20) 

where (LO, 8,) and (b , .  8,) are the  maximum  likelihood  estimates for  those 
observations on X for  which .vi = 0 and y l  = 1 respectively. The  gradient 
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Figure 1. Univariate  binomial  conditional  probabilities via the  probit spe- 
cification and  probability specification for  one  draw with 17 = 1000. 



Index-Free, Density-Based Multinomial Choice 127 

0.9 

0.8 

0.7 

0.8 

0.5 

0.4 

0.3 

0 2  

0.1 

0 
- 4  - 3  - 2  - I  0 1 2 3 - 4  -3 -2 - 1  0 I 3 3 I 

X X 

Figure 2. Univariate  binomial choice gradient via the  probit specifications 
and  probability specifications for  one  draw with 17 = 1000. 

follows in the  same  manner  and is plotted  for  one  draw  from this DGP in 
Figure 2 .  

Figures 1 and 2 plot  the  estimated  conditional  choice  probabilities and 
gradients  as  a  function of X for  one  draw  from this DGP for selected values 
of (eo, 6 , )  with a: = 0.5. As can  be seen, the  density-based and  probit 
approaches  are in close agreement where there is only  one  covariate,  and 
differ slightly due  to  random sampling since this represents one  draw  from 
the DGP. 

Next, we continue this example and consider  a  simple  simulation which 
compares  the predictive ability of the  proposed  method relative to  probit 
regression. The dispersion  of U (a,), values of the index parameters (e,.)), 
and  the sample size were varied to determine  the  performance  of  the pro- 
posed approach in a  variety of settings. 

Results  for  the  mean  correct  prediction  percentage on independent data 
are summarized in Table 1. Note  that some  entries are  marked with "-" in 
the following tables.  This  arises  because,  for  some of the  smaller  sample 
sizes, there was a non-negligible number  of  Monte  Carlo resamples  for 
which either Y = 0 or Y = 1 for every observation in the  resample.  When 
this occurred,  the  parameters of a  probit  model were not identified and  the 
proposed  approach could  not be applied since there  did  not exist observa- 
tions  for which a choice was made/not  made. 

As can  be seen from  Table 1, the  proposed  approach  compares  quite 
favorably to  that given by the  correctly specified probit model for this 
simulation as  judged by its  predictive  ability  for  a  range  of  values  for (T,,, 
(eo, el), and 1 2 .  This suggests that  the  proposed  method  can  perform  as well 
as  a  correctly specified index-based  model when modeling  binomial  choice. 
We now  consider a more complex situation  of  multinomial choice in a 



Table 1. Univariate  binomial  prediction  ability of the  proposed  approach 
versus probit regression. based on 1000 Monte  Carlo replications.  Entries 
marked "-" denote a  situation  where  at least one resample  had  the 
property  that  either I' = 0 or I' = 1 for each observation i n  the  resample 

Density-based  Probit 

100 1 .o (0.0, 0.5) 
(- 1 .o, 1 .O) 
(0.0, 1.0) 
(1.0. 1 .O) 

(- 1 .o. 1 .O) 
(0.0, 1.0) 
(1.0, 1.0) 

2.0 (0.0. 0.5) 
(- 1 .o, 1 .O) 
(0.0, 1.0) 
(1.0, 1.0) 

1.5 (0.0. 0.5) 

- 

0.85 
0.94 

- 

0.81 
0.92 
- 

- 

0.91 

- 

0.85 
0.94 

- 

0.82 
0.93 
- 

- 

0.91 

500 1 .o (0.0. 0.5) 
(- 1 .o, 1 .O) 
(0.0. 1.0) 
(1.0, 1.0) 

(- 1 .o, 1 .O) 
(0.0, 1.0) 
(1.0, 1.0) 

2.0 (0.0. 0.5) 
(-1 .o, 1 .O) 
(0.0. 1.0) 
(1 .o, 1 .O) 

1.5 (0.0, 0.5) 

0.80 
0.86 
0.86 
0.94 
0.77 
0.80 
0.83 
0.93 
0.75 

0.81 
0.92 

- 

0.8 1 
0.86 
0.87 
0.95 
0.78 
0.80 
0.83 
0.93 
0.75 

0.81 
0.93 

- 

1000 1 .o (0.0, 0.5) 
(-1.0, 1.0) 
(0.0, 1.0) 
(1.0, 1.0 

1.5 (0.0, 0.5) 
(- 1 .o, 1 .O) 
(0.0, 1.0) 
(1.0, 1.0) 

2.0 (0.0, 0.5) 
(- 1 .o, 1 .O) 
(0.0, 1.0) 
(1.0, 1.0) 

0.8 I 
0.86 
0.87 
0.94 
0.78 
0.80 
0.83 
0.93 
0.76 
0.75 
0.8 1 
0.93 

0.82 
0.86 
0.87 
0.95 
0.78 
0.80 
0.83 
0.94 
0.76 
0.75 
0.8 1 
0.93 

128 



Index-Free, Density-Based Multinomial Choice 129 

multivariate  setting  to  determine  whether  this result is more  general  than 
would appear  from this simple  experiment. 

Multivariate Multinomial Specification 

For the following experiment,  the data were generated  according to a  latent 
variable  multinomial specification yT = 0, + O1.xj1 + e2.xi2 + u, where we 
observe  only 

I 2 if e, + el .x j ,  + e2Sj2 + uj  > 1.5 

.v,= 1 if - 0 . 5 ~ ~ 0 + 8 1 ~ x , 1 + 8 2 ~ x j ~ + ~ ~ j ~ 1 . 5  i = l ,  . . . ,  n (21) 

0 otherwise 

Where XI - X2 - N(0.a~:) and U - N(0,  a:). This is the  standard  “ordered 
probit” specification, the key feature being that all the  choices  depend upon 
a single index function. 

We proceed  in  the  same manner  as  for the  univariate  binomial specifica- 
tion,  and  for  comparison with that section we let a,y, = ay2 = 0.5. The 
experimental results mirror  those  from  the  previous section over  a  range 
of parameters  and sample sizes and suggest identical  conclusions; hence 
results  in this section are therefore  abbreviated  and  are  found in Table 2. 
The representative results for a, = 1, based on 1000 Monte  Carlo replica- 
tions  using IZ = 1000, appear in  Table 2. 

The  proposed  method  appears  to  perform  as well as a  correctly specified 
multinomial  probit  model in t e r m  of predictive ability across  a wide range 
of  sample sizes and  parameter values considered,  but we point  out  that this 
method  does  not  distract  the  applied  researcher with index-specification 
issues. 

Table 2. Multivariate  multinomial  prediction 
ability  of  the  proposed approach versus probit 
regression with a,, = 1, based on 1000 Monte  Carlo 
replications using n = 1000. 

(eO,@l 9 0,) Density-based  Probit 

(0, .5 ,  5 )  0.78  0.78 
(0, 1. 1) 0.83 0.84 
(0, 1, -1) 0.83 0.84 
(-1,  1. - I )  0.82 0.83 
(1.1, 1) 0.97  0.97 
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4.2 Multiple-Index  Latent  Variable DGPs 

Single-index models are universally used in applied  settings of binomial 
choice,  whereas  multiple-index  models are used when modeling  multinomial 
choice.  However,  the nature of the  underlying DGP is restricted when using 
standard multiple-index  models of multinomial choice (such as the  multi- 
nomial  probit) since the index typically presumes  the  same  variables  enter 
each index while only  the  parameters  differ  according  to  the  choices  made. 
Also,  there are plausible  situations  in which it is sensible to  model  binomial 
choice  using  multiple indices*. As was seen in Section 4.1, the  proposed 
approach  can  perform  as well as  standard index-based  models  of  binomial 
and  multinomial  choice. Of interest is how  the  proposed  method  performs 
relative to  standard index-based  methods  for  plausible DGPs. 

The following  two  experiments compare  the  proposed  method with stan- 
dard single-index models when the DGP is in fact  generated  according to a 
plausible  multiple-index  latent  variable specification which differs slightly 
from  that presumed by standard binomial and  multinomial  probit models. 

4.3 Multivariate Binomial Choice 

For the  following  experiment,  the data were generated  according  to 

I 1 if e,, +ells , ,  + uJ1 ? 0 and eoz + O I 2 s i 2  + u,? 1 0 

0 otherwise 
1’; = i =  1, ..., 11 

( 2 2 )  
where XI - N(0. l), X: - N(0,  I), I J l  - N(0 ,  ail), and U,  - N(0. a$). 
Again, we consider  the  traditional  probit  model and then  consider  estimat- 
ing  the  choice  probability and  gradient assuming an underlying  normal 
distribution  for X. 

Is this  a realistic situation? Well. consider  the  situation  where  the  pur- 
chase of a  minivan is dependent on income and  number of children. If after- 
tax  income exceeds a  threshold  (with error)  and the  number of children 
exceeds a  threshold (with error),  then it is more likely than  not  that  the 
family will purchase  a  minivan.  This  situation is similar to that being mod- 
eled here  where X ,  could  represent  after-tax  income and X ,  the  number of 
children. 

Figures 3 and 4 present  the  estimated  conditional  choice  probabilities and 
gradients  as  a  function of X for  one  draw  from this DGP. An examination 
of Figure 3 reveals that  models such as the standard linear index probit 

*The  semiparametric  method of Lee (1995) permits  behavior of this sort. 
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Density F Probit F 

1 
0.5 0.5 

0 0 

Predicted  Density  Choice Predicted Probit Choice 

1 1 
0.5 0.5 
0 0 

Figure 3. Multivariate  binomial  choice  probability  and  predicted  choices 
for  one  draw  from  simulated  data  with X,. X 2  2: N O ,  n = 1000. The first 
column  contains  that  for  the  proposed  estimator,  the second for  the  stan- 
dard  probit.  The  parameter values  were ,eo2, e l l ,  = (0, 0, - I ,  1)  
and (aul. alt2) = (0.25,0.25). 

cannot  capture this simple  type  of  problem domain.  The  standard  probit 
model  can  only fit one  hyperplane  through the input  space  which falls along 
the diagonal of  the X axes. This  occurs  due  to  the  nature  of  the index, and is 
not rectified by using  semiparametric  approaches  such  as  that  of  Klein  and 
Spady (1993). The  proposed  estimator, however,  adequately  models  this 
type  of  problem domain. thereby  permitting  consistent  estimation  of  the 
choice  probabilities  and  gradient. 

An examination  of  the  choice  gradients  graphed in Figure 4 reveals both 
the  appeal of  the  proposed  approach  and  the  limitations of the standard 
probit model and  other similar index-based approaches.  The  true  gradient is 
everywhere  negative  with respect to X, and everywhere positive with respect 
to X,. By way of  example,  note  that,  when X, is at its minimum,  the  true 
gradient  with respect to X I  is zero  almost  everywhere.  The  proposed esti- 
mator picks  this up,  but  the  standard  probit specification imposes  non-zero 
gradients  for this region. The  same  phenomena  can be observed when XI is 
at its maximum  whereby  the true  gradient  with respect to X, is zero  almost 
everywhere, but again  the probit specification imposes  a discernibly non- 
zero gradient. 
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0 

0 

0.5 0 

0 

Figure 4. Multivariate  binomial  choice  gradients  for  simulated  data  with 
XI,  X ,  = N O ,  I? = 1000. The first column  contains  that  for  the  proposed 
estimator,  the  second  for  the  standard  probit.  The  parameter values were 
(eol, eo?. el I ,  eI2) = ( 0 ~ 0 ,  - I .  1). 

We  now  consider  a  simple  simulation to assess the  performance  of  the 
proposed  approach relative to the widely used probit  approach by again 
focusing on  the predictive  ability of the  model on  independent  data. We 
consider  the  traditional  probit  model.  and  the  proposed  approach is imple- 
mented  assuming an underlying  normal  distribution  for X where  the DGP is 
that  from  equation (22). A data set was generated  from  this DGP and  the 
models were estimated,  then an independent  data set was generated and  the 
percentage of correct  predictions based on  independent  data.  The dispersion 
of U ( D ~ , )  was varied to determine  the  performance of the  proposed 
approach in  a  variety of settings,  the  sample size was varied  from IZ = 100 
to I I  = 1000, and there were 1000 Monte  Carlo replications.  Again  note that, 
though we focus  only on  the percentage of correct  predictions.  this will not 
tell the  entire  story since the standard  probit is unable to  capture  the type of 
multinomial  behavior  found in this  simple  situation*, hence the choice prob- 
ability  gradient will also be misleading. The mean  correct  prediction percen- 
tage is noted in Table 3. It  can be seen that  the  proposed  method  does  better 

*Note, however, that  the  proposed  approach  can  model  situations for which thes- 
tandard  probit is appropriate,  as  demonstrated in Section 4. I .  
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Table 3. Multivariate  binomial  prediction  ability of the 
proposed  approach versus probit regression, based on 
1000 Monte  Carlo replications. For all experiments  the 
parameter vector (Ool,  Oo2, e l l ,  el>,) was arbitrarily set to 
(0,O. 1. 1). Entries  marked “-” denote a  situation  where 
at least one  resample  had  the  property that either Y = 0 
or Y = 1 for  each  observation in the  resample. Note  that 
a,, = aLll = a,,?. 

I ?  * I 1  Density-based  Probit 

100 0.1 0.86 
0.5 
1 .o 

- 
- 

0.83 
- 
- 

250 0.1 0.87 0.83 
0.5  0.83 0.80 
1 .o - - 

500 0.1 0.87 0.83 
0.5 0.83 0.80 
1 .o 0.74 0.73 

1000 0.1 0.87 0.83 
0.5 0.83  0.80 
1 .o 0.74 0.73 

than  the  standard  probit model  for this DGP based solely upon  a  prediction 
criterion,  but it is stressed that  the choice  gradients given by the  standard 
probit specification will  be inconsistent and misleading. 
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where XI - N(0, 1) and X, N(0,  1). Again, we consider  the  traditional 
multinomial  probit  model  and  then  consider  estimating the choice probabil- 
ity and  gradient  assuming  an underlying normal  distribution  for X .  The 
experimental  setup  mirrors  that  found in Section 4.3 above. 

Table  4  suggests  again that the proposed  method  performs  substantially 
better  than  the  multinomial  probit  model  for this DGP based solely upon  a 
prediction  criterion,  but  again  bear in mind  that  the choice  gradients given 
by the  standard  probit specification will  be inconsistent  and  misleading for 
this example. 

4.5 Orthogonality Testing 

We  consider  the  orthogonality test outlined in Section 3.3 in a  simple set- 
ting.  For  the following  experiment,  the  data  were  generated  according to a 
latent  variable  binomial specification 1): = eo + 81sil  + O2si2  + u, where we 
observe  only 

Table 4. Multivariate  multinomial  prediction ability of 
the  proposed  approach versus probit regression, based on 
1000 Monte  Carlo  replications.  For all experiments  the 
parameter vector (eol, e,?, el I .  OI2,) was arbitrarily set to 
(0, 0, 1,  1). Entries  marked "-" denote  a  situation where at 
least one resample  had  the property  that  either Y = 0, Y = 1, 
or Y = 2 for  each  observation.  Note  that u, = ulfl = 

n 0 1 ,  Density-based Probit 

100 0.1  0.77  0.73 
0.25 - 
0.5 

- 

- - 

250 0.1 0.78 0.72 
0.25 0.76 0.71 
0.5 0.71 0.67 

500 0.1 0.78 0.72 
0.25 0.76 0.7 1 
0.5 0.72  0.66 

1000 0.1  0.78 
~ ~~~~~ 

0.72. 
0.25 0.77 0.71 
0.5 0.72  0.66 
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I 1 if eo + el.xj, + e2.Y,? + l i ,  2 o 
.vi = i =  I ,  . . . ,  H 

0 otherwise 
(34) 

where XI - X ,  - N(0,  c:) and U - N(0,  D:). 

We arbitrarily set q, = 1, 0, = 0.5, eo = 0 and = 1. We vary the value 
of 6): from 0 to 1 in increments of 0.1. For a given value of Q2 we draw 1000 
Monte  Carlo resamples  from  the DGP and  for each draw  compute the value 
of the  proposed likelihood statistic  outlined in Section 3 .3 .  The hypothesis 
to be tested is that X ,  does not influence choices, which is true if and only if 
e2 = 0. We write this hypothesis  as 

We compute  the empirical rejection frequency  for this test at a nominal 
size of a = 0.05 and  sample sizes it = 35, n = 50, and I 1  = 100, and  plot  the 
resulting  power  curves in Figure 5. For comparison  purposes, we conduct  a 
t-test of significance for X 2  from  a correctly-specified binomial  probit  model. 
The  proposed test shows  a tendency to overreject somewhat  for  small Sam- 
ples while the  probit-based test tends  to underreject  for small samples, so for 
comparison  purposes each test was size-adjusted to have empirical size equal 
to  nominal size when e2 = 0 to  facilitate  power  comparisons. 

Figure 5 reveals that these tests  behave  quite similarly in terms of power. 
This is reassuring since the  probit  model is the  correct  model, hence we have 
confidence that  the  proposed test can  perform  about  as well as a correctly 
specified index model  but  without  the need to specify an index.  This  modest 
example is provided simply to highlight the  fact  that  the  proposed  density- 
based approach  to multinomial  choice  admits standard tests such as  the test 
of significance, using existing statistical  tools. 

5. APPLICATIONS 
We now consider two applications which highlight the value added by the 
proposed  method in applied  settings. For the first application, index models 
break  down. For the  second  application,  the  proposed  method  performs 
better than the standard linear-index  probit  model and is in close agreement 
with a  quadratic-index  probit  model,  suggesting  that  the  proposed  method 
frees applied  researchers  from index-specification issues. 
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1 
Density LR-test 

I I I I 

0.8 - n =  25 - 
CY = 0.05 - 

0.6 - n = 100 . ' .  
n = 5 0  - 

... .  - , . . '  

0 0.2 0.4 0.6 0.8 1 
82 

Probit t test 
1 -  I I I I 

(x = 0.05 - 
0.8 - n = 2 5  . 

0.6 - n = 100 .... 
n=50- 

. . . '  .. - 

0 0.2 0.4 0.6 0.8 1 
82 

Figure 5. Power  curves  for  the  proposed  likelihood ratio test and  probit- 
based r-test when  testing significance of X,. The flat lower  curve  represents 
the test's nominal size of CY = 0.05. 

5.1 Application to Fisher's Iris Data 

Perhaps  the best known  polychotomous  data set is the Iris  dataset  intro- 
duced in Fisher (1936). The  data  report  four  characteristics (sepal width, 
sepal length,  petal  width  and  petal  length)  of  three species of Iris flower, and 
there  were iz = 150 observations. 

The  goal, given the  four  measurements, is to predict which one of the 
three species of  Iris  flower the measurements  are likely to  have  come  from. 
We consider  multinomial  probit  regression  and  both  parametric  and  non- 
parametric versions of the  proposed  technique  for  this  task. 

Interestingly,  multinomial  probit  regression  breaks  down  for  this  data set 
and  the  parameters  are  not identified. The  error message given  by TSPiC' is 
reproduced  below: 

Estimation  would  not  converge; coefficients of these 
variables  would  slowly  diverge  to + /- infinity - - the scale 
of  the coefficients is not identified in this  situation. 
See  Albert + Anderson,  Biometrika 1984 pp. 1-10, 
or Amemiya,  Advanced  Econometrics,  pp.27 1-272. 
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Assuming an underlying  normal  distribution of the  characteristics,  the 
parametric version of the  proposed  technique  correctly  predicts  96% of all 
observations.  Using  a  Parzen (1962) kernel estimator with a  gaussian kernel 
and with  bandwidths selected via likelihood  cross-validation  (Stone 1974), 
the  nonparametric  version of the  proposed  technique  correctly  predicts  98% 
of all  observations.  These  prediction values are in the  ranges  commonly 
found by various  discriminant  methods. 

As mentioned in Section I ,  the  notion of an index can lead to problems 
of identification for some  datasets,  as is illustrated with this well-known 
example,  but  the  same is not  true  for  the  proposed technique, which works 
quite well  in this situation.  The  point  to be made is simply that applied 
researchers can  avoid issues such as identification  problems which arise 
when using index-based  models if they adopt the  proposed  density-based 
approach. 

5.2 Application-Predicting Voting Behavior 

We consider an example in which we model  voting  behavior given informa- 
tion on various  economic  characteristics on individuals. For this  example we 
consider  the  choice of voting “yes” or  “no7’  for a local school  tax referen- 
dum.  Two economic  variables used to predict choice outcome in these set- 
tings are income and  education.  This is typically modeled using a probit 
model in which the  covariates  are expressed in log()  form. 

The aim of this modest  example is simply to gauge the performance of the 
proposed  method relative to  standard index-based  approaches  in  a real- 
world setting. Data was taken  from  Pindyck and Rubinfeld (1998, pp. 
332-333), and there  was  a  total of n = 95 observations  available.  Table 5 
summarizes the results from this modest exercise. 

We compare a number of approaches:  a  parametric version of the  pro- 
posed approach assuming  multivariate  normality of log(income) and 
log(education), and  probit models  employing indices that  are linear, quad- 
ratic, and  cubic in log(income) and log(education). For comparison  pur- 
poses we consider  the  percentage of correct  predictions given by each 
estimator,  and results are  found in Table 5. 

As can be seen from  Table 5 ,  the  proposed  method  performs  better in 
terms  of  percentage of correct choices predicted than  that  obtained using a 
probit  model with a  linear  index. The  probit model  incorporating  quadratic 
terms in each  variable  performs  better than the  proposed  method,  but  the 
probit  model  incorporating  quadratic terms and  cubic terms in each  variable 
does  not  perform as well. Of course,  the  applied  researcher  using  a  probit 
model  would need to determine  the appropriate  functional  form  for the 
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Table 5. Comparison of  models  of  voting 
behavior via percentage  of  correct  predictions. 
The first entry is that  for  a  parametric version 
of  the  proposed  approach,  whereas the 
remaining  are  those  for  a  probit  model 
assuming  linear,  quadratic,  and  cubic indices 
respectively 

Method % correct 

Density  67.4% 
Probit-linear  65.3% 
Probit-quadratic  68.4% 
Probit-ubic 66.3% 

index, and  a typical approach such as  the  examination of t-stats of the 
higher-order  terms  are ineffective in this  case since they all fall well below 
any  conventional critical values, hence it is likely that  the  linear index  would 
be used  for  this data  set.  The  point  to be made is simply that we can  indeed 
model  binary  choice  without  the  need  to specify an index,  and we can  do 
better  than  standard  models, such as  the  probit  model  employing  the widely 
used  linear index, without  burdening  the  applied  researcher  with  index  spe- 
cification issues. 

An examination of the choice  probability  surfaces in Figure  6 is quite 
revealing. The  proposed  density-based  method  and  the  probit  model  assum- 
ing  an index  which is quadratic in variables are in close agreement,  and  both 
do better  than the other  probit specifications in terms of predicting choices. 
Given  this similarity, the  gradient  of  choice  probabilities  with respect to  the 
explanatory variables would  also  be close. However, both  the choice prob- 
abilities and  gradient  would differ dramatically  for the alternative  probit 
specifications. Again, we simply point  out  that we can  model  binary  choice 
without  the  need to specify an index, and we note  that  incorrect index 
specification can  have  a  marked  impact on  any  conclusions  drawn  from 
the  estimated  model. 

6. CONCLUSION 
Probit regression  remains one  of  the  most  popular  approaches  for the 
conditional  prediction of discrete variables.  However, this approach  has 
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Figure 6. Choice  probability  surfaces  for  voting  data.  The  first  graph is 
that  for  a  parametric version  of  the  proposed approach, whereas the remain- 
ing graphs  are  those  for  a  probit  model  assuming  linear,  quadratic,  and 
cubic indices respectively 

a  number of drawbacks  arising  from the need to specify both  a  known 
distribution  function  and  a  known index function, which gives  rise to 
specification and identification issues. Recent  developments in semipara- 
metric  modeling  advance  this field  by removing  the  need  to specify the 
distribution  function, however, these developments  remain  constrained by 
their use of an index. 

This  paper  proposes  an index-free  density-based approach  for  obtaining 
choice  probabilities  and  choice  probability  gradients  when  the  variable 
being  predicted is discrete. This  approach is shown  to  handle  problem 
domains which cannot be properly  modeled  with  standard  parametric  and 
semiparametric  index-based  models. Also, the proposed  approach  does  not 
suffer from identification and specification problems which can  arise when 
using  index-based approaches.  The  proposed  approach  assumes  that  prob- 
abilities are  bounded  away  from  zero or requires the use of  trimming since 
densities are directly estimated  and  used  to  obtain the conditional predic- 
tion.  Both  parametric  and  nonparametric  approaches  are  considered.  In 
addition,  a test of orthogonality is proposed  which  permits tests of joint 
significance to be conducted in a  natural  manner,  and  simulations suggest 
that  this test has power  characteristics similar to correctly specified index 
models. 
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Simulations  and  applications suggest that  the  technique  works well and 
can reveal data  structure  that is masked by index-based  approaches.  This is 
not  to say that such approaches  can be replaced by the  proposed  method, 
and when one  has  reason  to believe that  multinomial choice is determined 
by an index of known  form i t  is clearly appropriate  to use this  information 
in the  modeling  process.  As well, it is noted  that  the  proposed method 
requires sufficient observations  for which choices are  made  to  enable us to 
estimate a density  function  of  the  variables influencing choice  either para- 
metrically or  nonparametrically. For certain  datasets  this  could  be  proble- 
matic, hence an index-based approach might be preferred  in such situations. 

There  remains  much  to be done in order  to complete this framework. In 
particular,  a fully developed  framework  for inference based on finite-sample 
null distributions of the  proposed test statistics  remains  a  fruitful area  for 
future research. 
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1. INTRODUCTION 
1.1 The Background 

In applied  economics,  a  very popular  and widely  used model is the trans- 
formation  model, which  has  the  following form: 

T( Y )  = X g  + a(X’)~l (1) 

where T is a strictly increasing function, Y is an observed  dependent vari- 
able, X is an observed random  vector, B is a  vector  of constant  parameters, 
a(X) is the conditional  variance  representing  the  possible  heterocedacity, 
and e l  is an unobserved random  variable  that is independent  of X .  
Models of the  form (1) are used  frequently  for  the analysis of duration 
data  and  estimation of  hedonic price functions. Y is censored  when  one 
observes  not Y but  min( Y ,  C), where C is a  variable  that may be either 
fixed or  random.  Censoring often arises in the analysis of duration  data.  For 
example, if Y is the  duration of an event,  censoring  occurs if data acquisi- 
tion  terminates  before all the events under  observation  have  terminated. 
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Let F denote  the cumulative  distribution  function  (CDF) of e l .  In model 
(l) ,  the regression function is assumed to be parametric  and  linear.  The 
statistical  problem of interest is to  estimate j3. T .  and/or F when they are 
unknown. A full discussion on these topics is made by Horowitz (199S, 
Chap. 5).  In  the regression framework, it is usually not  known  whether  or 
not  the model is linear. The  nonparametric regression model  provides an 
appropriate way of fitting  the data,  or  functions of the  data, when they 
depend on one or more  covariates,  without  making  assumptions about 
the  functional  form of the  regression. For example, in model ( I ) ,  replacing 
XB by an  unknown regression function m ( X )  yields a  nonparametric regres- 
sion  model.  The  nonparametric regression model  has  some  appealing fea- 
tures in allowing to fit a regression model with flexible covariate effect and 
having  the  ability to detect  underlining  relationship between the  response 
variable and  the  covariates. 

1.2 Brief Review of the Literature 

When  the data  are not  censored,  a  tremendous  literature on  nonparametric 
regression has  appeared  in  both  economic  and  statistical leading journals. 
To name a few, Robinson (1988), Linton (1995), Linton  and Nielsen (1995), 
Lavergne and Vuong ( 1  996), Delgado  and  Mora (1995). Fan et al. ( 1998), 
Pagan  and  Ullah (1999), Racine  and Li (2000). However. because of natural 
difficulties with  the  censored data, regression problems involving censored 
data  are  not fully explored. To our knowledge. the  paper by Fan  and Gijbels 
(1994) is a  comprehensive  one on the  censored regression model.  The 
authors  have assumed that Eel = 0 and  Var(c,) = 1 .  Further, T(.)  is 
assumed to be  known, so T ( Y )  is simply Y .  They use the local linear 
approximations  to  estimate  the  unknown regression function n l ( s )  = E(YI 
X = s) after  transforming  the  observed  data in an  appropriate simple  way. 

Fan et al. (1998) introduce  the  following  multivariate regression model in 
the  context of additive regression models: 

E( YIX = x) = p +fi(s , )  + f 2 ( S ? .  x,) (2) 

where Y is a real-valued dependent  variable, X = (X,, X s ,   X 3 )  is a vector of 
explanatory  variables,  and p is a  constant.  The variables XI and X -  ? are 
continuous with values in RP and Rq, respectively, and X ,  is discrete and 
takes values in R'. i t  is assumed that Efl(Xl) = ,!$(X-,, X,) = 0 for identifia- 
bility. The novelty of their  study is to directly estimatefI(s)  nonparametri- 
cally with some  good  sampling  properties. The beauty  of  model (2) is that it 
includes both the  additive nonparametric regression model with X = U 

E(YIU = 2 0  = p + f I ( l l l )  + . . ' + f P b P )  (3) 
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and  the  additive  partial  linear  model with X = ( U .  X,> 

E(YIX=s)=~+.f,(u,)+“‘+.f,(up)+s~~ (4) 

where U = ( U 1  , . . . , Up)  is a vector of explanatory  variables.  These  models 
are much more flexible than  a  linear  model.  When  data ( Y .  X) are comple- 
tely observable, they use a  direct  method based on “marginal  integration,” 
proposed by Linton  and Nielsen (1995). to  estimate  additive componentsf, 
in model (2) and,( in models (3) and (4). The resulting  estimators achieve 
optimal  rate  and  other  attractive  properties. But for  censored data, these 
techniques are not directly applicable; data modification  and  transformation 
are needed to model the  relationship between the  dependent  variable Y and 
the  explanatory  variables X. There  are  quite  a few data  transformations 
proposed:  for  example,  the KSV transformation  (Koul et a]. 1981), the 
Buckley-James transformation (Buckley and  James 1979), the  Leurgans 
transformation  (Leurgans 1987), and  a new class of transformations 
(Zheng 1987). All these transformations  are  studied  for  the censored regres- 
sion when  the regression function is linear. For example, in linear regression 
models, Zhou (1992) and  Srinivasan  and Zhou (1994) study  the large sample 
behavior  of  the  censored data least-squares  estimator derived from  the syn- 
thetic data method  proposed by Leurgans (1987) and  the KSV method. 
When  the regression function is unspecified, Fan  and Gijbels (1994) propose 
two versions of data  transformation, called the local average  transformation 
and  the NC (new class) transformation,  inspired by Buckley and James 
(1979) and  Zheng (1987). They  apply  the local linear regression method  to 
the  transformed  data set and use an adaptive  (variable)  bandwidth that 
automatically  adapts to the design of the  data  points.  The  conditional 
asymptotic  normalities are  proved. In their  article, Fan  and Gijbels (1994) 
devote  their  attention to the  univariate  case  and  indicate that their  metho- 
dology  holds  for  multivariate  case. Singh and  Lu (1999) consider  the  multi- 
variate  case with the  Leurgans  transformation  where  the  asymptotic 
properties are established  using  counting process techniques. 

1.3 Objectives and Organization of the Paper 

In  this paper, we consider  a  censored  nonparametric  additive regression 
model which admits  continuous  and categorical  variables in an additive 
manner. By that, we are able to estimate  the  lower-dimensional  components 
directly when the data  are  censored. In particular, we extend  the  ideas of 
“marginal  integration”  and local linear fits to  the  nonparametric regression 
analysis with censoring to  estimate  the low-dimensional  components in 
additive  models. 
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The  paper is organized as follows.  Section 2 shows  the  motivation of the 
data  transformation  and  introduces  the local linear regression method. 
Section 3 presents  the  main  results of this  paper  and discusses some  proper- 
ties and implications of these results. Section  4  provides  some  concluding 
remarks.  Procedures  for  the  proofs of the  theorems  and  their  conditions  are 
given in the  Appendix. 

2. DATA TRANSFORMATION  AND LOCAL  LINEAR 

2.1 Data  Transformation 

Consider  model (2), and let m(x) = E( YIX = s). Suppose  that ( Y , )  are  ran- 
domly  censored by {Ci), where {C,) are  independent  identically  distributed 
(i.i.d.)  samples of random variable C ,  independent of { (X; ,  Y , ) ] ,  with dis- 
tribution 1 - G(t) and survival  function G(r) = P(C 2 t).  We  can observe 
only (X,, Z;. Si), where Z, = min( Y,, C,), 6; = [Yi I C,], i = 1. . . . , n,  [.] 
stands  for  the  indicator  function. 

Our model is a nonparametric censored regression model,  in which the 
nonparametric regression function fI(.ul) is of interest. How does  one esti- 
mate  the  relationship between Y and X in the  case of censored data?  The 
basic idea is to  adjust  for  the effect by transforming  the  data in an unbiased 
way. The following transformation is proposed (see Fan  and Gijbels 1996, 

REGRESSION ESTIMATOR 

pp. 160-174): 
@l(X, Y )  if uncensored 
& ( X .  C) if censored ( 5 )  

= WI(X, Z )  + (1 - S)42(X, Z )  

Y * =  { 
where  a  pair of transformations 4?), satisfying E( Y* IX) = m ( X )  
= E( Y l X ) ,  is called censoring  urzbinsed transforrnntion. For a  multivariate 
setup,  assuming that  the censoring  distribution is independent  of  the  cov- 
ariates, i.e. G(c1.u) = G(c), Fan  and Gijbels  recommend  using  a specific sub- 
class of transformation (5) given by 

where  the  tuning  parameter (Y is given by 
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This  choice of (Y reduces the  variability  of  transformed data.  The  transfor- 
mation (6) is a distribution-based  unbiased  transformation, which does  not 
explicitly depend on F( . l s )  = P(Y 5 . (X  = x). The  major  strength  of this 
kind of transformation is that i t  can easily be applied  to  multivariate  cov- 
ariates X when the  conditional  censoring  distribution is independent of the 
covariates, i.e., G(c1.v) = G(c). This fits our needs, since we need to  estimate 
f l ( s l )  through  estimating m ( x )  = E(YIX = s), which is a  multivariate 
regression function. For a univariate  covariate,  the local average unbiusetl 
transformation is recommended by Fan  and Gijbels. 

2.2 Local  Linear  Regression  Estimation 

We treat  the  transformed data ( (X , ,  Y;”) : i = 1, . . . . IZ} as uncensored data 
and  apply  the  standard regression techniques.  First, we assume that the 
censoring  distribution 1 - G(.) is known;  then,  under  transformation (6). 
we have an  i.i.d.  data set (Y;”, XI,, X,,, ( i  = 1 , .  . . , Iz) for  model (3). To 
use the  “marginal  integration”  method, we consider  the following local 
approximation  to f l ( u l ) :  

f l ( L { l )  % a(.xl) + bT(-Yl ) ( ~ 1 1  - -yl) 

a local linear  approximation  near  a fixed point sI. where 11]  lies in a neigh- 
borhood of .xl; and  the following local approximation  to .f2(z12, s 3 ) :  

f 2 ( 1 1 ? .  s 3 )  25 C(.’, s3) 

at a fixed point x ? ,  where u2 lies in a  neighborhood of s 2 .  Thus, in a 
neighborhood of (x1, .x2) and  for  the given value of -x3, we can  approximate 
the regression function as 

m ( u 1 .  u2.  s 3 )  % p + C I ( S ~ )  + bT(x,)(u1 - .xI )  + c(s?. s3) 
(7) 

= (Y + BT(UI - X I )  

The local model (7) leads to the following censored regression problem. 
Minimize 

tI x( Yi* - - B (XI, - .~I))’K,,,(XI, - .y1)L,12(x2i - x . z ) ~ {  x3i = 7 ~ 3 1  (8) T 

i= I 

where 
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K and L are kernel  functions, /zl and / I :  are  bandwidths. Let 2(s) and B ( s )  be 
the  least-square  solutions  to (8). Therefore, our  partial local linear  estimator 
for n7(.) is r ? 7 ( s ;  q%) = 2. We propose  the  following  estimator: 

f ^ l ( - ~ , ) = $ ? ( ~ ~ , ; 4 1 , 4 , ) - g ~  ~=---~~~ll~41.~:~ 1 

1=l  

where 

1 ) I  

" 1=l 
$?(.x,; 41.4:) = - I%YI 9 X,!, X3;; 41 1 42) WX,,, X3l) (9) 

and W : R8+" + R is a  known  function  with EW(X2,  X,) = 1. Let X be the 
design matrix  and Y by the  diagonal weight matrix to  the least-square 
problem (8). Then 

(2) = (XTYx)-IXTvY* 

3. MAIN RESULTS 
3.1 Notations 

Let us adopt some notation of Fan et  al. (1998). Let pl(s l )  and pl,z(.xl. .x2) 
be respectively the  density  of XI and (X,, X,), and let pl ,213( .~ l .  .xzls3), p213 
( s 2 1 s 3 )  be respectively the  conditional  density of (X,. X:) given X, and of X, 
given X 3 .  Set p 3 ( s 3 )  = P(X3 = s3). The  conditional variances of E = Y- 
E(YIX) = a(X)cl  and e* = Y* - E(YIX)  are  denoted respectively by 

a'(s) = ~ ( 2 1 ~  = .x) = var(YIX = .x) 

and 

o.*,(.x) = E(E*'IX = s) = var(Y* I X  = .x> 

where X = (Xl. X,. X3). Let 
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3.2 The Theorems, with Remarks 

We present OUT main  results in the following  theorems. 

Theorem 1. Under  Condition A given in  the  Appendix, if the  bandwidths 
are chosen  such that d{iii/ logn -+ 00. /?I --f 0, 11' --f 0 in such a way that 
/&/hi  .+ 0. then 

+ N(0,  ZI*(.XI)) 

where 

dF(y1s) 
p1 = p + Ef'(X?. X,)R'(X?.  X 3 )  

It  should be pointed out  that a*'(s) in Theorem 1 measures  the variability 
of the  transformation.  It is  given  by Fan and Gijbels (1994) in a  more 
general data  transformation. 

We now obtain  the  optimal weight function W(.). The problem is equiva- 
lent to minimizing v*(xI) with respect to W(.j subject to EW(X,, X,) = 1 .  
Applying  Lemma I of Fan et al. (1998) to this problem, we obtain  the 
optimal  solution 

wherep(s) = P I , ~ I ~ ( . Y I ,  s?Is3)p3(s3)  andp2,3(.y) = p213(S,I.X3)p3(.Y3) are respec- 
tively the  joint "density" of X = (Xl, X,, X,) and (X,, X,) and where 
c =yl(sl)'E(~*"(X)~Xl = si). The minimal  variance is 
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The  transformation given by (6) is the  “ideal  transformation,” because it 
assumes that censoring  distribution 1 - G(.) is known  and therefore  the 
transformation  functions bI(.) and @?(.) are  known. Usually. the  censoring 
distribution 1 - G(.) is unknown  and must be estimated.  Consistent esti- 
mates of G under  censoring are availab!e in the  literature; for example, 
take  the Kaplan-Meier  estimator. Let G be  a  consistent  estimator of G 
and let & and & be  the  associated  transformation  functions. We  will 
study  the  asymptotic  properties of &x; &, &). Following  the  discussion 
by Fan  and Gijbels (1994). a  basic  requirement in the  consistency result 
for &.x; &,  &) is that  the  estimates &(z)  and &(z) are  uniformly  consistent 
for L in  an  interval  chosen  such  that  the  instability of 6 in the  tail can be 
dealt  with. Assume that 

where r,, > 0. Redefine $,(j = 1.2) as follows: 

4, (z )  = $,<z) if z 5 r,, 
_ I  
” - elswhere 1 

This  transformation  does  not  transform  the  data in the region of  instability. 
This  approach is effective when the  contribution  from the tail is negligible in 
the  following sense: with t > 0 

Theorem 2. Assume that  the  conditions of Theorem 1 hold.  Then 

K(-Y $ 1 ,  $ 2 )  - AY 41.421 = O ~ ( M ~ , J  + K , f ( ~ , f ,  5 ) )  (17) 

provided  that K is uniformly  Lipschitz  continuous and  has a  compact  sup- 
port. 

When d is the  Kaplan-Meier  estimator, B,,(rn) = O,((Iogn/n)’/’). I f  t,, 
and t are chosen such that K , l ( t , f .  r )  = 0, then  the difference in (17) is neg- 
ligible. implying that  the  estimator is asymptotically normal. 

Theorem 3. Assume  that the conditions of Theorem 1 hold, K,l(r,l, t) = 0, 
and I f ,  log 1 2  -+ 0. Then 
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-+ N(0,  U*(S[)) 

Thus the  rate of convergence is the  same  as  that given in Theorem I .  

4. CONCLUDING REMARKS 

We remark  there  that  the  results  developed  above  can be applied to special 
models ( 3 )  and (4). Some  results  parallel to  Theorems 3-6 of Fan et al. 
(1998) with censored data  formation  can also be obtained. For example, 
for  the  additive  partially  linear  model (4), one  can  estimate  not  only  each 
additive  component  but  also  the  parameter B with root-n  consistency.  We 
will investigate these properties in a  separate  report. 

We also  remark that, in contrast  to  Fan  et  al. (1998), where  the  discrete 
variables  enter  the  model in a  linear  fashion,  Racine and Li (2000) propose  a 
method  for  nonparametric regression which admits mixed continuous  and 
categorical data in a natural  manner  without assuming  additive  structure, 
using the  method of kernels. We conjecture  their  results  hold for censored 
data  as well, after  transforming  data to account  for  the  censoring. 

APPENDIX 
Conditions and Proofs 

We have used the following conditions  for the  proofs of Theorems 1-3. 

Condition A 

(i) E~;(X?. x,)w‘(x~, X,) < co. 
(ii) The kernel functions K and L are symmetric and have  bounded sup- 

ports. L is an  order d kernel. 
(iii) The  support of the discrete  variable X 3  is finite and 

where S is the  support of the  function W .  
(iv) . f l  has  a  bounded  second  derivative in a  neighborhood of .xI and 

f ( s 2 ,  s3) has  a  bounded  nth-order derivative  with respect to .x2. 
Furthermore, pl,2,3(zi1, .x21.x3) has  a  bounded  derivative  with respect 
to s 2  up  to  order d, for zil in a  neighborhood of s I .  
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(v) Ec4 is finite and a2(s) = E(c?IX = x) is continuous,  where 
E = Y - E( YIX).  

Proof of Theorem 1. Let .xf = (xI ,  X,;)  and let E, denote the  condi- 
tional  expectation given by X ;  = ( X , , ,  X,;. X3,). Let 
g(sl) = Em(sl. X2, X3)W(X? ,   X , )  = pI +fl(si);  here p I  = p + Ef?(X,, X , )  
W ( X 2 ,  X3).  Then, by (9) and  condition A(i), we have 

+ op(11-I/2) 

By a  similar  procedure to  that given by Fan et al. (1998) in the  proof of their 
Theorem 1. we obtain 

where 
11 If 
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and 

with 

= 12 - I  2 &,(X1, - SI);; + O ~ ( ( I ~ { ) - ” ~ )  
j =  I 

and 

T,,? = o , , ( ~ I - ’ / ~ )  

Combination of (21) and (33) leads to 

Hence, to establish  Theorem 1. it suffices to show  that 
- I f  

This is easy to verify by checking  the  Lyapounov  condition. For any y > 0, 

In fact, it can be shown  that 

E(IKIfI ( X l J  - X I ) q I ) * + y -  l{++Y)P 

Therefore, 
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Proof of Theorem 2. Denote  the estimated  transformed  data by 
? = 6&(Z) + (1 - 8)&(Z), where GI  and & are given in (16). It follows 
from ( I O )  that 

where A Y  = f*  - Y* = ( A Y l , .  . . , A Yn)', N = diag(1, /zrl, . . . . /?;I), a 
(p + 1) x 0, + 1) diagonal  matrix.  It  can  be  shown  that 

e7H(rz"HSll(.x)H)-'= s21si)}-1eT + o,(l) (25)  

It  can be seen that 

When Zj I til, we have A q  L &(rlI). When ZJ > rll. we have A ?  I xi=, 
Z[Zi > r ] [ZJ - &(ZJ)l. Hence, we obtain 

Z[Zj > r]lZ, - 4k(ZJ) / ,4 j ( .~ ' )  

and 
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and 

We see that 

and 
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and  the result follows. 

REFERENCES 
Buckley, J. and  James, I. R. (1979). Linear regression with  censored data. 

Biornetrika, 66. 429436. 

Delgado. M. A. and  Mora, J. (1995). Nonparametric  and  semiparametric 
estimation with discrete  regressors. Econontetricu, 63, 1477-1484. 

Fan, J. and Gijbels, I. (1994). Censored  regression: local linear  approxima- 
tions and their  applications. Journal of the American  Statistical 
Association, 89, 560-570. 

Fan, J. and Gijbels, 1. (1996). Local Polynomial Modeling  and  its 
Applications. London.  Chapman  and  Hall. 

Fan, J., Hardle, W. and  Mammen, E. (1998). Direct  estimation  of low 
dimensional  components in additive  models. Ann.  Statist., 26, 943-971. 

Horowitz, J. L. (1998). Sentiparmnetric Methods in Econotnetrics. Lecture 
Notes in Statistics 131. New York, Springer-Verlag. 

Koul, H., Susarla, V. and  Van Ryzin, J. (1981). Regression  analysis  with 
randomly  right-censored data. Ann.  Statist., 9, 1276-1288. 

Lavergne, P. and Vuong, Q. (1996). Nonparametric selection of regressors. 
Econotnetrica, 64, 207-219. 

Leurgans, S .  (1987). Linear  models, random censoring and synthetic data. 
Biornetriku, 74, 301-309. 

Linton, 0. (1995). Second order  approximation in the  partially  linear regres- 
sion  model. Econonzetricn, 63, 1079-1 1 12. 



Censored  Additive Regression Models 157 

Linton, 0. and Nielsen, J. P. (1995). A kernel method  of  estimating  struc- 
tured  nonparametric regression based on  marginal  integration. 
Biometrika, 82, 93-100. 

Pagan,  A.  and  Ullah, A. (1999). Nonparametric  Econornetrics. Cambridge, 
Cambridge  University Press. 

Racine, J. and Li, Q. (2000). Nonparametric  estimation of regression func- 
tions with both categorical and  continuous  data.  Canadian  Econometric 
Study Group  Workshop, University of Guelph,  Sep. 29-Oct. 1, 2000. 

Robinson, P. (1988). Root-N  consistent  semiparametric  regression. 
Econometrico, 56, 93 1-954. 

Singh, R. S. and Lu, X.  (1999). Nonparametric synthetic data regression 
estimation  for censored survival data. J .  Nonporanzetric Statist., 11, 13- 
31. 

Srinivasan, C.  and  Zhou, M. (1994). Linear regression with censoring. J .  
Multivariate Ana., 49, 179-201. 

Zheng, Z. (1987). A class of estimators of the  parameters in linear regression 
with censored data. Acta Math.  Appl.  Sinica, 3, 231-241. 

Zhou, M. (1992). Asymptotic  normality of the  ‘synthetic data’ regression 
estimator  for  censored  survival  data. Ann. Statist., 20. 1002-1021. 



This Page Intentionally Left Blank



Improved Combined Parametric and 
Nonparametric Regressions: Estimation 
and  Hypothesis Testing 
MEZBAHUR  RAHMAN Minnesota  State  University,  Mankato, 
Minnesota 

AMAN  ULLAH University  of  California, Riverside, Riverside, 
California 

1. INTRODUCTION 

Consider  the regression model: 

Y = m ( X ) + e  (1.1) 

where 117 (x) = E( Y IX = s), .YE  Rq. is the  true  but  unknown regression func- 
tion.  Suppose  that tz  independent and identically distributed  observations 
( Y,  , Xi}:=, are available  from ( I .  1). If n7 (.x) = g(B, s) for  almost all s and 
for  some B E  R p ,  then we say that the  parametric regression model given by 
Y = g(p, x) + E is correct.  It is well known  that, in this  case,  one  can  con- 
struct  a  consistent  estimate of p,  say ,?. and hence a  consistent  estimate of 
nz(.u) given by g(,?. x). In general. if the  parametric regression model is 
incorrect,  then g(,?, x) may not be a  consistent  estimate of m ( x ) .  
However,  one can still consistently  estimate  the  unknown regression func- 
tion t n ( s )  by various  nonparametric  estimation  techniques, see Hardle 
(1990) and  Pagan  and Ullah (1999) for details. In this paper we  will consider 

159 
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the  kernel  estimator, which is easy to implement and whose  asymptotic 
properties  are now well established. 

When used individually, both  parametric  and  nonparametric  procedures 
have  certain  drawbacks.  Suppose  the  econometrician  has  some knowledge 
of the  parametric  form of 177 (s) but  there are regions in the  data  that  do  not 
conform to this specified parametric  form.  In this  case, even though  the 
parametric  model is misspecified only over  portions of the data, the para- 
metric inferences may be misleading. In  particular  the  parametric fit will  be 
poor (biased)  but it will  be smooth (low variance). On  the  other  hand  the 
nonparametric  techniques which totally  depend on the data  and have no  a 
priori specified functional  form  may  trace  the  irregular  pattern in the  data 
well (less bias)  but  may be more  variable (high variance).  Thus.  the  problem 
is that when the  functional  form of n ?  (.x) is not  known,  a  parametric  model 
may not  adequately describe  the data where  it  deviates  from  the specified 
form, whereas  a nonparametric analysis  would  ignore  the important  a priori 
information  about  the underlying  model.  A  solution is to use a  combination 
of parametric  and  nonparametric regressions, which can  improve  upon  the 
drawbacks of each when used individually. Two different  combinations of 
parametric  and  nonparametric fits, &(x), are  proposed.  In  one case we 
simply add in the  parametric  start g(B, s) a  nonparametric kernel fit to 
the  parametric  residuals.  In  the oth:r we add  the  nonparametric fit with 
weight h^ to  the  parametric  start g(B. x). Both these combined  procedures 
maintain  the  smooth fit of parametric regression while adequately  tracing 
the  data by the  nonparametric  component.  The net result is that the  com- 
bined regression controls  both  the bias and  the variance and hence improves 
the  mean  squared  error (MSE) of the fit. The combined  estimator 6 1  (s) also 
adapts to the  data (or the  parametric  model)  automatically  through i in the 
sense that if the  Parametric  model  accurately  describes  the  data,  then h^ 
converges to zero, hence 12 (x) puts all the weight on the  parametric  estimate 
asymptotically; if the  parametric  model is incorrect,  then h^ converges to  one 
and ~A(s) puts all  the weights on  the kernel  estimate  asymptotically.  The 
simulation  results suggest that, in small  samples, our  proposed  estimators 
perform  as well as the  parametric  estimator if the  parametric  model is 
correct  and  perform better than  both the  parametric  and  nonparametric 
estimators if the  parametric  model is incorrect.  Asymptotically, if the para- 
metric  model is incorrect,  the  combined  estimates  have  similar  behavior  to 
the  kernel  estimates. Thus  the combined  estimators  always  perform  better 
than  the  kernel  estimator,  and  are  more  robust  to  model misspecification 
compared  to the  parametric  estimate. 

The idea of combining  the regression estimators  stems  from  the  work of 
Olkin and Spiegelman (1987), who  studied  combined  parametric  and  non- 
parametric  density  estimators.  Following  their  work.  Ullah  and  Vinod 
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(1993), Burman  and  Chaudhri (1994), and  Fan  and Ullah (1999) proposed 
combining  parametric  and  nonparametric  kernel regression estimators  addi- 
tively, and  Glad (1998) multiplicatively. Our  proposed  estimators here are 
more  general, intuitively more  appealing  and  their  MSE  performances  are 
better  than those of Glad (1998). Fan  and Ullah (1999), and  Burman  and 
Chaudhri (1994). 

Another  important objective of this paper is to use A: as  a  measure of the 
degrees of accuracy of the  parametric  model  and hence use it to  develop tests 
for  the  adequacy  of  the  parametric  specification. Our  proposed test statistics 
are then compared with those in Fan  and Ullah (1999), Zheng (1996), and Li 
and  Wang (1998), which are special cases of our general  class of tests. 

The rest of the  paper is organized as follows.  In  Section 2, we present our 
proposed  combined  estimators.  Then in Section  3 we introduce  our test 
statistics.  Finally, in Section 4 we provide Monte  Carlo results  comparing 
alternative  combined  estimators  and test statistics. 

2. COMBINED ESTIMATORS 

Let us start with a  parametric regression model which can be written  as 

Y = m ( X )  + E = g(B. X )  + E 

= g(B, X )  + E(g1-X) + E - E(EIX)  (2.1) 

= g(B, X) + e(x) + ti 
where 8 ( s )  = E(EIX = x) = E b l X  = x) - E(g(B,  X ) l X  = s) and zf = E - E 
( E ~ X )  such that E(zrlX = .x) = 0. If r17 (.Y) = g(B, x) is a  correctly specified 
parametric  model,  then 8 (x) = 0, but if m (x) = g (B. x) is incorrect,  then 8 
(.Y) is not  zero. 

In the  case  where 177 (x) = g (B, x) is a  correctly specified model, an esti- 
mator of g(B, s) can be obtained by the  least  squares  (LS)  procedure. We 
represent  this as 

l f i ,  (x) = g(B, x) (2.2) 

However. if a  priori we do not  know  the  functional  form of n z  (s), we can 
estimate  it by the Nadaraya (1964) and  Watson (1964) kernel  estimator  as 

(2.3) 

where F (s) = ( n  h q ) ) - l  7 y ,  K, .  f ( . ~ )  = (n  11~)" 1 K,  is the  kernel  estima- 
tor  off(s) ,  the  density of X at X = x, Ki = K ( [ s ,  - x]/11) is a  decreasing 
function of the  distance of the regressor vector xi from  the  point x,  and h > 
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0 is the  window  width  (smoothing  parameter) which determines  how  rapidly 
the weights decrease as  the  distance of .xi from .x increases. 

In practice,  the  a  priori specified parametric  form g(B.  x) may  not  be 
correct.  Hence 0 (.x) in (2.1) may not be  zero.  Therefore it will  be useful to 
add a  smoothed LS residual to  the  parametric  start g ( B ,  x). This gives the 
combined  estimator 

= /fh(S) - @, .x) 

i ( j .  x) k (g(j. X ) l X  = .x) is the  smoothed  estimator of g ( B ,  s) and 2; = 
Y,  - g ( B ,  X,) is the  parametric  residual. 17"2, ( s l i s  essentially an  estimator of 

177 (s) = g(p. x) + O(x) in (2.1). We note  that O ( s )  can be interpreted as the 
nonparametric fit to  the  parametric  residuals. 

An alternative way to  obtain  an  estimator of m (x) is to write  a compound 
model 

where u, is the  error in the  compound  model.  Note  that in (2.6) A = 0 if the 
parametric  model is correct; h = I otherwise.  Hence, A can be regarded as a 
parameter,  the value of which indicates  the  correctness of the  parametric 
model.  It  can be estimated  consistently by using the following two  steps. 
First, we estimate g ( B .  X;) and m (X,) in (2.6) by g(j,  X;) and ,;$) (X,). 
respectively, where r$) (X,) is the  leave-one-out  version of the  kernel  esti- 
mate h i 2  (X;) in (2.3). ?his gives the LS residual i; = Y; - g( j .  X,) and  the 
smoothed  estimator g(j. X;). Second, we obtain  the LS estimate  of A from 
the  resulting  model 

f i ( X ; ) (  y, - S ( B >  X,)) = h f i ( X ; ) [ @ ' ( X ; )  - g A(;) (j?, ' X,)] + $ 1  (3.7) 

where  the weight IV(X,) is used to overcome  the random  denominator  pro- 
blem, the  definition of 6, is obvious  from (2.7). and 
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(2. IO) 

Given i, we can now propose  our general class of  combined  estimator  of 
nz (x) by 

(2.1 1) 

The  estimator h 4 ,  in contrast  to 1 G 3 ,  is obtained by adding  a  portion of  the 
parametric residual fit back  to  the  original  parametric specification. The 
motivation  for  this is as follows. If the parametric fit is adequate,  then 
adding  the i(s) would increase the variability of  the overall fit. A i 2: 0 
would control  for this. On  the  other  hand, if the  parametric  model g(j .  x) is 
misspecified, then the addition of 6(s)  should  improve  upon it. The  amount 
of misspecification, and  thus  the  amount of  correction  needed  from  the 
residual fit, is  reflected  in the size of i. 

In  a2pecial caseAwhere w(X, )  = 1. $')(X;) = 6 ( X j )  = h i 2  (X;) -g(j ,  X,), 
and g @?, X,) = X; p is linear, (2.10) reduces to  the  Ullah  and Vinod  (1993) 
estimator, see also  Rahman  et  al(l997).  In  Burman  and  Chaudhri (1994), X; 
is fixed, w ( X J  = 1, and 8 )  (X,) = hi!) (X,) - g(') (j, X,). The  authors  pro- 
vided the  rate  of  convergence  of their combined  estimator,ni4  reduces to 
the Fan  and Ullah ( 1  999) estimator when I V  (X ) - f i )  (X,) and 8') (X;) = 
hit) (X,) - g(j, X;). They  provided the asymptotic  normality of their com- 
b$ed estimator  under  the  correct  parametric specification, incorrect  para- 
metric specification. and  approximately  correct  parametric specification. 

4 ) 
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Note  that in  Ullah  and Vinod. Fan  and  Ullah,  and  Burman  and  Chaudhri 
6 ( s )  is not  the  nonparametric  residual f i t .  

An  alternative  combined regression is considered by Glad (1998) as 

(2.12) 

= g(B, +W( Y* I.y=\-) 

where Y* = Y/g@. X). She  then  proposes the combined  estimator of 177 (x) 
as 

(2.13) 

where 9; = Yi /g (b ,  X I ) .  At  the  point s = X,. n^Z5 (X,) = Cy+j y;*g(/?, X,) 
K j j /  x,,+, Kji, where g(b. X,) # 0 for all j .  Essentially Glad  starts with a 
parametric  estimate, g ( b ,  i). then multiplies by a nonparametric kernel 
estimate of the  correction  function h ( s ) / g ( b ,  s). We note  that  this  com- 
bined estimator is multiplicative.  whereas  the  estimators tjz3 (s) and G q  (s) 
are  additive. However  the idea is similar,  that is to have an estimator  that is 
more precise than  a  parametric  estimator when the  parametric  model is 
misspecified. It will be  interesting to see how  the  multiplicative  combination 
performs  compared  to  the  additive regressions. 

3. MlSSPEClFlCATlON TESTS 

In this  section we consider  the  problem of testing  a  parametric specification 
against  the nonparametric  alternative.  Thus.  the null hypothesis to be tested 
is that  the  parametric  model is correct: 

Ho : P[nz ( X )  = g(B0, X ) ]  = 1 for  some B0cB (3.1) . 
while, without  a specific alternative  model,  the  alternative to be tested is that 
the null is false: 

HI : P[m (X) = g(B. X)] < 1 for all 0 (3.2) 

Alternatively.  the  hypothesis  to  be tested is Ho : Y = g(B, X) + E against 
Ho : Y = nl  (X) + E .  A test that  has  asymptotic  power  equal  to 1 is said to be 
consistent.  Here we propose tests based on  our combined regression estima- 
tors of Section 2. 

First we note  from  the  combined  model (2.1) that  the null hypothesis 
of correct  parametric specification g(b. X) implies the null hypothesis of 8 
(X) = E = o or E[€ E ( E I , ~ ) . ~  (X)] = E[(E ( E I . ~ ) ) ’ ~  ( X ) ]  = 0. Similarly, 
from  the  multiplicative  model (2.12) the null hypothesis of correct  para- 
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metric specification implies  the null hypothesis  of E (  Y*lX)  = 1 or 
E((   Y*  - 1)lX) = = 0 provided g ( B ,  X )  # 0 for all X .  Therefore we 
can use the  sample  analog  of E [ E  E ( ~ l . ~ ) f ( X ) ]  to  form  a  test.  This is given 
by 

ZI = I 1  h4I2 VI (3.3) 

where 

is the sample  estimate  of E [ E ( E E ~ * ~ ) ~ ( X ) ] .  It  has been  shown by Zheng 
(1996) and Li and  Wang (1 998) that  under  some regularity assumptions 
and 11 + 00 

where q2i = K 2 ( ( q  - X,)/h).  The  standardized  version  of  the test statistic is 
then given by 

For  details  on  asymptotic  distributions,  power,  and consistency  of  this  test, 
see Zheng (1996). Fan  and Li (1996), and Li and  Wang (1998). Also, see 
Zheng ( 1  996) and  Pagan  and  Ullah ( 1  999, Ch. 3) for  the  connections of the 
Tl-test with  those  of  Ullah (1985). Eubank  and Spiegelman (1990), Yatchew 
(1993). Wooldridge (1992), and  Hardle  and  Mammen (1993). 

An alternative class of tests for  the  correct  parametric specification can be 
developed by testing  for  the null hypothesis A. = 0 in the  combined  model 
(2.6).  This is  given  by 

h z=- 
c7 

where,  from (2. lo), 
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and a' is the  asymptotic  variance of i; i, and iD, respectively. represent  the 
numerator*and  denominator of i in (2.10) and  (3.9). In  a special case  where 
M-(X,) = ( f ( ' ) (X , ) ) '  and 6(')(Xi) = $')(Xi)  - g ( b ,  X ; ) ,  it follows from  Fan 
and  Ullah (1 999) that 

(3.10) 

where of =  ai is the  asymptotic  variance of 17-q'2 i; a,: = 2 K7 ( I )  cl t s 
a4 (.x)f4i.x) d .Y and a$ = s K' (f) d t J a' (x)f' (s) d .x. A consistent  estimator 
of ai is 6: = a,;/aD, where r' -4  

and 

(3.1 1) 

(3.12) 

Using  this (Fan  and  Ullah 1999), the  standardized test statistic is given by 

(3.13) 

Instead of constructing  the test statistic based on i, one  can simply 
construct  the test of A = 0 based on the  numerator of i.  i,. This is because 
the  value of i, close to zero implies ĥ  is close to zero.  Also, iN value close to 
zero implies that  the  covariance between Z I  and 6(') (X,) is close to zero, 
which was the basis of  the Zheng-Li-Wang test Tl in (3.7). Several alter- 
native  tests will  be considered  here by choosing  different  combinations of 
the weight IV (X;) and 8" (X;). These are 

(i) w ( ~ ; >  = @)(X;))?, B"(x~) = /;$:(X;) - g((, X;) 
(ii) M~(X,) = @("(x;))~, @)(xi) = p i 2  (X;) - g ( ~ ,  X;) 

(iii) w(~,) =f,'"(xi). 6 ( ' ) ( ~ , )  = /&?)(X;) - g ( e ,  X;> 
(iv) M'(x,) = f ' " ( ~ , ) ,  ~ " ) ( X J  = /$)(X,) - g ( ~ ,  X,) 
Essentially two  choices of rt,(X,) are considered, "(X;)  =?")(X;) and 
w ( X , )  = (f(') (Xi))' and with each choice two choices of @)(Xi) are consid- 
ered;  one is with the  smoothed  estimator i ( j ,  X) and  the  other with the 
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unsmoothed  estimator g ( B ,  X). The test statistics  corresponding  to (i) to 
(iv), respectively, are 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where i,.. r = 3, 4, 5 ,  6, is i, in (3.9) corresponding  to w ( X i )  and 8 )  (X;) 
given  in (i)  to (iv). respectively, and 6; and 6: are in (3.11) and (3.6). 
respectively. It  can easily be verified that T6 is the  same  as T I .  The  proofs 
of asymptotic  normality in (3.14) to (3.17) follow from  the  results of Zheng 
(1996), Li and  Wang (1998), and  Fan  and  Ullah (1999). In  Section 4.2 we 
compare  the size and power  of test statistics T,  to T,. 

4. MONTE CARLO  RESULTS 

In this section we report results from the Monte  Carlo  simulation  study, 
which  examines the finite sample  performances of our  proposed  combined 
estimators G 3  (x) and $24 (x) with " ( X i )  = f ( " ' ( X i ) ,  with the parametric esti- 
mator t i l ,  (x) = g ( B ,  x). the  nonparametric kernel estimator rG2 (x), the 
Burman  and  Chaudhri (1994) estimator n̂ 14 (x) = tGhc (X) with w ( X , )  = 1 
and 8') (Xi) = n^zz ( X i )  - g ( B ,  X J ,  the  Fan  and  Ullah 1999) estimator 
tG4 (s) = ni,, (.u) with w ( X , )  = (f") (X, ) )2  and 8') (X;) = t??;) ( X i )  - g (S. X;) 
, and  the  Glad  (1998)  combined  estimator.  We  note  that while r G 3  and 1G4 

use the  smoothed i(B, x) in I!?') (X,), h i l d u  and h f U  use the  unsmoothed 

Another  Monte  Carlo  simulation is carried  out  to  study  the  behavior of 
s(B, 4 .  

test statistics T ,  to T5 in Section 3. 

4.1 Performance of m(x) 

To conduct  a  Monte  Carlo  simulation we consider  the data generating 
process 
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where Bo = 60.50, PI = -17. j3. = 2, yI = 10, y? = 2.25, T = 3.1416, and 6 
is the misspecification parameter which determines  the  deviation of n z ( s )  = 
y1 sin(n(X - 1)/u2)  from  the  parametric specification g (B. X) = Bo + PI X + 
p 2  ,X“. This  parameter 6 is chosen as 0, 0.3, and 1.0 in order  to consider  the 
cases of correct  parameter specification (6 = 0). approximately  correct  para- 
metric specification (6 = 0.3), and  incorrect  parametric specification (6 = 1. 
0). In  addition  to varying 6. the  sample size n is varied  as I? = 50. 100, and 
500. Both X and are generated  from standard  normal  populations. 
Further,  the  number of replications is 1000 in all cases. Finally,  the  normal 
kernel is used in all cases and  the  optimal window  width h is taken  as 
h = 1 .0611”’5 &x, where &,\- is the  sample standard deviation of X ;  see 
Pagan  and  Ullah (1999) for  details on  the choice of kernel and window 
width. 

Several techniques  of  obtaining the fitted value j = ;;1 ( x )  are considered 
and  compared. These are the  parametric fit 17̂ 1, (x) = g ( p ,  x). nonparametric 
kernel fit ! i t z  (s). our  proposed combined fits r f i 3  (s) = g (6, x) + i ( .v)  and $24 
(s) = g(6. s) + h^i(s), Burman  and  Chaudhri combined  estimator h 4  (s) = 
hihc (x). Fan  and Ullah  estimator 11̂ 14 (x) = i i l i ,  (x). and Glad’s  multiplicative 
combined  estimator iG5 (s). For this  purpose we present in Table 1 the  mean 
( M )  and  standard deviation ( S )  of the MSE, that is the  mean  and standard 
deviation of E’,’ - j , y / ~ ?  over 1000 replications, in each case and see its 
closeness to  the variance of E which is one. It is seen that when the  para- 
metric  model is correctly specified our  proposed combined fits n^13 and ti24 

and  the  other combined fits i& ,  4 ,  and  perform  as well as  the para- 
metric fit. The fact that  both  the  additive  and multip1ic:tive fits ($13 and &) 
are close to h 4 ,  i f ibc ,  and h5, follows due  to i = 1 - 6 value being close to 
unity.  That  also explains why all the  combined fits are also close to  the 
parametric fit &, . The combined fits however outperform  the  Nadaraya- 
Watson kernel fit G 2  whose mean  behavior is quite  poor.  This  continues  to 
hold  when 6 = 0.3, that is, the  parametric  model is approximately  correct. 
However. in this  case, our  proposed combined  estimators t i t j  and ifi4 and 
Glad’s  multiplicative  combined  estimator ) f i 5  perform  better  than $7b, , hr;, 
and  the  parametric fit for all sample sizes. When  the  parametric  model is 
incorrectly specified (6 = 1) our proposed  estimators t i l 3 ,  til4, and Glad’s til, 
continue  to  perform  much better than  the  parametric fit 1i7, as well as &, 
!fib, and ij?bc for all sample sizes. h i l i c  and h b C  perform  better  than h ,  and h i 2  
but  come close to $z2 for large samples. Between )G3, G 4 ,  and Glad’s );I5 the 
performance of our  proposed  estimator $24 is the  best.  In  summary. we 
suggest the use of h 7 3 ,  $74 and h i 5 .  especially h 4 ,  since they perform  as 
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Table 1. Mean ( M )  and  standard deviation ( S )  of  the MSE of fitted 
values 

0.0 50 M 0.9366 
S 0.1921 

100 M 0.9737 
S 0.1421 

500 M 0.9935 
S 0.0641 

0.3 50 M 1.4954 
S 0.5454 

100 M 1.6761 
S 0.481 1 

500 M 1.8414 
S 0.2818 

1.0  50 M 7.2502 
S 5.2514 

100 M 8.7423 
S 4.8891 

500 M 10.4350 
S 2.9137 

10.7280 
2.5773 
7.5312 
1.2578 
3.2778 
0.1970 

11.7159 
3.1516 
8.2164 
1.5510 
3.5335 
0.2485 

16.9386 
5.3785 

1 I .8223 
2.7239 
4.8395 
0.4689 

0.8901 
0.1836 
0.9403 
0.1393 
0.9794 
0.0636 
1.0323 
0.2145 
1.0587 
0.1544 
1.0361 
0.0652 
2.5007 
1.0217 
2.2527 
0.5779 
1.6101 
0.1466 

0.8667 0.9343 
0.1796 0.1915 
0.9271 0.9728 
0.1386 0.1420 
0.9759 0.9934 
0.0635 0.0641 
0.9299 1.4635 
0.1892 0.5162 
0.9788 1.6338 
0.1435 0.4427 
1.0012 1.7001 
0.0646 0.2067 
1.5492 6.3044 
0.5576 4.0529 
1.4679 6.6986 
0.3306 2.8179 
1.2408 4.5283 
0.1151 0.5352 

0.9656 
0.2098 
0.9895 
0.1484 
0.9968 
0.0643 
1.6320 
0.7895 
1.7597 
0.6421 
1.7356 
0.2271 
8.3949 
7.2215 
8.2644 
4.602 1 
5.2413 
0.8147 

0.8908 
0.1836 
0.9406 
0.1393 
0.9794 
0.0636 
1.0379 
0.2162 
1.0069 
0.1553 
1.0374 
0.0652 
2.6089 
1.086 1 
2.3372 
0.6143 
1.6320 
0.1466 

$2, (.I-) = g(bq x) is the  parametric fit, &(.Y) is the  nonparametric kernel  fit, ri~,(s) 
and i~,(s) are  proposed  combined fits, n i b , ( s )  is the  Burman  and  Chaudhri 
combined fit, $z,~,(.Y) is the  Fan  and  Ullah  combined fit. r i 1 5 ( s )  is Glad’s 
multiplicative fit. 

well as  the  parametric fit  when the  parametric specification is correct and 
outperform  the  parametric  and  other alternative fits when the  parametric 
specification is approximately  correct or incorrect. 

4.2 Performance of Test Statistics 

Here we conduct  a  Monte  Carlo  simulation  to  evaluate  the size and power 
of the  T-tests in Section 3. These are  the T, test due  to  Zheng (1996) and Li 
and  Wang (1998), T, and T3 tests  due  to Fan  and Ullah  (1999) and  our 
proposed tests T4. T5, and T, = T, .  

The null hypothesis we want to test is that  the linear regression model is 
correct: 
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where  the error  term ei is drawn  independently  from  the  standard  normal 
distribution,  and  the regressors X1 and X, are defined as XI = Z l ,  XI = 
(Z ,  + Z , ) / d  ; Z l  and Z 2  are  vectors  of  independent  standard  normal  ran- 
dom  samples  of size 17. To investigate  the  power  of  the test we consider  the 
following  alternative  models: 

Yi = 1 + x,, + x2i + x,i X,i + E i  (4.4) 

and 

Yi = (1 + X], + Xzi)5’3 + E , .  (4.5) 

In all experiments, we consider  sample sizes of 100 to 600 and we perform 
1000 replications.  The  kernel  function K is chosen to be the  bivariate  stan- 
dard  normal  density  function  and the bandwidth h is chosen  to be cn-’lS, 
where c is a  constant.  To  analyze  whether  the tests are sensitive to the choice 
of  window  width we consider c equal to 0.5, 1 .O, and 2.0. The critical values 
for  the tests are  from the standard  normal  table.  For  more  details, see Zheng 
(1996). 

Table 2 shows that  the size performances  of all the tests T3,  T4,   T j .  and 
T6 = T I ,  based on  the  numerator of i. iN,  are similar. This implies that  the 
test sizes are  robust  to weights and the smoothness  of  the  estimator of g@ 
, x). The size behavior  of  the test T z ,  based on  the LS estimator i. is  in 
general not  good.  This may be due  to  the  random  denominator in i. 
Performances  of T j  and T6 =,TI have  a slight edge  over T3 and T4. This 
implies that the weighting byf(Xi) is better  than  the  weighting by ( f ( X , ) ) 2 .  

Regarding  the  power  against the model (4.4) we note  from  Table  3  that, 
irrespective, of c values, performances of T6 = T I  and Ts have  a slight edge 
over T3 and T4. The power  performance  of  the T2 test, as in the  case  of size 
performance, is poor  throughout. By looking at the findings on size and 
power  performances it is clear that, in practice,  either Ts or T6 = T I  is 
preferable to T 2 ,  T3,  and T4 tests. Though best power  results  for  most of 
the tests occurred  when c = 0.5, both size and power  of the T2 test are  also 
sensitive to the choice of window  width. The results for  the  model (4.5) are 
generally found  to be similar, see Table  4. 
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Table 2. Size of the tests 

I 1  

c Yo Test 100 200  300  400  500 ' 600 

0.5 1 

5 

10 

1 .o 1 

5 

10 

0.8 
0.3 
0.2 
0.3 
0.2 
6.5 
3.8 
3.9 
4.5 
4.1 

11.7 
10.7 
10.1 
12.5 
12.5 
4.1 
0.4 
0.3 
0.6 
0.6 
9.7 
3.4 
3.5 
3.8 
4.0 

15.2 
8.5 
8.3 
8.9 
9.1 

1.2 
0.9 
0.8 
0.8 
0.7 
4.5 
4.2 
4.2 
4.5 
4.2 
8.4 
8.5 
8.4 
9.3 
9.6 
3.1 
0.5 
0.5 
0.2 
0.1 
7.2 
3.9 
4.1 
3.9 
3.8 

12.2 
8.6 
8.7 
9.8 
9.9 

1.5 
0.8 
0.9 
0.7 
0.6 
5.0 
5.4 
5.3 
5.3 
5.5 

10.1 
10.2 
10.0 
10.5 
10.1 
2.2 
1 .o 
1 .o 
1 .o 
1.1 
7.2 
5.5 
5.1 
4.7 
4.5 

12.7 
10.5 
10.2 
10.2 
10.7 

1 .1  
0.7 
0.7 
0.9 
0.9 
4.8 
5.0 
4.8 
5.4 
5.5 

10.9 
10.9 
10.9 
11.5 
11.2 
2.3 
0.8 
0.8 
0.9 
0.9 
8.1 
4.6 
4.4 
4.8 
4.6 

14.4 
10.5 
IO. 1 
10.8 
11.2 

0.5 
0.5 
0.6 
0.5 
0.7 
4.0 
4.1 
4.0 
4.4 
4.5 

10.1 
10.2 
10.2 
9.2 
9.3 
1.5 
1 .O 
0.8 
0.8 
0.9 
5.5 
3.4 
3.6 
3.9 
4.0 

10.3 
8.2 
8.7 
8.5 
8.6 

0.6 
0.8 
0.8 
1 .o 
1.1 
4.7 
4.9 
4.8 
4.8 
4.8 
9.7 

10.2 
10.7 
9.9 
9.8 
1.7 
1.5 
1.5 
1.2 
1 . 1  
6.7 
4.9 
4.9 
5.2 
5.0 

12.3 
9.9 
9.4 

10.3 
10.2 
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Table 2 continued 

n 

Test 100  200  300  400  500  600 C % 

2.0 1 T2 9.1 7.4 5.7 6.4 4.7 4.8 
7 - 3  0.5  0.5 1.1 0.7 0.6 1.1 
T4 0.4  0.6 1.1 0.7  0.6 0.9 
T, 0.4 0.4  0.6  0.6  0.4  0.4 

5 T, 17.3 13.3 11.7 12.1 9.5 11.4 
T3 2.0 2.0 3.3 3.7 3.3 4.7 
T4 1.5 1.8 3.0 3.4 3.6 4.0 
TS 2.6 2.6 3.7 5.2 4.1 4.8 

10 T? 21.6 17.5 16.9 16.4 14.3 16.1 
T3 5.8 5.9 7.7 8.6 7.2 9.4 
T4 3.9 5.6 6.3 8.2 6.9 9.5 
TS 9.0 8.5 9.3 1 1 . 1  8.6 10.7 

T6 0.1 0.3 0.7 0.7 0.4  0.5 

T6 1.8 2.9 3.4 4.5 3.8 3.8 

T6 6.3 7.2 8.6 11.5 7.8 10.2 

Table 3. Power of the test against model (4.4) 

0.5 1 T2 0.6 7.0 30.5  47.4  72.0 88.0 
TZ 15.0 44.1 66.2 80.7 91.1 97.7 
T4 15.3 44.1 65.9 80.8 91.2 97.7 
T5 25.0 66.6 86.9 95.8 99.2 99.9 
T6 24.8 66.7 87.1 95.7 99.2 99.9 

5 T2 10.6 41.0  67.6  81.4  93.0  98.3 
T3 36.7 68.2 82.9 92.5 96.7 99.3 
T4 36.5 68.3 82.6 92.5 96.8 99.3 
Tj 48.9 85.4 96.8 99.3 99.7 100.0 
T6 49.1 85.5 96.8 99.4 99.7 100.0 

10 T, 24.7 61.4 80.0 91.3 96.4 99.2 
T3 47.6 77.1 90.3 94.8 98.3 99.5 
T4 47.8 77.2 90.5 94.8 98.2 99.5 
TS 61.0 91.6 98.3 99.7 100.0 100.0 
T6 60.9 91.6 98.3 99.7 100.0 100.0 



1 .o 1 T2 
T3 

0.4 
62.2 
62.0 
76.4 
76.5 
14.2 
75.9 
76.2 
89.3 
88.8 
37.2 
83.3 
82.5 
92.2 
92.1 
0.0 

92.2 
92.6 
97.1 
97.4 
0.0 

95.6 
95.5 
98.6 
99.0 
7.9 

97.0 
97.3 
99.1 
99.2 

11.4 
93.5 
93.9 
99.4 
99.4 
67.8 
97.8 
98.0 
99.9 
99.9 
89.2 
98.9 
99.1 
99.9 
99.9 
0.0 

100.0 
100.0 
100.0 
100.0 
13.2 

100.0 
100.0 
100.0 
100.0 
67.6 

100.0 
100.0 
100.0 
100.0 

56.5 
99.5 
99.5 

100.0 
100.0 
94.5 
99.7 
99.7 

100.0 
100.0 
98.4 
99.9 
99.9 

100.0 
100.0 

0.1 
100.0 
100.0 
100.0 
100.0 
66.7 

100.0 
100.0 
100.0 
100.0 
97.8 

100.0 
100.0 
100.0 
100.0 

83.3 
99.9 
99.9 

100.0 
100.0 
98.8 

100.0 
100.0 
100.0 
100.0 
99.9 

100.0 
100.0 
100.0 
100.0 

4.5 
100.0 
100.0 
100.0 
100.0 
93.5 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

95.9 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
27.9 

100.0 
100.0 
100.0 
100.0 
99.4 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

99.7 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
67.6 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
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Table 4. Power  against  model (4.5) 

I 1  

c ?4' Test 100  200  300  400  500 600 

0.5 1 T2 
T3 
T4 

2.0 1 T2 

2.7 34.9 78.3  93.6  98.7 100.0 
49.7  89.3  98.4 99.6 99.9 100.0 
48.6  89.2  98.2 99.6 99.9 100.0 
67.1 97.6 99.6 100.0 100.0 100.0 
66.5  97.5  99.6 100.0 
28.2 81.1  97.5  99.5 
72.6 96.9 99.3 100.0 
72.7 97.0 99.3 100.0 
86.6 99.8 100.0 100.0 
86.4 
54.6 
81.2 
80.6 
92.0 
92.0 
0.7 

95.4 
94.9 
98.1 
98.0 

99.8 
94.1 
98.5 
98.6 

100.0 
100.0 
32.6 

100.0 
100.0 
100.0 
100.0 

100.0 
98.9 
99.6 
99.6 

100.0 
100.0 
87.6 

100.0 
100.0 
100.0 
100.0 

32.4  93.9  99.9 
97.8 100.0 100.0 
97.9 100.0 100.0 
99.6 100.0 100.0 
99.5 100.0 100.0 
65.2 
98.8 
98.6 
99.9 
99.8 

99.5 
100.0 
100.0 
100.0 
100.0 

0.0 0.0 
100.0 100.0 
99.9 100.0 

100.0 100.0 
100.0 100.0 

100.0 
100.0 
100.0 
100.0 
100.0 

100.0 100.0 
99.5 100.0 

100.0 100.0 
100.0 100.0 
100.0 100.0 

100.0 100.0 
99.9 99.9 

100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
98.7 99.6 

100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 
100.0 100.0 

0.0 1.0 14.6 
100.0 100.0 100.0 
100.0 100.0 100.0 
100.0 100.0 100.0 
100.0 100.0 100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
99.9 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
54.6 

100.0 
100.0 
100.0 
100.0 
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5 T? 0.0 6.3 
T, 100.0 100.0 
T1 100.0 100.0 
Ts 100.0 100.0 
T6 100.0 100.0 

10 T2 3.4 68.2 
T,  100.0 100.0 
T4 100.0 100.0 
TS 100.0 100.0 
T6 100.0 100.0 

62.0 
100.0 
100.0 
100.0 
100.0 
98.6 

100.0 
100.0 
100.0 
100.0 

92.9 
100.0 
100.0 
100.0 
100.0 
99.9 

100.0 
100.0 
100.0 
100.0 

98.9 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

99.8 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
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10 
Neyman's Smooth Test and Its 
Applications in Econometrics 
ANIL K. BERA and AUROBINDO GHOSH University of Illinois at 
Urbana-Champaign,  Champaign,  Illinois 

1. INTRODUCTION 

Statistical  hypothesis  testing  has  a  long  history.  Neyman and Pearson (I933 
[80]) traced  its  origin  to Bayes (1763 [8]). However,  the  systematic use of 
hypothesis  testing began only after  the  publication of Pearson's (1900 [86]) 
goodness-of-fit test. Even after 100 years, this statistic is very much  in use in 
a  variety of applications  and is regarded as  one of the 20 most  important 
scientific breakthroughs  in  the  twentieth  century. Simply stated,  Pearson's 
(1900 [86]) test statistic is given by 

Px' = 
* (Oj - Ej)' 

j= I E, 
where Oj denotes  the observed frequency and E, is the  (expected)  frequency 
that would be obtained  under  the  distribution of the null hypothesis,  for  the 
j th  class, j = 1,2,  . . . . q. Although K. Pearson (1900 [86]) was an  auspicious 
beginning to twentieth  century  statistics,  the  basic foundation of the  theory 
of hypothesis testing was laid more  than  three  decades  later by Neyman  and 

177 
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E. S. Pearson (1933 [SO]). For the first time the  concept of “optimal test” 
was introduced  through  the  analysis  of  ”power  functions.” A general solu- 
tion to  the problem of maximizing  power subject to a size condition  was 
obtained  for the  single-parameter  case when both  the null and  the  alterna- 
tive hypotheses were simple [see for  example, Bera and  Premaratne 
(2001[15])]. The result was the  celebrated  Neyman-Pearson (N-P) lemma, 
which provides  a way to  construct a  uniformly most powerful (UMP) test. A 
UMP test, however,  rarely exists, and  therefore it  is necessary to restrict 
optimal tests to  a  suitable  subclass  that  requires  the test to  satisfy other 
criteria such as locnl optimality  and ztnbicrsedmss. Neyman  and  Pearson 
(1936 [Sl]) derived  a locally most  powerful  unbiased (LMPU) test for  the 
one-parameter  case  and called the  corresponding  critical region the  “type-A 
region.”  Neyman and  Pearson (1938 [82]) obtained  the  LMPU test for 
testing  a mullipurnmeter hypothesis and termed  the  resulting  critical region 
the  “type-C  region.” 

Neyman’s (1937 [76]) smooth test is based on  the type-C  critical  region. 
Neyman suggested the test to rectify some of the  drawbacks of the  Pearson 
goodness-of-fit  statistic given in (1). He noted  that it is not  clear  how  the 
class  intervals  should  be  determined and  that  the  distributions  under the 
alternative  hypothesis were not “smooth.” By smooth densities,  Neyman 
meant  those that  are close to  and have few intersections with the null density 
function.  In his effort  to find a smooth class of alternative  distributions, 
Neyman (1937 [76]) considered  the  probability  integral  transformation of 
the density. sayf(s), under  the null hypothesis and showed that  the  prob- 
ability  integral  transform is distributed  as  uniform in (0, 1) irrespective of 
the specification of.f(.v). Therefore, in some sense, “all” testing problems 
can be converted  into  testing only one kird of 12ypothcsis. 

Neyman was not  the first to use the idea of probability  integral  transfor- 
mation  to  reformulate  the hypothesis  testing  problem  into  a  problem of test- 
ing  uniformity. E. Pearson (1938  [84]) discussed how  Fisher (1930 [41]. 1932 
[43]) and K. Pearson (1933 [87],  1934 [SS]) also  developed  the  same  idea. They 
did  not. however. construct  any  formal test statistic. What  Neyman (1937 
[76]) achieved was to  integrate the  ideas of tests based on  the  probability 
integral  transforms in a  concrete  fashion,  along with designing “smooth” 
alternative  hypotheses  based on normalized  Legendre  polynomials. 

The aim of this paper is modest. We put  the  Neyman (1937 [76]) smooth test 
in  perspective with the existing methods of testing available  at that time; eval- 
uate i t  on  the basis of the  current  state of the  literature;  derive  the test from  the 
widely used Rao (1  948  [93]) score  principle of testing; and, finally, we discuss 
some of the  applications of the  smooth test in econometrics and statistics. 

Section 2 discusses the genesis of probability  integral  transforms  as  a 
criterion for hypothesis  testing  with  Sections 2.1 through  2.3  putting 
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Neyman’s smooth test in perspective in the light of current research in 
probability  integral  transforms  and  related  areas.  Section 2.4 discusses the 
main  theorem of Neyman’s smooth test.  Section  3 gives a  formulation  of  the 
relationship of Neyman’s smooth test to Rao’s  score (RS)  and  other  optimal 
tests.  Here, we also  bring up  the notion of unbiasedness as a  criterion  for 
optimality in tests and  put  forward  the differential  geometric  interpretation. 
In  Section  4 we look at different  applications  of  Neyman’s  smooth  tests.  In 
particular, we discuss inference using different orthogonal polynomials, 
density  forecast  evaluation and  calibration in financial time series data. 
survival analysis and  applications in stochastic  volatility  models. The 
paper  concludes in Section 5. 

2. BACKGROUND AND  MOTIVATION 
2.1 Probability Integral Transform  and the 

Combination of Probabilities from  Independent Tests 

In  statistical  work,  sometimes, we have  a  number  of irzdependewr tests of 
significance for  the  same  hypothesis, giving different  probabilities (like p -  
values). The problem is to  combine results  from  different tests in a single 
hypothesis  test. Let us suppose  that we have  carried out 11 independent tests 
with p-values y l  . y 2 ,  . . . Tippett (1931 [112], p. 142) suggested a  proce- 
dure based on the  minimum  p-value,  i.e., on y ( l )  = minb:, , y 2 ,  . . .J’,~). If all I I  

null hypotheses are valid, then  has  a standard beta  distribution with 
parameters ( I ,  11) .  One  can  also use any smallest p-value,  the  rth smallest 
p-value in place of y t I ) ,  as suggested by Wilkinson (195 1[ 1 151). The statistic 
y , , )  will have a beta distribution with parameters ( I ’ .  11 - I’ + I ) .  It is apparent 
that  there is some  arbitrariness in this approach  through the  choice of I’. 

Fisher (1932 [43], Section 21.2. pp. 99-100) suggested a  simpler and  more 
appealing  procedure based on  the  product of the  p-values, h = 17:!=IyI. 
K .  Pearson (1933 [87]) also  considered  the  same  problem in a  more  general 
framework  along with his celebrated  problem of goodness-of-fit. He came 
up with the  same  statistic A, but suggested a  different approach  to  compute 
the  p-value of the  comprehensive  test.* 

*To differentiate his methodology  from  that  of Fisher. K. Pearson  added  the follow- 
ing note  at  the  end of his paper: 

After this paper  had been set up  Dr  Egon S. Pearson  drew m y  attention  to Section 
21.1 in the  Fourth  Edition of Professor R.A. Fisher’s Statisticnl Merhods for  
Research Worlcers, 1932. Professor  Fisher is brief. but his method is essentially 

(footnote continues) 
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In  the  current  context,  Pearson's  goodness-of-fit  problem  can be stated  as 
follows. Let us suppose  that we have  a  sample  of size 17, SI, x?, . . . , We 
want  to test whether it comes  from  a population with  probability  density 
function (pdf)f(s).  Then the  p-values  (rather,  the 1 -p-values) y ;  ( i  = 1.2, 
. . . . I ? )  can be defined as 

"bo 

Suppose  that we have 11 tests of significance and  the values of  our test 
statistics  are Ti, i = 1, 2 .  . . . , n, then 

wherefT(t) is the  pdf  of T .  To find the  distribution  or  the  y-value of h = 
yIy2 . .  .y f t  both  Fisher  and  Karl  Pearson  started in a  similar  way,  though 
Pearson was more explicit in his derivation.  In  this  exposition, we  will follow 
Pearson's  approach. 

Let us simply  write 

Y = S_k.f(w)du (4) 

and the pdf  of y as gb). Then,  from (4), we have 

41) = f(x)dx (5) 

and we also  have,  from  change  of variables. 

g(y)dy = f (S)dS (6) 

Hence,  combining ( 5 )  and (6)! 

gCv) = l , o  < y < 1 (7) 

i.e., y has  a  uniform  distribution  over (0, 1). From this point  Pearson's  and 
Fisher's treatments differ. The  surface given by the  equation 

A,, = YIY? . . ' Y f f  (8) 

(footrlote cor~tirltted) 
what I had  thought  to be novel. He uses, however  a x' method,  not my incom- 
plete r-function  solution; . . . As my paper  was  already set up  and illustrates. more 
amply  than  Professor Fisher's two pages. some of the  advantages  and  some  of  the 
difficulties  of the new method, which may be helpful to  students. I have  allowed it 
to  stand. 
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is termed “n-hjlyerboloid” by Pearson, and  what is needed is the  volume of 
n-cuboid (since 0 < y1 < 1, i = 1.2, . . . , I ? )  cut off by the  whyperboloid. We 
show  the  surface h,, in Figures 1 and 2 for 11 = 2 and It = 3, respectively. 
After  considerable  algebraic  derivation  Pearson (1933 [87], p. 382) showed 
that  the  p-value  for h,, is given by 

QAn = 1 - PA,, = 1 - Z ( n  - 1 ,  - In A,,) (9) 

where I ( . )  is the  incomplete  gamma  function  ratio defined by [Johnson  and 
Kotz (1970a [57], p. 167)] 

We can use the test statistic &,, both  for  combining  a  number of inde- 
pendent  tests of significance and  for  the goodness-of-fit  problem.  Pearson 
(1933 [87], p. 383) stated this very clearly: 

If PA,, be very small, we have  obtained  an extremely rare  sample. and we 
have then  to  settle in our  minds whether it is more  reasonable to  suppose 
that we have drawn a very rare  sample at one  trial  from  the  supposed 
parent  population,  or  that  our  hypothesis  as  to  the  character  of  the 
parent  population is erroneous.  i.e.,  that  the sample . x I .  s2. . . . , x,~ was 
not  drawn  from  the  supposed  population. 

00 02 0.4 06  08 1 .o 

Yl 

Figure 1. Surface of the  equation yry2 = h2 for h2 = 0.125. 
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0.2 0.4 y2 0.6 0.8 

Figure 2. Surface  of  the equation -vIy2~3 = h3 for h3 = 0.125. 

Pearson (1933 [87], p. 403) even criticized his own  celebrated x' statistic, 
stating  that  the x' test in equation (1) has  the  disadvantage of giving the 
same  resulting  probability whenever the  individuals are in the  same class. 
This  criticism has been repeatedly  stated in the  literature. Bickel and 
Doksum (1977 [18], p. 378) have  put it rather succinctly: "in problems 
with continuous variables  there is a clear loss of  information, since the x2 
test utilizes only  the  number of observations  in  intervals  rather  than  the 
observations themselves." Tests based on PA,> (or Q A , , )  do not  have this 
problem. Also, when the  sample size n is small,  grouping  the  observations 
in several classes is somewhat hazardous  for the  inference. 

As we mentioned,  Fisher's  main  aim was to  combine 17 p-values  from IZ 
independent tests to  obtain a single probability. By putting Z = -2 In 
Y - U(0, I). we see that  the  pdf of Z is given by 

i.e., Z has  a x: distribution.  Then, if we combine I I  independent i,s by 

r = l  i= 1 

this  statistic will be  distributed  as x:,,. For quite  some time this statistic was 
known  as Pearson's PA. Rao (1952 [94], p. 44) called it Pearson's PA dis- 
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tribution [see also  Maddala (1977 [72], pp. 4748)].  Rao (1952 [94], pp. 217- 
219) used it to combine several independent  tests of the difference between 
means and  on tests for skewness. I n  the recent statistics  literature  this is 
described as Fisher’s procedure [for example, see Becker (1977 [9])]. 

In summary,  to  combine several independent  tests,  both  Fisher  and K. 
Pearson  arrived at the  same  problem of testing the  uniformity of 
y , ,  .v2,  . . . , J * ~ .  Undoubtedly.  Fisher’s  approach was much  simpler, and it is 
now used more  often in practice.  We  should,  however, add  that  Pearson  had 
a  much  broader problem in mind,  including  testing  goodness-of-fit. In that 
sense, Pearson’s (1933 [87]) paper was more in the  spirit of Neyman’s (1937 
[76]) that  came  four  years  later. 

As we discussed above,  the  fundamental basis of  Neyman’s smooth test is 
the result that when x,. s 2 ,  . . . , x,, are  independent  and identically distrib- 
uted (IID) with a  common  densityf(.). then  the  probability  integral  trans- 
forms y , , ~ ) ? ~  . . . .J’,, defined in equation (2) are  IID, U(0. I )  random 
variables.  In  econometrics,  however, we very often  have cases in which .xI. 
c 2 , .  . . ,x,, are  not  IID.  In  that case we can use Rosenblatt’s (1952 [loll) 
generalization of the  above  result. 

Theorem 1 (Rosenblatt 1952) Let (X,, X,, . . . , X,,) be a random vector with 
absolutely continuous density functionf(.u,, .x2. . . . , x,,). Then, the IZ random 
variables defined by YI = P(X1 5 SI) .  Yz = P(X2 5 s~IXI  = SI). . . . . Y,, = 
P(X,, 5 s , , (X ,  = .xI, X 2  = s 2 .  . . . , = .Y,,-,) are  IID U(0, 1). 

The  above result can immediately be seen from  the following observation 
that 

Hence, Y , ,  Y2.  . . . , Y,, are  IID U(0,  1)  random variables.  Quesenberry (1986 
[92], pp. 239-240) discussed some  applications of this result in goodness-of- 
fit tests [see also, O’Reilly and Quesenberry (1973[83])]. In  Section 4.2. we 
will discuss its use in density  forecast  evaluation. 
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2.2 Summary of Neyman (1937) 

As we mentioned  earlier,  Fisher (1932 [43]) and  Karl  Pearson (1933 [87], 
1934 [88]) suggested tests based on the  fact  that  the  probability  integral 
transform is uniformly  distributed  for  an IID sample under  the null hypoth- 
esis (or the  correct specification of the  model). What  Neyman (1937 [76]) 
achieved was to  integrate  the  ideas of tests based on  probability  integral 
transforms in a  concrete  fashion  along  with  the  method of designing  alter- 
native  hypotheses  using orthonormal polynomials.*  Neyman’s  paper  began 
with a criticism of Pearson’s x’ test given in (1). First, in  Pearson’s x’ test, i t  
is not  clear  how  the q class intervals  should be determined.  Second,  the 
expression in (1)  does  not  depend  on  the  order  of positive and negative 
differences (0, - 4). Neyman (1980 [78], pp. 20-21) gives an extreme  exam- 
ple represented by two cases.  In  the first, the signs of the  consecutive differ- 
ences (0, - E,) are  not  the same. and in the other there is a run  of, say, a 
number of “negative” differences. followed by a  sequence of “positive” 
differences. These two possibilities might lead to  similar values of Px2, but 
Neyman (1937 [76],  1980  [78]) argued  that in the  second  case  the  goodness- 
of-fit should be more in doubt, even if the  value  of  happens to be small. 
In  the  same  spirit,  the Xz-test is more  suitable  for  discrete data  and  the 
corresponding  distributions  under  the  alternative  hypotheses  are  not 
“smooth.“ By smooth alternatives Neyrnan (1937 [76]) meant  those densities 
that havefebt, intersections with the null density  function  and  that  are close 
to  the null. 

Suppose we want to test the null hypothesis ( I f o )  that f ( r )  is the  true 
density  function  for  the  random  variable X .  The specification o f f ( s )  will  be 
riiffeerent depending on the  problem at  hand. Neyman (1937 [76], pp. 160- 
161) first transformed m . 1 3  hypothesis testing problem of this type to testing 

*It  appears  that Jerzy Neyman was not  aware of the  above  papers by Fisher  and  Karl 
Pearson. To link Neyman’s test to these papers.  and possibly  since Neyman’s  paper 
appeared in a  rather  recondite  journal.  Egon  Pearson  (Pearson 1938 [84]) published a 
review article in Bior?7etrika. At  the  end of that  article  Neyman  added  the following 
note to express his regret for  overlooking,  particularly,  the  Karl  Pearson  papers: 

“I am  grateful to the  author of the  present  paper  for giving me  the  opportunity of 
expressing my regret for  having  overlooked  the  two  papers by Karl  Pearson 
quoted  above.  When writing the  paper on the  “Smooth test for goodness of 
fit” and discussing previous  work in this direction, I quoted  only  the results of 
H. Cramer  and R. v. Mises. omitting  mention of the  papers by K. Pearson.  The 
omission is the  more  to be regretted  since my paper  was  dedicated  to  the  memory 
of Karl  Pearson.” 
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only one kind of hypothesis.* Let us state  the result formally through  the 
following simple  derivation. 

Suppose  that,  under Ho, .xI, .xz. . . . ,.x,, are  independent  and identically 
distributed with a  common density  function f (x IHo) .  Then, the  probability 
integral  transform 

has  a pdf given by 

a.x 
av h ( y )  = f ( s l  Ho) - for 0 < y < 1 (1 5 )  

Differentiating (14) with respect to .v. we have 

Substituting  this  into (15). we get 

Therefore, testing Ho is equivalent to testing  whether  the random variable Y 
has  a  uniform  distribution in the  interval (0. I ) ,  irrespective of the specifica- 
tion  of  the  density f ( . ) .  

Figure 3, drawn following E. Pearson (1938 [84], Figure  l), illustrates  the 
relationship between .x and y when f (.) is taken  to be N(0, 1) and IZ = 20. 
Let us denotef(slH,) as the  distribution  under  the  alternative  hypothesis 
HI. Then, Neyman (1937 [76]) pointed out [see also  Pearson (1938 [84], p. 
138)] that the  distribution of Y under HI given by 

*In  the  context of  testing  several  different hypotheses,  Neyman (1937 [76], p. 160) 
argued  this  quite  eloquently  as follows: 

If we treat all these hypotheses  separately, we should define the set  of alternatives 
for each of  them  and  this  would in practice lead to a  dissection  of  a unique 
problem  of a test for  goodness  of fit into a  series  of more or less disconnected 
problems. 

However, this difficulty can be easily avoided by substituting  for  any  particular 
form of  the hypotheses Ho, that  may be presented  for  test,  another  hypotheses, 
say /lo. which is equivalent to H,, and which has always the  same  analytical  form. 
The  word  equivalent,  as used here, nleans  that whenever Ho is true, h o  must be 
true  also  and inversely. if H ,  is not  correct  then h o  must  be false. 
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Figure 3. Distribution  of  the  probability  integral  transform when Ho is 
true. 

where s = p ( y )  means  a  solution to  equation (14). This  looks  more like a 
likelihood ratio  and will be  different  from 1 when Ho is not  true. As an 
illustration, in Figure 4 we plot values of Y when X s  are  drawn  from 
N(2,  I )  instead of N(0,  l), and we can immediately see that these y values 
[probability  integral  transforms of values from N ( 2 ,  1) using the N(0 ,  1) 
density] are  not uniformly  distributed. 

Neyman (1937 [76], p. 164) considered  the following smooth  alternative 
to  the  uniform  density: 

where c(0) is the  constant  of  integration  depending only on (e, ,  . . . , e,), and 
rsj(v) are  orthonormal  polynomials  of o rde r j  satisfying 

I’ n,Cv)n,(v)& = a,.. where 6ii = 1  if i = j 

O i f  i f j  
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Figure 4. Distribution of the  probability  integral  transform  when Ho is 
false. 

Under Ho : el = e2 = . . . = 0, = 0, since c(6) = 1, h ( y )  in (19) reduces to the 
uniform  density in (17). 

Using  the  generalized  Neyman-Pearson (N-P) lemma,  Neyman (1937 
[76]) derived  the locally most powerful  symmetric test for Ho : O1 = = . . . 
= 6, = 0 against  the  alternative H I  : at least one 6, # 0, for small  values  of 
Bi. The test is symmetric in the sense that  the  asymptotic power  of the test 
depends  only  on  the  distance 

A = (of + . . . + e$ ( 2  1) 

between Ho and H I .  The test statistic is 

(23) 

which under Ho asymptotically  follows a central x; and  under H I  follows  a 
non-central x: with  non-centrality  parameter A2 [for definitions, see Johnson 
and  Kotz (1970a [57], 1970b [58])]. Neyman’s approach  requires  the  com- 
putation of  the  probability  integral  transform (14) in terms of Y .  It is, 
however,  easy  to recast the testing problem in terms  of  the  original  observa- 
tions  on X and  pdf,  say, f ( x ;  y). Writing (14) as y = F ( s ;  y )  and defining 
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n,O)) = n,(F(.u; y))  = q,(s; y), we can  express  the  orthogonality  condition 
(20) as 

Then.  from (19), the  alternative  density in terms of X takes  the form 

Under this  formulation  the test statistic Qi reduces to 

which has  the  same  asymptotic  distribution  as before. In order  to implement 
this we need to replace the  nuisance  parameter y by an efficient estimate p, 
and  that will not  change  the  asymptotic  distribution of the test statistic [see 
Thomas  and Pierce (1979 [1 1 l]),  Kopecky  and Pierce (1979 [63]). Koziol 
(1987 [64])]. although there  could be some possible change in the  variance of 
the test statistic [see, for  example, Boulerice and  Ducharme (1995 [19])]. 
Later we will relate this test statistic to a  variety of different  tests and discuss 
its  properties. 

2.3 Interpretation of Neyman's (1937) Results and 
their Relation to some Later Works 

Egon  Pearson (1938 [84]) provided an excellent account of Neyman's  ideas, 
and emphasized  the need for  consideration of the possible alternatives to  the 
hypothesis  tested. He discussed both the cases of testing goodness-of-fit and 
of  combining  results of independent tests of significance. Another issue that 
he  addressed is whether  the  upper or the lower tail  probabilities (or p-values) 
should be used for  combining  different  tests.  The  upper tail probability [see 
equation (2)] 

y;. = f(o)do = 1 - y ;  (26) Srn .x+; 

under Ho is also  uniformly  distributed in (0, l),  and hence -2 Cy=, In yi is 
distributed  as xi,, following our derivations in equations  (1 1) and (12). 
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Therefore,  the  tests based on J:, and ~ 1 :  will  be the  same  as  far  as  their size is 
concerned  but will, in general,  differ in terms of power.  Regarding  other 
aspects of the Neyman’s smooth test for  goodness-of-fit, as Pearson (1938 
[84], pp. 140 and 148) pointed out,  the greatest benefit that it has  over other 
tests is that it can  detect  the  direction  of  the  alternative when the null 
hypothesis of correct specification is rejected. The divergence can  come 
from  any  combination of location, scale, shape,  etc. By selecting the ortho- 
gonal  polynomials r, in equation (20) judiciously, we can seek the  power  of 
the  smooth test in specific directions. We think that is one of the  most 
important  advantages of Neyman‘s smooth test over  Fisher and  Karl 
Pearson’s  suggestion of using  only  one  function  of y I  values, namely x:.:, 
In y,. Egon  Pearson (1938 [84], p. 139) plotted  the  function f@lH,) [see 
equation (18)] for  various specifications of H I  when f ( s l H o )  is N (0, 1) 
and  demonstrated  that . f (y lH,)  can  take  a  variety of nonlinear  shapes 
depending  on  the  nature of the  departures, such as  the mean being different 
from  zero,  the  variance being different  from I ,  and the  shape being non- 
normal.  It is easy to see that  a single function like In y cannot  capture all of 
the  nonlinearities.  However, as  Neyman himself argued,  a  linear  combina- 
tion of orthogonal polynomials  might do the  job. 

Neyman’s use of the  density  function (19) as an alternative  to the  uniform 
distribution is also of fundamental  importance.  Fisher (1922 [40], p. 356) 
used this type of exponential  distribution  to  demonstrate  the  equivalence of 
the  method of moments  and  the  maxinwm likelihood estimator in special 
cases. We can  also derive (19) analytically by nm~inz izhg  the  entropy 
-E[lnh(y)] subject to  the moment  conditions Elrr,O,)] = qj (say), j = 
1.2, . . . . k ,  with parameters e,, j = 1,2,  . . . , k ,  as the  Lagrange  multipliers 
determined by k moment  constraints  [for  more  on  this see. for  example, Bera 
and Bilias (2001~  [13])]. In the  information  theory  literature, such densities 
are  known as n7irzirmu~ discrirnimtiort irfornrutiort models in the sense that 
the  density h(l’) in (19) has  the  minimum  distance  from  the  uniform  distri- 
butions  satisfying  the  above k moment  conditions [see Soofi (1997 [106], 
2000 [107])].* We can  say that, while testing the  density f ( x :  y) ,  the  alter- 
native  density  function g(s; y ,  e) in equation (24) has  a  minimum  distance 
from f ( s ;  y), satisfying the  moment  conditions like E[q,(s)] = 
qI .  j = 1, . . . , k. From  that  point of view, g(.x; y, e) is “truly”  a smooth alter- 

*For small  values  of @/ (j = 1.2, . . . , k). 110~) will be a smooth  density close to uni- 
form when k is moderate, say equal to 3 or 4. However. if k is large, then /(v) will 
present particularities which would  not  correspond to the  intuitive idea of smooth- 
ness (Neyman 1937 [76],  p. 165). From  the  maximum  entropy  point  of view, each 
additional  moment  condition  adds  some  more  roughness  and possibly some peculia- 
rities of  the data  to  the  density. 
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native to the densityf(s: y). Looking  from  another perspective, we can see 
from (19) that In h ( y )  is essentially a Ibzear combination of several polyno- 
mials in y .  Similar  densities  have been used in the log-spline model  literature 
[see, for  instance,  Stone  and Koo ( 1  986 [ 1091) and  Stone (1990 [ 1 OS])]. 

2.4 Formation and Derivation of the  Smooth  Test 

Neyn~an (1937 [76]) derived a locally most  powerful  symmetric  (regular) 
unbiased test (critical region)  for Ho : = 82 = . . . = 8, = 0 in (19), which 
he called an unbiased  critical region of type C.  This type-C  critical region is 
an extension of the locally most  powerful  unbiased (LMPU) test (type-A 
region) of Neyman  and  Pearson ( 1  936 [8 11) from  a  single-parameter  case to 
a  multi-parameter  situation. We first briefly describe  the type-A test for 
testing Ho : 8 = 8, (where 8 is a  scalar)  for  local  alternatives of the  form 
8 = 8, + 6/&, O< 6 < 00. Let p(0) be the  power  function of the  test.  Then, 
assuming  differentiability at 8 = eo and  expanding B(8) around 8 = 8,. we 
have 

where a is the size of the  test, and unbiasedness  requires that  the  “power” 
should  be  minimum  at 8 = eo and hence $(eo) = 0. Therefore, to maximize 
the local power we need to maximize p”(eo). This  leads to  the well-known 
LMPU test or the type A  critical  region.  In other  words, we can maximize 
p”(8,) subject to two  side  conditions, namely. p(8,) = a and = 0. 
These  ideas are illustrated in Figure 5. For a locally optimal  test,  the 
power  curve  should  have  maximum curvature  at  the  point C (where 
8 = eo), which is equivalent to minimizing distances  such as  the  chord AB. 

Using  the generalized Neyman-pearson (N-P) lemma,  the  optimal  (type- 
A)  critical region is given by 

where L(8) = n:’=Lf(x,: 8) is the  likelihood  function, while the  constants k ,  
and k2 are determined through  the side conditions of size and local  unbia- 
sedness. The critical region in (38) can be expressed in terms of the  deriva- 
tives of the  log-likelihood  function l(8) = In(L(Q)) as 



Figure 5. Power  curve  for  one-parameter  unbiased  test. 

191 

If  we denote the score  function  as s(8) = dl(8)/d8 and its derivative  as s'(8), 
then (29) can be  written as 

s'(eo) + [~(e,)]' > xr,s(eo) + k2 (30) 

Neyman (1937  [76]) faced  a more difficult problem since his test of Ho : 8, = 
8' = . . . = 8, = 1 in (19) involved  testing  a parameter  vector, namely, 
8 = (8,. 02, . . , ,ek)'. Let  us  now denote  the power  function  as 
p(8,. 02, . . . ,e,) = p(8) j3. Assuming that the power  function p(8) is 
twice differentiable in the  neighborhood  of Ho : 8 = eo, Neyman (1937 
[76], pp. 166-167) formally  required  that an unbiased  critical  region of 
type C of size (Y should satisfy the  following  conditions: 

I .  j3(0,0, . . . , 0) = (Y (31) 

= 0 ,  j =  I ,  . . . ,  k 

3. p,- = - = O .  i ? j = l  , . . . ,  k ,  i # , j  (33) 
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And finally, over all such critical regions satisfying  the  conditions (31)-(34j, 
the common value of a2p/aQ&+, is the  maximum. 

To interpret  the  above  conditions  it is instructive to look at  the k = 2 
case.  Here, we will follow  the  more accessible exposition of Neyman  and 
Pearson (1938 [82]).* 

By taking  the  Taylor series expansion of the  power  function B(Ol, 0,) 
around el = O2 = 0, we have 

1 B(e,, e,) = B(O,O)  + e,  B~ + e2p2 + (eTBI I + 2e1e2~,2 + e&) + O(H" ) 

(35) 

The type-C regdrr unbiased  critical region has  the  following  properties: 
(i) P I  = B1 = 0, which is the  condition  for  any  unbiased test; (ii) BI2 = 0 to 
ensure  that small positive and small negative  deviations in the 8s should be 
controlled eqzmll?: by the  test; (iii) B l l  = p2,, so that  equal  departures  from 
0, = = 0 have  the  same  power in all directions; and (iv) the common 
value of I (or B2z) is maximized over all critical  regions  satisfying  the 
conditions  (i)  and (iii). If a critical region satisfies only (i) and (iv), it is 
called a mu-regulrr unbiased  critical region of type C. Therefore,  for  a 
type-C  regular  unbiased  critical  region,  the  power  function is given by 

As we can see from  Figure 6, maximization of power is equivalent to the 
minimization of the  area of the exposed circle in the figure. In order  to find 
out whether we really have  an  LMPU test, we need to look  at  the  second- 
order  condition; i.e.,  the  Hessian  matrix of the  power  function ,!3(O,, 0,) in 
(35) evaluated at 8 = 0, 

should be positive definite, i.e., / 3 1 1 &  - #??, > 0 should be satisfied. 

'After  the  publication of Neyman (1937 [76]), Neynlan in collaboration with Egon 
Pearson  wrote  another  paper.  Neyman  and  Pearson (1938 [82]). that included  a 
detailed account of the unbiased  critical  region of type C. This  paper belongs to 
the  famous  Neyman-Pearson series on  the  Contribution  to  the  Theory of Testing 
Statistical  Hypotheses. For historical  sidelights on  their  collaboration see Pearson 
(1966 [85]) .  
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Figure 6. Power  surface  for  two-parameter  unbiased test 

We should  also  note  from (35) that,  for the  unbiased  test, 

efpll  + 2e1e2Dl2 + efpj = constant (38) 

represents  what  Neyman and  Pearson (1938 [82], p. 39) termed  the ellipse of 
equidetectubiliry. Once we impose  the  further  restriction of “regularity,” 
namely,  the  conditions (ii) and (iii) above,  the  concentric ellipses of equide- 
tectability become concentric circles of the  form (see Figure 6) 

p ,  l(e; + e;) = constant (39) 

Therefore,  the  resulting  power of the test will be a  function of the  distance 
measure (Of + O f ) ;  Neyman (1937 [76]) called this  the  symmetry  property  of 
the  test. 

Using  the generalized N-P lemma,  Neyman  and  Pearson (1938 [82], 
p. 41) derived the  type-C  unbiased  critical region as 

L~ (0,) 2 kt  [ L ~  I (6,) - ~ ~ ~ ( e ~ ) 1  + k2LI2(O0) + k3L1 (6,) + k 4 ~ ~ ( e , )  + k 5 w 0 )  
(40) 

where Lj(0) = aL(d)/%,, i = 1.2,  L,(O) = a2L(O)/8,aO,, i , j  = 1.2,  and 
ki( 1 = 1,2, . . . ,5)  are constants  determined  from  the size and the  three 
side conditions (i)-(iii). 

The critical region (40) can also be expressed in  terms of the  derivatives of 
the  log-likelihood  function /(e) = InL(8). Let us denote sj(0) = a/(0)/aOj, 
i = 1,2, and s,,(O) = a’l(O)/C@,aO,, i , j  = I , ? .  Then it is easy to see that 

Lj(e)  = sj(e)L(e) (41) 
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(42) 

When we move to  the general  multiple  parameter  case (k  > 2), the  analysis 
remains essentially the  same.  We will then need to satisfy Neyman's  condi- 
tions (31)-(34). In  the  general  case,  the  Hessian  matrix of the  power  function 
evaluated at 6 = 0, in equation (37) has  the  form 

Now  for  the LMPU test Bk should be positive definite; i.e., all the  principal 
cofactors of this  matrix  should  be  positive. For this general case, it is hard  to 
express  the  type-C  critical region in a  simple way as in (40) or (43). However, 
as Neyman (1937 [76]) derived,  the  resulting test procedure  takes  a very 
simple  form given in  the next theorem. 

Theorem 2 (Neyman 1937) For large 11, the  type-C  regular  unbiased test 
(critical  region) is given by 

where u, = (1 f i )  Cy=l rr,bi) and  the critical  point C, is determined  from 

Neyman (1937 [76], pp. 186-190) further proved that the  limiting  form of 
P[Xi 3 C,] = CY. 

the  power  function of this test is given by 

In  other  words,  under  the  alternative  hypothesis H I  : Oj # 0, at least for 
some j = 1,2, . . . , k,  the test statistic *: approaches  a  non-central x: dis- 
tribution  with  the  non-centrality  parameter ;i = 0;. From (36). we can 
also see that  the power  function  for  this general k' case is 
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Since the  power  depends  only on the  “distance” between Ho and 
H I ,  Neyman called this test syrtunelric. 

Unlike  Neyman’s  earlier  work  with  Egon  Pearson on general hypothesis 
testing, the  smooth test went unnoticed i n  the  statistics  literature for  quite 
some time. It is quite possible that Neyman’s idea of explicitly deriving  a test 
statistic from  the very first principles under  a very general  framework  was 
well ahead of its time, and  its usefulness in practice was not  immediately 
apparent.* Isaacson (1951  [56]) was the first notable  paper  that referred to 
Neyman’s work while proposing  the  type-D  unbiased  critical region based 
on  Gaussian  or  total  curvature of the  power  hypersurface. However. D. E. 
Barton was probably  the first to  carry  out a  serious  analysis  of  Neyman‘s 
smooth test.  In a series of papers (1953a [3], 1955 [ 5 ] ,  1956  [6]), he discussed 
its  small  sample  distribution,  applied  the test to  discrete data,  and general- 
ized the test to some  extent to  the  composite null hypothesis  situation [see 
also Hamdan (1961. [48],  1964  [49]), Barton (1985 [7])]. In  the next section we 
demonstrate  that the smooth tests are closely related to some of the  other 
more  popular  tests. For example,  the  Pearson x 2  goodness-of-fit statistic can 
be derived as a special case of the  smooth test. We can also derive Neyman’s 
smooth test statistics q2 in a  simple way using Rao’s (1 948  [93]) score test 
principle. 

3. THE  RELATIONSHIP  OF NEYMAN‘S  SMOOTH 
TEST WITH RAO‘S  SCORE AND OTHER  LOCALLY 
OPTIMAL TESTS 

Rayner and Best (1989 [99]) provided an excellent review of smooth tests of 
various  categorized and uncategorized data  and related  procedures.  They 
also elaborated  on  many  interesting,  little-known  results [see also Bera (2000 
[lo])]. For example, Pearson’s (1900 [86]) Px2 statistic  in (1) can be obtained 
;IS a  Neyman’s  smooth test for  a  categorized  hypothesis. To see this result, 
let us write the  probability of thejth class in terms of our density  (24)  under 
the  alternative  hypothesis  as 

*Reid (1982 [IOO]. p. 149) described an  amusing  anecdote. In 1937. W. E. Deming 
was  preparing  publication of Neyman’s lectures by the  United  States  Department of 
Agriculture. In his lecture  notes  Neyman misspelled smooth when  referring to the 
smooth test. “I don’t  understand  the reference to ‘Smouth‘,”  Deming  wrote to  
Neyman, “Is that  the  name of a  statistician?“. 



196 Bera and Ghosh 

where e,, is the value pJ under  the null hypothesis, , j  = 1,2.  . . . , y. In (48), 17,  

are values taken by a random variable H I  with P(Hi  = /zo) = e,,,, 
j = I , ? , .  . . , q; i = 1,2. . . . . r .  These I?,, are also orthonormal with respect 
to the  probabilities  Rayner and Best (1989 [99]. pp. 57-60) showed 
that  the  smooth test for  testing Ho : O1 = e2 = . . . = 0,. = 0 is the  same  as 
the  Pearson’s Px: i n  (1) with I’ = y - 1. Smooth-type  tests  can be viewed as a 
compromise between an  omnibus test procedure such as Pearson’s x2, which 
generally has low power in all directions, and  more specific tests with power 
directed  only towards  certain  alternatives. 

Rao  and  Poti (1946 [98]) suggested a locally most  powerful (LMP)  one- 
sided test for  the one-parcmeter problem.  This test criterion is the  precursor 
to  Rao’s (1948 [93]) celebrated  score test in which the basic idea of Rao  and 
Poti (1946 [98]) is generalized to the multiyarcnneter and  composite  hypoth- 
esis cases.  Suppose  the  null  hypothesis is composite, like Ha : S(0) = 0, where 
S(e) is an r x 1 vector function of 8 = (e , ,  e?, . . . . ek )  with r 5 k. Then  the 
general  form of Rao’s  score  (RS)  statistic is given by 

RS = s(G)’Z(G)”S(G) (49) 

where s(0) is the  score  function al(e)/%, Z(Q) is the  information  matrix 
E[-a2f(6)/i30a6’], and 6 is the  restricted  maximum  likelihood  estimator 
(MLE) of 8 [see Rao (1973 [95])]. Asymptotically,  under Ha, RS is distrib- 
uted as x;. Let us derive  the RS test statistic for testing Ho : el = O2 = . . . = 
0,. = 0 in (24), so that  the  number of restrictions are r = k and 6 = 0. We can 
write  the  log-likelihood  function as 

For the time being we ignore  the  nuisance parameter y, and  later we  will 
adjust  the  variance of the  RS test when y is replaced by an efficient estimator 
7. 

The score vector and  the  information  matrix  under Ha are given by 

and 
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respectively. Following  Rayner and Best (1989 [99], pp. 77-80) and differ- 
entiating  the  identity J_”,g(s; 0 ) h  = 1 twice, we see that 

where E,[.] is expectation  taken with respect to  the density  under  the  alter- 
native  hypothesis,  namely, g ( x ;  e). For the  RS test we need to  evaluate 
everything at 19 =. From (53) it  is easy to see that 

and  thus  the  score  vector given in equation (51) simplifies to 

Hence, we can  rewrite (54) and  evaluate  under Ho as 

(55) 
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where Sj, = 1 when j = I ;  = 0 otherwise.  Then,  from (52),  Z (g) = nIk ,  where 
Ik is a  k-dimensional  identity  matrix.  This  also  means  that  the  asymptotic 
variance-covariance  matrix  of  (l/&i)s (6) will be 

Therefore, using (49) and (56) ,  the RS test can be simply  expressed as 

which is the  “same”  as Qi in (25), the test statistic  for  Neyman’s  smooth 
test. To see clearly why this result holds, let us go  back to the  expression  of 
Neyman’s  type-C  unbiased  critical  region in equation (40). Consider  the 
case k = 2: then,  using (56) and  (59), we can  put si(Q0) = Cy=1 q,(x,), 
s,,(@,) = 1, j = 1.2,  and slz(Oo) = 0. It is quite evident that  the second- 
order  derivatives of the log-likelihood  function do  not play any role. 
Therefore, Neyman’s test must be based  only on  score  functions s,(Q) and 
sZ(@ evaluated at the null hypothesis 8 = 8, = 0. 

From  the  above  facts, we can possibly  assert that Neyman’s smooth test 
is the first formally  derived RS test.  Given  this  connection  between  the 
smooth  and the score tests, it is not  surprising  that  Pearson’s  goodness-of- 
fit test  is nothing  but  a categorized  version of the  smooth test as  noted 
earlier.  Pearson’s test is also  a special case of the RS test [see Bera and 
Bilias (200a[ 1 l])]. To see the  impact  of  estimation  of  the  nuisance  parameter 
y [see equation (24)] on  the RS statistic, let us use the result of  Pierce  (1982 
[91]). Pierce  established that,  for  a  statistic U(.)  depending  on  parameter 
vector y, the asymptotic variances  of U ( y )  and U ( y ) ,  where 7 is an efficient 
estimator of y, are related by 

Here. J i lU(y )  = (lfi)s(e. 7) = (l/&i)r;=, q j ( s , ;  y ) ,  Var [ f i U ( y ) ]  = 
Zk as in (60), and finally. Var (,hi?) is obtained  from  maximum likelihood 
estimation  of y under  the null hypothesis.  Furthermore,  Neyman (1959 [77]) 
showed that 
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and this can be computed  for  the given density fh; y)  under  the null 
hypothesis.  Therefore,  from (62), the  adjusted  formula  for  the  score  function 
is 

which  can  be  evaluated  simply by replacing y by f. From (60) and (62) ,  we 
see that in some  sense the variance  "decreases" when the  nuisance parameter 
is replaced  by  its efficient estimator.  Hence,  the final form of the score or the 
smooth test will be 

since for  our case  under  the null hypothesis e' = 0. In  practical  applications, 
V(7)  may not be  of full rank.  In  that case  a  generalized  inverse  of V(?) could 
be used, and  then  the  degree  of  freedom  of the RS statistic will  be the  rank 
of V ( f )  instead  of k.  Rayner  and Best  (1989  [99], pp. 78-80) also  derived the 
same  statistic [see also  Boulerice and  Ducharme (1995 [19])]; however, our 
use of  Pierce  (1982 [91]) makes  the  derivation of the variance  formula  much 
simpler. 

Needless to  say, since it is based on  the score principle, Neyman's smooth 
test will share  the  optimal  properties of the RS test procedure  and will  be 
asymptotically locally most  powerful.*  However, we should  keep in mind all 
the restrictions  that  conditions (33) and (34) imposed while deriving  the test 
procedure.  This result is not  as  straightforward  as testing the single yara- 
meter case  for  which we obtained  the LMPU test in (28) by maximizing  the 
power function.  In the multiparameter case, the  problem is that,  instead  of  a 
power  function, we have  a  power s~trjiace (or  a power Itypersurjiace). An ideal 
test would be one  that  has  a power  surface  with  a  maximum  curvature  along 
every cross-section at  the  point Ho : 8 = (0, 0, . . . ,O)' = 00, say, subject to 
the conditions of size and unbiasedness.  Such  a test, however, rarely exists 
even for  the  simple cases. As Isaacson (1951  [56], p. 218) explained, if we 
maximize the curvature  along  one cross-section, i t  will generally  cause  the 
curvature to diminish along  some  other  cross-section,  and  consequently  the 

~~ 

*Recent  work in higher-order  asymptotics  support [see Chandra  and  Joshi (1983 
[21]). Ghosh (1991 [44], and  Mukerjee (1993 [75])] the validity of Rao's  conjecture 
about  the  optimality of the  score test over its competitors  under local alternatives, 
particularly in  a  locally asymptotically  unbiased setting [also see, Rao and  Mukerjee 
(1994 [96], 1997 [97])]. 
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curvature  cannot be maximized  along d l  cross-sections  simultaneously.  In 
order  to overcome  this  kind of problem  Neylnan (1937 [76]) required  the 
type-C  critical region to have  constant power in the  neighborhood of Ho : 
8 = eo along  a given family of concentric ellipsoids. Neyman  and  Pearson 
(1938 [82]) called these the ellipsoids of equidetectability.  However, one  can 
only  choose  this family of ellipsoids if one  knows  the  relative  importance of 
power in different  directions in an infinitesimal neighborhood of 0,. 
Isaacson (1951 [56]) overcame  this  objection to  the  type-C critical region 
by developing  a natural generalization of the  Neyman-Pearson type-A 
region [see equations (28)-(30)] to  the  multiparameter  case.  He maximized 
the  Gaussian  (or  total)  curvature of the  power  surface at 0, subject to the 
conditions of size and unbiasedness, and called it the  type-D region. 
Gaussian  curvature of a function z =f(x, y )  at a point (so, yo) is defined 
as [see Isaacson (1951 [56]), p. 2191 

G =  

Hence,  for  the  two-parameter  case,  from (39, we can  write  the  total  curva- 
ture of the  power  hypersurface as 

G =  Bl l B 2 Z  - B L  - det(B,) 
[l + 0 +O]?  - 

where B2 is defined by (37). The  Type-D unbiased  critical region for testing 
Ho : 8 = 0 against  the two-sided alternative  for  a level a test is defined by the 
following  conditions [see Isaacson (1951 [56], p. 220)]: 

1. B(0,O) = a (68) 

2. B;(O, 0)  = 0. i = 1 ,2  (69) 

3. B2 is positive  definite (70) 

4. And, finally, over all such  critical  regions  satisfying  the  conditions 
(68)-(70), det (B2) is maximized. 
Note  that  for  the  type-D critical region restrictive  conditions like #lI2 = 

0.611 = 8 2 2  [see equations (33)-(34)] are  not  imposed.  The  type-D  critical 
region maximizes the total power 

1 
N + -[e?B, + 2e1e2p,2 + 2 (71) 
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among all locally unbiased (LU) tests, whereas  the  type-C test maximizes 
power  only in “limited”  directions.  Therefore,  for  finding  the  type-D 
unbiased critical region we minimize  the area  of the ellipse (for  the k > 2 
case, it will  be the  volume  of an ellipsoid) 

e;pl1 + 2e1e2pI2 + e:rgr2 = s 
which is  given  by 

xs ns 

812 8 2 2  

(73) 

Hence,  maximizing  the determinant of B2, as in condition 4 above. is the 
same  as minimizing  the  volume  of the ellipse shown in equation (73). 
Denoting 00 as  the  type-D  unbiased critical region, we can  show that inside 
oo the following is true [see Isaacson  (1951 [56])] 

where k l l  = L22(0)dx,  k2* =[,, L, , (O)  dx, k 1 2  = k Z I  = -suo L12(e) dx, s = 
(x1, .x2, . . . , x,,) denotes  the  sampie,  and k l ,  k 2 ,  and kf are  constants satisfy- 
ing  the  conditions  for size and  unbiasedness (68) and (69). 

However, one  major  problem with this approach,  despite its geometric 
attractiveness, is that  one  has  to guess the critical region and  then verify it. 
As Isaacson (1951  [56], p. 223) himself  noted,  “we  must  know our region oo 
in advance so that we can  calculate k l l  and k2? and  thus verify whether oo 
has  the  structure  required by the  lemma  or  not.”  The  type-E test suggested 
by Lehman (1959  [71], p. 342) is the same  as the type-D test for testing a 
composite  hypothesis. 

Given  the difficulties in finding  the  type-D  and  type-E tests in actual 
applications,  SenGupta  and  Vermeire (1986  [102]) suggested  a locally 
most  mean  powerful  unbiased (LMMPU) test that maximizes  the mean 
(instead of total)  curvature of the power  hypersurface  at  the null hypothesis 
among all LU level a tests. This  average  power  criterion  maximizes  the trace 
of the  matrix B2 in (37) [or Bk in (44) for  the k > 2 case]. If  we take  an 
eigenvalue  decomposition of the  matrix B k  relating  to  the  power  function, 
the  eigenvalues, hi, give the  principal  power  curvatures while the  eigenvec- 
tors  corresponding  to  them give the  principal  power  directions.  Isaacson 
(1951  [56])  used the  determinant, which is the product of  the eigenvalues. 
wheras  SenGupta  and Vermeire  (1986  [lo?])  used  their sum as  a  measure of 
curvature.  Thus,  LMMPU critical regions are  more easily constructed  using 
just  the generalized N-P lemma.  For  testing Ho : 8 = Oo against H I  : 8 # eo, 
an  LMMPU critical region  for  the k = 2 case is  given  by 

kllLll +k12L12 + k 2 1 L ~ 1  +k22L22 2 klL+kZLI  +k3L2 (74) 

s, 

sI l(eo) + sZ2(eoo) + st(eo) + &eo) 2 k + k l ~ l ( ~ o )  + k2~Z(e0) (75) 
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where k ,  k ,  and k2 are  constants satisfying the size and  unbiasedness  con- 
ditions (68) and (69). It is easy to see that (75) is  very close to  Neyman’s 
type-C  region given in (43). It  would be interesting  to  derive the LMMPU 
test and  also  the  type-D  and type-E  regions (if possible) for testing HO : 8 = 
0 in (24) and  to  compare  that with  Neyman’s smooth test [see Choi et al. 
(1996 [23])]. We  leave that  topic  for  future  research.  After  this  long discus- 
sion of theoretical  developments, we now  turn  to possible applications  of 
Neyman’s  smooth  test. 

4. APPLICATIONS 

We  can  probably  credit  Lawrence Klein  (Klein 1991  [62], pp. 325-326) for 
making  the first attempt  to  introduce Neyman’s smooth test to  econo- 
metrics. He gave  a  seminar on “Neyman’s Smooth  Test”  at  the  194243 
MIT statistics  seminar series.* However,  Klein’s  effort  failed,  and we do  not 
see any  direct  use  of  the  smooth test in econometrics.  This is particularly 
astonishing  as  testing  for  possible  misspecification is central to  econo- 
metrics. The  particular  property  of Neyman’s smooth test that  makes it 
remarkable is the  fact  that  it  can be used  very effectively both  as  an  omnibus 
test for  detecting  departures  from  the null in several directions  and  as  a  more 
directional test aimed at finding out  the exact nature of  the  departure  from 
Ho of  correct specification of the model. 

Neyman (1937  [76], pp. 180-185) himself  illustrated  a  practical  applica- 
tion  of his test using  Mahalanobis’s (1934  [73]) data  on  normal  deviates with 

= 100. When  mentioning  this  application,  Rayner  and Best (1989 [99], pp. 
4-7) stressed that  Neyman  also  reported’ the individual components  of the 
Wi statistic [see equation (45)]. This shows that  Neyman (1937  [76]) believed 
that  more specific directional tests identifying the  cause  and  nature of devia- 
tion  from Ho can be obtained  from these components. 

*Klein  joined  the MIT  graduate  program in September 1942 after  studying with 
Neyman’s  group in statistics  at Berkeley, and he wanted  to  draw  the  attention  of 
econometricians  to  Neyman’s  paper since i t  was  published in  a rather  recondite 
journal.  This  may  not be out of  place to  mention  that  Trygve  Haavelmo  was  also 
very much influenced by Jerzy  Neyman,  as  he  mentioned in his  Nobel prize lecture 
(see Haavelmo 1997  [47]) 

I was lucky enough to be able  to visit the  United  States in 1939 on a scholarship 
. . . I then  had  the privilege of studying  with  the  world  famous  statistician Jerzy 
Neyman in California  for a couple of months. 

Haavelmo (1944 [45]) contains a  seven-page account of the Neyman-Pearson theory. 
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4.1 Orthogonal Polynomials and Neyman‘s Smooth 
Test 

Orthogonal polynomials have been widely used in estimation  problems,  but 
their use in  hypothesis  testing  has been very limited at best.  Neyman’s 
smooth test, in that sense, pioneered  the use of  orthogonal polynomials 
for specifying the  density under the  alternative  hypothesis.  However,  there 
are two very important concerns that need to be addressed  before we can 
start a full-fledged application  of  Neyman’s  smooth  test.  First,  Neyman 
used normalized  Legendre  polynomials to design the  “smooth”  alternatives; 
however, he did  not  justify  the use of those  over  other  orthogonal polyno- 
mials  such as  the  truncated  Hermite  polynomials or the  Laguerre  polyno- 
mials  (Barton 1953b [4]. Kiefer 1985  [60]) or Charlier  Type  B  polynomials 
(Lee 1986  [70]). Second, he also  did not discuss how to  choose  the  number of 
orthogonal polynomials to be used.* We start by briefly discussing a  general 
model based on orthonormal polynomials  and  the  associated smooth test. 
This  would lead us to  the problem  of  choosing  the  optimal value of k ,  and 
finally we discuss a  tnethod  of  choosing  an  alternate  sequence  of  orthogonal 
polynomials. 

We can design a  smooth-type test in the  context of regression model 
(Hart 1997  [52], Ch. 5) 

Y, = r (x , )  + E;.  i = 1.2, . . . , n (76) 

where Yj  is the  dependent  variable  and s i  are fixed design points 
0 < < .x2 < . . . < .xft < 1,  and E ,  are  IID (0, a2). We are  interested  in 
testing  the  “constant  regression” or “no-effect’’ hypothesis, i.e., r ( s )  = 0,. 
where 0, is an unknown  constant.  In  analogy with Neyman’s  test, we con- 
sider an  alternative  of the  form (Hart 1997 [52], p. 141) 

L- 

j= I 

where 4 1 , f l ( . x ) .  . . . , q 5 k , f l ( x )  are  orthonormal over  the  domain of x, 

*Neyman (1937 [76], p. 194) did  not discuss  in detail  the choice  of the  value k and 
simply  suggested: 

My  personal feeling is that in most  practical cases, there will  be no need to  go 
beyond  the  fourth  order test. But  this is only  an opinion and  not  any  mathematical 
result. 

However,  from their  experience in using the  smooth test, Thomas  and Pierce (1979 
[ I  111. p. 442) thought  that  for  the  case of composite  hypothesis k = 2 would  be a 
better choice. 
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and E 1. Hence,  a test for Ho : 0, = e2 = . . . = 0, = 0 against 
H ,  : 0, # 0, for  some i = 1 ,2 ,  . . . , k can be done by testing  the  overall sig- 
nificance  of  the  model given in (76). The  least-square  estimators of 8, are 
given by 

A  test, which is asymptotically  true even if the  errors  are  not exactly 
Gaussian (so long  as they have  the  same  distribution and  have a constant 
variance d), is given by 

where c? is an  estimate  of 0, the standard  deviation of the error terms. We 
can use any set of orthonormal  polynomials in the  above  estimator  includ- 
ing, for  example,  the  normalized  Fourier series @ l , , l ( x )  = &cos  (njs) with 
Fourier coefficients 

Observing  the  obvious  similarity  in  the  hypothesis  tested,  the test procedure 
in (80) can  be  termed  as  a  Neyman  smooth test for regression (Hart 1997 
[52].  p. 142). 

The  natural question that springs to mind at this  point is what  the value 
of k should be. Given  a  sequence of orthogonal polynomials, we can  also 
test for the  number of orthogonal polynomials, say k, that would give a 
desired level of “goodness-of-fit” for  the  (ata.  Suppose now  the  sample 
counterpart of e,, defined above, is given by 0, = ( I ~ H )  Cy=, Yj&cos(rj.xf). 
If  we have an IID sample of size ) I ,  then, given that E(8,) = 0 and V ( g )  = a2/2n, 
let usnonnulize the  sample Fouriercoefficientsusingc?, a  consistent  estimator of 
a. Appealing  to  thecentral limit theorem  for sufficiently large 12,  we have the test 
statistic 

for fixed k 5 n - 1; this is nothing  but the  Neyman  smooth  statistic in 
equation (45) for  the  Fourier series polynomials. 
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The  optimal choice  of  k  has been studied extensively in the  literature  of 
data-driven  smooth tests first discussed by Ledwina (1994 [68]) among  others. 
In  order  to reduce  the  subjectivity of the choice of k we can use a  criterion like 
the  Schwarz  information  criterion  (SIC) or  the Bayesian information  criterion 
(BIC).  Ledwina (1994 [68]) proposed  a test that rejects the null hypothesis that 
k is equal  to 1 for  large values of Si  = maxl<k<,,-I{Sk - kln(n)},where Sk is 
defined in (82). She also  showed that  the  teststatistic Si  asymptotically  con- 
verges to xi random  variable  [for  further  insight into  data-driven  smooth tests 
see, for  example, Hart (1997 [52]), pp. 185-1871. 

For testing  uniformity,  Solomon and Stephens (1985 [lOS]) and 
D’Agostino and  Stephens (1986 [31]. p. 352) found  that k = 2 is optimal 
in most cases where the  location-scale family is used; but k = 4 might be a 
better choice when higher-order  moments are required. As mentioned  ear- 
lier, other  papers.  including  Neyman (1937 [76]) and  Thomas  and Pierce 
(1979 [l 1 11). suggested using small values of k. It  has been suggested in 
the  literature  that,  for heavier-tailed  alternative  distributions, it is better 
to have more classes for  Pearson’s Px:  test in (1) or, equivalently, in the 
case of Neyman’s smooth test,  more orthogonal polynomials (see, for exam- 
ple, Kallenberg  et  al. 1985 [59]). However, they claimed that  too  many class 
intervals  can  be  a  potential  problem for lighter-tailed  distributions like nor- 
mal and some  other  exponential family distributions  (Kallenberg  et  al. 1985 
[59], p. 959). Several studies  have discussed cases where  increasing  the order 
of the test k slowly to 00 would  have  better  power for alternative densities 
having heavier tails (Kallenberg  et  al. 1985 [59], Inglot  et al. 1990  [54], 
Eubank  and LaRiccia 1992  [38], Inglot  et  al. 1994 [55]). 

Some  other  tests,  such  as  the  Cramer-von  Mises  (CvM)  and  the 
Kolmogorov-Smirnov (KS) approaches,  are  examples of omnibus test pro- 
cedures  that have power  against  various  directions, and hence those tests 
will  be consistent  against  many  alternatives (see Eubank  and LaRiccia 1992 
[38], p. 2072). The  procedure  for selecting the  truncation  point  k in the 
Neyman (1937 [76]) smooth test is similar to  the choice of the  number of 
classes in the  Pearson x 2  test and  has been discussed in Kallenberg  et  al. 
(1985 [59]) and  Fan (1996 [39]). ’ 

Let us  now revisit the  problem  of  choosing an optimal  sequence of ortho- 
gonal  polynomials around  the  densityf(s; y )  under Ho. The following  dis- 
cussion closely follows Smith (1989 [103]) and  Cameron  and  Trivedi (1990 
[20]). They used the  score test after  setting  up  the  alternative in terms of 
orthogonal polynomials with the baseline density f(x; y )  under  the null 
hypothesis.  Expanding  the  density g(s; y ,  0) using an  orthogonal polynomial 
sequence with respect tof(s ;  y), we have 
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where 
I 

u0(y, e)  I,P~(.Y; y )  = l ,pI( .~;  y )  = a;$ (84) 
I = o  

The  polynomials pi are  orthonormal with  respect to  densityf(s; y).  
We can  construct  orthogonal  polynomials  through the moments. 

Suppose we have  a  sequence of moments {pn}  of the random  variable X ,  
then  a  necessary and sufficient condition  for  the existence of a  unique 
orthogonal  polynomial  sequence is that der ( M , , )  > 0, where M,, = 
[Mi,] = for I Z  = 0, 1, . . . . We  can  write  det(M,,) as 

where m’ = (p,,, P,,+~, . . . , P>,,-~), IM-IJ = \Mol = 1, and  “Adj”  means the 
adjugate of a  matrix.  The  nth-order  orthogonal  polynomial  can be con- 
structed  from 

Pn(x> = [ I M ~ - ~ I I ”  IDn(.x)I- 

This gives us  a  whole  system  of orthogonal  polynomials P,,(x) [see  CramCr 
(1946 [28]), pp. 131-1 32, Cameron  and Trivedi (1990  [20]), pp. 4-5 and 
Appendix A]. 

Smith  (1989 [103]) performed  a test of Ho : g(x; y. 0) = f ( s ;  y )  (i.e., oI(y  
, e )  = 0 , j  = 1,2,  . . . , k or an- = {cc,(y. = 0) using  a truncated version  of 
the  expression for  the  alternative  density, 

x- 

where 

However, the expression g(s; y ,  e) in (87) may not be a  proper  density 
function. Because  of  the truncation,  it  may  not be non-negative  for all 
values  of .Y nor will it  integrate to unity.  Smith referred to g(x; y ,  0)  as a 
pseudo-demity function. 

If we consider y to be the probability  integral  transform of the  original 
data in x, then,  defining EI,(L.’IH0) = puhof, we can rewrite the  above  density 
in (87), in the absence  of  any  nuisance  parameter y, as 
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P I 

j=1 r=l 

From this we can get the  Neyman  smooth test as  proposed by Thomas  and 
Pierce (1979 [I  1 11). Here we test Ho : 8 = 0 against H I  : 8 # 0, where 
8 = (el, 02, . . . , Ok)’ .  From  equation (89), we can get the score function  as 
a lnhb ;  8)/aa = Akmk, where Ak = [ai/(8)] is k x k lower triangular  matrix 
(with non-zero  diagonal  elements)  and mk is a vector of deviations whose ith 
component is (vi - ~ U . h , r ) .  The score test statistic will have  the  form 

SI, = ~fmbll[VlI1-mkll (90) 

where mkn is the vector of the  sample  mean of deviations, 
VI, = ZIlll,, - Zl,,sZGIZsl,l, with Zn1m = 4.hx-mi1, Z1,,e = Edmksbl, Z,,,Q = EO 
[so s,& and = &[a In h(y; O)/N], is the  conditional  variance<ovariance 
matrix and [VI,]- is its g-inverse (see Smith 1989 [ 1031, pp. 1841  85 for 
details).  Here Eo[.] denotes  expectation  taken with respect to  the  true dis- 
tribution  of y but  eventually  evaluated  under Ho : 8 = 0. Test  statistic (90) 
can also be computed  using  an artificial regression of the vector of 1’s on the 
vector of score  functions of the  nuisance  parameters and  the deviations  from 
the  moments. It can be shown  that SI, follows an  asymptotic x 2  distribution 
with degrees of freedom = rank (VI,). Possible uses could be in limited 
dependent  variable  models like the binary  response  model and models  for 
duration such as unemployment spells (Smith 1989 [ 1031). Cameron  and 
Trivedi (1990 [20] derived an  analogous test using  moment  conditions  of 
the  exponential family. For testing exponentiality in the  context  of duration 
models, Lee (1984 [69]) transformed  the  “exponentially  distributed”  random 
variable X by z = @“[F(.Y)], where F is the  exponential  distribution  func- 
tion and @” is the inverse normal  probability  integral transform. Lee then 
proposed  testing  normality of I? using the  score test under  a  Pearson family 
of distributions  as  the  alternative  density  for z .  If we restrict to  the first  four 
moments in Smith (1989 [103]), then the  approaches  of Lee and Smith are 
identical. 

4.2 Density Forecast  Evaluation and Calibration 

The  importance of density  forecast  evaluation in economics  has been aptly 
depicted by Crnkovic  and  Drachman (1997 [30], p. 47) as follows: ”At the 
heart of market risk measurement is the  forecast of the  probability  density 
functions  (PDFs) of the  relevant  market  variables . . . a  forecast of a PDF is 
the  central  input  into  any decision model  for  asset  allocation and/or hedging 
. . . therefore,  the  quality of risk management will  be considered  synonymous 
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with the  quality of PDF forecasts.”  Suppose that we have  time series data 
(say,  the  daily  returns to the  S&P 500 Index) given by ( s , } ~ ~ ~ .  One of the 
most important  questions  that we would like to answer is: what is the 
sequence of the  true  density  functions (g,(s,))yL, that generated this parti- 
cular  realization of the data? Since this is time series data,  at time t we know 
all the  past values of s, up  to time t or  the ir!fomntiun set at time t ,  namely. 
Q, = { s t - , ,  x,-z.. . .). Let us denote  the  one-step-ahead  forecast of the 
sequence  of  densities as cf,(s,)) conditional  on {Q,). Our objective is to 
determine  how  much  the  forecast  density ’J,) depicts  the  true  density (8,). 
The main  problem in performing  such  a test is that  both  the  actual density 
g,(.) and the  one-step-ahead  predicted  density,/;(.)  could  depend on the time 
t and  thus  on the  information  set R,. This  problem is unique since, on one 
hand, it is a classical goodness-of-fit problem but,  on  the  other, it is also  a 
combination  of several different, possibly dependent,  goodness-of-fit  tests. 
One  approach  to  handling this  particular  problem  would be to reduce it to a 
more  tractable  one  in which we have  the  same. or similar,  hypotheses  to test, 
rather  than a host of  different  hypotheses.  Following  Neyman (1937 [76]), 
this is achieved using the  probability  integral  transform 

Using equations (3), (6) ,  and (17), the  density  function of the  transformed 
variable I!, is given by 

/z,(y,) = 1 ,  0 < y, < 1 ( 93) 

under  the null hypothesis  that our forecasted  density is the  true  density  for 
all t ,  i.e.. Ho : g,(.) =A( . ) .  

If  we are only  interested i n  performing  a goodness-of-fit test that  the 
variable y,  follows a  uniform  distribution, we can use a  parametric test 
like Pearson’s on grouped  data  or  nonparametric tests like the KS  or 
the CVM  or a test using  the  Kuiper  statistics (see Crnkovic  and  Drachman 
1997  [30], p. 48). Any  of those suggested tests would work as a  good urnnibus 
test of goodness-of-fit. If we fail to reject the null hypothesis we can  con- 
clude that there is not  enough evidence that  the  data is nut generated  from 
the  forecasted  densityf,(.): however. a rejection would not  throw  any light 
on  the possible form of the  true  density  function. 

Diebold  et  al. (1998 [ 3 3 ] )  used Theorem 1, discussed i n  Section 2.1, and 
tested Ho : g,(.) =A( . )  by checking  whether  the  probability  integral  trans- 
form y, in (91) follows IID U(0,  I ) .  They  employed  a  graphical  (visual) 
approach  to decide on the  structure of the  alternative  density  function by 
a two-step  procedure.  First, they visually inspected the  histogram of!’, to see 
if it comes  from U(0 ,  1)  distribution.  Then. they looked at the  individual 
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correlograms of each of the first four  powers of the  variable z ,  = y, - 0.5 in 
order  to check for  any residual effects of bias, variance, or higher-order 
moments.  In  the  absence of a  more  analytical test of goodness-of-fit,  this 
graphical  method  has  also been used  in Diebold et al. (1999 [36]) and 
Diebold et al. (1999 [34]). For reviews on density  forecasting  and  forecast 
evaluation  methods. see Tay  and Wallis (2000 [I  IO]), Christoffersen (1998 
[24]) and Diebold and Lopez (1996 [35]). The  procedure suggested is very 
attractive  due  to  its simplicity of execution and intuitive  justification;  how- 
ever, the resulting size and  power of the  procedure  are  unknown. Also, we 
are  not  sure  about the optimality of such  a  diagnostic  method. Berkowitz 
(2000 [17], p. 4) commented on the  Diebold  et  al. (1998 [33]) procedure: 
”Because their  interest  centers on developing  tools for diagnosing how mod- 
els fail, they do not  pursue  formal testing.” Neyman’s smooth test (1937 
[76]) provides an cu~alytic tool to  determine the  structure of the  density  under 
the  alternative  hypothesis using orthonormal polynomials  (normalized 
Legendre  polynomials) x,(y) defined in (20).* While, on  one  hand,  the 
smooth test provides a basis  for  a classical goodness-of-fit test (based on 
the generalized N-P lemma), on the  other  hand, i t  can  also be  used to 
determine  the sensitivity of the  power of the test to  departures  from  the 
null hypothesis in different directions.  for  example,  deviations in variance, 
skewness, and  kurtosis (see Bera and  Ghosh 2001 [14]). We  can see that  the 
qi statistic  for  Neyman’s smooth test defined in equation (22) comprises k 
components of the  form (l/n) (x:.:, ~s,(t~,))’,.j = 1 , .  . . k ,  which are  nothing 
but  the  squares of the efficient score functions.  Using Rao  and  Poti (1946 
[98]). Rao (1948  [93]), and  Neyman (1959 [77]), one  can risk the  “educated 
speculation“  that an optimal test should be based on  the scorejimtion [for 
more  on  this, see Bera and Bilias (2001a [ I  11, 2001 b [ 12])]. From  that point 
of view we achieve optin7dit~~ using the  smooth test. 

‘Neyman (1937 [76]) used IT/(>!) as  the  orthogonal  polynomials which can be obtained 
by using the following conditions, 

given the  restrictions  of  orthogonality given in Section 2.2. Solving  these. the first  five 
n,(~.) are  (Neyman 1937 [76], pp. 163-164) 

T,(v) = + ~ ~ 1 . q  + . . . + C~,/,V’, # 0 

n,1O3) = 1 

7rlCl.) = f i y  - +) 

7q(,.) = J;j(20(,. - $3 - 30. - ;I) 
n&*) = 210(J - +)4 - 450. - + ; 

~ : C I * )  = & ( 6 ( ~ *  - i)’ - 4) 
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Neyman’s  smooth-type test can  also be used in other  areas of macroeco- 
nomics  such  as  evaluating  the  density  forecasts of realized inflation  rates. 
Diebold et ai. (1999 [36]) used a  graphical  technique  as did Diebold et ai. 
(1993 [33]) on the  density  forecasts of inflation  from  the Swvev sf 
Profissional Forecasters. Neyman’s smooth test in its  original  form was 
intended  mainly to provide an asmprotic test of significance for testing 
goodness-of-fit  for  “smooth”  alternatives. So, one  can  argue  that  although 
we have  large  enough data in the  daily returns of the S&P 500 Index. we 
would be hard pressed to find similar size data  for  macroeconomic series 
such as  GNP. inflation.  This  might make the test susceptible to significant 
small-sample  fluctuations,  and  the results of the test might  not be strictly 
valid.  In  order to  correct  for size or power  problems  due  to  small  sample 
size, we can  either do a size correction [similar to  other score  tests, see Harris 
(1985 [50]), Harris (1987 [51]), Cordeiro  and  Ferrari (1991 [25]), Cribari- 
Net0  and  Ferrari (1 995 [29]), and Bera and  Ullah (1 99 1 [ 161) for  applications 
in  econometrics] or use a modified version of the  “smooth test” based on 
Pearson’s PA test discussed in Section 2.1. This  promises  to be an interesting 
direction  for  future  research. 

We  can easily extend  Neyman’s smooth test to  a  multivariate  setup of 
dimension N for tu time periods, by taking  a  combination of Nnz sequences 
of univariate  densities  as discussed by Diebold  et  ai. (1999 [34]). This  could 
be particularly useful in fields like  financial risk management to  evaluate 
densities for high-frequency  financial data such as  stock  or derivative 
(options) prices and foreign  exchange  rates. For example, if we have  a 
sequence of the  joint density  forecasts of more  than  one, say three, daily 
foreign  exchange  rates  over  a  period of 1000 days. we can  evaluate its 
accuracy  using  the smooth test for 3000 univariate  densities. One  thing 
that  must be mentioned is that there  could  be both  temporal  and  contem- 
poraneous dependencies in  these observations; we are assuming  that  taking 
conditional  distribution  both with respect to time and  across  variables is 
feasible (see, for  example,  Diebold  et  al. 1999  [34], p. 662). 

Another  important  area of the  literature  on  the  evaluation of density 
forecasts is the  concept of crrlibrcrtion. Let us consider this in the light of 
our  formulation of Neyman’s smooth test in  the  area of density  forecasts. 
Suppose  that  the  actual  density of the process generating our  data, g,(s,). is 
different  from  the  forecasted  density, .h(xf), say, 

g,(-y,) = f c ( . ~ f ) p I c l ‘ o  (93) 

where r f ( v f )  is a  function  depending  on  the  probability  integral  transforms 
and  can be used to  calibrate  the forecasted  densities..f,(s,). recursively. This 
procedure of calibration  might be needed if the  forecasts are off in a  con- 
sistent way, that is to say, if the  probability  integral  transforms (yf)yL, are 
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not U(0. 1)  but  are independent and identically distributed  with  some  other 
distribution (see, for  example,  Diebold et al. 1999  [34]). 

If we compare  equation (93) with  the  formulation  of  the  smooth test 
given by equation (24). wheref,(s), the  density  under Ho, is embedded in 
g,(s) (in the  absence of nuisance  parameter y), the  density  under H I .  we can 
see that 

/ = I  

Hence, we can  actually  estimate  the  calibrating  function  from (94). It might 
be worthwhile to  compare the  method of calibration suggested by Diebold 
et  al. (1999  [34]) using nonparametric  (kernel)  density  estimation with the 
one suggested here coming  from  a  parametric  setup  [also see Thomas  and 
Pierce (1979 [ I  1 I]) and  Rayner  and Best (1989 [99], p. 77) for  a  formulation 
of  the  alternative  hypothesis]. 

So far, we have discussed only one  aspect  of  the use of Neyman’s smooth 
test, namely. how it can be used for  evaluating  (and  calibrating)  density 
forecast  estimation in financial risk management  and  macroeconomic 
time-series data such as inflation. Let us now discuss another example 
that recently has received substantial  attention, namely the  Value-at-Risk 
(VaR) model in finance. VaR is generally defined as  an extreme  quantile of 
the value distribution of a financial portfolio.  It  measures  the  maximum 
allowable value the  portfolio  can lose over  a  period of time at,  say,  the 
95% level. This is a widely used measure of portfolio risk or exposure  to 
risk for  corporate  portfolios  or asset  holdings  [for  further discussion see 
Smithson  and  Minton (1997 [104])]. A common  method of calculating 
VaR is to find the proportion of times the  upper limit of interval  forecasts 
has been exceeded. Although this method is very simple to  compute, it 
requires  a  large  sample size (see Kupiec 1995 [65], p. 83). For smaller  sample 
size, which is common in risk models. i t  is often  advisable  to  look at the 
entire  probability  density  function or a map of quantiles.  Hypothesis  tests 
on  the goodness-of-fit of VaRs could be based on the tail probabilities or tail 
expected loss of risk models in terms of measures of “exceedence” or the 
number of times that the  total loss has exceeded the  forecasted  VaR. The tail 
probabilities are often of more  concern  than  the  interiors of the  density of 
the  distribution of asset returns. 

Berkowitz (2000 1171) argued  that i n  some  applications highly specific 
testing guidelines are necessary, and, in order  to give a  more  formal test 
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for  the  graphical  procedure suggested by Diebold  et  al. (1998  [33]), he I 

proposed  a  formal  likelihood  ratio test on the  VaR  model.  An  advantage 
of his proposed test is that it gives some  indication of the  nature of the 
violation when the goodness-of-fit test is rejected.  Berkowitz followed Lee’s 
(1984 [69]) approach  but used the  likelihood ratio test (instead of the  score 
test) based on the inverse standard  normal  transformation of the  probability 
integral  transforms  of  the  data.  The  main  driving  forces  behind  the  pro- 
posed test are its  tractability  and  the  properties of the  normal  dispibution. 
Let us define the inverse standard  normal  transform z, = @“(FCt,)) and 
consider  the  following  model 

ZI - p = p(z,_1 - /L) + El  (95) 

To test for  independence, we can test Ho : p = 0 in the presence of  nuisance 
parameters p and a’ (the  constant variance of the  error term E , ) .  We can 
also  perform  a  joint test for  the  parameters p = 0, p = 0, and a’ = 1, using 
the  likelihood  ratio test statistic 

LR = -2(1(0, 1, 0) - l($,  6*, j)) (96) 

that is distributed  as  a x’ with three degrees of  freedom, where f (8 )  = In L(8) 
is the  log-likelihood  function. The  above test can be considered a test based 
on  the tail  probabilities.  Berkowitz (2000 [17]) reported  Monte  Carlo simu- 
lations  for the Black-Scholes model and  demonstrated  superiority of his test 
with respect to  the KS, CVM,  and a test based on  the  Kuiper statistic. It is 
evident that there is substantial  similarity between the test suggested by 
Berkowitz and the smooth test; the  former explicitly puts in  the  conditions 
of higher-order  moments  through  the inverse standard  Gaussian  transform, 
while the  latter  looks  at  a  more  general  exponential family density of the 
form given by equation (19). Berkowitz  exploits  the  properties of the  normal 
distribution  to get a  likelihood  ratio  test, while Neyman’s smooth test is a 
special case of Rao’s  score  test, and therefore,  asymptotically, they should 
give similar  results. 

To further  elaborate, let us point  out  that finding  the  distributions of 
VaR is equivalent to finding  the  distribution  of  quantiles of the  asset  returns. 
LaRiccia (1991  [67]) proposed  a  quantile  function-based  analog  of 
Neyman’s smooth test.  Suppose we have  a  sample (v,. y 2 ,  . . . ,y,,) from  a 
fully specified cumulative  distribution  function (cdf) of a  location-scale 
family G(. ;  p. a) and define the  order statistics as {yl,,,y2,,, . . . , .I’,,,~). We 
want  to test the null hypothesis that G(.;  p,  a) F(.)  is the  true  data-gen- 
erating  process.  Hence,  under  the null hypothesis, for large  sample size n, the 
expected value of the  ith-order statistic, Y,,,, is given by E( Y,,,) = + aQo 
[i / (n  + l)],  where Qo(u) = inf{y : FCV) 2 u )  for 0 < u < 1. The  covariance 
matrix  under  the null hypothesis is approximated by 
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where fQ,,(.) =f (Qo( . ) )  is the  density of the  quantile  function  under Ho. 
LaRiccia took the  alternative  model as 

with Cov (Y,,,. Y,,,) as given in (97) and where pI (.). p z ( . ) ,  . . . , pk( .) are func- 
tions  for  some fixed value of k .  LaRiccia (1991  [67]) proposed  a likelihood 
ratio test for Ho : 6 = (SI. &, . . . , &), = 0, which turns  out  to be analogous 
to  the  Neyman  smooth test. 

4.3 Smooth Tests in Survival Analysis with 
Censoring and Truncation 

One of the important  questions econometricians  often face is whether  there 
are  one  or  more unobserved  variables  that  have  a significant influence on the 
outcome of a  trial or experiment. Social scientists such as economists have 
to rely mainly on  observational  data.  Although, in some other disciplines, it 
is possible to  control  for unobserved  variables to a  great  extent  through 
experimental  design,  econometricians are  not  that  fortunate most of the 
time. This gives rise to misspecification in the  model  through  unobserved 
heterogeneity  (for  example.  ability,  expertise, genetical traits,  inherent resis- 
tance to diseases), which. in turn,  could significantly influence outcomes 
such as income or survival times. In this subsection we look at the effect 
of misspecification on  distribution of survival  times through a  random  mul- 
tiplicative heterogeneity i n  the Izcrzurd function  (Lancaster 1985 [66]) utiliz- 
ing Neyman’s smooth test with generalized residuals. 

Suppose now that we observe survival times t l ,  t z .  . . . . t,,, which are  inde- 
pendently  distributed  (for  the  moment,  without  any  censoring) with a  den- 
sity function g(r; y.  19) and cdf G(t; y, e), where y are  parameters. Let us 
define the  hazard  function A([; y ,  0) by 

P ( t < T < t + d t l r > t ) = h ( t ; y . C l ) d t , t > O  (99) 

which is the  conditional  probability of death  or failure  over  the next infini- 
tesimal period dt given that the  subject  has survived till time t .  There  could 
be several different specifications of  the  hazard  function h(r; y. I9) such as the 
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proportional  hazards  models. If the survival time distribution is Weibull, 
then  the  hazard  function is  given  by 

h(t; a, p> = at"" exp(s'p) ( 100) 

It  can be shown  (for  example, see Cox and  Oakes 1984 [27], p. 14) that if we 
define  the survival function  as c(t; y, 0)  = 1 - G(t; Y, e), then we would  have 

We  can  also  obtain the survival function  as 

( 102) 

H(t;  y ,  6)  is known  as  the  integrated  hazard  function.  Suppose we have  the 
function t ,  = Ti(& E ~ ) ,  where S = (y ' ,  e')', and  also let Ri be  uniquely  defined 
so that E ,  = R,(S, t i ) .  Then  the  functional E ,  is called a  generalized error,  and 
we can  estimate it by t j  = Ri($, ti). For example,  a  generalized residual could 
be  the  integrated  hazard  function  such as E ;̂ = H(ti; p, 8) = f: h(s; p, e)ds 
(Lancaster 1985 [66]), or it  could be the  distribution  function such as ij = 
G(ti; p, 6) = 1: g(s; f ,  6) ds (Gray  and Pierce 1985  [45]). 

Let us consider  a  model  with  hazard  function given  by L ( t )  = zh(r), 
where z = el' is the multiplicative heterogeneity and h(t)  is the  hazard  func- 
tion  with no multiplicative heterogeneity  (ignoring  the  dependence on  para- 
meters  and  covariates,  for the sake of simplicity). Hence the survival 
function, given 2 ,  is 

- 
G,(rl;) = exp(-x) (103) 

Let us further define 0; as the variance  of P. F(r) = E[exp(-~)J is the survival 
function  and E is the  integrated  hazard  function  evaluated at t ,  under  the 
hypothesis  of  no  unobserved  heterogeneity.  Then,  using  the  integrated 
hazard  function  as  the  generalized  residual,  the survival function is  given 
by  (see Lancaster 1985 [66], pp. 164-166) 

Differentiating  with respect to t and  after  some  algebraic  manipulation  of 
(104), we get for  small enough values  of 0: 

g&) " f ( t )  [ f  1 + ? ( E ?  - 2 E )  1 
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where g, is the  density  function  with  multiplicative  heterogeneity 2 ,  f is the 
density with z = 1. We can immediately see that, if we used normalized 
Legendre  polynomials to expand g,, we would get a  setup very similar to 
that of Neyman’s (1937 [76]) smooth test with  nuisance  parameters y (see 
also Thomas  and Pierce, 1979 [l  1 13). Further, the score test for  the exis- 
tence of heterogeneity (Ho : 6’ = 0, Le., Ho : 0: = 0) is based on  the sample 
counterpart of the  score  function, :(E’ - 2 ~ )  for i = 1. If s2 is the esti- 
mated  variance of the generalized residuals i, then  the  score test, which is 
also White’s (1982 [114]) information  matrix (IM) test of specification, is 
based on  the  expression s3 - I ,  divided by its  estimated standard  error 
(Lancaster 1985  [66]). This is a  particular  case  of  the  result  that  the IM 
test is a score test for neglected heterogeneity when the  variance of the 
heterogeneity is small, as pointed out in Cox (1983 [26]) and Chesher (1984 
[221). 

Although  the  procedure  outlined by Lancaster (1985 [66]) shows  much 
promise  for  applying  Neyman’s smooth test to  survival  analysis,  there are 
two  major  drawbacks.  First,  it  is difficult, if not  impossible,  to obtain real- 
life survival data  without  the problem of censoring or  truncation;  second, 
Lancaster (1985 [66]) worked within the  framework of the Weibull model, 
and  the  impact of model misspecification needs to be considered. Gray  and 
Pierce (1985 [45]) focused on the  second issue of misspecification in  the 
model  for survival times and  also tried to answer  the first question of cen- 
soring in some special cases. 

Suppose  the observed data is of the  form 

where Z{A)  is an  indicator  function  for event A and Vi are  random cen- 
soring times generated  independently of the data  from cdfs 
Ci. i = I ,  2, . . . , ! I .  Gray  and Pierce (1985 [45]) wanted to test the  validity 
of the  function G rather  than the effect of the  covariates x, on Ti. We can 
look at any  survival  analysis  problem (with or without  censoring or  trun- 
cation) in two parts.  First, we want to verify the  functional  form of the  cdf 
G,, i.e., to answer  the  question  whether  the  survival times are generated 
from  a  particular  distribution like Gi(r; B)  = 1 - exp(- exp(s:B)t); second, 
we want  to test the effect of the  covariates s i  on  the survival time Ti. The 
second  problem  has been discussed quite extensively in the  literature. 
However,  there  has been relatively less attention given to the first problem. 
This is probably because there  could be an infinite number of choices of 
the  functional  form of the  survival  function.  Techniques  based on 
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Neyman’s smooth test provide  an  opportunity  to  address  the  problem of 
misspecification in a  more  concrete way.* 

The main  problem discussed by Gray  and Pierce (1985 [45]) is to test 
Ho, which states  that  the generalized error VI = G,(T,: y, 0 = 0) = F,(T,; 
y)  is IID U(0. I ) ,  against  the  alternative H I ,  which is characterized by the 
Pdf 

where .f;.(r; y )  is the  pdf under No. Thomas  and Pierce (1979 [l  1 I]) chose 
$ / ( z I )  = d ,  but  one  could use any system of orthonormal polynomials 
such as  the normalized  Legendre  polynomials. In order  to  perform a 
score test as discussed in Thomas  and Pierce (1979 [ I  1 l]), which is an 
extension of Neyman’s smooth test in presence of nuisance  parameters, 
one must  determine  the  asymptotic  distribution of the  score  statistic. In 
the  case of censored data,  the  information  matrix  under  the null hypoth- 
esis will depend on the  covariates,  the  estimated  nuisance  parameters,  and 
also  on  the generally unknown  censoring  distribution, even in the sim- 
plest location-scale  setup. I n  order  to solve this  problem,  Gray  and Pierce 
(1985 [45]) used the  distribution  conditional  on  observed values in the 
same  spirit as  the EM algorithm  (Dempster et al. 1977 [32]). When  there 
is censoring.  the  true cdf or the  survival  function  can be estimated  using 
a  method like the  Kaplan-Meier or the Nelson-Aalen estimators 
(Hollander  and Peiia 1992 [53], p. 99). Gray  and Pierce (1985 [45]) 
reported limited simulation  results where they looked at  data generated 
by exponential  distribution with Weibull waiting  time.  They  obtained 
encouraging  results using Neyman’s smooth test over  the standard Iike- 
lihood ratio test. 

In  the  survival  analysis  problem.  a natural  function  to use is the  hazard 
function  rather  than  the  density  function. Peiia (1998a [89]) proposed  the 

’We should  mention  here  that a complete  separation of the misspecification problem 
and  the  problem of the effect of covariates is not always possible to a satisfactory 
level. 111 their  introduction,  Gray  and Pierce (1985 [45]) pointed  out: 

Although, i t  is difficult  in practice  to  separate  the issues, our interest is in  testing 
the  adequacy of the  form of F ,  rather  than in aspects related to the  adequacy of 
the  covariables. 

This  sentiment  has also been reflected in PEna (1998a. [89]) as he demonstrated  that 
the issue of  the effect of covariates is “highly intertwined with the goodness-of-fit 
problem  concerning A(.).’’ 
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smooth goodness-of-fit test obtained by embedding  the baseline hazard 
function A(.) in  a  larger family of hazard  functions  developed  through 
smooth,  and possibly random.  transformations  of lo(.) using the  Cox  pro- 
portional  hazard  model h(t lX(t))  = h(t)exp(p’X(t)),  where X ( t )  is a  vector of 
covariates. Peiia used an  approach based on generalized residuals within a 
counting process framework  as  described in Anderson  et  al. (1982 [l], 1991 
[2]) and reviewed in Hollander  and Peiia (1993 [53]). 

Suppose,  now, we consider  the  same data  as given in (106). (Y , ,  2;). In 
order  to facilitate our discussion on analyzing for censored data  for survival 
analysis, we define: 

1. The  number of actual  failure times observed  without  censoring  before 

2. The  number of individuals  who are still surviving at time f : R(t) = 

3 .  The  indicator  function  for any survivors at time t : J ( t )  = I ( R ( t )  > 0) .  
4. The  conditional  mean  number of survivors at risk at any time s E (0, t ) ,  

5. The difference between the  observed  and  the  expected  (conditional) 

time t :  N ( t )  = Cy=, I (  Y,  5 t ,Z,  = 1). 

E:.:, I (  Y,  L 0 .  

given that they survived till time s : A(t)  = & R(s)h(s)ds. 

numbers of failure times at time t : M ( t )  = N ( t )  - A([) .*  

Let F = (F, : f E T }  be the  history or  the  information set (filtration) or 
the  predictable process at time t .  Then,  for  the  Cox  proportional  hazards 
model,  the  long-run smooth “averages” of N are given by 
A = ( A ( t )  : t E T ) ,  where 

A ( t )  = R(s)h(s) exp(p’X(s)} ds, i = 1, . . . , ? I  I’ 
and f i  is a q x 1 vector of regression coefficients and X(s)  is a q x 1 vector of 
predictable  (or  predetermined)  covariate processes. 

The test developed by Peiia (1998a [ S S ] )  is for Ho : h(t) = ho(t), where ho 
( t )  is a  completely specified baseline hazard  rate  function associated with the 
integrated  hazard given by Ho(t) = &ho(s)ds, which is assumed to be 

*In  some sense, we can  interpret M ( t )  to be the residual or error in the  number of 
deaths or failures  over the  smooth  conditional  average of the  number of individuals 
who would die given that they  survived till time s E (0. t ) .  Hence, M ( t )  would  typi- 
cally be a martingale difference  process. The series A ( t ) ,  also known  as  the  compen- 
sator process, is absolutely  continuous with  respect to the Lebesgue measure  and is 
predetermined  at time t ,  since it is the definite integral  up  to time t of the  predeter- 
mined intmsity process given by R(s)A(s) (for  details see Hollander  and Peiia 1992 
[53], pp. 101-102). 
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strictly  increasing.  Following  Neyman (1937 [76]) and  Thomas  and Pierce 
(1979 [l 1 l]),  the  smooth class of alternatives  for  the  hazard  function  is given 
by 

h(t; e. B)  = h0(o exp{8'@(t; B)l ( 109) 

where 8 E Rk, k = 1 , 2 . .  . , and @(t;  B) is a  vector of locally bounded  pre- 
dictable  (predetermined) processes that  are twice continuously  differentiable 
with respect to B. So, as in  the  case of the  traditional  smooth test, we can 
rewrite  the null as Ho : 8 = 0. This gives the  score  statistic process under Ho 
as 

where M(r; 8, p)  = N ( t )  - A ( t ;  8. p),  i = 1, . . . , ) I .  To obtain  a  workable 
score test statistic  one  has  to  replace  the  nuisance  parameter j3 by its 
MLE under Ho. The efficient score  function ( l / f i ) U , " ( t ,  0. B) process  has 
an asymptotic  normal  distribution with 0 mean [see Peiia (1998a [89]), p. 676 
for  the variance-covariance  matrix r(., .; B)] .  

The  proposed  smooth test statistic is given by 

which has an asymptotic x i ,  distribution, 2 = rank[r(+r. r; B)], where 
r r.  r; B is the  asymptotic  variance of the  score  functlon. 

Pena (1998a [89]) also  proposed  a  procedure  to  combine  the  different 
choices of @ to get an  omnibus  smooth test that will have power  against 
several possible alternatives.  Consistent with the  original idea of Neyman 
(1937 [76]), and  as  later  proposed by Gray  and Pierce (1985 [45]) and 
Thomas  and Pierce (1979 [l  1 l]), Peiia considered  the  polynomial 
@(r ;  B)  = (1. Ho(t). . . . , HO($")', where, Ho(t) is the  integrated  hazard 
function  under  the null [for  details of the test see Peiia (1998a [89])]. 
Finally,  Peiia (1998b [90]), using  a similar counting-process approach, sug- 
gested a smooth goodness-of-fit test for  the  composite  hypothesis (see 
Thomas  and Pierce 1979 [I 1 11, Rayner  and Best  1989  [99], and Section  3). 

( - ^ >  

'Peiia (1998a [89], p. 676) claimed that we cannot get the  same  asymptotic results in 
terms of the  nominal size of the test if we replace B by any  other  consistent  estimator 
under H,,. The test statistic might not even be  asymptotically x?. 

" 
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4.4 Posterior  Predictive p-values  and  Related Tests in 
Bayesian Statistics and Econometrics 

In several areas  of research  p-value  might well be  the single most  reported 
statistic.  However, it has been  widely criticized because  of its indiscriminate 
use and relatively unsatisfactory  interpretation in the  empirical  literature. 
Fisher (1 945  [42], pp. 130-1 3 I), while criticizing the  axiomatic  approach  to 
testing, pointed  out  that setting up fixed probabilities  of  Type I error apriori 
could yield misleading  conclusions  about  the  data or the  problem at  hand. 
Recently, this issue gained attention in some fields of  medical  research. 
Donahue (1999  [37]) discussed  the information  content in the p-value  of  a 
test. If we consider F(rIHo) = F(r) to be the  cdf  of  a test statistic T under Ho 
and F( t lH , )  = G(t) to be  the  cdf  of T under the alternative,  the  p-value. 
defined as P(t) = P( T > t )  = 1 - F(t), is a  sample  statistic.  Under Ho, the p -  
value  has  a  cdf given  by 

Fp(plHo) = 1 - F[F"(l -p) lHo] = p  

whereas under  the  alternative H I  we have 

F,@lHI) = PrIP 5PlHl) = 1 - G((J"(1 -P)IHo)) 

Hence, the density  function of the  p-value (if it exists) is  given by 

This is nothing  but the "likelihood  ratio" as discussed by Egon  Pearson 
(1938  [84],  p.1 38) and given  in equation (18). If we reject Ho if the  same 
statistic T > k, then  the  probability  of  Type I error is  given  by CY = Pr (T  
klHo} = 1 - F(k) while the  power of the test is  given  by 

/3 = Pr(T > k l H 1 }  = 1 - G(k)  = 1 - G(F"(1 - CY)) (1 15) 

Hence.  the  main  point  of Donahue (1999  [37])  is that, if we have  a  small p -  
value, we can say that  the test is significant, and we can  also refer to  the 
strength  of the significance of  the test. This,  however, is usually  not  the  case 
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when we fail to reject the null hypothesis. In  that case, we do  not have  any 
indication  about  the  probability of Type I1 error  that is being committed. 
This is reflected by the power and size relationship given in (1 15). 

The p-value and its  generalization, however. are firmly embedded  in 
Bayes theory as  the tail  probability of a predictive  density. In  order  to 
calculate  the  p-value, Meng (1994 [74]) also  considered  having a nuisance 
parameter in the  likelihood  function or predictive  density.  We  can see that 
the classical p-value is given by p = P ( T ( X )  2 T(x)lHo), where T(.) is a 
sample  statistic  and .x is a  realization of the  random  sample X that is 
assumed to follow  a  density  function f ( X l t ) ,  where t = (6',  yl) 'cS. 
Suppose,  now we have to test H, : 6 = 6,  against H ,  : 6 # 6,. In Bayesian 
terms, we can replace X by a future replication of x. call it xrep,  which is like 
a  "future  observation."  Hence, we define the predictive p-value as p B  = P( 
T(s'") 2 T(s)ls,  Ho}  calculated  under  the  posterior  predictive  density 

where nO(t(s) and no(tls) are respectively the  posterior  predictive  distribu- 
tion  and density  functions of 4, given s ,  and  under Ho. Simplification in 
(1 16) is obtained by assuming ro = {t : Ho is true ] = {(ao, y )  : y E A ,  A c 
Rd, d 2 1) and defining 5(y160) = n(6, y(6  = AO), which gives 

This  can  also  be generalized to  the case of a  composite  hypothesis by 
taking  the  integral  over all possible values of 6 E Ao, the  parameter  space 
under Ho. An  alternative  formulation of the  p-value. which makes it clearer 
that the  distribution of the  p-value  depends on  the nuisance  parameter y. is 
given by p ( y )  = P { D ( X ,  t)  2 D ( s ,  c)160, y}, where  the  probability is taken 
over  the  sampling  distribution f ( X l s 0 ,  y), and D ( X ,  t )  is a test statistic  in 
the classical sense that  can be  taken as a  measure  of  discrepancy.  In order  to 
estimate  the  p-value p ( y )  given that y is unknown, the  obvious Bayesian 
approach is to take  the  mean of p ( y )  over  the  posterior  distribution of y 
under Ho, i.e., E[p(y) lx .  HO] = ps. 

The  above  procedure of finding  the  distribution of the  p-value can be 
used in diagnostic  procedures in a Markov  chain  Monte  Carlo  setting dis- 
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cussed by Kim  et  al. (1998 [61]). Following  Kim et al. (1998 [61]. pp. 361- 
362), let us consider  the simple stochastic  volatility  model 

J', = Be ' - E , ,  t 2 1,  I 1  p 

where y, is the  mean  corrected  return on holding an asset at time I ,  I?, is the 
log volatility which is assumed to be stationary (i.e., 141 < 1) and h ,  is drawn 
from  a  stationary  distribution  and, finally, and q, are  uncorrelated  stan- 
dard  normal white noise  terms.  Here, B can be interpreted  as  the  modal 
instantaneous  volatility  and $I is a  measure of the  persistence of volatility 
while ov is the  volatility of log  volatility / I , .*  

Our main  interest is handling of model  diagnostics  under  the Markov 
chain  Monte  Carlo  method. Defining 6 = (p. 4, D:)', the  problem is to sam- 
ple from  the  distribution of /?,I Y,, 6 ,  given a  sample of draws / ~ f - ~ ,  I I : - ~ ,  . . . , 

from / I , - ,  I Y,-,, [, where we can  assume 6 to be fixed. Using  the Bayes 
rule discussed in equations (1  16) and (1 17), the  one-step-ahead  prediction 
density is given by 

and, f o r  each value of 140 = 1 , 2 , .  . . . M ) ,  we sample /(+, from  the 
conditional  distribution given 11,.  Based on M such  draws, we can 
estimate  that  the  probability  that y:+l would  be less than the  observed ypil 
is given by 

k 

which is the  sample  equivalent of the  posterior  mean  of  the  probabilities 
discussed in Meng (1994 741). Hence,  under  the  correctly specified 

*As Kim  et  al. (1998 [61]. p. 362) noted,  the  parameters j3 and p are  related in the  true 
model by j3 = exp(p/2); however, when estimating  the  model, they set /3 = 1 and left 
p unrestricted. Finally,  they reported  the  estimated value of B from  the  estimated 
model as exp ( p / 2 ) .  
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model will  be IID U(0, 1) distribution  as M + 00. This result is an exten- 
sion of Karl  Pearson (1933 [87], 1934 [SS]), Egon  Pearson (1938 [84]). and 
Rosenblatt (1952 [loll), discussed earlier, and is very much in the spirit of 
the goodness-of-fit test suggested by Neyman (1937 [76]). Kim  et  al. (1998 
[61]) also discussed a  procedure  similar to the  one followed by Berkowitz 
(2000 [ 171) where  instead of looking at just u::, , they looked at the inverse 
Gaussian  transformation, then carried out tests on  normality,  autocorrela- 
tion. and heteroscedasticity.  A  more  comprehensive test could be performed 
on the  validity of forecasted  density based on Neyman’s smooth test tech- 
niques that we discussed in Section 4.2 in connection with the  forecast 
density  evaluation  literature  (Diebold  et  al. 1998  [33]). We believe that  the 
smooth test provides  a  more  constructive  procedure  instead of just checking 
uniformity of an average  empirical  distribution  function I&, on  the  square 
of the  observed values y::, given in (120) and  other  graphical techniques like 
the Q-Q plots  and  correlograms  as suggested by Kim et a]. (1998 [61], pp. 
380-382). 

5. EPILOGUE 
Once in a  great while a  paper is written  that is truly  fundamental.  Neyman’s 
(1937 [76]) is one  that seems impossible to  compare with anything  but itself, 
given the  statistical scene in the 1930s. Starting  from  the very first principles 
of testing,  Neyman derived an opriml test statistic  and discussed its  appli- 
cations  along with its  possible  drawbacks.  Earlier tests, such as  Karl 
Pearson’s (1900 [86]) goodness-of-fit and Jerzy Neyman  and Egon 
Pearson’s (1928 [79]) likelihood ratio tests  are  also  fundamental, but  those 
t.est statistics were mainly  based on intuitive grounds  and  had  no claim for 
optimality when they were proposed.  In  terms of its significance in the 
history of hypothesis  testing,  Neyman (1937 [76]) is comparable  only to 
the  later  papers by the likes of Wald (1943 [113]), Rao (1948 [93]), and 
Neyman (1959 [77]), each of which also  proposed  fundamental test princi- 
ples that satisfied certain  optimality  criteria. 

Although  econometrics is a separate discipline, it is safe to say that  the 
main  fulcrum of advances in econometrics is, as i t  always  has been, statis- 
tical theory.  From  that  point of view, there is much  to gain from  borrowing 
suitable  statistical  techniques and  adapting them for  econometric  applica- 
tions.  Given  the  fundamental  nature  of  Neyman’s (1937 [76]) contribution, 
we are surprised that  the  smooth test has  not been formally used in econo- 
metrics, to  the best of our knowledge.  This  paper is our modest attempt  to 
bring  Neyman’s smooth test to  mainstream  econometric research. 



Neyman’s Smooth Test and Its Applications in Econometrics 223 

ACKNOWLEDGMENTS 

We  would like to  thank  Aman  Ullah  and  Alan  Wan,  without whose encour- 
agement and  prodding this paper would not have  been  completed.  We are 
also  grateful  to an  anonymous referee and  to Zhijie Xiao  for  many helpful 
suggestions that have  considerably  improved  the  paper.  However, we retain 
the responsibility for  any  remaining  errors. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

61 

7. 

8. 

9. 

10. 

P. K. Anderson, 0. Borgan, R. D. Gill, N. Keiding.  Linear  nonpara- 
metric tests for  comparison  of  counting  processes,  with  applications 
to  censored survival data. International Statistical Review 50:219-258, 
1982. 
P. K.  Anderson, 0. Borgan,  R. D. Gill,  N.  Keiding. Statistical 
Models Based on Counting Processes. New York: Springer-Verlag, 
1991. 
D. E. Barton.  On Neyman’s smooth test of  goodness  of fit and  its 
power  with respect to a  particular system  of  alternatives. 
Skandinnviske Aktunrietidskrijt 36:24-63, 1953a. 
D. E. Barton.  The  probability  distribution  function  of  a sum  of 
squares. Trabajos de Estadistica 4:  199-207, 1953b. 
D. E. Barton.  A  form of  Neyman’s test of  goodness  of fit applic- 
able to grouped  and discrete data. Skandinaviske  Aktuarietidskrgt 

D. E. Barton.  Neyman’s y?: test of  goodness  of fit when  the null 
hypothesis is composte. Skarzdinaviske Aktuarietidskrijt 39:2 16-246, 
1956. 
D. E. Barton. Neyman’s and  other  smooth goodness-of-fit tests. In: S .  
Kotz  and  N. L. Johnson,  eds. Encyclopedia of Statistic Sciences, Vol. 
6. New York: Wiley, 1985, pp. 230-232. 
T. Bayes, Rev.  An  essay  toward  solving  a  problem in the  doctrine of 
chances. Philosophical Transactions of the  Roynl  Society 53:370418, 
1763. 
B. J. Becker. Combination of p-values. In: S .  Kotz. C .  B. Read  and D. 
L. Banks,  eds. Encyclopedia of Statistical Sciences, Update Vol. I. 
New York: Wiley, 1977, pp.  448453. 
A.  K. Bera.  Hypothesis testing in the 20th century with special refer- 
ence to testing with  misspecified  models. In:  C.  R.  Rao  and  G. 
Szekely. eds. Statistics in the 21st Centzw~~. New York: Marcel 
Dekker, 2000, pp. 33-92. 

38:1-16.  1955. 



224 Bera and Ghosh 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

A. K. Bera, Y. Bilias. Rao's score. Neyman's C(cr) and Silvey's LM 
test: An essay on historical  developments and some new results. 
Journal of Stotistical Planning and In&eyence, 97:944. 2001. (2001a). 
A. K. Bera, Y. Bilias. On some  optimality  properties of Fisher-Rao 
score  function in testing and  estimation. Conzmuniccrtions ill Statistics, 
Theory and Methods. 2001. Vol. 30 (2001b). 
A. K. Bera, Y. Bilias. The  MM,  ME,  MLE,  EL, EF, and  GMM 
approaches  to  estimation: A  synthesis. Jo~rrxol of Econonletrics. 
2001 forthcoming (2001~).  
A. K. Bera, A. Ghosh.  Evaluation  of density  forecasts  using 
Neyman's smooth test.  Paper to be presented at the 2002 North 
American  Winter  Meeting of the  Econometric  Society, 2001. 
A. K. Bera, G.  Premaratne.  General hypothesis  testing. In: B. Baltagi, 
B. Blackwell, eds. Coinpanion in Econometric Theory. Oxford: 
Blackwell Publishers, 2001. pp. 38-61. 
A. K. Bera, A.  Ullah.  Rao's score test in econometrics. Journcrl of 
Quantitutive Econon~ics 7:  189-220,  199 1 .  
J .  Berkowitz. The accuracy of density  forecasts in risk management. 
Manuscript, 2000. 
P. J. Bickel, K. A.  Doksum. Mathernutical Statistics: Basic Idem crrzd 
Selected topics. Oakland,  CA:  Holden-Day. 1977. 
B. Boulerice, G.  R.  Ducharme. A note  on  smooth tests of  goodness of 
fit for  location-scale families. Biometrikn 82437438, 1995. 
A. C .  Cameron. P. K. Trivedi.  Conditional  moment  tests  and  ortho- 
gonal  polynomials. Working  paper in Economics,  Number 90-051. 
Indiana University, 1990. 
T. K. Chandra, S. N. Joshi.  Comparison of the  likelihood  ratio, 
Rao's  and Wald's tests and a  conjecture by C.  R.  Rao. Scrnkhyi, 
Series A 45:226-246.  1983. 
A. D. Chesher.  Testing  for neglected heterogeneity. Econolnetriccr 

S. Choi, W. J.  Hall,  A. Shick.  Asymptotically  uniformly  most  power- 
ful tests in parametric  and  semiparametric models. Anltc:ls of 

P. F. Christoffersen.  Evaluating  interval  forecasts. Inte~natiortai 
Economic Revie" 39341-862, 1998. 
G. M. Cordeiro. S. L. P.  Ferrari. A modified score test statistic  having 
chi-squared  distribution  to  order n " .  Biometrika 78:573-582. 1991. 
D. R. Cox.  Some  remarks on over-dispersion. Biometrikcr 70;269-274, 
1983. 
D. R.  Cox, D. Oakes. ..lnulysis of Stwvivd Dnto. New York: 
Chapman  and  Hall, 1984. 

521865-872, 1984. 

S t n t i ~ t i c ~  241841-861, 1996. 



Neyman’s Smooth Test and Its Applications in Econometrics 225 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

H. Cramer. Mathematical  Methods of Statistics. New Jersey: 
Princeton  University Press, 1946. 
F. Cribari-Neto, S. L. P.  Ferrari. An improved  Lagrange  multiplier 
test for  heteroscedasticity. Communications in Strrtistics-Simlllatioll 
and Computation 24:3144, 1995. 
C. Crnkovic, J. Drachman.  Quality  control.  In;  VAR: Urlderstnndi~zg 
and ApplJing  Value-at-Risk. London: Risk  Publication, 1997. 
R. B. D’Agostino, M. A.  Stephens. Goodness-of-Fit  Techniques. New 
York:  Marcel  Dekker, 1986. 
A. P. Dempster,  N.  M.  Laird,  D. B. Rubin.  Maximum likelihood 
from  incomplete data via the EM algorithm. Journal sf the Royal 
Statistical  Society, Series B 39:l-38, 1977. 
F. X. Diebold, T. A.  Gunther,  A. S. Tay.  Evaluating density  forecasts 
with applications  to financial risk management. International 
Economic  Review 39:863-883, 1998. 
F. X. Diebold, J.  Hahn,  A. S. Tay.  Multivariate density  forecast 
evaluation  and  calibration in financial risk management: high-fre- 
quency  returns in foreign exchange. Review of Economics and 
Statistics 81:661-673. 1999. 
F. X. Diebold, J. A.  Lopez.  Forecast  evaluation and  combination.  In: 
G. S. Maddala  and  C.  R.  Rao, eds. Handbook of Statistics, Vol. 14. 
Amsterdam:  North-Holland, 1996, pp. 241-268. 
F. X. Diebold,  A. S. Tay, K. F. Wallis. Evaluating  density  forecasts 
of inflation:  the  survey of professional  forecasters. In:  R.  F. Engle. H. 
White,  eds. Cointegratiolz, Causality and Forecasting: Festscltrift in 
Honour of Clive W. Granger. New  York:  Oxford  University Press, 
1999, pp. 76-90. 
R. M. J. Donahue. A  note on information seldom reported via the p 
value. American  Statisricinn 53:303-306, 1999. 
R. L. Eubank, V. N. LaRiccia.  Asymptotic  comparison of CramCr- 
von Mises and  nonparametric  function  estimation techniques  for test- 
ing  goodness-of-fit. Anncrls of Statistics 20:2071-2086, 1992. 
J.  Fan. Test of significance based on wavelet thresholding and 
Neyman’s  truncation. Journal of the Anzerican Statistical 
Association 91:674-688, 1996. 
R. A.  Fisher. On the  mathematical  foundations of theoretical  statis- 
tics. Pltilosophical Transactions of the Royal  Society A222:309-368, 
1922. 
R. A.  Fisher.  Inverse  probability. Proceedings of the  Cambridge 
Philosophical Society 36:528-535. 1930. 
R.  A. Fisher. The logical inversion of the  notion of a random vari- 
able. SanklTyii 7:129-132, 1945. 



226 Bera and Ghosh 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

R. A.  Fisher. Stutistical  Methods for Research  Workers. 13th ed. New 
York:  Hafner, 1958 (first published in 1932). 
J.  K.  Ghosh.  Higher  order  asymptotics  for  the likelihood  ratio,  Rao’s 
and Wald’s  tets. Statistics & Probubility  Letters 12505-509, 1991. 
R.  J.  Gray, D. A. Pierce.  Goodness-of-fit tests for  censored  survival 
data. Annals of Stutistics 13:552-563, 1985. 
T. Haavelmo.  The  probability  approach in  econometrics. 
Supplenlents to Econonzetrica 12, 1944. 
T. Haavelmo.  Econometrics and the welfare state:  Nobel  lecture. 
December 1989. Anzerican Economic Review 87: 13-1 5 ,  1997. 
M. A. Hamdan.  The power of certain smooth tests of goodness of fit.  
Austrcrlian Jozrrml of Statistics 4:25-40, 1962. 
M. A. Hamdan. A smooth test of  goodness  of fit based on Walsh 
functions. Atrstrcrlia17 Journal of Stutistics 6: 130-1 36, 1964. 
P.  Harris.  An  asymptotic expansion  for  the null distribution of the 
efficient score  statistic. Bionzetrilca 72:653-659, 1985. 
P. Harris.  Correction to  “An  asymptotic  expansion  for the null dis- 
tribution of the efficient score  statistic.” Bionzetrikn 74:667, 1987. 
J. D. Hart. Norzprrra~netrYc Snzoothing and  Lack of Fit Tests. New 
York: Springer-Verlag, 1997. 
M. Hollander, E. A. Peiia. Classes of nonparametric goodness-of-fit 
tests  for  censored data.  In:  A.  K.  Md.E. Saleh, ed. A New  Approoch in 
Nonparametric  Statistics  and  Related  Topics. Amsterdam: Elsevier, 

T. Inglot, T. Jurlewicz, T. Ledwina.  On  Neyman-type smooth tests of 
fit. Stcrtistics 2 1 :549-568,  1990. 
T. Inglot,  W. C .  M. Kallenberg, T. Ledwina.  Power  approximations 
to  and power  comparison  of  smooth goodness-of-fit tests. 
Scundinavinn Journal of Stcrtistics 21:131-145. 1994. 
S. L.  Isaacson. On the  theory  of  unbiased  tests  of  simple  statistical 
hypothesis specifying the values of two or more  parameters. Annals of 
Muthernatical Statistics 22217-234. 1951. 
N. L.  Johnson, S .  Kotz. Contintrorls Univariclte Distributions-1. New 
York:  John Wiley, 1970a. 
N. L. Johnson, S. Kotz. Contintro~rs Univoriate  Distributions-2. New 
York:  John Wiley, 1970b. 
W. C. M. Kallenberg, J. Oosterhoff, B. F. Schriever. The  number of 
classes in x 2  goodness of fit test. Journal of’ the American Statisticcrl 
Association 80:959-968, 1985. 
N.  M. Kiefer. Specification diagnostics  based on  Laguerre  alterna- 
tives for  econometric  models  of  duration. Jorrr.nal of Econonretrics 

1992, pp. 97-1 18. 

28:135-154, 1985. 



Neyman’s Smooth Test and Its Applications  in  Econometrics 227 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 
73. 

74. 

75. 

76. 

77. 

78. 

S .  Kim, N. Shephard, S .  Chib.  Stochastic volatility: Likelihood infer- 
ence and  comparison  with ARCH models. Review of Ecorzonlic 
Studies 65:361-393, 1998. 
L. Klein. The  Statistics  Seminar,  MIT,  194243. Statisticcrl Sciencc. 

K.  J. Kopecky, D. A. Pierce. Efficiency of  smooth  goodness-of-fit 
tests. Journal of the Anlericnn Statisticcrl Association 74:393-397. 
1979. 
J. A. Koziol.  An  alternative  formulation  of  Neyman’s  smooth  good- 
ness of fit tests under  composite  alternatives. Metrika 34:17-24,  1987. 
P. H. Kupiec.  Techniques  for verifying the accuracy of risk measure- 
ment  models. Journal of Derivntives. Winter: 73-84. 1995. 
T. Lancaster.  Generalized residuals and  heterogeneous  duration  mod- 
els. Jolrrnal of Econometrics 28:155-169, 1985. 
V. N.  LaRiccia.  Smooth  goodness-of-fit tests: A  quantile  function 
approach. Jorcrnal of the Anzerican  Statistical  Association 86:427- 
431. 1991. 
T. Ledwina.  Data-driven  version  of  Neyman’s  smooth test of fit. 
Journal of the American  Statistical  Association 89:  1000-1005,  1994. 
L.-F. Lee.  Maximum  likelihood  estimation  and  a specification test for 
non-normal  distributional  assumption  for  the accelerated  failure  time 
models. Journal of’ Econometrics 24: 159-179,  1984. 
L.-F. Lee. Specification test for  Poisson  regression  models. 
I~zternational  Econonlic  Review 27:689-706,  1986. 
E. L.  Lehmann. Testing  Statistical  Hypothesis. New York:  John 
Wiley, 1959. 
G.  S .  Maddala. Econometrics. New York:  McGraw-Hill, 1977. 
P. C. Mahalanobis.  A revision of Risley’s anthropometric  data  relat- 
ing to  Chitagong hill tribes. SankhyC B 1:267-276,  1934. 
X.-L.  Meng.  Posterior predictive p-values. Annuls of Statistics 
22:1142-1160,  1994. 
R. Mukerjee.  Rao’s  score test: recent  asymptotic  results.  In: G .  S .  
Madala,  C. R. Rao,  H. D. Vinod, eds. Handbook of Statistics, Vol. 
11 .  Amsterdam:  North-Holland, 1993, pp. 363-379. 
J. Neyman.  “Smooth  test” for goodness  of fit. Skm~dinaviske 
Aktuarietidskr$t 20:  150-199,  1937. 
J.  Neyman.  Optimal  asymptotic test of  composite  statistical  hypoth- 
esis. In:  U.  Grenander.  ed. Probability and Statistics, the Harold 
Crardr Volume. Uppsala:  Almqvist and Wiksell, 1959, pp. 213-234. 
J. Neyman. Some  memorable  incidents in probabilistic/statistical stu- 
dies. In: I. M.  Chakrabarti,  ed. Asynzptotic  Theory of Stutistical  Tests 
and  Estimation. New York:  Academic Press, 1980, pp. 1-32. 

61320-330, 1991. 



228 Bera and Ghosh 

79. 

80. 

81. 

82. 

83. 

84. 

85. 

86. 

87 

88. 

89. 

90. 

91. 

92. 

J. Neyman. E. S. Pearson.  On the use and  interpretation  of  certain 
test criteria  for  purpose of statistical inference. Biornetrika 20:175- 
240,  1928. 
J. Neyman, E. S. Pearson. On the  problem of the  most efficient tests 
of  statistical  hypothesis. Pl~ilosophicrrl Transactions of the Roycrl 
Society, Series  A 23 1289-337, 1933. 
J. Neyman, E. S. Pearson.  Contributions  to  the theory of testing 
statistical  hypothesis I: Unbiased  critical  regions of Type A and A , .  
Stcrtisticnl Reseurrlr Menzoirs 1 : 1-37, 1936. 
J. Neyman, E. S. Pearson.  Contributions  to  the theory of testing 
statistical  hypothesis. Statistical Research Mernoirs 22-57 .  1938. 
F. O’Reilly, C.  P. Quesenberry.  The  conditional  probability integral 
transformation  and  applications  to  obtain  composite  chi-square 
goodness of fit tests. Allnals of Stcrtistics 1174-83, 1973. 
E. S .  Pearson.  The  probability integral  transformation  for  testing 
goodness of fit and  combining  independent tests of significance. 
Bioltletrika 30:  134-148,  1938. 
E. S. Pearson.  The Neyman-Pearson  story: 1926-34. historical side- 
lights on  an episode in Anglo-Polish  collaboration.  In: F. N. David. 
ed. Research Popers in Statistics, Festscrtfifor J .  Neyrncrtl. New York: 
John Wiley. 1966, pp. 1-23. 
K. Pearson. On the  criterion  that a given system of deviations  from 
the  probable in the  case of a  correlated system of variables is such 
that it can reasonably be supposed  to have arisen  from random  sam- 
pling. Philosophical Magazine, 5th Series 50: 157-1 75,  1900. 
K. Pearson.  On  a  method of determining  whether  a  sample of size n 
supposed to have been drawn  from  a  parent  population  having  a 
known  probability  integral  has  probably been drawn  at  random 
BionzetriX-a 25:379410, 1933. 
K. Pearson.  On a new method of determining  “goodness of fit.” 
Biometrika 26:425-442.  1934. 
E. Peiia. Smooth goodness-of-fit tests  for  the baseline hazard in Cox’s 
proportional  hazards  model. Jotrrnal of the .41nericnn Stntisticcrl 
Association 93:673-692, 1998a. 
E. Peiia. Smooth goodness-of-fit  tests  for  composite  hypothesis in 
hazard based models. Annuls of Stutistics 28:1935-1971, 1998b. 
D. A. Pierce. The  asymptotic effect of substituting  estimators  for 
parameters in certain  types of statistics. Atznals qf Stcrtistics 10:475- 
478,  1982. 
C. P. Quesenberry.  Some  transformation  methods in a  goodness-of- 
fit.  In:  R. B. D‘Agostino, M.A. Stephens.  eds. Goodness-of-Fit 
Techrziques. New York: Marcel  Dekker, 1986, pp. 235-277. 



Neyman’s Smooth Test and Its Applications  in  Econometrics 229 

93. 

94. 

95. 

96. 

97. 

98. 

99. 

100. 
101. 

102. 

103. 

104. 

105. 

106. 

107. 

108. 

109. 

110. 

C.  R.  Rao. Large  sample of tests of statistical  hypothesis  concerning 
several parameters with applications  to  problems of estimation. 
Proceedings of the Catnbridge Philoscyd~ical Society 44:50-57, 1948. 
C. R.  Rao. Advnnced Stutisticd  hfethods in Biometric  Research. New 
York:  John Wiley, 1952. 
C.  R.  Rao. Linear Stutisticul  Inference and i ts Applications. New 
York:  John Wiley, 1973. 
C. R. Rao,  R. Mukerjee.  Tests based on  score  statistics:  power prop- 
erties and related results. Mathematical  Methods of Statistics 3:46-6 1, 
1994. 
C. R.  Rao,  R. Mukerjee.  Comparison of LR. score and Wald tests in 
a  non-I1 D setting. Journal of Multivarirrte Anulysis 60:99-1 IO, 1997. 
C.  R.  Rao, S. J. Poti.  On locally most  powerful  tests when the  alter- 
natives are one-sided. Salzkhyi 7:439, 1946. 
J.  C.  W. Rayner. D. J. Best. Smooth  Tests of Goodness of Fit. New 
York:  Oxford University Press, 1989. 
C. Reid. Nq~~nun-F‘ron~  Life. New York:  Springer-Verlag, 1982. 
M. Rosenblatt.  Remarks on a multivariate  transformation. Annals of 
Mrrthen~crrical Strrtistics 23:470472. 1952. 
A. SenGupta, L. Vermeire. Locally optimal  tests  for  multiparameter 
hypotheses. Jolrrncrl of the  American Stcrtistical Associatior? 81 :8 19- 
825. 1986. 
R. J. Smith.  On the use  of distributional misspecification checks in 
limited dependent  variable  models. The Econornic Journul 99 
(Supplement  Conference  Papers): 178-1 92, 1989. 
C. Smithson.  L. Minton.  How  to calculate  VAR. In: VAR: 
Understunditlg c r d  Applliing Vrllue-at-Risk. London: Risk 
Publications, 1997, pp. 27-30. 
H. Solomon, M. A.  Stephens.  Neyman’s test for  uniformity. In: S. 
Kotz  and N. L. Johnson, eds. Encyclopedict of Statistical Sciences, 
Vol. 6. New York: Wiley, 1985, pp. 232-235. 
E. S. Soofi. Information  theoretic regression methods.  In: T. M. 
Fomby. R. C.  Hill,  eds. Advcrnces i n  Econometrics, vol. 12. 
Greenwich:  Jai Press.1997, pp. 25-83. 
E. S. Soofi. Principal  information  theoretic  approaches. Journul of the 
Americrrn Statistical Associution 95: 1349-1353, 2000. 
C.  J.  Stone. Large-sample inference for log-spline models. Annals s f  
Statistics 18:717-741. 1990. 
C. J. Stone,  C-Y. Koo/ Logspline density estimation. Contempory 
Mcrthenlcrtics 59:l-15. 1986 
A. S. Tay, K. F. Wallis. Density  forecasting:  A  survey. Jourrml of 
Fowcclsting 19:235-254, 2000. 



230 Bera and Ghosh 

11 1.  D. R. Thomas. D. A. Pierce. Neyman's smooth goodness-of-fit test 
when the  hypothesis is composite. Jozwnul of the American Statistical 
Associution 74441445, 1979. 

112. L. M. C .  Tippett. The A4ethods of Statistics. 1st Edition.  London: 
Williams and  Norgate, 1931. 

113. A. Wald.  Tests of statistical  hypotheses  concerning several para- 
meters  when  the  number of observations is large. Trut1sctctions of 
the Anwricm  Mutken~atical Societ)> 54:426-482. 1943. 

114. H. White.  Maximum  likelihood  estimation of misspecified models. 
Econonwtricu 50: 1-25, 1982. 

115. B. Wilkinson. A statistical  consideration in psychological research. 
Psychology Bzrlletin 48:156-158, 1951. 



Computing the Distribution of a  Quadratic 
Form in Normal Variables 
R. W. FAREBROTHER Victoria  University  of  Manchester, 
Manchester,  England 

1. INTRODUCTION 

A wide class of statistical  problems  directly or indirectly  involves  the  eva- 
luation  of  probabilistic  expressions of the  form 

Pr(zr'Rrr < x )  ( 1 . 1 )  

where ,u is an t n  x 1 matrix  of random variables that is normally  distributed 
with mean  variance Q. 

U - N(6. Q) (1 2 )  

and where .v is a  scalar, 6 is an tn x 1 matrix, R is an m x 117 symmetric 
matrix,  and Q is an m x 117 symmetric  positive  definite  matrix. 

In this  chapter, we  will outline  developments  concerning  the  exact  eva- 
luation  of  this  expression.  In  Section 2 we  will discuss  implementations of 
standard  procedures which involve  the  diagonalization of the nl x n7 matrix 
R, whilst in  Section 3 we will discuss  procedures  which do not require  this 
preliminary  diagonalization.  Finally, in Section 4 we  will apply  one  of  the 
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diagonalization  techniques to obtain  the 1, 2.5. and 5 percent  critical  values 
for  the  lower and  upper  bounds of  the  Durbin-Watson  statistics. 

2. DIAGONAL QUADRATIC FORMS 

Let L be an ttl x nz lower  triangular  matrix  satisfying LL’ = R and lev 21 = 
L“ and Q = L’RL; then U‘RU = v’Qv and we have to evaluate  the  expres- 
sion 

Pr(v’Qz1 < .x) (2.1) 

where ‘u = L”u is normally  distributed  with  mean p = L-’6 and variance 

Now, let H be an tn x tn orthonormal  matrix  such  that T = H‘QH is 
tridiagonal  and let 11’ = H‘v; then .u’Qv = w’Tw and we have to evaluate  the 
expression 

I,,, = L-’Q(L’)-*. 

Pr(w’Tw < x) (2.2) 

where 11’ = H’u is normally  distributed  with  mean K = H‘p and  variance 
I,,, = H’H.  

Finally, let G be an m x tn orthonormal  matrix such that D = C’TC is 
diagonal  and let z = G’Iv; then w’Tw = Z’DZ and we have to evaluate 

Pr(r’Dz < .x) (2.3) 

where z = G’w is normally  distributed with mean 21 = GL. and  variance 
I,,, = G’G. 

Thus expressions (l.l),  (2.1), or (2.2)  may be evaluated  indirectly by 
determining  the  value of 

(2.4) 

where, for j = 1.2, . . . , m ,  z, is independently  normally  distributed  with 
mean 2) and unit  variance. 

Now,  the  characteristic  function of the weighted sum of  noncentral s z (  1) 
variables z’Dz is given  by 

@ ( t )  = [Ucf)]”’~ (2.5) 

where I = A. f = 2it, and 

Ucf) = det(I -fD)exp[v’v - v’(I -fD)“v] (2.6) 
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Thus,  probabilistic  expressions  of  the  form ( I  . l )  may be evaluated by 
applying  the  Imhof  [I],  Ruben [2], Grad  and  Solomon [3], or  Pan [4] pro- 
cedures  to  equation (2.4). 

(a)  The  standard  Imhof  procedure is a  general  procedure  which 
obtains  the desired result by numerical  integration.  It  has been 
programmed in Fortran by Koerts  and  Abrahamse [5] and in 
Pascal by Farebrother [6]. An  improved  version  of  this  procedure 
has  also  been  programmed in Algol by Davies [7]. 

(b) The  Ruben  procedure  expands  expression (2.4) as  a sum  of  central 
~ ‘ ( 1 )  distribution  functions  but its use is restricted to positive 
definite matrices. It has  been  programmed in Fortran by Sheil 
and  O’Muircheartaigh [8] and in Algol by Farebrother [9]. 

(c)  The Grad  and  Solomon  (or  Pan)  procedure uses contour  integra- 
tion  to  evaluate  expression (2.5) but its use  is restricted to  sums of 
central ~ ’ ( 1 )  variables with  distinct  weights.  It  has been pro- 
grammed in Algol by Farebrother [ IO,  1 I]. 

(d)  The  Ruben  and  Grad  and  Solomon  procedures  are very much 
faster  than  the  Imhof  procedure  but  they  are  not of such  general 
application;  the  Ruben  procedure is restricted to positive linear 
combinations of noncentral X’ variables whilst the Grad  and 
Solomon  procedure  assumes  that  the X’ variables are  central; 
see Farebrother [I21 for  further  details. 

3. NONDIAGONAL QUADRATIC FORMS 

The  fundamental problem  with the standard  procedures  outlined in 
Section 2 is that the matrices R, Q+ and T have to be reduced to diag- 
onal  form  before these methods  can be applied.  Advances in this  area by 
Palm  and  Sneek [13], Farebrother [14], Shively, Ansley and  Kohn  (SAK) 
[15] and Ansley, Kohn  and Shively (AKS) [I61 are based on  the  observa- 
tion  that  the  transformed  characteristic  function qcf) may  also  be  written 
as 

or  as 

Wcf) = det(Z -fQ) exp[p’p - p’(1 - FQ)”p] (3.2) 

or  as 
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qcf) = det(Q)det( Q"fR)exp[6'Q-16 - 6'(Q" -fR)-IS] (3.3) 

so that  the  numerical  integration of the Imhof  procedure may be performed 
using  complex  arithmetic. 

(e) Farebrother's [ 141 variant  of  Palm  and Sneek's [13] procedure is of 
general application,  but  it  requires  that  the  matrix Q be con- 
structed  and reduced to tridiagonal  form. It has been programmed 
in Pascal by Farebrother [6]. 

(f) The  SAK  and  AKS procedures are of more restriced application  as 
they assume that R and Q may be expressed as R = PAP' - cZ,,, 
and Q = OCP', where A and C (or  their inverses) are n x I I  sym- 
metric  band  matrices and where P is an m x I I  matrix  of rank 112 

and is the  orthogonal  complement of a  known / I  x (11 - 117) matrix, 
and satisfies PP' = Z",. 

In  this  context,  with 6 = 0 and .x = 0, and with further restric- 
tions  on  the  structure of the  matrix Q, SAK [15] and  AKS [16] 
respectively used the modified Kalman filter and the Cholesky 
decomposition  to  evaluate expression  (3.3) and  thus (1.1) without 
actually  forming  the  matrices R. Q. or Q> and  without reducing Q 
to  tridiagonal  form. 

Both of these procedures  are very much  faster  than  the  Davies 
[7], Farebrother  [lo, 111, and  Farebrother [6] procedures  for large 
values of 11, but  Farebrother [17] has expressed grave  reservations 
regarding  their  numerical  accuracy  as  the  Kalman filter and 
Cholesky  decomposition  techniques  are  known to be  numerically 
unstable  in  certain  circumstances. 

Further. the  implementation of both  procedures is specific to  the 
particular class of A and C matrices selected, but Kohn, Shively, 
and Ansley (KSA) [18] have  programmed  the  AKS  procedure in 
Fortran  for  the generalized Durbin-Watson  statistic. 

(g)  In  passing, we note  that  Shephard [19] has extended the  standard 
numerical  inversion  procedure to expressions of the  form 

where R1, R 2 .  . . . , R,, are a set of 111 x 112 symmetric  matrices, .xl, 
.x2, . . . , h are the  associated  scalars, and again tl is an m x 1 matrix 
of random variables that is normally  distributed with mean 6 and 
variance Q. 
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4. DURBIN-WATSON BOUNDS 

As an  application of this computational technique, we consider  the  problem 
of determining  the critical values of the lower and  upper  bounds on the 
familiar  Durbin-Watson  statistic when there are IZ observations  and k expla- 
natory  variables in the  model. 

For given values of r I ,  k, and a, we may  determine  the  a-level  critical 
value of the lower bounding  distribution by setting g = 1 and solving the 
equation 

for c, where 

A,, = 2 - 2 cos[(?7(h - l)/n], h = 1,2,  . . . , n (4.2) 

is the 11th smallest eigenvalue of a  certain IZ x I I  tridiagonal  matrix and 
where,  for j = 1 ,2 ,  . . . ,17 - k,  the zj are independently  normally  distributed 
random  variables with zero  means  and unit  variances.  Similarly, we may 
define the  a-level  critical value of the  upper  bounding  distribution by setting 
g = k in equation (4.1). 

In  a  preliminary  stage of Farebrother’s [20] work on the critical values of 
the  Durbin-Watson minimal bound ( g  = 0), the  critical values of  the  lower 
and  upper  bound were determined  for  a  range of values of 11 > k and  for 
1OOa = I ,  2.5,6. The values given in the first two  diagonals (n  - k = 2 and 

I ?  - k = 3) of  Tables 1 through  6 were obtained using Farebrother’s [lo] 
implementation of Grad  and Solomon’s  procedure. For n - k > 3 the rele- 
vant  probabilities were obtained using an earlier Algol version of the  Imhof 
procedure defined by Farebrother [6]. With  the  exception  of  a few errors 
noted by Farebrother [20], these results essentially confirm  the figures pro- 
duced by Savin and  White [21]. 
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1. INTRODUCTION 

We typically have  two  aims in mind  when constructing  an  hypothesis  test. 
These are  that  the test accurately  controls the probability of wrongly reject- 
ing  the null hypothesis  when  it is true, while also  having  the  highest  possible 
probability  of  correctly rejecting the null hypothesis.  In  other  words,  a 
desirable test is one  that  has  the  right size and high  power.  While  the 
Wald test is a  natural test in that  it  can be performed  with relative ease 
by looking  at  the  ratio of an  estimate to its  standard  error (in its simplest 
form), it can  perform  poorly  on  both  accounts. 

The  Wald test is a  member of what is known  as  the  trinity of classical 
likelihood testing procedures,  the  other  two  being  the  likelihood  ratio (LR) 
and  Lagrange multiplier (LM) tests. Because, in the last three  decades, 
Monte  Carlo  experiments have  become relatively easy to conduct, we 
have  seen  a large number of studies  that  have  shown  the  Wald test to 
have the least accurate  asymptotic critical values  of these three tests. 
There  are  also  a  number of studies  that have  questioned  the  small-sample 
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power  properties of the  Wald  test.  (A  number of these studies are discussed 
below.) In  particular, in contrast  to the LR and LM tests. the  Wald test is 
not  invariant  to  equivalent,  but  different,  formulations of the null hypoth- 
esis. By suitably  rewriting  the  null,  one  can in fact obtain  many different 
versions of the  Wald  test.  Although  asymptotically  equivalent, they behave 
differently in small  samples,  with  some of them  having  rather poor size 
properties.  The test can  also suffer from local biasedness and power  non- 
monotonicity,  both of which can  cause  the test’s power to be lower than its 
nominal size in some  areas of the  alternative  hypothesis  parameter  space. 

The  aim  of this chapter is to review the  literature  on  known  properties  of 
the  Wald test with emphasis on its  small-sample  problems such as local 
biasedness,  nonmonotonicity in the  power  function and  noninvariance  to 
reparameterization of the  null  hypothesis.  We review in  detail  some recent 
solutions  to these problems.  Nearly all of the  Wald test’s problems seem to 
stem  from  the use of a  particular  estimate of the  asymptotic  covariance 
matrix  of  the  maximum  likelihood  estimator (MLE) in the test statistic. 
An  estimate of this  covariance  matrix is used to  determine whether  nonzero 
estimates of function  restrictions or  parameters  under test are significant.  A 
major theme  of  this review is the use of readily available  computer  power to 
better  determine  the significance of nonzero  values. 

Briefly. the  plan  of  the  remainder of this chapter is as follows. Section 2 
introduces  the  theory of the  Wald test and discusses some  practical issues in 
the  application of the  test. The  literature  on small-sample  problems of the 
Wald test is reviewed in Section 3 with  particular  emphasis  on  local  biased- 
ness, possible  nonmonotonicity in the  power  function, and  noninvariance  to 
reparameterization of the null hypothesis. The null Wald  test, which is 
designed to overcome  nonmonotonicity, is discussed in detail in Section 4, 
while Section 5 outlines  a new method of correcting  the  Wald test for  local 
biasedness.  A  Wald-type  test, called the  squared generalized distance test 
and which uses simulation  rather  than  asymptotics  to  estimate  the  covar- 
iance  matrix of the  parameter estimates, is introduced in Section 6 .  The 
chapter concludes with some final remarks in Section 7. 

2. THE WALD TEST 

Suppose yr is an  observation  from  the density  function 4y,Is,, 0) in which x, 
is a  vector of exogenous  variables and 8 is an  unknown k x 1 parameter 
vector.  The log-likelihood  function for n independent  observations is 
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Let 8 = ( B ' ,  y')'where B and y are of order I' x 1 and (k - r )  x 1, respec- 
tively. Let 6 = (b'. 7') denote  the  unconstrained MLE of 8 based on  the 12 

observation log-likelihood (I ) .  Under  standard regularity  conditions (see, 
for example. Amemiya 1985, Godfrey 1988, and  Gourieroux  and  Monfort 
1995). f i ( 6  - 8) is asymptotically  distributed  as 

where 

is the  information  matrix. 

ing 
Consider first the  problem of testing exact  restrictions on B, namely test- 

Ho B = Bo against H o  : B # Bo (3) 

where Bo is a  known I' x 1 vector. Under Ho, 

B o )  2 x 2 0 )  

where R = (Z,., 0) is I' x k.  I,. is an r x r identity  matrix, +- denotes  conver- 
gence in  distribution,  and ~ ' ( r )  denotes  the  chi-squared  distribution  with I' 

degrees of freedom.  The left-hand side (LHS) of (4) forms  the basis for  the 
Wald  statistic. The  asymptotic  covariance  matrix  for  the estimated  distance 
from  the null value. namely b - Bo,  is RV(8)"R'. Because the  true value of 
8 is not  known,  it is replaced with 6 in V(8).  Also, in some cases we have 
difficulty in determining  the  exact  formula  for V(O), and replace V(6)  with e(;), a  consistent  estimator of V(6).  The  Wald  statistic is 

d 

(b  - Bo) '(Re(6)" R')" (b  - BO) 

which is asymptotically  distributed as x2(r.) under Ho when appropriate 
regularity  conditions are  met. Ho is rejected for  large values of (5). 

Now  consider  the  more  general  problem of testing 

H i  : h(8) = 0 against H: : /?(e) + o ( 6 )  

where h : Rk +- R' is a vector function which is differentiable up  to  third 
order.  The  Wald test (see Stroud 1971 and Silvey  1975) involves rejecting H i  
for  large  values  of 
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w = I t ( t ' > ' A p ) - l h p )  

where A (e) = /~ l (0)VO)"I~l (~) '  and It, (e) is the I' x X-  matrix of derivatives 
a/z(O)/%'. Again,  under appropriate regularity  conditions, (7) has an asymp- 
totic x 2 ( r )  distribution  under H i .  Observe  that when /?(e) = B - Bo. (7) 
reduces to (5). 

Three  estimators  commonly used in practice  for V(0) in the  Wald  statistic 
are the  information  matrix itself, (2)- the negative Hessian  matrix, 
-a'l(O)/aeaQ', and  the  outer-product of the  score  vector. 

k a  arn$0:,I.,, e) a/n$(.~, IS,. e) 
ael 

I= 1 

The  latter two are consistent  estimators of V(0).  The Hessian is convenient 
when it is intractable to take  expectations of second  derivatives. The  outer- 
product  estimator was suggested by Berndt  et  al. (1974) and is useful if it 
proves difficult to find second  derivatives (see also  Davidson  and 
MacKinnon 1993, Chapter 13). Although  the use of any of these estimators 
does  not affect the  first-order  asymptotic  properties of the  Wald test (see, 
e.g.,  Gourikroux  and  Monfort 1995, Chapters 7 and 17), the tests so con- 
structed  can behave  differently in small samples. 

Using  higher-order  approximations, Cavanagh (1985) compared  the local 
power  functions of size-corrected Wald  procedures,  to  order I I - ~ ,  based on 
these different  estimators  for  testing  a single restriction. He showed that the 
Wald tests using  the  information  and  Hessian  matrix-based  estimators  have 
local powers  tangent  to  the local power  envelope.  This tangency is not  found 
when the  outer-product of the  score  vector is used. The  information  and 
Hessian  matrix  based  Wald tests are  thus  second-order  admissible,  but  the 
outer-product-based test is not.  Cavanagh's  simulation  study  further 
showed that use of the  outer-product-based test results in a  considerable 
loss of power.  Parks et al. (1997) proved that  the  outer-product based test is 
inferior when applied to the  linear regression model. Also, their Monte 
Carlo evidence for testing  a  single-parameter  restriction in a Box-Cox 
regression model  demonstrated  that  this test has lower power  than that of 
a  Hessian-based  Wald  test. The available evidence therefore suggests that 
the  outer-product-based  Wald test is the least desirable  of  the  three. 

There is less of a guide in the  literature  on whether it is better  to use the 
information  matrix  or  the  Hessian  matrix i n  the  Wald  test.  Mantel (1987) 
remarked  that expected  values of second  derivatives are better  than  their 
observed values for use in the  Wald  test.  Davidson  and  MacKinnon (1993. 
p. 266) noted that  the only  stochastic  element in the  information  matrix is a. 
In  addition  to ê , the  Hessian  depends on y ,  as well, which imports  additional 
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noise, possibly leading to a lower accuracy of the  test.  One would expect 
that  the  information  matrix, if available,  would be best as it represents  the 
limiting  covariance  matrix and  the Hessian  should  only be used when the 
information  matrix  cannot be constructed.  Somewhat  contrary  to this con- 
jecture,  empirical evidence provided by Efron  and Hinkley ( I  978) for  one- 
parameter  problems  showed  that  the  Hessian-based  estimator is a  better 
approximation of the  covariance  matrix  than  the  information  matrix- 
based estimator.  The  comments  on  the  paper by Efron  and Hinkley cau- 
tioned  against  over-emphasis on the  importance of the  Hessian-based esti- 
mator,  and some  examples  illustrated  the usefulness of the  information 
matrix  approach.  More recent work by Orme (1990) has  added  further 
evidence in favour of the  information  matrix being the best choice. 

3. SMALL-SAMPLE  PROBLEMS OF THE  WALD  TEST 

The Wald procedure is a  consistent test that  has  invariance  properties 
asymptotically.  Within  the class of  asymptotically  unbiased tests, the  pro- 
cedure is also  asymptotically  most  powerful  against local alternatives (see, 
e.g.,  Cox  and Hinkley 1974. Chapter 9, Engle 1984, Section 6 ,  and  Godfrey 
1958, Chapter 1). However,  for finite sample sizes, the  Wald test suffers 
from  some  anomalies  not  always  shared by other  large-sample  tests. 
Three  major finite-sample problems, namely local  biasedness,  power  non- 
monotonicity  and  noninvariance of the  Wald  test, are reviewed below. 

3.1 Local  Biasedness 

A number  of  studies  have  constructed  higher-order  approximations  for 
power  functions of the  Wald test, in order  to  compare this procedure  with 
other  first-order  asymptotically  equivalent  tests.  One  striking finding that 
emerged  from  the inclusion of  higher-order  terms is that  the  Wald test can 
be locally biased. 

Peers (1971) considered  testing a simple null hypothesis of Ho : 8 = 6, 
against  a two-sided alternative. Using an expansion of terms  accurate  to 
n"". he obtained  the  power  function of the  Wald  statistic  under  a  sequence 
of  Pitman local alternatives. By examining  the  local  behaviour of the  power 
function at 8 = eo, he was able  to show that  the Wald test is locally biased. 
Hayakawa (1975) extended this analysis to tests of composite null hypoth- 
eses as specified in (3) and  also noted that the  Wald test is locally biased. 
Magdalinos (1990) examined  the  Wald test of linear  restrictions on regres- 
sion coefficients of the  linear regression model  with  stochastic  regressors. 
The first-, second- and  third-order  power  functions of the test associated 
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with k-class estimators were considered. and terms of order 11"'~ indicated 
local biasedness of the  Wald  test.  Magdalinos  observed  that  the  two-stage 
least-squares-based  Wald test is biased over  a  larger  interval of local alter- 
natives than its limited information  maximum  likelihood (ML) counterpart. 
Oya (1997) derived the local power  functions  up to  order Y''' of the  Wald 
test of linear  hypotheses  in  a  structural  equation  model. The Wald tests 
based on statistics  computed using the  two-stage least squares  and limited 
information MLEs were also  found  to be locally biased. 

Clearly, i t  would be desirable to have a locally unbiased  Wald  test. 
Rothenberg (1984) suggested that such a test can be constructed using the 
Edgeworth  expansion approach but he failed to give details.  This approach, 
however,  can be problem specific. for  any such expansions are  unique  to the 
given testing problem. In addition.  Edgeworth  expansions can be compli- 
cated, especially for  nonlinear  settings.  A general solution  to this  problem 
that is relatively easy to  implement is discussed in Section 5. 

3.2 Nonmonotonicity in the Power Function 

The local biasedness problem  occurs in the  neighborhood of the null 
hypothesis. As the  data  generating  process (DGP) moves  further  and  further 
away  from  the null hypothesis,  the  Wald  statistic and  the test's power  func- 
tion can be affected by the  problem of nonmonotonicity.  A test statistic 
(power  of  a  test) is said to be nonmonotonic if the  statistic  (power) first 
increases,  but  eventually  decreases  as  the  distance between the DGP and  the 
null hypothesis increases. Often  the test statistic and power will decrease to 
zero.  This  behaviour is anomalous because rejection probabilities are higher 
for  moderate  departures  from  the null than  for very large departures when 
good  power  is needed most. 

Hauck  and  Donner (1977) first reported  the  nonmonotonic  behavior of 
the  Wald  statistic  for testing a single parameter in a  binomial logit model. 
They  showed  that this behavior was caused by the  fact  that  the Rp(6)" R' 
term in ( 5 )  has  a  tendency to decrease to zero  faster  than (i - Bo)' increases 
as Ip - pol increases.  Vaeth (1985) examined  conditions  for  exponential 
families under which the  Wald  statistic is monotonic, using a  model  con- 
sisting of a single canonical  parameter  with  a sufficient statistic  incorpo- 
rated.  He  demonstrated  that  the  limiting  behavior of the  Wald  statistic 
hinges heavily on the  variance of the sufficient statistic. The  conditions 
(pp. 202-203) under which the  Wald  statistic behaves well depend  on the 
parameterization of this variance, as well as  on the  true  parameter  value. 
Although these results do  not easily generalize to  other  distribution families. 
there are two important  points for  applied  econometric  research.  First,  the 
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conditions  imply  that  for discrete probability  models, e.g. the logit model, 
nonmonotonicity  of  the  Wald  statistic  can be ascribed to  the  near  boundary 
problem  caused by observed  values  of  the sufficient statistic  being close to 
the sample  space  boundary.  Second,  the  Wald  statistic is not always well- 
behaved  for continuous  probability  models  although  nonmonotonicity  was 
first reported  for  a discrete choice  model. 

An example  of  the  problem in a  continuous  probability model is  given  by 
Nelson and Savin (1988. 1990). They  considered  the single-regressor expo- 
nential  model 

= exp(8sl) + e,, t = 1,  . . . , n 
where e< - ZN(0, 1) and .x, = I .  The t statistic  for  testing Ho : 8 = 8, against 
H I  : 8 < 8, is 

where u(6)'/* = 1zC1/ '  exp(-6). The  statistic W1/' has  a  minimum  value  of 
-nl/' exp(8, - 1) which  occurs at 6 = 8, - 1. The  statistic increases to zero 
on  the left of this point,  and  to +00 on  the  right,  exhibiting  nonmonotoni- 
city on the left of the minimum point.  To  illustrate  this  further, observe that 

so that,  as 6 + -00, ,u(6)'/* increases at  an  exponential  rate while the  rate  of 
change in the estimated  distance 6 - 8, is linear.  Thus W"* -+ 0. 

This  anomaly  arises  from the ill-behaved V(6)" component in the Wald 
statistic. As explained by Mantel (1987), this  estimator  can be guaranteed to 
provide  a  good  approximation  to the 1imi:ing covariance  matrix  only when 
the null hypothesis is true,  but  not  when 8 is grossly different  from  the null 
value. For  nonlinear models,  Nelson and Savin ( I  988) observed that  poor 
estimates  of  the limiting covariance  matrix  can result from  near  nonidenti- 
fication of parameters  due  to  a flat likelihood  surface in some  situations. 

Nonmonotonicity  can  also arise from  the  problem  of  nonidentification  of 
the parameter(s)  under  test.  This is different from the near  nonidentification 
problem  discussed by Nelson and Savin (1988). Nonidentification  occurs 
when  the information in the  data  does  not allow us to  distinguish  between 
the  true  parameter values and  the values under the null hypothesis. 
Examples  include the partial  adjustment model  with autocorrelated  distur- 
bances investigated by McManus et al. (1994) and  binary  response  models 
with positive regressors and  an  intercept  term  studied by Savin and  Wurtz 
(1996). 
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Nonmonotonicity  of this nature is caused by the  fact that, based on the 
data  alone, i t  is very difficult to tell the difference between a null hypothesis 
DGP  and certain DGPs some  distance  from  the null. This affects not only 
the  Wald  test, but  also  any  other  procedure such as  the LR  or  LM test. 
There is little that  can be done  to  improve the  tests in the presence of this 
problem,  apart  from  some suggestions offered by McManus (1992) to 
relook at  the  representation of the  model as well as  the restrictions being 
imposed. 

Studies by Storer  et  al. (1983) and  Fears  et  al. (1996) provide  two  exam- 
ples where  the  Wald test gives nonsignificant  results  unexpectedly.  In  fitting 
additive regression models  for  binomial data,  Storer et al. discovered that 
Wald  statistics are much  smaller  than LR test statistics.  Vogelsang (1997) 
showed that  Wald-type tests for detecting  the presence of structural  change 
in the  trend  function of a  dynamic  univariate time series model  can  also 
display  non-monotonic  power  behaviour. 

Another example  of  Wald  power  nonmonotonicity was found by Laskar 
and  King (1997) when testing for MA(1)  disturbances in the  linear regres- 
sion  model.  This is largely a  near-boundary  problem because the  informa- 
tion  matrix is not well defined when the  moving  average coefficient estimate 
is - 1 or 1. To deal with nuisance  parameters in the  model. Laskar  and  King 
employed  different modified profile and  marginal likelihood  functions and 
their  Wald  tests are  constructed  on these functions.  Given  that  only  the 
parameter of interest  remains in their  likelihood  functions,  their  testing 
problem exemplifies a  single-parameter  situation where the test statistic 
does  not  depend  on  any  unknown  nuisance  parameters. Because nonmono- 
tonicity  stems  from  the use of ê  in the  estimation of the  covariance  matrix, 
Mantel (1987) proposed  the use of the null value O0 instead.  for single- 
parameter testing  situations  with Ho as  stated in (3).  Laskar  and  King 
adopted this idea to modify  the  Wald test and  found  that it removed the 
problem of nonmonotonicity.  They called this modified test the null Wald 
test.  This  test is further discussed and developed in Section 4. 

3.3 Noninvariance to Reparameterization of the  Null 
Hypothesis 

While  the  Wald test can behave  nonmonotonically  for  a given null hypoth- 
esis, the way the null hypothesis is specified has  a  direct effect on  the numer- 
ical results of the  test.  This is particularly  true in testing  for  nonlinear 
restrictions  such as those  under in (6). Say an algebraically  equivalent 
form to this null hypothesis  can be found,  but with a  different specification 
given by 
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H: : g(h(0))  = 0 

where g is monotonic  and  continuously differentiable. The Wald  statistic  for 
this new formulation is different  from  that given by (7) and therefore can 
lead to different  results. Cox  and Hinkley (1974, p. 302) commented that 
although h(6) and g(h(6)) are asymptotically  normal.  their  individual  rates of 
convergence  to  the  limiting  distribution will depend on  the  parameteriza- 
tion.  Although Cox and Hinkley  did not relate  this  observation to  the Wald 
procedure,  the  statement  highlights indirectly the  potential  noninvariance 
problem  of  the test in small samples.  This  problem  was  directly  noted by 
Burguete  et  al. (1982. p. 185). 

Gregory  and Veal1 (1985) studied  this  phenomenon by simulation. For a 
linear regression model with an intercept  term  and  two  slope coefficients, B ,  
and B2, they demonstrated  that empirical sizes and powers  of  the  Wald 
procedure  for testing H/ : B1 - 1/B: = 0 vary  substantially  from  those 
obtained  for testing HOB : BIB2 - 1 = 0. They  found  that  the  latter  form 
yields empirical sizes closer to those  predicted by asymptotic  theory. 
Lafontaine  and  White (1986) examined  the test for HOC : BQ = 1 where ,9 is 
a  positive  slope coefficient of a  linear regression model and q is a constant. 
They illustrated  that  any value of the  Wald  statistic can be obtained by 
suitably  changing  the value of q without  affecting  the  hypothesis  under 
test. The possibility of engineering any desired  value  of  the  Wald  statistic 
was proven  analytically by Breusch and Schmidt (1988); see also  Dagenais 
and  Dufour (1991). This  problem was analyzed by Phillips and  Park ( 1  988). 
using asymptotic  expansions of the  distributions of the  associated  Wald 
statistics up  to  order ,I". The  corrections produced by Edgeworth  expan- 
sions are substantially  larger  for  the test under H i  than  those needed for  the 
test under HOB, especially when B2 -+ 0. This  indicates that the  deviation 
from  the  asymptotic  distribution is smaller when the choice of restriction 
is HOB. The higher-order  correction  terms  become  more  appreciable as lql 
increases in the case of Hoc. The main  conclusion of their  work is that i t  is 
preferable to use the  form of restriction which is closest to  a  linear  function 
around  the  true  parameter value. 

A way of dealing with this difficulty that  can easily be applied to a wide 
variety of econometric  testing  problems is to base  the  Wald test on critical 
values obtained  from  a  bootstrap scheme. Lafontaine  and  White (1986) 
noted that the  noninvariance  problem  leads to different inferences because 
different  Wald  statistics are  compared  to  the  same  asymptotic critical  value. 
They  estimated, via Monte  Carlo  simulation, small-sample critical values 
(which are essentially bootstrap critical values) for  the  Wald test of different 
specifications. and concluded  that these values can differ vastly from  the 
asymptotic  critical values. Since the  asymptotic  distribution  may  not  accu- 
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rately approximate  the  small-sample  distribution of the  Wald  statistic, they 
suggested the  bootstrap  approach  as a  better  alternative. 

Horowitz  and Savin (1992) showed  theoretically that  bootstrap estimates 
of  the  true null distributions  are  more  accurate  than  asymptotic  approxima- 
tions. They presented  simulation  results  for  the  testing  problems  considered 
by Gregory  and Veall (1985) and  Lafontaine  and  White (1986). Using cri- 
tical  values  from bootstrap estimated  distributions, they showed  that differ- 
ent Wald  procedures  have  empirical sizes close to the  nominal level. This 
reduces  greatly  the sensitivity of the  Wald test to different  formulations of 
the null hypothesis. in the sense that sizes of the  different tests can be 
accurately  controlled at  approximately  the  same level  (see also  Horowitz 
1997). In  a  recent  simulation  study.  Godfrey and Veall (1998) showed that 
many of the small-sample  discrepancies among  the different  versions of 
Wald test for  common  factor restrictions. discovered by Gregory  and 
Veall (1986). are significantly reduced when bootstrap critical values are 
employed.  The use of the  bootstrap  does  not remove the  noninvariance 
nature of the  Wald  test. Rather,  the  advantage is that the bootstrap takes 
into  consideration  the given formulation of the  restriction  under test in 
approximating  the null distribution of the  Wald test statistic. The results 
lead to  more  accurate  control of sizes of different,  but  asymptotically 
equivalent,  Wald  tests.  This  then  prevents  the possibility of manipulating 
the  result, through using  a  different specification of the  restriction  under 
test. in order  to  change the  underlying null rejection probability. 

4. THE NULL WALD TEST 

Suppose we wish to test the  simple null hypothesis 

Ho : 8 = 8, against Ha : 8 # 8, (8) 

where 8 and eo are h- x 1 vectors of parameters  and  known  constants, respec- 
tively, for  the model with log-likelihood (1). If A(6)  is a  consistent  estimator 
of the  limiting  covariance  matrix of the MLE of 8, then  the  Wald  statistic is 

which,  under  the standard regularity  conditions.  has  a ~‘((li) distribution 
asymptotically  under Ho. 

Under Ho, 6 is a weakly consistent  estimator of 8, HO, for  a  reasonably 
sized sample. A(@) would be  well approximated by A(8) .  However, if Ho is 
grossly violated,  this  approximation  can be very poor,  as noted in Section 
3.2, and  as 8 moves  away  from eo in some cases A(6) increases at a  faster 
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rate,  causing W + 0. In the  case of testing  a single par;meter (k = l), 
Mantel (1987) suggested the use of 0, in place of 8 in A(@ to solve this 
problem.  Laskar  and  King (1997) investigated this in the  context of testing 
for  MA( 1) regression disturbances using various  one-parameter likelihood 
functions such as the profile, marginal  and  conditional likelihoods. They 
called this the null Wald ( N W )  test.  It rejects Hofor large values of W,, = 
(6 - B0)'/A(8,) which, under  standard regularity  conditions,  has  a ~ ~ ( 1 )  
asymptotic  distribution  under Ho. Although  the  procedure was originally 
proposed  for testing hypotheses on a single parameter, it can easily be 
extended  for testing X-  restrictions in the  hypotheses (8). The test statistic is 

which tends  to a x'(k) distribution  asymptotically  under Ho. 
The NW concept was introduced in the  absence of nuisance  parameters. 

Goh  and  King (2000) have  extended it to  multiparameter  models in which 
only  a  subset of the  parameters is under  test.  When  the values of the  nui- 
sance  parameters  are  unknown, Goh  and  King suggest replacing  them with 
the  unconstrained MLEs  to  construct  the  NW test.  In  the  case of testing (3) 
in the  context of ( I ) ,  when evaluating V(0) in (4), y is replaced by f and /? is 
replaced by fin. Using eo(f) to  denote this estimate of V(0). the test statistic 
(5) now becomes 

cv,, = (j - 

which asymptotically follows a x?(,.) distribution  under Ho. This  approach 
keeps the  estimated  variance  stable  under H , ,  while retaining  the  practical 
convenience of the  Wald test which requires  only  estimation of the  unrest- 
ricted model. 

Goh and  King (2000) (see also Goh 1998) conducted  a  number of Monte 
Carlo studies  comparing  the  small-sample  performance  of  the  Wald, N W ,  
and LR tests, using both  asymptotic  and  bootstrap critical values. They 
investigated a variety of testing  problems involving one  and two  linear 
restrictions in the  binary logit model,  the Tobit model. and  the exponential 
model. For these testing problems, they found  the NW test was monotonic in 
its  power,  a  property not always  shared by the  Wald  test. Even in the  pre- 
sence of nuisance  parameters,  the NW test performs well in terms of power.  It 
sometimes  outperforms  the  LR test and  often  has  comparable power  to  the 
LR test.  They  also  found  that  the  asymptotic critical values work best for  the 
LR test,  but  not  always  satisfactorily, and work  worst  for  the NW test.  They 
observed that all three tests are best applied with the use of bootstrap critical 
values, at least for  the  nonlinear  models they considered. 
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The Wald test should  not be discarded  altogether  for  its  potential  pro- 
blem of power  nonmonotonicity.  The test displays nonmonotonic power 
behavior  only in certain  regions  of  the  alternative  hypothesis  parameter 
space and only  for  some  testing  problems.  Otherwise  it  can  have  better 
power  properties  than  those of the  NW  and  LR tests.  Obviously it would 
be nice to  know whether nonmonotonic power is a possibility before  one 
applies the test to a  particular  model. Goh (1998) has  proposed  the follow- 
ing  simple  diagnostic check for  nonmonotonicity  as  a  possible  solution to 
this  problem. 

For testing (3), let W ,  denote the value of the  Wald  statistic given by (5) 
and  therefore  evaluated  at e  ̂ =,(j’, f’) and let W2 denote the  same  statistic 
but  evaluated  at e^A = (hb’, f’) , where h is a large scalar value such as 5 or 
10. The diagnostic check is given by 

A W =  W2- W ,  

A  negative A W indicates that  the sample data falls in a region where the 
magnitude of the  Wald  statistic drops with increasing  distance  from Ho, 
which is a necessary (but  not sufficient) condition  for  nonmonotonicity. 
Thus a  negative A W does  not in itself imply power  nonmonotonicity in 
the  neighborhood  of ê  and iA. At best i t  provides  a  signal that  nonmono- 
tonic  power  behavior is a possibility. 

Using his diagnostic  test, Goh suggested a  two-stage  Wald test based on 
performing  the  standard Wald test if A W > 0 and  the NW test if A W < 0. 
He investigated  the  small-sample  properties of this  procedure  for 
A. = 2.5, 5, 7.5, and 10, using  simulation  methods. He found  that,  particu- 
larly  for  large h values, the  two-stage  Wald test tends  to inherit  the  good 
power  properties  of  either  the  Wald or the NW test,  depending on which is 
better. 

An issue that emerges  from all the  simulation  studies discussed in  this 
section is the possibility of poorly  centered  power  curves of the  Wald and 
NW test procedures.  A well centered  power  curve is one  that is roughly 
symmetric about  the null hypothesis, especially around  the  neighborhood 
of the null hypothesis. To a lesser extent,  this  problem  also affects the LR 
test. Its  solution involves making these tests less locally biased in terms of 
power. 

5. CORRECTING THE WALD TEST FOR  LOCAL 
BIASEDNESS 

As pointed  out in  Section 3, the  Wald test is known  to be locally biased in 
small samples. One possible reason is the  small-sample  bias of ML esti- 
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mates-it does seem that biasedness of estimates  and local biasedness of 
tests  go  hand in hand (see, for example,  King 1987). 

Consider  the  case of testing Hk against Hk, given by (6) ;  where I' = 1. i.e., 
/ I ( @ )  is a  scalar  function.  In  this  case,  the test statistic (7) can  be  written as 

W = ( h ( 6 ) ) 2 / A ( 6 )  

which,  under appro  riate regularity  conditions,  has an asymptotic ~ ' ( 1 )  
distribution  under Hd. A simple approach  to  constructing a locally unbiased 
test based on (9) involves working  with 

P .  

= h(6)A(6)"" 

and two critical values cI and c2.  The acceptance region would be 

If we denote by n(h(@)) the  probability of being in the  critical  region, 
CI < n < C?. 

given that  the  restriction  function  takes  the  value / I ( @ ) ,  Le., 

the  critical values cI and c? are determined by solving  the size condition 

n(0) = (II (1 1) 

and  the local unbiasedness  condition 

where a is the desired significance level of the  test.  Unfortunately we typi- 
cally do not have analytical  expressions  for  the LHS of (1 1) and (12) and 
have  to  resort to simulation  methods. For sufficiently small 6 > 0, the LHS 
of (12) can be approximated by the  numerical  derivative 

D(6) = { n(6) - n(-s)}/zs (13) 

Thus  the problem of finding c1 and c2 reduces to repeatedly  finding l l (O) ,  
n(-s), and n(6) via simulation, using (10) for given cI and c2 and then using 
a  numerical  method such as  the secant  method to find those values of eland 
e., that solve (1  1) and (12) simultaneously.  In  the  case of testing for  auto- 
correlation in the  linear regression model,  Grose  and  King (1991) suggested 
the use of 6 = 0.001. 

The  disadvantage of this approach is that i t  cannot be generalized to a 
vector  restriction  function,  i.e., r > 1. A correction  for local biasedness that 
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does have the  potential  to be extended  from I' = 1 to r > 1 was suggested by 
Goh  and  King (1999). They  considered  the  problem of testing 

H! : / z ( ~ >  = o against H,B : / l (p)  # o 
where /7(8) is a  continuously  differentiable. possibly non-linear  scalar  func- 
tion of B. a  scalar  parameter  of  interest,  with 8 = (j3, y') ' .  In this case  the 
Wald test statistic is 

w = ( /z ( j ) )ZAp)- '  

which  under Ho (and  standard regularity  conditions)  asymptotically follows 
the ~ ' ( 1 )  distribution.  Given  the link between local biasedness of  the  Wald 
test and biasedness of MLEs, Goh  andAKing suggested a  correction  factor 
for this bias by evaluating W at j,,,. = B - c,,, rather  than  at j. There is an 
issue of  what  estimates of y to !se in A(8). If p is  by maximizing  the 
likelihood  function when B = B. then  denote by value of y that 
maximizes the  likelihood when j = j,,,.. The 

where k r  = (B,.,,.? 7(jc,,.) ) ' 
I ,  

The final question is how to  determine the  correction  factor c,,. and the 
critical value c,. These are  found numerically to ensure  correct size and the 
local unbiasedness of the  resultant  test.  This  can  be done in  a  similar  manner 
to finding c ,  and c, for  the test based on m. Both these procedures  can be 
extended  in  a  straightforward  manner to  the NW test. 

Goh  and King (1999) (see also Goh 1998) investigated  the  small-sample 
properties of the CW test and its NW counterpart which they denoted  as  the 
CNW test.  They  considered  two  testing  problems, namely testing  the coeffi- 
cient of the lagged dependent  variable  regressor in the  dynamic  linear regres- 
sion  model and a  nonlinear  restriction on a coefficient in the  static  linear 
regression model.  They  found  the CW test corrects  for local biasedness but 
not  for  nonmonotonicity  whereas  the CNW test is locally unbiased,  has  a 
well-centered power  curve which is monotonic in its  behavior,  and  can  have 
better  power  properties  than  the LR test. especially when the  latter is locally 
biased. 

It is possible to extend this approach  to a j x 1  vector and  an I' x 1 
vector  function lz(B), with I' 5 j .  The  correction  to 8 is j - c,,,, where clv is 
now  a j x 1  vector.  Thus we have j + 1 effective critical values, namely c,,. 
and c,. These need to be  found by solving  the  usual size condition  simulta- 
neously with j local unbiasedness  conditions.  This becomes much more 
difficult, the  larger j is. 
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6. THE SQUARED  GENERALIZED DISTANCE TEST 

There is little doubt  that  many of the  small-sample  problems of the  Wald 
test can be traced to the use of  the  asymptotic  covariance  matrix  of  the MLE 
in the test statistic. For example, it is the  cause of the  nonmonotonicity  that 
the NW test corrects  for. Furthermore, this  matrix is not always readily 
available  because, in some  nonlinear  models,  derivation  of  the  information 
or Hessian  matrix may  not be immediately  tractable (see, e.g., Amemiya 
1981, 1984). In such situations,  computer packages  often can be relied upon 
to provide  numerical  estimates  of  the  second  derivatives of the log-likeli- 
hood  function,  for  the  purposes of computing  the  Wald  test.  However, 
implementation  of  the N W ,  CW or CNW tests will be  made  more difficult 
because of this. In  addition, discontinuities in the  derivatives of the log- 
likelihood can  make it impossible to  apply  the NW or  CNW tests by direct 
substitution of the null parameter values into this covariance  matrix.  Clearly 
it would be much  better if we did  not  have to use this covariance  matrix in 
the  Wald test. 

Consider  again  the  problem of testing Ho : B = Bo against H,  : B # Bo as 
outlined in the first half of Section 2. As discussed, under  standard regularity 
conditions, B follows a  multivariate  normal  distribution with mean Bo and a 
covariance  matrix we  will denote  for  the  moment by X, asymptotically 
under Ho. Thus, asymptotically, an ellipsoid defined by the random estima- 
tor j, and  centered at Bo. given by 

(j - B , ) ' X " ( B  - B o )  = "a,, 

where is the lOO(1 - a)th percentile of the x2(r )  distribution.  contains 
lOO(1 - a)% of the  random  observations of 4 when Ho is true.  In  other 
words,  the  probability of an  estimate falling outside  the ellipsoid (15) 
converges in limit to a, i.e., 

under Ho. The  quantity 

( B  - Bo)'C"(B - 

is known  as the  squared generalized distance  from  the  estimate ,h to  the null 
value Bo (see, e.g.,  Johnson  and Wichern, 1988. Chapter 4). For  an a-level 
test, we know  that  the  Wald  principle is based on rejecting Ho if the  squared 
generalized distance (17), computed using some  estimator of C evaluated at 
8, is larger  than war,. Alternatively,  from  a  multivariate  perspective,  a rejec- 
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tion of Ho takes place if the  sample  data  point summarized by the  estimate b 
falls outside  the ellipsoid (15) for  some  estimated  matrix of C .  This  multi- 
variate  approach  forms  the basis of a new Wald-type  test. 

Let Bo be a  consistent  estimator  of B when Ho is satisfied. Say in small 
samples, bo follows an  unknown  distribution  with  mean ,uo and  covariance 
matrix Co which is assumed to be positive  definite. The new test finds an 
ellipsoid defined by to, which is 

where c is a constant such that 

for  any  estimator bo when Ho is true.  This implies that  the  parameter space 
outside  the ellipsoid (18) defines the  critical  region, so the test involves 
checking  whether  the data  point, summarized by b, lies inside or outside 
this ellipsoid. If i t  is outside, Ho is rejected. The  immediate task is to find 
consistent  estimates of po and Co and  the  constant c. 

To accomplish  this,  a  parametric bootstrap scheme is proposed  as fol- 
lows: 

(i) Estimate e ,̂= (b’,  p’)’ for  the given data set. and  construct 

(ii) Generate a bootstrap  sample  of size 11 under Ho. This  can be done by 
drawing I I  independent  observations  from q 5 0 . ‘ , l s r ,  60) which approxi- 
mates  the DGP  under Ho. Calculate  the  unconstrained ML estimate of 
p for this  sample.  Repeat  this  process,  say, B times. Let # denote  the 
estimate  for  the j t h  sample. j = 1. . . . , B. 

60 = (Bo .  p’) . 

The idea of using this bootstrap  procedure is to generate B realizations of 
the  random  estimator bo under Ho. The  bootstrap  sample mean 

and  the  sample  covariance matrix 

are consistent  estimates for F~ and Eo. respectively. The critical region must 
satisfy 
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when Ho is true.  Therefore,  the critical value c must be found  to  ensure  that 
the ellipsoid 

(20) 

contains lOO(1 - CY)”/O of the  observations of $ inside  its boundary.  This is 
fulfilled by using the lOO(1 - a)Yo percentile of the array sj, where 

The test rejects Ho if falls outside  the  boundary of the ellipsoid (20), or, 
equivalently, if 

s =  p - , 9  c, p - p  z c  
( -  T0)’A *(  ^ TO) 

Our test statistic. s, is based on the  squared generalized distance  (SGD)  from 
to the  estimator of po. Because the  critical value is determined  from  a 

bootstrap procedure. we refer - to the test as  the  bootstrap  SGD test. 
Under Ho. as 17 ”+ w. < w0 and ko A Eo. From (16), this leads to 

The  asymptotic version of the SGD test thus rejects Ho if s > w U i r .  

This test procedure  applies  for  testing  any  number of restrictions but  can 
further be refined in the  case of I’ = 1 with the  additional aim of centering 
the test’s power  function.  This  has  the  advantage of resolving the local 
biasedness problem discussed in Section 5 when testing  a single parameter B. 

Consider  the  square  root of the SGD statistic in the  case of I‘ = 1 

and observe that 3 and eo are  bootstrap  estimates  of  unknown  parameters, 
namely po and Eo. If we knew these values, our tests could be based on 
accepting Ho for 

(’I < (.. B - Po )/qy < C? 

where cI  and c? are  appropriately  chosen  critical values or, equivalently, 
given E:” > 0, accepting H~ for 

c ;  < j < c; (21) 
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The two critical  values, c; and c/2, in (21)  can be found by solving  the size 
condition 

and the local unbiasedness  condition 

where 

The  LHS of (23) does  not have an analytical  expression. but if 6 represents  a 
small  but  detectable  deviation  from  the null value Bo. then (22) and (23) can 
be written as 

4 B O )  = CY (24) 

and 

Jr(B0 + 6) = n(Bo - 6) = 0 (25) 

respectively. 

procedure  may be employed to find the  two critical values. 
Let 6; = (Bo + 6, 7')' and 6; = (Bo - 6. 7') ' .  The following bootstrap 

3. 

4. 

Estimate 6 = (j, 7')' for  the given data set the test is to be conducted 
on.  For a selected 6 value,  construct io, &io'. and 6; using 7 and Bo.  
Generate  one  bootstrap  sample of size I I  under Ho by drawing  inde- 
pendent  observations  from C$(yl1.~[, io). Compute  the  unconstrained 
ML estimate of B. Repeat  this process B times. Let $, 
, j  = 1.2, . . . ~ B, denote  the  estimate  for  the  ,jth  sample.  Sort $ into 
an  array. which we denote by qj,. This  array provides  the  empirical 
distribution  function  for bo. 
Generate B bootstrap samples of size I?  under H:>y drawing  indepen- 
dent  observations  from C $ ( y I 1 s l ,  6:). Compute B for  each of the B 
samples. Let by, j = 1 .  2 , .  . . , B, denote  the  estimate  for the j th  
sample.  Repeat this process under H; by using ~ ( V ~ I S ~ ,  6 i )  as the 
data generating  process. Let $-, j = 1,2,  . . . , B. denote the  estimate 
for thejth sample. 
For a selected u where 0 c u < CY,  use the (100u)th and 100( I - CY + u)th 
percentiles of +p and c,' and ci, respectively, in order  to satisfy  the size 
condition  (24). 
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5. Using the  critical values determined in step 4 and the  sequence of $+ 

from  step 3, estimate  the  power at H:. Repeat  using  the  sequence $- 
from  step 3 to  estimate  the  power at H f .  If  the  power difference 
satisfies ( 2 3 ,  we have found  the required  critical values. If not, steps 
4 and 5 are repeated  using  a  different u value each time until  the 
solution is found. 

6. For the given solution, check whether  the local powers at H: and H; 
are  both greater than CY. If not, repeat  the  whole  process by using  a 
larger value for 6. 

In the case of testing  one  restriction, this is the  preferred version of  the 
bootstrap  SGD test. 

We investigated  the  small-sample  properties of the  asymptotic  and  boot- 
strap  SGD tests by repeating  the Monte  Carlo studies  of Goh  and King 
(1999. 2000) discussed in Sections 4 and 5. The testing  problems covered 
included testing  one  restriction in single- and two-regressor logit and  Tobit 
models, exponential,  dynamic, and simple  linear  models, and testing two 
restrictions in three-regressor  logit, and two-regressor  Tobit and exponential 
models. For full details see Goh (1998, Chapter 6 ) .  

For testing one  restriction.  the  simulation  results suggest that  the  asymp- 
totic SGD test has  better  small-sample sizes than  the  Wald  and  LR tests. 
This is not  surprising, given the SGD test is bootstrap based. The power 
function of the SGD test appears  always  to be monotonic in contrast  to  that 
of the  Wald  test.  The  bootstrap  SGD test has well centered power curves. In 
this regard,  the  bootstrap  SGD test performs  better  than  the  Wald test for 
all except the logit model, where both  are equally well centered.  The  boot- 
strap  SGD test shares  the  good  power  properties of the LR test in general. 
There  are two situations in which the SGD test is a  clear  winner  compared 
to the  LR test. The first  is the higher power of the SGD test relative to  that 
of the LR test at  nonlocal  alternatives to the left of Ho for  the  exponential 
model.  This is due  to  poor centering of the LR power  function.  The second 
is for  the  dynamic  linear  model  where  the LR test is locally biased but  the 
bootstrap  SGD test is not.  It is also  worth  noting that,  without  any effort  to 
recenter its  power curve. the  asymptotic SGD test has  reasonably  good 
power centering  properties.  The SGD test has  similar  power  behavior to 
the bootstrap NW test of Sections 4 and 5 except in cases where  the NW test 
is poorly  centered.  These  exceptions  occur  for  the  exponential and  the 
dynamic  simple  linear  models. 

In  the  case  of  testing  two  restrictions,  the  simulation  results  show an 
SGD test with a slight tendency for  higher  than  nominal test sizes for 
small-sample sizes. Its sizes are clearly better  than  those  of  the  Wald test 
and  arguably better  than  those of the LR test.  Overall,  the  powers of the 
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SGD and  LR tests are  comparable  for  the  Tobit model,  with  both tests 
sharing  the  same  good  power  centering  properties.  These  tests  perform 
better  than  the  Wald test in regions of  the  alternative  parameter  space 
where  the  latter test has  nonmonotonic power. The  same is also  observed 
for  the  exponential  model.  Although  better than  the Wald  test,  the SGD test 
has  poorer centering  properties  than  the LR test in the  exponential  model 
for I I  = 30. In  contrast,  the SGD test performs  better  than  the LR test on the 
same  account  for I I  = 80. I n  regions of the  alternative  parameter  space  for 
the  exponential  model  where  the  power  performance of the  Wald test is 
disappointing,  the SGD test has  power higher than  that  of  the LR test. 
The reverse is observed in other regions of  the  parameter  space.  The SGD 
test has  comparable power to the NW test,  particularly  for  the logit and 
Tobit models. The SGD test appears to have  better  power  centering  proper- 
ties than the NW test for  the  exponential  model,  where  the  power  function 
of the  latter test is ill-centered. 

In  summary.  the new procedure generally has well-behaved sizes in small 
samples and power  comparable  to  that of the LR test. It can  sometimes 
perform  better  than  the LR test,  particularly when the  latter is locally 
biased. For these reasons. i t  does appear  to be a  more reliable test than 
the LR test and  particularly  the  Wald  test. 

7. SUMMARY  AND CONCLUDING REMARKS 

As noted in the Introduction,  a  good test accurately  controls  the  probability 
of  wrongly rejecting the null hypothesis when it is true while also  having  the 
highest possible  probability of correctly rejecting the  null. Unfortunately  the 
Wald test does  not  always  have these desirable  properties in small  samples. 
The main thrust of this  chapter  has been to  report  on  the search  for  mod- 
ifications to  the Wald test i n  order  to improve  its  small-sample  performance. 
The  main  problems of the  Wald test are its lack of invariance to different 
but  equivalent  formulations of the null hypothesis, local biasedness. and 
power  nonmonotonicity.  The first problem  means it is difficult to accurately 
control sizes in small  samples, while the  latter  problems  can  cause  powers  to 
be lower than  the  nominal size in some  areas of the  alternative  hypothesis 
parameter  space. 

The  bootstrap-based Wald test can help with the  problems  caused by the 
lack of invariance  equivalent  formulations of the  null  hypothesis but it does 
not solve the other power  problems. The null Wald test does seem to solve 
the  problem of nonmonotonicity  but  needs to be applied using bootstrap 
critical values. There  remains  the  problem of local biasedness of  the test in 
small  samples. I n  the  case of testing  a  single-parameter  restriction. this can 
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be overcome by the use of a  bootstrap-based  procedure with two  critical 
values, one  to  control  the size of the test and the other  to  ensure local 
unbiasedness. 

It is not difficult to  conclude  that  many of the  small-sample  problems of 
the  Wald test can be traced to  the use of the  asymptotic  covariance  matrix  of 
the MLE in the test statistic.  A  solution  therefore might be to use bootstrap 
methods  to  work  out the  boundary between significance and insignificance 
of nonzero  estimates of parameters or restriction  functions  under  test.  These 
ideas lead to  the SGD test, which involves using bootstrap samples to find 
an ellipsoid for  the  parameters  under  test, which in  turn defines the  accep- 
tance region for  the test. A  further refinement for  testing  a single parameter 
involves two critical values for  the estimated  parameter, solved simulta- 
neously, to satisfy the size and local unbiasedness  conditions.  Simulation 
studies suggest the SGD test is slightly more reliable than  the LR test and 
certainly  better  than  the standard  Wald test. 
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13 
On the Sensitivity of the t-Statistic 
JAN R. MAGNUS Tilburg  University,  Tilburg, The  Netherlands 

1. INTRODUCTION 

There seems to be consensus  among  statisticians and econometricians  that 
the  t-statistic  (unlike  the  F-statistic) is not sensitive (robust). If we define the 
/-statistic as r = o ’ . y / m .  where s is a  random vector with mean 0. N is a 
nonrandom vector.  and B a positive semidefinite nonrandom matrix.  then r 
will i n  general  not follow a  Student  distribution  for three reasons.  First, s 
may not be normally  distributed;  secondly, even if .x is normally  distributed. 
s may  not be X’-distributed, and thirdly,  the  numerator and  denominator 
may be dependent.  The consensus is that nevertheless the  Student  distribu- 
tion can bc  used to  provide  a  good  approximation of the  distribution of r .  
The  purpose of this paper is to analyze  some  aspects of this situation. 

We confine ourselves to  the  situation  where  the  random vector s is nor- 
mally distributed;  some  aspects of the  non-normal  case  are discussed in 
Ullah and Srivastava (1994). Then all odd  moments of r which exist are 
0. This  chapter  therefore  concentrates on the even moments of r and, in  
particular. on its  variance  and  kurtosis. The special case where .\-‘Bs follows 
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a  x'-distribution,  but  where 0's and H'BS are  dependent, was considered by 
Smith (1992). He  obtains  the  density  for this special case, and,  from the 
density.  the  moments, but not i n  an easy-to-use  form. He concludes that  the 
t-statistic is robust in  most  situations.  Morimune (1989), in a  simultaneous 
equation  context,  also  concludes  that  the  t-statistic is robust.  Maekawa 
(1980) considered  the  t-statistic in the seemingly unrelated regression 
model and derived an Edgeworth  expansion up to O(t7"). where I I  is the 
sample size. 

We shall argue  that.  although i t  looks  as if the  t-statistic is robust because 
the  moments of r are close to  moments of the  Student  distribution, in fact 
the  conclusion is wrong. The  reason  for this apparent  contradiction is the 
following.  Clearly,  the  Student  distribution is close to  the  standard  normal 
distribution.  Also,  the  t-statistic r ,  properly  scaled, is  well approximated by 
the standard  normal  distribution.  For this  reason r is close to  a  Student 
distribution since both  are close to the standard  normal  distribution,  and in 
this sense the  t-statistic is robust. But in many cases, as we shall see. r is 
better  approximated by the  standard  normal  distribution  than by the appro- 
priate  Student  distribution,  and i n  this sense the  t-statistic is not  robust. 

The  paper is organized as follows. In Section 2 we define the  problem and 
settle  the notation.  Theorem 1 in Section 3 gives a simple expression  for  the 
even moments  of t. This  theorem is valid irrespective of whether S'BS 
follows a  X?-distribution or whether ' 7 ' s  and S'BS are  independent. 
Theorem  2 gives precise conditions when these moments exist. Theorem 1 
is a new result and  has  potential  applications in many  other  situations. In 
Section 4 we obtain  Theorem 3 as  a special case of Theorem 1 by assuming 
that s'f3.v. properly  scaled, follows a  X?-distribution. The even moments of r 
then  become extremely simple  functions of one  "dependence  parameter" 6. 
We  analyze  the  variance and  kurtosis for this case  and  conclude  that. if we 
use the  standard  normal  distribution  to  approximate the  Student  distribu- 
tion,  then  the  approximation will  be better. with dependence  than  without. 
All proofs  are in the  Appendix. 

2. SET-UP AND  NOTATION 

Let .Y be a  normally  distributed 17 x 1 vector with mean 0 and positive 
definite covariance  matrix st = LL'. Let CI be an IZ x 1 vector and B a posi- 
tive semidefinite x t~ matrix with rank t' 2 1. We define the  "t-type"  ran- 
dom variable 
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In order  to normalize  B we introduce  the  matrix B* = (l/trBn)L’BL, 
which satisfies trB* = 1 .  We denote by AI, . . . . Ar the  positive eigenvalues 
of B* and by al. . . . , a,. the  corresponding  normalized eigenvectors. so 
that  B*a, = Ala,. a,’a, = 1.  a,’a, = O(i fj). 

We normalize  the  vector a by defining 

a: L ’a  

i-m a .  - - ( i  = 1,.  . . . I-) .  

An important role is played by the  scalar 
r 

6 = x.;. 
i= I 

It is easy to see that 0 5 6 5 1. If 6 = 0. then GI's and  x’Bs  are  independent 
and L‘o and  L‘BL  are  orthogonal; if 6 > 0, they are  dependent. If 6 = 1,  
then L’a lies in the  column  space of L’BL  (or  equivalently, a lies in the 
column  space of B). 

3. THE MOMENTS OF r 

All odd  moments o f t  which exist are 0. As for  the even moments  that exist, 
we notice that r2 = S’AS/.Y’B.X with A = c/o’. The exact  moments of a  ratio 
of quadratic  forms in normal  variables was obtained by Magnus (1986), 
while Smith (1989) obtained  moments of a ratio of quadratic  forms using 
zonal  polynomials and  invariant polynomials with multiple  matrix  argu- 
ments. In the special case where A is positive semidefinite of rank 1 and 
where  the  mean of .x is 0, drastic simplifications occur  and we obtain 
Theorem  1. 

Theorem 1. We have,  provided  the  expectation exists, for s = 1,2. . . . . 

where 

2th, 
PLL,(f) = ~ 1 + a h ,  

and K , ~  = 1 x 3 x . . . x (2s - 1). 

From  Theorem 1 we find the  variance var(r)  and the  kurtosis  kur(r) = 
ErJ/(Er’)’ as 
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where 

Turning now to the existence of  the even moments. we notice that for 
Student’s  /-distribution E? is defined when I’ > 2s. We find the  same  con- 
dition  for  the  moments of r. except that when 6 = 1 all moments of r exist. 

Theorem 2 (existence): 

(i) If I’ 5 17 - 1 and 6 = I ,  or if I’ = n. then Et”” exists for all s 2 0; 
(ii) If I’ 5 I I  - 1 and 6 # 1, then Er’S exists  for 0 5 s < 1’/2 and  does  not 

exist for s 2 1’/2.  

The variance and  kurtosis given in (4) can be evaluated  for any given 
A,, . . . , and aI, . . . , u,.. To gain insight into  the sensitivity of the  /-statistic, 
we consider  one important special case, namely  the case where s‘Bs,  prop- 
erly scaled, follows a x’(I’) distribution,  but where n ’ r  and  x‘Bs  are  depen- 
dent. 

4. SENSITIVITY FOR DEPENDENCE 

When s‘Bs, properly  scaled, follows a x 2 ( r )  distribution,  the only difference 
between r and  Student’s t is that  the  numerator  and  denominator in T are 
dependent, unless 6 = 0. In this section we investigate  the  impact of this 
dependence on the  moments of r .  We first state  Theorem 3, which is a 
special case of Theorem 1. 

Theorem 3. If the  nonzero eigenvalues of L’BL are all equal, then we have, 
provided  the  expectation exists. for s = I , ? ,  . . . , 

where  B(., .) denotes  the Beta function. 
It is remarkable  that  the even moments of r now depend only on s, I’ and 

the  “dependence parameter” S (apart  from  a  scaling  factor  f/’Qu/trBQ). 
Evaluation  of E? is  very easy since no integral  needs  to be calculated. 
Under  the  conditions of Theorem 3 we obtain 
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var(r) = - 
I ’ -2  

and 

28 1 

(6 )  

For fixed I’, both  var(t)  and  kur(t)  are  monotonically decreasing  functions 
on the [0, 13 interval, and we find 

I’ 
1 5 var(r) p - (8) 

, . - 2  

and 

r 
3 - < kur(t) 5 3 - 

I ’ - 2  
I’+2 - r - 4  

1 .oo 
0 0.2 0.4 

6 

Figure 1. Variance of t as  a  function of 6. 
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Figures 1 and 2 illustrate  the  behaviour of var(t)  and  kur(t)  for r = 10, r = 
30. and r = 100 (and, of course, r = 00). 

The variance of r is linear in 6. For 6 = 0 we find var(t) = r / ( r  - 2), the 
variance of the  t(r)-distribution.  When 6 > 0, var(t) decreases  monotoni- 
cally to I .  Hence,  the more dependence  there is (the higher 6 is), the better 
is var(t)  approximated by the  variance of the  standard  normal  distribution. 

The  kurtosis of t is not linear in 6, see (7), but in fact is almost  linear, 
slightly curved, and convex on [0, I]; see Figure 2. When 6 = 0 (indepen- 
dence) we find kur(t) = 3(r - 2 ) / ( r  - 4). the  kurtosis of the  t(r)-distribution. 
When 6 > 0, the  kurtosis  decreases, becomes 3 (at some 6 between 0.500 and 
0.815), and decreases  further to 3r / (r  + 2). The deviation of the  kurtosis 
from  normality is largest in the  case  of  independence (6 = 0). 

In  conclusion, if  we use the  standard  normal  distribution  to  approximate 
the  t-distribution,  then  the  approximation will be  better with dependence 
than  without.  The  t-statistic t is thus  better  approximated by the  standard 
normal  distribution  than by the  appropriate  Student  distribution.  In this 
sense the  t-statistic is tlot robust. 

I 1 

3.50 - r=10 

3.25 - 

rS.0 

3.00 
- r=100 

2.75 - 

2.50 I 

0 0.2 0.4 0.6 0.8 1 
5 

Figure 2. Kurtosis of t as a  function of 6. 
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APPENDIX: PROOFS 

Proof  of  Theorem I. Since r = .x’Ax/.y‘Bx with A = aa’, the even 
moments of r are  the  moments of a  ratio of two quadratic  forms. Using 
Theorem  6 of Magnus (1986). let P be an  orthogonal n x 11 matrix  and A* a 
diagonal n x IZ matrix  such that 

2 

P’L’BLP = A*, P’P = I!,. 

Then, 

where  the  summation is over all 1 x s vectors u = ( n l ,  n 2 ,  . . . , ) I , )  whose 
elements n J  are non-negative  integers  satisfying x;=, jt7, = s, 

S 

ys(u) = s! n ( 1 I J ! ( 2 j ) J y ,  
J =  I 

and 

A = (I,l + 2tA ) , R = AP’L’au’LPA. * -I/’  

Now, R has  rank I ,  so that 

(trRj)”’= (O’LPA’P’L’ar 

and hence, since 1, jnJ = s, 

S 

n(trR’)’”= (a’LPA’P’L’a)S. 
j= I 

Also, using Lemma 3 of Magnus (1986) for the special case rz = 1. we see 
that x, ys(u) = us. Hence, 

Letting h;, . . . . denote  the  nonzero  diagonal  elements of A*. we see that 
h: = (trBC2)h;. Letting t* = (trBQ)t, we thus  obtain 

and 
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Proof of Theorem 2. Let Q be an IZ x (12  - r )  matrix of full column  rank I I  - r 
such that BQ = 0. Then. using Magnus (1986,  Theorem 7) or  Magnus (1990. 
Theorem 1) and noticing that Q’n = 0 if and  only if 6 = 1. the  result follows. 

Proof of Theorem 3. Let I., = h = l/r  and p = ‘>th/(l + 3th.). Theorem 1 
implies that 

By making  the  change of variable 

1 
2h 1 - p  

t = -  .- 

we obtain 

Now, 
1 s, p 3 - l ( ,  - p), . /2-s-I  (1 - p6YTdp 

and  the result  follows. 
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14 
Preliminary-Test and Bayes Estimation of 
a  Location Parameter under  ”Reflected 
Normal” Loss 
DAVID E. A. GILES University of Victoria,  Victoria, British Columbia, 
Canada 

1. INTRODUCTION 

In statistics and econometrics,  the  expression  “preliminary-test  estimation” 
refers to a  situation where the  choice of estimator  for some  parameter 
(vector) is essentially randomized  through  the  prior  application of an 
hypothesis test. The test need not relate  to  the  parameters of interest-for 
example, i t  generally relates  to  a set of nuisance  parameters.  Neither is it 
necessary that the  same set of data be used for  the  prior test as  for  the 
primary  estimation  problem.  This  randomization  of  the choice of estimator 
complicates  its  sampling  properties significantly, as was first recognized by 
Bancroft (1944). Extensive surveys of the  subsequent  literature on prelimin- 
ary-test  estimation are given by Bancroft and  Han (1977) and Giles and 
Giles (1993). 

Preliminary-test  estimators generally have  quite  adequate (if not  optimal) 
large-sample  properties. For example, if the  “component”  estimators 
(between which a  choice is made)  and the  prior test are each  consistent, 
then  the  pre-test  estimator will also  be  consistent.  On  the  other hand,  as 

287 



288 Giles 

pre-test  estimators  are  discontinuous  functions of the data. it is  well known 
(e.g.,  Cohen 1965) that they are inadmissible  under  conventional loss func- 
tions.  Despite  their inadmissibility. and the  fact  that generally they are not 
minimax,  pre-test  estimators are of considerable  practical  interest  for  at 
least two  reasons.  First, they represent  estimation  strategies of precisely 
the  type that is frequently  encountered in practice.  Typically, in many 
areas of applied  statistics,  a  model will  be estimated and then  the model 
will be subjected to various specification tests.  Subsequently.  the model in 
question  may be simplified (or  otherwise  amended) and then re-estimated. 
Second. in all of  the  pre-test  problems  that  have been considered in the 
literature,  pre-test  estimators  dominate  each of their  component  estimators 
over  different  parts of the  parameter  space in terms  of  risk.  Indeed, in  some 
cases (e.g.,  Giles 1991) they may even dominate their  components  simulta- 
neously over  the . ~ m w  part of the  parameter  space. 

Although  the  sampling  properties of various  preliminary-tcst  estimators 
have been studied by a range of authors, little is known about their  complcte 
sampling  distributions.  The  only  exceptions  appear to be the  results  of  Giles 
(1992), Giles and Srivastava (1993), Ohtani  and Giles  (1996b), and  Wan 
(1997). Generally  the  finite-sample  properties of pre-test estimators  have 
been evaluated in terms of risk, and usually on the  assumption  that  the 
loss function is quadratic.  Some exceptions  (using  absolute-error loss. the 
asymmetric “LINEX” loss function,  or  ”balanced” loss) include  the  con- 
tributions of Giles (1993). Ohtani et al. (1997), Giles e? al. (1996). Ohtani 
and Giles (1996a). Giles and Giles  (1996), and  Geng  and  Wan (2000), 
among  others. 

Despite  its  tractability and historical  interest,  two  obvious  practical 
shortcomings of the  quadratic loss function  are its  unboundedness  and  its 
symmetry.  Recently,  Spiring ( 1  993) has  addressed the first of these weak- 
nesses (and  to a lesser degree  the  second) by analyzing  the “reflected nor- 
mal” loss function.  He  motivates this loss with reference to problems in 
quality  assurance (e.g.. Taguchi 1986). The reflected normal loss function 
has  the  particular  merit  that it is bounded.  It  can readily be made asym- 
metric if this is desired for  practical  reasons. An alternative loss structure is 
the  “bounded  LINEX”  (or  “BLINEX”) loss discussed by Levy and Wen 
(1997a.b) and Wen and Levy (1999a,b). The  BLINEX loss is both  bounded 
and asymmetric. 

In this paper, we consider a simple  preliminary-test  estimation  problem 
where  the  analyst’s loss structure is “reflected normal.” Specifically, we 
consider  the  estimation of the  location  parameter in a normal  sampling 
problem,  where  a  preliminary test is conducted  for  the validity of a simple 
restriction  on this parameter.  The exact finite-sample risk of this pre-test 
estimator is derived under reflected normal loss, and this risk is compared 
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with those of both the  unrestricted and restricted  maximum  likelihood esti- 
mators.  This  appears  to be the first study of a pre-test estimator when the 
loss structure is bounded,  and  comparisons  are  drawn between these results 
and those  obtained  under  conventional  (unbounded)  quadratic loss. Our 
results  extend  naturally to the  case of estimating  the coefficients in a normal 
linear  multiple regression model.  Although we consider  only  a  symmetric 
loss function in this paper,  the extension to the  asymmetric  case is also 
straightforward. 

In  the next section we formulate  the  problem  and  the  notation.  Exact 
expressions  for  the risk functions  are derived in Section 3, and these are 
evaluated,  illustrated, and discussed in Section 4. Some  related Bayesian 
analysis is provided in Section 5; and Section 6 offers  some  concluding 
remarks  and suggests some  directions  for  further  research. 

2. FORMULATION OF THE  PROBLEM 

The problem that we consider here is cast in simple  terms  to  facilitate  the 
exposition.  However,  the  reader will recognize that it generalizes trivially to 
more  interesting  situations,  such as the  estimation of the coefficient vector in 
a standard linear  multiple regression model when potentially  there  are  exact 
linear  restrictions on the coefficients. In  that sense, our analysis here extends 
that of Judge  and Bock (1978), and of others,*  through  the  consideration of 
a  different loss structure. We will  be concerned with the  estimation  of  the 
location  parameter, p, in a  normal  population with unknown scale para- 
meter. We have  a  simple random sample  of values: 

x, - i.i.d. N [ p ,  a2]; i = 1 , 2 , 3 , .  . . .JZ 

and we will  be concerned with a  prior  “t-test” of 

H o :  P = P O  VS. HA : P # l o  

The choice of estimator  for p will depend  on  the  outcome of this  pre- 
liminary  test. If Ho were false we would use the  unrestricted  maximum 
likelihood  estimator (UMLE), pl  = (Cy=, x i l i t )  = S. On the  other  hand. if 
Ho were true we would use the restricted maximum likelihood estimator 
(RMLE), which here is just po itself. So, the  preliminary-test  estimator 
(PTE) of p in this  situation is 

P p  = [ I R ( t )  x Pll+ [IA(t) x Pol 

*See Giles and Giles (1993) for detailed references. 
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where t is the  usual  t-statistic  for  testing Ho, defined as 

t = [p ,  - pO] / [s? /ny2  

and 

It will  be more convenient to use F = f 2  as  the test statistic, recalling that 
F - F(1, n - 1 ; A) where the  non-centrality  parameter is A = 116~/(2o’), and 
6 = (p  - po). So, the PTE of p may be written as 

p p  = t z R ( F )  x PI1 + [z.4(F) x PO1 ( 1 )  

where ZQ( .) is an indicator  function  taking  the value unity if its  argument is 
in the  subscripted  interval, and  zero otherwise.  In our case. the rejection 
region is the  set  of  values R = ( F  : F > c,) and  the “acceptance”  (strictly, 
“non-rejection“) region for  the  “t-test” is A = ( F  : F 5 c,}, where c, is the 
critical value for a  chosen significance level a. It  should  be  noted  that 

IR(F) = [ I  - IA(F)1 (2) 

x z A ( F ) l  = (3) 

If we let 8 be a  scalar  parameter  to be estimated,  and let r be a  statistic 
used as  an  estimator of 0, then  the “reflected normal” loss function is 
defined as 

where K is the  maximum  loss,  and y is a pre-assigned shape  parameter  that 
controls  the  rate  at which the loss approaches  its  upper  bound. For example. 
if we set y = (A/4), for  some A, then L 2 (0.9997K)  for all values 
t > 8 f A .  The “reflected normal” loss structure  arises in the  context of 
“M-estimation”  (e.g.,  Huber 1977). and in the  context of robust  estimation 
its influence function is known to have  rather  good  properties.  Figure 1 
compares  the reflected normal  and  conventional  quadratic loss  functions. 

3. DERIVATION OF THE  RISK FUNCTIONS 

The risk function of t as  an  estimator  of 8 is R(s )  = E[L(t .  e)], where 
expectation is taken  over  the  sample  space.  Given  that  the reflected normal 
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I 

Figure 1. Reflected  normal and  quadratic loss functions ( n  = 10, CJ = 1, 
K = 5 ,  y = 1). 

loss function is bounded, the existence of the associated risk function is 
assured. As Wen and Levy (1999b) note, this is not  always the case for 
lrnboltndrd loss functions in conjunction  with  certain densities*.g., the 
LINEX loss function when the  likelihood is Student-t. Let us consider  the 
risks of the RMLE,  UMLE,  and  PTE  estimators of ,u in turn. 

3.1 RMLE 

In  our case  the risk of the RMLE is trivial, as po is a  constant,  and is simply 

~ ( p ~ )  = K { 1 - exp[ -6’/(2y’)] ] (6) 

3.2 UMLE 

where 
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Substituting (8) in (7), completing the square,  and using  the result that  a 
normal  density  integrates to unity, we obtain 

WPI) = ”( 1 - V / [ ( 0 ’ / 1 7 )  + Y’]} (9) 

Before  proceeding to  the  derivation of the risk function  for  the PTE of p, 
some  comments on the  risks of these ”component  estimators”  are in order. 
First,  as is the  case with a  quadratic loss function. R ( p , )  does not  depend  on 
the  (squared)  “estimation  error” 6’. and hence is also constant with respect 
to k .  Second,  as is also  the  case with a  quadratic loss function  for this 
problem. R ( p O )  is an increasing  function of 6’ (or A). Under  quadratic 
loss this risk increases linearly with k ,  and so it is unbounded.  Here,  how- 
ever. it  increases  from zero at a  decreasing  rate,  and l i m i t  [ R ( p O ) ]  = K when 
J2 + 00. That is, the risk of the RMLE is bou17ded. Finally.  equating R ( p O )  
and R ( p l ) ,  we see that the risk functions  intersect at 

6 2 = -2y’ In{ y/[(a’/n) + y’]) 
These  results are reflected in the figures in the next section. 

3.3 PTE 
The  derivation of the risk of the  preliminary-test  estimator of p is somewhat 
more complex, and we will use the following result from Clarke (1956, 
Appendix I > .  

Lemma. Let H’ be a  non-central  chi-square  variate  with g degrees of free- 
dom  and non-centrality  parameter 8, let $(.) be any real-valued function, 
and let 17 be any real value such that 17 > ( -g/2) .  Then 

E[$(x’(g + 1 + 2 ~ ) ) ]  

Now,  to  evaluate R ( p p ) ,  we note  that i t  can be written as 

W p )  = K {  1 - E(exp[-(p - I-Lp)’/<2Y’,])} 

From  (l), we have 
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[(- l)r(2yy(I’!)]] 

Now,  from  the  moments of the  normal  distribution  (e.g., Zellner 1971, pp. 
364-365), 

, q C L I  - P ) 2 r  = [2r(a’ /~q/(~n)]r(~ + 1/21; I’ = 1 , 2 , 3 ,  . . . (1 1) 

Also, 

(12) 

where  denotes  a  non-central  chi-square  variate  with q degrees of free- 
dom  and  non-centrality  parameter h(= n6’/(2a2)). 

Recalling that F = [ ( I ?  - l ~ ( ~ ~ l : ~ . ) / x ~ ” - l ~ o ) ) ] ,  where the two  chi-square  vari- 
ates  are  independent. we can re-express (12) as 

E { J , ( F ) p 2 ‘  - = 6”Pr[(x~l:*~/X~~-l:o,) < cct] 

L 

where c; = [c,/(n - l)]. 



294 Giles 

The expectation in (13) can  be  evaluated by repeatedly  using  the result of 
Clarke (1986), stated in the  above  lemma,  and  the  independence  of  the 
associated  chi-square  variates* 

7 2 )( 2 : ) r - j / ? ]  
E [ l A ( ( I ?  - l ) x ( l , A ) / x ( ~ ~ - l : O )  & I  AJ 

4. SOME ILLUSTRATIVE EVALUATIONS 

The risk functions  for  our  various  estimators  under a  conventional  quad- 
ratic loss function  are well known,+  and  for  comparative purposes they are 
illustrated in Figure 2. In  this  case the pre-test  estimator  has  bounded  risk, 
although its  inadmissibility  was  noted  above. The risk functions  for  the 
restricted and unrestricted  maximum  likelihood  estimators  under reflected 
normal loss, as in (6) and (9), are easily evaluated  for  particular  choices of 
the  parameters  and  sample size, and these are illustrated i n  Figure 3. In 
particular, we see there that R ( p O )  is bounded  above by K .  The  evaluation 
of the risk of the  preliminary-test  estimator is rather  more  tedious,  but it can 
readily be  verified by simulation.  Some  examples of this appear in Figures 
4-6. There,  the  range  of values for 6' is such that the  boundedness  of R ( p O )  
is not visually apparent. 

'Further  details of the  proof of this result are available  from  the  author  on request. 
tFor example, see Judge  and Bock (1978, Chapter 3). and  Giles  and  Giles (1993). 
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Figure 2. Risks under  quadratic loss ( n  = 10, u = 1, K = 1, y = 1). 

...... 

Figure 3. Risk under reflected normal loss (n = 10, u = 1, K = 1,  y = 1). 
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Figure 4. Risks under reflected normal  loss (n  = 10, o = 1, K = 1, 1' = 1). 
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Figure 5. Risks under reflected normal loss (n  = 100, D = 1, K = 1, 11 = 1). 



Preliminary-Test  and Bayes Estimation 297 

O.l6 1 
0.M { 
0.12 

0.10 

I ; 0.08 

0.06 

0.M 

0.02 

.* 

-X- PTE (1 O X )  

0.00 * 

0.00  0.03 0.05  0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25  0.28 0.30 
0.lh.Otlll.nd 

Figure 6.  Risks  under reflected normal loss (M = 10, u = 1, K = 1, y = 1). 

In  particular,  Figure 4 compares R ( p p )  with R(b0) and R ( p I )  for  a small 
size (11 = 10) and illustrative  parameter values. The general similarity 
between these results and their counterparts  under  quadratic loss (as in 
Figure 2 )  is striking.  In  particular,  there is a region of the  parameter 
space where p p  is least preferred among  the three  estimators  under  consid- 
eration. Similarly, there are regions where each of and p l  are least pre- 
ferred.  There are regions where  either or p1  is most  preferred among the 
three  estimators,  but  there is no region of the  parameter  space  where  the  pre- 
test estimator is preferred  over both po and pl simultaneously. The effect of 
increasing  the  sample size from I? = 10 to n = 100 can be seen by comparing 
Figures 4 and 5. In each of these figures  the  convergence of R(p,) to R ( p o )  
as 6’ + 00 is as expected. The preliminary test has  a  power  function  that 
approaches  unity in this  case, so in the  limit  the PTE  and the UMLE of p 
coincide 

The similarity of the reflected normal  results to  those  under  quadratic 
loss extends to  the fact that in the  latter  case R ( p p )  is again bounded. 
Cohen’s (1965) results imply that this estimator is inadmissible. 
Parenthetically, this can be related in turn to Brown’s (1971) necessary 
and sufficient conditions  for  the admissibility of an  estimator  that  has 
bounded  risk. Specifically, Brown proves  that  for every potentially  admis- 
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sible estimator of an nz-element parameter vector there exists a  diffusion in 
in-dimensional  space. The  estimator is admissible if and only if this  diffusion 
is recurrent  (rather  than transient),  provided  that  its risk is bounded.  Taken 
in conjunction with Cohen’s result this implies, of course,  that  our pre-test 
estimator is associated with a  transient  diffusion,  whether  the loss function 
is quadratic  or “reflected normal.” 

Figure 6 depicts  the effects of increasing  the significance level for  the 
preliminary test from 5% to 10%. A larger significance level implies that 
greater weight is given to  the  UMLE when 6’ = 0 (when Ho is true). An 
increase  in  the size of the test also  increases  the  power, so pp also gives 
greater weight to p l  when 8’ > 0. It is clear that in principle it should be 
possible to  bound the region in which R(pp) and R ( p O )  intersect, as is done 
in the  quadratic loss case by Judge  and Bock (1978, p. 73). However,  the 
extremely  complex nature  of the  expression  for  the  former risk function (in 
(15)) makes  this  rather  impractical  from an analytical standpoint. 

5. BAYESIAN ESTIMATION 

In  this  section we briefly consider  the Bayes estimator of p under reflected 
normal loss, as this  estimator  has  the  desirable  attribute of being admissible 
if the  prior  p.d.f. is “proper.” We will take  the Bayes estimator, tB, of  a 
parameter 8 to be  the  “minimum  (posterior)  expected loss” (MELO) esti- 
mator.  That is, tB minimizes 

where p(8l.u) is the  posterior  p.d.f.  for 8, given .x = (.x1. . . . . x,J. If p(8) is the 
prior p.d.f. for 8, it is well known*  that  the tB that minimizes (15) will also 
minimize  the Bayes risk 

as  long  as the Bayes risk is finite. As is also well known, if C ( t B ,  8) is 
quadratic, then tB is the  mean of p(8lx). 

However, when L( t ,  8) is reflected normal,  there is no simple closed-form 
expression for the tB that minimizes (15) for  an  arbitrary  posterior  p.d.f. Of 
course,  more  progress can be made  for specific posterior cases. Let us con-’ 
sider  some  particular  choices of prior  (and hence posterior)  p.d.f.  for p in 
our problem,  assuming  that 0’ is known.  The  posterior analysis for ,x in the 

*For instance, see Zellner (1971, pp. 24-26). 
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case of unknown a2 does  not lend itself to a  simple  analysis, and is not 
considered further below. 

5.1 Case (i): Known Variance,  Conjugate Prior 

Recalling  the  normality  of our  data,  the  natural-conjugate  prior  for p is 
N [ p ' .  a'] and the  posterior  for p is N [ p " ,  a"]. It is well known*  that 

and 

So, under  quadratic loss, the Bayes estimator of p is = p". The Bayes 
estimator  under  the reflected normal loss is the pn that minimizes 

where 

and 

Substituting (21) and (22) in (20), setting  the  derivative of EL with respect to 
pn equal to zero,  completing  the  square on p, and solving for /.Lg, it emerges 
after  a  little  manipulation  that p g  = p". So, for  this case it is particularly 
interesting to note  that  the Bayes estimator of p is the  same  under either 
quadratic  or reflected normal loss functions. 

5.2 Case (ii): Known Variance,  Diffuse  Prior 

In this case  the  (improper)  prior  p.d.f.  for p is 

p(p)  0: constant; -00 < p < 00 

and the  corresponding  posterior  p.d.f. is  well knownf  to be 

p(pl.(s) = A(aJZT;)"exp[-n(p - pl)2/(2a')1 

*See  Raiffa and Schlaifer (1961. p. 5 5 )  and  Zellner  (1971. pp. 14-15). 
For example. see Zellner (1 97 1, p. 10). 
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That is, the  posterior is N [ p I ,  a’/n], and so the Bayes estimator of p under 
quadratic loss is p B  = pl. The  corresponding  estimator  under reflected nor- 
mal  loss is obtained by substituting (23) and (22) in (20). setting  the  deriva- 
tive of EL with respect to p B  equal  to  zero,  completing  the  square  on p, and 
solving  for pg. It  transpires  after  some  manipulation  that pg = p l ,  so for 
this case as well the Bayes estimator of p is the  same  under  either  quadratic 
or  reflected normal loss functions.  This is simply a reflection of the  algebra 
of the  problem,  rather  than  a  consequence of any  deep  statistical  result, and 
would  not  be  expected to hold in more  general  estimation  situations. 

6. CONCLUDING REMARKS 

Preliminary-test  estimation is commonplace,  but often  little  attention is paid 
to the  implications that such  prior  testing  has  for  the  sampling  properties of 
estimators.  When these implications have been studied, generally the ana- 
lysis has been in terms of the risk function of the  pre-test  estimator and  its 
‘component”  estimators.  The  majority  of this risk analysis has been based 
on very restrictive loss functions. such as  quadratic loss. One  aspect of such 
loss structures is that they are symmetric with respect to the  “direction” of 
the  estimation  error,  and this  may be unrealistic in practice.  This  condition 
has been relaxed by several authors,  as is discussed in Section 1. Another 
feature of conventional loss functions  (and  the  asymmetric  ones  that  have 
been considered in a pre-test context) is that they are  unbounded  as the 
estimation  error grows.  This  may  also be unrealistic in practice.  The 
(bounded) “reflected normal” loss function is considered in this  paper, in 
the  context of estimating  a  normal  mean  after  a  pre-test of a  simple restric- 
tion.  With this loss structure  the risk of the  restricted  maximum  likelihood 
“estimator” is also  bounded, in contrast  to  the  situation  under  quadratic 
loss. In other respects,  however,  the qunli/otive risk properties  of  the pre-test 
estimator  under reflected normal loss are the  same  as  under  quadratic loss. 
Interestingly,  the Bayes estimator of the  mean is the  same  under  both loss 
structures, with either  a  conjugate or diffuse prior,  at least in the  case  where 
the precision of the  process is known. 
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MSE Performance 
Estimator of  Each 

of the Double  k-Class 
Individual Regression 

Coefficient  under Multivariate t-Errors 
AKIO NAMBA and KAZUHIRO  OHTANI Kobe University, Kobe, 
Japan 

1. INTRODUCTION 

In the  context of the  linear regression model.  the  Stein-rule  (SR)  estimator 
proposed by Stein (1956) and  James  and Stein (1961) dominates  the  ordin- 
ary least squares (OLS) estimator in terms of predictive  mean  squared error 
(PMSE) if the  number of the regression coefficients is more  than  or  equal  to 
three and  the  normal  error terms are assumed. Further,  Baranchik (1970) 
established  that  the  positive-part  Stein-rule (PSR)  estimator  dominates  the 
SR  estimator  under  normality. 

As an improved  estimator, Theil (1971) proposed  the  minimum  mean 
squared  error  (MMSE)  estimator. However, since Theil’s (1971) MMSE 
estimator includes unknown  parameters,  Farebrother (1975) suggested the 
operational  variant of the MMSE  estimator, which can be obtained by 
replacing  the  unknown  parameters by the OLS estimators.  Hereafter, we 
call the  operational  variant of the MMSE  estimator the MMSE estimator 
simply. As an extension of the MMSE  estimator,  Ohtani (1996) considered 
the  adjusted  minimum  mean  squared error  (AMMSE)  estimator. which is 
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obtained by adjusting  the degrees of freedom of the  component of the 
MMSE estimator. 

The  SR  estimator, the MMSE  estimator,  and  the  AMMSE  estimator  can 
be regarded as special cases of the  double k-class (KK) estimator  proposed 
by Ullah and Ullah (1 978). There  are several studies of the  sampling  proper- 
ties of the KK estimators, such as Vinod (1980), Carter (1981), Menjoge 
(1984), Carter  et  al. (1993). and  Vinod and Srivastava (1995). Ohtani (2000) 
examined  the MSE  performance  of  a  pre-test KK estimator. 

Though most of the  studies on small  sample  properties of shrinkage 
estimators have assumed  that all the regression coefficients are estimated 
simultaneously,  there are several researches which examine  the  sampling 
properties of estimators  for  each  individual regression coefficient. In  parti- 
cular,  Ohtani  and  Kozumi (1996) derived explicit formulae  for  the  moments 
of the SR estimator  and the  PSR  estimator  for  each  individual regression 
coefficient, when the error terms are normally  distributed.  Furthermore, 
Ohtani (1997) derived the  moments  of  the  MMSE  estimator  for each  indi- 
vidual regression coefficient under  normality. 

In  most of the  theoretical and applied  works, it is assumed that  error 
terms follow a  normal  distribution.  However,  there exist many  economic 
data (specifically, financial data) which may  be  generated by distributions 
with  fatter  tails  than  normal  distributions (see, for  example, Fama 1965. 
Blattberg  and  Gonedes 1974). One example of such  a  distribution is a  multi- 
variate t distribution.  The  multivariate t distribution  has  often been used to 
examine  the effects of departure  from  normality of error terms on the  sam- 
pling performance of estimators  and test statistics in a linear regression 
model.  Some  examples are Zellner (1976), Prucha  and Kelejian (1984), 
Ullah  and Zinde-Walsh (1984), Judge  et  al. (1985), Sutradhar  and Ali 
(1986). Sutradhar (1988). Singh (1988, 1991), Giles (1991, 1992), Ohtani 
(1991, 19931, Ohtani  and Giles (1993), and  Ohtani  and Hasegawa (1993). 
However,  sampling  properties of the SR,  PSR,  MMSE,  and  AMMSE 
estimators  for  each  individual regression coefficient under  multivariate t 
errors  have  not been examined so far. 

In  this  paper,  for  estimating  the coefficients vector of a  linear regression 
model  with  multivariate t error terms,  a family of pre-test  double X--class 
(PTKK)  estimators  has been considered which includes  the  SR.  PSR, 
MMSE,  and  AMMSE  estimators  as special cases.  In  Section 2, we present 
the  model and  the  estimators. We derive  the explicit formulae  for  the 
moments of the PTKK estimator in Section 3. It is shown  analytically 
that  the  PSR  estimator  for each  individual regression coefficient dominates 
the SR estimator in terms of MSE even when the  error terms  have  a  multi- 
variate t distribution.  In  Section  4 we compare the  MSEs of the  estimators 
by numerical  evaluations.  It is shown  numerically that the AMMSE estima- 
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tor has  the smallest MSE over  a wide region of parameter  space  when  the 
number of regression coefficients is small.  It is also  shown  that  the MMSE 
estimator  has  a  smaller MSE than the OLS estimator  over  a wide region of 
parameter  space when the error terms  have a multivariate t distribution with 
three degrees of freedom.  Finally,  some  concluding  remarks  are given in 
Section 5. 

2. THE MODEL AND THE ESTIMATORS 

Consider  a  linear regression model 

J’ = xg + u. (1) 

where y is an I I  x 1 vector of observations  on  a  dependent  variable, X is an 
11 x k matrix of full column  rank of observations on nonstochastic  indepen- 
dent  variables, and is a k x 1 vector of regression coefficients. 

It is assumed  that  the error term ZI has  multivariate t distribution  with  the 
probability density given as 

where 
For u 
When 

is the scale parameter  and u is the degrees of freedom  parameter. 
2, it is easy to show  that E[u] = 0 and E[uzr’] = [ u a i / ( u  - 2)]If1.  
+ 00. ZI approaches  the  normal  distribution with mean 0 and cov- 

As shown in Zellner (1976). the  multivariate t distribution  can be viewed 
ariance  matrix ~T:z,,. 

as a  mixture of multivariate  normal  and  inverted  gamma  distributions: 

where 

Following  Judge and Yancey (1986, p. 1 1). we reparameterize  the  model 
( 1 )  and work with the following orthonormal  counterpart: 

J’ = zy + ZI (6) 
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where Z = XS-If', y = S1/*B, and SI1? is the  symmetric  matrix such that 
S"/2SS-1/2 = Z'Z = I,, where S = X ' X .  Then,  the  ordinary least squares 
(OLS) estimator of y is 

c = z'y (7) 

In  the context of the  reparameterized  model,  the  Stein-rule (SR) estimator 
proposed by Stein (1956) is defined as 

where e = y - Z c  and N is a  constant such  that 0 I n I 2(k - 2 ) / ( n  - k + 2 ) .  
Although  the  Gauss-Markov  theorem  ensures  that  the OLS estimator is the 
best linear  unbiased  estimator for u > 2 ,  the SR estimator  dominates  the 
OLS estimator  under  predictive  mean  squared  error  (PMSE)  for X- 2 3, if 
normal  error terms are  assumed. As shown in James  and Stein (1961), the 
PMSE  of  the  SR  estimator is minimized when n = (k - 2) / (n  - k + 2). 
Thus, we have used this  value of n hereafter. 

Although  the  SR  estimator  dominates  the OLS estimator,  Baranchik 
(1970) showed that  under  the  normality  assumption  the SR estimator is 
further  dominated by the  positive-part  Stein-rule  (PSR)  estimator, defined 
as 

c ~ S R  = max 0. 1 - - c [ ",'.I 
The  minimum  mean  squared  error  (MMSE)  estimator,  proposed by 

Farebrother (1975), is 

As an extension of the MMSE estimator,  Ohtani (1996) considered  the 
following estimator, which is obtained by adjusting  the degrees of  freedom 
of c'c (i.e., k):  

C A M  = c 'c /k  + e'e/(n - k )  

The  double k-class estimator  proposed by Ullah  and  Ullah (1978) is 

where X-, and X-? are  constants chosen  appropriately. 

mator: 
Further, we consider  the following pre-test  double k-class (,PTKK) esti- 
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where I ( A )  is an indicator  function  such  that I ( A )  = 1 if an event A occurs 
and I ( A )  = 0 otherwise, F = (c’c/k)/(e’e/(n - k ) )  is the test statistic  for  the 
null hypothesis Ho : y = 0 against  the  alternative H I  : y # 0, and r is a 
critical value of the  pre-test.  When k l  = CI,  k2 = 1, and 7 = 0, the PTKK 
estimator reduces to  the SR estimator.  When k ,  = CI,  k2 = 1. and 
r = a(n - k ) / k ,  the PTKK estimator  reduces  to  the  PSR  estimator.  When 
k l  = l / ( n  - k ) ,  k ,  = 1 - 1 / ( f z  - /<). and r = 0, the PTKK estimator reduces 
to the MMSE  estimator. Also, when k ,  = k / (n  - k) ,  k2 = 1 - k / (n  - k) ,  and 
r = 0, the PTKK  estimator reduces to  the AMMSE  estimator. 

Let / I  be a k x 1 vector with known  elements. If / I ’  is the i th row vector  of 
S-”’. the  estimator /z‘pr is the i th element of the PTKK estimator  for p. 
Since the  elements of / I  are  known, we assume  that h ’ / 7  = 1 without loss of 
generality. 

Ohtani  and  Kozumi (1996) and  Ohtani (1997) derived the  MSE of the 
SR, PSR,  and  MMSE  estimators  for each  individual regression coefficient 
when the  normal  error terms are assumed. However. the  MSE  performance 
of these estimators  under  multivariate t error terms  has  not been examined 
so far.  Thus. we derive  the explicit formulae  for  the  moments of A’pr and 
examine MSE performances in the next section. 

3. MOMENTS 

Substituting y ’ ~ ,  = c’c + e’e in (13), we have 

where a ,  = 1 - k ,  - k 2  and a2 = 1 - k2 .  Then  the  MSE of is 

MSE[h’pr] = E[(h’fr  - h’y)’] 



310 Namba  and  Ohtani 

Then, the MSE of h’pT is written as 

MSE[h’p,] = H(2 ,  1: a I ,  a2; r )  - 2/2’yJ(1,0; u I .  a?; r )  + (h’y)? iW 

As shown in the  Appendix,  the explicit formulae  for H(p,  q ,  ; “1. “2; r )  and 
J ( p .  q. ; all a,; 5 )  are 

where 

(21) 

= (h’y)’, = y’(Zk - hh’)y and r* = k t / ( k r  + I I  - k). Substituting (19) 

Using  the  following  formula 
and (30) in (18), we obtain  the explicit formula  for the MSE of h ’ f , .  
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( 2 2 )  

where 

D ( r )  = 
a ,  (11 - k) + k7 
cYz( i7 - k )  + k7 

From (23), aMSE[h’jq/at < 0 if D(r )  < 0. Thus, MSE[/z’yJ is monotoni- 
cally decreasing on r E [min(O, -al(n - k ) / k ,  - ~ ? ( I z  - k ) / k ) .  max{O. -a, 
(tz - k ) / k ,  -a2(1z - k ) / k } ] .  For k ,  = CI and k2 = 1, aMSE[h’jq/ar I 0 for 
0 5 r 5 a(n - k ) / k .  Since the  PTKK  estimator reduces to the SR estimator 
when k ,  = a, k2 = 1 and 7 = 0, and to the PSR estimator when k ,  = a, k2 = I 
and r = N ( I Z  - k ) / k .  the following theorem is obtained. 

Theorem 1. The  PSR  estimator  dominates  the SR estimator  for each  indi- 
vidual regression coefficient in terms  of MSE when the multivariate f error 
terms are assumed. 

This is an extension of Theorem 2 in Ohtani  and  Kozumi (1996). 
Although they showed that  the  PSR  estimator  dominates  the SR estimator 
under  normality  assumption,  the  same result can be obtained even when the 
error terms are extended to a  multivariate t distribution. 
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Since 

O <  a1 + (1 - a1)t 
a2 + (1 - a$ 

< l  

when 0 <X-, < 1, 0 < k l  + k 2  < 1 ,  and 0 I t 5 1,  we obtain 

Thus we obtain  the following  theorem. 

Theorem 2. When 0 < k l  < 1 and 0 < k l  + k2 < 1. h ’ f Z  has negative  bias if 
Illy > 0 and has positive  bias if h’y  < 0. 

Since theoretical  analysis is difficult because of the  intricate  nature  of 
exact  expressions, we compare the  MSEs of the  SR,  PSR,  MMSE,  and 
AMMSE  estimators nunlerically in the  next  section. 

4. NUMERICAL ANALYSIS 

Using  (18), we compared the  MSEs of the SR, PSR, MMSE, and  AMMSE 
estimators by numerical  evaluations. To compare  the  MSEs of  the  estima- 
tors, we have  evaluated  the values  of relative  MSE. defined as 
MSE[h’y]/MSE[k’c],  where v is any  estimator of y. Thus,  the  estimator k ’  
7 has  a smaller MSE  than the OLS estimator when  the  value of the  relative 
MSE is smaller than  unity.  It is  seen from (1 8) that the  relative MSE of h ’ f T  
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depends on the values of IC, 11,  u, OI/cr;, and e2/a;. Thus,  it  can be assumed 
without loss of generality that CT; = 1 in  the  numerical  evaluations. 

The numerical  evaluations were executed on  a personal computer, using 
the FORTRAN code. In evaluating  the  integral in Go@, q; a I ,  a?; t) given in 
(21), Simpson's 3/8 rule with 200 equal  subdivisions  has been used. The 
double infinite series in H @ .  q; CY,, CY?; t) and J(p ,  q; CY], a,; t) were judged 
to converge when the  increment of the series got  smaller than 10-I2. 

The relative MSEs  for k = 3, I I  = 20, and u = 3 are shown in Table I .  
The  AMMSE  estimator  has the smallest MSE over  a wide region of the 
parameter  space  among  the  estimators considered  here.  In  particular, it is 
evident  from  Table 1 that  the  AMMSE  estimator has  the smallest MSE 
when O1 + 8, 5 10. However, when 8, + O2 = 50, the  MSE of the  AMMSE 
estimator gets larger than those  of  the other  estimators  as increases  from 
zero  to 8,  + O?. Although  the  MSE of the  AMMSE  estimator is larger than 
that of the OLS estimator when the value of 8,  + O2 is large and 8,  is close to 

+ O2 (e.g., 8, + = 50 and 8,  2 40), the difference between the  MSEs of 
the AMMSE  and OLS estimators is small relative to the difference when the 
value of 8, is close to  zero.  Also,  the MMSE  estimator  has smaller MSE 
than  the OLS estimator even when 8,  + 8, = 50, though  the  MSE  improve- 
ment around 8,  = 0 is small relative to  those of the  other  estimators. 

The relative MSEs  for k = 3, IZ = 20, and u = 20 are shown in Table 2. It 
can be seen from  Tables 1 and 2, that  as  the degrees of freedom of error term 
(i.e., u)  increases from 3 to 20. the region of + O2 and 8 ,  where  the 
estimators have smaller MSE  than the OLS estimator gets narrow. We see 
from  Table 2 that  the  MSE of the AMMSE  estimator is smallest when + 

= 0.5. Although  the  AMMSE  estimator  has smaller MSE  than  the SR 
and PSR estimators when O1 + 02 = 3. the MSE of the  AMMSE  estimator is 
larger  than  that of the MMSE  estimator when is close to + e?. Also. 
when + 1. 10 and 8,  is close to + @*, the MSE of the AMMSE 
estimator is considerably  larger  than  unity.  Although  the MSE of the 
MMSE  estimator is smaller  than  unity when +8? 2 10 and is close 
to zero, it gets larger than unity as O1 exceeds about half of 8, + e?. 

The relative MSEs  for k = 8, ?I = 20, and u = 3 are shown in Table 3. 
From  Table 3 it is clear that  the  PSR  estimator  has  the smallest MSE when 
O1 +e2 = 0.5. This  indicates that,  as k increases  from 3 to 8, the MSE 
dominance  of  the  AMMSE  estimator  at Q1 +e2  = 0.5 is violated. 
Although  the  MSE of the  PSR  estimator is smaller than  that of the 
AMMSE  estimator when + Q2 = 3, 10, and is close to zero,  the  former 
gets larger than  the  latter  as Q1 approaches O1 + 02. Also, when Q1 + = 50, 
the  MSE of the AMMSE  estimator is smaller  than  that of the  PSR estima- 
tor. Similar to the  case of k = 3, I I  = 20, and u = 3, the  MMSE  estimator 
has  smaller MSE  than  the OLS estimator even when 8,  + O2 = 50. 
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Table 1. Relative  MSEs for k = 3, n = 20, and u = 3 

e, + o1 4 SR PSR MMSE  AMMSE 

0.5 . 00 
.05 
.10 
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.50 

.6586 .5892 

.6630 .5928 

.6673 .5964 

.67 17 .6000 
,6760 .6036 
.6803 .6072 
.6847 .6108 
,6890 ,6144 
.6933 .6180 
.6977 .62 16 
.7020 .6252 

.642 1 .3742 

.6444 .3788 

.6467 .3835 

.6490 .3882 

.65 13 .3928 

.6536 .3975 

.6559 .4022 
,6582 .4069 
.6605 .4115 
.6628 .4 162 
.6651 .4209 

3.0 . 00 
.30 
.60 
.90 

1.20 
1 S O  
1.80 
2.10 
2.40 
2.70 
3.00 

.6796 

.6954 

.7112 

.7270 

.7428 

.7586 

.7744 
,7903 
.806 1 
,8219 
.8377 

.626 1 
,6398 
,6535 
.6673 
-68 10 
.6947 
.708 5 
.7222 
.7359 
,7497 
.7634 

.6706 

.6799 

.6892 
.6986. 
.7079 
.7 172 
.7265 
.7359 
.7452 
.7545 
.7638 

.408 1 

.4286 

.4490 

.4695 

.4900 

.5105 

.5310 

.55 15 

.5720 

.5924 

.6 1 29 

10.0 .oo 
1 .oo 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 

.723 1 

.7469 

.7707 

.7945 

.8  184 

.8422 
,8660 
.8898 
.9 136 
.9375 
.96 13 

.6865 

.708 1 

.7296 

.7512 

.7727 

.7943 

.8 159 

.8374 

.8590 

.8806 

.902 1 

.7189 

.7347 

.7506 

.7664 

.7823 

.798 1 
,8140 
.8298 
.8457 
.8615 
,8774 

,4733 
.5120 
.5506 
.5893 
.6279 
.6666 
.7052 
.7439 
.7825 
.82 12 
.8598 
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Table 1. Continued 

el  +e2 61 SR  PSR  MMSE  AMMSE 

50.0 .oo 
5.00 

10.00 
15.00 
20.00 
25.00 
30.00 
35.00 
40.00 
45.00 
50.00 

.8  153 .797 1 

.8382 .8  185 

.8610 .8400 

.8839 .8615 
,9068 .8830 
.9296 .9044 
.9525 .9258 
.9753 .9473 
.9982 .9688 

1.021 1 .9902 
1.0439 1.0117 

.8 126 .6235 
,8302 .6730 
.8478 .7224 
.8653 ,7719 
3829 .8214 
.9004 .8708 
.9 180 .9203 
.9355 .9697 
.953 1 1.0192 
.9706 I .0687 
.9882 1.1181 

We see from  Tables 3 and 4 that,  as v increases from 3 to 20, the  region  of 
el +e2 and 8, where the estimators  have  smaller  MSE  than the OLS esti- 
mator gets narrow.  It  has been observed from  Table  4  that  the  MSE  of the 
PSR  estimator is smaller than  that of  the  AMMSE  estimator when 8, + 5 
3 and is close to  zero,  though the former gets larger  than  the  latter  as 8,  
approaches el + 6,. When + 6, = 10, the  MSE of the  AMMSE  estimator 
is smaller than  that of the PSR  estimator.  Although the MSE  of the 
AMMSE  estimator is smaller than  that of  the  PSR  estimator  when el + 8, = 
50 and el is close to zero,  the  former gets larger  than  the  latter  as el 
approaches Q1 + e2. Although the MSE  improvement of the MMSE estima- 
tor is not large when el +e2 2 10 and el is close to  zero, the MSE of  the 
MMSE  estimator is much  smaller than  those  of  the  other  estimators  when el 
is close to el + 02. 

5. CONCLUDING REMARKS 

In this paper, we have  derived  the explicit formulae  for  the  moments  of  the 
PTKK  estimator  under  multivariate t error  terms.  In  Section 3, it was  shown 
analytically that  the  PSR  estimator  for  each  individual regression coefficient 
dominates the SR  estimator in terms of MSE even when the multivariate t 
error  terms  are  assumed.  In Section 4, the  MSEs  of  the SR,  PSR,  MMSE, 
and  AMMSE  estimators  are  compared by numerical  evaluations. It is 
shown  numerically that the MSE of  the  AMMSE  estimator  for  each  indi- 
vidual coefficient is smallest over a wide region of the  parameter  space when 
the number of  the  regression coefficients is three. Also, the MMSE  estimator 
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Table 2. Relative MSEs for X-  = 3, n = 20, and 1’ = 20 

0, +01 01 SR PSR MMSE AMMSE 

0.5 . 00 
.05 
.10 
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.50 

3.0 . 00 
.30 
.60 
.90 

1.20 
1 S O  
1.80 
2.10 
2.40 
2.70 
3.00 

,6656 
.6773 
.6889 
.7006 
.7 122 
.7239 
.7355 
,747 1 
.7588 
.7704 
.782 1 

.7243 

.76 17 
,7992 
3367 
,8742 
.9117 
.949 1 
.9866 

1.024 1 
1.0616 
1.0990 

.605 1 
,6148 
.6245 
.6342 
.6438 
.6535 
.6632 
.6728 
.6825 
.6922 
,7018 

.70 1 8 
,735 1 
.7685 
.8019 
.8352 
.I3686 
.90  19 
.9353 
.9687 

I .0020 
1.0354 

.6543 .3876 

.6604 .4002 
,6666 .4 128 
.6728 .4254 
.6790 .4380 
.6852 .4505 
.6914 ,463 1 
.6976 .4757 
,7038 .4883 
.7 100 .5009 
.7 162 .5 134 

.7290 ,4780 

.7523 .5305 

.7755 ,5830 

.7987 .6356 

.8219 .688 1 

.845 1 ,7406 

.8684 .793 1 
$9  16 3456 
.9 148 .8982 
.9380 .9507 
.96 12 1.0032 

10.0 .oo 
1 .oo 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 

.8355 

.8710 

.9064 

.94 19 

.9774 
1.0129 
1.0483 
I .0838 
1.1193 
1.1548 
1.1902 

.8333 ,8371 ,6365 

.8676  .8655 .7152 

.90 19 ,8939  ,7939 
,9362  .9224  .8725 
.9705  .9508  .9512 

1.0048 ,9792  1.0299 
1.039 1 1.0077  1.1086 
1.0735 1.0361 1.1873 
1.1078 1.0645  1.2660 
1.1421 1.0930  1.3446 
1.1764 1.1214  1.4233 

~~ ~ 
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Table 2. Continued 

50.0 .oo 
5.00 

.10.00 
15.00 
20.00 
25.00 

,9573 
.9678 
.9783 
,9888 
,9993 

1.0098 

el +e2  01 SR PSR MMSE  AMMSE 

3736 
.9 157 
,9578 
.9999 

1.0419 
1.0840 

30.00 1.0203 1.0203 1.0209 1.1261 
35.00 1.0308 1.0308 1.0320 1.1682 
40.00 1.041 3 1.0413 1.0432 1.2103 
45.00 1.0518 1.051 8 1.0543 1.2523 
50.00 1.0623 1.0623 1.0655 1.2944 

.9573 

.9678 

.9783 

.9888 

.9993 
1.0098 

.9539 

.9650 

.9762 

.9874 
,9985 

1.0097 

for  each  individual regression coefficient has  smaller MSE  than  the OLS 
estimator  over  a wide region of parameter  space even if the  error terms  have 
a  multivariate t distribution with three degrees of  freedom. Further,  our 
numerical results show that  the  MSE  performance  of all the  estimators is 
much  improved when the error terms depart  from a  normal  distribution. 
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APPENDIX 

In  the  appendix,  the  formulae  for H(y,  q; a I ,  a2; r )  and J(p.  q; a l ,  a?: t) have 
been derived.  First, we derive  the  formula  for 

Let 11, = ( / 7 ’ ~ ) ~ / q ,  u2 = c‘[Zk - hh‘]c/a’. and t i3 = e‘e/a’. Then,  for 
given a, u 1  - and u 2  - ~;-~*(h~). where h,  = (h’y)’/a2 and 
kZ = y’(Zk - /2/7’)y/a2. and x;’(k) is the  noncentral  chi-square  distribution 
with f degrees of freedom and  noncentrality  parameter k .  Further, 213 is 
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Table 3. Relative MSEs for k = 8, I ?  = 20, and w = 3 

e, + e2 81 SR PSR MMSE AMMSE 

0.5 .oo 
.05 
.10 
.15 
.20 
2 5  
.30 
.35 
.40 
.45 
.50 

.3575 ,2662 

.3674 2736 

.3773 2809 

.3872 2882 

.397 1 ,2956 

.4070 .3029 

.4 169 .3102 

.4268 .3 176 

.4367 .3249 

.4466 .3322 

.4565 .3396 

.SO55 .324 1 

.8062 .3285 

.SO70 ,3329 

.SO77 .3373 

.SO84 .3417 

.SO91 .346 1 

.SO99 .3505 

.8 106 .3549 
,8113 ,3593 
.8120 .3637 
.8 128 .368 1 

3.0 .oo 
.30 
.60 
.90 

1.20 
1.50 
1 .so 
2.10 
2.40 
2.70 
3.00 

,3663 2924 
,4094 .3269 
.4525 .3613 
.4957 .3958 
.5388 .4302 
.58 19 .4647 
.6250 .499 1 
,6682 ,5336 
.7113 .5680 
.7544 .6025 
.7976 .6369 

.8 162 

.SI95 

.8228 

.826 1 
23293 
.8326 
3359 
.8392 
A424 
.8457 
,8490 

,3427 
,3646 
.3866 
,4085 
.4305 
.4524 
,4743 
.4963 
,5182 
.5402 
.562 1 

10.0 .oo 
1 .oo 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 

.4029 

.4841 

.5653 

.6465 

.7277 

.SO89 

.8901 

.9713 
1.0525 
1.1337 
1.2149 

.3502 

.4203 

.4903 

.5604 

.6304 

.7005 

.7705 
3406 
.9106 
.9807 

1.0507 

.8365 
3429 
.8494 
3559 
,8623 
3688 
.8752 
.88 17 
.8882 
3946 
.90 1 1 

.3842 

.4345 

.4849 

.5352 
,5855 
.6358 
.6861 
.7364 
.7868 
,8371 
3874 
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Table 3. Continued 

el +e, 61 SR PSR MMSE  AMMSE 

50.0 . 00 
5.00 

.10.00 
15.00 
20.00 
25.00 
30.00 
35.00 
40.00 
45.00 
50.00 

.5364 .5093 

.6413 .6063 

.7462 .7034 
351 1 .8004 
.9560 .8975 

I .0608 .9945 
1.1657 1.0915 
1.2706 1.1885 
I .3755 1.2855 
1.4804 1.3825 
1.5853 1.4796 

A826 .5089 
391 5 .5974 
,9005  .6859 
.9094  ,7744 
.9183  .8629 
.9272  .9514 
,936 1 1.0399 
.9450 1.1284 
,9539  1.2169 
.9628  1.3054 
.97  17  1.3939 

~ ~~ ~ 

distributed  as  the  chi-square  distribution  with - k degrees of freedom and 
ul, u 2 ,  and 213 are  mutually  independent. 

Using ul. u 2 ,  and u3, (28) can be expressed as 

where 

n,,(h) = exp(-k/2)(h/2)'/i!. and R is the region such that 
(u,  + z ~ ~ ) / L Q  >_ kr / (n  - k )  = t**. 

Let 211 = ( u ~  + u2)/u3, v2 = uIu3/(ul + uz), and v3 = u3. Using v I ,  u2, and 
v3 in (29), we obtain 
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Table 4. Relative MSEs for k = 8, I?  = 20, and u = 20 

SR PSR MMSE AMMSE 

0.5 . 00 
.05 
.10 
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.50 

.3583 

.3849 

.4116 

.4382 

.4649 

.49 15 

.5 182 

.5448 

.57 15 
,598 1 
.6238 

,2758 
2956 
.3154 
.3352 
.3550 
.3747 
,3945 
.4143 
,434 1 
.4539 
.4736 

.8098 
A118 
.8 137 
.8 157 
.8 176 
.8 196 
,8216 
3 2 3 5  
,8255 
3274 
3294 

.3310 
,3428 
.3 547 
,3665 
.3784 
,3903 
.402 1 
.4 140 
.4258 
.4377 
,4495 

~~~ ~ ~ ~ 

3.0 . 00 
.30 
.60 
.90 

1.20 
1 S O  
1.80 
2.10 
2.40 
2.70 
3.00 

.3854 ,3464 

.4957 .4368 

.6059 .527 1 

.7162 .6 175 

.8264 .7079 

.9367 .7982 
1.0469 ,8886 
1.1572 .9789 
1.2674 1.0693 
1.3777 1.1596 
1.4879 1.2500 

,8383 
,8467 
.8552 
A637 
.8722 
.8806 
3891 
,8976 
.9060 
.9145 
,9230 

,3809 
,4390 
.4972 
.5553 
,6135 
.6717 
.7298 
.7880 
.846 1 
.9043 
.9624 

10.0 . 00 
1 .oo 
2.00 
3.00 
4.00 
5.00 
6.00 
7 .OO 
8.00 
9.00 

10.00 

.5037 

.6684 

.8332 

.9979 
1.1627 
1.3274 
1.4922 
1.6569 
1.8217 
1.9864 
2.1512 

.4972 
,6509 
3047 
,9584 

1.1122 
1.2659 
1.4197 
1.5734 
1.7272 
I .8809 
2.0346 

.8869 

.9006 

.9144 
,9282 
.94 19 
.9557 
.9694 
.9832 
.9970 

1.0107 
1.0245 

.4889 

.6096 

.7302 

.8 509 

.97 15 
I .0922 
1.2128 
1.3335 
1.454 1 
1.5748 
1.6954 
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Table 4. Continued 

61 + 62 01 SR PSR MMSE AMMSE 

50.0 .oo 
5.00 

. 10.00 
15.00 
20.00 
25.00 

,7984 
.8908 
.983 1 

1.0755 
1.1679 
1.2602 

30.00 1.3526 
35.00 1.4450 
40.00 1.5373 
45.00 1.6297 
50.00 1.7221 

.7984 .9593 

.8907 .968 1 

.9830 .9768 

.0753 ,9855 

.I676 .9942 

.2599 1.0030 

.3522 1.0117 

.4445 1.0204 

.5368 1.0292 

.629 1 1.0319 

.7214 1.0466 

.7462 
,8705 
.9947 
.1189 
.243 1 
.3613 
.49 15 
,6157 
.7399 
.864 1 
.9883 

Again,  substituting z1 = vz/v3, (31) reduces to 

Further,  substituting z2 = (1 + v1)w3/2, (32) reduces to 

Finally, making use of the  change of variable t = v l / ( l  + vI) ,  we obtain 
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where 

and t* = k r / ( k t  + I I  - k ) .  
Next, we derive  the formula  for 

Differentiating (34) with respect to y ,  we have 
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c o r n  

+ % ( z a 2 ) q ~  a- i=o J=o ~ c ~ j ( h I ) M j ( h 2 ) ~ i + l , , ( y ,  q; aI .  a2; r )  

Expressing (36) by c and e’e,  we have 

(39) 
(h’c)’qppN(cla)pe(e’ela)dc d(e’e),  

where pe(e’e)a) is the  conditional density  function of e’e given 6, and 

1 (c - I/)’(C - Y )  
p d c l a )  = (2n)“/?ak (40) 

is the conditional  density  function  of c given a. 

obtain 
Differentiating (39) with respect to y and multiplying h’ from the left, we 

Equating (38) and (41), we obtain 
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x PlC(0l u. %)do (44) 

Substituting (34) and (43) in (43) and (44). and  making use of  the  change of 
variable z = (0, + O2 + ua,:)/2a’, we obtain (16) and (17) in  the  text. 
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16 
Effects of a Trended 
Efficiency  Properties 

Regressor  on the 
of the Least-Squares 

and Stein-Rule Estimation of Regression 
Coefficients 
SHALABH Panjab University, Chandigarh, India 

1. INTRODUCTION 

The least-squares  method possesses the  celebrated  property of providing  the 
optimal  estimator  for  the coefficient vector in a  linear regression model in 
the class of linear and unbiased  estimators. If we take  the  performance 
criterion as risk under  a  quadratic loss function,  James  and  Stein [ I ]  have 
demonstrated  that it is possible to find nonlinear  and biased estimators with 
smaller risk in comparison with the  least-squares  estimator. This pioneering 
result has led to the  development  of several families of estimators  having 
superior  performance  under  the risk criterion.  Among  them,  the  Stein-rule 
family characterized by a single scalar  has  acquired  considerable  popularity 
and  importance, see, e.g., [2] and [3]. 

The  properties of Stein-rule  estimators  have been extensively studied  in 
the  literature  but  most of the  investigations,  particularly  dealing with large 
sample  properties, have been conducted  under  the specification that  the 
regressors  in  the  model are asymptotically  cooperative, i.e., the  limiting 
form of the  variance-covariance  matrix of the  explanatory  variables  as 

327 
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the number of  observations  tends  to infinity is a finite and  nonsingular 
matrix.  Such  an  assumption  may be violated in many  practical  situations. 
for  instance,  where  some regressors are  trended.  In  particular,  when  one  of 
the  explanatory variables has  a  linear  or,  more generally, a  polynomial 
trend.  its  variance  tends  to infinity and  consequently  the limiting form of 
the  variance-covariance  matrix of  the  explanatory variables is no  longer 
finite. Similarly. if the  variable  follows an exponential  trend,  its  variance 
tends  to  zero  and  thus  the limiting form of the  variancexovariance  matrix 
of  the  explanatory variables becomes  a  singular matrix. 

The  purpose of  this  article is to  study  the effect of  trended variables on 
the  performance  properties of least = squares  and  Stein-rule  estimators in 
large  samples.  In  Section 2, we describe  a  linear  regression  model  with 
simply one  trended regressor and  state  the  least-squares  and  Stein-rule esti- 
mators  for  the regression coefficients. Section 3 presents their large sample 
properties  when all the regressors are  asymptotically  cooperative.  Relaxing 
this specification and  assuming  that  the values  of an  explanatory  variable 
follow  a  linear trend, we analyze  the  performance  properties of the least- 
squares  and  Stein-rule  estimators in Section 4. A similar exercise is reported 
in Section 5 for  the  nonlinear  trend case, using  two  simple  formulations, 
viz., quadratic  trend  and  exponential  trend.  Some  concluding  remarks  are 
then  offered in Section 6 .  Finally,  the  Appendix gives the  derivation  of  the 
main results. 

2. MODEL SPECIFICATION AND THE ESTIMATORS 

Let us postulate  the following  linear  regression  model: 

y = a e + X B + 6 Z + c  (2.1) 

where y is an tz x 1 vector  of tz observations  on the study  variable, CY is a 
scalar  representing the intercept  term in the regression  relationship, e is an 
iz x 1 vector  with all elements unity. X is an 17 x y matrix of I I  observations 
on p explanatory  variables, /I is a p x 1 vector  of p regression coefficients, Z 
is an IZ x 1 vector  of iz observations  on  another  explanatory  variable, 6 is the 
regression coefficient associated  with  it,  and e is an tz x 1 vector  of distur- 
bances. 

It is assumed  that  the  elements  of  vector c are  independently  and  identi- 
cally distributed  following  a  normal  distribution  with  mean 0 and finite but 
unknown  variance o2 

If we define 

A = I, - -ee 1 ,  
I ?  

(3.3) 
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Least-Squares and Stein-rule Estimation of Regression Coefficients 329 

we can write the model  as 

Ay=AXB+6AZ+AE 

= AQy + A E  

were Q = (X 2) and y = (B' 6)'. 
The  least-squares  estimator  of y is  given  by 

c = ( Q ' A Q ) " Q ' A ~ ~  (2.4) 

whence the least-squares  estimator b and d of and 6 respectively are 

Z'Ay  - Z ' A X ( X ' A X ) " X ' A  Y 
Z'AZ - Z 'AX(X 'AX)"X 'AZ  

d = (2.5) 

b = (X 'AX)"X'A(y  - d Z )  (2.6) 

The  Stein-rule  family  of  estimators  of y is defined by 

where k is the  nonstochastic  scalar,  independent 
estimator.  Thus  the Stein-rule estimators  of B and 

[ ( n )  (Xb+dZ) 'A(Xb+dZ)  I b  k (1, - Xb - d Z )  ' A  (1) - Xb - d Z )  /g= 1 -  - 

k (J' - Xb - dZ)'A(v - Xb - d Z )  6 =  1 -  - [ ( n )  (Xb+  dZ) 'A(Xb + dZ) 

of n, characterizing  the 
6 are 

(2.6) 

(2.7) 

In  the  next  three sections, we analyze  the  performance  properties of 
estimators  employing the large sample  asymptotic  theory. 

3. EFFICIENCY  PROPERTIES: THE ASYMPTOTICALLY 
COOPERATIVE  CASE 

When all the ('JI + 1) explanatory variables are  asymptotically  cooperative,  it 
means  that,  as I? tends  to infinity, n"X'AX tends  to  a finite and  nonsingular 
matrix, n"X'AZ tends to a finite vector,  and n"Z'AZ tends  to  a finite 
positive scalar. 

Under  the  above specification, the least-square: estimators d and b are 
unbiased  whereas  the  Stein-rule estimators s  ̂ and B are biased  with the bias 
expressions  to order O(17") as 
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B($) = E($  - 6 )  

Further,  the  variance  of d is larger  than the mean  squared  error of s  ̂ to 
order O(n-2) when 

0 < k < 2 ( p -  1); p > 1 (3.3) 

If we define  the predictive risks associated  with  the  estimators  of B as 

R(b) = - E(Xb - XB)’A(Xb - XB) 1 
n 

R ( i )  = -E(XB I2 1 - X B ) ’ A ( X g  - XB) 

and  consider their approximations  to  order I 

(3.4) 

O(n”), the  estimator is found 
to have  smaller risk in comparison with b under  the  condition (3.3); see [4] 
for  the  case of disturbances  that  are  not necessarily normally distributed. 

In the next  two sections, we assume  that  the elements  of Z are  trended so 
that  the limiting value  of K ’ Z ’ A Z  as 11 goes to infinity is either  zero  or 
infinite. However, the remaining p regressors continue  to be asymptotically 
cooperative so that n”X’AX tends  to a finite and  nonsingular  matrix. 
Accordingly, we define 

1 s = - X ’ A X  
I7 

(3.6) 

I1 = X’AZ 
(rzZ’AZ)”? 

(3.7) 

and  assume  that the elements of S and k are of order 0(1), following [5] (p. 
24). We consider  both  the  cases of linear  and  nonlinear  trends in the last 
explanatory  variable. 

4. EFFICIENCY  PROPERTIES:  THE  LINEAR TREND 
CASE 

Let us assume  that  the elements  of Z follow  a  linear  trend specified by 
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z ,=eo+e , t  ( t =  1.2 , . . . ,  4 (4.1) 

where 0, and el are  constants characterizing  the nature of the  trend.  It is 
easy to see that 

so that  the  limiting value of t7”Z’AZ is infinite as I I  tends to infinity. 
Using (4.2), it is easy to see that 

V ( d )  = E(d - 6)* 

V(b) = E(b - B)(b - /?)’ 

Similar  results  for  the  estimators s  ̂ and b are derived in the  Appendix and 
are  stated below. 

Theorem 1. The bias of estimator s  ̂ to  order O(n-3) is given by 

B($) = E(; - 6) 

- 1 2a2k - ” 
11~8;s  

(4.5) 

while the difference between the  variance of d and  the mean  squared  error of 
s  ̂ to  order O ( P Z - ~ )  is 

D 6; d = E  6 - 6  -E(d - (- ) ( A  >? 

- 1 44a4 k2 
- 

F l y  62 

Similarly, the  bias  vector of ,I? to  order O ( H - ~ )  is 
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and the difference between the  variance-covariance  matrix of b and the 
mean  squared  error  matrix of j to order O ( H - ~ )  is 

We thus observe that  the  estimator d is not only unbiased  but  has smaller 
variance than  the mean  squared  error  of ŝ , at least to  the  order  of  our 
approximation.  On the other  hand, the  estimator ,6 is biased but is uniformly 
superior to the  unbiased  estimator b for all positive values of k under  the 
strong  criterion  of  the  mean  squared  error  matrix.  Thus  the presence of  a 
trended  regressor  leads to a  substantial  change in the  performance  proper- 
ties of Stein-rule  estimators. 

When all the  variables  are  asymptotically  cooperative,  the  leading  term  in 
the  bias  of  Stein-rule  estimators is of order O(n-'). This  order is O(nF3) 
when one  regressor is trended.  This implies that Stein-rule  estimators 
become  nearly  unbiased in large  samples in the presence of linear  trend in 
a  regressor. 

Similarly, we observe  from  (4.3) that  the  mean  squared  error of d and s  ̂ is 
of  order O(Y' )  in  the  asymptotically  cooperative  case  but becomes of order 
O ( H - ~ )  in the presence of linear  trend.  However, no such  change  occurs in 
the  case of estimation of B and  the mean  squared  error  matrix of b, as well as 
j, remains of order O(n-') ,  see (4.4). 

It is interesting to  note  that the  magnitude of the slope of the  trend line, 
besides other  parameters of the  model,  plays an important role in the dis- 
tributional  properties  of  estimators  whereas the intercept  term in the  trend 
line exhibits no influence. 

5. EFFICIENCY  PROPERTIES:  THE NONLINEAR 
TREND CASE 

There  are  numerous specifications for  the  nonlinear  trend,  but we restrict 
our  attention  to two popular  formulations.  One is the  quadratic  trend  and 
the  other is the  exponential  trend. 

5.1 Quadratic  Trend 

Let us suppose  that  the elements of Z follow a quadratic  trend given by 
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z ,=e0+elr+e2t2  ( r = 1 , 2  , . . . ,  n)  (5.1) 

where eo, e l ,  and O2 are the  constants  determining  the  nature  of  the  trend. 
The trend  equation (5.1) describes an upwardly or downwardly  concave 

curve with a bend and continually  changing  slope.  Using  the  results 

-Et=-, 1 ( I ?  + 1) -Et2= 1 (n + 1)(2I? + 1) 

-c13= 1 4,?+ I ) ? ,  .! = 

I 1  - I 1  6 

(12 + 1)(21z + 1)(3n' + 311 - 1) 
I 1  4 I ?  30 

it is easy to see that 

(5.2) 

Clearly,  the  limiting value of IZC'Z'AZ as IZ tends  to infinity is infinite. 
Further, the quantity n"Z'A.2 approaches infinity at a  faster rate when 
compared with the  case of linear  trend; see (4.2). 

Using ( 5 . 3 ,  we observe that the  variance of d is 

V ( d )  = E(d - 

while the variancexovariance  matrix of b remains  the  same as  that given by 
(4.4). 

In the  Appendix,  the following results are  obtained. 

Theorem 2. The bias of s  ̂ to  order O(nP5)  is given by 

B(s^) = E(;  - 6) 

45a)k -" - 
4n38:6 

(5.4) 

and the difference between the  mean  squared  error of s  ̂and  the variance of d 
to  order O(n"O) is 
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- 2025a4k' 
- 

16r210€@2 

Similarly,  the  bias  vector of j to  order O ( H - ~ )  is 

= " ( S  - P )  

while the  mean  squared error matrix of j to  order O ( ? I - ~ )  exceeds the 
variance-covariance  matrix of b by a  positive semi-definite matrix specified 
by 

A(& b )  = E ( j  - P ) ( j  - P)'-E(b - P)(b - PI' 

S"12h'S" 
1 - /?'S"h 1 (5.7) 

As is observed  in  the  case of linear  trend,  the  Stein-rule  estimator of 6 is 
not only biased but  also inefficient in comparison with the  least-squares 
estimator d. However, when estimation  of /3 is considered,  it is seen that 
the  estimator b is exactly unbiased  whereas  the  Stein-rule  estimator ,6 is 
nearly  unbiased in the sense that  the bias to  order O ( H - ~ )  is zero.  Further, 
from (5.7), the  variance-covariance  matrix of b exceeds the  mean  squared 
error  matrix  of by a  non-negative definite matrix, implying the  strong 
superiority of ,I? over 6. 

The difference between the  linear  trend  case and  the  quadratic  trend case 
lies only at the level  of approximation. For instance,  the  leading  term in the 
bias  of s  ̂and j is of  order O(n") in the  case  of  linear  trend and O(n-5) in the 
case of quadratic  trend. 

5.2 Exponential Trend 

Let  us now assume  that  the elements of Z follow an exponential  trend 
specified by 

z, = e,, +ole;-' ( t =  1,2,  ..., n )  (5 .8 )  

where e,, e,, and e2 are  constants. Using (5 .8) ,  we observe  that 
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When -1 < O2 < 1, i.e.. the  trend is non-explosive,  it can be easily seen 

Under  the specification (5.10), the  variance of d is 

V(d)  = E(d - 6)' 

that  the  quantity n"Z'AZ approaches 0 as n tends to infinity. 

(5.10) 

while the  variance-covariance  matrix of b is the  same  as  that specified by 
(4.4). 

From  the Appendix, we have the following results. 

Theorem 3. The bias of estimator d of 6 to  order O(17") is 

B ( i )  = E($ - 6 )  

(5.11) 

and  the difference between the  mean  squared error  of s  ̂ and the  variance  of d 
to order O(n") is 

2 0 ? ~ ( 1  - e;) 
Id;( 1 - ep)B'sg - _  - 

Similarly, the bias vector  of to  order O(n") is 

(5.12) 

while the difference between the  mean  squared error  matrix of f i  and  the 
variance-covariance  matrix of b to  order O(n-?) is 
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(5.14) 

-2 s-' + ( 1 - h'S-'h S-l/?h's-')] 

From (5.1 1) and (5.12), we see that the  Stein-rule  estimator of 6 is biased but 
more efficient than  the least squares  estimator  for all positive  values of k .  
Similarly. it is observed  from (5.13) that the  Stein-rule  estimator of f3 is 
biased,  with every element of the  bias  vector possessing a sign opposite to 
that  of  the  corresponding regression coefficient. 

Now,  for  the  comparison of b and b under  the  criterion of mean  squared 
error  matrix, we state two results for a positive definite matrix G and a 
vector g; see, e.g., [6] (p. 370). 

Lemma 1. The matrix (gg' - G") can never be non-negative definite 
except when g is a  scalar. 

Lemma 2. The  matrix (G-' - gg') is non-negative definite if and only if 
g'Gg does  not exceed 1. 

Employing  Lemma 1, it follows from (5.14) that b cannot be  superior  to 
except in the trivial case y = 1 .  On  the  other  hand, applying Lemma 2, i t  is 
seen that is superior to b if and only if 

( ! q O - l  2p'Sg + 1 s-lh/?'s-')-'B < I 
1 - l1'S"h 

or 

or 

(5.15) 

Next, let us compare b and j? under a weak criterion,  say,  the  predictive 
risk. From (5.14), we observe that 
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trSA(b; b )  = E ( b  - p)'S(b - p )  - E(b - p)'S(b - B) 
(5.16) 

from which it is interesting  to see that 6 has  smaller  predictive risk to  order 
O(tz-') in comparison with b when k satisfies the  constraint 

( ) I ,  Is-\ I1 It'S-'l, 
O < k < 2  y - 2 +  ; p > 2 -  

1 - 1z'S"h 1 - Il'S"l1 
(5.17) 

As i?'S-'/? lies between 0 and 1, this condition is satisfied as  long  as 

0 < k < 2 ( ~ >  - 2): p > 2 (5.18) 

which is slightly different  from (3.3). 

6. SOME REMARKS 
We have considered  a  linear regression model  containing  a  trended regressor 
and have analyzed  the  performance  properties of the  least-squares (LS) and 
Stein-rule (SR) estimators  employing  the  large  sample  asymptotic  theory. 

It is  well known  that  the SR estimators of regression coefficients are 
generally biased and  that the  leading  term in the  bias is of order O(n") 
with a sign opposite  to  that of the  corresponding regression coefficient 
whereas the LS estimators  are always  unbiased. Further, the SR estimators 
have smaller predictive risk, to  order O(,t"), in comparison with the LS 
estimators when the positive characterizing  scalar k is less than 2@ - 1 )  
where  there are (p + 2) unknown coefficients in the regression relationship. 
These inferences are deduced  under  the  assumption  of  the  asymptotic coop- 
erativeness of all the  variables, i.e., the  variance-covariance  matrix of 
regressors tends  to  a finite and  nonsingular  matrix  as 11 goes to infinity. 
Such an  assumption is violated,  for  instance, when trend is present in one 
or  more regressors. 

Assuming that simply one regressor is trended while the  remaining regres- 
sors  are asymptotically  cooperative, we have  considered two specific situa- 
tions.  In  the first situation,  the  limiting  form of the  variance-covariance 
matrix of regressors is singular, as is the  case with nonexplosive  exponential 
trend, while in the  second  situation. it is infinite, as is the  case  with  linear 
and  quadratic  trends. 

Comparing  the  two  situations  under  the  criterion of bias, we observe that 
the bias of SR estimators of 6 and B is of order O(t7-I) in the first situation. 
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In  the second  situation, it is of order O ( K 3 )  in the  linear  trend  case and 
O(K5)  in the  quadratic  trend case. In  other  words,  the SR estimators  are 
nearly  unbiased in the  second  situation when compared with the first situa- 
tion.  Further,  the variances and  mean  squared  errors of LS and SR estima- 
tors of 6 are of order O( 1) in the first situation  but they are of order O(nF3) in 
the  linear  trend  case and O ( K 5 )  in  the  quadratic trend case. This,  however, 
does  not remain  true when we consider  the  estimation of /3, consisting of the 
coefficients associated with asymptotically  cooperative  regressors. The var- 
iance-ovariance and mean  squared  error matrices of LS and SR estimators 
of /3 continue  to  remain of order O(rz-') in every case and  the  trend  does  not 
exert  its influence, at least asymptotically. 

Analyzing  the  superiority of the SR estimator  over  the LS estimator,  it is 
interesting to note  that the  mean  squared error  of  the biased SR estimator  of 
6 is smaller than  the variance of the  unbiased LS estimator  for all positive 
values  of k in the first situation.  A  dramatic  change is seen in the  second 
situation  where  the LS estimator of 6 remains  unbeaten by the SR estimator 
on  both  the  fronts of bias and mean  squared  error. When we consider  the 
estimation of /3, we observe that  the SR estimator  may  dominate  the LS 
estimator,  under  a  certain  condition, with respect to  the  strong  criterion of 
mean  squared  error  matrix in the first situation.  However, if  we take  the 
weak criterion of predictive  risk,  the SR estimator  performs  better  than  the 
LS estimator at least as  long  as k is less than 3($ - 2), with the  rider that 
there are three or  more regressors in the  model besides the  intercept  term. In 
the  second  situation,  the SR estimator of /3 is found  to  perform  better  than 
the LS estimator, even under  the  strong  criterion of the  mean  squared  error 
matrix,  to  the given order  of  approximation. 

Next. let us compare the  performance  properties of estimators with 
respect to the nature  of  the  trend, i.e., linear versus nonlinear  as specified 
by quadratic  and exponential  equations.  When  linear  trend is present,  the 
leading  term in the bias of SR estimators is of order O ( U - ~ ) .  This  order is 
O(n-5) in the  case of quadratic  trend, whence it follows that the SR estima- 
tors  tend  to be unbiased at a slower rate in the  case of linear  trend when 
compared with quadratic  trend  or,  more generally, polynomial  trend. 
However.  the  order of bias in the  case of exponential  trend is O(n-') ,  so 
that  the SR estimators  may  have  substantial  bias in comparison  to  situa- 
tions like linear  trend  where  the  bias is nearly negligible in large  samples. 

Looking  at  the variances and mean  squared  errors of the  estimators of 8, 
it is observed that  the difference between the LS and SR estimators  appears 
at  the level of order O ( K 6 )  in the case  of  linear  trend while this level varies 
in nonlinear  cases. For instance, it is O(w-") in the case of quadratic  trend. 
Thus both  the LS and SR estimators  are equally efficient up to order O(,Z-~) 
in the  case  of quadratic  trend whereas  the poor  performance of the SR 
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estimator  starts precipitating at the level of 0(K6) in the  case of linear 
trend.  The  situation  takes  an interesting turn when we compare  linear  and 
exponential  trends. For all positive values of k, the SR estimator of S is 
invariably  inferior to  the LS estimator in the  case of linear  trend  but it is 
invariably  superior  in  the case of exponential  trend. 

So far  as  the  estimation of regression coefficients associated with asymp- 
totically cooperative regressors is concerned,  the LS and SR estimators of B 
have  identical  mean  squared error matrices up  to order O ( f 3 )  in the  linear 
trend  case and 0(17-~) in the  quadratic  trend case. The  superior  performance 
of the SR estimator  under  the  strong  criterion of mean  squared  error matrix 
appears  at  the level of O ( f 4 )  and 0(K6) in the cases of linear and  quadratic 
trends respectively. In  the  case  of  exponential  trend,  neither  estimator is 
found  to be uniformly  superior  to  the other  under  the mean  squared  error 
matrix  criterion.  However,  under  the  criterion of predictive  risk,  the SR 
estimator is found  to be better than  the LS estimator, with a  rider on  the 
values of k.  

Similarly, our investigations  have clearly revealed that  the  asymptotic 
properties of LS and SR estimators  deduced  under  the specification of 
asymptotic  cooperativeness  of  regressors lose their validity and relevance 
when one of the  regressors is trended.  The consequential  changes in the 
asymptotic  properties are largely governed by the  nature  of the  trend, 
such as its  functional  form and  the coefficients in the  trend  equation. 
Interestingly enough, the presence of trend in a regressor not only influences 
the efficiency properties of the  estimator  of  its coefficient but  also  jeopar- 
dizes the  properties of the  estimators  of  the coefficients associated with the 
regressors that  are asymptotically  cooperative. 

We have envisaged three simple formulations of trend  for  analyzing  the 
asymptotic  performance  properties of LS and SR estimators in a  linear 
regression model. It will  be interesting to extend our investigations to 
other types of trend  and  other kinds of models. 

APPENDIX 
Besides (3.6). let us first introduce  the following notation: 
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Now, it is easy to see from (2.5) and (2.6) that 

- ””[“- , ? I / ?  1 ( kt’ 1 - - Iz‘S“I7 h ’S” 14 ) h ]  (A.2) 

Similarly, we have 

(Xb + (Iz)’A(Xb + dZ) 

= y ’AX(X’AX)”X’A  Y + [Z’Ay  - Z’AA’(X”AX)”X’Ay]’ 
[ Z ’ A Z  - Z’A.Y(X’AX)”X’AZ]  

Proof of Theorem 1 

Substituting (4.2) in (A.l)  and (A.3), we find 
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1 (y - Xb - dZ)'A(]i - Xb - d Z )  (ii) (Xb + dZ)'A(Xb + d Z )  

Using (A.7) and (A.5) in (2.9), we can express 

Thus the  bias to  order O(t1") is 

B@) = E @ - & )  

12a'k 
1136;s 

- 

which is the result (4.5) of Theorem 1 .  

error of s^ to order O(tT-6) is 
Similarly,  the  difference between the  variance  of d and  the  mean  squared 

(A.lO) 

which is the result (4.6). 
Similarly, using (A.2)  and (A.7), we observe that 
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(A. 11) 

+ o ~ ( ~ - ~ )  
from which  the bias vector to  order O(n-3) is 

B(B)  = “(B - s) 
12ka’ . 

(A. 12) 

providing  the result (4.7). 

o(nP4) is 
Further,  it is easy to see from (A.2) and (A. 1 1) that  the difference to  order 

- - 
12k 

+ 2&’E( u - ( I\’ 1 - - h h‘S” ‘s-l tl )h]  
1 - 11‘s-lh 

- -” 

which is the result (4.8). 

Proof of Theorem 2 

Under  the specification (5.1), we observe  from (A.l)  and (A.2) that 

(A.  13) 
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(A. 14) 

Proceeding in the  same  manner as indicated  in  the  case of linear  trend, we 
can express 

1 0 :  - Xb - d Z )  ' A  cv - Xb - dZ)  
(n) ( X b  + dZ)'A(Xb + d Z )  

whence the  bias of s  ̂ to order O ( I I - ~ )  is 

(A. 15) 

(A. 16) 

and the difference between the  mean  squared error  of s  ̂ and  the  variance of d 
to order O(r1"') is 

= E  [(^ 6 - 6  ) - (d -S ) ] [ ( s^ -6 )+ (d -6 ) ]  (A. 17) 

- 202504k' 
1 6 ~ ~ ~ 0 ~ 6 '  

- 

These  are  the  results  (5.4) and (5 .5)  of Theorem 2. The  other two  results 
(5.6) and (5.7)  can be obtained in a  similar  manner. 

Proof of Theorem 3 
Writing 
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and using (5.9) in (A. l ) ,  we get 

Similarly,  from (A.3) and (A.4), we have 

(A. 18) 

(A. 19) 

(Xb + dZ)'A(Xb + CiZ) 
(A.20) 

whence we can express 

p-8) -i( 12' - I1 's- ' I 1  1 1 - I1'S"~Il 

(A.21) 

(A.22) 

and  the difference between the  mean  squared error of s  ̂and the  variance of d 
to order O(n-l) is 
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-0 h A 7 2 2 -  

nB'SB 
-" - 

These are  the results (5.1 1) and (5.12) stated in Theorem 3. 
Similarly, from (A.2)  and (A.20), we can express 

(A.23j 

Thus  the bias vector to  order O(n-')  is 

B(b)  = E ( b  - B )  
( A X )  

Further, to order O(n"), we have 

A(b; h )  = E ( b  - B ) ( b  - B)'-E(b - B)(b - B)' 

(A.26) 

which is the last result (5.14) of  Theorem 3. 
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1. INTRODUCTION 

The  appearance in 1950 of the Cowles Commission monograph 10. 
Stntisticol bfirence in Economics, alerted  econometricians  to  the possible 
simultaneoussendogenous  nature  of  economic  data  sampling processes and 
the  consequent  least-squares  bias  in infinite samples  (Hurwicz 1950. and 
Bronfenbrenner 1953). In  the  context of a single equation in a system of 
equations,  consider  the  linear  statistical  model y = X / ~ + E ,  where we observe 
a  vector  of  sample  observations y = ( y l ,  y 2 ,  . . . , y,,) , X is an ( n  x k )  matrix 
of  stochastic  variables, E - (0. cr21,) and /3 E B is a (k x 1)  vector of 
unknown  parameters. If E[n"X'c] # 0 or plim[n"X'r] # 0 , traditional 
maximum  likelihood (ML) or least  squares (LS) estimaLors, or equivalently 
the  method of moments  (MOM)-extremum  estimator ~,,, = argS,,[n"X' 
(y  Xfi) = 01, are biased and inconsistent,  with  unconditional  expectation 

Given  a  sampling process characterized by nonorthogonality of X and E , 
early standard  econometric practice  made use of  strong underlying  distribu- 

m 1  # B and Plim [BI # P. 
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tional  assumptions  and developed  estimation  and  inference  procedures  with 
known  desirable  asymptotic  sampling  properties  based  on  maximum like- 
lihood principles. Since in many cases strong  underlying  distributional 
assumptions  are unrealistic, there was a  search  for at least a  consistent 
estimation rule that  avoided  the specification of  a  likelihood  function. In 
search  of  such  a  rule it became  conventional  to  introduce  additional  infor- 
mation in the  form  of  an (n  x / I ) ,  11 p k random  matrix Z of  instrumental 
variables,  whose  elements  are  correlated  with X but  uncorrelated  with E . 
This  information was  introduced in the  statistical  model in sample  analog 
form  as 

h(y, X. Z; B) = II"[Z'(Y - XB)] 0 
P 

(1.1) 

and if It = k the  sample  moments  can be solved for  the  instrumental vari- 
able (IV) estimator BiV = (Z'X)"Z'y. When  the  usual  regularity  conditions 
are fulfilled, this  IV  estimator is consistent,  asymptotically  normally  distrib- 
uted,  and is an  optimal  estimating  function  (EF)  estimator  (Godambe 1960, 
Heyde 1997, Mittelhammer et al. 2000). 

When / I  2 k , other  estimation  procedures  remain  available,  such  as  the 
EF approach  (Godambe 1960, Heyde  and  Morton 1998) and  the  empirical 
likelihood  (EL)  approach  (Owen 1988, 1991,2001,  DiCiccio et al. 1991,  Qin 
and Lawless 1994), where  the latter identifies an  extremum-type  estimator  of 
B as 

x#) = 0. 

( 1  2 )  

Note  that C E ( B )  in (1.2) can be interpreted  as  a profile empirical  likelihood  for 
,6 (Murphy  and Van Der  Vaart 2000). The  estimation objective function in 
(1.2), q5(w). may  be  either  the traditional empirical  log-likelihood objective 
function, Cy!, log(w,), leading to the  maximum  empirical  likelihood  (MEL) 
estimate  of B , or  the  alternative  empirical  likelihood  function, 
- )vi log(wi), representing  the  Kullback-Leibler  information or  entropy 
estimation objective and  leading  to  the  maximum  entropy empirical likeli- 
hood  (MEEL)  estimate of B . The  MEL  and  MEEL  criteria  are  connected 
through the Cressie-Read  statistics (Cressie and Read 1984. Read  and 
Cressie 1988, Baggerly 1998). Given  the  estimating equations  under  consid- 
eration,  both  EL  type  estimators  are  consistent.  asymptotically  normally 
distributed,  and  asymptotically efficient relative to the optimal  estimating 
function  (OptEF)  estimator. Discussions  regarding  the  solutions and  the 
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asymptotic  properties for these types of problems  can  be  found in Imbens et 
al. (1998) and  Mittelhammer  et  al. (2000), as well as  the references therein. 

Among  other  estimators in the over-identified case,  the GMM estimators 
(Hansen 1982), which minimize a quadratic  form in the  sample  moment 
information 

can be shown to have  optimal  asymptotic  properties  for  an  appropriate 
choice of the weighting matrix W. Under  the usual  regularity  conditions, 
the  optimal GMM estimator,  as well as  the  other extremum type estimators 
noted  above,  are first order asymptotically  equivalent.  However,  when h > k 
their finite sample  behavior in terms of bias, precision, and inference proper- 
ties may differ, and  questions regarding  estimator  choice  remain. 
Furthermore, even if the Z‘X matrix  has full column  rank,  the  correlations 
between economic  variables,  normally  found  in  practice,  may be such that 
these matrices  exhibit  ill-conditioned  characteristics that result in estimates 
with low precision for  small  samples. In  addition,  sampling processes for 
economic data may  not be  well behaved in the sense that extreme  outliers 
from heavy-tailed sampling  distributions  may be present.  Moreover,  the 
number of observations in a  sample of data may be considerably smaller 
than is needed for  any of the  estimators to achieve even  a  modicum of their 
desirable  asymptotic  properties.  In these situations,  variants  of  the  estima- 
tors  noted  above  that utilize the structural  constraint (1 . l )  may  lead,  in finite 
samples, to estimates that  are highly unstable  and serve as  an unsatisfactory 
basis for  estimation  and inference. 

In evaluating  estimation  performance  in  situations such as these, a 
researcher  may be willing to  trade off some level of bias  for  gains in preci- 
sion. If so, the  popular  squared  error loss (SEL) measure  may be an  appro- 
priate choice of estimation  metric  to use in judging  both  the  quality of 
parameter  estimates,  measured by L(P, B) = II(P - / 3 ) 1 1 2 ,  as well as  dependent 
variable  prediction  accuracy,  measured by L(y, i) = II(y - i)Il’. 
Furthermore,  one usually seeks an  estimator  that provides  a  good finite 
sample basis for inference as it relates to interval  estimation  and  hypothesis 
testing. With these objectives in mind, in this  paper we introduce  a semi- 
parametric  estimator  that, relative to  traditional  estimators  for  the  over- 
determined  non-orthogonal  case,  exhibits  the  potential  for significant finite 
sample  performance gains relating to precision of  parameter  estimation  and 
prediction, while offering  hypothesis  testing  and  confidence  interval  proce- 
dures with comparable size and coverage  probabilities, and with potentially 
improved test power and reduced confidence interval  length. 
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In  Section 2 we specify a  formulation  to  address these small  sample 
estimation  and inference objectives in the  form of a  nonlinear inverse pro- 
blem, provide  a  solution, and discuss the  solution  characteristics.  In  Section 
3 estimation  and inference finite sample  results are presented and  evaluated. 
In Section 4 we discuss the  statistical  implications of our results and  com- 
ment on how  the results may be extended and refined. 

2. THE  ELDBIT  CONCEPT 

In an  attempt  to  address the  estimation  and inference objectives noted in 
Section 1, and in particular  to achieve improved finite sampling  perfor- 
mance relative to  traditional  estimators, we propose an estimator  that  com- 
bines the  EL  estimator with a  variant  of  a  data-based  information  theoretic 
(DBIT)  estimator  proposed by van  Akkeren  and  Judge (1999). The  funda- 
mental idea underlying  the  definition of the  ELDBIT  estimator is to com- 
bine a  consistent  estimator  that  has  questionable finite sample  properties 
due  to high small  sample  variability with an estimator  that is inconsistent 
but that has  small finite sample  variability. The objective  of  combining these 
estimations is to achieve a  reduction in the SEL measure with respect to 
both overall  parameter  estimation precision. L(B, j) = llB - jll', and accu- 
racy of  predictions, L(y, i) = IJy - $ / I 2 .  

2.1 The EL and DBIT Components 

When h = k .  the  solutions  to either  the MEL  or the MEEL extremum 
problems in (1.2) degenerate  to the standard IV estimator with 
MI, = n"Vi. When h > k. the  estimating  equations-moment  conditions  over- 
determine  the  unknown  parameter values and a  nontrivial EL  solution 
results  that effectively weights the  individual  observations  contained in the 
sample data set in formulating  moments  that underlie  the  resulting  estimat- 
ing  equations.  The  result is a  consistent  estimator  derived  from weighted 
observations of the  form identified in (1.2) that  represents  the  empirical 
moment  equations  from which the  parameter  estimates  are  solved. 

As a first step,  consider an  alternative  estimator, which is a  variation  of 
the  DBIT  estimator concept initially proposed by van  Akkeren  and  Judge 
(1999) and coincides closely with  the revised DBIT  estimator  introduced by 
van  Akkeren  et  al. (2000) for use in instrumental  variable  contexts  charac- 
terized by unbalanced design matrices.  In  this  case,  sample  moment  infor- 
mation  for  estimating p is used in the  form 

,1"[Z'y - zfx(,l-'xfx)-*(x 0 p)"y] = 0 (2.1) 
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and 

j(p) = (n-IX'X)-I(X 0 p)'y (2.2) 

is an estimate  of  the  unknown B vector, p is an  unknown (n x 1) weighting 
vector,  and 0 is the  Hadamard (element-wise) product.  The  observables y. 
Z, and X are expressed in terms  of  deviations  about  their  means in this 
formulation  (without loss of  generality). 

Consistent  with the moment  information in the  form of @.I),  and using 
the K-L information  measure, the extremum  problem  for  the  DBIT  estima- 
tor is 

min ~ ( p ,  q)ln-'Z'y = ~-Iz'x(,~-'x'x)-'(x 0 p)'y, l ' p  = 1. p > 0) 
P { 

(2.3) 

where I(p, q) = p'log(p/q)  and  q  represents  the reference distribution  for  the 
K-L information  measure.  In  this  extremum  problem,  the objective is to 
recover the unknown p and thereby  derive  the  optimal  estimate  of B, j(p) = 
(n"X'X)" (X 0 p)'y. Note  that, relative to  the /? parameter  space B, the 
feasible values  of  the estimator  are defined by (n-'X'X)-I(X 0 p)'y = (n"X' 
X)-' Cy=l piXi'y,, for all non-negative  choices  of  the  vector p that satisfy 
l 'p = 1. The unconstrained optimum is achieved  when all of  the  convexity 
weights, p ,  = 1, . . . , n, are  drawn  to 11" , which  represents  an  empirical  prob- 
ability distribution  applied  to  the  sample  observations  that  would be maxi- 
mally  uninformative,  and  coincides  with the standard uniformly  distributed 
empirical distribution  function (EDF) weights on the sample  observations. 

It is evident that there is a  tendency to  draw  the  DBIT  estimate of /? 
towards the least-squares  estimator (X'X)"X'y which, in the  context  of 
nonorthogonality, is a  biased and  inconsistent  estimator.  However.  the 
instrument-based  moment  conditions  represent  constraining  sample  infor- 
mation  relating  to  the  true  value  of B, which  generally  prevents  the  uncon- 
strained  solution,  and  thus  the LS estimator,  from being  achieved.  In effect, 
the  estimator is drawn  to  the LS estimator only as closely as  the  sample IV- 
moment  equations will allow, and,  under general reFularity conditions relat- 
ing to IV  estimation,  the limiting solution  for /3 satisfying the  moment 
conditions n"Z'(y - X j )  = 0 will  be the  true  value of /? with  probability 
converging  to 1. The  principal  regularity  condition  for  the consistency  of  the 
DBIT  estimator, over and  above  the  standard  regularity  conditions  for 
consistency  of  the IV estimator, is that  the  true value  of /? is contained in 
the feasible space  of  DBIT  estimator  outcomes  as n + 00 . See vanAkkeren 
et  al. (2000)  for  proof  details. 
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2.2 The ELDBIT Estimation Problem 

In search of an  estimator  that has  improved finite sampling  properties rela- 
tive to  traditional  estimators in the  nonorthogonal case, and given the  con- 
cepts and  formulations of both  the EL and  DBIT  estimators discussed 
above, we define the  ELDBIT  estimator  as  the  solution  to  the following 
extremum  problem 

minp,,,p‘ In(p) + w’ In(w) (2.4) 

subject to 

(Z 0 w)’y = (Z 0 w)’XP(p) 

l ’ p = l ,   p > O  and l ’ w = l ,  w > O  

(2.5) 

(2.6) 

In the  above  formulation, p(p) is a  DBIT-type  estimator as defined in (2.2), 
with  p being an (11 x 1) vector  of  probability or convexity weights on  the 
sample  outcomes  that define the  convex weighted combination of support 
points defining the  parameter  values,  and w is an ( 1 1  x 1) vector of EL-type 
sample weights that  are used in defining  the  empirical  instrumental  variable- 
based  moment  conditions.  The specification of any cross  entropy-KL refer- 
ence  distribution is a  consideration in practice, and, in the  absence of a 
priori  knowledge to the contrary, a  uniform  distribution,  leading  to  an 
equivalent  maximum  entropy  estimation objective, can be utilized, as is 
implicit in the  formulation  above. 

In  the  solution of the  ELDBIT  estimation  problem,  an ( 1 1  x 1) vector of 
EL-type  sample weights, w will  be chosen to effectively transform, with 
respect to solutions  for the D vector,  the  over-determined system of empiri- 
cal  moment  equations  into  a  just-determined  one.  Evaluated  at  the  optimal 
(or  any feasible) solution  value of w, the  moment  equations will then  admit  a 
solution  for  the  value of p(p) . Choosing  support  points  for the  beta values 
based on  the  DBIT  estimator,  as 

P(p) = (n-1x’x)-I(x 0 p)’y (2.7) 

allow  the LS estimate to be one of the  myriad of points in the support space. 
and indeed the LS estimate  would be defined when each element of p  equals 
/ ? - I ,  corresponding  to  the  unconstrained  solution of the  estimation  objec- 
tive. Note  that if Z were chosen  to  equal X, then in fact  the  LS  solution 
would be obtained when solving (2.4)-(2.7). The  entire space of potential 
values of beta is defined by conceptually  allowing  p to assume all of its 
possible nonnegative values, subject to  the  adding-up  constraint  that  the 
p  elements  sum to 1. Any value of B that  does  not reside within the convex 
hull defined by vertices consisting  of  the tr component  points  underlying  the 
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LS estimator, &i) = (n”X’X)X[i, . ] ’y [ i ] ,  i = I ,  . . . , 11, is not in the feasible 
space  of  ELDBIT  estimates. 

2.3 Solutions to The ELDBIT Problem 

The  estimation  problem defined  by (2.4)-(2.7)  is a  nonlinear  programming 
problem  having  a  nonlinear, strictly convex, and  differentiable objective 
function  and  a  compact feasible space  defined via a set of  nonlinear  equality 
constraints  and  a set of  non-negativity  constraints on the  elements  of p and 
w. Therefore, so long  as  the feasible space is nonempty,  a  global  optimal 
solution to the  estimation  problem will exist. 

The  estimation problem  can be expressed in Lagrangian  form  as 

L = p’ln(p) + w’In(w) - A’[((z w)’y - (Z 0 w)’xp(p))] 
(2.8) 

- q[l’p - 11 - ([l’w - I ]  

where p(p) is as defined in (2.7) and the non-negativity  conditions  are  taken as 
implicit. The  first-order  necessary  conditions  relating  to w and p are given  by 

- = 1 = In(p) + (X 0 y ) ( n - l ~ ’ ~ ) - l ~ ’ ( ~  o w ) ~  - I V  = o aL 
aP 

(2.9) 

and 

- = 1 + ln(w> - (Z o (y - x(~-’x’x)-’(x o p ) ’ y ) ) ~  - 16 = o (2.10) 

The  first-order  conditions  relating  to  the  Lagrange multipliers in (2.8) repro- 
duce  the  equality  constraints  of  the  estimation  problem,  as  usual.  The  con- 
ditions (2.9)-(2.10) imply that the solutions  for p and w can be expressed as 

aL 
aw 

exp(-(X o ~)(~“x’x)“x’(z  o w ) ~ )  

QP 
P =  (2.11) 

and 

exp((Z o e(y - x(~-’x’x)”(x o p ) l y ) ) ~ )  
W =  

Qw 

where  the denominators in  (2.1  1) and (2.12) are defined by 

R,, l’exp -(X ~ ) ( ~ - ‘ X ’ X ) - ’ X ‘ ( Z  o w ) ~ )  ( 
and 

R, 1  ’exp( (z o (y - x(~-Ix’x)-’(x o p)’y) )~)  

(2.12) 
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As  in  the  similar  case  of  the DBIT  estimator (see VanAkkeren  and  Judge 
1999 and Van Akkeren  et  al. 2000) the  first-order  conditions  characterizing 
the  solution  to  the  constrained minimization  problem do not  allow  a closed- 
form  solution  for  the  elements  of  either  the p or  the w vector, or the 
Lagrangian  multipliers  associated with the  constraints of the  problem. 
Thus,  solutions must be obtained  through the use of numerical  optimization 
techniques  implemented on a computer. 

We emphasize that the  optimization  problem  characterizing  the defini- 
tion of the ELDBIT  estimator is well defined in the sense that  the  strict 
convexity of the objective  function  eliminates  the need to consider local 
optima  or  saddlepoint complications. Our experience in solving thousands 
of these types of problems using sequential quadratic  programming  methods 
based on various  quasi-Newton  algorithms  (CO-constrained  optimization 
application  module,  Aptech  Systems,  Maple Valley, Washington) suggests 
that  the  solutions  are  both relatively quick and  not difficult to find. despite 
their seemingly complicated  nonlinear  structure. 

3. SAMPLING PROPERTIES IN  FINITE SAMPLES 
In this  section we focus  on finite sample  properties  and  identify, in the 
context of a Monte  Carlo  sampling experiment,  estimation and inference 
properties of the  ELDBIT  approach. We comment  on  the  asymptotic  prop- 
erties of the  ELDBIT  approach in the  concluding section of this paper. 

Since the  solution  for  the  optimal  weights I; and i in the  estimation 
problem  framed by equations (2.4)-(2.7) cannot be expressed in closed 
form,  the finite sample  properties of the  ELDBIT  estimator  cannot be 
derived  from  direct  evaluation of the  estimator’s  functional form.  In this 
section the  results of Monte  Carlo sampling  experiments are presented that 
compare  the finite sample  performance of competing  estimators in terms 
of  the expected  squared error loss associated with estimating p andpre- 
dictingy . Information is also  provided  relating to (i) average  bias and  var- 
iances and (ii) inference performance  as it relates to confidence  interval 
coverage (and test size via duality)  and power.  While these results  are. of 
course, specific to  the collection of particular  Monte  Carlo experiments ana- 
lyzed, the  computational evidence does  provide an indication of relative 
performance  gains  that  are possible over  a  range of correlation  scenarios 
characterizing  varying degrees of nonorthogonality in the  model, as well as 
for  alternative  interrelationships  among  instrumental  variables  and between 
instrumental  variables  and  the  explanatory  variable  responsible  for  non- 
orthogonality. 
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3.1 Experimental Design 

Consider  a  sampling process of the  following  form: 

where x, = (zil,  y,?)’ and i = 1 , 2 ,  . . . , I ? .  The two-dimensional  vector of 
unknown  parameters, /I, in (3.1) is arbitrarily set equal to the  vector 
[-1,2]’.  The  outcomes of the (6 x 1) random  vector 
b;;?, E,, ztl, ~ ~ 2 ,  z , ~ ,  z , ~ ]  are generated iid from  a  multivariate  normal  distri- 
bution  having  a  zero  mean  vector,  unit  variances, and  under  various  con- 
ditions  relating to  the  correlations existent among  the five scalar random 
variables. The values of the njs in (3.2) are clearly determined by the 
regression function between J ’ , ~  and [ z r l ,  z , ~ ,  zI3 ,  zj4] , which is itself a  func- 
tion of the  covariance specification relating to  the  marginal  normal dis- 
tribution  associated with the (5 x 1)  random vector [ y12 , z r l ,  zi2.  z , ~ ,  z , ~ ] .  
Thus  the n,s generally change  as  the scenario  postulated  for  the  correlation 
matrix of the  sampling  process  changes.  In  this  sampling design, the  out- 
comes of b,l, vi] are then  calculated by applying  equations (3.1)-(3.2) to 
the  outcomes of bjj2, E;. z r l ,  z,?, zI3.  zi4] . 

Regarding  the  details of the sampling  scenarios  simulated  for  this set of 
Monte  Carlo experiments,  the  focus was on sample sizes of I z  = 20 and 
11 = 50. Thus the  experiments were deliberately designed to investigate  the 
behavior of estimation  methods in small  samples. The  outcomes of E, were 
generated  independently of the vector ~ , 2 .  z,3, zr4] so that  the  correlations 
between E ;  and  the zijs were zeros,  thus fulfilling one  condition  for 
[z,,, zr2. zi3,  zj4] to be considered  a  set of valid instrumental  variables  for 
estimating  the  unknown  parameters in (3.1).  Regarding  the  degree of non- 
orthogonality existing in (3.1),  correlations  of 2 5 ,  S O ,  and .75 between the 
random variables y j2  and E ,  were utilized to simulate  weak,  moderate,  and 
relatively strong  correlation/nonorthogonality  relationships between the 
explanatory  variable y j2  and  the model  disturbance E,  . 

For each  sample size, and  for each level of correlation between y,? and E;.  

four  scenarios were examined  relating to  both  the degree of correlation 
existent between the  instruments  and  the yi3 variable. and  the levels of 
collinearity  existent among  the  instrumental  variables. Specifically, the  pair- 
wise correlation between )-;? and  each  instrument in the  collection 
[ z i l ,  z I2 ,  zi3. z j4]  was set equal  to .3, .4, .5, and .6. respectively, while the 
corresponding pairwise correlations  among  the  four  instruments were 
each set equal  to 0, .3, .6, and .9. Thus,  the scenarios  range  from relatively 
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weak but  independent  instruments ( .3 ,  0) to stronger  but highly collinear 
instruments (.6, .9). All told.  there were 24 combinations  of  sample sizes, .I),: 
and E ,  correlations,  and  instrument collinearity  examined in the  experi- 
ments. 

The  reported sampling  properties  relating to estimation objectives are 
based on 2000 Monte  Carlo repetitions, and include  estimates of the 
empirical risks, based on a  SEL  measure,  associated with estimating /? 
with /? (parameter  estimation  risk)  and  estimating y with f (predictive 
risk). We also  report  the  average  estimated  bias in the  estimates, 
Bias(!) = E@] - /?, and  the average  estimated  variances of the  estimates, 

The reported  sampling  properties  relating  to inference objectives are 
based on 1000 Monte  Carlo repetitions,  the  lower  number of repetitions 
being due  to  the  substantially increased computational  burden  of  jackknif- 
ing  the  inference  procedures (discussed further in the next subsection).  We 
report  the  actual  estimated  coverage  probabilities of confidence intervals 
intended  to  provide .99 coverage of the  true value of 82 (and, by duality, 
intended to  provide a size .01 test of the  true  null  hypothesis Ho : B 2  = 2 ), 
and  also include  the  estimated  power in rejecting the false null hypothesis 
Ho : = I . The statistic used in defining  the  confidence  intervals and tests 
is the  standard  T-ratio, T = (,!$ - B:)/std(,!&). As discussed ahead,  the esti- 
mator in the  numerator of the test statistic is subject to a  jackknife  bias 
correction,  and  the  denominator  standard deviation is the  jackknife  estimate 
of the  standard  deviation. Critical values for  the confidence intervals and 
tests are set conservatively based on the  T-distribution,  rather than  on  the 
asymptotically valid standard  normal  distribution. 

Three  estimators were examined, specifically. the GMM estimator based 
on the  asymptotically  optimal GMM weighting matrix  (GMM-2SLS), 
GMM based on  an identity  matrix weighting (GMM-I),  and the 
ELDBIT  estimator.  Estimator  outcomes were obtained using GAUSS soft- 
ware, and the ELDBIT  solutions were calculated using the  GAUSS  con- 
strained  optimization  application  module  provided by Aptech Systems. 
Maple Valley, Washington.  The  estimator  sampling results are displayed 
in  Appendix  Tables A.l  and  A.2  for sample sizes = 20 and 11 = 50. 
respectively. A summary  of  the  characteristics of each of the 12 different 
correlation  scenarios defining the Monte  Carlo experiments is provided in 
Table 3.1. 

We note  that  other MC experiments were conducted  to observe  sampling 
behavior  from  non-normal,  thicker-tailed  sampling  distributions (in parti- 
cular,  sampling was based on a  multivariate T distribution with four degrees 
of freedom).  but  the  numerical  details are  not  reported  here.  These  estima- 
tion and inference results will  be summarized briefly ahead. 

Val. (BJ .  
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Table 3.1. Monte  Carlo experiment  definitions, with ,6 = [-I, 21’ and 
a;, = r~}.?, = ai,, = 1, Vi and j 1 2  

Experiment  Condition  number 
number PJ>, .e,  PJ:, .. Y,, p:,,.G, R;,.+, of Cov(Z) 

1 .75 .3 0 .95 1 .o 
2 .75 .4 .3 .95 2.7 
3 .75 .5 .6 .96 7.0 
4 .75 .6 .9 .98 37.0 
5 .50 .3 0 .89 1 .o 
6 .50 .4 .3 .89 2.7 
7 .50 .5 .6 .89 7.0 
8 .50 .6 .9 .89 37.0 
9 .25 .3 0 .84 1 .o 

10 .25 .4 .3 .83 3.7 
11  .25 .5 .G .82 7.0 
12 .25 .6 .9 .80 37.0 

Nore: p,.,,,,., denotes the correlation between Y2, and e ,  and  measures the degree of 
nonorthogonality; p!.!, ,: , ,  denotes  the  common  correlation  between Y,, and  each 
of the four  instrumental variables, the Z,,s; P:,,,:,~ denotes the common 
correlation between the four instrumental  variabies; and Rt. , ,v,  denotes the 
population  squared  correlation between Y ,  and Y ,  . 

3.2 Jackknifing to  Mitigate Bias in Inference and 
Estimate ELDBIT  Variance 

A jackknife  resampling  procedure was incorporated  into  the  ELDBIT 
approach when  pursuing inference objectives (but  not for  estimation) in 
order  to mitigate bias, estimate  variance. and thereby attempt  to  correct 
confidence interval  coverage  (and test size via duality). In order  for  the 
GMM-3SLS  and  GMM-I  estimators  to be placed on  an equal  footing  for 
purposes of comparison with the ELDBIT results,  jackknife bias and  stan- 
dard deviation  estimates were also  applied when inference was conducted in 
the  GMM-3SLS  and  GMM-I  contexts.  We  also  computed MC inference 
results (confidence intervals and hypothesis  tests) based on the standard 
traditional  uncorrected  method; while the  details are  not  reported here. 
we discuss these briefly ahead. 

Regarding  the specifics  of the  jackknifing  procedure, Iz “leave one obser- 
vation out”  solutions were calculated  for  each of the  estimators  and  for  each 
simulated Monte  Carlo sample  outcome.  Letting 6(,) denote  the ith jacknifed 
estimator  outcome  and 6 denote  the  estimate  of  the  parameter vector  based 
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on the full sample of n observations,  the  jackknife  estimate 0: the bias 
vector,E[6] - 8, was calculated as bias,,,k = (17 - 1)(8(,) - 8). where 
6(.) = 1 1 - l  6(,). The  corresponding  jackknife  estimate of the  standard 
deviations  of  the  estimator  vector  elements ?as calculated in the  usual 
way based on stdJack = [(In - l]/n) ~ ~ = , ( 8 ( i b -  8(.,)t]1’2. Then when forming 
the  standard pivotal quantity, T = (Bz - B,)/std(P?),  underlying  the confi- 
dence  interval  estimators  for P2 (and test statistics, via duality),  the  estima- 
tors in the  numerator were adjusted (via subtraction) by the  bias  estimate, 
and the  jackknifed standard deviation was used  in the denominator in place 
of  the  usual  asymptotically valid expressions used to approximate  the finite 
sample  standard deviations. 

We note  that  one could  contemplate  using  a  “delete-d”  jackknifing  pro- 
cedure, d > 1, in place of the  “delete-1”  jackknife that was used here. The 
intent  of  the  delete-d  jackknife  would be to  improve  the  accuracy of the bias 
and variance  estimates, and thereby  improve  the precision of inferences  in 
the  correction  mechanism  delineated  above.  However,  the  computational 
burden  quickly  escalates in the sense that (u!/{d!(u - d)!)) recalculations 
of the  ELDBIT, BLS,  or  GMM estimators  are  required.  One could  also 
consider  bootstrapping  to  obtain  improved  estimates of bias and variance, 
although it would be expected that  notably  more  than n resamples would be 
required to achieve improved  accuracy.  This issue remains an interesting  one 
for  future  work.  Additional useful references on  the use of the  jackknife in 
the  context of IV estimation  include  Angrist  et a1.(1999) and  Blomquist and 
Dahlberg (1999). 

3.3 MC Sampling Results 

The  sampling results  for  the 24 scenarios. based on  sampling  from  the 
multivariate  normal  distribution  and  reported in Appendix  Tables A.1- 
A.3,  provide  the basis for Figures 3.1-3.4 and  the  corresponding  discussion. 

Estimator  bias,  variance,  and  parameter estimation risk 

Regarding  the  estimation objective, the  following  general  conclusions  can be 
derived from  the  simulated  estimator  outcomes  presented in the  appendix 
tables and  Figure 3.1: , 

(1) ELDBIT  dominates  both  GMM-2SLS  and  GMM-I in terms of para- 
meter  estimation risk for all but  one case  (Figure 3.1 and  Tables A.1- 
A.2). 
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1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Correlation  Scenario 

Figure 3.1. ELDBIT vs GMM-2SLS parameter  estimation  risk. 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

Correlation  Scenario 

Figure 3.2. ELDBIT vs GMM-2SLS predictive  risk. 
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Figure 3.3. Coverage  (target = .99) and  power  probabilities, I I  = 20. 
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Figure 3.4. Coverage  (target = .99) and power  probabilities. I I  = 50. 
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(2) ELDBIT is most  often  more biased than either GMM-2SLS  or  GMM- 
I ,  although  the  magnitudes of the differences in bias are in  most cases 
not  large relative to the  magnitudes of the  parameters being estimated. 

(3) ELDBIT  has lower variance  than  either GMM-2SLS  or  GMM-I in all 
but  a very  few number  of cases, and the  magnitude of the  decrease in 
variance is often relatively large. 

Comparing  across all of  the  parameter  simulation  results,  ELDBIT is 
strongly  favored relative to  more  traditional  competitors.  The use of 
ELDBIT involves trading generally a  small amount of bias  for relatively 
large  reductions in variance.  This is, of course, precisely the  sampling results 
desired for  the  ELDBIT  at  the  outset. 

Empirical  predictive  risk 

The empirical predictive risks for the GMM-2SLS  and  ELDBIT  estimators 
for  samples of size 20 and 50 are summarized in Figure 3.2; detailed  results, 
along with the  corresponding  empirical predictive risks for  the  GMM-I 
estimator,  are given in  Tables A. 1-A.2. The  ELDBIT  estimator is superior 
in predictive risk to  both  the  GMM-2SLS  and  GMM-I  estimators in all but 
two of the possible 24 comparisons,  and in one  case  where  dominance fails, 
the difference is  very slight (ELDBIT is uniformly  superior in prediction risk 
to the  unrestricted reduced form  estimates  as well, which are  not examined 
in detail  here). The  ELDBIT  estimator achieved as  much  as  a  25%  reduc- 
tion in prediction risk relative to the 2SLS estimator. 

Coverage and  power results 

The sampling  results  for  the  jackknifed ELDBIT  and  GMM-2SLS esti- 
mates,  relating  to  coverage  probability/test size and  power, are summarized 
in Figures 3.3 and  3.4. Results for  the GMM-I estimator  are  not  shown,  but 
were similar to  the  GMM-2SLS results. The inference comparison was in 
terms of the  proximity of actual confidence interval  coverage to the  nominal 
target  coverage and, via duality.  the  proximity  of  the  actual test size for the 
hypothesis Ho : p2 = 2 to  the  nominal  target test size of .01. In this compar- 
ison  the GMM-2SLS  estimator was closer to  the .99 and .01 target levels of 
coverage and test size, respectively. However, in terms of coverage/test size. 
in most cases the  performance of the ELDBIT  estimator was a close com- 
petitor  and  also  exhibited  a  decreased  confidence  interval  width. 

It is apparent  from the figures that all of  the  estimators experienced 
difficulty in achieving coverage/test size that was close to the  target level 
when nonorthogonality was high (scenarios 1 4 ) .  This was especially evident 
when sample size was at the small level of I I  = 20 and there was high multi- 
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collinearity among  the  instrumental  variables  (scenario 4). In  terms of the 
test power  observations,  the  ELDBIT  estimator  was clearly superior  to 
GMM-2SLS.  and usually by a wide margin. 

We note  that  the  remarks regarding  the  superiority of GMM-2SLS 
and  GMM-I relative to  ELDBIT in terms of coverage  probabilities and test 
size would be substantially  altered, and generally reversed. if comparisons 
had been made between the  ELDBIT results, with jackknife  bias  correction 
and  standard  error  computation,  and the  traditional  GMM-2SLS  and 
GMM-I procedure based on uncorrected  estimates and  asymptotic variance 
expressions. That is, upon  comparing  ELDBIT with  the trcrdiitiorzal compet- 
ing  estimators in this  empirical  experiment, ELDBIT is the  superior 
approach in terms of coverage  probabilities and test sizes. Thus, in this 
type of  contest,  ELDBIT is generally superior in terms  of  the  dimensions 
of performance  considered  here,  including  parameter  estimation, predictive 
risk,  confidence  interval  coverage. and test performance.  This of course  only 
reinforces  the  advisability of pursuing  some  form of bias  correction  and 
alternative  standard  error calculation  method when basing inferences on 
the  GMM-2SLS  or  GMM-I  approach in small  samples and/or in contexts 
of ill-conditioning. 

Sampling results-Multivariate T14) 

To investigate  the  impact on sampling  performance of observations 
obtained  from  distributions with thicker tails than  the  normal,  sampling 
results for  a  multivariate T(4) sampling  distribution were developed. As is 
seen from  Figure 3.5, over  the full range  of  correlation  scenarios  the  para- 
meter  estimation risk comparisons  mirrored  those  for  the  normal  distribu- 
tion  case, and in many cases the  advantage of ELDBIT over GMM-2SLS 
(and GMM-I) was  equal  to  or  greater  than those  under  normal  sampling. 
These  sampling results, along with the  corresponding  prediction risk perfor- 
mance  (not shown  here),  illustrate  the  robust  nature of the ELDBIT esti- 
mator when sampling  from  heavier-tailed  distributions. 

Using  the  jackknifing  procedure to mitigate finite sample bias and 
improve finite sample  estimates of standard  errors,  under T,4) sampling, 
each of the  estimators  performed  reasonably well in terms of interval  cover- 
age  and implied test size. As before, the  power  probabilities  of  the ELDBIT 
estimator were uniformly  superior to those of the  GMM-2SLS  estimator. 
All estimators experienced difficulty in  achieving  coverage and test size for 
correlation  scenarios 1 4  corresponding  to  a high level of  nonorthogonality. 
This result was particularly  evident in the  case  of  small  sample size 20 and 
high multicollinearity among  the  instrumental  variables. 
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0 J 
I 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Correlation Scenario 

Figure 3.5. Multivariate T sampling:  parameter  estimation  risk. 

4. CONCLUDING REMARKS 
In the  context of a  statistical  model involving nonorthogonality  of  explana- 
tory  variables and the noise component. we have demonstrated  a  semipara- 
metric  estimator  that is completely data based and  that  has excellent finite 
sample  properties relative to traditional  competing  estimation  methods.  In 
particular, using empirical  likelihood-type weighting of sample  observations 
and  a  squared  error loss measure,  the new estimator has attractive  estimator 
precision and predictive fit properties in small  samples. Furthermore, infer- 
ence performance is comparable in test size and confidence interval  coverage 
to traditional  approaches while exhibiting  the  potential  for  increased test 
power and decreased confidence interval  width.  In addition, the ELDBIT 
estimator  exhibits  robustness with respect to  both ill-conditioning implied 
by highly correlated  covariates and  instruments,  and  sample  outcomes  from 
non-normal,  thicker-tailed  sampling processes. Moreover, it is not difficult 
to  implement  computationally. In terms of estimation  and inference, if one 
is willing to  trade off limited finite sample  bias  for  notable  reductions in 
variance, then the benefits noted  above  are  achievable. 

There  are  a  number of ways the  ELDBIT  formulation  can be extended 
that  may result in an even more effective estimator. For example,  higher- 
order moment  information  could be introduced  into  the  constraint set and, 
when valid,  could  contribute to  greater  estimation  and predictive efficiency. 
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Along these lines. one  might  consider  incorporating  information  relating to 
heteroskedastic or autocorrelated  covariance  structures in the specification 
of the  moment  equations if the  parameterization  of these structures were 
sufficiently well known (see Heyde (1997) for discussion of moment  equa- 
tions  incorporating  heteroskedastic  or  autocorrelated  components). If non- 
sample  information is available  relating to  the relative plausibility of the 
parameter  coordinates used to identify the  ELDBIT  estimator feasible 
space, this information  could be introduced  into  the  estimation objective 
function  through  the reference distribution of the Kullback-Leibler infor- 
mation,  or cross entropy,  measure. 

One of the  most  intriguing possible extensions  of  the ELDBIT  approach, 
given the  sampling  results  observed in this  study, is the  introduction of differ- 
ential weighting of the  IV-moment  equations  and the DBIT  estimator  com- 
ponents of the  ELDBIT estimation objective function.  It is conceivable that, 
by tilting  the  estimation  objective  toward or away  from  one or  the  other  of 
these  components,  and  thereby  placing  more  or less emphasis on  one  or the 
other  of  the two sources of data  information  that  contribute  to  the  ELDBIT 
estimate,  the  sampling  properties of the  estimator  could be improved  over  the 
balanced  (equally  weighted)  criterion used here. For example,  in cases where 
violations in the  orthogonality of explanatory  variables  and  disturbances  are 
not  substantial. it may be beneficial to weight the  ELDBIT  estimation objec- 
tive more  towards  the LS information  elements  inherent in the DBIT  compo- 
nent and rely  less heavily on the IV component  of  information.  In  fact, we are 
now  conducting  research  on  such  an  alternative in terms of a weighted 
ELDBIT  (WELDBIT)  approach, where  the weighting is adaptively  generated 
from  data  information,  with very promising SEL performance. 

To achieve post-data nrargbrcrl, as  opposed to,joint, weighting densities on 
the  parameter  coordinates  that we have used to define the  ELDBIT estima- 
tor feasible space, an ( H  x k )  matrix of probability  or convexity weights, P, 
could be implemented. For example,  one ( n  x 1) vector could be used for 
each  element of the  parameter vector, as  opposed  to using only one (12 x 1) 
vector of convexity weights as we have  done.  In  addition, alternative data- 
based  definitions  of  the vertices underlying  the convex hull definition of B(p) 
could  also be pursued. 

More  computationally intensive bootstrapping  procedures  could be 
employed that might  provide more effective bias  correction and  standard 
deviation  estimates. The  bootstrap  should  improve  the accuracy  of  hypoth- 
esis testing and confidence  interval  procedures  beyond  the  improvements 
achieved by the  delete-I  jackknifing  procedures we have  employed. 

Each  of  the  above  extensions  could have a significant effect on the solved 
values of the p and w distributions  and ultimately on the  parameter  estimate, 
P(p) . produced by the  ELDBIT  procedure. All of these possibilities provide 
an interesting basis for future research. 
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We note  a  potential  solution  complication  that.  although  not  hampering 
the  analysis of the Monte  Carlo experiments in this  study, is at least a 
conceptual possibility in  practice. Specifically, the  solution  space  for /? in 
the  current  ELDBIT specification is not Rk, but  rather a  convex  subset of Rk 
defined by the convex hull of the vertex points = (n"X'X)"X[i, . ] 'y[ i ] .  
i = I ,  . . . . I I .  Consequently,  it is possible that there  does not exist a  choice of 
p within this convex hull that also solves the  empirical  moment  constraints 
(Z 0 w)'y = (Z 0 w)'XP for  some  choice of feasible w within the simplex 
l'w = 1, w 2 0. A remedy for  this  potential difficulty will generally be avail- 
able by simply altering  the  definition of the feasible space of ELDBIT 
estimates to /?(p, r )  = t(rz"X'X)-'(X 0 p)'y, where r L 1 is a scaling factor 
(recall that  data in the  current  formulation is measured in terms of devia- 
tions about sample  means).  Expanding  the scaling, and  thus  the convex hull, 
appropriately will generally lead to a  non-null  intersection of the two con- 
straint  sets  on ! . The choice of r could be automated by including it as a 
choice  variable in the  optimization  problem. 

The focus of this paper  has been on small  sample  behavior of estimators 
with the specific objective of seeking improvements  over  traditional 
approaches in this regard.  However, we should  note  that, based on limited 
sampling  results  for  samples of size 100 and 250, the  superiority of ELDBIT 
relative to  GMM-2SLS  and  GMM-I,  although somewhat  abated in magni- 
tude,  continues  to  hold in general. Because all empirical  work is based on 
sample sizes an infinite distance to the left of infinity, we would expect that 
ELDBIT would be a useful alternative  estimator  to  consider in many 
empirical  applications. 

Regarding  the  asymptotics of ELDBIT, there is nothing  inherent in the 
definition of the  estimator  that  guarantees  its  consistency, even if the 
moment  conditions  underlying  its specification satisfy the usual IV regular- 
ity conditions. For large  samples  the ELDBIT  estimator emulates  the  sam- 
pling behavior of a  large  sum of random  vectors, as C:'=l(~7"X'X)-lp[i] 
X[i. ]',v[i]EQ-l Cy=, p[i]X[i, .]'y[i] = Q-l Cy=l v,, where plim(n"X'X) = Q. 
Consequently, sufficient regularity  conditions  relating to the  sampling  pro- 
cess could be imagined that would result in estimator  convergence to  an 
asymptotic  mean vector other  than p ,  with a scaled version of the  estimator 
exhibiting an  asymptotic  normal  distribution. 

Considerations of optimal  asymptotic  performance  have held the high 
ground in general empirical  practice  over  the  last half century whenever 
estimation  and inference procedures were considered  for  addressing  the 
nonorthogonality of regressors and noise  components in econometric 
analyses. All applied  econometric  work involves finite samples.  Perhaps 
it is time to reconsider  the  opportunity  cost of our past  emphasis on 
infinity. 



366 Mittelhammer and Judge 

APPENDIX 
Table A.l .  ELDBIT, GMM-2SLS,  and  GMM-I sampling  performance 
with B = [- 1,2]’, IZ = 20, and 2000 Monte  Carlo repetitions 

p k r ,  e, PY?,, =,/ PZ,, , Z,C Sampling property Estimators 

GMM-2SLS  GMM-I  ELDBIT 

.75  .3 0 

.4 .3 

.5 .6 

.6  .9 

.50  .3 0 

.4 .3 

.5  .6 

.6  .9 

.25 .3 0 

.4  .3 

.5 .6 

.6  .9 

.33,  14.97 

.07, .22 
.49, 13.62 
-.12,  .30 
.09,  .29 

.78. 11 .OO 
-24,  .49 
.12, .36 

1.53.  5.59 

.13, .31 
.35. 17.08 

.09. 2 4  
.51, 17.54 
-.09, .21 
.12.  .33 

.79, 17.34 
-. 17, .34 
.18, .46 

1.62, 17.32 
-.37, .63 
.34. .74 

.36. 18.79 
-.03, .09 
.09,  .25 

.50. 19.92 
-.05, . I  I 
.13,  .35 

.76. 21.10 
-.06, . I3  
.20, .54 

1.53, 24.75 
-.19, .32 
.42,  .97 

-.05, .I7 

-.53,  .90 

-0.5. .15 

.39, 16.21 2 2 ,  14.32 

.09, 2 8  .07. . I 2  
.59. 16.55  .44, 12.97 

.13, .40 .09, 2 3  
.90. 14.25 .69,  11.04 

.17, .51 .12, .30 
1.61, 6.80  1.58,  6.65 

.17, .41 .16,  .37 
.38. 17.60 .33. 16.40 

. l o .   26  .09, 2 0  
.55,  19.13 .42, 16.17 

.14, .38 . IO ,  2 3  
36 ,  18.95 .56. 15.16 

.22, .54  .14.  .30 
1.75,  18.65  1.27, 14.21 

.39,  .86 21. .41 
.40. 19.26 .30. 18.30 

.IO, .28 .09. . I9  
.58, 21.09 .40. 18.70 

.15, .42 . I? ,  .25 
.92, 22.4 .52. 18.73 

.24, .67 .16,  .30 
1.65. 25.84 .82, 19.03 

.46,  1.06 23,  .40 

-.04. .14 -.05. .I8 

-.13, .20 -.13,  .32 

-.25, .39 -.23, .47 

-.54,  .86  -.53, .88 

-.04. .I4 -.06. .21 

-.09, . I3  -.11, .28 

-.18,  .27 -.20, .42 

-.38,  .60  -.41,  .69 

-.04. .09 -.04. .I4 

-.05, .08 -.07. .I8 

-.07. .09 -.11, .21 

-.19, .31 -.22,  .36 
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Table A.2. ELDBIT, GMM-2SLS, and GMM-I sampling performance. 
with B = [ - I ,  2]', = 50, and 2000 Monte Carlo repetitions 

GMM-2SLS GMM-I ELDBIT 

.75  .3 0 

.4  .3 

.5 .6 

.6 .9 

.so .3 0 

.4 .3 

.5 .6 

.6 .9 

2 5  .3 0 

.4  .3 

.5 .6 

.6  .9 

.11, 45.33 
-.02, .06 
.03, .08 

.17. 43.31 

.04. . I  1 
.29,  40.29 
-.IO,  . I9  
.06, .I8 

.94,  24.05 

.13, .3 1 
. I  1, 47.42 

.03, .08 
.17,  47.82 

.04, . I3  
.33,  49.76 

.08, 2 4  
.92, 45.40 
-.26,  .43 
.19,  .47 

.11, 48.71 
-.01.  .03 
.03, .08 

.17,  49.85 

.04. . I3  
.30. 51.81 

.08, .21 
3 9 ,  58.96 

.23,  .60 

-.04, . I 1  

-.36, .61 

-.02, .05 

-.03,  .07 

-.05, . I O  

-.02,  .04 

-.04, .07 

-.13, .21 

.I?, 45.70  .07, 39.18 

.03,  .09 .02, .03 
.18, 47.48 .11. 35.91 

.05, . I3  .02,  .04 
.32, 44.91 .19. 32.30 

.07, .21 .03,  .06 
.95. 26.01 .91. 21.69 

.14.  .34 . IO ,  .26 
.I?.  47.56 .09,  43.15 

.03, .08 .02, .OS 
.19, 50.11 .13,  41.80 

.04, . I4  .03, .06 
.35. 52.14 2 1 .  39.67 

.08, .26  .04.  .09 
.93, 46.55 .72, 34.91 

2 0 ,  .49 .08, . I8  
. I ? .  48.95 .09. 46.88 

.03, .08 .03, .05 
.18, 50.61 .13, 46.90 

.04.  .14 .04. .08 
.32, 52.95 .18, 46.65 

.09. 2 3  .OS,  .09 
.96,  60.65 .36. 45.63 

.25, .65  .07, . I4  

-.02. .06 -.03. .13 

-.04. .06 -.07, .20 

-.IO, .13 -.14, .28 

-.37,  .57  -.38.  .64 

-.02, .04  -.04. . I3  

-.03,  .03 -.07. . I 8  

-.05,  .05  -.13,  .26 

-.26, .41 -.35. .58 

-.01, .03  -.03, .09 

-.02, .02 -.05, .12 

-.03,  .04  -.09, .18 

-.13, .21 -.20.  .33 
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18 
Testing  for Two-step Granger 
Noncausality in Trivariate VAR Models 
JUDITH A. GILES University  of  Victoria,  Victoria, British Columbia, 
Canada 

1. INTRODUCTION 

Granger’s (1969) popular  concept  of  causality,  based  on  work by Weiner 
(1956). is typically defined in terms  of  predictability  for  one  period  ahead. 
Recently, Dufour  and  Renault (1998)  generalized  the  concept to causality at 
a given horizon 12, and  causality up to  horizon h ,  where h is a positive integer 
that  can be infinite (1 5 h < 00); see also  Sims (1980), Hsiao (1982), and 
Lutkepohl(1993a)  for related work. They  show that  the  horizon It is impor- 
tant when auxiliary variables are  available in the  information set that  are 
not directly involved in the  noncausality test, as  causality  may  arise  more 
than  one  period  ahead indirectly via these auxiliary variables,  even  when 
there is one  period  ahead  noncausality in the  traditional sense. For  instance, 
suppose we wish to test for  Granger  noncausality (GNC) from Y to X with 
an  information set consisting  of  three  variables, X ,  Y and 2, and  suppose 
that Y does  not  Granger-cause X, in the  traditional  one-step sense. This 
does  not  preclude  two-step Granger  causality, which will arise  when Y 
Granger-causes Z and 2 Granger-causes X ;  the  auxiliary  variable 2 enables 
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predictability to result two  periods  ahead.  Consequently,  it is important  to 
examine  for  causality at horizons  beyond  one  period  when  the  information 
set contains  variables  that are  not directly involved i n  the GNC test. 

Dufour  and  Renault (1998) do  not provide  information  on  testing  for 
GNC when h > 1; our aim is to  contribute in this  direction.  In  this  chapter 
we provide an initial  investigation of testing for  two-step GNC by suggest- 
ing  two  sequential  testing  strategies to examine  this issue. We also  provide 
information on the  sampling  properties  of these testing  procedures  through 
simulation  experiments. We limit our  study  to the case when the  informa- 
tion set contains  only  three  variables,  for  reasons  that we explain in Section 

The layout of this chapter is as follows. In  the next section we present our 
modeling  framework  and discuss the  relevant  noncausality  results.  Section 3 
introduces our proposed  sequential  two-step  noncausality tests and provides 
details of our experimental design for  the Monte  Carlo  study. Section 4 
reports  the  simulation  results.  The  proposed  sequential testing strategies 
are  then applied to a  trivariate  data set concerned with money-income 
causality in the presence of an interest  rate  variable in  Section 5. Some 
concluding  remarks are given in  Section 6 .  

-. 7 

2. DISCUSSION OF NONCAUSALITY TESTS 
2.1 Model  Framework 
We consider  an n-dimensional  vector  time series (y,: r = 1 , Z  . . . , T ) ,  which 
we assume is generated  from  a  vector  autoregression (VAR) of finite order 
p* : 

where ni is an ( n  x n )  matrix  of  parameters. E ,  is an 0 1  x 1) vector  distrib- 
uted as  IN(0, E), and (1) is initialized at r = -p + 1, . . . . 0; the  initial values 
can be any  random vectors as well as  nonstochastic  ones. Let J ,  be parti- 
tioned  as y ,  = (X,', YT. Zf)', where. for Q = X, Y .  2, Q, is an (nQ x 1) 
vector, and r lX  + nI' + )Iz = I?. Also, let ni be conformably  partitioned  as 

*We limit our  attention to testing GNC within a VAR framework  to  remain in  line 
with  the  vast  applied  literature;  the definitions proposed by Dufour  and  Renault 
(1998) are  more  general. 
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2.2 h-Step Noncausality 

Suppose we wish to determine  whether or  not Y Granger-noncauses X one 
period ahead.  denoted  as Y 7 X, in the presence of the  auxiliary  variables 
contained in Z.  Traditionally, within the  framework we consider,  this is 
examined via a test of the null hypothesis Hal: P.Yy = 0 where 
P,., = [ x , , , ~ ~ .   IT?,,^^, . . . , x , , . ~ ~ ] ,  using a  Wald or likelihood  ratio (LR) sta- 
tistic. What does  the result of this  hypothesis test imply for GNC from Y to 
X at horizon / I ( >  l), which we denote  as Y X ,  and  for GNC from Y to X 
up to horizon It that includes one  period ahead,  denoted by Y$) X? 

(1 )  n Z  = 0; Le., there are  no auxiliary  variables in Z so that all variables in 
the  information set are involved in the GNC test under  study.  Then, 
from  Dufour  and  Renault (1998, Proposition 2.3,  the  four following 
properties  are  equivalent: 

There  are three cases of interest. 

That is. when all variables are involved in the GNC test, support  for 
the null hypothesis H,: Psy = 0 is also  support  for GNC  at, or up to, 
any horizon It. This is intuitive as there are  no auxiliary  variables 
available through which indirect  causality  can  occur. For example, 
the bivariate model satisfies these conditions. 

(2) t lZ = 1; i.e.. there is one  auxiliary  variable in the  information set that is 
not directly involved in the GNC test of interest. Then,  from  Dufour 
and  Renault (1998, Proposition  2.4  and  Corollary 3.6). we have that 
Y $, X .  (which implies Y ,$) X )  if and only if at least one of the  two 
following conditions is satlsfied: 
c1. Y 7 (xT. zy; 
c2. ( Y T .  zy 7: X. 

The null hypothesis  corresponding to condition  C1 is Ho2: Pxr- = 0 and 
Pzy = 0 where Px,. is defined previously and P z y  = [x~,~,. 
x ~ , ~ ~ ,  . . . , n,,zl.], while that  corresponding to condition  C2 is Ho3: Pxy 
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= 0 and P,i8z = 0, where P,yz = [x,,.yz, . . . , xp.xz]; note  that  the 
restrictions  under test are linear.  When one or both of these  conditions 
holds  there cannot be indirect  causality  from Y to X via Z, while failure 
of both  conditions implies that we have  either  one-step Granger causal- 
ity,  denoted  as Y 7 X .  or two-step Granger causality.  denoted by Y y  X 
via Z: that is, Y X .  As 2 contains  only  one  variable  it directly follows 
that  two-step GNC implies GNC for all horizons, as there are  no  addi- 
tional  causal  patterns,  internal  to Z ,  which can result in indirect  causality 
from Y to X .  For example,  a  trivariate  model falls into  this  case. 

( 3 )  > 1 .  This  case is more  complicated as causality patterns  internal  to 
2 must  also be taken  into  account. If 2 can be appropriately  parti- 
tioned as 2 = (ZF, 2:)' such that ( Y T ,  ZT)T 7: ( X r .  ZT)', then  this is 
sufficient for Y ,:) X .  Intuitively,  this result follows because the  com- 
ponents of Z that  can be caused by Y (those in Z2) do not  cause X ,  so 
that indirect  causality cannot arise at longer  horizons.  Typically,  the 
zero  restrictions necessary to test this sufficient condition in the  VAR 
representation  are  nonlinear  functions of the coefficients. Dufour  and 
Renault  (1993, p. 11 17) note  that  such  "restrictions  can lead to 
Jacobian  matrices of the  restrictions  having less than full rank  under 
the null hypothesis," which may lead to nonstandard  asymptotic null 
distributions  for test statistics. 

For these reasons,  and  the preliminary nature  of  our  study, we limit our 
attention  to  univariate Z and,  as  the applied  literature is dominated by cases 
with /?,y = / I ) ;  = 1, consequently to a  trivariate  VAR  model; recent empirical 
examples of the use of such models to examine for  GNC include  Friedman 
and  Kuttner (1992). Kholdy (1995), Henriques  and  Sadorsky (1996), Lee et 
al. (1996), Riezman et al. (1996). Thornton (1997), Cheng (1999), Black et  al. 
(2000). and  Krishna et al. (2000). among  many  others. 

2.3 Null Hypotheses, Test Statistics, and Limiting 
Distributions 

The testing  strategies we propose  to examine  for  two-step GNC within a 
trivariate  VAR  framework involve the  hypotheses Hal, Ho2, and Ho3 
detailed  in  the  previous  sub-section and the following conditional null 
hypotheses: 
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The null hypotheses involve linear  restrictions  on  the coefficients of the 
VAR  model and their validity can be examined using various  methods, 
including  Wald  statistics. LR statistics,  and  model selection criteria. We 
limit our  attention  to  the use of Wald  statistics, though we recognize that 
other  approaches may be preferable;  this  remains  for future  exploration. 

Each of  the  Wald  statistics  that we consider in Section 3 is obtained  from 
an  appropriate model. for which the lag length y must be determined  prior 
to testing; the selection o f p  is considered in that  section. In general,  consider 
a model  where 8 is an (HZ x 1) vector of parameters  and let R be a known 
nonstochastic ( q  x 197) matrix  with  rank q. To test H,: R8 = 0, a  Wald  sta- 
tistic is 

W = T 8  ^T R T {  RV ̂[*I 8 R T ] ” ~ c j  

where 6 is a  consistent  estimator of 8 and c[6] is a  consistent  estimator of the 
asymptotic  variance-covariance  matrix of J7‘(e^ - 8). Given appropriate 
conditions. W is asymptotically  distributed as a ( ~ ‘ ( q )  variate  under H,. 

The  conditions needed for W’s null limiting distribution  are  not  assured 
here, as y r  may be nonstationary with possible cointegration. Sims et al. 
(1990) and  Toda  and Phillips (1993, 1994) show that W is asymptotically 
distributed  as  a x’ variate  under Ho when y ,  is stationary or is nonstationary 
with “sufficient” cointegration;  otherwise W has  a  nonstandard limiting null 
distribution  that  may involve nuisance  parameters.  The basic problem  with 
nonstationarity is that a  singularity  may  arise in the  asymptotic  distribution 
of the  least-squares (LS) estimators, as some of the coefficients or linear 
combinations of them  may  be  estimated  more efficiently with  a  faster  con- 
vergence rate  than *. Unfortunately,  there seems no basis for testing  for 
“sufficient” cointegration  within  the  VAR  model, so that  Toda  and Phillips 
(1993. 1994) recommend that, in general. GNC tests should  not be under- 
taken using a  VAR  model when y, is nonstationary. 

One possible solution is to  map  the  VAR model to its  equivalent  vector 
error  correction model  (VECM)  form  and  to  undertake  the GNC tests 
within this framework; see Toda  and Phillips (1993, 1994). The problem 
then is accurate  determination of the  cointegrating  rank. which is known 
to be difficult with the  currently  available  cointegration  tests  due  to  their low 
power  properties  and sensitivity to the specification of other  terms in the 
model,  including  lag  order and deterministic  trends.  Giles and  Mirza (1999) 
use simulation  experiments to illustrate  the  impact  of this inaccuracy on the 
finite sample  performance of one-step GNC tests; they find that  the  practice 
of pretesting for  cointegration  can  often result in severe over-rejections of 
the  noncausal  null. 
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An  alternative  approach is the  “augmented  lags”  method suggested by 
Toda  and  Yamamoto (1995) and  Dolado  and  Lutkepohl (1996), which 
results  in  asymptotic x’ null distributions  for  Wald  statistics of the  form 
we are examining,  irrespective of the system’s integration  or  cointegration 
properties.  These  authors show that overfitting  the VAR model by the high- 
est order of integration in the  system  eliminates  the  covariance  matrix  sin- 
gularity  problem.  Consider  the  augmented  VAR  model 

where we assume  that y t  is at most  integrated of order d(Z(c1)). Then, Wald 
test statistics based on testing  restrictions  involving  the coefficients con- 
tained in n l ,  . . . , ll,, have standard  asymptotic x2 null distributions; see 
Theorem 1 of  Dolado  and  Lutkepohl (1996) and  Theorem 1 of Toda  and 
Yamamoto (1995). This  approach will result in a loss in power, as the 
augmented  model  contains  superfluous lags and we are ignoring that 
some of the  VAR coefficients, or at least linear  combinations of them, 
can  be  estimated  more efficiently with  a  higher than usual rate of conver- 
gence. However,  the  simulation  experiments  of Dolado  and  Lutkepohl 
(1996), Zapata  and  Rambaldi (1997), and Giles and Mirza (1999) suggest 
that this loss is frequently  minimal and the approach often  results in more 
accurate GNC outcomes  than  the  VECM  method, which conditions  on  the 
outcome  of preliminary  cointegration  tests.  Accordingly, we limit our  atten- 
tion to undertaking  Wald tests using the  augmented  model (3). 

Specifically, assuming  a  trivariate  augmented  model  with 
nx‘ = 1 7 ~  = = 1, let 8 be  the 9(p + d )  vector given by 8 = vec[nl, 112,  

. . . , llf+d], where vec denotes  the  vectorization operator  that  stacks  the 
columns of the  argument  matrix.  The LS estimator of 8 is 6. Then.  the 
null  hypothesis Hol: Pxu = 0 can be examined using the  Wald  statistic 
given by (2), with R being a selector matrix  such  that R8 = ~ec[P,,.~]. We 
denote  the resulting  Wald  statistic as WI .  Under  our  assumptions, W I  is 
asymptotically  distributed as a ~ ‘ ( p )  variate  under Hol. 

The Wald  statistic  for  e%anlining HO2: P.uy = 0 and P z y  = 0, denoted 
W,, is given by (2), where P is the esti~nator of 6’ = vec[lll, 112, . . . . n,,,] 
and R is a selector matrix such that R8 = vec[P.yy, Pzr]. Under  our  assump- 
tions,  the  statistic W2 has  a  limiting x2(2p) null distribution.  Similarly, let 
W3 be the  Wald  statistic  for  examining Ho3: Psy = 0 and P, = 0. The 
statistic W 3  is then given by (2) with the  selector  matrix  chosen to  ensure 
that Re = vec[P.yy. P,yz]: under  our  assumptions W3 is an  asymptotic x2(2p) 
variate  under Ho3. 
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We denote  the Wald  statistics  for testing the null hypotheses Ho4: PZr = 
01 Pxv = 0 and Ho5: Pxz = OIPxv = 0 as W4 and W5 respectively. These 
statistics  are  obtained  from  the restricted model  that imposes that 
Pxy = 0. Let 8* be the vector  of  remaining  unconstrained parameters  and 
$ be the LS estimator of 8*, so that,  to test the  conditional null hypothesis 
H,: R*8* = 0, a  Wald  statistic is 

where e[$] is a, consistent  estimator of the asymptotic  variance-covariance 
matrix  of n ( 8 *  - 6'). Under  our  assumptions, W *  is asymptotically dis- 
tributed  as  a x2 variate  under Ho with  the rank of R* determining  the 
degrees  of  freedom;  Theorem 1 of Dolado  and  Liitkepohl (1996) continues 
to hold in this restricted case  as  the elements  of lip+', . . . , l l p + d  are  not 
constrained  under  the  conditioning  or by the  restrictions  under test. Our 
statistics W4 and W5 are  then given by W* with, in turn, the vector R*8* 
equal  to  vec(PZy)  and  vec(Pxz); in each  case p is the  degrees  of  freedom.  We 
now turn, in the  next  section,  to  detail our  proposed testing strategies. 

3. PROPOSED SEQUENTIAL TESTING STRATEGIES 

3.1 Sequential Testing Strategies 
AND  MONTE CARLO DESIGN 

Within the augmented  model  framework,  the  sequential testing procedures 
we consider  are: 

If Ho2 and Ho3 are rejected, reject the 
hypothesis  of Y $)X.  

Test H02 and test H03 Otherwise, support the null hypothesis I of Y & X .  

(M2) 
If HOl is rejected, reject 

Otherwise, test Ho4 and 

the null hypothesis of Y 7: X .  
If Ho4 and Ho5 are 
rejected, reject Y f; X 

null hypothesis of Y f; X 
Otherwise,  support  the 

The  strategy (Ml)  provides  information  on  the null hypothesis HOA: 
Y & X  as  it directly tests whether the conditions CI and  C2,  outlined in 
the  previous section, are satisfied. Each  hypothesis test tests 2p exact linear 
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restrictions. The  approach  (Ml)  does  not distinguish between one-step and 
two-step GNC;  that is, rejection here does  not  inform  the  researcher 
whether  the  causality  arises  directly  from Y to X one  step  ahead  or whether 
there is GNC  one step  ahead with the  causality  then  arising  indirectly via the 
auxiliary  variable at  horizon two.  This is not a  relevant  concern when inter- 
est is in only  answering  the  question of the presence of Granger causality at 
any  horizon. 

The strategy (M?), on the  other  hand, provides  information  on  the  hor- 
izon at which the  causality, if any, arises. The first hypothesis  test, H O l ,  
undertakes  the  usual  one-step test for  direct GNC from Y to X ,  which. 
when rejected, implies that  no  further testing is required as causality is 
detected.  However,  the possibility of  indirect  causality at  horizon  two via 
the  auxiliary  variable 2 is still feasible when HOl is supported,  and hence the 
second layer of tests that examine  the null hypothesis HOB: Y XI Y 7: X .  
We require  both of Ho4 and Ho5 to be rejected for a  conclusion of causality 
at horizon  two, while we accept HOB when we support  one  or  both of the 
hypotheses H04 and Has. Each test requires us to examine  the validity of p 
exact  linear  restrictions. 

That  the sub-tests in the  two  strategies  have  different degrees of  freedom 
may result in power differences that  may lead us to prefer (M2) over (MI). 
In  our  simulation experiments  described below, we consider  various  choices 
of nominal significance level for  each sub-test,  though we limit each to be 
identical at, say, lOOa0/0. We can say the following about  the  asymptotic 
level of each  of  the  strategies. In the  case of (MI) we are  examining  non- 
nested hypotheses using statistics that  are  not statistically  independent. 
When both H02 and H03 are  true we know  from  the laws of probability 
that  the level  is smaller than 200a!%. though we expect to see asymptotic 
levels less than this  upper  bound.  dependent on the  magnitude of the prob- 
ability of the  union of the events.  When  one of the  hypotheses is false and 
the  other is true, so that Y $) X still holds,  the  asymptotic level for  strategy 
(Ml )  is smaller than  or  equal  to 100aY0. 

An asymptotic level of 100aY0 applies  for  strategy (M2) for  testing for 
Y 7: X ,  while it is at  most 2OOrr% for  testing  for HOB when H04 and HOs are 
both  true,  and  the level is at  most 100aYO when only  one is true. As noted 
with strategy (MI), when both  hypotheses are  true we would expect levels 
that  are much  smaller  than 200u%. Note  also  that W 4  and W, are  not 
(typically)  asymptotically  independent  under  their respective null hypoth- 
eses, though  the  statistics W, and Wl are asymptotically  independent  under 
Ho4 and Hal, given the  nesting  structure. 

Finally, we note  that the  testing  strategies are consistent, as each compo- 
nent test is consistent, which follows directly  from  the  results  presented by, 
e.g.,  Dolado  and  Lutkepohl (1996, p. 375). 
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3.2 Monte Carlo Experiment 

In  this  subsection, we provide  information  on our small-scale simulation 
design that we use to examine  the finite sample  performance  of  our  pro- 
posed sequential test procedures. We consider two basic data generating 
processes (DGPs), which we denote  as  DGPA  and  DGPB;  for each we 
examine  three cases: DGPA1,  DGPAZ,  DGPA3,  DGPBI, DGPBZ, and 
DGPB3. To avoid  potential  confusion, we now write y r  as J', = bit, J ' ~ ~ ,  

.v3,]* to describe the  VAR system and  the GNC hypotheses we examine: 
we provide  the  mappings  to  the  variables X ,  Y ,  and Z from  the last sub- 
section in a  table. For all cases the series are I(1). The first DGP, denoted 
as  DGPA. is 

We consider a = 1 for DGPA1, which implies one  cointegrating  vector.  The 
parameter a is set to zero for  DGPA2  and  DGPA3, which results in two 
cointegrating vectors among the I( 1) variables. Toda  and Phillips (1994) and 
Giles and Mirza (1999) also use this  basic DGP.  The null hypotheses Hol to 
Hos are  true  for the GNC effects we examine  for DGPAl  and  DGPA3. 
Using  Corollary 1 of Toda  and Phillips (1993, 1994), it is clear that there 
is insufficient cointegration with respect to the  variables whose causal effects 
are being studied  for  all  hypotheses except Has. That is, Wald  statistics  for 
Hol to Ho4 applied in the  non-augmented  model  (1) do not  have  their usual 
x' asymptotic null distributions.  though  the  Wald  statistics we use in the 
augmented model (3) have standard limiting null distributions  for all the 
null hypotheses. 

Our second  basic DGP, denoted  as  DGPB, is 

We set the  parameter b = -0.265 for  DGPB1  and b = 0 for DGPB:! and 
DGPB3;  for  each DGP there are two  cointegrating  vectors.  Zapata  and 
Rambaldi (1997) and  Giles  and  Mirza (1999) also use a  variant of this 
DGP in their  experiments. The null hypotheses Hal, Ho2 and Ho4 are each 
true  for  DGPB1  and DGPBZ, while Ho3 and Ho5 are false. The  cointegration 
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for  this DGP is sufficient with respect to  the  variables  whose  causal effects 
are being examined, so that  standard Wald  statistics  in  the  non-augmented 
model for Hal, Ho2. and Ho4 are  asymptotic x’ variates under their appro- 
priate null hypotheses. 

We provide  summary  information on the  DGPs in Table 1. We include 
the  mappings  to  the variables X, Y, and Z used in our discussion of the 
sequential  testing  strategies in the  last  subsection,  the validity of  the null 
hypotheses Hol to Has, and  the  GNC  outcomes  of  interest.  Though  our 
range of DGPs is  limited, they enable 11s to  study  the  impact of various 
causal  patterns  on  the finite sample  performance of our strategies (M 1) and 

The last  row of the  table  provides  the  “1-step GC  map”  for each DGP, 
(MI). 

which details  the pair-wise I-step Granger  causal  (GC)  patterns. 
ple, the  1-step GC  map for  DGPB1 in terms of X, Y, and 2 is 

1, 

A 
2 - Y  

This  causal map is an example of a  “directed graph,“ because 
lead from  one  variable  to  another; they indicate  the  presence of 

For exam- 

the  arrows 
1-step GC, 

e.g., X7 Y. In  addition  to being a useful way to  summarize  the  1-step GC 
relationships,  the  I-step GC  map allows  us to visualize the possibilities for 2- 
step GC.  To illustrate, we consider  the GC relations  from Y to X. The  map 
indicates  that Y 7: X, so that  for Y 7 X we require Y 7 2 and 2 ; ’ X ;  
directly  from  the map we see that  the-latter  causal relationship  holds  but 
not  the  former: Z is not operating  as an auxiliary  variable  through which 2- 
step GC from Y to X can  occur. 

As our  aim is to examine  the  finite-sample  performance of (M 1) and  (M2) 
at detecting  2-step GNC,  and  at distinguishing between GC  at the  different 
horizons,  each of our  DGPs imposes that Y X, but  for  two  DGPs- 
DGPA2  and DGPB3-Y; X, while for  the  other  DGPs we have Y $ X .  
This  allows  us to present  rijection  frequencies when the null hypothesis Y 
X (or Y g) X )  is true  and false. 
When  the null is true we denote  the rejection frequencies  as H ( c Y ) ,  

because they estimate  the  probability  that  the  testing  strategy  makes  a 
Type I error when the  nominal significance level  is CY, that is, the  probability 
that  the  testing  strategy rejects a  correct null hypothesis. The  strategy (MI) 
provides  information  on  the null hypothesis HOA: Y $ X. which is true when 
we support  both Ho2 and HO3 or  when only  one is accepted. Let PZA(a) be 
the  probability of a Type I error associated  with  testing HOA, at nominal 
significance level a, using (MI), so PZA((r) = P r , , ,  (reject Ho3 and reject 
Ho21 Y $ X ) .  We estimate PIA((r) by H A ( @ )  = N” EL, I (P3;  I CY and 



T
w

o-step G
ranger N

oncausality 
38 1 

x
 



382 Giles 

P21 5 a) ,  where N denotes  the  number of Monte  Carlo samples, PI; is the  ith 
Monte  Carlo sample's P value associated with testing HoJ that  has been 
calculated  from  a x2(2p) distribution using the  statistic W, for j = 2,3 ,  
and I ( . )  is the  indicator  function. 

We desire FZA(a) to be  "close" to the  asymptotic  nominal level for  the 
strategy. which is bounded by 100a% when only  one of H,l or Ho3 is true 
and by 200a% when both  are  true,  though FZA(a) will differ from  the  upper 
bound because of our use of a finite number of simulation  experiments and 
the  asymptotic null distribution  to  calculate  the P values; the  latter is used 
because our statistics have unknown finite sample  distributions.  In  particu- 
lar,  our statistics,  though  asymptotically  pivotal, are  not pivotal in finite 
samples, so H A ( @ )  (and  also PZ24(a)) depends  on where the  true DGP is in 
the set specified by HOA. One way of solving the  latter  problem is to  report 
the size of the  testing  strategy, which is the  supremum  of  the PZA(a) values 
over all DGPs contained in HOA. In  principle. we could  estimate  the size as 
the  supremum of the H A ( @ )  values, though this task is in reality infeasible 
here because of the  multitude  of DGPs  that  can satisfy HOA. Accordingly, 
we report FZA(a) values  for  a  range of DGPs. 

The testing  strategy (M3) provides  information on two null hypotheses: 
Ho,:  Y 7: X and HOB: Y X I  Y 7 X. The statistic WI, used to test Hal, has 
asymptotic level 100a%.We estimate  the  associated  probability of a  Type I 
error,  denoted  as PZl(a) = Pr,,), (reject Hot) .  by Fll(a)  = N" x Z 
( P I ;  5 a) ,  where P I ,  is the P value  associated with testing HOl for  the  ith 
Monte  Carlo sample and is generated  from a x?@) distribution, a is the 
assigned nominal level, and I ( . )  is the  indicator  function.  Further, let PZB(a) 
denote the  probability of a  Type I error  for using (M2) to test HOB, and let 
FZB(a) = N,' Z(P5, I a and P41 5 a)  be an  estimator of PZB(a), where 
N , .  is the  number of Monte  Carlo samples  that  accepted I f o l ,  and PJI is the 
P value  for  testing HqI for  the  ith Monte  Carlo sample  calculated  from  a 
x2(p)  distribution, .i = 4, 5. We report FZl(a) and FZB(a) values  for our 
DGPs  that satisfy Hol and HOB. Recall that  the upper  bound on PZB(a) is 
100a% when only one of H04 or HOs is true  and it is 200a0/0 when both  are 
true. 

We also  report rejection frequencies  for  the  strategies when Y 7 X ;  these 
numbers  aim  to indicate "powers" of our testing  strategies. In econometrics. 
there is much debate  on how  powers  should be estimated.  with  many  studies 
advocating  that only so-called "size-corrected" power  estimates be pro- 
vided.  Given  the  breadth  of  the set under  the nu l l  hypotheses of interest 
here, i t  is computationally infeasible to  contemplate  obtaining "size-cor- 
rected" power  estimates  for our  study.  Some researchers approach this 
problem by obtaining  a critical value for  their  particular DGP that  ensures 
that  the.nominal  and  true probabilities of a  Type I error  are  equal; they then 
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claim,  incorrectly, that the  reported  powers  are  “size-corrected.” A further 
complication in attempting  to  provide  estimates of size-corrected power is 
that the size-corrected critical value may  often be infinite, which implies zero 
power for the test (e.g, Dufour 1997). 

Given these points, when dealing with a  composite null hypothesis, 
Horowitz  and Savin (2000) suggest that i t  may be preferable  to  form 
power  estimates  from an estimate of the  Type I critical value that would 
be obtained if the exact finite sample  distribution of the test statistic  under 
the  true DGP were known.  One such estimator is the  asymptotic critical 
value, though this estimator may not be accurate in finite-samples.  Horowitz 
and Savin (2000) advocate  bootstrap procedures  to  estimate  the  pseudo-true 
value of the parameters  from which an  estimate of the  finite-sample  Type I 
critical value can be obtained; this approach may result i n  higher accuracy in 
finite samples.  In our study. given its preliminary  nature, we use the  asymp- 
totic critical value to estimate  the  powers of our strategies; we leave the 
potential  application of bootstrap procedures for  future research. We 
denote  the  estimated  power  for  strategy (MI) that is associated with testing 
HOA by FZIA(a) = N” x:=, I(P3, 5 a and PI,  5 a),  and  the  estimated 
powers  for  strategy  (M2)  for  testing HOB by FZZB((r) = N;’Z(PSi 5 ct and 
P4; 5 a) respectively. 

For each of the cases outlined in Table 1 we examine  four net sample sizes: 
T = 50, 100, 200,400. The  number of Monte  Carlo  simulation repetitions is 
fixed to be 5000, and  for each experiment we generate ( T  + 100 + 6) obser- 
vations  from which we discard  the first 100 to remove the effect of the  zero 
starting values; the  other six observations  are needed for lagging. We limit 
attention  to an identity  innovation  covariance  matrix.  though we recognize 
that this choice of covariance  matrix is potentially restrictive and requires 
further  attention in future  research.* We generate FI and FZZ values for 
twelve values of the  nominal significance level: a = 0.0001, 0.0005. 0.001, 
0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25. and 0.30. 

The conventional way to  report  the  results is  by tables. though this 
approach  has two  main  drawbacks.  First,  there would be many  tables, 
and second, it  is often difficult to see how  changes in the  sample size. 
DGPs.  and a values affect the rejection frequencies.  In this paper,  as 
recommended by Davidson  and  MacKinnon (199S), we use graphs  to 
provide  the  information on the  performance of our testing  strategies. 
We use P-value  plots  to  report  the results on FIA. FI1  and FIB: these 

*Note  that  Yamada  and  Toda (1998) show  that  the finite sample distribution of 
Wald statistics.  such as those  considered here, is invariant  to  the  form of the  innova- 
tion  covariance  matrix when the lag length  order of the VAR is known. However. 
this  result no loner holds  once we allow for estimation of the lag order. 
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plot  the FZ values  against  a  nominal level. In the ideal case,  each of our P- 
values would  be  distributed  as  uniform (0, l), so that the  resulting  graph 
should  be close to  the 45" line.  Consequently, we can easily see when a 
strategy is over-rejecting, or under-rejecting. or rejecting the  right propor- 
tion  reasonably  often. The  asymptotic  nominal level for  DGPB1  and 
DGPB2 is a for  each of H O l ,  HOA, and HOB, it is CY for HOl for DGPAI 
and  DGPA3,  and the  upper  bound is 2a for HOA and HOB. However, we 
anticipate levels less than 2a, as this  upper  bound  ignores  the  probability 
of the  union  event, so we use (Y as  the level to provide  the 45" line for 
the  plots. 

We provide so-called "size-power" curves to  report  the  information on 
the  power of our testing  strategies; see Wilk and  Gnanadesikan (1968) and 
Davidson  and  MacKinnon (1998). In  our case we use FZ values rather  than 
size estimates and  our power  estimates are based on the FZZ values: accord- 
ingly, we call these graphs FZ-FII curves. The  horizontal axis gives the FI 
values. computed when the DGP satisfies the null hypothesis. and the ver- 
tical axis gives the FZZ values, generated when the DGP does not satisfy 
Y ?  X in a  particular way. The lower left-hand  corner of the  curve  arises 
when  the  strategy  always supports  the null hypothesis, while the  upper right 
hand  corner results when the test always rejects the null hypothesis.  When 
the  power of a  testing  strategy exceeds its  associated  probability of a  Type I 
error,  the FI-FZI curve lies above  the 45" line. which represents  the  points  of 
equal  probability. 

To undertake  the  hypothesis  tests of interest, we need to  choose the lag 
order  for  the VAR, which is  well known to impact  on the  performance of 
tests: see Lutkepohl(l993b),  Dolado  and  Lutkepohl(1996). Giles and Mirza 
(1999), among  others. We examine  four  approaches to specifying the lag 
order: p is correctly specified at I, which we denote  as the  "True"  case; p is 
always  over-estimated by  1, that is, p = 2, which we denote  as "Over"; and p 
is selected by two  common goodness-of-fit criteria-Schwarz's (1978) 
Bayesian criterion  (SC) and Akaike's (1973) information  criterion (AIC). 
The  AIC  does  not consistently  estimate  the lag order  (e.g.,  Nishi 1988, 
Lutkepohl 1993b), as  there is a positive probability of over-estimation of 
p ,  which does  not, nevertheless, affect consistent  estimation  of  the coeffi- 
cients,  though  over-estimation  may result in efficiency and power losses. The 
SC is a  consistent  estimator of p .  though evidence suggests that this estima- 
tor  may be overly parsimonious in finite samples, which may have a  detri- 
mental  impact  on  the  performance of subsequent  hypothesis  tests.  In our 
experiments that use the AIC  and SC we allow y to be at  most 6. Though  the 
"True" case is somewhat  artificial, we include  it as it  can be regarded as a 
best-case scenario. The over-specified case illustrates  results  on using a pre- 
specified, though  incorrect.  lag order. 
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4. SIMULATION RESULTS 
4.1 P-Valve Plots 

Figure 1 shows  P-value  plots  for  the testing strategy (MI) for DGPAl when 
T = 50, 100,200,  and 400 and for  the  four lag selection methods we outlined 
in the  previous  section. It is clear that  the strategy  systematically  results in  
levels that  are well below CY, irrespective of  the  sample size, For instance,  the 
estimated  probability of a  Type  I  error is typically close to  CY/^ when 
T = 200, irrespective of the specified nominal level. In  contrast, the  strategy 
seems to work  better  for  the  smaller  sample  of 50 observations. 

As expected from  our discussion, these observed  features  for DGPAl 
differ from DGPBI  and  DGPB2 when only  one  of  the  hypotheses is true. 
In  Figure  2 we provide  the  P-value  plots  for DGPB 1, from which we see that 
the  strategy (Ml)  systematically over-rejects,  with  the  degree of over-rejec- 
tion becoming  more  pronounced  as T falls. Qualitatively,  the  P-value  plots 
for  DGPA3  and  DGPB2  match those  for DGPAl  and  DGPB1 respectively, 
so we do not  include  them  here. 

Over-specifying or estimating  the lag order  does little to  alter  the P-value 
plots  from  those  for  the  correctly specified model when T 2 200, though 
there are some  observable differences when T is smaller, in particular  for 
T = 50. The  performance of the  AIC  and Over cases is always  somewhat 
worse than  for  the SC, although we expect that this is a  feature of the low- 
order  VAR  models  that we examine  for our  DGPs. Figure 1 and  Figure 2 
show  that  the AIC rejects more often  than  does  Over  for  small CY, but this is 
reversed for  higher levels, say  greater  than  10%. 

We now turn  to the  P-value  plots  for  the  procedure (M2). We provide  the 
P-value  plots  for  testing H,, , :  Y 7: X for  DGPA3 in Figure  3.  This  hypoth- 
esis forms  the first part of strategy  (M2) and is undertaken using the  Wald 
statistic W I .  The plots  for  the other  DGPs  are qualitatively  similar. It is 
clear that the test systematically over-rejects I f o l ,  especially when T 5 100 
and irrespective of the lag selection approach  adopted. 

Figure 4 shows  P-value  plots  for  the  second part of strategy  (M2)  that 
examines Y ;  XI Y 7: X for DGPAI.  It is clear that there is a  pattern of the 
FZ values being less than CY. with the difference increasing with T ,  irrespec- 
tive of the lag selection approach.  This systematic  pattern is similar  to that 
observed for  strategy (MI) with this DGP.  and  also with DGPA3. As in that 
case, we do not  observe this feature with DGPB1  and  DGPB2, as we see 
from  Figure 5 that shows  P-value  plots  for  DGPB I ,  which are representa- 
tive for  both  DGPBI  and  DGPB2.  Here the testing procedure  works well. 
though  there is a small tendency to over-reject for T 2 100, while only  the 
Over approach leads to over-rejection when T = 50 with the  other lag selec- 
tion cases slightly under-rejecting.  These  over- and under-rejections (see- 
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mingly) become more  pronounced  as  the  nominal level rises, though,  as a 
proportion of the  nominal level. the  degree of over- or under-rejection is in 
fact declining as the  nominal level rises. 

4.2 N-FII Plots 

Figure 6 presents FIA-FIIA curves  associated  with  strategy (Ml)  
generated  from DGPAl (for which the null Y $X is true)  and  DGPA3 
(for which the null Y e  X is false in a  particular way) when T = 50 and 
T = 100; the  consisteky  property of the  testing  procedure is well 
established  for this DGP  and degree of falseness of the null hypothesis 
by T = 100, so we omit  the  graphs  for T = 200 and T = 400. Several 
results are evident  from  this figure. We see good  power  properties 
irrespective of  the  sample size, though this is a  feature of the  chosen 
value for  the  parameter a for  DGPA3. Over-specifying the lag order by 
a fixed amount does not result in a loss in  power, while there is a loss 
associated with use of  the AIC. 

The FIA-FIIA curves  for  strategy (Ml)  generated  from DGPB? (for 
which the null Y $ X is true)  and  DGPB3  (for which the null Y < X is 
false in a  particular  way) when T = 50 and T = 100 are given in Fiiure 7; 
we again  omit  the  curves  for T = 200 and T = 400 as they merely illustrate 
the  consistency  feature of the  strategy.  In  this  case,  compared  to  that  pre- 
sented i n  Figure 6, the FZI levels are lower for a given FI level, which reflects 
the degree to which the null hypothesis is false. Nevertheless,  the  results 
suggest that the  strategy  does well at rejecting the false null hypothesis, 
especially when T 2 100. 

The FIB-FIZB curves  for  strategy (M2) for testing HOB display  qualita- 
tively similar  features to  those  just discussed for  strategy (M 1). To illustrate, 
Figure 8 provides  the  curves  generated  from DGPB2  and  DGPB3; figures 
for  the  other cases are available on request. It is of interest to  compare 
Figure 7 and Figure 8. As expected, and irrespective of  sample size, there 
are gains in power  from using strategy (M?) over (MI) when Y 7: X but 
Y ;  X, as the degrees of  freedom  for  the  former  strategy are half those of the 
latter. 

Overall, we conclude  that  the  strategies  perform well at detecting  a false 
null hypothesis. even in relatively small  samples. Our results  illustrate  the 
potential  gains i n  power  with  strategy (M2) over  strategy (Ml)  when Y 7: X’ 
and Y :  X .  In  practice, this is likely useful as we anticipate  that  most 
researchers will first test for Y 7: X, and only  proceed to a  second  stage 
test for Y < X when the first test is not rejected. There is some loss in 
power in using the AIC  to select the lag order  compared with the other 
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approaches we examine,  though  a  study  of DGPs with  longer lag orders 
may  alter  this  outcome. Our results  support  the  finding  from  other  studies 
that  lag  order selection is important. 

5. EMPIRICAL  EXAMPLE 

To illustrate  the  application of the  testing  strategies  on  the  outcome of GNC 
tests in trivariate  systems, we have  re-examined  the data set used by 
Hoffman  and Rasche (1996), which  enables us to  consider the well-studied 
issue of  the  causal  relationships  between  money  and  income.  We  down- 
loaded  the  quarterly,  seasonally  adjusted US time series data  from  the 
Jourrzal of Applied Econometrics Data Archive;  the data were originally 
obtained  from  Citibase.  Let X be real money  balances,  which is calculated 
by deflating the  nominal series by the GDP deflator; let Y be real income, 
represented by real GDP;  and let 2 be nominal interest rates,  the  auxiliary 
variable,  which is represented by the  Treasury bill rate.  Both real balances 
and real GDP  are expressed in natural  logarithms. Allowing  for lagging, we 
use  observations  from 1950:3 to 1995:2 (164  observations).  Our  Monte 
Carlo  study  ignored  the realistic possibility that  there may  be  deterministic 
trends, which we incorporate here by extending  model (1) as 

P 
b, - p - s t )  = n;Cv,-i - p - 6(t - i ) )  + E ,  

;= I 

where p and 6 are  vectors  of  unknown coefficients. We can write (4) equiva- 
lently as 

P 
I ' f  = w* + 6*t + n;y,-; + E ,  

i= I 

where 

P 
p* = (-np + n's). 6* = -ns, n* = tin, 

and 

P 

i= 1 



Two-step Granger Noncausality 395 

The  matrix ll is the  usual  potentially  reduced  rank  matrix  that  indicates 
the  number of  cointegrating  relationships.  Often  applied  researchers 
impose 6 = 0 a  priori,  which  implies  that l .~* is forced to zero  when 
there is no  cointegration;  this  seems  a limiting restriction, so we use (5) 
as  stated. 

We  assume  that each  of our time series is integrated  of  order  one,  as do 
also  Hoffman  and  Rasche (1 996); this  implies that we augment  our  model 
with  one  extra lag of y .  We  use  the AIC  to  choose  the  lag  order p allowing 
for  up  to ten  possible lags; the  results  support six lags. Table  2  reports 
asymptotic  P-values  for  examining  for  the six possible l-step GNC relation- 
ships. Using  a  (nominal)  10% significance level, the  outcomes  imply  that  the 
l-step GC  map is 

from which  it is clear that there is support  for the common finding that 
real money  balances  Granger-causes real income  without  feedback. 
However,  the  map  illustrates  the  potential for 2-step GC from real income 
to real money  balances to arise indirectly via the interest rate  variable. To 
explore this possibility we apply  our testing strategies (Ml)  and  (M2); the 

Table 2. Money-income  example 
P-values 

Null  Hypothesis  P-value 

Y T X  

z? Y 
X T Z  
Y 7 . Z  

z f ' x  
x: Y 

Strategy ( M l )  
H02 
HO3 

Strategy ( M 2 )  
H04 
H n s  

0.170 
< 0.001 

0.001 
< 0.001 

0.090 
0.086 

0.070 
< 0.001 

< 0.001 
0.095 
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asymptotic  P-values  are  reported in Table 2. Both  strategies  support 2-step 
Granger  causality  from real income  to real money  balances via the interest 
rate  variable.  The  example serves to  illustrate  the  changes in causality  con- 
clusions  that may  occur  once an allowance is made  for  indirect  causality via 
an auxiliary  variable. 

6. CONCLUDING REMARKS 

This  paper  has  provided  two  testing  strategies  for  examining  for 2-step 
Granger  noncausality in a  trivariate VAR system that may arise via the 
auxiliary  variable  that is included  for explanatory power but is not directly 
involved in the  noncausality test under  examination.  The testing strategy 
(Ml)  is advantageous in that  it  can be  applied  without  a  prior test for  the 
traditional  I-step  noncausality  as it tests for  noncausality  up to horizon  two. 
This  feature is appealing  when  the  interest is  in knowing  whether or  not 
causality exists, irrespective at which horizon.  However,  strategy  (M2) 
should  be  used  when  information  on  whether  detected  causality  arises 
directly one  step  ahead or indirectly two steps ahead is also  desired.  As  a 
result,  our  expectation is that  most  researchers will more likely use M2 
rather  than MI .  

We investigated  the finite sample  properties  of  our  sequential  strate- 
gies through  Monte  Carlo  simulations.  Though the data  generating  pro- 
cesses that we employed  were relatively simple and  should be expanded 
on in a  more  elaborative  study,  our findings may be summarized  as 
follows: 

(i) The testing procedures  perform  reasonably well, irrespective of  sample 
size and  lag selection method. 

(ii) The  form of the  underlying DGP  can  impact  substantially  on  the 
probability  of the Type I error  associated  with  that DGP.  The  actual 
level  is closer to  a  notion  of  an assigned level when  the  auxiliary 
variable is sufficiently causal  with  one  of  the variables under  test. 
That is. when  testing  for Y X via Z ,  there  are  two  causal  relation- 
ships  of  interest: Y 7: Z and 27: X .  If only one of these is true, so that 
either Y 7 Z or Z Y ,  then our results suggest that we can  have  some 
confidence about the probability  of  the  Type I error  that we are likely 
to  observe.  However,  when  both  are  true, so that 2 is not sufficiently 
involved  with X or Y ,  then the probability  of  the  Type I error  can be 
small  and  quite different from  any  nominal  notion  of  a level that we 
may  have. 

. . . , . . " 
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(iii) The testing strategies do well at detecting  when Y $ X is false, irre- 
spective of  the  form  of  the DGP.  Our results  suggest that  a  sample size 
of at least 100  is preferable,  though this depends,  naturally,  on  the 
degree to which  the null is false. 

(iv) The choice  of the lag  length in the  performance  of  the test is important. 
This issue requires  further  attention,  with DGPs of higher lag order. 

An  obvious  extension  of  this  work is to  the  development  of tests that 
examine for multi-step  noncausality in higher-dimensional  systems. This will 
typically involve testing for  zero  restrictions  on  multilinear  functions  of the 
VAR coefficients, which  may result in Jacobian  matrices  of  the  restrictions 
having less than full rank  under the null hypothesis  and so lead to  non- 
standard  asymptotic null distributions. 
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Measurement of the Quality of 
Autoregressive  Approximation, with 
Econometric  Applications 
JOHN W. GALBRAITH and VICTORIA  ZINDE-WALSH McGill 
University, Montreal, Quebec, Canada 

1. INTRODUCTION 

There  are  many  circumstances in which one  stochastic  process is taken  as  a 
model of another,  either  inadvertently  through mis-specification or deliber- 
ately as  an  approximation. In the  present paper we are  concerned  with  cases 
in  which an autoregressive-moving  average (ARMA)  or moving-average 
process is, explicitly or implicitly, approximated by a  pure  autoregressive 
process. It is  well known (see for  example  [l])  that  an  ARMA process  with 
all latent  roots of the  moving-average  polynomial inside the  unit circle can 
be approximated  arbitrarily well  by an autoregressive  process  of  order L ,  as 
.t -+ 00. The technique has been  used  for  the  estimation  of  moving-average 
or  ARMA models by, among  others, [2]-[8]. References [9] and  [lo]  address 
the  estimation  of the spectral  density  through  autoregression; [I  11 uses auto- 
regression to  approximate  an  ARMA  error  process in the residuals of  a 
regression  model; and [12] addresses  the  impact of that  approximation  on 
the  asymptotic  distribution  of  the ADF statistic. 

In problems  such  as these, the  quality  of the approximation affects some 
statistic  of  interest,  and an ideal measure  of  the  quality of the  approximation 
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would be monotonically  related  to  the  deviations  caused by replacing  the 
true  process by the  approximate  one.  As  an  example of the use of such  a 
measure,  consider a forecast based on a mis-specified model. If the  accuracy 
of  the  forecast is monotonically  related to some  measure of the divergence 
between the  true  and mis-specified models, one  can  make  an  immediate use 
of the divergence measure  in  designing  Monte  Carlo experiments  to  evaluate 
forecast  performance  for  different  models  and  types of mis-specification; the 
measure  allows us to identify  cases where the  approximation will do  rela- 
tively well or  badly, and  to be  sure  of  examining  both. 

The present  study  presents an  approach  to  problems of this  type. Our 
primary  emphasis is on understanding  the  factors  affecting  quality of auto- 
regressive approximation,  and  the  impact  of  approximation  as used in  treat- 
ing data, not  on  the development of new techniques for  carrying  out 
approximation or modeling.  We  treat  autoregressive  approximation and 
mis-specification in  a  comnlon  framework,  implying  replacement of the 
true  model  with  one  from another class, and use distance in the  space of 
stationary  stochastic processes as a  measure of the severity of mis-specifica- 
tion,  or  quality of approximation. A  measure of the  distance  from  a  process 
to a class of processes is defined, and may  be minimized to find the closest 
member of that class.* We  are  able  to indicate  the  order  of AR process 
necessary to  approximate  particular  MA(1)  or MA(2) processes well, and 
are  also able to give some  general  results on the  value of the  distance 
between processes as  an  indicator of the  adequacy of an  approximation in 
particular  circumstances. For MA(1) processes the  magnitude of the  root is 
often  mentioned  as  the  factor  determining  the  degree  to which autoregres- 
sive approximation will  be successful; here we are able to give a  more gen- 
eral  result. 

It is important  to distinguish these results about  the  appropriate  order of 
approximating  process  from  the use of  sample-dependent  criteria  such as  the 
Akaike or Schwarz  information  criteria  to  choose  the  order. While the  two 
approaches  may  to  some  extent be  complementary,  the  present  study  offers 
a  priori  information  about  the ability of an  AR(&) process, for given e ,  to 
approximate a  particular ARMA.  In empirical  applications, this informa- 
tion  may be combined  with  information  about  the process being approxi- 
mated,  and a  loss  function,  to  generate  a specific choice of order.  Distance 
measures may  also be used to evaluate  information  criteria  in  particular 
contexts, as in the  example of Section 4.4. 

*There are various  possible  measures of distance  or  divergence,  including  the well- 
known  Kullback-Leibler  and  Hilbert  distances; we concentrate here on the latter. 
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We offer several other  econometric  applications in Section 4. The dis- 
tance  measure is defined and described in Section 2, while Section 3 discusses 
its use  in examining AR approximations. 

2. DEFINITIONS AND PROPERTIES  OF  THE 
DISTANCE MEASURES 

This section concentrates  on the distance  measures,  particularly  the  Hilbert 
distance,  that will be used for  the  problem  of  autoregressive  approximation. 
For general reviews of information  theory  and  distance  measures, see [13] 
and [14]. 

We  consider  a discrete-time stochastic  process {X , ] .  The  space of zero- 
mean, finite-variance stochastic  processes  can be represented as  a real Hilbert 
space H with  the  scalar product ( X ,  Y )  defined by E(XY) ;  the  Hilbert  norm 
IlXll is given  by [E(X') ] ' /2 .  The values  of  the  stochastic  process { X , ] ,  t E 2 
(where  the  index set Z is the set of integers), span  a  subspace H,y c H of the 
Hilbert space, which  is  itself a  separable  Hilbert  space  and  thus  has  a  coun- 
table basis. The lag operator L is defined  such that LX, = XIPI ; [ 151 and [ 161, 
for  example,  describe  the  relevant definitions and  properties of the stationary 
stochastic  processes  and  the  Hilbert  spaces used here. For  the  purpose of 
examining mis-specification, we restrict ourselves to  the  space H,. 

2.1 The Hilbert Distance 

The  Hilbert  distance is the primary  measure  that we will use. 
Since the space  of  second-order  stationary  stochastic  processes is a 

Hilbert  space,  the distar~ce between  two  processes X and Y is  given  by the 
norm  of the difference, d H ( X .  Y )  = IIX - Y 11 = [E(X - Y)*]'/*. In [17], this 
distance is used to examine mis-specification in first-order processes. In  a 
Hilbert  space, we can easily define the  distance  from  a  process  to  a class of 
processes (or  the  distance  between classes), obtained by minimizing  the 
distance  over all processes in the class: for  example,  for  the  distance  to 
the AR(C) class, d H ( X .  AR(C)) = inf d,(X. Y ) .  

The  distance  can  also be expressed  using  the innovations  representation 
of the processes in terms of the stationary  uncorrelated process: i.e., the 
orthogonal basis {e,}?m. If X ,  = Bier-; and Y,  = CEO &E+, with E ,  = 
de,, then 

dH(X. Y )  = IIX - YII = (2.1) 
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where lle,)I = a,, the  standard  error  of the (e,}. Without loss of generality, 
we will consider a, = 1 below unless otherwise specified. 

We will consider  processes that  can be represented as X, =f(L)e , ,  where 
e, is a white noise process andf(L) is a  rational  polynomial. so that.f(L) = 
Q(L)/P(L)  where Q and P are polynomials: we  will express this as P(L) = 

process is described by P(L)X ,  = Q(L)e,, and is stationary if and only if 
the  latent (i.e., inverse) roots of the  polynomial Q(L) are within the  unit 
circle. If the process is invertible, then the inverse process (X,-} defined by 
Q(L)X,- = P(L)e, is stationary. It is normally  assumed that P(L) and Q(L) 
have no  common  factors. If P(L) I ,  then (X,} is an  MA process: if Q(L) = 
I ,  i t  is an  AR process. 

A stationary, zero-mean ARMA(p. q)  process (X,} can be approximated 
arbitrarily well  by an  MA(k) process for some k: for an arbitrary  bound 6 on 
the  approximation  error, fix k such that xzk+l ,$ -= 6, and set the  para- 
meters Oi of  the  approximating  MA(k) process ( Y, }  such  that 8, = /$ for i = 
1 ,  . . . , k .  It follows that I I X  - Y1I < 6'/'. If {X,) is an invertible process, then. 
for sufficiently large k ,  (Y , }  will also be invertible. 

Moreover, if ( X , }  is invertible.  then it is also  possible to express X, as a 
convergent weighted sum of past values X,-,, so that we can  also find an 
AR(C) process which approximates (X,} arbitrarily well. Consider  an inver- 
tible  kth-order  moving-average lag polynomial  represented by Qk.(L), cor- 
responding  to ( Y , )  above.  It  has an infinite AR  representation with 
autoregressive  polynomial Pk(L) = [ Q k ( L ) ] " .  If Qp(L> = I + OIL + . . . + 8, 
Lk,  then Pk(L) = ( I  + OIL + . . . + OkLk)-' = I - OIL + (0: - &)L' 

note  that y, z O(V'), where 17 = max15i<k Ju,I .  and 1 . I represents  the 
modulus  of  the  root.  Thus y,' O(V- -), and.  for suitable order l 
of  the  approximating process, this can be made less than  any chosen 6. 
Denoting by {Z,} the AR(C) process  with coefficients c r j  = y,, i = 1, . . . , e ,  
we have IIX - Zll = IIX - Y + Y - 211 5 IIX - I'll + IIY - 211 = (CZ,  
&)I/ '+  (CEl y,')'/2. Hence an AR(C) process can be found which is arbi- 
trarily close to { X , }  in the  Hilbert  metric. Also, convergence in the  Hilbert 
metric implies convergence  of the Fourier coefficients of the representation 
in the  orthogonal basis of the processes. 

with var(e,) = 1.  which is approximated by the  AR(p) process 2, 4 crj 

Z , ,  + E ,  with var(E,) = a2, that minimizes the  Hilbert  distance. As p -+ 00. 
the  Hilbert  distance between ( X , ]  and (Z,) approaches  zero, a -+ I ,  and  the 
first q coefficients {cx,) approach  the values c r I  = Q1.  cr2 = -Blcrl + 02. ai = 
-@lcr,-l - f+c~,-~ - . . . - 8,-lcrl + Hi for i I q. and cr. - X:=, -Op,-, f o r i  
r 4 + 1.  These  relations are used for  parameter  estimatlon in [7] and [8]. 

I - ( Y I L - . . . -  crpLp, and Q(L) = I + Or L + .  . . + OqLq. An  ARMA@. q) 

+...  = CEO ylL'. Denoting by u, the  latent  (i.e., inverse) roots of Qk(L) ,  

"F+' 

As an example,  consider an invertible MA(q) process X, = e, + X;=l 

J T  



Quality of Autoregressive  Approximation 405 

The Hilbert  distance between second-order  stationary processes in H 
corresponds  to convergence in probability in that class. In  fact, since i t  is 
defined through  the  mean  square.  convergence in this metric implies cnn- 
vergence in probability.  On  the  other  hand,  convergence in probability  to a 
process in H implies that  the processes converge  in  mean square. Of 
course. if the processes in H converge in probability to a  non-stationary 
process, they do not  converge in this  metric. The  correspondence  to 
convergence in probability  makes  the  Hilbert  metric  a  valuable  measure 
of "closeness" in the  space H ,  which can be used to evaluate  the  quality 
of various  approximations.  Unlike  measures in finite parameter spaces. 
this measure can be used to  compare processes of different types and 
orders. 

2.2 The Kullback-Leibler and Kullback-Leibler- 
Jeffreys  Divergence  Measures 

These  two divergence measures are based on  information  functionals; see, 
for  example, [ 181 or the review in [14]. For the Shannon  entropy  functional 
the Kullback-Leibler (K-L) divergence from  a  distribution  with  a  density 
function $,(-I?) to a  distribution  with  density $2(J) is given by 

This  measure of divergence is not  symmetric;  it is sometimes called direc- 
tional.  The Kullback-Leibler-Jeffreys (K-L-J) divergence measure is non- 
directional  (symmetric) and is defined as 

1 
& L J ( @ I ,  42) = 7 [1(@1 42) + : 41 11 

Note  that,  although symmetric, dKLJ is not a  distance since it does  not 
satisfy the  triangle  inequality. For Gaussian processes X ,  = f i ( L ) e ,  and Y, 
= f,(L)e,, these divergence measures  can be calculated as 

- 

and we can  compute I( Y : X )  similarly; then 

1 
&LJ(X, Y )  = 2 [ Z ( X  : Y )  + Z(Y : X ) ]  (2.2) 
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The  Hilbert  distance  can be represented throughfl,fi  as 

We  can  also  represent dKLJ(X, Y )  via the  Hilbert  norm,  If we define  a 
process ( Z , }  via Z =fl (L) / f i (L)e  = Ciqe,-i, and define z =fi(L)/fi(L)e 
= E, Gie,-,, then 

(2.3) 

where IJZIJ2 = 0: and 11211' = CG: .  The  formula (2.3) can be  used to 
compute  the Kullback-Leibler-Jeffreys divergence  from  one  process to 
another  and  can be  minimized  over  a particular class to find the  minimum 
divergence  from  a given process to  a class of processes. While our  primary 
focus in this  paper is on  the  use  of  the  Hilbert  distance, we  will incorporate 
K-L-J distance  measures  into several examples  below  for  purposes  of  com- 
parison. 

Before  addressing  some  applications  of these concepts, we note  that it 
may  be useful to restrict somewhat the class of mis-specified models 
considered in the  applications.  We  may  assume  that  some  characteristics 
will be  shared  between the true  and mis-specified models; in particular, 
if we know that  some  population  moments exist, we may wish to  con- 
sider a mis-specified process  with the same  population  moments.  Indeed, 
if we were  to use sample  moments in  the  estimation  they  would  come 
from  the  same  time series data regardless  of  which  model  was specified. 
Since  covariance  stationary  stochastic  processes  possess at least two 
moments.  here we consider  as  the  approximation  the closest process 
in the  approximating  class, subject to  the restriction that  the first two 
moments  are  the  same  as  those of  the  process  being approximated.  That 
is,  in cases for which we compute  the  theoretical best approximation 
within  a class, this  restriction  on  population  moments is imposed in 
using both  Hilbert  and K-L-J distances.  The K-L-J distance  then 
becomes 

where u I .  212 are  the variances  of  the  processes X ,  and Y,  defined  above.  In 
the  case  of  the  Hilbert distance. we normalize  one  of the sets of  squared 
projection coefficients by the ratio  of variances. 
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3. EVALUATION OF APPROXIMATIONS USING 
DISTANCE MEASURES 

When we use techniques that  approximate  one process by a process from 
another class, we can identify some  member or members  of  the  approximat- 
ing class that  are closest to  the original process by the  Hilbert  (or  other) 
distance. We will refer to  the  distance between the  original process and  an 
approximating process in a given class as the appro.rinInrior1 ciistmce, and 
will  be interested in calculating  the  minimum  approximation  distance 
achievable.* As discussed in Section 2.2. the  approximate process is 
restricted to have the  same  mean and variance as the  original  process. 

In order  to  evaluate this  minimum  (,Hilbert)  approximation  distance, we 
express the  original process and a candidate  approximating process in terms 
of the projections onto past innovations.  The  function  describing  the  dis- 
tance between them,  (2.1), is the  sum of squared differences between the 
coefficients of these innovations'  representations.  Truncating this expression 
at a large value, the  distance  may be calculated,  and  with  subsequent  itera- 
tions  the  function  can be minimized numerically over  the  parameters  of  the 
approximating  process.  In  the  calculations below we use a Powell algorithm 
(see [20], p. 299) to minimize the  distance  function. 

Tables 1 and 2 give these examples of the  approximation  distances  from 
specific invertible  MA(1) and  MA(2) processes to  the closest members of the 
AR(p) class. p = 1,2 ,4 ,  8. 12; the  approximating process is constrained  to 
have the  same  variance  as  the  original  process.  Table  2b gives the  parameter 
values and  roots of the processes appearing in Table  2a.  These  distances 
cannot be guaranteed  to be global  minima,  but  appear  to be very close to 
them,  at least for  distances on the order of IO-' or greater.  The tables  also 
report  the  distances  from  the  original processes to  the  uncorrelated, or white 
noise, process having  the  same  variance. For  MA(I) processes, the  distances 
are unaffected by the sign of the  parameter. While for  MA(1) processes the 
distance is a monotonic  function of the  modulus of the root,  note  that this is 
not  the  case with respect to the largest root of MA(2) processes. 

These  examples suggest at least two  conclusions.  First,  through  most of 
the  MA(1) or MA(2)  parameter spaces, the  approximation  distance  can be 
made  quite  small with moderate  orders of approximating  process. For 
MA(1) processes, order 8 is sufficient in all cases to  make the  approximation 
distance less than 1 % of the  distance of the  original process to  the  uncorre- 

Parzen in [I91 discusses a related  concept,  the  approximation  bias  arising  from  the 
use of a finite-order A R b )  in  place of the  AR(co)  representation of a process. Parzen 
introduces a particular  penalty  function with  which to  estimate  the  approximating 
order. yielding the criteriotf of autoregressive trarufer fur~t ior t  for  order selection. 
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Table 1. Approximation  distances:*  Distance  from  MA(1) process to 
nearest A R b )  

Root  Order. p .  of approximating AR process 
e 

0 1 2  4  8 12 

.999 1.081 

.99 1.071 

.95 1.023 

.90 0.964 

.70 0.734 

.50 0.514 

.30 0.303 

. I O  0.100 

.05 0.050 

.01 0.010 

0.570  0.366 
0.563  0.360 
0.530  0.335 
0.490  0.303 
0.335  0.185 
0.196  8.75 x 10” 

8.05 x 10” 2.36 x lo-’ 
9.85 x 9.85 x 
2.49 x 1 0 - ~  1.25 x 
1.00 x 1.00 x 

0.199 
0.195 
0.176 
0.152 

7.16 x lo-’ 
2.05 x IO-’ 
2.11 x 10-3 

3.11 x 10” 
1.00 x 10-I0 

9.86 x 

9.37 x lo-’ 5.70 x IO-’ 

7.64 x LO-’ 4.29 x lo-’ 
6.02 x 10” 3.04 x 10” 

1.27 x 8.09 x 10” 
1.72 x 1.46 x IO“ 

9.86 x 1.00 x IO”’ 
1.96 x IO“’ 1.22 x IO-’* 
1.00 x 1.00 x 

9.04 x lo-’ 5.43 x lo-’ 

1.51 x 10” 3.54 x 

*In  Tables I and 2a, the  column  headed “0” gives the  distance  to  the white  noise 
process  having  the  same  variance.  Results in Table I are unaffected by 
multiplying  the  moving-average  parameter by -1. 

Table 2a. Approximation  distances:t  Distance  from  MA(2) process to 
nearest  AR(p) 

Case  Order, p.  of approximating AR process 

0 1 b 3 4 8 12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
I O  
11  
12 

2.605  1.326 0.792 
2.368 1.178 0.683 
1.095  0.569 0.362 
1.785 0.818 0.421 
1.225  0.477 0. I89 
0.990  0.404 0.188 
0.604  0.446 0.259 
1.680  0.792 0.436 
0.142  0.108 2.19 x IO” 
0.457  0.305 0.158 
0.766  0.245 6.87 x 10” 
0.0283 1.96 x lo-’ 8.89 x IO-‘ 

0.376 
0.299 
0. I94 
0.128 

8.47 x IO-’ 
4.85 x IO-‘ 

0.139 
0.171 

6.60 x IO-’ 
1.14 x 10” 
2.47 x 10” 

3.39 x lo-? 

0.137 
8.34 x 10” 
8.95 x lo-’ 
5.58 x lo-? 
2.05 x lo-? 
3.55 x 
5.28 x IO-’ 
4.01 x lo-’ 
7.03 x lo-’ 
1.38 x lo-’ 
2.52 x 
1.50 x 

6.57 x 10” 
2.78 x IO-?  
5.36 x 10” 
2.03 x 10” 
5.08 x 10” 
2.41 x 
2.41 x 10” 
1.15 x 10” 
1.36 x IO-‘ 
3.09 x 10” 

8.08 x lo-” 
1.29 x 

?The  case  numbers refer to  Table 2b.  where the processes are described 
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Table 2b. Features  of  MA(2) processes  used in Table 2a 

Case  MA  parameters 

61 62 Real parts  Imaginary  parts  Moduli 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

- 1.96 
- 1 .so 
-1.01 
- 1.40 

1 .oo 
0.90 

-0.50 
- 1.40 

0.10 
0.40 

-0.70 
0.020 

0.98 0.980 0.980 
0.90 0.900 0.900 
0.0198 0.990 0.020 
0.70 0.700 0.700 
0.50 -0.500 -0.500 
0.20 -0.500 -0.400 

-0.30  0.852  -0.352 
0.49  0.700  0.700 

-0.10  -0.370  0.270 
-0.20 -0.690 0.290 

0.20 0.350  0.350 
0.02 -0.010  -0.010 

0.140 
0.300 
0.00 
0.458 
0.500 
0.00 
0.00 
0.00 
0.00 
0.00 
0.278 
0.141 

-0.140 
-0.300 

0.00 
-0.458 
-0.500 

0.00 
0.00 
0.00 
0.00 
0.00 

-0.278 
-0.141 

0.990 0.990 
0.949  0.949 
0.990 0.020 
0.837  0.837 
0.707 0.707 
0.500 0.400 
0.852  0.352 
0.700  0.700 
0.370  0.270 
0.690 0.290 
0.447  0.447 
0.141  0.141 

lated process (that is, the  approximation  has picked up  99% of  the  original 
process, by our  distance  measure).  For  the  MA(2)  processes  used in these 
examples, order 12  is sufficient in most cases to meet  the  same condition,  but 
is not sufficient in cases 1.2,  3,4,  and 7, where  there is one  or  more  root with 
modulus  greater  than 0.85 in absolute value. Nonetheless, in most  cases  it is 
clearly possible to make  the  approximation  distances very small  with orders 
of AR process that  are well within  the  range  estimable  with typical samples 
of data. 

Second,  these results give an a  priori  indication  of  the  appropriate  order 
of approximating  AR process. For moving  average  processes  with  the  lar- 
gest root  near zero, there is little gain in increasing  the order, p ,  beyond 
fairly small values. For processes  with  a root  near  the  boundary of the 
invertibility region,  there  are still substantial  gains in increasing p beyond 
12, and  the  order  of  AR  process  necessary to  make  the  approximation 
distance negligible may be large. This  requirement  imposes  a  lower  bound 
on  the  sample size necessary to  provide  a  good  approximation with an 
autoregressive process.* Note, however, that these results do  not embody 
the effect of  increased  model order  on efficiency of parameter  estimation; 
results  bearing  on  this  question  are  presented in Section 4.1. 

*As well, small reductions  in  approximation  distance become more  important  with 
increasing sample size, since overall  distance  from  the  estimated  representation to the 
true process is itself declining in expectation. 
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The  magnitude of approximation  distance  that is tolerable will depend 
upon  the  application.  Nonetheless, it is worth  emphasizing  that  this  infor- 
mation  about the order of  the  approximating  process is not  sample  depen- 
dent.  It is  well known  that widely-used  sample-based  criteria  for  order 
selection, such  as  the  Akaike  information  criterion,  may systematically  sug- 
gest over- or under-parameterization: see [21] and  the  examples in Section 
4.4 below.  A  criterion  such  as the distance in the space  of  population  mod- 
els, by contrast,  provides  a  guide  to  order selection prior  to  estimation. 

4. ECONOMETRIC APPLICATIONS 

There  are  two types  of  problem that we can  distinguish  as  being  of  interest 
in the  context  of mis-specified or  approximate models. In  the first type, the 
statistic is directly related to  the mis-specification; and  an  example is  given  in 
Section 4.2, where we examine  a test for the null of  uncorrelated residuals in 
a  model  where  MA  errors  are  modeled by autoregression. In the  second 
type, a  statistic  may  estimate  or test some  property  not directly related to the 
mis-specification; the mis-specification is nonetheless relevant because  the 
distribution  of the statistic will differ  from the distribution  that  it  would 
have  with  a  correctly specified model.  Examples are given  in Section 4.3, 
where we consider  the forecast error  arising  when  MA  processes  are forecast 
using AR models,  and in 4.4, where we examine  the  performance  of  infor- 
mation  criteria in selecting the order of  model  which is the best approxima- 
tion  to  an  unknown process  of more general form. 

In  each  of  these cases, we expect that  the  more severe  the mis-specifica- 
tion, or the  poorer the approximation,  the  more  substantial will be the effect 
on  the  statistic  of  interest. Ideally. we would like to have  a  measure  of  the 
extent of mis-specification that  has predictive power in a  wide variety of 
circumstances.  In  the  examples  just  mentioned,  this  would  allow  us  to pre- 
dict which  of  various MA processes will show the higher  mean  squared 
forecast error when forecasting is done via an AR, or which MA process 
in the  errors of a  regression  model will lead to the largest average test 
statistic in an  autocorrelation test when modeled as  AR.  In these  examples, 
we show  that  the  Hilbert  distance  performs well as  such  a  measure,  and, in 
particular,  that it is a  much  better  indicator  than is the largest of  the  moduli 
of MA  roots. While  the  Hilbert  distance is the  primary  focus  of  our  interest, 
we  will also refer for  comparison  to the Kullback-Leibler-Jeffreys distance 
in two  of  the  applications. 

Before  exploring these examples, in which  the  Hilbert  distance  measure is 
used to predict the values  of  sample-based  criteria  and is thereby  evaluated, 
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we apply  this  distance  measure  directly  to  the  general  problem of choice of 
AR  order, which forms  an element of the  examples in Sections 4.2-4.4. 

4.1 Choice of AR Order 
Mis-specification or approximation  can be thought  of  as yielding two 
sources of error:  one caused by the  mismatch between the mis-specified 
process (e.g., s) and  the  true process (e.g. JJ). and  the  other resulting  from 
estimation of the mis-specified model (yielding .? rather  than x). Each of 
these, the  approximation  error  and  the  estimation  error,  plays a role in 
determining  the best approximating process. as  the following  application 
illustrates. 

Consider  the  estimation of an  AR model of a pure  MA process. In 
choosing  the best order  for  the  AR  model,  there  are two offsetting effects: 
first, as Section 3 showed,  the best available  approximation within the 
AR(k) class will be closer to the  true  process  as k increases; second,  as k 
increases the efficiency of  parameter  estimation will be reduced,  leading to a 
higher  mean  distance to  the  true process. We will use the  Hilbert  distance to 
investigate  the  optimal  model order, k* = a r g m i l l ~ : , ~ ~ ~ ~ ~ ~ ~ ~ ( l l ~  - .?I/), given 
these two effects. 

For a given process y,  and  an  approximating  AR(k) model,  there is a 
closest process s within the  AR(k)  class,  and  an  estimated  model i .  As k 
increases, .Y becomes a  better  approximation by the  Hilbert  distance 
(IIy - s ( J  decreases monotonically).  Parameter  estimation becomes less effi- 
cient. however, and  the mean  distance of the  estimated  model to the best 
approximating  model, I[.? - ~ 1 1 ,  increases. The overall  distance between true 
and estimated processes, 111' - .?I(. will have  a  minimum at some finite value 
of k. 

Figures 1 to 3 present  the  results of simulations designed to estimate 
the  relation between (1)' - .?I[ and k for several examples of MA pro- 
cesses. There  are 10,000 replications on sample sizes of T = [200. 1000). 
and k = (1.2,  . . . , 10). Values on  the vertical axis are  the average values 
of )1y - .?(I for  the given MA  process, y. across  the 10.000 samples. 

Note first that  the  optimal  order  increases in T ,  reflecting diminished 
relative importance of parameter  estimation  error, at a given k, as T 
increases. Optimal  order also  increases,  subject  to  the  integer  constraint 
on k, as  the  distance between the  true process and  the closest process in 
the  AR(k) class increases (see again  Tables 1 and  2a).  For 0 = 0.90. optimal 
orders  are 5 and 9 at T = 200 and 1000, for 0 = 0.50. optimal  orders  are 3 
and 4. while for 6 = 0.10 there is no gain in  approximating  with  an  order 
greater  than 1 at either  sample size. 
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Figure 19.2. MA(1) parameter = 0.50. 

i L I  r'!F - , , i , ; ,  

Figure 19.3. MA(]) parameter = 0.10. 
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These  results are purely illustrative.  However, we can  summarize  the 
results of a  larger  number of such experiments by estimating  a  response 
surface  for  the  optimal order  as a  function of the  parameter of an MA(I) 
model and sample size, with 8 = {0.05.0.1,0.3,0.5.0.7. 0.8. 0.9,0.95,0.99) 
and T = (25,50,75,  100,200,300,400.500, lOOO}. yielding 81 cases. The 
response  surface  (standard  errors in brackets) 

k* = -2.82 +4.67(1 - 0)’ -0.23T1’4 +2.568T1’4 + I I  

(0.17) (0.32) (0.06) (0.08) 

was  found  to  provide a  reasonable fit (R2 = 0.98) to  the  points. For exam- 
ple, using the processes examined in Figures 1-3,  we have for  each?ombina- 
tion (8. T )  the following estimated  optimal  orders: (0.1,200), k* = 1.07; 
(0.1,1000), 2 = 1.12; (0.5,200), k *  = 2.30; (0.5,1000), 2 = 4.26; (0.9,200), 
li^. = 5.02; (0.9,1000), li^. = 8.89.  Each of these is quite close to the  actual 
optimum  for  the given (8, T). 

To summarize:  the  distance  measure  allows  us to indicate  the best 
approximating  model  for a given process and sample size, taking  into 
account  the  estimation  method.  In these cases of MA processes approxi- 
mated by autoregressions.  the  optimal  orders  are fairly modest. 

4.2 Dynamic Specification 
Appropriate specification of dynamics is an  important problem in time 
series regression; see Hendry [22] for a  thorough review of this literature. 
One  of  the  most  commonly  applied  techniques is the  imposition of a low- 
order  autoregressive  structure on  the  errors of a regression model (which 
may  be  a  static regression apart  from the error dynamics).  It is  well known 
that this implies a  common-factor  restriction on the coefficients of a  corre- 
sponding  autoregressive-distributed lag model with white noise errors:  that 
is, 

y ,  = p r ,  + u,. p(L)zr, = E ,  (4.1) 

is equivalent to 

P(L)Y, = P(L)B.Y, + E ,  (4.2) 

where ( E , )  is a white-noise process, implying a set of restrictions on the 
coefficients of the regression model (4.2) arising  from  the common lag poly- 
nomial p(L). If p(L )  is of degree k there are k such restrictions;  for  example, 
for k = 2, p(L)  = 1 - p l L  - p2L2 and 

y, = pIJ’,-1 + PzJ’r-2 + D X ,  + S1.q-1 + 62.YI-2 + E l  (4.3) 

with SI = p l B  and S2 = p2B. 
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Consider  now  the effect of using an  AR model of error  dynamics in this 
way when the  true process contains  a  moving-average component:  that is, 
the  true  error process in (4.1) is instead y(L)u, = O(L)&,. The autoregressive- 
distributed  lag  (ADL)  representation of the  model now embodies  sets of 
coefficients on  both lagged Y and lagged X ,  from  the  approximating AR 
polynomial p(L), which decline geometrically but  are  nonzero  at  any finite 
lag.  There is a  corresponding (infinite) set of common-factor  restrictions. 
Truncating  the  representation  at  any finite lag length k might be expected to 
perform relatively well as  the  Hilbert  distance  to this  approximating  AR(k) 
model is smaller. If the  distance  measure is useful in indicating  the  order of 
AR polynomial necessary to  model a  relation  with ARMA  errors via an 
ADL model,  there  must be a close correspondence between the  distance 
from  the ARMA to  a given AR.  and sample-based  measures  of  the  degree 
of irzadequcq- of the  dynamic  specification. The  indicator  that we use is a 
standard  LM statistic for  the null of no  autocorrelation  from lags 1 to s. The 
mis-specification considered is the use of an  AR(2)  error process  instead of 
the  true  MA(2).  Note  that  the  distance measure is not  an alter’rlutive to the 
sample-based (LM) statistic;  instead, it is intended  to help  understand  the 
process of approximation by describing  the  degree to which particular 
known processes may be  well approximated by particular  models. If success- 
ful, the  distance  measure  should in some degree predict  the  results  actually 
observed  in  sample-based  indicators of adequacy of approximation, such as 
the LM statistic  for  residual  autocorrelation. 

Table 3 reports  the results of a  simulation  experiment designed to check 
this performance.  Using  the  MA(1)  and  MA(2)  models  of  Tables 1 and  2b, 
5000 replications on samples  of size T = 300 were generated  from  the 
DGP yf = (Y + Bs, + 21,. y(L)u, = O(L)E/, with CY = p = 1, y ( L )  = I ,  and O( 
L)  as given in Tables 1, 2b.* The innovations { E / }  have  unit  variance. The 
process is modelled with the ADL model  corresponding  to an AR(2) 
model of the  errors. 

On each  sample,  the  residuals  are tested for  autocorrelation  up to  order e. 
l = { 1.2, 12) via an  LM test which is asymptotically x; under  the null of no 
autocorrelation. If the  approximation is adequate, then there  should be little 
evidence of residual  autocorrelation in these tests.  Table 3 gives the  mean 
values of the LM statistics. and  ranks  both these and  the  corresponding 
Hilbert and K-L-J measures of the  distance between the  true  process  and 

*Results on samples of size 1000 are very similar and are therefore not reported. 
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Table 3a. LM tests for residual  autocorrelation:  MA  errors modelled by 
AR  approximation; T = 200 

Case @I $2 e = 1  e=: !  e =  12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 

- 1.96 
- 1.80 
-1.01 
- 1.40 

1 .oo 
0.90 

-0.50 
- 1.40 

0.10 
0.40 

-0.70 
0.020 

0.98 
0.90 
0.0 198 
0.70 
0.50 
0.20 

-0.30 
0.49 

-0.10 
-0.20 

0.20 
0.02 

31.64 
34.39 
12.73 
28.58 

3.882 
8.507 
7.529 

1.055 
4.308 
1.999 
1.026 

25.22 

51.36 
55.86 
21.12 
39.66 

5.555 
12.55 
13.57 
39.76 
2.138 
7.556 
3.106 
2.093 

95.95 
92.77 
46. I 1 
53.69 
20.03 
22.85 
31.30 
63.77 
12.31 
18.95 
13.14 
12.21 

approximating  model; since the  approximating  model is in every case 
AR(2).  the ranks by distance are in all cases based on the  distance to the 
nearest AR(2). 

Both  distance  measures  provide very good  a  priori  indicators of the 
degree to which residual  autocorrelation will  be detected; that is. they 
explain  the  variation in mean LM test statistics very well. The  Hilbert 
distance is especially good;  as the order of test increases to measure 

Table 3b. Cases  ranked by approximation  distance  and  LM test (rank of 
given case by: K-L-J distance.  Hilbert  distance,  LM  statistic); T = 200 

1 
- 3 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

- 1.96 
- 1.80 
-1.01 
- 1.40 

1 .oo 
0.90 

-0.50 
- 1.40 

0.10 
0.40 

-0.70 
0.020 

0.98 
0.90 
0.0 198 
0.70 
0.50 
0.20 

-0.30 
0.49 

-0.10 
-0.20 

0.20 
0.02 
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autocorrelations  up  to 12, the  match by ranks becomes virtually perfect for 
the  Hilbert  measure.  differing only i n  the  ranking of cases 5 and 6 (ranked 
7th  and  8th by thc  Hilbert  measure,  but 8th  and 7th by K-L-J and mean 
LM). These cases are extremely close, having  distances to  the nearest  AR(2) 
of 0.189 and 0.188 respectively. The first twelve lagged innovations  capture  a 
smaller part of the  total  variation  for process 5 than  for 6; k higher  than 
twelve is necessary in the LM test in order  to  reproduce exactly the  Hilbert 
distance  rankings. 

The use of ADL models to  capture  dynamics easily through LS regres- 
sion is commonplace,  and is a successful strategy in cases where the error 
dynamics  can be  well modeled by a  low-order AR. However, where there are 
MA  components with substantial  roots.  or  other  components  for which the 
PACF does  not  approach zero  quickly,  the  Hilbert  distance  from  the DGP 
of the  errors  to  the  AR  approximation implicitly used in the ADL specifica- 
tion is a reliable measure of the  adequacy of the implicit approximation. 
These  distances are  not sample-based measures. but  aids  to  understanding  a 
priori  the  features  of  a process that  make it relatively easy or difficult to 
approximate  with  a  model of a given order. 

4.3 Forecasting 

Consider  next  the  problem of forecasting  a time series process. which may 
have  a  moving  average component, using a  pure  autoregression.  In this case, 
a  measure of the  distance between a given process and  the nearest AR(p) will 
be useful insofar  as it gives an  a priori  indication of the degree to which 
mean  squared  error of the  forecast is increased by the use of the  AR  approx- 
imation in the place of a  model  containing  MA  parts.  The process to be 
forecast is a  stationary  process (y,}, with  a  Wold  representation which we 
can  write as 

]'/+I =f(Lk,+1 =f i (Lk,  +.fO&,,l (4.5) 

where e, = (E , .  E , - [ ,  . . . , E ~ } ' .  and  the ( E , )  are white noise. Given  a  sample  of 
data, we obtain implicitly an estimated lag polynomial.fi(L).'  The  one-step- 
ahead  forecast is generated by 

?:,+I I f  =.A v);, (4.6) 

where ff+ll, indicates  a  forecast  made at time I of  the f + 1 value of Y. The 
one-step-ahead  forecast  error is then 

"For example. if we fit  an AR model to the data..f(L.) represents  the  projection of the 
estimated AR polynomial onto  past  innovations. 
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Table  4 gives the  mean  squared errors of one-step-ahead  forecasts  made 
from AR(I),  AR(2),  and  AR(4) models of the  MA(2) processes listed in 
Table  2b,  again  for T = 200 and 5000 replications.  Once  again,  the  ordering 
given by distances of the  example processes to  the relevant AR approxima- 

Table 4a. MSEs of one-step-ahead  forecasts: MA processes modelled by 
AR  approximation: T = 200 

Case 4 (32 AR(1)  AR(2)  AR(4) 
~~ ~~ 

1 
2 

- 1.96 0.98 3.278 2.460 1.821 
- 1.80 0.90 2.792 2.058 1.476 

3 -1.01 0.0198 1.514 1.340 
4 - 1.40 0.70 1839 1.357 
5 1 .oo 0.50 1.268 1.077 
6  0.90 0.20 I .236 I .088 
7 -0.50 -0.30 1.261 1.141 
8 - 1.40 0.49 1.872 I .457 

219 
.098 
,065 
,039 
.08 1 
.177 

9 0. I O  -0.10 1.022 1.017 1.032 
10 0.40 -0.20 1.125 1.55 1.041 
11 -0.70 0.20 1.081 1.023 1.032 

Table 4b. Cases  ranked by approximation  distance  and  one-step MSE 
(rank of given case by: K-L-J distance,  Hilbert  distance, MSE); T = 200 

Case 61 82 AR(1)  AR(2)  AR(4) 

1 
- 3 

3 
4 
5 
6 
7 
8 
9 
10 
11 
19 

- 1.96 
- 1.80 
-1.01 
- 1.40 

1 .oo 
0.90 

-0.50 
- 1.40 

0.10 
0.40 

-0.70 
0.020 

0.98 
0.90 
0.0198 
0.70 
0.50 
0.20 

-0.30 
0.49 

-0.10 
-0.20 

0.20 
0.02 
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tion  matches very well the  ordering of the  estimated MSEs. In  the  AR(4) 
case,  the  distance and MSE rankings  differ  only by interchanging cases 4 
and 7, which have  distances to the  nearest  AR(4) of 0.128 and 0.139 respec- 
tively. Mean  squared  errors tend to be very close to unity,  the  correct value 
for  a  properly specified model,  for  approximation  distances of less than 0.1. 

Again,  both  distance measures  explain  the  results well. providing an a 
priori  understanding of the MA  or  ARMA parameter  values  that allow a 
good  approximation  to be made  with an  AR of given order.  The Hilbert 
distance seems again to have some  advantage. For the  AR(4) case. the 
Hilbert  ranking  differs  from  that of the  forecast  errors  only  for cases 4 
and 7 (ranked  6th  and  5th, respectively, rather  than 5th and  6th).  The K- 
L-J ranking is similar  to  that  of  the  Hilbert  distance,  but  makes an  addi- 
tional  interchange relative to  the  ranking of cases by forecast error, in cases 
2 and 3. 

4.4 Evaluation of Information Criteria 

Sample-based selection of appropriate lag length (or, more  generally,  model 
order) is often based on  information  criteria  such  as  those of Akaike, 
Schwarz, and  others: see [21] and [23] for recent reviews. In  the  context of 
problems  for which the DGP is a special case of more  general  estimated 
models, we can investigate these criteria by simulation,  preferring  those 
which tend  to yield lag lengths close to  the  optimal values. Where  the 
model is an  approximation, however. it  may be unclear  what  the best lag 
length is even in a  constructed  example, so that  evaluation of the  criteria  in 
cases such as  that of AR models, which are being used to approximate  more 
general processes, cannot proceed. 

However, using a  distance  measure  of  the  difference between DGP  and 
AR  approximation, we can  proceed as in Section 4.1 to  an answer to the 
question of what  the  optimal  approximating model order is, given a DGP 
and  sample size. From this i t  is possible  to  evaluate  the  information  criteria 
by examining  the  degree to which the  typical selected lag length  differs  from 
the  optimum.  This section  provides  a brief example of such an exercise, 
using the  AIC, BIC,  Schwarz, and  FPE criteria.* The exercise may be 
viewed as  an extension of the  application of Section 4.1, in that we now 
investigate  the  ability  of  a  posteriori,  sample-based  criteria  to  reproduce  the 
optimal  orders  obtained in that section. 

*For  this  linear regression problem  the criteria can  be reduced to  the following 
expressions in the  sample size, T.  number of autoregressive terms. k ,  and sum of 
squared residuals, 2’2 : AIC: In(<’</T) + 2k/T;  BIC: In(<’t/T) + k In(T)/T; 
Schwarz: In(<’</(T - k))  + k In( T ) / T :  FPE : (( T + k ) / (  T - k ) ) ( 2 ’ ; / (  T - k ) ) .  
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For the  data generation processes and  sample sizes in Section  4.1, we 
compute the  average  lag  lengths selected by each of these criteria,  in 2500 
simulated  samples. The results are recorded in Table 5, along with the 
optimal  approximating lag lengths  from  Figures 1-3. Where  the objective 
function is nearly flat near  the optimum lag length, we report  a  range of 
optimal  values  (e.g.. 8-10 for T = 1000 and 0 = 0.9). The set of lag lengths 
considered  ranged  from 1 to 20; with even larger  values  included,  averages 
for  the  AIC would rise slightly. 

The BIC and Schwarz  criteria, which are very similar and closely related, 
produce very good  results. The  AIC,  as  has been observed in contexts where 
approximation  and mis-specification play no role,  over-parameterizes dra- 
matically. The  FPE falls in between, over-parameterizing  consistently, but 
less substantially than  the  AIC. 

5. CONCLUDING REMARKS 

There  are  many circumstances in which it  is convenient  to  approximate an 
ARMA process by a  pure A R b )  process. But while the  technique is widely 
used, often implicitly, there  are relatively few results concerning  the  order of 
autoregression necessary to provide  a  good  approximation.  This paper 
addresses  the  question of the  quality of an approximation using measures 
of  the  distance between processes, primarily  the  Hilbert  distance. By mini- 
mizing this distance  from  a process to a class of processes, we are able  to 
find the closest process of given order in the  target class, and by incorporat- 
ing information  about  estimation of differing  approximate  models, we can 
find by simulation  the best approximating  model at a  particular  sample size. 
The results offer a  general contribution  to  understanding of the  relations 

Table 5. Estimated  optimal AR order vs. mean selected order,  various 
criteria 

Case  Optimal  Averaged selected order 

0 T AIC  BIC Schwarz FPE order 

0.1 200 I 12.1 1.14 1.06 3.47 
0. I 1000 1 10.1 1.05 1.02 2.89 
0.5 200 2-3 12.7 2.20 1.94 4.91 
0.5 1000 3 4  11.4 2.96 2.80 5.49 
0.9 200 4-5 16.2 5.98 5.09 11.1 
0.9 1000 8-1 0 17.8 9.91 9.16 15.8 
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between ARMA processes, of the  gains  available  from  more  elaborate  mod- 
eling, and of the use of autoregressive  approximations in various  applied 
problems  including  the  traditional  problem of choice of order. 
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1. INTRODUCTION 

Linear  dynamic  models  containing  a  one-period  lagged-dependent  variable 
and  an  arbitrary  number of fixed regressors,  termed as  ARX( 1) models, are 
used frequently in econometrics.  Often these models  arise in the  form of 
partial  adjustment or first-order  autoregressive  distributed lag models, or  an 
AR(1) model with an intercept,  linear  trend or seasonal  dummy  variables. 
Various  results  have been published on the  moments  and the  limiting and 
exact finite-sample distributional  properties  of  the least squares  estimator of 
the  autoregressive  parameter in AR(1) models with or  without exogenous 
information.  Some  contributions  to  this  area  are by Mann  and Wald (1943), 
Anderson (1959), Phillips (1977), Tanaka (1983), Grubb and  Symons (1987). 
Peters (1989), Kiviet and Phillips (1993), Kiviet et  al. (1995). Dufour  and 
Kiviet (1998), among  others. Zellner ( 1  971, Ch.7)  put  forward a Bayesian 
approach  to analyzing  dynamic regression models using a  vague  prior dis- 
tribution  assumption  for  the model’s parameters. Building on Zellner’s 
work, Broemeling (1985, Ch. 5 ) .  assumed  a  normal-gamma  prior  for  the 
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regression coefficients and precision of disturbances derived the  posterior 
density  functions of the model’s coefficients. 

The bulk  of  the research reported so far  has been conducted on the 
premise that  the  distribution of the model’s disturbances is normal,  though 
it is well recognized that such an  assumption is often  questionable  and  may 
lead to varying effects in a variety of situations. See. e.g., Kendall (1953), 
Mandelbrot (1963, 1967), Fama  (1969, Press (1968). and  Praetz (1972). As 
a  model  for  non-normality,  the  Gram-Charlier  or  the  Edgeworth series 
distribution  (ESD)  has received a  great  deal of attention  over  the  years. 
See the  work of Barton  and  Dennis (1952), Davis (1976). Kocherlakota 
and  Chinganda (1978), Balakrishnan  and  Kocherlakota (1985), Knight 
(1985, 1986). Peters (1989), Chaturvedi  et  al.  (1997a,b),  and  Hasegawa et 
al. (2000). Of particular relevance here are  the results of Peters (1989). who 
studied  the sensitivity of  the  least-squares  estimator of the  autoregressive 
coefficient in an  ARX( 1) model with disturbances  drawn  from  an  ESD,  and 
Chaturvedi  et  al. (1997a). who derived the  posterior  distributions and Bayes 
estimators  of  the regression coefficients in a  linear  model with a  non-normal 
error process  characterized by an  ESD. 

This  paper  considers Bayesian analysis  of  the ARX(1) model with 
Edgeworth series errors.  Under a diffuse prior, the  posterior  distribution 
of the model’s autoregressive coefficient is derived. The results are  obtained 
along  the lines suggested by Davis (1976) and  Knight (19S5) in some  earlier 
work. Numerical results are  then presented to demonstrate  the effects of the 
departure  from  normality of disturbances  on  the  posterior  distribution of 
the model’s autoregressive coefficient. It is found  that  the  posterior  distribu- 
tion is sensitive to  both  the skewness and  kurtosis  of  the  distribution  and  the 
increase in posterior risk of the Bayes estimator  from  erroneously  ignoring 
non-normality in the model’s error process is non-negligible. 

2. MODEL AND POSTERIOR  ANALYSIS 

Consider  the  stable  ARX( I )  model, 

I’ = py-1 + xg + I 1  (2.1) 

where .v = (1.1. y z ,  . . . , y ~ ) ’  is a T x 1 vector of observations  on  a  dependent 
variable, v-1 = cv0, y l ,  . . . , . Y ~ - ~ ) ‘  is the v vector lagged one  period, X is a 
full column-rank T x p matrix on p fixed regressors, p is a  scalar constant, B 
is a p x 1 vector of  fixed coefficients, and LI = ( u t ,  . . . , u T ) ’  is the T x 1 
vector of i.i.d.  disturbances  assumed  to follow an  ESD, Le., u ,  - ESD 
(0, t- ), t = I .  . . . . T .  Denote the  rth  cumulant  of  the  distribution by k, ( r  = 
1,2.  . . .)  so that k3 and k4 measure  the  distribution’s skewness and the 

I 
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kurtosis, respectively. Throughout  the analysis it is assumed that  the  cumu- 
lants of order  greater  than  four  are negligible. 

Now,  write  the  distribution of u as 

where -7 = (zI .  z2 .  . . . , zT) ’ ,  the z,, t = 1, . . . . T ,  are  i.i.d.  pseudo variates 
whose  mean and variance are  zero  and higher cumulants  are  the  same  as 
2 1 ,  and $ ~ ~ ( z / l z .  71T) is the  p.d.f. of a  normal  distribution with mean  vector  z 
and precision matrix T I T  (see Davis 1976). For the specification of  the prior 
of the  parameters it is assumed  that IpI < 1 holds with certainty,  but within 
the region -1 < p < 1 the  prior  for  the  parameters is noninformative.  Thus 
it seems reasonable to write  the  prior  p.d.f. as 

Further,  conditioning  on  the initial  value y o ,  it follows that, 

(2.4) 

is the likelihood function  for  the vector of (p ,  @. r ) ,  

Theorem 2.1. Given  the  stated  assumptions,  the  marginal  posterior  p.d.f. 
of p is given by 

(2 .5)  

where 
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x,' is the rth row of X '  and 

j(P) = (X 'X)"X ' ( J  - Py-1) 

Proof. see Appendix. 

Obviously,  under  normal errors (i.e., k3 = k4 = O),equation (2.5) reduces 
to 

(2.6) 

The following  corollary gives the  expression,  under a quadratic loss struc- 
ture, for  the Bayes estimator, which is the  mean of the  posterior  distribution 
of p. 

Corollary 2.1. Under  the  stated  assumptions,  the Bayes estimator of p is 
given by 

(2.7) 

where  the  expressions  for 6; are the  same as  those  oft,.., except that the In,, 
are replaced by V i, j = 0,  1,2,  . . . 

Proof. see Appendix. 

Substituting k3 = k4 = 0 in (2.7) yields the 
Bayes estimator of p when the  distribution of 

c=;+- I 0 
1~100 

following  expression  for  the 
the disturbances is normal: 

(2.8) 

3. NUMERICAL RESULTS 

To gain further  insights of the effects of non-normality  on  the  posterior  p.d.f 
of p. we numerically  evaluate (2.5) and (2.6)  for a range of chosen values of 
parameters.  The  model  on which the  numerical exercises are based is 

1 3 ,  = -0.5~,-1 + 1.0 + 2.2~1,  - 1.3~2,  + u,; t = 1 , .  . . ,20 (3.1) 

where .xI and x2 are N ( 0 ,  1) random variables. The vector of non-normal 
disturbances 11, is obtained  through  the  transformation 
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cp = s i n h ( q )  

where z - N(0,  1) andf;  andfi  are combined to determine  the skewness and 
the  spread of the  distribution (see Johnson 1949 and Srivastava and 
Maekawa 1995). Now, i t  can be  shown  that 

E(cp) = -w”’ sinh(S2) (3.3) 

where w = expCf;‘) and C2 =L/.f;. In face of (3.3), it seems reasonable  to 
generate using the  formula 

I I  = y~ + w’I2 sinh(f2) = cp + exp(l/(2j:)) sinh(R) (3.4) 

Note also  that 

E(u) = 0 = 1 ) I I  (3.5) 

1 
2 

E(u’) = - (w - l)[wCOSh(2R) + 11 = 1712 (3.6) 

E ( d )  = - - ~ ” ~ ( w  - l)’[w(w + 2) sinh(3R) + 3 sinhin)] = 1 7 7 ~  
1 
4 (3.7) 

and 
1 

E(u4) = - (w - l)’[w’(w‘ + 2w3 + 3w‘ - 3) cosh(4R) 8 

+4w2((0 + 2)cosh(2R) + 3(20 + l)]. 
= i l l4 

Hence we have, 

k3 = 1123 

and 

k4 = 1114 - 3111$ (3.10) 

Also,  the  ranges of k3 and k4 are  chosen  such that ki < 0.5 and 0 < k4 < 
2.4 to  ensure  that the ESD is a well-behaved density  function.  Table 1 gives 
a glance of the  relationship between c f i  ,fi) and (k3. .k4). 

All of  the  computations have been undertaken  using  MATHEMATICA, 
version 4. The  posterior densities  corresponding  to  some selected values of 
k3 and kq are  graphed in Figures 1-3, alongside  their normal  counterpart 
when k3 = k4 = 0 is erroneously  assumed. That is, the  posterior p.d.f.s  cor- 
responding to k3 = k4 = 0 are calculated on the basis of the  equation 
described by (2.6), when the  disturbances  are  in  fact  generated by an ESD 
with the values of k3 and k4 as shown in the figures. The  diagrams reflect 
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Table 1. Relationship  between vi, fi) and ( k 3 ,  k4) 

0.2 1.2  2.2 

-0.7 f ,  = 198.47804 
,fi = 38.98192 

-0.25 f1 = 10.24461 
fi = 5.12042 

0 fl = 0.00000 
f i  = 1.94322 

0.25 f ,  = -10.24461 

0.7 f I  -198.47080 
f 2  = 5.12042 

f 2  = 38.98192 

fl = 4.46274 
f2 = 2.93507 
f1 = 0.32645 
f2 = 1.62127 
f 1  = 0.00000 
fi 1 1.58147 
fl = -0.32645 
.fi 1.621277 
.fi 1 -4.46274 
fi 2.93507 

fl = 0.95396 
f2 = 1.70850 
f 1  = 0.19130 
fz = 1.50024 
fl = 0.00000 
f2 = 1.48531 
f1 = -0.19130 
f2 zz 1.50024 
.fl = -0.95396 
f2 1 1.70850 

that  ignoring  non-normality when  the latter is present has  the effect of 
increasing the  posterior risk of the  Bayes estimator of p, and it becomes 
more  pronounced  as Ik31 and k4 increase. The-ESD based  posterior  p.d.f.s 
follow basically the  same  shape  as  their  normal  counterparts,  but  are  more 
centered around the posterior  mean  and  thus  have  lower  variance. All of the 

1 

Figure 1. Posterior  density  for k3 = 0.0 and k4 = 2.2. 
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0 55 0 53 0 51 P 0 4 9  0 47 0 45 

Figure 2. Posterior  density  function  for k3 = -0.25 and k4 = 2.2. 

posterior  p.d.f.s  have  the  characteristic  of  a slight asymmetry  around  the 
mean. Both  the normal  and  ESD-based  posterior  p.d.f.s  tend  to  have  a mild 
increase in values  when p + f I ,  reflecting the effect of the prior  p.d.f. 
described in (2.3) on  the  posterior  p.d.f. See Figure 4, which depicts the 
behaviour  of  the  ESD-based  posterior  p.d.f.  when p .+ -1. 

U 

b 5 
0 

4.53 0.51 P 449 4.47 045 

Figure 3. Posterior  density  functions  for k3 = 0.7 and k4 = 2.2. 
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Figure 4. Posterior  density  functions  for k3 = 0.0 and kd = 2.2. 

For  an exact assessment of  the effect of ignoring  non-normality  on  the 
posterior risk, consider  the following: 

Corollary 3.1. Under  the  stated  assumptions,  the increase in the  posterior 
risk of b when non-normality is erroneously  ignored is given by 

E[(p  - p y ]  - E [ ( p  - $1 = ( b  - j - ~ 

" ' l o r  P'OO 
(3.11) 

Proof. see Appendix. 

Equation (3.11) confirms  that  ignoring  non-normality when i t  is present 
always  results in an increase in the  posterior risk of the Bayes estimator of 
p. In  the  case  that k3 = k 4  = 0, j = fJ  + 1 1 2 ] ~ / / 1 7 0 0  = fJ and (3. I I )  reduces to 
zero.  In  Table 2, in order  to gain  further  insights, we calculate. on the basis of 
model (3. I ) ,  the  percentage increase in posterior risk should  normality  of  the 

Table 2. Percentage  increase in posterior risk 

A-3 k4 Oh increase 

0 2.2 1.4742 
-0.25 2.2 0.01 58 

0.25 _.I 7 7  5.6104 
-0.7 -.- 7 3  17.3373 
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model's  disturbances be mistakenly  assumed  when  the  disturbances  are  gen- 
erated by an  ESD with  the given values  of k3 and k4. 

It is interesting  to  note  that  the  percentage  increase in posterior risk for 
wrongly  assuming  normality is greater  when  the  underlying ESD is char- 
acterized by k3 = 0 and k4 = 2.2  than when k3 = -0.25 and k4 = 2.2. This 
can be explained by observing  that,  for  model (3. l), the  posterior  mean  of p 
for k3 = 0 and k4 = 2.2 is located  to  the right of that  corresponding  to  the 
assumption  of  normality;  but  as k3 decreases  from  zero, the posterior  mean 
shifts to  the left. Note  also  that  equation (3.1 1) is equivalent  to (; - p)', 
which  decreases as j lies closer to 5. However, as k3 decreases further  from 
zero. the difference between the two  posterior  means increases and hence the 
deviation in  risk also increases. 

4. CONCLUDING REMARKS 

The  literature  on  dynamic  models  involving  lagged  dependent variables has 
paid  only  scant attention  to models  with non-normal  error  terms. Even 
scarcer is the analysis of  the  problem  from  a  Bayesian perspective. This 
paper derives and  evaluates  the  posterior  density  function  of the autoregres- 
sive coefficient of a  stationary ARX( 1) model  based on  a diffuse prior  on  the 
model's parameters  and  under the assumption of an  Edgeworth series dis- 
tribution  on the model's  disturbances.  It is demonstrated  that unwittingly 
ignoring  non-normality  can  lead  to  an increase in the  posterior risk and 
hence  a  widening of the  highest  posterior  density  interval. A difficulty 
does arise with the numerical computation of the posterior  p.d.f.,  which is 
prohibitively complicated in the present  context.  It is rightly remarked  that  a 
Markov  chain  Monte  Carlo  algorithm such as  Gibbs  sampling  or the 
Hastings-Metropolis  algorithm as  a  means for posterior  simulation  would 
be more  preferable (see, for example,  Geweke 1999 for  a  description of the 
techniques).  In  practice k3 and k4 are  unknown,  but Bayes estimators of 
these quantities  can  be  obtained  along  the lines of Chaturvedi  et  al. (1997a). 
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APPENDIX 
Proof  of Theorem 2.1 

Combining  the likelihood  function (2.4) and the prior  distribution (2.3), and 
ignoring  cumulants of order  greater  than  four, we obtain the posterior 
distribution  for (B,  p ,  t )  as 

where 

r T 7 
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where 

B(p)  = ( X ’ X ) ” X ’ ( J  - py-1) 

Hence the posterior  p.d.f.  of (B, p )  can be written as 

Thus. 

Now,  to work out  the  normalizing  constant C ,  note  that 

where 

denotes  the density  function  of  a  normal  distribution  with  mean  vector B(p)  
and precision  matrix r X ’ X .  Now, it can be  verified that 
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I 

and 
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Utilizing these integrals, we have, 

Substituting (A.5) in  (A.4), and after  some  manipulations, we obtain 

437 

Substituting  the  value  of C in (A.3) leads to the  expression for the joint 
posterior  p.d.f.  of ( B ,  p). 

Now, to derive  the  marginal  posterior p.d.f. of p. note  that 

Using (A.5). we obtain 
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which,  after  substituting  the value of  the  normalizing constant C from (A.6). 
leads to the  required  result (2.5). 

Proof  of  Corollary 2.1 

To obtain  the Bayes estimator  under  a  quadratic loss structure.  observe 
that 

f i  E ( p )  = + E ( p  - 3) 

Proceeding along the lines for the  derivation of C in  (A.6), it can be shown 
that, 

(A. 10) 
Substituting (A. 10) and  the expression of C in (A.9), the  required  expression 
of j is obtained. 

Proof  of  Corollary 3.1 

Note  that, 

E ( p  - ;)? = E[ (p  - 3 + 3 - ;):I 
= E(p - p y + ( p  - ;)?+2(3 - ;)E@ - p )  
= E(p - F ) 2  - (5  - j)' 

(A. 1 I )  
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and expectation is taken  with respect to the  posterior  distribution of p .  
Also. 

where ,$* are  obtained by replacing I I I ~  by 1?7;+2,., in the expression for &, and 

(A. 13) 

(A. 14) 

(A. 15) 
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1. INTRODUCTION 

The keen interest in modeling  volatility  over an extended  period  has largely 
been motivated by the  importance of risk considerations in economic and 
financial markets.  This  area of research  has resulted in the  develop~nent of 
several types of volatility models.  Without doubt, the  Generalized 
Autoregressive  Conditional  Heteroskedasticity (GARCH) model,  initiated 
by Engle (1982) and generalized by Bollerslev (1986). is the  most popular 
and successful model for analyzing  time-varying  volatility, due  to its relative 
ease of interpretation  and  estimation. Recently. extensions to the GARCH 
model  have been developed to  accommodate  additional  features of high- 
frequency financial data, namely the  Glosten,  Jagannathan.  and  Runkle 
(1993) (GJR) model and the  Exponential GARCH  (EGARCH) model of 
Nelson (1990a). These  volatility  models explicitly accommodate  observed 
asymmetric effects in financial time series, which were first noted by Black 
(1976). In essence, large  negative  shocks or innovations result in  higher 
observed volatility than positive  shocks of equal  magnitude.  Both  the 
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GJR  and  EGARCH models  are  regarded as being able to accommodate 
such  empirical  regularities. 

However. Rabemanjara  and  Zakoian (1993) reported  that, while larse 
negative shocks  generate higher volatility  than  large positive shocks,  the 
reverse holds for small  shocks. As a  result,  the  resultant  asymmetric  beha- 
vior of volatility  depends heavily on  the size of the news impact.  This  has led 
to  the development of Fornari  and Mele's (1997) Voltility-Switching 
GARCH  (VS-GARCH) model, which captures  the reversion of asymmetric 
reactions to news. Fornari  and Mele observed  that VS-GARCH  outper- 
formed GJR for  the  stock indices of six countries,  on  the  basis of in-sample 
likelihood  tests and Engle and Ng's (1993) sign-bias  tests.  These  results 
notwithstanding,  the  conclusions derived from  such single estimation win- 
dows,  albeit for six stock  indices, need to be interpreted with caution  as  the 
performance of volatility  models can be highly sensitive to the  choice of 
estimation  period.  Moreover,  the  failure  to  satisfy  appropriate  regularity 
conditions  can yield inferences which are invalid.  Although inferences are 
crucial in reaching Fornari  and Mele's (1997) conclusions. no regularity 
conditions seem yet to have been established for the VS-GARCH model. 

The  purpose of this  paper is to analyze recursive estimates of the 
GARCH  and  GJR models  over the period January 1994 to December 
1997. beginning  with  a  sample  period of one  year.  It is clear that  the sample 
period includes extreme  observations  generated  during  the  Asian  financial 
crisis. 

The  GJR model is preferred to  EGARCH for  the  purpose of accommo- 
dating asymmetric  conditional  variance because the  regularity  conditions 
have been derived recently for  GJR in Ling and McAleer (1999a). These 
conditions  for the  strict  stationarity  of  the  model  and  the existence of  its 
moments  are simple to check and  should  prove useful in practice. 

We systematically  add  one  day to  the initial  window  sample  until i t  
extends to December 1997. thereby  obtaining  estimates of the  following: 

( I )  GARCH parameters  and their  corresponding  t-ratios: 
(2) GJR parameters  and their  corresponding  t-ratios; 
(3) GARCH second and  fourth moment  regularity  conditions: 
(4) GJR second and  fourth  moment regularity  conditions. 

The  derivation  of the  regularity  conditions  for  the GJR model is given in 
Ling and  McAleer(l999a).  where simple and practical  conditions  for  the 
existence of  the  second and  fourth  moments  are presented. The empirical 
results  obtained  here  have  not previously been analyzed.  Henceforth,  the 
validity of inferences can be interpreted in the GJR model. 

GARCH-type models generally require  large  sample sizes to maximize 
the  likelihood  function efficiently which. in turn,  can yield unstable  para- 



Optimal Window Size for Modeling  Volatility 445 

meter  estimates.  Through  the use of recursive estimation, we can  derive  the 
smallest range of robust  window  samples, which are subsequently used for a 
recursive analysis of volatility.  Pagan and Schwert (1990) underscored  the 
implications of the role of window sizes in modeling  volatility. 
Consequently,  the recursive plots of the  parameter  estimates  and  their  cor- 
responding  t-ratios  should  provide  some useful insights into  the  determina- 
tion  of an  optimal window size for  modeling  volatility. 

The plan of the  paper is as follows.  In  Section  2  the  symmetric and 
asymmetric GARCH (1, l )  models are presented, and their  structural  and 
statistical  properties are discussed. The empirical  results are presented in 
Section 3. Some  concluding  remarks are given in Section 4. 

2. SYMMETRIC  AND  ASYMMETRIC GARCH MODELS 

Consider  a  first-order  autoregressive  mean  returns equation, where R,  is the 
return  on the  stock index: 

R, = $0 + $oR,-1 + E ,  (1) 

6 ,  = ),,A, q - IID(0, 1) ( 2 )  

in which e ,  is assumed  to follow a GARCH ( I ,  1) process; that is, the con- 
ditional  distribution of E , ,  given the  information set at time t ,  is specified as 

h ,  = w + CY& + p/1,-, ( 3 )  

where (0 > 0, (Y ? 0, and B 2 0. When B = 0 in (3), the GARCH (1, l )  model 
reduces to  the first-order ARCH model,  ARCH ( I ) .  Bollerslev (1986) 
showed  that  the necessary and sufficient condition  for  the  second-order 
stationarity of the GARCH (1 , l )  model is 

a + B <  1 (4) 

Nelson (1990b) obtained  the necessary and sufficient condition  for strict 
stationarity  and ergodicity as 

E(In((Yq; + B ) )  0 ( 5 )  

which allows CY + B to exceed 1, in which case EE: = 00. Assuming that  the 
GARCH process starts infinitely far in the  past with finite 2~1th moment,  as 
in Engle (198?), Bollerslev (1986) provided  the necessary and sufficient con- 
dition  for  the existence of the 2mth moment of the GARCH  (1,l) model. 
Without  making such a  restrictive  assumption,  Ling (1999) showed that a 
sufficient condition  for  the existence of the 2~1 th  moment  of  the GARCH 
( 1 , l )  model is 
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p[E(A?)] < 1 

where  the  matrix  A is a  function of a, B. and 77,. p(A) = max {eigenvalues of 
A), A@”’ = A @ A 18 K @ A ( H I  factors), and @ is the  Kronecker  product. 
(Note  that  condition (4) is a special case of (6) when 117 = 1.) Ling and 
McAleer (1999b) showed that  condition  (6) is also necessary for  the exis- 
tence of the 2nzth moment. 

Defining 6 = (0, a,  B)’ ,  maximum  likelihood  estimation can be used to 
estimate 6. Given  observations e, .  t = 1. . . . . 1 7 .  the  conditional log-likeli- 
hood  can be written as 

11 

L(6) = 4 
1-1  (7) 

in which k + t is treated  as a function of e , .  Let 6 E A, a  compact  subset of 
R‘, and define s  ̂= argAma?tseA L(6). As  the  conditional  error v, is not 
assumed to be normal, 6 is called the  quasi-maximum  likelihood  estimator 
(QMLE). Lee and  Hansen (1994) and  Lumsdaine (1996) proved  that  the 
QMLE is consistent and asymptotically  nornlal  under  the  condition given in 
(5). However, Lee and  Hansen (1994) required all the  conditional  expecta- 
tions of ,7yK to be finite for K > 0, while Lumsdaine (1996) required that 
E$ < 0 (that is, for 111 = 16  in ( 5 ) ) ,  both of which are  strong  conditions. 
Ling and Li (1998) proved that the local QMLE is consistent and  asympto- 
tically normal  under  fourth-order  stationarity. Ling and  McAleer (1996~) 
proved  the  consistency of the  global QMLE under  only  the  second  moment 
condition,  and derived the  asymptotic  normality of the  global QMLE under 
the  6th  moment  condition. 

The asymmetric GJR ( I  , I )  process of Glosten et al. (1993) specifies the 
conditional  variance h,  as 

I t ,  = w + (YE;- I + yD,- I 1 + Bit,- 1 (8) 

where y 2 0, and = 1 when < 0 and Dl- ,  = 0 when E , - ,  2 0. Thus, 
good news (or shocks) with cl > 0, and bad news with E ,  < 0, have different 
impacts  on  the  conditional variance:  good news has  an impact of a, while 
bad news has an  impact  of (Y + y.  Consequently,  the GJR model in (8) seeks 
to  accommodate  the stylized fact of observed asymmetric/leverage effects in 
financial  markets. 

Both  the GARCH  and  GJR models are estimated by maximizing the log- 
likelihood  function,  assuming that )I, is conditionally  normally  distributed. 
However.  financial time series often display  non-normality.  When 17, is not 
normal,  the  QMLE is not efficient; that is, its  asymptotic  covariance  matrix 
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is not  minimal in the class of asymptotically  normal  estimators.  In order  to 
obtain  an efficient estimator  it is necessary to  know,  or  to be  able to esti- 
mate.  the  density  function of ? I ,  an  to use an adaptive  estimation  procedure. 
Drost  and Klaasen (1997) investigated adaptive  estimation of the GARCH 
(1,l) model. It is possible that  non-normality is caused by the presence of 
extreme  observations  and/or outliers.  Thus,  the Bollerslev and  Wooldridge 
(1992) procedure is  used to  calculate  robust  r-ratios  for  purposes of valid 
inferences. Although  regularity  conditions  for  the GJR model  have recently 
been established by Ling and McAleer (1999a), it has  not yet been shown 
whether they are necessary and/or sufficient for consistency and  asymptotic 
normality. 

3. EMPIRICAL  RESULTS 

The  data sets used are  obtained  from  Datastream,  and relate to the Hong 
Kong Seng  index,  Nikkei 225 index, and  Standard  and Poor’s  composite 500 
(SPSOO) index.  Figures  l(a-c)  plot  the Hang Seng. Nikkei 225, and SP500 
close-to-close, daily index  returns, respectively. The results are presented  for 
GARCH, followed by those  for GJR.  The  Jarque  and Bera (1980) Lagrange 
multiplier  statistics rejects normality  for all three index returns, which may 
subsequently yield non-normality  for  the  conditional  errors.  Such  non-nor- 
mality may be caused.  among  other  factors, by the presence of extreme 
observations. 

The Asian financial crisis in 1997 had  a  greater  impact  on  the  Hang  Seng 
index (HSI) and  Standard  and Poor’s 500 (SPSOO) than  on  the Nikkei  index 
(NI). However,  the  reversions  to  the  mean of volatility seem to be immediate 
in all three  stock  markets, which implies relatively short-lived, or non-per- 
sistent,  shocks. The persistence of shocks to volatility  can  be  approximated 
by 01 + /I for  the GARCH model.  Nelson (1990a) calculated  the half-life 
persistence of shocks to volatility, which essentially converts  the  parameter 
,!I into  the  corresponding  number of days. The persistence of shocks  to 
volatility after  a large negative shock is usually short lived (see. for  example, 
Engle an  Mustafa 1992, Schwert 1990, and  Pagan  an Schwert 1990). Such 
findings of persistence highlight  the  importance of conditional  variance  for 
the financial management of long-term risk issues. However,  measures of 
persistence from  conditional  variance  models have typically been unable to 
identify the  origin of the  shock.  Consequently,  the persistence of  a  shock 
may be masked,  or measured  spuriously  from GARCH-type models. 

Figures 3 and 3 reveal some  interesting  patterns  from  the  estimated 01 

(ARCH) and ,!I (GARCH) parameters  for  the  three  stock indices. Estimates 
of 01 and /I tend  to move in opposite  directions, so that when the  estimate of 
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Figure 1. (a) Hang Seng index returns  for  January 1994 to December 1997. 
(b) Nikkei 325 index returns  for  January 1994 to  December 1997. (c) SP500 
index returns  for  January 1994 to  December 1997. 
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Figure 2. (a) Recursive  plot  of GARCH-2  for the  Hang Seng  index, (b) 
Recursive  plot  of GARCH-2  for the  Nikkei 225 index, (c) Recursive  plot  of 
GARCH-15 for  the SP500 index. 

CY is  high the  corresponding  estimate of  is low, and vice-versa. The  main 
differences for the  three  stock  indices reside in the first and  third  quartiles of 
the  plots,  where  the  estimates  of (Y for HSI and SP500 are  much smaller than 
those  for  the N1. Moreover,  the  estimated CY for the SP500 exhibit  volatile 
movements in the first quartile.  The estimated (Y for  GARCH (1, l )  reflect the 
level of conditional  kurtosis. in the sense that  larger  (smaller)  values  of CY 
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Figure 3. (a)  Recursive  plot of GARCH-b for  the  Hang Seng index,  (b) 
Recursive  plot of GARCH-b  for the  Nikkei 25 index, (c) Recursive plot of 
GARCH-p  for the  SP500  index. 

reflect higher  (lower)  conditional  kurtosis.  Figures 3(a-c) imply that  the 
unconditional  returns  distribution  for NI exhibits significantly higher  kur- 
tosis than those  for  the HSI and SPjOO. This  outcome  could be due to the 
presence of extreme  observations. which increases  the value of the  estimated 
CY, and  the  conditional  kurtosis.  Note  that all three  stock indices display 
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leptokurtic  unconditional  distributions, which render inappropriate the 
assumption of conditional  normal  errors. 

The estimated B for NI  and SPSOO are initially much  lower  than  those for 
the HSI. Interestingly,  when we compare  Figures 2(a*) with 3(a4). the 
estimated (Y and B for  the  stock indices tend  toward a similar  range when 
the  estimation  window is extended  from  three to  four years,  that is, the  third 
to  fourth  quartile. This  strongly suggests that  the  optimum window size is 
from  three to four  years, as the recursive plots reveal significant stability in 
the  estimated  parameters for these periods. 

Figures 4(a4)  reveal that the  robust  t-ratios  for  the  three  indices  increase 
as the  estimation  window size is increased. In addition,  the  robust  t-ratios 
for  the  estimated (Y are highly significant in the  fourth  quartile, which indi- 
cates significant ARCH effects when the  estimation  window size is from 
three to four years. Figures 5(a*) display  similar  movements  for  the  robust 
t-ratios of the  estimated p for  the  three indices. Moreover,  the  estimated B 
are highly significant in all periods.  Consequently,  the  fourth  quartile 
strongly suggests that the GARCH model adequately  describes  the  in-sam- 
ple volatility.  Together with the  earlier result of  stable ARCH parameters 
present in the  fourth  quartile,  the  optimum  estimation  window size is from 
three  to  four  years  for daily data. 

In order to establish  a valid argument  for  the  optimal window size, it is 
imperative to investigate  the  regularity  conditions  for  the GARCH model. 
Figures  6(a-c) and  7(a-c) present  the  second  and  fourth  moment  regularity 
conditions, respectively. The necessary and sufficient condition  for  second- 
order  stationarity is given in equation (4). From Figures  6(a) and 6(c), the 
GARCH processes for  the  HSI  and SP500 display  satisfactory recursive 
second  moment  conditions throughout  the  entire  period.  On  the  other 
hand,  the second  moment  condition is violated  once in the first quartile 
for  NI,  and the  conditional  variance seems to be integrated in one period 
during  the first quartile.  This class of models is referred to as IGARCH, 
which implies that  information at a  particular  point in time remains  impor- 
tant  for forecasts of conditional  variance  for all horizons.  Figure  6(b) for the 
NI, also  exhibits  satisfactory  second  moment  regularity  conditions  for  the 
fourth  quartile. 

The  fourth moment  regularity  condition for  normal  errors is given by 

(a + B)’ + 2 2  < 1 (9) 

Surprisingly.  Figure 7(a) reveals the  fourth  moment  condition being violated 
only in the  fourth  quartile  for  the  HSI.  On  the  other  hand, in Figure  7(b)  the 
fourth  moment  condition is violated only in the first quartile  for  the NI. 
Figure 7(c) indicates  a  satisfactory  fourth  moment  condition  for SP.500. with 
the  exception of some  observations in the  fourth  quartile.  This result is due 
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Figure 1. (a) Recursive  GARCH-di robust  t-ratios  for the Hang Seng 
index, (b) Recursive  GARCH-ci.  robust r-ratios for  the  Nikkei 225 index, 
(c)  Recursive  GARCH-di  robust  t-ratios for the SP500 index. 

largely to the  presence  of  extreme  observations during  the Asian financial 
crisis in October 1997. Moreover, with the exception  of the HSI. there  seems 
to be stability in the fourth  moment  condition in the fourth  quartile, which 
points to a  robust  window size. 
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Figure 5. (a) Recursive GARCH-j  robust  r-ratios  for  the Hang Seng 
index, (b) Recursive GARCH- j  robust  t-ratios  for  the  Nikkei 225 index, 
(c) Recursive GARCH-j  robust  t-ratios  for  the SP500 index. 

GARCH (1.1) seems to  detect  in-sample  volatility well, especially when 
the  estimation  window size is from  three to four  years  for daily observations. 
This raises the  interesting  question of asymmetry and  the  appropriate vola- 
tility model. in particular,  a  choice between GARCH  and  GJR.  Note  that 
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Figure 6. (a) Recursive GARCH second  moments  for  the  Hang  Seng 
index, (b) Recursive GARCH second  moments  for  the  Nikkei 325 index, 
(c) Recursive GARCH second  moments  for  the SP500 index. 

the symmetric GARCH model is nested within the  asymmetric GJR model, 
which is preferred when the QMLE of y is significant in (8). Moreover, a 
significant estimate of y implies that  asymmetric effects are  present within 
the  sample  period.  Figures 8(a<), 9(a+), and IO(a-c) present  the  estimates 
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Figure 7. (a) Recursive GARCH  fourth  moments for  the Hang Seng  index, 
(b) Recursive GARCH  fourth  moments  for the  Nikkei 225 index, (c) 
Recursive GARCH  fourth  moments  for the SP500 index. 

of the a. p ,  and y parameters of GJR for  the HSI, NI, and SP500, respec- 
tively. 

Within  the GJR formulation.  asymmetry is detected by the  estimated y 
parameter in Figures 10(a<), which typically yields smaller  estimates of a. In 
fact,  the  estimates of (Y for  the HSI are all negative i n  the first and  last 
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Figure 8. (a) Recursive G J R 4  for  the Hang Seng index. (b) Recursive 
GJR-2 for  the  Nikkei 225 index, (c) Recursive GJR-2 for  the SP500 index. 

quartiles, while the NI has  negative  estimates of cy only in the  fourth  quartile. 
Importantly, the  estimates of a! tend to move in parallel when the  estimation 
window is extended to  the  fourth  quartile  for all three indices. The estimates 
of p in GJR in Figures 9( l-c) display  similar recursive patterns  to  those of p 
in GARCH: (i) the  estimates of p tend to move in opposite  directions to their 
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Figure 9. (a) Recursive GJR-fi  for  the  Hang Sengn index, (b) Recursive 
G J R - j  for  the Nikkei 225 index. (c) Recursive GJR-,!I for  the SP500 index. 

estimated a counterparts; (ii) the  movements in the  estimates of in GJR  are 
stable  throughout  the  fourth  quartile; (iii) the  estimates of ,!I exhibit less 
volatility as  compared with their GARCH  counterparts,  and move almost 
in parallel  for all three indices in the  fourth  quartile;  and (iv) the  financial 
crisis in October 1997 does  not influence parameter  stability  during  the 
fourth  quartile. Hence,  there exists a robust  estimation  window size from 
three  to  four years, with daily data in the case of GJR. 
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Figure 10. (a) Recursive GJR-y for  the Hang Seng index, (b) Recursive 
GJR-?  for  the Nikkei 225 index, (c) Recursive GJR-7 for  the SP500 index. 

The estimated y of GJR move closely with respect to  their ct counterparts, 
with the  former  having  a  greater  magnitude  due  to  the presence of extreme 
negative  observations.  This is more  apparent  for the NI than  for  the HSI. As 
in the  previous  analysis of estimated coefficients, the  estimated y exhibit 
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stable and parallel movements in all three  stock indices when the  estimation 
window is extended to  the  fourth  quartile. 

Figures 1 l(a-c) reveal the  robust  t-ratios  for  the  estimated CY to be nega- 
tive and significant for  the first quartile  for  the  HSI.  Interestingly.  the t- 
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Figure 11. (a) Recursive GJR-6 robust  t-ratios  for  the  Hang  Seng  index, 
(b) Recursive GJR-6 robust  t-ratios  for  the  Nikkei 225 index, (c) Recursive 
GJR-6 robust  t-ratios  for  the SPSOO index. 
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ratios  for all three indices are generally not significant in the  fourth  quartile, 
which suggests  the  presence of parameter stability as well as asymmetry. 

The recursive plots of the  robust  t-ratios  for  the  estimated B in Figures 
12(a-c) are similar  to  those  from  the GARCH model.  Movements of the r- 
ratios  for GJR exhibit  a significant positive  trend  for  the NI  and SP500, 
while the HSI  has a  similar  trend, but with a sharp  drop in December 1995. 
In  particular,  the  r-ratios  have  similar  trends in the  fourth  quartile. 

In Figures 13(a-c), there exists a strong presence of asymmetry in the 
HSI,  apart  from the  second  quartile. On  the  other  hand.  the NI displays 
considerably  greater  volatility  in  its  asymmetric effect, as  shown by its fluc- 
tuating  t-ratios.  However,  the  t-ratios for  the estimated y seem to be posi- 
tively tended as the  estimation  window size is increased. In particular,  the 
fourth  quartile  t-ratios  are highly significant for  both  the  HSI  and  the  NI. 
The  t-ratios  are significant virtually throughout the  sample  for  SP500. 
Consequently,  asymmetry  and leverage effects are detected when the  estima- 
tion  window size is from  three to  four years of daily data.  Moreover, the 
significant estimates of y suggest that the  in-sample  volatility  for  the fourth 
quartile is described by GJR rather  than  GARCH. 

It is important  to  note  that even the  robust t-ratios can be quite volatile 
throughout the  estimation  period, so that  the significance of the GJR  or the 
GARCH model can hinge on  the inclusion or exclusion of a  particular 
observation.  However,  as  noted  above,  such oversemitiw characteristics of 
GARCH-type models  can be dampened by extending  the  estimation win- 
dow  from  three  to  four  years of daily observations, so that  a significant 
model  of  in-sample volatility can be determined.  It is also important  to 
check whether  the  regularity  conditions of the  model are satisfied. Figures 
14(a-c) and 15(a<) present  the  second and  fourth  moment regularity  con- 
ditions  for GJR, respectively. 

The second  moment  regularity  condition  for GJR is given in Ling and 
McAleer (1999a) as 

which reduces to  condition (4) in the  absence of asymmetry ( y  = 0). A 
comparison of (4) and (10) makes  clear that the  admissible region for 
(a,  #I) for second-order  stationarity  of GJR is smaller than  for  GARCH 
because  the  asymmetry  increases  the  uncertainty in GJR. It is apparent 
from  Figures 14(a) and 14(c) that  the second  moment  condition of GJR 
for  the  HSI  and SP500 are satisfied for all periods.  However,  the  second 
moment  conditions  for  the NI are  not satisfied in the first quartile, so that 
valid inferences cannot be drawn using GJR for  the NI when the  estimation 
window size  is small. By the  fourth  quartile,  the second  moment  conditions 
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Figure 12. (a) Recursive GJR-b robust  t-ratios  for  the Hang Seng index, 
(b) Recursive GJR-b robust  t-ratios  for  the  Nikkei 225 index. (c) Recursive 
GJR-b robust  t-ratios  for  the SP500 index. 

for all three  stock indices are satisfied, and generally indicate  stable esti- 
mated  parameters of the GJR model. 

The  fourth  moment regularity  condition for  the GJR model is given  in 
Ling and  McAleer (199a) as 

(a + B)' + 'a' + By + 3ay + $y' < 1 ( 1  1) 
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Figure 13. (a) Recursive GJR-9 robust  t-ratios  for  the Hang Seng  index, 
(b) Recursive GJR-9 robust  t-ratios  for  the  Nikkei 225 index, (c) Recursive 
GJR-9 robust  t-ratios  for  the SP500 index. 

which reduces to  condition (9) in the  absence of asymmetry ( y  = 0). A 
comparison  of (9) and ( 1   1 )  also  makes  clear  that  the  admissible region for 
(a,  j3) for  fourth-order  stationarity of GJR is smaller  than for  GARCH 
because of the  asymmetry (yo) .  As observed i n  Figures  15(a-c), GJR for 
the NI clearly violates  the fourth  moment  condition when the  estimation 
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window size has less than  three  years of daily data. However,  the  fourth 
moment  condition is also  violated in several periods  during he last  quartile 
for SP500. It is satisfied throughout  for the  HSI,  apart  from a few observa- 
tions at the  end of the  sample. The presence of extreme  observations is 
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largely responsible or the  non-normality in th  unconditional  distribution, 
which increases the  conditional  kurtosis  and  leads  to  the  violation of the 
fourth-order  moment  regularity  condition. 

Notwithstanding  the presence of extreme  observations,  the recursive sec- 
ond moment  conditions  and  some  forth  moment  conditions  for GJR  are 
generally satisfied in the  third and  fourth  quartiles. However,  there is still a 
need to  examine  the influence of extreme  observations on the  fourth-order 
moment  conditions  for  both GARCH and GJR. 

4. CONCLUDING  REMARKS 

In this paper, we have investigated  the sensitivity of the  estimated para- 
meters of the GARCH  and  GJR models and concluded that there exists a 
robust  estimation  window size from  three to  four years of daily observa- 
tions. The conclusions were reached by estimating  the GARCH  and  GJR 
models recursively until  the  minimum  number of observations within the 
window exhibited significant parameter  stability.  These findings provide  an 
important insight into  robust in-sample volatility analysis, as  the choice of 
the  estimation  window size and  data frequency  can  often yield alternative 
empirical  models.  Such  conclusions are based on estimating the  GARCH 
and  GJR models using the Hang Seng, Nikkei 225, and SP500 index returns. 

In addition,  the empirical  properties of both GARCH and GJR were also 
evaluated by checking  the second and  fourth  moment regularity  conditions, 
which have  often been ignored in the existing empirical  literature. Based on 
the  derivations in Ling and McAleer (1999a), who  obtained  the  second  and 
fourth  moment regularity  conditions  for  the GJR model, it is now  possible 
to analyse  the  empirical validity of GJR. Inferences based on  the empirical 
results  strongly suggest that  the asymmetric GJR model  outperforms  the 
symmetric GARCH in-sample, especially when the  estimation  window size 
is extended to a  robust  range  from  three  to  four years. The presence of 
extreme  observations was shown to have  adverse effects on  the regularity 
conditions  for  both  models.  Finally,  the  empirical  analysis  has  provided  a 
foundation  for  examining  the  relationship between optimal  window sizes 
and volatility forecasts. 
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SUR Models with Integrated Regressors 
KOICHI MAEKAWA Hiroshima  University,  Hiroshima, Japan 

HIROYUKI HISAMATSU Kagawa  University, Takamatsu,  Japan 

1. EXOGENOUS l (1)  REGRESSORS 
1.1 n-Equation SUR System 

We consider  the following n-equation system 

Model I 

yjt = Pi.x,/ + u,!. i = 1 ,  2. . . . , (1) 

where  the  explanatory  variables s i ,  are integrated processes of order  one 
denoted by I(1) for  each i, 

. I /  - .Y,/-i + u,, y.  - 

and  the suffixes i = 1 , 2 , .  . . , n and t = 1,2. . . . , T denote  the  equation  num- 
bers and time respectively. If the  disturbances between equations  are  corre- 
lated in this system, then this is Zellner’s SUR system (see [5],[6]>. This 
system is  also  a special case of Park  and Phillips [2]. 

In this paper we confine ourselves to  the  SUR system and investigate  the 
statistical  properties of the SUR estimator. We assume that 1 4 , ~  are normally 

469 
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distributed N ( 0 ,  a,;) and have  the  covariance  Cov(ui,, 15,) = aii for all t .  and 
that u I 1  and ‘uir are  independent. 

To write the system compactly we introduce  the  following  vectors  and 
matrices: 

Sf’ = (.Y;1, .Y,z. . . . , S I T )  

y,’ = (I.,, , .I’[Z, . . . 1 Y f T )  

z/: = ( I / ; [ ,  l l j 2 ,  . . . , U g )  
B = (BI * B?? ‘ . . 9 B,,) 

then we can write  the system as 

. .  . 6 +  

or  more  compactly 

r = x g + u  
where  the  definitions of Y .  X ,  and U are self-evident. The  distribution of U 
can be written as 

u - N(0. !a) 

where 

52 = (!aii)  = (CrjiI) = C” €3 1 

where C, = (a,,) is assumed  positive definite and €3 signifies the  Kronecker 
product.  The  disturbance vector v,’ = ( u ; l ,  vi?, . . . , v,*) is normally  distribu- 
ted as 

v; - N ( 0 ,  a;J) 

for  all i, where I is the T x T identity  matrix. The OLS and SUR estimators 
of ,!? are respectively written as 

OLS: f i  = (x’x)-Ix’y (2) 
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and 

SUR: b = (A7'G- 'X)"X'c- '  Y 

where 6 is the  estimated  covariance  matrix: 

c = (SJ 69 1 

47 1 

(3) 

where s,, is the  estimator of uij. The Zellner's restricted SUR (abbreviated 
RSUR) estimator,  denoted by bR, uses the  estimator 

where C i  = yi - x,B;, B, = (x:xi)"x:y,, i, j = 1,2.  . . . , n, and  the Zellner's 
unrestricted SUR (abbreviated USUR)  estimator,  denoted by bLI. uses the 
estimator 

* A  

where e, = y, - Z p .  Z = (xI x2 . . . x,,), 3 = (Z'Z)"y,, i , j  = 1,2, . . . , ) I .  

Since both so and s t  are written as 

they are consistent  estimators of u,,, i, j = 1 ,2 ,  . . . , I Z  (see Maekawa  and 
Hisamatsu [l]). It is noted  that  the USUR is a special case of the GLS 
estimators  dealt  with in Park  and Phillips [2] ,  but  the  RSUR is not included 
in [2]. 

1.2 Asymptotic Distributions of the SUR and OLS 
Estimators 

Following Park  and Phillips [2] we derive  the  asymptotic  distributions of the 
RSUR,  USUR,  and OLS estimators. We define n-dimensional  vectors U,, 
VI, and W,: 

u: = (111,, 1121, . . . . u,,,),  v: = (.UI,. ' h [ ,  . . . , UJ, w, = 

where V, has  a  covariance  matrix 'cv: 
7 1  

Cv = diag(aCl, . . . , u:,,) 
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The  standardized  partial  sum of W, converges in distribution  as 

where [ ] denotes  the  integer  part of its argument  and *'+" signifies con- 
vergence in distribution,  and B(r) is a  2n-dimensional  Brownian motion with 
a 211 x 212 covariance  matrix 

It is easy to see that the asymptotic  distribution of the OLS estimator is 
given by 

The  asymptotic  distribution of the RSUR estimator j R  is written  as 

~ ( j ~  - = T(x'ii-'x)",y'ii" u 

where [u,,] denotes  a  matrix A with  the (i, j )  element or, and d' is the (L j )  
element of the inverse  matrix (av)- ' ,  i , j  = 1, . . . , n and i '  = (1, 1. . . . , 1) with 
n elements of 1. By standard  calculation we have 
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where “+” signifies convergence in probability. By substitution we have 

Since both sy and s t  are  consistent,  the  RSUR  and USUR  estimators  are 
asymptotically  equivalent.  It is noted  that if a,, = aji = 0 (i # j ) ,  then  the 
RSUR  estimator is asymptotically identical to the OLS estimator 

T(BR - B)  = T(lj  - B )  (7) 

When = 2, the  asymptotic  distribution  of T(BR - B)  is reduced to a  simple 
formula  as 

where 

l t  is straightforward  to extend the  above  model so as  to include  a  con- 
stant  term in each  equation.  We  can  show  that  the  SUR  estimators of B and 
a  constant term are T and f l  consistent respectively and  that the asymp- 
totic  distributions  are  also  nonstandard (see [ l ]  for  details). 

1.3 Monte Carlo Experiment 

Small  sample  distributions  of BR, Bu, and $ in the  2-equation SUR system 
are examined by a  Monte  Carlo  experiment with 5000 iterations  for  sample 
sizes T = 30. We  controlled the two  variance  ratios q = f ~ ~ ~ / f ~ ~ ~  (the  var- 
iance ratio between z l I f  and u ? ~ ) ,  K = aii/a;i, i = 1, 2  (the  variance  ratio 
between zlif and q f ) ,  and  the  correlation  between u I f  and u 2 , ,  

p = all/,/-. The results are presented in Figure 1.  This shows  the 
empirical  cumulative  distribution  functions  (CDFs)  of  the RSUR,  USUR, 
and OLS estimators.  It is seen that  the  two lines for  the RSUR  and  USUR 
estimators  cannot be distinguished but  those  distributions  are  more  concen- 
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note:T=30, p = 0.8, ~ ~ 1 1  = = 1.0, & = 1.0 

Figure 1.1. Distributions  of  the  RSUR,  USUR,  and OLS in Model 1. 

trated  around  the origin than  the  distribution  of  the OLS estimator.  The 
three  distributions  are  symmetric  around  the  origin.  From this observation 
we can say that  the  RSUR  and  USUR  estimators  are  more efficient than  the 
OLS estimator. To see the effect of K and p,  we conducted  further  experi- 
ments  for p = 0.2 and  for p = 0.8. Although figures are  omitted here, we 
observed that the  distributions  are slightly concentrated  for K = 0.5 and  that 
the  empirical CDFs of the  three  distributions  are  much closer for p = 0.2 
than for p = 0.8, and hence the SUR estimation  has  little  gain  over the. OLS 
estimation when p is small. 

2. SUR RANDOM WALKS 
2.1 n-Equation SUR Random Walks 

This  section  deals  with  the  n-equation SUR system: y,, are seemingly unre- 
lated  random walks but  are actually  related through the  correlated  distur- 
bances.  Such  a  model is written as 
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Model 2 

.vrr = j 3 j y , , - l  + u , ~ ,  i = 1, 2,  . . . , I I  

j3, = 1 for all i 

We  assume  that .vjo = 0 for all i, E(ujlzr,,) = ail # 0, and,  for  any i, ujr - 
iid N(0,  o , ~ )  for  any i, j .  Using  vectors and matrices: 

y: = bjl. y j 2 ,  . . . * y;T) 

Y,’,-l = ( . ~ ; ~ , l ’ ; , l , . . . . ~ ’ , , ~ - l )  

u,’ = ( I l j l  , 4 2 ,  . . . , U j T )  

(9) is expressed  by 

or more  compactly by 

y=xg+u 
where the definitions of Y ,  X ,  /?, and U are self-evident. U is normally 
distributed  as 

u - N(0.  Q) 

where 

52 = ( C Q l j )  = E” €3 I 

OLS: /!? = (x’x)-lx/y 
The OLS and SUR estimators  are defined by 

SUR: 6 = ( X ’ k ’ X ) - ’ X ’ G - ’  Y 

where 

J2 = (sv) €3 I 

The RSUR estimator BR applies a  covariance  estimator sv, defined by 
ij’G. 

s.. - ” T - 1  
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where G, = y, - y,,-l  P I ,   P I  = (y;.-lyl,-l)- ~ , . - ~ y ~ .  i , j  = 1.2, .  . . , n .  and the 
USUR estimator Pu applies s;, defined by 

1 . .  1 '  

,? - - 
" T - t 1  

e:ej 

where e; = yi - Zp, Z = ( y l ~ - l  y:.-l . . . Y n -  I ) 7 = (X'Z)"Z'y,, 
i , j  = 1.2,. . . , ) I .  - 

As sV and s; are consistent  estimators of ai/. i. j = 1, 2, . . . . I? (see [I]), PR 
and jv are asymptotically  equivalent. 

2.2 Asymptotic Distributions of the SUR and OLS 
Estimators 

The  asymptotic  distributions of the OLS and SUR estimators  can 
be obtained  following Phillips and  Durlauf [4]. There exists a  triangular 
iz x 11 matrix EL!? = (mu) by which Eo. can be decomposed as Cu = (X;/') 
( X i 2 ) .  We define vectors U, and Y, as 

u: = ( U l , .  U?,, . . . I  u , , , ) .  Y: = O',,,.V?,, . . . , Y , l , )  

Let S, denote  the  partial sum of U,, i.e., 

s, = x u ,  
/= 1 

then (l/fi)SlTr1 converges  in  distribution to a  Brownian motion by the 
central limit theorem, 

1 
--s;rr, * B(r)' = (B1(r). Bz(r). . . . , BJr) )  0 

1' 
-Sr;., * B(1)' = (BI(1). Bz(l) ,  . . . , B J I ) )  JT 

where B(r) is an n-dimensional  Brownian motion.  The  standardized  partial 
sum converges i n  distribution  to the  standardized  Wiener  process W ( r ) ,  i.e., 

1 
__ ( C,l/?s[TrI) '* W(r)' = ( w, ( r ) .  W?(T), . . . . W,,(r), 
f i  

and 

z(X;l'%,T,)'* 1 W(1)' = (WI(1). Wz(1). . . . , W,,(l)) 

where  the  relation Ei1'2B(r) = W(r) is used. 
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Then  the  asymptotic  distribution  of  the  OLS  estimator is written  as 

T(B1 - B J  =+ - 
A {  W,Z(l) - 1} 

W,?(r)dr 
, i =  1 ,2  . . . . ,  n 

as is well-known. 
The Zellner's  restricted estimator is  given  by 

T(BR - B) = T(X ' f i "X) - IX f i - lU  

= [ s ~ C ~ ~ ~ L . ~ ~ ~ ~ L . ~ ~ ~ ~ / T ~ ] ~ ~ [ ~ ~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ / T ] ~  T T 

= ~ [ s " y ~ ' , - ~  Y,,-~]- x [S~Y; , -~ ,  u,.-~) 
1 

From Lemma 3.1 in Phillips and  Durlauf [4] we have 

Therefore we have 

where 0 is the  Hadamard  product. As st -+ oji the  two  estimators Su and 
jR are  asymptotically  equivalent. I f a V  = o for a11 i + j ,  i , j  = I , ? ,  . . . , I ? ,  we 
have 

T(BR - B) = T(B - B)  (14) 

When = 2 we can  choose  the  triangular  matrix  as 

to standardize B(r) so that we have C;'I'B(r) = W ( r )  = (Wl ( r ) ,  W2(r))' .  
Using  this, we can rewrite  the  asymptotic  distribution of T(BR - B) as 
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where 

and hence we have 

If a constant term is included in each equation the  resulting  asymptotic 
distributions  are  normal (see [ l ]  for  details). 
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2.3 Monte Carlo Experiment 

Small sample  distributions  of bRq bc., and in the  2-equation SUR  random 
walks  are  examined by a  Monte Carlo experiment  with 5000 iterations  for 
the  sample sizes T = 30 and 100. We  controlled  the  variance  ratio 17 = a2? 
/all (the  variance  ratio between ul,  and u?,) and  the  correlation between u,, 
and u2[.  p = al2/J-. The results are  shown  in  Figures 2.1 and 2.2. 

Figure 2.1 shows  empirical  cumulative  distributions of the RSUR, 
USUR,  and OLS estimators when T = 30 and p = 0.8. It is seen that the 
distributions  are very skewed to  the left but  the  distributions of the RSUR 
and  USUR  estimators  are almost  indistinguishable. As in the  previous  case 
(Section 1). Figure 2.1 indicates  that  the  distributions of the  RSUR  and 
USUR estimates are  more  concentrated  around the  true  value,  0,  than  the 
OLS estimator.  Observing these figures, we can  say that the SUR estimators 
are  more efficient than  the OLS estimator in the sense that  the  distributions 
of the two SUR estimators  are  more  concentrated  around  the  origin  than 
the OLS estimator. 

2 -  
rq- 
0 

2 -  
Cn 
0 -  

9 -  
0 

6 -  
2- 
2 -  

RSUR . 
USUR . 

OLS 

"""_ - - 
0 -  . . . . . . . . . . . . . . . 

-16 -12 -a -4 0 4 8 
note:T=3O, p = 0 . 8 , ~ ~ ~ ~  = u22 = 1.0 

Figure 2.1. Distribution of the RSUR,  USUR  and OLS in Model 2. 
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note:T=30, p = 0.8, 3000 replications 

Figure 2.2. Power of Unit  Root Tests 

Next we consider  the  unit root test for Ho : = 1 against H,, : / I I  c 1. In 
the  above  simulation. we calculated 5% critical  values  for T = 30 and 100 as 
follows: 

OLS RSUR  USUR 

T = 30, p = 0.8 -7.394 -5.657 -5.631 
T 100, p = 0.8 -7.933 -5.945 -5.883 

The empirical  power of the  three tests are  compared  for T = 30 in Figure 
2.2.  This figure shows  that  the  unit root tests based on both  RSUR  and 
USUR  are  more powerful  than  the test based on the OLS estimator  for 
p = 0.8. When p is small, such as 0.2,  the  three  empirical  power  curves are 
much  closer,  although  the  related figures are  omitted here. 

2.4 The SUR Mixed  Model 
2.4.1 The asymptotic distribution of the SUR estimator 

This  section  deals with the  2-equation SUR system: is a random walk 
and y 2 ,  is stationary AR(I) . Such  a  model is written  as 



SUR Models with  Integrated Regressors 481 

Model 3 

We assume that y r O  = 0 for all i E ( U ~ ~ Z / Z ~ )  = oIz # 0, and u,, - iid N(0, oil, i 
= 1,2. 

After  some  tedious  calculation, we have  the  asymptotic  distribution  of 
the  three  estimators in the first equation  as follows: 

This shows that  the  three  estimators  are  T-consistent  and  have  the  same 
nonstandard  asymptotic  distribution.  Thus  the three  estimators  are  equiva- 
lent in a large  sample in estimating  the first equation. 

In  the second equation  the  asymptotic  distributions  are  as follows: 

These  estimators  are  both 8-consistent  and the  normalized  estimators are 
asymptotically  normally  distributed with different  variances. Comparing  the 
variances,  the SUR estimators  always have smaller  variance  than  the OLS 
estimator  and hence the  former  are  more efficient than  the  latter. 
Furthermore, in finite samples, we find that the SUR is more efficient 
than  the OLS by Monte  Carlo  simulation. 

It is easy to include constant terms in model 3: 

!I/ = PI + BlYl , - l  + l‘ll 
y2t = pz + B2.l32,-1 + 1l.f 

/?, = I and \,!??I < 1 

= 0 for all i 

where  the first equation is a  random walk with a  drift  and the  second  one is 
a  stationary  AR(1)  process.  After  some  calculation, we can  show  that  the 
asymptotic  distributions of the  standardized OLS estimators, T’/?(G, - p , )  
and T3/’(8,  - PI),  and  the  standardized SUR estimators, TI”(j& - p?) and 
T (B2 - p2) ,  are  normal. I / ?  - 
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Note  that if a  constant term exists the asymptotic  distributions  for  both 
OLS and  SUR  estimators of B1 are  normal; if not, they are  nonstandard 
distribution. 

2.4.2  Monte Carlo  experiment 

Small  sample  distributions of jR. Bo., and ,6 in the  2-equation SUR mixed 
model  are  examined by a  Monte  Carlo  experiment with 5000 iterations for 
the  sample size T = 30.  We controlled  the  correlation  between u I t  and I I ? , ,  

p = o l z / ~ ~ .  The results are  shown in Figures 2.3 and  2.4. 
Figure 2.3 shows  empirical  cumulative  distributions of three standardized 

estimators, RSUR T ( b I R  - B , ) ,  USUR T(b , ,  - P I ) ,  and OLS T ( j ,  - PI), 
for  the first nonstationary  equation when T = 30 and p = 0.8. It is seen that 
the distributions  are very skewed to  the left and  the  distributions of the 
RSUR  and  USUR  estimators  are  almost  indistinguishable. They are  more 
concentrated  around  the  true value, 0, than  the empirical distribution of  the 
OLS estimator.  Observing these figures, we can  say that  the  SUR  estimators 
are  more efficient than  the OLS estimator in the  sense that  the  distributions 

note:T=30, p = 0.8,~11 = czz = 1.0 
Figure 2.3. Distributions of the RSUR,  USUR.  and OLS in the first 
equation of  Model 3. 
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Figure 2.4. Distribution of the RSUR,  USUR,  and OLS in the  second 
equation of Model 3. 

of  the two SUR estimators  are  more  concentrated  around the  origin  than 
the  distribution of the OLS estimator. 

Figure 2.4 is the  empirical  cumulative  distribution of three  estimators  for 
the  second  stationary  equation. We also  calculated  the  empirical pdf of the 
standardized  estimators f i ( s Z R  - p2), z/T(szu - Bz), and z/T(& - 8:) 
(graphs  are  omitted here). and observed  that  the  three  distributions in the 
stationary case look like the  normal  distribution, even for T = 30. In this 
case  the SUR estimators  are  more efficient than  the OLS estimator.  The 
other  experiments, which are not  shown  here,  indicate  that  the  distributions 
of the SUR estimators  and  the OLS estimator get closer as p becomes 
smaller, and hence the SUR estimation  has little gain over  the OLS estima- 
tion when p is small. 

3 COINTEGRATION TEST IN THE  SUR MODEL 
3.1 Cointegration Test 

In this section we consider  the  2-equation SUR model 
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where 

Note  that y and .Y are  cointegrated if .x,/ are I(1) and u,, are  stationary. 
We  assume  that the  explanatory  variables s , ~  are  I( 1)  for  each i = 1,2, 

C S j r  = S , / - I  + Vi r  

where vir ̂v iid N(0,  a:,) and ' u l r  and v2/ are  independent  for 1 = 1 , 2 ,  . . . . T .  
We  may  wonder  whether  there exists a  cointegration  relation between y I r  

and  or  not.  To see this, we can  rearrange  the  2-equation SUR model as 

) ' I f  = . V I / - [  + B , . U I t  + I l l / l l l / - l  = Ylt-1 + VI 

y?t = + B2212r + l l 2 /  - I ! Z / - I  = 21-1 + w t  

and calculate  the  covariance  matrix as follows: 

By analogous  reasoning in 
cointegrated if 

Phillips [3] it is easy to prove that J ' ~ ~  and  are 

To deal with the  cointegration test we further  assume  that u i t  are gener- 
ated by 

u,t = Pi l l i t - l  + €11 

If lp,l < I ,  .Y and y are  cointegrated.  Therefore  the null hypothesis  for no 
cointegration is Ho : p, = 1. 

This  model is the SUR system if the  covariance  Cov(c,/, c,~) = o,, # 0 for 
all t .  We  assume that e l f  are normally  distributed N(0 ,  a,,) and  that E , /  and vir 
are  independent. 



SUR  Models with  Integrated Regressors 485 

We consider a cointegration test statistic  for testing the  hypothesis 

H o :  p, = 1 ,  i =  1.2 

as follows 

where GI,  i = 1.2, are the residuals calculated  from OLS. RSUR,  and 
USUR  estimation.  The  asymptotic null distribution of the test statistic for 
p, = 1,  i = 1,2  can be obtained  as follows: 

~ s y ( f i ~ l ) ' ( i ) { ~ ~ , ( ~ ) ?  - ctl) + (i){B,,(lj' -e,,) 

~ s y ( ~ ~ ~ ~ ) ' ~ ; ~  ~ ~ , ( r ) ' n r  - 2 ~ s y ( j : " )  J; B21(r)Bll(r)nr + J; ~ , , ( r ) ? d r  
T(p7 - 1) =+ 

where Asy($') are the  asymptotic  distributions of f i ,  - j?,. for p, = 1. i = 
1 . 2 ,  where k = 1 for the OLS estimator  and k = 3 for the RSUR (or 
USUR)  estimator. These  asymptotic  distributions  are given in [l]. 

We have also derived the  asymptotic  distributions  of  the T(p7 - 1) for the 
following SUR model with a  constant. 

! ' I /  = Fl + B l - Y l ,  + 1111 

."?/ = + j?2s:r + Z h ,  

t =  1,2,  . . . .  T 

Although  the  results  are  omitted, the test statistics have nonstandard  asymp- 
totic  distribution.  The  detailed  derivations  are given in the  earlier version [l]. 

3.2 Monte Carlo Experiment 

Small sample  distributions of bR, bcr, and in Model 4 are examined by a 
Monte  Carlo experiment with 5000 iterations  for  sanlple sizes T = 30 and 
100. We controlled the three  parameters = aa2/all (the  variance  ratio 
between z d l ,  and u 2 , ) ,  K = cri,/a:;, i = 1. 2 (the variance  ratio between E , ,  

and II ,~ ) ,  and  the  correlation between Z I ~ ,  and z!?~, p = (~,~/,/m. The 
results are presented i n  Figure 3.1. 

Figure 3.1 shows  the  empirical  cumulative  distribution  functions (CDF) 
of the null distribution of the RSUR,  USUR,  and OLS estimators  for pi = 
1, i = 1,2.  It is seen that  the  three  distributions  are  symmetric  around  the 
origin  and that  the  distribution of the USUR estimator is the  most  concen- 
trated around the  origin. From this observation we can  say that the USUR 
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note:T=30, p = 0.8, ~ 1 1  = ~ 2 2 2  = 1 . 0 , ~  = 1.0 

Figure 3.1. Distributions of the RSUR, USUR, and OLS in Model 4. 

estimator is the  most efficient, followed by the  RSUR  and OLS estimators in 
that  order. 

Figure 3.2 shows  the  cumulative  distribution  functions of the test statis- 
tics T(p7,RSUR - 1). T(p?,,,,, - I ) ,  T(&,oLs - I ) ,  where suffixes RSUR, 
USUR, OLS denote  that p?,* is calculated  from RSUR-,  USUR-,  and OLS- 
residuals respectively. We see that the distribution of test statistic T(p7.usvR 
-1)  is the  most  concentrated  around  the origin. followed by the  distribu- 
tions of T(p7,RSUR - 1) and of T(p7.0Ls - 1) in that  order. 

Figure  3.3  shows  the  empirical  power  curves of the test statistics 
T(p7,RSUR - I ) ,  T(p7,usuR - 1). T(p7,0Ls - 1) for T = 30. We calculate 
the 5% critical values of these tests for T = 30, 100 by a Monte  Carlo 
experiment with 5000 iterations.  The critical values are -13.217, -1 1.313, 
-14.128 for T = 30 and -14.110, -11.625, -15.100 for T = 100, respec- 
tively. Using these critical  points, we calculated  the  empirical  power  curves 
of these tests with 3000 replications.  It is seen that the test statistic 
T(&,usuR - 1 )  is the  most  powerful among  the three  tests and in the 
other two  tests T(c.RsuR - I )  is slightly more  powerful than T(&,oLs - I ) .  
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note: OLS, RSUR, USUR residual cases, T=30, p = 0.8 
.. 

Figure 3.2. Null  distributions of the T(6 ,  - 1). 

4. CONCLUDING REMARKS 

We have  considered  the following Zellner’s SUR model with contempora- 
neously correlated and iid disturbances  and with and without  a constant 
term: 

Model 1: regressors are I(1) processes. 
Model 2: all equations  in  the system are  random walk. 
Model 3: some  equations in the system are  random walk. 
Model 4: errors  are replaced with AR(1)  process in Model 1 .  

In these models we derived the  asymptotic  distributions of the OLS, 
unrestricted SUR  (USUR).  and restricted SUR (RSUR) estimators  and 
analyzed small sample  properties of them by Monte  Carlo experiments. 

In Model 1 the  asymptotic  distributions of the  three  estimators have 
nonstandard  asymptotic  distributions.  Our  Monte  Carlo experiment  for 
the  2-equation system showed the following distributional  properties: 

( I )  The  distributions of the  three  estimators are symmetric and the dis- 
tributions of the RSUR  and  USUR  estimators  are  much the  same. 
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x -  
:- 
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note: OLS, R S U R ,   U S U R  residual cases, T=30, p = 0.8 

Figure 3.3. Power of the T ( j I  - I ) .  

(2) The  distributions of two  standardized SUR estimators  are  more  con- 
centrated  around the  origin than  that of the OLS estimator  for the 2- 
equation  system.  This  means  that  the SUR estimators  are  more effi- 
cient than  the OLS estimator. 

( 3 )  As p (the  correlation of the  disturbances  across  the  equations) 
approaches 1, the SUR estimators  become  more efficient. When p = 
0 the  three  asymptotic  distributions are  the  same. 

In Model 2, our  Monte  Carlo experiment showed similar  results to Model 
1.  In addition we observe that 

( I )  The three distributions  are very skewed to the left. 
(2) The unit  root test based on the SUR is more  powerful than  that based 

on the OLS estimator. 

In Model 3, our  Monte  Carlo experiment was performed  for  the  2-equa- 
tion system where  the first equation is a  random walk and the  second 
equation is a  stationary AR(1). The experiment  showed that  for  the first 
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equation  (random walk process) the  distributions  of  the  three  estimators  are 
very skewed to  the left and  the  distributions of the  RSUR  and  USUR 
estimators  are almost  indistinguishable. We can  say  that  the SUR estimators 
are  more efficient than  the OLS estimator in  the sense that  the  distributions 
of the two standardized SUR estimators  are  more  concentrated  around  the 
origin than the OLS estimator. For the  second  equation  (stationary  AR(1) 
process)  the  normalized  three  estimators are asymptotically  normally dis- 
tributed with different  variances and the  empirical  distributions of these 
three  estimators  are  symmetric,  and  the SUR estimators  are  more concen- 
trated  around  the origin than the OLS. 

In Model 4, the  asymptotic  distributions of the three estimators have 
nonstandard  asymptotic  distributions.  Our  Monte  Carlo experiment  for 
the  2-equation system showed the following distributional  properties: 

(1) The  distributions of the  three  estimators are symmetric. 
(2) The  distributions  of the two SUR estimators  are  more  concentrated 

around  the origin than  that of the OLS estimator  for  the  ?-equation 
system.  This  means that  the  SUR  estimators  are  more efficient than  the 
OLS estimator. 

(3) As p approaches 1 the SUR estimators  become  more efficient. When 
p = 0 the  three  asymptotic  distributions are the  same. 

(4) The  distributions of the  cointegration test statistics based on the resi- 
duals of OLS, RSUR,  and OLS estimation  are asymmetric. 

(5) The  cointegration test based on  USUR residual is more  powerful than 
the OLS or  RSUR residual  cases. 

From  the above  analysis we can  conclude  that in the  nonstationary SUR 
system the  SUR  method is superior to the single equation OLS method.  as 
in the  stationary  cases. 
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Estimating Systems of Stochastic 
Coefficients  Regressions When  Some of 
the Observations Are Missing 
GORDON  FISHER and MARCEL-CHRISTIAN  VOIA Concordia 
University, Montreal, Quebec, Canada 

1. INTRODUCTION 

This  chapter  considers systems of regressions with  stochastic coefficients 
when some  of  the  observations are missing. Estimation in this context 
applies: (i) to  the  unknown  stochastic coefficients corresponding to relations 
whose variables are observed, and (ii) to  the coefficients of their  correspond- 
ing  mean effect, as well as (iii) to the  prediction of the  stochastic coefficients 
corresponding  to  the regressions whose observations  are missing. The  pro- 
blems of estimating  models of this kind  have  their  origins in several 
branches of the  literature:  random coefficients regressions (e.g. [I-31); miss- 
ing  observations in regression analysis (e.g. [4,5]; see also [6] and articles 
quoted  therein);  predictions in time-series regressions (e.g. [7-91); and  cross- 
section regressions with coefficients varying  across  different  sub-groups  (e.g. 
[lo] ) or over  clusters of units when some of the  clusters are missing [I  I ]  . It 
is convenient to refer to this  literature  as classical in view of its  dependence 
on traditional  least-squares and maximum-likelihood  methods. 

Pfefferman [I21 critically reviews the classical statistical  literature on  sto- 
chastic coefficients regression (SCR)  models, with complete and with missing 
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data,  and succinctly consolidates  a broad  range of results. More recently, 
Swamy,  Conway,  and  LeBlanc [ 13-1 -51 argue forcefully against  the  applica- 
tion of the  traditional fixed coefficients regression (FCR) model in econo- 
metrics and reveal a  broad  range  of ten econometric specifications that  are 
encompassed by the  SCR  framework;  their  analysis is then  illustrated with 
practical  applications  to  forecasting  and  stability  analysis.  Despite  the wide 
range  of  literature cited in [13-15], there is no  mention of Pfefferman’s work. 
The  same  holds  true of recent  econometric  literature  on  panel  data  and 
Kalman filter models  (e.g., [16-18]), both of which may be regarded as 
SCR models;  but  there is a citation in the  survey of SCR models in [19. p. 5521. 

The general  aim of this chapter is to clarify,  extend and illustrate  the 
classical results surveyed in [12-151 and  thereby, in particular,  to  introduce 
to econometricians  the  results of Pfefferman [12] in  a  modern  setting. 

Following an  introduction  to the basic framework of interest in Section 2, 
there is a brief synthesis  of  the basis for  applications  of  SCR  models in 
economics [13] in Section 3. In Section 4 various  results  noted in [I21 are 
amplified and extended.  A new geometric  proof of an extended  Gauss- 
Markov theorem  is  presented  in  Section 5. This  applies to  minimum- 
mean-square,  unbiased  linear  estimation  and  prediction of the coefficients 
in an SCR model  that  has  some of its  observations missing [ I ? ,  Section 6 
and Appendix]. 

There  are two  interesting  features to the  theorem:  the first concerns  an 
apparent  asymmetry in its conclusions;  the  second  concerns  the  method of 
proof.  First,  on the  one  hand.  the  direct generalized least squares  (GLS) 
estimator of the  random coefficients corresponding  to  the observed relations 
is not generally the efficient unbiased  linear  estimator.  On  the other  hand, 
the  prediction of the  random coefficients corresponding to the  unobserved 
relations  bears a strong resemblance to  standard  optimal predictions based 
on normal  theory, even though  normality is not presumed. A simple  rank 
condition lies behind these conclusions. 

Second, Pfefferman’s proof  of  the  theorem is based on a  procedure of 
Chipman [5] and  Duncan  and  Horn [8]. This uses an  orthogonality  condi- 
tion which is masked  behind  a series of matrix  manipulations. In the new 
proof, the  vector of observations is resolved into  component  vectors lying in 
specific subspaces which are  chosen, a  priori,  to be orthogonal relative to a 
conveniently selected scalar product.  In this setting,  minimization  of Sam- 
pling  variation is achieved by straightforward  application  of  Pythagoras’ 
theorem.  Thus  the new procedure is placed in a  familiar  modern  econo- 
metric  setting which is both  straightforward  and  intuitively  appealing. 

The whole  commentary of the  chapter is then  illustrated  with an empiri- 
cal example in Section 6. This uses American financial data applied to a 
Kalman filter model of stochastic  volatility. 
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2. NOTATION  AND BASIC  FRAMEWORK 

R” will denote  Euclidean 11-space on which the  natural scalar  product is (.. .). 
If A is an 11 x I’ matrix, R[A]  denotes  the  range of A,  that is, 
(.x E R” : s = A),, d E R‘), and N[AT] denotes  the null of A T ,  
( z  E R” : AT? = 0); of course, N[AT] = R[A]’. The  notation q --[R’l; p. E] 
denotes  a  random  vector q distributed  on R” with vector mean p and dis- 
persion E. 

The column vector y E R” comprises 11 observations;  the  matrix X .  of 
rank k ,  comprises 11 observations on each of k explanatory variables; the k x 
p matrix B, of known coefficients, has  rank p ;  and O E Rp is an  unknown 
fixed vector.  These  matrices and vectors are related  together in the following 
framework: 

v = xg + E 

E - [R“; 0 ,  C] 

,6 - [Rk;  BO, A ]  (3) 

= 0 (4) 

In (2). C is positive definite on R” while, in (3). A is positive definite on Rk.  
Equation (1) comprises,  inter  alia, k unknown  random coefficients, j3. dis- 
tributed  according to (3), and 11 disturbances, E ,  distributed  as in (2); equa- 
tion (4) ensures that E and j? are  uncorrelated. By (3). the vector g may also 
be written in freedom  equation  form  as 

g = Be+ V. u - [ R ~ ;  0. 4 ( 5 )  

Estimation of the  unknown coefficients 8 and f i  in (1)-(4) may be repre- 
sented as seeking an unbiased  linear  function of the  observations y .  say a())), 
where 

a ( ~ )  = (YO + -V a0 E R ,  (YI E R” T (6 )  

to  estimate  the  parametric  function $(e, j3), defined by 

$(e, #?) = $6 + erg C I  E Rp,  C? E R“ (7) 

which has  minimum-mean-square  error (MSE). Unbiased in this  context is 
defined under 6, the joint  distribution of y and B; thus a(v) is unbiased if 

q 4 . v )  - $(e. 811 = 0 (8) 

MSE[a9I  = E J 4 Y )  - $(e, 8>12 (9) 

The MSE of acv) is defined by 
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(c.f. [20]). An estimator of (7) in the  form  of (6). which  obeys (8) and 
minimizes (9). is said to be a  minimum-mean-square  unbiased  linear esti- 
mator  or MIMSULE. 

3. APPLICATIONS 

The  SCR model was originally  introduced as a  practical device to  charac- 
terize situations in which the coefficients of an  FCR model could vary over 
certain regimes or  domains:  for example,  over  different time regimes; or 
across  different families, or corporations, or other  economic  micro-units; 
or  across  strata;  and so on. 

In macroeconomics,  variation  of coefficients over  different policy regimes 
is an empirical  consequence of the  Lucas  critique ([21], see also [22] ) that  an 
FCR model  must  ultimately involve a  contradiction of dynamic  optimizing 
behavior.  This is because each  change in policy will cause  a  change in the 
economic  environment  and hence, in general, a change in the existing set of 
optimal coefficients. Given  this  position, an  SCR model is clearly preferable, 
on  fundamental  grounds.  to an  FCR model. 

Secondly. whenever the  observations  are  formed of aggregates of micro- 
units.  then, on  an  argument used in [23], Swamy et al. [I31 develop technical 
conditions  to  demonstrate  that  an  SCR model  requires less stringent  con- 
ditions  to  ensure  its logical existence than is the  case  for  the logical existence 
of an  FCR model.  This is not  surprising.  Given  the SCR model (1)-(4). it is 
always possible to  impose  additional  restrictions on it  to recover the  corre- 
sponding FCR model.  This implies that  an  FCR model is never less 
restricted  than  the  corresponding SCR model, and hence it is not  surprising 
that  an  SCR model in aggregates is  less restrictive than  the  corresponding 
FCR model in  the  same  aggregates. 

A third  argument, implying  greater  applicability of an  SCR model  than 
the  corresponding FCR model. is that  the  former is more  adaptable i n  the 
sense that it provides  a closer approximation  to  nonlinear specifications 
than  does  the  latter (see, e.g., [24] ). 

Two subsidiary  justifications  for SCR models rely on arguments  invol- 
ving omitted  variables and the use of proxy  variables, both of which can 
induce coefficient variation (see [25] for  further  details). 

When  the  basic  framework (1)-(4) varies across  certain regimes, there are 
A4 distinct  relationships of the  kind 

J'{ = X,B, + E, i = 1,2,  . . . , A4 (10) 

of / l i  observations  and p explanatory  variables such that 11 = x, 17, and 
A4p = k .  The vectors J' and E of (1)  are now stacked  vectors of vector 
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components .vi and E ,  respectively, X is a  block-diagonal  matrix with X ,  in 
(10) forming  the  ith  block; p is also  a  stacked  vector  of M components pi. 
making fi an Mp x 1,  that is a k x I ,  vector as in (1) above.  The pi are 
presumed  to be drawn  independently  from [Rp; 8 ,  A ] ,  whereupon 

B - [ R ~ ;  (e @ q e .  I,,, @ A I  (1  1) 

In (1 1) : e is the  equiangular  vector  in Rh‘ (the M x 1 vector  of  ones) yield- 
ing,  in  the  notation of ( 9 ,  B = (e @ Zp), a k x p known  matrix; 8 is an 
unknown. fixed, p x 1 vector; and d = (ZM 8 A ) .  In this case, then, p and 
k are related through Mp = k and 8 is the vector mean  of  the  p-dimensional 
distribution  from which the  vectors P I ,  p2.  . . . , Bnl are  drawn  and hence 
retains  the  same  number of elements (p) as each of them.  The regime 
model ( IO)  and (1 I )  applies to time series or  to cross  sections or  to combina- 
tions of the  two (c.f. [3, 261). 

The empirical  model  considered  later in the  paper is a pure time-series 
application of the  model ( I O )  and (1 I ) .  Here  the p, in ( IO)  are generated by 
the  Markovian scheme = TB; + v,+~, i = 0,  1.2, . . . , ( M  - 1). in which 
T is a p x p transition  matrix  and  the v , + ~  - [Rp;  0 ,  A ]  independently, with 
Bo = 8. This is the  familiar Kalman filter model in which 8 is the  starting 
point  from which the ,!Il+, are generated. Let 

A =  

4 0 
T I P  0 . . .  0 

0 . . .  0 

T’ T I* . . .  0 

. .  . .  
TW-I TM-? 7 ” - 3  . . .  Ip 

and set u = A)) ,  in which q = [ql  . q2 . . . . , qLIT; the  matrix B is given by T T  

B =  

Thl !I 
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Extensions of the  models  outlined in this section, especially the  Kalman 
filter model,  are discussed below in Sections 5 and  6. 

4. EFFICIENT ESTIMATION OF $(O. j?) 
There  are three  separate  problems  considered in the  literature  concerning 
MIMSULE of the  model (1)-(4) according  to the  definitions in equations 
(6)-(9): (i) estimation of cT8; (ii) estimation of $(e, B) when 8 is known;  and 
(iii) estimation of $(e, B) when 8 is unknown.  Solutions  to  these  problems 
will  be shown to depend on the  structure of C and A and  the  rank of B. 

4.1 Optimal  Estimation of c:O 

When (5) is substituted  into (1) there  results 

~ = X B ~ + ( X U + E )  

(XV i- E )  - [R"; 0, Q], Q = (XdX + c) 
a  positive definite matrix. Let X B  = X,, an I I  x p matrix of rank p 5 k.  
Clearly R I X O ]  = X .  G R [ X ]  F X. Direct  application of generalized least- 
squares GLS to (14) then implies [2, 31 that  the  MIMSULE of cT0 is cT6. 
where 

6 = (x~Q-lxo)-'X~Q-'y (16) 

Pfefferman [12, p. 1411 notes an interesting  property of ( 16). namely 
that it is equivalent  to  the  estimator  obtained  from  substituting 
j? = (XT.Z"X)- 'XTC- 'y  for B and applying GLS to estimate 0 in (S), 
rewritten as 

j = BO + {(j - B )  + v )  (17) 

{(j - p)  + 1,) - [IF; 0, 171. r = {(xTc-Ix)-' + 4) (18) 

That 6 in (16) is equal to 8* in (19) is far  from  obvious. In fact,  the result 
is easily obtained by manipulation  using  the  identity X T  = T - ' T X T  = 
T"(XTC"X)"XTC"Q;  when X T  and  the last expression are each 
post-multiplied by Q"X,  there  results 

X T Q " X  = I" (20) 
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The reason why (1 6) and (1 9 )  are  equal essentially depends  on  an invariance 
condition.  The subspace X is invariant  under X d X T Z "  = Q [27] . This is 
clearly the  case because, if P is any projection  matrix  on X. PQP = QP [28, 
p. 76, Theorem 11. The implication of such invariance is that  the projection 
matrix  on X orthogonal relative to the  scalar  product (., S 2 - l . )  is precisely 
the  same as the  corresponding  projection  matrix  orthogonal relative to  the 
scalar  product (., Z " . ) ;  in symbols, Px:Q-l = X(XTQ"X) - lXTQ"  
= PxiZ-~ = X ( X T C - l X ) - ' X T C - ' .  Another way of putting  the  same  point 
is that  the  direction of projection on X is the  same in each case because 
A4XrQ"]  = n / [ X T Z - ' ] .  This is because X d X T ,  whose columns lie in X. 
plays no role in the  projection  matrix PXIQ-~, leaving C" alone to have 
influence on the  direction of projection.  Moreover, since X, X. from (16) 

x,; = Px(J,Q-l.v = Px,J,Q-l P,,*-I.V = Px,,:.-l P,,,-lJ' = P,,,.*-IX$ (21) 

where PXo,Q-~ = X , ( X ~ Q - l X , ) " X ~ Q " .  Now 

Px . Q - ~ X $  = X{B(BTXTQ"XB)"BTXTQ"X)$ = XG,,,y,,-~,y$ (22) 

where G f , y r Q - ~ , y  is the expression in braces in ( 2 3 ,  the  projection  matrix 
from R on t3 = R[B] orthogonal relative to  the  scalar  product 
(.. X T Q - ' X . ) .  But, by (20). GB:XrQ-~r: = GB,r-l and so, from (21) and (22), 

X06 = XG,,,-I = X~(BTT"B)"BTT"$ = X@* (23) 

whereupon. identically in X,, 8 = 8*. 
When B is non-singular, X0 = X and G B p  = Zk; then, by (23 ) .  

XB6 = X$. Hence, identically in X, Bê  = $. However, in tkis case e^ = 
(B~X~Q-'XB)-'B~X~Q"~ = B"(x~c"x)"x~c"~ = B"P since X is 
invariant  under X d X T Z "  = Q. Thus, when B is nonsingular, A play no 
role in the  MIMSULE of cT8. This result extends [ I ]  as  quoted by 
Pfefferman [12, p. 1411. who  reports  only  the special case when B = Zk .  
Finally, if X is invariant  under Z, then PxQ-1 = P,,-I = PxI,, 
= X ( X T X ) - I  X T  and neither A nor C will have any influence on the 
MIMSULE of c f8  (c.f. [12, pp. 141-1421). 

4.2 MIMSULE of $(e, f i )  for 8 Known and for 8 
Unknown 

When 8 is known,  the MIMSULE of +(e, /I) is &(H, P). which may  be 
expressed as 

$(e. B )  = $8 + +- AT-'($ - Be)} (24) 
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This is essentially the  formula  quoted in [12, equation  (4.1),  p. 1421 from [5] 
and [29. p. 2341. The implicit MIMSULE of p in (24) is the  expression in 
braces, j = {BO + 3I" ' (p  - BO)] or 

j = j - (Z, - AT")(j - BO) 

= j - ( X T c - ' X ) - 1 X T s 2 " X ( j  - BO) (25)  

Px*p = P XTC"X is not  equal  to X T Q " X ;  however, the  same 
Although  the  invariance  of X under X'dX*C-' ensures  that 

invariance  does  ensure  that  there exists a  nonsingular  matrix A4 to reflect 
the  divergence of (XTC"X)"XTs2"X from I,; that is XTs2- 'X = X T Z - l  
X M  and 

j = j - M ( j - m )  (26) 

When O is unknown  and p I k, Harville [30] derives the MIMSULE of 
+(e. p)  as $(e, p),  which is precisely (24) with 8 replaced by e  ̂ of (16): 

$(e, p) = cfe^ + + d P ( j  - ~ 6 ) )  (27) 
When p = k and B is invertible, i t  has been established, via invariance, that 
,6 = BO. Then,  from (27), 
A 

$(O. p) = cTê  + ,;si = c T i  + e;/? (28) 

The distinction between (27) and (28) is important. When B is non- 
singular  the  information  that p is stochastic, with mean BO = E Rk and 
dispersion A ,  is not informative and hence is  of no use in predicting 8: thus 
estimating 6' and p essentially comes  down to estimating  the  one or the 
other, since B is given. When  the  rank of B is p < k, on the  other  hand, 
the  knowledge that E(B) E R[B]  is informative,  and hence it is possible to 
find, as in (27), a  more efficient estimator  than the GLS estimator;  that is, by 
(26), 

p* = j - M ( j  - Bi) 
Equation (26) represents  a novel form of (24) resulting  from  the  invariance 
of X under X A X T C " :  by the  same  token, $(O, B)  in (27) reduces to 
$6 + crB*. These  formulae  augment  and simplify corresponding  results 
in [12, p. 1431. 

5. AN EXTENSION 
5.1 A New Framework 

Interest will now focus on  equation (10) with 11' = / I 2  = . . . = I Z ~ ,  = 17. The 
blocks i = 1 , 2 ,  . . . , will be  regarded as  group 1 and blocks i = (111 + 1). 



Stochastic Coefficients Regressions with Missing Observations 499 

(nz + 2), . . . , hl will form  group 2. With  a  natural  change in notation, ( IO)  
may be rewritten in terms of groups 1 and 2: 

The vectors y ,  and E~ are  each mn x 1 while y 2  and E? are  each n(M - 171) x 
1, b1 and B2 are of order nlk x 1 and ( M  - m)k x 1 respectively. Let E be  the 
vector  of components E ]  and E ~ ;  then 

E - [R’”; 0, C] (30) 

and C may  be  partitioned,  according to the  partitioning of E ,  into blocks 
where r and s each  take  on values 1, 2. Corresponding  to (5 ) ,  

BI  and B2 have n ~ k  and ( M  - nz)k rows and p columns, 8 is still p x 1. In  a 
notation  corresponding  to (30) 

u [R’’’’k; 0 ,  A] (32) 

and, like C, A may be partitioned in blocks A,.$ corresponding  to u1 and u2. 
Finally, E [ E v ~ ]  = 0,  as in (4). 

The model  defined by  (29)-(32) and (4) represents  the  complete  model to 
be estimated,  but  the  estimation  to be undertaken presumes that  the  obser- 
vations  corresponding to y2 and X ,  are  not  available.  What is available  may 
be consolidated  as 

where X I  is an nnz x nzk matrix, 8 is a p x 1 vector, PI is an nzk x 1 vector, 
and b2 is an ( M  - m)k x 1 vector.  Equation (33) will  be written  compactly 
as 

y =  WA+6 (34) 

y being the (nm + Mk)  x 1 vector on the left-hand side of (33), W the (nm + 
M k )  x (Mk + p )  matrix, of full column  rank, which has  leading block X , ,  A 
the ( M k  + p )  x 1 vector  comprising  stochastic coefficients and 82 and  the 
fixed vector 8,  and 6 the last disturbance vector in (33). The  disturbance 
vector 

6 cv [R’”n+A‘k; 0,  Q] (35) 
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in which the redefined s2 is given by 

a positive-definite matrix  on R'"'f+l'fk. CII is nm x n m ,  A l l  is rnk x mk. A I 2  is 
mk x ( M  - m)k. A ? ,  is ( M  - n7)k x ink, and A?? is (A4 - m)k x ( M -  m)k. It 
will be  convenient to define the  row  dimension of (33) and (34) as ( n m  + 
Mk)  = N and the  column  dimension of W as ( M k  + p )  = K .  From (34). 

where B is the { m k  + ( M  - m)k +p) x p or  the K x p matrix of blocks B1. 
B2 and Ip;  the  rank of B is assumed to be p 5 mk. If IZ = 1,  that is. there is 
only  one  observation  for  each  block,  then  the  row  dimension of XI is m ,  
and N = m + Mk.  Also, W must  have  rank K 5 N ,  implying that Iun + 
Mk 2 A4k + p  # Pzrn 2 p ,  Therefore, when 11 = 1, p I m and a  fortiori p I 
tnk; otherwise / t m  2 p ;  if X- 2 n then clearly mk 2 p a  fortiori. It follows 
that n/[B] = {.x E Rp : B.Y = 0} = m; thus there are  no  nonzero vectors in 
Rp such  that B.x = 0; the  same  holds  for B l s  = 0. This becomes important 
later  on. 

In  a time-series application,  the  order in which the  observations  appear 
is obviously important  and, if the  application is a time series of cross- 
section  equations,  then  the  order of equations will  be important.  It is 
straightforward  to  augment  model (33)-(37) to  handle  situations of this 
kind. As an  illustration, consider  cross-sections of 11 firms for  each of m 
years. The m years are divided into  four  groups:  the first m 1  years  form 
group 1; the next m 2  years  form group 3; the  following n73 years  form 
group 3, and the  last m 4  years  form group 4. Thus i = 1.2.3,4  and x, 
m ,  = I?? .  Extending  the notation of (29) to four  groups, 15, = X , p ,  + E ,  

wherein y ,  and E, now  have I z m i  rows while X i  is block diagonal of 12 x 
k blocks,  thus  forming  a  matrix  of order n ~ n ,  x kmi; B, has kmi rows and 
follows the rule [c.f. (31) above] 8, = B,8 + vi, where Bi is a kmi x p known 
matrix, 0 is p x 1, and u, is km, x 1. Groups 2 and 4 will now represent  the 
missing observations  and so, corresponding to (33), the model  of  four 
groups, with  groups 2 and 4 missing, may be written 
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0 
0 
0 

-12 
0 
0 

0 

x3 

0 
0 

-13 
0 

0 
0 
0 
0 
0 

- I4 

in which 1, is the  identity of order knz;. This  equation  may  also be written 
.v = ”2 + 6, corresponding  to (34) with S - [R”(”’1+’”3)+’”k; 0, Q] in which Q 
is a two-block-diagonal, square  matrix of order /?(mi + m 3 )  + ~ n k  having C 
as the  leading block for  the  dispersion of the  stacked vector of and E ~ ,  and 
A i n  the  other  position  as  the  dispersion of the  stacked  vector v i ,  u?, v3,  and 
114. Thus the new situation  corresponds closely to the  model (33)-(37); more- 
over,  corresponding  to (37), 

and  the  ranks of B,  B,, and B3 are each  taken to be p ;  hence the null spaces 
of these matrices are  empty.  Thus, in considering  the  optimal  estimation of 
(33)-(37). a  rather wide class of time-series-cross-section models is naturally 
included.  Having  made this point,  it is appropriate  to  return  to  the model 
(33)-(37) and  introduce some  additional  notation. 

5.2 Further Notation 

Given that  the  natural scalar  product on RN is (., .), then (., .) = (., Q”.). 
The length of a vector in the  metric (., .) will be  denoted 1 )  . I t a - ] ;  that is. 

= (X. ~ 2 - l . ~ )  = .x‘Q-’s. Let L = R[W = (IY E R~ : = W Y ,  Y E 
R”}. Then 

C = ( Z  E R : (z ,  I V )  = 0 V 11’ E L}  0 N 

Dim C = K .  whereupon dim Lo = ( N  - K )  because Lo is the  orthocomple- 
ment of C in RN, orthogonality being relative to (., .). Thus C n Lo = Ld and 
C @ Lo = RN.  The row  space of W is R[ W T ]  = RK.  For the  purpose of 
defining linear  estimators, it will  be convenient to work in the  metric (., .); 
there is nothing restrictive about this  because,  for any q E RN, there will 
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always exist an a E R.' such that q = Q"a. Therefore (q.  y )  = (Q-la. y)  = 
(0.  Q-lp) = (a,! ' ) .  Q" being positive definite and therefore  symmetric. 

As  before,  a  parametric  function of the coefficients 2 is denoted $(2) = 
cTI., c E RA-. A parametric  function is said to be estimable if there exists an 
cyo E R and  an a E R" such that (cyo + ( a .  11)) is (-unbiased in the sense of (8). 

5.3 Results 
Lemma 1. The  parametric  function $(I.) is estimable if and  only if a0 = 0 
and c E R[ W T ] ,  identically in 8. 

P m q f  Let $(A) be estimable. Then, identically in 8. 

E,[cyo + (N, 1)) - c T i ]  = (YO + cr'S2-l WB8 - c'BB = 0 

Clearly,  for any 8, cyo = 0. Moreover. since there are  no  nonzero vectors 8 
such that B8 = 0, aTQ" W - cT = 0 identically in 8; that is, c E R[ W T ] .  

Let c = W r y  for  some y E R" and cyo = 0. Then 

E,[(a. p) - yT  WI.]  = f/TQ" JVB8 - yT  JVB8 

Now oTQ" WBO = aTZ;l'Xl B18 and yT  WBB = y T X ,  BIB, where (I1 and y I  
are  the first / m z  elements of ci and y respectively. Since JZ/[BI] = @. (aTQ" - 
yTjW = 0. Setting y = Q"u. the  lemnla is established. 0 

Notice  that in N and y the  last ( ( M  - m)n + p )  elements are  arbitrary, as 
expected in  view of the  structure (33). 

Lemma 2. Given  that $(I.) is estimable,  there exists a unique  (-unbiased 
linear  estimator ( n * .  y )  with (I* E C. If ( ( 1 . y )  is any  (-unbiased  estimator of 
$(i), then n* is the  orthogonal  projection of N on C relative to (.. .). 

Proof. Since $(A) is estimable,  there exists an c/ E K" such that ( a .  y )  is (- 
unbiased  for $(I.). Let fr = o *  + (n  - a*) with a' E L and (a  - a*) in Lo. 
Then 

(a ,  y )  = (a*. y )  + (a  - a*. y )  

But Ec[(n - a * , J > ) ]  = ( o  - o*)T!2" WB8 = 0 since (0 - a*) E Lo. Hence (N*, 
J!) is (-unbiased  for $(A) because this holds  true  for ([I .  y). Now  suppose  that 
the  same  holds  true  for ( b . ~ ) .  B E L.  Then 

Et[([!*,  1,) - c i] = Ec[(b, .v) - cTI.] = 0 T 

and hence Ec[(a*. 1,) - (6. y ) ]  = 0, implying that (a* - b)TQ" WBQ = 0 iden- 
tically in 8. Since JZ/[B] = 0. identically in 8 (a" - b)  must lie in Lo. But a* 
and b both lie in C by construction  and C n Lo = 0. Thus (a* - b) = 0 or 
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a* = b. It follows that a* is unique  in C for  any a in RN such that (a. y )  is <- 
unbiased  for $(A). For  any such u. 

(I* = Pc:,-,Q"a = W(WTQ" W)" WTQ-la 

where PLiQ-1 is the  unique orthogonal projection on C relative to (., .), or  on 
c along L O .  0 

In  the  theorem now to be introduced,  the following notation is used. For 
any column vector function f = f ( ~ ) )  of q components, DFlf(17)] will denote 
the q x q matrix 

~ ~ c f w i  = - ~ ) 1 l f  - 4 ( r ) i 7  

Theorem 1. Under  the  assumptions of the  model (33)-(37) every estimable 
fu;ction $(A) = cTA, J' E R K ,  has  a  unique  e-unbiased  estimator (a*. 13) = 
cTA, with N* E C and E. the GLS estimator of i, from (34) using the inverse of 
(36) ,  and 

De[(". ?+I 1 D&n*. y)1 

for every (a, y )  which is <-unbiased  for $(A). 
Proof. Let ((I, y )  be any  6-unbiased  estimator of $(AL) and let a = a* + (a - 
N*)  where a* = Pc:p--la is unique  according to Lemma 2. Then { ( N ,  y ) -  
c x )  = {(a*. y )  - c jL} + ( a  - u*. y ) .  each  component  having  &expectation 
equal  to  zero.  Moreover, 

T "  

E({(u*. y) - cTj,){(o - n , .I+} = o * T  

and De[(a ,  J)] = l lu l l~ -~ ,  Dc[(a*. y ) ]  = I l a * l l ~ - ~ ,  and Q[(u  - a*, y ) ]  2 0, 
implying that 

D$[(", $1 2 D$"*. ,.)I 

(0*, y )  = (PL:,-la. Q"y) = (a, Q"P,,,-ly) = ( WTQ"(l, 2 )  
Finally, 

where i. = ( WQ" W)" YQ"y.* But,  from  Lemma 1, c = W T y  for y = 
Q"u. Hence (a*, y )  = cTR = $(A"). 0 

The theorem  may be regarded as a vector version of  Pfefferman's  matrix 
theorem [12, pp. 145 and 147-1481. The  disadvantage of the  matrix  theorem 
is that  the  required  orthogonality  condition is not recognized explicitly at 
the  outset and must be established by matrix  manipulations,  rather  than as a 
consequence of the  geometric  setting  of GLS estimation.  When  the  ortho- 



504 Fisher and Voia 

gonality  condition  embedded in the  scalar  product (., .) is recognized ex- 
plicitly, i t  is easy to  establish  a  corresponding  matrix result as a  corollary  to 
the  theorem. 

Let C be a K x I' matrix of rank I' whose columns  may be used to  form 
I' linearly  independent  parametric  functions c r i .  e;).. . . . , c T A  . In sum- 
mary, CT,l = Y(1) is a set of I' 5 K parametric  functions of A. Let A be 
an N x I' matrix of fixed numbers whose columns o r ,  a:, . . . , 0,. may be 
used to form  the I' (-unbiased  linear  estimators ( c I ~ .  J , ) ,  (q. ,I!), . . . , (a,., y )  
corresponding to c1 2 ,  c2 1, . . . , cTA; that is, such that EC[(o , .  y )  - cT1.1 = q,  
i = 1,2, . . . , I'. or collectively E6[ATSZ"y - C*%] = 0. Notice  that the D C [ i ]  
= ( WTQ" W)-I E Q;' . By Lemma 2, t-unbiasedness  requires  that 
C = WTQ"A so that e, E R [ W T ]  for all i. The  matrix A may  be  decom- 
posed into two orthogonal  parts, relative to (.. .). .4* = PLc:n-~A and 
A** = (Z,, - PLzQ-! )A ,  and hence A*TG"lA** = 0. Then 

T T  

A T m - I  y - cT3, = {A*Tm"y - CTiJ + A**Q"!: 

which,  using C = WTIR-IA, implies 

D , [ A T Q " ~ ) ]  = CTQZIC + A T [ ! X 1  - Q" W(WTsZ-l W)-'  W T ! Z 1 ] A  
1. 

= C  Qj. C + R  T - 1  

where R is a  non-negative definite matrix.  This result is a  direct  consequence 
of the  theorem and may  therefore be summarized as 

Corollary 1. Let "(A) = CTiL be a set of I' I K linearly independent  para- 
metric  functions of 1. and let .4TQ"y be a corresponding set of I' e-unbiased 
linear  estimators of YO.). Then 

D,[ATSZ"~)] = CTQ,'C + R 
in which i is the GLS estimator of A from (34), Qi' is D t ( i ) .  and R is a non- 
negative definite matrix. 

6. DISCUSSION OF THE EMPIRICAL  RESULTS 
6.1 GLS  Solutions and  Data 

The  component vectors of /? are j,, j2, and ê , while the  component  vectors 
of j are obviously and ,&. The  solutions SI ,  j?, and s  ̂are readily obtained 
by expanding 1 = ( WTO" W)" W'Q-ly, yielding the following relations: 
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6 = ( B ~ A - I B ) - I B ~ A - ~ B  (39) 

(40) B I  = 61 - [AlIJ", 1 1 1  X11"[BI -461 T - I  

f i 2  = B26 + A21 dl,'(& - Bl6) (41) 

in which bl = ( X : C ~ ~ X 1 ) - l X ~ C ~ ; y I ,  the  direct GLS estimator of B1 for  the 
SCR corresponding  to  the  observations in group 1. 

In  general, B1 # bl and 6, must be modified by a  factor which depends 
on its  own  estimated  dispersion ( X T C r / X 1 ) - ' ,  the inverse of the  natural 
dispersion  inherent in the  stochastic coefficient PI ,  namely AT,', and  the 
difference between fil and its  estimated  mean effect B16.  If SI = BIG. 
then BI = bl regardless of A l l ;  if Bl is the  identity,  then PI = 9 and 
PI = 0 = b l .  regardless  of d l  I .  

The  formula  for j2 in equation (41) is essentially the  formula  quoted  in 
[7, Chapter 4.3, equations (10) and (1 I)], except that b2 is replaced by b2 
because it  is not observed directly.  When BI = B16,  the  optimal  predictor  of 
82 is the  optimal  estimator of its  expectation (B26). When BI is the  identity 
matrix, B2 = Bz6 regardless of  the  covariance  term A Z l .  The  equation  for 6 is 
the GLS solution  to  equation (39) when B is replaced by B without  adjusting 
the error term as in (17). 

The time series analyzed in [3 11 is the  long (1000 observations in the 
complete set of observations  and 900 observations in the missing-observa- 
tions  case) daily return series of the S&P500 stock index originally compiled 
by William Schwert (see  [32]). Observations  are first differences of natural 
logarithms.  Thus the first observation is dated 30 June 1987 and  the last 
observation is dated 30 April 1991 in the  complete set of observations.  In  the 
missing-observations  case  the  last 100 observations  are excluded. In order  to 
analyze  these data  the mean  of  the series is first subtracted, then the natural 
logarithm of the  square of daily  returns is determined (see Section 6.2 
below). These data  are in  the files sp500. inf and spnz500. inf, in the  form 
of a  long  column  vector, which is used for  running  GAUSSX  programs. 

A I *  

6.2 The Model  with No Missing Observations 

A stochastic  volatility (SV) model can be represented as 

R, = p + ae!"!~,, where u, - N[O, 11 

12, = ylz,-l + v,, v, - N[O, a:]; t = 1 ,2 ,  . . . , 1000 

The measurement  equation is obtained by linearizing  the  equation  for R,. 
Taking  logarithms  of the square of the  mean  adjusted  return I', = R, - p , 
and  setting J:, = In(rZ). there  results 
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y r  = a + h, + E ,  (42) 

in which a = ln(a'), E ,  = ln(uf),  and E ,  is approximated by a  normal dis- 
tribution with mean pF = - I  .27 and variance a,' = E'/?. The  state vector is 
defined as B, = [ h ,  a]' and,  setting x = [ I  I],  the  measurement  equation is 
defined as 

7 2  

y/ = s B, + E ,  
T (43) 

In  (43), is generated by the  Markovian scheme 

B, = TBt-1 + Rv, (44) 

in which 

is the  transition  matrix, 

and E(&/,  v,) = 0 for all r .  
This  model  may  be  estimated  using  quasi-maximum  likelihood  through  a 

Kalman filter, because /3, is unobserved.  From  the  measurement  equation, 
the  conditional  distribution of y, is normal with mean 

Er-lCV,) = ?,l/-l = -x. Brit-l + @ E  

B,I,- I = TB,- I 1,-2 + &,-I (46) 

T (45) 

In (45). 
- 

is the  recursion  for  the  state equation with the  transition  and  gain matrices; 
these are defined by T = T - Ks, where x is given by TA.Y(.Y'A.x + C)-'. 
The  covariance matrix is 52 = s T A r v  + C, where 

is the  covariance  matrix of the  unobserved error v,, and 1 = a: = x?/?. 
Thus 

CJ; 2 CJ; +a:(l - y 2 )  
Q=- 

1 - y- 
,+a, = 

1 - y' 
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For a  Gaussian  model,  the  likelihood  function  can be written  immedi- 
ately as 

where u, = J), - t = 1,  2. . . . , 1000, and F,,,-, is defined according  to 
(45).  Also 8,  the coefficient of  the  mean effect, is reflected in (46). The 
resulting  estimates  for a, y, and 0 are GLS estimates.  These are presented 
in  Table 1 along with estimates for 0". 

6.3 The Model  with Missing Observations 

The measurement  equation in this case is defined as 

where y , , ,  = - a ,  .y,pll is the  vector of 900 observations, .x1 = 1. B2 = y ,  
and I ,  = 1, or, in the  obvious  notation, 

The  transition  equation is defined as 

Br = TBr-1 + V I  (49) 

where T = yZ2, ut = [ u , , ,  u2,,lT and E(&,,,. uI , , )  = 0 for all t .  The  transition 
covariance  matrix is 

Table 1. Estimates and associated  statistics: no missing data 

Parameter  Estimate  Standard  error t-statistic  p-value 

a -9.090 0.0267 -339.629 [.OOO] 
Y 0.989 0.0 154 63.923 [.OOO] 
e - 10.650 0.0269 -394.954 [ .OOO] 
*I, 0.080 0.0326 2.452 [.014] 



508 Fisher  and Voia 

The  covariance  matrix is defined as 

The model is solved, as in the  previous case. using  quasi-maximum likeli- 
hood  through a Kalman filter, because, as before, B, is unobserved. The 
resulting  estimates of this model are presented in Table 2. 

In  order  to  compute  the estimates of B1 and B2, formulae (40) and (41) are 
used.  Knowing  that e  ̂ = -9.966, A l l  = 0.027 + A;; = 36.916, XI = 1, Zrl’ 
= 2/n2 = 0.2026. A z l  = -0.4005. and using the  formula  for  the GLS esti- 
mator of ,!II, bl = (X~Z~;Xl)-lX~C~lyl, b,  = -9.54. Then, fil = -9.852 
and f i l  - B,e^ = 0.007. This difference confirms  that B, is close to the  iden- 
tity  matrix (II). but  not  equal  to  it.  In fact 81 = 0.993. 

For the  second group of observations, B2 = -10.002 and ,!I2 - B2B = 
0.103. The increase of the  deviation of from  its  estimated  mean effect 
(&e^) in  the  second group  of  observations is due to the product A21 A T ; ,  
which is equal  to  -14.78. 

A comparison between the  estimates  from  the  complete set of observa- 
tions  and  those when some  observations  are missing reveals that  the 
estimated  transition coefficient ( y )  is hardly  affected,  moving  from  0.989 
to 0.993. This  movement  depends in part  on the  estimated  covariance ov,,. 
The estimated coefficient of CY, however,  decreases  from  -9.090  to  -10.995, 
a  substantial  change  caused by the  estimated difference between CY and its 
mean effect modified by (o:/AlI), A l l  being a  function of the  transition 
coefficient. 

Table 2. Estimates and associated  statistics:  with missing data 

Parameter  Estimate  Standard  error [-statistic  p-value 

- 10.995  0.0099 - 1 105.427 [.OOO] 
0.993 0.0002 4437.801 [ .OOO] 

0.164 0.0038 43.245 [.OOO] 
1.293 0.0095 135.31 1 [.OOO] 

-9.966 0.0098 -1008.822 [.OOO] 

-0.400 0.0075 -53.069 [.OOO] 
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The empirical  results  illustrate  the  ability of the Kalman filter model to 
predict well, even though  the  assumption of normality is made  as  an  approx- 
imation.  In  the case considered,  the  empirical  model  does  not fully satisfy 
the  assumptions of the  theoretical  model;  for  example,  the  matrices B, Z, 
and A are assumed  known  in  theory but in practice  must be estimated.  This 
being the case. the Kalman filter is revealed to be an efficient algorithm  for 
producing feasible GLS estimates  of  the coefficients of interest, even though 
these are  not  the ideal of the  theory  presented in the  paper.  This is a  com- 
mon  feature of GLS estimation. 

In an  FCR model, the  matrix B would essentially represent a set of fixed 
restrictions on p ,  expressed in freedom  equation  form  as  in fl = BO, implying 
a set of linearly independent  restrictions A T @  = 0 for  some  matrix A ,  B 
having  columns in N [ A T ] .  If,  then, B is nonsingular, no essential estimation 
problem  remains  and so i t  is crucial that B be singular in a  reasonable 
model.  In  the  SCR  model,  a  singular B implies an informative model and 
a  nonsingular B ensures no  information gain over a  corresponding FCR 
model.  In  the  case  of  the  empirical  model  outlined in the  paper,  the  crucial 
matrix is B, and the gain in an  SCR model  over an  FCR model  may be 
measured by the  deviation  of B ,  from 1; evidently the  gain is small  but 
significant. 
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Efficiency  Considerations in the Negative 
Exponential Failure Time  Model 
JOHN L. KNIGHT University of Western Ontario,  London,  Ontario, 
Canada 

STEPHEN E. SATCHELL Cambridge  University,  Cambridge,  England 

1. INTRODUCTION 

In this paper we derive  some  exact  properties  for  log-linear least squares 
(LLSE) and  maximum likelihood estimators (MLE) for  the negative  expo- 
nentially  distributed regression model in the  case when there are two exo- 
genous  variables,  one  a constant  and the  other  a  dummy  variable.  The 
exponential regression model  has been frequently used  by applied  econo- 
mists to estimate  hazard  functions, especially for  unemployment duration. 
Choices of exogenous  variables in these models typically include several 
dummy  (binary) variables such as gender,  ethnicity, and  marital  status. 
For this reason an exact study  should'shed light on  questions of estimation 
and inference. In  economics, all previous  analysis of this  model  has, to  our 
knowledge, relied on large-sample  properties of maximum  likelihood. This 
position  has been justified on the basis of  data sets  of size 400 or  more  but 
there  has been little attempt  to see how  confident  one  can  be about  asymp- 
totic  results. 

Generalizations of our results are possible and,  for  the general  two- 
variable  case  including  a constant,  one  can derive  the joint  distribution 

513 
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function, see Knight  and Satchell (1996). In  the  case  of  K-variable regres- 
sion,  although it is not possible to calculate explicit formulae  for  the esti- 
mators, their  exact  properties  can be calculated numerically (see Knight  and 
Satchell 1993). The  dummy  and  constant model,  examined here. seems a 
suitable  trade-off between generality and tractability and  should lead to 
insights about  the general case. 

In  Section 2 we present  the  model,  formulae  for  the  estimators, and their 
exact  distributions  and  moments,  where  derivable.  We  stress  that  many of 
these results  have been known  to  statisticians  for  some time under  various 
guises; see Lehmann (1983), for example, and Kalbfleisch and Prentice 
(1980). Section  3  contains  the  large-sample  properties while in Section  4 
we compare  the  estimators  and develop  minimum  variance  unbiased esti- 
mators (MVUE) for  the  dummy exogenous  variable  model.  Section  5 
extends  the MVUE analysis to cases where the  exogenous  variable  takes 
on I’ distinct values. 

2. THE MODEL  AND EXACT RESULTS 

We assume  that  observations of failure  times, t , ,  i = 1. . . . , N, come  from  a 
negative  exponential  distribution  with  hazard  function I., = exp(cYo + BOX,), 
where X ,  = 1 or 0 with X ,  = 1 N1 times. N = N I  + No.  and a0 and Bo are the 
true  parameter values. 

The LLSEs  of a. and Bo are calculated  from  running a regression of log 
1, + c on -1 and -Xi, where c is Euler’s constant. Amemiya (1985, p. 439) 
shows  that these estimators  are unbiased  with variancexovariance  matrix 
equal  to 

If we write  the regression as 

log 2; + c = -(Yo - X$() + MI, 
then, by direct  calculation,  the LLSEs 2 and j are* 

G = - T o - c  

B = To - TI 

where T I  = Intj/NI  and To = lntj/No. If we transform  from 
tj to M; from (1) we can readily derive the moment-generating  functions 
associated  with & and 8. The results are given in the following theorem. 
‘We have  assumed  that the N ,  observations  have X ,  = 1, without loss of generality. 
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Theorem 1. Using (1 )  and  transforming  from + M; we have 

6 = a, - W, 

where Wl = x,”, wj/Nl  and W, = EENl+l q / N 0  and  their respective 
moment-generating functions are given  by 

$,(s) = mgf(6 - ao) = exp(-cs)(r(l - s/No)lNO (3) 

and 

&(s) = mgf(b - Bo) = (r(1 + s/No))No((r( 1 - s/N,))*‘I 

Proof. The mgf results follow immediately upon  noting  that  the mgf of w ,  
is 

4(s) = E[e’”ls] = exp(cs)r( 1 + s) 
It should  be possible to invert +l(is) and $2( is)  to derive  their distribu- 

tions,  although we have all the  moments  as they are.  It is worth noting that 
the  marginal  distribution of (b - Po) does  not  depend  on c. 

Turning to the  maximum  likelihood  problem, where L is the  likelihood, 
we have 

N ,  N 

1 n L = N a + N I j 3 - x $ e x p ( c r + j 3 ) -  x f,exp(cr) 
]=I J=N, + 1 

where Cr and j are  the MLE of a, and Bo. From (4), we see that 

We  now define 6 = exp(cYo + Xij30)r,, which will be negative exponential 
with parameter 1, (NE(])). If we transform t ,  to < in ( 5 )  and simplify, we 
see that 
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a! - a. = - In To 

j - p0 = In To - ~n TI 
where f1 = i,/Nl, = ?i/NO. 

The  results in (5) should be compared  with  those in  (2); note  that  the 
MLEs  are  the  logarithm  of the arithmetic  mean whilst the LLSEs  are the 
logarithm of the geometric  mean.  Since  the  geometric  mean is always 
less than  or  equal  to  the  arithmetic  mean, it follows that (nZl I EN 
ti/N*  for  either N I  or No = N”, therefore & + c 2 -a!, and hence 
E(G) >_ “c. More  detailed  comparison requires knowledge about  the exact 
distributions  of  the  MLEs; this can be done by noting  that TI and To are 
distributed  as  x2(2NI)/2N1  and ,y2(2No)/2No (see Johnston  and  Kotz 1970, 
Ch. 18. p. 222), so that fop?’ is an F(2No, 2N1) since TI and To are 
independent.  Therefore 6 - Bo is InF(2No,  2NI) whilst a! - cyo is 
- ln (~~(2N, , ) /2N~) .  Noting  that  the  distribution of lnF(2No,  2N1) is the 
same  as 2z, where z is “Fisher’s z” distribution,  a simple transformation 
of results in Johnston  and Kotz (1970, Ch. 26, pp. 78-81)  gives the pdf,  mgf, 
and  cumulants.  Corresponding results for G - cyo can be readily obtained 
from first principles. 

Consequently,  the  pdf  expressions  for  the MLE  estimators  are given  by 

/ = I  

and 

and  their  corresponding mgfs by 

We  notice  immediately  that  for NI = No both the LLSE and  MLE esti- 
mators of p have  symmetric  distribution since 

32(s) = $ 2 ( - S )  
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and 

!ids) = 1CId-s) 

Since we wish to see how these estimators  may differ distributionally, it is 
clear that we need to know  at  least  the first few moments. 

Thus,  turning  to  moments,  and in particular  to the  cumulant  gener- 
ating  functions, we have, by taking  logarithms  of +z(s) and GZ(s) and 
differentiating. 

and 

for LLSE, and 

with 

for MLE, which may alternatively be written as 

(1  1) 

$"")(.Y) is the  polygamma  function defined as  the ( m  + 1)th  derivative of In 
T ( s )  (see Abramowitz  and Stegum 1972, equations 6.4.1-6.4.3, p. 260). 

In particular,  the first four  cumulants in each  case are 
K1 = o  
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and 

,=I ;= I 

We shall delay any  numerical  comparisons  for  the moment. In the next 
section we shall look at the  asymptotic  properties  of our rival estimators. 

3. ASYMPTOTIC RESULTS 

Our exact  results in Section 2 allow us to  investigate  the  behavior  of  the 
estimators  as  the  sample size increases.  There are three possibilities i n  our 
model, large NI,  large No. and finally the  case of NI and No both increasing. 
It may  strike  the  reader  that  large N ,  and large No asymptotics are  rather 
esoteric;  however, in cross-sectional data sets with many  exogenous  vari- 
ables, an increase in N may still leave the  number of observations, in a given 
category, fixed or increasing at a lesser rate.  There seems to be a widespread 
feeling that very large samples, N = lOOO+, are necessary in these models 
before one  can rely on  asymptotic  normality; our investigation  may shed 
some light on this belief. 

Initially, we fix No. for  the LLS estimators,  from (3); QI(s) is invariant  to 
changes in N , ,  thus  the  density of & - an stays  the  same  for fixed No as  NI 
tends to infinity. For $:(s), i t  can  be expressed via an infinite product 
expansion  for  the  gamma  function (see Abramowitz  and Stegum 1972, 
equations.  6.1.3  and 6.1.17, pp. 255-256), as 

Therefore lim,, "ro3 @?(s) = e'"(T( 1 $- s/No))"" = (--s), the  characteristic 
function of -(& - ao); see (3). 
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Turning  now to the MLEs, again (s) does  not  depend  upon N I ,  so 
turning  to $z(s), see (IO),  and using the  known  distribution of ,? - Bo. 

The last step follows from  Abramowitz  and Stegum (1972, equation 26.4.21, 
p. 941). We note in this case  that (,? - Bo) has  the  same  distribution as 
-(G - a,,). In  particular, if No = 1, 

lim ~ ( j  - p0 < ,u) = I - exp(- exp(,u)) 
.v,+m 

which can be recognized as a type 1 extreme value distribution; see Johnston 
and Kotz (1970, p. 272). From (14), for No = !, as N 1  + 00. we see that 
f i  - Bo has  a  limiting  distribution  identical  to (B - Bo + c) ;  i.e.. they differ 
only in location. 

We now fix N I  and let No +. 00; the  results are very similar. Both IS and ul 
converge in probability to uo. whilst for  the  estimators  of Bo 

N ,  - I  

We note  that when N I  = I .  

po < ,u) = exp(-  exp(v)) 

Again. f i  - Bo has  the  same  distribution as the  bias-corrected MLE, i.e., as 
(b  - Bo - c). This  can be checked by putting N I  = 1 in l i r n ,  jw Q0(s) in 
(16). and  comparing with the limit as No -+ 00 of (10). 

In summary,  estimators  of OL are  invariant  to  changes in N ,  and converge 
in probability  to a. for large No. Estimators of B converge to different 
distributions  for  large N l  and No. different for  MLE  and  LLSE;  for the 
cases where N ,  = 1 and No = 1, however. they differ only in location. 

For large N asymptotics, we need to specify how No and N I  tend to 
infinity. Let N I  = >.No, so N = (1 + A)N0. For the MLEs, large  sample 
asymptotics  for  Fisher's I are well known and, utilizing results  from 
Stuart  and  Ord (1987, Sect. 16.18), we have 
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1 (b  - B o )  = In F z N , , , ~ N ,  + N - - - - + - [2N1 2No ' No N I  

as N + 00, and  thus asymptotically 

For LLSE,  consider 

and let M ( s )  be the mgf of this quantity.  That is, 

M(s)  = h ( s d m m % )  

From (3) and (14), it follows that 

Clearly,  the  limit of M ( s )  as No -+ co will  be [(s'/2) . (7?/6)]. leading to the 
asymptotic  distribution 

One  can  expand (18) to  obtain  an  Edgeworth  expansion,  and higher- 
order  terms  could be compared  with  those existing for  Fisher's 2.  

However, by merely comparing (17) with (19) we see that  MLE is clearly 
more asymptotically efficient than  LLSE. 

The conclusion that arises  from  the  analysis so far is that  a large sample 
size is not  enough  to  guarantee  that  LLSE  and  MLE will converge in dis- 
tribution  to  multivariate  distributions  as N tends  to infinity. Exactly as in 
the  case of linear regression with dummy variables, we require that N o  and 
N I  both become large. The interesting  feature of our previous  calculations is 
that we have computed  the  marginal  distributions  of  the  estimator  for large 
N o ( N 1 )  and fixed N,(No).  

Given  the  above  conclusions, it is natural  to consider  what  implications 
this will have  for testing. Rather  than answer  this  question  exhaustively, we 
shall  consider  a specific example, testing that B = 0, and use a likelihood 
ratio  (LR) test. Our choice is quite  arbitrary,  one  could do similar  calcula- 
tions for  other hypotheses  using  other test procedures. 

. 
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After  some  straightforward  calculations. we find that  the  LR test statistic 
is given by the  following  expression: 

For testing one uses -21n LR,  and so we now  examine  the  moment- 
generating  function of this  statistic. The results are given in the  following 
theorem. 

Theorem 2. For the LR test statistic defined in (20) we have  the mgf of 
-2 In LR given by 

@(s) = E[exp(s(-2 I n  LR))] 

’““‘B(No(l - 2s), N , (  1 - 2s)) 
B(NI ,No) 

where B(n. 6) is the standard Beta function. 

Proofi The result follows straightforwardly  from  the  moments of an F 
distribution. 

To investigate  the  asymptotic  behaviour of -2 In LR we consider in turn 
(i) limNo+, @(s) for fixed N I ,  (ii) lim,,,, @(s) for fixed No.  and (iii) 
limN+, @(s). In so doing we develop  the  limiting  distribution  for  large N = 
(No + N , )  as well as appropriate expansions  allowing assessment of the 
error involved in using the  asymptotic  distribution for -2 In LR . The fol- 
lowing theorem gives the  expansions  for  the mgf of -2 In LR  and  the  cor- 
rection  for  the  distribution. 

Theorem 3, For the mgf of -2lnLR given in Theorem 2 we have 

(i) For fixed N 1 ,  large No 



522 Knight  and  Satchel1 

and 

Proof. The results for @o(s), @,(s), and @(s) are readily found by applying 
Sterling's  approximation  to  the  iGamma  functions in (21). The  approxima- 
tion  to  the  distribution of -2 In LR  are  found by merely inverting  the  asso- 
ciated  characteristic  functions. 

Using (23), (25 ) ,  and (27), we can readily compare  the tail  area of the 
three  distributions defined by (22), (24), and (26) with that of a xf l ,  . In  each 
case we see that  the  true size is always  greater  than  the  nominal size. Table 1 
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Table 1. Approximate sizes for LR test* 

Nominal sizes of 

0.050  0.025 0.010 

NO NI LG N LG No LG N I  LC N LG NO LC N ,  LG N LG No LG Nl 

N = l O  
1 9  0.0693  0.0521  0.0691  0.0372  0.0263  0.0371  0.0163  0.0107  0.0162 
2  8  0.0600  0.0524  0.0595  0.0313  0.0265 0.0310 0.0133  0.0108  0.0131 
3  7  0.0572  0.0527  0.0564  0.0295  0.0267  0.0290  0.0123  0.0109  0.0121 
4  6  0.0560  0.0532  0.0548  0.0288  0.0270  0.0180  0.0120 0.0110 0.0116 
5  5  0.0557  0.0538  0.0538  0.0286  0.0274  0.0274 0.01 19  0.0112  0.0112 
6  4  0.0560  0.0548  0.0532  0.0288  0.0280  0.0270  0.0120 0.01 16 0.0110 
7  3  0.0572  0.0564  0.0527  0.0295  0.0290  0.0267  0.0123  0.0121  0.0109 
8  2  0.0600  0.0595  0.0524  0.0313  0.0310  0.0265  0.0133  0.0131  0.0108 

N = 50 
I 49  0.0691  0.0504  0.0691  0.0371  0.0252  0.0371  0.0162  0.0101  0.0162 
5  45  0.0539  0.0504  0.0538  0.0274  0.0253  0.0274  0.0113 0.0101 0.0112 

10 40 0.0520  0.0505  0.0519  0.0263  0.0253  0.0262  0.0107  0.0102  0.0106 
15  35  0.0514  0.0505  0.0513  0.0259  0.0253  0.0258  0.0105  0.0102  0.0104 
20 30 0.0512  0.0506  0.0510  0.0258  0.0254  0.0256  0.0104  0.0102  0.0103 
25  25  0.0511  0.0508  0.0508  0.0257  0.0255  0.0255  0.0104 0.0102 0.0102 
30  20  0.0512  0.0510  0.0506  0.0258  0.0256  0.0254  0.0104  0.0103  0.0102 
35  15  0.0514  0.0513  0.0505  0.0259  0.0258  0.0253  0.0105  0.0104  0.0102 
40 I O  0.0520  0.0519  0.0505  0.0263  0.0262  0.0253  0.0107  0.0106  0.0102 
45 5 0.0539  0.0538  0.0504  0.0274  0.0274  0.0253  0.0113 0.01 12 0.0101 
49 1 0.0691  0.0691  0.0504  0.0371  0.0371  0.0252  0.0162  0.0162 0.0101 

N = 100 
I 99  0.0691  0.0502  0.0691  0.0371  0.0251  0.0371  0.0162  0.0101  0.0162 
2  98  0.0595  0.0502  0.0595  0.0310  0.0251  0.0310  0.0131 0.0101 0.0131 
5  95  0.0538  0.0502  0.0538  0.0274  0.0251  0.0274  0.0112 0.0101 0.0112 

I O  90  0.0519  0.0502  0.0519  0.0262  0.0251  0.0262  0.0106 0.0101 0.0106 
20  80  0.0510  0.0502  0.0510  0.0256  0.0252  0.0256  0.0103 0.0101 0.0103 
50  50  0.0506  0.0504  0.0504  0.0254  0.0252  0.0252  0.0102 0.0101 0.0101 
80 20 0.0510  0.0510  0.0502  0.0256  0.0256  0.0252  0.0103  0.0103 0.0101 
90 I O  0.0519  0.0519  0.0502  0.0262  0.0262  0.0251  0.0106  0.0106 0.0101 
95  5  0.0538  0.0538  0.0502  0.0274  0.0274  0.0251  0.0112  0.0112 0.0101 
98  2  0.0595  0.0595  0.0502  0.0310  0.0310  0.0251  0.0131  0.0131 0.0101 
99 1 0.0691  0.0691  0.0502  0.0371  0.0371  0.0251  0.0162  0.0162 0.0101 

'LG N, LG No, and LG N, refer to  the  approximations  from using equations 
(32). (30). and (31) respectively. Note  that  the value given by (32) is very close 
to  the exact probability. 
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displays  the  computed sizes for  various N and different  combinations of No 
and N I .  The  actual sizes of the  tests are always  larger than  the  nominal, 
associated with the  asymptotic x:1,. The difference is very pronounced  for 
small N (e.g., N = 10) and even for  large N when either No or N I  is  less than 
10% of the  value of N .  Consequently. in these situations, which are  not 
uncommon, inference using  asymptotic  results  may lead to incorrect  con- 
clusions. 

4. EFFICIENCY COMPARISONS AND THE 
CONSTRUCTION OF MINIMUM VARIANCE 
UNBIASED  ESTIMATORS 

Returning  to the  properties of the  estimators, we shall  investigate  the  exact 
variances. From (2) and (6), this reduces to the  problem of comparing  the 
variances of W ,  and In TI. In  what follows we show that  equations (12) and 
(13) can be compared  for all N .  Employing the Rao-Blackwell theorem, we 
show that  MLE always  has  a  smaller  variance than  LLS for N 1. 2  (for 
N = 1, they are  equal). Since we can  adjust  the  bias of MLE using (13), 
we can  construct an unbiased  estimator based on the MLE which always has 
a  smaller  variance than  LLS. 

Explicitly, our bias-adjusted  estimators are 

]=I  

(where c is Euler's constant)  and 

J = l  ' 

Since our  model is a  member of the  exponential family, we know that N1 TI 
and NOTo are  jointly sufficient for exp(cr + B)  and exp(cr). In fact, since 

L = exp(Nl(cr + B))  exp(-NI TI exp(cr + B))  exp(Nocr) exp(-NoTo exp(cr)) 

this  follows  directly  from  the  factorization  criterion  for sufficiency (see 
Lehmann 1983, Theorem 5.2, p. 39). 

Now  the Rao-Blackwell theorem  (Lehmann 1983, p. 291) states  that if L 
is convex and a  complete sufficient statistic, T ,  exists, then  any  U-estimable 
g has  a  unique  unbiased  estimator  depending  only on T and  this  estimator 
uniformly minimizes the risk among all unbiased  estimators.  In  our  context, 
a U-estimable g means  that there exist estimators  that  are unbiased  estima- 
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tors of a and B; a  proof  of  completeness follows the  argument in Lehmann 
(1983, Example 5.14, p. 47; see also  Barndorff-Nielson 1978, Lemma 8.2). 
Now, if we take  our MLEs & and $ and  subtract E(& - a0) and E ( j  - Bo) 
(both  known  quantities),  the  resulting  estimators  depend  only on  the  com- 
plete sufficient statistics. Thus  our bias-corrected  maximum  likelihood esti- 
mators  are  the  unique minimum  variance  unbiased  estimators (MVUE) of 
a. and Bo. 

5. EXTENSIONS TO A NON-DUMMY EXOGENOUS 
VARIABLE 

To see whether  the  results of the  previous  section  can be utilized for  a  more 
general set of values of  the X s  other  than 0 or 1, we consider  now that X,, 
j = 1 ,  . . . , N ,  takes values 0, 1,2,  . . . , I’ with frequencies No, N 1 ,  . . . , Nr so 
that Ni = N ;  we shall concentrate on estimating @. Our model now has 
likelihood given by 

N 

L = n exp(a + X,B) exp(- exp(cY + x , B ) ~ , )  
./= 1 

= exp(Na + ( N ,  + 2N2 + . . . + rN,)@) exp - exp(cY + jB )T ,  (28) r ;=0 I 
where T, = x, .ti with s, = (I; X, = j } .  We note  that L is still a  member of the 
linear  exponentlal family but  that  the  fundamental  parameters J j  = exp(cr + 
j g )  are  connected by the following (I’ - 1) nonlinear  restrictions 

6; = $,/s;”. .i = 2 , .  . . . I’ (29) 

Combining these restrictions  with (28) gives us a  member of the  curved 
exponential family (see Barndorff-Nielsen 1978). 

An  alternative way of viewing this  model is to express X, as a  linear 
combination of 0-1 dummy  variables; Le., 

X, = Z,, + 2Z9 + 3Z3, + . . . + rZrj 

where A; = x;=, kZki, with 
respectively. Then, defining 

&, = 1.0 with  frequency Nk and N - Nk 
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imposes (I' - 1 j linear  restrictions on the yks,  viz. 

y\ = yk /k ,  h- = 2 ,3 ,  . . . , I' 
The  MLE of B is now  just  the  restricted MLE of y I  in the  above  model 
subject to the (I'  - 1 )  restrictions 

R y  = 0 

where R is the (I' - 1) x I' matrix given by 

R = (e+l, : - W )  

with an ( r  - 1) vector of 1's and W = diag ( I+ ,  ~ ' 3 . .  . \I) , .) ,  where 
111k = I/k. and y is an ( r  x 1) vector with yi in the  ith  position. 

Explicitly. we have the  Lagrangian  associated  with  the  restricted MLE 
given by 

H = In L(a. y )  - 2'Ry 

k= 1 k= I 

The  appropriate first-order  conditions are 

aH a h  L(a, y )  
aY aY 
" - - R'?. = 0 

Defining Q' = (1, I I  , It37 . . . . , H,;'), we note  immediately  that since 
Q'R' = 0, Q'(aInL(a. y)/ay) = 0; i.e.. 

Setting y, = j y , ,  these are the equations formed  from alnL(a.  /?)/ab = 0. 
The unrestricted  estimators of the yIs are those satisfying 

a In L(a, Y )  
aY 

= o  

and  are given by 

i / l  = In(To/No) - ln(T,/N,); j = 1.2. . . . , I' 
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In essence, with the  restrictions on the v/’s there is only  one to be esti- 
mated. viz. y I :  however, we generate I’ estimates of y I ,  that is, f I ,  p2/3, 
p3/3, . . . , ;,./I.. It may be possible to  establish  a  complete sufficiency argu- 
ment i n  this situation. We shall, however, proceed  along  different lines by 
exploiting  the  independence of the q. j = 0,  . . . , r .  

Appealing  to  ideas  from restricted least squares. let us find a 11 to mini- 
mize (? - y)’L”’(p - y )  subject  to R y  = 0,  where R = var - cov(f).  This 
new estimator is given by 

v = i /  - RR’(RRR‘) - ‘R~ 

and in particular  the  estimator of yl is 

where gl = (1 - ~ ( k - ~ ) ) .  gk = g ( k p 1 ) ,  k = 2 .  . . . , 1’, and (q , ,  q?, . . . , q r P l )  
are  the  elements in e l  ’SZR’(RRR )-’ for el ’ = ( 1 , O .  0, . . . , 0). We note  in 
passing  that I gk = 1. 

Identical  results  can be obtained by defining a new estimator 

and finding 2. to minimize the  var-cov of p, i.e. 1’ WIQ WI ‘2 subject to j.’e = 
1 with e a  vector of ones.  Letting = WI !2 Wl ’, the  appropriate E. is given 
by 

Although  not  immediately  obvious, yI = V I .  
I Since the  estimators h , j  = 1 ,  . . . , 1’, are of a  form similar to  the  estimator 
j? considered in Section 2 ,  we can readily find their  means.  variances, and 
covariances. In particular we have, for  any j ,  that i / i  are given by identical 
equations  to (6 )  if we transform  to NE( l ) s ,  i.e. 

C f i  - 5) zz ln(To/No) - In(T,/Nj) 



528 Knight and Satchel1 

and from (1 3 )  we have 

E(?, - v,) = k, 
var(pi - y,) = KZJ 

where Kl t j  are  found  from (1 3) by replacing N 1  by N / .  The  covariance of any 
two f i s  is given  by 

cov(i/, - v,, pL. - yk )  = cov(1n To/No,  In To/No) 

= var(1n To/No)  

= @”(No) 

The  covariance  matrix SZ of the f i l s  is thus 

sz = s + a’ee’ 

where S = diag(sl, s2 . . . , s,.) an I’ x I’ diagonal  matrix  with s, = +(‘)(A’,) and 
a? = +(‘)(No). Consequently, is  given  by 

C =  W , S Z W , ’ =  W l S W I ’ + 0 2 W l e r ’ W l ’  

= V+aZM 

with V = diag(u,. u2,  . . . u,.), an Y x r diagonal  matrix with u, = s,/J2. Noting 
that M = I IJIV’  where IV’ = [ l .  1/2, . . . , l/r] = e’ W I  ’, and  that 

we can now  form an unbiased  estimator of yI and  consequently p by con- 
sidering 

This  estimator will have  minimum  variance  amongst all estimators which 
are linear combinations of  the f / /J,  j = 1,2, . . . , I . .  

Now 

r 
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and 

so that 

and 

Thus Ak is  given  by the  ratio of (31) to (30). 
The  above  procedure seems  computationally feasible, and, if Nj 2 1, 

from (10) we see that all positive integral  moments exist; this  also  follows 
from  the  properties of Fisher's -7 distribution.  Therefore  our  procedure  could 
be applied to  the case  where  the  exogenous  variable  takes  distinct values. 

Nothing in the  above analysis hinges upon Xj  being  a positive integer; we 
could  work  with  values e, ,  . . . , e,.. If we redefine d g  = ( 1  /el, . . . , 1 /e,), then 
similar equations follow  with our new definition of "-0. In  particular we 
now find that 

and 

?+ is now  defined as the ratio  of (32)  to (33).  
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Finally,  note that  the variance of the new estimator defined by B is equal 
to (e'Z-'e)-' and is given by the inverse of (30) or (33). 

It is interesting to  note  that when r = 2 with X ,  = 0, 1, or 2 and No = N z .  
the MLE  can be solved explicitly. In this case  the  first-order  conditions 
result in 

N - e" To - e"+y] T e"+?': T2 = 0 

Nl - ea+yi T ,  - A = 0 
1 -  

and, since N = N I  + ?Ar? when NO = Nz, 

T - eO+Y? 
0 - T, 

giving 

72 = In( To/ T.) 

Therefore  the  estimator of Bo, viz. fl, is given by 

Also, from (30) and  (31), we have A I  = 0 and i.? = 1,  giving 

= $ln(To/T2),  from (38) 

It  would appear  that this is the only situation  where 7, = V I .  
We know  that  the smallest variance  that any unbiased  estimator  can 

attain will  be given by the  Cramer-Rao lower bound  (CRLB).  We finish 
this  section by comparing  the  variance of our unbiased  estimator with that 
of the  CRLB. 

We should  note  in  passing  that  the  previous  bias-adjusted MLE did not 
achieve the  CRLB; see (13)  where K z  = 2$"'(1) - [E,:, 1 + X2L1j- ' ]  
and the CRLB is [ l / N o  + l/NI]. However, as No and N ,  tend to infinity, the 
CRLB is reached in the  limit.  This  result, that  the  unique minimum  variance 
unbiased  estimator  does  not achieve the CRLB i n  a  situation where there is 
a  two-dimensional family of complete sufficient statistics,  may seem surpris- 
ing. but  this agrees with existing  results on this  topic; see Wijsman (1973) 
and  Lehmann (1983, Problem  6.14,  p. 142). 

For the  model in (28). the CRLB for  an unbiased  estimator of f i  is given 
by: 

N I .-2 
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'I" 
This  should be compared with the inverse of (30). We present our numerical 
comparison below. 

Table 2 gives the values of the  variance and the  associated CRLB for 
for  various  sample sizes and different  combinations of N o .   N I ,  and N 2 .  We 
notice immediately that  both the  variance, given by the  inverse of (30), and 

Table 2. Variance and C-R lower bound  for  the  unbiased  estimator 

N NO NI N2 VAR-B  CRLB-B 

30 15 
50 25 

100 50 
200 100 
500 250 

1000 500 

30 6 
50 10 

100 20 
200 40 
500 150 

1000 200 

30 9 
50 15 

100 30 
200 60 
500 150 

1000 300 

30 9 
50 15 

100 30 
200  60 
500 150 

1000 300 

9 
15 
30 
60 

150 
300 

9 
15 
30 
60 

250 
300 

15 
25 
50 

100 
250 
500 

6 
10 
20 
40 

100 
200 

6 
10 
20 
40 

100 
200 

15 
25 
50 

100 
250 
500 

6 
I O  
20 
40 

100 
200 

15 
25 
50 

100 
250 
500 

0.5818E - 01 
0.3404E - 01 
0.1670E - 01 
0.8273E - 02 
0.3291 E - 02 
0.1642E - 02 

0.5818E - 01 
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0.6579E - 02 
0.2632E - 02 
0.1316E - 02 
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the CRLB  are symmetric  functions of No and N 2 .  This  can  also  be  proved 
analytically by noting  that 

e'C- I e = $(')(No) + 4$")(N,)  + $lr(l)(N2) 

$ " ) ( N I ) $ ( ' ) ( N ~ )  + $( ' ) (No)$ ( ' ) (Nl )  + @ ' ) ( N o ) $ ( ' ) ( N d  

and 

(CRLB)" = N,(No + N2)  + 4NoN2  No(N1 + 2N2) + N ~ ( N I  + 2No) 
No + N I  + N2 

- - 
No + N1 + N? 

If we now  consider  values of the  ratio 

R(No,  N I ,  N 2 )  = CRLB/var(p) 

we have 

($( ' ) (No)  + 4$"'(N1) + $(l)(N?))  
X 

( ~ W " W * )  + $%w + v ) w , ) $ ~ 1 ) ( ~ 2 N  

By evaluating R() for fixed No with N ,  and N2 varying and  for fixed ATI with 
No and N2 varying, we found  that even for  quite large  sample sizes, e.g., 
1002 or 1003, if either No. N 1  or N2 is very small the exact variance is 
considerably  greater  than CRLB.  Nor does R()  increase toward  one  mono- 
tonically as the  sample size increases. 

When No = N2 we have 

R(N0. N , ,  N.) = (N2$'I'(N?))" 

indicating that sample size increases  brought about by increasing N 1  have no 
effect on efficiency. Since in this case  the  unbiased  estimator  equals  the 
MLE, the inverse of e'C"e, viz., + ( ' ) ( N 2 ) / 2 ,  will give the lower bound on 
the  variance  for a fixed N2(= No). 

Quite  accurate  approximations  to R()  could be developed by using the 
asymptotic  expansion of $")(N,), j = 0. 1,  2 (see Abramowitz  and Stegum 
1972, equation (6.4.12). p. 260), Le., $(')(N,) % 1/N, + 1/(2N,') + 1/(6N,?) 
- 1 / ( 3 0 N j )  + O(N;'). For the  case of No = N2 this results in R(No,  N , ,  
N ? )  I - 1 / ( 2 ~ ? )  + 1 / ( 1 2 ~ ; )  + o(N;~) .  

6. CONCLUSION 

This  paper has  examined  some efficiency considerations  associated with the 
negative  exponential regression model with a constant  and  one  (dummy) 



Efficiency of Negative Exponential  Failure Time Model 533 

regressor. We first showed that in finite samples MLE is more efficient. 
having smaller variance. than  LLSE.  This  dominance remains  asympto- 
tically. Secondly. since the exact bias  for MLE  can be calculated,  the 
bias-adjusted  estimator is shown to be the  unique  MVUE.  Thirdly,  the 
asymptotic  distributions  associated with suitably  standardized (i - Po) 
and  the likelihood ratio test statistic  may  not be suitable  approximations 
to  the  exact  distribution when the  dummy  variable  has a small  number of 
zeros or  ones.  This leads us to  conjecture  that even  in models with larger 
numbers of regressors, if one of them is a dummy with a small number of 
zeros or ones  in  relation  to  sample size, the use of asymptotic  results  may 
lead to incorrect inference. Whilst many  of  the  results discussed are  not new, 
we have provided  a unified treatment  appropriate  to the regression model 
under  consideration. 

Finally, we extended our model to allow the regressor to  take  on t ' +  1 
distinct values, say 0, 1 . 2 , .  . . , I' ,  with frequencies No. N , .  . . . , N,.  We 
develop  a  minimum  variance  unbiased  estimator  for  this  case and show 
that when r = 2 with No = N2 this  estimator  equals  the  MLE.  Further we 
show that the exact  variance and  the  Cramer-Rao lower bound  are sym- 
metric  functions of No and N2 and  that the efficiency measure defined as  the 
ratio  CRLB/variance is not  a  monotonic  function in N ,  and N2 for fixed No. 
Consequently,  for  some  configurations of No,  N 1 ,  and N., efficiency cannot 
be improved by increasing  the  sample size if this results only in increasing 
one  of  the N ,  0' = 0. 1,2).  As previously mentioned, in the  case of limited 
distinct values for  the regressor care is needed in the  application of standard 
asymptotic  results. We have  not fully investigated the  question of the rela- 
tive efficiency of our  estimator versus the MLE versus the  CRLB,  instead, 
for  computational  reasons. we concentrated  on  the efficiency of the first 
compared with the last. Further  work  on this topic needs to be done. 
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On  Specifying  Double-Hurdle Models 
MURRAY D. SMITH University of Sydney, Sydney. Australia 

1. INTRODUCTION 

The  double-hurdle  model (DHM hereafter)  has been used in microecono- 
metrics to analyse a wide range of individual and household  commodity 
demand.  Indeed, a search of “EconLit”  (the  American  Economic Associ- 
ation’s  electronic  bibliography of economic  literature) reveals 30 citations 
for  “double  hurdle”  dating  back  to 1989, although the DHM literature 
dates initially from Cragg’s seminal  paper [6] published in 1971. 
Important  contributions  to  the DHM literature  include  Jones [16], in 
which the  demand  for  cigarettes is modeled, and Blundell and Meghir [3], 
which was concerned with the labour supply of married  women. Other fields 
in  which the DHM has been applied  include finance (e.g., Dionne et al. [9] 
examine  credit-scoring) and sociology ( e g ,  Zorn [35] examines legislative 
response to  court rulings).  An  interesting discussion on inferential uses of 
the DHM in the  context of recreational activities appears  in  Shonkwiler  and 
Shaw [28]. The  DHM has been applied to infrequency-of-purchase  contexts: 
e.g., Deaton  and Irish [7] report  on  y-Tobit models of household  consump- 

535 



536 Smith 

tion of tobacco,  alcohol,  and  durable goods-the p-Tobit model is a special 
case of the DHM, see Maki  and Nishiyama [24]. However.  the  majority of 
commodity  demand  applications  of  the DHM cater  for  situations in which 
individual preferences generate  zero  observations  due to corner  solutions  as 
well as  abstentions  from  consumption.  Generally,  the  data used in most 
applications  have been cross-sectional on individuals or households;  how- 
ever, recently Labeaga [I91 has  applied  the DHM  to estimate reduced form 
parameters in a  structural  model  for  tobacco  demand using panel data. 

The  DHM is designed to  explain  the mechanism of  individual  demand 
whereby an individual's decision process is decomposed into  separate com- 
ponents:  (i)  a  market  participation decision (whether to buy or  not);  and (ii) 
a  consumption level decision (how  much  to  buy).  Motivating  this  decom- 
position is the  desire to allow different  factors to influence demand;  for 
example, psychological influences may play a  prominent role in determining 
participation,  whereas  economic  considerations  are  more likely to be impor- 
tant in determining  consumption (see DeSarbo  and  Choi [8] for related 
discussion).  Pudney [26, pp. 160-1621 gives a basis for  the DHM in con- 
sumer  choice  theory. 

The  DHM is constructed by assuming  the existence of a  pair of latent 
variables designed to represent  the utility an  individual derives from  market 
participation  and  the utility the  individual derives from  consumption.  These 
random variables are then linked to  consumer  expenditure,  the  latter being 
observable.  The  procedure is this:  the  utility  variables are  transformed  to  a 
pair of hurdle decision variables  (participation decision and  consumption 
decision),  then  the  hurdle  variables are linked through  a  further  transforma- 
tion  to  consumer  expenditure.  Constructions like this are  not  unusual when 
specifying models  of  consumer demand. 

Consumer  expenditure,  the  observed  random  variable, is non-negative 
valued, with the data it generates  having  the  distinctive  feature of an exces- 
sive number of zeroes; what  may be termed zero-inflated data. Accordingly, 
expenditure  would  appear  distributed  according  to some  member of the 
family of discrete-continuous  mixture  distributions, with a single point 
mass at  the origin. While there are  many members of this family of distribu- 
tions,  only  the DHM will  be considered here. Intuitively,  the DHM can 
represent zero-inflated data  for it allows  for  two  sources of zeroes: either 
an individual  can elect not to participate in the  market,  and/or  an individual 
chooses  not  to  consume.  It is assumed that neither  source of zeroes is 
separably identifiable in the data,  and  that the data is drawn  from a general 
population. If further  information  was  available  concerning  either of these, 
i t  may be appropriate  to use another model;  e.g.,  a self-selection Heckman- 
type  model  arises when preferences are such that  participation  dominates 
consumption. 



Double-Hurdle Models 537 

In  the DHM literature, it is typical to find the  statistical  form of the 
model derived by specifying a  reduced-form  bivariate  model  for  the utility 
variables-the specification being linear in its  parameters with zero  mean 
bivariate  normal  disturbances (usually termed Cragg’s model).  There is. 
however, no reason why attention  should  be confined to  normal linear 
models, so in Section 2 of this survey  there  appears an alternate  derivation 
of the  model  unencumbered in this respect. 

An ongoing  concern in the DHM literature is whether or not  the two 
hurdle decisions-participation and consumption-are jointly  taken, or else 
tackled in sequence.  Indeed,  a  number of articles in the DHM literature 
commit  neither way to this  debate, simply opting  instead to assert that 
the  participation decision and the  consumption decision are  “separate”; 
separateness is the  consequence of assuming  the  decomposition of demand 
into  hurdle decisions. Of course,  individual  behavior is not governed by the 
DHM; like all statistical  models,  the DHM is merely attempting to act  as a 
reasonable  approximation  to  reality.  Mindful  of  this,  Section 3 inspects  the 
statistical nature of the DHM to show that  the model implies the  hurdle 
decisions are  jointly  taken.  The DHM  cannot accommodate  sequential  hur- 
dle decisions, for it is incapable  of  identifying  any  particular  sequence in 
which the  hurdle  decisions  are  taken. 

In Section 4, a  number of specifications of DHM  that have been applied 
in practice are examined.  Most popular here is Cragg’s  model, as it is based 
on specifying bivariate  normality  for  the  underlying utility variables. 
Extensions to Cragg’s model are then  considered.  These  include  transformed 
DHM.  and  non-normal  DHM.  The  former induces  aspects of non-normal- 
ity by suitably  transforming  normal-based models-the classic method  here 
is to  apply  the  ubiquitous Box-Cox transformation.  The second extension- 
to  non-normal DHM-has yet to be  be applied in practice.  This approach is 
based on  copula theory (see  [15] and [25]), which enables  construction of 
multivariate  distributions when there is knowledge about only the  marginal 
distributions.  This  method is adapted  to yield non-normal DHM specifica- 
tions.  The  copula  method is also  shown  to be useful if model  building  for  the 
hurdle decision variables is undertaken. Lastly,  it is demonstrated  how spe- 
cial cases of the DHM result under  certain  restrictions; these cases include 
the  Tobit model and Heckman’s  sample selection model. 

2. STATISTICAL CONSTRUCTION 

Denote  individual  consumption  expenditure by Y ,  and assume  that this 
random variable is defined on the  non-negative portion of the real line; 
i.e., Y = y 2 0 (assuming  a continuous  support is convenient.  not  essential). 
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The probability  density  function  (pdf) of Y is a  discrete-continuous  mixture, 
taking  the  form  of 

The discrete component, fo, is a  probability  mass  measured at the  origin, 
while the  support  for  the  continuous  component, f+(y). is the  positive part 
of  the real line. The  rationale  for a  mixture  distribution is empirical: in 
surveys of consumer  expenditure  there  often  arises an excessive number of 
zero-valued  observations. 

The  DHM is a  member of the class of statistical  models which lead to 
mixture  densities of the  form  of (1). Other  prominent  members include 
censoring  models, and zero-inflated  component-mix  models, such as the 
zero-inflated  Poisson  for  discrete data  (for recent examples see Lambert 
[20] and  Bohning  et  al. [4]) and Aalen's [l]  compound Poisson  distribution. 
At first sight,  a  censoring  model  would seem inappropriate  for  expenditure 
data  for the  simple  reason  that  consumer  expenditure cannot be left cen- 
sored at  zero. However, as with many  econometric  models,  its  applicability 
is due  to  assumptions which underpin  the  economic process of  interest. For 
example, in the  case of a  censoring  model like the Tobit, it is not  actual 
consumer  expenditure which is modeled; rather, it is the  utility of consump- 
tion,  a  latent  variable, which is the  object of the  modeling exercise, with 
utility and  expenditure linked according  to some  assumed transformation. 
In  the  case of the DHM, its  statistical specification is also  predicated on 
modeling  latent  utility  variables. 

The economic  framework  underpinning  the DHM begins with  a  pair 
(Y;".  Y:*) of latent utility random variables: Y;* represents  the  utility 
derived by an  individual  from  participation  in  the  market. and Y;* repre- 
sents  the utility derived by an individual  from  consumption. Assume that 
these variables are  continuous  and real-valued.  Next,  assume  a  parametric 
bivariate  model for (E';*, Y:*) by assigning  a joint cumulative  distribution 
function  (cdf) 

F(vT*, y:*) (2) 

for  real-valued  pairs by', y;*). For example,  Cragg's  model is based on 
specifying F as the  cdf  of  the  bivariate  normal  distribution.  In  practice, 
parameters  and  covariates  are involved  in  the specification of F.  

The relationship between utility and  expenditure  variables is established 
by defining two  intermediate  random variables-the hurdle variables- 
denoted by 

Y ;  = l (Yr*  > 0) and = l{Y;* > O)YT* (3) 
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where 1(A) is an  indicator function  taking value 1 if event A holds,  and 0 
otherwise. Y ;  represents  the first hurdle  participation decision (if Y ;  = 0 the 
hurdle is failed,  the  individual  does not  participate; if Y;  = 1 the  hurdle is 
passed,  the  individual is potentially a  consumer),  and Y; represents  the 
second  hurdle  consumption decision (if Y; = 0 the  hurdle is failed,  the 
individual elects not  to consume; if Y; > 0 the  hurdle is passed,  the indivi- 
dual is potentio//y a  consumer).  In  general, Y;  and Y; are  latent.  The func- 
tional  form of the joint  distribution of (Y; ,   Y; )  is induced by the 
specification assumed  for F ;  however, i t  is easy to see from ( 3 )  that  the 
(marginal)  distribution of Y ;  has  to be Bernoulli, and  that  the  (marginal) 
distribution of Y,* must  take  a  zero-inflated  form  as in (1). 

To complete  the  construction of the  model,  assume 

Y = Y ;  Y,* (4) 

or, equivalently, 

Y = I ( Y i *  >on Y;* > O}Y,’* ( 5 )  

the  latter is the  transformation  that  links  the utility variables  directly  to  the 
expenditure  variable. 

Due  to  the decomposition into  separate decisions (jointly taken),  a  zero 
observation on Y can  occur in either  of  two ways: (i) when the first hurdle 
is failed, or the first hurdle is passed and second  hurdle failed ( Y ;  = 0) U 
( Y ;  = 1 n Y; = 0); and (ii) the  second  hurdle  failed, or  the first hurdle failed 
but  the  second  hurdle passed (Y ;  = 0) U ( Y ;  = 0 n Y; > 0). A positive 
observation on Y is observed  only when both hurdles are passed ( Y ;  = 1 n 
Y,’ > 0). In  terms of the utility space (Y;*,  Y;*). Figure 1 depicts  the  sample 
space of Y .  For any pair of values of (Y;* ,  Y;*) generated in the  L-shaped 
region given by quadrants 11,111, and IV, a  zero is generated  for Y as shown 
by the direction  arrows, while any  pair  generated in quadrant I maps to the 
vertical line (normalized to Y;* = I )  at the value of Y;*. 

For the  framework given by (2)-(5), the  componentsf+[v) and.6 of the 
pdf  of Y can  now  be  determined. The discrete  component fo is given by the 
probability  mass  contained in quadrants 11,  111, and IV: 

fo = Pr( Y = 0) 

= F,(O) + FAO) - F(0,O) 

where F,(.) denotes  the  marginal cdf of Y:* ( i  = 1.2). For  any real 1; > 0, the 
continuous  componentf;b) may be derived by differentiating, with respect 
to y ,  the following probability: 
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.. 
Y? 

Quadrant I1 I Quadrant I 

Quadrant 111 Quadrant  IV 

Figure 1. Sample  space  of Y induced by values  assigned to (Y;* ,  Y:*). 

Pr(Y 5 ~ 3 )  = Pr(Y = 0) + Pr(0 < Y 5 y) 

= F,(O) + F,&) - F(0. y )  

Thus, 

Once  a specific functional  form is assumed for F ,  the  pdf (6 )  and (8) may be 
evaluated. 

For a random  sample of size 11 on Y ,  the  log-joint  pdf is  given  by 

0 + 
where '& is the sum  over all zero  observations, x, is the  sum  over  all 
positive  observations,  and i is the  observation  index.  Of  course,  the  log-joint 
pdf  may be  viewed as the  log-likelihood  function. 
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3. ARE DECISIONS JOINT OR SEQUENTIAL? 

The issues surrounding  the  debate “joint versus sequential decision making” 
in the DHM may  be  explored  through  the  statistical  structure of the  model, 
leading  to  the  conclusion  that  the  participation  and  consumption  decisions 
are  jointly  taken.  The reasoning  behind this is that  the DHM is based on the 
specification of a joirlr distribution in the  space of the  utility  variables Y;* 
and Y;*. Due  to the  transformation  of (Y;*,  Y;*) to ( Y ; .  Y;). a joirlt dis- 
tribution is induced on the  space of the  hurdle decision variables. The  out- 
comes of the  hurdle decisions, even though they cannot be observed,  must 
be generated  jointly.  Under  the  assumptions of the DHM, the decision 
process of an individual involves taking two separate  hurdle decisions, 
both of which are  jointly  taken. Should  individual decision processes truly 
be sequential ( in  the  population),  a  statistical  model  different  to  that of the 
DHM would need to be specified. 

As obvious  as the  previous  statistically-oriented  argument is, i t  is evident 
in the DHM literature  that  considerable  confusion reigns on the  “joint versus 
sequential” issue. Particularly  notable in this respect is Gao et  al. [ I O ,  p. 3641. 
in which the  authors hedge their  bets by asserting  that  the DHM encom- 
passes both  joint  and sequential  hurdle decision making.  Intuitively,  the 
DHM appears to lend itself to  a  sequential  interpretation: namely. the out- 
come of the first hurdle  participation decision precedes the  outcome of the 
second  hurdle  consumption decision: the  individual decides first whether to 
participate in the  market,  after  that deciding upon the  extent of their  con- 
sumption.  This  interpretation  has been given by Gould [12, p. 4531, Roosen 
et al. [27, p. 3781, and  Zorn [35, p. 3711, amongst  others.  However,  the views 
expressed by these authors on this point are  mistaken,  for  the  commutative 
rule of multiplication  applies in (4); thus the DHM is incapable of identifying 
any  particular  sequence in which the  hurdles are tackled.  Cragg  also  noted 
the  non-identifiability of the decision sequence [6, p. 8321. 

Maddala  too is adamant  that Cragg’s model is sequential [23, pp. 4-51. In 
fact,  the model which Maddala  has in nlind is one in which the first hurdle 
decision does indeed precede  the  second  hurdle  decision. Put simply, indi- 
viduals decide first whether  or  not to  participate,  and only then, if they have 
elected to  participate, do they determine  their amount  of  consumption. 
However.  this  sequential model is no/ Cragg’s model.  In  the DHM all indi- 
viduals face both  hurdle decisions, while in Maddala’s  sequential  model only 
a  sub-population faces both  hurdle decisions.  In contrast  to  the definition of 
the  hurdle decision variables in the DHM given in (5 ) ,  in Maddala’s  sequen- 
tial model  the  hurdle decision variables are given by 
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Note  the  conditioning event Y ;  = 1 (the  individual  participates)  appearing 
in the  second  hurdle  decision. The utility  space which induces these hurdle 
decision  variables is the  pair (Y?*,  F;*I(Y;* > 0)). In Maddala’s  sequential 
model,  expenditure  can  only be observed on  the  sub-population of market 
participants;  thus  any inferences drawn  from  the  model  pertain  only  to this 
sub-population.  This is not so in the DHM, where  model inference applies 
to all in the  population-participants  as well as  nonparticipants.  The 
sequential  model is discussed at length in Lee and  Maddala [22]. 

A further  point of confusion in the  “joint versus sequential”  debate  con- 
cerns  the role of dependence between the utility variables (Y;*.  y;*). For 
example, Blaylock and Blisard [ 2 ,  pp. 700 and 7021 assert  that  correlated 
utility  variables imply simultaneous decisions, whereas  independent utility 
variables imply that decisions are not  simultaneous  (Gould [12, p. 4531 
expresses a  similar view). This  represents an  attempt  to  create a  motive 
for  the existence of dependence in the DHM where  none exists in its  eco- 
nomic  underpinnings.  Neither  the presence nor the  absence of dependency 
between Y;* and Y;* influences the  earlier  argument  that  the DHM implies 
that  the  hurdle decisions are taken  jointly. 

4. SPECIFICATIONS FOR DOUBLE-HURDLE MODELS 
4.1 Cragg‘s Model 

Selecting F in  (2), corresponding to the cdf of the  bivariate  normal  distribu- 
tion, is by far  and away  the specification adopted most  commonly in prac- 
tice. The bivariate  normal DHM is  commonly referred to  as “Cragg’s 
model.”  Occasionally,  the  terms  “independent  Cragg  model” and  “depen- 
dent  Cragg  model”  are  used.  These  models  are  distinguished  according  to 
whether  correlation between Yr* and I’;* is set to zero, or is parameterized. 
Apart  from  Cragg himself [6],  other  prominent  examples of the  (indepen- 
dent)  Cragg  model  appear in Jones [I61 and Blundell and Meghir [3]. 

Under bivariate  normality, specify 

The vectors s I  and may contain fixed dummy variables and individual- 
specific covariates,  the  latter  are  assumed  not  determined by Y;* or Y;*. 
Without loss of generality,  Var( Y;*) is normalized to unity because in (3) all 
scaling  information  on Y;* is lost due  to  the  transformation  of Y;* to  the 
hurdle  variable Y;.  The  unknown  parameters consist of the  elements of the 
vectors PI and &. and  the scalars o2 and 0. 
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Unlike in the  sample selection literature,  it is unresolved whether  the 
covariates s 1  and x? in the DHM must differ. Pudney [26, pp. 160-1621, 
for example,  argues that .x1 should  contain psychological covariates influ- 
ential on  participation,  whereas .x2 should  contain  economic  covariates  per- 
tinent  to  consumption.  In  the  dependent  Cragg  model,  Jones [ 17, pp. 69-70] 
states  that  covariate exclusion restrictions  emphasize  identification of the 
model: however, inspection of the  likelihood  function (see [17, eq.  (l)]) 
reveals that such restrictions are  not necessary for  parameter  identification. 
On  the  other  hand, a  number of studies  take  the  “kitchen-sink’’ approach 
and include all available  covariates in participation  and  consumption (-x1 = 
-x2); the effect then of a given covariate  on  participation  and  consumption 
will differ according  to  its coefficients. 

A  further  source of covariates  may  also  enter  the  model if heteroscedas- 
ticity is suspected: specifying, for  example, 

Amongst  others,  Yen and  Jones [34] and Yen et al. [32] report  on  hetero- 
scedastic DHM. 

Studies in which 8 has been estimated  have, on the whole, reported 
insignificant estimates  (e.g., [2. 5, 11, 17,  341). This is because 8 is weakly 
identified. In fact, 8 is identified only  through  the  parametric  form  assumed 
for F ;  otherwise,  the  (non-parametric)  joint  distribution of (Yi*. Y:*) is not 
identified. For example,  take  the  distribution of Y;* as  that  of Y when Y = 
y > 0, and  anything  for negative values that leads to J”, dF20.’) = Pr( Y = 
0), combined with Y;* = Y;*. Such  a  model, with perfect correlation 
between Y;* and Y;*, is always  valid. For parametric DHM, such as  the 
dependent  Cragg  model, evidence in  Smith [29] establishes  circumstances 
under which significant correlation  estimates  may  arise,  namely, when the 
data  on Y contains excessive numbers of zero  observations. To illustrate, 
[IO],  [12], [31] report significant correlation  estimates, yet these studies ana- 
lyse data with zeroes amounting  to  67%,  59%.  89.9%, respectively, of the 
overall  sample size. 

Returning  to the  bivariate  normal specification (lo), let @(.) denote the 
cdf of a N(0.  1) random  variable, thus FI(0) = @(-x’,/Il) and 
F3(0) = @(-s~%/a). For the  independent  Cragg  model (i.e., 8 set to 
zero), F(. ,  .) = FI(.)F2(.). The pdf of Y in this case is given by 



544 Smith 

and 

where +(.) denotes  the pdf of a N(0,  1) random variable.  Substitution  into 
(9) gives the  log-likelihood  for P I ,  p 2 ,  and a2. Greene [ 13, pp. 596-5971 gives 
LIMDEP code  for  maximum likelihood estimation of the  independent 
Cragg  model. and  Jones [I71 outlines GAUSS  code  for  estimation of the 
independent  and  dependent  variants of Cragg's model. 

4.2 Transformed  Models 

A more flexible form of DHM may be obtained by specifying a  parametric 
transformation of Y .  The  transformation serves to alter only the continuous 
component of the pdf of Y ,  and i n  existing studies it has been applied in the 
context of Cragg's  model.  Thus.  the  transformation is motivated by the 
desire to parameterize  features of Y such as  any skewness or  kurtosis in 
excess of that which normal-based DHM  are able  to  represent. 

A  transformed DHM is specified by replacing  the left hand side of (4) by 
a  function T (  Y ) .  that is 

T ( Y )  = Y;Y;  

The  function T is assumed positive-valued. non-decreasing. and differenti- 
able in J. for all Y = J* > 0. Also, because the  right-hand side may realize 
zero. T must be defined such that T(0)  = 0. Under these conditions on T 

Pr( Y 5 y )  = Pr(T( Y )  5 T(y) )  

Thus,  the pdf of Y is given by (6)  at the  origin,  and when Y = y > 0 by 
a 

f+CI1> = (FdTCr)) - F(O, TCV))) 

which may be evaluated  once  functional  forms for F and T are specified. 
The second line of (1 1 )  shows  that  the  transformed DHM is obtained by 
scaling an  untransformed DHM i n  which J is replaced by T ~ I T ) :  the  scaling 
factor is simply aT(jl)/ay. 

Examples of transformed DHM reported i n  the  literature  include Yen 
[30] and Yen and  Jones [33], which were based on the Box-Cox transforma- 
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tion,  and  Gao et al. [ IO]  and Yen and  Jones [34]. which were based on  an 
inverse hyperbolic sine transformation. All report significant improvements 
in fit compared to  that of the  Cragg  model.  In  the  case of the Box-Cox 
transformation: 

for which aTCv)/a~. = y - ' ;  usually 2 is constrained  to lie between 0 and 1. 
In  the  case of the inverse hyperbolic sine transformation: 

for which aT(y)/8!> = ( 1  + ,? y-) . In  both specifications, E. represents an 
additional  parameter  to be estimated. 

2 1 -112 

4.3 Non-Normal Models 

The successes reported on fitting transformed  Cragg  models  suggests  that 
further  improvements  may be sought by specifying non-normal F .  This is 
straightforward if Y;* and Y,** are  independent,  for  then  their  joint cdf 
factors.  Thus, if F(..  .) = FI( . )F2( . ) ,  the pdf of Y is given by 

.fo = FI(0) + FdO) - FI (0)FdO) 
and 

.f+C?9 =.h09( 1 - FI(0)) 
wheref20') = aF2(y')/8~? is the  marginal  pdf of Y;*. In this case,  obtaining 
the DHM requires  only specification of the  marginal  distributions.  The 
flexibility to specify different  distributional types for  each  marginal  should 
be exploited. 

More interesting  from  a  practical viewpoint are settings in which Y;* and 
Y,** are  dependent.*  The  conventional  approach here would be to specify a 
suitable  bivariate  distribution  from  amongst  those discussed in,  for  example, 
Kotz  et  al. [18]. However, this approach suffers  due to  the loss of flexibility 
in  functional  form,  for typically the  marginal  distributions  are  of  the  same 
distributional  type.  In light of the  general  functional  form of the pdf of Y 
with its  interaction between joint  and  marginal  distributions (see (6 )  and 

*Although it is important to keep in mind the point raised in the previous section 
concerning the weak identification of the correlation coefficient in the DHM. 
Potentially, the parameterization of correlation between Y;' and Y,** in the DHM 
may be a statistically spurious generalization. 
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(8)), an alternative specification method  based  on  the  theory of  copulas (see 
Joe [15] and Nelsen [25]) would seem particularly  attractive.  The basic idea 
of  this  approach is to build joint  distributions  from specific marginals, it is 
thus  the  opposite of  the  conventional  method  which  derives  marginals  from 
a specific joint  distribution.  To  illustrate, here is one  particular family  of 
copulas-the  Farlie-Gumbel-Morgenstern (FGM)  copula: 

~ ~ ( 2 1 .  .u) = liv + euv(l - U ) ( l  - v) 

where 11 and ZI must be nondecreasing on [O. 11. In terms  of  the FGM copula 
(although it applies  quite  generally  for  other  copulae). if 11 = FI  (.), v = F2(.); 
and  provided -1 5 8 5 1. then by Sklar's  theorem  (Nelsen [25, p. 151) C, is 
a  bivariate  cdf  with  marginal  cdf given  by F,(.) and F2(.); 8 measures 
dependence.* if it is zero, Yr* and YT* are  independent.  The  functional 
form  of  the  joint cdf  of Y;* and Y;* induced by this copula is 

F(y;*. y;*)  = C,(F,(l>;*), F.(lJI*)) 

for  real-valued  pairs (v;*,yT*), while the  joint pdf  of Y;* and Y,** (the 
following result requires  continuity  of  both  random  variables)  induced by 
this  copula is 

wherefi(.)  andf2(.)  are  the  marginal  pdf.  For  the  FGM  copula,  substitution 
into (6)  and (8) yields the  pdf of Y in this  case as 

fo = Fl (0) + F2(0) - FI (0)FAO) - OF1 (O)F2(0)( 1 - FI 1 - FZ(0)) 

and 

a 
av .f+W = - (FZC19 - FI(O)F2(.1") - OF, (O)F2CV)(l - FI (0))(1 - FdJ) ) )  

= ~ X J - ) (  1 - FI (0) - 8 6  (ON 1 - FI  I - 2Fdy)))  

Given  any  copula  (many  are listed in [ 151 and [25]). specification of  a DHM 
involves selecting from  amongst the class of  univariate  distributions.  The 
attractiveness  of  the  copula  method is the flexibility it allows to specify 
different distributional types for each  marginal. 

*In  the copula literature. the term "association" is often  used instead of "depen- 
dence." 
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4.4 Hurdle Models 

Each  previous DHM has resulted from  a specification assumed  for F.  the 
joint cdf of the utility variables (Y;* ,  YY) .  There is, however,  a  further way 
to arrive at a DHM; namely, through specifying a joint  distribution  for the 
hurdle  variables ( Y ; ,  Y;) .  Indeed, due  to  the  intermediate  transformation 
from (Y;*, YT*) to ( Y ; ,  Y:). see (3), it is apparent  that there is considerable 
information  about  the  marginal  distributions of the  hurdle  variables: Y;  
must be Bernoulli distributed.  and  the  distribution of Y,* must take a 
zero-inflated form  as in (1). 

Let G(J~T,$) denote  the  joint  distribution  of ( Y ; ,  Y;), for  pairs (-V;,JQ 

such that y; E (0, l }  and I.,; L 0. Then,  the pdf of Y is given by 

.fo = G,(O) + G,(O) - G(O, 0) 

when J) = 0, and, when I1 > 0. by 

To arrive at a DHM, the  attractiveness of the  copula  method discussed in 
Section 4.3 is obvious,  for  the  marginal  distributions  are of known  types. 

Given any  copula, the DHM is arrived at by specifying the  probability p 
in GI(.)  and the  cdf G2(.). For p = p ( s I ,  /II) ,  any  function whose range is on 
[0, I ]  is suitable. For example,  specifyingp  as  the  cdf of the standard  normal 
(e.g., p = @(s ' , / I , ) )  leads  to  the  familiar  probit,  whereas another,  more flex- 
ible alternative  would be to specify p as  the pdf of a  beta random variable. 
For Gzb) = G2(v; sz. /Iz), a  zero-inflated  distribution  must  be specified; for 
example,  Aalen's [ I ]  compound Poisson  distribution. 

4.5 Dominance Models 

Special cases of the DHM arise if restrictions are placed on  the joint dis- 
tribution of (Y?*.  Y,**). For example, if Pr( Yr* > 0) = 1,  then all individuals 
participate  and Y = Y:'; furthermore, specifying Y;* - N(s&. a') leads 
to  the well-known Tobit model.  Thus,  the Tobit model  can be  viewed as 
nested within the  Cragg model (or at least a DHM in which the  marginal 
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distribution of Y,** is normal), which leads to a simple specification test 
based on the  likelihood  ratio  principle. 

Dominance  models, in which the  participation decision is said to  dom- 
inate  the  consumption  decision.  provide yet another special case of the 
DHM. Jones [I61 characterizes  dominance as a  population in which all 
individuals electing to  participate  are  observed  to have positive  consump- 
tion;  hence,  Pr( Y > 01 Y; = 1) = 1.  I n  terms of the  underlying utility vari- 
ables,  dominance is equivalent to 

Pr(Y;* > 0, Y;* 5 0) = 0 

So, referring back to  Figure 1. dominance implies that  quadrant IV is no 
longer part of the  sample  space of (Y;*, Y;*). Dominance implies that  the 
event I’ = 0 is equivalent to Y;* 5 0. for when individuals do  not consume 
then they automatically fail to  participate whatever  their desired consump- 
tion-individuals cannot  report  zero  consumption if they participate in the 
market. Unlike  the standard  (non-dominant)  DHM in which zeroes can be 
generated  from  two  unobservable  sources, in the dominant  DHM there is 
only one means of generating  zero  consumption.  Thus, 

y *  - , - 1 ( Y  > 0) 

meaning  that  the first hurdle  participation decision is observable  under 
dominance.  The cdf of Y may be written 

P r ( Y i y ) = P r ( Y ; = O ) + P r ( O ( Y ; Y 2 t I ? : ) Y I * = l ) P r ( Y ; = l )  

for real-valued 2 0. This  form of the  cdf  has  the  advantage of demonstrat- 
ing that  the utility associated with participation Y;* acts  as a  sample selec- 
tion  mechanism.  Indeed,  as Y;* is Y when Y;* > 0. the dominant  DHM is 
the classic sample selection model discussed in Heckman [14]. Accordingly, 
a dominant  DHM requires specification of a joint  distribution  for 
(Y;*, Y,”*l Y,** > O).* As  argued  earlier, specification based on the  copula 
method  makcs this task relatively straightforward. Lee and  Maddala [31] 
give details of a less flexible method based on a  bivariate  normal  linear 
specification. 

‘The nomenclature  “complete  dominance”  and  “first-hurdle  dominance” is some- 
times  used  in the  context of a dominant DHM. The  former refers to a  specification in 
which Y;* is independent of Y,”*l Y,” > 0, while the  latter is the  term used if Y:* and 
Y,C* I Y,C* > 0 are  dependent. 
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5. CONCLUDING REMARKS 

The  DHM is one of a  number of models  that  can be  used to fit data which is 
evidently zero-inflated. Such data arise in the  context of consumer  demand 
studies, and so i t  is  in this broad  area of economics  that  a  number of 
applications of the DHM will  be found.  The DHM is motivated by splitting 
demand  into two separate decisions: a  market  participation  decision,  and  a 
consumption  decision.  Zero  observations  may result if either decision is 
turned  down, giving two sources, or reasons,  for  generating  zero  observa- 
tions.  Under  the DHM. it was established  that  individuals  tackle  the deci- 
sions  jointly. 

The statistical  construction of the DHM usually rests on assigning a 
bivariate  distribution,  denoted by F .  to the utilities derived from  participa- 
tion and  consumption.  The derivation of the model that was given is general 
enough to embrace  a variety of specifications for F which have  appeared 
throughout the  literature.  Moreover, i t  was  demonstrated how copula  the- 
ory was useful in the DHM context,  opening  numerous possibilities for 
statistical  modeling  over and  above  that of the  bivariate  normal  Cragg 
model which  is the  popular  standard i n  this field. 

ACKNOWLEDGMENT 

The research reported i n  this chapter was supported by a  grant  from  the 
Australian  Research  Council. 

REFERENCES 

I .  Aalen, 0. 0. (1992),  Modelling  heterogeneity i n  survival analysis by 
the  compound Poisson  distribution.  The An11o1s of Applied Probahilit~~. 

2. Blaylock, J. R., and Blisard, W. N. (1992), U.S. cigarette  consumption: 
the  case of low-income women. Alnericml Journal of Agr i cu l tu~~d  
Ecotlonlics. 74, 698-705. 

3 .  Blundell, R.. and Meghir, C. (1987). Bivariate  alternatives  to  the Tobit 
model. Jourml of Ecoiionzrtrics, 34, 179-200. 

4.  Bohning,  D..  Dietz, E., Schlattman, P., Mendonga. L., and  Kirchner, 
U. (1999), The zero-inflated Poisson  model and the  decayed, missing 
and filled teeth index in dental  epidemiology. Jowt~ul  of the R o ~ w l  
Srar is t icd Soci r t~ ,  A .  162, 195-209. 

5 .  Burton. M., Tomlinson,  M.,  and  Young,  T. (1994), Consumers' deci- 
sions  whether or not  to  purchase  meat:  a  double  hurdle  analysis of 

2, 951-972. 



550 Smith 

6. 

7. 

8. 

9. 

10. 

11. 

12 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20 

single adult  households”, Jourml of Agriculturul  Economics, 45, 202- 
212. 
Cragg.  J. G.  (1971), Some  statistical  models  for limited dependent 
variables with applications  to  the  demand  for  durable  goods. 
Econometrica, 39, 829-844. 
Deaton, A.. and  Irish. M. (1984). Statistical  models  for zero expendi- 
tures in household  budgets. J o u r d  of Public Economics, 23, 59-80. 
DeSarbo,  W. S., and  Choi.  J. (1999). A  latent  structure  double  hurdle 
regression model  for  exploring  heterogeneity in  consumer  search  pat- 
terns. Jour~~crl of Econometrics, 89, 423-455. 
Dionne, G . ,  Artis. M., and Guillen, M. (1996), Count-data models  for 
a  credit  scoring  system. Journal of Empiricul Finance, 3. 303-325. 
Gao, X. M., Wailes, E. J.,  and  Cramer, G.  L. (1995), Double-hurdle 
model with bivariate  normal  errors: an  application  to U.S. rice 
demand. JOWVO~ of Agriculturuf und Applied Econonlics. 27, 363-376. 
Garcia,  J..  and  Labeaga,  J. M. (1996), Alternative  approaches  to  mod- 
elling zero  expenditure: an  application  to Spanish  demand  for  tobacco. 
0.yfor.d Blrlletirl of Econonlics arid Stutistics, 58, 489-506. 
Could, B. W. (l992),  At-home  consumption of cheese: a  purchase- 
infrequency  model. Anlericmz Journal of Agrictrltural Ecollorwics, 72, 
453-459. 
Greene,  W. H. (1995), LIMDEP, Version 7.0 User’s Manuul. New 
York:  Econometric  Software. 
Heckman, J. J. (1976). The  common  structure of statistical  models of 
truncation.  sample selection and limited dependent  variables  and  a 
simple  estimator  for  such  models. Annuls of Economic and Sociul 
Mecrnrremm, 5,  465492. 
Joe, H. (1997), A4ultivcrricrte Models und Dependence Collcepts. 
London:  Chapman  and  Hall. 
Jones,  A. M. (1989). A  double-hurdle  model of cigarette  consumption. 
Jotrrrzal of Applied Ecollometrics, 4, 23-39. 
Jones,  A. M. (1992). A  note  on  computation of the  double-hurdle 
model with dependence with an application to  tobacco  expenditure. 
Blrlletin of Economic Resemcll. 44, 67-74. 
Kotz. S., Balakrishnan,  N.,  and  Johnson, N. L. (2000), Colztimolrs 
Multivariute  Distributions, volume 1,  2nd edition. New York: Wiley. 
Labeaga. J. M. (1999), A  double-hurdle  rational  addiction  model with 
heterogeneity:  estimating  the  demand  for  tobacco. Jotmu/  of 
Econonwtrics, 93. 49-72. 
Lambert. D. (1993). Zero-inflated  Poisson regression. with an applica- 
tion to defects in manufacturing. Teclzrlometrics, 34. 1-14. 



Double-Hurdle Models 55 1 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

Lee, L.-F., and  Maddala, G. S. (1985), The  common  structure of tests 
for selectivity bias, serial correlation,  heteroscedasticity and  non- 
normality in the Tobit  model. Internotionol Economic Review, 26, 1- 
20. Also in: Maddala, G. S. (ed.) (1994), Econometric Methods rrnd 
Applicotions (Volume 11). Aldershot:  Edward  Elgar,  pp. 291-3 IO. 
Lee, L.-F.,  and  Maddala, G. S. (1994). Sequential selection rules and 
selectivity in discrete choice econometric  models.  In:  Maddala, G. S. 
(ed.), Econometric  Merhods and Applications (Volume 11). Aldershot: 
Edward  Elgar, pp. 3 1 1-329. 
Maddala, G. S .  (1985), A survey of  the  literature  on selectivity bias as 
it pertains to health  care  markets. Advances in Health  Econor~ics and 
Health  Services Reserrrch, 6, 3-18. Also in: Maddala. G. S. (ed.) (1994). 
Econonwtric Metlrods orld Applications (Volume 11), Aldershot: 
Edward Elgar. pp. 330-345. 
Maki, A., and Nishiyama, S. (1996). An analysis of under-reporting 
for  micro-data sets: the  misreporting or double-hurdle  model. 
Econon7ics Letters. 52, 21  1-220. 
Nelsen, R. B. (1999), An Introhrction to Copulas. New York: Spinger- 
Verlag. 
Pudney, S. ( I  989). Modelling Indivicl~ral Choice: the  Econometrics of 
Corners, Kinks, onrl Holes. London: Basil Blackwell. 
Roosen. J., Fox, J.  A,, Hennessy, D. A.,  and  Schreiber,  A. (1998), 
Consumers'  valuation of insecticide use restrictions: an  application 
to  apples. Journal of Agricdturol and Resource Economics, 23, 361- 
384. 
Shonkwiler. J.  S., and  Shaw,  W. D. (1996), Hurdle  count-data models 
in recreation  demand  analysis. Journal of Agriculttrral ar7d Resource 

Smith, M. D. (1999), Should  dependency be specified in double-hurdle 
models? In: Oxley. L., Scrimgeour, F., and  McAleer, M. (eds.), 
Proceedings of the Inrernrrtional Congress 017 Modelling and 
Simrlation (Volume 2). University of Waikato,  Hamilton, New 
Zealand,  pp. 277-282. 
Yen, S. T. (1993), Working wives and  food away from  home:  the 
Box-Cox double  hurdle  model. American Jotrrnal of Agricdtural 
Econonzics, 75, 884-895. 
Yen, S. T., Boxall, P. C., and Adamowicz. W. L. (1997), An econo- 
metric  analysis of donations  for  environmental  conservation in 
Canada. Journol of Agriclrlrural rrnd Resource  Econonlics, 22. 246-263. 
Yen, S. T., Jensen, H.  H.,  and  Wang, Q. (1996). Cholesterol  informa- 
tion and egg consumption in the US: a nonnormal  and heteroscedastic 

E C O H O ~ ~ ~ C S .  21, 2 10-2 19. 



552 Smith 

double-hurdle  model. European Revieu! of Agriculturcd Econorvics. 23. 

33. Yen, S .  T.. and  Jones,  A. M. (1996). Individual  cigarette  consumption 
and  addiction: a flexible limited dependent  variable  approach. Ht.cdth 
Economics. 5. 105-1 17. 

34. Yen, S .  T., and Jones,  A. M. (1997). Household  consumption of 
cheese: an inverse  hyperbolic  sine  double-hurdle  model with dependent 
errors. Americcrn Juur.1~11 of Agriculturcd Econon?ics, 79, 246-25 1. 

35. Zorn. C. J. W. (1998), An analytic  and  experimental  examination of 
zero-inflated and  hurdle Poisson  specifications. Sociologicol Methods 
arid Rescwdt, 26, 368400. 

343-356. 



26 
Econometric  Applications of Generalized 
Estimating Equations for  Panel Data and 
Extensions to Inference 
H. D. VINOD Fordham University,  Bronx, New York 

This  chapter  hopes  to  encourage  greater  sharing of research ideas between 
biostatistics and econometrics. Vinod ( 1  997) starts,  and  Mittelhammer et 
al.’s (2000) econometrics text explains in detail  and with illustrative  compu- 
ter  programs, how the  theory of estimating  functions (EFs) provides general 
and flexible framework  for  much of econometrics. The  EF theory  can 
improve  over  both  Gauss-Markov least squares  and  maximum likelihood 
(ML) when the  variance  depends on the  mean.  In  biostatistics  literature 
(Liang and Zeger 1995), one  of  the  most  popular  applications  of EF  theory 
is called generalized estimating  equations (GEE).  This  paper extends GEE 
by proposing  a new pivot function  suitable  for new bootstrap-based  infer- 
ence. For longitudinal  (panel) data. we show  that  when  the  dependent vari- 
able is a  qualitative or  dummy variable,  variance  does  depend  on  the  mean. 
Hence  the GEE is shown  to be superior  to  the ML. We  also  show that the 
generalized linear model (GLM) viewpoint with its link functions is more 
flexible for  panel data  than some  fixed/random effect methods in econo- 
metrics. We illustrate GEE and GLM methods by studying  the effect of 
monetary policy (interest  rates) on turning  points in stock  market prices. We 
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find that interest rate policy does  not have  a significant effect on stock price 
upturns  or  downturns.  Our  explanations of GLM  and  GEE  are missing in 
Mittelhammer et al. (2000) and  are designed to improve lines of commu- 
nication between biostatistics and econometrics. 

1. INTRODUCTION  AND  MOTIVATION 

This  chapter explains  two popular  estimation  methods in biostatistics  litera- 
ture, called GLM  and  GEE, which are largely ignored by econometricians. 
The  GEE belongs in the  statistical  literature  dealing with Godambe-Durbin 
estimating  functions (EFs) defined as  functions of data  and  parameters, 
g(y, B). EFs satisfy “unbiasedness, sufficiency, efficiency and robustness” 
and  are  more versatile than  “moment  conditions” in econometrics of 
generalized method of moments (GMM) models.  Unbiased EFs satisfy 
E(g) = 0. Godambe’s (1960) optimal  EFs minimize [Var(g)] [Edg/i3B]”. 
Vinod (1997, 1998. 2000) and  Mittelhammer et al. (2000, chapters 11 to 
17) discuss EF-theory  and  its  applications in econometrics. The  EFs  are 
guaranteed to improve  over  both generalized least-squares  (GLS) and max- 
imum  likelihood (ML) when the  variance  depends on  the  mean,  as shown in 
Godambe  and  Kale (1991) and  Heyde (1997). The  GEES  are simply a  panel 
data  application  of  EFs  from biostatistics which exploits  the  dependence of 
variance on  mean,  as explained  in Dunlop (1994). Diggle et al. (1994), and 
Liang and Zeger (1995). 

The  impact  of  EF-theory  on statistical  practice is greatest in the  context 
of GEE. Although  the  underlying  statistical results are  known in the EF  
literature,  the  biometric  application  to  the  panel  data  case clarifies and 
highlights  the  advantages of EFs.  This  chapter uses the  same  panel  data 
context with an  econometric example to show exactly where EFs  are  super- 
ior  to  both  GLS  and  ML. 

A score  function is the  partial  derivative of the log likelihood  function. If 
the  partial is specified without  any  likelihood  function, it is called quasi- 
score  function  (QSF).  The  true integral (i.e., likelihood function)  can fail to 
exist when the  “integrability  condition”  that  second-order  cross  partials 
be symmetric  (Young’s  theorem) is violated.  Wedderburn (1974) invented 
the  quasi-likelihood  function (QLF)  as a  hypothetical  integral of QSF. 
Wedderburn was motivated by applications  to  the generalized linear 
model (GLM), where one is unwilling to specify any  more  than mean and 
variance  properties.  The  quasi-maximum  likelihood  estimator  (QML) is 
obtained by solving QSF = 0 for B. Godambe (1985) proved that  the  opti- 
mal EF  is the  quasi-score  function  (QSF) when QSF exists. The  optimal  EFs 
(QSFs)  are  computed  from the  means and variances. without  assuming 



Applications of Generalized  Estimating  Equations 555 

further knowledge of higher  moments (skewness, kurtosis) or the  form of 
the  density.  Liang et al. (1992, p. 1 I )  prove that  traditional likelihoods 
require  additional  restrictions.  Thus, EF  methods based on  QSFs  are gen- 
erally regarded as  “more robust.” which is a part of unbiasedness. suffi- 
ciency, efficiency. and robustness claimed above.  Mittelhammer et al.’s 
(2000, chapter 11) new text gives details on specification-robustness, finite 
sample  optimality, closeness in terms of Kullback-Leibler discrepancy,  etc. 
Two  GAUSS  programs  on a C D  accompanying  the text provide a graphic 
demonstration of the  advantages of QML. 

In econometrics,  the  situations  where  variance  depends on  the mean are 
not  commonly recognized or  mentioned. We shall see later  that  panel data 
models do satisfy such  dependence.  However, it is useful to consider such 
dependence  without  bringing in the  panel data case  just  yet. We  use this 
simpler case to derive and  compare  the  GLS,  ML,  and EF  estimators. 

Consider  T real variables 3’; (i = 1.2,  . . . , T): 

y f  - IND(pf(B), a’ui(j3)). where B is p x 1 ( 1 )  

where IND denotes  an independently (not necessarily identically) dis- 
tributed random variable  (r.v.) with mean pi(/?), variance a’ui(#?), and a’ 
does  not  depend  on B. Let y = ( y f )  be a T x 1 vector and V = a*(Var(y) = 
Var(p@))  denote  the T x T  covariance  matrix.  The IND assumption 
implies that V(p)  is a  diagonal  matrix  depending only on the  ith  component 
p; of the  T x 1 vector p. The  common  parameter vector of interest is B 
which measures how p depends  on X ,  a T x p matrix of covariates. For 
example, pi = X g  for  the  linear regression case.  Unlike  the  usual regression 
case,  however,  the  heteroscedastic  variances vi@) here are functionally 
related to the  means p,(B) through  the presence of B. We call this  “special” 
heteroscedasticity, since it is rarely  mentioned in econometrics  texts. 

If y f  are discrete  stochastic processes (time series data), then p, and vi are 
.conditional  on  past  data.  In  any case, the log-likelihood for ( I )  is 

LnL = -( T - 2) In 2n - (T/2)(ln a*) - SI - S, (2) 

where SI = (1/2)Cf=, In u; and S2 = Ci=l [~ . f  - p i ] ’ / [2a ’u f ] .  The  GLS 
estimator is obtained by minimizing the  error sum  of  squares Sz with 
respect to  (wrt) B. The first-order  condition (FOC)  for GLS is simply 
a(S,)/ag = [i3(S,)/auf][au,/aB] + [a(S2)/apj][ap,/~/3] = TI + QSF = 0. which 
explicitly defines TI  as  the first term  and QSF  as the  quasi-score  function. 
The theory of estimating  functions suggests that, when available,  the  opti- 
mal EF  is the QSF itself. Thus  the  optimal EF  estimator is given by solving 
QSF = 0 for B. The  GLS  estimator is obtained by solving TI + QSF = 0 for 

T T 
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B. When  heteroscedasticity is “special,” [au, /ap] is nonzero  and TI is non- 
zero.  Hence,  the GLS solution  obviously  differs  from  the EF  solution. 

To  obtain the ML estimator  one maximies the  LnL of ( 2 ) .  The  FOC  for 
this is 

q-s, - s,>/w = + s,)/a~,l[a~,/aBl+ [a(s,)/aFfl[aF,/~Bl = 0 

where we use a(s,)/aF., = 0. We have 
7 

aLnL/aB = [a(-sl - s , ) / a u i l [ a u r / a ~ l  + C{Ll)i - F,I/[D’U~I)[~F~/~BI 
r = l  

= T,’ + QSF 

which defines T,‘ as a  distinct first term. Since special heteroscedasticity  leads 
to  nonzero [au,/ag]. T,‘ is also  nonzero.  Again,  the ML solution is obviously 
distinct  from  the EF. 

The unbiasedness of EF  is verified as follows. Since u, > 0, and 
ELvf - ,u i ]  = 0, we do have E(QSF) = 0. Now  the ML estimator is obtained 
by solving T,’ + QSF = 0 for B, where the presence of TI leads to a biased 
equation since E(T,’) is nonzero. Similarly. since TI is nonzero,  the  equation 
yielding GLS estimator  as  solution is biased. The “sufficiency” property is 
shared by GLS,  ML,  and  EF.  Having shown  that  the EF  defined by 
QSF = 0 is unbiased, we now turn  to its “efficiency” (see Section 11.3 of 
Mitttelhammer et al. 2000). To derive the  covariance  matrix of QSF it is 
convenient to use matrix  notation  and write (1) as: y = p + E ,  EE = 0, 
EEE‘ = V = diag(u,). If D = (aFu , /ag j )  is a T x p matrix,  McCullagh and 
Nelder (1989, p. 327) show  that  the QSF(p, u) in matrix  notation is 

r 

The last  summation  expression of (3) requires V to be a  diagonal  matrix. 
For proving efficiency, V need not be diagonal,  but it must be symmetric 
positive definite. For generalized linear  models (GLM) discussed in the next 
section  the V matrix  has  known  functions of B along  the  diagonal. 

In  this notation,  as before, the  optimal EF  estimator of the 0 vector 
is obtained by solving  the  (nonlinear)  equation QSF = 0 for B. The  un- 
biasedness of EF  in this notation is obvious. Since E(]: - F )  = 0, 
E(QSF) = 0, implying  that QSF is an unbiased EF. In  order  to  study  the 
“efficiency” of EF  we evaluate  its  variance-covariance  matrix  as: 
Cov(QSF) =D’V” D = I F ,  where IF denotes  the  Fisher  information  matrix. 
Since -E(aQSF/@) = Cov(QSF) = I F ,  the  variance of QSF reaches the 
Cramer-Rao lower bound.  This means EF  is minimum  variance in the 
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class of unbiased  estimators  and  obviously  superior  to ML and GLS (if EF  
is different  from ML  or  GLS) in that class. This  does  not  at all mean  that we 
abandon  GLS  or ML. Vinod (1997) and  Mittelhammer et al. (2000) give 
examples  where  the  optimal EF  estimator coincides with the  least-squares 
(LS) and maximum  likelihood (ML)  estimators  and  that EF  approach  pro- 
vides a  "common tie" among several estimators. 

In  the 1970s, some  biostatisticians simply ignored  dependence of Var(e,) 
on  for  computational  convenience.  The  EF-theory  proves  the  surprising 
result that it would be suboptimal  to  incorporate  the complicating  depen- 
dence of Var(e,)  on ,8 by including  the  chain-rule related extra term(s) in the 
FOCs of (4). An intuitive  explanation seems difficult. although  the  computer 
programs in Mittelhammer  et  al. (2000, chapters 11  and 12)  will help.  An 
initial  appeal of EF-theory in biostatistics was that it provided  a  formal 
justification for the quasi-ML  estimator used since the 1970s. The 
"unbiasedness, sufficiency, efficiency and robustness" of EFs  are  obvious 
bonuses. We shall see that  GEE goes beyond quasi-ML by offering more 
flexible correlation  structures  for  panel  data. 

We summarize our arguments in favor of EFs  as follows. 

Result 1. Assume that variances u,(B) here are functionally  related to the 
means p.,(B). Then  first-order  conditions (FOCs)  for  GLS  and  ML imply a 
superfluous term arising  from  the  chain rule in 

T I  + QSF(p, u) = 0 and T,' + QSF(p, u)  = 0 (4) 

respectively, where QSF(p, u)  in matrix  notation is defined in (3). Under 
special heteroscedasticity,  both T I  and Ti are  nonzero when variances 
depend on B. 

Only when [&I,/&!?] = 0, i.e., when heteroscedasticity  does  not  depend on 
B, TI  = 0 and T,' = 0, simplifying the FOCs in (4) as  QSF = 0. This  alone is 
an unbiased EF. Otherwise,  normal  equations  for  both  the GLS and ML  are 
biased estimating  functions and  are flawed for  various  reasons  explained in 
Mittelhammer  et al.'s (2000, Section  I1.3.2.a) text. which also cites Monte 
Carlo evidence. The intuitive  reason is that  a biased EF  will produce  incor- 
rect B with probability 1 in the limit as  variance  tends to  zero.  The technical 
reasons  have  nothing to  do with a quadratic loss function.  but do include 
inconsistency in asymptotics. laws of large  numbers,  etc.  Thus,  FOCs of 
both GLS  and  ML lead to biased and inefficient EFs. with a  larger  variance 
than  that of optimal EF  defined by QSF = 0. 

An interesting lesson of the  EF-theory is that biased estimators  are accep- 
table  but biased EFs  are  to be  avoided.  Indeed,  unbiased EFs may well  yield 
biased EF estimators.  Thus we have  explained why for certain  models  the 
quasi-ML  estimator. viewed as  an EF  estimator, is better  than  the full- 

,."" "1 , """-I"""_ ... I ,. 
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blown ML estimator.  Although  counter-intuitive, this outcome  arises when- 
ever we have  “special”  heteroscedasticity in vi . which depend  on b. in light 
of Result 1 above.  The reason  for discussing the  desirable  properties of 
QSFs is that  the GEE estimator  for  panel  data is obtained by solving the 
appropriate  QSF = 0. The special heteroscedasticity is also  crucial and  the 
next section  explains  that GLMs give rise to it .  The GLMs do not need to 
have panel data,  but  do need limited (binary)  dependent  variables. 

The special heteroscedasticity  variances  leading to  nonzero [i3v,/i3,9] are 
not  as  rare  as  one might think.  For example,  consider  the  binomial  distribu- 
tion  involving Iz trials with probability p of success; the  mean is p = rzp and 
variance u = ~ p ( l  - p )  = p(l - 1)). Similarly,  for  the  Poisson  distribution 
the  mean ,LL equals  the  variance.  In  the following section, we discuss general- 
ized linear  models (GLM) where we mention  canonical link functions  for 
such  familiar  distributions. 

2. THE  GENERALIZED  LINEAR MODELS (GLM)  AND 
ESTIMATING  FUNCTION  METHODS 

Recall that besides GEE we also  plan to  introduce the  second  popular 
biostatistics  tool. called GLM, in the  context of econometrics.  This section 
indicates  how  the GLM methods  are flexible and distinct  from  the  logits or 
fixed/random effects approach popularized by Balestra,  Nerlove, and  others 
and covered in econometrics  texts  (Greene 2000). Recent econometrics 
monographs.  e.g., Baltagi (1995), dealing with logit,  probit and limited 
dependent  variable  models,  also exclusively rely on the ML methods,  ignor- 
ing both GLM and GEE models.  In  statistical  literature  dealing with designs 
of experiments and analysis of variance,  the  fixedirandom effects have been 
around  for a  long time. They  can be cumbersome when the  interest is in the 
effect of covariates or in so-called analysis of covariance.  The GLM 
approach considers  a  probability  distribution of p,, usually cross-sectional 
individual  means, and focuses on their  relation with the  covariates X .  
Dunlop (1994) derives the  estimating  functions  for  the GLM and explains 
how the  introduction  of  a flexible link function /z(p,) linearizes the  solution 
of the  EFs  or  QSF = 0. 

We describe  the GLM as a  generalization of the  familiar GLS in 
the  familiar  econometric notation of the regression model with T 
( t  = I , .  . . , T )  observations  and p regressors,  where  the  subscript t can 
mean  either time series or cross-sectional data. We assume: 

1) = X g  + E ,  E(&) = 0, EEF’ = a’Q ( 5 )  
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Note  that  the probability  distribution of y with mean EO.) = Xg is assumed 
to be normal  and linearly related  to X .  The maximum  likelihood (ML)  and 
generalized least-squares  (GLS)  estimator is obtained by solving the follow- 
ing  score  functions or normal  equations  for g. If the existence of the like- 
lihood  function is not  assumed, it is called a  “quasi” score function (QSF): 

gk, X ,  g) = x’52”xg - x’52-1). = 0 (6 )  

When  a QSF is available.  the  optimal EF estimator is usually obtained by 
solving the QSF = 0 for g. If 52 is a  known  (diagonal)  matrix which is not a 
function of g, the EF coincides with the  GLS.  An explicit (log) likelihood 
function  (not  quasi-likelihood  function) is needed for defining the  score 
function  as  the  derivative of the  log  likelihood. The  ML estimator is 
obtained by solving (score  function) = 0 for B. 

Remark 1. The  GLS is extended into  the generalized linear  model (GLM is 
mostly  nonlinear,  but  linear in parameters) in three  steps  (McCullagh  and 
Nelder 1989). 

(i)  Instead of v - N ( p .  ~‘52) we admit  any  distribution  from  the  expo- 
nential family of distributions with a flexible choice of relations 
between mean and variance  functions.  Non-normality  permits  the 
expectation E()*) = p to  take  on values only i n  a meaningful restricted 
range  (e.g.,  non-negative  integer  counts or [O. 11 for  binary  outcomes). 

(ii) Define the  systematic  component q = Xg = x;=’=, sip; 71 E (-00, m), 
as a  linear  predictor. 

(iii) A monotonic  differentiable link function q = h(p) relates E(J,)  to  the 
systematic  component Xg. The tth  observation satisfies q,  = h(p,). For 
GLS, the link function is identity, or q = p, since y E (-00, 00). When 
1’ data  are  counts of something, we obviously cannot allow  negative 
counts. We need a link function which makes  sure that Xg = 1-c > 0. 
Similarly, for y as binary  (dummy  variable)  outcomes, J’ E [0, 11, we 
need a link function h(p) which maps the  interval [0.1] for y on the 
(-00. 00) interval  for Xg 

Remark 2. To  obtain generality,  the  normal  distribution is often replaced 
by a  member of the  exponential family of distributions, which includes 
Poisson,  binomial,  gamma,  inverse-Gaussian,  etc.  It is  well known  that 
“sufficient statistics” are available  for  the  exponential family. In our  con- 
text, X’y. which is a p x 1 vector  similar to g, is a sufficient statistic.  A 
“canonical” link function is one  for which a sufficient statistic of p x 1 
dimension exists. Some well-known canonical link functions  for  distribu- 
tions in the  exponential family are: h(p) = p for  the  normal, h(p) = logp  
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for  the  Poisson, 141.) = log[/~/(l  - p)] for  the  binomial,  and h(p) = - I / p  is 
negative  for  the  gamma  distribution.  Iterative  algorithms based on Fisher 
scoring are developed  for GLM, which also  provide  the  covariance  matrix 
of B as a  byproduct.  The difference between Fisher  scoring  and  the  Newton- 
Raphson  method is that the  former uses the expected value of the  Hessian 
matrix.  The GLM iterative scheme depends  on  the  distribution of J' only 
through the  mean and variance.  This is also  one of the  practical  appeals of 
the  estimating  function  quasi-likelihood viewpoint largely ignored in econo- 
metrics. 

Now we state  and prove  the  known result that when y is a  binary  depen- 
dent variable,  heteroscedasticity  measured by Var(&,), the  variance of E,, 

depends  on  the regression coefficients B. Recall that this is where we have 
claimed the EF  estimator  to be better  than ML or  GLS.  This dependence 
result also  holds  true  for  the  more  general  case  where J' is a  categorical 
variable  (e.g..  poor.  good, and excellent as three  categories) and  to panel 
data where we have  a time series of cross-sections. The general case is 
discussed in the EF literature. 

Result 2. The "special" heteroscedasticity is present by definition when 
Var(&,) is a  function of the regression coefficients B. When J', is a  binary 
(dummy)  variable  from time series or cross-sectional data  (up  to a possibly 
unknown scale parameter) it  does possess special heteroscedasticity. 

Proof Let P, denote  the probability that J', = 1 .  Our interest is in relating 
this probability to various  regressors at time t ,  or X , .  If the  binary  dependent 
variable in ( 5 )  can  assume only two values ( 1  or 0). then regression errors 
also can  and  must assume  only  two values: 1 - X,B or -X,B.  The  corre- 
sponding  probabilities are P, and (1 - P,) respectively. which can be  viewed 
as  realizations of a  binomial  process. Note  that 

E(&,) = P,(1 - X,B) + ( I  - P,)(-X,B)  = P, - X,B (7) 

Hence  the  assumption that E(&,)  = 0 itself implies that P, = X,B. Thus. we 
have  the result that P, is a  function of the regression parameters B. Since 
E ( & , )  = 0. then  Var(&,) is simply the  square of the two values of E ,  weighted 
by the  corresponding  probabilities.  After  some  algebra,  thanks  to  certain 
cancellations, we have  Var(&,) = P,(1 - P I )  = X,B(l - X,B). This  proves  the 
key result that  both the  mean and variance  depend on B. This is where EFs 
have  superior  properties. 

We can  extend  the  above result to other  situations involving limited 
dependent  variables.  In  econometrics.  the  canonical link function  terminol- 
ogy of Remark 2. is rarely  used.  Econometricians typically replace y, by 
unobservable  (latent)  variables and write the regression model as 
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y: = X,B + E ,  (8) 

where the  observable y r  = 1 if y: > 0, and y ,  = 0 if y: 5 0. 

plies that 
Now  write P, = Prcv, = 1) = PrCv: > 0) = Pr(X,B + E, > 0). which im- 

x ,  B 
P, = ~ r ( e ,  > -x,B) = I - Pr(EI 5 X,B) = 1 - j f(E,>ns,  (9) 

where we have used the fact that E, is a  symmetric random variable defined 
over an infinite range with densityf(&,).  In  terms of cumulative  distribution 
functions  (CDF) we can write the last integral in (9) as F(X,/?) E [O. I] .  
Hence, P, E [0, I ]  is guaranteed.  It is obvious  that if we choose  a  density, 
which has  an  analytic CDF, the  expressions will  be convenient. For ex- 
ample, F(X,B) = [l  + exp(-X,/?)]” is the  analytic C D F  of the standard 
logistic distribution.  From this,  econometric texts derive the logit link func- 
tion /z(P,) = log[P,/(l - PI)] somewhat  arduously.  Clearly,  as P ,  E [0, 11, the 
logit is defined by Iz(P,) E (-m.  m). Since [P,/(l - P,)] is the  ratio of the 
odds of y ,  = 1 to  the  odds of y ,  = 0, the  practical  implication of the logit 
link function is to regress the log odds  ratio on X , .  We shall see that the 
probit (used for  bioassay in 1935) implicitly uses the  binomial  model.  Its link 
function, /z(P,) = @-‘(P,), not  only needs the  numerical inverse CDF of the 
unit  normal, i t  is not  “canonical.” 

The  normality  assumption is obviously  unrealistic when the  variable 
assumes  only limited values, or when the  researcher is unwilling to  assume 
precise knowledge about skewness, kurtosis.  etc.  In  the  present  context of a 
binary  dependent  variable,  Var(&,) is a  function of B and minimizing the S, 
with respect to B by the  chain rule would have to allow for  the dependence 
of Var(E,) on B. See (4) and Result 1 above.  Econometricians allow for this 
dependence by using  a “feasible GLS”  estimator, where  the  heteroscedas- 
ticity problem is solved by simply replacing  Var(e,) by its  sample  estimates. 
By contrast, we shall see that  the GEE is based on  the  QSF of (3), which is 
the optimum EF  and satisfies unbiasedness, sufficiency, efficiency, and 
robustness. 

As in McCullagh and Nelder (1989), we denote  the  log of the  quasi- 
likelihood by Q(p; 1 3 )  for p based on the  data y. For the  normal  distribution 
Q(p; y )  = -0.5(y - p)’, the  variance  function Var(p) = 1, and  the  canonical 
link is h(p) = p.  For the  binomial, Q(p; y )  = ylog[p/(l - p)]  + log(1 - p),  
Var(p) = p(1 - p ) ,  the  canonical link called logit is /t(p) = log[p/l(l - p)].  
For the  gamma, Q(p; y )  = - y / p  - logp,  Var(p) = p’, and h(p) = -1/p. 
Since the link function of the  gamma  has  a  negative sign, the signs of all 
regression coefficients are reversed if the  gamma  distribution is used.  In 
general,  the  quasi-score  functions (QSFs) become our  EFs  as in (3): 

“00 

“ ”” 
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aQ/ap = D’SZ-~O: - p)  = o (10) 

where p = 11”(Xp), D = (apl/apj) is a T x p matrix of partials,  and SZ is a 
T x T diagonal  matrix  with  entries  Var(p,)  as noted  above.  The GLM 
estimate  of p is given by solving (10) for p. Thus,  the  complication  arising 
from  a  binary  (or limited range)  dependent  variable is solved by using the 
GLM  method.  With  the  advent of powerful  computers,  more  sophisticated 
modeling of dispersion  has  become feasible (Smyth and Verbyla 1999). I11 
biomedical and GLM literature,  there is much discussion of the  “overdis- 
persion”  problem.  This simply means  that the  actual  dispersion exceeds the 
dispersion  based on the  analytical  formulas  arising  from  the  assumed  bino- 
mial, Poisson,  etc. 

3. GLM FOR  PANEL DATA AND SUPERIORITY  OF 
EFS  OVER ML AND GLS 

A limited dependent  variable  model  for  panel  data  (time series of cross- 
sections) in econometrics is typically estimated by the logit or probit. both 
of which have been known in biostatistics since the 1930s. GEE models can 
be  viewed as generalizations of logit and  probit models by incorporating 
time dependence among repeated  measurements for  an individual  subject. 
When the biometric  panel is of laboratory  animals having  a common heri- 
tage,  the  time  dependence is sometimes called the  “litter effect.” The  GEE 
models incorporate different  kinds of litter effects characterized by serial 
correlation  matrices R(+),  defined later  as  functions of a  parameter vector 4. 

The panel data involve an  additional complication  from  three  possible 
subscripts i ,  j ,  and t .  There  are (i = 1, . . . , N )  individuals about which cross- 
sectional data  are available in addition  to the time series over ( t  = 1. . . . , T )  
on the  dependent  variable v,, and p regressors .xvl, with j = 1, . . . . y. We 
avoid  subscript .j by defining x,, as a p x 1 vector of p regressors on  ith 
individuals at time t .  

Let .vir represent  a  dependent  variable;  the  focus is on finding the  relation- 
ship between yll and  explanatory  variables si/,. Econometrics  texts (e.g., 
Greene 2000. Section 15.2) treat  this  as  a time series of cross-sectional 
data. To highlight the differences between the two approaches let us con- 
sider a  binary  or multiple-choice  dependent  variable.  Assume  that . v i r  equals 
one of a limited number  of values. For the  binary case. the values are limited 
to be simply 1 and 0. The binary  case is of  practical  interest because we can 
simply assign y,, = 1 for  a  “true” value of a logical variable when some 
condition is satisfied, and yl l  = 0 for  its  “false”  value. For example,  death. 
upward  movement,  acceptance,  hiring,  etc.  can all be  the  “true” values of a 
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logical variable. Let denote  the  probability of a  “true” value for  the it11 
individual ( i  = 1 ,  . . . , N )  in  the  cross-section at time t ( t  = 1, . . . . T ) ,  and 
note  that 

EO.,O = lP;,, + O(1 - pr . / )  = pr,, (1 1) 

Now, we remove the time subscript by collecting elements of Pi,, into T X 

1 vectors and write E();) = Pi as  a vector of  probabilities of “true” values 
for  the  ith  individual. Let X ,  be a T x p matrix of data on p regressors for 
the ith individual. As before. let /? be a p x 1 vector of regression par- 
ameters. If the  method of latent  variables is used, the “true  or false“ is 
based on  a latent  unobservable  condition, which makes y;, be “true.”  Thus 

= 1. if the  latent y;, > 0, causing  the  condition  to be “true” 

= 0. if y:/ I 0. where the  “false”  condition  holds 1 (13) 

Following  the GLM terminology of link functions, we may write the 
panel data model as 

/ I (P , )  = X,B  + e,. E(&,) = 0, E&;&,’ = O’Q; for i = I ,  . . . , N (13) 

Now  the logit link has /z(P,) = log[P,/(I - P,)] ,  whereas  the  probit link has 

Econometricians  often discuss the  advisability of pooling or aggregation 
of the  data  for all N individuals and all T time points  together.  It is recog- 
nized that  an identical error  structure  for N individuals and T time points 
cannot be assumed.  Sometimes  one  splits  the  errors as E;! = M I  + u,,, where 
I],, represents “random effects” and M I  denotes  the  “individual  effects.“ 
IJsing  the logit link,  the  log-odds  ratio in a so-called random effects 
model is written  as 

/ ( P I )  = @-l(P;). 

1og(pf,/ /( l  - PI, / ) )  = . 4 B  + MI + ”,I (14) 

The  random effects model also  assumes  that Mi - IID(0. a’M) and u,, - 
IID(0,02)  are independent  and identically distributed. They are independent 
of each other  and  independent of the  regressors x,,. It is explained in the 
panel data  literature (Baltagi 1995, p. 178) that these individual effects 
complicate  matters significantly. Note  that,  under the  random effects 
assumptions in  (13). covariance  over time is nonzero. E(E,/E,,)  = oil is non- 
zero.  Hence,  independence is lost and the  joint  likelihood  (probability) can- 
not be rewritten as a  product of marginal  likelihoods  (probabilities). 

Since the  only feasible maximum  likelihood  implementation involves 
numerical  integration, we may  consider a less realistic “fixed effects“ 
model, where  the likelihood function is a  product of marginals. 
Unfortunately,  the fixed effects model still faces the so-called “problem of 
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incidental  parameters"  (the  number of parameters M I  increases indefinitely 
as N +. m). Some  other  solutions  from  the econometrics  literature refer- 
enced by Baltagi  include  Chamberlain's (1980) suggestion to maximize a 
conditional  likelihood  function.  These  ML or GLS methods  continue  to 
suffer  from  unnecessary  complications  arising  from  the  chain-rule-induced 
extra  term in (4), which would make  their FOCs in (3) imply biased and 
inefficient estimating  functions. 

4. DERIVATION OF  THE  GEE ESTIMATOR FOR p AND 
STATISTICAL INFERENCE 

This section describes  how  panel data  GEE methods  can  avoid  the difficult 
and inefficient GLS  or  ML solutions used in  the  econometrics  literature. We 
shall write  a  quasi-score  function justified by the  EF-theory  as  our  GEE. We 
achieve a fully flexible choice of error  covariance  structures by using link 
functions  of  the GLM. Since GEE is based on the QSF (see equation (3)), 
we assume  that only the  mean and variance are  known.  The  distribution 
itself can be any member of the  exponential family with almost arbitrary 
skewness and  kurtosis, which generalizes the  often-assumed  normal  distri- 
bution.  Denoting  the log likelihood for  the  ith individual by L;, we construct 
a T x 1 vector aLj/ag. Similarly, we construct pi = h " ( ~ / g )  as T x 1 vec- 
tors  and  suppress  the time subscripts.  We  denote a T x p matrix of partial 
derivatives by D j  = {ap,/ag,) for j = 1, . . . . p .  In  particular, we can  often 
assume  that Dl = X, .  When  there is heteroscedasticity  but no  autocorrela- 
tion  Var(y,) = R, = diag(S2,)  is a T x T diagonal  matrix of variances of 
over  time.  Using these notations,  the  ith QSF similar to (10) above is 

aLj/ag = D,'R;'(J>, - ,UJ = o (1  5) 

When  panel data  are available  with  repeated N measurements  over T 
time units, GEE methods view this as  an  opportunity to allow for  both 
autocorrelation  and heteroscedasticity. The  sum of QSFs from (15) over i 
leads  to  the so-called generalized estimating equation  (GEE) 

N 

ED,' V;'[v, - p,)  = 0. where VI = R~.'R(4J)SZp.' 
I= I 

where R(4J) is a T x T matrix  of serial correlations viewed as a  function of a 
vector of parameters  common  for each  individual i. What  econometricians 
call  cross-sectional  heteroscedasticity is captured by letting Qj  be  distinct  for 
each i .  There is distinct  econometric  literature  on time series models with 
panel data (see Baltagi 1995 for references including Lee, Hsiao,  MaCurdy, 
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etc.). The sandwiching of R(4)  autocorrelations between two matrices of 
(heteroscedasticity) standard deviations in (.16) makes Vi a proper  covar- 
iance  matrix.  The GEE user can simply specify the general nature  of  the 
autocorrelations by choosing R(4) from  the following list, stated in increas- 
ing order of flexibility. The list contains  common  abbreviations used by 
most authors of the GEE software. 

(i) Independence  means  that R(4) is the  identity  matrix. 
(ii) Exchangeable R(4)  means  that all inter-temporal  correlations, 

corr(.vi,.yl,5), are  equal  to 4, which is assumed to be a constant. 
(iii) AR(1) means  first-order  autoregressive  model. If R(4) is AR(1).  its 

typical ( i j) th element will  be equal  to the  correlation between ,vi, and 
v i $ ;  that is, that  it, it will equal 4'"''. 

(iv) Unstructured  correlations i n  R(4) means  that i t  has T ( T  - 1)/2  dis- 
tinct values for all pairwise correlations. 

Finally, we choose  our R(4) and solve (16) iteratively for p, which gives 
the GEE estimator.  Liang  and Zeger (1986) suggest a "modified Fisher 
scoring" algorithm  for their iterations (see Remark 2 above).  The initial 
choice of R(4) is usually the  identity  matrix  and  the standard  GLM is 
first estimated.  The  GEE  algorithm then  estimates R(4) from  the residuals 
of the GLM  and iterates until convergence. We use YAGs (2000) software 
in S-PLUS (2001) language on  an  IBM-compatible  computer.  The theor- 
etical justification  for  iterations  exploits the  property  that a QML estimate is 
consistent even if R(4)  is misspecified (Zeger and Liang 1986, McCullagh 
and Nelder, 1989, p. 333). 

Denoting  estimates by hats,  the  asymptotic  covariance  matrix of the GEE 
estimator is 

Var(jgee) = O'A-' BA" (17) 

with A = E,"=, D,'GL' Dl and B = x;"=, D;RT' RiRF'Di, where R, refers to 
the R,(+) value in the  previous  iteration (see Zeger and Liang 1986). Square 
roots of diagonal  terms yield the  "robust" standard  errors  reported in our 
numerical  work in the next section. Note  that  the  GEE  software uses the 
traditional  standard  errors of estimated B for  inference. 

Vinod (1998, 2000) proposes an alternative  approach  to inference when 
estimating  functions are used for  parameter  estimation.  It is based on 
Godambe's  pivot  function (GPF) whose  asymptotic  distribution is unit 
normal  and  does  not  depend  on  unknown  parameters.  The idea is to define 
a T x p matrix Hi, and redefine E ,  = ( y I  - pi) as a T x I vector  such that we 
can  write  the QSF of (1 5 )  for  the  ith  individual  as  a  sum of T quasi-score 
function p x 1 vectors Si,, x,=, Hi:&, = x:, Si,. Under  appropriate regu- T 
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larity  conditions. this sum of T items is asymptotically  normally  distributed. 
In  the  univariate  normal N(0.  a’) case it is customary  to divide by a to  make 
the  variance  unity.  Here we have  a  multivariate  situation,  and rescaling Sit 
such  that its  variance is unity  requires  pre-multiplication by a  square  root 
matrix.  Using (-) to  denote rescaled quasi-scores we write  for  each i the 
following nonlinear  y-dimensional  vector  equation: 

The scaled sum  of  quasi-scores  remains  a  sum of T items whose variance is 
scaled to be unity.  Hence J T  times the  sum in (18) is asymptotically  unit 
normal N(0.  1)  for each i. Assuming  independence of the  individuals i from 
each  other,  the  sum over i remains  normal.  Note  that J N  times a  sum of N 
unit  normals is unit normal N(0, 1). Thus, we have the desired pivot (GPF), 
defined as 

N T  T N  7,y s;, = x 3, = 0 
r = l  t=l / = I  i=l  

where we have interchanged  the order of summations. For computerized 
bootstrap inference suggested in Vinod (2000), one  should simply shuffle 
with  replacement  the T items [x,”=, s,,] a large number of times ( J  = 999, 
say).  Each shuffle yields a  nonlinear  equation which should  be solved for 
to  construct J = 999 estimates of /?. The next step is to use these estimates to 
construct  appropriate confidence intervals  upon  ordering  the coefficient 
estimates  from  the smallest to the  largest.  Vinod (1998) shows that this 
computer-intensive  method  has  desirable  robustness  (distribution-free) 
properties  for  inference  and  avoids  some pitfalls of the  usual  Wald-type 
statistics  based on division by standard  errors.  The  derivation of scaled 
scores  for GEE is claimed to be new. 

In  the following section, we consider  applications.  First,  one  must  choose 
the  variance-to-mean  relation typified by a  probability  distribution  family. 
For example,  for  the  Poisson family the  mean and variance are  both I.. By 
contrast, the  binomial family. involving n trials with probability y of success, 
has its  mean up and its  variance, n p ( 1  - p ) ,  is smaller than the  mean.  The 
idea of  using  a  member of the  exponential family of distributions  to fix the 
relation between mean  and variance is largely absent in econometrics. The 
lowest residual  sum of squares (RSS) can be used to  guide  this  choice. 
Instead of RSS, McCullagh  and Nelder (1989, p. 290) suggest using  a 
“deviance  function” defined as  the difference between restricted and unre- 
stricted log likelihoods. A proof of consistency of the GEE estimator is 
given by  Li (1997). Heyde ( 1997, p. 89) gives the necessary and sufficient 
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conditions  under which GEE  are fully efficient asymptotically. Lipsitz et  al. 
(1994) report  simulations  showing  that GEE  are  more efficient than  ordin- 
ary logistic regressions. In  conclusion,  this section has  shown  that  the  GEE 
estimator is practical,  with  attractive  properties  for  the typical data  available 
to  applied  econometricians. Of course,  one  should pay close attention  to 
economic  theory  and  data  generation,  and modify the applications  to  incor- 
porate  sample selection. self-selection, and  other  anomalies when human 
economic  agents  rather  than  animals  are  involved. 

5. GEE ESTIMATION OF STOCK  PRICE TURNING 
POINTS 

This section describes an illustrative application  of  our  methods  to financial 
economics. The  focus  of  this  study is on  the  probability  of  a  turn in the 
direction  of  monthly price movements  of  major  stocks.  Although daily 
changes in stock prices may  be volatile, we expect monthly  changes  to  be 
less volatile and  somewhat sensitive to interest rates.  The  “Fed effect” dis- 
cussed in Wall Street Jourrd(2000) refers to  a rally in the S&P 500 prices a 
few days  before  the  meeting of the  Federal  Reserve  Bank  and  a price decline 
after  the  meeting.  We  use  monthly  data  from  May 1993 to July 1997 for all 
major  stocks  whose  market  capitalization  exceeds 27 billion. From this list 
of about 140 companies  compiled in the  Compustat  database, we select the 
first seven  companies in alphabetic  order. Our purpose  here is to briefly 
illustrate  the  statistical  methods,  not  to  carry  out a comprehensive  stock 
market analysis. The sensitivity of the  stock prices to interest  rates is studied 
in Elsendiony’s (2000) recent Fordham University  dissertation.  We  study 
only  whether  monetary  policy  expressed  through the interest  rates  has  a 
significant effect on  the  stock  market  turning  points.  We  choose  the interest 
on  3-month  Treasury bills (TB3) as  our  monetary policy  variable. 

Using  Compustat’s  data selection software, we select the  companies 
with  the  following ticker symbols:  ABT, AEG,  ATI,  ALD,  ALL,  AOL, 
and  AXP.  The selected data  are saved as  comma delimited text  file and 
read into  a  workbook.  The first workbook task is to use the price data  to 
construct  a  binary  variable, AD, to represent  the turning  points in prices. 
If S, denotes  the  spot price of  the  stock  at  time t ,  SI-, the price at time 
t - 1, if the price is rising (falling) the price difference, AS, = SI - SI-,, is 
positive (negative). For  the initial date,  May 1993, AS, has  a  data  gap 
coded as  “NA.”  In Excel, all positive AS, numbers  are  made unity and 
negatives are  made  zero.  Upon  further differencing these ones and zeros, 
we have  ones or negative  ones  when  there are  turning  points.  One  more 
data  gap is created in this process  for  each stock.  Finally,  replacing the 
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(-1)s by (+1)s, we create  the  changing price direction AD E [0, I] as  our 
binary  dependent  variable. 

Next, we use statistical  software for descriptive  statistics  for AD and TB3. 
We now  report  them in parentheses  separated by a comma:  minimum  or 
min (0, 2.960), first quartile or  QI  (0,4.430), mean  (0.435,4.699),  median (0, 
4.990), third  quartile  or Q3 (1, 5.150), maximum or max (1. 5.810). standard 
deviation  (0.496, 0.767). total  data  points (523, 523) and  NAs (19. 0). BOX 
plots  for  the seven stocks  for other stock  characteristics discussed in 
Elsendiony (2000). including price earnings  ratio. log of market  capitaliza- 
tion,  and  earnings per  share,  etc.  (not  reproduced,  for brevity), show that 
our seven stocks  include  a  good  cross  section  with  distinct box plots  for 
these  variables. Simple correlation coefficients r(TB3, AS,) over seven stocks 
separately  have  min = -0.146, mean = 0.029, and max = 0.223. Similar 
coefficients r(TB3. AD)  over seven stocks  have  min = -0.222. 
mean = -0.042. and  max = 0.109.  Both  sets suggest that  the relation 
between TB3  and changes in individual  stock prices do not  exhibit  any 
consistent pattern.  The coefficient magnitudes  are small, with ambiguous 
signs. 

Wall  Street specialists study  individual  companies and  make specific 
“strong  buy,  buy,  accumulate,  hold,  market  outperform, sell” type  recom- 
mendations  privately to clients and influence the  market  turning  points 
when  clients  buy or sell. Although  monetary policy does not influence 
these, it may be useful to  control  for these factors  and  correct  for possible 
heteroscedasticity  caused by the size of the firm. We use a stepwise algo- 
rithm  to  choose  the  additional regressor for  control, which suggests log of 
market  capitalization  (IogMK). 

Our  data consist of 7 stocks  (cross-sectional  units) and 75 time series 
points  including  the  NAs.  One  can use dummy  variables to study  the  inter- 
cepts  for  each  stock by considering  a “fixed effects” model.  However. our 
focus is on the  relation of turning  points  to  the  TB3  and  logMK  covariates 
and  not  on individual  stocks.  Hence, we consider  the GLM of (1 3) with y ,  = 
AS, or  AD. Ify,  = AS, E (-co. 00) is a real number,  its  support suggests  the 
“Gaussian” family and  the canonical link function /7(P,) = Pi is identity. 
The canonical  links  have  the  desirable  statistical  property that they are 
“minimal sufficient” statistics. Next choice is J); = AD E [0, 11, which is 1 
when price direction  changes (up  or  down)  and zero  otherwise.  With only 
two  values 0 and I ,  it  obviously belongs to  the binomial family with  the 
choice  of  a probit  or logit link. Of the  two,  the GLM theory  recommends  the 
canonical  logit  link, defined as /z (Pj)  = log[Pj/(l - P,)]. 

We use V. Carey’s GEE computer  program called YAGs written for S- 
Plus 3000 and implement it on a  home PC having 500 MHz speed. NOW, we 
write E(\>,) = P, and  estimate 
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Ordinary least squares (OLS) regression on pooled data is a special case 
when h(P,) = y,. We choose  first-order  autoregression, AR(l), from  among 
the  four choices for  the  time series dependence of errors listed after (16) 
above  for  both y j  = AS, and AD. 

Let us omit  the  details in reporting  the y ,  = AS, case, for brevity. The 
estiamte of is -0.073 24 with  a  robust z value of -0.422 13. It is statis- 
tically insignificant since these ;-values have N(0. 1) distribution. For the 
Gaussian family, the  estimate 24.1862 by YAGS of the scale parameter is 
interpreted  as  the  usual  variance.  A review of estimated  residuals  suggests 
non-normality  and possible outliers.  Hence, we estimate (20), when y ,  = AS,,  a second time by using  a  robust MM regression method  for  pooled 
data.  This  robust regression algorithm  available  with  S-Plus  (not YAGS) 
lets the  software  choose  the  initial  S-estimates  and final “estimates with 
asymptotic efficiency of 0.85. The  estimate of PI is now 0.2339, which has 
the  opposite  sign, while its t-value of 1.95 is almost  significant.  This sign 
reversal between robust  and YAGs estimates suggests that  TB3  cannot 
predict AS, very well. The  estimate  of p2 is 1.6392, with a significant t-  
value of 2.2107. 

Now  consider y ,  = AD, turning  points of stock prices in relation to TB3, 
the  monetary policy changes made by the  Federal Reserve Bank.  Turning 
points  have  long been known to be difficult to forecast.  Elsendiony (2000) 
studies  a  large  number of stocks and sensitivity of their  spot prices SI to 
interest  rates. He finds that some  groups of stocks, defined in terms of their 
characteristics such as dividends,  market  capitalization, product  durability, 
market  risk, price earnings  ratios,  debt  equity  ratios,  etc.,  are  more  “interest 
sensitive” than  others.  Future research  can  consider  a reliable turning-point 
forecasting  model  for  interest-sensitive  stocks. Our  modest objectives here 
are  to  estimate the  extent  to which the  turning  points of randomly  chosen 
stocks are interest sensitive. 

Our methodological  interest  here is to  illustrate  estimation of (20) with 
the  binary  dependent  variable yi = AD, where  the  superiority  of GEE is 
clearly demonstrated  above. Recall that  the  definition of 4 D  leads to two 
additional  NAs  for each  firm. Since YAGs does  not permit missing values 
(NAs), we first delete all observation  rows  having  NAs  for  any  stock  for  any 
month.  The  AR(1)  correlation  structure  for  the time series for  each  stock 
has  the  “working”  parameter  estimated  to be 0. I1 5 930 9 by YAGS. We 
report  the  estimates of (20) under  two regimes, where we force & = 0 and 
where p2 # 0, in two  sets of three  columns in Table 1. Summary  statistics for 
the raw residuals (lack of fit) for  the first regime are:  min = -0.48427, 
QI = -0.42723,  median = -0.413 10. 4 3  = 0.57207,  and max = 0.596 33. 
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The residuals  summary  statistics  for  the  second regime are similar.  Both 
suggest a wide variation.  The estimated scale parameter is 1.000 8 1, which 
is fairly close to unity.  Whenever  this is larger  than unity, it captures  the 
overdispersion  often  present  in  biostatistics. The intercept  0.27699 has  the 
statistically insignificant z-value of 0.459 9 at conventional levels. The slope 
coefficient 8, of TB3 is (0.1 14 84,  robust  SE  from (17) is 0.123 49, and  the z- 
value (0.929 90 is also  statistically insignificant. This suggests that  that a rise 
in TB3 does not signal  a  turning  point for the  stock prices. The  GEE results 
for (20) when j32 # 0, that is when it is not forced out of the  model,  reported 
in  the  second set of three  columns of Table 1, are seen to be similar to  the 
first regime. The estimated scale parameters in Table 1 slightly exceed unity 
in both cases where j32 = 0 and j32 # 0, suggesting  almost no overdispersion 
compared  to the  dispersion  assumed by the  binomial  model. For brevity, we 
omit  similar results for differenced TB3, dTB3 

6. CONCLUDING REMARKS 

Mittelhammer  et al.’s (2000) text, which cites Vinod (1997), has brought EFs 
to mainstream  econometrics.  However, i t  has largely ignored two popular 
estimation  methods  in  biostatistics  literature, called GLM  and  GEE. This 
chapter reviews related concepts,  including  some  of  the  estimating  function 
literature,  and  shows  how  EFs  satisfy  “unbiasedness, sufficiency, efficiency, 
and  robustness.”  It  explains why estimation  problems  involving limited 
dependent  variables are particularly  promising  for  applications  of  the E F  
theory. Our Result 1 shows that whenever heteroscedasticity is related to j3, 
the  traditional GLS  or  ML estimators  have  an  unnecessary  extra  term, 
leading to biased and inefficient EFs. Result  2 shows why binary  dependent 
variables have such  heteroscedasticity. The panel data  GEE estimator in 
(16) is implemented by Liang and Zeger’s (1986) “modified Fisher  scoring” 
algorithm with variances given in (17). The flexibility of  the GEE estimator 
arises  from  its  ability to specify the  matrix of autocorrelations R(4) as a 
function of a set of  parameters . We use the  AR(1)  structure and a  “can- 
onical  link”  function  satisfying “sufficiency” properties  available  for all 
distributions  from  the  exponential family. It is well known  that this family 
includes many of the  familiar  distributions,  including  normal,  binomial, 
Poisson,  exponential,  and  gamma. 

We discuss the generalized linear  models (GLM) involving link functions 
to supplement  the  strategy of fixed and  random effects commonly used in 
econometrics.  When  there is no interest  in the fixed effects themselves, the 
GLM methods  choose  a  probability  distribution of these effects to  control 
the  mean-to-variance  relation. For example,  the  binomial  distribution is 
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suited  for  binary data.  Moreover,  the binomial  model  makes it easy to see 
why its  variance  (heteroscedasticity) is related to  the  mean, how  its  canoni- 
cal link is logit, and  how i t  is relevant for sufficiency. For improved  com- 
puter  intensive  inference, we develop new pivot  functions  for  bootstrap 
shuffles. It is well known  that reliable bootstrap inference needs pivot  func- 
tions to resample, which do not  depend on  unknown  parameters.  Our pivot 
in  (19) is asymptotically  unit  normal. 

We apply these methods  to the important  problem involving  estimation 
of the  "turning  points." We use monthly prices of seven large  company 
stocks  for 75 months in the 1990s. We then  relate  the  turning  points  to 
monetary policy changes by the  Federal Reserve Bank's  targeting  the mar- 
ket interest  rates.  In light of generally known difficulty in modeling  turning 
points  of  stock  market prices, and  the fact that we use only limited data  on 
very large corporations,  our results  may need further  corroboration. Subject 
to these limitations. we conclude  from our various  empirical  estimates that 
Federal Reserve's monetary policy targeting  market  interest  rates cannot 
significantly initiate  a  stock  market  downturn or  upturn in  monthly  data. 

A change in interest rate  can have an effect on  the prices of some  interest- 
sensitive stocks.  It can signal a  turning  point  for such stocks.  Elsendiony 
(2000) has classified some  stocks as  more interest sensitive than  others. A 
detailed  study of all relevant performance  variables  for all interest-sensitive 
stocks  and prediction of stock market  turning  points is left for  future 
research.  Vinod and  Geddes (2001) provide another example. 

Consistent with the  theme of the  handbook, we hope to  encourage  more 
collaborative  research between econometricians  and  statisticians in the  areas 
covered here. We have  provided an  introduction  to GLM  and  GEE methods 
in notations  familiar  to  economists.  This is not a  comprehensive review of 
latest  research on  GEE  and  GLM for  expert users of these tools.  However, 
these experts  may be interested in our new bootstrap pivot of (19). our 
reference list and  our  notational bridge  for  better  communication with 
economists.  Econometrics  offers  interesting  challenges when choice  models 
have to allow  for intelligent economic  agents  maximizing  their  own utility 
and sometimes falsifying or  cheating in achieving  their  goals.  Researchers in 
epidemiology and medical  economics  have begun to recognize that  patient 
behavior  can be different  from that of passive animal  subjects in biostat- 
istics. A better  communication between econometrics and biostatistics is 
obviously  worthwhile. 
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1. INTRODUCTION 

The seemingly unrelated regressions (SUR) model [I71 has become one of 
the  most  frequently used models in applied  econometrics. The coefficients of 
individual  equations in such  models  can be consistently  estimated by ordin- 
ary least squares (OLS) but, except for  certain special cases, efficient estima- 
tion requires  joint  estimation of the  entire system. System estimators which 
have been used in practice  include  two-stage  methods based on OLS resi- 
duals,  maximum likelihood (ML),  and,  more recently. Bayesian methods; 
e.g. [ I  1 ,  21. Various  modifications of these techniques  have also been sug- 
gested i n  the  literature; e.&. [14, 51. It is somewhat  surprising,  therefore, that 
the  sample size requirements  for  joint  estimation of the  parameters in this 
model do not  appear  to have been correctly  stated in the  literature.  In this 
paper we seek to  correct this situation. 

The usual  assumed  requirement  for  the  estimation of SUR models  may 
be paraphrased  as:  the  sample size must be greater  than  the  number of 
explanatory  variables i n  each  equation  and  at least as  great  as  the  number 
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of equations in the  system.  Such  a  statement is flawed in two respects.  First. 
the  estimators  considered  sometimes have more  stringent  sample size 
requirements than  are implied by this statement.  Second.  the  different esti- 
mators may  have  different  sample size requirements. In particular,  for a 
given model the  maximum  likelihood  estimator and the Bayesian estimator 
with a noninformative  prior  may  require  larger  sample sizes than  does  the 
two-stage  estimator. 

To gain an  appreciation of the  different  sample size requirements,  con- 
sider a  4-equation SUR model with three  explanatory  variables  and a con- 
stant in each equation.  Suppose  that the  explanatory  variables in different 
equations  are  distinct.  Although  one would  not  contemplate  using such a 
small  number of observations.  two-stage  estimation  can proceed if the  num- 
ber  of  observations ( T )  is greater than  4.  For  ML  and Bayesian estimation 
T > 16 is required. For a IO-equation model with three  distinct  explanatory 
variables and  a  constant in each  equation.  two-stage  estimation  requires 
T 2 1 I-the conditions  outlined  above  would suggest that 10 observations 
should be sufficient-whereas ML  and Bayesian estimation need T > 40. 
This last example  illustrates  not  only  that  the usually stated  sample size 
requirements  can be incorrect, as they are  for  the two-stage estimator,  but 
also just how  misleading they can be for  likelihood-based  estimation. 

The  structure of the  paper is as follows. I n  the next section we introduce 
the  model and  notation,  and illustrate  how  the typically stated  sample size 
requirement can be misleading. Section 3 is composed of two parts:  the first 
part of Section 3 derives a necessary condition  on  sample size for  two-stage 
estimation  and provides  some discussion of this result; the  second  part 
illustrates  the result by considering  its  application in a variety of different 
situations.  Section  4 derives the  analogous result for  ML  and Bayesian 
estimators.  It is also  broken  into two parts, the first of which derives and 
discusses the  result, while the second part illustrates  the result by examining 
the  model  that was the  original  motivation  for this paper.  Concluding 
remarks  are presented in Section 5. 

2. THE MODEL AND PRELIMINARIES 

Consider the SUR model  written  as 

j;=x,p,+<,. j = 1 ,  . . . ,  M ( 1 )  

where J; is a ( T  x 1) vector of observations on the  dependent  variable  for 
the.jth  equation. X j  is a ( T  x K,) matrix  of  observations on K/ explanatory 
variables in  thejth  equation. We shall assume  that  each of the X, have full 
column  rank.  It will also be assumed  that  the ( T M  x I )  continuously 
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distributed  random vector e = [e;,  e;,  . . . , ehf]’ has  mean  vector  zero and 
covariance  matrix C @ IT .  We are concerned with estimation  of  the ( K  x 
1) coefficient vector j? = [ p i , .  . . , j?h]’, where K = ‘JFyLl Ki is the  total  num- 
ber of  unknown coefficients in the  system. 

The OLS estimators  for  the j?, are 

6, = (X,/X,)-lX,y,, j = 1 , .  . . , M 

The  corresponding OLS residuals are given by 

!/ = >:, - x,bJ = M.y,J; 

where M,4 = I - A ( A  ’A)” A ’  = I - PA for  any  matrix A of full column 
rank.  We shall define 

The two-stage  estimator  for  this system of  equations is given by 

j = [ J ? ( i - I  @ z T ) J ? - l i ’ ( i - l  €3 zT)y (3) 

where the (TM x K )  matrix J? is block diagonal with the X, making  up  the 
blocks, y = Lv;, yi. . . . , ]>if]’, and* 

T i  = E‘k 
Clearly, is not  operational unless is nonsingular,  and i will  be singular 
unless the ( T  x M )  matrix  has full column  rank. A standard  argument is 
that k will have full column rank with probability  one  provided  that (i) 
T 2 M ,  and (ii) T > k,,, = maxjrl,, , ,AI Ki. Observe that (i i)  is  stronger that7 
{he T 2 k,,, requiwrnetlt itnplicit in usstrmirlg thut all XJ have jirll columrt 
rank; it is required because for  any K, = T the  corresponding iJ is identically 
equal to zero,  ensuring  that i is singular.  Conditions (i) and (ii) can be 
summarized as t 

T 2 max(M, k,,,, + I )  (4) 

*A number of other  estimators  of C have  been suggFsted in the  literature; they  differ 
primarily in the  scalingapplied to the  elements of E‘E (see. for  example,  the  dkcus- 
sion  in [13, p. 17]), but C is that  estimator  most  commonly used. Importantly, Z uses 
the  same scaling as  does  the ML estimator  for C. whjch is the  appropriate  choice  for 
likelihood-based  techniques of  inference.  Finally. C was  also  the choice made by 
Phillips [ I ? ]  when deriving exact  finite-sample distributional results for the  two- 
stage  estimator in  this model. Our results are  consequently  complementary  to 
those  earlier  ones. 
?Sometimes  only  part of the  argument is presented.  For example. Greene [6, p. 6271 
formally  states  only (i). 
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That (4) does  not  ensure the  nonsingularity  of i is easily demonstrated by 
considering  the special case  of  the  multivariate  regression  model,  arising 
when XI = . . . = X,, = X* (say) and hence KI = . . . = K,,, = k* (say).  In 
this case model ( I )  reduces to 

where 

and 

~.i = E'E = Y ' M ~ ,  Y 

Usins a full rank  decomposition, we can write 

A//,-. = CC' 

wherc C is a ( T  x ( T  - k * ) )  matrix  of  rank T - k*.  Setting W = C'Y, we 
have 

T i  = H"Hf  

whence it follows that, in order  for i to have full rank.  the ( (T  - k*) x M )  
matrix F V  must  have full column  rank, which requires that T - k* 2 A 4  or, 
cquivalently. that* 

T >  M + k *  ( 6 )  

In the  special  case  of A I  = 1 .  condition (6) corresponds  to  condition (4), as 
l;* = kn,i,s. For A4 > 1.  condition (6) is more  stringent in its  requirement  on 
sample size than  condition (4), which  begs the  question  whether even more 
stringent  requirements  on  sample size exist for the  two-stage  estimation  of 
SUR models. It is to this  question  that we turn  next. 

'It should be noted  that  condition (6) is not new and is typically assumed in discus- 
sion of the  multivariate regression  model:  see, for example. [ l .  p. 2871, or the dis- 
cussion of [4] i n  an empirical context. 
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3. TWO-STAGE ESTIMATION 
3.1 A  Necessary Condition and Discussion 

Our  proposition is that, subject to the  assumptions given with model (1). 
two-stage  estimation is feasible provided that is nonsingular. 
Unfortunately, 2 is a  matrix of random  variables and there is nothing in 
the  assumptions of the  model  that  precludes 2 being singular.  However, 
there  are  sample sizes that  are sufficiently small that 2 must be singular 
and i n  the following theorem we shall characterize these sample sizes. For all 
larger  sample sizes 2 will be  nonsingular with probability  one  and  two-stage 
estimation feasible. That 2 is only non-singular with  probability one implies 
that  our  condition is necessary but  not sufficient for  the  two-stage  estimator 
to be feasible; unfortunately,  no  stronger result is possible.* 

Theorem 1. In the model (1). a necessary condition  for  the  estimator ( 3 )  to 
be feasible, in the sense that 2 is nonsingular with probability  one, is that 

T > M + p - v  (7) 

where p = rank([X,, X 2 .  . . . . X,&,]j and q is the  rank of the  matrix D defined 
in equations (9) and (IO) .  

Proof. Let X = [X,, X?,  . . . , X,,] be  the ( T  x K j  matrix  containing all the 
explanatory  variables i n  all equations. We shall define p = rank(X) 5 T .  
Next, let the orthogonal columns of the ( T  x p)  matrix V comprise  a 
basis set for  the  space  spanned by the  columns of X, so that there exists 
( p  x k,) matrices F, such that XJ = VF, (for all j = 1, . . . , M ) .  t Under the 
assumption  that XJ has full column rank, it follows that F, must also have 
full column  rank and so we see that k,,, 5 p 5 T .  It also follows that  there 
exist ( p  x ( p  - k,)) matrices Gj such that [ F , .  G,] is nonsingular  and 
F,'G, = 0. Given G, we can define ( T  x ( p  - k,)) matrices 

ZJ = VGJ. , j  = 1, . . . . M 

'A necessary and sufficient condition is available  orly if one imposes on  the  support 
of e restrictions which preclude the possibility  of ,X being singular except  when the 
sample size is sufficiently small. For  example.  one  would have to preclude  the  pos- 
sibility of either multicollinearity  between the y, or any J, = 0, both of which would 
ellsure  a singular 2. We  have  avoided  making such assumptions here. 
'Subsequently, if the  columns of  a matrix A (say) form a  basis set for  the  space 
spanned by the  columns of another  matrix Q (say), we shall simply  say that A is a 
basis for Q. 
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The  columns of each 2, span  that  part of the  column  space of V not 
spanned by the  columns of the  correspollding X,. By Pythagoras'  theorem, 

PL, = P.y, + M x , Z j ( Z ~ M ~ , Z j ) " Z ; M , ~ ,  

Observe that, because X,'Z, = 0 by construction, My,ZJ = Zj giving P L r  = 
Px, + Pz, or, equivalently, 

Mx, = M,, + Pz, 
From  equation (2), 

t, = [MV + P,,]?;, 
so that 

where 

D = [dl. . . . , dn,] 

with 

Pz,yj. if p > k,, 
0. otherwise. 

j = l ,  . . . ,  M 

Thus,  the OLS residual for each  equation  can be decomposed  into  two 
orthogonal  components, MI,)$ and (4. MI,!, is the OLS residual  from  the 
regression of yj on V ,  and d/ is the  orthogonal projection  of yj  onto  that  part 
of the  column  space of V which is not  spanned by the  columns of X,. Noting 
that Y ' M V D  = 0, because MI..Zj = 0 (j = 1. . . . . M ) ,  equation (8) implies 
that 

612 = Y M , .  Y + DID (11) 

It is  well known that if R and S are  any two  matrices  such that R + S is 
defined,  then* 

rank(R + S )  I rank(R) + rank(S) (12) 

Defining 0 = rank(k'k), 6 = rank( Y'MLJ Y ) .  and q = rank(D),  equations 
(1 1) and (12) give us 

B 5 6 S q  

'See. for example, [lo. A.6(iv)J. 
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Now, M,,. admits  a full rank  decomposition of the  form M I .  = HH’,  where 
H is a ( T  x ( T  - p) )  matrix.  Consequently, 6 = rank( Y’M, ,  Y )  = rank 
( Y ’ H )  5 min(M. T - p),  with probability  one, so that 

6’ I min(M. T - p )  + 
Clearly, E‘b has full rank if and only if 6’ = M ,  which implies 

M I min(M, T - p) + q (13) 

If T - p 2 M ,  equation (13) is clearly satisfied. Thus, the  binding  inequality 
for ( 13) occurs when min(M, T - p)  = T - p. 

As noted i n  equation (6), and in further  discussion below, T 2 M + p is 
the  required  condition  for  a class of models  that includes the  multivariate 
regression model.  When  some  explanatory  variables are  omitted  from some 
equations,  the  sample size requirement is less stringent. with the reduced 
requirement  depending  on 11 = rank(D). 

Care must be exercised when applying  the result in (7 )  because of several 
relationships  that exist between M ,  T ,  p, and q.  We have already  noted  that 
p 5 T .  Let us examine q more closely. First, because D is a ( T  x M )  matrix, 
and 11 = rank@). it must be that I min(M. T ) .  Actually, we can write 
77 5 min(d, T) ,  where 0 5 d I M denotes  the  number of nonzero 4; that 
is, d is the  number of X, which do  not form  a basis for X .  

Second. the  columns of D are  a set of projections onto the  space  spanned 
by the columns of Z = [Z , ,   Z z . .  . . , Z,Ll], a  space of possibly lower dimen- 
sion than p,  say p - (u. where 0 5 w 5 p. In practical  terms, Z, is a basis for 
that  part of V spanned by the  explanatory  variables excluded from  the j th  
equation;  the  columns of Z span  that  part of V spanned by all variables 
excluded from  at least one  equation. If there are some  variables  common  to 
all equations,  and hence not excluded from  any  equations, then Z will not 
span  the  complete  p-dimensional  space  spanned by V .  More formally, we 
will write V = [ V ,  Vz] ,  where  the ( T  x ( p  - 0)) matrix r/, is a basis for Z 
and the ( T  x w )  matrix V ,  is a basis for  a  subspace of V spanned by 
the  columns of each q, j = 1 , .  . . . M .  The most  obvious  example  for 
which w > 0 is  when each  equation  contains  an  intercept.  Another  exam- 
ple is the  multivariate regression model, where o = p, so that V2 is empty 
and D = 0. Clearly, because T 2 p 2 p - w. the  binding  constraint on 11 

is not q 5 min(d. T )  but  rather q I min(ti. p - w ) .  
Note  that q 5 min(d, p - w )  5 p - w 5 p, which implies that T 2 A4 + p 

-r] 2 M is a necessary condition  for C to be nonsingular.  Obviously T 2 
is part of (4). The  shortcoming of (4) is its  failure to recognize the  interactions 
of the XI in the  estimation of ( I )  as  a system of equations. In particular. T 2 
k* + 1 is an  attempt  to characterize  the  entire system on the basis of those 



582 Griffiths et al. 

equations which are  most extreme in the sense of having  the  most regressors. 
As we shall  demonstrate,  such  a  characterization is inadequate. 

Finally, it is interesting to  note  the relationship between the result in 
Theorem 1 and results in the  literature  for  the existence of the  mean of a 
two-stage  estimator.  Srivastava  and  Rao [I  51 show that sufficient conditions 
for  the existence of  the  mean of a  two-stage  estimator  that uses an  error 
covariance  matrix  estimated  from  the  residuals of the  corresponding  unrest- 
ricted multivariate regression model  are (i) the  errors have finite moments  of 
order 4, and (ii) T > M + K* + 1. where K* denotes  the  number of distinct 
regressors in  the system.* They  also  provide  other  (alternative) sufficient 
conditions  that  are equally  relevant when residuals  from  the restricted 
SUR model are used. The existence of higher-order  moments of a  two- 
step  estimator in a  two-equation  model  have  also been investigated by 
Kariya  and  Maekawa [8]. In every case we  see that  the result of Theorem 
I for  the existence of the  estimator is less demanding of sample size than  are 
the  results  for  the existence of moments of the  estimator.  This is not  surpris- 
ing. The existence of moments  requires sufficiently thin  tails  for  the  distri- 
bution of the  estimator.  Reduced  variability  invariably  requires increase 
information which manifests itself in a  greater  requirement  on  sample size. 51 
This  provides even stronger  support  for  our assertion  that  the usually stated 
sample size requirements are  inadequate because the existence of moments is 
important to many  standard techniques of inference. 

3.2 Applications of the Necessary Condition 

In  what follows we shall exploit  the  randomness of the 4, to  obtain 11 = 
min(d. p - w )  with probability  one.  Consequently, (7) reduces to 

M + w, for 11 = p - (r) 

M + p - d .  for 17 = rl 

Let us explore these results  through  a series of examples. 
First, 11 = 0 requires  either d = 0 or p = w (or  both).  Both of these 

requirements  correspond to  the  situation  where  each X, is a basis for X ,  
so that p = k,,, = K/ for j = 1 , .  . . , M.J Note  that this  does  not  require 

"Clearly K* is equivalent  to p in the  notation  of this paper. 
+The  arguments  underlying these  results are  summarized by Srivastava  and  Giles 
[14, Chapter 41. 
$The  equality p = k,,,,3, = K, follows from our assumption of full column  rank  for 
each  of  the X,. If this assumption is relaxed, condition (15) becomes T 2 M + p, 
which is the  usual  sample size requirement in  rank-deficient multivariate regression 
models: see [9. Section 6.41. 
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XI = . .. = X,, but  does  include  the  multivariate regression model as  the 
most likely special case.  In  this  case, (14) reduces to 

which is obviously  identical to condition (6) and  so need not be explored 
further. 

Next  consider  the  model 

Here M = 3, p = 3, d = 1, and o = 1, so that q = min(l ,3  - 1 )  = 1. Such a 
system will require  a  minimum of five observations to estimate. If p23 = 0, 
so that s3 no longer appears in equation (1 6b),  then Q = d = p - w = 2 and 
the  sample size requirement  for  the system reduces to T 2 4. Suppose  now 
that, in addition  to deleting s 3  from  equation (16b), we include s 2  in equa- 
tion  (16a).  In  this  case, w = d = 2 but q = p - o = l and.  once  again,  the 
sample size requirement is 5. Finally, if we add x 2  and x 3  to equation  (16a) 
and leave equation  (16b)  as  stated, so that the system becomes a  multi- 
variate regression equation,  the  sample size requirement becomes T > 6. 
None of the  changes to model (16) that have been suggested above  alter 
the  prediction of condition (4), which is that  four  observations  should be 
sufficient to estimate  the  model.  Hence,  condition (4) typically underpredicts 
the  actual  sample size requirement for  the model and i t  is unresponsive to 
certain  changes in the  composition  of  the  model which do impact  upon  the 
sample size requirement of the  two-stage  estimator. 

In the  previous  example we allowed d and p - o and 17 to vary but at  no 
time did the  sample size requirement  reduce to T = M .  The next example 
provides  a  simple  illustration of this  situation. A common  feature with the 
previous  example will  be the  increasing  requirement on sample size as  the 
commonality of regressors  across  the system of  equations increases. where 
again w is the  measure of commonality.  Heuristically,  the  increase in sample 
size is required to  compensate  for  the reduced information  available when 
the system contains 
equation models 

fewer distinct  explanatory  variables.  Consider  the  two 

(17) 
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and 

In  model (17) there are no common regressors and so w = 0, which implies 
that r]  = min(d. p)  = min(2,2) = 2. Consequently, (14) reduces to T 2 
M + p - 11 = 2. That is, model (17) can be  estimated using a  sample of 
only  two  observations  or,  more  importantly,  one  can  estimate  as  many  equa- 
tions  as  one has  observations.*  Model (18) is a  multivariate regression model 
and so T 2 + p = 3. 

As a final example, if p = T then Y'M, .  Y = 0 and  the estimability of the 
model is determined solely by ) I .  From  condition (14) we see that, in order  to 
estimate M equations. we require r]  = M .  But 11 I p - o I T - o and so 
= T - w is the  largest  number of equations  that  can be  estimated  on  the 
basis of T observations.  This is the result observed in the  comparison of 
models ( 1  7) and ( I  8) :  i t  will be  encountered  again in Section 4, where  each 
equation in a system contains  an  intercept, so that w = I ,  and M = T - 1 is 
the  largest number of equations  that  can be estimated  for  a given sample 
size. The case of p = T would be common in large systems of equations 
where  each  equation  contributes  its  own  distinct  regressors;  indeed,  this is 
the  context in which it arises in Section 4. 

4. MAXIMUM LIKELIHOOD AND BAYESIAN 

4.1 A Necessary Condition  and Discussion 

Likelihood-based  estimation, be it maximum  likelihood or Bayesian, 
requires  distributional  assumptions  and so we  will augment  our earlier 
assumptions  about e by assuming  that  the  elements of o are  jointly  normally 
distributed.  Consequently.  the  log-likelihood  function  for model ( I )  is 

ESTIMATION 

L = -( TM/2) log(2r) - ( T / 2 )  log IC( - ( 1  /Z)tr(SC") (19) 

where S = E'E.  The ML estimates  for ,!I and C are those values which 
simultaneously satisfy the  first-order  conditions 

*This is a theoretical  minimum  sample size and should not be interpreted as a serious 
suggestion for  empirical  work! 
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and 

TC = k‘i (21) 

with vec(E) = y - xg. This is in contrast  to  the two-stage  estimator which 
obtains  estimates of C and B sequentially. Rather  than trying  to  simulta- 
neously maximize L with respect to  both B and C, it is convenient to equiva- 
lently maximize L with respect to B subject to tke  constraint  that C = S / T ,  
which will ensure  that  the ML estimates, and C, satisfy equations (20) and 
(21). Imposing  the  constraint by evaluating L at C = S / T  gives the  concen- 
trated  log-likelihood  function* 

L*(B) = constant - -log IS( 
T 
2 

Similarly,  using  a  prior  density  function .f(B, C) c( it can be 
shown that the  marginal  posterior  density  function for B is? 

.f(BIY) 0: ISIrT’’ 

Consequently, we see that  both  the ML and Bayesian estimators  are 
obtained by minimizing the generalized variance IS1 with respect to /I. 

The  approach  adopted in this  section will be to  demonstrate  that,  for 
sufficiently small  samples,  there necessarily exist Bs such that S is singular 
(has  rank less than M ) ,  so that (SI = 0. In such  cases, ML estimation  cannot 
proceed as  the likelihood  function is unbounded  at these points;  similarly, 
the  posterior  density  for B will  be improper at these Bs. Since S = E’E, S 
will  be singular if and  only if E has  rank less than M .  Consequently,  our 
problem  reduces to  determining  conditions  under which there necessarily 
exist Bs such  that E is rank deficient. 

Theorem 2. In  the  model ( l ) ,  augmented by a  normality  assumption,  a 
necessary condition for S = E’E to be nonsingular,  and hence for  the like- 
lihood  function (19) to be bounded, is that 

T > M + p  (22) 

where p = rank([X,, X,, . . . , X A J ] )  and E is defined in  equation (5 ) .  

Proof. E will have  rank less than M if there exists an ( M  x 1) vector c = 
[c I ,   c2 , .  . . . cM]’ such that Ec = 0. This is equivalent  to  the  equation 

@Pa = 0 

*See, for example, [7, p. 5531. 
?See, for example, [18. p. 2421. 
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where  the ( T  x ( M  + K ) )  matrix @ = [ Y ,  -X] and  the ( ( M  + K )  x 1) vector 
(Y = [c’, clB;, c2&. . . . , c,,,,,B,L,,]’. A  nontrivial  solution for (Y, and hence a 
nontrivial c, requires that @ be rank deficient. But  rank @ = min(T. M + 
p) with probability  one  and so, in order  for E to be rank deficient, i t  follows 
that T < M + p. A necessary condition  for E to have full column  rank with 
probability  one is then  the  converse of the  condition  for E to  be  rank 
deficient. 0 

A  number  of  comments  are in order.  First, (22) is potentially  more  strin- 
gent in its  requirements on sample size than is (14). Theorem 1 essentially 
provides  a  spectrum of sample size requirements, T 2 M + p - q,  where  the 
actual  requirement  depends on  the specific data set used for  estimation of 
the  model.  The likelihood-based  requirement is the  most  stringent of those 
for  the  two-stage  estimator,  corresponding to the  situation  where q = 0. 
That q can differ from  zero  stems  from  the  fact that  the OLS residuals 
used in the  construction of C by the  two-stage  estimator satisfy 2;= M.y,yj, 
whereas the likelihood-based  residuals used in  the  construction of C need not 
satisfy the  analogous Cj = Mx,y,.  

Second,  the  proof of Theorem 2 is not readily applicable to the  two-stage 
estimator  considered in Theorem 1.  In  both cases we are concerned  with 
determining  the  requirements  for  a  solution  to  an  equation of the  form 
A c  = 0, with A = E = [Mx,yl, M,,y?, . . . , M X , , y M ]  in  Theorem 1 and A = 
E in Theorem 2. For the  two-stage  estimator,  the  interactions between the 
various X, are  important  and  complicate  arguments  about  rank.  The decom- 
position (1 1) provides  fundamental  insight  into these interactions.  making it 
possible to use arguments of rank  to  obtain  the necessary condition  on 
sample size. The absence of corresponding  relationships between the  vectors 
of likelihood-based  residuals  means that a  decomposition  similar to equation 
(1 1) is not required and  that the  simpler  proof of Theorem 2 is sufficient. 

An  alternative way of thinking  about why the  development of the  pre- 
vious section differs  from that of this section is to recognize that  the  pro- 
blems being addressed in the two sections are different. The difference in the 
two  problems  can  be seen by comparing  the  criteria  for  estimation. For 
likelihood-based  estimators  the  criterion is to  choose B to minimize [SI, a 
polynomial of order 2M in the  elements of B. For the  two-stage  estimator  a 
quadratic  function in the  elements of is minimized. The  former problem is 
a  higher-dimensional one  for all M > I and, consequently,  its  solution  has 
larger  minimal  information (or sample size) requirements when the  estima- 
tors diverge.* 

*There are special  cases where the two-stage estimator  and the likelihood-based 
estimators  coincide: see [14]. Obviously, their  minimal  sample size requirenlents 
are the same in these  cases. 
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4.2 Applications of the Necessary Condition 

In light of condition (22), it is possible to re-examine  some  empirical  work 
undertaken by Chotikapanich  and Griffiths [3] to  investigate  the effect of 
increasing M for fixed T and K]. This  investigation was motivated by the 
work of Fiebig and  Kim [ 5 ] .  The  data set was such that T = 19 and Kj = 3 
for all j .  Each X j  contained  an intercept and two other regressors that were 
unique  to  that  equation.  Consequently, in this  model p = min(2M + 1, T ) ,  
so that  rank(@) = min(3M + 1. T) ,  and  condition (22) predicts that likeli- 
hood-based  methods  should  only  be  able to estimate systems containing  up 
to M = ( T  - 1)/3 = 6  equations.*  Conversely,  as  demonstrated below, con- 
dition (14) predicts  that  two-stage  methods  should be able to  estimate sys- 
tems  containing up to M = T - 1 = 18 equations.  This is exactly what was 
found.  Although  the  two-stage  estimator  for  the first two  equations gave 
relatively similar  results for M all the way up  to 18, the authors  had diffi- 
culty with the  maximum  likelihood  and Bayesian estimators  for M 2 7. 
With  maximum likelihood estimation  the  software  package SHAZAM 
([16]) sometimes  uncovered  singularities and sometimes  did not,  but, when 
it did not, the  estimates were quite  unstable.  With Bayesian estimation  the 
Gibbs  sampler  broke  down  from singularities, or got  stuck in a narrow, 
nonsensical range of parameter values. 

The  statement of condition (14) implicitly assumes that  the  quantity of 
interest is sample size. It is a useful exercise to illustrate  how (14) should be 
used to determine  the  maximum  number  of  estimable equations given the 
sample size; we sha 1 do so in the context of the  model discussed in the 
previous paragraph! To begin, observe that (i) d = M ,  because each equa- 
tion contains  two  distinct regressors; (ii) o = l ,  because each  equation 
contains  an intercept;  and (iii) p = min(2M + 1, T ) ,  as before, so that 
p - o = min(2M, T - 1). Unless M > T - 1, d 5 p - o, so that r]  = d, 
and  condition (14) reduces to T 2 M + p - d. Clearly,  condition (14) is 
satisfied for all T 2 M + 1 in  this  model,  because d = M and T 2 p by 
definition.  Next,  suppose that M > T - 1. Then r]  = p - o = T - 1 < M = 
d and (14) becomes M 5 T - w = T - 1. But this is a  contradiction  and so, 
in this  model, the necessary condition  for ,f to  be  nonsingular with prob- 

*Strictly the  prediction is M = [(T - 1)/3] equations, where [x] denotes  the integer 
part of s. Serendipitously. ( T  - 1)/3 is exactly 6 in this case. 
?The final example of Section 3 is similar to this one except for the  assumption  that 
p = T ,  which is not  made here. 
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ability one is that A4 5 T - I . *  It  should be noted that this is one less 
equation  than is predicted by condition (4), where T >_ A4 will  be the  bind- 
ing constraint,  as 19 = T > k,,, + 1 = 3 in this case. 

5. CONCLUDING REMARKS 

. This  paper  has  explored  sample size requirements for  the  estimation of SUR 
models. We found  that  the  sample size requirements  presented in standard 
treatments of SUR models are,  at best,  incomplete and potentially  mislead- 
ing.  We  also  demonstrated that likelihood-based  methods  potentially 
require  much  larger  sample sizes than  does the  two-stage  estimator  consid- 
ered in  this  paper. 

It is worth  noting  that  the  nature of the  arguments  for  the  likelihood- 
based estimators is very different  from  that  presented for  the two-stage 
estimator.  This reflects the  impact of the  initial  least-squares  estimator on 
the  behaviour of the  two-stage  estimator.? In both cases the  results  pre- 
sented are necessary but  not sufficient conditions.  This is because we are 
discussing  the  nonsingularity of random matrices and so there exist sets of Y 
(of measure  zero)  such  that  and 5 are singular even when  the  requirements 
presented  here are satisfied.  Alternatively,  the  results  can  be thought of as 
necessary and sufficient with probability  one. 

Our numerical  exploration of the  results  derived in this  paper reveale 
that  standard packages  did  not  always  cope well with undersized  samples. 8 
For example,  it  was not  uncommon  for them to locate local maxima of 
likelihood  functions  rather than correctly  identify  unboundedness.  In  the 

*An  alternative  proof of this result comes  from  working with condition (13) directly 
and recognizing that  the  maximum  number of equations  that  can be estimated for a 
given sample size will be that value at which the  inequality is a strict  equality. 
Substituting for d = M.  p = min(2M + 1 ,  T ) ,  and q = min(d, p - w )  in  (13) yields 

M 5 min(M, T - min(2M + I ,  T ) )  + min(M,  min(2M + 1 ,  T )  - I )  

which will be violated only if 

T - min(2Mf 1, T )  + min(2M + 1. T )  - 1 = T - 1 < M 

as  required. 
tAlthough  likelihood-based  estimators  are typically obtained iteratively, and  may 
well use the  same initial estimator  as  the  two-stage  estimator  considered  here,  the 
impact  of  the initial estimator is clearly dissipated  as  the  algorithm  converges to the 
likelihood-based  estimate. 
$These  experiments  are not reported  in  the  paper.  They served  merely to  confirm  the 
results  derived and  to  ensure  that  the examples presented were, in fact,  correct. 
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case of two-stage  estimation,  singularity of sometimes  resulted in the first 
stage OLS estimates being reported  without  meaningful  further  comment. 
Consequently, we would strongly  urge  practitioners to check the  minimal 
sample size requirements  and. if their  sample size is at all close to the mini- 
mum  bound,  take steps to  ensure  that  the results  provided by their  computer 
package  are  valid. 
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Semiparametric Panel Data Estimation: 
An  Application to Immigrants‘ Homelink 
Effect  on U.S. Producer Trade Flows 
AMAN  ULLAH University of California, Riverside, Riverside, California 

KUSUM  MUNDRA San  Diego State University, San  Diego,  California 

1. INTRODUCTION 

Panel  data refers to  data where we have  observations  on the same  cross- 
section unit over  multiple  periods of time. An  important aspect  of the panel 
data  econometric analysis is that it allows  for cross-section and/or time 
heterogeneity.  Within  this  framework  two  types of models are mostly esti- 
mated;  one is the fixed effect (FE) and the other is the  random effect. There 
is no agreement in the  literature  as  to which one  should be  used  in empirical 
work; see Maddala (1987) for  a  good discussion on this subject. For both 
types  of  models  there is an extensive  econometric  literature  dealing  with  the 
estimation  of linear parametric models, although  some recent  works on 
nonlinear  and  latent  variable  models  have  appeared; see Hsiao (1985), 
Baltagi (1998), and  Matyhs  and  Sevestre (1996). It is. however, well 
known  that the parametric  estimators of linear  or  nonlinear models  may 
become inconsistent if the  model is misspecified. With this in  view,  in this 
paper we consider  only  the FE panel  models and  propose  semiparametric 
estimators  which  are  robust  to the misspecification  of the functional  forms. 

591 
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The  asymptotic  properties of the  semiparametric  estimators are also  estab- 
lished. 

An important objective  of  this  paper is to  explore  the  application of the 
proposed  semiparametric  estimator to study  the effect of immigrants' 
"home link" hypothesis on the U.S. bilateral  trade flows. The idea behind 
the  home link is that when the  migrants  move to the U.S. they maintain ties 
with their  home  countries, which help in reducing  transaction  costs of trade 
through better  trade  negotiations, hence effecting trade positively. In  an 
important recent work,  Gould (1994) analyzed  the  home link hypothesis 
by considering  the well-known gravity  equation  (Anderson 1979. 
Bergstrand 1985) in the  empirical  trade  literature which relates the  trade 
flows between two  countries with economic  factors.  one of them being 
transaction  cost.  Gould specifies the  gravity  equation to be linear in all 
factors except transaction  cost, which is assumed to be a  nonlinear  decreas- 
ing  function of the  immigrant  stock in order  to  capture  the  home link 
hypothesis.* The usefulness of our proposed  semiparametric  estimators 
stems  from  the  fact  that  the  nonlinear  functional  form used by Gould 
(1994) is misspecified. as indicated in Section 3 of this paper.  Our findings 
indicate  that  the  immigrant  home link hypothesis  holds  for  producer 
imports but  does  not  hold  for  producer  exports in the U.S. between 1973 
and 1980. 

The plan  of this paper is as follows. In Section 2 we present  the FE model 
and  proposed  semiparametric  estimators.  These  semiparametric  estimators 
are  then used to analyze  the  "home link" hypothesis in Section 3. Finally, 
the  Appendix discusses the  aysmptotic  properties of the  semiparametric 
estimators. 

2. THE MODEL AND ESTIMATORS 

Let us  consider the parametric FE model as 

]'// = x:, ,6 + z:,y + a; + ll,, (i = 1, . . . . I ? :  t = 1, . . ' , T )  (2. I )  

where yo is the  dependent  variable. s r t  and z;, are  the p x 1 and q x 1 
vectors, respectively, ,6, y, and a, are the unknown  parameters,  and uit is 
the random  error with E(u,, I s , ~ .  I,,) = 0. We  consider  the  usual  panel data 
case of large I ?  and small T .  Hence all the  asymptotics in this paper  are  for 
11 +. 00 for  a fixed value  of T .  Thus, as 11 -+ 00. f l  consistency  and f i  
consistency are equivalent. 

*Transaction  costs  for  obtaining foreign market  information  about  c0untry.j in the 
U S .  used by Gould (1994) in his study is given by Ac-d'" 'f ' '"+''rc'L'o', p > 0, 6, > 0, 
A > 0, where MI.s , ,  = stock of immigrants  from count ry j  in the  United  States. 
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From (2.1) we can write 

y,, = x,: B + Z:,Y + u,, (2.2) 
where R,,-= vi, - Ff., F;. = r ; , / T .  Then  the well-known parametric FE 
estimators of p and y are  obtained by minimizing x, Vi', with respect 
to B and y or x,  x, u; with respect to B, y,  and a;. These are the  consistent 
least-squares (LS) estimators  and  are given by 

r 1-1 

= (?Y-d"S,Y- , f .Y 

= ( X ' M Z X ) " X ' M Z Y  (2.3) 

c, = sz' (SZ. Y - S.Ybp) (2.4) 

and 

where p represents  parametric, iA = Zl',(Ci x, Z,, Z,;)" x, Z;, A',:, 
SA,B = A' B/,,T = x,  x, A,, B,',/,,T for  any  scalar  or column  vector se- 
quences A,, and B,,, SA = S A , A ,  and MZ = I - Z(Z'Z)- 'Z' .  The  estimator 
6,  = 1;,. - si.b, - Z;,c, is not  consistent, and this will also be the  case  with 
the  semiparametric  estimators given below. 

New  semiparametric  estimators of /? and y can  be  obtained  as follows. 
From (2.2) let us write 

"I 

E(Y,,IZ;,) = E(X,:lZ,,)B + zi: Y (2.5) 

Y;: = xi:' B + u,, (2.6) 

Then,  subtracting (2.5) from ( 2 3 ,  we get 

which gives the LS estimator of B as 

(2.7) 

where RT, = R, ,  - E(R, ,[Z; , )  and sp represents  semiparametric. We refer to 
this  estimator  as  the  semiparametric  estimator,  for  the  reasons given below. 

The  estimator ssp is not  operational since it  depends  on  the  unknown 
conditional  expectations ,E(A,,lZ,,), where Ai ,  is Y,, or X;,. Following 
Robinson (1988). these can however be estimated by the  nonparametric 
kernel  estimators 
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where K,,,jy = K((Z;, - Z ) / ~ l ) ,  j = 1 , .  . . . n ;  s = 1 , .  . . , T ,  is the  kernel 
function  and u is the  wlndow  width.  We use product  kernel K(Z,,)  = 

k(Z;, ,  I), k is the  univariate  kernel  and Z,,,/ is the  eth  component 
of Z,f.  Replacing  the  unknown  conditional  expectations in (2.7) by the 
kernel  estimators in (2.8), an operational version of B,$p becomes 

JS 

Since the  unknown  conditional  expectations have been replaced by their 
nonparametric estimates we refer to b,yp as the  semiparametric  estimator. 
After we get b,yp, 

The consistency and  asymptotic  normality of 6, and csp are discussed in the 
Appendix. 

In  a special case  where we assume  the  linear  parametric  form of the 
conditional  expectation,  say E(AifIZ; , )  = Z,!, 6 ,  we can obtain  the LS pre- 
dictor  as A,, = Z,’,(C, E, Z;, Z:,)-’ 1, x, ZifA, , .  Using  this in (2.7) will  give 
,&,, = bp. It  is in this sense that b,sp is a  generalization of bp for  situations 
where,  for  example, X and Z have  a  nonlinear  relationship of unknown 
form. 

Both  the  parametric  estimators bp, cp and  the  semiparametric  estimators 
b,,p. c,sp described  above are  the J;; consistent global estimators i n  the sense 
that  the model (2.2) is fitted to the  entire  data set.  Local  pointwise  estima- 
tors of B and y can be obtained by minimizing the kernel weighted sum of 
squares 

(2.1 I )  

with respect to j?. y. and CY ; 11 is the  window  width. The local pointwise 
estimators so obtained  can be  denoted by b,(s, z )  and cSp(s .  z) .  and these 
are  obtained by fitting  the  parametric  model (2.1) to the  data close to  the 
points x. z .  as determined by the weights KO. These  estimators  are useful for 
studying  the local pointwise  behaviors of B and y ,  and their expressions  are 
given by 
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-s-"s  - " . 
!,"ll' ll"l$'.j"~' (3.12) 

where wli = [&.~!',1/~7;z~!~l, K / ~  = ~((s,,  - s) / /~ ,  (z,, - : ) / / I ) .  2, = ,Y, A,,K, , /  c, KIP 
While  the  estimators bP. cp and b,, csp are  the JJi consistent  global  esti- 

mators,  the  estimators b,sP(s. z ) ,  ( - , y P ( . ~ ,  5 )  are  the consistent local 
estimators (see Appendix).  These  estimators  also  provide  a  consistent  esti- 
mator of the  semiparametric FE model 

where t u ( )  is the nonparametric regression.  This  model is semiparametric 
IJecause of  the  presence of the  parameters a;. It is indicated in the  Appendix 
that 

is a  consistent estimator of  the  unknown  function /77(.yi,, z , , ) ,  and hence 
b S p ,  c',~,, are the  consistent  estimators of its  derivatives.  In  this sense I;~,~,,(.Y~,, 

z l r )  is a local  linear  nonparametric regression estimator which estimates  the 
linear  model  (2.1)  nonparametrically; see Fan (1993, 1993) and  Gozalo  and 
Linton (1994). We note however  the  well-known fact that the  parametric 
estimator x;, b,, + zl', cp is a  consistent estimator only if t n ( . ~ ~ , .  z i t )  = x!', j3 + 
rI',y is the  true  model.  The  same  holds  for  any  nonlinear  parametric speci- 
fication  estimated by the  global  parametric  method.  such as  nonlinear least 
squares. 

In some  situations, especially when  the  model  (2.13) is partially  linear in s 
but  nonlinear  of  unknown  form in =, as in Robinson (1988), we can  estimate 
j3 globally  but y locally and vice-versa. I n  these situations we can first obtain 
the  global J7i consistent  estimate  of j3 by b,qp in (2.9).  After  this we can  write 

y f r  = j',, - x:, 17, = zl', y + a, + I ) / /  (2.15) 

where u I f  = u i r  + s/',(B - bsJ,). Then the local estimation of y can be obtained 
by minimizing 

(2.16) 
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which gives 

= s~~"2.,s~~;-i.)(,."-~.", (2.17) 

where K,, = K((zit - z ) / / z )  and 2; = x, A,,K,,/ E, K,,. Further, si,(?) = $: - 
2;. csp(z). As in (2.14), GTp(z, , )  = z:, C , $ ~ ( Z )  is a  consistent local linear  estimator 
of  the  unknown  nonparametric regression in the  model yx = m(z,,) + u; + 
u, , .  But  the  parametric  estimator z,', p,, will  be consistent  only if IH(z , , )  = z:, y 
is true. For discussion on the  consistency and  asymptotic normality of 
b,(z). ~ , ? ~ ( z ) ,  and i~,,Jz). see Appendix. 

3. MONTE CARLO RESULTS 

In  this  section we discuss Monte  Carlo  simulations  to examine  the small 
sample  properties  of  the  estimator given by (2.9). We use the following data 
generating  process (DGP): 

where zit is independent  and  uniformly  distributed in the  interval [-a,  a], 
.xit is independent  and  uniformly  distributed in the  interval [-A, 6 1 ,  u,, 
is i.i.d. N(0,  5). We choose @ = 0.7, S = 1, and y = 0.5. We report  estimated 
bias, standard deviation  (Std) and  root mean  squares  errors  (Rmse)  for the 
estimators.  These  are  computed via Bias (8) = M-'  E'{(($ - B,), Std(8) = 
[hi"' E"(fij - Mean(B))'}''', and Rmse(B) = {M-I C"((B, - B)'}''', where 
8 = b,sp, M is the  number of replications  and 8, is thejth replication. We use 
M = 2000 in all the  simulations. We choose T = 6 and rz = 50, 100,200, and 
500. The  simulation results are given in Table 1. The results are  not  depen- 
dent  on 6 and y,  so one  can say that  the results are  not sensitive to different 
functional  forms of m(z, , ) .  We see that  Std  and Rmse are falling as I I  

increases. 

4. EMPIRICAL  RESULTS 

Here we present an empirical  application of our proposed  semiparametric 
estimators. In this application we look into  the effect of the  immigrants' 
"home link" hypothesis on U.S. bilateral  producer  trade flows. Immigration 
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Table 1. The case of B = 0.7, 6 = 1, y = 0.5 

Bias Std  Rmse 

I I  = 50 -0.1 16 0.098 0.152 
I 1  = 100 -0.1 15 0.069 0. I34 
11 = 200 -0.1 18 0.049 0.128 
11 = 500 -0.1 I7 0.031 0.121 

has been an  important economic  phenomenon  for  the U.S.. with immigrants 
varying in their origin and  magnitude.  A  crucial force in this  home link is 
that when migrants  move to the U.S. they maintain ties with  their  home 
countries, which helps in reducing  transaction  costs of trade  through  better 
trade  negotiations. removing communication  barriers,  etc.  Migrants  also 
have  a preference for  home  products, which should effect U.S. imports 
positively. There have been studies  to  show  geographical  concentrations 
of particular  country-specific  immigrants in the U.S. actively participating 
in  entrepreneurial activities (Light and Bonacich 1988). This is an interesting 
look at the effect of immigration  other  than  the effect on the  labor  market, 
or welfare impacts,  and  might  have strong policy implications  for support- 
ing  migration  into  the U.S. from  one  country over another. 

A parametric  empirical  analysis of the “home link”  hypothesis was first 
done by Gould (1994). His  analysis is based 011 the  gravity equation 
(Anderson 1979. Bergstrand 1985) extensively used in the  empirical trade 
literature,  and it relates trade flows between two countries with economic 
forces. one of them being the  transaction  cost.  Gould’s  important  contribu- 
tion specifies the  transaction  cost  factor  as  a  nonlinear  decreasing  function 
of the  immigrant  stock  to  capture  the  home link hypothesis:  decreasing  at 
an increasing  rate. Because of this functional  form  the  gravity  equation 
becomes a  nonlinear  model, which he estimates by nonlinear least squares 
using an  unbalanced  panel  of 47 U.S.  trading  partners. 

We construct  a  balance  panel of 47 U.S. trading  partners  over  nine  years 
(1972-1980). so here i = 1, . . . ,47 and t = 1 ,  . . . ,9 .  giving 423 observations. 
The  country specific effects on heterogeneity are  captured by the fixed effect. 
In our case. J V ~ ,  = manufactured U.S. producers’  exports and  imports, .xlt 
includes lagged value of  producers’  exports and  imports,  U.S.  population, 
home-country  population, U.S. GDP, home-country GDP, U.S. GDP de- 
flator,  home-country GDP deflator, U.S. export value index,  home-country 
export value index, U.S. import value index,  home-country  import value 
index,  immigrant  stay, skilled-unskilled ratio of the  migrants. and z , ~  is 
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immigrant  stock  to  the  U.S.  Data  on  producer-manufactured  imports  and 
exports were taken  from OECD statistics.  Immigrant  stock, skill level and 
length of stay of migrants were taken  from INS public-use data  on yearly 
immigration.  Data on income, prices, and  population were taken  from 
IMF's International  Financial  Statistics. 

We start  the analysis by first estimating  the  immigrants' effect on U.S. 
producer  exports  and  imports using Gould's (1994) parametric  functional 
form  and plot it together with the kernel estimation; see Figures 1 and 2. 
The kernel  estimator is based on the  normal kernel given as K((z , ,  - ? ) / / I )  = 
I/fiexp(-(1/2)((zl, - z)/h)')  and / I ,  the  window-width, is taken as 
c s ( ~ T ) " / ~ .  c is a  constant,  and s is the standard  derivation  for variable z: 
for  details on  the choice of 12 and K see Hardle (1990) and  Pagan  and  Ullah 
(1999). Comparing  the results  with  the  actual  trade flows. we see from 
Figures 1 and 2 that  the  functional  form  assumed in the  parametric  estima- 

7 

6 

E 5  

s! K 

X w 
w K 4  
0 
3 

8 z 3  

8 2  
t z 
$ 1  

d 
5 

I- 

0 

-1 

E n T j  Raw Dala (Log Exports) 
Parametric Eshrnatlon 

100000 200000 300000 400000 500000 600000 700000 801 
t ___~ + ~___ ,"_ ""-4 "" ~~, . "+ " "" 

IMMIGRANT STOCK 

100 

Figure I .  Comparison of U.S. producer  exports with parametric  functional 
estimation  and kernel estimation. 
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Figure 2. Comparison  of U.S. producer  imports with parametric  func- 
tional  estimation  and  kernel  estimation 

tion is incorrect and hence Gould's  nonlinear LS estimates  may be incon- 
sistent. In fact  the  parametric  estimates, 4 ,  and cp. will also  be  inconsistent. 
In  view of this we use our  proposed f i  consistent  semiparametric  estimator 
of /I, b,. in (2.9) and  the consistent  semiparametric local linear  estimator of 
y. C , ~ ~ ( Z ) ,  in (2.17). 

First we look at the  semiparametric  estimates b,rp given in  Table 2. The 
immigrant skilled-unskilled ratio affects exports  and  imports positively, 
though it is insignificant.  This  shows that skilled migrants  are bringing 
better  foreign  market  information. As the  number of years  the  immigrant 
stays in the U.S. increases,  producer  exports and  producer  imports fall at  an 
increasing  rate. It  can be argued  that  the  migrants change  the  demand 
structure of the  home  country adversely,  decreasing U S .  producer  exports 
and  supporting  imports. But once  the  home country  information, which 
they carry becomes obsolete and their  tastes  change,  their effect on the 
trade falls. When  the  inflation index of a country rises, exports  from  that 
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Table 2. Bilateral  manufactured  producer  trade flows between the U.S. 
and  the  immigrant  home  countries 

U.S. producer  exports U.S. producer  imports 

Parametric  Parametric 
Dependent  variable  model  SPFE  model  SPFE 

U.S. GDP deflator 

Home-country GDP deflator 

U S .  GDP 

Home-country GDP 

US. population 

Home-country  population 

Immigrant  stay 

Immigrant  stay  (squared) 

Immigrant  skilled-unskilled 

U.S. export  unit  value  index 

Home-country  import  unit 

Home-country  export  unit 

U.S. import  unit  value  index 

ratio 

value  index 

value  index 

0.52 
(3.34) 

-0.25 
(0.09)” 

(2.13) 
0.60 

5.09 
(40.04) 

0.41 
(0.18)” 

(0.05) 
0.002 

(0.003) 
0.01 

(0.02) 
1.61 

(0.46)a 
-0.101 
(0.04) 

-1.14 

(0.11)” 

-0.06 

-9.07 
( I  8.22) 
-0.09 
(0.06) 

-3.29 
(11.01) 

0.17 
(0.09)‘ 
88.24 

(236.66) 
0.58 

(0.48) 
0.0 1 

(0.25) 
0.001 

(0.02) 
0.02 

(0.02) 
1.91 

(0.57)’ 
0.072 

(0.09) 

12.42 
(9.69) 
0.29 

(0.26) 
6.71 

(6.71) 
0.56 

(0.34)b 
6.05 

(123.8) 
0.58 

(0.53)‘ 
-0.16 
(0.01) 
0.01 

(0.01) 
0.06 

(0.06) 

5.45 
(77.62) 
-0.11 
(0.35) 
5.35 

-0.16 
(53.74) 

(0.45Y 

(1097.20) 
-67.18 

-5.31 
(2.47) 

-0.13 
(1.18) 
0.003 

(0.07) 
0.02 

(0.06) 

1.72 0.37 
(0.77):’ ( 1  35)  

-0.10 0.004 
(0.34)  (0.22) 

Newey-West corrected  standard  errors in parentheses.  dSignificant  at 1 YO level. 
hSignificant at  5% level. ‘Significant at 10% level. 

country may become expensive and  are  substituted by domestic  production 
in the  importing  country. Hence, when the  home-country GDP deflator is 
going  up, U.S. producer  imports fall and  the U.S. GDP deflator  affects U.S. 
producer  exports negatively. The U.S. GDP deflator  has  a  positive effect on 
U.S. imports, which might be due  to  the elasticity of substitution  among 
imports exceeding the  overall elasticity between imports  and  domestic  pro- 
duction in the  manufactured  production  sector in the U.S., whereas  the 
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opposite  holds in the  migrants’  home  country. The U.S. export value index 
reflects the  competitiveness  for U.S. exports  and  has  a significant  positive 
effect on  producer  exports.  This  may be due  to  the supply elasticity of 
transformation  among US. exports exceeding the  overall elasticity between 
exports  and domestic  goods, which is true  for  the  home-country  export  unit 
value index too.  The U.S. and  the  home  country  import unit value indexes 
have a  positive effect on  producer  imports  and  producer  exports respec- 
tively. This  shows  that  the elasticity of substitution  among  imports exceeds 
the  overall elasticity between domestic  and  imported  goods, both in the U S .  
and in the  home  country.  The  immigrants’  home-country GDP affects  the 
producer  exports positively and is significant at the 1094 level of signifi- 
cance. The U.S. GDP affects producer  exports negatively and also  the 
home-country GDP affects producer  imports negatively, showing  that  the 
demand elasticity of substitution  among  imports is  less than unity both  for 
the U.S. and  its  trading  partners. 

To analyze  the  immigrant “home link”  hypothesis, which is an  important 
objective here, we obtain elasticity estimates csp(z) at different  immigrant 
stock levels for  both producer’s  exports and producer’s  imports.  This 
shows  how  much U.S. bilateral  trade  with  the  ith country is brought  about 
by an  additional immigrant  from  that country. Based on this, we also  calcu- 
late in Table 3 the  average  dollar value change  (averaged  over nine years) in 
U.S. bilateral  trade flows: ClSp x Z;, where Cjsp = x, c,(z,,)/T and 5, = x, z i ,  
/ T  is the  average  immigrant  stock into  the U S .  from  the  ith country.  When 
these values are presented in Figures 3 and 4. we can clearly see that  the 
immigrant  home link hypothesis supports  immigrant  stock affecting  trade 
positively for U.S. producer  imports  but  not for U.S. producer  exports.  These 
findings suggest that  immigrant  stock  and U.S. producer  imports  are  com- 
plements in general,  but  the  immigrants and  producer  exports  are  substitutes. 
In contrast, Gould‘s (1994) nonlinear  parametric  framework suggests sup- 
port  for  the  migrants’  “homelink  hypothesis”  for  both  exports  and  imports. 
The difference in our results  for  exports  with  those  of Gould may  be due  to 
misspecification of the  nonlinear  transaction  cost  function in Gould  and  the 
fact  that  he uses unbalanced  panel data. All these results however indicate 
that  the  “home link”  hypothesis  alone  may not be sufficient to look at  the 
broader effect of immigrant  stock on bilateral trade flows. The  labor role of 
migrants  and the welfare effects of immigration,  both in the receiving and  the 
sending  country, need to be  taken  into  account. These  results  also  crucially 
depend on the  sample  period; during  the 1970s the U.S. was  facing  huge 
current  account deficits. In  any case,  the  above  analysis  does  open  interesting 
questions  as  to what  should  be  the U.S. policy on  immigration;  for  example, 
should it support  more  immigration  from  one  country over another on the 
basis of dollar value changes in import  or  export? 
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Table 3. Average  dollar  value  change in US .  producer  trade flows from 
one  additional  immigrant between 1972 and 1980 

Country  Producer  exports  Producer  imports 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
35 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Australia 
Austria 
Brazil 
Canada 
Colombia 
Cyprus 
Denmark 
El Salvador 
Ethiopia 
Finland 
France 
Greece 
Hungary 
Iceland 
India 
Ireland 
Israel 
Italy 
Japan 
Jordan 
Kenya 
Malaysia 
Malta 
Morocco 
Netherlands 
New  Zealand 
Nicaragua 
Norway 
Pakistan 
Philippines 
S. Africa 
S. Korea 
Singapore 
Spain 
Sri  Lanka 
Sweden 
Switzerland 

-84 447.2 
-257 216 

-72 299.9 
-1 908  566 

-300 297 
-1 1 967.4 
-65  996.3 

-1 15  355 
-1 1 396.6 
-93  889.6 
- 174  535 
-557  482 
- 172  638 
-13  206.8 

-311 896 
-577  387 
- 126  694 

-2 356  589 
-446 486 
-33 074.7 
-3  604.1 
-9 761.78 

-23 507.1 
-2  899.56 

-346 098 
-23 666.3 
-74  061.1 

-231 098 
-35  508.4 

-214  906 
-29243.3 
-89567.5 

-4095.1 
-161804 

-7819.8 

-9 I 599.2 
-220653 

107 852.2 
332 576.7 
91 995.54 

2 462  421 
381 830.7 

15 056.1 
85 321.2 

146 500.3 
13  098.77 

121  071.7 
225 599.7 
718  292.1 
163 015.4 

383 391.8 
742 629.5 
159  101.8 

17 003.16 

3 045  433 
575 985.8 
41 427 
4  044.627 

11 766 
30 184.8 
2  797.519 

447  181.1 
30 182.7 
93  930.9 

298  533.2 
42  682.64 

258 027.4 
37247.1 

109286.9 
4863.85 

207276.4 
9685.5 

28500.9 
1 18259.2 
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Table 3. Continued 

Country  Producer  exports  Producer  imports 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

Syria 
Tanzania 
Thailand 
Trinidad 
Tunisia 
Turkey 
U.K. 
W.  Germany 
Yugoslavia 
Zimbabwe 

-358 830.3 
-2 875.3 

-49 734.8 
-1 13  210 

-3 285.2 
-115  192 

0 
-193  8678 
-468  268 

-2 209.5 

44 644.6 
2  679.2 

58 071.3 
142 938.1 

3 066.1 
147 409.5 

0 
2505652 
598 664.1 

1 997.1 
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APPENDIX 

Here we present  the  asymptotic  properties  of  the  estimators in Section 2. 
First we note the well-known  results that,  as I? -+ m. 

where 2 is generated by &', = X,:(C, x, X,,  X,:)" X, E, X,, 2; and  Plim 
represents  probability limit; see the  book  White (1984). 

Next we describe  the assumptions  that  are needed  for  the  consistency and 
asymptotic  normality of b,y,,, csp, b,(s. z ) ,  C,~,(.Y, z) ,  and c,(z) given above. 
Following  Robinson (1988), let G t  denote the class of functions  such  that if 
g e Gft, then g is p times  differentiable; g and its derivatives (up to  order p) 
are all bounded by some  function  that  has  Ah-order finite moments. Also. 
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K2 denotes  the class of  nonnegative  kernel  functions k: satisfying s k(v)d"dv = 
6om for H I  = 0, 1 ( 6 0 m  is the  Kronecker's  delta), Jk(w).uv'dv = CJ ( I  > 0), 
and k(u) = O((1 + l ~ 1 ~ + " ) - ' )  for some 71 > 0. Further, we denote Jk'(v)vv'd 
v = DX . I .  We now state  the following assumptions: 

(Al)  (i) for all I ,  (I:,,, .xir, z,,) are i.i.d. across i and zrr admits a density 
function f E GF-l,  E(slz) and E(z1.x) E G i  for  some  positive  inte- 
ger ,.L > 2: (ii) ~ ( u , , ~ s ~ , ,  z,,) = 0 ,  ~ ( u ~ ~ s ~ , ,  zir) = az(.x,,. z,,) is continu- 
ous in x i ,  and z j l .  and u i r ,  q,, = .xjr - E ( s j r ~ z I , ) ,  ti, = (:,, - E(zj,Isi,) have 
finite (4 + 6)th moment  for  some 6 > 0. 

(A3) E K,; as 11 + 00. a -+ 0. nc?' -+ 0. and 1 2 a ~ ~ ~ ' ~ ' ~ / - ~ ~ ~ )  += 00. 

(A3) k E K2 and k(v) 2 0; as 11 -+ 00, h -+ 0 ,  1 1 h ~ ' ~  +. c o ,  and n114'4 + 0. 

(Al) requires  independent  observations  across i, and gives some  moment 
and  smoothness  conditions.  The  condition (A?) ensures b, and cS, are Jr; 
consistent.  Finally (A3) is used in the  consistency and  asymptotic  normality 
of b,(x z); C , ~ ~ ( S .  z), and c&). 

Under  the  assumptions (Al)  and (A2), and  taking a'(s, z )  = a' for 
simplicity,  the  asymptotic  distributions of the  semiparametric  estimators 
h, and c,, follow  from Li and Stengos (1 996), Li  (1 996) and Li and Ullah 
(1998). This is given by 

m ( b ,  - ,!I) - N(0.  a'C-') and m ( c ,  - ,!I) - N(0 .  a'52") (A.2) 

where C = E ( q ; ? l l / T )  and 52 = E(,,itl/T): 9,' = ( q i l .  . . . , qlT) .  Consistent 
estimators  for C" and 52" are C" and 52". respectively, where C = 
(l/(nT)) C,C,(X,, - ,fj,)(~Yjr - ,f,,)' = l / (nT))Ci(Xi  - X,) ' (Xj  - X , )  and 

The  semiparametric  estimators b,, and cSp depend  upon  the kernel esti- 
mators which may  have a random  denominator  problem.  This  can be 
avoided by weighting (2.5) by the  kernel  density  estimator 
1;-, =.f(zir!= ( ~ / ( I I T ~ ~ " ) ) C ,  Ki,.p. This gives ,hsp = SG.!-.a ; , I  i,; 1; 
this  case C will be  the  same as  above with X - X replaced y . ( X  " 1" X ) f .  
Finally,  under  the  assumptions (AI) to (A3) and  noting  that (rtT/i+2)'/2(b,T, 
-/3) = op( l ) .  i t  follows from  Kneisner  and Li (1996) that  for 11 -+ 00 

6 = ( I / ( l I T ) ) ~ ~ C r ( z , r  - ZuXZlr - 21r)'. 

(llT/?[f+')-' (c,+y(z)) - N(0,  X,) 64.3) 

where C1 = (a'(~)/f(z))C,"DaC,". Ck and Dk are  as defined above.  In 
practice we replace ( ~ ~ ( 3 )  by its  consistent  estimator $(z j r )  = C,C,s(j~' 
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- - , s l c ~ p ( ~ j s ) ) ? K , , , , ~ / ~ , ~ , ~  K,,,,,T. Further,  denoting m(z)  = z’y and 1;7~,,(z) 
= z c&), as 17 += 00 

(1?T~7”)”*(1~lT,,(~) - I ? ? ( : ) )  - N(0. z?) (A.4) 

where C2 = (O?(z) / f (z ) )  JK’(u)du; see Gozalo  and  Linton (1994). Thus  the 
asymptotic  variance of $?(z) is independent of the  parametric  model zy used 
to get the  estimate t;1(i) and it is the  same  as  the  asymptotic  variance  of 
Fan’s (1992, 1993) nonparametric local linear  estimator.  In this sense c,(z) 
and r i ~ , ~ ~ ( z )  are  the local linear  estimators. 

The  asymptotic normality of the  vector [b&(.v. z )  . c,,!,,(s. z)]  is the  same 
as  the result i n  (A.3) with q + 2 replaced by p + y + 2 and z replaced by 
(s, z ) .  As there, these estimators  are also  the local linear  estimators. 
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Weighting Socioeconomic  Indicators of 
Human  Development: A Latent  Variable 
Approach 
A. L. NAGAR and SUDIP  RANJAN  BASU National  Institute of Public 
Finance  and Policy, New Delhi,  India 

1. INTRODUCTION 

Since the  national  income was found  inadequate  to  measure  economic 
development, several composite  measures  have been proposed  for this 
purpose [I-71. They  take into  account  more  than  one social indicator of 
economic  development. 

The United Nations Development  Programme (UNDP) has been pub- 
lishing Human Development Indices (HDIs) in their Human Development 
Reports  (HDRs, 1990-1999) [7]. Although,  over  the years, some  changes 
have been made in the  construction of HDIs,  the  methodology  has  remained 
the  same. As stated in the HDR for 1999, the HDI is based on three  indi- 
cators: 

(a) longevity: as measured by life expectancy (LE) at birth; 
(b)  educational  attainment: measured as  a weighted average of 

(i) adult literacy rate (ALR) with  two-thirds weight, and (ii) 
combined  gross  primary,  secondary, and tertiary  enrolment  ratio 
(CGER) with one-third weight; and 
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(c) standard of living: as measured by real gross  domestic  product 
(GDP) per  capita  (PPP$). 

Fixed minimum and  maximum values have been assigned for  each of 
these indicators.  Then,  for  any  component (X) of  the HDI. individual 
indices are  computed as 

actual value of X - minimum value of X 
maximum value of X - minimum value of X IX = 

The real GDP ( Y )  is transformed  as 

and HDI is obtained  as  a  simple  (unweighted)  arithmetic  mean of these 
indices.* 

The Physical Quality of  Life Index (PQLI) was proposed by Morris [4]. 
The social indicators used in the  construction  of  PQLI  are: 

(i) life expectancy at age  one. 
(ii) infant  mortality  rate,  and 

(iii) literacy rate. 

For each  indicator,  the  performance of individual  countries is placed on  a 
scale of 0 to 100, where 0 represents  “worst  performance” and 100 repre- 
sents  “best  performance.”  Once  performance  for  each  indicator is scaled to 
this common  measure.  a  composite index is calculated  b  taking  the simple 
(unweighted)  arithmetic  average  of  the  three  indicators. i! 

Partha  Dasgupta’s [9] international  comparison  of  the  quality  of life was 
based on: 

(i) Y :  per  capita  income (1980 purchasing  power  parity); 
(ii) LE: life expectancy at  birth (years): 

(iii) IMR: infant  mortality  rate  (per 1000); 
(iv) ALR:  adult literacy rate (YO); 
(v)  an index of political  rights, 1979; 

(vi) an index of civil rights, 1979. 

He noted  that  “The  quality of data being what it is for  many of the  coun- 
tries, it is unwise to rely on their  cardinal  magnitudes.  We will. therefore. 

‘See UNDP HDR 1999. p. 159. 
‘**The PQLI proved  unpopular.  among researchers a t  least, since i t  had a major 
technical problem, namely the close correlation between the first two  indicators” [8]. 

”” 
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base our  comparison  on  ordinal measures” [9]. He  proposed using the 
Borda  rank  for  countries.* 

It should be noted that  taking  the simple unweighted arithmetic  average 
of social indicators is not  an  appropriate  procedure.? Similarly,  assigning 
arbitrary weights (two-thirds  to ALR and one-third to CGER in measuring 
educational  attainment) is questionable.  Moreover,  complex  phenomena 
like human development and  quality of life are determined by much larger 
set of social indicators  than  only  the few considered  thus  far. 1 These  indi- 
cators may  also be intercorrelated. 

In the  analysis that follows, using the  principal  components  method and 
quantitative  data  (from HDR 1999), i t  turns  out  that the ranks of countries 
are highly (nearly perfectly) correlated with Borda  ranks,  as  shown in Tables 
7 and 13. Thus,  Dasgupta’s assertion about the use of quantitative  data is 
not  entirely  upheld.$ 

In Section 2 we discuss the  principal  components method.  The principal 
components  are normalized  linear  functions of the social indicators, such 
that  the  sum of squares of coefficients is unity;  and they are mutually ortho- 
gonal.  The first principal  component  accounts  for  the largest proportion of 
total  variance  (trace of the  covariance  matrix) of all causal  variables (social 
indicators). The second principal  component  accounts for  the second largest 
proportion,  and so on. 

Although. in practice, it is adequate  to replace the whole set of causal 
variables by only the first few principal  components, which account  for a 
substantial  proportion  of the  total  variation in all causal  variables, if we 
compute  as many  principal  components as the  number of causal  variables 
100% of the  total  variation is accounted  for by them. 

We propose  to  compute  as  many principal  components  as  the  number of 
causal  variables  (social  indicators)  postulated  to  determine  the human devel- 
opment. An estimator of the  human development index is proposed  as  the 

‘The  Borda [ I O ]  rule is an  ordinal  measurement.  The rule  says “award  each  alter- 
native  (here. country)  a  point  equal to its rank in each  criterion of ranking  (here,  the 
criteria  being, life expectancy at  birth,  adult literacy rate, etc). adding  each  alterna- 
tive’s scores to  obtain its aggregate score. and  then  ranking  alternatives on the basis 
of their aggregate scores” [ l l ] .  For  more discussion. see [12-16]. 
ton this point, see [ I ~ I .  
$See UNDP  HDR 1993 “Technical Note 2”. pp. 1041 12. for  a  literature review of 
HDI. See also,  for  example [S. 18-28] 
*In several other  experiments also we have found  that the ranks  obtained by the 
principal  component  method  are highly  (nearly  perfectly) correlated  with  Borda 
ranks. 
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weighted average of the  principal  components, where weights are  equal  to 
variances of successive principal  components.  This  method helps us in esti- 
mating  the weights to be attached  to different social indicators. 

In Section 3 we compute estimates  of  the human development  index by 
alternative  methods  and  rank  the  countries  accordingly. We use the data  for 
174 countries  on  the  same  variables  as were used for  computing HDI in 
HDR 1999. Table 6 provides human development indices for 174 countries 
by alternative  methods,  and  Table  7  provides  ranks of countries by different 
methods  including  the  Borda  ranks.* 

In  Section  4 we compute  human development  indices  for 51 countries by 
the  principal component  method.  We use eleven social indicators  as  deter- 
minants of the  human development  index. The  data  on  the variables were 
obtained  from HDR 1999 and  World Development  Indicators 1999. Table 
14 provides  the  ranks of different  countries  according to estimates of the 
human development  index.  This  table  also  provides  the  Borda ranks.  The 
principal component  method, outlined in Section 3, helps us in estimating 
weights to  be attached  to different social indicators  determining  the  human 
development  index. 

As  shown  in  Sections 3 and 4, GDP (measured as log, Y )  is the  most 
dominant  factor. If only four  variables (log, Y ,  LE. CGER,  and  ALR) 
are used (as in HDR 1999).  log, Y has  the largest weight, followed by 
LE  and  CGER.  The adult literacy rate  (ALR)  has  the least weight. This 
result is at variance  with  the  proposition of assigning  higher weight 
(two-thirds) to ALR  and lower weight (one-third) to  CGER  as sug- 
gested by HDR 1999. 

The analysis in Section  4  shows that,  after  the highest weight for log, Y ,  
we have health services (in terms of hospital  beds  available) and  an envir- 
onmental  variable  (measured as average annual  deforestation) with  the 
second and third  largest weights. LE ranks  fourth i n  order of importance. 
ASW is the fifth, and  CGER sixth.  Again, CGER has higher weight than 
ALR. 

*The  “best  performing”  country is awarded  rank 1’ and  rank 174 goes to  the  “worst 
performing”  country.  In  Section 4, for 51 countries,  rank 51 is awarded to the ”worst 
performing”  country. 
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2. THE  PRINCIPAL COMPONENTS  METHOD OF 
ESTIMATING THE HUMAN DEVELOPMENT INDEX* 

If human  development index H could  be  measured  quantitatively. in the 
usual  manner. we would simply postulate  a regression of H on  the causal 
variables (social indicators)  and  determine  optimal  estimates of parameters 
by a suitable  statistical  method. In that case. we could  determine  the  partial 
rates of change in H for a small  unit  change  in any  one of the causal 
variables,  holding  other  variables constant,  and also  obtain  the  estimated 
level of H corresponding  to given levels of the  causal  variables.  However, 
human development is. in fact, an  abstract  conceptual variable. which can- 
not be directly measured  but is supposed  to be determined by the  interaction 
of a large number of socioeconomic  variables. 

Let us postulate  that the  “latent”  variable H is linearly determined by 
causal  variables s I .  . . . , s K  as 

H =z (Y + BIsI + . . . + PK.YK + I I  

so that the total  variation i n  H is composed of two orthogonal  parts: (a) 
variation  due  to  causal  variables,  and  (b)  variation  due  to  error. 

If  the model is  well specified, including an  adequate  number of causal 
variables, so that  the  mean of the  probability  distribution of 11 is zero 
(Ell = 0) and  error variance is small relative to the  total  variance of the 
latent  variable H ,  we can  reasonably  assume  that  the  total  variation in H 
is largely explained by the  variation in the  causal  variables. 

We propose  to replace the set  of causal  variables by an  equal  number of 
their  principal  components.  so  that 100% of variation in causal  variables is 
accounted  for by their  principal  components.  In  order  to compute the  prin- 
cipal components we proceed as follows: 

Step 1. Transform the  causal  variables  into  their  standardized  form.  We 
consider two alternatives: 

where .?k is the  arithmetic  mean  and S.,, is the  standard deviation of obser- 
vations on s k ;  and 

x; = 
x/, - mi n S A -  

max s x -  - min .yk 

‘For a  detailed mathematical  analysis of principal  components, see [29]; see also [30]. 
For application of principal  component  methodology in computation of HDI, see 
HDR 1993. Technical Note 2. pp.109-110: also [23, 341. 
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where max s k  and min x k  are prespecified maximum and minimum values of 
.xk, for I; = 1, . . . , K .  

The  correlation coefficient is unaffected by the  change  of  origin  and scale. 
Therefore,  the  correlation  matrix R of XI,  . . . , X ,  will be the  same  as that of 
x;. . . . , x;. 

Step 2. Solve the  determinantal  equation 

( R  - ?.I( = 0 

for i,. Since R is a K x K matrix  this  provides  a  Kth degree polynomial 
equation in 2,  and hence K roots.  These  roots  are called the  characteristic 
roots  or eigenvalues of R. Let us arrange  the  roots in descending order  of 
magnitude,  as 

A, > 2. > . . . > AK 

Step 3.  Corresponding to each value of I., solve the  matrix  equation 

( R  - ?.Z)CY = 0 

for  the K x 1 characteristic  vector a, subject to the  condition  that 

Q'ff = 1 

Let us write  the  characteristic  vectors  as 

which corresponds  to A = A I .  . . . , A  = AK, respectively. 

Step 4 .  The first principal  component is obtained  as 

PI = Cfl ,X,  + .  . . + .,KXK 
using the  elements of the  characteristic vector a, corresponding  to  the 
largest root A, of R. 

Similarly,  the  second  principal  component is 

P2 = a*1X, + . ' . + ff.I(xI\. 
using the  elements of the  characteristic  vector a: corresponding  to  the 
second largest root 2:. 

We compute  the remaining  principal  components P3.  . . . , PK using ele- 
ments of successive characteristic  vectors  corresponding to  roots /.?, . . . . AK, 
respectively. If we are using  the  transformation suggested in (2) of Step 1 ,  
the  principal  components are 
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P; = q1x; + . . . +CxyIKXi  
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where the coefficients are elements  of successive characteristic  vectors of R ,  
and  remain  the  same  as in P I ,  . . . . PK. 

Step 5. The  estimator of  the  human  development  index is obtained  as the 
weighted  average  of the principal  components:  thus 

H =  - A y I P , + . . . + A K P K  
A1 + . . . + I,, 

and 

,. I., PT + " .  + A K P X  H* = 
i., + . . . + & 

where the weights are  the  characteristic  roots  of R and it is known that 

A I  = Var PI = Var Pf, . , . . ,IK = Var PK = Var P;C 

We  attach  the highest  weight to the first principal  component PI or Pf 
because  it accounts  for the largest proportion of  total  variation in all causal 
variables. Similarly, the second  principal  component P2 or P; accounts  for 
the  second largest proportion  of  total  variation in all causal variables and 
therefore  the  second largest weight J.2 is attached  to P2 or P;; and so on. 

3. CONSTRUCTION OF HUMAN DEVELOPMENT 
INDEX USING THE SAME CAUSAL VARIABLES 
AND DATA AS IN THE CONSTRUCTION OF HDI IN 
HDR 1999 

In  this section we propose  to  construct  the  human  development index by 
using the same  causal variables as were used  by the Human Development 
Report 1999 of the UNDP.  This will help us in comparing  the indices 
obtained by our method  with  those  obtained by the method  adopted by 
UNDP. 

The variables are listed below and  their definitions and  data  are  as in 
HDR 1999. 

1. LE: Life Expectancy at Birth; for the definition see HDR 1999, p. 254, 
and  data  relating  to 1997 for 174 countries given  in Table 1, pp.  134- 
137, of HDR 1999. 
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Table 1. Arithmetic  means  and  standard deviations of observations on 
the  causal  variables. 1997 

LE  (years) ALR (Oh) CGER ("A) log, Y 

Arithmetic  means 65.5868 78.8908 64.7759 8.3317 
Standard  deviations 10.9498 2 1.6424 19.8218 1.0845 

~ ~~ ~ 

ALR: Adult  Literacy  Rate;  for  the  definition see HDR 1999. p. 255, 
and  data relating to 1997 for 174 countries given in the  Table 1 of 
HDR 1999. 
CGER: Combined  Gross  Enrolment  Ratio: for the  definition see HDR 
1999, p. 254 (also see pp. 255 and 256 for  explanations of primary, 
secondary.  and tertiary  education).  The  data  relating  to 1997 for 174 
countries  are  obtained  from  Table 1 of HDR 1999. 
Y :  Real GDP  per capita  (PPP$), defined on p. 255 of HDR 1999; data 
relating to 1997 for 174 countries  are  obtained from  Table 1 of HDR 
1999. 

The  arithmetic means  and standard deviations of observations  on  the 
above  causal  variables are given in Table 1, and  product  moment  correla- 
tions between them are given in Table 2. 

3.1. Construction of Human  Development Index by 
the Principal Component Method  when Causal 
Variables  Have Been Standardized as ( x  - X ) / S ,  

In  the  present  case we transform  the  variables  into  their  standardized  form 
by subtracting  the respective arithmetic  mean  from each observation  and 
dividing by the  corresponding  standard  deviation. 

Table 2. Correlation  matrix R of causal  variables 

LE (years) ALR (%) CGER (YO) log, y 

LE (years) 1.000 

CGER ( O h )  0.744  0.833 I .ooo 
ALR (Yo) 0.753 1 .ooo 

log, y 0.810 0.678 0.758 1 .ooo 
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Table 3. Characteristic  roots (A) of R in descending order 

Values of A 

= 3.288959 i L 2  = 0.361 926 E.3 0.217 102 A4 = 0.132013 
~ ~~ 

The  matrix R of correlations between pairs of causal  variables,  for data 
obtained  from HDR 1999, is given in  Table 2.* We compute the  character- 
istic roots of the  correlation  matrix R by solving the  determinantal  equation 
IR - 3.11 = 0. Since R is a  4 x 4  matrix,  this will provide  a  polynomial  equa- 
tion of fourth degree in 3.. The  roots  of R (values of 2). arranged in descend- 
ing order of magnitude,  are given in the  Table 3. 

Corresponding  to each value of A, we solve the  matrix  equation 
( R  - A I )  a! = 0 for  the  4 x 1 characteristic  vector a, such that a'a = 1 .  
The characteristic  vectors of R are given in  Table 4. 

The principal  components  of  causal  variables  are  obtained  as  normalized 
linear  functions of standardized  causal  variables, where the coefficients are 
elements of successive characteristic  vectors. Thus 

PI = 0.502 840 ( 10.95 ) + 0.496 403 (," - 78'89) 
LE - 65.59 

21.64 

+ 0.507 540( CGER 19.82 - 64'78) + 0.493 092(loge 1 .os - 8'33 

and, similarly, we compute  the  other principal  components P2, P 3 ,  and P4 
by using successive characteristic  vectors  corresponding  to  the  roots A?, 
and A4, respectively. It  should  be  noted  that log, Y is the  natural  logarithm 
of Y .  

Table 4. Characteristic  vectors (a) corresponding  to successive roots (E.) 
of R 

A = 3.288 959 A? = 0.361 926 3.3 = 0.217 102 114 0.132013 

a1 a2 cy3 a4 
~ ~~~ ~~ 

0.502 840 -0.372013 -0.667 754 0.403 562 
0.496 403 0.599 596 -0.295 090 -0.554067 
0.507 540 0.369 521 0.524 116 0.575 465 
0.493 092 -0.604 603 0.438 553 -0.446 080 

*See UNDP HDR 1999, pp. 134-137, Table 1. 
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Values of  the  principal  components for different  countries are  obtained 
by substituting  the  corresponding values of the  causal  variables. The var- 
iance of successive principal  components,  proportion of total  variation 
accounted  for by them, and cumulative proportion of variation  explained, 
are given in Table 5. 

We observe that 82.22% of the  total  variation in all causal  variables is 
accounted  for by the first principal  component  alone. The first two  principal 
components together  account for 91.27% of the  total  variation,  the first 
three  account  for 96.70%0, and all four  account  for  100% of the  total  varia- 
tion in all causal  variables. 

The  estimates of human development  index, H, for 174 countries  are 
given in column (2) of Table 6, and  ranks of countries  according  to  the 
value of H are given in column  (2) of Table 7. Since H is the weighted 
average of principal  components, we can write,  after a little  rearrangement 
of terms, 

H = 0.356 871 (LE1i.zz’59) + 0.428 1 12(ALR 21.64 - 78’89) 

+ 0.498 193 ( CGER - 64’78) + 0.359 8 15 (loge 
- 8’33 

19.82  1.08 

= -8.091 + 0.0326 LE + 0.0198 ALR + 0.0251 CGER + 0.3318 log, Y 

as a weighted sum  of  the  social  indicators. 
This result clearly indicates  the  order  of  importance of different social 

indicators in determining  the  human development index.* GDP is the 

Table 5. Proportion of variation  accounted  for by successive principal 
components 

Variance of Pk.  Proportion of Cumulative  proportion 
k =  I ,  ..., 4 variance  accounted of  variance  accounted 

3.288 959 
0.361 926 
0.217 102 
0.132013 

0.822 240 
0.090 482 0.912722 
0.054 276 0.966 998 
0.033  003 1 

~ ~ ~~~~ 

*It is not  advisable  to  interpret  the coefficients as  partial regression  coefficients 
because the  left-hand  dependent  variable is not  observable. 
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Table 6. Human  development index as  obtained by principal  component 
method  and  as  obtained by UNDP in HDR 1999 

HDI by principal  component  method, 
with variables standardized as 

HDI  as obtained 
( s  - S)/S, ( S X ~ U ~ I  - %,,I)/ in HDR 1999 

H H *  HDI 

Country (.%.I, - .Gl,") (UNDP) 

Col ( I )  Col (2) Col (3) Col (4) 

Canada 
Norway 
United States 
Japan 
Belgium 
Sweden 
Australia 
Netherlands 
Iceland 
United Kingdom 
France 
Switzerland 
Finland 
Germany 
Denmark 
Austria 
Luxembourg 
New Zealand 
Italy 
Ireland 
Spain 
Singapore 
Israel 
Hong  Kong,  China  (SAR) 
Brunei Darussalam 
Cyprus 
Greece 
Portugal 
Barbados 
Korea, Rep. of 
Bahamas 
Malta 
Slovenia 
Chile 
Kuwait 

2.255 
2.153 
2.139 
1.959 
2.226 
2.222 
2.219 
2.174 
1.954 
2.  I95 
2.043 
1.778 
2.147 
1.902 
1.914 
1.857 
1.532 
2.002 
1.754 
1.864 
1.897 
1.468 
1.597 
1.281 
1.380 
1.500 
1.488 
1.621 
1.457 
1.61 1 
1.296 
1.336 
1.314 
1.305 
0.770 

1.563 
1.543 
1 ,540 
1.504 
1.558 
1.558 
1.557 
1.548 
1 .SO4 
1.553 
I .522 
1.468 
1 .544 
1.495 
1.497 
1.486 
1.419 
1.516 
1.465 
I .488 
1.494 
1.404 
1.433 
1.368 
1.387 
1.416 
1.414 
1.439 
1.410 
1.44 1 
1.376 
1.382 
1.383 
1.379 
1.263 

0.932 
0.927 
0.927 
0.924 
0.923 
0.923 
0.922 
0.921 
0.919 
0.918 
0.918 
0.914 
0.913 
0.906 
0.905 
0.904 
0.902 
0.901 
0.900 
0.900 
0.894 
0.888 
0.883 
0.880 
0.878 
0.870 
0.867 
0.858 
0.857 
0.852 
0.851 
0.850 
0.845 
0.844 
0.833 
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Table 6. Continued 

HDI by principal  component  method, 
with variables standardized as 

(x - S)/S, (-Y,CIIMI - .\-"I,")/ in HDR 1999 
HDI as  obtained 

Country (.Ymal; - . h J  (UNDP) 

Col (1) 
H H *  HDI 

Col (2) Col (3) Col (4) 

Czech Republic 
Bahrain 
Antigua and  Barbuda 
Argentina 
Uruguay 
Qatar 
Slovakia 
United Arab  Emirates 
Poland 
Costa Rica 
Trinidad  and  Tobago 
Hungary 
Venezuela 
Panama 
Mexico 
Saint Kitts  and Nevis 
Grenada 
Dominica 
Estonia 
Croatia 
Malaysia 
Colombia 
Cuba 
Mauritius 
Belarus 
Fiji 
Lithuania 
Bulgaria 
Suriname 
Libyan Arab Jamahiriya 
Seychelles 
Thailand 
Romania 
Lebanon 
Samoa (Western) 
Russian Federation 

1.209 
1 ,249 
1.189 
I ,246 
1.210 
0.9 15 
1.110 
0.832 
1.080 
0.847 
0.838 
0.985 
0.789 
0.890 
0.801 
0.914 
0.932 
0.893 
0.894 
0.71 1 
0.573 
0.715 
0.751 
0.494 
0.91 1 
0.857 
0.801 
0.681 
0.665 
0.939 
0.407 
0.430 
0.608 
0.650 
0.S43 
0.755 

1.363 
1.364 
1.357 
1.370 
1.363 
1.295 
1.345 
1.276 
1.341 
1.291 
1.292 
1.322 
1.279 
1.299 
1.28 1 
1.305 
1.312 
1.304 
1.325 
1.269 
1.234 
1.266 
1.277 
1.217 
1.31 1 
1.297 
1.289 
1.265 
1.259 
1.306 
1.202 
1.212 
1.251 
1.252 
1.238 
1 .282 

0.833 
0.832 
0.828 
0.827 
0.826 
0.814 
0.8 13 
0.812 
0.802 
0.801 
0.797 
0.795 
0.792 
0.791 
0.786 
0.781 
0.777 
0.776 
0.773 
0.773 
0.768 
0.768 
0.165 
0.764 
0.763 
0.763 
0.76 1 
0.758 
0.757 
0.756 
0.755 
0.753 
0.752 
0.749 
0.747 
0.747 
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Table 6. Continued 

HDI by principal component  method. 

Country 

with variables standardized 21s 
HDI as obtained 

(s - ?)/x, (.ydctua~ - .~llllll~/ in HDR 1999 
( - L x  - . ~ , , , , , l )  (UNDP) 

Col ( I )  
H 

Col (2) 

Ecuador 
Macedonia, TFYR 
Latvia 
Saint Vincent and  the 

Grenadines 
Kazakhstan 
Philippines 
Saudi Arabia 
Brazil 
Peru 
Saint Lucia 
Jamaica 
Belize 
Paraguay 
Georgia 
Turkey 
Armenia 
Dominican Republic 
Oman 
Sri Lanka 
Ukraine 
Uzbekistan 
Maldives 
Jordan 
Iran, Islamic Rep. of 
Turkmenistan 
Kyrgyzstan 
China 
Guyana 
Albania 
South Africa 
Tunisia 
Azerbaijan 
Moldova. Rep. of 
Indonesia 
Cape Verde 

0.625 
0.590 
0.628 
0.643 

0.694 
0.777 
0. I56 
0.671 
0.654 
0.527 
0.324 
0.41 3 
0.364 
0.537 
0,242 
0.548 
0.317 
0.060 
0.339 
0.597 
0.578 
0.490 
0.28 1 
0.300 
0.78 1 
0.327 
0.229 
0.236 
0.214 
0.646 
0. IO4 
0.314 
0.240 
0.028 
0. I50 

H *  
Col (3) 

1.251 
1.246 
1.256 
1.250 

1.270 
1.285 
1, I46 
1.257 
1.257 
1.227 
1.189 
1.201 
1.201 
1.240 
1.171 
1.242 
1.186 
1.126 
1.196 
1.253 
I .249 
1.230 
1.183 
1.179 
1.291 
1.199 
1.172 
1.181 
1.170 
1.258 
1.139 
1.198 
1.185 
1.135 
1.153 

HDI 
Col (4) 

0.747 
0.746 
0.744 
0.744 

0.740 
0.740 
0.740 
0.739 
0.739 
0.737 
0.734 
0.732 
0.730 
0.729 
0.728 
0.728 
0.726 
0.725 
0.721 
0.721 
0.720 
0.716 
0.715 
0.715 
0.712 
0.702 
0.701 
0.701 
0.699 
0.695 
0.695 
0.695 
0.683 
0.681 
0.677 
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Table 6. Continued 

HDI by principal  component  method, 
with variables standardized as 

HDI  as obtained 
(x - S ) / S ,  ( % c t L t ~ t ~  - %1111)/ in HDR 1999 

Country (.\-mal - .h”) (UNDP) 

Col ( I )  
H H *  HDI 

Col (2) Col (3) Col (4) 

El Salvador 
Tajikistan 
Algeria 
Viet Nam 
Syrian Arab Republic 
Bolivia 
Swaziland 
Honduras 
Namibia 
Vanuatu 
Guatemala 
Solomon Islands 
Mongolia 

Nicaragua 
Botswana 
SBo Tome  and  Principe 
Gabon 
Iraq 
Morocco 
Lesotho 
Myanmar 
Papua New Guinea 
Zimbabwe 
Equatorial  Guinea 
India 
Ghana 
Cameroon 
Congo 
Kenya 
Cambodia 
Pakistan 
Comoros 
Lao People’s Dem. Rep. 
Congo.  Dem. Rep. of 
Sudan 

Egypt 

-0.064 
0.121 

-0.155 
-0.064 
-0.238 
-0.033 
-0.068 
-0.416 

0.083 
-0.741 
-0.746 
-0.801 
-0.521 
-0.416 
-0.519 
-0.346 
-0.592 
-0.603 
-0.950 
-1.091 
-0.682 
-0.744 
- 1.200 
-0.571 
-0.782 
-1.148 
-1.310 
- 1.306 
-0.824 
-1.231 
-1.135 
- 1.675 
- 1.665 
- 1.436 
- I .682 
- 1.950 

1.113 
1.164 
1.086 
1.122 
1.076 
1.125 
1.116 
1.042 
1.148 
0.974 
0.974 
0.961 
1.031 
I .035 
1.020 
1.061 
1.012 
1.005 
0.933 
0.898 
I .oo 1 
0.990 
0.892 
1.03 1 
0.984 
0.896 
0.870 
0.874 
0.976 
0.898 
0.909 
0.786 
0.796 
0.847 
0.808 
0.741 

0.674 
0.665 
0.665 
0.664 
0.663 
0.652 
0.644 
0.641 
0.638 
0.627 
0.624 
0.623 
0.618 
0.616 
0.616 
0.609 
0.609 
0.607 
0.586 
0.582 
0.582 
0.580 
0.570 
0.560 
0.549 
0.545 
0.544 
0.536 
0.533 
0.519 
0.514 
0.508 
0.506 
0.491 
0.479 
0.475 
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Table 6. Continued 

HDI by principal component method. 
with  variables standardized as 

HDI  as obtained 
(x - .Y)/s, (%CU~I - %w)/ in HDR 1999 

H H *  HDI 

Country ( ~ m a x  - . L " )  (UNDP) 

Col ( I )  Col (2) Col (3) Col (4) 

Togo 
Nepal 
Bhutan 
Nigeria 
Madagascar 
Yemen 
Mauritania 
Bangladesh 
Zambia 
Haiti 
Senegal 
C6te  d'Ivoire 
Benin 
Tanzania. U. Rep. of 
Djibouti 
Uganda 
Malawi 
Angola 
Guinea 
Chad 
Gambia 
Rwanda 
Central African Republic 
Mali 
Eritrea 
Guinea-Bissau 
Mozambique 
Burundi 
Burkina Faso 
Ethiopia 
Niger 
Sierra Leone 

- 1.490 
- 1.666 
-2.517 
- 1.659 
-2.039 
- 1.906 
-2.083 
-2.240 
-1.788 
-2.460 
-2.348 
-2.226 
-2.253 
-2.172 
-2.595 
-2.187 
- 1.605 
-2.596 
-2.620 
-2.547 
-2.454 
-2.290 
-2.748 
-2.831 
-3.036 
-2.862 
-2.996 
-3.1 10 
-3.436 
-3.307 
-3.612 
-3.469 

0.835 
0.793 
0.623 
0.806 
0.723 
0.748 
0.709 
0.679 
0.791 
0.639 
0.656 
0.686 
0.676 
0.7  I3 
0.615 
0.707 
0.823 
0.615 
0.606 
0.628 
0.638 
0.689 
0.585 
0.565 
0.521 
0.561 
0.538 
0.520 
0.443 
0.478 
0.404 
0.449 

0.469 
0.463 
0.459 
0.456 
0.453 
0.449 
0.447 
0.440 
0.43 I 
0.430 
0.426 
0.422 
0.421 
0.42 I 
0.412 
0.404 
0.399 
0.398 
0.398 
0.393 
0.391 
0.379 
0.378 
0.375 
0.346 
0.343 
0.341 
0.324 
0.304 
0.298 
0.298 
0.254 
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Table 7. Ranks of countries  according  to  human  development index 
obtained by alternative  methods 

Rank of country  according  to 

Country H H *  HDI Borda 

Col (1) Col (2) Col (3) Col  (4)  Col  (5) 

Canada 
Norway 
United  States 
Japan 
Belgium 
Sweden 
Australia 
Netherlands 
Iceland 
United  Kingdom 
France 
Switzerland 
Finland 
Germany 
Denmark 
Austria 
Luxembourg 
New Zealand 
Italy 
Ireland 
Spain 
Singapore 
Israel 
Hong  Kong.  China  (SAR) 
Brunei  Darussalam 
Cyprus 
Greece 
Portugal 
Barbados 
Korea,  Rep. of 
Bahamas 
Malta 
Slovenia 
Chile 
Kuwait 

1 
7 
9 

12 

3 
4 
6 

13 
5 

10 
19 
8 

15 
14 
18 
24 
I I  
20 
17 
16 
27 
33 
34 
29 
25 
26 
21 
28 
" 33 
33 
30 
31 
32 
60 

3 
I 

1 
8 
9 

12 

3 
4 
6 

13 
5 

10 
19 
7 

15 
14 
18 
24 
1 1  
20 
17 
16 
38 
23 
35 
29 
25 
26 
22 
27 
21 
33 
31 
30 
32 
66 

3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
I8 
19 
20 
21 
22 
13 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 

10 
6 
3 
4 
4 

10 
7 
8 
8 

12 
13 
13 
17 
15 
21 
15 
19 
18 
20 
31 
" 33 

39 
37 
25 
23 
30 
26 
25 
40 
32 
23 
34 
61 

7 
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Table 7. Continued 

Rank of country  according  to 

Countrv H H *  HDI Borda 

Col (1) Col (2) Col (3) Col  (4)  Col ( 5 )  

Czech Republic 
Bahrain 
Antigua  and  Barbuda 
Argentina 
Uruguay 
Qatar 
Slovakia 
United Arab  Emirates 
Poland 
Costa Rica 
Trinidad  and  Tobago 
Hungary 
Venezuela 
Panama 
Mexico 
Saint Kitts  and Nevis 
Grenada 
Dominica 
Estonia 
Croatia 
Malaysia 
Colombia 
Cuba 
Mauritius 
Belarus 
Fiji 
Lithuania 
Bulgaria 
Suriname 
Libyan Arab  Jamahiriya 
Seychelles 
Thailand 
Romania 
Lebanon 
Samoa (Western) 
Russian  Federation 

38 
35 
39 
36 
37 
46 
40 
54 
41 
52 
53 
42 
57 
50 
55 
47 
45 
49 
43 
64 
79 
63 
62 
84 
48 
51 
56 
66 
68 
44 
88 
86 
75 
70 
81 
61 

38 
36 
39 
34 
37 
51 
40 
61 
41 
53 
52 
43 
59 
49 
58 
47 
44 
48 
42 
63 
82 
64 
60 
85 
45 
50 
55 
65 
67 
46 
87 
86 
75 
73 
81 
57 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
38 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

27 
42 
41 
35 
35 
58 
29 
61 
33 
54 
50 
38 
65 
49 
63 
53 
46 
47 
43 
65 
82 
70 
56 
85 
44 
50 
45 
67 
71 
59 
87 
90 
78 
72 
79 
48 
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Table 7. Continued 

Rank of country  according  to 

Country H H *  HDI Borda 

Col (1) Col (2) Col (3) Col (4) Col ( 5 )  

Ecuador 
Macedonia. TFY R 
Latvia 
Saint Vincent and  the  Grenadines 
Kazakhstan 
Philippines 
Saudi  Arabia 
Brazil 
Peru 
Saint  Lucia 
Jamaica 
Belize 
Paraguay 
Georgia 
Turkey 
Armenia 
Dominican  Republic 
Oman 
Sri Lanka 
Ukraine 
Uzbekistan 
Maldives 
Jordan 
Iran, Islamic Rep. of 
Turkmenistan 
Kyrgyzstan 
China 
Guyana 
Albania 
South Africa 
Tunisia 
Azerbaijan 
Moldova,  Rep. of 
Indonesia 
Cape Verde 

74 
77 
73 
72 
65 
59 

102 
67 
69 
83 
92 
87 
89 
82 
97 
80 
93 

107 
90 
76 
78 
85 
96 
95 
58 
91 

100 
99 

101 
71 

105 
94 
98 

108 
103 

74 
78 
71 
76 
62 
56 

105 
69 
70 
84 
93 
88 
89 
80 

100 
79 
94 

108 
92 
72 
77 
83 
96 
98 
54 
90 
99 
97 

101 
68 

106 
91 
95 

107 
103 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

IO0 
101 
IO2 
103 
104 
105 
106 

81 
74 
59 
68 
52 
69 
98 
76 
79 
84 
88 
83 
93 
55 

104 
73 
93 

103 
89 
56 
64 
86 
97 
92 
74 
98 

106 
103 
96 
76 

101 
91 

100 
110 
104 
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Table 7. Continued 

Rank of country  according  to 

Country H Ej* HDI Borda 

Col ( I )  Col  (2)  Col (3) Col  (4)  Col (5) 

El Salvador 
Tajikistan 
algeria 
Viet Nam 
Syrian Arab Republic 
Bolivia 
Swaziland 
Honduras 
Namibia 
Vanuatu 
Guatemala 
Solomon  Islands 
Mongolia 

Nicaragua 
Botswana 
SZo Tome  and Principe 
Gabon 
Iraq 
Morocco 
Lesotho 
Myanmar 
Papua New  Guinea 
Zimbabwe 
Equatorial  Guinea 
India 
Ghana 
Cameroon 
Congo 
Kenya 
Cambodia 
Pakistan 
Comoros 
Lao People’s Dem.  Rep. 
Congo, Dem.  Rep. of 
Sudan 

Egypt 

111 
104 
113 
110 
114 
109 
112 
117 
106 
124 
126 
128 
119 
116 
118 
115 
121 
122 
130 
131 
123 
125 
134 
120 
I27 
133 
137 
136 
129 
135 
132 
144 
142 
138 
145 
148 

I12 
I02 
113 
110 
114 
109 
111 
116 
104 
128 
127 
129 
119 
117 
120 
115 
121 
122 
120 
132 
123 
124 
135 
118 
125 
134 
137 
136 
126 
133 
131 
146 
143 
138 
141 
148 

107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
I32 
133 
134 
135 
136 
137 
138 
I39 
140 
141 
142 

113 
107 
109 
114 
116 
111 
108 
119 
95 

123 
122 
120 
124 
115 
121 
I12 
126 
117 
130 
129 
125 
131 
132 
117 
128 
134 
135 
133 
127 
138 
135 
I39 
142 
141 
143 
144 
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Table 7. Continued 

Rank of country  according to 

Country a f? HDI Borda 

Col (1) Col (2) Col (3) Col (4) Col (5) 

Togo 
Nepal 
Bhutan 
Nigeria 
Madagascar 
Yemen 
Mauritania 
Bangladesh 
Zambia 
Haiti 
Senegal 
Cbte d’Ivoire 
Benin 
Tanzania, U. Rep. of 
Djibouti 
Uganda 
Malawi 
Angola 
Guinea 
Chad 
Gambia 
Rwanda 
Central  African  Republic 
Mali 
Eritrea 
Guinea-Bissau 
Mozambique 
Burundi 
Burkina Faso 
Ethiopia 
Niger 
Sierra  Leone 

139 
143 
160 
141 
149 
147 
150 
154 
146 
159 
157 
153 
155 
151 
162 
152 
140 
163 
164 
161 
158 
156 
165 
166 
169 
167 
168 
170 
17-3 
171 
174 
173 

139 
144 
161 
142 
149 
147 
151 
I55 
145 
158 
157 
154 
156 
150 
162 
152 
140 
163 
164 
160 
159 
153 
165 
166 
169 
167 
168 
170 
173 
171 
174 
172 

143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

139 
144 
152 
148 
151 
149 
146 
154 
147 
156 
153 
150 
154 
158 
162 
157 
137 
162 
159 
164 
160 
160 
165 
166 
167 
I68 
169 
170 
172 
173 
171 
174 



Socioeconomic Indicators of Human  Development 629 

most dominant  factor. Next are  LE  and  CGER.  ALR has  the  least 
weight. 

3.2 Construction of Human  Development Index k* 
by the Principal Component Method  when Causal 
Variables Have Been Standardized as 
(Xactual - xrnin)/(xrnax - Xrnin) 

In this section we adopt  UNDP methodology  to  standardize  the  causal 
variables.* 

Suppose x is one of the  causal  variables (LE,  ALR,  CGER,  or  log, Y ) .  
Firstly,  obtain  the  maximum and  minimum  attainable values of x, say x,,, 
and s,,,,; then define 

as the  standardized  form of X. This is also called the "achievement index" 
by the HDR.  The correlation  matrix of the  causal  variables, so standar- 
dized, will  be the  same  as R given in Table 2. The characteristic  roots and 
vectors will  be the  same as in Tables 3 and 4. respectively. 

We use the  same  maximum  and  minimum values for  the  causal  variables 
as given in HDR.?  Thus the first principal  component is computed  as 

where  the coefficients are elements of the  characteristic  vector  corresponding 
to the largest root of R ,  and log, Y is the  natural  logarithm.  Similarly, we 
obtain Pf, P;, and Pz by using characteristic  vectors  corresponding to the 
successive characteristic  roots. 

The estimates of human  development index H *  for 174 countries  and the 
rank of each  country  according  to  the value of H* are given in column (3) of 
Tables  6  and 7. respectively. After  a  rearrangement of terms we may express 

'See UNDP  HDR 1999. p. 159. 
I See UNDP  HDR 1999, p. 159. 
L 
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= -0.425 254 + 0.005 948 LE + 0.004 28 1 ALR + 0.004 982 CGER 

+ 0.060 055 log, Y 

We  should  note  that  the GDP is again the most  dominant  factor in 
determining i?; LE  has the second largest and  CGER  the  third largest 
weight. ALR gets the least weight. 

3.3 Construction of HDI by the  Method Outlined in 
HDR 1999 

The  UNDP method of calculating  the  human  development  index (HDI)  has 
been outlined in HDR 1999.* HDIs  for 1997 data  for 174 countries  and 
ranks of different countries  acc  rding  to HDI  are  reproduced in column  (4) 
of Tables  6  and 7, respectively? The  Borda  ranks  are given  in column 5 of 
Table 7. 

Writing H and H* for  estimates  of  human  development  index  as  obtained 
by  the  principal  component  method,  when  the variables have  been trans- 
formed  as (x  - S)/s, and (s - X ~ , ~ ) / ( X , , , ~ ~  - x m l n ) ,  respectively, and using 
HDI for the one  computed in HDR 1999, we obtain the rank  correlations 
given in Table 8. As we should expect, due  to  the very construction of 2 and 
fi* the  correlation  between  ranks  obtained by these two  methods is the 

Table 8. Spearman  correlations  between  ranks  of  countries  by  different 
methods 

H 2 HDI Borda 

H 1 .oooo 
H *  0.9995 1 .oooo 
HDI 0.9864  0.9832 1 .oooo 
Borda  0.9936  0.9940 0.98 19 1 .oooo 

"See UNDP  HDR 1999, p. 159. 
+See UNDP  HDR 1999, pp. 134-137, Table 1. 
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highest. Next  highest  correlations are rs,Borda = 0.9936 and rh:,borda - - 
0.9940. The  correlation  between  ranks  obtained by k and  HDI IS equal 
to 0.9864 and  that between H *  and  HDI is 0.9832. The lowest correlation. 
0.9819, is obtained between ranks  according  to HDI  and  Borda. 

4. CONSTRUCTION OF THE HUMAN DEVELOPMENT 
INDEX BY THE  PRINCIPAL COMPONENT  METHOD 
WHEN ELEVEN  SOCIAL INDICATORS ARE USED 
AS DETERMINANTS OF HUMAN DEVELOPMENT 

In this section, we suppose  that  the  latent  variable  “human  development” is 
determined by several variables.*  The selected variables,  their definitions, 
and  data  sources  are given below. t 

(1) Y :  Real GDP per  capita  (PPP$);  defined  on  p. 255 of the Human 
Development  Report (HDR) 1999 of  the UNDP;  data relating to 
1997 are  obtained  from  Table 1, pp. 134-137 of HDR 1999. 

(2) LE: Life expectancy at  birth;  for definition see HDR 1999, p. 254; data 
relating  to 1997 are given  in Table 1 of HDR 1999. 

(3) IMR:  Infant  mortality  rate  (per 1000  live births); defined on  p. 113  of 
the  World  Development  Indicators  (WDI) 1999 of  the  World  Bank; 
data  relating  to 1997 are available in Table 2.18, pp. 110-1 12, of WDI 
1999.$ 

(4) HB:  Hospital  beds (per 1000 persons);  for definition see p. 93 and,  for 
data relating to the period 1990-1997, Table 2.13, pp. 90-92, of WDI 
1999.$ 

*On this point, we would like to mention  that  there is also a  need to take  into 
account  the  indicator of human  freedom, especially an  indicator  to  measure negative 
freedom, namely  political and civil freedom,  that is about one’s ability to  express 
oneself “without  fear  of reprisals” [9] (p. 109). However,  “should  the  freedom index 
be integrated with the  human  development index? There  are  some  arguments in 
favor,  but  the  balance of arguments is probably  against” [23]. For more  discussions, 
see also,  for  example, UNDP  HDR 1990. Box 1.5,  p. 16; UNDP  HDR 1991, pp. 18- 
21 and  Technical  Note 6, p. 98; references [9] (pp. 129-131), [20. 311. 
tThe  data  on all eleven variables  are  available  for 51 countries  only. 
$Infant  mortality  rate is an  indicator of “nutritional deficiency” [32] and  “(lack of) 
sanitation” [33]. 
’”This indicator is used to  show  “health services available  to  the  entire  population“ 
[341 (P. 93). 
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(5) ASA: Access to sanitation  (percent of population);  for definition see p. 
97 and,  for  data relating to 1995, Table 2.14, pp. 94-96, of WDI 1999. 

(6) ASW: Access to  safe  water  (percent of population); definition is given 
on  p. 97 and  data relating  to 1995 are available in Table 2.14, pp. 94- 
96, of WDI 1999.* 

(7) HE:  Health  expenditure  per  capita (PPP$); for definition see p.  93  and, 
for  data relating to the  period 1990-1997, Table 2.13, pp. 90-92,  of 
WDI 1999.? 

(8) ALR:  Adult literacy rate (percent of population);  for definition we 
refer to  p. 255, and  data relating to 1997 have been obtained  from 
Table 1, pp. 134-137, of HDR 1999. 

(9) CGER: Combined (first, second and  third level) gross  enrolment  ratio 
(percent of population);  for  definition see p. 254 and,  for  data relating 
to 1997, Table  1,  pp. 134-137, of HDR 1999. 

(1 0) CEU:  Commercial energy use per  capita  (kg of oil equivalent); we refer 
to  the  explanation  on  p.147  and  data  relating  to 1996 in Table 3.7, pp. 
144-146, of WDI 1999.1 

(1 1)  ADE: Average annual  deforestation (percent  change in km’); an expla- 
nation is given on p. 123 and  data relating  to 1990-1995 are given in 
Table  3.1,  pp. 120-122,  of WDI 1999.6 

The  arithmetic  means  and  standard deviations of observations  on these 
variables for 51 countries  are given in Table 9, and pair-wise  correlations 
between them are given in Table 10. 

The  characteristic  roots of the 11 x 11 correlation  matrix R of selected 
causal  variables are given in Table 11, and the  corresponding  characteristic 
vectors are given in  Table 12. 

*As noted by WDI [34] (p. 97). “People’s health is influenced by the  environment in 
which  they live. A lack of clean water  and basic sanitation is the  main  reason diseases 
transmitted by feces are so common in developing  countries.  Drinking  water  con- 
taminated by feces deposited  near  homes  and  an  inadequate  supply of water  cause 
diseases that  account  for I O  percent of the  total diseases burden in  developing 
countries.” 
+This  indicator  takes  into  account  how  much  the  country is “involved  in health  care 
financing” [34] (p. 93). 
$It is noted  that  “commercial energy use is closely related to  growth in the  modern 
sectors-industry, motorized  transport  and  urban  areas“ [34] (p. 147). 
‘It appears  that  “Deforestation, desertification and soil erosion  are reduced with 
poverty  reduction” [23]. 
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Table 9. Arithmetic  means  and  standard  deviations 
of  observations  on selected causal variables 

Variable  A.M.  S.D. 

log, y 
LE 
IMR 
HB 
ASA 
ASW 
HE 
ALR 
CGER 
CEU 
ADE 

8.4553 
67.4294 
37.0392 
2.8000 

68.43 14 
76.3529 

418.0588 
78.6627 
65.6667 

1917.1373 
1.2275 

0.9781 
9.0830 

27.3188 
3.21  17 

24.9297 
19.4626 

427.2688 
19.5341 
17.3962 

2563.5089 
1.3800 

The  principal  components  of  eleven  causal variables are  obtained by 
using successive characteristic  vectors as discussed before. Variances  of 
principal components  are  equal  to  the  corresponding  characteristic  roots 
of R.  The  variance of successive principal  components,  proportion of 
total  variation  accounted  for by them,  and  cumulative  proportion  of  varia- 
tion explained. are given  in Table 13. 

Table 14 gives the values of human  development  index  for 51 countries 
when  eleven causal variables have been used.* Analytically, we may  express 

H = -6.952  984 + 0.223 742  log, Y + 0.028  863 LE - 0.008 436 IMR 

+0.046214HB+0.009808ASA+0.012754ASW +0.000336HE 

+ 0.007 370 ALR + 0.01 1 560 CGER + 0.000 067 CEU 

+ 0.037 238 ADE 

Real GDP per capita (measured as log, Y )  has the highest  weight in 
determining fi. Health services available in terms of hospital  beds (HB) 
has  the  second largest weight. The  environmental  variable,  as  measured 
by average  annual  deforestation  (ADE), is third in order of importance in 
determining 6. Then we have LE,  ASW, CGER, etc., in that  order. 

*The  Spearman  correlation coefficient  between ranks  obtained by H and  Borda  rank 
is 0.977. 
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Table 11. Characteristic  roots (IL) of 
R in descending order 

Values  of 2 

AI = 7.065 467 
22  = 1.359  593 
j L 3  = 0.744 136 
R, = 0.527  3 19 

E., = 0.280 968 
3,s = 0.424499 

1.7 = 0.331 152 
;Is = 0.159 822 
1.9 = 0.1 15  344 
210 = 0.048 248 
2, I 0.042 852 

)q = 1 1 .ooo 000 
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Table 13. Proportion of  variation  accounted  for by successive principal 
components 

Variance  of P k ,  Proportion of  variance  Cumulative  proportion  of 
X - =  l , . . . ,  1 1  accounted  for  variance  accounted  for 

3Lk &I c Ak 

7.065 467 
1.359 593 
0.744 136 
0.527319 
0.424 499 
0.280 968 
0.231 752 
0.159 822 
0.115344 
0.048  248 
0.042 852 

0.642 3 15 
0.123 599 
0.067 649 
0.047 938 
0.038 591 
0.025 543 
0.021 068 
0.014 529 
0.010486 
0.004 386 
0.003  896 

0.765915 
0.833 563 
0.881 501 
0.920 092 
0.945 635 
0.966 703 
0.98 1 232 
0.991 718 
0.996 104 
1 
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Table 14. Rank of selected countries  according to principal  component 
method  and  Borda rule 

Country H Rank(&  Borda  rank 

Argentina 
Bangladesh 
Bolivia 
Brazil 
Cameroon 
Canada 
Chile 
Colombia 
Costa  Rica 
C6te d'Ivoire 
Croatia 
Dominican  Republic 
Ecuador 
Egypt, Arab Rep. 
El Salvador 
Ethiopia 
Finland 
Ghana 
Guatemala 
Haiti 
Honduras 
India 
Indonesia 
Iran, Islamic  Rep. of 
Jamaica 
Japan 
Jordan 
Kenya 
Malaysia 
Mexico 
Morocco 
Nepal 
Netherlands 
Nicaragua 
Nigeria 
Norway 
Pakistan 
Panama 

0.8703 
-2.1815 
- 1.0286 

0.0862 

3.0548 
1.2983 
0.1696 
1.2534 

-2.3582 
0.3703 
0.0040 

-2.0089 

-0.3  194 
-0.5217 
-0.4220 
-4.21 14 

2.8693 
- 1.8505 
-0.7268 
-2.8393 
-0.3460 
- 1.7235 
-0.7779 

0.3269 
0.7192 
3.08 15 
0.5892 

0.9057 
0.6327 

-2.1879 

-1.2233 
-2.4046 

3.0350 
-0.8209 
-2.2061 

3.1919 

0.8540 
-2.1051 

14 
45 
38 
27 
43 

3 
10 
26 
11 
48 
" 33 
28 
30 
33 
32 
51 
5 

42 
34 
50 
31 
41 
35 
23 
17 
2 

20 
46 
13 
19 
39 
49 
4 

37 
47 

1 
44 
15 

1 1  
47 
36 
21 
42 

3 
9 

23 
13 
46 
14 
27 
29 
30 
34 
51 

5 
45 
39 
50 
35 
41 
37 
26 
25 
4 

20 
43 
18 
19 
40 
48 

2 
38 
44 

1 
48 
16 
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Table 14. Continued 

Country H Rank(k)  Borda  rank 

Paraguay 
Peru 
Philippines 
Saudi  Arabia 
Singapore 
Thailand 
Trinidad  and  Tobago 
Tunisia 
United Arab Emirates 
United  Kingdom 
Uruguay 
Venezuela 
Zimbabwe 

-0.81  10 
-0.2656 

0.248 1 
0.7489 
2.2751 
0.5235 
1.38 19 
0.1924 
2.0272 
2.4542 
0.9057 
0.6924 

- 1.2879 

36 
29 
24 
16 
7 

21 
9 

25 
8 
6 

12 
18 
40 

33 
28 
31 
17 
7 

24 
12 
22 
8 
6 

10 
15 
32 
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A Survey of Recent Work on 
Identification, Estimation, and Testing of 
Structural Auction Models 
SAMITA  SAREEN Bank of Canada,  Ottawa,  Ontario,  Canada 

1. INTRODUCTION 

Auctions  are  a  fast,  transparent. fair. and economically efficient mechanism 
for  allocating  goods.  This is demonstrated by the  long and impressive list of 
commodities being bought  and sold through  auctions.  Auctions  are used to 
sell agricultural  products like eggplant and flowers. Procurement  auctions 
are being conducted by government agencies to sell the  right to fell timber, 
drill offshore  areas  for oil, procure  crude-oil for refining, sell milk quotas, 
etc.  In  the  area of finance,  auctions have been used by central  banks to sell 
Treasury bills and  bonds.  The assets of bankrupt firms are being sold 
through  auctions.  Transactions between buyers and sellers in a  stock 
exchange and foreign-exchange  markets take  the  form of double  auctions. 
Licenses for  radio  spectrum were awarded on the  basis of “beauty  contests” 
previously; spectrum  auctions have now become routine in several countries. 
Recently, five third-generation  mobile  telecommunication licenses have been 
auctioned off in the  United  Kingdom  for an unprecedented and unexpected 
sum of E22.47 billion, indicating that a carefully designed auction  mechan- 
ism  will provide incentives for  the  bidders  to reveal their  true value. Finally, 
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internet  sites like eBay, Yahoo  and  Amazon  are being used to bring  together 
buyers  and sellers across  the  world  to sell goods ranging  from  airline tickets 
to  laboratory ventilation hoods (Lucking-Reiley, 2000). The experience with 
spectrum  and  internet  auctions has  demonstrated  that  the  auction  mechan- 
ism can be designed in a  manner to make bidders reveal their “true” value 
for  the  auctioned  object,  not  just in laboratories  but in real life as well. 

Insights into the design of  auctions have been obtained by modelling 
auctions  as  games of incomplete  information. A survey of the  theory devel- 
oped  for single-unit auctions  can be found in McAfee and  McMillan (1987) 
and  Milgrom and Weber (1982) and  for  multi-unit  auctions in Weber 
(1983). A  structural  or game-theoretic  auction  model emerges once  a seller 
pre-commits to a  certain  auction  form. and rules and  assumptions  are  made 
about the nature of “incomplete”  information possessed by the  bidders. The 
latter includes assumptions  about the risk attitude of the  bidders, the rela- 
tionship between bidders’  valuations,  whether  the “true” value of the  object 
is known  to  them,  and whether  bidders are symmetric  up  to  information 
differences. The rules and  form of the  auctions  are  determined by the seller 
in a  manner  that provides  the  bidders with incentives to reveal their  valua- 
tion for  the  auctioned  object. 

Empirical  work in auctions  using field data  has taken two directions. The 
first direction,  referred  to  as  the  structural  approach,  attempts  to recover the 
structural  elements of the  game-theoretic  model. For example. if bidders are 
assumed to be risk-neutral.  the  structural element of the  game-theoretic 
model  would be the  underlying  probability law of valuations of the  bidders. 
Any  game-theoretic or structural  model  makes  certain  nonparametric  pre- 
dictions. For example,  the revenue equivalence  theorem is a  prediction of a 
single-unit. independent-private-values  auction  model with symmetric and 
risk-neutral  players. The second approach, referred to  as the  reduced-form 
approach, tests the  predictions of the  underlying  game-theoretic  model. 

Identification of a  private-values,  second-price  auction is trivial if there is 
a  nonbinding reserve price and each bidder’s bid in an  auction is available. 
In  a private-values  auction  a  bidder  knows  the value of the  auctioned object 
to herself. In  a  second-price  auction  the  bidder  pays  the value of the object 
to  the  second-highest  bidder.  Hence in a  private-values,  second-price  auc- 
tion,  a  bidder  submits  a bid equal  to her value of the  auctioned  object. If the 
bids of all bidders in an  auction were observed,  then in essence the  private 
values of all bidders are observed.  Identification  then amounts  to identifying 
the  distribution of bidders’ valuations  from  data  on these valuations. 

Outside  this  scenario  identification,  estimation and testing of structural 
models is a difficult exercise. First,  outside  the  private-values,  second-price 
auction,  bidders do  not bid their  valuation of the  object.  In  most cases, an 
explicit solution is not  available  for  the Bayesian-Nash equilibrium  strategy. 
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Second, since not all bids are observed,  identification and  estimation now 
involve recovering the  distribution of bidder  valuations when one  observes  a 
sample of order  statistics  from this distribution.  The  properties of these 
estimators  have  to be investigated since they do not have standard 1/T 
asymptotics,  where T is the  number of auctions in the  sample. 

Laffont (1997). Hendricks  and  Paarsch (1995). and Perrigne and Vuong 
( 1999) provide  a  survey of issues in empirical  work in auctions using field 
data. Perrigne and Vuong  focus on identification and  estimation of single- 
unit, first-price, sealed-bid  structural  auctions when data on all bids in an 
auction is available. Bidders are assumed to be risk-neutral and  to know  the 
"true" value of the  auctioned  object.  In  addition  to  surveying  the  empirics 
of the  above-mentioned  structural  auction model. Laffont  and  Hendricks 
and Paarsch discuss several approaches  to testing predictions of various 
single-unit structural  auction  models  through  the  reduced-form  approach. 
The focus of the  former is the  work by Hendricks,  Porter and their coau- 
thors  on  drainage sales in the OCS auctions.  (Hendricks,  Porter  and 
Boudreau; 1987; Hendricks  and  Porter, 1988; Porter, 1995). 

The  current survey adds to these surveys in rit Icrrst three ways. 
First,  Guerre, et al. (2000) have  established that the  common-value model 

and private-value  model cannot be distinguished if only data on all bids in 
an  auction  are observed.*  Distinguishing between the two models of valu- 
ation is important  for several reasons.  First,  the two models of valuations 
imply different  bidding and  participation  behavior; this may be of interest , 

by itself. Second,  depending  on  the  model of valuation,  the  optimal  auction 
is different. 

The need to  distinguish  the two models of valuation raises the  question as 
to what  additional  data would be required  to  distinguish  the two models. 
Several papers have addressed this issue recently: Hendricks et al. (2000), 
Athey  and  Haile (2000), and Haile, Hong  and Shum (2000). Section  3 
integrates these papers with the  currently existing body of work by 
Guerre et al. (2000) on identification of several classes of private-values 
models  from bid data. Exploiting  results on  competing risks models as i n  
Berman (1963) and  the  multi-sector Roy model  as i n  Heckman  and Honor'e 
(1990),  Athey  and  Haile  establish  identification of several asymmetric  mod- 
els if additional  data i n  the  form of the  identity of the  winner is observed. 
Hendricks et al. (3000) and Haile,  Hong and Shum (2000) use the ex-post 
value of the  auctioned  object  and  the  variation i n  the  number of potential 
bidders, respectively. to distinguish  the  common-value  model  from  the  pri- 
vate-values model. 

'Parametric  assumptions  on  the  joint  distribution of private  and  public signals about 
the value of the  auctioned object will identify the two models. 
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Second, existing surveys make a  cursory  mention of the  power of 
Bayesian tools  in  the  estimation and testing of structural  auction  models. 
This  gap in the  literature is remedied in this survey in Section 4. 

Third, several field data sets  exhibit  heterogeneity in the  auctioned  object, 
violating  one of the  assumption  made in the  theory of auctions  that  homo- 
geneous  objects are being auctioned.  The issue is how to model  object 
heterogeneity  and still be able to use the  results in auction  theory  that  a 
single homogeneous  object is being auctioned.  Available  approaches  to 
model object heterogeneity are discussed in Section 5. 

Section 6 concludes with some  directions for  future research. 

2. DEFINITIONS AND  NOTATION 

The  framework used in this  paper follows that of Milgrom and Weber 
(1982). Unless  otherwise  mentioned,  a single and indivisible object is auc- 
tioned by a single seller to 11 potential  bidders.  The  subscript i will indicate 
these potential  bidders, with i = 1, . . . , n. X ,  is bidder i’s private signal about 
the  auctioned  object with X = ( X , ,  . . . , X,,) indicating  the  private  signals of 
the I I  potential  bidders. S = (SI. . . . , S,,,) are  additional HZ random variables 
which affect the value of the  auctioned  object  for n l f  bidders.  These are the 
co1nnzo11 components  affecting  the  utility  function of all bidders. U,(X, S) is 
the  utility  function of bidder i: u i  2 0; it  is assumed to be continuous  and 
nondecreasing in its variables. The probability  density  function and  the 
distribution  function of the random variable X will  be indicated by fx(x) 
and &(x), respectively. The  joint  distribution of (X, S) is defined on  the 
support [x. S]”x b, SI”’. If X is an n-dimensional  vector with elements X, ,  then 
the 17 - 1 dimensional vector escludii?g element X ,  will  be indicated by X-,. 
The  support of a  variable Z ,  if it  depends  on 8, will  be indicated by rz(@). 

The  ith  order statistic  from a sample of size t? will  be denoted by XI:”. with 
X”“ and X”:” being the lowest and the highest order  statistic, respectively. If 
X”” is the  ith  order  statistic  from  the  distribution F,. its  distribution  func- 
tion will  be indicated by F:“ and  its density  function by.[:”. 

Once  the seller has  pre-committed to a set of rules, the genesis of a 
structural model is in the following optimization exercise performed by 
each of the I I  + 1 players:  each  player i chooses his equilibrium bid b, by 
maximizing 

Ex~8s,. , . , [(U,(X. S) - b,)Pr(Bidder i wins)] (1) 

The concept of equilibrium  employed is the Bayesian-Nash equilibrium. 
For example, if the seller pre-commits to the rules of a  first-price  auction, 
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the  first-order  conditions  for  the  maximization  problem are the following set 
of differential  equations 

where ‘ u ( s i .  ~ 3 , ;  17) = E(U,IX, = s i ,  X - ,  = y i ) .  X!;’””’ is the  maximum 
over  the  variables XI ,  ..., X,, escluding X, .  This set of I? differential equations 
will simplify to a single equation if bidders  are symmetric. The first-order 
conditions involve variables that  are  both observed and unobserved to the 
econometrician.* The  solution of this set of differential  equations gives the 
equilibrium  strategy 

, l - I ? l - l  

b, = e,(v(si, y , ;  n ) ,  Fxs(x. s). n) (3) 

The equilibrium  strategy of a  bidder differs depending on  the assum  tions 
made  about the  auction  format  or rules and  the  model of valuation4  The 
structure of the utility function  and  the relationship between the  variables 
(X. S) comprises  the  model of valuation. For example,  the simplest scenario 
is a  second-price or  an English auction with independent  private values; a 
bidder bids her “true” valuation  for  the  auctioned  object in these auctions. 
Here  the  auction  format is a  second-price or English auction.  The utility 
function is U,(X,  S) = Xi  and  the X,s  are assumed to be independent. 

The models  qfvuluation which will be  encountered i n  this  paper at various 
points  are now defined. The definitions are from  Milgrom and Weber 
(1982). Laffont  and  Vuong (1996), Li et al. (2000). and Athey and  Haile 
(2000). 

Model 1: Affiliated  values (AV) 

This model is defined by the  pair [U, (X,  S), Fxs(x, s)], with variables (X, S) 
being affiliated.  A  formal  definition of affiliation is given in Milgrom  and 
Weber (1982, p. 8).  Roughly, when the  variables (X. S) are affiliated, large 
values for  some of the  variables will make  other variables large rather  than 
small.  Independent  variables  are  always affiliated: only  strict  affiliation rules 
out  independence. 

The private-values  model  and  common-value  model are  the two  polar 
cases of the AV. 

‘Either some  bids or bids of all n potential  bidders  may be observed. If participation 
is endogenous,  then the number of potential  bidders, 17, is not  observed.  The  private 
signals of the  bidders are unobserved  as well. 
tIf  bidders  are  symmetric, e,(.) = e(*) and &(o) = <(0)  for all I I  bidders. 
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Model 2: Private values (PV) 

Assuming risk neutrality.  the  private-values  model emerges from  the 
affiliated-values  model if U,(X ,  S) = X,.  Hence,  from  equation (2), 

is also  the inverse of the  equilibrium  bidding rule with respect to x,. 
Different  variants of this model emerge depending on  the  assumption 
made  about  the relationship between (X. S). 

The ufiliuted private values (AV)  model emerges if (X. S) are affiliated. 
The  structural element of this model is Fxs. 

It is possible that  the  private values have a  component  common  to all 
bidders  and  an  idiosyncratic  component. Li  et al. (2000) justify that this is 
the case of the OCS wildcat auctions.  The  common  component would be the 
unknown  value of the tract.  The idiosyncratic  component  could be due  to 
differences in operational  cost  as well as the  interpretation of geological 
surveys between bidders.  Conditional  on this common  component,  the idio- 
syncratic  cost  components  could be independent.  This was also  the  case in 
the  procurement  auctions  for  crude-oil  studied by Sareen (1999); the  cost of 
procuring  crude-oil by bidders  was  independent,  conditional on past  crude- 
oil prices. This gives rise to the conditionnlly indepenclent privute values 
(CIPV  henceforth)  model. In a  CIPV  model, 

(1 )  U,(X.S)  = X ;  with 117 = 1. S is the auction-specific or common  compo- 

( 2 )  X ,  are  independent,  conditional on S .  
nent that affects the utility of all bidders: 

The  structural elements of the  CIPV  are (Fs(s), FXls(s,)) .  In the  CIPV 
model an explicit relationship  could be specified for  the  common and idio- 
syncratic components of the  private  signals X, .  Thus 

(1) U , ( X , S )  = X ,  = S + A ,  where A , ,  is the  component  idiosyncratic  to 

(2) ,4, are  independent,  conditional  on S. 
bidder i: 

This is the  CIPV  model with additive  components  (CIPV-A); its struc- 
tural elements are (F,(s), F,41s(c~,)). 

If the  assumption of conditional  independence of A ,  in the  CIPV-A 
model is replaced with mutual  independence of ( A , ,  . . . . A,,.  S), the  CIPV 
with independent  components  (CIPV-I) emerges. The independent  private 
value (IPV)  model is a special case of the CTPV-I with S = 0, so that U, = 
X ;  = A , .  
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Model 3: Common value (CV) 

The  pure CV model emerges from  the AV model if U,(X,  S )  = S .  S is the 
"true" value of the  object, which is unknown  but  the smne for all bidders; 
bidders receive private signals X ,  about the  unknown  value of this object. If 
the  OCS  auctions,  are  interpreted as common-value  auctions,  as in 
Hendricks  and  Porter (1988) and  Hendricks et al. (1999). then an example 
of s is the  ex-post  value of the  tract.  The  structural  elements of the  pure CV 
model  are (F.y(s). F.yIs(.~j)). Notice  its  similarity  to  the  CIPV  model with U; 
(X. S) = X ,  and  no  further  structure  on X, .  

A  limitation of the  pure CV model is that it does  not allow for  variation 
in utility across  the 17 bidders.  This  would be the  case if a  bidder's utility for 
the  auctioned  object  depended on  the  private signals of other  bidders:  thus 
U; = U;(X-,). Alternatively,  bidders'  tastes  could  vary  due to  factors idio- 
syncratic to a  bidder, U,  = U,(A, ,  S ) .  Athey  and  Haile (2000) consider an 
additively  separable  variant of the  latter. Specifically, U, = S + A ,  with U,, 
Xi strictly affiliated but  not perfecl!,) correlated.  Excluding perfect correla- 
tion between U;.  X, rules out exclusively private values, where U, = X ,  = A , ,  
and  guarantees  that  the winner's  curse exists. This will be referred to  as  the 
CV model in this survey. 

The Linem. Millera1 Rights (LMR) model puts  more  structure  on  the  pure 
CV  model.  Using  the  terminology of Li et  al. (2000), the LMR model 
assumes (1) U,(X, S) = S ;  (2) X ;  = S A ; ,  with A ,  independent,  conditional 
on S;  and (3) V(.Y;. s i )  is loglinear in logx,. If in addition ( S ,  A) are mutually 
independent  the L M R  Mlith independent cotnponet~ts (LMR-I) emerges. The 
LMR model is analogous  to  the  CIPV-A  and  the  LMR-I  to  the  CIPV-I. 

All the  above-mentioned  models of valuation  can  be  either  symmetric  or 
asymmetric. A model of valuation is symr~~etric if the  distribution  Fxs(s. s)  is 
exchangeable in its first it arguments;  otherwise  the  model is asymmetric. 
Thus a  symmetric  model  says that bidders are ex ante symmetric. That is, 
the index i which indicates  a  bidder is exchangeable: it does  not  matter 
whether  a  bidder gets the label i = 1 or i = 17. Note  that symmetry of 
Fxs(x, s)  in i t  first I J  arguments X implies that  Fx(x) is exchangeable  as well. 

The auction fo r tmt s  discussed in this  survey  are  the  first-price  auction. 
Dutch  auction.  second-price,  and  the  ascending  auction of Milgrom and 
Weber (1982). In both  the first-price and second-price  auction  the  winner 
is the  bidder  who  submits  the highest bid; the  transaction price is the  highest 
bid i n  a first-price auction  but  the  second-highest bid in the  second-price 
auction.  In a Dutch  auction  an  auctioneer calls out  an initial high price and 
continuously lowers it till  a  bidder  indicates that she will buy  the object for 
that price and  stops  the  auction. In the  ascending  auction or the  "button" 
auction  the price is raised continuously by the  auctioneer. Bidders indicate 
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to the  auctioneer  and  the  other  bidders when they are exiting  the  auction;* 
when a single bidder is left, the  auction  comes to an  end.  Thus  the price level 
and  the  number of active  bidders are observed continuously. 

Once an auction  format is combined with a model of valuation,  an equi- 
librium  bidding rule emerges as described in equation (3). The bidding rules 
for the AV model with some  auction  formats  are given below. 

Example 1: AV  model  and  second-price  auction 

e(s,> = z > ( s i ,  s , ;  ~ z )  = E( U, /X, = s i ,  x:;~:"" = s , )Vi  (4) 

x:;l:rf-l - - max,ji,,,l ,,.., X, is the  maximum of the  private  signals  over I I  - 1 

?J(s, y ;  11) = E(  U,lX; = x;, X y ' I - '  - - Y i )  ( 5 )  

bidders  excluding  bidder i; and 

The  subscript i does not appear in the  bidding  rule e(si) since bidders  are 
symmetric. e(s, )  is increasing in If (X, S )  are strictly affiliated, as in the 
CV model, e(s i )  is strictly increasing in x,. For a PV model, U,(x, s) = X, .  
Hence ?J(N,, s i )  = s i .  The bidding rule simplifies to 

e(si) = x i  (6 )  

Example 2: AV  model  and  first-price,  sealed-bid/Dutch  auction 

bj = e(si )  = v(s,, s i )  - 

where 

Again,  from affiliation of (X, S) and  that Vi is nondecreasing in its  argu- 
ments, i t  follows that e(s;)  is strictly  increasing in x,. 1 

*For example. bidders  could press  a button or lower  a card  to  indicate  exit. 
?A reasoning  for  this follows from  Milgrom  and  Weber (1982). By definition Ul is a 
nondecreasing  function of its arguments (X, S). Since (X, S) are affiliated. 
(X,, A':;' ' I - ' ' )  are affiliated as well from  Theorem 4 of Milgrom  and  Weber.  Then, 
from  Theorem 5.  E(UIX. S)l.U,, X!;""-') is strictly  increasing in  all its  arguments. 
$Since (X, S) are affiliated, ( X l ,  X"' "") are affiliated as well. Then it follows that 
(StJ' " - ' ( z l f ) ) / ( F ~ ~ '  ""(fit)) is increasing in 1. Hence L(crls,) is decreasing  in s,. which 
implies that 6 ( . ~ , )  is increasing  in x, since the first term in the  equilibrium bid function 
is increasing in x I .  from  Example 1. 
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Again,  for  the PV model,  the  bidding  rule simplifies to 

e(si) = .xi - J” ~(culs,)nor 

65 1 

(8) 

3. IDENTIFICATION, ESTIMATION,  AND TESTING: AN 
OVERVIEW 

Identification  and  estimation  of  a  structural  model involves recovering the 
elements [U(X ,  S),Fxs(x. s)] from  data  on  the observables.  Identification, 
estimation.  and  testing  of  structural  auction  models is complicated,  for 
several reasons.  First, an explicit solution  for  the Bayesian-Nash equi- 
librium strategy e;(.) is available  for few models  of  valuation.  In  most 
instances all an empirical  researcher  has are a set of differential  equations 
that  are first-order  conditions  for  the  optimization exercise given by ( I ) .  
Second, even if an explicit solution  for e;(.) is available,  complication is 
introduced by the  fact that the  equilibrium bid is not a  function of (x, s)  
e.xchshwly. (x, s) affects  the  bidding  rule through the  distribution  function 
Fxs(x, S I . )  as well. Sections 3.1-3.3 provide  a brief description of the 
approaches  to identification and estimation; these approaches  have been 
discussed at length in the surveys by Hendricks  and  Paarsch (1995) and 
Perrigne and Vuong (1999). Testing is discussed in Section 3.4. 

3.1 Identification and  Estimation 

There  have been two approaches to identification  and  estimation of struc- 
tural  auction  models when data on all bids is available  and  the  number of 
potential  bidders, n, is known.  The direct crpproaclz starts by making  some 
distributional  assumption, &(x, s le), about  the signals (X, S) of the 
auctioned object and  the utility function U .  Assuming  risk-neutrality,  the 
structural element is now 8. From here there are three choices. First,  the 
likelihood  function of the  observed data  can be used.  Alternatively,  the 
posterior  distribution  of  the  parameters  that  characterize  the  distribution 
of the  signals (X,  S )  could  be used; this is the  product of the  likelihood 
function  and  the  prior  distribution of the  parameters.  Both these alterna- 
tives are essentially fikelihood-based methods.  These  methods  are relatively 
easy as  long  as  an explicit one-to-one  transformation  relating  the  unob- 
served signals with the  observed  bids is available. The  former  approach 
has been used in  Paarsch (1992, 1997) and  Donald  and  Paarsch ( 1  996) for 
identification and  estimation assuming an IPV model  of  valuation.  The 
latter  approach has been used in several papers by Bajari  (1998b), Bajari 
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and  Hortacsu (2000), Sareen (1999), and Van  den Berg and Van der  Klaauw 

When  an explicit solution is not available  for  the  optimization  problem in 
equation (I), it may be preferable to work with simulated  features of the 
distribution specified for  the  signals (X. S); centred  moments and  quantiles 
are some  examples.  Simulated  features  are used since the  analytical 
moments or quantiles of the  likelihood  function are likely to be intractable. 
These are called sir7lukrtion-bcrsed methods. 

For certain  structural  models  the  simulation of the  moments  could be 
simplified through  the predictions made by the  underlying  game-theoretic 
models;  Laffont et  al. (1995) and  Donald  et  al. (1999) provide two excellent 
examples. 

(2000). 

Example 3 (Laffont  et  al. 1995): In this paper,  the revenue equivalence 
theorem is used to simulate  the  expected  winning bid for  a  Dutch  auction 
of eggplants  with  independent  private values and  risk-neutral  bidders.  The 
revenue equivalence  theorem is a  prediction of the  independent-private- 
values model  with  risk-neutral  bidders.  It  says that the expected revenue 
of the seller is identical in Dutch, first-price,  second-price. and English 
auctions.  The winning bid in a  second-price,  and English auction is the 
second-highest value. If N and F x ( s )  were known, this second-highest 
value could  be  obtained by making I I  draws  from F x ( s )  and retaining  the 
second-highest draw.  This process  could be repeated to generate  a  sample of 
second-highest  private values and the  average of these would be the expected 
winning  bid. Since N and F.y(.~) are  not  known, an importance  function is 
used instead  of F.,(.u); the  above  process is repeated  for  each value of N i n  a 
fixed interval. 

Example 4 (Donald  et al. 1999): The idea in the  previous  example is 
extended  to  a  sequential,  ascending-price  auction  for  Siberian  timber-export 
permits  assuming  independent  private values. The key feature of this data 
set is that bidders  demand  multiple  units in an  auction.  This complicates 
single-unit  analysis of auctions since bidders  may  decide to bid strategically 
across  units in an  auction.  Indeed, the authors  demonstrate  that winning 
prices form  a  sub-martingale.  An efficient equilibrium is isolated  from  a 
class of equilibria of these auctions.  The direct  incentive-compatible 
mechanism which will generate this equilibrium is found.  This mechanism 
is used to  simulate the  expected winning bid in their  simulated  nonlinear 
least-squares  objective  function. The incentive-compatible  mechanism  com- 
prises each  bidder revealing her  true  valuation.  The T lots in an  auction  are 
allocated to bidders with the T highest valuation with the price of the  tth lot 
being the ( t  + 1)th  valuation.  Having specified a  functional form for  the 
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distribution of private values, they recreate T highest values for  each of the 
N bidders  from  some  importance  function. The T highest valuations of 
these NT draws  then identify the  winners in an  auction  and hence the 
price each winner  pays  for  the lot.  This process is repeated several times 
to get a  sample of winning prices for  each of the T lots.  The average  of  the 
sample is an estimate of the expected price in the  simulated  nonlinear least- 
squares objective function. 

The key issue in using  any  simulation-based  estimator is the choice of the 
importance  function.  It is important  that the tails of  the  importance  func- 
tion be fatter  than  the tails of the  target  density  to  ensure that tails of the 
target  density get sampled. For example,  Laffont  et  al. (1995) ensure this by 
fixing the  variance of the  lognormal  distribution  from  the  data  and using 
this as the  variance of the  importance  function. 

In  structural  models where the  bidding rule is a rnonotorzic transformation 
of the  unobserved signals, Hong  and  Shum (2000) suggest the use of simu- 
lated  quantiles  instead of centred  moments.  Using  quantiles  has two advan- 
tages. First,  quantile  estimators  are  more  robust  to  outliers in the  data  than 
estimators based on centred  moments.  Second,  quantile  estimators  drama- 
tically reduce the  computational  burden  associated with simulating  the 
moments of the  equilibrium bid distribution when the  bidding rule is a 
monotonic  transformation of the  unobserved signals. This follows from 
the  quantiles of a  distribution being invariant  to  monotonic  transformations 
so that  the  quantiles of the  unobserved signals and  the  equilibrium  bidding 
rule are identical.  This is not  the  case  for  centred  moments in  most  instances. 

Instead of recovering 8, the indirect crppr-onch recovers the  distribution of 
the  unobserved  signals,fxs(x, s). It is indirect since it does  not  work directly 
off the  likelihood  function of the  observables.  Hence it avoids  the  problem 
of inverting  the  equilibrium  bidding  rule to  evaluate the  likelihood  function. 
The key element in establishing  identification is equation (2). An  example 
illustrates this point. 

Example 5:  Symmetric PV model. From  Guerre  et  al. (2000) and Li et al. 
(2000) the  first-order  condition in equation (2) is 

ti(.) is the inverse of the  bidding  rule given in equation (3) with respect to 
the  private signal s i  in a PV model.  Identification of the APV model is based 
on this  equation since Fx(x), the  distribution of private  signals, is completely 
determined by ~ , f ~ , ~ h , ( b , I b , ) ,  and Fs,Ib,(bilb,). This idea underlies  their esti- 
mation  procedure  as well. First. Cfs,,h,(o))/(FB,lh,(o)) is nonparametrically 
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estimated through kernel  density  estimation for each I ? .  Then  a  sample of rzT 
pseudo  private  values is recovered  using  the  above  relation.  Finally  this 
sample of pseudo  private  values is used to  obtain a  kernel  estimate  of  the 
distribution F,(x). There  are several technical and practical ispes  with this 
class of estimators.  First,  the  kernel density estimator of bids.fB(b). is biased 
at the boundary of the support.  This implies that  obtaining  pseudo  private 
values  from  relation  (9) for observed  bids that  are close to  the boundary will 
be problematic.  The  pseudo  private values are. as a  result, defined by-the 
relation  in  equation  (9)  only  for that  part of the support  of,fB(b) wherefB(b) 
is its  unbiased estimatok  The second  problem  concerns  the rate of conver- 
gence of the  estimatorf;(x). Since the  density that is being estimated  non- 
parametrically is not  the  density of observables, standard results on  the 
convergence of nonparametric  estimators of density do not  apply.  Guerre 
et  al. (2000) prove  that  the best rate of convergence that these estimators  can 
achieve is ( T /  log T)”’(1”+3), where r is the  number  of  bounded  continuous 
derivatives ofL;(x). 

The inclirect upprmch has  concentrated  on  identification  and  estimation 
from bid data.  Laffont  and Vuong (1996) show that several models of 
valuations  described in Section 2 are not identified from bid data. 
Traditionally,  identification  of nonidentified models  has been obtained 
through either  additional  data  or  dogmatic  assumptions  about  the model 
or  both. Eventually,  the data  that is available will  be a  guide  as to which 
course  an empirical  researcher  has to  take  to achieve identification. For a 
particular  auction  format, identification and estimation of more general 
models of valuation will require  more  detailed data sets. These issues are 
discussed in Sections 3.2 and 3 .3  for  symmetric models; I turn  to asymmetric 
models in Section  3.4. Nonparametric identification implies parametric  iden- 
tification but the reverse is not  true; hence the  focus is on  nonparametric 
identification. 

3.2 Identification from Bids 

When bids of all participants  are  observed,  as in this subsection, identifica- 
tion of a PV model,  second-price  auction is trivial.  This follows from  the 
bidders  submitting  bids  identical  to  their  valuation of the  auctioned  object. 
Formats of interest are the first-price and the  second-price  auctions. For a 
model of valuation  other  than  the PV model.  the  identification  strategy  from 
data on  bids for  the  second-price  auction will  be similar to that of a first- 
price auction.  The  structure of the  bidding rules in Examples 1 and 2 makes 
this  obvious.  The  second-price  auction  can be  viewed as a special case of the 
first-price auction.  The second  term  in  the  bidding  rule of a first-price auc- 
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tion is the  padding  a  bidder  adds  to  the  expected value of the  auctioned 
object.  This is zero in a  second-price  auction since a  bidder  knows that he 
will have to pay only  the  second-highest  bid. For example, for the PV model, 
while the  bids are strictly increasing  transformations of the  private  signals 
under  both  auction  formats, this increasing  transformation is the  identity 
function  for  a  second-price  auction.  A  model of valuation identified for  a 
first-price auction will be identified for  a  second-price  auction.  Identifying 
auction  formats  other  than the first-price and second-price  auction  from 
data  on all bids is not feasible since for  both the  Dutch  and  the  “button” 
auctions all bids  can never be observed.  In  a Dutch  auction only  the  trans- 
action price is observed. The  drop-out  points of all except the highest valua- 
tion  bidder are observed in the “button”  auction. Hence  the discussion in 
this section is confined to first-price auctions. 

Within  the class of symmetric.  risk-neutral,  private-values  models with a 
nonbinding reserve price, identification based on  the indirect upprooch has 
been established for models as general  as  the  APV  model  (Perrigne and 
Vuong 1999). Since risk neutrality is assumed,  the  only  unknown  structural 
element is the  latent  distribution, &(x). 

The  CIPV model is a special case of the APV model. The interesting 
identification  question in the  CIPV  model is whether  the  structural  elements 
[Fs(s), Fxis(x)] can be determined  uniquely  from data  on bids. From Li et 
al., (2000), the  answer is no; an observationally  equivalent CV model can 
always  be found.  For example replace the  conditioning  variable S by an 
increasing  transformation AS in the  CIPV  model.  The utility function is 
unchanged since U,(X.  S) = X,. The  distribution of bids  generated by this 
model would be identical to  the CV model where U,(X. S) = S and the X, 
are scaled by (A)”“. Thus Fxs(x, s) is identified, but  not its individual  com- 
ponents.  Data could be available on S; this is the  case in the  OCS  auctions 
where  the ex post value of the  tract is available. Even though Fs(s) can be 
recovered. this would still not  guarantee identification since the  relationship 
between the  unknown  private  signals of the bidders. X,, and the  common 
component which is affecting all private  values S is not observed by the 
econometrician.  Without  further  structure  on  the  private  signals,  the  CIPV 
model is not identified irrespective of  the  auction  form and  the  data 
available. 

Both Li et  al. (2000) and Athey and Haile (2000) assume X, = S + A , .  
Note  that U,  = X i  from  the PV assumption.  With  this  additional  structure, 
the CIPV-A emerges when ( A  I ,  . . . . A, , )  are  independent,  conditional  on S. 
This  again is not  enough  to  guarantee identification of the structural ele- 
ments (Fs(s),   FAIs(u)) from  data  on all bids in an  auction since bids give 
information  about the  private  valuations but  not  the individual  components 
of these valuations; hence the  observational  equivalence result of the  CIPV 
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model is valid here as well. At this point  identification  of  the  CIPV-A model 
can  be  accomplished by either  putting  further  structure on it or  through 
additional  data. These are discussed in turn. 

In  addition  to (i) U, = X ;  = S + A ; ,  assume (ii) ( A I .  . . . , A,, .  S )  are 
mutually  independent, with Ais identically distributed  with  mean  equal to 
one;  and (iii) the  characteristic  functions of log S and log A ,  are  nonvanish- 
ing everywhere.  This is the  CIPV-I  model defined above. Li et  al. (2000) and 
Athey  and Haile (2000) draw  upon  the results in the  measurement error 
literature. as in Kotlarski (1966) and Li and  Vuong (199S), to prove  that 
(E, ,  F,,) are identified.* The  importance of the  assumptions  about the 
decomposability of the X ,  and the mutual independence is that log>', can 
be written as 

log X ;  = log c + log E ;  (10) 

where  log c = [logs + E(1og A , ) ]  and log E ,  [log A ,  - E(1og q r ) ] .  Hence  the 
logX,s are  indicators for  the  unknown logc which are observed with a 
measurement error log€;. log X ,  or X, can be recovered from  data  on bids 
since the  bids are strictly increasing  functions of X, .  Identification is then 
straightforward  from  results  concerning  error-in-variable  models with mul- 
tiple indicators,  as in Li and Vuong  (199s. Lemma 2.1). 

S is the  common  component  through which the  private  signals of the 
bidders  are  affiliated.  There are several examples  where data  on S could be 
available. In the  crude-oil  auctions  studied by Sareen (1999) the  past prices 
of crude-oil would be a candidate  for S. In the  timber  auctions  studied by 
Sareen  (2000d) and Athey and Levin (1999). the species of timber,  tract 
location,  etc.  would be examples of S .  In the OCS  auctions S could be 
the  ex-post  value of the  tract. If data were available on S ,  then the  CIPV- 
A model with U ,  = X ,  = S + A ,  would be identified; refining CIPV-A  to 
CIPV-I is not needed. For each s, A ,  = X ,  - s; hence identification of FAI,T 
( a )  follows from  the  identification of the IPV model. Fs(s) is identified 
from  data  on S .  t 

The  same  argument applies if, instead of S ,  some auction-specific covari- 
ates  are observed  conditional on which the A ,  are  independent. If S = 0, but 
auction-specific covariates 2 are observed,  then  again FAl,(a) is identified for 
each z .  It could also be the  case  that U, = g(2 )  + A , ;  then g ( Z )  and F,,,(a) 
for  each z are  identified. In  fact, when either S or auction-specific character- 

'Li et al. (2000) consider a multiplicative  decomposition of X ,  with X ,  = S A , .  This 
will be a linear  decomposition if the logarithm of the variables is taken. 
'Since  more than one  realization of S is observed, F!, is identified too. If the auctions 
are assumed to be independent  and identicrd. then the ~ ~ i r r t i o n  it1 S across  auctions 
can be used to  identify the conditional  distribution F,,,s. 
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istics are observed, all bids are  not needed in  either  the  first-price or the 
second-price  auctions  to identify the  CIPV-A  model.  Any bid, for  example 
the  transaction price, will do in a  second-price  auction  (Athey  and  Haile 
2000, Proposition 6). 

The picture is not  as promising when one  comes  to comnzon d u e  auc- 
tions when the data comprises exclusively bids in a first-price auction.  The 
CV model is not identified from data  on bids; the  bids can be rationalized by 
an APV model as well. This follows from  Proposition 1 of Laffont  and 
Vuong ( 1996). 

The symmetric pure CV model is not identified from all 11 bids; this is not 
surprising in view of the  observational  equivalence of the pure CV  and  the 
CIPV  model discussed above.  The identification  strategy is similar to the 
one followed for  the  CIPV model: more  structure  on  the  model  of  valuation 
or additional  data. 

The  LMR  and  LMR-I models put  more  structure  on  the  pure CV model. 
The  LMR model is analogous  to  the  CIPV-A  and  the  LMR-I  to  the  CIPV-I; 
hence identification  strategies  for  the two sets of models are similar. The 
LMR model is not identified from bids. Assuming  mutual  independence of 
(S .  A), the  LMR-I emerges; Li et  al. (2000) prove  its  identification for  the 
first-price auction  and Athey  and  Haile (2000, Proposition 4) for  the  second- 
price auction.  Again, if data  on the realized value of the  object, S ,  is avail- 
able,  the LMR model is identified from  just  the  transaction price (Athey and 
Haile 2000, Proposition 15). 

3.2.1 Binding  reserve  price 

Once the assumption of a  nonbinding reserve price is relaxed there is an 
additional  unknown  structural element besides the  distribution of the  latent 
private signals. Due  to  the  binding reserve price po  the  number  of players 
who  submit bids, p,, is  less than  the  number of potential  bidders which is 
now unknown. Bidders with a  valuation  for  the  auctioned object greater 
than p o  will submit bids in the  auction;  thus  a  truncated  sample of bids will 
be observed. 

The question now is whether  the joint  distribution of ( N ,  V )  is identified 
from  the  truncated  sample of p, bids in an  auction.  Guerre  et al. (2000), in 
the  context of an IPV  model,  examine  a  variant of this issue. Using  the 
indirect npproaclt they establish  the  identification of the monber of potential 
bidders and  the  nonparametric  identification of the  distribution of valua- 
tions.  A necessary and sufficient condition. in addition to those  obtained  for 
the  case of the  nonbinding reserve price, emerges; the  distribution of the 
number of potential  bidders is binomial, with parameters ( 1 2 ,  [ I  - F,,(po)]). In 
essence, though  there is an  extra  parameter  here,  there is also an additional 
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observable  present:  the  number of potential  bidders.  This  extra  observable 
pins  down  the  parameter 11. 

3.2.2 Risk-averse  models of valuation 

Another  noteworthy extension  here is the  relaxation  of  the  assumption  of 
risk neutrality.  The  structural  model is now characterized by [ U ,  F x ( x ) ] .  
Campo et al. (2000) show that,  for  nonbinding reserve prices, an IPV 
model with constant relative risk aversion cannot be distinguished  from 
one with constant  absolute risk aversion  from data  on observed bids. 
Since the  risk-neutral  model is a special case of the risk-averse models, 
this implies that  a  risk-neutral  model is observationally  equivalent  to  a 
risk-averse model.  The redeeming  aspect of this exercise is that  the  converse 
is not  true.  This follows from  the  risk-neutral  model  imposing  a  strict mono- 
tonicity  restriction on the inverse bidding rule . 30 ) ,  a  restriction  that  the 
risk-averse  model  does rtot impose. 

Identification of [ U ,  Fx(x)] is achieved through  two  assumptions.  First, 
the utility function is parametrized with some k dimensional  parameter 
vector 11: this, on its own. does  not deliver identification.  Then  heterogeneity 
across  the  auctioned  objects is exploited by identifying q through k distinct 
data  points.  Second,  the  upper  bound  of Fs(x)  is assumed to be known  but 
does  not  depend  on the  observed  covariates.  This seems logical since object 
heterogeneity  can  be  exploited  for  identification only once-either to iden- 
tify 17. the  parameters of the utility function, or some parts of the  distribu- 
tion F x ( x ) ,  but  not  both. 

3.3 Identification with Less than All Bids 

In  Section  3.2 data was  available on  the bids of all rz agents. As a  result, 
identification of a  model  of  valuation  for a first-price and a  second-price 
auction was similar.  Outside  this  scenario.  identification  of  a  model  of 
valuation  for  a  first-price  auction  does  not  automatically lead to  the identi- 
fication of the  same  model  for  a  second-price  auction.  The  reason is that, 
unlike  the first-price auction,  the  transaction price is not  the highest bid but 
the  second-highest  bid. I start with identification when only the  transaction 
price is recorded  in an  auction.  For models  that cannot be identified, the 
additional  data  or  parametrization needed to identify the  models is 
described. The discussion in Sections  3.3.1 and 3.3.2 is conditional on 11,  

the  number of potential  bidders;  identification of I I  raises additional issues 
which are discussed in Section  3.3.3. Thus 11 is common  knowledge, fixed 
across  auctions  and  observed by the  empirical  researcher. 
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3.3.1 First-price,  sealed-bid  auction 

The  most general PV model that  has been identified from  winning  bids 
across  auctions is the  symmetric  IPV  model. Guerre  et  al. (1995) discuss 
identification  and  estimation of F,, from  data  on winning bids. The discus- 
sion is analogous  to identification  from  bids in the last subsection with b 
replaced with it’. fB(b)  withfiy(w),  and FB(b) with Fbv(w).* 

It is independence of private values and  the symmetry of bidders  that 
make  identification  of  the  distribution of private values feasible from  only 
the winning bid. Beyond this scenario, all bids will  be needed if the  inde- 
pendence  assumption is relaxed but  symmetry is retained  (Athey and Haile 
2000. Corollary 3). If  the  latter is relaxed as well, identity of the  bidders will 
be needed for  any  further progress: asymmetry is the subject of Section 3.4. 
Also  note that observing s or auction-specific covariates,  in  addition to the 
winning  bid,  does not help;  the nature of the  additional  data  should be such 
that it gives information  about either  the affiliation structure  and/or  the 
asymmetry of the  bidders. For example,  Athey and Haile give several 
instances when the  top two bids are  recorded.t Assuming  symmetry,  the 
top two  bids  should give information  about the affiliation structure  com- 
pared to observing  just  the  winning  bid. Under  the  additional  assumption of 
the  CIPV-A  model.  Athey  and  Haile (2000, Corollary 2) show that obser- 
ving the  top two bids and S identifies only  the  joint  distribution of the 
idiosyncratic  components, f4(a). 

3.3.2 Second-price auctions 

Unlike the first-price auction,  the winning bid and  the  transaction price are 
different in a  second-price  and an ascending  auction. The  transaction price 
is the  second-highest bid. Hence, to establish  identification.  the  properties of 
second-highest  order  statistic have to be  invoked. 

The symmetric APV model is not identified from  transaction prices; this 
is not  surprising i n  view of the  comments in Section 3.3.1. A  formal  proof is 
provided in Proposition 8 of Athey and Haile (2000); linking i t  to the dis- 
cussion  for first-price auctions, they prove  that all yI bids are sufficient to 
identify the  symmetric APV model. 

Independence of the  private signals buys  identification. The symmetric 
IPV model is a special case  of  the APV with strict  affiliation between the X ,  
replaced by independence.  Athey and  Haile (2000) prove  that  the  symmetric 

*Since the  estimator of F,,.() converges at a slow rate of ( T /  log T)’”’’?‘’, the  data 
requirements  and hence estimation  could be burdensome. As a result,  parametric or 
direct  methods  may be necessary. 
‘The difference  between the  top  two  bids is the  “money left on  the  table.” 
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IPV  model is identified from  the  transaction price. This follows from the 
distribution  function of  any  ith  order  statistic  from  a  distribution  function 
F,l- being an increasing  function  of F,y, 

2:n 
FA-) 

Fx ( z )  = ~ 1 f ( l  - t)"-2dt 
( n  - 2)! 0 

The  CIPV-A  puts  parametric  structure  on  the  APV  model in this  sense  of 
decomposing  the  private  values  into  a  common  and an idiosyncratic  com- 
ponent, X ,  = S + A , .  If s was  observed,  the identification of  the  CIPV-A 
would  follow from the identification of  the  IPV  model  with  transaction 
prices exclusively since the A ,  are  independent,  conditional  on .Y. Athey 
and  Haile (2000, Propositions 6 ,  7) prove  that the CIPV-A  model is identi- 
fied from the transaction prices and  observing  the the ex post realization  of 
S or auction-specific covariates, 2, conditional  on which  the A ,  are  inde- 
pendent. Alternatively, if X ;  = g(2)  + A; ,  then  both g ( Z )  and FAI3 are iden- 
tified up  to  a  locational  normalization  from the transaction prices and  the 
auction-specific covariate 2. 

The  prognosis  for  the CV  model  can be obtained  from  the PV model 
since the  CIPV-A is similar to  the  LMR  model  and  the  CIPV-I  to  the  LMR- 
I  model.  Athey  and  Haile (2000, Proposition 15) prove  that if the e x  post 
realization  of  the  "true"  value  of  the object was  observed,  then  the LMR 
model  (and  consequently  the LMR-I model) is identified from  the  transac- 
tion price. 

3.3.3 Identifying the number of potential bidders 

In the previous sections the  number of potential  bidders is assumed to be 
given. With n given, the  IPV  model is identified from  transaction prices for 
both the first-price and  the  second-price  auctions. In many  auctions  the 
empirical  researcher  does  not  observe  the  number  of  potential  bidders 
even though  it is common knowledge for  the  bidders.  Inference  about N 
may  be  of  interest since it affects the  average  revenue  of  the seller in  PV 
auctions; the larger  the  number  of  bidders,  the  more  competitive is the 
bidding.  In CV auctions  the  number of  potential  bidders  determines  the 
magnitude  of  the winner's curse. 

Issues in identification of 11 will differ  depending  on  whether it is 
endogerzotrs or exogei?ous. If the  number of  potential  bidders is systemati- 
cally correlated  with  the  underlying  heterogeneity  of  the  auctioned  object, 
then n is endogenous. For example,  this is the  case in Bajari  and  Hortacsu 
(2000) when  they  model the entry decision  of  bidders i n  eBay auctions. If 
these  object  characteristics  are  observed, identification of r7 involves  condi- 
tioning  on these characteristics.  Unobserved object heterogeneity will cause 
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problems  for  nonparametric  identification.*  This is similar in spirit to  the 
identification of the  CIPV-A in Athey and Haile (2000) that is discussed in 
Section 3.3.2; nonparametric  identification of the  CIPV-A  model is possible 
in the  case  that  the ex post realization of S or auction-specific  covariates is 
observed. 

Exogeneity of I? implies that  the  distribution of unobserved values in an 
auction is the  same  for all potential  bidders,  conditional  on  the  symmetry  of 
the bidders.  This  accommodates  both  the case when the  number of actual 
bidders differs from  the  number of potential  bidders  and  the case of a 
random I ? .  Donald  and  Paarsch (1996), Donald et al. (1999), and  Laffont 
et a l .  (1995) take  the  former  approach.  In these papers IZ is  fixed but  the 
actual  number  of  bidders varies across  auctions  due  to  either  the existence of 
a reserve price or the  costs of preparing  and  submitting bids. Hendricks  et 
al.  (1999)  take  the  latter approach; they make  a  serious  effort to elicit the 
number of potential  bidders on each  tract in the OCS wildcat auctions. 

Assuming exogeneity of  the  number of potential  bidders,  and in  view of 
the IPV model being the  most general model of valuation  that is identified 
from  the  transaction price. I now examine  whether  the highest bid identifies 
both  the  distribution of private values, F,,(s,), and  the  number of potential 
bidders, N .  The proposition below formalizes these ideas when the highest 
bid is observed. 

Proposition 1. For a single-unit first-price, Dutch  or second-price sym- 
metric APV auction,  the  distribution of the winning bid can be expressed as 

where Q(s) = CEos” Pr(N = 1 1 )  and Fx,<(zd) is the joint  distribution of 1 2  

private values. 

Proof. Let W’ = Max(BI. .  . . , B N } .  Then 

‘Li (2000) endogenizes entry but makes  parametric  assumptions  about  the  distribu- 
tion of private values.  Bajari and  Hortacsu (2000) make  parametric  assumptions 
about  both  the  distribution of unobserved values and  the  entry  process. 
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M 

= Fx,,(u)Pr(N = 1 2 )  

.. 

,1=0 

F,,,(u) is the joint  distribution of X conditional on N = 11. The second last 
step follows  from the bids being strictly increasing monotonic  transforma- 
tions of the  private signals of the bidders.  With s = [Fv,8(z~)]”’i in the function 

F d u )  = Q(iFvn(~Ol””) 

Q ( 4  

From  Proposition 1 it is obvious  that  the  distribution of  private signals is 
not identified as in Athey and  Haile (2000, Corollary 3), given n.* 

Corollary 1. For  a single-unit first-price, Dutch, or second-price  symmetric 
IPV  auction,  either F.u(s,) or N but not  both  are identified from the highest 
bid. 

Proof. Suppose 1 1  is fixed. For  a  symmetric IPV  auction 

Fs,, ( 4  = [F.d4l” 

Then,  from  Proposition 1,  F,y(zr) is uniquely  determined, 

F . ~ ( u )  = Q-’(F, , . (zI))  

Assume F,y(zc) is fixed. A  counter-example  shows  that IZ is determined 
uniquely from 

c-2 

F,, (ZI) = Q([F.,(u)]) = x(F,,.(u))”Pr(N = n )  
11=0 
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Suppose  Pr(N = I ? )  puts  point  mass  on n and t? is not uniquely  determined. 
Then  there exists tz* with t l  # I?* and 

F,,.(u; n )  = F,,,(u; IZ*) 

But that  cannot be true since 

F J u ;  / I )  = (F,.(u))"# (F.u(u))"'= F,,.(u; / I * )  0 

In most cases, if the  structural  model is not identified nonparametrically. 
parametric  assumptions  may identify the  model; this is not  the  case  for  the 
result in Corollary I .  Even if parametric  assumptions  are  made  about 
F,u(silO). Corollary 1 holds.'  Corollary 1 forms  the basis for  identification 
and  estimation when data  on  just  the winning bids is available.  Laffont  et  al. 
(1995), studying  a  Dutch  auction  for eggplants, use a  simulated  nonlinear 
least-squares  function to  obtain $; an  estimate of N is obtained,  conditional 
on i. Similarly Guerre et a]. (1995) study  nonparametric  identification  and 
estimation of FL,, the  distribution of private values, from  winning bids. for  a 
first-price, sealed-bid auction with independent  private values, conditional 
on 1 7 .  t? is obtained by solving 

- 
2, = .$, F ~ , ( W ) ,  t7) 

where E and 5 are  the known upper  bounds of the  distributions F,.(.v) and 
Fdb).  

3.4 Asymmetric Models of Valuation 

Since symmetric  models of valuation are special cases of asymmetric  models, 
i f  a  symmetric  model is not identified. the  corresponding  asymmetric  model 
will not be identified either.  Thus  the asymmetric  pure  CV model and the 
asymmetric  CIPV-A  model are not identified from I t  bids. The asymmetric 
APV  model will not be identified from  transaction prices. 

What  about symmetric  models of valuation  that are identified when all t? 
bids are observed? As long  as  a  complete set of tz  bids is available,  the 
asymmetric counterparts  of  the identified symmetric  models  should be iden- 
tified. The indirect rnethod is used to identify the  asymmetric  APV  model by 

*Guerre  et ai. (1995. pp. 27-28) give a numerical  example of two specifications of the 
symmetric IPV model which generate  the  same  distribution of winning bids. 
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Campo  et al. (1998) for  a first-price auction  and by Athey and Haile (2000) 
for a  second-price  auction.* 

The interesting  question with regard  to  asymmetric PV models is their 
identification  from  transaction prices. Asymmetric  models cannot be iden- 
tified from  transaction  prices  only.  An  example clarifies this  point.  Suppose 
all auctions  observed  are  won by a single bidder j .  Then F.,,(.x,). bidder j ’s  
value distribution, will  be identified; since bidders  are  not  exchangeable 
now, F,.,(.xi) will not identify Fx(x). 

The example  suggests that identification  from  transaction prices may be 
possible if the  identity of the  winner was observed as well. Borrowing  the 
work on competing risk models  (Berman 1963, Rao 1992) and the  multi- 
sector  Roy  model  (Heckman and  Honor6 1990), Athey and Haile (2000) use 
the  additional  data  on  the identity  of  the  winner to establish  identification of 
several PV models, with a  caveat. t They  assume  that  the  support of the 
distribution of valuation of each  of then potential  bidders is identical. If this 
is not  the case, then the  identity of the  bidders  could  be used to establish 
identification  from  transaction prices if each  bidder  won  some  auctions.  It is 
very rare  that a researcher  gets to observe all potential  bidders  winning 
several auctions in the  data set. The identification result of Athey and 
Haile (2000) is important since in many  data sets it is possible to establish 
symmetry  with respect to  groups of bidders.  This was the  case in Sareen 
(2000d) where  one  observed  three  nonfringe firms and several  fringe firms, 
some of whom  participated only once; in essence there were two  nonex- 
changeable  groups of bidders in this auction. 

3.5 Testing of Structural Auction Models 

A structural model  comprises  many  elements. For example,  a  structural 
model  makes  assumptions about bidder  rationality,  that  bidders bid accord- 

*Proposition 8 of  Athey  and  Haile  shows  that  the  APV  move  cannot be identified 
from  an  incomplete set of bids. 
?For  a  first-price and a second-price  auction,  Athey  and  Haile (2000, Propositions 
16. 2 respectively) establish  the identification of  the  IPV  model  from  the highest bid 
and  the  identity  of  the  winner.  For  ascending  and  second-price  auctions  the  IPV 
model is identified from  the lowest  bid and  the  identity of the lower as well. 
Additional  data  on  the  identity of the  winner  can  also be used for identifying the 
APV  model  for a second-price or ascending  auction if further  structure, described  in 
Proposition 11, is imposed on the  private signals; the similarity  of the  auction  model 
to  the multi-sector Roy  model is exploited  for this.  A similar  structure  on  the  private 
signals for first-price auction  does not identify the  APV  model  (Corollary 2). 
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ing to Bayesian-Nash  equilibrium strategies, about  the  correlation  between 
bidders’ valuations,  common  value or private-values  components,  exchan- 
geability, etc.  Testing  of  structural  models  has  followed three broad direc- 
tions. 

The first direction  focuses  on  whether  a  structural  auction  model  imposes 
any  testable  restrictions  on  the  observables.*  For  example, for an  IPV first- 
price auction,  the  structural elements [U, (X.  s). Fxs(x. s)] = [X; ,  F,y(x,)J. 
Laffont  and  Vuong  (1996)  show  that this structure imposes  two  testable 
restrictions on the  distribution of bids: the  bids in an  auction  are iid, and 
that e(b) is strictly increasing in b.? The former  restriction  ascertains  the 
independence  of bidders’ valuations irrespective of  whether  they  are  playing 
Bayesian-Nash  strategies; the latter tests whether  they  are  playing 
Bayesian-Nash  strategies irrespective of  the  model  of  valuation.  Through 
these restrictions,  individual tests can  be  designed for different aspects  of  a 
structural  model. 

If all bidders  were  bidding in accordance  with  a  proposed  structural 
model,  estimates  of  this  model  from different subsets  of the data should 
be identical. If that is the case, the  data  are  consistent with  the  model; if not, 
the data  are  inconsistent with  the  model.  This  idea is used by Athey and 
Haile (2000) for testing several structural models. For  example,  assuming 
risk-neutrality,  they test a  symmetric  IPV  model  for  a  second-price  auction 
by ascertaining  whether F,y(.u) recovered from  the  transaction prices is iden- 
tical to  the Fx(x) recovered from  data  on  the highest bid. In the  case that  it 
is not, the null hypothesis  that  the  data is consistent  with  the  IPV  model is 
rejected. From  the decision to reject a  structural  model i t  is unclear  as  to 
which component of the model led to its rejection; rejection could be due to 
violation of  independence  or  symmetry, or  to playing  Bayesian-Nash strat- 
egies. This  problem arises because  the  alternative  model  being tested is not 
explicit. 

A third  direction specifies explicit structural  models  under the null and 
{he  alternative  hypothesis.  The focus  of  this  research  has  been on  distin- 
guishing  the CV model  from  the PV model and  a  symmetric  model  from its 
asymmetric  counterpart.  These  are discussed in turn. 

Laffont  and  Vuong (1996) have  proved  that  for first-price auctions,  con- 
ditional  on the number  of  potential  bidders,  the  CV  model  cannot  be dis- 
tinguished  from  the PV model on  the basis of bids of  the IZ potential  bidders. 

*According  to  Laffont  and  Vuong, a distribution of bids FB is rationalized by a 
structural  model [ U ( X ,  S). Fss] if FB is the  equilibrium bid distribution of the  corre- 
sponding  game. 
‘These two  restrictions  comprise necessary and sufficient conditions  for  the bids to 
be generated by a symmetric IPV first-price auction. 
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Distinguishing  the  two  nlodels of valuation is important  for several reasons. 
one of which is mechanism  design.  Hendricks et  al. (1999), Haile et al. 
(2000), and Athey and  Hade (2000) examine  what  additional data would 
distinguish  the two models in a  first-price auction.  As  the discussion below 
will show,  there is no unique way of  distinguishing between the two models; 
eventually which test to use would be decided by the  data  that is available. 

Haile  et  al. (2000) and  Athey  and Haile (2000) work  with  bidding data,  as 
do Laffont  and Vuong (1996). However. they do  not  condition  on  the 
number of potential  bidders.  Rather,  the  comparative statics  implication 
of  varying  the  number  of  potential  bidders on the  equilibrium  bidding 
rule under  the two models is exploited  for  testing. The winner's curse is 
an adverse selection phenomenon  arising in CV but  not PV auctions. In a 
CV  auction  winning is bad news since the  winner is the  bidder  who  has been 
most  optimistic about  the  unknown value of the  auctioned  object. A 
rational  bidder will therefore  account  for  the winner's curse by lowering 
his expected value of the  auctioned  object  and hence his bid. The  more 
competition  a  bidder expects, the  more severe is the  curse  and hence the 
larger is the  adjustment in expected  value of the  auctioned  object  to  mitigate 
the  curse. The winner's  curse  does  not  arise in the PV setting since the value 
of the  auctioned  object  to  a  bidder  does  not  depend  on  the  information  that 
his opponents have. On this basis Haile  et  al. (3000) suggest the following 
test: 

in the sense of first-order  stochastic  dominance. F,,,,, is the  distribution of 
V(S, s ;  1 2 )  induced by the  distribution specified for  the  private  signals X; 
~ ( s ,  x; t l )  is given in equation (4). Instead of testing  the  stochastic  dominance 
hypothesis,  Haile et  al. (2000) compare  various features. such as  quantiles of 
the  distributions,  as  the  number  of  potential  bidders varies. The kq? data 
requirement  for  their test is to  observe  auctions in which the  number of 
potential  bidders  varies  from 1 to N ;  in an auction  with tI bidders, all n 
bids  should be observed. 

Athey and  Haile (2000, Corollary 3) exploit  recurrence  relations between 
order statistics and reduce  the data requirements of Haile et al. (2000); all 
they need is the top two bids in an  auction with t? 2 3 bidders and  the  top 
bid in an auction with t l  - 1 bidders.* 

'If, in  addition,  the  identity of the  bidders  corresponding to the observed bids is 
available,  the  asymmetric version of this test is possible. 
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A key feature of the OCS  data set is the  observation of the e x  post value 
of the  tract.  Therefore  Hendricks  et al. (1999) can  compute the  average  rent 
over  tracts  and  average bid markdowns  over  tracts  and  bidders  under  the 
CV and PV models.* Since entry is determined by a  zero expected profit 
condition,  the  average  rents  under  the PV and CV models are  compared 
with the  total  entry cost on a  tract. t They find that  the  average  rents  under 
the CV model are  comparable with the  entry  costs.  They find no difference 
in the  average bid markdowns  under  the CV hypothesis between tracts with 
a  small  and  a large number of potential  bidders. In both cases they are 
comparable  to  the  average  rents.  Thus  bidders seems to have  anticipated 
the  winner's  curse. 

An  alternative test suggested by Hendricks et al. (1999) applies to first- 
price and second-price  auctions with nonbinding reserve prices. This 
involves observing  the  behavior of ((.x, Fs) near  the reserve price. In a PV 
model, since v(.x, .x) = x, ((.x. FB) will satisfy the  boundary  condition, 
limhL,.e(.y. FB)  = I' from  equation (2). Thus 

Pr(max,+,,B, 5 blB, = 6 )  
lim 
b o  2 Pr(maxjf,,B, 5 6(Bl = b)lr=h 

= o  

For  the CV model, since U(H, .x) # x, limhl,. <(.x, FB)  = ~l(.x, x) > r .  Hence  the 
limit above  approaches  a  nonzero  constant. 

Finally,  can  symmetric  models be distinguished  from  asymmetric models? 
On the basis of bidding data alone,  progress is limited.  Laffont and Vuong 
(1996) give an example  to  show that asymmetric pure CV  models  may  not be 
distinguished  from  their  symmetric counterparts  for first-price auctions. 
This result is not  surprising since their  asymmetric  model  comprises  one 
informed  bidder and I I  - 1 uninformed  bidders.  The  uninformed players 

' I f  the  sample size is T .  the  average  rents  under  the PV model  are 

T 

/ = I  

where .?:''I = i(u./) in the PV  model  and $' " = . s r  in the  CV  model,  where s, is the 
observed ex post value of tract t .  The bid markdowns  are given by 

where $'," = i (b , , )  in the PV model  and .?'"'I = E ( S ( w  = b1,) in the  CV  model. 
TEntry  costs  are the price of conducting  the seismic survey per acre,  hiring engineers 
to study  the survey data  and  prepare a bid. 
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will play  a mixed strategy whereby their  maximum bid mimics the bid dis- 
tribution of the  informed  bidder. Thus, if IZ = 2, the  observational  equiva- 
lence noted by Laffont  and  Vuong becomes obvious. 

In  Section 3.4 I have  explained  how  Athey and Haile have used bidder 
identity to identify asymmetric  models. It  should be possible  to  exploit 
bidder  identity to test for symmetry versus asymmetry. For example, let I, 
indicate  the  identity  of  the  bidder  who  submits bid 15,. Then  the  conditional 
distribution F,(x,i) should  be  invariant with respect to Zi for  a  symmetric 
model  but  not  an asymmetric  model. 

4. BAYESIAN INFERENCE OF STRUCTURAL 
AUCTION  MODELS 

Bayesian methods  are direct rilethods in that they require specification of a 
likelihood  function.  Parametric  assumption about the  unobservable (X. S) 
and  the utility function U and  a  one-to-one  mapping  from  the  unobservable 
to the  observables  ensure  the specification of the  likelihood. The  structural 
element of the  auction  model is now 8, where 8 characterizes the  distribution 
of (X. S). In uddirion to the  likelihood  function, Bayesian tools  require 
specification of prior  distribution  for the  parameters 8. Estimation  proceeds 
through  the  posterior  distribution of the  parameters, which is a  product of 
the  likelihood  function and  the  prior  distribution.  The  posterior  odds  ratio 
or  the  posterior predictive distributions  may be used for testing.  These 
concepts will  be explained below. 

There  are several reasons why Bayesian tools  may be attractive  for infer- 
ence in structural  auction  models.  Despite  progress on  nonparametric iden- 
tification of  structural  auction models,  the results pertain to single-unit 
auctions. A large  number of important  auctions  are, however,  multi-unit 
auctions;  for example,  the  auctioning of T-bills, spectrum  auctions,  timber 
export licenses, auctions  to sell the right to fell timber in Southern  Ontario, 
etc.  Internet  auctions  are  multi-unit  auctions  too, since more  than  one seller 
could  be  conducting  an  auction  for  the  same  object at different sites at 
almost  the  same  time.  Further. in most cases identification is achieved con- 
ditional  on  the  number of potential  bidders.  In several auctions  for which 
field data is available,  participation is endogenous.  In  many cases it is linked 
to  the characteristics of the  auctioned  object,  some of which may  not be 
observed or even obvious to  an econometrician.  The section on identifica- 
tion has illustrated that, even with single-unit auctions  and a fixed number 
of potential  bidders, i t  is difficult to establish  identification  outside  the 
private-values  model  without further  assumptions  about  the model  of  valua- 
tion.  The key point is that each auction  has  characteristics that  are idiosyn- 
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cratic  to it; establishing  general  results on identification  may not be of  much 
help while doing  applied  work.  Hence,  making  parametric  assumptions  may 
be a necessity to proceed with applied  work.  A structural model is identified 
from  a Bayesian perspective if the  prior  and  the  posterior  distribution of the 
structural  elements  are  different.  Equivalently,  a  likelihood  that is not flat in 
any  direction of the  parameter  space will ensure  identification;  prior beliefs 
about  the  structural elements will always be revised through  the  likelihood. 

Coming  to  estimation,  the indirect  methods are a  comprehensive  method 
for  estimating  structural  auction  models  nonparametrically.  However.  prov- 
ing  the  properties of these estimators is a difficult exercise; Perrigne and 
Vuong (1999) point  out  that the  second  step of these two-step  estimators 
involves proving  properties of the  density  estimator of unobserved  variables. 
This  leads  them  to  comment that it may be more  attractive  to become 
parametric in the  second  stage by specifying a  parametric  distribution  for 
the  pseudo-sample of private values generated in the first stage.  An  undesir- 
able  consequence  could be that  the  parametric  distribution  for  the  pseudo 
private values may not  correspond  to  the  distribution of bids  obtained in the 
first step since the  equilibrium  bidding rule has  not been used to  obtain this 
distribution. 

A well recognized problem  for  maximum  likelihood  estimation is the 
dependence of the support of the data  on  the  parameters.  Standard asymp- 
totic  theory  breaks  down when the support of the  data  depends  on  the 
parameters.  Donald  and  Paarsch (1996) and  Hong (1997) have  obtained 
the asymptotic  theory of the  maximum  likelihood  estimator  for  a first- 
price, sealed-bid auction with independent  private values. The key point 
in these papers is that the  sample  minimum or maximum is a  superconsistent 
estimator of the support of the  data;  that is, the  sample  minimum or 
maximum  converges to  the  support of the data evaluated at the “true” 
parameter values at  the  same  rate as  the sample size. Since the support of 
the data is a  function of some or all of the  parameters.  the  properties of the 
maximum likelihood estimator  are,  as  a  result, based on the  properties of 
the  sample  maximum or minimum. 

Compared  to  estimators based on indirect methods and  maximum like- 
lihood  estimators,  the  properties of the  simulation-based  estimators are 
relatively easy to establish.  However,  simulation-based  estimators are 
method-of-moment  estimators;  drawbacks of method-of-moment  estima- 
tors  apply  to the  simulation-based  methods as well. 

Bayesian estimation  proceeds by examining  the  posterior  distribution of 
parameters. As a  result, even though they are likelihood  based, Bayesian 
methods  are  not affected by the  dependence of the support of the data  on 
the  parameters. A prior sensitivity analysis  can  be used to ensure  the  robust- 
ness of the  estimates of the  elements  of  the  structural  model. 
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Testing of structural  auction  models involves non-nested  hypothesis 
testing with the  support of the  data being different  under  the null and  the 
alternative  structural  auction  model.  The key challenge in testing is to find 
pivotal  quantities i n  this  scenario and  to prove  their  properties. I have 
described  testing in Section 3.5. The  properties of the test statistics described 
in Section 3.5 are  currently  unknown.  Further,  the tests are extremely sen- 
sitive to  the  data  that is available.. Bayesian testing  can  proceed  either 
through the  posterior odds  ratio  or by comparing  the  posterior  predictive 
density  function of the  structural  models being considered. Since the  empha- 
sis is on  comparing two structural  models co~~ditior~crl on  the observed 
data.  the  problems  that plague testing described i n  Section 3.5 are not 
encountered. 

Bayesian inference involves specifying the  likelihood and  the  prior; these 
are discussed in the  two  subsections  that follow. Section  4.3  deals with 
testing. 

4.1 Likelihood  Specification 

The likelihood  for  structural  auction  models is a  function of the  observed 
data  and  the unobserved  variables (e. X,  S). There  are two ways in which the 
likelihood  could be specified. One could  work  directly with the  likelihood of 
observed data; this  has been done in several papers by Bajari (1998a, b)  and 
Bajari and  Hortacsu (2000). There  are  three  problems with this approach. 

First, to  obtain  the  posterior  "probability" of a  particular value of 8. 
the  equilibrium  bidding rule has  to be solved to  evaluate  the  likelihood 
function.  Ordinary  differential  equation solvers could be used for  this.  An 
alternative is to  approximate  the equilibrium  bidding rule in a way to bypass 
inverting  it  to  obtain  the  unobserved (X,  S). Bajari  (1998a) suggests the use 
of  the  quantal response  equilibrium (QRE) approach first suggested by 
McKelvey and Palfrey (1997) to solve normal  form  games. A Bayesian- 
Nash  equilibrium is a set of probability  measures B;(bl Is,). . . . . B:(b,,l.~,~) 
that  maximizes  expected utility for all i and all s i .  Note  that x, now  indicates 
a player's type.* B,(b,ls,) is a  probability  measure  over  agent j's strategy set 
B, = (b, . . . . . br. . . . . b:). If B,(h,ls,) puts a  point  mass  on  an element b: of 
B, and zero on the  other  elements of B,, then b: will  be interpreted as a 
probability  measure. If the set of possible types of a  player and the set of 
strategies is finite. expected  utility is discretized; I will indicate  the  expected 
utility of bidder i by ii(bi. Bpi: s,. 8). where B-, is an Iz - 1 dimensional 

I 

'For example, in a procurement  auction  the set of possible  types would be the 
possible set of costs for an agent.  The  private signal s ,  for an  agent i that  has 
been referrcd to in  Section 2 is just  one element of the set of types. 
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vector each element of which is the set of strategies  for  the 11 players exclud- 
ing i .  The basic idea underlying  the QRE  approach is that bidder i observes 
this expected utility with an  error E ; ,  

; ,( .TI) = ~ ( b ; ,  B-;: s,. e) + Ei(.v,) ( 1  3) 

Assuming that E,(.Y,)  follows an extreme  value  distribution. player i ’s QRE 
strategy is 

The likelihood  function based on  the QRE is 

where X is the  Cartesian  product of all possible types for all I ?  players in the 
game. h is an additional  parameter in the QRE  approach; as h becomes 
large, the QRE approaches  the Bayesian-Nash equilibrium. 

This  approach. like all direct  approaches, is implemented by specifying a 
distribution  for X(@. For each value of 8, the xis and b, are  obtained  from 
assumptions  about  the underlying  game-theoretic model: this  allows  the 
likelihood to be evaluated.  Note  that the  simulated  bids are the QRE bids 
and  not  the Bayesian-Nash equilibrium bids. The key  is to  put  a  prior on 
the  parameter h so that the  simulated  bids mimic the  observed Bayesian- 
Nash bids with a few draws of 8. For example, Bajari (1998a) puts a dog- 
matic  prior of h = 25 to  obtain  QRE bids which are good  approximations  to 
the observed bids. The idea is to  sample  the  parameter  space where the 
likelihood puts most of its  mass. 

Second, methods based on  the likelihood of the bids have an additional 
problem in that the support of the  bids is truncated with the  truncation 
point  depending on the  parameter vector 8. For example. in a  first-price, 
symmetric  IPV  auction,  a bidder’s bid will be no lower than  the expected 
value of the  second-highest  bid.  Suppose /(e) is the lower bound of the bid 
distribution  and  a bid bj less than /(e) is observed;  then  either  the first 
moment of the  distribution  of  private values will  be underestimated or the 
second moment will be overestimated to  accommodate the  outlier b,. Unlike 
the likelihood function based on the Bayesian-Nash equilibrium  bidding 
rule, the QRE is robust  to  the presence of outliers in  the  bidding data 
since it  is based on the full likelihood. 

Third, i t  is rarely the  case  that  the bids of all 11 potential  bidders 
are observed.  Preparing  and  submitting  bids is not a costless activity; 
there  could be other  reasons like the  characteristics of the  auctioned 
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object, which could  prevent a bidder  from  submitting a bid. Hence 
additional  problems of working with censored data arise  whether  one 
works with the  likelihood based on the QRE or the Bayesian-Nash 
bidding  rule. 

Indirect  methods  shed an  important insight into  an  alternative way  of 
specifying the  likelihood.  First  a  pseudo-sample of private values is gener- 
ated; then  this  pseudo-sample is used to  obtain an estimate of the  private 
signals of the  bidders. The key is to work with the  unobserved  private 
signals. 

Making use of this idea,  Sareen (1998) suggests working with the like- 
lihood  of  the  latent data (X, S) of all n potential  bidders; this will  be referred 
to as the fi t11 likelihood of the  latent  data. Since the support of the  latent 
data does  not  depend on  parameters 8 the  kind of problem  mentioned with 
outliers  for  the Bayesian-Nash likelihood will not arise. Further, the f i r 1 1  
likelihood  of  the  latent data includes all 17 potential  bidders;  hence,  censoring 
of  the  data will not be an issue. Working with the  latent  structure is also 
simplified because the  likelihood of the  latent  data does  not involve the 
Jacobian  of  the  transformation  from  the  distribution of the  signals  to that 
of the  bids. 

Assuming that  the  numbers of participants  and  potential  bidders  are 
identical,  estimation is based on the following posterior  distribution. 

. t&data(e lx ,  s, data) m.h(~&i(x. S ) ~ / I = < ( O )  (16) 

.fo(0) is the  prior  density  function  for  the  parameters 8. j&,(x, s)  is the 
specified density  function of the  signals (X, S). I(., is an  indicator  function. 
It is equal  to  one if (e, X, S, data) solve the  differential equations  that  are the 
first-order  conditions  for  the  optimization exercise given by equation ( I ) ;  
otherwise i t  is zero.  The  indicator function is the  likelihood  function of the 
bids  conditional on realization of (X. S) that solve the Bayesian-Nash equi- 
librium  bidding  rule given by (2). The basic idea of the  method is to sample 
(X, S) for  each draw of 8 and  retain only  those draws of (X, S.0) which, 
along with the  observed bids. solve the system of differential equations given 
by ( 2 ) .  

If participation is endogenous,  the  above scheme can be modified. 
Indicate by n, the  number of bidders  who  submit  bids. N is the  number 
of  potential  bidders; it is now a random variable which has  to be estimated. 
First,  consider  estimation  conditional on n ;  even if IZ is not  observed. a close 
approximation is available. 

.fHldata(elX? data) ~.ftr(Q)f;, , .s ,o(X,,+~ s)  1 h . = e . ( . h , , ~ , , , I X  ,,.. s.o(x,,-,,.) (17) 

X,,. and X,,-,,, are 1 2 ,  and 17 - 1 1 ,  dimensional  vectors  of  private signals. 
respectively. For each  auction  only 17, bids, b,,., are observed.  Given 8. 
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(x,,., s) is drawn  from the  distribution specified for  the  signals (X,l*, S);* note 
that, unlike  equation (16), n, instead of 17 values of X are  drawn. If a  draw  of 
(x,,., s, 0) solves the  equilibrium  bidding rule in equation (3) it is retained; 
otherwise it is discarded.  This is what  the  indicator  function is doing.  Next, 
n - n, signals are  drawn from  the  distribution X,,-,,. lx,,, , s, 0. Each  of these 
draws will  be less than  the  minimum  of XI,*; conditioning  on xl,, ensures  this. 
For example, in the  IPV  model n, draws will  be made  from the  distribution 
Xl0; they will  be accepted if they solve the  equilibrium  bidding  rule.  Suppose 
the  minimum of these accepted  draws is Next, TI - 1 2 ,  draws  are  made 
from XI0 such that each draw is  less than SF''. 

In  the  case that a  model of participation is specified, then  sampling  can be 
done iteratively in two blocks. Conditional  on 12, (X, S, 6)  can be sampled in 
the  manner  above;  then,  conditional on (x, s, e), the specified model  of 
participation  can be used to sample N .  The  problematic scenario of 
Corollary 1 will emerge here too if N has  to be estimated  from  the high 
bid data  without a  model of participation. t 

The key point is to work with the  latent  data.  The  latent  data need not be 
obtained in the  manner discussed above.  It  could be obtained  nonparame- 
trically as in the  indirect  methods.  Alternatively, in models like the  IPV  the 
equilibrium  bidding rule is solved in a few iterations; here ordinary differ- 
ential  equations solvers could be used to obtain  the  latent  data  conditional 
on 0. Van  den Berg and Van der  Klaauw (2000) also use the full likelihood 
of the  latent  data  to  study a Dutch  auction  for flowers, assuming  the  IPV 
model.  They  observe not  just the  winning bid but all bids made within 0.2 
seconds of the winning bid.  Their full likelihood of the  latent  data is a 
modified version of that given by equation (17), 

f8jdata(elx, data) ~ ~ f s ( e ~ f X l e ( ~ ( o > l e ) 1 b " 1 ~ E ( I . ; , _ , ( 8 )  (18) 

lb,,,5E(l;,-lle) is an  indicator  function  that  equals  one if the smallest observed 
bid is less than  the expected value of the  second-highest  private  value. To 

*The  distribution of X,, , SI8 is obtained  from  the  distribution specified for (X. S) by 
integrating  out X,,-,,, . 
tThe inability of the  winning bid to identify borh N and 8 shows  up  in  the  posterior 
distribution  for N .  For a simulated  Dutch  auction,  Sareen (1998) observes  a spike in 
the  posterior  density  function of N at  the lower boundary  for  the  parameter  space  for 
N .  Suppose N is defined on  the krmor~ interval [l, , ,  M , ~ ] .  To estimate N ,  for  each  value 
of N E [/,,. u,J, the  posterior  for 8(n) can be obtained;  features  of  the  posterior will 
decide the  estimate of N .  This  approach is similar  in spirit  to  the  SNLLS  method of 
Laffont et al. (1995). 
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simplify the  exposition, let I I  = I I *  and let I Z  be given.* The basic idea is to set 
up a  Gibbs  sampler with conditional  distributions XI8 and 8(X. But X is 
unobserved; so for  some e they obtain s(b, 8) = t(b. e), the  private  signals of 
the  bidders. by numerically solving the  equilibrium  bidding rule; hence XI8 is 
a  spike at s(b.G). Next,  substituting x(b, 6) in  the  likelihood  for  private 
signals,  a draw  from  the posterior 81s(b,8) given by equation (18) is 
obtained. Ideally,  what is required are (0. X.  S.data) combinations  that 
solve the  equilibrium  bidding rule; but then  this  sampling scheme would 
not work since it will remain at e. Hence Van den Berg and Van  der 
Klaauw (2000) accept a  draw  from 8ls(b, 6) as long as it  satisfies the  con- 
straint imposed by the  likelihood of bids:  the smallest observed bid is  less 
than  the  expected value of the  second highest private  value.  This will ensure 
that  the  posterior  samples  that  part of the  parameter  space  where  the like- 
lihood  function  puts  most of its  mass. 

4.2 Prior Specification 

Prior specification for  structural  auction models  has to be done with care. 
for several reasons. 

Structural  auction  models  are  nonregular  models in that  the  support of 
the data depends on 8. A prior on 8 implies a  prior on the support of the 
data tB (8 )  as well. This implicit prior  on  the  support of the  data  should be 
consistent with the  observed data;  that is, i t  should  put  nonzero  mass  on  the 
part  of  the  parameter  space within which the  observed data falls. An ex- 
ample will help to clarify this issue. Suppose  the  support of the data ts(8) is 
the  interval tB(8)  = b(8). 00). A proper  prior, fo. is specified for 8 such that 
the implied prior on the  function b(8) is uniform on  the interval [II.. 3.1; thus. 
s I b(8) I 3. If the  observed bids hi lie in the  interval [s. SI, the  prior  on 8 is 
consistent with the  observed data.  Suppose some bj < 8; then the  prior  for 8 
is not  consistent with the  observed data.,f,  puts  a mass of zero on the  part of 
the  parameter  space where the likelihood function  of  the  observed bid bj is 
nonzero. 

They key point  that emerges from this discussion is that  the  part of the 
parameter  space  where  the  likelihood  and  the  prior  put  most  of  their  mass 
should be similar.  This is feasible in many  auctions since the  parameters 

‘Van den Berg and  Van  der  Klaauw (2000) assume  participation is endogenous. 
Since the  private signals are  independent. X,,-,,. lX , l ,  is sampled by taking 17 - 1 7 ,  

draws less than  min(s,,+} from ,f, The  sampling scheme is in two blocks, as 
described above. 
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have a  natural  interpretation  as  the  limiting  form of some  observables.* 
Bajari (1998b), Bajari and  Hortacsu (2000), and Sareen‘s (1999)  work pro- 
vide many  examples of this. 

Priors specified in the  manner  above  require  a  serious  prior  elicitation 
effort on the part of the  empirical  researcher. For example. interpreting 
parameters in terms of observables to impose  reasonable  priors  may  not 
be obvious.  It  may  also be the  case that  an empirical  researcher may want  to 
be noninformative  to  conduct  a  prior sensitivity analysis since the  prior 
specification above is highly informative. I next turn to the specification 
of noninformative  priors. 

Jeffreys’ prior is used as  a  standard  noninformative  prior in many 
instances. If Jz(8) is the  Fisher  information  matrix of the  likelihood of 
the data Z, the Jeffreys’ prior  for 8 is 

,&(8) a (1 9) 

where “det”  indicates  the  determinant  of  the  matrix. 
It is attractive  to represent ”vague”  prior beliefs through  the Jeffreys’ 

prior,  for several reasons.  It is easy to understand  and implement.  Unlike 
uniform  priors, i t  is invurinnr; inference about 8 is  identical  whether it is 
based on the Jeffreys‘ prior  for 8 or a  one-to-one  transformation  of 8. 
Jeffreys recommended this prior  to represent  “noninforniativeness”  for 
single-parameter  problems  from iicl data. Beyond the  single-parameter  case 
it is  less certain  whether Jeffreys’ prior is a  candidate  for  the  position of 
“noninformative”  priors.  This  has led to several modifications and reinter- 
pretations of Jeffreys’ prior. t 

A modification  proposed by Bernardo (,1979) to represent  “noninforma- 
tiveness” is the reference prior.  The reference prior emerges from maximiz- 
ing an  asymptotic expansion of Lindley’s measure of information. Lindley’s 
(1956) measure of information is defined as  the expected Kulback-Liebler 
divergence between the  posterior and  the  prior;  the larger the  measure,  the 
more  informative  the data  and hence less informative  the  prior. Reference 
priors are appealing to  both nonsubjective Bayesians and  frequentists since 
the  posterior  probabilities  agree with sampling  probabilities to  a certain 
order  (Ghosh et al. 1994). They are  appealing  to subjective Bayesians as 
well since they serve as  a reference point in a  prior sensitivity analysis.  When 

*The  notion of parameters being a limiting form  of  observables is from  de Finetti’s 
Representation  theorem.  Bernardo  and  Smith (1994, pp. 172-181) provide a lucid 
explanation of this theorem. 
?See Kleinberger (1994). Zellner (1971. pp. 216-220). and Phillips (1991) for 
examples. 
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there  are  no  nuisance  parameters  and  certain regularity conditions  are satis- 
fied, Bernardo’s  reference  prior is the Jeffreys’ prior. 

In several papers,  Ghosal  and  Samanta (1995) and  Ghosal (1997), 
extending  Bernardo’s  work,  have  obtained  the  reference  prior  when  the 
support of  the  data  depends  on  the  parameters in structural  auction models; 
for an overview  of  the  reference prior idea and  its  extension to the non- 
regular case, see Sareen ( 2 0 0 0 ~  pp. 51-57). Suppose 8 = [,7,(0], with t) being  a 
scalar.  The  support of  the  likelihood  of  bids <,(e) = ~ ~ ( t ) )  is strictly mono- 
tonic in t); t) is referred to  as  the  “nonregular”  parameter. Since  the support 
of the  likelihood  of the bids conditional  on t) does  not  depend  on  a  par- 
ameter, cp is called the “regular”  parameter.  The reference prior  for 8 = [17,(0] 
is 

and JF(t), cp) is the  lower  right-hand  block  of JB(t), cp), the  Fisher informa- 
tion  from bids. Intuitively,  both  the  regular  and the nonregular  parameters 
contribute  to the standard  deviation of  the  asymptotic  distribution of  the 
relevant estimator. Since  the asymptotic  distribution of  the  estimator  of  the 
regular  and the nonregular  parameter  are  different,  the  regular  parameter cp 
contributes ,/m and  the  nonregular  parameter t) contributes c(t), cp) to 
the reference  prior.* 

Like  the Jeffreys’ prior, the reference prior is invariant.  In  addition, it 
provides  a  way  for  handling  “nuisance”  parameters  which Jeffreys’ prior 
does  not.  The  distinction between  “nuisance  parameters”  and  “parameters 
of  interest”  could be important in structural  auction models since the  sup- 
port ~ ~ ( 0 )  is like a  nuisance parameter.  Further, since the  reference prior is 
based on the  sampling  density  of  the  data,  the  nonregularity in the like- 
lihood is taken  into  account while  constructing  the  prior;  inconsistency 
between  the prior  and  the  data of the kind  discussed above will not  arise 
with  the  reference prior. 

*The  MLE of the  “regular”  parameter (o after  ”concentrating”  out  the  “nonreg~~lar” 
parameter  from  the likelihood function converges to a normal  distribution; 

- 9,) - N ( 0 ,  J;‘(ij, (o)), where 6 = w*. The  MLE of the  nonregular  para- 
meter q is the  minimum  winning bid. W,. It converges to  an  exponential  distribution; 
T( It’* - q,,) - exp(c(r], (o)), where ( ~ ( 7 1 ,  (o) is the  sampling  expectation of the  score 
function of the  bids. 
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When  there  are no nuisance  parameters  and  certain  regularity  conditions 
are satisfied, i t  is  well known  that Jeffrey's prior  and the reference prior 
coincide.  When  the support of the  data  depends  on  the  parameters.  the 
reference prior is not the Jeffreys' prior, in general.  Sareen (2000a) proves 
that the  two coillcide, even when the  support  of  the  data  depends  on the 
parameters, if the  winning bid is sufficient for a scalar  parameter 8. The 
necessary conditions  under which a  sample  maximum or minimum is suffi- 
cient for a  scalar parameter have been established by Huzurbazar (1976). 
These  conditions restrict the  functional  form of the support  and the  density 
function  from which the  order  statistics are  drawn. Specifically, if 
Bj 2 t8(tl), then the necessary and sufficient conditions  under which the 
winning bid  is sufficient for 8 are: 

(1) re(tl) is a  strictly  monotonic,  continuous, and differentiable  function of 

(2) the  form of the  density  function of bids is 
8; and 

f h ( q 0 )  = 4q:)q(Q) (21) 

where rn(b:), q(8) are strictly  positive  functions of 6: and 8, respectively. 

Outside  of this scenario  the use of Jeffrey's prior  to  represent  "nonin- 
formativeness" may lead to pathologies of the kind discussed above. 

4.3 Testing 

The posterior odds  ratio is a  means of comparing  two  models.  It gives the 
odds of one model compared with another  conditional on  the  observed data. 
Formally, let M ,  and M 2  be two models.  Then  the  posterior odds  ratio 
between model 1 and 2, PI?. is 

~ h e r e ~ ; , ~ ~ ( o ) , f d ~ ~ ~ ~ ~ , , ( o ) ,  r = I ,  2, are  the  prior probability and  the  marginal 
likelihood of model r ,  respectively. The  ratio fMl (o)/fM,(o) is a  researcher's 
beliefs. prior to observing  the data,  about which model is a  more  probable 
explanation of the  auctions  she is studying.  These  prior beliefs are revised on 
observing  the data  through the  marginal  likelihood 

where /(8; data, M,) is the  likelihood  function  under  model M,; fOiA,,(0) is 
the  prior  for 8 under  model M r .  
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As long  as  the  prior  for 8 under  model M,, is proper,  the 
marginal  likelihood of the  data  can be evaluated using the  draws  from 
the  posterior  distribution of the  parameters  (Chib  and Jeliazkov 2000). 
Improper  priors  for 0 cause  problems in calculating  the  marginal likeli- 
hood; since improper  priors  are defined up  to a  constant of proportion- 
ality, the scaling of the  marginal  likelihood is arbitrary. Using  “vague 
proper  priors” does  not solve this problem. For example, Bajari (1998b) 
and Bajari and  Hortacsu (2000) use uniform  priors on [l,. 41,  i = 1,  . . . . k ,  
for  each of the k parameters.  The Bayes factor is proportional  to a  con- 
stant so that  the resultant  answer will again be arbitrary, like  the  “vague 
improper  prior”; Berger and Pericchi (1997, p. 2) point  this  out, with 
several  examples. 

Several “default” Bayes factors  have been suggested to get around this 
problem;  Kass  and  Raftrey (1995, pp. 773-795) provide  a survey of these 
options.  The basic idea underlying these “default”  options is to use a  subset 
of the  data, called a  training  sample. to “convert“  the  improper  priors  under 
each  model into a  proper  posterior; this is referred to  as  an intrinsic  prior. 
As its  name suggests, the  intrinsic  prior is used as a  prior  to define a Bayes 
factor  for  the  remaining  data. Since the  resultant Bayes factor will depend 
on  the size of  the  training  sample,  an  “average”  over all possible training 
samples is taken. 

They key point is that a  “default”  option  cannot be used indiscrimi- 
nately;  what will work best depends  on  the applied  problem at  hand.  For 
example,  for  a  scalar  nonregular  parameter and  truncated  exponential like- 
lihoods, Berger and Pericchi (1997, pp. 12-13) discuss “default” Bayes fac- 
tors  for a  one-sided  hypothesis  testing. The  problem they encounter is that 
the  intrinsic  prior is unbounded  under  the  null  hypothesis. 

Informal  means  to  compare models  could be  used to circumvent the 
problem of working with the  posterior  odds  ratio  and  improper  priors. 
For example,  Sareen (1999) compares  the  posterior  predictive  distribution 
under  the  pure CV and  IPV models. The  posterior predictive  distribution 
represents beliefs about  an out-of-sample bid after  observing  the data; this is 
in contrast to the  prior predictive distribution which represents beliefs about 
this  out-of-sample bid before  observing  the data.  The extent of “divergence” 
between the  prior  and  posterior predictive  distribution  for  a  model  indicates 
the  learning  from data  about  that  model. A model for which this “diver- 
gence” is large  should be favored as there is more to be learnt  from  the  data 
about this model. 
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5. UNOBSERVED  HETEROGENEITY 

Empirical  work  requires data  on several auctions.  It is rarely  the  case that 
these auctions  are identical;  either  the  auctioned  object or the  environment 
under which an auction is held, or  both, could differ across  auctions.  Some 
of this auction/object  heterogeneity  may be observed by the  econometrician. 
Many characteristics which make  the  auctioned object different will not be 
observed;  this is termed as unobserved  heterogeneity. Since the value of an 
object  determines  whether  a  bidder will participate  or  not, these unobserved 
characteristics would affect not  just the  bidding  behavior but  participation 
by bidders as well. 

A standard  approach  to modeling  unobserved  heterogeneity is to give i t  
a  parametric  form.  This makes  direct  estimation  more  complicated since 
this unobserved  heterogeneity  enters  the Bayesian-Nash equilibrium bid 
for each  auction in addition to the  unobserved  private  values  already 
present in the  equilibrium  bidding rule. Indirect  estimation  methods 
have been unable to  address this issue; this is one of the  reasons  that 
Perrigne and Vuong (1999) recommend  a  parametric  second  stage in 
their  survey. 

An  alternative approach  has been suggested and implemented  for  the IPV 
model by Chakraborty  and  Deltas (2000). It falls within  the class of direct 
methods in that  parametric  assumptions  are  made  about  the  distribution of 
Xl0,: it is assumed to belong  to  the  location-scale class either  uncondition- 
ally or  conditional  on a  shape  parameter.  The subscriptj in 0, indicates  that 
the  estimation of the  distribution of valuations is auction specific; oi?/-v bids 
within an  auction  are used to  obtain GI for  each  auction j .  0, incorporates 
both observed and unobserved  heterogeneity  despite  the  fact that  no  auc- 
tion-specific covariates  are used to obtain 6,. Indicating observed heteroge- 
neity in auction j by Z, and unobserved  heterogeneity by u,, the following 
relationship 

is used to recover estimates of the coefficients of observed heterogeneity 6 
in the  second  step. r(o) is a  k-dimensional  function of the  observed and 
unobserved  heterogeneity in each  auction j .  The  estimates of 0, obtained in 
the first step  are used instead  of 0,. The estimates of S obtained in the 
second step are  robust  to unobserved  heterogeneity in the sense that they 
do not  depend on the  distribution of u. In  addition,  breaking  the estima- 
tion into two  parts simplifies the  estimation of 8. The first stage of the 
estimation which obtains 0 is structural  as  it is based on the Bayesian- 
Nash  equilibrium  bidding  rule.  Reduced-form  estimation is done in the 
second  stage  to obtain i. 
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The two-stage  procedure of Chakraborty  and  Deltas (2000) is similar to 
the  following  three-stage Bayesian hierarchical  model, 

where b, = (6, , . . . , b,,,) are  the bids  observed  for auctionj.  The first stage is 
obtained  from  the  parametric  assumptions  made  about  the  distribution of 
the  signals X(8, and the Bayesian-Nash equilibrium  bidding  rule. The sec- 
ond stage is obtained  from  the  relation specified in equation (24). The last 
stage is the specification of the  prior  for 6. Sampling  the  posterior  for (e,, 6) 
can  be  done in blocks. The following blocks fall out  naturally  from the  ideas 
of Chakraborty  and  Deltas (2000): 

O,IbfB, for  each  auction j 

SIZ, 8 across  auctions 

where Z = (Z, ,  . . . , Z j , )  and 6' =(e,. ..., @,). In  the  case  that  participation is 
endogenous, an iterative  sampling scheme could be set up.  First, the  blocks 
in equation (25) are sampled,  conditional  on 1 2 .  Then,  conditional  on  draws 
of (0, 6), the  parameters of the process used to model  entry  could be 
sampled. 

6. CONCLUSION 

This survey describes  the  menu of techniques  for  identification,  estimation. 
and testing  available to  an empirical  researcher. The choice between struc- 
tural versus  reduced form, direct  methods versus indirect  methods, will 
depend  on  the goal of the  enlpirical exercise, the  available data,  and  the 
theory  developed  for  the  underlying  game-theoretic  model.  Each of these 
aspects is commented on in turn. 

If the  eventual  goal of the  empirical exercise is mechanism design, the 
structural  approach would be preferred  over  the  reduced-form approach. 
In  many  auctions,  a seller may be interested i n  goals other  than revenue 
maximization. For example,  in  the  timber  auctions in Southern  Ontario, 
the  county of Simcoe wants  to  encourage  a viable local timber  industry. 
Since a when-issued market  and a  secondary  market exists for T-bills and 
other government debt,  one of the  aims of a  central  bank in conducting T- 
bill auctions  would be to  promote liquidity in the  market for government 
debt.  In these instances  reduced-form  estimation  may be preferred, espe- 
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cially if the  theory  for  the  underlying  game-theoretic  model is not well 
developed. 

In  certain  instances  various  features of  the  distribution of  private  values 
could be of  interest;  for  example, Li et  al. (2000) were interested in estimat- 
ing the magnitude  of  the  “money left on the table”  for  the OCS wildcat 
auctions.  For  estimation, indirect methods  could be preferred since they do 
not  impose  any  distributional  assumption  on  the  private signals of  the bid- 
ders.  Since  the rate of  convergence  of estimators based on  indirect  methods 
is slow, large data  sets  are  required  to implement  these estimators.  For 
example, if data  on  winning bids is observed,  one  may be forced to  turn 
to direct methods  to  establish  the identification of the underlying  game- 
theoretic  model in the first instance. In general,  when  testing  a  structural 
model  against  an explicit alternative,  Bayesian  methods  may be preferred 
since they  allow testing collditioml on  the observed data. 

Estimating  and testing structural  models is a  commendable  goal;  it 
presupposes  that  the  underlying  game-theoretic model exists and  that  its 
properties  have been established.  With few exceptions,  our  understanding 
of game-theoretic  models is confined to single-unit, symmetric  private- 
values  auctions.  The  challenge in doing empirical  work is how to  adapt 
the existing theory to  the  idiosyncratic  features  of  a specific auction; here 
the role of  conditioning  and  the  details  observed  about  each  auction will 
be the guiding  tools.  Chakraborty  and  Deltas (2000) incorporate  unob- 
served  heterogeneity  without  altering  the  equilibrium  bidding rule of  a 
symmetric  IPV first-price auction. Bajari and  Hortacsu (2000) explain 
last minute  bidding in eBay auctions  through  a two-stage  game;  condi- 
tional  on  a  stochastic  entry  process in the first stage,  the  second  stage is 
similar to a  symmetric  sealed-bid,  second-price  auction.  Athey  and  Haile 
(2000) and  Hendricks et al. (1999) identify and  estimate  standard  auction 
models by observing  additional  details  of  that  auction  Thus ex post, forth- 
coming.  2000value  of  the  auctioned  object is used to identify the CV 
model;  bidder  identity is  used to identify asymmetric  models. Similarly, 
if the component of  private  values  that  makes  bidders  asymmetric  was 
observed,  then  it  may be possible to use the  theory  of  symmetric  games 
by conditioning  on this asymmetric  component. 
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Asymmetry of Business  Cycles: The 
Markov-Switching Approach* 
BALDEV RAJ Wilfrid Laurier  University,  Waterloo,  Ontario. Canada 

1. INTRODUCTION 

In  modern business cycle research there is a  growing  interest in asymmetric, 
nonlinear time series models utilizing a Markov regime-switching frame- 
work.  The influential contribution by Hamilton (1989), who  proposed  a 
very tractable  approach  to modeling regime changes,  has been particularly 
popular. His approach views the  parameters of an autoregression as  the 
outcome of a  latent  discrete-state Markov process. He applied this approach 
to the  identification of “turning  points” in the  behavior of quarterly GNP 
from 1951 to 1984. The idea of using such a process in business cycles has  a 
long  history in economics  that  dates  back to Keynes (1936). Keynes  infor- 
mally argued  that  expansions and  contractions  are different  from  each 
other, with the  former being long-lived while the  latter  are  more  violent. 

*The  author  acknowledges helpful comments  from  an  anonymous referee. James 
Hamilton,  Lonnie Maggie, Alastair  Robertson  and  Danial  J.  Slottje  on  an  earlier 
version of this  paper. Responsibility for errors  rests with the  author.  Comments  are 
welcome. 
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The  consideration of regime switching raises a  variety of interesting 
econometric issues with respect to specification, estimation  and testing 
(for an overview, see Hamilton 1994, Kim and Nelson 1999a). For instance, 
testing  a  two-state regime-switching model of asymmetry  against  the null of 
a  one-state  model using classical hypothesis-testing  procedures is difficult 
since the  distribution of the test statistic is nonstandard.  Moreover,  as 
pointed out by Boldin (1990), Hansen (1992, 1996), and  Garcia (1998). 
the  transition  probability  parameters  that govern the  Markov regime- 
switching  model are  not identified under  the null hypothesis of a  one-state 
model.  Finally. if the  probability  of  staying in state 1 is either  zero or one, 
the  score of the  likelihood  function  with respect to  the  mean  parameters  and 
the  information  matrix is zero. 

Significant  progress  has been made in testing such  models using para- 
metric classical methods,  but  a few issues remain to be resolved. The ques- 
tion of interest in testing is whether or  not asymmetry of business cycles, as 
characterized by regime switching, is supported by the  data in a  particular 
application.  In  contrast, the  traditional  approach  to testing for  nonlinearity 
has been to test the null of linearity  against  a nonspecified nonlinear  alter- 
native. We will have  more to say about  the specification-testing  aspects of 
the regime-switching framework  later in the  paper.  Estimation of the 
regime-switching models is based  on  the  maximum  likelihood  method (full 
or quasi or  approximate),  depending on a  particular  model  or  application 
(see Hamilton 1994, Kim 1994). 

The  primary focus  of  modern business cycle research has been on using a 
probabilistic  parametric  model-base approach  to  account  for the  asymmetry 
and/or the  comovement  attributes of macro  variables.  Asymmetry  and  co- 
movement were identified by Burns  and Mitchell ( I  946) and their colleagues 
at  the  National Bureau of Economic  Research (NBER)  as  the two key 
attributes of business cycles. 

In the  beginning of the  modern  approach  to business cycle research. each 
of these two  features of business cycles was treated  separately  from  the  other 
without an effort  to specify a possible link between them. For instance, 
Hamilton (1989) proposed  a  model of the  asymmetric  nonlinear attribute 
of business cycles in which the  mean  parameter of the time series of the 
nonstationary  growth  rate of output is modeled as a  latent  discrete-state 
Markov switching process with  two regimes. In  the  empirical  application of 
this model,  the  mean  of  the  growth  rate  of  the  quarterly  postwar output in 
the U.S. was allowed to switch concurrently between expansions and  con- 
tractions  over  the time period.  Similarly,  Stock and  Watson (1991) proposed 
a  dynamic  factor  framework  that is designed to  extract a single common 
factor  from  many  macroeconomic series where the  comovement attribute of 
business cycles is the  primary  focus of analysis.  This  framework was used to 
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construct  an  experimental  composite  coincidental  index  of  economic activity 
of  the U.S. economy.  According to a  recent  assessment of the  modern 
approach  to business cycle research by Diebold  and  Rudebusch (1996), 
the  focus  on  modeling  one  of  the  two  attributes of asymmetry  and  comove- 
ment  without  considering  any link between  them  may  have  been  convenient 
but  unfortunate.  For  a recent review of  business cycle research, see also 
Diebold and  Rudebusch (1998). It was unfortunate because these two  attri- 
butes  of cycles have been treated  jointly  for  many  decades by classical 
researchers  of the business cycles. Diebold  and  Rudebusch  (1996)  went  on 
to sketch  a prototype  model for the  two  attributes of the  business cycles. 
Their synthesis used  a  dynamic factor  model with  a  regime-switching  frame- 
work.  It  extends the Markov regime-switching  autoregressive  model to 
obtain  some  potential  advantages  for  estimation  and testing of  the  assump- 
tion of regime  switching  of  means as  a  by-product.  For  one, their approach 
to  a synthesis of  the  two  attributes of the  business cycle  is intuitively appeal- 
ing in that  it  implements  a  common  idea  that  there  may  be  fewer  sources  of 
uncertainty  than the number  of variables, thereby  enabling  more precise 
tracking  of cycles. It  could  also increase  the  power  of the classical likeli- 
hood-based test of the null of  a  one-state  model  against  the  regime-switching 
model  because the multivariate  data  are less likely to be obscured by idio- 
syncratic  variations (see Kim  and  Nelson 2001). Some  recent  advances in 
computing  and  development of  numerical  and  simulation  techniques  have 
aided  and  advanced  the  empirical synthesis considerably,  and  the  considera- 
tion of other types  of  multivariate  regime-switching  models (e.g., see Kim 
1994 and references therein). 

In  retrospect.  the classical research program mainly  used  a  model-free 
approach since its primary  focus  was  on  establishing stylized facts or reg- 
ularities of business cycles. A  prominent  example of  such  a  research  pro- 
gram for business cycles research is Burns  and Mitchell ( 1  946). This  research 
program  considered  comovement  among  hundreds  of series over  the busi- 
ness cycles, taking  into  account  possible leads and lags. It helped to create 
composite  leading,  coincident,  and  lagging  indexes  that  served  to signal 
recessions and recovery (see Shishkin 1961). This  approach was criticized 
for  lacking  a  probabilistic  underpinning. The research program  during  the 
postwar  period shifted to  using  a  model-based approach  to  studying the 
time series properties  of  business cycles on the basis of  a  framework  of 
stochastic  linear difference equations.  One  popular  approach  has been to 
specify the  time series as  a  stationary auto-regressive  moving  average 
(ARMA) process around  a  deterministic  trend (see Blanchard 1981). 
Another  approach used the ARIMA model  that differs from  the  popular 
approach by allowing  a  unit root in the ARMA process (e.g., see Nelson and 
Plosser 1982, Campbell  and  Mankiw 1987). Yet another  approach used  the 
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linear unobserved component modeling framework that specifies the time 
series as a sum of a random walk and a stationary ARMA process (see 
Watson 1986). Finally, King et al. (1991) utilized the cointegration approach 
to business cycle analysis that permits stochastic equilibrium relationships 
among integrated variables in the sense of Engle and Granger (1987). 

The use of the linear model or the associated linear filter theory in empiri- 
cal models of business cycles had a number of advantages. For one, as 
mentioned before, it allowed the use of a model-base approach to analysis 
instead of the classical model-free approach. Also, the use of linear filter 
theory is easy to understand in comparison to the nonlinear filter theory. 
Examples of the applications of linear filtering methods to business cycles 
include the essays by Hodrick and Prestcott (1981) and Stock and Watson 
(1999), among others. However, the use of the linear framework had the 
unfortunate side effect of sidelining the consideration of the asymmetric 
nonlinear feature of the business cycle that requires a separate analysis of 
contractions from expansions. 

In the famous paper on business cycles by Lucas (1976), it was empha- 
sized that the outputs of broadly defined sectors tend to move together. This 
occurs because economic agents tend to coordinate their activities for 
mutual benefit. The standard way to analyze comovement among macro- 
economic variables has been to use the nonparametric method of the auto- 
correlation function as a tool for modeling multivariate dynamics in 
variables (e.g., Backus and Kehoe 1992). Another approach has been to 
use the vector autoregression (VAR) framework that was introduced by 
Sims (1980). While the use of the VAR has proved to be useful for business 
cycle analysis when a few variables are used, it has a drawback of running 
into the degrees of freedom problem when one attempts to capture the 
pervasive comovement in a large number of macroeconomic variables. 
One useful way to achieve a crucial reduction in dimensionality is to use a 
dynamic factor or index structure imbedded among a large set of macro- 
variables. Sargent and Sims (1977), Geweke (1977), and Watson and Engle 
(1983) articulated the use of factor models in a dynamic setting. A recent key 
contribution has been by Stock and Watson (1991), who exploited the idea 
that comovement among macro-variables is driven in large part by a com- 
mon shock or economic fundamentals. The use of dynamic-factor models 
has been influential since it is one of the effective ways to achieve both 
parsimony and co-movement in business cycle models. 

In this paper, we provide a selective survey of the regime-switching 
literature relating mostly to business cycle research by focusing on some 
of the new developments since the review by Diebold and Rudebusch 
(1996). We shall focus not only on models of business cycle asymmetry 
within the univariate setup but also on those within the multivariate 
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setup. One advantage of using the multivariate setup is that it permits 
examination of asymmetry using a dynamic one-factor model of output 
implied by either a common stochastic shock or a common stochastic 
trend. The multivariate setup can also be used to assess asymmetry, using 
a dynamic two-factor model of output that incorporates both the com- 
mon stochastic trend and/or a common cycle among variables. The moti- 
vation of the consideration of asymmetry in particular and nonlinearity 
in dynamic time series models in general is discussed in Section 2 both 
from the point of view of economic theory and from an empirical per- 
spective. The model of the asymmetry proposed by Hamilton, and some 
of its key extensions, are reviewed in Section 3. This section also presents 
some other characterizations of business cycle asymmetry. The dynamics 
of the one-factor and two-factor models are described in Section 4 along 
with some selective empirical results. The final section concludes the 
chapter. 

2. MOTIVATION FOR ASYMMETRY 
2.1 Empirical Evidence in Support of Asymmetry 

It would be instructive to start with a review of the arguments used by 
Hamilton (1989) to motivate his contribution to the literature on modeling 
asymmetry. One of the primary objectives of his paper was to explore the 
consequence of specifying the first differences of the log of output as a 
nonlinear process rather than a linear process within the Markov-switching 
framework. He pointed out that abundant evidence had accumulated show- 
ing that departures from linearity are an important feature of many macro 
series in economics. Moreover, researchers had proposed a variety of ways 
to characterize such nonlinear dynamics. These included papers by Neftci 
(1984) and Sichel (1987, 1989). who provided direct evidence on business 
cycle asymmetry, and the time transformation effect by Stock (1 987) and the 
deterministic chaos found by Brock and Sayers (1988) provide indirect evi- 
dence on business cycles asymmetry. Other approac,hes stressed the need to 
account for nonlinear conditional heterogeneity in asset pricing applica- 
tions, and found support for it. 

The specific form of nonlinearity with which Hamilton’s regime-switch- 
ing model is concerned arises if the dynamic process is subject to discrete 
shifts such that the dynamic behavior of the variable is markedly different 
across episodes. It builds on the Markov-switching regression approach of 
Goldfeld and Quandt (1 973) that allowed parameters of the static regression 
model to switch endogenously. The econometrics of time-varying parameter 



692 Raj 

models  that preceded  the contribution by Hamilton is surveyed  by Raj  and 
Ullah (1 981). 

The filters and  smoothing  function used by Hamilton  provide  nonlinear 
inference about  a discrete-valued  unobserved state vector  based on observed 
variables.  In  contrast,  a  linear  approach is used in the Kalman filter for 
generating  estimates  of  a  continuous  unobserved  vector  based  on  observa- 
tions  on  a series. The  application of the  regime-switching  model to  the 
quarterly  postwar U.S. real GNP growth  rate  found  that it produced  a 
best fit when  a positive growth  rate was  associated  with  a normal  state of 
the  economy  and  a  negative  growth  state  associated  with  recessions in the 
U.S. economy.  The  smooth  probability  plots of  the U.S. growth  rate  were 
found  to have a remarkable  correspondence  with  the NBER  dating  of busi- 
ness cycles. Another  conclusion  was  that  business cycles are associated  with 
a large permanent effect on  long-run  output.  Earlier,  Nelson  and Plosser 
(1982) and  Campbell  and  Mankiw (1987) had  reached  a  similar  conclusion 
by  using  a different inference  strategy. 

2.2 Economic  Theory-Based Arguments in Support of 
Asymmetry 

One possible interpretation of  the  evidence for  asymmetry in output  just 
presented  would  be  that these are  examples  of  measurement  ahead  of  theory. 
A  number of  macroeconomics  models  have since been  developed that  are 
consistent  with  the  central  idea  of  the  regime-switching  model  for  a  presence 
of  multiple  equilibria  whose  dynamics  can be adequately  approximated by 
statistical  models  involving  regime  switching.  Also,  a  number  of  recent 
papers have  articulated  various  mechanisms  that  may  explain  why  switches 
between  equilibria  take place. For example, in the  model by Cooper  and 
John (1988), the  coordination  failure  mechanism in an imperfectly  competi- 
tive environment is used as a  source  of  the  existence  of  multiple  equilibrium. 
As argued by Cooper  and  John. with no  coordination  there is a  strong 
possibility of the  presence  of situations  known  as ‘‘spillover’’ and  “strategic 
complementarity.” The former refers to  a  situation where  one’s  own  payoff is 
affected by others’  strategies.  The  latter refers to  a  situation in which  one’s 
own  optimal  strategy is affected by the  others’  strategies.  Chamley (1999) 
addressed  two  questions  that  are  central to models  of  multiple  equilibria: 
why does  one  equilibrium arise rather  than  another?  How  do  shifts between 
them  occur?  Imposing  the  twin assumptions  of payoff  uncertainty  and  learn- 
ing  from  history in a  dynamic  model  he  provides  a basis for  fluctuations  and 
cycles. He shows that even  in an imperfect information world  there  could be a 
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unique  equilibrium  with  phases of high and low economic activity and  ran- 
dom switches. He also discussed several applications in macroeconomics and 
revolutions. Cooper ( I  994) utilized a  conventional  approach  found in  models 
of multiple  equilibria by assuming that economic  agents coordinate  on  the 
one closest to equilibrium  in  the  previous  period  where  the  economy evolved 
smoothly.  In his model when the  equilibrium of this ‘type’ disappears,  the 
economy jumps  to a new equilibrium. Specifically, he allowed for  the  pre- 
sence of serially correlated  shocks  that shift between high marginal  produc- 
tivity/high-cost and low marginal  productivity  technologies  for  multiple 
equilibria.  Finally, Acemoglu and  Scott (1997) utilized high fixed costs  and 
internal  increasing  returns to scale to generate regime-switching. 

In  an  optimal  search  model by Diamond (1982), the two situations  of 
spillover and  complementarities  arise  because  of  the presence of “think-mar- 
ket”  externality.  The likelihood  of one’s own success depends on  the intensity 
of search  undertaken by others. One’s search is more  desirable when other 
economic  agents  are  also  searching, both because it is likely to have a larger 
payoff and also because search  would likely be more  productive. The presence 
of both spillovers and  complementarities can have important  macroeconomic 
effects, such as increasing  returns to scale, because of either high levels of 
output  or high returns  to firms’ technologies, or a  combination of both. 

There  are  other  economic  theories  that  can  explain why switches between 
equilibria  might take place. For instance, Diamond  and  Fundberg (1989) built 
a  model to show  that  rational-expectations  sunspot  equilibrium  would exist if 
agent beliefs about cycles were self-fulfilling. A recent paper  that utilized a 
similar mechanism is Jeanne  and  Mason (2000). Employing  a  model of switch- 
ing consumer confidence between waves of optimism and pessimism, Howitt 
and McAfee (1992) have  shown  that multiple  equilibria  with  statistical prop- 
erties  characterized by a Markov regime-switching process can exist.  Finally, 
the dynamic  mechanism  of  a  “learning-by-doing” type externality that drives 
the “new growth  theory”  models  has been shown to  produce  endogenous 
switching between high-growth and low-growth  states as a  consequence of 
large shocks which can  produce persistence in the selected equilibrium. For 
instance, Startz (1998) utilized the  economic principles for  explaining  long- 
run growth  over  decades  for  understanding about fluctuation at business cycle 
frequencies. The model  economy  considered by him has  two  goods  (or  sectors) 
that  share of single factor  input. which is in fixed supply. The  productivity 
increases due  to  both  an exogenous  technology  change  of  Solowian  variety 
and  an  endogenous  technological  change  of  the type used in  the :new growth 
theoory‘  models of Romer (1986, 1990) and  Lucas (1988). Each of the two 
technologies has  its own growth  rate  plus  cross-fertilization between them is 
permitted.  Endogenous  technology  component is a  source of positive feed- 
back, because of learning-by-doing or  other similar  reasons, which could 
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destabilize  the  economy  whereas  exogenous  technology  tends to stabilize the 
economy.  Also,  the  greater  the use of productive  input in the  process,  the 
faster  the  growth in the process-specific producing  multiple  states.  In  such  a 
model  economy  shocks to preferences and technologies  cause  not  only  endo- 
genous  switching  of  the  leading  sector between the  high-growth and low 
growth  processes  but  also  generate data of the type indentified by Hamilton 
( 1  989). The mechanism used here is based more  on  the  endogenous  compara- 
tive advantage  rather  than  the  coordination mechanism used by Cooper 1994. 
The  latter mechanism is more  Keynesian as changes in intermediate level of 
aggregate  demand  could  move  the  economy  into  the region where  history 
matters. 

2.3 Other  Arguments for Asymmetry 

There is a  variety of other  reasons besides those listed above  to  motivate 
consideration of asymmetry in particular  and nonlinearity  in  general.  First, 
Markov regime-switching models  tend to provide  a  good fit to  aggregate 
macro  data.  This is because macroeconomic  variables  undergo  episodes in 
which behavior  of  the series dramatically  changes  and becomes quite  differ- 
ent. These dramatic shifts are sometimes  caused by such  events as wars? 
economic recessions, and financial  panics. Abrupt changes,  however, can 
be  the result of deliberate policy actions of the  government. For instance, 
government  may  choose  to  bring  down  inflation  after  a  prolonged  inflation- 
ary  environment. or eliminate  previous  regulations or reduce taxes to 
expand  the  economy.  Also, evidence for  asymmetry in either. especially, 
the basic Markov switching or one of its  extensions  has been generally 
strong.  The  reported mixed outcome  from  the classical likelihood  ratio 
tests of Hansen (1992) and  Garcia (1998) which are designed to  take  care 
of the  nuisance  parameters  problem,  sometimes  also  known as  the Davies’ 
problem (see Davies 1977). is perhaps  related to the  poor power of these 
tests in small  samples.  Finally,  the  cost of ignoring regime switching, if in 
fact it occurs,  would be large. The benefit of using regime-switching models, 
even if they were to  contribute tiny improvements  in  forecast  accuracy,  can 
be large differences in profits. 

3. ASYMMETRY OF THE BUSINESS CYCLE USING A 
SINGLE TIME SERIES  SETUP:  THE MARKOV- 
SWITCHING APPROACH 

A typical empirical  formulation of a regime-switching model by Hamilton 
(1989) permitted  the  mean  growth  rates  of  the  gross  domestic  product to 
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switch between two  states  of positive and negative  growth  rate in the  United 
States.  As  mentioned below, he  found  that  such  a  model  corresponds well 
with the  National Bureau  of  Economic  Research business cycle peaks and 
troughs. 

3.1 The Hamilton Empirical Model 

In  particular,  the  autoregessive  model of order  4 used  by Hamilton (1989) 
had  the following specification for the time series, y,. for  the  U.S.  postwar 
quarterly-growth  rate  of  real GNP from 1953-Q2 to  1984-44: 

E, - i.i.d. N ( 0 ,  a’) I 
We assume  that  the discrete-valued variable S, is generated by a  two-state 
first-order Markov process. The  true  state of the process is treated as unob- 
servable  (hidden or imbedded)  and it must be inferred on  the basis of 
observations  on  the series y ,  from time 0 to t (the filter probability) or 
from  the series y, for all f (the  smoothed  probability).  With  a  two-state, 
first-order Markov stochastic process, where S, can  take  a value 0 or 1, we 
write: 

Prob.[S, = l/S,-l = 11 = y  

Prob.[S, = O/S,-, = I ]  = 1 - p  

Prob.[S, = O/S,-I = 01 = q 

Prob.[S, = l/S,-l = 01 = 1 - q 

The  state-dependent  mean is linearly specified as 

P ( S J  = a0 + S, 

such that l(S,) = cyo for S = 0 and p(S,) = cy0 + c y l  for S = 1. The  Markov 
chain is assumed to be  ergodic and irreducible so that there  does  not exist an 
absorbing  state.  The  transition probabilities  are  assumed to be time invar- 
iant so that  the  probability  of  a switch between regions does  not  depend on 
how  long  the process is in a given region.  Some of the  assumptions of the 
model can be relaxed, if necessary. 

In  the basic model  the  autoregressive coefficients are assumed to be 
constant so that regime switches shift only the  mean  growth  rates. The 
density of y ,  conditional on S,  is assumed  normal with two  means around 
which growth  rate y, moves to  episodes of expansion  and  contraction. 



696 Raj 

However, since we do  not observe S,  but only  the  sample path  of y, from 
time 0 to T ,  we must find a way to  make  an  optimal inference about  the 
current  state of  the history of  observations  on J', . Hamilton  proposed the 
use of  a  nonlinear filter in a recursive fashion  on lines similar to the 
Kalman filter for  linear  models.  The use of  a  nonlinear filter gives a like- 
lihood  function  of  the p,s as  a  by-product. An algorithm  for  estimating  the 
parameters of  the  regime-switching  model that uses the limiting uncondi- 
tional  probabilities  as initial values for  starting it  was  developed by 
Hamilton.  One powerful feature  of  the regime-switching  model is its ability 
to generate  smooth  probabilities  that  correspond closely to the NBER 
business-cycle  peaks and  troughs. 

3.1.1 Empirical  results 

The  maximum likelihood  estimates  of  the  model are associated in a direct 
way  with  the  business cycles in the U.S. instead  of identifying long-term 
trends in the U.S. economy.  Moreover, recessions  corresponding  to  state 0 
are  associated  with  a low negative  growth rate  of  output with an estimate 
value no = -0.4%  per  quarter,  and  expansions  corresponding  to  state 1 are 
associated  with  a positive growth of (no + a , )  = +1.2%  per  quarter.  Also 
the  probability  of  remaining in the  expansion  states p = 0.90 is higher  than 
the  probability q = 0.76  of  remaining in the  recession state.  This evidence is 
consistent  with  the  business cycle's being  asymmetric.  These  estimates  imply 
that  expansions  and  contractions have an expected duration value  of 1/(1 - 
p )  = 10.5 quarters  and 1/(1 - q)  = 4.1 quarters, respectively. In  compari- 
son. an average  duration of  expansion  and  recession in the  NBER  dating 
method is 14.3 quarters  and 4.7 quarters, respectively. 

The filter and  smooth  probability  estimates  of the two-state  first-order 
Markov model of the  growth  rate,  using  quarterly  data  from 1952 through 
1984, correspond  to  the  NBER  dating of  peaks  and  troughs  within  three 
months of  each  other. 

3.2 A Generalization and Other Extensions of the 
Hamilton Model 

The  Hamilton  approach  has been found  to be useful in characterizing busi- 
ness cycles by several researchers, although they  have  sought to  augment  the 
basic model in some  way, supported by either  a  theoretical  or  an  empirical 
argument. Below we give a brief account of  some  of  the  important  exten- 
sions  of  the  Hamilton  model. 
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3.2.1 The Hamilton model  with a general  autoregressive  component 

The  Hamilton model is attractive because it is simple to estimate  and  inter- 
pret even though it allows for complicated  dynamics  such as asymmetry and 
conditional  heteroskedasticity. The time series in this model is composed  of 
two  unobserved  components,  one following a  random walk with drift evol- 
ving as a  two-state Markov process, and  the second  following an  autore- 
gressive process with a unit root.  Lam (1990) generalized the  Hamilton 
model by allowing  its cyclical component  to follow a general autoregressive 
process without  a  unit  root so that the  Markov-switching  model  may be 
specified in the  time series in log level rather  than in growth  rate of real 
output.  This generalization  allows  some  shocks to have  temporary effects 
and  others  to have permanent effects. It is in part  supported by the  empirical 
work of Perron (1989). who  found  that  once a  shift in the  deterministic  trend 
is allowed,  the evidence for  a  unit  root is weak in  most  time series. 
International evidence casting  doubt  on a  unit root in output is provided 
by Raj (1992). The empirical  results  obtained by Lam  for his model  for 
postwar  quarterly  data confirmed  Hamilton’s  conclusion that recurrent 
shifts between low- and high-growth  states  constitute an  important  charac- 
teristic of real output. However,  the  in-sample  forecasting  performance of 
the  model  proposed by Lam (in  terms of the  root-mean-square  forecast 
error  criterion) was better  than  the  Hamilton  model  for  long  horizons. 

3.2.2 The Hamilton model  with  duration  dependence 

Another extension  of  the  Hamilton  model allowed each of the  state transi- 
tion  probabilities to evolve as logistic functions of some  exogenous  variables 
or economic  fundamentals (e.g., see Filardo  et  al. 1998, Diebold  et  al. 1993, 
Filardo 1994 and  Diebold  et  al. 1994) or  an integer-valued  variable  (e.g. see, 
Durland  and  McCurdy 1994). Such an extension is motivated by a view that 
the  transition  probabilities  depend  on  how  long  the  process  has been in a 
particular regime or is duration  dependent  rather  than  constant.  This view- 
point is argued  to  be  consistent with the evidence that  the longer  the  con- 
traction  persists,  the  more likely it is to end  soon. 

3.2.3 The Hamilton model  with a three-state Markov process 

Another extension  has been to  add a  “third  state”  to  the basic  two-state 
regime-switching model.  This  extension is in response  to an empirical result 
found by Sichel (1994) showing that there are three  phases of a  business 
cycle: recession, high-growth recovery, and  the  moderate  growth period 
following  recovery.  Clements and Krolzig (1998), using  the  quarterly  growth 
rate of real GDP from 1948Q2 to 1990Q4 for the U.S., found  support  for a 
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third  phase  of  the cycle. They  also  showed  that  episodes of expansion  and 
contraction  for  the  three-state  model  tend  to  correspond fairly closely to  the 
NBER classification of business-cycle turning  points  for  the U.S. Strong 
evidence of a  third  phase  also  appears  to exist for  the Canadian GDP 
over  the  period 194741  to 1997Q3, as shown by Bodman  and  Crosby 
(2000). However, the rapid  growth  phase  observed  for  previous recessions 
appears  not  to have  materialized in the 1990s. 

3.2.4 The Hamilton model  with  a two-state Markov process  where 
the  mean  and  the  variance  follow  independent switches 

Yet another extension was to permit  residual  variances of the  autoregressive 
specification to be state  dependent instead of constant  across  states.  The 
augmentation of the  basic  Hamilton  model  proposed by McConnell and 
Perez-Quiros (2000) first allows  the  mean and the  variance to follow inde- 
pendent  switching processes. Secondly,  it  allows  for  the  two-state  process 
for  the  mean of the business-cycle component of the  model to vary accord- 
ing to  the  state  of  the variance. The empirical evidence in support  of this 
extension is based on  the existence of a structural  break in the  volatility of 
the U.S growth  rate  for a  period since 1984. The  dramatic  reduction in 
output  fluctuations in the U.S. are shown in turn  to  emanate  from a  reduc- 
tion in the  volatility  of durable  goods  that is roughly  coincident with a  break 
in the  proportions of output  accounted  for by inventories.  This  increased 
instability is about  quarter-to-quarter  fluctuations  rather  than cyclical fluc- 
tuations  as considered  earlier in the  three-state  Markov-switching  model. 

3.2.5 The Hamilton model  with  two  types of asymmetry 

Kim  and Nelson (1999b) extended  the  Hamilton  model by modeling  two 
types of asymmetry  of recessions. One type of  asymmetry allowed by them 
has  roots in  the  work of Friedman (1964, 1993), who  argued  that  there is an 
optimal level of potential  output  for the  economy  that is determined by both 
resources and  the way they are  organized, which acts  as a ceiling. He  argued 
that occasionally  the output is "plucked" downward  from  the ceiling by 
recessions caused by a  transitory  shock in aggregate  demand or  other dis- 
turbances.  Output reverts  back to the  normal  phase  after  the  trough of a 
recession. Some  empirical support  for this  point  of view  is provided by 
Beaudry and  Koop (1993) and Wynne  and Balke ( 1  992, 1996), who  found 
that the  deeper  the recession. the  stronger  the  ensuing recovery. The empiri- 
cal support  for a high growth  phase  after recessions, found by Sichel(1994). 
implies that negative  shocks are likely to be  less persistent  than  positive 
shocks, which is consistent with this  type of asymmetry. 
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The second  type of asymmetry of the business cycle considered is about 
the shift of growth  rate of trend  that was  modeled by Hamilton.  This  type  of 
asymmetry  permits  the  growth rate of output  to shift from  boom  to reces- 
sion due  to infrequent  large  shocks, so that  the effect is permanent.  In 
contrast,  the second type of asymmetry of recessions, a  deviation  from  the 
output ceiling due  to large infrequent  negative  shocks,  has  a  transitory effect 
on the  growth  rate.  Kim  and  Nelson (1999b) model  two  types of asymmetry 
by specifying a  mixture of two types of shocks.  One type  consists of a set of 
discrete  asymmetric  shocks that  depend  on  an unobserved state.  The  other 
type is a set of symmetric  shocks  with  state-dependent  variances that  can 
switch during  normal  and recession times. They  show  that the hypothesis 
that  potential real GDP provides an  upper limit to the  output  cannot be 
rejected by the  quarterly real GDP data  for  the U.S. 

4. THE MULTIVARIATE MODELS OF ASYMMETRY: 
DYNAMIC FACTOR WITH  MARKOV-SWITCHING 
MODELS. 

4.1 One-Factor Dynamic Model  with Markov  Regime 
Switching 

The  framework of Markov-switching  autoregressions  for  a single time series 
has been extended to a model  of several time series to  model  the  asymmetry 
attribute  of the business cycle. The  dynamic  one-factor  model with regime 
switching is one  prominent  example of the  multivariate  model of asymme- 
try.  In this model  the  co-movement  attribute of business cycles is accounted 
for  through  factor  structure whereas  the  asymmetry attribute is specified 
through regime switching in a  dynamic  setting.  The cycle component C, in 
this  model is an unobserved  component that is common  to  more  than  one 
observed coincident  variable in the  multivariate  case.  Suppose we denote 
observed  coincident  economic  variables  such as personal  income less trans- 
fer payments, an index of industrial  production,  manufacturing  and  trade 
sales, and  hours of employees on  nonagricultural  payrolls, by .vir for 
i = 1,2,3.4.  In  addition,  assume  that each of the  observed  variables  has  a 
unit root but  the  variables themselves are  not  cointegrated, so that the  term 
ACr is treated as a common  factor  component in a dynamic  factor model 
with regime switching. A prototype  model developed by Diebold and 
Rudebusch (1996) for  a  one-factor  dynamic  model with regime switching 
had  the following form: 
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where p(s,) is specified as a  two-state  first-order  Markov-switching process; 
the  changes in observed  variable Ayil = (A Y,, - A Y) and  unobserved  com- 
ponent Ac, are  as deviations  from  the  long-run  mean  of  coincident  eco- 
nomic  variables, or the  (demeaned)  long-run  growth  of  the cyclical 
component. Expressing the data in deviations  from  means helps to solve 
the  problem of over-parameterization  of  the  observed  variables.  One  also 
needs to set o2 = 1 for identification. While the above  framework was pro- 
posed by Diebold and  Rudebush, they did not actually  estimate  it.  The 
implementation was taken by Chauvet (1998), Kim and Yo0 (1995) and 
Kim  and Nelson (1 998) for business cycle analysis. 

The specification (4.1) integrates two features of the business cycles: co- 
movement and  asymmetry.  This model  collapses to a pure  dynamic  factor 
model  formulated by Stock  and  Watson (1991) when no  Markov switching 
is permitted.  The empirical test of asymmetry  of  business cycles for a uni- 
variate  Markov-switching  model, using the classical likelihood ratio  testing 
approach, has generally produced mixed results for the U.S. data. For 
instance,  neither  Hansen (1992) nor  Garcia (1998) reject the null hypothesis 
of no  Markov switching in quarterly real output. However,  Diebold and 
Rudebusch (1996) found  strong evidence of Markov switching in a  dynamic 
factor with a regime-switching model  for  the  composite index of coincident 
economic  indicators  published by the Department  of  Commerce. Several 
researchers  have  conjectured that a  multivariate  framework  should  provide 
more  reliable and consistent test results than  a  univariate  framework if the 
dynamic  factor model is successful in capturing  the  co-movement  across 
indicators.  Variations on the basic setup  of  the  one-factor model are possi- 
ble. For instance,  Kim and  Murray (2001). who  incorporated  two types of 
asymmetry in a  dynamic  factor  model with regime switching  for  estimating 
to allow  high-growth recovery phase  during which economy  partially  reverts 
to its  previous  peaks. 

4.1.1 One-factor dynamic  model  with Markov regime switching 
with  time-varing transitional probabilities 

Kim  and Yo0 (1995) have used an extended  multivariate  Markov switch- 
ing factor model of Diebold  and  Rudebusch (1996) that  permits  the  tran- 
sitional  probabilities to vary  over time. The use of this type of model is 
motivated by a  desire to achieve a high degree of correlation between the 
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NBER business cycle dates  and  the estimated  probabilities of the  state  for 
the  purposes of constructing  a new index of coincident  indicator  for 
monthly  data.  Their use of an extended  model is consistent  with  some 
earlier  results  obtained by Filardo (1994) and  Filardo et al. (1998), who 
argued  that  the use of a Markov switching  model with fixed transitional 
probabilities is not  as successful for noisy monthly data  as it has been for 
quarterly  data. 

4.2 The Two-Factor Dynamic Model  with Regime 
Switching 

In some  multivariate  modeling  situations, it would be beneficial to consider 
two  common  features  instead of one  common  feature  to characterize  the 
dynamics,  producing  a  two-factor  dynamic  model with regime switching  for 
business cycle analysis. For example, for a  set of three time series such as log 
of output. log of fixed investment, and log of consumption  taken  together, it 
is not difficult to consider the possibility of the presence of both  common 
stochastic  trend  and  common cycle. Each of the  three  time series is indivi- 
dually  integrated  but  can be combined with each of the  other  two to form  a 
linear  combination  that is stationary.  For instance,  the common  stochastic 
trend  would be the  productivity  growth  shock  in  the  one-sector  model of 
capital  accumulation  developed by King  et  al. (1988), where output is pro- 
duced by two  factors,  capital and labor. and is subject to  an exogenous 
growth  in  labor-augmented  technology.  Kim and Piger (1999), building 
on  the  work by Cochrane (1994) and  the neoclassical growth  model by 
King  et  al., identified one  common  stochastic  trend of consumption. 
Furthermore, they specified an empirical  dynamic  two-factor  model with 
a regime-switching model (and a  second type of asymmetry)  in which loga- 
rithm of output  and logarithm of investment are influenced by a common 
stochastic  trend and a  common cycle shock.  The  common  stochastic trend 
and  common cycle are modeled as two dynamic fk tors  plus an idiosyncratic 
shock  affecting  the log of output  and  the log of  investment. The  logarithm 
of consumption is influenced by the  common  stochastic  trend only in their 
two-factor  dynamic  model. While they go on  to consider  the possibility of 
two types of  asymmetry  (the  Hamilton type and  the  Friedman  type), a 
simpler version of  their  model  might allow for one type of asymmetry or 
regime switching  only. The focus of their  paper is to test the  marginal 
significance of each type of  asymmetry,  and they find support for  the 
Friedman  type of asymmetry.  However, it would be interesting to assess 
whether an improvement  either  in  the  power of the test for  asymmetry or in 
the  correspondence of dating  the  turning  points of cycle performance of the 
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two-factor  dynamic  model  with  asymmetry is obtained versus the  Hamilton 
model. 

4.3 Other Multivariate Applications 

Below we provide  a  partial list of studies  that have used a  multivariate  setup 
for  the  Markov-switching  model in econometric  analysis.  Phillips (1991) 
used a  bivariate  Markov-switching  model  to  analyzing  the  transmission 
mechanism of business cycles across two countries.  The linkage between 
stock  returns  and  output was studied by Hamilton  and Lin (1996), using 
a bivariate  Markov-switching  model. Engel and  Hamilton (1990) used inter- 
est rates  and exchange  rates to test a  hypothesis about  the public’s behavior 
to policy changes on inflation.  Ruge-Murcia (1992) analyzed  three  major 
attempts of the  government in Brazil during 1986, 1987, and 1989, using a 
setup  similar  to  that of Engel and  Hamilton.  Hamilton  and Parez-Quinos 
(1996) jointly  modeled  the index of leading  indications with the real GNP, 
and Krolzig and Sensier (2000) used a  disaggregated approach  for their 
analysis of the  business cycles in UK manufacturing. 

5. CONCLUDING REMARKS 

In  this  paper we have  provided  a selective interpretive  survey of the  econo- 
metrics of asymmetry  of  the type focused on by Hamilton.  The univariate 
Markov-switching  model  of  Hamilton (1989), and its  extensions  to  a  multi- 
variate  setting, to either  a  dynamic  one-factor  structure with regime switch- 
ing or a  dynamic  two-factor  structure with regime switching.  have  the 
potential  of  forming  a  progressive  research  program of the  modern business 
cycle. The univariate  Markov-switching  model focuses only 011 the  asymme- 
try  feature of economic  fluctuations.  The  dynamic  one-factor,  Markov- 
switching  model  allows  jointly  for common cycles (or co-movement) in 
variables and  asymmetry in economic  fluctuations.  The  dynamic  two-factor. 
Markov-switching  model  accommodates common  stochastic trends,  com- 
mon cycles, and  asymmetry features in variables. The last specification may 
be interpreted  as  a  prototype model that  attempts  to  combine features of 
movements in trends of variables used in economic  growth  models with 
common cycles and symmetry  features of their cyclical attributes. 

The idea of using Markov-switching  models in econometrics was first 
introduced by Goldfeld and  Quandt (1973)  for serially uncorrected data. 
Hamilton (1989, 1990, 1994) used this  concept for serially uncorrelated  data 
by modeling  booms and recessions as regime switches in the  growth  rate of 
the output  according  to  the  past history of the  dynamic system but  treated 
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as  an unobservable  (latent or imbedded or hidden)  variable.  Also,  the  latent 
state is modeled as a  finite-dimensional process which is inferred  from  the 
observations of the  variable up  to time t .  This  model is often  regarded to be 
more  appropriate  for business-cycles research than the  “threshold”  models 
of Tong (1983). Potter (1995), among  others.  This  model  can  identify  the 
NBER business cycles dates nonjudgmentally as  compared to the  judgmen- 
tal method used by the classical researchers at the  NBER.  The  Markov 
switching approach  has  found  other  applications  that  are  not covered in 
this chapter. A  partial list of such  omitted  topics is provided below for 
completeness. 

The basic approach of Markov switching  has been found to be useful i n  
modeling  financial  variables. The parallel  developments of regime switching 
in finance are extensive and reviewing this literature  requires  a  separate 
paper.  The question of how  economic  rational-economic  agents  identify 
and respond to  major changes in regimes brought  about by deliberate  eco- 
nomic policy to bring down, say,  inflation  has  also been studied using the 
Markov-switching  model.  Hamilton (1988) developed some  technical  tools 
for  studying this type of question,  and  illustrated  their use in the  context of 
the term structure of interest  rates during  the  monetary experiment of 1979. 
A sizeable literature followed on this topic, which is surveyed by Hamilton 
(1995). Finally,  the  asymmetry of the  seasonal cycle has been another  area 
of interest  to  economists.  Two recent contributions in this  area are by 
Ghysels ( 1994) and  Frances et a]. (1997). 
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cross-validation, 12 1 
ratio, 219 
ratio test. see Test 

ratio test statistic. 122.521 

invariant  estimation.  63 
Bayes estimator, 67 
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"estimation. 190 
MIMSULE, 494,497 
Minimax 

estimation. 27 
linear  estimation, 30 
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Hamilton, 694 
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Kalman filter, 495 
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multinomial choice, 115-143 
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[Model] 
volatility,  443 
volatility-switching GARCH (VS- 

zero-inflated component-mix, 538 
GARCH). 444 

Modeling volatility. 443467 
Moment  generating  function, 5 15 
Moving-average lag polynomial, 404 
Moving-average process, 401 
Multinomial 

choice probabilities, 119 
probit  model, 134 

binomial choice, 130 
multinomial choice, 133 

Multivariate 

Multivariate  models of asymmetry, 
698 

Multivariate 
t-distribution, 307 
t-error, 305-326 
T,4, sampling  distribution, 362 

Near  boundary  problem. 257 
Negative exponential  distribution, see 

Distribution 
Failure time, 513 
Newton-Raphson  method, 560 
Nested sampling,  99 
Neyman-Pearson  lemma, 178 

generalized, 187 
Neyman’s  smooth  test, see Test 
n-hyperboloid, 180 
Noncausality 

h-step, 373 
multi-step, 397 
test, 372 

Non-dummy  exogenous  variable, 525 
Non-exponential family,  13 
Nonlinear  programming, 353 
Nonparametric 

estimation  technique, 159 
kernel  estimator, see Kernel 

estimator 
Non-response, 85,97 
Non-sampling  error, 87 
Non-stationary, 375 

Objective function, 20 
OLS estimator, see Estimator 
Optimal  estimating  function, 348 
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Orthogonal  polynomials, 187 

and  Neyman’s  smooth test,  203 

Panel  conditioning,  84 
Panel data, 492,553,591 
Parametric 

bootstrap  scheme, 266 
fixed effects (FE) estimators, see 

regression  model. see Model 
Pearson’s  goodness  of  fit, 180 

Pearson’s  P(, 182 
Pfefferman’s  matrix  theorem,  503 
Physical  quality  of life index,  610 
Pitman  local  alternative, 255 
Polygamma  function, 5 17 
Polynomials 

Charlier  Type B, 203 
Fourier series,  204 
Laguerre, 203 
Legendre,  178,203 
orthogonal, 204 
truncated  Hermite,  203 

analysis,  424 
conditional  distributions,  23 
predictive  distribution, 220 
predictive  p-value,  219 
odds  ratio, 677 
risk,  431,432 

Estimators 

Posterior 

Powell  algorithm, 407 
Power 

function,  178,192,194 
hypersurface, 200 
non-monotonicity, 256 

in cross-section  regression,  491 
in time  series  regression, 491 

Preliminary-test  estimation, 287-304 
Preliminary-test  estimator, see 

Prior 

Predictions 

Estimator 

conditionally  specified, see 
Conditionally  specified 

conjugate, 299 
diffuse, 299 

Probability 
lower  tail, 188 

[Probability] 

Probability  integral  transform, 
upper  tail, 188 

178,179 
inverse  normal, 207 

Probit  model, see Model 
Probit  probability  model, see Model 
Projector, 47 

oblique, 49 
orthogonal, 47 

Proxy  variable,  494 
Pseudo-density  function,  206 
Pythagoras‘  theorem, 492 

Quadratic  form,  23 1-250 
Quasi  likelihood  function,  554 
Quasi-maximum  likelihood  estimator 

Quasi-Newton  algorithm. 354 
Quasi  score  function, see Score 

(QMLE), see Estimator 

function 

Randomized  response  model, see 

Raleigh’s  inequality, 33 
Rao-Blackwell  theorem, 524 
Rao-Blackwell-Lehmann-Scheff 

theorem, 59 
Rao’s  score, 195 

statistic, 196 
Rational  polynomial,  404 
Recursive  estimates.  444 
Reflected  normal loss, 287-304 

Model 

risk of PTE, 292 
risk  of RMLE, 291 
risk of UMLE, 291 

analysis, 1 17 
combined  parametric  and 

cross-section, 491 
random  coefficients, 49 1 
stochastic  coefficients, 49 1-5  12 
time-series, 491 

Regression 

nonparametric, 159-176 

Regression  model, see Model 
Regression  function, 159 

multivariate, 147 
nonparametric, 146 

Risk-unbiasedness, 58 
Robust  t-ratios, 451 
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Sample surveys across  time, 77-96 
Schannon  entropy  functional, 405 
Schwartz’s  Bayesian criterion, 384 
Score  function, 199,218,554 

quasi, 554,559 
Score vector. 196 
Seam,  85 
Semiparametric. 116 

Sensitivity 
panel  data  estimation, 591-608 

for  dependence, 280 
regressor, 110 
response, 109 
of  t-statistic, 277-286 

Sequential testing  strategies, 377 
Simultaneous-endogenous, 347 
Size-power  curves, 384 
Sklar’s, theorem, 546 
Smooth 

alternatives, 184 
densities. 178 
tests, see Tests 

tests in survival  analysis, 213 
Socioeconomic  indicators, 609-641 
Specification 

latent  variable, see Latent  variable 
multivariate  multinomial, 129 
ordered  probit, 129 
univariate  binomial, 126 

Squared generalized distance, 267 
Stationary  stochastic process, 403 
Stein-rule estimation, 327-346 
Stein-rule  estimator, see Estimator 
Sterling’s approximation, 522 
Stretching  factor. 34 
Stochastic coefficients regression, see 

Regression 
Stochastic volatility model, see Model 
Structural  auction  model, see Model 
Bayesian  inference, 668 

likelihood  specification, 670 
prior specification, 674 
testing,  664 

Bayesian estimation, 584 
maximum likelihood estimation, 

model, see Model 

SUR 

584 

[SUR1 
model  with  integrated regressors, 

random walks, 474 
two-stage  estimation. 579 

cross  sectional, 79 
data  across time, 83 
data  quality,  84 
design across time,  78 
panel, 79 
repeated, 79 
rotating panel. 80 
split  panel,  82,  84 
supplemental  panel,  82,  84 

analysis, 2  13 
function, 146,214 
time  distribution, 214 

465486 

Survey 

Survival 

Taylor series expansion, 192 
Telescoping, 85 
Test 

bootstrap  squared generalized 
distance, 265 

Cramer-von Mises,  205 
data-driven  smooth, 305 
goodness of fit, 177 
index  specification,  123 
Kolmogorov-Smirnov, 205 
Lagrange  multiplier, 251 
likelihood ratio, 251,520 
local  biasedness,  252 
locally most  mean  powerful 

locally most  powerful  symmetric, 

locally most  powerful  unbiased. 190 
locally optimal, 195 
misspecification, 164 
model specification. 122 
Neyman’s  smooth, 177-230 
Null  Wald, 260 
optimal, 178 
orthogonality, 122,134 
smooth, 190 
smooth type. 196 
uniformly  most  powerful, 178 
Wald, 25 1-275 

unbiased, 201 

187,190 
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Tobit  model, see Model 
Tracing,  86 
Tracking, see Tracing 
Transformation 

Bukley-Janes, 145 
censoring  unbiased, 146 
distribution  based  unbiased. 147 
KSV. 145 
Leurgans, 145 
local average, 145 
new  class, 145 

exponential, 334 
linear. 330 
nonlinear, 332 
quadratic, 332 

Trend 

Trended regressor, 327-346 
t-statistic. 277 
t-type  random  variable, 278 
Two-stage  minimax  linear  estimator, 

32 
Type-A critical region, 178,190 
Type-C 

critical region, 178 
non-regular  unbiased critical 

regular  unbiased critical  region. 
region, 192 

192,194 

[TYPe-Cl 
unbiased critical  region,  191,193 

Type-D  unbiased critical  region. 
195,200 

Type-E  test, 201 

U-estimable, 520 
Uniformly Lipschitz continuous, 150 

Vector  autoregressive  (VAR)  model, 
372 

trivariate. 372-398 
Vector  error  correction  model 

(VARCM), 375 
Volatility 

model, see model 
switching garch, 444 

time  varying, 443 

Wald test. see Test 
correcting  for local  biasedness. 262 
locally unbiased, 256 

Wald  statistic, 373, 375,377 
Wold representation, 416 

Young's  theorem, 554 
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