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Preface 

Many applied subjects, including economic statistics, deal with the collection of 
data, measurement of variables, and the statistical analysis of key relationships and 
hypotheses. The attempts to analyze economic data go back to the late eighteenth 
century, when the first examinations of the wages of the poor were done in the United 
Kingdom, followed by the the mid-nineteenth century research by Engle on food 
expenditure and income (or total expenditure). These investigations led to the early 
twentieth-century growth of empirical studies on demand, production, and cost func- 
tions, price determination, and macroeconomic models. During this period the sta- 
tistical theory was developed through the seminal works of Legendre, Gauss, and 
Pearson. Finally, the works of Fisher and Neyman and Pearson laid the foundations 
of modern statistical inference in the form of classical estimation theory and hypoth- 
esis testing. These developments in statistical theory, along with the growth of data 
collections and economic theory, generated a demand for more rigorous research in 
the metholodogy of economic data analysis and the establishment of the International 
Statistical Institute and the Econometric Society. 

The post-World War I1 period saw significant advances in statistical science, 
and the transformation of economic statistics into a broader subject: econometrics, 
which is the application of mathematical and statistical methods to the analysis of 
economic data. During the last four decades, significant works have appeared on 
econometric techniques of estimation and hypothesis testing, leading to the appli- 
cation of econometrics not only in economics but also in sociology, psychology, his- 
tory, political science, and medicine, among others. We also witnessed major de- 
velopments in the literature associated with the research at the interface between 
econometrics and statistics, especially in the areas of censored models, panel (lon- 
gitudinal) data models, the analysis of nonstationary time series, cointegration and 
volatility, and finite sample and asymptotic theories, among others. These common 
grounds are of considerable importance for researchers, practitioners, and students 
of both of these disciplines and are of direct interest to those working in other areas 
of applied statistics. 

... 
111 
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The most important objective of this volume is to cover the developments in 
both applied economics statistics and the econometric techniques of estimation and 
hypothesis testing. It is in this respect that our book differs from other publications 
in which the emphasis is on econometric methodology. With the above purpose in 
view, we deal with the material that is of direct interest to researchers, practitioners, 
and graduate students in many applied fields, especially economics and statistics. It 
covers reasonably comprehensive and up-to-date reviews of developments in various 
aspects of economic statistics and econometrics, and also contains papers with new 
results and scopes for future research. The objective behind all this was to produce a 
handbook that could be used by professionals in economics, sociology, econometrics, 
and statistics, and by teachers of graduate courses. 

The Handbook consists of eighteen chapters that can be broadly classified into 
the following three groups: 

1. Applied Economic Statistics 
2. 
3. Model Specification and Simulation 

Chapters 1-5 belong to Part 1 and they are applied papers dealing with impor- 
tant statistical issues in development economics and microeconomics. The chapter 
by Davies, Green, and Paarsch reviews the literature on using economics statistics, 
such as income inequality and other aggregate poverty indices, and they make a 
strong case for the use of disaggregated dominance criteria to make social welfare 
comparisons. They also discuss some statistical issues related to parametric and non- 
parametric inference concerning Lorenz Curves, with reference to stochastic dom- 
inance. In contrast, Kramer’s chapter develops two ways of looking at inequality 
measurement: the first, a preordering based on majorization defined over income 
vectors, and the second, an axiomatic-based approach in which axioms are defined 
over inequality measurements. The chapter also includes the empirical application 
of inequality measurement primarily focused on dealing with the fact that data is mu- 
ally grouped by quantile. Ravallion’s chapter addresses an important issue of persis- 
tence in the geography of poverty. It proposes a methodology for empirically testing 
the validity of two competing explanations of poverty: an individualistic model and 
a geographic model. His proposed approach contributes to our understanding of the 
determinants of poverty and provides information for policymakers regarding which 
policy interventions are likely to be most effective for its alleviation. The chapter by 
Deolalikar explores another dimension of the poverty issue in developing countries, 
that is, whether decreased spending on government health programs will reduce the 
demand for public health services by the poor and hence will adversely affect the 
health status of the poor. This question is analyzed using data from research con- 
ducted in Indonesia. The chapter also attempts to address the shortcomings of the 
existing literature. Finally, the chapter on mobility by Maasoumi reviews two differ- 
ent, but related, approaches to testing for income mobility and shows that the two 

Econometric Methodology and Data Issues 
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ways converge to the same ordering of states. The relationship between this ordering 
and the partial ordering given by Lorenz dominance is shown. 

Chapters 6-10 and 15-17 deal with econometric methodologies related to dif- 
ferent kinds of data used in empirical research. Chapter 6 by Russell, Breunig and 
Chiu is perhaps the first comprehensive treatment of the problem of aggregation as 
it relates to empirical estimation of aggregate relationships. It is well known that the 
analysis of individual behavior based on aggregate data is justified if the estimated 
aggregate relationships can be consistently disaggregated to the individual relation- 
ships and vice versa. Most empirical studies have ignored this problem; those that 
have not are reviewed in this chapter. Anselin and Bera’s chapter details another 
data problem ignored in the econometric analysis of regression model: the problem 
of spatial autocorrelation and the correlation in cross-sectional data. This chapter 
reviews the methodological issues related to the treatment of spatial dependence in 
linear models. Another data issue often ignored in empirical development economics 
and labor economics is related to the fact that most of the survey data is based on 
complex sampling from a finite population, such as stratified, cluster, and systematic 
sampling. However, the econometric analysis is carried out under the assumption of 
random sampling from an infinite population. The chapter by Ullah and Breunig 
reviews the literature on complex sampling and indicates that the effect of misspec- 
ifying or ignoring true sampling schemes on the econometric inference can be quite 
serious. 

Panel data is the multiple time series observations on the same set of cross- 
sectional survey units (e.g., households). Baltagi’s chapter reviews the extensive ex- 
isting literature on econometric inference in linear and nonlinear parametric panel 
data models. In a related chapter, Ullah and Roy develop the nonparametric kernel 
estimation of panel data models without assuming their functional forms. The chapter 
by Golan, Judge, and Miller proposes a maximum-entropy approach to the estimation 
of simultaneous equations models when the economic data is partially incomplete. 
In Chapter 15 Terasvirta looks into the modeling of time series data that exhibit non- 
linear relationships due to discrete or smooth transitions and to regimes’ switching. 
He proposes and develops a smooth transition regression analysis for such situations. 
Finally, the chapter by Franses surveys econometric issues concerning seasonality in 
economic time series data due to weather or other institutional factors. He discusses 
the statistical models that can describe forecasts of economic time series with sea- 
sonal variations encountered in macroeconomics, marketing and finance. 

Chapters 12 and 18 are related to the simulation procedures and 11, 13, and 
14 to the model and selection procedures in econometrics. The chapter by DeBene- 
dictis and Giles surveys the diagnostic tests for the model misspecifications that can 
have serious consequences on the sampling properties of both estimators and tests. 
In a related chapter, Hadi and Son look into diagnostic procedures for revealing 
outliers (influential observations) in the data which, if present, could also affect the 
estimators and tests. They also propose a methodology of estimating linear models 
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with outliers, which is an alternative to computer-intensive quantile estimation tech- 
niques used in practice. Next, the chapter by Dufour and Torrks systematically de- 
velops the general theory of union-intersection and sample split methods in various 
specification testing problems in econometrics. They apply their results for testing 
problems in the SURE model and a model with MA(1) errors. In contrast to the an- 
alytical approaches of specification testing, the chapter by Veal1 provides a survey 
of bootstrap simulation procedures that is especially useful in small samples. The 
book concludes with the chapter by Pagan, in which he debates about the calibra- 
tion methodology of estimation and specification analysis. Several thought-provoking 
questions are raised and discussed. 

In summary, this volume brings together survey material and new methodolog- 
ical results which are vitally important to modern developments in applied economic 
statistics and econometrics. The emphasis is on data problems, methodological is- 
sues, and inferential techniques that arise in practice in a wide range of situations 
that are frequently encountered by researchers in many related disciplines. Accord- 
ingly, the contents of the book should have wide appeal and application. We are 
very pleased with the end product and would like to thank all the authors for their 
contributions, and for their cooperation during the preparation of this volume. We 
are also most grateful to Benicia Chatman, University of California at Riverside, for 
the efficient assistance that she has provided, and to the editorial and production 
staff at Marcel Dekker, especially Maria Allegra and Lia Pelosi, for their patience, 
guidance, and expertise. 

Aman Ullah 
David E. A. Giles 



Contents 

Preface 
Contributors 

... 
LLL 

LX 

Part I Applied Economic Statistics 

I. 

2. 

3. 

4. 

5. 

Economic Statistics and Social Welfare Comparisons: A Review 
James B. Davies, David A. Green, and Harry J. Paarsch 

Measurement of Inequality 

Poor Areas 

Walter Krarner 

Martin Ravallion 

The Demand for Health Services in a Developing Country: 
The Role of Prices, Service Quality, and Reporting of Illnesses 

On Mobility 

Anil B. Deolalikar 

Esfandiar Maasoumi 

Part 2 Econometric Methodology and Data Issues 

6. Aggregation and Econometric Analysis of Demand and Supply 

Spatial Dependence in Linear Regression Models 
with an Introduction to Spatial Econometrics 

R. Robert Russell, Robert I! Breunig, and Chia-Hui Chiu 

7. 

Luc Anselin and Anil K. Bera 

8. Panel Data Methods 
Badi H. Baltagi 

I 

39 

63 

93 

I19 

I77 

23 7 

29 I 

vii 



CONTENTS viii 

9. 

10. 

I I. 

12. 

13. 

14. 

Econometric Analysis in Complex Surveys 

Information Recovery in Simultaneous-Equations’ 
Statistical Models 

Amos Golan, George Judge, and Douglas Miller 

Aman Ullah and Robert I! Breunig 

Diagnostic Testing in Econometrics: Variable Addition, RESET, 
and Fourier Approximations 

Linda DeBenedictis and David E. A. Giles 

Applications of the Bootstrap in Econometrics and 
Economic Statistics 

Michael R. Veal1 

Detection of Unusual Observations in Regression and 
Multivariate Data 

Ali S. Hadi and Mun S. Son 

Union-Intersection and Sample-Split Methods in Econometrics 
with Applications to  MA and SURE Models 

Jean-Marie Dufour and Olivier Torrb 

Part 3 Model Specification and Simulation 

I 5. Modeling Economic Relationships with Smooth Transition 
Regressions 

Timo Terasvirta 

16. Modeling Seasonality in Economic Time Series 

Nonparametric and Semiparametric Econometrics of Panel Data 

Philip Ham Frames 

I 7. 
Aman Ullah and Nilanjana Roy 

18. On Calibration 
Adrian Rodney Pagan 

Index 

325 

365 

383 

419 

44 I 

465 

507 

553 

579 

605 

61 9 



Contributors 

Luc Anselin, Ph.D. 
ment of Economics, West Virginia University, Morgantown, West Virginia 

Research Professor, Regional Research Institute and Depart- 

Badi H. Baltagi, Ph.D. 
College Station, Texas 

Professor, Department of Economics, Texas A&M University, 

Anil K. Bera, Ph.D. 
Champaign, Illinois 

Professor, Department of Economics, University of Illinois, 

Robert V. Breunig 
ifornia at Riverside, Riverside, California 

Graduate Student, Department of Economics, University of Cal- 

Chia-Hui Chiu 
fornia at Riverside, Riverside, California 

Graduate Student, Department of Economics, University of Cali- 

James B. Davies, Ph.D. 
of Western Ontario, London, Ontario, Canada 

Professor and Chair, Department of Economics, University 

Linda F. DeBenedictis, M.A. 
Ministry of Human Resources, Victoria, British Columbia, Canada 

Senior Policy Analyst, Policy and Research Division, 

Anil B. Deolalikar, Ph.D. 
ington, Seattle, Washington 

Professor, Department of Economics, University of Wash- 

Jean-Marie Dufour, Ph.D. 
ences, University of Montreal, Montreal, Quebec, Canada 

Professor, C.R.D.E. and Department of Economic Sci- 

Philip Hans Franses, Ph.D. 
mus University Rotterdam, Rotterdam, The Netherlands 

Associate Professor, Department of Econometrics, Eras- 

ix 



x CONTRIBUTORS 

David E. A. Giles, Ph.D. 
ria, Victoria, British Columbia, Canada 

Professor, Department of Economics, University of Victo- 

Amos Golan, Ph.D. Visiting Associate Professor, Department of Agricultural and 
Resource Economics, University of California at Berkeley, Berkeley, California, and 
Department of Economics, American University, Washington, D.C. 

David A. Green, Ph.D. 
Vancouver, British Columbia, Canada 

Department of Economics, University of British Columbia, 

Ali S. Hadi, Ph.D. 
New York 

Professor, Department of Statistics, Cornell University, Ithaca, 

George Judge, Ph.D. 
ifornia 

Professor, University of California at Berkeley, Berkeley, Cal- 

Walter Kramer, Dr. rer. pol. 
Dortmund, Dortmund, Germany 

Professor, Department of Statistics, University of 

Esfandiar Maasoumi, Ph.D. (FRS) 
Methodist University, Dallas, Texas 

Professor, Department of Economics, Southern 

Douglas Miller, Ph.D. 
University, Ames, Iowa 

Assistant Professor, Department of Economics, Iowa State 

Harry J. Paarsch, Ph.D. 
of Iowa, Iowa City, Iowa 

Associate Professor, Department of Economics, University 

Adrian Rodney Pagan, Ph.D. 
tional University, Canberra, Australia 

Professor, Economics Program, The Australian Na- 

Martin Ravallion, Ph.D. 
Bank, Washington, D.C. 

Lead Economist, Development Research Group, World 

Nilanjana Roy, Ph.D. 
California at Riverside, Riverside, California 

Assistant Professor, Department of Economics, University of 

R. Robert Russell, Ph.D. 
forni a at Riverside, Riverside, C a1 i forn i a 

Professor, Department of Economics, University of Cali- 

Mun S. Son, Ph.D. 
University of Vermont, Burlington, Vermont 

Associate Professor, Department of Mathematics and Statistics, 



CONTRIBUTORS xi 

Timo Teriisvirta, Ph.D. 
School of Economics, Stockholm, Sweden 

Professor, Department of Economic Statistics, Stockholm 

Olivier Torres, Ph.D. 
kconomiques et Sociales, Universitk de Lille, Villeneuve d’Ascq, France 

Maitre de Conferences, U.F.R. MathCmatiques, Sciences 

Aman Ullah, Ph.D. 
at Riverside, Riverside, California 

Professor, Department of Economics, University of California 

Michael R. Veall, Ph.D. 
Hamilton, Ontario, Canada 

Professor, Department of Economics, McMaster University, 



This page intentionally left blank 



HANDBOOK OF APPLIED 
ECONOMIC STATISTICS 



This page intentionally left blank 



Economic Statistics and 
Social Welfare Comparisons 
A Review 

lames B. Davies 
University of Western Ontario, London, Ontario, Canada 

David A. Green 
University of British Columbia, Vancouver; 5rItish Columbia, Canada 

Harry J. Paarsch 
University oflowa, Iowa Ci& Iowa 

1. INTRODUCTION 

We present a selective survey of the literature concerned with using economic statis- 
tics to make social welfare comparisons. First, we define a number of different sum- 
mary income inequality measures and social welfare indices as well as functional 
summary measures associated with disaggregated dominance criteria. Next, we de- 
scribe the theoretical basis for the use of such measures. Finally, we outline how data 
from conventional sample surveys can be used to estimate the functionals that can 
be interpreted in terms of social welfare and compared in decision-theoretic terms 
with other functionals. 

While we define and discuss some of the properties of popular summary in- 
equality indices, our main focus is on functional summary measures associated with 
disaggregated dominance criteria. In particular, we examine the estimation and com- 
parison of Lorenz and generalized Lorenz curves as well as indicators of third-degree 
stochastic dominance.* In line with a growing body of opinion, we believe that the 

*The estimation of summary indices is discussed, for example, by Cowell (1989); Cowell and Mehta 

I 
(1982); and Cowell and Victoria-Feser (1996). 
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partial-ordering approach using disaggregated dominance criteria is more attrac- 
tive than the complete-ordering approach using summary indices, since the former 
requires only widely appealing restrictions on social preferences, whereas the lat- 
ter requires the (explicit or implicit) choice of a specific form for the social welfare 
function. 

The issues in making applied welfare comparisons are well reviewed in sev- 
eral places; see, for example, Atkinson (1975) and Cowell (1979). One of the most 
important of these issues concerns the definition of income. Applied researchers 
face choices between money income versus broader definitions including imputa- 
tions; before- versus after-tax income; measuring over a short versus a long horizon; 
and even the choice between income and alternative measures of welfare, such as 
consumption. Other important conceptual issues concern the choice of unit (individ- 
ual? family? household?) and whether one should examine total income, income per 
capita, or perhaps income per adult equivalent. In what follows, we assume that an 
appropriate definition of income has already been chosen. 

Practical difficulties in making welfare comparisons center around measure- 
ment and related problems. Official data, for example from tax records, omit income 
components, are contaminated by avoidance and evasion, and sometimes do not al- 
low the researcher to use the desired family unit. Survey data are affected by dif- 
ferential response according to income and other characteristics, and misreporting. 
Also, both of these sources tend to neglect in-kind income. These problems should be 
borne in mind by applied researchers working with the techniques discussed here. 

In Section I1 we define the bulk of the notation used and describe different 
summary inequality indices as well as functional summary measures which are often 
used to relate economic statistics to social welfare comparisons. Section I11 provides 
an axiomatic foundation for many of the measures listed in Section 11. We show how 
data from conventional sample surveys can be used to estimate the functionals of in- 
terest in Section IV, and in Section V we discuss how observed covariates can be in- 
troduced into this framework. We summarize and present our conclusions in Section 
VI. Section VII, an appendix, describes how to access several programs designed 
to carry out the analysis described here. These programs reside in the Economet- 
rics Laboratory Software Archive (ELSA) at the University of California, Berkeley; 
this archive can be accessed easily by using a number of different browsers (e.g., 
Netscape Navigator) via the Internet. 

II. DIFFERENT ECONOMIC MEASURES OF 
SOCIAL WELFARE 

In this section we set out notation and define several scalar summary indices of eco- 
nomic inequality and social welfare as well as two functional summary measures 
associated with disaggregated dominance criteria. We confine ourselves to the posi- 
tive evaluation of the behavior of the various measures. The normative properties 



ECONOMIC STATISTICS AND WELFARE COMPARISONS 3 

of the measures are discussed in Section 111. Nonetheless, it is useful from the out- 
set to note some of the motivation for the various indices. In this section we pro- 
vide a heuristic discussion, an approach that mimics how the field has developed 
historically. 

Economists have always agreed that increases in everyone’s income raise wel- 
fare, so there is natural interest in measures of central location (the mean, the me- 
dian), which would reflect such changes. But there has also always been a view that 
increases in relative inequality make society worse off. The latter view has some- 
times been based on, but is logically separate from, utilitarianism. Given the interest 
in inequality, it was natural that economists would like to measure it. Historically, 
economists have proposed a number of essentially ad hoc methods of measuring in- 
equality, and found that the proposed indices were not always consistent in their 
rankings. This gave rise to an interest in and the systematic study of the normative 
foundations of inequality measurement. Some of the results of that study are surveyed 
in Section 111. 

One central concern in empirical studies of inequality has been the ability to 
allocate overall inequality for a population to inequality between and within spe- 
cific subpopulations. Thus, for example, one might like to know how much of the 
overall income inequality in a country is due to inequality for females, how much is 
due to inequality for males, and how much is due to inequality between males and fe- 
males. One reason for the popularity of particular scalar measures of inequality (e.g., 
the variance of the logarithm of income) is that they are additively decomposable 
into these various between- and within-group effects. The decompositions are often 
created by dividing the population into subpopulations and applying the inequality 
measure to each of the subpopulations (to get within-group inequality measures) and 
to the “sample” consisting of the means of all the subpopulations (to get a between- 
group measure). The more subpopulations one wants to examine, the more unwieldy 
this becomes. Furthermore, in some instances, one is interested in answering the 
question, how would inequality change if the proportion of the population who are 
unionized increases, holding constant all other worker characteristics? The decom- 
positions allowed in the standard inequality measures do not provide a clear answer 
to this question. This point will be raised again in Section IV. In the following sec- 
tion, the reader should keep in mind that indices like the generalized entropy family 
of indices possess the decomposability property. For a more detailed discussion of 
the decompositions of various indices, see Shorrocks (1980, 1982, 1984). 

We consider a population each member of which has nonnegative income Y 
distributed according to the probability density (or mass) function f (y )  with corre- 
sponding cumulative distribution function F ( y ) .  

A. Location Measures 

Under some conditions, economists and others attempt comparisons of economic 
welfare which neglect how income is distributed. It has been argued, for example 
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by Harberger (1971), that gains and losses should generally be summed in an un- 
weighted fashion in applied welfare economics. This procedure may identify poten- 
tial Pareto improvements; i.e., situations where gainers could hypothetically com- 
pensate losers. Furthermore, it is possible to conceive of changes that would affect 
all individuals' incomes uniformly, so that distributional changes would be absent. 
For these reasons, measures of central location are a natural starting point in any 
discussion of economic measurement of social welfare. 

I .  Per Capita Income 

Perhaps the most common measure of welfare is aggregate or per capital income. 
Focusing on the latter, we have mean income 

El. = WI = jo rf(r) dY 

in the continuous case or 

in the discrete case.* Such a measure is easy to calculate and has considerable intu- 
itive appeal, but it is sensitive to outliers in the tails of the distributions. For example, 
an allocation in which 99 people each have an income of $1 per annum, while one 
person has an income of $999,901 would be considered to be equivalent in welfare 
terms to an allocation in which each person has $10,000 per annum. Researchers 
are frequently attracted to alternative measures that are relatively insensitive to be- 
havior in the tails of the distribution. One measure of location that is robust to tail 
behavior is the median. 

2. Median Income 

The median is defined as that point at which half of the population is above and the 
other half is below. In terms of the probability density and cumulative distribution 
functions, the median solves the following: 

Alternatively, 

t(0.5) = F-' (0.5) 

*Hereafter, without loss of generality, we shall focus almost exclusively on the continuous case. 
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where F - ' ( - )  is the inverse function of the cumulative distribution function. Clearly, 
other quantiles could also be entertained: for example, the lower and upper quartiles, 
which solve 

c(0.25) = F-'(0.25) and c(0.75) = F ' ( 0 . 7 5 )  

respectively. 
Using the example considered above, the median of the first allocation would 

be $1, while that of the second would be $10,000. Clearly, tail behavior (or dis- 
persion) is important in ranking allocations. Accordingly, a natural progression is 
to consider measures of the scaZe of the distributions being considered, such as the 
variance. However, alternative income distributions differ in more than just scale. 
They also differ in shape, and both scale and shape can affect the degree of inequality 
which observers perceive in a distribution. This leads to an array of different possi- 
ble inequality measures, each member of which is an acceptable measure of scale, 
but each of which reacts differently to shape. 

B. 

Consider two alternative income distributions which are related in the following way: 

Scale Measures and Inequality Indices 

If a # 0 then these distributions differ in location, and if b # 1 they differ in scale. 
Any index which rises monotonically in b, but which is invariant to a ,  is a measure 
of the scale of a distribution. Standard examples include the variance and standard 
deviation, but a wide variety of other scale measures is possible. 

How do measures of scale relate to measures of inequality? Some scale mea- 
sures, such as the standard deviation, make sensible inequality measures under 
some circumstances. Other scale measures, such as the interquartile range discussed 
here, are woefully inadequate inequality measures. The reason is that real-world 
distributions differ in ways other than simple differences in location and scale. An 
adequate inequality measure must, at a minimum, increase when income is trans- 
ferred from any poorer person to any richer person. Not all scale measures satisfy this 
criterion. Moreover, there is considerable interest in relative inequality measures, 
which are defined on incomes normalized by the mean, and are therefore indepen- 
dent of scale. 

In this subsection we first look at three types of measures of scale: quantile- 
based measures, the variance, and the standard deviation. We then go on to a few 
popular relative inequality indices: the coefficient of variation, the variance of log- 
arithms, and the Gini coefficient. Holding mean income constant, these indices are 
all inverse measures of social welfare. Finally, we examine Atkinson's index and the 
generalized entropy family of indices. 
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I .  Quantile-Based Measures of Income 

Quantile differences or quantile ratios have been employed to provide rough-and- 
ready descriptions of the degree of income dispersion. Attention is often paid, for 
example, to the interquartile range ((0.75)-((0.25) or the 90-10 percentile ratio 
c(0.90)/c(0.10). While such differences or ratios respond to some changes in scale, 
they may remain invariant in the face of major changes in the distribution of income. 
Each is completely insensitive, for example, to redistributions of income occurring 
exclusively in a wide, middle range of incomes. 

2. Variance of Income 

A standard measure of scale is the variance of Y ,  defined by 

An important characteristic of the variance, which carries through to the related 
measures like the standard deviation and the coefficient of variation, is that it is 
highly sensitive to the tails of the distribution. Given that distributions of income 
and related variables are typically skewed positively, in practice the sensitivity of 
these measures is generally greatest to the length of the upper tail. Another impor- 
tant property of the variance is that it is additively decomposable both in terms of 
income components and population subgroups; see Shorrocks (1980, 1982, 1984). 
The decomposability of the variance also carries through to convenient decomposi- 
tions of the standard deviation and the coefficient of variation. 

3. Standard Deviation of Income 

A drawback of the variance is that it is in the units squared of income. Another 
measure of scale, which has the same units as the mean, is the standard deviation, 
which is defined as 

a = G  

4. Coefficient of Variation of Income 

We now turn to some measures of relative inequality-i.e., to indices which are de- 
fined over income normalized by the mean. These measures are invariant to a partic- 
ular kind of change in scale, one where all incomes change equiproportionally. Such 
measures are, of course, also insensitive to the choice of units of measurement (e.g., 
dollars versus thousands of dollars). 

The first measure of relative inequality we define is the coefficient of variation 
t which is simply the standard deviation divided by the mean: 

0 
t = -  

w 
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Like the variance and the standard deviation, in comparison to other popular mea- 
sures, t is especially sensitive to changes in the tails of the distribution. 

5. 

An apparently attractive measure of income inequality, which is often employed, is 
the variance of the logarithm of Y .  One reason for the frequent use of this index 
may lie in the popularity of “log-earnings” or “log-income” regressions. R2 gives 
an immediate measure of the proportion of inequality explained by the regressors 
if the variance of the logarithm of Y is accepted as an appropriate inequality mea- 
sure, and inequality can be decomposed into components contributed by the various 
factors. 

In the case of the variance, and its related measures, we have seen that the 
use of a linear scale gives great weight to the right tail of the distribution. Apply- 
ing a logarithmic transformation reduces this effect.* Thus, introducing the transfor- 
mation 

Variance ofthe Logarithm of Income 

2 = log Y 

we define the variance of the logarithm of Y by 

00 

where 

is the average value of log Y.? Note that the variance of the logarithm of Y is inde- 
pendent of scale, as is the standard deviation of the logarithm of income ox, with 
which it may be used interchangeably.$ 

*In some cases, the transformation can actually go too far as is discussed in Section 111. 
?Here, we have used the fact that the prohatiilitv drnsity function of Z is 

d 
.fz(.) = .fw; = /(exp(z)) exp(2) 

y = exp(t) and - d y  = exp(2) 

since 

d 2  

$The coefficient of variation of the logarithm ofincwmr TZ is not used since 58 depends on scale and would 
fall, for example, with an equiproportionate increase in all incomes. Thus, changing from measurement 
in dollars to cents would cause TZ to fall. 
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6. Gini Coefficient 

Perhaps the most popular summary inequality measure is the Gini coefficient K .  

Several quite intuitive alternative interpretations of this index exist. We highlight 
two of them. The Gini coefficient has a well-known geometric interpretation related 
to the functional summary measure of relative inequality, the Lorenz curve, which is 
discussed in the next subsection. Here, we note another interpretation of the index, 
which may be defined as 

K = L!- 1” I” (U - v( f (U) f (U) du dv 
21-L 0 

In words, the Gini coefficient is one half the expected difference between the in- 
comes of two individuals drawn independently from the distribution, divided by the 
mean p. 

One virtue of writing K this way is that it draws attention to the contrasting 
weights that are placed on income differences in different portions of the distribution. 
The weight placed on the difference lu - 211 is relatively small in the tails of the 
distribution, where f ( u ) f ( v )  is small, but relatively large near the mode. This means 
that, in practice, K is dramatically more sensitive to changes in the middle of the 
income distribution than it is to changes in the tails. This contrasts sharply with the 
behavior of many other popular inequality indices which are most sensitive to either 
or both tails of the distribution. 

7. Atkinson’s Index 

Atkinson (1970) defined a useful and popular inequality index which is based on the 
family of additive social welfare functions (SWFs) of the form 

The parameter E governs the concavity, and therefore the degree of inequality aver- 
sion, shown by the function. Note also that for E equal to zero the function merely 
aggregates all incomes, and therefore ranks the same as the mean, given a constant 
population. 

Atkinson’s index @ is defined as 
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where ~ D E  is “equally distributed equivalent income”-the income such that if all 
individuals had income equal to then W would have the same value as the 
actual income distribution. With the SWF given by (l), this yields 

The parameter E plays a dual role. As it rises, inequality aversion increases, but, 
in addition, the degree of sensitivity to inequality at lower income levels also rises 
with E .  In the limit, as E goes to infinity, the index is overwhelmingly concerned with 
inequality at the bottom of the distribution. While the sensitivity of this index to 
inequality at different levels can be varied by changing E ,  it is always more sensitive 
to inequality that occurs lower in the distribution. 

8. 

An important class of inequality measures is the generalized entropy family. These 
measures are defined by 

Generalized Entropy Family of Indices 

p2 is defined as one half of the square of the coefficient of variation (t2/2). The first 
and second entropy measures of Theil (1967) are p1 and PO, respectively. Letting c 
equal 1 - E ,  one obtains 

1 - [ c ( c  - l ) p , :  + 1 ] ’ / C ,  c < 1, c # 0 { 1 - exp(-pcL c = o  
@E = 

Hence, for the particular form of Atkinson’s index given by some value of E ,  there is 
always a corresponding, ordinally equivalent, generalized entropy measure. 

All members of the generalized entropy family of inequality indices are based 
on some notion of the average distance between relative incomes. These indices do 
not take into account rank in the income distribution in performing this averaging, 
which makes them fundamentally different from the Gini coefficient, for which rank 
is very important. 

The attraction of the generalized entropy family is enhanced by the fact that 
it comprises all of the scale-independent inequality indices satisfying anonymity 
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and the strong principle of transfers which are also additively decomposable into in- 
equality within and between population subgroups; for more on this, see Shorrocks 
(1980). Furthermore, all indices which are decomposable (i.e., not necessarily addi- 
tively) must be some positive transformation of a member of the generalized entropy 
family; for more on this, see Shorrocks (1984). 

C. Disaggregated Summary Measures 

Each of the above measures summarizes the information contained in F ( y )  in a sin- 
gle number and, in the process, discards a great deal of information and can mask 
important features of the distribution. As an alternative, researchers have sought to 
implement disaggregated summary measures which provide more information con- 
cerning the shape of the distribution, but which are still convenient to use. We shall 
examine two.* 

I .  Lorenz Curve 

The Lorenz curve (LC) is the plot of the cumulative distribution function q on the 
abscissa (x-axis) versus the proportion of aggregate income held by the quantile c ( q )  
and below on the ordinate (y-axis). The qth ordinate of the LC is defined as 

Note that C(0) is zero, while C(1) is one. A graph of a representative LC for income 
is provided in Figure 1. The 45" line denotes the LC of perfect income equality. The 
further is the LC bowed from this 45" line, the more unequal is the distribution of 
income. The Gini coefficient K can also be defined as twice the area between the 4.5" 
line and the LC L(q). Thus, 

2. Generalized Lorenz Curve 

Like the coefficient of variation, the variance of logarithms, and the Gini coefficient, 
the LC is invariant to the mean. Thus, while it is the indicator of relative inequality 
par excellence, it does not provide a complete basis for making social welfare com- 
parisons. Shorrocks (1983) has shown, however, that a closely related indicator is a 

*Howes (forthcoming) provides an up-to-date and more technical discussion of other measures related to 
these. 
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LC 

0 1 
Q 

Figure I Example of Lorenz curve. 

valid social welfare measure. This indicator is the generalized Lorenz curve (GLC) 
which has ordinate 

and abscissa q as another functional summary measure. Note that G ( q )  equals L(q)  
times p. Thus, G(0) is zero, while G(1) equals the mean E[Y]. A graph of a repre- 
sentative GLC for income is provided in Figure 2. 

As discussed in the next section, when the LC for one distribution lies above 
that for another (a situation of LC dominance), then the distribution with the higher 
LC has unambiguously less relative inequality. A distribution with a dominating 
(higher) GLC, on the other hand, provides greater welfare according to all social 
welfare functions defined on and increasing in individual incomes and having ap- 
propriate concavity. 

D. Stochastic Dominance 

In some of the discussion we shall use stochastic dominance concepts. These were 
first defined in the risk-measurement literature, but it was soon found that they par- 
alleled concepts in inequality and social welfare measurement. We introduce here 
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Figure 2 Example of generalized Lorenz curve. 

the notions of first-, second-, and third-degree stochastic dominance for two random 
variables Y1 and Y2, each having the respective cumulative distribution functions 
F1 (y) and Fz(y) .  First-degree stochastic dominance holds in situations where one 
distribution provides a Pareto improvement compared to another. As discussed in 
the next section, second-degree stochastic dominance corresponds to GLC domi- 
nance. Finally, third-degree stochastic dominance may be important in the ranking 
of distributions whose LCs or GLCs intersect. 

I .  First-Degree Stochastic Dominance 

The random variable Yl is said to dominate the random variable Y2 stochastically in 
the first-degree sense (FSD) if 

and 

In words, strict FSD means that the cumulative distribution function of Yl is every- 
where to the right of that for Yz. 
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2. Second-Degree Stochastic Dominance 

The random variable Y1 is said to dominate the random variable Yz stochastically in 
the second-degree sense (SSD) if 

and 

l y [ F 2 ( u )  - F l ( u ) ]  du > 0 for some y 

Note that FSD implies SSD. If the means of Y1 and Y2 are equal (i.e., &[Y1] = &[Y2] = 
p), then Y1 SSD K2 implies that Y1 is more concentrated about p than is Y2. 

3. Third-Degree Stochastic Dominance 

The random variable Yl is said to dominate the random variable Y2 stochastically in 
the third-degree sense (TSD) if 

and 

with the following endpoint condition:* 

111. SOCIAL WELFARE AND INCOME INEQUALITY 

It is possible that everyone may be better off in one distribution than in another, For 
example, this may happen as a result of rapid economic growth raising all incomes. 
In this case, there is an actual Pareto improvement. As a result, there will be fewer 
individuals with incomes less than any given real income level Y as time goes on. 

___ 

*Corresponding endpoint conditions can he stated for FSD and SSD, hut they are satisfied trivially. 
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In other words, we will have a situation of first-degree stochastic dominance. More 
generally, we may have cases where some individuals become worse off, but the 
fraction of the population below any income cutoff again declines. Under a suitable 
anonymity axiom, the change would be equivalent in welfare terms to a Pareto im- 
provement. Thus, it appears that first-degree stochastic dominance may sometimes 
be useful in making social welfare comparisons. This is confirmed by Beach et al. 
( 1994). 

In situations where first-degree stochastic dominance does not hold, we need 
to consult some of the measures of inequality and welfare defined in the previous sec- 
tion. But on which of the wide variety of popular indicators of inequality or welfare 
should we focus? To answer this question, Atkinson (1970) argued that we must rec- 
ognize that each indicator either maps into a specific social welfare function (SWF) 
or restricts the class of admissible SWFs. (This argument was spelled out precisely 
by Blackorby and Donaldson 1978.) In order to decide which inequality or welfare 
indicators are of greatest interest, we must examine the preferences embodied in the 
associated S W Fs. 

A. Principle of Transfers, Second-Degree Stochastic Dominance, 
and Lorenz Curves 

Atkinson (1970) provided the first investigation of the SWF approach, using the ad- 
ditive class of SWFs: 

where U’(y)  is positive and U”(y)  is nonpositive. (If U ( y )  is thought of as a utility 
function, then this is a utilitarian SWF. However, U ( y )  may be regarded, alterna- 
tively, as a “social evaluation function,” not necessarily corresponding to an indi- 
vidual utility function.) Because U(y) is concave, W embodies the property of in- 
equality aversion. Of course, when U ( 0 )  equals zero and U’(y)  is constant for all y, 

W ( Y )  = € [ Y ]  = f!L (3) 

This SWF corresponds to the use of per capita income to evaluate income distribu- 
tion. Note that by using the mean one shows indifference to income inequality. 

Atkinson (1970) pointed out that strictly concave SWFs obeyed what has come 
to be known as the Pigou-Daltonprinciple of transfers. This principle states that in- 
come transfers from poorer to richer individuals (i.e., regressive transfers) reduce so- 
cial welfare. Atkinson showed that this principle corresponds formally to that of risk 
aversion and that a regressive transfer is the analogue of a mean-preserving spread 
(MPS) introduced into the risk-measurement literature by Rothschild and Stiglitz 
(1970). 
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Atkinson also noted that a distribution F1 (y) is preferred to another &(y) ac- 
cording to all additive utilitarian SWFs if and only if the criterion for second-degree 
stochastic dominance (SSD) is satisfied. Finally, he showed that a distribution Fl (y) 
would have V ( Y 1 )  which weakly exceeds W(Y2) for all U ( y )  with U’(y)  positive 
and U”(y)  nonpositive, if and only if L I  ( q ) ,  the LC of F1 (y), lies weakly above 
&(q),  the LC of F2(y) ,  for all q .  In summary, Atkinson (1970) showed the following 
theorem. 

Theorem 3.1. 
have the same mean): 

The following conditions are equivalent (where Fl (y) and F2(y)  

(i) 
(ii) 

(iii) 

W(Y1) 3 W(Y2) for all U ( y )  with U’(y)  > 0 and U”(y)  5 0. 
F2(y) can be obtained from Fl (y) by a series of MPSs, regressive trans- 
fers. 
F1 (y) dominates F2(y) by SSD. 

(iv) L1 ( q )  2 .c2(q) for all q .  

Dasgupta, Sen, and Starrett (1973) generalized this result. First, they showed 
that it is unnecessary for W ( Y )  to be additive. A parallel result is true for any concave 
W ( Y ) .  Dasgupta, Sen, and Starrett also showed that the concavity of W could be 
weakened to Schur or “S” concavity. These generalizations are important since they 
indicate that Lorenz dominance is equivalent to unanimous ranking by a very broad 
class of inequality measures. 

To a large extent, in the remainder of this chapter we shall be concerned with 
stochastic dominance relations and their empirical implementation. The standard 
definitions of stochastic dominance, which were set out in the last section, are stated 
with reference to an additive objective function, reflecting their origin in the risk- 
measurement literature. Therefore, for the sake of exposition, it is convenient to con- 
tinue to refer to the additive class of SWFs in the treatment that follows. This does not 
involve any loss of generality since we are studying dominance relations rather than 
the properties of individual inequality measures.* Dominance requires the agree- 
ment of aZZ SWFs in a particular class. As the results of Dasgupta, Sen, and Starrett 
show for the case of SSD, in situations where all additive SWFs agree on an inequal- 
ity ranking (i.e., there is dominance), all members of a much broader class of SWFs 
also may agree on the ranking. 

*In the study of individual inequality indices, it would be a serious restriction to confine ones attention 
to those which are associated with additive SWFs. This would eliminate the coefficient of variation, the 
Gini coefficient, and many members of the generalized entropy family from consideration. Nonadditive 
SWFs may be thought of as allowing interdependence of social preferences toward individual incomes. 
For additional discussion of these topics, see Maasoumi (1997) and the references cited therein. 
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B. Some Welfare Properties of Summary Inequality and 
Welfare Indices 

As implied above, the mean ranks distributions in the same way as any additive SWF 
when U”(y)  equals zero. In contrast, the median is generally inconsistent with the 
SWF framework. This is because the median concerns itself only with the welfare 
of the median individual. Another measure with a similar property is the Rawlsian 
SWF; in that case, the income of the worst-off member of society is treated as a 
sufficient statistic for welfare. 

Note that the mean violates the strong form of the principle of transfers: it does 
not change in response to any regressive transfer. Note, however, that the mean obeys 
the weak form of this principle since it never increases as a result of such a transfer. 
In contrast, the median may well rise when a regressive transfer occurs. This would 
be the case, for example, if a small amount of income is transferred from people in 
the bottom half of the income distribution to persons around the median, without 
altering the ordering of individual incomes. 

The variance of the logarithm of income 0; may also violate the weak form of 
the principle of transfers. This is because 0; is not convex at high levels of income; 
see Sen (1973, p. 29) for more on this. While this flaw calls into question the uncriti- 
cal use of o:, its use is justified where a suitable parametric form of F ( y )  is assumed. 
For example, when F ( y )  is lognormal, 0; is a sufficient statistic for inequality. 

As noted in Section 11, the variance and standard deviation are dependent on 
scale. Therefore, they are questionable as inequality measures. The coefficient of 
variation t does not suffer from this property. It also always obeys the strong form of 
the principle of transfers. 

It is evident from the definition of t that there is no additive SWF of the form 
given in (2) to which it corresponds. For more on this, see Blackorby and Donaldson 
(1978). This is also true for the Gini coefficient K .  Like a number of other popular 
summary measures (e.g., Theil’s index, see Sen 1973, p. 35), however, these mea- 
sures correspond to SWFs within the S-concave family. 

C. Second-Degree Stochastic Dominance and Generalized 
Lorenz Curves 

It is traditional in much of the inequality measurement literature to focus attention 
on relative inequality, i.e., to examine the distribution of income normalized by its 
mean. This reflects the early development of the LC as a central tool of inequality 
measurement, the fact that most popular inequality indices are relative, and perhaps 
also the influence of Atkinson (1970). 

Inequality comparisons are, of course, only a part of welfare comparisons. 
Therefore, Atkinson (1970) argued for supplementing LCs by comparisons of means. 
He noted the following result. 
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Theorem 3.2. 
preferred to FL (y) according to second-degree stochastic dominance. 

If €[Yl] 3 €[Y2] and C l ( q )  2 &(q) for all q, then F l ( y )  is 

Shorrocks (1983) went beyond this sufficient condition and established the equiva- 
lence of GLC dominance and SSD. Using his results, we can state 

Theorem 3.3. 
may have different means): 

The following conditions are equivalent (where Fl (y) and F2(y) 

(i) 
(ii) 

W(Y1) 2 W(Y2) for all U(y) with U’(y)  > 0 and U”(y)  5 0. 
F l ( y )  dominates F2(y )  by SSD. 

(iii) G ( q )  1 G2(q) for all q .  

Theorem 3.3 is of great practical importance in making welfare comparisons be- 
cause the means of real-world distributions being compared are seldom equal. Also, 
Shorrocks (1983) and others have found that, in many cases when LCs cross, GLCs 
do not. Thus, using GLCs greatly increases the number of cases where unambiguous 
welfare comparisons can be made in practice. 

D. Aversion to Downside Inequality and Third-Degree 
Stochastic Dominance 

Another approach to extending the range of cases where unambiguous welfare com- 
parisons can be made, beyond those which could be managed with the techniques 
of Atkinson (1970), has been to continue to restrict attention to relative inequality, 
but to adopt a normative axiom stronger than the Pigou-Dalton principle of transfers. 
This axiom has been given at least two different names. Shorrocks and Foster (1987) 
referred to it as transfer sensitivity. Here, we follow Davies and Hoy (1994, 1995) 
who referred to it as aversion to downside inequality (ADI). 

AD1 implies that a regressive transfer should be considered to reduce welfare 
more if it occurs lower in the income distribution. In the context of additive SWFs, 
this clearly restricts U ( y )  to have U”’(y),  which is nonnegative in addition to U’(y)’s 
being positive and Il”(y)’s being nonpositive. 

The ordering induced by the requirement that W(Y1)  be greater than or equal 
to W(Y2) for all U ( y )  such that U’(y )  is positive, U”(y) is  nonpositive, and U”’(y) 
is nonnegative corresponds to the notion of third-degree stochastic dominance (TSD) 
introduced in the risk-measurement literature by Whitmore (1970). TSD initially 
received far less attention in inequality and welfare measurement than SSD, despite 
its embodiment of the attractive AD1 axiom. This was, in part, due to the lack of 
a readily available indicator of when TSD held in practice. Shorrocks and Foster 
(1987) worked to fill this gap. 

When LCs do not intersect, unambiguous rankings of relative inequality can 
be made under SSD, provided the means are equal. When GLCs do not intersect, 
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unambiguous welfare rankings can also be made under SSD. When either LCs or 
GLCs intersect difficulties arise. 

Suppose that €[Yl] equals E[Y2] and that the LCs C l ( q )  and & ( q )  intersect 
once. A necessary condition for Fl(y) to dominate F2(y) by TSD is that C l ( q )  is 
greater than or equal to &(q)  at lower incomes and that C1 ( q )  is less than or equal 
to &(q )  at higher incomes. In other words, given that the LCs cross once, the only 
possible candidate for the “more equal” label is the distribution which is better for 
the poor. This is because the strength of aversion to downside inequality may be so 
high that no amount of greater equality at high income levels can repair the damage 
done by greater inequality at low incomes. 

Shorrocks and Foster (1987) added the sufficient condition in the case of singly 
intersecting LCs, proving the equivalent of the following theorem for discrete distri- 
butions: 

Theorem 3.4. 
intersection, then F1 (y) is preferred to F2(y)  by TSD if and only if 

If €[Yl] = €[I‘ll and the LCs for Fl(y) and F2(y) have a single 

(i) The LC Ll(q) cuts the LC &(q)  from above. 
(ii) V[YI] I V[Y21. 

This theorem provides a new and important role for the variance in inequality 
measurement. It has been extended by Davies and Hoy (1995) to the case where the 
two LCs in question intersect any (finite) number of times n. Lambert (1989) has also 
extended the analysis to the case where &[Y1] does not equal E[Y2] by investigating 
rankings of distributions when GLCs intersect. Davies and Hoy (1995) proved: 

Theorem 3.5. If € [ Y l ]  = €[I‘ll, F l ( y )  dominates F2(y) by TSD if and only if, 
for all Lorenz crossover points i = 1,2 ,  . . . , ( n  + l),  h:(qi) 5 h$(qi), with A?(qi) 
denoting the cumulative variance for incomes up to the ith crossover point { ( q ; )  for 
distribution j .  

Since multiple intersections of LCs are far from rare in applied work, this result 
has considerable practical value. Its implementation has been studied by Beach, 
Davidson, and Slotsve (1994) and is discussed in the next section. 

IV. FROM POPULATIONS TO SAMPLES: 
UNIVARIATE CASE 

Typically, it is far too expensive and impractical to sample the entire population to 
construct F ( y ) .  Thus, researchers usually take random samples from the population, 
and then attempt to estimate F ( y )  as well as functionals that can be derived from 
F ( y ) ,  such as LCs and GLCs. Often, researchers are interested in comparing LCs 
(or GLCs) across countries or, for a given country, across time. To carry out this sort 
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of analysis, one needs estimators of LCs and GLCs as well as a distribution theory 
for these estimators. 

In this section, we show how to estimate LCs and GLCs using the kinds of 
microdata that are typically available from sample surveys. We consider the case 
where the researcher has a sample { Y l ,  Y2, . . . , Yiy} of N observations, each of 
which represents an independent and identical random draw from the distribu- 
tion F(y).* 

A. Parametric Methods 

Because parametric methods of estimation and inference are the most well known to 
researchers, we begin with them.t Using the parametric approach, the researcher as- 
sumes that F ( y )  comes from a particular family of distributions (exponential, Pareto, 
lognormal, etc.) which is known up to some unknown parameter or vector of param- 
eters. For example, the researcher may assume that 

F(y; p) = 1 - exp (-i) , 

when Y is from the exponential family with p unknown, or 

when Y is from the Pareto family with 00 and 01 unknown, or 

-00 < p < 00, 0' > 0 , y  > 0 

when Y is from the lognormal family with p and o2 unknown. 
Given a random sample of size N drawn from F ( y ) ,  a number of estimation 

strategies exist for recovering estimates of the unknown parameters. The most effi- 
cient is Fisher's method of maximum likelihood. The maximum likelihood estimator 
M of p in the exponential case is 

*Many large, cross-sectional surveys have weighted observations. For expositional reasons, we avoid this 
complication, but direct the interested reader to, among others, the work of Beach and Kaliski (1986) 
for extensions developed to handle this sort of complication. We also avoid complications introduced 
by dependence in the data, hut direct the interested reader to, among others, the work of Davidson and 
Duclos (1995). 

TA useful reference for the epistemology of distribution functions is Chipman (1985). 
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while the maximum likelihood estimators of 60 and 61 in the Pareto case are 

TO = min[Yl, Y2, . . . , Yiy] 

and those of p and 0' in the lognormal case are 

N 
Ci=l log Y, M =  

N 

In each of these cases (except that of To), the maximum likelihood estimators 
are consistent and distributed normally, asymptotically.* One can also derive the 
pointwise asymptotic distribution of both the LC and the GLC. This is easiest to do 
in the exponential case where the GLC is linear in the parameter to be estimated. 
Note that 

so 

by a central limit theorem, where p0 is the true value of p, so one can show that for 
each q ,  a pointwise characterization of the asymptotic distribution is 

*The estimator To of 80 is superconsistent and converges at rate N rather than a; its asymptotic dis- 
tribution is exponential. This is a property of extreme order statistics when the density is positive at the 
boundary of the support; see Galambos (1987). Because To converges at a rate N ,  which is faster than 
the rate JX for the other estimator Tl ,  i t  can he treated as if it actually equals 00, and thus ignored in 
an asymptotic expansion of T1. 
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Using A, a realization of the maximum likelihood estimator M ,  one can estimate 
G ( q ;  p) at q by 

and calculate its standard error S € [ g ( q ;  A)] by substituting h for po to get 

Note that in the exponential case, the LC is invariant to the parameter p since 

C(q;  p) = - G ( q )  - - G m  - - - [ q  + (1 - q)  log(1 - q ) ]  
WI P 

so no estimation is required. 
In the other two examples, the LCs and GLCs are nonlinear functions of the 

parameters. We find it useful to consider these examples further, since they illustrate 
well the class of technical problems faced by researchers. In the Pareto case, where 

Now 

so the LC is 

L(q; 01) = [l - (1 - q)(@\-l)'@y 

Because G ( q ;  80,01) and C(q;  0 , )  are continuous functions of 00 and 01, the maxi- 
mum likelihood estimators of them are 
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(T1- l)/Tl 3 u q ;  T l )  = [1 - (1 - 4 )  

respectively. These estimators are also consistent.* 

first to know the asymptotic distribution of Tl .  Now 
To find the asymptotic distributions of G(q;  To, T1) and L ( q ;  T l ) ,  one needs 

where one can treat To as if it were 80 because To is a superconsistent 
80. The random variable 

estimator of 

Zl = log (Z) 
is distributed exponentially with unknown parameter 81, so its probability density 
function is 

f.&) = 81 exp(-Olz), O1 > 0, z > 0 

Thus, Ti is a function of the sample mean Z N  of N independently and identically 
distributed exponential random variables { Z , , Z 2 ,  . . . , Z N }  where, by a central limit 
theorem (such as Lindeberg-Levy), ZN has the following asymptotic distribution: 

with 8: being the true value of 81. Because Tl is a continuous and differentiable 
function of the sample mean Z N ,  we can use the delta method (see, for example, Rao 
1965) to derive Tl’s asymptotic distribution. We proceed by expanding the function 
T1 ( Z N )  in a Taylor’s series expansion about r[zN], which equals l/O:. Thus, 

*When T1 is a consistent estimator of 81; the true value of 81, then 

plim ~1 = 8: 
N+CC 

Also, if, for example, L(T1) is a continuous function of T1, then 

plim L(T1) = L (plim Tl) = L(8:) 
N + m  N+CC 

by Slutsky’s theorem; see, for example, Rao (1965). 
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Noting that Tl evaluated at € [ Z N ]  equals O y  and that dT1 ( € [ z , ] ) / d Z ~  equals (8:)' 
and ignoring the remainder term R: since it will be negligible in a neighborhood of 
€ [ z ~ ] ,  which equals l /Oy,  one obtains 

Thus, to find the asymptotic distribution of L ( q ;  Tl) ,  for example, expand L ( q ;  T1) 
in a first-order Taylor's series about the point 07, with Rk being the remainder, 
to get 

With a minor amount of manipulation, one then obtains 

Similar calculations can be performed for the estimator G(q ;  TO, Tl) of S(q; 80,81).* 

In the lognormal case, the GLC solves 

where e(q;  p,  a2) is implicitly defined by 

In this case, both e(q; p ,  a') and G(q;  p ,  a') are only defined numerically. For 
a specific q,  conditional on some estimates r?i and s^2, one can solve the quantile 
equation (5) numerically and then the GLC equation (4). To apply the delta method, 
one would have to use Leibniz's rule to find the effect of changes in M and S2 on 
the asymptotic distribution of G(q;  p, 0') at q .  A similar analysis could also be per- 
formed to find the asymptotic distribution of C(q; p,  a2). As one can see, except in a 
few simple cases, the technical demands can increase when parametric methods are 
used because the quantiles are often only defined implicitly and the LCs and GLCs 
can typically only be calculated numerically, in the continuous case. Moreover, the 

*Note that one could perform a similar large-sample analysis to find the asymptotic distribution for 
estimators of such summary measures as the Gini coefficient, but this is beyond the focus of this 
chapter. 
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calculations required to characterize the asymptotic distribution of the pointwise es- 
timator of either the LC or the GLC can be long and tedious. This, of course, is not 
the main drawback of this approach. 

The main drawback of the parametric approach is that it requires the researcher 
to impose considerable structure on the data by assuming F ( y )  comes from a particu- 
lar family of distributions. Some researchers, such as McDonald (1984), have sought 
richer parametric specifications and have provided specification tests for these mod- 
els, while Harrison (1982) has demonstrated the value of a careful empirical inves- 
tigation using this parametric approach. Because the parametric approach is not an 
entirely satisfactory solution, other researchers have sought to relax assumptions 
concerning structure and have pursued nonparametric methods. 

B. Nonparametric Estimators of Lorenz Curves and Generalized 
Lorenz Curves 

The first researcher to propose a nonparametric estimator of the LC was Sendler 
(1979).* Unfortunately, Sendler did not provide a complete characterization of the 
asymptotic distribution of the LC. This task was carried out by Beach and Davidson 
(1983), who, in the process, also derived the asymptotic distribution of the GLC. 

Beach and Davidson were interested in conducting nonparametric estimation 
and inference concerning the set of population ordinates { ,C(qi) I i = 1, . . . , J }  cor- 
responding to the abscissae {q;li = 1, . . . , J } .  When J is nine and the qis are 
{0.1, 0.2, . . . ,0.9}, for example, Beach and Davidson would be interested in es- 
timating the population LC vector of the deciles 

L = (L(O.l), C(O.2), . . . , L(0.9))’ 

where 

with Yi = Y(q i ) .  To carry out this sort of analysis, one must first order the sam- 
ple {Yl ,  Y2, . . . , Y N }  so that Ycl) 5 Y(z) 5 . . - 5 Y(N) .  Beach and Davidson de- 
fined E ( q ) ,  an estimator of the qth population quantile c(q) ,  to be the rth-order 
statistic Y(rl where r denotes the greatest integer less than or equal to qN. Thus, 

*McFadden (1989) and Klecan, McFadden, and McFadden (1991) have developed nonparametric pro- 
cedures for examining SSD, while Anderson (1 9%) has employed nonparametric procedures and FSD, 
SSD, and TSD principles to income distributions. Xu, Fisher, and Wilson (1995) have also developed 
similar work. Although these procedures are related to estimation and inference concerning LCs and 
GLCs, for space reasons we do not discuss this research here. 
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E = ( E ( q l ) ,  E(q2) .  . . . , E(qJ)) '  is an estimator of the vector of quantiles 6 = 
(c(q1) ,  ( ( q 2 ) ,  . . . , ( ( Q J ) ) '  and has the asymptotic distribution 

where to denotes the true value of the vector 6 and where 

The asymptotic distribution of the LC estimator 

depends on the joint asymptotic distribution of the estimator 

of the parameter vector 

where 

with ri being the greatest integer less than or equal to q ; N .  Note that G is, in fact, 
the GLC and that G is an estimator of the GLC. Beach and Davidson showed that the 
distribution of &V(G - 0') is asymptotically normal, centered about the ( J  + 1) 
zero vector, and has variance-covariance matrix Cl' where 

with (Ay)' being A2(q;) ,  the variance of Y given that Y is less than c"(qi).  

showed that it has the asymptotic distribution 
Now, L is a nonlinear function of G. By the delta method, Beach and Davidson 
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where 

where Vp denotes the gradient vector of the function to follow with respect to the 
vector 8. 

Beach and Davidson (1983) appear to have ignored the implications of their 
results of GLCs. These notions were first applied by Bishop, Chakraborti, and Thistle 
(1989). 

C. Testing for (Generalized) Lorenz Curve Equivalence 
and Dominance 

Once a researcher has estimated either the LCs or the GLCs for two populations, it 
is natural to think about testing the null hypothesis of LC (or GLC) equivalence or 
that of LC (or GLC) dominance. Testing the null hypothesis of equivalence turns out 
to be much easier than testing the null hypothesis of dominance, so we outline first 
how tests of equivalence can be carried out. 

Suppose that there are two independent samples, 1 and 2, of size N1 and N2 
respectively, and one seeks to test whether Ll equals L2 (or Gl equals &) at a count- 
able number of points J .  (This null hypothesis can also be written as II = L1 - L 2  = 
0.) Assume that consistent estimators of the variance-covariance matrices of L1 and 
L2 (or G1 and 6 2 )  exist, and denote them V1 and Vp, respectively. A test of LC (or 
GLC) equivalence is referred to by Engle (1984) as a Wald test. It involves calculat- 
ing the quadratic form 

v1 v2 - l  
(L1 - L2)’ [ + n;l (L1 - L2) = P’V-lP 

This statistic has an asymptotic distribution which is x2 with J degrees of freedom. 
If LC (or GLC) equivalence is rejected, then one may want to know further 

which particular ordinates differ from one another. One way of providing such infor- 
mation is through multiple comparisons. Beach and Richmond (1985), building on 
the work of Richmond (1982), have derived the formulae for multiple comparison 
intervals (Savin 1984). 

Alternatively, a researcher may wish to test the null hypothesis of LC (or GLC) 
dominance. LC dominance implies that 
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with 

at a countable number of points J ,  so the null hypothesis can also be written as I’I 2 
0. Testing this hypothesis involves deciding whether the random variable L1 - Lz 
(or G1 - 6 2  for GLC dominance) is in the nonnegative orthant of RJ (or R-’+’). A 
number of authors have built on the work of Perlman (1969) to provide solutions 
to this problem; see, for example, Kodde and Palm (1986) and Wolak (1987, 1989, 
1991). To calculate the test statistic LR for realizations 1 1  and & of L1 and L2 and 
estimates 91 and 92 of V1 and Vz, requires one to solve the following constrained, 
quadratic programming problem: 

which we rewrite as 

min (p - p) ’V1(p  - p) 
(P) 

subject to p 3 0 

Letting 

p = argmin(p - p)’v-’(p - p) subject to p >_ 0 

the test statistic is 

LR = (p - p)’V-’(p - p) 

which has asymptotic distribution 

.I 

lim Pr[LR 2 c ]  = Pr[X2(j) 3 c]w(J ,  J - j ,  V) 
N+KJ 

;= 1 

where Pr[x2(j) 2 c ]  denotes the probability that a x2 random variable with j de- 
grees of freedom exceeds some constant c ,  and w(J ,  J - j ,  V) is a weighting function. 

D. 

Sometimes in empirical studies, LCs cross. Extending the work of Shorrocks and 
Foster (1987), in which they investigated but one crossing, Davies and Hoy (1995) 
have considered how to make welfare statements when there are n crossings. One 
can summarize the results of Davies and Hoy (1995) in terms of the cumulative co- 
efficients of variation (CCVs): 

Nonparametric Analysis when Lorenz Curves Cross 
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In particular, if T(q)  for population 1 is always less than z(q) for population 2, 
then population 1 dominates population 2 in the social welfare sense. 

Beach, Davidson, and Slotsve (1994) derived an estimator of the vector 

7= (T(ql), T(q2), . . . T(qj+l))’ 

as well as the asymptotic theory required to test for dominance of the cumulative 
coefficients of variation. In particular, they derived the asymptotic distribution of 
the estimator 

with ri again being the largest integer less than or equal to q iN.  As with the test of 
LC (or GLC) dominance, a test of the null hypothesis of CCV dominance for two 
populations involves deciding whether TI - T2 is in the nonnegative orthant of 
R J + ~  

V. FROM POPULATIONS TO SAMPLES WITH 
OBSERVED COVARIATES 

In many empirical applications, considerable observed covariate heterogeneity ex- 
ists. This sort of heterogeneity is of interest for a number of reasons. One important 
reason is that the sources of differences in welfare between populations arise from 
this covariate heterogeneity. To the extent that some covariate heterogeneity can be 
manipulated by policy, some scope exists for improving welfare. 

Thus, consider the random variable Y which is observed conditional on a 1 x k 
random covariate vector X. Denote the probability density function of Y conditional 
on X equaling x by f(y1x). As above, one can define the conditional qth population 
quantile of Y conditional on X equaling x by 

Hqlx) 

4 = W(qIx)lx) = f(YM dr 

One can also define the conditional LC ordinate by 

pX) rf ( Y M  dr - A y x )  rf(ylx) 4Y 
I;rf(rlx) 4 

- 
1x1 

aq lx )  = 

A LC of Y conditional on X equaling x is the plot of (4, L(q lx ) ) .  The conditional 
GLC is the plot of ( q ,  €[Y  Ix]C(qlx)) ,  which we denote by ( 4 ,  G(qlx)). 
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A. Parametric Methods 

As in Section 1V.A one could assume that f(ylx) comes from a particular parametric 
family. For example, suppose 

logY = x p +  v 
where V is distributed independently and identically normal having mean zero and 
variance 02. One could then use the method of maximum likelihood to get estimates 
of p and 02, and these estimates in turn could be used to estimate g(q lx )  or L(qIx).  
Since the maximum likelihood estimators of p and o2 are asymptotically normal 
and since both the LC and the GLC are functionals of f(ylx), one can then use the 
delta method to find the pointwise asymptotic distribution of G ( q l x )  and .C(qlx). Of 
course, as in the univariate case, the major criticism of the parametric approach is 
that it imposes too much structure on the data. 

B. Adapting Nonparametric Methods 

At the other end of the spectrum is nonparametric analysis. To estimate LCs (or 
GLCs) nonparametrically in the presence of observed covariates, one would simply 
break up the observed covariates into cells, and implement, for example, the meth- 
ods of Beach and Davidson (1983) on each cell. This approach is feasible when the 
number of covariates is small and if the covariates are discrete. When the number 
of covariates is large or if covariates are continuous, then the methods described in 
Beach and Davidson (1983) are impractical. A natural solution to this quandary is a 
method that imposes some structure on f (y )x ) ,  but which is not wholly parametric 
(i.e., a semiparametric method). 

C. Semiparametric Methods 

The idea behind any semiparametric method is to put enough structure on the distri- 
bution of Y given X equals x so as to reduce the curse of dimensionality that arises in 
nonparametric methods. In this section, we focus on one particularly useful approach 
(that of Donald, Green, and Paarsch 1995) to estimating GLCs semiparametrically. 
These methods can be adapted to recover estimates of LCs, but in the interest of 
space we omit the explicit parallel development of methods for LCs. 

Donald et al. (1995) translated techniques developed for estimating spell- 
duration distributions (Kalbfleisch and Prentice 1980) to the estimation of income 
distributions. The main building block in their approach is the hazard function. For 
a nonnegative random variable Y with associated probability density function f ( y )  
and cumulative distribution function F ( y ) ,  the hazard function h ( y )  is defined by 
the conditional probability 
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where S(y) is the survivor function. From (6) one can see that the hazard function 
is simply a transformation of the probability density (or mass) function. One key 
result from the literature on spell-duration estimation is that the conditional nature 
of h ( y )  makes it easy to introduce flexible functions of the covariates and to entertain 
complex shapes for the hazard function. 

Donald et al. introduced covariates using an extension of a proportional haz- 
ard model in which the range of Y is partitioned into P subintervals Yp = [$, y:), 
where Yp n Y4 = 0 for all p # q with U,‘=, Yp = [0, 00)’ and they allow the 
covariate effects to vary over these subintervals.* They referred to these subinter- 
vals as covariate segments. In particular, following Gritz and MaCurdy (1992), they 
replaced xip in Cox’s model with 

where l[Yp] is an indicator function equaling one if Y is contained in the set Yp 
and zero otherwise, x;(Yp) is a 1 x k vector of covariates defined on the set Yp, 
p p  is a k x 1 vector of unknown parameters, and j? = (/I’ , j?’,. . . , /?‘’)I is a 
K x 1 parameter vector with K = P x k. Within this specification, the covariates 
can shift the hazard function up over some regions and down over others, providing 
the possibility of quite different shapes for the hazard function for individuals with 
different covariate vectors. 

There are several options for specifying the baseline hazard ho(y). One could 
assume a particular density function, such as the Weibull, and use the associated 
functional form for the hazard. This may aid in tractability, but imposes unwarranted 
shape restrictions on the density. Donald et al. approximated ho(y) using a step func- 
tion. In particular, they created a set of dummy variables corresponding to each of 
the segments [F, %.+I) for j = 1,  . . . , J where J is finite and estimated a parameter 
associated with each of these “baseline” segments. The properties of a proportional 

I t  

*This class of models was first introduced by Cox (1972, 1975). Specifically, the hazard rate for person i 
conditional on x;, a particular realization of the covariate vector X, is 

h(y1xi) = exp(xiS)ho(y) 

where ho(y)  is the baseline hazard function common to all individuals and is a vector of unknown 
parameters. An important shortcoming of this specification is the restriction that individuals with very 
different covariate vectors have hazard functions with the same basic shape, and that any particular 
covariate shifts the entire hazard function up or down relative to the baseline specification. It can be 
shown that if a particular element of the vector is negative, then F(ylx) for a person with a positive value 
for the associated covariate and zero values for all other covariates first-degree stochastically dominates 
F(ylO) ,  the cumulative distribution function for a person with zero values for all covariates. This is quite 
a strong restriction. 
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hazard model with this form of baseline specification are discussed in Meyer (1990). 
The major advantage of this approach is that, with a sufficiently large value for J ,  
it can capture complicated shapes for the hazard, while allowing for very straight- 
forward transformations from hazard to density estimates and then to estimates of 
GLC ordinates. This latter occurs because sums rather than integrals are involved. 
The main disadvantage is that density estimates are very “spikey,” including spikes 
such as those induced by focal-point income reporting, e.g., integer multiples of 
$1000. The latter spikes may prove distracting when they are not the main focus of 
the analysis. 

For a sample of size N ,  the logarithm of the likelihood function specifica- 
tion is 

N 

i= 1 

where the dependent variable for individual i falls in the jl*th baseline segment, Y; 
is the set of Y values corresponding to the j th  baseline segment, Yp(,) is the set of 
Y values corresponding to the pth covariate segment which itself is associated with 
the j t h  baseline segment, and Y, is less than y j  if Y, is not right-censored. The vector 
a contains the J baseline parameters and the notation a; indicates the element of 
a corresponding to the j th baseline segment. Note that 

a, = log “;+l ho(u) du] 

For consistent estimates, Donald et al. required that the covariate values not change 
within the baseline segments; they may, however, vary across baseline segments. 

For the j th baseline segment, an estimate of the hazard rate is 

where a, is the estimate of the j th element of the baseline parameter vector and &p 

is an estimate of B p .  An estimate of the survivor function is 
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The discrete form of the baseline hazard makes estimating the survivor function very 
simple. An estimate of the probability mass function is then 

f<, Ix) = R Y j  IX) - %,j+1Ix> 

Define 6, a ( K  + J )  vector of unknown parameters with true value 60. Donald 
et al. assumed that the maximum likelihood estimator D satisfies 

and that a consistent estimate of exists.* For segment j ,  they defined 

which is a ( K  + J )  column vector with elements 

and 

and 

where t3, = rj - rj+l. Thus, the standard errors of the density estimate at each 
baseline segment are easy to construct given d and an estimate of E. The discrete 
form of the baseline hazard is helpful in this construction since one requires only 
summations rather than integration. 

One can also recover estimates of quantiles conditional on the covariates. The 
qth quantile of Y conditional on x is defined by 

*In practice, Donald et al. use the inverse of the Hessian matrix of the logarithm of the likelihood function 
(divided by the sample size) to estimate E. 
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In the discrete case, however, estimates of the quantiles are easily found by E(qlx) = 
yj if * 

S(3jlx) 2 ( 1  - 4 )  ’ %Yj+llX> 

and E(qlx) = YJ if 

j(YJlx) 2 (1  - q )  

Donald et al. characterized the limiting distribution of E(qlx) for different values 

The main advantage of the approach of Donald et al. is its combination of flex- 
ibility and tractability. Convergence for their likelihood function can be obtained 
relatively quickly and easily. The transformations from d to estimates of the hazard 
and then to the density functions described above are straightforward. At the same 
time, the specification imposes few restrictions on the shape of the density function 
and permits quite different shapes for different covariate vectors. In addition, the ap- 
proach admits the examination of both decomposability of subgroups and marginal 
effects of covariates. Finally, this approach provides a consistent means of address- 
ing top-coded data since top-coded values are just right-censored “spells.”” 

Once a consistent estimate of f(ylx) is obtained, one can then estimate the 
GLC ordinates conditional on the covariates. When the Y s  are discrete, the ordinate 
of the GLC at q is 

of q .  

J 

G(qlx) = l [ Y j  5 Hqlx)lYjf(r/Ix) 
j =  I 

where 

and where c(q1x) is the conditional qth quantile of Y 

*In sample surveys, individuals with high incomes can often be identified by answers to other questions 
on the survey instrument. For example, the richest man in a particular geographical region might have 
a wife and six children. Thus, an interested individual might infer the man’s income from information 
concerning where he lived and his household characteristirs. To provide confidentiality, those who con- 
duct surveys often list high incomes as greater than some value, say $100,000 and higher. This practice 
is often referred to as “top-coding.” 
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to be 

where 

VI. SUMMARY AND CONCLUSIONS 

We have presented a selective survey of the literature concerned with interpreting 
economic statistics in terms of social welfare. We started by defining and review- 
ing the properties of location measures and the most popular summary inequality 
indices. Recently, use of summary indices has been augmented, and increasingly 
replaced, in applied work by the use of disaggregated dominance criteria. A sum- 
mary inequality index must correspond to a single, specific, social welfare function 
or narrow family of such functions. In contrast, dominance criteria require only that 
social preferences should satisfy certain widely appealing axioms of social choice. 

The principal dominance criteria examined here have been LC and GLC dom- 
inance. In both cases, the main distributional judgement required is that one should 
object to a regressive income transfer; i.e., these criteria embody the Pigou-Dalton 
principle of transfers. Both criteria are equivalent to SSD when the mean is invariant. 
However, the LC departs from SSD in that it is unconcerned with changes that merely 
raise or lower mean income without affecting individuals' income shares. Therefore, 
strictly speaking, the Lorenz Criterion is an indicator of relative inequality rather than 
of social welfare. A further criterion we have discussed briefly, and which is receiv- 
ing increasing use in practice, is AD1 (equivalent to TSD when means are the same). 
AD1 comes into play in the comparison of distributions whose LCs intersect. If the 
cumulative coefficients of variation for one distribution are less than those of another, 
cumulating up to each successive point of LC intersection, then there is dominance 
from the viewpoint of all individuals who are more concerned with inequality lower 
in the distribution, i.e., from the viewpoint of everyone averse to downside inequality. 

We have surveyed results on the implementation of these dominance criteria, 
beginning with the parametric and nonparametric estimation of LCs and GLCs. We 
have also reviewed the results on tests for LC and GLC equivalence, which is rela- 
tively easy, and dominance, which is more difficult. We have also reviewed results 
on the nonparametric implementation of the AD1 criterion. 

A recent development in the literature has been the estimation of GLCs which 
depend on covariates. We have discussed limitations of parametric and nonparamet- 
ric approaches, and how these limitations can be avoided through the use of tractable 
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semiparametric methods. The latter can be made sufficiently flexible to reflect com- 
plex effects of covariates. A further advantage of the approach is that it provides a 
consistent means of addressing top-coded data. 

As the review conducted in this chapter shows, recent literature has provided 
powerful theoretical and statistical tools which can be applied in social welfare com- 
parisons. At this point there is an important challenge to workers on income distri- 
bution topics to make greater use of these techniques in their analysis of the data. 

VII. APPENDIX 

In this appendix, we describe how to access several programs designed to carry out 
the analysis described above. These programs reside in the Econometrics Laboratory 
Software Archive (ELSA) at the University of California, Berkeley; this archive can 
be accessed easily using a variety of different browsers via the Internet. To contact 
the staff at ELSA, simply send e-mail to 

elsa@econ.berkeley.edu 

For those with access to an Internet browser like Netscape Navigator, simply click 
on the Open icon and then enter 

http://econ.berkeley.edu 

This will put you into the HomePage of the Department of Economics at the Univer- 
sity of California, Berkeley. A number of options exist. Click the option 

[Research Facilities] 

You will then be on the page for which the icon 

eELSA (Econometrics Laboratory Software Archive) 

exists. Click on either the icon denoted Code or the icon denoted ~ o c  and scroll 
through until you find the entries you desire. 

The following describes the entries: 

a. A Nonparametric Estimator of Lorenz Curves 

b. A Nonparametric Estimator of Generalized Lorenz 
FORTRAN code for implementing Beach and Davidson (1983) 

Curves 
FORTRAN code for implementing Bishop, Chakraborti, and Thistle (1989) 

c. A SemiParametric Estimator of Distribution 
Functions with Covariates 
Gauss code for implementing Donald, Green, and Paarsch (1995) 
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Measurement of Inequality 

Wa I te r K rii m e r 
University of Dortmund, Dortmund, Germany 

1. THE PROBLEM 

This chapter surveys the statistical measurement of inequality, where “inequality” 
is a property of the elements of the set 

00 

D : = U R :  
n=2 

where R; = {x = (xl, . . . , x,)(xi E R, xi  3 0, c x i  > 0). 
For concreteness, I will often argue in terms of income distributions, but most 

of what follows also applies to variables other than income. The discussion is in 
terms of vectors rather than distribution functions, as a reliance on the latter would 
automatically restrict attention to measures which are symmetric and population in- 
variant (see Section IV.A.2 and IV.A.8), and it is important for many problems to be 
more permissive here. 

Given some vectors x and y from D, the problem is to rank these vectors ac- 
cording to inequality, whatever “inequality” may mean. In a sense this is similar 
to comparing distributions with respect to location and dispersion (scale), only less 
intuitive: while everybody “knows” what is meant be scale and location, and (to a 
lesser extent) by skewness and kurtosis, the inequality dimension commands much 
less intuitive appeal, and, in fact, allows for views which are outright contradictory. 

Accordingly, this survey first discusses ordinal approaches to inequality; i.e., 
it considers some widely accepted concepts of “inequality” that allow at least some 
distributions x and y to be ranked. Section I11 considers cardinal measures of in- 
equality, Section IV discusses the axiomatic foundation of these measures, Section 
V addresses various empirical issues that arise when data are grouped or otherwise 
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not completely available, and Section VI concludes with some recent developments 
in multidimensional inequality. 

As the focus here is on mathematical aspects of the ordering of given vectors x 
and y, it is only fair to point out that in most applications these problems are dwarfed 
by the complications and ambiguities involved in the definition and measurement of 
the basic vectors x and y themselves. This is perhaps most obvious with income in- 
equality, where the outcome of any analysis depends much more on how income is 
defined, on the unit (individuals versus households), and on the accounting period 
than on the statistical procedures applied afterward. However, such problems of ba- 
sic definition and measurement differ so much across applications that there is no 
hope of an adequate treatment in a general survey such as this. 

II. ORDINAL COMPARISONS OF INEQUALITY 

There is wide agreement across value systems and applications that if some vector 
is subjected to a progressive transfer, then inequality should be reduced.* Formally, 
let y = xT, where both y and x are of dimension n and where T is an n x n matrix 
of the form 

with 0 5 p 5 1. Then xi and y differs from x only in two components, say 
i and j ,  who are each replaced by their weighted arithmetic mean. In the context of 
income inequality, such a transfer means that the richer of the persons z and j gives 
some or all of the surplus to the poorer (but no more; i.e., the richer does not thereby 
become poorer as the poorer has been before; both incomes stay the same if x; = xj). 
It was first suggested as an unequivocal reduction in inequality by Pigou (1912) and 
Dalton (1920) and is often called a Pigou-Dalton transfer, but some prefer Arnold’s 
(1987) more evocative “Robin Hood transfer” instead. 

Obviously, a sequence of successive Robin Hood transfers should lead to suc- 
cessive reductions in inequality, which in turn leads naturally to the majorization or- 

yi = 

*Or at least: should not increase. In what follows, “reduction” excludes the limiting case of “no change.” 
If “no change” is included, I say “weak reduction” (and similarly “increase” and “weak increase”). 
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dering in D.* Let x = (x(l ) ,  . . . , x ( , , ) )  and y = ( y ( ~ ) ,  . . . , Y ( ~ ) ) ,  with Cqi) = 
C y(i), be ordered such that X ( I )  I x ( 2 )  i * . L qn) and y(i) I y(z) 5 . - L Y ( ~ ) .  
Then, by definition, x majorizes y (i.e., x is more unequal than y: x 2~ y) if 

k k 

i= 1 i= 1 

and a central result in majorization theory, due to Hardy, Littlewood, and Polya 
(1934), states that x majorizes y if and only if y = xT1 T2 . - . TL with finitely many 
matrices of the form (2). 

The obvious drawback of this (the only) universally accepted preordering is 
that only very few pairs of elements x and y from D can be compared. Both vectors 
must have the same dimension and the same sum of elements, which renders this 
ordering almost useless in empirical applications. 

One way out of this dilemma is to base a comparison on one of the scalar-valued 
measures of inequality to be discussed in Section 111. As these measures all involve 
value judgments of one sort or the other, one might compromise here and declare 
one vector y more equal than some other vector x if Z(x) 2 Z(y) for all inequality 
measures I ( . )  in some conveniently chosen class. For instance, almost by definition, 
the majorization order on D is the one implied by the set of all Schur-convex functions 
I :  D + R ( a function I ( . )  is Schur convex if it  respects the majorization ordering), 
and by restricting this set of functions, one might hope to obtain an order which is 
richer (i.e., allows more pairs of vectors to be ranked). 

Quite surprisingly, however, if  we restrict I ( - )  to be symmetric and convex in 
the ordinary sense (i.e., Z(hx + ( 1  - h ) y )  2 hZ(x) + ( 1  - h)Z(y)  for all 0 5 h 5 1; 
this implies Schur convexity), or even further to be of the form 

with a convex function g :  R + R, we still end up with the very restrictive majoriza- 
tion ordering > M  (Mosler 1994, Proposition 2.2). 

A major breakthrough in this respect was the discovery by Atkinson (1970) 
and Dasgupta, Sen, and Starrett (1973) that the preordering on D becomes much 
richer, and in fact identical to the familiar Lorenz order, if we require in addition to 
(4) that the measure be population invariant: 

Z(x) = Z(x, x, . . . , x) (x repeated rn times) (5) 

*Actually apreordering, to be precise. A reorder is a partiul order if x 5 y and y 5 x implies x = y. In 
what follows, “order” is short for “preorder” and a preorder is an order if either x 5 y or y 5 x. 
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1- 

Figure I A typical Lorenz curve: convex, monotone, passing through (0,O) and (1, 1). 

and homogeneous of degree zero: 

Then y is more equal than x with respect to all inequality indices in that class if and 
only if the Lorenz curve of y lies everywhere above the Lorenz curve of x, where the 
Lorenz curve of x (and similarly for y) is obtained in the usual way by joining the 
points ( 0 , O )  and 

by line segments in a two-dimensional diagram. This preordering, which I denote 
by “>L,”  allows comparisons of vectors with different means and dimensions. When 
applied to vectors with identical means and dimensions, it reduces to “>M.” (Note 
that “ 3 ~ ”  and “ 3 ~ ”  implies in increase in inequality.) 

A typical Lorenz curve is shown in Figure 1: it is convex, with slope x(i)/X in 
the interval ((z - l ) / n ,  i /n),  passing through ( 0 , O )  and ( 1 ,  1). 

The proof that the Lorenz order in D is implied by inequality indices with 
properties (4), (5) and (6) is an immediate consequence of the fact that with (5) and 
(6), we can without loss of generality assume x and y to have identical means and 
dimensions: if X = $ xi # 7 and/or dimension (x) = n # rn = dimension (y), 
consider 
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2 = (x, x, . . . , x) x repeated rn times 
- 

7 = g(y, y, . . . , y) y repeated n times (8) 
Y 

Then 2 has the same Lorenz curve as x, and 7 has the same Lorenz curve as y, 
and f ( x )  = f ( 2 )  and f (y )  = f ( 7 )  for all functions with properties (5) and (6) 
and the equivalence of the Lorenz order with the ordering implied by functions with 
properties (4), (S), and (6) follows from the fact that the majorization ordering is 
implied by functions with property (4) alone. 

If one does not want to subscribe to (6), but requires instead that inequality 
remains unaffected if the same positive amount is added to all components of x: 

Z(x + h e )  = Z(x) (e = ( 1 , .  . . , l ) ,  h > 0) (9) 

one obtains a different ordering which turns out to be equivalent to absolute Lorenz 
domination as introduced by Moyes (1987): With L , ( p )  the conventional Lorenz 
curve of x, the absolute Lorenz curve is 

and x is more unequal than y in the absolute Lorenz sense (in symbols: x y) if 
L A , ( p )  5 L A , ( p ) .  This gives another preordering on D which reduces to majoriza- 
tion whenever the latter applies, but it incorporates a more leftist ideal of equality, as 
first pronounced by Kolm (1976), for pairs of income vectors which cannot be ranked 
by majorization. 

There is an infinity of additional preorderings on D which are induced by fam- 
ilies of “compromise inequality indices” (Eichhorn 1988, Ebert 1988, Bossert and 
Pfingsten 1989), i.e., indices with the property 

Z(x + t(hx + (1 - h ) e ) )  = Z(x) (11) 

where 0 5 h 5 1 and t is any scalar such that x + t ( h x + ( l  -h)e)  E R;. Obviously, 
this requirement reduces to (9) for h = 0 and to (6) for h = 1, but it allows some 
“intermediate” value judgments too: while (6) incorporates the “rightest” view that 
an equiproportional increases in all incomes leaves inequality the same, whereas 
an equal absolute increase reduces it (this is not immediate, but follows from (6) in 
conjunction with some minor regularity conditions) and (9) incorporates the “leftist” 
view that an equal absolute increase in income leaves inequality the same, whereas 
an equiproportional increase increases it (which can likewise be shown to follow from 
(9) plus some regularity conditions), the requirement (1 1) implies that inequality 
is increased both by an equiproportional increase of all incomes and by an equal 
absolute reduction, with the h parameter governing the closeness to the pure leftist 
and rightist view, respectively: As h tends to zero, one tends to take the leftist point 
of view, and the rightist point of view is taken as h tends to one. 
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Given A, the preordering “>A” induced by Schur-convex compromise indices 
satisfying (11) amounts to 

which in turn is equivalent to 3 LM 7, where % = (x - x e ) / ( E  + 1 - A) and 
7 = (y - ye)/(Ay + 1 - A), with e = (1, . . . , 1) a vector of ones (Pfingsten 1988a). 

Given the multitude of pairs of vectors x and y in D which still cannot be 
ranked, the primary purpose of any such preordering is not the ranking as such (since 
this is often a rather disappointing exercise), but rather to provide a benchmark test 
for various procedures that affect inequality, like taxation in the case of income in- 
equality. Given any such preordering, it is both sensible and relevant to ask whether 
some tax functions will always (i.e., irrespective of the pretax income vector x) reduce 
inequality. 

For the Lorenz order, the answer is well known (see Eichhorn et al. 1984): A 
tax function t ( t )  will produce an after-tax income vector y which is majorized by 
any pretax income vector x if and only if t ( t )  is incentive preserving and progres- 
sive (i.e., if both residual income t - t ( z )  and average tax rates t ( t ) / z  are increasing 
functions oft).* For the ordering implied by ( l l ) ,  the tax functions compatible with 
that ordering are derived in Pfingsten (1988b). Lambert (1993) gives a detailed dis- 
cussion of such issues, and for the effects on data transformations on Lorenz curves 
in general see Fellman (1976). 

111. CARDINAL COMPARISONS OF INEQUALITY 

As Lorenz curves, whether ordinary, absolute or generalized,t do often cross, there 
remain many pairs of vectors in D which cannot be ranked by any of the methods from 
Section 11. In an empirical comparison involving 72 countries, Kakwani (1984) for 
instance found more than 700 Lorenz crossings among the 2556 possible pairwise 
comparisons, hence the desire to attach some cardinal measure of inequality to a 
given distribution. 

The best known of these cardinal, scalar-valued measures is the Gini index 
G ( x ) ,  defined as twice the area between the Lorenz curve and the 45” line of equality 

*Note that progressiveness by itself does not guarantee a reduction in inequality. It is easy to find examples 
where income inequality in the Lorenz sense increases after a progressive income tax: take two incomes 
of 5 and 10 and a progressive tax rate of 0% up to 6 and 100% afterwards. 

TA generalized Lorenz curve is an ordinary Lorenz curve multiplied by x. It is most useful in welfare 
rankings of income distributions (Shorrocks 1983, Thistle 1989). 
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(the concentration area). It perfectly captures Lorenz’s original intuition that, as the 
bow is bent, so inequality increases, taking a minimum value 0 when all x; are 
equal (i.e., when the Lorenz curve is equal to the 45” line), and a maximum value of 
(n - l) /n whenever all xi except one are zero. It depends on the underlying vectors 
x only via the Lorenz curve of x, so it is obviously symmetric, homogeneous of degree 
zero, and, by construction, compatible with the Lorenz ordering on D. The history of 
this “mother of all indices of inequality” is nicely summarized in Giorgi (1990). 

There are various equivalent expressions for the Gini coefficient, like Gini’s 
own expression 

where 

i , j = l  

is Gini’s mean difference. Rewriting the double sum in (14) as 
n n n 

i , j = l  

one easily sees that 

;>;=I i= 1 

where the latter expression is most useful when discussing sensitivity issues (see 
below), or for showing that A(x)/2x is indeed equal to twice the concentration area. 

Yet another algebraic identity was unearthed by Lerman and Yitzhaki (1984), 
and independently by Berrebi and Silber (1987), who show that twice the Gini index 
equals the covariance between the “rank gaps” r; := i - ( n  - i + 1) and the “share 
gaps” s; = (x(;) - x(n-;+l))/ x(;) of the data. This identity, for instance, implies 
that the Gini index is never smaller than 1/2 for symmetric distributions and that 
a necessary condition for G ( x )  < 1/2 is that x is skewed to the right. It can also 
be used to facilitate the empirical computation of the Gini index from large sets of 
individual data, where competing measures were often preferred to the Gini index 
only because of computational convenience. 

In the context of income equality, an interesting intuitive foundation of the 
Gini index based on (13) which does not rely on the geometry of the Lorenz curve 
was suggested by Pyatt (1976): Choose randomly some unit, say i, with income xi, 
and choose independently and randomly another unit x;. Then, if i keeps his income 
if x; 5 xi and receives the difference if x; > xi, the Gini index is the expected profit 
from this game, divided by average income. 
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A similar idea has led Blackburn (1989) to a nice interpretation of changes in 
the Gini index: Let x and y be income vectors in R; such that G ( x )  > G(y). Then 
G ( x )  - G(y) equals the percentage of x that units in x below the median have to 
transfer to units above the median to make G ( x )  equal to G(y). 

There are various generalizations of the Gini index, such at Yitzhaki’s (1983) 
generalized Gini coefficients or Mehran’s (1976) linear measures of income inequal- 
ity, which like the Gini index can be expressed as functions of the Lorenz curve, 
but which avoid certain shortcomings of the Gini index such as its lack of transfer 
sensitivity (see below). 

The Yitzhaki family of inequality indices is defined as 

with one coefficient for each value of a parameter U > 1. For U = 2, this is the 
standard Gini index G ( x ) ,  but as U increases, higher weights are attached to small 
incomes; the limit as U + 00 of G,(x)  is 1 - %(I)/%, so in the limit inequality 
depends only on the lowest income (given x), expressing the familiar value judgment 
introduced by Rawls, that social welfare (viewed as a function of inequality) depends 
only on the poorest member of society. 

Mehran’s (1976) linear measures of inequality are defined as 

where W ( p )  is some increasing “score function” not depending on x, which allows 
one to incorporate value judgments as to the magnitude of a decrease in inequality 
that is engendered by a Robin Hood transfer involving individuals a given number 
of ranks apart: As is shown in Mehran (1976), the decrease in inequality decreases 
as the rank of the recipient increases (i.e., transfers among the rich are less impor- 
tant than transfers among the poor) if and only if the score functions has a strictly 
decreasing derivative. We will return to this issue of transfer sensitivity in Sec- 
tion IV. 

Again, the family defined by (18) includes the Gini index as a special case 
(take W ( p )  = 2 p ) ,  but it covers various other indices as well, allowing for a unified 
discussion of their properties. For instance, it is easily seen that an index defined by 
(18) is always compatible with the majorization order, but strictly compatible (i.e., 
strict majorization always leads to a strict reduction in inequality) only if W ( p )  is a 
strictly increasing function of p .  Taking W ( p )  = 0 if p is less than the proportion of 
the xi’s below X and W ( p )  = 1 if p is equal to or larger than the proportion of the xi’s 
above X, we obtain the maximum vertical distance between the egalitarion 45” line 
and the Lorenz curve, and the well known result that this distance is not affected by 
transfers either below or above X. 

Historically, this maximum vertical distance between the 45” line and the 
Lorenz curve has come in various guises; it is also known as the “maximum equaliza- 
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tion percentage” (the relative amount of income transfers necessary for total equal- 
ization), and it is also algebraically identical to one half of the relative mean 
deviation: 

2x 
This measure was suggested, more or less independently, by Bresciani-Turroni 
(1910), Ricci (1916), von Bortkiewicz (1931), Schutz (1951), Kuznets (1959), and 
Elteto and Frigyes (1968), to name a few of the authors who have given it their at- 
tention. For simplicity, I will refer to it  as the Pietra index P ( x ) ,  in honor of Pietra 
(1 91 4/ 15). * 

In the context of income inequality, it has long been viewed as a major draw- 
back of both the Gini and Pietra indices and of related indices derived from them 
that they are not explicitly linked to some social welfare function W ( x ) . t  This un- 
easiness was first expressed in Dalton’s (1920) proposal to use the “ratio of the total 
economic welfare attainable under an equal distribution to the total welfare attained 
under the given distribution” as a measure of income inequality; it has led Atkinson 
(1970) to define inequality as A ( x )  = 1 - y/Z, where the scalar y is the income 
that, if possessed by everybody, would induce the same social welfare as the actual 
income vector x. 

U ( . )  is utility, and a utility function 
Given an additively separable welfare function W ( x )  = U ( x i ) / n ,  where 

this approach leads to a family of inequality measures given by 

( E  2 0, E # 1) 

geom. mean of x I arith. mean of x 
1 -  

A&(%) = 

( E  = 1) 

*See Kondor (1971) or Chipman (1985, pp. 142-143) for a hrief sketch of its rather long and winding 
genesis. 

?Of courhe, an implicit link can in most cases easily he constructed, as shown by Sheshinski (1972) for 
the Gini index. In view of Newhery (1970), who shows that the Gini index is incompatible with additive 
separable welfare functions, these implied welfare functions are sometimes rather odd. 
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where the parameter E measures aversion to inequality: As E + 00, A,(%) ap- 
proaches 1 -x(ll/Z, similar to Yitzhaki’s index G , ( x ) .  Also, with E = 1 the Atkinson 
index is one minus the ratio of the geometric to the arithmetic mean, and with E = 2 
it equals one minus the ratio of the harmonic to the arithmetic mean. 

IV. AXIOMATIC APPROACHES TO THE MEASUREMENT 
OF INEQUALITY 

A different approach to avoid the ad hockery implicit in much of the measurement 
of inequality, other than the welfare-based development above, is to specify a set of 
axioms or minimal requirements that an index should obey. Ideally, this leaves one 
with a single index formula, which is then characterized by these initial axioms. 

The first and most obvious axiom is that, as a result of a Robin Hood transfer, 
the inequality index decreases: 

( A l )  Z ( x T )  5 Z(x) for a matrix T of the form (2). 

This minimal requirement is violated by at least one well-known measure of inequal- 
ity, the empirical variance of the logs of the data: It is easy to construct examples 
where income is shifted from rich to poor and inequality increases (Cowell 1988).* 

Another seemingly obvious axiom is symmetry: For any permutation matrix P ,  
we should have 

(A2) I ( % )  = Z ( x P ) .  

Together, (Al) and (A2) amount to Schur convexity (and vice versa): 

(As) x LM y * 5 I(y).  

These axioms, though disputable, are widely accepted. The next two constitute a 
watershed, separating leftist from rightist measures of inequality: 

(A4) 
(AS) 

Z(hx) = Z(x) for all h > 0 (rightist). 
Z(x + he) = Z(x) for all h > 0 (leftist). 

It is easily seen that the only functions I :  D + R satisfying (Al)-(A5) are constants, 
so if these are excluded there is no inequality measure that is both leftist and rightist 
at the same time. 

As a compromise, one might in this context also settle for the Eichhorn-Bossert- 
Pfingsten axiom: 

(A6) Z(x + t ( A x  + ( 1  - A)e) = /(x) (see Eq. (11). 

*As this can happen only for very high incomes, where the very rich give to the not so very rich, the 
significance of this aberration is in practice much disputed, and this measure continues to he widely 
used. 
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Indices which satisfy (A6) remain constant when an income vector x is replaced by 
a weighted mean of x and e = (1, . . . , l), so by adjusting weights one can fine-tune 
one’s degree of social rightism or leftism as closely as desired. 

Another, independent watershed is provided by the next two axioms, which 
separate measures of industry concentration from measures of the inequality of in- 
come and wealth: 

(A7) 
(A8) 

Z(x, 0) = Z(x) (i.e., appending zeros does not affect inequality). 
Z(x, x, . . . , x) = Z(x) (the “population invariance”: replicating a pop- 
ulation rn times does not affect inequality). 

A prominent index satisfying (A7) but not (A8) is the Herfindahl coefficient 

It is often used in legal disputes about merger activities (see, e.g., Finkelstein and 
Friedberg 1967), where (relatively) small firms do not matter for the degree of con- 
centration in the market, and where the axiom (A8) would in fact constitute a liability. 

Unlike (A4) and (A5), (A7) and (A8) are nontrivially compatible with each 
other and (Al)-(A4): consider the well-known Theil index 

where 0 ln(0) is taken to be 0. However, most other measures of inequality satisfy 
either (A7) or (A8), but not both. 

Another important set of axioms concerns decomposability: If we partition the 
x-vector into x = (x(’), . . . , x ( ~ ) ) ,  where x ( ~ )  is ni x 1 and Cni = n, it appears 
desirable that we have 

(A9) Z(x) is uniquely determined by Z(x(1)), n;,  and Z(i). 

Or in words: Knowing inequality in the subgroups and the subgroups’ size and mean 
suffices to determine overall inequality. 

Many well-known inequality measures such as the Gini index, the Pietra in- 
dex, or the logarithmic variance fail this test, sometimes by wide margins. For the 
Gini index, it can be shown that decomposability obtains if the subgroups do not 
overlap, but other indices are not decomposable even then.* For the logarithmic 
variance and the Pietra index, Cowell (1988) gives an example where, even when all 

*At least not in the sense defined by (A9). However, as shown by Kakwani (1980, pp. 178-181), the Gini 
index can be computed from information about factor incomes. This issue of decomposition by factors 
versus decomposition by  subgroups has engendered its own literature, which we do not have space to 
cover here. 



50 KRXMER 

subgroups are strictly ordered by income, it is possible to find a change in income 
such that (a) mean income in every group is constant, (b) inequality in every group 
goes up, but still (c) overall inequality goes down. 

A stronger version of (A9) is additive decomposability, defined as 

where e( i )  is an ni-vector of ones, w; >_ 0, and CE1 wi = 1. This means that 
overall inequality can be expressed as a weighted sum of within-group inequalities, 
plus between-group inequality, defined as the overall inequality that would obtain if 
there were no inequality within the groups. 

Still stronger is what Foster (1983) calls Theil decomposability: 

i.e., the weights are the income shares of the groups. Not surprisingly, the Theil 
coefficient T ( x )  from (23) is decomposable that way. 

A final set of axioms refers to “transfer sensitivity” (Shorrocks and Foster 
1987): These principles strengthen the Pigou-Dalton axiom (A3) by requiring that the 
reduction in inequality resulting from a Robin Hood transfer should ceteris paribus 
be larger, the poorer the recipient. Relying solely on (A3), one could have “a sit- 
uation in which a millionaire made a small (regressive) transfer to a more affluent 
millionaire and a simultaneous large (progressive) transfer to the poorest person in 
society” (Shorrocks and Foster 1987, p. 485), but where the combined effect of these 
transfers is that inequality increases: while the regressive transfer increases inequal- 
ity and the progressive transfer reduces inequality, the axiom (A3) by itself puts no 
restraint on the relative magnitude of these effects, so one needs an additional axiom 
to prohibit such eccentric behavior. 

(A12) I (y’) 5 I (y) whenever y’ and y differ from x by a Robin Hood transfer 
of the same size, with spender and recipient equal amounts apart, but 
where the recipient in y’ is poorer. 

This notion can also be formalized by defining the sensitivity of an inequality index 
I ( - ) ,  evaluated at the components x(;) and x(;) of some vector x, as 

- k , i , ; )  Sl(x, i ,  j )  = lim 
s+o 6 

whenever this limit exists, where 
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For the Gini index, using (16), this is easily seen to be 

2 
S&, i, j )  = ____ ( j  - (25) 

i.e., the sensitivity depends only on the rank of the units involved in the transfer, not 
upon their incomes. In particular, this implies that equal transfers of incomes have 
most effect where the population is densest, which is usually in the center. 

On the other hand, for the Atkinson family, sensitivity is easily seen to be 
proportional to - l/xFjl, so sensitivity increases both with E and with x( i ) ,  
given Ix(,) - and with x(,) - x(;) given x(,): ceteris paribus the decrease in 
inequality is larger, the poorer the recipient and the larger the income gap between 
spender and recipient. 

Given some set of axioms (often augmented by normalization restrictions on 
the range, or requirements concerning continuity and differentiability), the following 
questions arise: (1) Are the axioms consistent with each other? (2) Are all the axioms 
really necessary? (3) What do indices which satisfy these axioms look like? 

The first question is usually answered by exhibiting some specific measure 
that satisfies all requirements. The second question is trickier. While some axioms 
are easily seen to be implied by others ((A3) by ( A l )  and (AZ), (A9) by (AlO), (A8) by 
(All)), others are not: As Russell (1985) demonstrates, at least two of the require- 
ments that Cowell (1980) imposes to characterize the CES class of inequality indices 
are already implied by the others, and this implication is anything but trivial to see. 
Usually, such questions of minimality are settled by exhibiting, for every axiom, at 
least one index that fails this test but satisfies the others (Eichhorn and Gehrig 1982). 

The third question has generated a minor industry, producing results of the 
type: Any function I :  D + R with continuous first-order derivatives satisfying (AZ), 
(A4), (A8) and (AlO), plus I ( e )  = 0, can be expressed as a positive scalar multiple 
of some function 

IAx)  = nc(c 1 - 1) k[(;)c - 13 
1= 1 

with some c E R (Shorrocks 1980). This class of indices has become known as the 
generalized entropy family; as special cases corresponding to c = 1 and c = 0 
(defined as the limit of I , (x)  as c -+ 1 or c -+ 0), it includes the Theil index T ( x )  
defined in (23) and another index proposed by Theil (1967): 

1= 1 

In the same vein, Foster (1983) shows that an inequality index satisfies (A3), (A4), 
and (Al l )  if and only if it is a positive multiple of the Theil coefficient T ( x ) ,  and 
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Eichhorn (1988) shows that the only functions I :  D -+ R satisfying (A3), (A6), and 
I ( e )  = 0 are 

Ax + (1  - A)e 
AT+ (1 - A) 

with some Schur-convex function f such that f ( e )  = 0. 

V. EM PlRlCAL IMPLEMENTATION 

The empirical application of measures of inequality raises various issues which set 
this branch of statistics apart from others. A first and minor problem is the proper 
inference from a sample to a larger population. As samples are typically large, or 
nonrandom, or populations rather small as in the context of industrial concentration, 
relatively little work has been done on this.* 

Much more important, in particular in the context of income inequality, is the 
incompleteness of the data: Typically, income figures are available only for certain 
quantiles of the population, and the rather voluminous literature on inequality mea- 
surement with incomplete data can be classified according to the amount of addi- 
tional information available. 

For the case where only selected points of the Lorenz curve are given (i.e., frac- 
tions of total income received by fractions of the total (ordered) population), Mehran 
(1975) gives the most extreme Lorenz curves that are compatible with these points, 
in the sense that the resulting concentration areas are the smallest and the largest 
possible. 

Obviously, the upper bound is attained by joining the observed points by 
straight lines, as in Figure 2. This is at the same time an upper bound for the true 
underlying Lorenz curve. Likewise, an obvious lower bound to the true underlying 
Lorenz curve is given by extending these lines, as again in Figure 2. However, as 
these line segments do not form a Lorenz curve, Mehran (1975) proposes tangents 
to the true Lorenz curve at the observed points such that the concentration area and 
thus the Gini index are maximized, and he gives a recursive algorithm to compute 
the tangents' slopes. Although this curve does not necessarily bound from below the 
true Lorenz curve, it gives the Lorenz curve which represents (in the sense of the 
Gini index) the most unequal distribution compatible with the data. 

If, in addition to selected points of the Lorenz curve, we are given the interval 
means di), the interval endpoints a;-] and a; ,  and the fraction of the population in 

*See, for instance, Sendler (1979) on the asymptotic distribution of the Gini index and the Lorenz curve, 
or McDonald and Ransom (1981) for the effects of' sampling variability on the bounds below. 
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f 

Figure 2 
through the shaded area. 

Given 2 nontrivial points P1 and P2, the true underlying Lorenz curve must pass 

the various nonoverlapping subgroups that compose the vector x = (%('I, . . . , x(~)), 
the bounds on the Gini index derived by Mehran can be sharpened as shown by Gast- 
wirth (1972). The famous Gastwirth bounds* are based on the expression G ( x )  = 
A(x)/2? and on the decomposition 

i , j=1  i= 1 

where Aci) is Gini's mean difference for group i. In conjunction with 

this decomposition provides immediate bounds for the Gini index, with the lower 
one being attained for A(i) = 0, ( i  = 1 ,  . . . , m),  i.e., when there is no inequality 
within the groups, and the upper bound being attained when the observations in a 
given group are placed at both ends of the interval in a proportion such that the group 
mean is z(~): 

*In part already in Pizzetti (1955); see Giorgi and Pallini (1987). 
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i , j = l  

Still sharper bounds can be obtained from information on symmetry or skewness of 
the distribution within groups: for instance, if distances between observations are 
increasing, as often happens in the higher brackets of income distributions, it can 
be shown that 

A useful rule of thumb when no such extra information is available is provided by 
the  rule, as proposed by Champernowne in an unpublished manuscript and as 
formally derived in Cowell and Mehta (1982): Approximate the unknown true Gini 
index by i G ~ ( x )  + $Gu(x) .  As shown by Cowell and Mehta, this rule gives the 
exact Gini index when the observations within each group are split at di) and spread 
evenly across the subintervals (ai-1, di)) and (di), ai) such that the group mean is 
preserved (the “split-histogram technique”), but it gives a good approximation to the 
true Gini index also for many other disturbances. 

In the same vein, one obtains upper and lower bounds also for other measures 
of inequality, which, like the Gini index, are decomposable by population subgroups 
when the subgroups are nonoverlapping (basically the Gini index plus the gener- 
alized entropy family from (26); see Shorrocks 1984): The lower bound is given by 
a within-group distribution where everybody receives ?idi), and the upper bound is 
given by placing the observations at the ends of the group interval as above. How- 
ever, if the measure is not the Gini index, the +-: rule has to be adapted: the optimal 
approximation-in some sense-to the true inequality index is now f lower bound 
+; upper bound (Cowell and Mehta 1982). 

Using similar techniques, Gastwirth (1975) extends the bounds above to arbi- 
trary inequality measures that can be expressed as ratios of a measure of spread to X 
(which in view of (13) and (19) comprises the Gini and Pietra indices a special cases, 
but covers many other indices as well, possibly after suitable transformations). 

As an alternative to bounds, it  is often suggested to fit a theoretical Lorenz 
curve to selected values L ; ( p )  either by interpolation, such that the fitted curve 
passes through the points (pi, L ( p ; ) ) ,  or by some least-squares technique, where 
the curve is chosen from some given family, and to compute the desired measure of 
inequality from the fitted Lorenz curve. 

When doing interpolation, Gastwirth and Glauberman (1976) propose cubic 
polynomials for the respective intervals whose derivatives at the endpoints match 
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those of the true underlying Lorenz curve* (Hermite interpolation). The resulting 
function need not be convex, i.e., need not be a Lorenz curve itself, but it is easily 
seen (see, e.g., Schrag and Kramer 1993) that the Hermite interpolator is convex and 
monotone if in each interval 

i.e., if the group means stay clear of the endpoints of the intervals. 
As to fitting parametric Lorenz curves, various families have been proposed, 

whose usefulness however seems much to be in doubt as the implied indices of in- 
equality often violate the Gastwirth bounds. One such popular family, suggested by 
Rasche et al. (1980) is 

where 0 < a! 5 1 , 0  < B 5 1. The implied Gini coefficient is 

2 1 1  

a! Q B  
G ( x )  = 1 - - B ( - ,  - - 1) (35) 

where B(.,  .) is the familiar Beta function, so this approach amounts to first fitting 
(34) to the observed points of a true Lorenz curve via some nonlinear least-squares 
technique and approximating the true Gini coefficient by (35). 

However, as shown by Schader and Schmid (1994), the approximations thus 
obtained often fall outside the Gastwirth bounds (for curves of the form (34) and for 
other families as well), so the consensus is that such approximations do not work (see 
also Slottje 1990). 

VI. MULTIDIMENSIONAL INEQUALITY AND POVERTY 

There are various additional research areas which impinge on inequality, such as 
the welfare ranking of income distributions (Shorrocks 1983, Thistle 1989), the mea- 
surement of interdistributional inequality (Butler and McDonald 1987, Dagum 1987), 
or the parametric modeling of income distributions and the inequality orderings that 
are implied by the parameters (Chipman 1985, Wilfling and Kramer 1993), which 
I do not cover here. Rather, I pick the issues of multidimensional inequality and 
poverty to show how the concepts introduced above can be extended. 

Take poverty. Although among certain sociologists, this is taken to be almost 
synonymous to inequality (“relative deprivation”), the majority consensus is that 

*Remember that the Lorenz curve has the slope x ( , ) / X  in the interval ((i - l)/n, i / n ) ,  so its (left-hand) 
slope in pi is sip. 
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poverty is something different, and needs different measures for quantification. Fol- 
lowing Sen (1976), this is usually done by first identifying a poverty line z below 
which an income unit is considered poor, and then combining the poverty character- 
istics of different units into an overall measure of poverty. Two obvious candidates 
are the “head-count ratio” 

n* 
H ( x )  = - 

n 

where n* is the number of units below the poverty line, and the “income gap ratio” 

i.e., the normalized per unit percentage shortfall of the poor. Individually, both mea- 
sures have serious shortcomings-the head-count ratio is completely insensitive to 
the extent of poverty, and might even fall when income is transferred from a poor 
person to somebody not so poor, who thereby moves above the poverty line, and the 
income gap ratio takes no account of the numbers of the poor-but they can be com- 
bined into a measure with various desirable properties (Sen 1976): 

S ( x )  = H ( x ) [ l ( x )  + (1 - Z(x) )G(x)]  (38) 
- 

where G ( x )  = G ( x ( l ) ,  . . . , x(,,*)) is the Gini index of the incomes of the poor. This 
measure reduces to H ( x )  . Z(x) if all the poor have the same income, and it increases 
whenever an income of a poor person is reduced (while incomes above the poverty 
line always receive uniform weights, entering only via the head-count ratio H ( x ) ) .  

For large n*, the coefficient S ( x )  can be shown to be almost identical to 

i.e., it is a weighted sum of the income gaps of the poor, with weights increasing 
as income gaps increase, which at the same time points to a serious shortfall of this 
measure of poverty; it is based solely on the ranks, not on the distances of the incomes 
of the poor, so there has been an enormous literature in the wake of the seminal paper 
by Sen (1976), surveyed in Seidl (1988), which goes on from here. 

Comparatively little work has been done on the second important issue of mul- 
tidimensional inequality. While it is widely recognized that a single attribute such 
as income is often not sufficient to capture the phenomenon whose inquality is to be 
determined, the statistician’s toolbox is almost empty here. 

There is a short chapter on multivariate majorization in Marshal1 and Olkin 
(1979), where majorization among n-vectors x and y is extended to majorization 
among M x n matrices X and Y :  By definition, X > M  Y if and only if Y = X P  
with some doubly stochastic matrix P.  When m = 1, this is equivalent to Y = 
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XT1, T2, . . . , TL with finitely many matrices of the form (2), but when rn 2 2 and 
n 2 3, the latter condition is more restrictive, as simple examples show (Marshal1 
and Olkin 1979, p. 431). Therefore I denote the latter preordering by ">T." 

As shown by Rinott (1973), a differentiable function f: R""" + R respects 
the preordering > T  if and only if f ( x )  = f ( x P )  for all permutation matrices P ,  and 
if for all j ,  k = 1,  . . . , n, 

where f i k ( x )  = af/ax;k evaluated at X .  Similar to the univariate case, this con- 
dition could presumably be used to suggest new indices and screen old indices of 
inequality. However, as the rationale for the >r preorder is much less compelling 
for rn > 1 as it is for rn = 1 (with data matrices, even fewer pairs will in general be 
ordered in a given application than if we had only vectors), the condition (40) does 
not immediately suggest a convenient index of multivariate inequality. 

Similar to the univariate case, these majorization orderings can be embedded 
in a more general order, which in turn is based on a multivariate generalization of the 
Lorenz curve (Koshevoy and Mosler 1996). For X E RY"", define the Lorenz zonoid 
of X as the convex hull of the set 

and define 

For rn = 1, this boils down to the univariate Lorenz order, as L Z ( X )  is then the 
subset of R2 enclosed by the Lorenz curve L x ( p )  and the "dual Lorenz curve" 
E x ( p )  := 1 - L x ( p  - 1)  (the area of which is equal to the Gini index G ( x ) ) .  For 
rn > 1, the Lorenz zonoid is a convex subset of the unit cube in Rrn+'. 

The multivariate Lorenz ordering defined by (42) allows matrices of different 
means and row dimensions to be compared. It is further related to univariate Lorenz 
dominance by the fact that X 21, Y if and only if the generalized Lorenz curve of 
d'X is below the generalized Lorenz curve of d'Y for all coefficient vectors d such 
that d ;  2 0 and x ( d ; )  = 1 (Koshevoy and Mosler 1996, Theorem 3.1). 

Other generalizations from univariate to multivariate concepts of inequality 
exploit the parallel between inequality and choice under uncertainty (Kolm 1977). 
Atkinson and Bourgignon 1982), or the obvious relationship between multivariate in- 
equality and the decomposition of inequality by factor components (Shorrocks 1988, 
Maasoumi 1986, Rietveld 1990), but as  this field has not yet reached the maturity 
for a useful survey, I had better close my survey here. 
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Poor Areas 

Martin Ravallion 
World Bunk, Washington, D.C. 

As China’s economic miracle continues to leave millions behind, more and more 
Chinese are expressing anger over the economic disparities between the flour- 
ishing provinces of China’s coastal plain and the impoverished inland, where 70 
million to 80 million people cannot feed or clothe themselves and hundreds of 
millions of others are only spectators to China’s economic transformation. The 
New York Times, December 27, 1995, p. 1. 

China is not unusual; almost all countries have their well-recognized “poor areas,” in 
which the incidence of absolute poverty is unusually high by national standards. In 
China, there is high poverty incidence in rural areas of the southwest and northwest 
(the “inland” areas referred to in the quotation). Similar examples in other countries 
include some of the eastern Outer Islands of Indonesia, parts of northeastern India, 
northwestern and southern rural areas of Bangladesh, much of northern Nigeria, the 
rural Savannah in Ghana, the northeast of Brazil, and many other places. 

We would hope, and under certain conditions expect, that the growth process 
will help these poor areas catch up. But that does not appear to be happening in some 
countries. Figure 1 illustrates the divergence over time between the relatively well 
off and more rapidly growing coastal areas of China and the lagging inland areas. 
The figure plots the aggregate rate of consumption growth at county level in southern 
China 1985-1990 against the initial county mean wealth. The data cover 119 coun- 
ties spanning a region from the booming coastal province of Guangdong through to 
the poor inland areas of Guizhou.* There is a positive regression coefficient, sug- 

*The figure is reproduced from Ravallion and Jalan (1996). It is based on a panel of farm-household level 
data for rural areas in four provinces of southern China. The data cover 4700 households living in 119 
counties. The consumption measure is comprehensive, in that it includes imputed values (at local market 
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Change in log county mean consumption per capita, 1985-90 

0.4 

0 

0 0 0  
0 0 

0 

0.2 

0 

0 

0 

0 0 

-0.2 0 0 0 
0 

0 

-0.4 I 

-0.6 
5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 

Log of county wealth per capita, 1985 

Figure I Consumption growth by county in rural South China. 

gesting divergence, and it is significant (at the 1% level). Initially wealthier counties 
tended to have higher subsequent rates of consumption growth. 

Nor is China the only country in which poor areas appear to persist in spite 
of robust economic growth; for example, the eastern Outer Islands of Indonesia ap- 
pear to have shared rather little in that country’s sustained (and generally pro-poor) 
economic growth since 1970. It seems that there is a degree of persistence in the 
economic geography of poverty; indeed, a generation or more ago, the above list of 
“poor areas” by country would probably have looked pretty similar. 

As the opening extract suggests, there are widespread concerns about poor 
areas, particularly when they persist amidst robust aggregate economic growth. In 
assessing the social impact of economic growth or growth-oriented economic reform, 
economists have traditionally focused on the impact on one or more measures of 

prices) of consumption from own production plus the current service flows from housing and consumer 
durables. The data also include a seemingly complete accounting of all wealth including valuations of 
all fixed productive assets, cash, deposits, housing, grain stock, and consumer durables. The data are 
discussed at length in Chen and Ravallion (19%). 
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social welfare, including various measures of aggregate poverty. Yet, it appears that 
impacts are typically diverse among the poor, and in the society as a whole; some lose 
and some gain from economy-wide changes. This can be important to know, if only to 
better understand the political economy of growth and reform, though policymakers 
may well also make the (normative) judgment that a premium should be attached to 
more “balanced” growth. Studying these diverse impacts may also hold important 
keys to our understanding of the growth process itself and to a variety of questions 
often asked by policymakers, such as what is the best policy response to the problem 
of why some subgroups are lagging. 

So why do some people, and in particular some regions, do so much better than 
others in a growing economy? It turns out that most of the standard tools of analy- 
sis used in studying poverty, distribution, and growth are ill-equipped to answer this 
question. After reviewing those tools, this chapter suggests some new tools of empiri- 
cal analysis that may offer a better chance of answering it. We look at the dynamics of 
the geography of poverty from a microlevel to help understand the way various initial 
conditions and exogenous shocks impinge on household-level prospects of escaping 
poverty over time. While we note the links to various strands of theoretical and em- 
pirical economics, the chapter is not a survey. Rather it tries to be forward-looking 
on a set of seemingly important research questions, to explore how future research 
might better address them. 

This is also an issue of considerable relevance, as the chapter will emphasize. 
The empirical approach outlined here would appear to entail a substantial expan- 
sion in the number of policy-relevant variables which are included in microempiri- 
cal models of poverty. Past interventions in poor areas are amongst those variables. 
Faced with lagging regions amidst overall growth, governments and donors are regu- 
larly called upon to do something about these lagging poor areas. Area-based inter- 
ventions are now found in most countries.* How much impact do such interventions 
have on living standards? To answer this we must be able to assess what would have 
happened to living standards in the absence of the interventions. It should not be as- 

~~ 

*For example, on recognizing the problem of lagging rural areas, China introduced a large antipoverty 
program in 1986 which declared that 272 (rural) counties were “national-poor counties,” and targeted 
substantial aid to those counties. The extra aid took the form of‘ subsidized credit for village-level projects 
(provided at well below market rates of interest), funding for public works projects (under “food-for-work” 
programs), and direct budgetary support to the county government. This national poor area program is 
the main direct intervention in the government of China’s current poverty reduction policy (Leading 
Group 1988, World Bank 1992, Riskin 1994). Again China is not unusual. The World Bank has assisted 
over 300 area development projects sinre the early 1950s spread over all regions; most of these projects 
were designed to develop a selected rural area for the benefit of poor people. Other agencies, such as the 
International Fund for Agricultural Development, also provide substantial support for such programs 
(Jazairy et al. 1992). There has been a recent resurgence of interest in such programs in the World Bank 
and elsewhere. 
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sumed that such schemes will even entail net gains to poor people; by acting against 
the flow of factor mobility from low to high productivity areas, it could be argued that 
such interventions actually make matters worse in the longer term. Depending on 
how the economy works in the absence of intervention-the nature of the technol- 
ogy, preferences, and any constraints on factor mobility-a poor area program could 
entail either a net benefit or net cost to poor people. 

The paper argues that the geographic variation in both initial conditions and 
the evolution of living standards over time offers scope for disentangling the effects of 
poor-area programs from other factors. Even within poor countries, geographic areas 
differ widely in their endowments of various aspects of “geographic capital,” includ- 
ing locally provided public services and access to area-specific subsidies. These dif- 
ferences are both geoclimatic and the outcomes of past policies and projects. There 
is typically also a spatial variance in poverty indicators. The spatial variation in both 
the incidence of poverty and in area characteristics offers hope of better understand- 
ing why we see poor areas, what can be done to help them, and how well past efforts 
have performed. By exploiting this spatial variation, we should be in a better position 
to understand what role the lack of geographic capital plays in creating poor areas, 
versus other factors including residential differentiation, whereby people who lack 
“personal capital” end up being spatially concentrated. 

The following section explains the motivation for studying the problem of “poor 
areas.” Section I1 discusses the “standard” empirical tools found in practice, rely- 
ing on either static micromodels or aggregate dynamic models. Section I11 discusses 
a micromodeling approach and its links with recent work in economics on the de- 
terminants of economic growth. Some potential lessons for policy are described in 
Section IV. 

1. MOTIVATION 

A. W h y  Do We See Unusually Poor Areas? 

The starting point for assessing the pros and cons of poor-area policies is an under- 
standing of why we see poor areas in the first place. Among economists and poli- 
cymakers, a common explanation of poverty is based on an individualistic model in 
which poverty arises from low household-level endowments of privately held produc- 
tive resources, including human capital, albeit with important links to the regional 
and macroeconomy, notably through wages and prices. This view is epitomized in 
the familiar human-capital earnings functions. The dynamic version is the stan- 
dard neoclassical growth model, the microfoundation of which assumes atomistic 
agents linked only through trade at common prices. If one believes this model, then 
poor areas presumably arise because people with poor endowments tend to live to- 
gether. Area differences in access to (for example) local public goods might still be 
allowed in such a model, but as long as there is free mobility they will not mat- 
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ter to the welfare of an individual household, which will depend on its a-spatial 
exogenous attributes. The types of antipoverty policies influenced by this model 
emphasize raising the endowments of poor people, such as by enhanced access to 
schooling. 

Regional divergence is still possible in such a model. If there are increasing re- 
turns to scale in private production inputs, then initially better-off areas, with better 
endowments of private capital, will tend to see subsequently higher rates of growth. 
This is the essence of the view of regional growth that one finds in the writings of 
Myrdal (1957), Hirschman (1958), and others since (see the review in Richardson 
and Townroe 1986). By this interpretation, persistently poor areas, and divergence 
from wealthier areas, reflect the nature of the technology and the geography of nat- 
ural resource endowments. There may still be a case for targeting poor areas, but it 
would be a redistributive case, and it would imply a trade-off with the overall rate of 
economic growth. 

The individualistic model does not attach any causal significance to man-made 
spatial inequalities in geographic capital-the set of physical and social infrastruc- 
ture endowments held by specific areas. Indeed, with free mobility, the individu- 
alistic model predicts that household welfare will only depend on private, mobile, 
endowments, and other exogenous attributes of the household. Against this view, 
one can postulate a geographic model in which individual poverty depends heavily 
on geographic capital and mobility is limited. By this view, the marginal returns to a 
given level of schooling, or a loan, depend substantially on where one lives, and lim- 
ited factor mobility entails that these differences persist. Relevant geographic factors 
might include local agroclimatic conditions, local physical infrastructure, access to 
social services, and the stock of shared local knowledge about agroclimatic condi- 
tions and about the technologies appropriate to those conditions. It is not implausible 
that some or all of these geographic factors alter the returns to investments in private 
capital. As I argue later, it is likely that they will also entail increasing returns to ge- 
ographic capital when there are nonincreasing returns to private production inputs. 
Thus it might well be that people are being left behind by China’s growth process 
precisely because they live in poor areas; given their private endowments, they would 
do better in China’s coastal areas. 

If this model is right, then the policies called for will entail either public invest- 
ment in geographic capital or (under certain conditions, discussed below) proactive 
efforts to encourage migration, and such policies need not entail a trade-off with the 
overall rate of growth. That will depend on the precise way in which differences in 
geographic capital impact on the marginal products of private capital and, hence, 
the rate of growth. That is an empirical question. 

Neither model provides a complete explanation for poor areas. The individ- 
ualistic model begs the questions of why individual endowments differ persistently 
and why residential differentiation occurs. The geographic model begs the questions 
of why community endowments differ and why mobility is restricted. But, as I will 
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argue, knowing which model is right, or what the right hybrid model looks like, can 
provide valuable information for policy. 

8. PastWork 

What do we already know about poor areas that might throw light on which of these 
models is most relevant? There has been a vast amount of empirical research testing 
the individualistic model, including human-capital earnings functions and similarly 
motivated income and consumption determination models estimated on microdata 
(Section 1I.B). This research has often assumed that the individual, “private capi- 
tal,” model holds. While sometimes spatial variables are added, this is done in an 
ad hoc way. At the same time, there is also a large, but mostly independent, liter- 
ature on economic geography and regional science which has emphasized the im- 
portance of spatial effects on the growth process (for a survey see Richardson and 
Townroe 1986). The individualistic model has not been tested rigorously against the 
geographic model, in an encompassing framework which would allow the two models 
to fight it out. 

But there is evidence of spatial effects in the processes relevant to creating 
and perpetuating poverty. The evidence of spatial effects comes from a variety of 
sources, including the following. 

“Poverty profiles” (decompositions of aggregate poverty measures by sub- 
groups of a population, including area of residence) typically contain evidence of 
seemingly significant spatial differences in poverty incidence or severity. However, 
typical poverty profiles do not allow one to say whether it is the individualistic model 
or the geographic model that is producing these spatial effects. In the (far fewer) 
cases in which suitable controls were used, spatial effects did appear to persist (van 
de Walle 1995, Jalan and Ravallion 1996, Ravallion and Wodon 1997). 

In some of the settings in which there are persistently poor rural areas 
there does not appear to be much mobility among rural areas (though more so from 
rural to urban areas). In some cases (such as China) mobility has been deliberately 
restricted, but intrarural mobility seems uncommon elsewhere (such as in much of 
South Asia, though exceptions exist, such as seasonal migration of agricultural la- 
bor). Then the individualistic model immediately seems implausible; for how did the 
residential differentiation come about with rather little mobility? 

The literature on the diffusion process for new farm technologies has em- 
phasized local community factors, including the demonstration effect of the presence 
of early adopters in an area, and there is some supportive evidence for India in Foster 
and Rosenzweig (1995). 

There is also evidence for India that areas with better rural infrastructure 
grow faster and that infrastructure investments tend to flow to areas with good agro- 
climatic conditions (Binswanger et al. 1993). The type of data used has not, however, 
allowed identification of external effects (discussed further in Section 111). 

1. 

2. 

3. 

4. 
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5. Gains from the geographic concentration of some industries (arising from 
scale economies and limited factor mobility; see Krugman 1991) could also entail 
spatial effects in a growth process. This could be magnified by intersectoral link- 
ages. For example, there is evidence for China (Sengupta and Lin 1995) that higher 
non-farm-sector growth-possibly policy induced-brings external benefits to the 
traditional farm sector through improved technologies and management. There is 
evidence of positive external effects of higher density of economic activity on pro- 
ductivity across states of the United States (Ciccone and Hall 1996). 

There is also some evidence of human-capital spillover effects. In the 
United States, the neighborhood where a child was raised appears to influence her 
schooling performance and adult wages (Borjas 1995, Datcher 1982, Wilson 1987, 
Case and Katz 1991). 

Informal risk-sharing arrangements within poor communities entail that 
individual consumption depends in part on the community’s aggregate consumption; 
there is supportive evidence for India in Townsend (1991), though also see Ravallion 
and Chaudhuri (1997). 

Preferences, including discount rates, may well be formed within commu- 
nities, entailing spatial effects on (among other things) the growth process. This is 
hard to test, but there is evidence for Indonesia of spatial autocorrelation in consumer 
demand behavior (Case 1991). 

There is also some evidence of spatial autocorrelation in growth processes 
at the country level; the higher the average growth rate of a country’s neighbors the 
higher is its own growth rate ceteris paribus (e.g., Easterly and Levine 1995). 

All this is suggestive, but we are still a long way from a good understanding 
of why poor areas exist and persist. The answers could have great bearing on devel- 
opment policy. If the process of escaping poverty involves strong spatial effects then 
there may be large benefits from policies and projects which are targeted to poor ar- 
eas, even if they are not targeted to households with poor endowments per se. It may 
also niean that, without (possibly substantial) extra resources, or greater mobility, 
the poor may be caught in a spatial poverty trap. To have any chance of success, an 
antipoverty policy may have to break the community-level constraints on escaping 
poverty, by public investment or encouraging migration. 

6. 

7. 

8. 

9. 

C. Poor-Area Policies 

What are the policy options in assisting poor areas? Two broad types of area-based 
policy intervention can be identified which are aimed (explicitly or implicitly) at 
poverty reduction: one is geographic targeting of subsidies, taxes, or public invest- 
ments, and the other is migration policy. 

Geographic targeting of antipoverty schemes has been popular, though so far 
the assessments of poverty impacts have largely ignored dynamic effects. The at- 
traction of this policy option for targeting stems from the existence of seemingly 



70 RAVALLION 

substantial regional disparities in living standards in many developing countries. 
Place of residence may thus be a useful indicator of poverty. Local governments pro- 
vide an administrative apparatus. However, some assessments of the potential for 
this policy instrument to have more than a minor impact on aggregate poverty have 
not been encouraging. While regional poverty profiles for LDCs typically show large 
geographic disparities, regional targeting still entails a leakage of benefits to the non- 
poor in poor regions, and a cost to the poor in rich regions. And even with marked 
regional disparities, these effects can wipe out a large share of the aggregate gains to 
the poor.* 

A deeper analysis of why poor areas exist could have a number of implications 
for all such geographically targeted development policies and projects. The case for 
poor-area interventions depends on precisely why we observe poor areas. Here it can 
be important to know just how much of the poverty one sees is attributable to area- 
specific attributes versus personal attributes which may best be dealt with through a- 
spatial programs. If poor areas arise from residential differentiation through mobility 
(as the individualistic model would suggest), then such mobility will clearly limit the 
scope for targeting on the basis of where people live. On the other hand, if place of 
residence does matter even when one controls for personal characteristics then the 
case for area-based programs and investments could be greatly strengthened. 

Past assessments of geographic targeting have been essentially static, though 
the limitations of this view have been noted by Ravallion (1993). Yet without suc- 
cessful intervention, the competitive equilibrium in the geographic-capital model 
would be unlikely to achieve a Pareto optimum, given the pervasive externalities. 
The geographic model could thus imply dynamic efficiency gains from investing in 
geographic capital; that will depend on the way in which geographic capital affects 
the marginal returns to investment in private capital. If borne out by the evidence, 
the geographic model may thus lead one to question any presumption that targeting 
poor areas would necessarily have an aggregate growth cost. 

A deeper understanding of why we see poor areas is also needed to inform 
choices about the specific types of poor-area programs needed. For example, a com- 
mon debating point in formulating poor-area programs is the priority to be given to 
basic health and education versus credit and physical infrastructure. Should policy 
be focusing on education or should i t  be roads? Is a package on interventions called 
for, as in the “Integrated Rural Development Programs”? This is also a matter of the 

*For India, Datt and Ravallion (1993) consider the effects on poverty of pure (nondistortionary) trans- 
fers among states, and between rural and urhan areas. They find that the qualitative etfect of reducing 
regional/sectoral disparities in average living standards generally favors the poor. However, the quanti- 
tative gains are small. For example, the elimination of regional disparities in the means while holding 
intraregional inequalities constant, would yield only a small reduction in the proportion of persons below 
the poverty line, from an initial 33% to 32%. Also see Ravallion (1993) for Indonesia. 
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nature and extent of the interaction efSects among area characteristics as they affect 
living standards and their evolution over time. 

There are also potentially important implications for economic evaluations 
of the dynamic gains from area-specific interventions to reduce poverty. With lit- 
tle mobility, living in a designated poor area can be taken as exogenous to house- 
hold choices. However, the existence of spatial externalities may well entail that the 
growthpath of future household living standards is dependent on the same area char- 
acteristics which influence the public decision to declare the community poor. The 
problem is essentially one of omitted-variable bias when there is state dependence in 
the growth process. For example, a low endowment of local public goods may simul- 
taneously induce a lower rate of growth and a higher probability of the community 
being declared poor. Unless this is accounted for, the value to households of living in 
an area which is targeted under a poor-area program will be underestimated (Jalan 
and Ravallion 1996). 

Assessing the case for all such interventions requires a deeper understanding 
of how poor areas came to exist. That understanding can also inform other areas of 
policy. The case for proactive migration policies may be strengthened if one finds that 
there are strong geographic factors in the creation and perpetuation of poor areas. 
That will depend in part on the precise nature of those factors. If the geographic effect 
is largely explicable in terms of physical infrastructure endowments (as at least the 
proximate cause), then the case for migration policies will be strengthened; migrants 
who go to better-endowed areas will gain, and those left behind will also gain if there 
is less crowding of the existing infrastructure in the poor area. But if the geographic 
factors are largely social (to do with social capital, or the spillover effects of local 
endowments of human capital), then the migration policy may make matters even 
worse for those left behind. (This is often said about the effects of suburbanization 
or inner-city areas in the United States.) 

Motivated by the above discussion, the following sections will discuss various 
approaches to empirical modeling which might prove fruitful in understanding the 
economic geography of poverty so as to inform these difficult policy issues. 

II. STATIC MICROMODELS AND DYNAMIC 
AGGREGATE MODELS 

A. Static Poverty Profiles 

Standard empirical models of poverty are estimated on single cross-sectional sample 
surveys. To illustrate, suppose we have a single cross-sectioned sample of house- 
holds giving consumption C;,  for household i at date t .  If one regresses this (or its 
log) against a set of location dummy variables dl  , d,, . . . , d, for rn regions, then 
one will retrieve an estimate of what can be termed the “unconditional geographic 
poverty profile”: 
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where a and Pj, are parameters to be estimated and uit is an unobserved error term. 
If we were to repeat this for other years, then we could also see how the geographic 
poverty profile changes over time. 

This type of geographic poverty profile is found in (for example) almost every 
poverty profile found in the World Bank’s Country Poverty Assessments (the regres- 
sion may not be run, but in this case a bivariate cross-tab of the poverty measure by 
region is just another way of running the regression). While useful for some purposes 
(including geographic targeting), this type of poverty profile tells us nothing about 
why there is more poverty in one place than another. It may be, for example, that 
people with little education tend to live in certain places. Then if one controlled for 
education, the regional dummy variables would become insignificant. 

Extending this logic, it is becoming common practice to estimate more com- 
plex multivariate models in which a set of household characteristics are added, rep- 
resented by the vector xi, giving the augmented regression 

If the geographic dummy variables remain significant in this augmented regression, 
and one has controlled for all relevant household characteristics, then we can con- 
clude that there are location-specific factors at work independently of personal char- 
acteristics. Of course, the personal characteristics may well also be a function of 
where one lives, and if one “solves out” this effect one would be back to (1). The 
interest in (2) is in testing if there are locational effects which appear to have little 
or nothing to do with private endowments; people in some area may tend to be less 
well educated (a personal characteristic) or (because of poor local infrastructure, for 
example) they may be unable to obtain a good return to their education, even when 
they are as well educated as people elsewhere. The aim in estimating (2) is to identify 
the latter effect (Ravallion and Wodon 1997). 

If one also has community-level data, giving the stocks of physical and human 
infrastructure and locations of any area-based interventions, then one can use these 
data to try to explain the (conditional and unconditional) regional poverty maps im- 
plied by the above regressions. This can either be done using a two-step estimator 
or (probably more efficiently) in one step, by replacing the area-dummy variables in 
(1) and (2) by geographic characteristics to give 

The specification in (2) and (3) imposes additive separability between the 
regional effects and household-level effects. However, this can be readily relaxed 
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by adding interaction effects (so, for example, returns to education may depend on 
where one lives). All parameters can be allowed to vary locationally by estimating a 
separate regression on household characteristics for each region. 

If one has access to repeated cross-section samples representing the same pop- 
ulation then these static models can be repeated to see how the identifiable regional 
effects (both conditional and unconditional) have evolved over time. Does one find, 
for example, that poor regions are catching up over time, or are they diverging? This 
can be addressed by studying how the (conditional and unconditional) data-specific 
coefficients on the area dummies evolve. 

So far the discussion has focused on a single welfare indicator. But this is 
almost surely too restrictive. More generally one can postulate a set of indicators 
aiming to capture both “income” and “non-income” dimensions of well-being. In 
addition to consumption of market goods and services one could include indicators 
of attainments in terms of basic capabilities, such as being healthy and well nour- 
ished. The aim here is not to make a long and overlapping list of such indicators but to 
capture the aspects of welfare that may not be convincingly captured by consumption 
or income as conventionally defined (Ravallion 1996). So indicators of child nutri- 
tional status or morbidity would be compelling since conventional household-level 
aggregates may be weak indicators of distribution within households. 

B. Interpreting Static Micromodels 

The interpretation of these regressions is often difficult, given that i t  is often unclear 
how one would motivate them from economic theory. Under special conditions (per- 
fect credit markets, rational expectations, quadratic instantaneous utility function) 
one can interpret these equations as models of permanent income, in which case the 
right-hand-side variables are the various lifetime assets and their rates of return, or 
determinants of these. More generally there is a more complex intertemporal model, 
probably involving liquidity constraints such that current income and holdings of 
liquid assets are the key explanatory variables one should be looking to account for 
with whatever data can be observed in the current cross-sectional survey. Fuzziness 
in the link ftom observed household and geographic data to the relevant assets adds 
to the difficulties of interpretation. This discussion will focus on some of the special 
problems posed by the geographic variables. 

Insignificant regression coefficients on the regional dummy variables (/3;t s in 
(1) and (2)) would suggest that area characteristics have no independent effect on 
living standards, either because there is free mobility-so that households with the 
same x can achieve the same standard of living everywhere-or there is no mobility, 
but area characteristics are fundamentally irrelevant to welfare. Provided one has 
fully captured the relevant household characteristics, significant values for the pJts ,  
on the other hand, are inconsistent with free mobility. If, however, there are impor- 
tant omitted household characteristics-a possibility that one would be unwise to 
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dismiss-and the equilibrium under free mobility entails residential differentiation 
according to those characteristics, then this could produce significant p j ls .  

The interpretation of the coefficients on area dummy variables or area charac- 
teristics as “pure” geographic effects thus depends critically on having a complete 
set of the x variables to control for household characteristics. The geographic dum- 
mies might be picking up an omitted a-spatial household characteristic in a resi- 
dentially differentiated location equilibrium. As always, it is a matter of judgment 
to what extent omitted variable bias of this sort is a problem. However, this con- 
cern does speak to the need for rich integrated microdata sets in which a very wide 
range of data on individual and household characteristics are collected for the same 
sampled households. 

Consistent estimation by OLS requires that the regional dummies and the 
household characteristics are uncorrelated with the error term. Another source of 
bias is migration. There are ways of dealing with this, such as by estimating a switch- 
ing regression which determines which region or sector the household is located. The 
estimated probabilities of being in a given region or sector can then be used to cor- 
rect for selectivity bias (Maddala 1986 surveys this class of econometric models). As 
always, the problem of identification will arise in that the same variables determin- 
ing levels of living at a given location will presumably also influence location choice. 
A regional switching regression could also be plagued by endogeneity problems of 
its own; is being better educated the cause or the effect of living in urban areas, say, 
where schools are better and more accessible? This is a case where the econometric 
cure could be worse than the disease. 

The importance of these considerations should be judged on a case-by-case 
basis. The extent to which endogeneity of household location is a serious concern 
in many developing-country applications is unclear. As a stylized fact, the cost of 
moving the whole household can be considerable; a rural farm-household typically 
does not abandon its land to move in its entirety to urban areas (say) but exports 
surplus workers, who retain the right (or even obligation) to return. Intrarural mi- 
gration of whole farm-households also appears to be uncommon. In many settings it 
may be plausible to identify locational effects for a (possibly large) subset of house- 
holds, such as farm households but not others (relatively mobile landless laborers 
and urban workers, for example.) 

C. Estimating Static Micromodels in the Form of a 
“Poverty Regression” 

Static “poverty regressions” have become a standard tool in poverty analysis. The 
most common approach assumes that the poverty measure is the headcount index, 
given by probability of living below the poverty line. One postulates that real con- 
sumption or income Ci is a function of a (column) vector of observed household char- 
acteristics xi, namely Ci = px; + E; ,  where p is a (row) vector of parameters and ii 
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is an error term; this can be termed the “levels regression.” A now common method 
in poverty analysis is not to estimate the levels regression but to define the binary 
variable h; = 1 if z 2 C ; ,  and hi = 0 otherwise. The method then pretends not to 
observe the yis, acting as if only hi and the vector of characteristics x; is observed. 
The probability that a household will be poor is P = Prob[C < z I x] = Prob[& < 
t - 8x1 = F ( t  - px), where F is the cumulative distribution function specified 
for the residuals in the levels regression. A probit or logit is then usually estimated, 
depending on the assumption one makes about the distribution of the error term &i.* 
(One could also use a semiparametric estimator which allows the distribution of the 
error to be data determined.) One can also generalize this procedure to other (“higher 
order”) poverty measures and estimate censored regression models. 

However, this common practice is difficult to defend since-unlike the usual 
binary response model-here the “latent” variable is fully observed. So there is 
no need for a binary response estimator if one wants to test impacts on poverty of 
household characteristics. The parameters of interest can be estimated directly by 
regressing Ci on xi. The relevant information is already contained in the levels re- 
gression which is consistently estimable under weaker assumptions about the errors. 
Measurement errors at extreme Cs may prompt the use of probits, though there are 
almost certainly better ways of dealing with such problems, which do not entail the 
same loss of information, such as by using more robust estimation methods for the 
levels regression. 

Nor is the “poverty regression” method necessary if one is interested in cal- 
culating poverty measures conditional on certain household characteristics. Subject 
to data availability, Prob[C < z I x] can be estimated directly from sample data. 
When the number of sampled households with a specific vector of characteristics of 
interest, xl say, is too small to reliably estimate Prob[C < z 1 XI] from a subsample, 
one can also turn to regression methods for out-of-sample predictions. But these pre- 
dictions can also be retrieved from the levels regression, though one must then know 
the distribution of the errors. (For example, if the errors are normally distributed with 
zero mean and a variance o’, then the probability of being poor is F [ ( z  - Bx)/a], 
where F is standard normal.) There is nothing gained from using a binary-response 
estimator, so the econometric sophistication of “probits” and so on buys us very little 
in this case. 

Poverty regressions may make more sense if one wants to test the stability of 
the model for poverty across a range of potential poverty lines. Suppose, for example, 
that one of the regressors is the price of food, and that very poor people tend to be net 

*The earliest example that I know of is Bardhan (1984), who used a logit regression of the probability of a 
household being poor against a range of household and community characteristics using sample survey 
data for rural West Bengal. Other examples include Gaiha (1988), Grootaert (1994), Foley (1995), and 
World Bank (1995). 
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consumers of food, while those who are somewhat better off tend to be net producers. 
Then the distributional shift with a change in the price of food will not entail first- 
order dominance, as assumed by the standard levels regression. Instead one might 
want to specify a set of regression functions the parameters of which vary according 
to the segment of the distribution one is considering. One way of estimating such 
a model is by assuming that the segment-specific error terms are of the logit form, 
entailing a multinomial logit model (Diamond et al. 1990). 

All the above models are essentially static; some welfare indicator at a single 
date is modeled as a function of a range of individual and geographic data. Such mod- 
els cannot distinguish effects on the growth rates of consumption (or other welfare 
metric) from effects on its level. The true model could be Cj, = (j3 + y t )x i  + E ; ~ ,  im- 
plying that x influences the growth rate of consumption as well as its level. However, 
static data cannot distinguish B from y .  

D. Aggregate Models 

Another increasingly common tool of analysis is a regional (or country)-level time- 
series model. Here the dynamics can be readily introduced, by allowing for the ef- 
fects of past outcomes and other variables on current outcomes. Among the models 
that might be postulated, regional growth regressions are being seen increasingly; 
by this approach, the growth rate over time for the region as a whole is modeled 
as a function of initial conditions, exogenous shocks and policy changes over the 
period.* 

These aggregate dynamic models also have their limitations for understanding 
the economic geography of poverty. Clearly the distributional analysis of policy and 
other impacts on living standards which is impossible with only aggregate data.? 
Working from the micromodel allows one to better understand the distributional im- 
plications of the aggregate growth process. 

When attempting to assess the welfare impacts of area-based interventions, 
aggregate models can also be particularly vulnerable to bias arising from endogene- 
ity of program placement. The political decision on program placement may itself be 
a function of observed aggregate poverty levels. Knowledge of how programs were 
assigned and the history of area characteristics can help avoid this problem (as in 
Pitt et al. 1995). The problem is not of course confined to aggregate models. With mi- 
cro (household-level) data it may be plausible that program placement is exogenous 
to the extent that no individual household has much influence on the placement de- 

*See Barro and Sala-i-Martin (1995) for an overview of' these models, with developed country applications; 

1 Datt and Ravallion (19%) use a long time series of' repeated cross-sectional surveys (for India) to relax 
examples for developing countries include Cashin and Sahay (1995) and Datt and Ravallion (1996). 

this attribute of standard growth models. 

-L 
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cision. However, bias can still arise from either migration (discussed above) or omit- 
ted variables which simultaneously influence household-level welfare outcomes and 
program placement. 

Another disadvantage of aggregate models is that they do not allow one to dis- 
tinguish internal and external effects on production and welfare. This can matter to 
policy. By using the household as the unit of observation one can identify external 
effects of geographic capital, including local public goods, on production processes 
at household level (Ravallion and Jalan 1996). Consider Figure 1, based on aggre- 
gate (county-level) data for China. Such evidence tells us nothing per se about the 
spatial effects in a growth process. The highly aggregated form of such data does not 
allQw one to distinguish two possible ways in which initial conditions may influence 
the growth process at the microlevel. One way is through effects of individual condi- 
tions on the individual growth process, and this is a common interpretation given to 
nonzero values of the regression coefficient on initial income in a growth regression; 
declining marginal product of capital would suggest a tendency for convergence; by 
this interpretation, the type of divergence depicted in Figure 1 suggests increasing 
returns toprivate capital. If this is right, then regional divergence, and the existence 
of persistently poor areas, is to be expected when the rate of growth is at its maximum. 
Conversely, under these conditions, governmental attempts to shift the allocation of 
investment in favor of poor areas will entail a growth cost, though a policymaker 
may still be willing to pay that cost to achieve a more balanced (and possibly more 
sustainable) growth path. 

But there is another way in which the divergence in Figure 1 can arise, even 
with declining marginal products with respect to own capital at the microlevel and 
constant returns to scale in private inputs. The microgrowth process might be driven 
by intraregional externalities; individual growth prospects may be better in an ini- 
tially better-off region through positive local spillover effects. Quite generally, the 
marginal product of capital will depend on area characteristics. (Only with rather 
special separability assumptions will this not be true.) There may well be declining 
marginal products with respect to “own capital” but increasing marginal products to 
geographic capital. Indeed, if there is constant returns to scale in the private inputs, 
and geographic capital is productive, then there must be increasing returns overall.* 
That may well be why we see the aggregate divergence in Figure 1, with the external 
effect dominating. But the aggregation hides the difference. If in fact the regional 
divergence is really due to the external effect of differences in geographic capital, 

*Let output be F(K, G ) ,  where K is a vector of private inputs (“own capital”) and G is a vector of pub- 
lic inputs (“geographic capital”), and consider any A > 1. By constant returns to K,  F(AK, AG) = 
AF(K, AG) > AF(K, G ) ,  since geographic capital has a positive marginal procinct. Thus I;‘ exhibits 
increasing returns to scale overall. 
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then successful interventions to reduce the inequality in geographic capital need not 
entail any cost to the overall rate of growth. 

This second “external” channel through which area characteristics can alter a 
growth process has received relatively little attention in empirical work on the deter- 
minants of economic growth, though the possibility has been recognized in some of 
the theoretical literature (notably Romer 1986 and Lucas 1988). The reason why this 
external channel has been relatively neglected in growth empirics is undoubtedly 
that the level of aggregation in past work has meant that-even if one was aware of 
the possibility-the genuinely spatial effects of intraregional spillover effects could 
not possibly be identified empirically. 

To encompass both the “internal” (individualistic) and “external” (geographic) 
channels through which initial conditions can affect a growth process one needs 
to model that process at the microlevel. The growth rate for each household will 
be a function of both its own initial conditions, characteristics of the area in which 
the household lives, and external shocks during the period. The areawide growth 
relationships (such as depicted in Figure 1)  can then be interpreted as (approximate) 
averages formed over the underlying microgrowth processes; but in the averaging one 
loses the ability to distinguish the internal from the external effects (Ravallion and 
Jalan 1996). 

The recurrent problem in aggregate models is that the economic theory which 
motivates them is typically a microeconomic model. So tests using aggregate data 
always beg the question of whether one is testing the micromodel or the aggregation 
assumptions. 

111. THEORY AND ESTIMATION FOR DYNAMIC 
MICROMODELS 

A. Theoretical Foundations for a Microempirical Model of Growth 

A theoretical model capable of motivating an empirical analysis of a number of the is- 
sues raised above can be formulated by a reinterpretation of the Romer (1986) model 
of endogenous growth under increasing returns to scale.* Analogously to the dis- 
tinction between firm-specific knowledge and economy-wide knowledge in Romer’s 
model, one can conjecture that output of the farm household is a concave function 

*A number of versions of the classic Ramsey model-in which an intertemporal utility integral is max- 
imized subject to flow constraints and product ion functions-have been proposed which can yield a 
nonzero solution for the rate of consumption growth which will be a function of initial human and phys- 
ical assets as well as preference and production parameters. For surveys of the theories of endogenous 
growth see Grossman and Helpman (1991), Hammond and Rodriguez-Clare (1993), and Barro and Sala- 
i-Martin (1995). 
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of various privately provided inputs, but that output also depends positively on the 
level of geographic capital. On fully accounting for all private inputs (all profits being 
reckoned as payments for those inputs), there will then be constant returns to scale to 
the privately provided inputs, but increasing returns to scale over all inputs, includ- 
ing geographic capital. With the farm-household maximizing an intertemporal utility 
sum-with instantaneous utility depending on current consumption, which must be 
partly forgone to ensure future output-one can derive an endogenous consump- 
tion growth rate which depends on the initial endowments of both private capital 
and geographic capital. With this reinterpretation, the results on existence and wel- 
fare properties of equilibrium in Romer (1986) model can be applied to the present 
problem. 

The key intertemporal equilibrium condition from such a model equates the 
intertemporal marginal rate of substitution with the marginal product of “own capi- 
tal,” which is a decreasing function of the initial endowment of own capital and in- 
creasing in the amount of geographic capital, taken as exogenous at the microlevel. 
With appropriate functional forms, the farm-household’s consumption growth rate 
over any period is then a decreasing function of its endowment of private capital and 
an increasing function of the level of geographic capital. 

Past growth empirics have relied on country or regional aggregates. The trans- 
lation of this approach to the microlevel is straightforward; one is simply undoing 
the aggregation conditions used to go from the microgrowth theory to the aggregate 
regional or country data. The translation is even more straightforward when it is 
noted that many of the households in the world’s poor areas are farm households 
who jointly produce and consume, rather than economies in which separate con- 
sumers and producers interact through trade. But this is largely a matter of inter- 
pretation; the separation of an economy into households (which consume) and firms 
(which produce) is not essential in theoretical growth models.* In the present setting, 
the farm-household can be thought of as a small open economy, trading with those 
around it. 

It should also be recognized that a poor area may have become poor due to a 
location-specific transient shock (a local drought, for example). There may also be 
lags in the growth process of consumption. By explicitly modeling these features of 
the data generation process, it should be possible to identify longer-term impacts in 
panels of sufficient length. (Averaging prior to estimation is not an efficient way of 
dealing with these data features.) 

Motivated by the above considerations, an empirical approach can be sug- 
gested which entails consistently estimating a dynamic model of consumption growth 

*Standard endogenous growth models postulate separate households and firms, but an equivalent formu- 
lation is possible in which households both consume and produce (Barro and Sala-i-Martin 1995). 
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at the household level using panel data. The model allows one to test the dynamic im- 
pact over the length of the panel of a wide range of initial conditions at both household 
and community levels. The proposed approach differs from the usual “fixed-effects” 
method. While it is common to model the variables of interest in first-difference form, 
or as deviations from their time means, this is typically done in the context of a static 
model in levels, for which the time slope is a constant and there are unobserved fixed 
effects. Clearly such a formulation is of little interest here since it does not allow ini- 
tial conditions-including area-specific policies and projects-to affect the growth 
path of the variable of interest. 

B. Toward an Estimable Model 

Unlike standard single cross-sectional sample surveys of households, here one needs 
panel data in which the same households are observed over time. (Later I will dis- 
cuss possible approaches using repeated cross-sectional surveys.) Such data sets 
are, however, becoming more common, and panels of varying lengths are available 
for a number of developing and developed countries. Notice also that estimating a 
microgrowth model will require less data in the second survey than the first. At a 
minimum, a second reading of the household consumption or income level will do, 
though information on relevant demographic or other “shocks” would be desirable. 
So this approach is already feasible and will probably become more widely applica- 
ble in the future. 

To see how an empirical model capable of addressing the questions posed here 
can be constructed, let us assume (following the discussion above) that the long-run 
household-level consumption growth rate is determined in part by a vector of exoge- 
nous initial conditions, comprising both internal (within the household) and external 
(community) endowments of physical and human assets, as well as any exogenous 
household characteristics influencing the discount rate, liquidity constraints, tastes, 
and production functions. The importance of the internal factors can arise from the 
dependence of equilibrium growth rates on the initial human and physical capital 
stocks in household-operated production processes. The external effects can arise 
from the existence of local public goods or differing agroclimatic conditions. The di- 
rection of the effects of all such initial conditions are difficult to predict on a priori 
grounds, and will depend on the nature of the technology (for example, if  there are 
increasing returns then divergent effects are possible whereby higher initial wealth 
can result in higher future growth), how well markets work (credit market imperfec- 
tions, for example, can entail that liquidity-constrained households cannot realize 
the same growth potential as others) and the political economy of local public policy 
(it has been argued that higher initial inequality, for example, may promote policy 
choices which inhibit growth). 

In carrying such a formulation to data, it would be unrealistic to assume that 
the growth rate actually observed at any date is the steady-state value as implied by 
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a standard growth-theoretic model. One would want to allow for deviations from the 
underlying steady-state solution, due to shocks and/or adjustment costs. It is thus 
better to postulate an autoregressive distributed lag structure for the growth process, 
augmented by exogenous shocks and unobserved effects. This will permit a more 
powerful test of the impact of initial conditions on the evolution of living standards 
than is possible by only modeling the long-run average growth rates. 

Thus one can postulate an econometric model of the growth rate in living stan- 
dards at the household level as a function of ( 1 )  initial conditions at the household 
level, (2) initial conditions at the local community level, and (3) exogenous time- 
varying factors (“shocks”) at both levels. The variance in household-level growth 
rates due to the second set of variables could in principle be “explained” by a com- 
plete set of area-dummy variables. However, by collating the micro (household-level) 
data with geographic data bases on agroclimatic variables, and stocks of physical 
and social infrastructure, it will be possible to obtain a far more illuminating speci- 
fication in which specific attributes of the local area enter explicitly. As a check for 
omitted-variable bias, one can then compare the results with a model in which the 
geographic variation is picked up entirely by dummy variables. This may also sug- 
gest idiosyncratic regional effects, such as due to local political factors, that might 
be best studied on an ad hoc (case study) basis. 

On introducing dynamics and both time-invariant and time-varying unobserved 
effects, a suitable dynamic model could take the form 

for household i (=I 1, . . . , N )  at date t (= 1 ,  . . . , T ) ,  where C;, is consumption 
by i at date t ,  xi, is a 1 x k vector of time-varying explanatory variables, z; is a p -  
dimensional vector of initial conditions, and qi is a time-invariant household-level 
fixed effect. The vector z; comprises both area-specific factors (such as initial values 
of indicators of physical and social infrastructure ) and household-specific charac- 
teristics (such as age of the head of the household and education levels). Both x;, 
and z; include interaction effects (including between individual and areas character- 
istics).* 

The problem of estimating this model is different from the usual “within” es- 
timator for panel data. It is known that the ordinary least-squares estimator of an 
autoregressive fixed effects model is not consistent for a typical panel where the 
number of periods is small and where the asymptotics are driven by the number of 
cross sections going to infinity (Hsiao 1986). The inconsistency arises because of the 
potential correlation between the lagged endogenous variables and the residuals in 
the transformed model. 

*One might also hypothesize that area-mean consumption entprs (4), but this effect is generally not iden- 
tifiable; see Manski (1993). 
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Thus consistent estimation of the above model does present a more difficult 
problem than either the static micro- or dynamic macromodels. But a solution is 
available (Jalan and Ravallion 1996). First notice that the error term in (4) has two 
components: an unobserved individual specific time-invariant fixed effect, qi, and 
the standard innovation error term, UiL. Let us assume that the unobserved individual- 
specific effect q; is correlated with the regressors, i.e., E(q i z ; ) ,  E(qi ,  xit), and 
E(qiCil-l)  are nonzero.* The error uit is however serially uncorrelated and thus 
satisfies the orthogonality conditions: 

These conditions ensure that suitably lagged values of C;, and xit can be used as 
instruments. In order to get consistent estimators, the unobserved fixed effects qi 
need to be eliminated. This can be done by taking the first differences of (4) to obtain 
the transformed “growth model”:? 

There are various options for estimating such a model. GMM methods appear 
to offer the best approach (Arellano and Bond 1991). Given that the uits are serially 
uncorrelated, the GMM estimator is the most efficient one within the class of in- 
strumental variable (IV) estimators. In estimating (6), Cit-2 or higher lagged values 
(wherever feasible) are valid instrumental variables. Heteroscedasticity-consistent 
standard errors can be computed using the residuals from a first-stage regression to 
correct for any kind of general heteroscedasticity. Inferences on the estimated pa- 
rameter vector are appropriate provided the moment conditions used are valid. Tests 
for overidentifying restrictions can be implemented to test the null hypothesis that 
the instruments are optimal (i.e., the instruments and the error term are orthogo- 
nal); see Sargan (1958,1988) and Hansen (1982). In addition, a second-order serial 
correlation test (the test statistic will be normally distributed) can be constructed 
given that the consistency of the GMM estimators for the first-differenced model de- 
pends on the assumption that E(Au;, A u ; , - ~ )  = 0.z Tests for spatial correlation 
in the errors-arising from omitted geographic effects-can also be performed (fol- 
lowing Frees 1995), though they will need to be adapted to the present problem. 

*Bhargava and Sargan (1983) offer a dynamic random-effects model where it is assumed that some of the 
regressors are uncorrelated with the unobserved individual specific effect. 
Various transformations can he used to eliminate the nuisance parameters, though the estimation pro- 
cedures used are similar to the one proposed here. 

*There may be some first-order serial correlation; i.e., E(Aui, Au i l - l )  may not he equal to zero since 
Auit are the first differences of serially uncorrelated errors. Alternatively, if uil is a random walk, then 
there should not be any serial correlation in the first differenced Aujl. 
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If corrective action is called for, then one can try introducing more geographic data, 
or more geographic structure to the error process.* 

C. Further Specification Issues 

Questions are often asked about the prioritization of physical versus social infra- 
structure development. Should one even assign a priority, or is a balanced “inte- 
grated” approach needed? Does the answer depend on the “stage” of development? 
It has often been argued that it is the combination of certain physical and/or human 
infrastructure endowments that matters. One at a time they may not help much. The 
returns to irrigation for example may depend on education (as van de Walle 1995 
found for Vietnam). There are other possible interaction effects such as the possibil- 
ity that greater ethnic cohesion in an area increases the chances of cooperation and 
hence the returns to investments in geographic capital. 

In principle, all the explanatory variables in the models described above could 
enter the model in highly nonlinear ways, and this should be tested. However, the 
above considerations suggest that identifying interaction effects could be of special 
interest in this context. 

Another issue concerns nobility and the possible endogeneity of a household’s 
area characteristics. The plausibility of a free-mobility equilibrium in the settings 
considered here is questionable; even with no governmental restrictions on mobility, 
migration within India over a long period has responded little to regional disparities 
(Datt and Ravallion 1996). Nonetheless, the existence of even limited mobility raises 
questions about the possible endogeneity of area characteristics in the microgrowth 
process. How might one test for effects of area characteristics on the spatial distri- 
bution of the population? 

The significance of area fixed effects in the levels of living standards, after con- 
trolling for a-spatial household characteristics, would be suggestive that mobility is 
imperfect; if there was free mobility then any two households with the same personal 
(mobile) characteristics should be able to achieve the same level of welfare. This is 
directly testable. 

There are other tests that may also help. A theoretically consistent and em- 
pirically tractable approach to introducing mobility, allowing for adjustment costs, 
can be proposed following the approach outlined in Ravallion (1982, 1984) in the 
related context of local public finance in which (under certain conditions) mobility 
can reveal preferences over local public goods. This entails modeling the spatial 
distribution of specific population subgroups as functions of, inter alia, area charac- 
teristics, allowing for dynamic effects in the adjustment process to a free-mobility 

*Potential approaches include Froot (1989) and Conley (19%); also see the special issue of Regional 
Science and Urban Economics, September 1992, on “Space and Applied Econometrics.” 
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equilibrium. In both estimating the poverty regressions (with “social externalities”) 
and in deriving aggregate welfare (including poverty) impacts, this model could then 
be used to endogenize the population shares. 

The dynamic model estimated on panel data suggests a further test. One of 
the main sources of attrition in a panel is outmigration. Thus standard tests for attri- 
tion bias and corrective actions (see, for example, Hsiao 1986, Chap. 8) can also be 
interpreted as a means of dealing with migration responses to area characteristics. 

Household mobility is not the only way in which endogeneity of area-based in- 
terventions can bias results from the types of models described above. Another prob- 
lem is that program placement may be a function of variables which influence welfare 
impacts (Pitt et al. 1995). A version of this problem arises in the dynamic micromod- 
els described above when program placement is determined by initial conditions 
which also influence the future evolution of living standards (Jalan and Ravallion 
1996). The best solution to this problem is to find out what area characteristics in- 
fluenced program placement and include those characteristics as explanatory vari- 
ables. Since program placement must have been a function of observable area at- 
tributes suitable controls should be available in practice. 

D. 

The attractions of panel data for the types of analysis described above are clear. 
Though more of these data sets are emerging, panel data sets are still far less common 
than repeated cross-sectional surveys. Is there any way of estimating spatial effects 
on the microgrowth process using repeated cross sections? If the answer is yes, then 
this would open up a wide range of potential applications in setting in which panel 
data are unavailable. 

One approach is by the analysis of demographic cohorts.* For each wave of 
a set of cross-sectional surveys one can calculate mean household consumption or 
income for persons in a given cohort defined by initial age and (in this case) place 
of residence. One can also do this for other household characteristics. One can then 
construct a model that looks like an individual-level model but is for cohorts. In 
effect, one takes cohort averages of the household-level model. Thus one can still 
identify the internal (cohort averages of household characteristics) and externaZ (area 
characteristics) effects on the evolution of the poverty indicator. 

However, there may well be a better approach. We want to see how (say) con- 
sumption growth from time t to t + 1 is affected by time t characteristics of the 
household and its area of residence. With panel data we simply regress the change 
in (log) consumption from t to t + 1 on (inter alia) household is Characteristics at t .  

Alternative Methods Using Repeated Cross Sections 

*This approach has showed promise in research on other topics, such as intertemporal coiisumption be- 
havior and inequality (Deaton and Paxson 1994). 
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With cross sections we do not know consumption at t + 1. But if we know the future 
values of one or more predictors of consumption then these can be used as instru- 
ments. One first models time t + 1 consumption as a function of variables observed 
in time t + 1 but also at time t .  Then one uses that model to predict the consumption 
at time t + 1 of each household in the time t sample and, hence, estimate its rate 
of consumption growth from t to t + 1. This can then be regressed on the individual 
and area characteristics at time t .  

Many cross-sectional surveys do obtain information about likely future char- 
acteristics which can be used as instruments. For example, the Rural Household 
Surveys for China collect both beginning and end-of-year data on financial and phys- 
ical wealth in each round. So the end-of-year data can be used to predict the next 
period’s consumption along with other time-invariant variables. There are other po- 
tential instruments; the next period’s demographic composition (number of persons 
by age groups) of the household can be predicted from the current period’s composi- 
tion. R2 will be lower, but consistent estimates should still be possible under regular 
conditions. Estimators are available for dynamic models of this sort using repeated 
cross sections (see Moffitt 1993 and references therein). The performance of these 
methods could be studied using the panel data, but treating it as repeated cross sec- 
tions; it would also be of interest to try the method out on the original samples (prior 
to panel construction) so as to assess effects of panel attrition. 

IV. CONCLUSIONS AND POTENTIAL LESSONS 
FOR POLICY 

When confronted with the reality of extreme poverty in remote rural areas with poor 
natural resources, observers often ask: “Why don’t these miserably poor people just 
move out?” Those who claim that outmigration is the answer often also argue against 
public investment in these areas. “This will just be at the expense of more profitable 
investments elsewhere” the argument goes. 

This chapter has questioned this reasoning, but it certainly has not refuted 
it. That will be a matter of future empirical research. But some points can be made 
now. One is that we should understand the nature of the incentives and constraints on 
outmigration from these areas. You need some money to start up elsewhere, you need 
some basic skills, and you need information. All are generally lacking, but more so 
for some people than others. The reasons they are lacking can be traced to market 
imperfections of one sort or another and how these interact with poverty. The outside 
non-farm-labor-market options are typically thin or nonexistent for someone who 
is illiterate, reflecting a lack of substitution possibilities with moderately educated 
labor in even quite labor-intensive manufacturing. Credit market failures mean that 
there is little chance of borrowing to finance the move. There is highly imperfect 
information about prospects elsewhere, and sizable uninsured risk. 
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The process of outmigration may be a mixed blessing for a poor area at least 
initially. Those who have the money, skills, and information will naturally tend to 
be the relatively better off. Their departure is likely to put upward pressure on the 
incidence of poverty in the poor area. This comes about in various ways. As a purely 
statistical proposition, most measures of poverty will rise when the nonpoor leave. 
But there are more subtle dynamic effects through “ghettoization.” The local skill 
base is likely to have external effects on the local growth process. It follows that 
the outmigration of the better educated workers entails an erosion of local resource 
base with adverse longer-term growth consequences. Results from research on poor 
areas of southwest China have suggested that there exist strong external effects of 
physical and human infrastructure on the returns to private investment and (hence) 
the prospects of escaping poverty there (Jalan and Ravallion 1997). These effects 
will be mitigated to some extent by remittances and reduced pressure on the land. 

All this suggest that one of the best ways that government can help is by in- 
vesting in the schooling, health, and nutrition of the children of the poor in these 
areas. Public assistance with credit (to cover search costs for poor outmigrants), and 
information will complete the package. 

Should we also be investing in the land and physical capital of these areas? 
What should be the balance between those investments and human resource de- 
velopment? Here one could proceed on an ad hoc basis; if the investment passes a 
standard (distribution-unweighted) cost-benefit test, then it should be done. But the 
“anti-investment” argument would maintain that private capital flows would already 
have found such opportunities. 

One response is that, unless there is perfect factor mobility (which nobody 
seems to consider plausible), there may still be an equity case for such investments 
up to some point. Then they are part of a redistributive policy, exploiting the possi- 
bilities for geographic targeting (Lipton and Ravallion 1995). That is fine. However, 
for the same reasons that there may be too little outmigration, there may also be too 
little investment in these areas from an efficiency point of view as well. Credit mar- 
ket imperfections can entail that there are unexploited opportunities for investing in 
the land and physical capital of these areas. The liquidity constraints that make it 
hard to finance outmigration will also make it hard to finance otherwise profitable 
local investments. And asymmetric information and supervision costs deter outside 
investors. 

The argument that investing in poor areas would entail lower overall growth in 
the economy also breaks down as soon as one introduces local public goods and other 
forms of “geographic capital” into the analysis, i.e., goods which cannot be supplied 
efficiently by markets and which alter the rate of return to private investment. Poor 
rural infrastructure in these areas could then be the underlying reason for low private 
investment; better infrastructure would then encourage private capital inflow. 

However, much of this is conjecture, based on little more than casual obser- 
vations and common sense. The chapter has suggested some econometric methods 
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which might be used to address these issues more rigorously. But is it an ambitious 
research agenda, both in terms of the types of data needed, and the level of economet- 
ric sophistication needed to convincingly disentangle these effects. So it is important 
to ask: What will we have learned from such research that can reliably inform the 
above policy choices about poor areas? Three types of potential lessons for policy 
can be identified. 

The first set of policy lessons concern the economic case for area-based in- 
terventions. Should such interventions only be viewed as a specific kind of redis- 
tributive policy with probable costs to the overall rate of growth? This view derives 
from a growth model in which the existence of persistently poor areas, and regional 
divergence more generally, are traced to the natural resource endowments and tech- 
nologies, notably the (claimed) existence of increasing returns to private production 
inputs. Private investment flows to the areas with the highest returns which are also 
(according to this model) the initially richer areas. This still begs a number of policy 
questions. For example, we need to know more about what the best indicators are for 
this type of redistributive policy when the aim is to help individuals escape poverty 
in the future. 

But maybe we will find that the empirical results from the type of research 
proposed here will reject this model at a fundamental level in favor of one which 
says, in effect, that poor areas and divergence reflect spatial inequalities in access 
to credit, and publicly provided social and physical infrastructure, and have rather 
little to do with increasing returns to private capital, residential differentiation, and 
so on. That conclusion could well dramatically alter the policy dialogue on poor- 
area interventions and shift the emphasis to the task of redressing these preventable 
spatial inequalities. If that conclusion is borne out by the data, then such policies will 
be good for growth and good for equity. Or the results may point to a more complex 
and mixed picture, possibly with a degree of country, and even regional, specificity. 

A second set of broad policy lessons stem from the fact that the approach pro- 
posed here allows one to measure spatial externalities. This can throw light on, for 
example, how much of the welfare gain from schooling is transmitted though the 
internal effects on earnings and so on, and how much is external, arising from the 
(presumably positive) neighborhood effects of better education. This will have impli- 
cations for the priority one attaches to efforts at finely targeting education subsidies 
and for the policy arguments often made about how much basic education needs to 
be subsidized on the grounds of its external benefits. 

A third set of policy implications will be more specific to the types of projects 
that should be recommended for dealing with persistently poor areas. In the process 
of addressing these broad questions, empirical models can include explanatory vari- 
ables of more or less direct policy relevance. One set of such variables is the very 
existence of poor-area interventions. Is the subsequent rate of growth in living stan- 
dards of poor people higher when a poor-area program is in place than would other- 
wise have been the case, controlling for both household and community-level initial 



88 RAVALLION 

conditions and time-varying exogenous shocks? What were the longer-term welfare 
gains? How do they compare to the budgetary outlays on such programs? There will 
be other explanatory variables of policy relevance, such as the initial stocks of var- 
ious components of publicly provided social and physical infrastructure, for which 
all of the same questions apply, though here of course it may not always be easy to 
account fully for their historical costs (though costs of new facilities will often be 
known). What priority should be attached to social services versus physical infra- 
structure or credit, and how does this vary with other factors? This should allow a 
deeper understanding of what the complementarities are among these various types 
of publicly provided inputs; we may learn, for example, how much access to one type 
of infrastructure alters returns to another, or how much poor agroclimatic conditions 
affect returns to different types of publicly provided inputs. 

This chapter has argued that the long-standing problem of lagging poor areas 
in growing economies, and more generally the diversity in prospects of escaping 
poverty that one finds, are explicable with the right empirical tools and data. This 
offers hope for better informing a number of difficult public choices on appropriate 
responses to poor areas. 
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The Demand for Health Services in a 
Developing Country 
The Role of Prices, Service Quality, and 
Reporting of Illnesses 

Anil B. Deolalikar 
University of Washington, Sea ttle, Washington 

1. INTRODUCTION 

As a result of the debt crises of the 1980s and the ensuing structural adjustment 
and stabilization programs, many less-developed countries (LDCs) have had to cut 
back social spending, including spending on government health programs (Cornea, 
Jolly, and Stewart 1987). As a result, these countries have been forced to explore 
alternative means of financing health services, including greater recovery of (re- 
current) costs in the government health sector via user fees. Proponents of greater 
cost recovery base their recommendations on the findings of several empirical stud- 
ies that suggest that the demand for health care in LDCs is price inelastic (Akin 
et al. 1987, Jimenez 1987, World Bank 1987). On the other hand, opponents of 
the cost recovery argument contend that raising fees will reduce access to care, 
especially by the poor, and consequently adversely affect health status (Cornea, 
Jolly, and Stewart 1987, Gilson 1989). 

Unfortunately, the empirical bases on which both arguments are made are 
weak. The relatively few empirical studies of health-care demand for LDCs are flawed, 
largely because of their failure to recognize (1) the role of quality of health services 
in influencing demand and (2) the effect of health-care prices on utilization of health 
services via their effect on the reporting of illnesses by individuals. The most orb- 
vious reason for the lack of control for quality is that observable and quantifiable 
data on quality are rarely available. But, since the price charged for medical care 
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often reflects the quality of care provided, the lack of control for quality confounds 
quality with price effects and biases estimated price effects toward zero (as price 
and quality influence demand in opposite directions). In addition, health-care de- 
mand functions that are conditioned on reported morbidity can greatly understate 
the total effect of health-care prices on the utilization of health services, since they 
ignore the potentially adverse effect that these prices can have on the reporting of 
morbidity. 

II. PREVIOUS STUDIES 

A number of studies have previously attempted to estimate the demand for health 
services in LDCs. Unfortunately, the existing literature in this area offers confusing 
evidence regarding the price response of health-services utilization to user fees. One 
strand of literature suggests that prices are not important determinants of health-care 
utilization. Heller (1981), Akin et al. (1984, 1986), Birdsall and Chuhan (1986), 
and Schwartz et al. (1988) all report very small and sometimes positive price ef- 
fects, most of which are statistically insignificant. Another strand of work by Mwabu 
(1986), Gertler et al. (1987), Alderman and Gertler (1988), and Gertler and van der 
Gaag (1990) conclude that prices are important. The results of the first group of stud- 
ies contrast sharply with most studies on the demand for medical care in developed 
countries which report price elasticities ranging from -0.2 to as high as -2.1 (Ros- 
set and Huang 1973, Goldman and Grossman 1978, Newhouse and Phelps 1974, 
Manning et al. 1987). This divergence between the literature on developed and de- 
veloping countries is paradoxical, since one would expect prices to be more impor- 
tant in determining utilization in developing than in developed countries for two 
reasons: first, income levels are substantially lower in the developing countries; sec- 
ond, medical insurance, which is almost universal in developed countries, is virtually 
nonexistent in most developing countries. 

The paradox may be explained by the fact that most previous studies on health- 
services utilization in developing countries are flawed in three respects. First, the 
treatment of the price of health services in much of the previous work has been far 
from satisfactory. While some studies have used expenditures per medical visit re- 
ported by consumers as the relevant price, other studies have used standard fee 
schedules, as reported by providers. Both methods are incorrect and can cause mis- 
leading results. The amount paid by a consumer per provider visit (namely, the “unit 
value”) depends not only on the price charged by that provider for a standard treat- 
ment but also on the type of treatment and quality of service chosen by the patient. 
For example, a visit for a common cold will necessarily cost less than a visit for a 
more serious problem. In addition, health providers, like other suppliers of goods and 
services, can typically provide a range of treatments of varying quality (and price) for 
the same ailment. To calculate the true price of health services, the disease-specific 
technological effect and the consumer-chosen quality effect need to be purged from 
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observed unit values. Much of the previous work on health-care demand has con- 
founded these price, quality, and disease-specific variations.* 

The use of established or official fees as price constructs does not solve the 
problem either. Indeed, this procedure introduces another set of biases in the esti- 
mates of demand functions. For example, in estimating the demand for health ser- 
vices, Gertler and van der Gaag (1990) assume that the price of obtaining health ser- 
vices from government medical establishments in Peru and the Ivory Coast is zero, 
since such establishments do not have user fees in principle.? However, a number of 
recent surveys in developing countries suggest that there may be a wide discrepancy 
between officially established fees for medical visits and payments actually made by 
patients (World Bank 1992a, Deolalikar and Vashishta 1992). Individuals may be 
able to obtain speedier service and higher-quality treatments by paying for services, 
even when such services are officially free of charge. Imposing the assumption that 
prices do not vary in the sample (when, if fact, they do) can reduce the efficiency of 
price elasticity estimates and incorrectly lead to the result that the price elasticity 
of demand for health services is not significantly different from zero. 

The second major problem with previous studies is that they estimate the de- 
mand for health services, conditional on an illness episode being reported by an indi- 
vidual or household. To the extent that health-care prices can affect morbidity (i.e., 
the probability of an individual experiencing an illness episode) and the reporting of 
morbidity by individual respondents, the price effects obtained from a conditional 
health-care demand model are partial. To complicate matters, health-care prices are 
likely to have opposing effects on morbidity (positive), reporting of morbidity (nega- 
tive), and health-care utilization (negative), so it is impossible to infer the total effect 
of prices on health-services utilization from the conditional (and partial) demand es- 
ti mates. 

The third major problem in studies of health-care demand is the omission of 
food prices. Within a general behavioral model of health determination, the demand 
for food and medical care are jointly determined, since nutrition and medical care 
are (possibly substitutable) inputs in the “production” of health status. This means 
that the demand for health care is influenced not only by the price of health services 
but also by food prices, in much the same way as the demand for different foods is 
determined by food and health-care prices.$ Of course, the omission of food prices 
from health-care demand functions will not necessarily bias the estimated effects of 
health-care prices on health-care demand unless food prices are correlated with the 
price of health services. 

*See Deaton (1988) for a discussion of a somewhat similar problem in the analysis of food demand in 

tThey assume that all of the price variation occurs in the form of variation in distance traveled to 

$See Behrman and Deolalikar (1988). 

LDCs. 

providers. 
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This chapter attempts to address all of these shortcomings of existing research. 
A model is developed which separates interhousehold and spatial variation in house- 
hold-reported unit values of health services. Under the assumption that interhouse- 
hold variations in unit values within a geographical area or cluster reflect quality 
variations and spatial variations reflect true price Variation, cluster-specific prices 
of health services that are purged of quality and disease-specific variations are de- 
rived and used in a multinomial logit treatment choice model. In order to assess 
the effect of health-care prices on the reporting of illness episodes, the utilization 
of curative health services is estimated both conditionally and unconditionally on 
the probability of an illness being reported. Finally, prices of important foods (also 
purged of quality variations) are included as determinants of the demand for health 
services. 

111. THE MODEL 

Since the theory of demand for medical care is well-developed,* there is no need 
here to develop an elaborate model of individual health determination. If it is as- 
sumed that individuals maximize a utility function having health status and other 
consumption as its argument, subject to a budget constraint and a health production 
function that includes food and medical care as inputs, the resulting reduced-form 
derived demand functions for food and medical care will include as their arguments 
the prices of food and medical care, household income, and socio-demographic indi- 
vidual and household characteristics. As noted earlier, the major empirical problem 
in estimating such a reduced-form demand system is that health-care prices are not 
directly observed; what are observed instead are the (endogenous) unit values. The 
latter need to be purged of disease-specific technological and household-specific 
quality variations before they can be treated as health-care prices. This is a problem 
that Deaton (1988) has dealt with in the context of food prices. 

We assume that (1) for a given type of health provider (e.g., private physician 
versus a public health clinic), interhousehold variation in expenditure per illness 
episode that is explained by individual and household characteristics, such as sex, 
age, marital status, household income, household size and composition, and traits 
(e.g., age, schooling and occupation) of the household head, reflects variation in the 
quality of health services, and (2) that the spatial (intercluster) component of the 
unexplained variation in unit values reflects true (quality-constant) price variation. 
In other words, it is assumed that when individuals with high income and better 
schooling spend a larger amount on treating the same ailment from the same type 
of health provider, they are in effect buying higher quality of health care. However, 

*See Grossman (1972). Behrman and Deolalikar (1988) also develop a generic model of health determi- 
nation for an LDC. 
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even after controlling for income, education, and other characteristics, if individuals 
in one location spend more than consumers in another location for treating the same 
ailment from the same type of provider, that difference reflects true price variation in 
the cost of health services across the two locations. While this is a strong assumption, 
it does not appear to be unreasonable.* Given that the quality of health care selected 
by households is unobserved, an assumption of this type is required to identify prices 
from observed unit values. 

Controlling for disease-specific effects in the estimation of health-care prices 
is much more straightforward, since the ailments for which individuals obtain med- 
ical care are observed in the data. 

An individual’s decision not to seek treatment for an illness or to seek treat- 
ment from a traditional healer or modern provider is modeled as a multinomial logit 
problem. The probability of seeking no, tradition, or modern care is 

exp(ak In p y  + b k  In p r  + dk In x; 4- ekzi; -k pi;) 

E, exp(n, In p y  + 6 ,  In pJF + d, In K; + e,Zi; + pi;) 
P ( M ;  = k) (1) 

k = 0,2,  z = l , 2  

where i = index of the individual 

M = choice of medical care 
j = index of the location or cluster of residence 

k = 0 for no treatment, 1 for a traditional healer, and 2 for a “modern” provider 

p M  = vector of health-care prices (i.e., the price of services obtained from tra- 

p F  = vector of food prices, derived below 

(private physician, health clinic, or hospital) 

ditional healers and modern health providers), derived below 

Y = household income 
Z = vector of individual and household characteristics, including age, educa- 

p = disturbance term 

The only problem in estimating relation (1) is that quality-constant health-care 
prices, p M ,  are unobserved. What are observed instead are the unit values of health 
services obtained from various providers. The derivation of prices from unit values is 
based on the assumption, stated earlier, that interhousehold variations in unit values 
reflect quality variations, while spatial variations in unit values reflect true price vari- 
ation. The unit value can be thought of as the product of the true (quality-constant) 
price of health services and the quality of health services purchased, i.e., 

tion, family size and composition, etc. 

*This assumption is similar to that made by Deaton (1988) to separate the effect of true prices from the 
effect of quality variations on consumer food demand. 
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where qM is the unit value and Q is the quality of care obtained from a particular 
provider.* Note that the true price charged by that provider, pM, does not have an i 
subscript, since it is assumed to vary only spatially. Taking the logs of both sides of 
(2), we have 

If it is further assumed that the quality of care purchased, QM, is a function of 
household income and a vector of household characteristics ( Z ) ,  namely 

where v is a disturbance term, then (3) can be rewritten as 

Equation (5) is a standard cluster fixed-effects model of unit values, in which In p y  
are the cluster fixed effects (or intercepts). 

In order to be consistent, food prices, p'; are derived in an identical manner, 
even though the control for variations in food quality is not central to this chapter. 

IV. BACKGROUND, DATA, AND EMPIRICAL MODEL 

With a total population estimated at 178.2 million in mid-1990, Indonesia is the 
fourth most populous country in the world (World Bank 1992b). The Indonesian 
economy has enjoyed rapid economic growth during the last two decades; for ex- 
ample, between 1965 and 1990, Indonesia achieved an annual growth rate of per 
capita GNP of 4.5%, a rate that few developing countries could match. Available es- 
timates also suggest an impressive reduction in infant mortality in Indonesia during 
the same period, from 128 infant deaths per 1000 live births in 1965 to 61 in 1990 
(World Bank 199213). Despite this performance, Indonesia has one of the highest 
infant and maternal mortality rates among Southeast Asian countries. For example, 
Indonesia has higher infant and maternal mortality levels than the Philippines, Thai- 
land, or even Vietnam. Anemia is the major cause of maternal mortality (Gopalan 

*The true price and the quality of' service are easier to interpret if the unit value (or observed price) is 
modeled as a product (as opposed to another function) of the true price and quality. In this case, the true 
price, y,". can be thought of as the amount (in Indonesian Rupiahs) paid per provider visit of standardized 
quality, while the quality variable, QY, can be regarded as the ratio of a visit of standardized quality to 
an actual visit. 

?In the absence of any priors on the functional form for the quality-of-service function, I have chosen the 
log-linear form for reason of convenience and tractability. 
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1988), while immunizable diseases (particularly tetanus), diarrhea, and acute res- 
piratory infections are thought to be the leading causes of infant and child mortality 
(Government of Indonesia-UNICEF 1989, p. 40). 

The data for this study come from the 1987 round of the National Socioeco- 
nomic Survey (SUSENAS), which is a nationally representative survey of Indone- 
sia that is undertaken periodically. The 1987 round, conducted in January, covered 
roughly 250,000 individuals residing in 50,000 households. While focusing on the 
health status of individuals and the choice of health providers for curative care, the 
1987 SUSENAS survey obtained detailed information on household consumption 
expenditures and income as well. Using both one-week and three-month recall tech- 
niques, the health module collected data on perceived illnesses (occurrence, type, 
and length) and the choice of provider for any treatment obtained. 

The other data source used is the Village Potential (Potensi Desa) module of 
the Economic Census 1986, a census of all the villages in Indonesia. The Economic 
Census reports, among other things, information on the environmental hygiene con- 
ditions of villages. Although, in principle, it is possible to merge the SUSENAS 
household data with the village-level information from the Economic Census, the 
SUSEN AS data tapes identify only the district (kabupaten)-not the village-of res- 
idence of households in order to protect their confidentiality. Hence, the Economic 
Census Information has been aggregated at the level of kabupatens before merging 
it with the household-level SUSENAS data. 

For the purposes of this study, there are two major drawbacks of the 1987 
SUSENAS health module. First, as no clinical diagnosis was performed in assessing 
morbidity, all measures of morbidity are respondent-reported and as such subject 
to measurement error and respondent biases in illness perception.* For this reason, 
as previously mentioned, it is even more important not to condition the demand for 
health services on an illness episode being reported, as there is a strong likelihood of 
health-care prices influencing the reporting of morbidity by individual respondents. 
The second problem of the 1987 SUSENAS data is that information was collected 
for each illness episode, not for each visit to a health provider.? Much of the dis- 
cussion in the previous section is based on survey information being available on 
expenditures per visit. To the extent that individuals may have made multiple visits 
to the same or different health providers for treating an illness episode, observed 
household expenditures on medical care are unlikely to be unit values. In turn, this 
would contaminate the derivation of health-care prices from expenditure data. Fortu- 
nately, however, the 1987 SUSEN AS obtained information on health-care visits and 
expenditures for two reference periods-one week and three months preceding an 

*Of course, most household health surveys are plagued by this problem, since the collection of objective 

?Indeed, no information is available on how many visits an individual made to the same or different health 
indicators of ill health is difficult and expensive. 

providers in treating an illness episode. 
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interview. It is much less likely that individuals would have made multiple visits to 
a health provider within a one-week period than in a three-month period. Therefore, 
the one-week recall data are likely to provide more meaningful and reliable results. 
In addition, the one-week recall data are more dependable because three months is 
generally too long a period to recall an illness episode with much accuracy. There- 
fore, only the one-week recall data are used in the analysis that follows. 

The 1987 SUSENAS reports eight treatment alternatives for illnesses reported 
during the past week and the past three months: no treatment, self-treatment, tra- 
ditional healer, private physician, hospital, public health center, polyclinic, and 
paramedic. Since each treatment alternative adds a total of 34 parameters to be es- 
timated in the multinomial logit model, the eight treatment choices have been col- 
lapsed into three broad alternatives: no treatment (with the dependent variable as- 
suming a value of zero), self-treatment, or treatment from a traditional healer (value 
of one), and treatment from a modern health provider (which includes all the remain- 
ing choices) (value of 2). With the one-week recall data, the percentage of adults re- 
porting an illness episode who sought these treatment methods were 31.3%, 5.4%, 
and 63.3%, respectively (Table 1). For children below five years of age, the corre- 
sponding figures are 27.6%, 4.3%, and 68.1%. The illness episodes of children aged 
5-17 years appear to receive the least attention. For this age group, nearly 37.2% 
of reported illness episodes were not treated, and fewer than 60% were treated by a 
modern health provider. 

The household characteristics (2) included in the unit value equations and 
the treatment choice model are size and demographic composition of the household, 
age, and schooling years of the household head, whether the household head is a 
salaried employee, and whether the household is covered by any health insurance. 
The presence of health insurance can often dramatically affect both the choice of 
quality of health care as well as the choice of health providers for curative services. 
In Indonesia, the only households typically covered by health insurance are those 
with a member working in the public sector; in the current sample, only 1.5% of the 
households belong to this category. Two cluster characteristics are included in the 
unit value and treatment choice models: the proportion of villages in the kabupaten 
having organized garbage collection and those having piped (and hence presumably 
clean) drinking water. Since both of these environmental hygiene variables affect the 
production of health status from food and medical care inputs, they are expected to 
influence the demand for medical care. Finally, three individual characteristics are 
included in the treatment choice model; these are sex, age, and schooling years.* 

There are two econometric problems that warrant discussion. First, since 
household income includes labor earnings, which are likely to be affected adversely 

*Since the unit values are observed only at the household level, the unit-value equations do not include 
individual characteristics as explanatory variables. 
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by an illness in the family and by the treatment choices (including no treatment) 
made for that illness, there may be a simultaneous-equations bias introduced by the 
inclusion of household income in the multinomial logit treatment choice model. To 
address this problem, I use an instrumental variable for log of household income, 
with the instruments being all of the variables in vector Z (see next paragraph) and 
nonlabor income.* The latter variable thus provides identification, since the vector 
Z already appears in the treatment choice model. 

Second, the estimates of the cluster fixed effects ( lnpy  in (5)) contain error, 
which can lead to biased estimates of the price effects in the treatment choice model. 
Fortunately, the Potensi Desa dqta providc kabupaten-level information on a large 
number of environmental and physic 1 &r:;rastructure variables, which can be used 
as instruments for the set of estimate 1 fixed effects. Thus, the parameters of (1) are 
estimated using instrumental-variable methods to correct for errors in variables in 
the measurement of In py and In p;, with kabupaten characteristics as identifying 
instruments. These characteristics include the proportion of villages in a kabupaten 
having a primary school, a lower secondary school, a higher secondary school, a 
college, a resident health worker, a physician, a hospital, another health facility, a 
library, piped water, organized garbage collection, and an all-weather road; the pro- 
portion of villages in a kabupaten that are urban centers, coastal, and accessible only 
by water; average village population, population density, cultivated area per person, 
and the proportion of cultivated area that is double-cropped and that is irrigated; 
average age and schooling of the village head; and the proportion of village heads (in 
a kabupaten) that are female. 

V. EMPIRICAL RESULTS 

A. Unit Value Regressions 

Cluster fixed-effects estimates of the unit value regressions are reported in Table 2.t 
Since the unit value regression for traditional providers is estimated with very few 
observations, only the empirical results relating to modern-provider unit values pro- 
viders are discussed here. The estimates indicate that these unit values depend 

*Usually, the problem in using nonlaljor income in most developing-country data sets is that it  provides 
very little additional information, since few households report any asset income. However, this is not 
the case with the 1987 SUSENAS survey, in which over 94% of households reported nonzero values of 
annual nonlabor income. Transfers comprise a large fraction of nonlabor income. 

'ISince the true prices of medical care are derived from the estimated cluster effects, it is not possible 
to control additionally for household fixed effects in the unit value regressions. If individuals within 
a household have correlated error, not taking into account the error structure may lead to incorrect 
standard errors. However, this is not a major problem in the current sample. Fewer than 10% of the 
sample observations for the unit value regressions are accounted for by multiple individuals residing in 
the same household. 



Table I Descriptive Statistics, Indonesia, 1987 

Variable 

Household statistics Children under 5 years Children 5 1 7  years Adults over 17 years 

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Whether illness episode reported 

Proportion of reported illness episodes treated by 
during preceding week? 

no one or self 
traditional health provider 
modem health provider 

tuberculosis-type symptoms 
diarrhea- type symptoms 
malaria-type symptoms 
measles-type symptoms 
liver-related ailments 
other single symptoms 
multiple symptoms 

“Unit value” (in Rupiahs per reported illness episode) of 
Traditional health services 568 
Modem health services 1.218 
Log total household income 11.514 
Log nonlabor household income 8.547 
Age of household head 43.012 
Schooling of household head 5.032 

Percentage distribution of reported illness episodes 

0.725 
3.432 

13.802 
3.978 

0.114 0.318 0.054 0.227 0.074 0.262 

0.276 0.504 0.372 0.533 0.313 0.547 
0.043 0.204 0.036 0.189 0.054 0.238 
0.681 0.520 0.593 0.531 0.633 0.556 

0.7% 8.3% 1.1% 10.4% 4.w0 19.7% 
6.3% 24.2% 2.4% 15.2% 1.7% 13.1% 

14.8% 35.6% 25.2% 43.4% 16.3% 36.9% 
6.3% 24.2% 3.6% 18.7% 0.7% 8.1% 

34.6% 5.1% 22.wo 6.3% 24.3% 
6 1.4% 48.7% 57.3% 49.5% 57.w0 49.5% 

5.5% 22.8% 4.1% 19.99’0 6.4% 24.5% 

13.99’0 



Whether household head employee? 
Whether health insurance coverage? 
Age of individual 
Whether individual male? 
Schooling of individual 
Household size 

Males 0 4  years 
Males 5-14 years 
Males 15-24 years 
Males 25-34 years 
Males 35-44 years 
Males 45-54 years 
Males 55-59 years 
Males 60 years and over 
Females (PI years 
Females 5-14 years 
Females 15-24 years 
Females 25-34 years 
Females 35-44 years 
Females 45-54 years 
Females 55-59 years 

Proportion in total household size of" 

0.386 
0.015 

4.788 

0.055 
0.118 
0.090 
0.085 
0.052 
0.039 
0.016 
0.035 
0.052 
0.110 
0.104 
0.081 
0.051 
0.049 
0.017 

0.487 
0.120 

2.018 
0.513 

2.235 

0.108 
0.153 
0.160 
0.143 
0.106 
0.098 
0.069 
0.111 
0.105 
0.146 
0.159 
0.125 
0.108 
0.124 
0.084 

Proportion of villages in district (kubupaten) having 
Organized trash collection 0.159 0.186 
Piped drinking water 0.089 0.170 

14.930 1.366 10.671 3.713 37.040 
0.500 0.516 0.500 0.488 0.500 

5.219 3.978 

"Excluded category is females 60 years of age and over. 
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Table 2 
(i.e., expenditures per illness episode), Indonesian Households, 1987 

Cluster (kabupaten) Fixed-Effects Estimates of Health-Care Log “Unit Values” 

Unit values for: 

Independent Variable 

Traditional providers Modern providers 

Parameter T ratio Parameter T ratio 

Whether household head employee? 
Household size 
Log total household incomen 
Age of household head 
Schooling of household head 
Whether health insurance coverage? 
Proportion in total household size ogh 

Males 0-4 years 
Males 5-14 years 
Males 15-24 years 
Males 25-34 years 
Males 35-44 years 
Males 45-54 years 
Males 55-59 years 
Males 60 years and over 
Females 0-4 years 
Females 5-14 years 
Females 15-24 years 
Females 25-34 years 
Females 35-44 years 
Females 45-54 years 
Females 55-59 years 

Distribution of illness episodes 
in household during past week‘ 

tuberculosis-type symptoms 
diarrhea-type symptoms 
malaria-type symptoms 
measles-type symptoms 
liver-related ailments 
multiple symptoms 

F-ratio 
R-square 
No. of obs. 

-0.222 
0.023 
0.550 

-0.014 
-0.012 
.- 0.7 16 

-0.526 
- 1.353 
-2.467 
-2.069 
- 1.035 
-2.791 
- 1.634 

0.050 
-1.151 
-1.526 
-1.060 
-2.289 
-0.978 
-0.046 
-1.118 

-1.744 
-0.736 
-0.045 
-0.057 

0.254 
0.094 
1.750 
0.239 

178 

-1.4 
0.4 
1.7 

-1.4 
-0.3 
-0.7 

-0.5 
-1.5 
-2.6 
-1.9 
-0.9 
-2.3 
-1.1 

0.0 
-1.2 
-1.9 
-1.3 
-2.2 
-0.8 
-0.1 
-0.7 

-4.0 
-1.8 
-0.2 
-0.2 

1.3 
0.3 

0.030 

0.804 
0.003 
0.021 
0.434 

-0.074 

-0.597 
-0.357 
-0.117 
-0.265 
-0.213 
-0.225 
-0.105 
-0.249 
-0.424 
-0.209 
-0.200 
-0.053 
-0.135 
-0.081 

0.318 

0.524 
-0.102 
-0.208 
-0.126 

0.197 
0.092 
2,107 
0.535 

5 1,248 

0.8 
-5.8. 
11.3 
1.5 
2.8 
3.1 

-2.7 
-1.9 
-0.6 
-1.1 
-0.8 
-0.9 
-0.3 
-1.0 
-1.9 
-1.1 
-1.0 
-0.2 
-0.6 
-0.4 

1.2 

6.8 
-1.3 
-4.6 
-1.4 

4.4 
1.4 

aInstrumental variable. Identifying instrument is log nonlahor household income. 
‘Excluded category is females aged 60 years and over. 
‘Excluded category is ‘‘Other symptoms.” 
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significantly on the type of illness and symptoms for which treatment is sought. For 
example, treatment for liver-related diseases costs 19.7% more, and that for tuber- 
culosis costs 52.4% more, than treatment for the excluded category of “other ill- 
nesses.” In contrast, malaria treatment costs 20.8% less than the excluded category.* 
Controlling for the disease-specific and the spatial (or cluster) effects, household in- 
come has a strong positive impact on both modern- and traditional-provider unit 
values, with the income elasticity for the former being 0.80 and the latter, 0.55. As 
would be expected, individuals with health insurance coverage spend significantly 
(43.4%) more per illness episode than individuals without insurance coverage. The 
unit value regressions also imply that individuals from large households buy lower 
levels of health-care quality (i.e., spend less per illness episode), while those from 
households with better-schooled heads purchase higher quality. Finally, the house- 
hold composition effects indicate that additional numbers of children aged 0-4 years 
and boys aged 5-14 years significantly reduce household expenditure per illness 
episode. 

B. Treatment Choice Model 

Table 3 shows the conditionalt and unconditional multinomial logit estimates of the 
treatment choice model for children under S years of age, while Table 4 and 5 show 
the corresponding estimates for children aged S-17 years and adults aged 18 and 
over. Ten major empirical findings are discussed. 

The conditional estimates, which are comparable to the estimates reported 
by most previous studies, indicate that while the demand for traditional healer ser- 
vices is significantly responsive to price (with own price elasticities of -0.10, -0.45, 
and 0.60t for individuals aged 0 4 ,  5-17, and 18 and over, respectively), the de- 
mand for health care from modern providers is not significantly influenced by price. 
However, the unconditional estimates imply significant own-price responsiveness of 
demand for modern health services, with estimated elasticities of -0.13, -1.64, and 
-0.82 (all significantly different from zero at the 5% level) for the three age groups. 
The estimated price responses are large, especially for children aged 5-17 but also 
for adults. Indeed, such large own-price elasticities have rarely been reported in the 
literature. The difference in own price elasticity estimates for modern health care 
between the conditional and unconditional provider choice models suggests that the 
price of care in the modern sector strongly reduces the reporting of morbidity by 

1. 

*The large coefficient on the tuljerculosis dummy variable in the unit-value regression for traditional 
providers is not reliable, since only a couple of individuals in the sample obtained treatment for tuber- 
culosis from a traditional provider. 

Unless otherwise stated, all elasticities reported are evaluated at sample means. 

?These are conditioned on an individual reporting an illness during the one-week reference period. 



Table 3 
Episode Experienced during the Preceding Week, Children under 5 Years of Age, Indonesia, 1987 

Multinomial Logit Estimates of the Probability of Seeking Treatment from a Traditional or Modern Health Provider for a Reported Illness 

Conditioned on an illness being reported Unconditioned on an illness being reported 

Traditional health provider Modem health provider Traditional health provider Modem health provider 

Independent variable Parameter T ratio Elasticity Parameter T ratio Elasticity Parameter T ratio Elasticity Parameter T ratio Elasticity 

Intercept 
Whether household head employee? 
Household size 
Log total household income" 
Age of household head 
Schooling of household head 
Whether health insurance coverage? 
Age of child 
Whether child male? 
Price of 

Traditional health servicesb 
Modern health servicesb 
Domestic rice 
Cassava 
Onion 
Canned milk 
Meat soya 
Sugar 

- 19.369 
-0.786 
-0.028 

0.150 
-0.026 

0.020 
- 32.234 
-0.171 
-0.095 

-0.899 
0.812 
1.755 

-0.252 
-0.so5 
- 1.365 

0.945 
1.327 

-1.5 
-2.8 
-0.3 

0.3 
-1.4 

0.4 
0.0 

-2.1 
-0.3 

-4.0 
2.1 
1.4 

-0.6 
-0.6 
-1.8 

2.0 
0.7 

-0.128 
0.045 

-0.007 
-0.131 
-0.023 
-3.962 
-0.036 

0.015 

-0.103 
0.129 
0.016 

-0.025 
0.006 

-0.173 
0.096 
0.463 

2.461 
0.248 

-0.092 
0.205 
0.003 
0.054 

-0.181 
-0.015 
-0.213 

-0.067 
-0.235 

1.625 
-0.049 
-0.350 

0.032 
0.171 

-2.420 

0.5 
2.5 

-2.4 
1 .o 
0.4 
2.7 

-0.5 
-0.4 
-1.5 

-0.7 
-1.5 

3.1 
-0.3 
-1.7 

0.1 
0.8 

-2.8 

0.008 
-0.003 

0.0o0 
0.008 
0.001 
0.241) 
0.002 

-0.001 

0.006 
-0.008 
-0.001 

0.002 
0.0o0 
0.010 

-0.006 
-0.028 

-23.597 
-0.778 
-0.026 
-0.023 
-0.033 
-0.010 
- 16.746 
-0.229 

0.076 

-0.688 
0.305 
1.039 

-0.035 
-0.220 
-0.883 

0.807 
2.344 

-2.1 
-3.0 
-0.3 

0.0 
- 1.9 
-0.2 

0.0 
-3.2 

0.3 

-3.3 
0.9 
1 .o 

-0.1 
-0.5 
-1.4 

1.9 
1.3 

-3.088 
1.173 

-0.643 
-3.349 

0.094 
-51.979 
-0.939 

0.417 

-2.2.38 
2.186 
1.659 

-0.276 
-0.549 
-3.200 

1.243 
9.1 ,SO 

-6.14% 
0.226 

-0.089 
0.186 

-0.004 
-0.015 

0.146 
-0.077 
-0.059 

0.040 
-0.406 

0.500 
0.055 

-0.041 
0.157 
0.403 

-0.630 

-2.1 
4.1 

-4.2 
1.6 

-0.9 
- 1.4 

0.7 
-4.2 
-0.7 

0.9 
-4.8 

1.8 
0.5 

-0.4 
0.9 
3.4 

-1.3 

0.188 
-0.071 

0.039 
0.203 

-0.006 
3.157 
0.057 

-0.025 

0.136 
-0.133 
-0.101 

0.017 
0.033 
0.194 

-0.076 
-0.556 



Proportion in total household size of 
Males 0-4 years 
Males 5-14 years 
Males 15-24 years 
Males 25-34 years 
Males 3 5 4 4  years 
Males 45-54 years 
Males 55-59 years 
Males 60 years and over 
Females 0 4  years 
Females 5-14 years 
Females 15-24 years 
Females 25-34 years 
Females 3- years 
Females 45-54 years 
Females 55-59 years 

Organized trash collection 
Piped drinking water 

Proportion of vilhges in district having 

No. of obs. 
Log-likelihood ratio 

6.225 1.8 
4.748 1.4 
3.453 1.0 
0.954 0.3 
1.937 0.5 
6.922 1.7 

-3%.746 0.0 
8.985 1.9 
6.246 1.8 
4.836 1.4 
3.682 1.0 
1.284 0.3 
2.840 0.7 
4.981 1.2 

-1.619 -0.2 

-0.852 -0.7 
-0.451 -0.3 

2,767 
-1.986 

0.146 
0.079 
0.026 
0.039 
0.033 
0.02 1 

-0.201 
0.013 
0.140 
0.076 
0.057 
0.02s 
0.015 
0.010 

-0.002 

-0.023 
-0.017 

-1.530 
- 1.597 
-1.210 
-1.787 
-3.561 
-2.626 

1.693 
-2.019 
-1.763 
-1.285 
- 1.070 
-0.656 
-1.789 
-0.202 

2.319 

0.374 
1.023 

-1.3 
-1.5 
-1.1 
-1.5 
-2.9 
-1.8 

0.7 
-1.1 
-1.5 
-1.2 
-0.9 
-0.5 
-1.3 
-0.1 

1.2 

0.8 
2.2 

-0.009 
-0.005 
-0.002 
-0.002 
-0.002 
-0.001 

-0.001 
-0.008 
-0.005 
-0.003 
-0.002 
-0.001 
-0.001 

O.OO0 

0.001 
0.001 

0.012 - 

6.247 
4.618 
3.386 
1.658 
2.8% 
7.797 

178.350 
9.377 
6.392 
5.151 
4.217 
1.570 
3.115 
5.635 

-2.661 

- 1.914 
0.148 

24,202 
-7,010 

1.8 
1.4 
1 .o 
0.5 
0.8 
2.0 
0.0 
2.2 
1.9 
1.6 
1.2 
0.4 
0.8 
1.5 

-0.4 

-1.8 
0.1 

3.001 
2.027 
0.558 
0.721 
0.736 
0.550 

-2.513 
0.312 
3.047 
1.989 
1.128 
0.542 
0.366 
0.219 

-0.046 

-0.641 
-0.292 

-0.541 
- 1.052 
-0.650 
-0.622 
-1.640 
-1.435 
-0.597 
-0.829 
-0.795 
-0.689 
-0.078 
-0.1% 
-0.713 

0.578 
0.342 

-0.679 
1.138 

-0.9 
-1.8 
-1.0 
-1.0 
-2.4 
-1.8 
-0.5 
-0.9 
-1.3 
-1.2 
-0.1 
-0.2 
-1.0 

0.8 
0.4 

-3.0 
5.2 

-0.182 
-0.123 
-0.034 
-0.044 
-0.045 
-0.033 

0.153 
-0.019 
-0.185 
-0.121 
-0.069 
-0.033 
-0.022 
-0.013 

0.003 

0.039 
0.018 

All elasticities evaluated at sample means. 
'Instrumental variable. Identifying instrument is log nonlabor household income. 
bInstrumental variable. Identifying instruments are various district (kabupaten) characteristics. See text for a list of these characteristics. 



Table 4 
Episode Experienced during the Preceding Week, Children Aged 5-17 Years of Age, Indonesia, 1987 

Multinomial Logit Estimates of the Probability of Seeking Treatment from a Traditional or Modem Health Provider for a Reported Illness 

Conditioned on an illness being reported Unconditioned on an illness being reported 

Traditional health provider Modem health provider Traditional health provider Modern health provider 

Independent variable Parameter T ratio Elasticity Parameter T ratio Elasticity Parameter T ratio Elasticity Parameter T ratio Elasticity 

Intercept 
Whether household head employee? 
Household size 
Log total household incomea 
Age of household head 
Schooling of household head 
Whether health insurance coverage? 
Age 
Whether male? 
Price of 

Traditional health servicesb 
Modem health servicesb 
Domestic rice 
Cassava 
Onion 
Canned milk 
Meat soya 
Sugar 

-27.732 
-0.348 
-0.015 
-0.244 
-0.022 

0.004 
-35.475 
-0.029 

0.085 

-0.584 
1.351 
2.81 1 

-0.743 
-0.617 
-1.322 
-0.007 

5.602 

-2.8 
- 1.6 
-0.2 
-0.6 
- 1.6 

0.1 
0.0 

-1.1 
0.4 

-3.2 
4.1 
2.6 

-2.3 
-1.5 
-2.2 

0.0 
3.6 

-0.266 
0.112 

-0.310 
-0.797 
-0.201 

-23.329 
-0.044 

0.056 

-0.44% 
0.972 
0.401 

-0.500 
-0.290 
-0.790 
-0.218 

5.369 

-4.503 
0.056 

-0.041 
0.226 
0.007 
0.062 

-0.042 
-0.022 
-0.001 

0.097 
-0.126 

2.202 
0.0 15 

-0.176 
-0.122 

0.324 
-2.554 

-1.2 
0.7 

-1.7 
1.6 
1.4 
4.2 

-0.2 
-2.1 

0.0 

1.4 
-1.1 

5.5 
0.1 

-1.2 
-0.5 

2.2 
-4.1 

0.017 
-0.007 

0.020 
0.052 
0.013 
1.512 
0.003 

-0.004 

0.029 
-0.063 
-0.026 

0.032 
0.019 
0.051 
0.014 

-0.348 

-35.104 
-0.197 
-0.043 
-0.063 
-0.034 
-0.066 
- 15.222 
-0.067 

0.076 

-0.471 
0.751 
2.058 

-0.610 
-0.492 
-0.742 
-0.4% 

6.%2 

-4.0 
-1.0 
-0.7 

0.2 
-2.5 
-1.7 

0.0 
-2.6 

0.4 

2.7 
2.3 
2.2 

-2.1 
-1.3 
- 1.3 
-1.4 

4.8 

-5.492 
3.213 

-6.473 
-24,440 
-6.871 

-271.515 
-0.204 

1.270 

-9.720 
25.433 
15,510 

- 13.260 
- 10.701 
-20.678 
-13.283 
139.206 

- 13.391 
0.115 

-0.071 
0.305 

-0.002 
0.006 
0.208 

-0.066 
0.004 

0.081 
-0.695 

1.177 
0.144 
0.116 
0.433 
0.259 

-0.949 

-5.5 
2.4 

-4.4 
3.3 

-0.7 
0.7 
1.4 

-9.9 
0.1 

2.1 
-9.7 

5.1 
1.6 
1.2 
3.1 
2.6 

-2.4 

0.354 

0.418 
1.577 
0.443 

17.517 
0.013 

-0.082 

0.627 
-1.641 
-1.001 

0.855 
0.690 
1.334 
0.857 

-0.207 

-8.981 



Proportion in total household sue of 
Males 0-4 years 
Males 5-14 years 
Males 15-24 years 
Males 25-34 years 
Males 35-44 years 
Males 45-54 years 
Males 55-59 years 
Males 60 years and over 
Females 0-4 years 
Females 5-14 years 
Females 15-24 years 
Females 25-34 years 
Females 35-44 years 
Females 45-54 years 
Females 55-59 years 

Organized trash collection 
Piped drinking water 

Proportion of villuges in district having 

No. of obs. 
Log-likelihood ratio 

0.626 
-0.061 

1.107 
0.057 
0.385 
2.158 
2.362 
2.225 
1.191 
0.049 
0.074 
0.040 
1.580 

-0.668 
-1.651 

-0.226 
-3.434 

4,218 
-3,262 

0.3 
0.0 
0.5 
0.0 
0.2 
0.9 
0.8 
0.7 
0.5 
0.0 
0.0 
0.0 
0.7 

-0.3 
-0.5 

-0.3 
-2.4 

-0.018 
-0.165 
0.004 

-0.072 
-0.067 

0.015 
0.004 
0.010 
0.016 

-0.171 
-0.071 
-0.047 

0.030 
-0.024 
-0.003 

-0.034 
-0.190 

1.217 
1.182 
1.038 
2.331 
2.120 
1.599 
1.742 
1.072 
0.636 
1.418 
1.528 
0.976 
0.7% 
0.52 1 

-0.993 

0.130 
0.163 

1.5 
1.6 
1.4 
2.7 
2.5 
1.9 
1.6 
1 .o 
0.8 
1.9 
2.0 
1.1 
0.9 
0.6 

-0.9 

0.4 
0.5 

0.001 
0.01 1 
0.o00 
0.005 
0.004 

-0.001 
0.o00 

-0.001 
-0.001 

0.01 1 
0.005 
0.003 

-0.002 
0.002 
0.o00 

0.002 
0.012 

0.868 
-0.310 

1.095 
-0.662 
-0.367 

2.127 
2.253 
2.184 
1.531 

-0.209 
-0.147 

0.236 
1.518 

-0.185 
-0.178 

-0.721 
-2.337 
77,573 

-11,150 

0.4 
-0.2 

0.6 
-0.3 
-0.2 

1 .o 
0.8 
0.7 
0.8 

-0.1 
-0.1 

0.1 
0.7 

-0.1 
-0.1 

-0.9 
-1.8 

0.01 1 
-2.047 

0.916 
- 1.099 
-0.887 

1.158 
0.315 
0.538 
0.784 

-2.266 
-0.967 
-0.653 

0.935 
-0.423 

0.059 

-1.145 
-4.846 

0.852 
0.269 
0.526 
0.866 
0.495 
0.572 
0.601 
0.169 
0.388 
0.481 
0.515 
0.794 
0.652 
0.535 

-0.654 

-0.338 
0.522 

1.6 
0.5 
1.0 
1.5 
0.9 
1 .o 
0.8 
0.2 
0.7 
1 .o 
1.0 
1.4 
1.2 
0.9 

-0.8 

-1.8 
2.7 

-0.001 
0.132 

-0.059 
0.071 
0.057 

-0.075 
-0.020 
-0.035 
-0.051 

0.146 
0.062 
0.042 

-0.060 
0.027 

-0.004 

0.074 
0.313 

All elasticities evaluated at sample means. 
aInstrumental variable. Identifying instrument is log nonlabor household income. 
'Instrumental variable. Identifying instruments are various district (kabupaten) characteristics. See text for a list of these characteristics. 



Table 5 
Episode Experienced during the Preceding Week, Adults 18 Years of Age and Over, Indonesia, 1987 

Multinomial h g i t  Estimates of the Probability of Seeking Treatment from a Traditional or Modem Health Provider for a Reported Illness 

Independent variable 

~~ 

Conditioned on an illness being reported Unconditioned on an illness being reported 

Traditional health provider Modem health provider Traditional health provider Modem health provider 

Parameter T ratio Elasticity Parameter T ratio Elasticity Parameter T ratio Elasticity Parameter T ratio Elasticity 

Intercept 
Whether household head employee? 
Household size 
Log total household income' 
Age of household head 
Schooling of household head 
Whether health insurance coverage? 
Age of individual 
Whether individual male? 
Schooling (years) of individual 
Price of 

Traditional health servicesb 
Modern health services' 
Domestic rice 
Cassava 
Onion 
Canned milk 
Meat soya 
Sugar 

-37.223 
-0.158 
-0.033 

0.245 
0.002 

-0.044 
-0.947 
-0.002 

0.225 
-0.078 

-0.438 
0.840 
2.871 

-0.192 
-0.559 

0.568 
0.501 
2.104 

-6.4 
-1.3 
-0.8 

1 .o 
0.4 

-1.4 
-0.9 
-0.4 

1.9 
-2.7 

-4.0 
4.5 
4.3 

-0.8 
-2.2 

1.6 
2.0 
2.2 

-0.171 
-0.225 
0.006 

-0.079 
-0.392 
-0.931 
-0.165 

0.42 1 
-0.556 

-0.597 
0.915 
1.687 

-0.156 
-0.043 

0.511 
0.487 
3.7,M 

-4.617 
-0.012 

042 
0.239 
0.004 
0.030 

-0.155 
0.001 

-0.133 
0.036 

0.070 
0.062 
1.437 

-0.059 
-0.523 

0.134 
0.087 

- 1.088 

- 1.7 
-0.2 

0.1 
2.4 
1.3 
2.3 

0.7 

3.2 

1.4 
0.8 
5.1 

-0.6 
-4.9 

0.8 
0.8 

-0.6 

-2.5 

-2.4 

0.014 
0.019 

-0.001 
0.007 
0.033 
0.078 
0.014 

-0.035 
0.046 

0.050 
-0.076 
-0.141 

0.013 
0.004 
-0.043 
-0.041 
-0.313 

- 45.595 
-0.061 
-0.053 

0.129 
-0.005 
-0.072 
- 1.333 

0.02 1 
0.369 

-0.121 

-0.369 
0.147 
2.438 
0.098 

-0.159 
0.697 
0.403 
3.497 

-8.9 
-0.5 
-1.3 

0.6 
-0.8 
-2.5 
-1.3 

4.7 
3.4 

-4.5 

-3.8 
0.8 
4.2 
0.5 

-0.7 
2.2 
1.7 
4.0 

-1.818 
-2.955 

0.534 
-0.661 
-5.221 

-13.953 
-2.738 

5.656 
-8.800 

-6.152 
10.018 
26.345 
-0.768 
-2.556 

6.713 
3.534 

38.382 

-14.149 -8.8 
0.066 2.0 

-0.016 -1.5 
0.092 1.5 

-0.w -2.2 
-0.003 -0.3 
-0.358 -2.6 

0.027 20.6 
-0.026 -0.8 
-0.003 -0.4 

0.060 2.3 

0.597 3.6 
0.152 2.5 
0.019 0.3 
0.228 2.4 
0.156 2.3 
0.816 3.0 

-0.553 -11.2 

0.149 
0.243 

-0.044 
0.054 
0.429 
1.147 
0.225 

0.724 

0.506 
-0.824 
-2.166 
0.063 
0.210 

-0.552 
-0.291 
-3.156 

-0.465 



Proportion in total household size of 
Males 0-4 years 
Males 5-14 years 
Males 15-24 years 
Males 25-34 years 
Males 35-44 years 
Males 45-54 years 
Males 55-59 years 
Males 60 years and over 
Females 0-4 years 
Females 5-14 years 
Females 15-24 years 
Females 25-34 years 
Females 35-44 years 
Females 45-54 years 
Females 55-59 years 

Organized trash collection 
Piped drinking water 

Proportion of villages in district having 

No. of obs. 
Log-likelihood ratio 

0.268 
0.427 
0.208 
1.877 
1.311 
1.849 
1.521 
0.480 
1.177 
0.260 
0.543 

-0.647 
0.191 
0.374 
0.862 

0.466 
-1.315 

8,512 
-6,778 

0.3 
0.7 
0.3 
2.7 
1.5 
2.5 
1.7 
0.7 
1.6 
0.4 
0.9 

0.3 
0.6 
1.3 

1 .o 
-2.3 

-0.9 

0.018 
0.057 
0.054 
0.157 
0.053 
0.082 
0.028 
0.024 
0.069 
0.071 
0.079 

-0.053 
0.017 
0.009 
0.015 

0.007 
-0.128 

-0.067 
0.006 

-0.254 
-0.060 

0.267 
0.268 
0.220 
0.095 

-0.1 18 
-0.321 
-0.088 
-0.006 
-0.102 

0.245 
0.189 

0.430 
-0.089 

-0.2 
0.0 

-0.9 
-0.2 

0.7 
0.8 
0.5 
0.3 

-0.3 
- 1.2 
-0.3 

0.0 
-0.3 

0.9 
0.6 

2.0 
-0.4 

-0.002 
-0.005 
-0.004 
-0.013 
-0.004 
-0.007 
-0.002 
-0.002 
-0.006 
-0.006 
-0.007 
0.004 

-0.001 
-0.001 
-0.001 

-0.001 
0.01 1 

0.098 
0.104 
0.099 
1.612 
0.604 
1.303 
0.685 
0.449 
1.154 

-0.059 
0.574 

0.229 
0.399 
0.575 

0.106 
-0.598 
114,559 

-0.423 

-22,922 

0.1 
0.2 
0.2 
2.4 
0.8 
1.9 
0.8 
0.7 
1.6 

-0.1 
1 .o 

-0.6 
0.3 
0.7 
0.9 

0.2 
-1.1 

0.202 
0.657 
0.686 
2.277 
0.697 
0.922 
0.249 
0.227 
0.751 
0.730 
0.978 

-0.667 
0.265 
0.121 
0.204 

0.418 
-1.608 

-0.187 
-0.284 
-0.341 
-0.436 
-0.432 
-0.207 
-0.336 
-0.003 

0.03 1 
-0.520 
-0.024 

0.206 
-0.137 

0.232 
-0.292 

-0.055 
0.445 

-0.9 
- 1.7 
- 1.9 
-2.1 
-1.8 
-0.9 
-1.3 

0.0 
0.1 

-3.0 
-0.1 

1.0 
-0.7 

1.4 
-1.3 

-0.4 
3.5 

-0.017 
-0.054 
-0.056 
-0.187 
-0.057 
-0.076 
-0.020 
-0.019 
-0.062 
-0.W 
-0.080 

0.055 
-0.022 
-0.010 
-0.017 

-0.034 
0.132 

All elasticities evaluated at sample means. 
OInstrumental variable. Identifying instrument is log nonlabor household income. 
'Instrumental variable. Identifying instruments are various district (kabupaten) characteristics. See text for a list of these characteristics. 
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respondents, with the result that health-care demand models estimated only on the 
sample of individuals self-reporting an illness episode are likely to significantly un- 
derstate the adverse effect of health-care prices on the demand for care in the modern 
health sector. 

The fact that the unconditional own-price elasticity of demand for curative 
treatment is small and insignificant for the 0-5 years age group suggests that very 
young children in households are relatively more protected than other members 
against price changes. On the other hand, children aged 5-17 years are most vulner- 
able to price increases, with their modern provider visits falling by 1.6% for a 1% 
increase in the price of modern care. 

The estimated own-price elasticities of demand for traditional health ser- 
vices also differ significantly between the conditional and the unconditional model. 
However, all elasticities for traditional health services tend to be unusually large be- 
cause the sample mean of the unconditional probability of using traditional health 
services, which is the point at which the elasticities are evaluated, is extremely small. 

Household size has a strong negative effect on both the conditional and 
unconditional demand for modern care among children (0-1 7 years) but not among 
adults. Surprisingly, household income is generally not significant in determining 
the demand for either traditional or modern care. The only case where income is 
significant is in influencing the demand for modern care among children aged 5-17 
years (with an income elasticity of 0.42). However, two facts are relevant in putting 
the nonsignificance of income in  perspective: (1) the significant negative effect of 
household size implies that the demand for modern health providers does increase 
with household income per capita, especially for children aged 0-4 and 5-17 years 
of age; and (2) as noted earlier, household income has strong positive effects on the 
demand for quality (i.e., unit values) of both modern and traditional health services. 

The cross-price elasticities of demand for health care-estimated by few 
previous studies for developing countries-are positive for all three age groups (al- 
though not significantly so for children under 5), indicating that traditional and mod- 
ern health services are (gross) substitutes for each other. The estimated elasticity 
of demand for modern care with respect to the price charged by traditionai health 
providers is 0.63 for children aged -5-17 years and 0.51 for adults. The correspond- 
ing cross-price elasticities for traditional health services are extremely large (25.43 
and 10.02 for persons aged 5-17 and 18 and over, respectively), again reflecting the 
extremely low levels of usage of traditional healers. These estimates indicate that an 
increase in the price of modern health services can cause a significant shift away 
from the modern to the traditional health sector. 

The effects of schooling of the individual* and that of the household head 
on health-care demand also differ between the conditional and unconditional mod- 

2. 

3.  

4. 

S. 

*An individual’s own schooling was inc:luded in the demand equations only for adults over 17 years of 
age, since it is likely to be enclogrnoiis for rhildrrn. 



HEALTH SERVICES I N  A DEVELOPING COUNTRY I 13 

els. While the former suggest that the demand for modern health care is strongly 
(positively) influenced by an individual's schooling or the schooling of the household 
head, the unconditional estimates shown neither or these effects to be significant.* 
The latter result reflects the fact that the unconditional estimates confound the effects 
of schooling on morbidity (which are likely to be negative), the reporting of morbid- 
ity (positive), and the treatment of illness episodes from modern health providers 
(positive). 

Food prices, which have not been included in the demand for health care 
by previous studies, are observed to generally have very strong effects on the de- 
mand for both traditional and modern health care. Most of the estimated food price 
effects on the demand for traditional care are positive, implying that food and tra- 
ditional health care inputs are viewed as substitutes. However, the probability of 
choosing a modern provider declines with most food prices, implying that food and 
modern health-care inputs are complementary. Thus, the effect of rising food prices, 
especially the price of rice and sugar, appears to be to shift people from modern to 
traditional health providers. 

Among all three age groups, age is associated with an increased (uncon- 
ditional) probability of using modern providers. Since age has generally no effect 
on the conditional probability of choosing a modern provider,i this suggests that ei- 
ther true morbidity or the reporting of morbidity increases with age. Among adults, 
morbidity is likely to increase with age; however, it is likely that, among children 
under S, it is the perception and reporting of morbidity-not morbidity itself-that 
increases with age. 

Health insurance coverage and employee/self-employed status of the 
household head have strong influences on the demand for modern medical care. The 
magnitudes of the estimated health insurance coverage effects are especially large 
(with insured individuals aged 04,5-17, and 18 and over having 315.7%, 1751.7%, 
and 114.7%, respectively, greater demand for modern care than uninsured individ- 
uals). However, only the estimate for adults over 17 is significant. A possible reason 
for the nonsignificance of the insurance variable is that it is highly correlated with 
the employee status variable, since all government employees in Indonesia as well 
as most salaried individuals employed in the formal business sector are covered by 
health insurance schemes. Likelihood-ratio tests showed that the employee status 
and insurance coverage variables were jointly significant in determining the choice 
of modern health providers for all three age groups. 

6. 

7. 

8. 

*For adults, both own schooling and the household head's schooling do significantly reduce the con- 
ditional and unconditional proba1)ility of using a traditional health provider. For children aged 5-17 
years, schooling of the household head is associated with a significantly lower unconditional probability 
of choosing a traditional healer. 

?For children aged 5-17 years, age does have a significant, although numerically small, effect on the 
conditional probahility of using a modern provider. 
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9. Relatively few of the household composition effects are significant in in- 
fluencing the choice of providers. An increase in the proportion of males aged 5-14, 
35-44, and 45-54 in the household significantly reduces the use of modern health 
providers for children aged 0-5 years. For children aged 5-14, there are no signifi- 
cant household composition effects. Finally, an increase in the population of males 
aged 544 and females aged 5-14 years in the household significantly reduces the 
use of modern health providers by adults. 

The environmental hygiene variables generally have significant and pos- 
itive effects on the (unconditional) probability of using modern providers. Both the 
availability of safe (piped) drinking water and organized trash collection serve to in- 
crease the demand for modern health providers among persons of all ages,* implying 
that environmental hygiene and modern medical care are viewed by households as 
complementary inputs in the production and maintenance of health status. 

10. 

VI. CONCLUDING REMARKS 

The empirical results in this chapter clearly show that the demand for both tradi- 
tional and modern health services in Indonesia is highly responsive to own price 
when it is not conditioned on the reporting of morbidity and when quality variations 
are purged from the price of health services. Indeed, unlike most previous studies for 
LDCs that show very small price effects on health-care demand, the price elasticities 
estimated here are large in magnitude (-0.13, -1.64, and -0.82 for modern care 
and -2.2, -9.7, and -6.2 for traditional care for children under 5, children aged 
5-17 and adults over 17, respectively).t The fact that the estimated own-price elas- 
ticities for modern health providers are large and significant in the unconditioned 
probability model but small and insignificant in the conditioned probability model 
suggests that the price of care in the modern sector strongly reduces the reporting 
of morbidity by respondents, so that health-care demand models estimated only on 
the sample of individuals self-reporting an illness episode are likely to significantly 
understate the total effect of health-care prices on the demand for care in the modern 
health sector. 

Thus, these findings cast doubt on the assumption, commonly maintained in 
the literature, that increasing user fees at government health facilities will have lim- 
ited effects on the utilization of health services and thus enable governments to raise 
health-sector revenues. The empirical results clearly indicate that the utilization of 
modern health services, especially by children aged 5-1 7 and adults, will decline 

*The single exception is the effect of garbage c.ollec.tion on the demand for modern providers among 

?The demand elasticities for traditional healer services are particularly large because the sample mean 
adults, which is not statistically signific-ant. 

level of usage of traditional healers is very low. 
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sharply if prices in the modern health sector are raised without simultaneously im- 
proving the quality of health services. 

The empirical results also indicate that a number of other prices-in partic- 
ular, the price for health services charged by traditional healers and the price of 
food staples (namely rice and sugar)-have significant effects on the demand for 
modern health services. An increase in user fees charged by traditional healers 
is associated positively, while an increase in the price of rice and sugar is asso- 
ciated inversely, with the utilization of modern health services. Interestingly, the 
availability of piped drinking water and organized trash collection in the commu- 
nity, both of which are health-improving public interventions, serves to increase the 
use of modern health providers. These results thus imply that individuals view tra- 
ditional and modern health services as substitutes, modern medical care and food 
inputs as complements, and modern health care and environmental hygiene inter- 
ventions as complements, in the production and maintenance of health status. There 
are obvious implications here for food price policy. Likewise, the empirical find- 
ings indicate that there may be important positive externalities (in the form of in- 
creased use of modern health services) to environmental hygiene and sanitation 
interventions. 

The empirical estimates also imply a massive increase in the demand for mod- 
ern health services with an expansion in health insurance coverage in the Indone- 
sian population. Currently, a very small fraction of households-only those having 
a member in government or formal-sector wage employment-are covered by health 
insurance schemes. However, like many other LDCs, Indonesia has been experi- 
menting with expanded health insurance coverage for a much larger proportion of 
the population. 

Finally, the empirical results suggest that income growth alone is unlikely to 
increase the utilization of modern health services in Indonesia. With increasing in- 
comes, however, individuals are likely to purchase higher quality of health services 
(i.e., spend more per illness episode). 
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On Mobility 

Esfandiar Maasoumi 
Southern Methodist University, Dallas, Texas 

1. INTRODUCTION 

Mobility in any social hierarchy is an indication of opportunity. It is therefore a mea- 
sure of fairness in any economic system. In a real sense, mobility should be of greater 
concern to policymakers and analysts than such other important concerns as inequal- 
ity. It may be understandable and socially tolerable for the young, say, to have less 
assets or income, but the likelihood and the opportunity to move up and earn in rela- 
tion to effort is surely a decidedly desirable social goal. What matters in this context 
is “lifetime equity” rather than instantaneous equality. 

There are essentially two types of movements that constitute mobility. One is 
a “growth” or “structural” mobility which may arise from a general economic move- 
ment up, or down. The other is the “lateral type,” or “exchange mobility” which 
obtains when individuals, households, or groups of such units move from one state 
to another. Since there are at least some temporal limits to such upward movements, 
mobility, particularly of the lateral type, must be “equalizing.” Thus welfare com- 
parison between any two mobility states necessarily requires functionals that reflect 
degrees of social preference for equity, exchange mobility, and growth (new oppor- 
tunities). 

There are two important questions that need attending to. One is how does 
one characterize economic status? The other is, how does one evaluate and compare 
different mobility situations? The latter question poses the issue of why is mobility 
socially desirable and, if it is, what kinds of social welfare functions (SWFs) rep- 
resent our preferences for mobility? The first question is all too often resolved by 
using “income” as a proxy. Such a proxy is evidently more meaningful the more mar- 
ket oriented an economy and a culture, and the less is the level of in-kind and other 
transfer payments and entitlements. 

I19 
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The reliance on SWFs for evaluating and comparing welfare situations has 
provided a scientifically useful tool that provides for economy of thought, as well as 
discipline, since it forces a declaration of principles that are too often implicit. In the 
instant case, the desirability of both types of mobility suggests functionals that are 
increasing in incomes (for the growth component), and ultimately equality preferring 
(for the exchange component). While changes in earnings and incomes have been 
and should be studied with the aim of identifying significant “causal” factors, the 
evaluation of an existing degree of mobility requires welfare comparisons. 

There are currently at least two complementary lines of analyzing mobility. 
The older approach requires specification of transition probabilities between social 
states, and a welfare evaluation of the transition matrices that are estimated from the 
existing data. This clearly requires detailed data, with large panel data being the best 
source for sufficient cell repetitions which is necessary for reliable statistical infer- 
ence. There are numerous mobility indices which are mappings from the transition 
matrices to scalars. Shorrocks (1978a) and Geweke et al. (1986) provide systematic 
discussions of criteria for sensible mobility indices. 

In line with a general direction toward unanimous partial ordering in the liter- 
ature on inequality, useful welfare ran king relations have been developed for tran- 
sition matrices which rekindle the essential role played by Lorenz and generalized 
Lorenz criteria. While the SWF evaluation has begun to be emphasized in this ap- 
proach, the task of devising consensus SWFs over matrices remains a challenge 
reminiscent of that faced in the multidimensional analysis of inequality. I provide 
an account of this line of inquiry in Section 111. 

The second approach was initiated by Shorrocks (1978b) and generalized by 
recasting mobility as a multidimensionality question as in Maasoumi (1986); e.g., 
see Maasoumi and Zandvakili (1986, 1989, 1990). In this approach inequality in- 
dices are computed for multiperiod incomes, that is, a type of “permanent income” 
measured over more than a single period, and mobility indices with a profile of 
equalization over time are obtained. The latter are directly related to and inter- 
pretable by the familiar classes of increasing and equality preferring (Schur con- 
cave) SWFs. It will be seen that the more recent welfare theoretic development of 
the transition matrices approach is converging to the same welfare comparisons, 
similar notion of long-run or “permanent” income, and thus similar preferred mo- 
bility indices! Quite general mobility indices are proposed and empirically imple- 
mented by Maasoumi and Zandvakili (1989, 1990). This approach is also demand- 
ing of data and, like the first approach, it is ideally implemented with plentiful 
micro data. But the Maasoumi-Shorrocks-Zandvakili (MSZ) measures may be ad- 
equately estimated with data grouped by age, income, education, etc. This is use- 
ful since much data is made available in this aggregated form, and the approach is 
particularly focused on “equalization” between income groups in a way that allows 
controlling for sources of heterogeneity among individuals and households. Such 
controls with aggregate data appeal to some who may wish to tolerate some diver- 
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sity due to such things as age or education. I present an account of this approach 
in Section 11. 

Our survey makes clear that both approaches share a concern for the distri- 
bution of a welfare attribute as well as its evolution. And the convergence in both 
approaches to rankings by Lorenz-type curves is of econometric significance. There 
is now a well developed asymptotic inference theory for empirically testing for or- 
der relations such as stochastic dominance, Lorenz dominance, and concentration 
curves. This type of testing is a crucial first step since comparing mobility indices 
(statistically or otherwise) is of questionable value when, for instance, generalized 
Lorenz curves cross. Section IV contains a brief account of the statistical tools that 
are available for inference on both the indices of mobility and order relations. 

A loosely related strand of econometric research seeks to specify statistical 
models of earnings or income “mobility.” While it  is true that such models are fo- 
cused on explaining “change” and “variation” which are not as  meaningful as “mo- 
bility,” they can shed light on significant explanations of earnings changes, as well as 
account for heterogeneity. This is consequential for policy analysis. Further, there are 
econometric models that seek to fit transition probabilities. Such studies are directly 
useful for not only estimating transition matrices, but for explaining the estimated 
probabilities. We do not delve into this empirically substantive area in this survey. 
Section V concludes with several empirical applications of the “inequality reduc- 
ing” mobility measures. An insightful survey of income mobility concepts is given 
in Fields and Ok (1995). Absolute measurement of income mobility and partial or- 
dering of absolute mobility states is treated in Mitra and Ok (1995). 

II. INEQUALITY REDUCING MOBILITY INDICES 

A. The MSZ indices 

The most common approach to comparing welfare situations is based on indices. 
For example, two income vectors depicting the respective distribution of households 
at two points in time, or in different regions, are explicitly and implicitly ranked 
by scalar measures of such things as inequality, mobility, or poverty. The welfare 
theoretic underpinnings and limitations of index-based comparisons are now well 
understood. Notwithstanding these serious limitations, the need for “measurement” 
has led to the development of many “sensible” indices, supplemented with statistical 
tools which are based upon the asymptotic distributions of the indices; see Maasoumi 
(1996) for a recent survey. This “index-based” approach is limited because of a lack 
of unanimity on the acceptable index even when there is broad consensus about cer- 
tain normative principles. But the main difficulty is a consequence of the difficulties 
of welfare “comparability” as well as the appropriate cardinalization of the class of 
admissible criterion functions. 
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In the case of mobility indices, Shorrocks (197833) and Maasoumi and Zand- 
vakili (1986) argued that a more reliable measure of individual welfare and the dis- 
tribution of incomes is to be obtained by considering the individual or household’s 
“long-run” income. They argued that such a measure of income computed over in- 
creasingly longer periods of time would remove transitory and some other life cycle 
related movements which are picked up by year-to-year comparisons of income dis- 
tributions. The annual “snapshots” are incapable of accounting for mobility and re- 
turns to investments and/or human capital. The effects of seniority alone may make 
the notion of income inequality meaningless. 

These authors are therefore concerned with dynamics of income distribution, 
and are thus accounting for, and challenged by, a fundamental lack of homogeneity 
among households. The natural labelling of individuals at different points in their 
life cycle is an essential form of heterogeneity which contradicts the common as- 
sumption of symmetry (anonymity) which plays a crucial role in much of the welfare 
theory that underlies inequality analysis. Shorrocks (1978b) proposed the simple 
sum of incomes over T periods as the aggregate income. Maasoumi and Zandvakili 
(1986, 1989,1990) proposed more general measure of “permanent income” encom- 
passing the simple average and sum. This author recognized the essential multidi- 
mensionality of the mobility analysis and proposed its treatment on the basis of the 
techniques and the concepts developed in Maasoumi (1986). Consequently, general 
functions for “permanent incomes” where developed which are maximum entropy 
(ME) aggregators. 

The next step in this development is to analyze the inequality in the perma- 
nent incomes and compare with single period inequalities. A weighted average of the 
latter was used by these authors to represent “short-run” inequality over any desired 
number of periods. Clearly, a distribution of permanent incomes is being compared 
and ranked with a reference short run income distribution. In view of this, all of the 
rich welfare theory supporting Lorenz and generalized Lorenz (second order stochas- 
tic dominance) dominance relations, as well as the convex inequality measures con- 
sistent with such relations, comes at the disposal of the analyst for evaluating mo- 
bility profiles and dynamic evolution of the income distribution. At first sight, this 
appears an unnecessarily restrictive setting for defining the welfare value of mobil- 
ity. Further reflection suggests that this is not so. Indeed, we will see that the recent 
development of a welfare theory basis for the alternative of transition matrices has 
made clear a certain inevitability for the role of the same welfare criteria and, there- 
fore, the same types of mobility measures as the Maasoumi-Shorrocks-Zandvakili 
indices! 

Let X;, be the income of the ith individual in the tth state (period, say); i E 
[ 1,  n], and t E [ 1,  T]. Let Si (Xi; a, #?) denote the ith individual’s permanent income 
(living standard?) over a number of periods k = 1 ,2 ,  . . . , T ,  and S = (S1, Sz, 
. . . , S,) denote the vector of such incomes for the n households or individuals. The 
inequality measures which are consistent with a set of axioms to be described below 
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are represented by I,(.). Let X denote the welfare matrix with the typical element 
Xit and denote its ith row by X ;  and its tth column by X‘ .  The latter is the income 
vector in the tth periodktate. 

The k-period long-run inequality is given by Z,(S), and short run inequality 
may be represented by I; = atZ,(X‘), for k = 1 , 2 ,  . . . , T .  The vector a = 
(al ,  a2, . . . , a ~ )  represents the weights given to the income distribution in different 
periods, such as the ratio of the mean income in the period, p,, and the overall mean 
of incomes in all the k periods under analysis. 

Shorrocks (197813) proposed S ;  = ELl X i t ,  and pl/p,  the ratio of means just 
described, as weights, and Maasoumi and Zandvakili (1986) generalized S; and the 
weight functions, suggesting the following index of mobility: 

with 

, as a measure of stability k R, = - 
‘yk 

where it is to be noted that S ( - )  is measured over the same k periods. When S is 
quasi-concave R E [0,1] follows from the convexity of the inequality measures con- 
sidered. A “mobility profile” is generated by depicting R as k increases over its 
range. Both Shorrocks (1978b) and Maasoumi and Zandvakili (1986, 1989, 1990) 
report empirical studies of the US data from the PSID. Section V describes some of 
these studies. 

Bounds on R t  may be established using the decompositions of multidimen- 
sional measures of inequality given in Maasoumi (1986, Propositions 1 and 2). PT = 
(Rl, RB, . . . , R T )  is a stability profile which can also reveal the effect of increasing 
smoothing of the income variable starting from RI = 1. Other than this smooth- 
ing out of the short-run effects, R, is capable of revealing durable “mobility” toward 
equalization in a way that may be obscured by looking at each I , ( X t ) ,  t = 1, . . . , T .  
This is most clearly seen by considering a situation in which only a permutation of 
the income vector has occurred between two periods. As is well known, this leaves 
our anonymous (symmetric), relative inequality measures unchanged, but the dis- 
tribution of the aggregated incomes over the two periods will be changed, possibly 
dramatically (unless there is perfect equality to begin with!). Consequently, I ,  (S) 
and R, will measure any mobility over the two periods. 

Given that the indices I,(.) are supported by Schur-concave SWFs, ordering 
mobility states by the class of measures in R is consistent with unanimous partial 
orderings conducted with generalized Lorenz curves and related orderings. For this 
reason, and to help in the discussion of Section 111, it is useful to have a brief account 
of the relevant welfare theory. 
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I. The Fundamental Welfare Axioms 

Kolm (1969) and Atkinson (1970) provided the modern and influential formalizations 
of the relationship between SWFs and inequality measures. The need for establish- 
ing this important relationship is now recognized widely when analyzing poverty and 
mobility. However, the axiomatic SWF approach does not by itself identify unique 
indices even when a particular set of normative properties are consented to by a ma- 
jority. To appreciate this point, consider the Atkinson family of inequality measures 
for income x having mean px: 

where F is the c . d . f .  of income. Similarly, the generalized entropy (GE) family of 
indices is 

Ordinally Ir is equivalent to the coefficient of variation and the Herfindahl in- 
dex, and includes the variance of logarithms and Theil’s first and second measures, 
10 and 1-1, respectively. Also, up to a monotonic transformation, there is a unique 
member of GE corresponding to each member of the Atkinson family. v = - y  is the 
degree of aversion to relative inequality; the higher its absolute value the greater is 
the sensitivity of the measure to inequality (transfers) in the tail areas of the distri- 
but ion. 

Employing the functional theory first developed in “information theory” for 
identifying appropriate measures of divergence between distributions, (Maasoumi 
1993), and noting that inequality and many other indices are similar measures of 
divergence, one puts down an explicit set of normative properties (axioms) which 
inequality indices and/or SWFs must satisfy. Using these axioms as explicit con- 
straints on the function space one then obtains the appropriate inequality index. To 
exemplify, let us follow Bourguignon (1979) or Shorrocks (1980, 1984) in their dis- 
cussion of the “fundamental welfare axioms” of symmetry (anonymity), continuity, 
principle of transfers, and additive decomposability. Combined with homogeneity, 
these axioms identify members of the GE as the desirable family of relative inequal- 
ity measures. 

Axiom I (Anonymity). The inequality index (function) is symmetric in in- 
comes. 

Axiom 2 (Homogeneity). 

Axiom 3. Continuity. 

Invariance to scalar multiplication. 
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Axiom 4. Principle of transfers. 
This requires that inequality decrease if we redistribute from a single richer 

individual to a poorer one, leaving their respective ranking and all the other individ- 
uals’ incomes unchanged. 

Axiom 2 is a serious limitation as it restricts attention to “relative” inequality. 
This is so since this requirement implies mean invariance-doubling everyone’s 
income would leave inequality unchanged. 

The class of functionals satisfying Axioms 1-4  is large! Also, any further ax- 
ioms are less likely to command unanimity. In fact, any further requirements must be 
justified by plausible considerations of such things as, heterogeneity amongst house- 
holds and/or individuals, policy, empirical necessity, and practical interest. The most 
commonly invoked of such requirements is: 

Axiom 5. Additive decomposability. 
This requirement, later strengthened as an “aggregation consistency’’ axiom 

by Shorrocks (1984), says that total inequality must be the sum of a “between- 
group” component, obtained over group means, and an additive component which 
is a weighted sum of “within-group” inequalities. This kind of decomposability is 
very useful for controlling and dealing with heterogeneity of populations, and as a 
means of unambiguously identifying the sources of inequality and those that are af- 
fected by it. In the context of mobility analysis, this property further serves to identify 
the contributions of each time interval under consideration. 

If the additive decomposability requirement of Axiom 5 is imposed, such mea- 
sures as Gini, the correlation coefficient, and variance of logarithms must be ex- 
cluded. The latter measures provide ambiguous decompositions of overall inequal- 
ity by population subgroups (Shorrocks 1984). For the GE family, for instance, a 
discretized (estimation) formula that helps to demonstrate its decomposability is 

where Z; is the between group inequality computed over the group mean incomes, 
I‘ is the inequality within the rth group, r = 1 , 2 ,  . . . , R ,  n, is the number of units 
in group I, and X, is total income of the rth group. 

2. Aggregate or Permanent Income 

As in Maasoumi (1986), we consider the following weighted generalized entropy 
measure of divergence between S, on the one hand, and X‘, t = 1 , 2 ,  . . . , T ,  we 
have 
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where a,s are the weights attached to each period. Minimizing Dg with respect to S ;  
such that C Si = 1, produces the following “optimal” aggregate income functions: 

T 

t 

These are, respectively, the hyperbolic, the generalized geometric, and the 
weighted means of the incomes over time. Noting that the “constant elasticity of 
substitution” -0 = 1/(1 + p),  these functional solutions include many of the well- 
known utility functions in economics, as well as some arbitrarily proposed aggregates 
in empirical applications. For instance, the weighted arithmatic mean subsumes the 
simple total income discussed earlier, and a popular “composite welfare indicator” 
based on the principal components of X ,  when at’s are the elements of the first eigen- 
vector of the X’X matrix (Maasoumi 1989a). The “divergence measure” I),(.) forces 
a choice of an aggregate income vector S = (Sl , S2, . . . , S,) with a distribution that 
is closest to the distributions of its constituent variables. This is desirable when the 
goal of our analysis is the assessment of income distribution and its dynamic evolu- 
tion. The entropy principle establishes that any other S would be extra distorting of 
the objective information in the data matrix X .  The distribution of the data reflect the 
outcome of all optimal allocative decisions of all agents in the economy (Maasoumi 
1986). 

The next step in constructing general mobility indices as proposed by Maa- 
soumi and Zandvakili (1986) is the selection of a measure of inequality. The GE 
index described above was computed for the Si functions just obtained. It is instruc- 
tive to analyze this measure in the discrete case: 

Io (S )  = C ST log ( z )  , Theil’s first index 

1-1 (S) = C p ;  log ($) , Theil’s second index 

where pi is the ith unit’s population share (typically = l/n), and Sr is S; divided by 
the total K + S;. 
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These inequality indices are normalized isoelastic transformations of the ag- 
gregate income functions S; .  As such they are “symmetric,” “homogeneous,” and 
consistent with the Lorenz criterion. They will be homogeneous with respect to ev- 
ery X t ,  the tth columdperiod in X, if in all the above one works with the matrix of 
shares, x = (xi,). While this will not change the functional solutions given above, 
it requires a rather unusual assertion that individual well-being depends on rela- 
tive incomes. Alternatively, one can impose a general form of scale invariance at the 
outset (Maasoumi 1996b). 

Useful decomposability properties are possessed by these measures both in 
population groups and in the time directions. 

Theorem I (Decornposability of GE). 

(i) 

Let xit = Xit /Tt ,  Tt = xi X i t ,  = 

T J K ,  Z , ( X L )  = the GE inequality in the tth period, and 6 ,  = a,/ af. Then 
r f l  + y = -B, we have 

(ii) rfthe marginal distributions are identical-i.e., x t  = x k ,  Vt and k-we 
have 

Z,(S) = Z y ( X t ) ,  any t E [l, T ]  (14) 

(iii) For Theil’sfirst and second measures (p = 0, -l), we have 
m 

Zo(S) = C t Z o ( X L )  - D-1(x,  s*; C) 
;= 1 

T 

Z-l(S) = c stz-1 ( X t )  - Do(x, s*; 6) 
t= 1 

where by application of L’H6pital’s rule to Dg(.) defined earlier, we have 

DO(S*, x; 6) = 6, s; log 
t i 

and Si defined at B = 0 and 

and Si defined at B = -1. 



128 MAASOUMI 

Proof: 

In view of the nonnegativity of the D(.) terms in part (iii) it is clear that multi- 
period inequality is no more than the weighted average of inequalities in the single 
periods. This is due to the intertemporal “substitution” effects and a consequence of 
the convexity of the inequality measures. 

See Maasoumi (1986, Propositions 1-2). 

B. 

In the spirit of the “axiomatic approach” discussed above for inequality measures, 
Shorrocks (1992) lays down a set of desirable properties that any mobility index 
may satisfy. These properties are quite suggestive and also useful in any discussion 
including that of mobility indices based on transition matrices. The desirability of 
some of the properties may be evident while that of others may be less obvious or 
compelling. In fact some of the proposed properties are not consistent, so one or 
more has to be abandoned. 

The domain of income structures X over which the measure is well defined is 
given as follows. 

Welfare Properties of R, Indices 

(A I )  Universal domain. Suppose the feasible set of n units and T periods for 
positive incomes is denoted 

X n ~  = { X I  dim X = n x T ;  X;l > 0) 

A mobility measure should be well defined for all X E X ,  where 

However, there are some types of income structures that are eliminated from 
this set. An example is situations in which, in every period t ,  all individuals receive 
the same income pCLt. 

The MSZ indices satisfy this requirement. Other indices may not; see below. 

(A2) Continuiv. 

The MSZ indices satisfy this property. 

(A3) Population symmetry. 

The degree of mobility varies continuously with the incomes 
in X. 

If X’ = nX for some permutation matrix l7, then 
X and X’ are equally mobile. This requires “rank invariance” to be acceptable since 
X and X‘ may not given the same ranking of individuals. 

The term “population symmetry” is used because in the analysis of mobility, 
unlike inequality, we can consider permutation of the t ime period distributions (the 
columns of X )  as well as permutations of the individual income profiles (the rows of 
X ) .  One may thus define time symmetry separately: 
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(A3’) Time symmetry. A mobility measure is time symmetric if X and X‘ are 
equally mobile wherever X = X l 7  for some permutation matrix l7. 

Broadly speaking, time symmetry suggest that we care about the distribution 
of an individual’s income receipts over time, but not about the time sequence of those 
receipts. This is more than time symmetry implies, however, since a permutation l7 
swaps all the incomes in two periods s and t ,  not just Xi ,  with X ; ,  for a single person 
i. But even the weaker idea of time symmetry, as stated, is objectionable since we 
may not be indifferent to the time sequence of incomes as, for instance, between the 
situation in which incomes are originally different and then become equal, and the 
time symmetric equivalent structure in which incomes are initially equal, and then 
become different. 

The MSZ indices satisfy time symmetry, but this may or may not be a desirable 
quality. 

(A4) Population replication invariance. X and X’ are equally mobile whenever 
X’ is a population replication of X .  

(A4’) Time replication invariance. A mobility measure is time replication in- 
variant if X and X’ are equally mobile whenever X’ is a time replication of X .  

X’ E Xrn,T is apopulation replication of X E XnT if r is a positive integer 
and X j ,  = Xi, wherever j = k n  + i for some integer k 2 0. That is, X’ is the 
aggregate income structure for subpopulations each having the income structure X .  
Similarly, X’ E X n , k ~  is a time replication of X E X n ~  if k is a positive integer 
and X’ = [ X ,  X ,  . . . , X I .  Invariance with respect to population replication is the as- 
sumption typically used in inequality measurement to compare income distributions 
for different sized populations. 

The MSZ index with additive aggregate income functions exhibit replication 
invariance with respect to time and the population. However, replication invariance 
with respect to time may in any case be regarded as a suspect property, for much the 
same reason as time symmetry. It implies that the degree of mobility is unchanged if 
the pattern of incomes received in the first T period, say, is exactly repeated for all 
individuals in the next T periods, and so on. “But this does not take into account the 

fact  that the distribution of income in period T may  be radically diferent f rom that 
in period 1, so moving f rom period T to period T i- 1 (and hence back to period 1 
incomes again) may  be quite a jolt. The desirability of time replication invariance is 
therefore less than transparent” (Shorrocks 1992). 

(AS) Normalization. Mobility is a minimum whenever X is completely im- 
mobile. 

Definition. A structure X is completely immobile if and only if XiS/ps = 
Xit/pt for all i ,  s, and t .  

Completely immobile income structures perform a role similar to that played 
by completely equal distributions in inequality measurement. But it is implicit in 
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the above definition that relative mobility is measured since one is only looking at 
changes in relative incomes. This rules out pure exchange mobility. It is a type of 
rank invariance property that goes beyond requiring that a structure in which all 
individuals incomes are constant over time is completely immobile. 

The MSZ indices satisfy this property. They also satisfy the following stronger 
normalization property: 

(A6) Strong normalization. Mobility is a minimum if and only if X is com- 
pletely immobile. 

The other benchmark of interest is perfect mobility. Ideally we would define 
such a state as one in which the probability of achieving an income level in pe- 
riod t + 1 is independent of the income received in period t .  The concept of per- 
fect mobility is difficult to formulate in terms of observed income structures X .  A 
plausible parallel that falls short of “independence” is to require that not only are 
X ,  and X ,  uncorrelated, but also any, arbitrarily transformed vectors @,(X,) and 
& ( X t ) ,  where @ , ( X , )  -= ( 4 , ( X l L ) ,  @ l ( X 2 , ) ,  . . . , 4 t ( X n ~ ) ) ’  for some real-valued 
function @ t .  Thus: 

Definition. An income structure X = [ X ,  , . . . , X T ]  is perfectly mobile if and 
only if $,(A’,) and # L ( X , )  are uncorrelated for all s, t ,  and all real functions $,, 4,. 

An example is given by Shorrocks (1992). Suppose there are J income levels 
yll, y21, . . . , yj1 at a time 1 and K income levels y12, y22, . . . , yK2 at time 2, and let 
X consist of the J K  income profiles (51, yk2) for j = 1 ,  . . . , J and k = 1,  . . . , K .  
Now consider 

Then the sample covariance of the observed income profile can be shown to 

The associated property is defined as follows: 
be zero. 

(A7) Perfect mobility. Mobility is a maximum whenever X is perfectly mobile. 
Note that this requires that all perfectly mobile structures have the same index 

value as well as this common value being a maximum. Not all members of the MSZ 
family satisfy this requirement. See below for a member that partially satisfies (A7). 
But none of the members satisfy a strong version of (A7) defined as follows: 

(A8) Strong perfect mobility. Mobility is a maximum if and only if X is per- 
fectly mobile. 

(AS) Unit interval range. 
This is convenient and satisfied by MSZ and many other indices. 

Mobility index should be in [0, 13. 
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(AIO) Scale invariance. 

And, 

X and X’ are equally mobile if X’ = h X ,  for any 
scalar h > 0. 

(A I I )  Intertemporal scale invariance. X and X’ are equally mobile whenever 
X’ = X A ,  for any positive diagonal matrix A. 

Shorrocks’ index based on sum of incomes satisfies (A10) but not ( A l l ) .  But 
a generalization to a weighted sum aggregate proposed in Maasoumi and Zandvakili 
(1986, 1990) does satisfy both (A10) and (A1 1). 

How do mobility indices (welfare functions) rank intermediate situations be- 
tween perfect mobility and total immobility? This requires a careful consideration of 
transfer sensitivity of mobility measures and has implications for the class of welfare 
functions. Smoothing transfers that are generally considered as equalizing (therefore 
preferred) conflict with normalization and change the mean of incomes at the point of 
transfer. It is difficult to consider them as mobility reducing. Compensating smooth- 
ing transfers, on the other hand, preserve the mean incomes (p t )  but can change 
cross section distribution (Shorrocks 1992). Thus the following type of “switches” 
are considered which can be seen to be mobility enhancing: 

Definition. The income structure X’ is obtained for X by a “simple switch” 
if, for some i and j ,  

Then 

(A I 2) Atlunson-Bourguignon condition (for two periods). The income structure 
X’ is more mobile than X whenever X’ is obtained from X by a simple switch. 

This condition implies that if income profiles of the two persons i and j are 
initially rank correlated, then a switch of incomes in either period enhances mobility. 
This condition has not been generalized to T 2 2. The MSZ indices satisfy this 
condition when income aggregates are weighted averages. 

Shorrocks (1992) studied a particular member of the MSZ family which sat- 
isfies all of the above properties except (A8), strong perfect mobility. This member 
is obtained from the measures defined by Maasoumi and Zandvakili (1986, 1989) 
where aggregate income is E, a t X i t ,  a, = l /p t ,  and the short run inequality is rep- 
resented by a,,utZ,(Xt), and Z,(.) is the coefficient of variation, a2/p.  He refers 
to this as an “ideal” index. Shorrocks (1992) also looked at another mobility index 
attributed to Hart. The latter index is more conveniently described in relation to 
indices defined over transition matrices to which we now turn. 
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111. TRANSITION MATRICES 

As was argued before, income distributions change over time under the effect of dif- 
ferent transition mechanisms. Transition mechanisms affect social welfare by chang- 
ing the income distribution. Two societies with the same income distribution at a 
point in time may have different levels of social welfare depending on the mobility 
of the populations. This requires welfare functions defined over an expanding time 
dimension. 

In a Markov chain model of income generation, Dardanoni (1993) consid- 
ers how economic mobility influences social welfare by following the approaches 
of Atkinson (1970), Markandya (1984), and Kanbur and Stiglitz (1986). He consid- 
ers the welfare prospects of individuals in society by deriving the discounted stream 
of income distributions which obtain under different mobility structures. He pro- 
poses a class of SWFs over the aggregates of these welfareprospects, and derives some 
necessary and sufficient conditions for unambiguous welfare rankings. Since these 
aggregates are the discounted stream of incomes, a special case of the aggregates 
proposed by this author and described in the previous section, the two approaches 
of this section and the previous one converge when the same welfare functions and 
the same measures of “permanent” income are used. 

The fundamental inequality theorem states that the Lorenz curve gives the 
normatively significant ordering of equal mean income distributions. Inequality in- 
dices are difficult to interpret when Lorenz curves cross. In a similar vein, Dardanoni 
(1993) derives a partial order of social mobility matrices which can be considered 
as the natural extension of the Lorenz ordering to mobility measurement. The de- 
rived ordering may provide conditions for an unambiguous welfare recommendation 
without employing a specific mobility measure. 

Summary mobility measures induce a complete order on the set of mobility 
matrices and have the advantage of providing intuitive measurements and firm rank- 
ings. However, it is clear that there are substantial problems in trying to reduce a ma- 
trix of transition probabilities into a single number. This is very much the problem 
of multidimensional inequality measurement addressed by Maasoumi (1986), Ebert 
(1995a), and Shorrocks (1995). Dardanoni (1993) offers the following example of 
three mobility matrices 

[ .6 .35 B:] 
[ .6 .3 . l ]  [ .6 .4 0 ] 

PI = .35 .4 P2 = .3  .5 .2 & = .3 .4 .3 
.05 .25 .7 . 1  .2 .7 .1 .2 .7 

The rows denote current state and columns denote future state. Suppose we 
use some common summary immobility measures as proposed and discussed by, 
for instance, Bartholomew (1982) and Conlisk (1990). Consider the second largest 
eigenvalue modulus, the trace, the determinant, the mean first passage time, and 
Bartholomew’s measure. These indices are defined below. Any of the three matrices 
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Indices 

Most Mobile 

may be considered the most mobile depending on which immobility index is chosen. 
This is illustrated in the following table, which shows the most mobile mobility matrix 
according to the different indices. 

Eigenvalue Trace Determinant 

P2 P I ,  P i  PI 

Different mobility rankings obtain depending on the mobility measure adopted. 
The welfare-based partial order is similar to the axiomatic welfare analysis exempli- 
fied above as it aims to clarify the situation depicted in this example in a sound 
fashion. 

A. The Welfare Ranking of Mobility Matrices 

Consider a discrete Markov chain process for income. Let there be n income states. 
Let P = [pij], such that pi; 2 0 and xi pi; = 1, be the n x n transition matrix, 

assumed regular (i.e., Pk is strictly positive for sufficiently large integer k ), so that 
the strictly positive steady state probability vector n exists and is the unique solu- 
tion to n’ = n’P. The element pi; is the probability that an individual in state i 
will be in state j in the following period. n,+l = n L P  denotes the vector whose ith 
element gives the fraction of the population which is in state I at time t + 1. It is 
assumed that transitions are independent across individuals and P is constant over 
time. Strictly speaking, P need not be square. Restricting attention to this case ex- 
ploits the properties of bistochastic matrices. Lastly, income states are in ascending 
order. 

For a given transition matrix, P ,  we may derive the implied distribution of 
expected lifetime welfare for the individuals who live in the society whose mobility 
is governed by P.  Consider a society, assumed in equilibrium, consisting of identical 
individuals who are born simultaneously and live exactly fo r t  periods. The transition 
mechanism may be either intra-generational or intergenerational. 

Let U = (u1, u2, . . . , U,)’ denote a vector of instantaneous utilities, where U; 
denotes the utility value of income in state i, and VP = (Vl , V2, . . . , V,)’ denotes a 
vector of expected discounted lifetime utilities. The typical element V,’ denotes the 
expected lifetime discounted utility of an individual beginning life in income class 
i, given by the ith element of the vector V” = U + p P u  + p2P2u + . - . + p t P t u ,  
where 0 5 p < 1 denotes the discount factor. This typical element is comparable 
with the S ;  functions of the previous section. VP will in general depend on the vector 
U, on the transition matrix P ,  on the discount factor p, and on the time period t. As 
t + 00, V p  = [ I  - pP]-’u which, for convenience, may be normalized as 

v p  = (1 - p)[Z - pP]-’u = P(p)u (21) 
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say. The typical element of P ( p ) ,  p l i ( p ) ,  may be interpreted as the average dis- 
counted “lifetime” probability of moving from the initial state i to state j .  

Dardanoni suggests that transition matrices be ranked according to real-valued 
SWFs defined over the vector of lifetime expected utilities VP. This is comparable 
with the “inequality reducing” rankings of the previous section where Schur-concave 
welfare functions correspond to inequality measures. There is more a priori structure 
imposed on the data here by assuming a Markov transition process. 

Mobility can occur through general growth in equilibrium income distribu- 
tions. This is known as “structural mobility” or the “growth component.” But there 
is some intertemporal movement of individuals among the different social classes, 
for a given equilibrium distribution of the number of individuals in each class; this 
latter effect is defined as “exchange” or “pure” mobility. Dardanoni (1993) isolates 
the pure mobility effect by assuming societies with identical steady-state income 
distributions. In other words two societies have within each period an identical spot 
income distribution, but individuals may move between income states differently 
under the two transition mechanisms. Note that under the stated assumptions the 
distribution of individuals in each state will be given by the equilibrium vector n, 
with the typical element ni indicating the proportion of people in income state i. 
This procedure is the dynamic counterpart to the usual static inequality analysis 
(e.g., Atkinson 1970), where to isolate the pure inequality effect on social welfare 
one considers societies with equal mean incomes. Lorenz rankings would suffice in 
that situation. 

Allowing for different mean incomes requires consideration of growth. This 
would be similar to the analysis of inequality on the basis of generalized Lorenz (GL) 
curves, proposed by Shorrocks (1983), and second order stochastic dominance. This 
is the extension considered by in the context of mobility matrices. 

Following Dardanoni (1993), take two regular transition matrices P and Q 
with equal steady-state income distribution vector n’ = n’P = n’Q. He considers 
the class of symmetric and additively separable (i.e., linear) SWFs xi n; qp which 
adds up, for a given U and p, the expected lifetime utility of the individuals in the 
population. This is equivalent to the SWFs considered by Atkinson (1970) and Kolm 
(1969) for the inequality ranking of income distributions. Noting that n ’ P ( p )  = 
n’Q(p) ,  we have 

7ri q p  = n’vp = n’P(p)u = n’u = n’Q(p)u = n’VQ = It; y Q  (22) 
i i 

Therefore, given a vector U and a p, any two transition matrices with equal 
steady-state income distributions will be indifferent. This result is given by Atkinson 
(1983) and Kanbur and Stiglitz (1986) and indicates that we are not ranking mobility 
as such, but the social welfare implications of each mobility matrix. The symmetric 
additive social welfare functional implies that movement between income states is 
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irrelevant. What is important is the spot distribution at each period since additive 
separable lifetime welfares remove any influence that exchange mobility may have 
on intertemporal social welfare. Thus additive SWFs take inadequate account of fair- 
ness considerations. Under the stated assumptions, the equilibrium Lorenz curve of 
the distribution of income will look identical each period under any transition matrix 
with equal steady-state distribution, so that any (additive or otherwise) symmetric ex 
post SWF defined on the vector of realized utilities will rank the matrices as indiffer- 
ent. Yet, under different transition matrices the composition of people in each income 
state will be different in each time period. For example, under the identity transition 
matrix each individual in the population remains in the same income group as in 
the initial situation; on the other hand, if transition is governed by a matrix in which 
each entry is equal to l /n ,  each individual will have the same probability of belong- 
ing to any of the n income groups regardless of the initial state. Therefore, though the 
equilibrium ex post Lorenz curves associated with each of these matrices could look 
identical for each period, social welfare may well be considered different if we take 
account of several periods in terms of the position of each individual in the past. 

Clearly the natural labelling of welfare units in the context of mobility requires 
a relaxation of the “symmetry” assumption, such as (A3), which are replaced by ad- 
ditional assumptions on “comparability.” These assumptions are discussed in, for 
example, Sen (1970) and Atkinson and Bourguignon (1987). Here the natural “la- 
bel” for each individual is hidher starting position in the income ranking. Thus one 
restricted SWF would be the weighted sum of the expected welfares of the individ- 
uals, with greater weights to the individuals who start with a lower position in the 
society. That is, W ( V p ,  A) = xi nihiyP, where h = (hlh2, .  . . , An)’ denotes a 
nonincreasing nonnegative vector of weights. This is a step toward cardinalization 
(Maasoumi 1996b). Furthermore, this asymmetric treatment makes sense only if it 
is a disadvantage to start at a lower position. With no restriction on the mobility 
matrices, this is not necessarily a disadvantage. There could be a transition matrix 
such that the lower states are the preferred starting point in terms of lifetime expected 
utility. Therefore the additional assumption: 

Assumption. Transition matrices are monotone. 
A transition matrix is called monotone if each row stochastically dominates 

the row above it (Conlisk 1990). In an intergenerational mobility context, a monotone 
mobility matrix implies that each child at time t is better off, in terms of stochastic 
dominance, by having a parent from state i + 1 than a parent from state i. In an intra- 
generational mobility context, a monotone mobility matrix implies that an individual 
who at time t is in state i + 1 faces a better lottery, in terms of stochastic dominance, 
than an individual who is in state i. If w e  let y be a n x 1 vector it may be shown 
that P y  is nondecreasing for all nondecreasing y if and only if P is monotone. Since 
P(p)  is monotone when P is monotone, the expected lifetime utility vector will be 
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nondecreasing. Estimated transition matrices are often either exactly monotone or 
within sampling errors from being monotone. 

Considering two extreme cases, hl = 1 and hi = 0 for all i > 1, which is 
“Rawlsian,” and hi = 1 for all i ,  which is the symmetric case, it is seen that there 
is a need for exploring necessary and sufficient conditions on transition matrices for 
the unanimous ranking of W ( V p ,  A) = xi r r i A i y P  for all nonincreasing positive A. 

,!it P and Q be two monotone regular transition matrices such Theorem 2. 
that nf = n’P = n’Q, and for a given p, the following conditions are equivalent: 

Proof: 

T is the triangular summation matrix with its inverse, T-’, as the first “dif- 
ferencing” matrix. For instance, P T  transforms each row of P to the cumulative 
distribution function. l7 is a block-diagonal matrix with the typical block being the 
n-vector. 

This result is an extended horizon version of the first order stochastic domi- 
nance relations obtained by Atkinson (1983). Further, if we denote by n ( n )  the set 
of regular monotone transition matrices, condition (l i i)  induces (iff) a partial order- 
ing ? M ,  that is reflexive, antisymmetric, and transitive. 

If one further assumes monotonicity of the reverse chain-i.e., at each time t 
an individual in state i has faced a stochastically dominant lottery than an individual 
in state i - 1, the above result would hold for all 0 5 p < 1. 

An interesting result concerns the effect of transfers such as smoothing and 
“simple switches” considered in an earlier section. Dardanoni considers the follow- 
ing dynamic Pigou-Dalton (DPD) transfers: Given integers 0 < i ,  j ,  s ,  k < n, with 
i + k < n and j + s < n, let us decrease the probabilities of the event, “initial state 
illifetime state j,” and the event, “initial state ( i  + k)/lifetime state ( j  + s),” by a 
quantity 0 5 h 5 1. Simultaneously, increase by the same h the probabilities of the 
events, “initial class illifetime class ( j  + s),” and the “initial class (i  + k)/lifetime 
class j,” in such a manner as to not violate monotonicity. This transfer is mobility 
enhancing as it would leave the row and column sums unchanged and improve the 
lifetime status of a poorer individual. Finally noting that for a more mobile situa- 
tion there will be smaller covariance between the initial and the lifetime status, the 
following general result is established: 

See Dardanoni (1993, Theorem 1). 

Theorem 3. Let P and Q be two transition matrices in n ( n )  and let p be 
given. Then the following conditions are equivalent: 

(i) P(P> P M  Q ( p ) -  
(ii) The Lorenz curve of permanent income for  P lies nowhere below that of Q 

V nondecreasing income vectors. 
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(iii) 

(iv) 

Formby et al. (1995) extend this result by relaxing the assumption of identical 
steady states. They note that T ’ n  P ( p )  y is the generalized Lorenz vector of “perma- 
nent incomes,” and show the following result: 

The covariance between initial status and lifetime status is greater under 
Q for any nondecreasing score (rank) vectors. 
P ( . )  can be derived f rom Q ( . )  by afinite sequence of DPD exchanges. 

Theorem 4. Let P and Q be two monotone transition matrices with a given 
discount factor p. Then the following conditions are equivalent: 

( l i )  
(lii) 

(liii) 

(liv) 

w(v“, A) 3 W ( V ~ ,  A). 
T ’ n [ ( P ( p )  - Q(p) lT  I 0. 
The generalized L0ren.z curve of permanent income for  P lies nowhere 
below that f o r  Q for  all nondecreasing income vectors y .  
P ( p )  can be derived f rom Q ( p )  by afinite sequence of DPD exchanges 
and simple increments. 

By noting that the assumption of steady-state income distribution is not 
crucial in proving Dardanoi’s results as well as in Theorem 1, Formby et al. (199s) 
prove the equivalence among conditions (li), (lii), and (liii). Also, (liv) implies 
(lii). The converse can be similarly proved. Note that each DPD or simple increment 
leaves all elements other than the (2, j)th of T ’ n [ ( P ( p )  - Q ( p ) ] T  unchanged. 

Proof 

Formby et al. (1995) demonstrate a further result which can be useful in em- 
pirical testing based on the generalized concentration curves: 

Theorem 5. Let P and Q be two monotone transition matrices. Then the fol- 
lowing conditions are equivalent: 

( l i )  P ( p >  Q ( P ) .  
(lii) T ’ n  P y  5 T ’ n  Qy for all nondecreasing income vectors y, i.e., the “snap- 

shot”genera1ized concentration curve for  P lies nowhere below that f o r  Q 
for  all nondecreasing income vectors, if the condition of the monotonicity 
of the reverse Mnrkov chain isfiLrther assumed. 

This result establishes that if the generalized concentration curve for P lies 
nowhere below that for Q, then the generalized Lorenz curve of the “lifetime” for P 
also lies above that for Q. If one adopts Dardanoni’s assumption of identical steady 
states (no growth mobility), the above result reduces to the ordinary concentration 
curve dominance which can be used as an intuitive tool in ranking “pure” mobility. 

This result is empirically significant as it suggests the concentration curve as 
the dynamic counterpart of the standard Lorenz curve in terms of social welfare. 
If the generalized concentration curve of P dominates that of Q, the social welfare 
of permanent income under P will be no less than under Q for all Schur-concave 
symmetric SWFs. 
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Two main points emerge. One is that, both the inequality reducing and transi- 
tion matrix measures are supported by the same type of welfare functions in terms of 
“lifetime incomes.” Second, the empirical techniques for testing Lorenz type domi- 
nance, or stochastic dominance, are all made available. For instance, Bishop, Chow, 
and Formby (1994) show that matched pairs of estimates of generalized Lorenz and 
concentration curve ordinates have a joint normal distribution and this sampling 
property is distribution free. In general they have to be applied to the same statistics 
which are, however, defined over the types of aggregate income functions proposed 
by Maasoumi and Zandvakili (1986, 1989, 1990). Further description of some sta- 
tistical techniques is given in the next section. 

B. Some Mobility Indices 

We close this section with a definition of some measures of immobility based on 
transition matrices. The first is attributed to Prais and is called the trace index: 

trace(P) - 1 
n - 1  

Trace = 

This index has been criticized for ignoring the off-diagonal transition prob- 
abilities. It also violates transfer properties such as (A12), for instance when DPD 
transfers increase any element along the diagonal of P. 

Determinant = IPJ (24) 

This is an index of immobility such as 1 -Ry. Unfortunately, this index obtains 
its perfectly mobile limit whenever any two rows or columns of P are identical! It also 
violates the ranking condition of the above theorems. 

Second largest eigenvalue modulus IA.2 I (25) 

This measure of immobility is in the unit interval (A9) and measures the speed 
of escape from the initial state (Theil 1972). But it too is incoherent with the ranking 
conditions for DPD-type exchanges: 

1 
n - 1  

Bartholomew’s = ___ nipijli - j~ 
i j  

This immobility index measures the expected number of crossings between 
periods in the steady state. It satisfies the normalization and the unit interval condi- 
tions. This measure is also coherent with DPD rankings. 

The mean first passage time = d M P n  (27) 

where M P  is the mean first passage matrix. This index measures the expected num- 
ber of periods before the “first” individual reaches the state of the second individual. 
This measure of immobility is not coherent with DPD rankings. 



As we have seen, all of the MSZ measures in the previous section, or indeed 
any reasonable measure corresponding to Schur-concave SWFs, and based on “per- 
manent income” is coherent with DPD rankings and the results of the above theo- 
rems. Shorrocks (1992) considered an interesting measure due to Hart (1976a). Let 
the Galtonian model of income evolution be written in terms of the geometric mean 
incomes, rn, at time t ,  as follows: 

This model can be used to analyze both income movements over time as well 
as the effect of mobility on the distribution of income. pt measure the extent to which 
incomes regress toward the geometric mean. The case of a “unit root” corresponds to 
Gibrat’s law of proportional effect: changes in relative incomes are independent of 
current income. This simple model of mobility may be extended by further modeling 
the E ,  in terms of individual specific characteristics and/or time varying effects. An 
example is Lillard and Willis (1978) where panel data are used. Of course, using 
the techniques of limited dependent variable models, transition probabilities can 
be similarly modeled in terms of individual specific and time varying components. 
A survey of several applications is given in Creedy (1985). Alternative models of 
diffusion describing the evolution of income have been proposed which derive its 
steady-state distribution forms. An example is Sargan (1957). Interestingly, the focus 
seems to have shifted to analyzing the properties of the equilibrium distribution and 
instantaneous inequality and poverty, rather than the dynamic welfare implications 
of the evolution mechanism. Mobility analysis is thus a return to first principles. 

Shorrocks defined the following function of Hart’s mobility index (Hart 1976a, 
1976b, 1981, 1983), which is derived from the Galtonian model above: 

This is related to the simple correlation coefficient. In the Galtonian model, 
/ I t  < 1 will reduce inequality while o ( E , )  would increase it. Shorrocks (1992) shows 
that H ( - )  is consistent with (A2)-(AS), (AlO)-(A12), and partially with (A7) and 
(A9). It fails the universal domain, strong normalization, and strong perfect mobility 
properties. Also, it satisfies time symmetry but not necessarily time replication in- 
variance. It is coherent with DPD-type rankings. As noted above, the MSZ indices 
are consistent with almost all of (Al)-(A12) properties and thus are superior to H ( . ) .  

Recently, Chakravarty (1  995) proposed the Kullback’s minimum discrimina- 
tion statistic as a measure of mobility. This is given by 

where stands for proportion of population at time t in state i. 
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This is a natural entropy measure of divergence between two distributions. 
Indeed it may be extended so that we may measure the divergence between the dis- 
tribution of the “permanent income” and the distribution of income at any desired 
point. Examples of the latter are the short-run income distribution of MSZ indices, 
perfect mobility distribution, and complete immobility distributions. 

The first property to note about K is that it is not a metric as it violates the 
triangularity rule. There are other entropy measures that have similar properties and 
are “metric” (Maasoumi 1993). Chakravarty (1995) notes that K satisfies many of the 
useful properties discussed in Shorrocks (1978a) and summarized above. But it fails 
to satisfy the “monotonicity” property. We note that the ordering relation discussed 
by Dardanoni (1993) is coherent with perfect mobility, as is K ,  but does not imply 
monotonicity. 

Chakravarty (1995) points out that the well-known asymptotic x2 distribution 
of 2 K  may be used to test some very interesting hypotheses about mobility. 

Shorrocks (1976) gives a good account of the properties of mobility indices 
based on transition matrices. Dardanoni’s (1993) account of the same also leaves 
one with the conclusion that at least some members of the MSZ family are “ideal.” 

IV. STATISTICAL INFERENCE 

There have been several significant advances in the development of statistical infer- 
ence tools in the area of income inequality. These are generally applicable to infer- 
ence on mobility indices and on ranking distributions. 

For mobility indices such as the MSZ the connection is rather immediate. In- 
equality indices are estimated by the method of moments (MM) estimators since they 
are functions of population moments. Explicit formulae are derived for derivatives 
that are required in the delta method which extends the well-known theory of MM 
asymptotic distributions to that of inequality indices. This is surveyed in Maasoumi 
(1996a) which contains an extensive citation to original sources. The extension to 
mobility indices requires thinking in terms of long-run incomes and the inequality 
in their distributions. Trede (1995) gives the details for the asymptotic distribution of 
some of the MSZ measures, such as those based on the Atkinson family and Theil’s 
inequality indices, but where aggregate income is the simple sum of incomes ana- 
lyzed by Shorrocks (1978b). Extension to weighted sum function is immediate, but 
the statistical theory for the more complicated aggregate functions is developed in 
Maasoumi and Trede (1997). Trede (1995) also gives the asymptotic distributions of 
the mobility indices that are based on transition matrices. Some of these measures 
were discussed earlier. An application to German data is reported in Trede (1995) 
which analyzes earnings mobility for different sexes. A program written in GAUSS 
code is made available by Trede. 
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But inference about indices derived in either of the two approaches described 
in this paper may be inconclusive, if not bewildering, when Lorenz-type curves cross. 
Therefore it is desirable to test for rank relations of the type described above and in 
Maasoumi (1996a, 1996b). This type of testing is now possible and is inspired by 
testing for inequality restrictions in econometrics and statistics. A brief account of 
some of the available techniques for stochastic dominance would be helpful and 
follows. 

A. Tests for Stochastic Dominance 

Stochastic dominance (SD) relations and comparisons of distributions on the basis of 
their Lorenz and GL curves are intended to avoid the “index choice” problem. As we 
have seen, the SWF rankings of mobility structures can essentially follow the same 
path as that of static inequality analysis but in terms of lifetime incomes. In practice, 
however, numerical SD rankings often encounter a predictable difficulty since many 
distributions and (Lorenz) curves cross, making it impossible to be decisive. But the 
realization that all such comparisons are based on sample-based estimates of dis- 
tribution functions (or curves) suggests that such comparisons should be conducted 
statistically and tested accordingly. The statistical approach is both sound and able 
to deliver more clear-cut statistical decisions! 

The basic characteristic of tests for rankings is that of ordered populations and 
inequality restrictions. Starting with the work of Lehmann (1959) and Bartholomew 
(1959), likelihood ratio and Wald-type tests have been and are being developed for 
such hypotheses. These tests supplement other well-known procedures based on 
one-sided Wilcoxon rank, and the multivariate versions of the Kolmogorov-Smirnov 
tests. See Maasoumi (1996a) for a recent selective survey. 

In the area of income distributions and tax analysis, initial developments fo- 
cused on tests for Lorenz curve comparisons as in Beach and Davidson (1983), 
Bishop, Formby, and Thistle (1989). In practice, a finite number of ordinates of 
the desired curves or functions are compared. These ordinates are typically rep- 
resented by quantiles and/or conditional interval means. Thus, the distribution the- 
ory of the proposed tests are typically derived from the existing asymptotic theory 
for ordered statistics and quantiles. Recently Beach, Davidson, and Slotsve (1995) 
outlined the asymptotic distribution theory for cumulative/conditional means and 
variances which are useful for statistically comparing Lorenz and GL curves. This 
theory is particularly useful for third-order stochastic dominance (TSD) ranking of 
crossing GL curves when a “transfer sensitivity” condition is assumed; see the def- 
inition of TSD below. To control for the size of a sequence of tests at several points 
the union intersection (UI) test and Studentized maximum modulus technique for 
multiple comparisons is generally favored in this area. 

Some alternatives to these multiple comparison techniques have been sug- 
gested which are typically based on Wald-type joint tests of equality of the same or- 
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dinates, see Bishop et al. (1994) and Anderson (1994). These alternatives are some- 
times problematic when their implicit null and alternative hypotheses are not a sat- 
isfactory representation of the inequality (order) relations that need to be tested. 
Xu et al. (1995) and Xu (1995) take proper account of the inequality nature of 
such hypotheses and adapt econometric tests for inequality restrictions to testing 
for FSD and SSD, and to GL dominance, respectively. Their tests follow the work in 
econometrics of Gouieroux et al. (1982), Kodde and Palm (1986), and Wolak (1988, 
1989), which complements the work in statistics exemplified by Perlman (1969), 
Robertson and Wright (1981), and Shapiro (1988). The asymptotic distributions of 
these x2 tests are mixtures of chi-squared variates with probability weights which 
are generally difficult to compute. This leads to bounds tests involving inconclusive 
regions and conservative inferences. In addition, the computation of the X 2  statis- 
tic requires Monte Carlo or bootstrap estimates of covariance matrices, as well as 
inequality restricted estimation which requires optimization with quadratic linear 
programming. 

In contrast, Maasoumi et al. (1996) propose a direct bootstrap approach that 
bypasses many of these complexities while making less restrictive assumptions about 
the underlying processes. They offer an empirical application for ranking U S .  in- 
come distributions from the CPS and the PSID data. Their chosen statistic is the 
Kolmogorov-Smirnov (KS) as characterized by McFadden (1989), Klecan et al. (1991), 
and Kaur et al. (1994). 

McFadden (1989) and Klecan, McFadden, and McFadden (1991) have pro- 
posed tests of first- and second-order “maximality” for stochastic dominance which 
are extensions of the Kolmogorov-Smirnov statistic. McFadden (1 989) assumes i.i.d. 
observations and independent variates, allowing him to derive the asymptotic distri- 
bution of his test, in general, and its exact distribution in some cases (Durbin 1973, 
1985). Klecan et al. generalize this earlier test by allowing for weak dependence 
in the processes both across variables and observations. They demonstrate with an 
application for ranking investment portfolios. The asymptotic distribution of these 
tests cannot be fully characterized, however, prompting Monte Carlo and bootstrap 
methods for evaluating critical levels. In the following section some definitions and 
results are summarized which help to describe these tests. 

I .  Definitions and Tests 

Let X and Y be two income variables at either two different points in time, or two 
lifetime income vectors. Let X 1 ,  X 2 ,  . . . , X ,  be the not necessarily i.i.d observations 
on X ,  and Yl , Y2, . . . , Y, be similar observations on Y .  Let U1 denote the class of all 
utility functions U such that U‘ 1 0 (increasing). Also, let U2 denote the class of all 
utility functions in U1 for which U” 5 0 (strict concavity). Let X ( i )  and Y(i) denote 
the ith order statistics, and assume F ( x )  and C ( x )  are continuous and monotonic 
cumulative distribution functions (cdfs) of X and Y ,  respectively. 
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Quantiles q , (p )  and qr(p) are implicitly defined by, for example, F[X 5 
qx(p)l = P -  

Definition (FSD). X first-order stochastic dominates Y ,  denoted X FSD Y ,  if 
and only if any one of the following equivalent conditions holds: 

(1) 
(2) 

E [ u ( X ) ]  2 E [ u ( Y ) ]  for all U E U , ,  with strict inequality for some U .  

F ( x )  5 C ( x )  for all x in the support of X ,  with strict inequality for some 
N 

Definition (SSD). X second-order stochastic dominates Y ,  denoted X SSD Y ,  
if and only if any of the following equivalent conditions holds: 

(1) 
(2) 

(3) 

E [ u ( X ) ]  2 E [ u ( Y ) ]  for all U E U2, with strict inequality for some U .  

F ( t )  d t  5 i!, G ( t )  d t  for all x in the support of X and Y ,  with 
strict inequality for some x. 
1: q x ( t )  d t  2 Af q r ( t )  d t ,  for all 0 5 p 5 1,  with strict inequality for 
some value(s) p .  

The tests of FSD and SSD are based on empirical evaluations of conditions 
(2) or (3). Mounting tests on conditions (3) typically relies on the fact that quantiles 
are consistently estimated by the corresponding order statistics at a finite number 
of sample points. Mounting tests on conditions (2) requires empirical cdfs and com- 
parisons at a finite number of observed ordinates. Also, from Shorrocks (1983) or Xu 
(1995) it is clear that condition (3)  of SSD is equivalent to the requirement of GL 
dominance. FSD implies SSD. 

Noting the usual definition of the Lorenz curve of, for instance, X as L,(x) = 
( l / p x )  J:m X x d F ( t ) ,  and its GL (x) = p,L,(x), some authors have developed 
tests for Lorenz and GL dominance on the basis of the sample estimates of conditional 
interval means and cumulative moments of income distributions; e.g., see Bishop 
et al. (1989), Bishop et al. (1991), Beach et al. (1995), and Maasoumi (1996a) for a 
general survey of the same. The asymptotic distributions given by Beach et al. (1995) 
are particularly relevant for testing for third-order stochastic dominance (TSD). The 
latter is a useful criterion when Lorenz or GL curves cross at several points and the 
investigator is willing to adopt “transfer sensitivity” of Shorrocks and Foster (1987), 
that is a relative preference for progressive transfers to poorer individuals. When 
either Lorenz or generalized Lorenz curves of two distributions cross unambiguous 
ranking by FSD and SSD is not possible. Whitmore (1970) introduced the concept of 
TSD in finance. Shorrocks and Foster (1987) showed that the addition of the “transfer 
sensitivity” requirement leads to TSD ranking of income distributions. This require- 
ment is stronger than the Pigou-Dalton principle of transfers and is based on the 
class of welfare functions U:3 which is a subset of U2 with U”‘ 2 0. TSD is defined 
as follows: 
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Definition (TSD). X third-order stochastic dominates Y ,  denoted X TSD Y, if 
and only if any of the following equivalent conditions holds: 

(1) 
(2) 

E[u(X)] 3 E[u(Y)] for all U E U s ,  with strict inequality for some U. 

Jf, l:,[F(t) - G(t ) ]  dt dv 5 0, for all x in the support, with strict in- 

equality for some x, with the endpoint condition S_+,”[F(t) - G(t ) ]  dt 5 
0. 
When E[X] = E[Y], X TSD Y iff h:(qi) 5 h;(qi), for all Lorenz curve 
crossing points i = 1 , 2 ,  . . . , (n  + 1); where h;(q;) denotes the “cumu- 
lative variance” for incomes up to the ith crossing point (Davies and Hoy 
1995). 

(3) 

When n = 1, Shorrocks and Foster (1987) showed that X TSD Y if (a) the 
Lorenz curve of X cuts that of Y from above, and (b) Var(X) 5 Var(Y). This situation 
revives the coefficient of variation as a useful statistical index for ranking distri- 
butions. 

Kaur et al. (1994) assume i.i.d observations for independent prospects X and 
Y. Their null hypothesis is condition (2) of SSD f o r  each x against the alternative of 
strict violation of the same condition f o r  all x. The test of SSD then requires an appeal 
to union intersection technique which results in a test procedure with maximum 
asymptotic size of a if the test statistic at each x is compared with the critical value 
2, of the standard normal distribution. 

McFadden offers a definition of “maximal” sets, as follows: 

Definition (Moximality). Let /E = {Xl , Xz, . . . , XK} denote a set of K dis- 
tinct random variables. Let Fk denote the cdf of the kth variable. The set /E isfirst- 
(second-) order maximal if not variable in LE is first- (second-) order weakly domi- 
nated by another. 

Let X , n  = (x ln ,  X Z ~ ,  . . . , XK,,), n = 1,2, . . . , N ,  be the observed data. As- 
sume X.n is strictly stationary and a-mixing, and assume F;(Xi), i = 1,2, . . . , K ,  
and exchangeable random variables, so that resampling estimates of the test statis- 
tics converge appropriately. This is less demanding than the assumption of indepen- 
dence which is not realistic in many applications (as in mobility analysis, and before- 
and after-tax scenarios). In general F k  is unknown and estimated by the empirical 
distribution function Fk,v(Xk) .  Finally, if we adopt Klecan et al.’s mathematical reg- 
ularity conditions pertaining to von Neumann-Morgenstern (VNM) utility functions 
that generally underlie the expected utility maximization paradigm, the following 
theorem defines the tests and the hypotheses being tested: 

Theorem 6. Given the mathematical regularity conditions; 

(a) 
(1) 

The variables in /E arejirst-order stochastically maximal; i.e., 
d = mini#; max,[F,(x)-FJ(x)] > 0, ifandonlyifforeach i and j .  There 
exists a continuous increasing function U such that Eu(Xi) > Eu(X;). 
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The variables in E are second-order stochastically maximal; i.e., 
S = mini#; max, l:n3[Fi(p) - F/(p)] d p  > 0, i fand only iffor each 
i and j ,  there exists a continuous increasing and strictly concave function 

Assuming the stochastic process X,n, n = 1, 2,  . . . , to be strictly stationary 
and a-mixing with a ( j )  = O(j- ' ) ,  for  some S > 1, we have d 2 ~  + d ,  
and S ~ N  -+ S, where d2N and S ~ N  are the empirical test statistics defined 
as 
d2N = mini+; max,[FiN(x) - ~ N ( X ) ]  and, 

U such that Eu(Xi) > Eu(Xj). 

SPN = mini#; max, l;[FiN (p )  - F / N  (p)  d p  

Proof 

The null hypotheses tested by these two statistics is that, respectively, E is 
not first- (second-) order maximal-i.e., Xi FSD(SSD) X;, for some i and j .  We reject 
the null when the statistics are positive and large. Since the null hypothesis in each 
case is composite, power is conventionally determined in the least favorable case 
of identical marginals Fi = F J .  Thus, as is shown in Kaur et al. (1994) and Klecan 
et al. (1991), tests based on dzN and S2N are consistent. Furthermore, the asymptotic 
distribution of these statistics are nondegenerate in the least favorable case, being 
Gaussian (Klecan et al. 1991, Theorems 6-7). 

The statistic s 2 N  has, in general, neither a tractable distribution, nor an asymp- 
totic distribution for which there are convenient computational approximations. The 
situation for d 2 ~  is similar except for some special cases; see Durbin (1973, 1985) 
and McFadden (1989), who assume i.i.d. observations (not crucial), and indepen- 
dent variables in E (consequential). Unequal sample sizes may be handled as in 
Kaur et al. 

Klecan et al. (1991) suggest Monte Carlo procedures for computing the signif- 
icance levels of these tests. This forces a dependence on an assumed parametric dis- 
tribution for generating MC iterations, but is otherwise quite appealing for very large 
iterations. Maasoumi et al. (1996) employ bootstrap methods to obtain the empirical 
distributions of the test statistics and confidence intervals. They report an empiri- 
cal examination of the U S .  income distribution based on the CPS and PSID data. 
Their methods are directly applicable to ranking of mobility structures described 
previously. 

See Theorems 1 and 5 of Klecan et al. (1991). 

V. SOME EMPIRICAL EXAMPLES 

Creedy (1985) contains detailed descriptions of empirical studies which implement 
the transition matrix and other model-based techniques. Shorrocks (1976, 1978a) 
and Lillard and Willis (1978) also implement the transition matrix method using 
some of the same U S .  panel data which I will describe below. 
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The MSZ index method has been implemented by Shorrocks, Maasoumi, Zand- 
vakili, Trede, and others. Trede’s work is based on German panel data and, as men- 
tioned earlier, reports statistical tests of significant change in mobility. The first three 
authors use the Michigan Panel data. We now exemplify some of these latter studies: 

A. Mobility and Gender 

The MSZ family of mobility measures was investigated by Maasoumi and Zandvakili 
(1990) using the Michigan Panel Study of Income Dynamics (PSID). These measures 
are decomposed in order to learn about components that are due to differences in 
gender and income groups, on the one hand, and within group components which are 
free of such group characteristics. Several aggregator functions were used to com- 
pute the “Permanent income” variable. Their justification and role in robustifying 
inferences was investigated. 

“Household” income data for the period 1969-1981 were taken from the PSID. 
Household’s income (head and spouse, if any) consists of the following: income from 
wages, salaries, rents, dividends, interest, business, bonuses, commissions, profes- 
sional practice, aid to dependent children, social security, retirement pay, pension or 
annuities, unemployment compensation, child support, and other transfer payments. 
Real total income is obtained using the current consumer price index. Income is ad- 
justed for family size (in 1975) to provide a better measure of family income since 
family members effectively pool their incomes. We refer to this adjusted income as 
the per capita family income PCFI). 

In computing the permanent incomes three different schemes were used in 
order to weight income at different times. These aL weights are (i) equal weights 
for all years, (ii) the ratio of mean income at time t to the mean income over the 
entire T periods (MIW in tables), and (iii) the normalized elements of the eigenvector 
corresponding to the first principal component of the X’X matrix. We did not find any 
qualitative differences in our results between these three cases, and thus report only 
the computations based on ratio-of-means weights. The other two cases are reported 
in Zandvakili (1987). 

In our computations the substitution parameter /3 is restricted by the relations 
- y  = 1 + p. We computed four different aggregator functions corresponding to four 
inequality measures with - y  = zi = (2 ,  1 ,  .5, .O). U = 0.0 and 1.0 correspond 
to Theil’s first and second inequality measures, respectively combined with the lin- 
ear and the Cobb-Douglas forms of the aggregator function. Tables 1-3 are from 
Maasoumi and Zandvakili (1990) which provide, respectively, the annual short-run 
inequalities, the inequalities in the aggregated (long-run) incomes, and the income 
stability measure R,. Decomposition of each based on gender is also given. Note that 
as one moves toward 1981 the number of periods over which Si ,  I,(S) and R, are 
calculated is increasing from one to 13. The results for every other year are reported 
to save space. 
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Table I 
Inequalities 

1969-1981 per Capita Family Income: Short-Run 

Overall Between Within Men Women 

Degree of inequality aversion = 2.0 

1969 1.109 0.014 1.095 0.793 1.676 
1971 1.049 0.016 1.033 0.729 1.604 
1973 1.002 0.019 0.982 0.636 1.600 
1975 1.636 0.023 1.613 0.815 3.015 
1977 1.569 0.038 1.530 0.981 2.195 
1979 1.895 0.041 1.854 1.211 2.580 
1981 2.441 0.047 2.394 1.520 3.292 

Degree of inequality aversion = 1.0 

1969 0.430 0.013 0.417 0.340 0.676 
1971 0.466 0.014 0.452 0.375 0.709 
1973 0.464 0.017 0.446 0.362 0.727 
1975 0.531 0.02 1 0.510 0.422 0.808 
1977 0.578 0.033 0.545 0.467 0.808 
1979 0.613 0.035 0.579 0.498 0.849 
1981 0.706 0.039 0.667 0.578 0.964 

Degree of inequality aversion = 0.5 

1969 0.375 0.012 0.363 0.306 0.601 
1971 0.407 0.014 0.394 0.341 0.618 
1973 0.404 0.01 7 0.387 0.331 0.635 
1975 0.456 0.019 0.436 0.380 0.693 
1977 0.494 0.030 0.463 0.419 0.688 
1979 0.505 0.032 0.473 0.427 0.707 
1981 0.571 0.036 0.535 0.490 0.782 

Degree of inequality aversion = 0.0 

1969 0.367 0.012 0.355 0.304 0.606 
1971 0.402 0.013 0.388 0.344 0.615 
1973 0.395 0.016 0.380 0.332 0.631 
1975 0.448 0.018 0.430 0.383 0.693 
1977 0.492 0.029 0.463 0.429 0.682 
1979 0.483 0.030 0.453 0.417 0.688 
1981 0.549 0.034 0.515 0.481 0.753 
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Table 2 
Inequality 

1969-1981 per Capita Family Income (MIW): Long-Run 

Overall Between Within Men Women 

Degree of inequality aversion = 2.0 

1969 1.109 0.014 1.095 0.793 1.676 
1%9-71 0.949 0.016 0.933 0.665 1.430 
1969-73 0.889 0.018 0.871 0.599 1.36.5 
1969-75 0.951 0.020 0.931 0.588 1.533 
1969-77 0.974 0.025 0.950 0.602 1.507 
1%9-79 1.035 0.030 1.005 0.653 1.509 
1969-81 1.100 0.034 1.067 0.690 1.563 

Degree of inequality aversion = 1 .O 

1%9 0.430 0.013 0.417 0.340 0.676 
1969-71 0.414 0.014 0.400 0.325 0.651 
1969-73 0.408 0.016 0.392 0.316 0.648 
1969-75 0.414 0.018 0.396 0.319 0.654 
1969-77 0.426 0.02 1 0.404 0.327 0.662 
1969-79 0.434 0.025 0.409 0.336 0.654 
1969-81 0.455 0.029 0.425 0.352 0.674 

Degree of inequality aversion = 0.5 

1%9 0.375 0.012 0.363 0.306 0.601 
1969-71 0.364 0.014 0.350 0.296 0.579 
1%9-73 0.360 0.01s 0.345 0.291 0.577 
1969-75 0.363 0.017 0.347 0.294 0.579 
1969-77 0.373 0.020 0.353 0.302 0.585 
1969-79 0.381 0.024 0.357 0.310 0.579 
1%9-81 0.396 0.027 0.369 0.323 0.591 

Degree of inequality aversion = 0.0 

1969 0.367 0.012 0.355 0.304 0.606 
1969-71 0.355 0.013 0.342 0.295 0.578 
1969-73 0.351 0.014 0.337 0.292 0.572 
1969-75 0.354 0.016 0.339 0.295 0.573 
1969-77 0.366 0.019 0.347 0.306 0.578 
1969-79 0.371 0.023 0.349 0.312 0.566 
1969-81 0.386 0.026 0.361 0.326 0.573 
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Table 3 
Stability 

1969-1981 per Capita Family Income (MIW): Income 

Overall Between Within Men Women 

1969 
1969-7 1 
1969-73 
1969-75 
1%9-77 
1%9-79 
1969-8 1 

1969 
1969-7 1 
1969-73 
1969-75 
1969-77 
1%9-79 
1969-8 1 

Degree of inequality aversion = 2.0 

1 .ooo 0.013 0.987 1.000 
0.916 0.016 0.900 0.907 
0.885 0.017 0.868 0.873 
0.828 0.018 0.811 0.822 
0.786 0.020 0.767 0.772 
0.744 0.02 1 0.723 0.723 
0.692 0.02 1 0.671 0.670 

Degree of inequality aversion = 1.0 

1 .ooo 0.030 0.970 1.000 
0.928 0.032 0.896 0.912 
0.903 0.035 0.869 0.881 
0.877 0.038 0.839 0.851 
0.855 0.043 0.812 0.824 
0.832 0.049 0.783 0.801 
0.813 0.052 0.761 0.779 

1.000 
0.918 
0.887 
0.823 
0.786 
0.747 
0.700 

1.000 
0.949 
0.930 
0.907 
0.887 
0.860 
0.841 

1%9 
1969-71 
1969-73 
1969-75 
1%9-77 
1969-79 
1969-8 1 

Degree of inequality aversion = 0.5 

1 .ooo 0.033 0.967 1.000 
0.932 0.035 0.896 0.917 
0.91 1 0.038 0.873 0.891 
0.885 0.041 0.844 0.862 
0.867 0.047 0.820 0.841 
0.855 0.054 0.801 0.830 
0.840 0.058 0.782 0.813 

1 .ooo 
0.955 
0.942 
0.920 
0.904 
0.885 
0.870 

1969 
1969-71 
1969-73 
1969-75 
1969-77 
1969-79 
1969-8 1 

Degree of inequality aversion = 0.0 

1 .ooo 0.033 0.967 1.000 
0.927 0.034 0.892 0.915 
0.904 0.037 0.868 0.889 
0.879 0.039 0.840 0.861 
0.864 0.045 0.819 0.846 
0.852 0.052 0.800 0.83.5 
0.839 0.056 0.783 0.822 

1 .ooo 
0.950 
0.933 
0.91 1 
0.895 
0.871 
0.855 
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Short-run inequality in Table 1 has generally increased. As expected, inequal- 
ity is greater with larger degrees of relative inequality aversion (‘U). There are 1776 
male and 529 female headed households in the sample. The “within-group” com- 
ponent of short-run inequalities is dominant. The column heading “within” refers 
to weighted average of within group inequalities as in the formulae previously dis- 
cussed in this chapter. The absolute value of the “between-group” component, how- 
ever, has increased over the 13 years. For both sexes annual inequalities have a rising 
trend (less uniformly so for ‘U = 2). But short-run inequality amongst female headed 
households is always greater than among men. These annual values, however, con- 
tain many transitory components which are partially removed from the aggregated 
values in Table 2. 

Table 2 values exhibit much less volatility. After a decline in the initial years, 
Z,(S) has increased back to about its original value. Also, long-run inequality is 
always smaller than the corresponding short-run inequality. Once again, inequality 
among women is greater than among men, and within-group inequality is several 
times the between-group component. These relative values are somewhat sensitive 
to the family size adjustment of incomes. For instance, the between-group component 
increases to 15-25% of overall inequality for unadjusted incomes; see Zandvakili 
(1987). This is partly due to a larger proportion of two income earners being among 
the male headed families. 

The corresponding stability measures are presented in Table 3. Again, seven 
of the 13 possible values are reported without any qualitative loss. 0 < R ,  < 1 in 
all cases. The following may be concluded from Table 3: 

(i) 

(ii) 

(iii) 

There is a tendency for the profiles to fall and then level off as the num- 
ber of aggregated years increases from one to 13. 
The profiles for households headed by men fall faster and further than 
those of women headed households. 
These patterns are robust with respect to the choice of aggregation func- 
tion, family size adjustment, and inequality measure. 

The fact that the profiles are becoming flatter is an indication that, although 
there have been some transitory movements in the size distribution of income, there 
is a lack of any permanent equalization. Further, while some equalization has taken 
place within each group of households, inequality between men and women headed 
households has increased in absolute value. 

B. Mobility and Income Level 

Maasoumi and Zandvakili (1989) give inequality and mobility decompositions by 
age, education, and race. Similar decompositions by income level can reveal the 
aggregate impact of all such non-income characteristics (including gender). It is 
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anticipated that if the major causes of variation in incomes are transitory in nature, 
the length of time spent in any income class will be short. “Permanent” income in- 
equality changes will be very revealing in this context. 

The total sample is divided into seven income groups (Gl-G7). The assign- 
ment to groups is one a one-time basis and according to the simple arithmetic mean 
income of the individual household over the 13-year period. These real income lev- 
els begin with mean incomes of less than $4999, and increasing in increments of 
$5000. The last group contains mean incomes of $35,000 or more. 

Short-run inequalities and their decompositions based on income level are 
given in Table 4. All the tables and figures in this section are taken from Maasoumi 
and Zandvakili (1990). There are several recognizable patterns. The between-group 
inequality has increased steadily over this period. The within-group component of 
inequality fluctuates around a relatively constant mean value. The observed pat- 
terns suggest that the nonincome differences do contribute to the increase in between 
group inequality. Over 70% of women-headed households earn less than $15,000. Of 
course, this is confounded by the differential impact of inflation on different income 
groups (we use real incomes). 

In Table 5 long-run inequality levels have risen after an initial decline. De- 
composition by income level shows that the between-group component of I ,(S) has 
increased uniformly. At the same time the within-group inequality has decreased 
steadily. This change has been dramatic so that in the later years the between-group 
component is larger than the within component. These changes include the well- 
known life-cycle and human capital effects, and are non inconsistent with the cu- 
mulat ive effects predict ed by discrimination theories. 

The long-run within-group inequalities reveal a falling trend for each of the 
seven income groups. This is anticipated since transitory components are smoothed 
out and individual incomes have approached group mean incomes in the long run. 
These long-run grouping observations are somewhat sensitive to the family size. 
Within-group aggregate income inequalities are noticeably smaller when income is 
not adjusted for family size, and there is generally less inequality within the higher- 
income groups. 

Table 6 reports the stability profiles which reveal much higher degrees of per- 
manent equalization within income groups than was observed for the gender groups 
of the last section. Note that as the stability profiles of the whole sample flatten, the 
corresponding within group profiles continue to fall. In our view some equalization 
has occurred, but this is mostly confined to within income groups. 

On the basis of the approximately 2300 households which remained in the 
Michigan panel over the period 1969-1981. Maasoumi and Zandvakili (1990) con- 
clude that (i) there is not a great deal of inequality between the men and women- 
headed households; (ii) the dominant within-group component of inequality is either 
increasing over this period or, when incomes are smoothed by time aggregation, 
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Table 4 1969-1981 per Capita Family Income: Short-Run Inequalities 

Overall Between Within G1 G2 G3 G4 G5 G6 G7 

Degree of inequality aversion = 2.0 

1969 1.109 0.151 0.958 0.879 1.429 0.668 0.608 0.282 0.293 0.209 
1971 1.049 0.224 0.824 0.672 0.560 0.626 0.725 0.281 0.265 0.450 
1973 1.002 0.310 0.692 0.524 0.415 0.430 0.479 0.217 0.220 0.212 
1975 1.636 0.412 1.225 0.950 0.539 0.459 0.449 0.274 0.236 0.242 
1977 1.569 0.524 1.045 0.633 0.487 0.479 0.365 0.290 0.178 0.242 
1979 1.895 0.624 1.271 0.639 0.683 0.544 0.460 0.227 0.232 0.211 
1981 2.441 0.725 1.716 0.722 0.985 0.679 0.525 0.570 0.310 0.299 

Degree of inequality aversion = 1.0 

1969 0.430 0.114 0.316 0.429 0.413 0.421 0.385 0.236 0.240 0.179 
1971 0.466 0.161 0.306 0.413 0.334 0.356 0.411 0.231 0.227 0.224 
1973 0.464 0.205 0.259 0.352 0.284 0.302 0.336 0.190 0.199 0.190 
1975 0.531 0.259 0.272 0.354 0.324 0.312 0.314 0.224 0.204 0.211 
1977 0.578 0.316 0.262 0.364 0.310 0.322 0.273 0.208 0.165 0.218 
1979 0.613 0.346 0.267 0.353 0.374 0.335 0.286 0.194 0.193 0.183 
1981 0.706 0.384 0.322 0.393 0.490 0.394 0.342 0.252 0.227 0.225 

Degree of inequality aversion = 0.5 

1969 0.375 0.103 0.272 0.396 0.356 0.389 0.353 0.233 0.243 0.179 
1971 0.407 0.144 0.264 0.388 0.299 0.325 0.373 0.228 0.230 0.219 
1973 0.404 0.180 0.224 0.336 0.263 0.279 0.314 0,188 0.202 0.192 
1975 0.456 0.225 0.231 0.326 0.292 0.291 0.294 0.224 0.205 0.212 
1977 0.494 0.275 0.219 0.337 0.282 0.303 0.260 0.205 0.167 0.224 
1979 0.505 0.293 0.212 0.332 0.331 0.310 0.269 0.191 0.192 0.183 
1981 0.571 0.322 0.249 0.364 0.432 0.361 0.315 0.234 0.218 0.221 

Degree of inequality aversion = 0.0 

1969 0.367 0.096 0.270 0.402 0.339 0.391 0.349 0.243 0.263 0.187 
1971 0.402 0.134 0.268 0.398 0.290 0.323 0.367 0.235 0.246 0.228 
1973 0.395 0.165 0.230 0.348 0.261 0.272 0.313 0.192 0.214 0.202 
1975 0.448 0.207 0.242 0.333 0.284 0.290 0.293 0.237 0.215 0.223 
1977 0.492 0.254 0.238 0.343 0.274 0.306 0.263 0.214 0.176 0.245 
1979 0.483 0.266 0.218 0.345 0.320 0.311 0.271 0.196 0.200 0.191 
1981 0.549 0.293 0.256 0.382 0.424 0.362 0.311 0.236 0.222 0.233 
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Table 5 1969-1981 per Capita Family Income (MIW): Long-Run Inequality 

Overall Between Within G 1  G2 G3 G4 G5 G6 G7 

Degree of inequality aversion = 2.0 

1969 1.109 0.151 0.958 0.879 1.429 0.668 0.608 0.282 0.293 0.209 
1969-71 0.949 0.208 0.741 0.610 0.708 0.544 0.601 0.230 0.240 0.261 
1969-73 0.889 0.255 0.634 0.486 0.504 0.425 0.506 0.208 0.222 0.222 
1969-75 0.951 0.311 0.640 0.490 0.404 0.344 0.426 0.188 0.208 0.200 
1969-77 0.974 0.365 0.609 0.444 0.341 0.303 0.322 0.166 0.188 0.186 
1969-79 1.035 0.425 0.610 0.422 0.313 0.270 0.274 0.142 0.160 0.172 
1969-81 1.100 0.481 0.619 0.401 0.308 0.244 0.247 0.147 0.146 0.155 

Degree of inequality aversion = 1.0 

1969 0.430 0.114 0.316 0.429 0.413 0.421 0.385 0.236 0.240 0.179 
1969-71 0.414 0.1M 0.270 0.354 0.311 0.346 0.374 0.198 0.204 0.176 
1969-73 0.408 0.170 0.238 0.309 0.261 0.282 0.328 0.181 0.193 0.166 
1969-75 0.414 0.200 0.213 0.275 0.225 0.242 0.290 0.166 0.176 0.159 
1969-77 0.426 0.233 0.192 0.259 0.200 0.210 0.233 0.150 0.158 0.154 
1969-79 0.434 0.264 0.171 0.241 0.181 0.180 0.192 0.129 0.135 0.143 
1969-81 0.455 0.294 0.161 0.232 0.179 0.167 0.180 0.122 0.122 0.130 

Degree of inequality aversion = 0.5 

1969 0.375 0.103 0.272 0.396 0.356 0.389 0.353 0.233 0.243 0.179 
1969-71 0.364 0.128 0.236 0.334 0.274 0.320 0.342 0.199 0.208 0.177 
1969-73 0.360 0.150 0.210 0.294 0.236 0.262 0.304 0.182 0.198 0.169 
1969-75 0.363 0.175 0.188 0.260 0.205 0.225 0.269 0.168 0.179 0.163 
1969-77 0.373 0.204 0.169 0.245 0.182 0.196 0.219 0.157 0 .161 0.160 
1969-79 0.381 0.231 0.150 0.229 0.164 0.172 0.185 0.135 0.139 0.150 
1969-81 0.396 0.257 0.139 0.219 0.162 0.163 0.175 0.128 0.127 0.138 

~~ ~ 

Degree of inequality aversion = 0.0 

1969 0.367 0.0% 0.270 0.402 0.339 0.391 0.349 0.243 0.263 0.187 
1969-71 0.355 0.117 0.238 0.339 0.261 0.318 0.335 02.07 0.223 0.187 
1969-73 0.351 0.137 0.214 0.298 0.226 0.256 0.2% 0.188 0.212 0.179 
1969-75 0.354 0.159 0.195 0.263 0.197 0.219 0.262 0.176 0.190 0.173 
1969-77 0.366 0.186 0.180 0.246 0.174 0.191 0.214 0.168 0.169 0.173 
1969-79 0.371 0.210 0.161 0.230 0.153 0.171 0.182 0.144 0.147 0.161 
1969-81 0.386 0.235 0.152 0.220 0.153 0.165 0.173 0.136 0.135 0.152 
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Table 6 1969-1981 per Capita Family Income (MIW): Income Stability 

Overall Between Within G1 G2 G3 G4 G5 G6 G7 

Degree of' inequality aversion = 2.0 

1969 1.OOO 0.136 0.864 1.000 1.OOO 1.OOO 1.OOO 1.000 1.000 1.OOO 
1969-71 0.916 0.201 0.715 0.812 0.857 0.872 0.907 0.857 0.878 0.%7 
1969-73 0.885 0.254 0.631 0.754 0.775 0.766 0.857 0.815 0.853 0.825 
1969-75 0.828 0.271 0.557 0.712 0.669 0.680 0.794 0.726 0.793 0.780 
1969-77 0.786 0.295 0.492 0.676 0.605 0.592 0.670 0.631 0.756 0.744) 
1969-79 0.744 0.305 0.439 0.644 0.538 0.507 0.578 0.562 0.675 0.709 
1969-81 0.692 0.303 0.390 0.614 0.480 0.437 0.523 0.4% 0.577 0.617 

1969 
1969-7 1 
1969-73 
1969-75 
1969-77 
1969-79 
1969-81 

1 .000 
0.928 
0.903 
0.877 
0.855 
0.832 
0.813 

0.265 
0.323 
0.376 
0.425 
0.468 
0.505 
0.526 

Degree of inequality aversion = 1.0 

0.735 1.000 1.OOO 1.OOO 1.OOO 
0.605 0.852 0.861 0.901 0.930 
0.527 0.799 0.785 0.805 0.880 
0.452 0.745 0.689 0.726 0.821 
0.386 0.713 0.627 0.634 0.713 
0.327 0.670 0.554 0.545 0.611 
0.287 0.637 0.510 0.490 0.572 

1.000 
0.880 
0.844) 
0.768 
0.693 
0.617 
0.567 

1 .000 
0.892 
0.870 
0.819 
0.773 
0.684 
0.607 

1969 
1969-7 1 
1969-73 
1969-75 
1969-77 
1969-79 
1969-81 

1 .000 
0.932 
0.91 1 
0.885 
0.867 
0.855 
0.840 

0.275 
0.328 
0.379 
0.427 
0.474 
0.518 
0.545 

Degree of inequality aversion = 0.5 

0.725 1.000 1.OOO 1.OOO 1.OOO 
0.604 0.864 0.860 0.908 0.936 
0.532 0.812 0.789 0.815 0.887 
0.458 0.758 0.694 0.732 0.825 
0.393 0.722 0.629 0.638 0.721 
0.337 0.685 0.553 0.564 0.629 
0.296 0.647 0.513 0.520 0.595 

1 .000 
0.890 
0.853 
0.785 
0.727 
0.654 
0.609 

1 .WO 
0.903 
0.885 
0.833 
0.783 
0.705 
0.637 

1.000 
0.871 
0.833 
0.791 
0.755 
0.716 
0.639 

1 .OOO 
0.885 
0.853 
0.812 
0.781 
0.750 
0.675 

Degree of inequality aversion = 0.0 

1969 1.000 0.262 0.738 1.000 1.OOO 1.OOO 1.OOO 1.000 1.000 1.OOO 
1969-71 0.927 0.306 0.621 0.861 0.848 0.904 0.932 0.891 0.906 0.894 
1969-73 0.904 0.352 0.553 0.806 0.776 0.806 0.879 0.851 0.886 0.860 
1969-75 0.879 0.395 0.484 0.752 0.682 0.718 0.811 0.790 0.834 0.822 
1969-77 0.864 0.440 0.424 0.712 0.614 0.627 0.708 0.745 0.780 0.800 
1969-79 0.852 0.483 0.369 0.673 0.530 0.563 0.623 0.667 0.705 0.767 
1969-81 0.839 0.510 0.330 0.633 0.4% 0.528 0.592 0.628 0.649 0.700 
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relatively stable; (iii) this larger within-group component of inequality is due to high 
levels of inequality within lower income groups (such as women headed households); 
(iv) grouping by real income brackets leads predictably to very large between-group 
inequality values. (v) Some equalization of real incomes has occurred over time 
within most income groups, but this is very hard to judge by a comparison of an- 
nual inequality measures and most clearly revealed by using our “permanent in- 
come” distributions; (vi) modest levels of mobility are recorded as the aggregation 
interval is expanded, but the corresponding profiles flatten out after about eight 
or nine years. 

income distribution for this sample with the graph of the stability profile pt. 
We close this subsection with Fig. 1, which summarize the evolution of the 

C. 
Maasoumi and Zandvakili (1989) is based on the same data as the previous section, 
but the role of years of schooling of the head of household, hisher age, and race were 
examined through decomposition of the inequality/mobility measures. Tables 7-1 5 
are from that source. 

Table 7 is a summary of short run, long run, and the stability values for all the 
13 years. Tables 8-10 provide decompositions by educational attainment which was 
indicated by the years of completed schooling by the head. The increase in overall 
short-run inequality is primarily due to increases in within group inequalities. Long- 
run inequality is quite stable. The R measure declines over longer periods. This 
indicates that while there is much short-run mobility (change), this does not change 
permanent income inequality. Note that this phenomenon may be partly due to the 
anonymity of our measures which are invariant to short-run switching of positions by 
individuals. 

It should be noted that education is both a capital good and a provider of 
a stream of consumption. It has different values for different individuals. This 
heterogeneity effect is here controlled for leading to conditional inferences. For a 
discussion of these issues and a multidimensional treatment in which education 
is regarded as a distinct attribute (with income and wealth) see Maasoumi and 
Nickelsburg (1988). 

Tables 8-10 indicate that the greatest inequality is within the group with fewest 
schooling years. Indeed, within-group inequality declines steadily with educational 
attainment: education is an equalizer (some might argue i t  is a restraint over un- 
usual earnings!). Between groups inequality is rising somewhat over these years but 
is about one quarter of total inequality, and declining proportionately. 

Long-run inequality is much more stable over time and is smaller than short- 
run inequalities. Looking at these figures a policymaker is less likely drawn to quick 
reactions to transitory phenomenon, and more likely to focus on stable features, for 

Mobility by Education, Age, and Race 
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Figure I Measure of income stability PCFI 1969-1981, based on mean of income weights. 
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Table 7 Per Capita Family Income 1969-1981 Based on Mean of Income Weights 

Short-run inequalities 
1%9 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 

/2.0(Y) 1.109 0.961 1.049 0.940 1.002 1.190 1.636 1.357 1.569 1.840 1.895 2.072 2.441 
I l ,o (Y)  0.430 0.443 0.466 0.460 0.464 0.488 0.531 0.548 0.573 0.594 0.613 0.669 0.706 
Zo,s(Y) 0.375 0.388 0.407 0.404 0.404 0.423 0.456 0.468 0.494 0.4% 0.505 0.551 0.571 
Zo.o(Y) 0.367 0.381 0.402 0.399 0.395 0.415 0.448 0.458 0.492 0.481 0.483 0.541 0.M9 

~~ 

2.0 1.109 0.979 0.949 0.906 0.889 0.896 0.951 0.955 0.974 1.007 1.035 1.060 1.100 
1.0 0.430 0.417 0.414 0.412 0.408 0.409 0.414 0.418 0.426 0.429 0.434 0.445 0.455 
0.5 0.375 0.364 0.364 0.362 0.360 0.360 0.363 0.368 0.373 0.377 0.381 0.387 0.3% 
0.0 0.367 0.355 0.355 0.353 0.351 0.350 0.354 0.359 0.366 0.370 0.371 0.378 0.386 

Income stability 
V R1 R2 R3 R4 R5 R6 R7 R8 R9 R I O  R11 R12 R13 

2.0 1.000 0.948 0.916 0.897 0.885 0.860 0.828 0.809 0.786 0.764 0.744 0.717 0.692 
1.0 1.000 0.955 0.928 0.915 0.903 0.891 0.877 0.865 0.855 0.843 0.832 0.822 0.813 
0.5 1.000 0.954 0.932 0.917 0.911 0.897 0.885 0.877 0.867 0.861 0.855 0.843 0.840 
0.0 1.000 0.950 0.927 0.912 0.904 0.890 0.879 0.872 0.864 0.859 0.852 0.841 0.839 



158 MAASOUMI 

Table 8 1969-1981 per Capita Family Income, Short-Run Inequalities 

O-11th 12th Advanced 
V Overall Between Within grade grade College degree 

2.0 1.112 
0.964 
1.051 
0.942 
1.003 
1.192 
1.641 
1.360 
1.573 
1.844 
1.898 
2.076 
2.447 

1.0 0.431 
0.444 
0.467 
0.460 
0.464 
0.488 
0.53 1 
0.549 
0.579 
0.594 
0.613 
0.669 
0.706 

0.5 0.376 
0.388 
0.408 
0.405 
0.404 
0.423 
0.456 
0.468 
0.494 
0.495 
0.504 
0.550 
0.571 

0.081 
0.096 
0.102 
0.104 
0.101 
0.110 
0.118 
0.117 
0.109 
0.113 
0.114 
0.141 
0.146 

0.079 
0.092 
0.098 
0.099 
0.097 
0.104 
0.112 
0.111 
0.105 
0.109 
0.110 
0.133 
0.138 

0.078 
0.091 
0.098 
0.099 
0.097 
0.104 
0.112 
0.111 
0.105 
0.190 
0.110 
0.133 
0.138 

1.031 
0.868 
0.949 
0.838 
0.902 
1.083 
1.523 
1.243 
1.464 
1.730 
1.785 
1.935 
2.301 

0.352 
0.352 
0.369 
0.361 
0.367 
0.384 
0.419 
0.438 
0.474 
0.485 
0.503 
0.536 
0.568 

0.297 
0.297 
0.310 
0.306 
0.307 
0.319 
0.345 
0.358 
0.389 
0.386 
0.394 
0.418 
0.433 

1.124 
0.864 
0.886 
0.760 
0.860 
0.998 
1.478 
1.119 
1.399 
1.529 
1.467 
1.661 
2.018 

0.443 
0.431 
0.435 
0.424 
0.445 
0.457 
0.499 
0.532 
0.598 
0.605 
0.632 
0.668 
0.712 

0.394 
0.381 
0.383 
0.378 
0.393 
0.404 
0.431 
0.464 
0.532 
0.521 
0.540 
0.564 
0.592 

0.513 
0.506 
0.689 
0.645 
0.603 
0.775 
0.825 
0.909 
0.901 
1.474 
1.831 
1.380 
1.437 

0.294 
0.302 
0.334 
0.323 
0.3 16 
0.347 
0.370 
0.376 
0.374 
0.402 
0.431 
0.438 
0.473 

0.265 
0.276 
0.300 
0.286 
0.285 
0.303 
0.326 
0.324 
0.32 1 
0.334 
0.357 
0.358 
0.395 

0.377 
0.407 
0.469 
0.453 
0.448 
0.513 
0.609 
0.610 
0.706 
0.680 
0.807 
0.888 
0.996 

0.258 
0.263 
0.297 
0.306 
0.292 
0.307 
0.349 
0.353 
0.370 
0.365 
0.360 
0.417 
0.416 

0.243 
0.245 
0.276 
0.287 
0.270 
0.287 
0.321 
0.325 
0.337 
0.330 
0.317 
0.381 
0.361 

0.224 
0.298 
0.300 
0.252 
0.275 
0.284 
0.283 
0.289 
0.334 
0.406 
0.383 
0.450 
0.572 

0.190 
0.234 
0.223 
0.201 
0.204 
0.213 
0.222 
0.229 
0.261 
0.276 
0.259 
0.301 
0.325 

0.185 
0.227 
0.208 
0.193 
0.194 
0.200 
0.214 
0.221 
0.257 
0.260 
0.240 
0.281 
0.296 

(continued) 
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Table 8 (Continued) 

O-11th 12th Advanced 
V Overall Between Within grade grade College degree 

0.0 0.367 
0.381 
0.402 
0.399 
0.396 
0.415 
0.448 
0.458 
0.492 
0.481 
0.483 
0.540 
0.549 

2299 

0.079 
0.092 
0.099 
0.100 
0.098 
0.105 
0.113 
0.112 
0.107 
0.111 
0.113 
0.135 
0.141 

0.288 
0.289 
0.303 
0.299 
0.298 
0.310 
0.336 
0.347 
0.384 
0.370 
0.370 
0.405 
0.408 

0.392 
0.373 
0.375 
0.371 
0.383 
0.3% 
0.416 
0.456 
0.557 
0.514 
0.526 
0.547 
0.567 

1096 

0.260 
0.274 
0.300 
0.280 
0.284 
0.295 
0.321 
0.315 
0.311 
0.321 
0.343 
0.334 
0.381 

624 

0.245 
0.245 
0.277 
0.290 
0.270 
0.292 
0.324 
0.327 
0.341 
0.328 
0.310 
0.403 
0.352 

452 

0.188 
0.233 
0.203 
0.195 
0.193 
0.196 
0.217 
0.223 
0.269 
0.263 
0.238 
0.284 
0.297 

127 

Table 9 1969-1981 per Capita Family Income, (MIW) Long-Run Inequality 

O-11th 12th Advanced 
V Overall Between Within grade grade College degree 

2.0 1.112 
0.98 1 
0.952 
0.908 
0.891 
0.899 
0.053 
0.957 
0.977 
1.010 
1.037 
1.061 
1.103 

0.081 
0.090 
0.096 
0.099 
0.101 
0.105 
0.109 
0.113 
0.117 
0.120 
0.123 
0.127 
0.131 

1.03 1 
0.891 
0.856 
0.809 
0.790 
0.794 
0.844 
0.844 
0.860 
0.890 
0.914 
0.935 
0.972 

1.124 
0.925 
0.855 
0.789 
0.762 
0.756 
0.805 
0.791 
0.798 
0.81 1 
0.813 
0.825 
0.855 

0.513 
0.481 
0.520 
0.524 
0.519 
0.531 
0.542 
0.556 
0.568 
0.617 
0.684 
0.697 
0.706 

0.377 
0.361 
0.363 
0.358 
0.353 
0.354 
0.361 
0.364 
0.374 
0.381 
0.391 
0.399 
0.412 

0.224 
0.230 
0.229 
0.217 
0.213 
0.212 
0.21 1 
0.210 
0.210 
0.2 14 
0.2 17 
0.218 
0.227 

(continued) 
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Table 9 (Continued) 

0-11th 12th Advanced 
I/ Overall Between Within grade grade College degree 

1.0 0.431 
0.418 
0.415 
0.413 
0.409 
0.410 
0.414 
0.419 
0.426 
0.430 
0.435 
0.445 
0.455 

0.5 0.376 
0.365 
0.364 
0.362 
0.360 
0.360 
0.364 
0.368 
0.373 
0.378 
0.381 
0.387 
0.396 

0.0 0.367 
0.356 
0.355 
0.354 
0.351 
0.351 
0.355 
0.359 
0.366 
0.370 
0.372 
0.378 
0.386 

2299 

0.079 
0.086 
0.090 
0.093 
0.095 
0.097 
0.101 
0.104 
0.107 
0.109 
0.110 
0.114 
0.118 

0.078 
0.085 
0.090 
0.093 
0.094 
0.097 
0.100 
0.103 
0.105 
0.107 
0.108 
0.112 
0.116 

0.079 
0.086 
0.091 
0.093 
0.095 
0.097 
0.100 
0.103 
0.104 
0.105 
0.106 
0.111 
0.116 

0.352 
0.332 
0.325 
0.319 
0.314 
0.312 
0.313 
0.315 
0.319 
0.32 1 
0.324 
0.33 1 
0.337 

0.297 
0.279 
0.274 
0.269 
0.266 
0.263 
0.263 
0.265 
0.269 
0.271 
0.273 
0.275 
0.280 

0.288 
0.270 
0.265 
0.260 
0.257 
0.254 
0.254 
0.256 
0.263 
0.265 
0.265 
0.267 
0.270 

0.443 
0.413 
0.398 
0.388 
0.382 
0.379 
0.380 
0.381 
0.388 
0.392 
0.398 
0.410 
0.422 

0.394 
0.366 
0.353 
0.345 
0.341 
0.339 
0.338 
0.340 
0.347 
0.354 
0.361 
0.369 
0.381 

0.392 
0.359 
0.345 
0.336 
0.331 
0.329 
0.326 
0.329 
0.344 
0.350 
0.356 
0.364 
0.374 

1096 

0.294 
0.283 
0.285 
0.283 
0.279 
0.277 
0.278 
0.279 
0.280 
0.279 
0.282 
0.283 
0.285 

0.265 
0.257 
0.259 
0.255 
0.253 
0.249 
0.250 
0.249 
0.249 
0.248 
0.250 
0.248 
0.249 

0.260 
0.253 
0.257 
0.252 
0.250 
0.245 
0.245 
0.244 
0.244 
0.242 
0.243 
0.239 
0.241 

624 

0.258 
0.242 
0.240 
0.242 
0.238 
0.237 
0.240 
0.242 
0.246 
0.247 
0.245 
0.246 
0.248 

0.243 
0.226 
0.226 
0.228 
0.225 
0.224 
0.227 
0.231 
0.234 
0.236 
0.234 
0.233 
0.234 

0.245 
0.227 
0.226 
0.230 
0.226 
0.225 
0.230 
0.235 
0.239 
0.240 
0.237 
0.239 
0.238 

452 

0.190 
0.192 
0.186 
0.178 
0.173 
0.172 
0.172 
0.173 
0.175 
0.178 
0.178 
0.181 
0.184 

0.185 
0.188 
0.181 
0.172 
0.168 
0.166 
0.167 
0.169 
0.174 
0.178 
0.177 
0.180 
0.185 

0.188 
0.193 
0.182 
0.173 
0.169 
0.166 
0.168 
0.170 
0.178 
0.184 
0.182 
0.186 
0.193 
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Table I0  1969-1981 per Capita Family Income, (MIW) Income Stability 

0-11th 12th Advanced 
V Overall Between Within grade grade College degree 

2.0 1.000 
0.948 
0.916 
0.897 
0.885 
1.860 
1.828 
1.809 
1.786 
1.764 
0.744 
0.717 
0.693 

1.0 1.000 
0.955 
0.929 
0.915 
0.903 
0.891 
0.877 
0.865 
0.855 
0.843 
0.832 
0.822 
0.813 

0.5 1.000 
0.954 
0.932 
0.917 
0.91 1 
0.897 
0.885 
0.877 
0.867 
0.861 
0.855 
0.843 
0.840 

0.073 
0.087 
0.092 
0.098 
0.101 
0.100 
0.095 
0.096 
0.094 
0.091 
0.088 
0.086 
0.082 

0.183 
0.197 
0.202 
0.207 
0.209 
0.212 
0.214 
0.215 
0.214 
0.213 
0.211 
0.211 
0.210 

0.209 
0.223 
0.23 1 
0.235 
0.238 
0.241 
0.244 
0.246 
0.243 
0.243 
0.242 
0.244 
0.247 

0.927 
0.861 
0.824 
0.799 
0.785 
0.760 
0.734 
0.713 
0.692 
0.673 
0.656 
0.63 1 
0.610 

0.817 
0.758 
0.726 
0.708 
0.694 
0.679 
0.663 
0.650 
0.640 
0.630 
0.62 1 
0.61 1 
0.603 

0.791 
0.730 
0.701 
0.682 
0.672 
0.656 
0.641 
0.63 1 
0.624 
0.618 
0.613 
0.599 
0.594 

1 .ooo 
0.936 
0.899 
0.879 
0.860 
0.832 
0.797 
0.771 
0.737 
0.711 
0.688 
0.663 
0.642 

1 .ooo 
0.946 
0.914 
0.898 
0.881 
0.865 
0.846 
0.826 
0.804 
0.788 
0.775 
0.768 
0.762 

1 .ooo 
0.945 
0.917 
0.899 
0.887 
0.872 
0.853 
0.836 
0.817 
0.809 
0.802 
0.795 
0.796 

1.000 
0.945 
0.909 
0.883 
0.875 
0.843 
0.815 
0.791 
0.774 
0.740 
0.711 
0.686 
0.663 

1 .ooo 
0.949 
0.919 
0.901 
0.890 
0.866 
0.846 
0.829 
0.820 
0.799 
0.785 
0.768 
0.747 

1 .ooo 
0.949 
0.924 
0.904 
0.897 
0.871 
0.851 
0.837 
0.827 
0.813 
0.803 
0.781 
0.766 

1.000 
0.920 
0.866 
0.834 
0.817 
0.789 
0.757 
0.731 
0.707 
0.694 
0.673 
0.644 
0.622 

1 .ooo 
0.926 
0.881 
0.858 
0.840 
0.82 1 
0.802 
0.788 
0.776 
0.765 
0.751 
0.728 
0.715 

1 .ooo 
0.926 
0.886 
0.864 
0.852 
0.831 
0.817 
0.808 
0.799 
0.793 
0.781 
0.75 1 
0.743 

1.000 
0.876 
0.833 
0.806 
0.791 
0.780 
0.769 
0.760 
0.737 
0.711 
0.698 
0.664 
0.636 

1.000 
0.901 
0.864 
0.839 
0.826 
0.819 
0.81 1 
0.805 
0.792 
0.780 
0.769 
0.752 
0.737 

1 .ooo 
0.909 
0.874 
0.847 
0.840 
0.830 
0.826 
0.823 
0.815 
0.814 
0.803 
0.788 
0.782 

(continued) 
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Table I0 (Continued) 
~ ~ ~~ ~ ~~ ~~ 

0-11th 12th Advanced 
V Overall Between Within grade grade College degree 

0.0 1.000 
0.9.50 
0.927 
0.9 12 
0.905 
0.890 
0.879 
0.872 
0.864 
0.859 
0.852 
0.841 
0.839 

2299 

0.215 
0.229 
0.236 
0.241 
0.244 
0.246 
0.249 
0.249 
0.244 
0.244 
0.244 
0.247 
0.252 

0.785 
0.72 1 
0.69 1 
0.671 
0.66 1 
0.644 
0.630 
0.623 
0.620 
0.61.5 
0.608 
0.594 
0.587 

1 .ooo 
0.940 
0.910 
0.891 
0.878 
0.863 
0.842 
0.827 
0.815 
0.808 
0.802 
0.796 
0.796 

1096 

1 .ooo 
0.947 
0.923 
0.902 
0.895 
0.865 
0.847 
0.833 
0.824 
0.810 
0.801 
0.777 
0.765 

624 

1.000 
0.925 
0.885 
0.865 
0.85 1 
0.83 1 
0.820 
0.816 
0.810 
0.802 
0.789 
0.762 
0.751 

452 

1 .ooo 
0.914 
0.875 
0.847 
0.839 
0.828 
0.827 
0.827 
0.827 
0.83 1 
0.815 
0.807 
0.808 

127 

Table I I 1969-1981 per Capita Family Income, Short-Run Inequalities 

V Overall Between Within 18-29 30-39 40-49 50-59 260 

2.0 1.109 
0.961 
1.049 
0.940 
1.002 
1.190 
1.636 
1.357 
1.569 
1.840 
1.895 
2.072 
2.441 

0.004 
0.006 
0.007 
0.009 
0.013 
0.017 
0.022 
0.027 
0.031 
0.051 
0.061 
0.083 
0.098 

1.105 
0.956 
1.042 
0.93 1 
0.988 
1.173 
1.615 
1.330 
1.537 
1.789 
1.833 
1.989 
2.343 

1.294 
0.587 
0.840 
0.643 
0.575 
0.638 
0.788 
0.971 
0.894 
1.937 
0.959 
1.034 
1.267 

0.667 
0.641 
0.834 
0.777 
0.751 
0.854 
0.999 
1.298 
1.332 
1.572 
2.309 
2.050 
2.292 

0.836 
0.982 
0.920 
0.942 
1.061 
1.676 
1.375 
1.379 
2.110 
1.990 
2.095 
2.499 
3.267 

1.992 
1 SO8 
1.598 
1.332 
1.350 
1.452 
3.657 
1.660 
1.694 
1.912 
1.725 
1.891 
1.914 

1.059 
1.083 
1.081 
0.854 
1.019 
0.852 
0.937 
0.916 
0.973 
0.965 
1.012 
1.036 
1.135 

(continued) 
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Table I I (Continued) 

V Overall Between Within 18-29 30-39 40-49 50-59 260 

1.0 0.430 
0.443 
0.466 
0.460 
0.464 
0.488 
0.531 
0.548 
0.578 
0.594 
0.613 
0.669 
0.706 

0.5 0.375 
0.388 
0.407 
0.404 
0.404 
0.423 
0.456 
0.468 
0.494 
0.496 
0.505 
0.551 
0.571 

0.0 0.367 
0.381 
0.402 
0.399 
0.395 
0.415 
0.488 
0.458 
0.492 
0.481 
0.483 
0.541 
0.549 

2305 

0.004 
0.006 
0.007 
0.009 
0.012 
0.015 
0.019 
0.023 
0.027 
0.042 
0.051 
0.067 
0.080 

0.004 
0.006 
0.007 
0.009 
0.012 
0.014 
0.018 
0.02 1 
0.025 
0.038 
0.047 
0.061 
0.073 

0.004 
0.006 
0.007 
0.008 
0.012 
0.014 
0.017 
0.020 
0.024 
0.036 
0.044 
0.057 
0.068 

0.426 
0.437 
0.460 
0.451 
0.451 
0.473 
0.512 
0.525 
0.551 
0.552 
0.562 
0.602 
0.626 

0.371 
0.382 
0.401 
0.396 
0.392 
0.409 
0.438 
0.446 
0.469 
0.457 
0.458 
0.489 
0.498 

0.362 
0.375 
0.395 
0.390 
0.384 
0.401 
0.432 
0.438 
0.468 
0.446 
0.439 
0.484 
0.481 

0.297 
0.322 
0.341 
0.334 
0.318 
0.332 
0.368 
0.382 
0.381 
0.388 
0.380 
0.381 
0.457 

0.263 
0.289 
0.299 
0.297 
0.286 
0.294 
0.325 
0.334 
0.336 
0.325 
0.331 
0.336 
0.406 

0.258 
0.283 
0.293 
0.292 
0.282 
0.287 
0.323 
0.344 
0.388 
0.318 
0.329 
0.341 
0.424 

359 

0.373 
0.366 
0.406 
0.416 
0.391 
0.419 
0.445 
0.478 
0.495 
0.500 
0.488 
0.553 
0.539 

0.331 
0.326 
0.362 
0.373 
0.345 
0.371 
0.387 
0.400 
0.418 
0.417 
0.395 
0.466 
0.423 

0.323 
0.318 
0.361 
0.374 
0.388 
0.369 
0.382 
0.384 
0.41 1 
0.408 
0.376 
0.489 
0.394 

525 

0.422 
0.427 
0.449 
0.445 
0.467 
0.484 
0.520 
0.536 
0.572 
0.573 
0.577 
0.610 
0.656 

0.369 
0.364 
0.389 
0.384 
0.399 
0.406 
0.434 
0.448 
0.469 
0.464 
0.452 
0.472 
0.500 

0.359 
0.346 
0.375 
0.37 1 
0.385 
0.391 
0.416 
0.430 
0.452 
0.41 1 
0.416 
0.435 
0.461 

64 1 

0.533 
0.554 
0.570 
0.556 
0.560 
0.5% 
0.646 
0.646 
0.671 
0.683 
0.709 
0.787 
0.787 

0.448 
0.472 
0.481 
0.473 
0.472 
0.501 
0.537 
0.546 
0.571 
0.578 
0.606 
0.684 
0.698 

0.430 
0.462 
0.466 
0.458 
0.454 
0.483 
0.521 
0.532 
0.563 
0.565 
0.599 
0.69s 
0.729 

471 

0.510 
0.537 
0.542 
0.4% 
0.508 
0.518 
0.572 
0.565 
0.619 
0.591 
0.648 
0.644 
0.664 

0.446 
0.481 
0.492 
0.467 
0.474 
0.497 
0.562 
0.557 
0.639 
0.584 
0.652 
0.632 
0.637 

0.437 
0.488 
0.506 
0.493 
0.501 
0.539 
0.635 
0.634 
0.802 
0.669 
0.768 
0.718 
0.707 
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instance, the fact that some mobility is experienced in the early part of this period, 
but has ceased in the latter part of the sample. Similarly, we note that between-group 
long-run inequality has risen consistently, suggesting that the expected returns to 
schooling has materialized. In fact the inequality gap between the educational groups 
here has widened by 50% over time; see John et al. (1993). 

Tables 11-13 have the same structure as before but focus on the impact of 
age. These tables suggest that between-group inequality, both short and long run, 
has increased dramatically over time. Seniority matters! Within group inequality is 
larger the older the group. This is also due to accumulation of returns to different 
investments, opportunities, and attainments. Short-run inequalities increase within 
groups, while long-run inequalities are stable with a moderate increase toward the 
end of this period. Maasoumi et al. (1996) find these trends have continued. Finally 
we note that these figures are based on per capita incomes. Since family size and 
composition changes over time these figures show greater volatility than the authors 
found with total family incomes unadjusted for family size (Maasoumi and Zandvakili 
1989, Appendix). 

Tables 14-15 provide decompositions by race, noting that the “non-white” 
group includes all heads not classified as “white.” This explains the large within- 
group inequality. The number of households in each group is given in the last col- 
umn. Inequality among non-whites has increased faster than among whites. Short 
run inequality has increased within both groups, and somewhat increased in the ag- 
gregated incomes. Between-group inequality in the short run distributions declined 
somewhat in the first half of the period and increased again in the last 4-5 years 
of the sample. For the long-run incomes, between-group inequalities are rather sta- 
ble with a slight decline over time. It would appear that within-group characteristics 
are controlling of the degree of inequality in this sample and for this decomposition. 
Other grouping criteria that are more race specific than “non-white” are known to 
indicate greater between group inequality. See John et al. (1991). 

Experimentation over the members of the GE family, as well as with different 
sets of weights given to incomes at different points in time, represent an attempt to 
robustify summary findings. This is an important element of empirical work in this 
area since unanimity with respect to weights and degree of aversion to inequality is 
not likely. Of course, an interpretation of this “robustification” technique is that it 
is an empirical substitute for unanimous ranking by Lorenz-type comparisons over 
plausible ranges of parameter values. This is useful when such curves cannot be 
statistically ordered when they cross only at extreme parametric values. 

Several other applications to U.S. and U.K. data are reported in Shorrocks 
(1978b, 1981). A good deal more is now possible given the dominance testing tech- 
niques of Section IV, and the asymptotic distribution theory summarized in Maa- 
soumi (1996a). The bootstrap alternative appears very promising, as demonstrated 
by Mills and Zandvakili (1996). 



ON MOBILITY 165 

Table I 2  1969-1981 per Capita Family Income, (MIW) Long-Run Inequalities 
~ 

V Overall Between Within 18-29 30-39 40-49 50-59 260 

2.0 1.109 
0.979 
0.949 
0.906 
0.889 
0.8% 
0.951 
0.955 
0.974 
1.007 
1.035 
1.060 
1.100 

1.0 0.430 
0.417 
0.414 
0.412 
0.408 
0.409 
0.414 
0.418 
0.426 
0.429 
0.434 
0.445 
0.455 

0.5 0.375 
0.364 
0.364 
0.362 
0.360 
0.360 
0.363 
0.368 
0.373 
0.377 
0.381 
0.387 
0.396 

0.004 
0.005 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 
0.012 
0.014 
0.016 
0.020 
0.025 

0.004 
0.005 
0.005 
0.006 
0.007 
0.007 
0.009 
0.010 
0.012 
0.014 
0.017 
0.021 
0.026 

0.004 
0.005 
0.005 
0.006 
0.006 
0.007 
0.008 
0.010 
0.01 1 
0.014 
0.017 
0.02 1 
0.026 

1.105 
0.974 
1.944 
0.900 
0.882 
0.889 
0.942 
0.944 
0.962 
0.993 
1.018 
1.039 
1.075 

0.426 
0.4 12 
0.409 
0.406 
0.402 
0.402 
0.405 
0.408 
0.414 
0.415 
0.417 
0.424 
0.429 

0.371 
0.359 
0.358 
0.356 
0.353 
0.352 
0.355 
0.358 
0.362 
0.364 
0.364 
0.366 
0.370 

1.294 
0.859 
0.798 
0.723 
0.667 
0.634 
0.625 
0.637 
0.635 
0.716 
0.711 
0.712 
0.718 

0.297 
0.277 
0.277 
0.277 
0.271 
0.269 
0.272 
0.275 
0.277 
0.276 
0.275 
0.276 
0.282 

0.263 
0.246 
0.246 
0.246 
0.243 
0.241 
0.243 
0.247 
0.249 
0.248 
0.247 
0.248 
0.257 

0.667 
0.618 
0.648 
0.647 
0.645 
0.651 
0.667 
0.707 
0.741 
0.782 
0.866 
0.909 
0.963 

0.373 
0.353 
0.352 
0.355 
0.351 
0.352 
0.355 
0.360 
0.369 
0.372 
0.374 
0.380 
0.386 

0.331 
0.313 
0.314 
0.318 
0.316 
0.315 
0.318 
0.320 
0.325 
0.329 
0.328 
0.330 
0.334 

0.836 
0.867 
0.839 
0.830 
0.844 
0.932 
0.950 
0.985 
1.033 
1.077 
1.117 
1.171 
1.260 

0.422 
0.408 
0.404 
0.402 
0.403 
0.407 
0.412 
0.416 
0.428 
0.433 
0.437 
0.445 
0.453 

0.369 
0.351 
0.349 
0.347 
0.349 
0.350 
0.353 
0.358 
0.366 
0.371 
0.371 
0.373 
0.378 

1.992 
1.683 
1.601 
1.486 
1.416 
1.359 
1.614 
1.544 
1.482 
1.447 
1.386 
1.331 
1.290 

0.533 
0.528 
0.527 
0.523 
0.517 
0.516 
0.521 
0.521 
0.523 
0.520 
0.518 
0.525 
0.526 

0.448 
0.447 
0.448 
0.443 
0.440 
0.438 
0.441 
0.444 
0.446 
0.445 
0.447 
0.454 
0.460 

1.059 
1.016 
0.968 
0.883 
0.859 
0.812 
0.784 
0.764 
0.740 
0.735 
0.733 
0.729 
0.725 

0.510 
0.505 
0.492 
0.475 
0.461 
0.455 
0.456 
0.455 
0.454 
0.455 
0.464 
0.471 
0.473 

0.446 
0.448 
0.442 
0.433 
0.426 
0.425 
0.433 
0.437 
0.442 
0.450 
0.466 
0.472 
0.476 

(continued) 
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Table I 2  (Continued) 

V Overall Between Within 18-29 30-39 40-49 50-59 260 
~~ ~ 

0.0 0.367 
0.355 
0.355 
0.353 
0.351 
0.350 
0.354 
0.3.59 
0.366 
0.370 
0.371 
0.378 
0.386 

2305 

~ 

0.004 
0.005 
0.005 
0.006 
0.006 
0.007 
0.008 
0.010 
0.01 1 
0.013 
0.016 
0.02 1 
0.026 

0.362 
0.350 
0.350 
0.348 
0.345 
0.343 
0.346 
0.349 
0.355 
0.356 
0.355 
0.358 
0.361 

0258 
0.240 
0.240 
0.241 
0.238 
0.235 
0.238 
0.244 
0.248 
0.246 
0.246 
0.249 
0.264 

359 

0.323 
0.304 
0.308 
0.314 
0.31 1 
0.310 
0.313 
0.313 
0.3 19 
0.323 
0.32 1 
0.329 
0.328 

525 

~ 

0.359 
0.336 
0.334 
0.332 
0.334 
0.335 
0.338 
0.343 
0.352 
0.357 
0.353 
0.352 
0.355 

64 1 

0.430 
0.432 
0.432 
0.427 
0.422 
0.419 
0.423 
0.426 
0.429 
0.427 
0.429 
0.438 
0.447 

471 

0.437 
0.444 
0.443 
0.440 
0.436 
0.439 
0.455 
0.466 
0.487 
0.499 
0.522 
0.529 
0.533 
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Table I3 1969-1981 per Capita Family Income, (MIW) Income Stability 

V Overall Between Within 18-29 30-39 40-49 50-59 260 

2.0 1.000 
0.948 
0.916 
0.897 
0.885 
0.860 
0.828 
0.809 
0.786 
0.764 
0.744 
0.717 
0.692 

0.004 
0.004 
0.005 
0.006 
0.007 
0.007 
0.008 
0.009 
0.010 
0.01 1 
0.012 
0.014 
0.016 

0.996 
0.944 
0.911 
0.891 
0.878 
0.853 
0.821 
0.801 
0.777 
0.753 
0.732 
0.703 
0.677 

1 .ooo 
0.927 
0.891 
0.876 
0.873 
0.857 
0.836 
0.814 
0.794 
0.749 
0.746 
0.737 
0.719 

1.000 
0.946 
0.905 
0.882 
0.877 
0.857 
0.832 
0.802 
0.780 
0.757 
0.723 
0.695 
0.677 

1 .ooo 
0.95 1 
0.919 
0.901 
0.887 
0.850 
0.829 
0.810 
0.782 
0.763 
0.746 
0.721 
0.693 

1 .ooo 
0.967 
0.949 
0.935 
0.927 
0.898 
0.851 
0.833 
0.810 
0.788 
0.763 
0.729 
0.704 

1 .ooo 
0.948 
0.903 
0.873 
0.851 
0.830 
0.807 
0.795 
0.759 
0.765 
0.760 
0.748 
0.732 

(continued) 
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Table I 3  (Continued) 

V Overall Between Within 18-29 30-39 40-49 50-59 260 

1.0 1.000 
0.955 
0.928 
0.915 
0.903 
0.891 
0.877 
0.865 
0.855 
0.843 
0.832 
0.822 
0.813 

0.5 1.000 
0.954 
0.932 
0.917 
0.91 1 
0.897 
0.885 
0.877 
0.867 
0.861 
0.855 
0.843 
0.840 

0.0 1.000 
0.950 
0.927 
0.912 
0.904 
0.890 
0.879 
0.872 
0.864 
0.859 
0.852 
0.841 
0.839 

2305 

0.010 
0.01 1 
0.012 
0.013 
0.014 
0.016 
0.018 
0.02 1 
0.023 
0.027 
0.032 
0.039 
0.046 

0.01 1 
0.013 
0.013 
0.014 
0.016 
0.018 
0.021 
0.023 
0.027 
0.032 
0.038 
0.046 
0.005 

0.012 
0.013 
0.014 
0.014 
0.016 
0.018 
0.020 
0.023 
0.026 
0.031 
0.038 
0.046 
0.056 

0.990 
0.944 
0.917 
0.902 
0.889 
0.875 
0.859 
0.844 
0.83 1 
0.815 
0.800 
0.783 
0.767 

0.989 
0.94 1 
0.918 
0.903 
0.894 
0.878 
0.865 
0.853 
0.840 
0.830 
0.817 
0.797 
0.785 

0.988 
0.937 
0.9 13 
0.897 
0.888 
0.871 
0.859 
0.849 
0.838 
0.828 
0.8 14 
0.795 
0.784 

1 .ooo 
0.893 
0.864 
0.853 
0.842 
0.832 
0.819 
0.812 
0.801 
0.788 
0.778 
0.774 
0.765 

1 .000 
0.890 
0.867 
0.856 
0.850 
0.837 
0.826 
0.823 
0.814 
0.806 
0.798 
0.793 
0.795 

1 .000 
0.887 
0.863 
0.8.54 
0.846 
0.832 
0.822 
0.824 
0.818 
0.810 
0.8ott 
0.800 
0.8 15 

359 

1.000 
0.955 
0.922 
0.907 
0.901 
0.889 
0.878 
0.867 
0.861 
0.852 
0.845 
0.832 
0.831 

1.000 
0.953 
0.925 
0.910 
0.910 
0.895 
0.887 
0.877 
0.873 
0.870 
0.866 
0.846 
0.850 

1 .000 
0.949 
0.92 1 
0.908 
0.907 
0.890 
0.884 
0.873 
0.872 
0.872 
0.865 
0.852 
0.850 

525 

1 .000 
0.961 
0.934 
0.922 
0.912 
0.903 
0.890 
0.878 
0.876 
0.868 
0.860 
0.854 
0.846 

1 .000 
0.959 
0.936 
0.922 
0.918 
0.908 
0.896 
0.889 
0.888 
0.887 
0.881 
0.871 
0.868 

1 .000 
0.954 
0.930 
0.915 
0.91 1 
0.901 
0.890 
0.885 
0.887 
0.887 
0.877 
0.865 
0.862 

64 1 

1 .000 
0.971 
0.955 
0.945 
0.934 
0.918 
0.903 
0.888 
0.872 
0.853 
0.835 
0.187 
0.799 

1 .000 
0.970 
0.959 
0.946 
0.940 
0.923 
0.909 
0.897 
0.881 
0.865 
0.852 
0.832 
0.818 

1 .000 
0.967 
0.954 
0.940 
0.933 
0.914 
0.900 
0.889 
0.871 
0.853 
0.837 
0.817 
0.802 

47 1 

1.000 
0.964 
0.929 
0.913 
0.893 
0.881 
0.867 
0.856 
0.832 
0.829 
0.827 
0.824 
0.8 13 

1 .000 
0.963 
0.934 
0.918 
0.905 
0.893 
0.881 
0.873 
0.846 
0.851 
0.856 
0.850 
0.844 

1 .000 
0.959 
0.927 
0.913 
0.899 
0.886 
0.875 
0.867 
0.842 
0.847 
0.855 
0.847 
0.841 
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Table I4  1969-1981 per Capita Family Irxome, Short-Run Inequalities 

V Overall Between Within White Non-whi te 

2':o 1.109 
0.961 
1.049 
0.940 
1.002 
1.190 
1.636 
1.357 
1.569 
1.840 
1.895 
2.072 
2.441 

1 .o 0.430 
0.443 
0.466 
0.460 
0.464 
0.488 
0.53 1 
0.548 
0.578 
0.594 
0.613 
0.669 
0.706 

0.5 0.375 
0.388 
0.407 
0.404 
0.404 
0.423 
0.456 
0.468 
0.494 
0.496 
0.505 
0.551 
0.571 

0.087 
0.085 
0.088 
0.085 
0.076 
0.079 
0.074 
0.070 
0.069 
0.070 
0.066 
0.079 
0.078 

0.073 
0.071 
0.074 
0.071 
0.065 
0.067 
0.063 
0.060 
0.059 
0.060 
0.057 
0.067 
0.066 

0.068 
0.066 
0.068 
0.066 
0.061 
0.062 
0.059 
0.056 
0.056 
0.057 
0.053 
0.062 
0.062 

1.022 
0.877 
0.961 
0.855 
0.925 
1.111 
1.562 
1.286 
1 .so0 
1.770 
1.829 
1.994 
2.363 

0.357 
0.372 
0.393 
0.388 
0.398 
0.421 
0.468 
0.488 
0.5 19 
0.533 
0.5Fi6 
0.602 
0.640 

0.308 
0.322 
0.339 
0.388 
0.343 
0.361 
0.397 
0.41 1 
0.438 
0.439 
0.45 1 
0.489 
0.510 

0.599 
0.609 
0.718 
0.638 
0.602 
0.890 
0.770 
0.816 
0.900 
1.008 
1.117 
1.328 
1.356 

0.322 
0.336 
0.363 
0.354 
0.344 
0.372 
0.410 
0.420 
0.477 
0.462 
0.483 
0.540 
0.554 

0.289 
0.304 
0.326 
0.322 
0.313 
0.366 
0.370 
0.375 
0.402 
0.404 
0.414 
0.464 
0.47 1 

1.099 
0.870 
0.901 
0.810 
0.980 
1.022 
1.891 
1.414 
1.704 
2.048 
2.085 
2.068 
2.653 

0.428 
0.444 
0.451 
0.456 
0.507 
0.519 
0.582 
0.623 
0.66 1 
0.676 
0.703 
0.727 
0.810 

0.388 
0.398 
0.403 
0.410 
0.453 
0.457 
0.500 
0.542 
0.568 
0.566 
0.583 
0.591 
0.656 

(continued) 
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Table I4  (Continued) 

V Overall Between Within White Non-white 

0.0 0.367 
0.381 
0.402 
0.399 
0.395 
0.415 
0.448 
0.458 
0.492 
0.481 
0.483 
0.541 
0.549 

2305 

0.063 
0.062 
0.064 
0.062 
0.057 
0.058 
0.056 
0.053 
0.052 
0.053 
0.050 
0.058 
0.058 

0.303 
0.3 19 
0.338 
0.337 
0.338 
0.357 
0.393 
0.405 
0.439 
0.428 
0.433 
0.482 
0.491 

0.284 
0.302 
0.324 
0.321 
0.313 
0.336 
0.371 
0.372 
0.409 
0.399 
0.401 
0.465 
0.460 

1534 

0.392 
0.395 
0.402 
0.408 
0.453 
0.450 
0.488 
0.547 
0.569 
0.553 
0.567 
0.561 
0.632 

77 1 

Table I 5  
Long-Run Inequality 

1969-1981 per Capita Family Income, (MIW) 

V Overall Between Within White Non-white 

2.0 1.109 
0.979 
0.949 
0.906 
0.889 
0.896 
0.951 
0.955 
0.974 
1.007 
1.035 
1.060 
1.100 

0.087 
0.087 
0.089 
0.089 
0.088 
0.089 
0.088 
0.087 
0.086 
0.088 
0.087 
0.087 
0.087 

1.022 
0.892 
0.860 
0.817 
0.801 
0.808 
0.862 
0.868 
0.888 
0.919 
0.947 
0.973 
1.013 

0.599 
0.565 
0.577 
0.561 
0.545 
0.570 
0.567 
0.566 
0.570 
0.58 1 
0.595 
0.613 
0.628 

1.099 
0.923 
0.858 
0.804 
0.795 
0.784 
0.872 
0.885 
0.916 
0.950 
0.984 
1.012 
1.062 

(continued) 
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Table I5  (Continued) 

V Overall Between Within White Non-whi te 

1 .o 0.430 
0.417 
0.414 
0.412 
0.408 
0.409 
0.414 
0.418 
0.426 
0.429 
0.434 
0.445 
0.455 

0.5 0.375 
0.364 
0.364 
0.362 
0.360 
0.360 
0.363 
0.368 
0.373 
0.377 
0.381 
0.387 
0.396 

0.0 0.367 
0.355 
0.355 
0.353 
0.351 
0.350 
0.354 
0.359 
0.366 
0.370 
0.371 
0.378 
0.386 

2305 

0.073 
0.073 
0.073 
0.073 
0.072 
0.071 
0.071 
0.069 
0.068 
0.068 
0.067 
0.067 
0.067 

0.068 
0.067 
0.068 
0.067 
0.066 
0.065 
0.064 
0.063 
0.062 
0.062 
0.061 
0.061 
0.061 

0.063 
0.062 
0.063 
0.063 
0.061 
0.060 
0.059 
0.058 
0.057 
0.056 
0.055 
0.056 
0.056 

0.357 
0.345 
0.341 
0.339 
0.337 
0.338 
0.343 
0.349 
0.357 
0.361 
0.367 
0.377 
0.387 

0.308 
0.297 
0.296 
0.294 
0.294 
0.294 
0.299 
0.304 
0.31 1 
0.3 16 
0.320 
0.326 
0.335 

0.303 
0.293 
0.292 
0.291 
0.290 
0.290 
0.295 
0.301 
0.309 
0.313 
0.3 16 
0.322 
0.330 

0.322 
0.310 
0.310 
0.307 
0.302 
0.301 
0.305 
0.307 
0.3 12 
0.316 
0.320 
0.328 
0.335 

0.289 
0.279 
0.280 
0.278 
0.275 
0.275 
0.279 
0.282 
0.287 
0.291 
0.295 
0.300 
0.307 

0.284 
0.276 
0.277 
0.276 
0.273 
0.272 
0.278 
0.281 
0.288 
0.292 
0.294 
0.301 
0.307 

1534 

0.428 
0.413 
0.404 
0.402 
0.406 
0.410 
0.420 
0.432 
0.446 
0.452 
0.460 
0.475 
0.492 

0.388 
0.373 
0.365 
0.363 
0.370 
0.372 
0.379 
0.391 
0.403 
0.409 
0.416 
0.424 
0.439 

0.392 
0.372 
0.364 
0.361 
0.369 
0.370 
0.374 
0.390 
0.404 
0.409 
0.415 
0.419 
0.432 

77 1 
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1. INTRODUCTION AND SUMMARY 

A. Overview 

The neoclassical development of producer and consumer theory, culminating in the 
use of duality theory and the introduction of flexible functional forms in the 1970s, 
focused on the restrictions on demand and supply functions implied by optimizing 
behavior of producers and consumers. These restrictions are completely character- 
ized by the symmetry and negative semidefiniteness of the (Slutsky) matrix of sub- 
stitution effects in consumer theory and the symmetry and positive semidefiniteness 
of the Jacobian of the (net) supply functions in the case of producer theory.* They 
are important for econometric demand and supply analysis in part because they re- 
duce the number of independent parameters to be estimated. A classic example is 
development of the linear expenditure system, first estimated by Stone (1954). Be- 
ginning with a system of equations in which optimal expenditure on each commodity 
is a linear function of income and n prices, Klein and Rubin (1947-1948) showed 
that requiring the system to be generated by income-constrained utility maximization 
reduces the number of parameters to be estimated from (n  + 1)2 to 2n - 1. 

The problem with this nexus between theory and empirical application is that 
the estimation of demand and supply systems typically uses aggregate, or per capita, 

*In addition, these matrices must have reduced rank hecause of homogeneity properties. The conditions 
are most easily derived in the dual from the (easily proved) concavity and homogeneity of expenditure 
functions and convexity and homogeneity of profit functions in prices. 
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data. In the case of aggregate supply functions of producers, this poses no problem so 
long as all inputs are efficiently allocated, as is the case in competitive equilibrium 
with no fixed inputs and no production externalities. In this case, profit maximiza- 
tion by all producers on individual technology sets yields the same aggregate net 
supply as profit maximization on the aggregate technology set, which is obtained 
by simple summation of the individual technology sets. The equivalence of these 
two optimization problems is salient in general-equilibrium theory and welfare eco- 
nomics (Debreu 1954,1959) and has been elegantly illustrated and aptly referred to 
by Koopmans (1957) as the “interchangeability of set summation and optimization.” 
The essence of Koopman’s interchangeability principle is that boundary points of 
the aggregate technology set are obtained as the sum of boundary points of the in- 
dividual technology sets where the supports are equal; but this is equivalent to an 
efficient allocation of net outputs, where the aggregate net output vector and the op- 
timal vectors of each producer are supported by the same price vector. (The vector 
summation of boundary points of individual technology sets with unequal supports 
yields interior points of the aggregate technology set.) 

From the standpoint of econometric applications (and other applications as 
well, especially in macroeconomic theory and international trade), the beauty of the 
aggregation result for profit-maximizing, price-taking producers is that no restric- 
tions (other than those needed for the existence of an optimum) are required. (In 
particular, convexity of technology sets is not required.) This means that there is no 
loss of generality in positing the existence of a “representative producer,” which gen- 
erates aggregate net-supply functions by maximizing aggregate profit subject to the 
constraint that the aggregate net-supply vector be contained in the aggregate tech- 
nology set. As a result, the Jacobian of the system of aggregate net supply functions 
has the same properties as those of individual producers. 

But aggregation on the consumer side is not so simple; the symmetry and neg- 
ative semidefiniteness of the substitution matrix does not carry over to aggregate de- 
mand systems. In fact, as shown by Debreu (1974), Mantel (1974), and Sonnenschein 
(1973),* the only restrictions imposed on aggregate demand functions by individual 
optimization are Walras’ law (simply the aggregate budget identity) and homogeneity 
of degree zero (in prices and income for income-constrained consumers and in prices 
for endowment-constrained consumers). This, in turn, implies that, without further 
restrictions, the use of a representative agent in consumer theory is, a fortiori, un- 
justified. Essentially, the reason for this discouraging result in the aggregation of 
consumer demand systems is that aggregate demand depends on the arbitrary dis- 
tribution of incomes or endowments. In fact, if consumer incomes were determined 

*See also Mas-Colell and Neuefeind (1977). An excellent survey of these results can be found in Shafer 
and Sonnenschein (1982). 
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optimally by maximizing a (Bergson-Samuelson) social welfare function, a represen- 
tative consumer would exist (Samuelson 1956).* (Similarly, if the econometric anal- 
ysis of producer demand and supply systems entailed an arbitrary distribution of 
idiosynchratic variables, such as fixed capital stocks, the simple aggregation results 
would not go through for producers as well.) 

There are essentially two ways out of this quandary. One is to impose restric- 
tions on individual preferences that imply certain regularity conditions for aggregate 
demands. These range from the most restrictive assumption, yielding a representa- 
tive agent in aggregate demands, to weaker restrictions implying that the aggregate 
demand systems satisfy the weak axiom of revealed preference (equivalently, that 
the Jacobian of the aggregate demand system is negative semidefinite). 

The first approach to dealing with the consumer aggregation problem predates 
the Debreu-Sonnenschein-Mantel results and indeed goes all the way back to the 
classic result of Gorman (1953a). He showed that a representative consumer exists 
if and only if Engel curves of the consumers are linear and parallel across consumers 
(for given prices). Gorman’s result is derived in the dual. The indirect utility function 
must be affine in income (for given prices), in which case the (Marshallian) ordinary 
demand functions, derived by Roy’s Identity, are also affine in income. Equivalently, 
the consumer’s expenditure function is affine in utility (or any monotonic transforma- 
tion of utility), in which case the (Hicksian) income-compensated demand functions 
are affine in the utility scalar. This structure is commonly referred to as the “Gor- 
man polar form,” and has been elucidated in the primal by Blackorby, Boyce, and 
Russell(l978) and Blackorby and Schworm (1993). Gorman’s result is discussed in 
Section 1I.A. 

Gorman’s notion was subsequently generalized by Muellbauer to obtain a 
weaker type of aggregation and, concomitantly, weaker form of representative con- 
sumer, one in which aggregate commodity shares depend on some (generally non- 
linear) function of the distribution of income and (possibly) prices. He called the 
required structure “generalized linear,’’ since it is a generalization of Gorman’s “lin- 
ear” (actual affine) structure. Muellbauer’s generalized linear structure can be al- 
ternatively characterized by the fact that the Engel curves have “rank 2”: they are 
contained in a two-dimensional subspace of the commodity space. That is, each can 
be obtained as a linear combination of the others. Requiring that the aggregate in- 
come be independent of prices yields Muell bauer’s “price-independent generalized 
linearity” (PIGL) demand system or his “price-independent generalized logarith- 
mic” (PIGLOG) system. Muellbauer’s approach, along with the extension by Deaton 
and Muellbauer (1980), the “almost ideal demand system,” is discussed in Sec- 
tion 1I.B. 

*See also, Jerison (1984b). 



I80 RUSSELL ET AL. 

Section I1 closes with a brief discussion of the tests for the existence of a rep- 
resentative agent, including the parametric tests of Christensen, Jorgenson, and Lau 
(1975), and others (usingflexible functional forms like the translog) and the nonpara- 
metric, nonstochastic (mathematical programming) tests of Varian (1982) and Diew- 
ert and Parkan (1985). The power of these nonparametric tests has been assessed 
by Bronars (1987) and Russell and Tengesdal (1996). Lewbel (1991) has provided 
some evidence in favor of Muellbauer’s PIGLOG specification if we exclude incomes 
in the tails of the distribution, but evidence against it if we include the tails. 

The existence of a representative consumer, while necessary for many pur- 
poses, is not necessary for the existence of aggregate demand functions that re- 
quire less-than-complete information about the distribution of incomes. Lau (1977a, 
1977b, 1982) and Gorman (1981) spelled out restrictions on individual demand 
functions that are necessary and sufficient for the existence of an aggregate demand 
function that depends on prices and summary statistics of the income distribution. 
This weaker aggregation condition, discussed in Section III.A, is referred to as “exact 
aggregation” and is a natural generalization of the (rank 2) Muellbauer conditions. 

In his remarkable theorem, Gorman (1981) also showed that the requisite indi- 
vidual demand systems are consistent with income-constrained utility maximization 
(i.e., satisfy the integrability conditions) if and only if the Engel curves can be con- 
tained in a three-dimensional subspace (for given prices)-that is, that the demand 
systems have rank no greater than 3. His theorem, presented in Section III.B, also 
completely characterizes the class of such functions, which encompasses virtually 
all demand systems that have been estimated econometrically. Gorman’s theorem 
has been extended and clarified in a series of papers by Heineke (1979, 1993) and 
Heineke and Shefrin (1982, 1986, 1987, 1988). 

Consumer attributes (like household size, geographical region, age of head, 
etc.) have been incorporated into the exact aggregation framework by Lau (1977a, 
1977b, 1982) and imp1emente.l Ilsing the translog specification, by Jorgenson, Lau, 
and Stoker (1980). A related issde is the recovery of the parameters of individual 
demand systems from the estimati, n of the aggregate demand system. The neces- 
sary and sufficient conditions for ihis identification property have been developed 
by Heineke and Shefrin (1990). This literature is briefly discussed in Section 1II.C. 

Additional research by, for example, Jorgenson, Lau, and Stoker (1981), Pol- 
lak and Wales (1978, 1980), Stoker (1984), Russell(1983), Jorgenson and Slesnick 
(1984), Stoker (1986a, 1986b), Buse (1992), Blundell, Pashardes, and Weber (1993), 
and Nicol(l994) have further developed and applied these ideas. A summary of this 
literature is presented in Section III.D.* 

*The notion of exact aggregation can also be applied to firms with individual characteristics pertaining 
to the technology or to fixed inputs or outputs (see Appelbaum 1982, Borooah and Van Der Ploeg 1986, 
Gourikroux 1990, Fortin 1991, and Chavas 1993). 
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Gorman’s results on the rank of demand systems have been extended through 
a series of papers that have characterized well-known-and some lesser-known- 
specifications. The key contributions have been made by Lewbel (1987, 1989b, 
1990,1991). In a related study, Hausman, Newey, and Powell(l995) provide a cross- 
sectional test of the Gorman rank-3 condition. 

The rank-2 phenomenon shows up in other studies of aggregation (e.g., Jeri- 
son’s (19Ma) results on painvise aggregation with a fixed income distribution) and 
as one of the necessary and sufficient conditions for the weak axiom of revealed pref- 
erence to hold in the aggregate (Freixas and Mas-Collel 1987). Curiously, the rank-2 
condition also emerges in a study of a (proportional) budgeting procedure for an or- 
ganization (Blackorby and Russell 1993). These disparate results, which seem to be 
crying out for a unifying general theorem, are discussed in Section IV. 

The second approach to dealing with the paucity of implications for aggre- 
gate consumer demand systems of individual optimization is to restrict the distribu- 
tion of incomes or preferences of the population. Hildenbrand (1983,1993), Hardle, 
Hildenbrand, and Jerison (1991), and Grandmont (1992) seek additional restrictions 
on aggregate demand implied by reasonable restrictions on the distribution of income 
or preferences. An early precurser of these results is Becker (1962), who showed 
that aggregate demand curves will be downward sloping even if individuals are “ir- 
rationally” nonoptimizing, in the sense that they distribute their demand “randomly” 
across the budget hyperplane (in particular, according to a rectangular distribution). 
The intuition behind this result is fairly obvious: the Giffen paradox will occur only 
if a sufficient number of individuals is concentrated in the Giffen portions of their 
demand functions, but this will not happen if the distribution of consumers across 
the budget plane is rectangular (more generally, “sufficiently” dispersed). This is 
the motif for the results of Hildenbrand and others, who show that the Jacobian of 
the aggregate demand system will be negative semidefinite (equivalently, that the 
weak axiom of revealed preference holds in the aggregate), implying that demand 
curves are downward sloping if the distribution of income is nonincreasing. Sim- 
ilarly, Grandmont derives the same restriction on aggregate demands by assuming 
that (neatly parameterized) preferences are sufficiently heterogeneous. These results 
are surveyed in Section V. 

As noted above, there is no aggregation problem on the production side of the 
economy only if all inputs and outputs are efficiently allocated. If some inputs are 
not efficiently allocated, aggregation is not so straightforward. Inefficient allocation 
would occur, for example, if some inputs (e.g., capital) are fixed in the short run 
(and perfect capital rental markets do not exist). If we take as given the distribution 
of fixed inputs among firms, aggregation over the variable inputs is straightforward. 
There has been, however, a persistent interest in the question of the existence of an 
aggregate amount of fixed inputs, such as an aggregate capital stock that is fixed in 
the short run. Interest in this area, sparked in part by the “Cambridge controversy,” 
has centered not only on aggregation of fixed inputs across firms, but also across dif- 
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ferent fixed inputs. At the individual level, the existence of such aggregates is known 
to be equivalent to certain separability conditions. (See the classic contributions by 
Gorman 1959, 1968a and the subsequent expositions by Blackorby, Primont, and 
Russell 1978, 1997.) Requiring the existence of such commodity aggregates at the 
macro level, however, requires stronger restrictions on individual technologies. 

This aggregation problem was, in fact, first posed by Klein (1946a, 1946b), 
solved by Nataf (1948), and extended by Gorman (1953b). The Klein-Nataf aggrega- 
tion problem assumes that no inputs are efficiently allocated and leads to a very un- 
realistic (linear) structure for individual technologies. It was pointed out early, how- 
ever, by May (1946) and Pu (1946), and emphasized later by Solow (1964), that the 
efficient allocation of some inputs could be used to restrict the admissable allocations 
and hence weaken the aggregation conditions for the fixed inputs. These conjectures 
turned out to be correct, as rigorously shown by Gorman (1968b).* Blackorby and 
Schworm (1984,1988a) provide comprehensive treatments of the problem of obtain- 
ing aggregate inputs in aggregate technologies under different assumptions about the 
existence of efficiently allocated and fixed inputs. The problem of the existence of ag- 
gregate commodities also is relevant to the empirical analysis of consumer demand, 
since most studies employ such aggregates; Blackorby and Schworm (1988b) pro- 
vide necessary and sufficient conditions for the existence of commodity aggregates 
in market demand functions. 

These results on aggregation across both agents and commodities are surveyed 
in Section VI. Section VII concludes. 

B. Caveats 

The aggregation literature surveyed in this chapter overlaps with an extensive liter- 
ature on the specification of functional form, cross-section (Engel curve) estimation, 
and other areas of interest to applied econometricians. While we unavoidably touch 
on these subjects, we limit our discussions to our focus on the issue of aggrega- 
tion over agents in econometric estimation. For excellent surveys of the literature 
on econometric demand analysis, specification of functional form, and econometric 
modeling of producer behavior see, respectively, Deaton (1986), Lau (1986), and 
Jorgenson (1986). 

Another topic that we do not cover is the aggregation of individual preferences 
to obtain a social welfare function. There is, of course, a huge (social choice) litera- 
ture on this topic, emanating from the classic impossibility theorem of Arrow (1951). 
As noted above, aggregate data will be consistent with the existence of a represen- 
tative consumer if commodities are allocated by maximizing a Bergson-Samuelson 

*See also the series of papers by Fisher (1965, 1968a, 1968b, 1982, 1983). 
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social welfare function. This fact, of course, is of little use in the econometric esti- 
mation of demand systems in a market economy. 

It is important to distinguish the notion of a representative agent that is useful 
in econometric studies from the notion of a “representative consumer” commonly 
employed in the macro/finance literature regarding the replication of a competi- 
tive equilibrium (Constantinides 1982, Aiyagari 1985, Huang 1987, Eichenbaum, 
Hansen, and Singleton 1988, and Vilks 1988a, 198833). This concept requires no re- 
striction on preferences, which is not surprising, since it generates a representative 
consumer only at equilibrium points, but not in even a neighborhood of prices and 
incomes; as such, it is not a useful construct for econometric applications.* 

Finally, despite our efforts to limit the scope of this survey, we discovered 
that the literature on aggregation across agents is even more extensive than we had 
expected (and is still burgeoning). Hence, our main focus has been to try to integrate 
this large body of research (something that has not been done since the publication 
of Green 1964);t we have made no serious attempt to critique it. Even with this 
limited objective, we have not been as successful as we would have liked; it seems 
to us that there is a need for a monograph on aggregation over agents-one that would 
be accessible to econometricians as well as theorists. 

II. AGGREGATION AND REPRESENTATIVE AGENTS 

A. Gorman Aggregation 

The modern theory of consumer aggregation has its genesis in the classic paper by 
Gorman (1953a). He posed the following question. Suppose we have H optimizing 
consumers, each maximizing utility subject to a budget constraint with fixed prices 
and total expenditure. Thus, each consumer has a demand function, d h ,  generated 
bY 

(1) & ( p ,  yh )  = argmax,h{U h h  (x I p . xh 5 y h )  E R; 
where p E R;, is the (common) price vector and Uh, xh, and yh are the utility 
function, consumption vector, and total expenditure of consumer h. The aggregate 
demand vector is given straightforwardly by$ 

h 

*This characterization is not intended to demean these results: while they cannot be used in economet- 
ric modeling, they are relevant to calibration exercises that attempt to simulate a single history of an 
economy (cf., the large body of calibration stimulated by Kydland and Prescott 1982). 

7 See, however, van Daal and Merkies (1984), who cover some of‘the topics addressed in the survey. 
$Notation: A =: B or B := A means B is defined by A. 
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Simple additive aggregation holds if aggregate demand is independent of the distri- 
bution of total expenditures-i.e., if there exists a function, D, such that 

Theorem. Assume that d h ( y ,  y h )  > 0 for all h.* The necessary and suficient 
restriction on the individual demand functions, d",  h = 1 ,  . . . , H ,  for  additive ag- 
gregation, (3) ,  to hold is that they take the form 

Sufficiency of this structure is obvious, since? 

h h 

Thus, the individual demand functions must be affine in the (idiosynchratic) 
total-expenditure variables with a common (price dependent) coefficient on these 
variables. In fact, this is a general condition for any set of structural equations to 
aggregate consistently as in (3): the individual functions must be affine, with com- 
mon coefficients for different households, in all idiosynchratic variables-those that 
require an individual identifier index h-and the coefficients can depend on the 
common variables (in this case, prices).$ The equations can be made stochastic and 
still satisfy the aggregation condition as long as the vector of disturbance terms, 8, 
enters additively; e.g., 

d h ( p ,  y h )  = &p> + B(p>yh  + E h  V h  

in which case the disturbance term of the macro function is Eh eh:  

*If d ( p ,  y h )  is restricted to be nonnegative, but corner solutions are allowed, it is necessary that ah(p)  = 

TSketch of proof of necessity (assuming differentiahility): Substitute (2) into (3) and differentiate with 
0 for all h in the following restriction. 

respect to each yh to obtain 

This shows that, for all i, the derivative is identical for all h. Moreover, as the left-hand side (LHS) is 
independent of y h  for L # h, the right-hand side (RHS) must be independent of y ,  which in turn implies 
that the LHS is, in fact, independent of y h  as well. Integration then yields (4). More generally (eschewing 
differentiability), (3) is a system of Pexider equations, whose solution is (4); see Corollary 10 on page 43 
of Aczel and Dhombres 1989. 

$If one does not require that demands aggregate exactly, as in (3), but only that the expected value of 
zh be independent of the distribution of y h ,  then it is sufficient that the fi  coefficients be distributed 
independently of xh. 
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The result in the above theorem has been known for a long time; see, for ex- 
ample, the papers culminating in Theil (1954) and reviewed by Green (1964). Gor- 
man's (1953a) contribution is to characterize this aggregation problem in terms of 
the restrictions on consumer preferences.* Formally, the problem is posed as fol- 
lows. Roy's identity, combined with (4), yields the following system of (nonlinear) 
partial differential equations for consumer h. 

where V h  is the indirect utility function. Integration of this system yields the required 
structure of preferences:? 

Assume interior solutions to the individual opti- 
mization problems.$ The aggregation condition (3)  holds $ and only zf consumer 
preferences can be represented by expenditure functions with structure 

Theorem (Gorman 19530). 

Eh(u ,  p )  = n ( p ) u h  + Ah(p) V h  (8) 

or, equivalently, by indirect utility functions with the structures 

*Antonelli (1886) seems to have been the first to notice that homothetic and identical preferences are 
necessary and sufficient for consistent aggregation if we require that the conditions hold globally. Re- 
quiring that they hold only in a neighborhood, as in Gorman (1953a, l%l), yields a richer structure of 
preferences, allowing preference heterogeneity. 

?This integration problem can be simplified, since affinity of the ordinary (Marshallian) demand functions 
in income implies affinity of the constant-utility (income compensated, or Hicksian) demand functions 
in (a particular normalization of) the utility variable: 

sh(u ,  p )  = G h ( p )  + B(p>uh V h  

Integration of this system of differential equations yields the consumer expenditure functions given by 
(8) below. 

$This restriction is inconsequential in most empirical studies. If the restriction is eschewed, the necessary 
and sufficient conditions for aggregation is homotheticity of preferences (see Samuelson 1956), in which 
case Ah ( p )  = 0 in (8) and (9) and, as noted earlier, ah ( p )  = 0 for all h in (4) or (6). 

§This structure presumes a particular normalization of the utility representation; see the discussion to 
come. 
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where nh and Ah are concave and homogeneous of degree 1 (hence, rh is homoge- 
neous of degree 0). 

Proof of sufficiency is trivial. By Roy’s identity: 

so that aggregate demand is given by 

The salient feature of (8) or (9) is that they completely characterize, in the dual, 
the preferences that generate demands with the affine structure in the one idiosyn- 
chratic variable yh .  The marginal propensity to consume the ith commodity is 

which is independent of h as well as y h ,  indicating that Engel curves, and income 
consumption curves, are linear and parallel across consumers. Hence, transferring 
a dollar of total expenditure from one consumer to another will leave total demand 
unchanged. 

The direct preferences corresponding to (8) and (9) can be further explicated. 
The constant-utility (vector valued) demand function is given by applying Shephard’s 
lemma to (8): 

Thus, the ICCs are linear but not necessarily parallel for different prices (although, 
or course, they cannot intersect). Consumption bundles on the base (zero utility) 
indifference surface are given by 

Note that preferences are well defined for all consumption bundles on or above the 
base indifference surface, but may not be well defined below this surface. This is so 
because (8) represents consumer preferences only if it is concave in prices. But when 
U < 0, the first term in (8) is convex in prices and for sufficiently small values of U 
the convexity of this term will dominate the concavity of the second term, violating 
the fundamental regularity condition for consumer expenditure functions. Of course, 
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if the base indifference surface does not intersect the positive orthant, preferences 
are well defined globally. 

The structure (8) has an evocative interpretation. The “intercept” term rh ( p )  
can be interpreted as the “fixed cost” of obtaining the base indifference surface-or 
the base utility level (normalized to be zero)-and I7 ( p )  is the marginal price of the 
composite commodity “utility.” 

The individual structure of consumer preferences that are necessary and suffi- 
cient for Gorman aggregation is often referred to as the “Gorman polar form” (GPF), 
following Blackorby, Primont, and Russell(1978), but Gorman refers to i t  as “quasi- 
homotheticity,” since i t  is a generalization of homotheticity. By Shephard’s (1970) 
decomposition theorem, homotheticity is characterized in the dual by 

E h ( u , p )  = rI(p)uh 

in which case the base indifference surface degenerates to a single point-the ori- 
gin-and all income consumption curves are rays. An intermediate special case is 
“affine homotheticity,” generated by 

h in which case the base indifference surface degenerates to a point y h  = (y : ,  . . . , y,), 
not necessarily the origin. A prominent example of affine homotheticity is the Stone- 
Geary structure, generated by (16) and 

The direct utility function dual to this structure is a Cobb-Douglas function in affine 
transformations of the consumption quantities, 

and the demand system is* 

*The Stone-Geary structure evolved as the solution to a classic demand-system integrability problem. 
Klein and Rubin ( 1 9 4 7 4 )  showed that the unconstrained linear expenditure system 

p d , ( y ,  P) = BlY + caI ,P ,  v i  
J 

is integrable if and only if the following parameter restrictions hold: B, > 0 V i ;  E, = 1; a,, = y,B1 
for j # i; and all = y , ( l  - B,)  V i ,  in which case the demand system simplifies to (19). Later, Geary 
(1950), using Roy’s identity, solved the partial integration problem to obtain the form of the utility func- 
tion and Stone (1954) implemented the system hy estimating the parameters using British consumption 
data. 
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The Stone-Geary specification was generalized by Brown and Heien (1972), 
who replaced (17) with a CES function of prices, in which case (18) becomes a CES 
function in affine translations of the consumption quantities. A further generaliza- 
tion was estimated by Blackorby, Boyce, and Russell (1978), who specified flexible 
functional forms (in particular, Diewert’s (1971) generalized Leontief) for Ah and 
l l h .  But the Stone-Geary specification was the real workhorse of empirical demand 
analysis for two decades, until its replacement by flexible functional forms in the 
1970s.* 

The principal thrust of Gorman’s aggregation theorem is that aggregate de- 
mand systems are consistent with individual utility maximization (individual “ration- 
ality”) and simple aggregation if and only if individual preferences have the structure 
(8) with interpersonal commonality of the function Il. but more can be said. The total 
expenditure of the H optimizing consumers is 

h h h 

If we interpret U = E h  uh as aggregate utility and set A(p) = Eh Ah(p) ,  

has the structure of an expenditure function in aggregate utility (since ll and A have 
the requisite homogeneity, monotonicity, and curvature properties); indeed, (21) has 
the same (GPF) structure as the individual expenditure functions in (8). Correspond- 
ing to (21) is the aggregate indirect utility function 

which, of course, has the same structure as the individual utility functions (9). Fi- 
nally, the application of Roy’s Identity to (22) yields the aggregate demand system 

*The Stone-Geary system has been generalized in other directions. Howe, Pollak, and Wales (1979), with 
some amendments by van Daal and Merkies (1989), constrained a system that is quadratic in income to 
satisfy integrability conditions; their structure is a generalization of the Gorrnan polar form (and hence 
does not satisfy his aggregation condition). 
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which, with y = Eh yh, is identical to the aggregate demand system (ll), obtained 
by direct aggregation of the individual demand systems. Thus, the aggregate demand 
system is rationalized by a utility function defined on aggregate commodity quanti- 
ties, x = Eh d .  In other words, the aggregate demand system is generated by an 
optimizing “representative agent,” with utility U = Eh uh and aggregate income 
y = Eh yh. Thus, the econometric estimation of any aggregate demand system with 
the structure (23 ) is consistent with individual optimization and aggregation of the 
individual demand systems. 

The insight in Gorman’s theorem can be further elucidated by a comparison of 
the representative-agent phenomenon in production theory and in consumer theory.* 
Producers, labeled f = 1 ,  . . . , F ,  are assumed to maximize profit, p - zf, on a 
technology set, Tf R”, defined as the set of technologically feasible net-output 
vectors. The aggregate technology set is T := Ef Tf .t The net-supply functions, 
#f, f = 1 ,  . . . , F ,  are defined by 

= argmax,j {p . zf I zf E ~ . f  1 vf (24) 

These net-supply functions can be trivially aggregated to a macro net-supply func- 
tion 

But much more can be said, since 

@(p) = argmax,{p. z I z E: T }  (26) 

Thus, the aggregate net-supply function can be generated by maximizing aggregate 
profit on the aggregate technology set; i.e., the aggregate net-supply functions are 
generated by the optimizing behavior of a “representative producer.” Thus, there is 
no aggregation problem on the production side of the economy, so long as all inputs 
are efficiently allocated.* 

As indicated by Gorman’s theorem, the existence of a representative consumer 
is more problematical. To illustrate the problem, recall that expenditure-constrained 
utility maximization and utility-constrained expenditure minimization are solved 

*Although the discussion is couched in the simplest possible terms, the producer case could be elabo- 
rated upon to encompass intertemporal production technologies (see, however, Blackorby and Sehworm 
1982), and the consumer case can be adapted to the study of labor supply, asset demand, and other 
problems characterized by optimization subject to a preference ordering and a budget constraint (with 
fixed endowments). 

?This construction, of course, assumes that there are no externalities in production. 

$See Section VI. 
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by the same consumption vector, so long as preferences satisfy local nonsatiation.* 
Thus, the optimal consumption vectors are given by 

; h  = argminp { p  * xh I xh E N h  (ih)} Vh 

where 

N h ( i h )  = {xh E R; 1 U h ( x h )  >_ Zlh(ih)} 

is the no-worse-than-; set of consumer h. The community level set (the Scitovsky 
1942 set), the set of aggregate consumption bundles that can be distributed to the 

H consumers in 
set, is given byt 

N ” 2 , .  . 

ways that 

* H  .,x ) =  

place each consumer in the individual no-worse-than-; 

N h ( 2 )  
h 

(The boundary of N s ( i  ’, . . . , ih) is a community (Scitovsky) indifference surface.) 
Note that, by the interchangeability of set summation and optimization, 

= argmin,{p x I x E N ’ ( ; ’ ,  . . . , ; H > }  (30) 

giving the appearance of a representative consumer.$ Consider, however, a reallo- 
cation of income, adding A to y h  and subtracting A from yh.  The new aggregate 

demand vector, say 2, is not, in general, equal to ;, even though prices and total 
income are unchanged. There is, of course, a new Scitovsky set, N S ( 2 ’ ,  . . . , @) 
and 

2 = argmin,{p - x I x E N’(?’,  . . . , a H > )  (31) 
but, in general, the two Scitovsky indifference surfaces intersect. Thus, there does 
not exist a preference ordering defined on aggregate consumption vectors that ration- 
alizes aggregate demands. If, on the other hand, the income consumption curves of h 
and 6 were both linear, with identical slopes, in the neighborhoods of ih and i’, the 
aggregate demand would be unchanged by this redistribution of income; moreover, if 
this condition held globally (or at least in a neighborhood) the Scitovsky sets would 
also be unchanged. 

As pointed out in Section I, if incomes are optimally allocated by the maxi- 
mization of a Bergon-Samuelson (utilitarian) social welfare function, the aggregate 
data are rationalized by an aggregate utility function. In this case the social planner’s 
optimization problem is 

*See, e.g., Debreu (1959) or Varian (1992). 
?This construction assumes there are no consumption externalities. 
$In fact, this is an example of a “representative agent at a point,” a concept commonly employed in finance 

and macro. 
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or, equivalently, 

Thus, @ induces an ordering on the aggregate consumption space that rationalizes 
the aggregate choices. This construct, however, is not useful for econometric analysis 
of demand in a market economy. 

To summarize, the problem of aggregation consistency is fundamental to the 
theory and econometric estimation of aggregate consumer demand functions, even 
under the assumption of efficient allocation of consumption goods, but the problem 
does not exist for producers operating in an economy with an efficient allocation of 
inputs and outputs. 

B. Muellbauer Aggregation 

The necessary conditions for Gorman aggregation are quite stringent. This fact in- 
spired Muellbauer's (1975,1976) formulation of a weaker form of aggregation-and, 
concomitantly, a weaker representative-agent concept. The two fundamental differ- 
ences between Gorman aggregation and Muellbauer aggregation are that (i) Muell- 
bauer requires consistent aggregation of expenditure shares rather than commodity 
demands and (ii) the aggregate income of Muellbauer's representative agent is a pos- 
sibly nonlinear function of individual incomes, rather than a simple sum, and can 
depend on prices as well as the distribution of income. 

Individual commodity shares are defined by 

Aggregate commodity shares are then given by 

Thus, aggregate shares, like the aggregate demands in (2), depend in general on 
the distribution of income and prices. Muellbauer aggregation holds if there exists a 
function Y such that 

This condition is nontrivial because the function Y is identical for all n aggregate 
demand shares. Thus, if Muellbauer aggregation holds, aggregate commodity shares 
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depend on a common scalar Y (y ' , . . . , y H ,  p ) ,  interpreted as "aggregate income," 
and the commodity prices. 

It is easy to see that Muellbauer aggregation subsumes Gorman aggregation as 
a special case. The (GPF) demand system (10) yields the following system of share 
equations: 

Aggregation over consumers yields 

which is the special case of Muellbauer aggregation where 

Theorem (Muellbauer I 975, I 976). Assume interior solutions to the individual 
optimization problems. Muellbauer aggregation holds $ the individual expenditure 
functions have the structure 

Eh(& p )  = q h ( u h ,  I Y p ) ) n ( p )  

in which case the indirect utility functions 

where each qh and each Oh is increasing 

Vh 

a re 

V h  

in itsjrst argument. * 

*This structure is necessary as well as sufficient if we add to (40) a function of prices, A h ( p ) ,  that van- 
ishes when we sum over households: E h  Ah(p)  = 0. While this possibility is formally required for the 
structure to be necessary as well as sufficient, it is uninteresting-a nuisance term. It does not make a 
lot of sense for preferences to satisfy a condition like this. For one thing, it means that individual pref- 
erences would have to depend on the number of households H ;  otherwise, the sum of these nuisance 
terms would not vanish when we changed H .  For these reasons, we carry out the analysis of Muellbauer 
aggregation ignoring this term (as has been the case in subsequent studies building on Muellbauer's 
ideas). (See, however, Blackorby, Davidson, and Schworm 1993 for a different approach.) Note also that 
the functions in these representations must satisfy certain homogeneity conditions, but because of the 
ways in which they enter the expenditure and indirect utility functions, there are degrees of freedom in 
choosing the degrees of homogeneity. 
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To see that this structure is sufficient, apply Roy’s identity to obtain 

Sh(P, yh> = v h ( y h ,  P I A i  tp) + Bi(P> (42) 

where 

The subscripts on 0 indicate differentiation with respect to the first or second term, 
and the subscripts on l7 and A indicate differentiation with respect to the indicated 
price variable. Summation yields 

H = W ( y l ,  * * * 7 y 7 p ) ,  p )  

where Y ( p ,  y l ,  . . . , y H )  is implicitly defined by 

(assuming a solution exists*). 
Note that setting 

q h ( u h ,  U p ) )  = $h(uh> + U p )  (48) 
in (40) yields the Gorman polar form. Because Muellbauer’s structure is a straight- 
forward generalization of Gorman’s “linear” (actually affine) structure, he refers to 
(40) or (41) as “generalized linearity.’’ 

The system of aggregate share equations, along with the implicit definition of 
aggregate income in (47)’ is rationalized by an aggregate utility function with the 
structure 

Application of Roy’s identity yields the si in (46). Inversion in Y (y1 , . . . , y H ,  p )  
yields 

m u ,  p )  = q t w  r(p)>n(p> (50) 

*Muellbauer shows that it will exist under certain conditions. 
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where U is the “utility” of the representative consumer. Thus, as in the case of 
Gorman aggregation, the Muellbauer representative consumer has the same pref- 
erence structure as that of the individual consumers. Similarly, the preference struc- 
ture of Gorman’s representative agent in (8) is obtained by setting *(U, r(p)) = 
*(U) + r(p). Moreover, just as Gorman’s preference structure is equivalent to the 
differential condition (12)’ Muellbauer’s generalized linearity structure is equivalent 
to the following differential conditions:* 

That is, ratios of marginal effects of income changes on shares are independent of 
income levels for both individuals and the representative consumer. 

Muellbauer’s generalized linearity is further explicated by rewriting the share 
equations in matrix notation: 

The n x 2 matrix on the RHS has rank 2 and uh(yh ,  p )  is independent of i. (A 
similar identity holds for the representative consumer.) Hence, any share equation 
can be obtained as a linear combination of any other, and for given prices, the share 
equations lie in a two-dimensional linear subspace. This “rank-2 condition,” which 
has been explored in some depth in recent years, is examined further in Sections I11 
and IV. 

Another interpretation of Muellbauer’s representative consumer in commodity 
shares is attributable to Gorman (1976). Note that the existence of a Muellbauer 
representative agent can be characterized, using Shephard’s lemma, as the existence 
of an aggregate expenditure function, E ,  such that 

and a function U such that 

U = U ( u ’ ,  . . . , U h ,  p )  (54) 

*See Muellbauer (1975, 1976) for proof of sufficiency of this condition. 



ANALYSIS OF DEMAND AND SUPPLY 195 

Gorman first noted that Muellbauer aggregation is trivially satisfied if there are only 
two commodities, since determining one aggregate share determines the other and 
U therefore is implicitly defined by, e.g., 

This fact is not surprising, since in the two-commodity case there is no integrability 
problem. More importantly, it suggests that the solution to Muellbauer’s aggregation 
problem might be characterized by the existence of two aggregate pseudocommodi- 
ties, and in fact this is an evocative interpretation of the solution given by (40), in 
which r(p) and n(p) are interpreted as the “prices,” or “unit costs,” of two “in- 
termediate commodities” in the production of utility. A complete explication of this 
interpretation requires quite a bit of duality theory, so we refer the reader to Gorman’s 
paper for further study. (Compare this interpretation, however, to the interpretation 
of the Gorman polar form expenditure function (8).) 

Gorman also pointed out a problem with the Muellbauer representative agent: 
there is no requirement that Y in (36) or (47) be increasing (or even nondecreasing) 
in individual incomes-equivalently, that U defined by (53) be increasing in indi- 
vidual utility levels. Thus, the income or utility of the representative agent could be 
increasing when the incomes or utilities of the consumers it represents are declining. 
This seems to be a consequence of requiring only that the representative consumer 
replicate the aggregate shares, but not aggregate demands. 

Muellbauer-as well as most follow-up studies-focused on the special case 
where Y ( y ’ ,  . . . , y H ,  p )  is independent of p .  In this case, uh(yh ,  p )  in (47) must be 
independent of p for all h (for arbitrary distributions of incomes, y’, . . . , yh) :  

vh(yh ,  PI = Ch(rh) ‘dh (56) 

Muellbauer shows that this, in turn, implies that* 

ch(yh)  = rhp or p l n y h  Vh (57) 

Thus, 

$ ( p ,  rh)  = Ai(p)rhp + B‘(p) or A i ( p )  lnyh + Bi(p) 
(where p has been incorporated into A ’ ( p ) )  and 

*To avoid confusion, where the income variable is raised to a power, we move the household indicator 
index h to the subscript position. 
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or 

The 
ized 

first of these commodity-share equations is called price-independent general- 
linearity (PIGL), and the second is price-independent generalized logarithmic 

(PIGLOG). 
Empirical application requires that specific forms of the functions r and l7 be 

specified. Deaton and Muellbauer (1980) adopted a translog specification for r and 
the sum of a translog and a Cobb-Douglas for n. They called this specification the 
almost ideal demand system, with the (unfortunate) acronym AIDS. This specifica- 
tion has been widely applied in empirical demand analysis, and Lewbel(1989a) has 
estimated a wider class of functions that nests both the translog and the AIDS spec- 
ification. Another generalization of the AIDS specification by Banks, Blundell, and 
Lewbel (1993), the quadratic AIDS (QUAIDS), has rank-3 Engel curves and hence 
does not satisfy aggregation conditions. 

C. Testing the Representative-Consumer Hypotheses 

Most tests of the representative-consumer hypotheses have not been designated as 
such. Rather they have purported simply to test consumer “rationality”; but since 
they have used aggregated data (typically the only data for which consumption-good 
prices are available), they have in fact been testing for the existence of a represen- 
tative consumer that rationalizes the aggregate data.* As such, these tests have an- 
ticipated the widespread use of representative consumers in recent macroeconomic 
research. 

Two types of tests have been employed, and there is a sharp difference in 
the results using these two approaches. Most commonly, researchers have specified 
a functional form representing preferences and then tested for parametric restric- 
tions consistent with the symmetry of the estimated Slutsky matrix of substitution ef- 
fects of price changes. Other tests have eschewed parametric forms, using revealed 
preference methods to test for rationalization of the aggregate data by expenditure- 
constrained utility maximization. 

The first approach began with the Christensen-Jorgenson-Lau (1975) tests for 
symmetry of the Slutsky matrix generated by the demand functions derived from 
a translog indirect utility function. These tests turn out to be identical to testing 
for symmetry of the second-order coefficients in the translog specification. That is, 

*See, however, Pollak and Wales (1979) and Shapiro and Braithwait (1979) for direct tests of the GPF 
structure. which doesn’t fare at all well. 
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the approach is to estimate the derived demand system with and without symme- 
try of these coefficients and use a maximum likelihood ratio or Wald test to test for 
symmetry.* There is by now a large literature on this approach, inspired in part by 
the competition between proponents of alternative flexible-form specifications, and 
we make no attempt to survey it. Suffice it to say that the symmetry conditions are 
commonly rejected. 

Of course, the weakness of these parametric tests is that rejection can be at- 
tributable not to the failure of consistent aggregation to hold, but rather because 
the preferences of the representative agent are misspecified. Although, by definition 
and design, flexible functional forms can provide a second-order approximation to 
an arbitrary “true” specification at a point, they are in fact employed as global spec- 
ifications in tests of symmetry (and other properties). The second-order parameters 
are estimated from data over the entire sample space.? 

The alternative approach, which eschews specification of functional form, is 
based on the revealed preference approach to testing the consumer-optimization hy- 
pothesis, formulated by Samuelson (1938, 1946-47) and Houthakker (1950) and 
first implemented empirically by Houthakker (1963) and Koo (1963). But the mod- 
ern formulation has its roots in a remarkable theorem of Afriat (1967, 1972) (which 
was nicely elucidated by Diewert 1973). Varian (1982) applied Afriat’s method to 
annual U.S. data on nine consumption categories from 1947 to 1978. Remarkably, 
he found no violations of the revealed preference axioms. As the data are aggre- 
gate U.S. consumption quantities and prices, this result apparently provides strong 
support for the existence of a Gorman representative consumer. 

Varian raised the possibility, however, that these tests may be plagued by low 
power, given the data with which economists have to work. In particular, they will 
have low power if the variation in total expenditure over time is large relative to the 
variation in relative prices. (If, for example, the budget hyperplanes do not intersect, 
the tests have zero power.) 

Varian’s concerns were apparently allayed by Bronars (1987): in a Monte Carlo 
assessment of the power of Varian’s test against the alternative hypothesis of Becker- 
type irrational behavior, he found that these tests have a considerable amount of 
power, especially when per capita data are used. Roughly speaking, Becker’s no- 
tion of irrational behavior entails a (uniformly) random distribution of consumption 
quantities across the budget hyperplane. To implement this notion as an alternative 
hypothesis, Bronars took Varian’s price and total expenditure data as given, replaced 
the consumption quantities with randomly constructed values (using three different 

*Asymmetry of these second-order coefficients is equivalent to violation of Young’s Theorem on the sym- 

?See White (1980) for a penetrating analysis of the problems with interpreting tests using flexible forms 
metry of second-order cross derivatives. 

as tests at “the” point of approximation. 
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algorithms), and applied Varian’s GARP test, alternatively using per capita and ag- 
gregate data. He repeated this exercise a large number of times to obtain a measure 
of the power of Varian’s test against the Becker alternative hypothesis. The upshot of 
his results is that Varian’s test has a substantial amount of power against the Becker 
irrationality hypothesis. 

Bronars noted that his alternative hypothesis is “rather naive” (page 697). It 
is not clear what type of individual behavior, if any, together with aggregation across 
consumers, would yield a (uniformly) random allocation of aggregate consumption 
quantities across the budget plane. Recently, Russell and Tengesdal (1996) raise 
the question of whether Varian’s tests have substantial power against a less naive 
alternative hypothesis, predicated on the fact that the null hypothesis of Varian’s 
test, given the aggregate data employed, is a compound one, entailing both individual 
rationality and aggregation consistency. 

Using Monte Carlo methods analogous to Bronars’, Russell and Tengesdal 
use actual price and aggregate total expenditure data, but generate aggregate con- 
sumption quantity data by (1) specifying heterogeneous individual utility functions 
(that do not satisfy Gorman aggregation)* and a distribution of total expenditures 
among individuals, (2) generating optimal individual demands, given the prices and 
the preferences and total expenditures of individuals, and (3) aggregating demands 
across individuals. Using Varian’s algorithm to calculate power indices in terms of 
the percentage of the simulations with GARP violations, they find few violations, 
despite a large number of sensitivity tests. These results suggest that Varian’s tests 
using aggregate U S .  consumption data lack power and hence provide little support 
for the existence of a Gorman representative consumer. 

A recent paper by Fleissig, Hall, and Seater (1994) reinforces this point. They 
find that Varian’s GARP tests are violated using both monthly and quarterly US. 
consumption data. Another suggestion that these nonparametric (nonstochastic) tests 
lack power is the surprising result of Manser and McDonald (1988)’ in which it is 
shown that the Afriat-Varian tests fail to reject the hypothesis of a homothetic utility 
function rationalizing aggregate US. consumption data. But the concomitant impli- 
cation of constant budget shares-assuming strictly convex indifference surfaces- 
is easily rejected statistically. As Manser and McDonald point out, these two out- 
comes are explained by the fact that the rationalizing utility function in Afriat’s the- 
orem is piecewise linear, as are the indifference surfaces, so that substantial changes 
in budget shares can be consistent with homotheticity. 

*In particular, they employ the Stone-Geary specification described in Section II.A, but with heteroge- 
neous pi parameters. Gorman aggregation holds for this specification if and only if these parameters are 
identical for all consumers. This specification allows a simple parameterization of consumer heterogene- 
ity and hence the “degree” of aggregation inconsistency, ranging all the way to “maximal” heterogeneity 
(a uniform distribution over the [0, 11 interval or, alternatively, preferences in which each consumer has 
just one positive pi-equal of course to 1). 
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The above studies pertain to the existence of a Gorman representative con- 
sumer, defined in terms of the simple sums (or means) or expenditures. Of course, 
confirmation of the existence of a Gorman representative consumer implies confir- 
mation of the existence of the weaker representative-consumer notion of Muellbauer. 
A (statistical) nonparametric study of aggregate consumption by Lewbel(l991) sug- 
gests that data in the middle 90% or so of the income distribution are consistent 
with Muellbauer’s PIGLOG specification and concomitant representative consumer 
in budget shares. The data at both the low and the high end of the income distribution 
are inconsistent with Muellbauer’s rank-2 condition. As will be shown in the next 
section, this implies that the Engel curves of optimizing consumers have rank 3 (and 
hence are incompatible with both forms of representative consumer). 

111. “EXACT” AGGREGATION AND HOUSEHOLD 
ATTRIBUTES 

A. The Exact Aggregation Theorem 

As noted at the outset of the previous section, aggregate demand generally depends 
on the entire distribution of income. When the necessary and sufficient conditions 
for a Gorman representative consumer are satisfied, however, a single statistic- 
namely the first moment of the income distribution-suffices to determine aggregate 
demand (see (11)). The existence of a Muellbauer representative agent (in budget 
shares) is weaker, and the aggregate demand functions accordingly depend on two 
income distribution statistics. To see this, note that the aggregate demand functions 
implied by (36) are 

where t91(y1, . . . , y H )  = Eh y h  and 82(y1, . . . , y H )  = Y(yl ,  . . . , y H ) .  (Note that 
the second of the identities in (61), being more general than the first, imposes weaker 
restrictions on preferences than those needed for a Muellbauer representative agent.) 
More specifically, with price-independent aggregate income (58), Muellbauer aggre- 
gation requires that the individual demand functions take the following form: 

d“p, rh) = Pi1 (P)SI (rh) + Bi2(p)tz(rh) (62) 

= B ; ( p ) / p ; ,  for all i, 
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for all h. The two cases in (64) generate the PIGL and PIGLOG systems, in which 
case individual demands as well as aggregate demands have rank 2 and aggregate 
demands are given by 

or 

A specific case of (65), with p = 1 is that where individual demand functions 
are quadratic in income: 

in which case aggregate demands are 

Thus, in this special case of Muellbauer aggregation, we need information about the 
second as  well as  the first moment of the distribution to determine aggregate demand. 
But knowledge of these two statistics allows us to determine aggregate demand ex- 
actly, no matter how many individuals are in the economy. 

This characterization of Muellbauer's results raises the question of whether 
it generalizes to cases where there are more than two aggregator (0,) functions and 
where the forms of these functions are arbitrary. rl iis is the motivation for the notion 
of exact aggregation, defined by the existence of I' symmetric* functions of individ- 
ual incomes, say O,(yl, . . . , y ), t = 1,  . . . , T ,  where T -= H ,  such that? H 

h bi(p, y l ,  . . . , rh) = Q ( P ,  elc$, . . . , Y 1, . . . , w y l ,  . . . , r h ) )  vi (69) 

*By symmetry, we mean anonymity-that is, that the values of the aggregator functions are unaffected by 
an arbitrary permutation of the y h  variables. Without this condition, calculations would be intractible 
for large H .  

?Obviously, if T 2 H ,  there is no economy of information and this structure imposes no restrictions on 
the individual demand functions. 
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This aggregation notion appears to have been formulated independently by Gorman 
(1981) and Lau (1977a, 1977b, 1982);* the necessary and sufficient conditions for 
exact aggregation are as follows. 

Theorem (Lau I 982, Gorman I 98 I) .  Given certain regularity cbzditions,? the 
aggregate demand functions satisfy (69) if and only if the individual demand func- 
tions have the following form: 

t =  1 

Accordingly, aggregate demands are given by 

1 = 1  

Thus, for exact aggregation to hold, individual demand functions must be affine in 
functions of income and identical across consumers up to the addition of a function 
of prices that is independent of income. Moreover, the identical part of the function 
must be multiplicatively separable into a function of prices and a function of income. 
Finally, the symmetric functions, O , ,  t = 1,  . . . , T ,  in the aggregate demand system 
must be additive functions of (identical) transformations, ct ,  of individual incomes. 

Note t at exact aggregation, unlike Muellbauer (hence Gorman) aggregation, 
does not irn d y  the existence of a representative consumer; that is, without additional 
restriction.,. the aggregate demand functions (71) cannot be generated by the max- 
imizatior. 2f an aggregate utility function subject to an aggregate budget constraint. 
Thus, exact aggregation is weaker than the existence of a representative consumer. 

B. 

In matrix notation, the necessary and sufficient condition for exact aggregation is 

Gorman's Theorem on the Maximal Rank of Demand Systems 

dh(p ,  yh> = ah(p> + B(p)6(rh) =: B h ( p > H y h )  Vh  (72) 

*Gorman uses this aggregation condition as motivation for his theorem on the maximal rank of demand 
systems, discussed below. He first presented the paper at a London School of Economics workshop in 
January 1977. 

?See Lau (1982) and Heineke and Shefrin (1988) for the particulars. 
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where B h ( p )  = [ a h ( p )  B ( p ) ]  is an n x R matrix, with R = T + 1, and e(yh) is 
an R-dimensional vector. This structure, however, is not necessarily consistent with 
individual optimization without further restrictions. In a remarkable paper, Gorman 
(1981) examined the restrictions on demand functions of type (72) implied by indi- 
vidual optimization. Gorman’s theorem is as follows. 

Theorem (Gorman I 98 I ) .  I f the complete system of demand equations (72) re- 
flects well-behaved preferences, then the rank of its coeficient matrix B ( p )  is at most 3. 
Moreover, one of the following must hold (where I+ is the set of nonnegative integers):* 

Note that the Muellbauer’s PIGLOG and PIGL systems are generated as spe- 
cial cases of (i) or (ii), with R = 2 (hence rank 2). PIGLOG is a special case of (i) 
with ~1 = 1 and ~2 = 0. PIGL is a special case of (ii) with p2 = 0. Similarly, the 
Gorman polar form (quasi-homotheticity) is a special case of (ii) with R = 2 (rank 
2), p1 = -1, and p2 = 0. The rank-3 quadratic expenditure system is obtained by 
setting p1 = -1, p2 = 0, p3 = 1 in (ii). Homotheticity is rank 1 with p1 = -1 
in (ii). In fact, virtually all consumer demand systems that have been estimated be- 
long to the class of rank-2 demand systems satisfying the conditions of Gorman’s 
theorem. Section IV contains more on rank-2 (and rank-3) demand systems. The key 
point here, however, is that exact aggregation is considerably more general than the 
existence of a representative agent; the latter is but one way of specifying demand 
systems that can be consistently aggregated. 

C. Household Attributes 

In the Lau-Gorman exact aggregation theorem, heterogeneity of preferences enters 
only through the term a h ( p )  in (70), which is independent of income. Additional 
heterogeneity can be introduced into the exact aggregation framework by incorpo- 
rating an attribute vector ah into B; , (p)  and c r ( y h ) ,  for each r.  (Commonly used 
attributes include household size, age of household head, race, and geographical 

*As noted by Gorman, the consumption space can divide into subsets with different forms among (i)-(iii) 
holding over different regions. Heineke and Shefrin (1987) have shown that, if we require the following 
specifications to hold globally, bountledness of budget shares implies that the only integrable system is 
the homothetic (rank 1) specification. See Heineke (1979, 1993) and Heineke and Shefrin (1982, 1986, 
1987, 1988, 1990) for extensions and clarifications of Gorman’s theorem. 
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region.) For the sake of symmetry, assume that the heterogeneity of ah is also cap- 
tured by these attributes, so that* 

where ( p ,  ah) = a!(p). 

vector uh and exact aggregation implies that the 
tively into a function of p and a function of uh, so that? 

Integrability implies that the pr parameters in (73) depend on the attribute 
functions separate multiplica- 

r= 1 

where one of the following holds: 

The aggregate demand system then becomes 

h r= 1 h 

*As heterogeneity of preferences is incorporated entirely through the heterogenous attribute vectors, the 
demand functions do not require an h superscript. 

?More precisely, these functions separate into a finite sum of multiplicatively separable terms, so that the 
number of terms in the following structure may he larger than R; see Heineke and Shefrin (1988), who 
refer to this structure as the "finite basis property," for details. 
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Thus, specifying functional forms for y i r ( p )  and gir(yh, ah )  in (77) and then sum- 
ming across consumers of different types, defined by uh, results in an aggregate de- 
mand system that is consistent with individual rationality and exact aggregation. 

The question that immediately follows is: under what conditions do the pa- 
rameters estimated from (77) allow us to recover (uniquely) the parameters of the 
microfunctions in (75)? Given a joint distribution of income and attributes, expected 
per capita demand is given by 

Since the y i r ( p )  terms enter individual and aggregate demand functions in the same 
way, the parameters in Yir(P) estimated from (77) will be the parameters in y i r ( P )  
of (75). On the other hand, the term E(<ir(uh)gir(yh,  a h ) )  in the aggregate demand 
function may not include the parameters in the microeconomic demand function. 
Heineke and Shefrin (1990) show that (75) is recoverable from the estimation of 
(77) if 

The p r ( a h )  functions in (76) do not depend on any unknown parameters. 
The functions <ir(ah)  in (76) are linear in the parameters. 

(i) 
(ii) 

Stoker (1984) has shown, for the general problem of microequation recovery 
from macroequation estimation, that linearity of the microfunctions in parameters is 
a sufficient condition for identification when there are no distributional restrictions 
(in this case, on the distribution of incomes and attributes). 

As an example, consider Jorgenson, Lau, and Stoker’s (1982) paper on esti- 
mating demand systems derived from a translog indirect utility function. The vector 
of expenditure shares for household h take the form* 

(5, .“) = Q ( p / y h ,  a h )  
(79) 

where a! is an n-vector of parameters, Bpp and Bba are (appropriately dimensioned) 
matrices of parameters, and 

P = i’a! + ifBpp In - + i’Bpnah 
Yh 

Note that the parameters are the same for all households, so that preference hetero- 
geneity is entirely captured by the different attributes, u h ,  h = 1, . . . , H .  It follows 
from the conditions for exact aggregation that the individual demand functions are 
linear in functions of y h  and ah . These conditions will be satisfied if Q ( p / y h ,  ah ) ,  
the denominator of (79), does not contain y h  and uh. Therefore, the following two 
restrictions must be imposed: 

*ln(p/yh) is the n-vector of logs of normalized prices and i is an n-vector of ones. 
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i'Bppi = 0 and i fBpa  = 0 (81) 

Thus, Q(p/yh ,  a h )  is reduced to Q ( p )  = i'a + L ~ B ~ ~  Inp, which is independent of 
h, and the household shares can be rewritten as 

Accordingly, the aggregate expenditure shares are 

+ Bpu- 
- E h  yh  In Yh - 1 ( a +  Bpplnp - Bppe 

Q(P) Eh Yh Ch Yh 

Note that (82) satisfies the conditions of exact aggregation; specifically, the 
demand equations (given here in expenditure share form) are linear in the parameters 
and the microequations (82) contain only parameters that appear in the aggregate 
equation (83). The parameters in (83) can be estimated by using both cross-sectional 
and time-series data. Thus, the individual expenditure shares can also be obtained 
by replacing the unknown parameters in (82) with those estimated from (83). 

As shown by Heineke and Shefrin (1990), imposing (81) is equivalent to im- 
posing identification conditions; that is, the translog expenditure share system au- 
tomatically possesses their restricted finite basis property. The JLS translog system 
is in fact a restricted version of (76)(i). As Heineke and Shefrin (1990) have pointed 
out, it restricts (76)(i) to being rank 2, when in fact the Gorman theorem allows the 
system to be up to rank 3. Also, JLS conflate the rank-:! specification and the re- 
quirement that there be only two functions of income and attributes. The restrictions 
on rank do not imply that the number of income/attribute functions must be only as 
great as the rank of the coefficient matrix Bh(p) in (72). 

The JLS translog specification can also be shown to incorporate the following 
restrictions on (76)(i): 

(i) 

(ii) 

{il (ah) must be linear in the attributes and must have an intercept term 
that is constant for all h.* 
c;2(nh) must be constant for all h. There are only two { i r  functions, since 
the rank of the system is 2 and only two income/attribute functions are 
posited. 

*In estimation, the attributes considered by JLS can Le divided into discrete categories, allowing for the 
use of dummy variables. This implies further restriction on the til functions. 
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The translog system is thus a restricted version of (76)(i) and a much wider 
class of similar demand functions is in fact compatible with exact aggregation. 

D. Empirical Applications 

Empirical applications of the theory of exact aggregation are based primarily on 
the work of Jorgenson, Lau, and Stoker (1980, 1982).* Their econometric model 
incorporates household attributes into the translog indirect utility function with a 
set of 18 dummy variables for attributes like family size, age of head, region of res- 
idence, race, and type of residence. They impose restrictions on the parameters of 
the share equations such that conditions for exact aggregation hold and aggregate 
across individuals to obtain the aggregate share demand functions. They estimate 
this aggregate demand system by pooling cross-sectional data on expenditures by 
individual households and aggregate annual time-series data on expenditure, price 
levels, and statistics of the distribution of family income and demographic vari- 
ables. In addition to estimating the model, they analyze the welfare changes from oil 
price shocks. 

Jorgenson, Lau, and Stoker use dummy variables and simple linear equa- 
tions for the incorporation of demographic attributes. This method remains the most 
commonly used one in applications. On the other hand, Pollak and Wales (1978, 
1980) propose two alternative methods for inclusion of demographic variables: de- 
mographic translating and demographic scaling. In both demographic translating 
and demographic scaling, new parameters are introduced to capture the effects of 
demographic heterogeneity. For the demographic translating procedure, n “translat- 
ing parameters,” tl, TZ, . . . , T,,, are added to the model and the original demand 
function d? is modified as follows:? 

where 

J 

*See also Jorgenson, Lau, and Stoker (1981), Stoker (1986a), Jorgenson and Slesnick (1984), and Nicol 
(1994). 

?This demand is assumed to be derived 1)y utility maximization. The authors investigated the LES, QES, 
basic translog (i.e., the translog of Christensen, Jorgenson, and Lau 1975), and generalized translog 
demand systems. The primary empirical rrsult of their work is that both the number and age of children 
in a household have significant effects on consumption patterns. 
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Thus, we can write the demand as 

Similarly, demographic scaling introduces n “scaling parameters,” a1,a~, . . . , 

& ( p ,  y h ,  ah )  = ai * d ;  (p la i ,  pnaz ,  . . . , p n a n )  

on, into the original demand system and the new demand system is 

(87) 
h Vi Vh 

where 

i j 

Note that, in (84) and (87), t i  and oi are the only parameters in the demand system 
that depend on demographic variables. Unfortunately, as Pollak and Wales point out, 
their aggregation procedure, unlike that of Jorgenson, Lau, and Stoker, is inappropri- 
ate. Moreover, there do not appear to be any applications of demographic translating 
and demographic scaling to appropriately aggregable demand systems. 

In a related development that accounts for serial correlation, Blundell, Pa- 
shardes, and Weber (1993) incorporate household demographic attributes and time- 
dependent variables (time-trend and seasonal dummy components) into demand sys- 
tems. The aggregate models they derive from this specification seem to perform quite 
well compared to models using microlevel data in both forecasting efficacy and eval- 
uation of aggregate consequences of public policy changes. 

In demand system estimation, most authors include some type of dynamic 
specification (commonly an AR(1) process for the error terms) to account for habit 
formation. Few, however, include forms that adjust for the distribution of incomes. 
In an interesting paper, Stoker (1986b) compares an LES model with the habit for- 
mation structure with one that does not have any dynamics, but instead allows for 
distributional effects on demand. He shows that the distributional effect is statisti- 
cally significant and that i t  can displace AR(1) dynamics in the widely used models. 
His results were confirmed and extended by Buse (1992), who used Canadian rather 
than U.S. data and estimated a quadratic expenditure systems (QES) model as well 
as an LES model. He concluded that Stoker’s results are widely applicable. Stoker 
(1993) provides further extension of this work. 

To summarize, “exact” aggregation allows summary statistics of income and 
attributes to be used to create aggregate functions that are consistent with aggre- 
gation over individual demand functions generated by income-constrained utility 
maximization. The conditions for existence of such functions and for their identifi- 
ability have been briefly discussed here. Even if the conditions for the existence of 
a Gorman representative agent do not hold, “exact” aggregation demonstrates the 
conditions under which aggregate data may still be used for econometric estimation 
when appropriate distributional information is available. 
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IV. ADDITIONAL RESULTS O N  AGGREGATION AND 
THE RANK OF DEMAND SYSTEMS 

A. Tests and Extensions of Gorman Rank Conditions 

Several papers have extended Gorman’s (1981) results on the rank of Engel curves 
and some testing of the rank conditions has begun. Lewbel (1987) characterized 
demand systems that are affine in income and an arbitrary function of income: 

4 ( p ,  y) = a; (PI  + bi ( p ) y  + ci ( p )  lb(y) vi (89) 

(For notational convenience, we have temporarily suspended use of the household 
index.) This subclass of demand systems encompasses most of those that have been 
used to estimate demand taking aggregation into explicit account. Here, demands 
are linear in functions of income, but unlike Gorman’s formulation, only one of those 
functions is of unspecified form. Lewbel shows that eight different possibilities fully 
characterize the demand systems of the form (89): homothetic, quasi-homothetic 
(GPF), quadratic (QES), PIGL, PIGLOG, extended PIGL, extended PIGLOG, and 
LINLOG.* 

Only the QES among all these systems has rank 3. Indeed, it can be seen that 
the QES is case (ii) in (73) characterized by Gorman (1981). The rest have rank 2, 
except for homothetic demands, which have rank 1. All of the rank-2 systems have 
indirect utility functions (or cost functions) that can be written as the generalized 
Gorman polar form necessary for two-stage budgeting; see Gorman (1959), Black- 
orby, Primont and Russell(1978), and Blackorby and Russell(l997). Lewbel(l990) 
characterized full-rank demand systems-those in which the n x R matrix, B h ( p ) ,  
of (72) has rank R .  It turns out that PIGL and PIGLOG are the only rank-2 demand 
systems with full rank. The rank-3 systems had previously been characterized by 
Lorman. 

Lewbel (1989b) extends the rank result to functions of real income instead of 
nominal income. As Gorman himself pointed out, the result on the rank of Engel 
curves is rendered less interesting by the fact that the Engel curves are functions of 
nominal (money) income and not real income. If we write the income shares for each 
consumer as 

R 

r= 1 

*The GPF is described in (lO),  the PIGL and PIGLOG were characterized by Muellbauer (58), and the 
QES was characterized by Pollak and Wales (64) with the intercept term cr i (p )  appended). Lewbel in- 
troduces three new demand systems: extended PIGL, extended PIGLOG, and LINLOG. The extensions 
to PIGL and PIGLOG demands involve the addition of an additive constant term and, in the extended 
PIGL case, the A i ( p )  term is multiplied by a differentiaMe function of prices. None of‘ these has been 
used in empirical application. 
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where q is the vector of log prices and z is log income, we know that the rank of the 
matrix of coefficients [ b r i ]  is at most 3. Lewbel shows that if we replace @ r ( z )  with 
q r ( Z ) ,  where z is the log of dejlated income, then the system 

has at most rank 4. In general, all the other properties that hold for Gorman demand 
systems of the form (72) hold for the deflated demand systems of (91). If V ( q ,  z )  is the 
indirect utility function corresponding to a Gorman system, then V ( q ,  @ ( Z ) ) ,  where 
@ (2) is a nonzero, bounded, continuous differentiable function, is the indirect utility 
function for the deflated demand system. 

Lewbel(l991) constructed nonparametric tests for the rank of a demand sys- 
tem and applied these tests to family expenditure survey data from the U.K. and con- 
sumer expenditure surveys from the United States. To minimize income-correlated 
demographic variation, Lewbel selected only a subset of households that were fairly 
homogeneous in terms of household attributes. (Specifically, only married couples 
with two children, where the head of household was employed full-time, were cho- 
sen. Note that another approach would be to define rank as the space spanned by 
function of “attributes” as well as income. This is the approach explored in Section 
1II.C. Here, Lewbel only considered households in one cross section of attributes.) 
Using this reduced data set, he found that, in the middle part of the distribution 
the data are consistent with rank 2 and that the PIGLOG system gives a fairly 
good fit. In the tails of the distribution (the lower and upper S%), however, he finds 
that the data appear to be of higher rank and that rank-3 systems would be a 
better fit. 

Hausman, Newey, and Powell(1995) (HNP) also find that rank-3 demand sys- 
tems fit the data better than rank-2 systems. They are primarily concerned with the 
problem of estimating systems of demand when there are errors in variables. This 
is a common problem with survey data dealing with income and expenditure. Using 
the specification for shares, 

s;(y) = pi0 + pi1 In y + Bi2(ln y>2 vi (92) 

where the Pi’s are constants since the estimation is done at only one price situation, 
HNP estimate demands for five categories of goods. They compare the results from 
OLS and instrumental variable techniques using a repeated observation as an in- 
strument. They find that the inclusion of the quadratic term gives better estimates of 
the demand system than a rank-2 specification. To test whether or not a rank-4 spec- 
ification gives any additional information, HNP add another term and reestimate the 
system. Thus, the specification becomes 

si(y) = Boi + Bli  1ny + pi2(Iny)2 + Bi3(lnY)3 vi (93) 
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If the demand system is rank 3, the ratio Bn//?2 should be constant. (In other words, 
the addition of the last term provides no new information.) HNP find that, in fact, 
this ratio is almost perfectly constant. Thus, Gorman’s rank condition seems to be 
confirmed in the data for this specification. 

B. Other Rank-Two Results 

In Sections I1 and 111, the question of aggregation was considered without placing 
any restrictions on the economy except the usual regularity conditions on individ- 
ual consumer demand functions. Several authors have considered weaker forms of 
aggregation. In particular, they have asked whether the class of individual demand 
functions consistent with representative-agent-type aggregation might be broadened 
by placing other restrictions on the economy. 

One approach is to restrict the distribution of income. Jerison (1984a) showed 
that, when the income distribution is restricted to a set of allowable distributions 
(distributions that are relatively open on the unit simplex), a wider class of consumer 
demand functions aggregates. Jerison was concerned with a representative consumer 
of the Gorman type-where the demand of a group of consumers can be derived from 
utility maximization based upon the mean income of the group. Jerison introduced 
the concept of pairwise aggregation-a representative consumer existing for each 
pair of demand functions. In other words, pairwise symmetry is simply the condition 
that mean demand functions for each pair have a symmetric Slutsky matrix. Define 
the vector of share differences as 

(94) h h’ 
Ghh’(p, y , y ) = sh(p, y h )  - s q p ,  yh’) 

Jerison defined the demand system as exhibiting “nonconvergence” if yJ  Ghh’(p, y h ,  
yh’)l is nondecreasing as y changes. If Ghh’ (p ,  y h ,  yh’) does not change direction 
(i.e., does not change from positive to negative, or vice versa) for small changes 
in mean income, the demand pair is considered to exhibit “local invariance.” If 
Ghh’(p, y h ,  yh’) does not change direction for any changes in mean income, the de- 
mand pair exhibits “invariance.” 

Jerison derived the relationship between aggregation, pairwise aggregation, 
local invariance, nonconvergence, and pairwise symmetry. When the set of allow- 
able fixed income distributions is limited to a singleton (where all consumers have a 
strictly positive share of total income), pairwise symmetry and nonconvergence imply 
consistent aggregation for all pairs of consumers and the existence of a Gorman-type 
representative agent for the whole economy. Jerison provided a characterization of 
the broadest class of pairwise aggregable demands for the case of a single, fixed 
income distribution. 

Perhaps of wider interest, however, is the characterization of demand systems 
when the income distribution is less restricted: 



ANALYSIS OF DEMAND AND SUPPLY 2 I I 

Theorem (jerison 19840). rfthe number of consumers H is greater than 2, the 
income distribution is fixed, and certain regularity conditions hold, * then the demand 
system is pairwise symmetric Lfthe consumer budget shares have one of the following 
forms: 

where B ,  Bh, C, and Ch satisfy certain regularity conditions. t Furthermore, if the 
shares of all pairs of consumers exhibit nonconvergence and $all consumers have 
budget shares of the form (i), (ii), or (iii), the demand system exhibits pairwise aggre- 
gation. 

All of these are rank-2 demand systems. Thus, even when the weaker condi- 
tion of pairwise aggregation is considered, the rank-2 condition continues to hold. 
Case (iii) is Muellbauer’s generalized linear demand structure.* Jerison’s aggre- 
gation question, however, differs from Muellbauer’s in that (i) and (ii) are neither 
stronger nor weaker than Muellbauer’s GL demands restricted to satisfy his aggre- 
gation condition. 

Freixas and Mas-Colell (1987) likewise find that the generalized linear cat- 
egory of demands provides an important condition for the weak axiom of revealed 
preference (WARP) to hold in the aggregate. Rather than requiring aggregate de- 
mand to be rationalizable by a utility maximizing representative consumer, they ask 
what conditions must be placed on Engel curves such that aggregate data satisfy 
WARP. They assume that preferences are identical across consumers and they put 
no restrictions on the income distribution. 

Freixas and Mas-Colell introduce two conditions on Engel curves. The first 
they call uniform curvature (UC). Uniform curvature essentially requires that goods 
are either luxuries or necessities in all ranges of allowable income. No torsion (NT), 
the other condition, requires that Engel curves lie in a plane through the origin; in 
other words, Engel curves must have rank 2, or the generalized linear structure of 
(42). They then prove the following theorem. 

*Specifically, demands are analytic (i.e., demands can be represented by a power series arbitrarily closely 
at any point) and the income distribution belongs to a convex, open set of income distributions confined 
to the H - 1 unit simplex. 

ISpecifically, they are analytic with i ’H = 0 = i ’ H h  and i’C = 0 = i’Ch (where i is the appropriately 
dimensioned unit vector) for all consumers h = 1, . . . , U .  

$Note, however, that Jerison’s conditions rule out  the additive terms that sum to zero in the Muellbauer 
necessity conditions (see the footnote to Muellhauer’s theorem on p. 192). 
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Theorem (Freixas and Mas-Colell I 987). r f  agents have identical preferences, 
the distribution of income has support ( a ,  b), and the Engel functions satisfy NT and 
UC on the interval ( a ,  b), then the weak axiom of revealed preference holds in the 
aggregate. 

Again, rank-2 demands play an important role in this type of restriction of 
preferences. 

Clearly, the results of Freixas and Mas-Colell are important. It is quite desir- 
able that the weak axiom of revealed preference be satisfied in the aggregate. In a 
sense, this is demanding some minimal rationality from aggregate demand. It also 
provides testable implications-though since aggregate income tends to grow over 
time while relative prices change only very slowly one would not expect to uncover 
violations of WARP in the aggregate very frequently. 

Jerison’s results are perhaps less empirically useful. Conceivably, one could 
create a test for the presence of pairwise aggregation. However, i t  is unclear why that 
would be a desirable attribute for an economy to have. The restrictions necessary 
for pairwise aggregation to imply aggregation are likely to be violated in any actual 
economy over time. Thus, pairwise aggregation lends no practical help to solving 
the aggregation question, though the results are fascinating from a technical point 
oi view. 

The rank-2 restriction also arises in the context of proportional budgeting. 
Blackorby and Russell(l993) characterize the optimality of the two-stage budgeting 
procedure, where a society allocates shares of total income to individual members 
independent of the level of aggregate income. (This could also be the two-stage bud- 
geting process of a firm.) They use a linear, additive social welfare function, where 
individual shares are allowed to depend on social welfare weights and prices. Shares 
that do not depend on prices give rise to price-independent proportional budgeting 
(PIPB). 

For both proportional budgeting and price-independent proportional budget- 
ing, it turns out that the individual indirect utility functions must have the general- 
ized linear structure. Here we give only the result for the PIPB case. 

Theorem (Blackorby and Russell I 993). Price-independent proportional bud- 
geting is optimal tff individual indirect utility functions have the form in ( i )  or ( i i ) :  

It is straightforward to show that case (i) corresponds to Jerison’s (ii) in (95). 
Case (ii) here corresponds to Jerison’s case (i). Jerison’s third possibility for pair- 
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wise aggregation is not sufficient for PIPB. Blackorby and Russell also discuss the 
relationship of their results to those of Muellbauer for the more general proportional 
budgeting (PB). They show that aggregate share functions have the Muellbauer PIGL 
and PIGLOG structure in aggregate expenditure. However, these could not have been 
derived by aggregating over individual PIGL or PIGLOG demand structures. The 
aggregation rule that emerges from an economy practicing proportional budgeting 
is linear. This implies a greater restriction than the results of Muellbauer (see Sec- 
tion 11). 

V. MARKET DEMAND A N D  HETEROGENEITY 

While the exact aggregation conditions surveyed in Section 111 enable an investigator 
to infer values of parameters of individual demand systems, they do not yield useful 
restrictions on aggregate demand systems. Moreover, the well-known results of Son- 
nenschein (1973, 1974), Mantel (1974), and Debreu (1974) indicate that almost no 
aggregate regularities follow from individual optimization. In fact, they proved that 
any continuous, aggregate excess demand system that satisfies Walras’ law could 
have been generated by a pure exchange economy of consumers with continuous, 
strictly convex, and monotone orderings. 

Mas-Colell and Neuefeind (1977) extend Debreu’s result, allowing individual 
demands to be correspondences instead of functions. Mantel (1979) considers the 
case where the excess demand functions are required to be differentiable, with simi- 
lar results. Shafer and Sonnenschein (1982) review this literature and its extensions. 
Kirman and Koch (1986) consider the Debreu-Sonnenschein-Mantel (DSM) result 
under the restriction that all individuals have the same preferences, and show that 
even under this strict assumption, the primary negative result-no restrictions on 
aggregate demand-still holds. Kirman (1 992) discusses how results from estima- 
tion of representative agent models that ignore Debreu-Sonnenschein-Mantel can be 
misleading. 

Individual optimization alone simply provides too little structure to explain 
anything about macro behavior except simple adding-up conditions. Properties that 
we might wish to find in the aggregate, such as aggregate revealed preference or 
downward-sloping aggregate demand curves must depend on something other than 
individual optimization. It is also important to be able to explain why such properties 
seem to hold in the aggregate despite the results of DSM. 

There appear to be three avenues to dealing with the results of DSM. The first 
is to take the approach of the literature on the representative consumer in Section 
I11 and find restrictions on demand functions that imply and/or are implied by the 
desired macro property. The second is to restrict the distribution of income. The 
third is to restrict the distribution of preferences. The second and third approaches, 
while imposing restrictions on the degree of heterogeneity of incomes or preferences 
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can be contrasted with the first approach in that they allow preferences to take any 
form. Also, such approaches need not be based on any assumptions about individual 
rationality or optimization. 

A. The Irrational Consumer and Market Demand 

The importance of heterogeneity to demand regularity has long been recognized, but 
Becker (1962) was one of the first to formalize the concept. Becker hoped to demon- 
strate that individual rationality and the existence of a well-defined preference rela- 
tionship were not fundamental to aggregate regularity of demand.* Becker imposed 
minimumal rationality-that agents consume their entire income, but allowed agents 
to be “irrational” in a particular way. Two formulations of agent irrationality were 
proposed: (1) agents randomly choose their consumption bundles along the budget 
hyperplane; and (2) agents have completely inflexible demands. In the second case, 
they demand exactly what they consumed in the last period; if that bundle is no longer 
available, they move along the old budget hyperplane to the nearest point that they 
can now afford. 

Becker showed that, provided the distribution of choices is spread across the 
budget hyperplane, aggregate demand will be downward sloping. Thus, regularity 
conditions in aggregate demand, which are often modeled as corresponding to the 
choice of a “representative consumer,” can be modeled equally well as a collection 
of “irrational” agents. In addition to pointing the way toward agent heterogeneity 
as a promising line of explanation of aggregate demand regularity, this paper also 
provided an interesting rejoinder to critics of the rationality hypothesis in economics. 

B. Income and Preference Heterogeneity 

The early result by Becker regarding the spread of agents across the budget hyper- 
plane leads to the question of what restrictions on aggregate demand might result 
from restricting the distribution of income while allowing preference heterogeneity 
among agents. For the case where each consumer has a fixed share of total income, 
Eisenberg (1961) showed that market demand could be generated by a multiplica- 
tive social welfare function with exponential weights equal to each agent’s share of 
aggregate income. Though preferences are allowed to differ between agents in this 
formulation, they must be homothetic. Of course, any shift in the relative income 
distribution would demand a new set of weights to rationalize the allocation.? 

*As it turns out, Becker was incorrect in assuming that individual rationality gave downward-sloping 

?Chipman (1974) clarified this result and proved it in a slightly different manner. See also Shapiro (1977). 
aggregate demand curves. The DSM result 20 years after his work demonstrated this. 
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Hildenbrand (1983) seeks conditions that do not involve restrictions on in- 
dividual preferences under which the law of demand will be fulfilled in the aggre- 
gate-in other words, conditions sufficient for aggregate demand curves to be down- 
ward-sloping. Hildenbrand argues that individual demand functions are in fact a 
counterfactual construct and that assumptions about individual preferences or 
demand functions are inherently untestable.* He proposes to replace such untest- 
able assumptions with testable assumptions about distributions of agents and in- 
come.? 

Consider the vector of individual demands, d h ( p ,  y h )  = d ( p ,  y), which satisfy 
WARP (or which have been derived from a preference relation) and are identical for 
all consumers. Assuming a continuum of consumers, we can write (mean) market 
demand as 

where p is the income distribution. A sufficient condition for the aggregate law of 
demand is that the Jacobian matrix [y] 
be negative definite for all p. By the definition of (mean) market demand, 

where 6 is the compensated demand function (identical for all consumers here), 
is the mean Slutsky substitution matrix, and TT is the mean Slutsky income-effect 
matrix. The T superscript denotes transpose. S is negative semidefinite, since all 
the individual substitution matrices must be negative semidefinite. So the law of 
demand reduces to the condition that M be positive definite. Hildenbrand shows that 
if we restrict the distribution of income of agents such that the density of incomes 
is monotone and nonincreasing, then all aggregate partial demand curves will be 
downward-sloping: 

*See Hildenbrand (1989) and, in particular, Hildenbrand’s (1993) Market Demand. 
t Lewbel(l994) critically reviews Hildenhrand‘s approach. 
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Theorem (Hildenbrand I 983). For every individual demand function dh,  where 
each dh  satisfies the weak axiom of revealed preference and for  every decreasing den- 
sity p on R+, the mean demand function D ( p )  is monotone, i.e., for every p and q in 
the set of all prices, we have 

( p  - q ) ( D ( p )  - 5 0 (100) 

Notice that restrictions are placed on the distribution of income of agents, 
while no restrictions are placed on the form of the preference function. Preferences 
here are assumed to satisfy the weak axiom of revealed preference and to be identical 
across consumers, but no assumptions are placed on the form of Engel curves. 

The restriction that all consumers have identical preferences is certainly an 
undesirable one. Let us  assume that preferences belong to some allowable set, A .  
And let demand vary between consumers, where individual demands are now 

d Y P ,  Y) (101) 

where a E A indexes consumers. Market demand is 
P 

where 
is now 

is the joint distribution of incomes and attributes. The mean Slutsky matrix 

Hildenbrand (1989) considers the conditions that ensure the positive definite- 
ness of M* when preferences are allowed to vary among agents. He introduces the 
assumption of metonymy-that the distribution of preferences, a, conditional on in- 
come, does not depend on the level of income.* Without placing any restrictions on 
individual preferences, Hildenbrand is able to show that a decreasing density, p,  
and metonymy are sufficient to imply the aggregate law of demand. Here individ- 
ual preferences are not assumed to satisfy WARP. In fact, this result holds even if 
all individual income effects are negative semidefinite! This is a pretty astounding 
result and well demonstrates one of Hildenbrand’s main points: that there is some- 
thing qualitatively different about aggregate demand that cannot be captured in a 
mere summing of individual demands. 

Caution is nonetheless encouraged. In practice, the density function of house- 
hold incomes will not usually be decreasing. Thus, this result is not useful in ex- 
plaining why aggregate demand data seem to obey general regularity conditions. But 

~~~~ 

*See Hildenbrand (1989) and Hiirdle, Hildenbrand, and Jerison (1991) for technical details. 



ANALYSIS OF DEMAND AND SUPPLY 2 I7  

Hildenbrand’s result does show that restricting the income distribution is, at some 
level, analogous to restricting the shape of individual Engel curves. It leaves open 
the possibility that some combination of restrictions can be shown to hold empirically 
in the economy. 

Jean-Michel Grandmont (1987) extends Hildenbrand’s result to a slightly 
broader class of densities that allow for discontinuities and also allow for unbounded 
densities, provided certain convergence conditions are met. Grandmont also shows 
that a result similar to Hildenbrand’s can be derived by restricting the distribution 
of preferences. 

Hardle, Hildenbrand, and Jerism (1991) (HHJ) consider the aggregate data 
and the question of whether market demand adheres to the law of demand. They 
consider the mean demand function of (102). A sufficient condition of monotonicity 
of the mean demand function is that s* be negative semidefinite and M* be positive 
semidefinite. We know that S* will be negative semidefinite, since all the individual 
substitution effects are negative. Thus, positive semidefiniteness of M* is sufficient 
for the law of demand to hold in the aggregate. 

Using the assumption of metonymy, HHJ are able to estimate the mean Slutsky 
income-effect matrix. Utilizing the symmetricized matrix M ,  

M = M * + M * T  (104) 

(which will only be positive definite when M* is), they estimate a related matrix, 
A*, which is identical to M* under the metonymy assumption. They consider nine 
commodity aggregates in U.K. expenditure data from 1969 through 1983 and show 
that in all cases (for all years and for all commodities) the matrix fi* is positive 
definite. Unfortunately, it is hard to judge the robustness of this result since their tests 
rely on the eigenvalues of the estimated matrix, and there is no available distribution 
theory for these estimated eigenvalues. Using bootstrapping techniques, they give 
some idea that their results may be robust. 

From nonparametric density estimates presented in their paper, HHJ clearly 
show that the distribution of incomes is not decreasing. So decreasing density of 
income is not driving the adherance to the law of demand observed in the data. HHJ 
identify two possible explanations. One is that, at higher income levels, preferences 
seem to be more heterogenous. In other words, Engel curves tend to spread out at 
higher income levels. This reduces the possibility of pathological outcomes. It would 
also seem to provide some corroboration of Lewbel’s results that at higher income 
levels, rank-2 Engel curves do not describe demand adequately (see Section 1V.A). 
Also, the slopes of cross-product curves for the estimated fi* matrix are fairly small 
compared to the slopes of the own-product curves. Thus own-price effects seem to 
be dominating. 

Hardle and Hart (1992) develop the asymptotic theory necessary for testing the 
positive definiteness of income-effect matrices using a bootstrapping approach. They 
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create a bootstrapped asymptotic distribution for the smallest estimated eigenvalue, 
AI, using the assumption that the income-effect matrix is symmetric. This allows for 
testing of a null hypothesis of positive semidefiniteness versus the one-sided alterna- 
tive of i 1  > 0. They follow the average derivative techniques developed by Hardle 
and Stoker (1989). 

Grandmont (1992) proposes restricting agent preferences instead of the in- 
come distribution. Following Becker's formulation of the idea, one would like to know 
if agent preferences are such that individual choices will be spread (enough) along 
the budget hyperplane to generate downward-sloping aggregate demand curves. The 
problem is the lack of a metric for preferences. How do we measure how far apart 
two preference orderings are? How can we measure the dispersion of a distribution 
of preferences without such a measure? 

Grandmont proposes an algebraic structure on preferences using affine trans- 
formations of the commodity space. Given a vector of commodities, x E R", and 
any collection of real numbers a = (a1 , . . . , a"), a new vector can be generated by 
multiplying each commodity x; by the factor ec"i : 

x, = ea 8 x = ( e a l x l ,  . . . , eanx,) (105) 

These transforms can then be used to generate a linear structure on preference rela- 
tions and/or demand functions. They are affine, since each point in the commodity 
space is transformed linearly to a new point based on the values of the a-vector. If 
ai = a for every i, then the transformation is said to be homothetic, as each point in 
the commodity space is transformed to a point on a ray passing through the original 
point. 

Grandmont considers one such equivalence class (i.e., one class of demand 
functions that are all related to each other as a-transforms). Within that class, any 
preference can be represented as an n-dimensional vector, a. If demands in the econ- 
omy are all members of one such class, and if the distribution of a is flat enough, then 
aggregate demand will be monotone and individual demand curves are downward- 
sloping. Aggregate demand also obeys the weak axiom of revealed preference. 

What is the meaning of this? The distribution of a represents the degree of 
heterogeneity of preferences within any equivalence class. If the distribution of a is 
not flat, then preferences are concentrated around some point and aggregate demand 
may behave strangely depending on those individual preferences. If the distribution 
of a is flat, then preferences are sufficiently heterogenous and aggregate demand is 
well behaved. 

These results do not depend on any restrictions on individual demands except 
that they obey homogeneity and Walras' law. Demands are not even required to be 
preference-driven. Thus, individual rationality, as in Becker's formulation, is simply 
unnecessary for aggregate demand regularity. 

Grandmont does not consider heterogeneity across equivalence classes. Nor 
does he consider heterogeneity in both preference and income dimensions. These ar- 



ANALYSIS OF DEMAND AND SUPPLY 2 19 

eas seem promising for future research. Given the results of Hildenbrand and Grand- 
mont, it seems that some restrictions on heterogeneity across multiple dimensions 
should also yield regularity of aggregate demand. Perhaps the unrealistic restric- 
tions on the distribution of income (that the density must be nonincreasing) may be 
weakened and combined with some restriction on the distribution of preferences to 
yield the law of demand. 

VI. JOINT AGGREGATION OVER AGENTS AND 
COMMODITIES 

A. Fixed Inputs or Outputs 

In Section I.A, we noted that, so long as all commodities (net outputs in that exposi- 
tion) are efficiently allocated, there is no aggregation problem on the production side 
of the economy: a “representative producer” exists under the most basic regularity 
conditions. But there is a long history of research (and not a little controversy) over 
the issue of aggregation in production when inputs are not efficiently allocated. Thus, 
some inputs-notably capital (in the absence of perfect capital rental markets)-are 
$zed in the proverbial short run. In addition, outputs of, say, regulated firms might 
be fixed, in which case they are modeled as minimizing cost subject to an output 
constraint. This section surveys the literature on aggregation of fixed and variable 
inputs.* 

Let vf and zf, f = 1,  . . . , F ,  be the vectors of variable and fixed commodi- 
ties, respectively, in the technology set of firm f .  The set of feasible variable quanti- 
ties is dependent on the quantities of fixed variables and is denoted T f ( z f )  for firm 
f. Also, define the production functions of the firms, G f ,  f = 1,  . . . , F ,  by 

vf E T f ( z f )  Gf (vf, zf) 5 0 (106) 

Conditional on the quantities of fixed inputs or outputs of all firms, the aggregate 
technology set is then defined (assuming no externalities exist) by 

T(z ’ ,  . . . , z F )  = c T f ( 2 f )  

f 

so that the aggregate production function G is defined by 

U E T ( t ’ ,  . . . , z F )  G ( v ,  z ’ ,  . . . , z F )  5 0 

*Parts of this section borrow shamelessly from the excellent editorial summaries of Gorman (1953b) (writ- 
ten by Bill Schworm) and Gorman (1968b) (written by the editors) in Blackorby and Shorrocks (1995). 
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Thus, the aggregate technology set and the aggregate production function depend 
on the quantity of each fixed input held by each firm (or each fixed output). From an 
econometric point of view, this is a nightmare. Thus, it is standard practice (explicitly 
or implicitly) to aggregate over these fixed inputs or outputs, in order to reduce the 
dimensions of estimation problems to manageable proportions. 

The existence of an aggregate fixed input or output for an individual firm is 
represented formally by the existence of functions, ef and Zf such that 

GJ(vJ ,  z f )  = Z.f(z.f)) (109) 

Thus, the vector zf is reduced to a scalar Zj ' (z f )  on the right-hand side. The con- 
ditions required for this structure are well known to be separability of the fixed 
inputs/outputs from the variable inputs/outputs. That is, technical rates of substi- 
tution between fixed inputs/outputs must be independent of the quantities of vari- 
able inputs/outputs.* The existence of an aggregator function over fixed inputs in the 
economy-wide production function 

G(v, zl, . . . , z F )  = e ( v ,  Z ( z ' ,  . . . , z F ) )  (1 10) 

however, is more problematical. 

8. Klein Aggregation 

Several ways of simplifying the structure in (108), taking full account of the aggre- 
gation problem, have been proposed. The first suggestion was that of Klein (1946a, 
1946b), who proposed an aggregation procedure predicated on the assumption that 
none of the inputs or outputs is efficiently allocated. He posited multiple types of 
labor and capital inputs producing a set of outputs in accordance with the following 
production function: 

G f ( x f ,  n f ,  z f )  = 0 Vf (111) 

where x f  , n f ,  and zf are the vectors of output, labor, and capital quantities, respec- 
tively, for firm f. To simplify the analysis of economy-wide production functions, 
Klein proposed the existence of functions, c, X ,  N ,  and 2 such that 

e ( X ( x ' ,  . . . , xF), N(n' ,  . . . , n F ) ,  Z(z',  . . . , z F ) )  = 0 
(1 12) G f ( x f ,  n f ,  zf) = 0 Vf 

Thus, a problem of gargantuan proportions is reduced to one in which there are just 
three variables in the economy's production function: aggregate output, aggregate 
labor input, and aggregate capital input. 

*The equivalence between separability and the functional structure in (109) was developed independently 
by Leontief (1947a, 1947b) and Sono (1961) and subjected to a penetrating analysis by Gorman (1%8a). 
For a comprehensive treatment and a recent survey, see Blackorby, Primont, and Russell(l978, 1997). 
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The question posed by Klein was answered by Nataf (1948), who showed that 
(112) holds if and only if each firm's production function can be written as 

Gf ( x f ,  ns ,  z f )  = Xf(xf) + N f ( n f )  + Zf (zf) = 0 (113) 

That is, there exist aggregators over each of the three types of variables in each pro- 
duction function-hence, each set of variables is separable from its complement- 
and the technology is linear in these aggregates.* It is easy to see that this structure 
is sufficient for the Klein condition (1 12). Define 

X ( x ' ,  . . . , xF) := 

N(n1, . . . , nF) := 

Xf(X', . . . , 2) 

N f  ( n l ,  . . . , 2) 
f 

f 
Z(t.1, . . . , z F )  := ~ z q z ' ,  . . . , 2 F ) 

s 
and 

e(X(x*, . . . , xF), N ( n l , .  . . , n F ) ,  Z ( z ' ,  . . . , z F ) )  

:= X ( x 1 ,  . . . , xF) + N(n1 ,  . . . , nF) + Z ( Z 1 , .  . . , 8)  

It is now clear that 

X ( X 1 ,  . . . ,xF) + N ( n l ,  . . * , nF) + Z(z1, . . . , ZF) = 0 

X f ( x f )  + N J ( n J )  + ZJ(2f) = 0 vj-  (116) 

Gorman (1953b) noted that the Klein-Nataf structure is not very useful for 
empirical implementation because the aggregator functions for output, labor, and 
capital in (112) and (116) depend on the entire distribution of these variables among 
firms. He suggested that, to be useful, these aggregate commodities should depend 
only on the sum across firms of the component variables: i.e., that the aggregate 
production function take the form 

He then showed that the necessary and sufficient conditions for this aggregate pro- 
duction structure is that the individual production equation have the affine form 

*Hence, the variables are, in Gorman's (1968a) terminology, completely separable in Gf: in addition to 
each group being separable, arbitrary unions of groups are separable (so that, e.g., technical rates of 
substitution between labor and capital inputs are independent of output quantities). 
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where a, p, and y are appropriately dimensioned vectors of parameters that are iden- 
tical for all firms and Of is an arbitrary, idiosynchratic scalar for firm f. In this case, 
the economy production equation is 

so that the Klein aggregates have 

f f 

the linear structures 

and 

C. Aggregation with Both Efficiently Allocated (“Labor”) Inputs and 
Fixed (“Capital”) Inputs or Outputs 

The restrictions on individual technologies that are necessary and sufficient for the 
existence of Klein aggregates are too demanding to be useful in empirical analysis. 
Even if we allow the aggregates to depend on the entire distribution of component 
variables, as in (112), the individual technologies are linear in the firm-specific ag- 
gregates, and if we more realistically require that the economy aggregates depend 
only on the sum of component variables, as in (1 17), the individual technologies are 
linear in each output and input variable (implying, e.g., linear isoquants and linear 
production possibility surfaces). 

Subsequent literature on “capital” aggregation has focused on the unreason- 
ableness of Klein’s requirement that the allocation of outputs and inputs be en- 
tirely arbitrary. In fact, May (1946) and Pu (1946) immediately pointed out that 
competitive-equilibrium conditions-in particular, profit maximization by firms- 
might be exploited to weaken the requirements for the existence of composite com- 
modities in aggregate production technologies. In particular, Solow (1964) showed 
how the efficient allocation of labor inputs might facilitate the aggregation of (fixed) 
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capital inputs. His ingenious insight was to note that, under certain conditions, the 
efficient allocation of inputs not being aggregated can render efficient an arbitrary 
allocation of fixed inputs as well. 

The ultimate-and naturally elegant-solution to the problem of aggregating 
over fixed inputs in the aggregate technology and in the presence of efficiently allo- 
cated inputs was presented by Gorman (1965, 1968b). The existence of efficiently 
allocated inputs and outputs allowed him to exploit duality theory to solve the prob- 
lem (as in the case of the representative consumer in Section 11). Given the tech- 
nology represented in (106), the variable profit function* of firm f, denoted Pf, is 
defined by 

~ f ( p ,  zf) := max{p. v f  I ~ f ( v f ,  z f )  = 01 
V f  

where p is the (competitive equilibrium) price vector for variable inputs and outputs. 
For the economy, the variable profit function P is defined by 

~ ( p ,  zl, . . . , z F )  = max{p. ‘u I ~ ( v ,  z l ,  . . . , z F )  = 01 
V 

where the second identity follows from the existence of a “representative firm” con- 
ditional on the allocation of fixed inputs (i.e., the interchangeability of set summation 
and optimization), discussed in Section 1I.A. Note that, if outputs are fixed and inputs 
are variable, P is the cost function of the firm, showing minimal cost as a function of 
input prices and the fixed output quantities. 

Theorem (Gorman I 968b). The aggregatorfunction in ( 1  10) exists $-and only 
if the individual variable projit functions (or cost functions) have the structure 

Pf(p, d) = I l (p)Zf(zf )  + A f ( p )  Vf (123) 

in which case the variable projit function for the economy is 

=: n ( p ) Z ( z ’ ,  . . . , z F )  + A(p) 

The similarity between this structure and the structure of the expenditure 
function that is necessary and sufficient for the existence of a representative con- 
sumer in Section I1 is palpable. In fact, as nicely elucidated in the editorial summary 

*See, e.g., Diewert (1974) for a discussion of variable profit functions. 
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of Gorman (1968b) in Blackorby and Shorrocks (1995), Gorman's proof of the exis- 
tence of an aggregate fixed input for the economy constitutes, with little more than a 
change in notation, an alternative proof of the existence of a community indifference 
map and hence the existence of a Gorman-type representative consumer. 

Recall from Section 1I.A that the community (Scitovsky) preference set (the 
set of aggregate commodity bundles that makes possible a particular profile of utility 
levels of the H consumers) is the sum of the individual level sets: 

N(u1,  . . . , u h )  = N h ( u h )  
h 

The individual and community expenditure functions are given by 

and 

A community preference map, and hence a representative consumer, exists if and 
only if the community preference set depends only on a scalar utility (of the repre- 
sentative consumer), 

N ( u ' ,  . . . , uh)  = R ( U ( u ' , .  . . , u h ) )  

E(u' ,  . . . , u h , p )  = E ( U ( u ' , .  . . , u h ) ,  p )  

(128) 

in which case the community expenditure function is 

(129) 

Apart from a change in notation (substituting consumer utilities for fixed inputs and 
expenditure minimization for profit maximization), this is the same structure as the 
above results on the aggregation of fixed inputs. Thus, the individual expenditure 
functions must have the form 

Eh(& p )  = W p > I l r h b h >  + A h ( p )  

E ( & .  . . ,  uh, p> = G ( p )  Ilrh(uh) + Ah(p> 

(130) 

which implies that 

h h (131) 
=: I l ( p ) U ( u ' ,  . . . , uh)  + A(p) 

which is (apart from the harmless monotonic transformation of the utility levels) iden- 
tical to the structure in the Gorman theorem on representative consumers in Section 
11. The parallel nature of these (affine) structures underscores the common thread 
running through apparently diverse aggregation problems. 
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D. 

The Gorman theorem in Section V1.C on the aggregation of fixed inputs in the pres- 
ence of some efficiently allocated inputs was essentially worked out in his analysis of 
capital aggregation in vintage models for a single firm (Gorman 1965). If we interpret 
(106) as representing the technologies for different capital vintages, then the struc- 
ture (123) for the vintage-specific variable profit functions is necessary and sufficient 
for the existence of an aggregate capital stock, obtained by aggregating over the dif- 
ferent capital vintages, as in (1 10). This analysis was extended, and the proof made 
much more elegant, in Gorman (1968b). The problem solved in this paper general- 
izes the structure in (110) to include multiple aggregate fixed inputs. Thus, rewrite 
(106) as 

Extension to Multiple Fixed Inputs 

v . f  E T . f ( z { ,  . . . ,  Zi) t G f ( v . f  , z ( ,  . . . ,  Zi) = 0 V f  (132) 
f where z; is the vector of fixed inputs of type r, r = 1, . . . , R ,  held by firm f. The 

aggregate technology set then depends on the distribution of quantities of each type 
of fixed input among firms and the question is when can the aggregate technology by 
represented by the production equation 

(133) 
- 1 1  F R I  G(v,  Z (zl,. . . , z1 ), . . . , Z  ( z R , .  . . , z ,”) )  = 0 

The answer, as elegantly shown by Gorman (1968b), is a straightforward generaliza- 
tion of the earlier result: the variable profit functions of the individual firms must 
be 

r 

and the variable profit function of the economy therefore has the structure 

P ( p ,  Z’(Zi, . . . ,  zf), . . . ,  zqz;, . . . ,z ,”)) 

where 

Again, the similarity of this structure, which rationalizes the existence of mul- 
tiple aggregate inputs in an economy-wide production function, with the structure of 
exact aggregation of consumer demand functions with multiple income distribution 
statistics, surveyed in Section 111, is palpable. In fact, using the envelope theorem to 
derive the net-supply functions of variable netput vectors for firm f, we obtain 
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which has a structure that is very similar to that analyzed by Gorman (1981). Aggre- 
gate (vector valued) net-supply functions are then given by 

=: & ( p ,  0,(z1’, . . . , z ; ) .  . . , of&;, . . . ,z ,“)) 

This structure of net-demand systems is analogous to that of exact aggregation in 
consumer theory, the principal difference being that the 8 functions in the aggregate 
consumer demand functions in exact aggregation depend on the H incomes of the 
consumers, whereas in the aggregation of fixed inputs, the 0 functions depend on 
vectors of fixed inputs of firms. 

In fact, in econometric applications, it is standard to represent heterogeneous 
technologies of firms through the use of technological “attributes,” analogous to those 
representing heterogeneity of consumer preferences in Section 111. This raises prob- 
lems that are identical to those posed by the existence of fixed inputs; indeed, one 
can think of fixed inputs as one type of technological attribute. These attributes can 
be modeled exactly as fixed inputs are modeled in constructing aggregate technolo- 
gies. Indeed, one can interpret some of the Zr  variables in (132) as attributes and the 
2‘ functions in (133) as aggregate attributes. The approach of Heineke and Shefrin 
(1990) can then be used to identify attribute parameters. See Appelbaum (1982), 
Borooah and Van Der Ploeg (1986), Chavas (1993), Gourikroux (1990), and Fortin 
(1991) for applications of these aggregation notions in producer theory. In particu- 
lar, Fortin and Gourikroux find that significant bias results from ignoring aggregation 
issues in econometric analysis of production. 

Owing to the difference between the optimization problems of consumers and 
producers, two caveats need to be emphasized. First, while the structures of exact 
aggregation, on the one hand, and aggregation over fixed inputs and technological 
attributes are analogous, the proofs of these aggregation results are quite different. 
Second, Gorman’s theorem on exact aggregation and the rank of demand systems 
does not go through for producers. 

f 

E. Other Extensions 

Econometric studies using aggregate data also commonly aggregate over variable in- 
puts (e.g., different types of labor). Again, at the level of the individual firm the nec- 
essary and sufficient condition for the existence of such aggregates is separability, 
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but at the aggregate level more is required. The necessary and sufficient conditions 
for aggregation of efficiently allocated inputs are different from, but similar in many 
respects to, the conditions for aggregation of fixed inputs. Moreover, as in the case of 
fixed inputs, the conditions are less demanding if aggregation is required only over 
a subset of the efficiently allocated inputs. In addition, aggregation of variable in- 
puts is made more difficult if there exist fixed inputs in the technology. These issues 
were analyzed in Gorman (1967, 1982a), and Blackorby and Schworm (1988a) pro- 
vide an excellent survey and analysis of the various results obtained under different 
assumptions about which subsets of efficiently allocated and fixed inputs are being 
aggregated in the economy-wide technology.* To a large extent, the common theme 
of affine structures runs through these results, but there are some surprises (which, 
in the interest of space, are left to the reader to discover). 

The use of common duality concepts in each of these aggregation problems en- 
tails the use of strong convexity assumptions regarding the technology. The possible 
inadequacy of this approach for long-run analysis led Gorman (1982b) to examine 
aggregation conditions under constant returns to scale. 

Joint aggregation over commodities and agents is also common in studies of 
consumer behavior. As one would expect, the necessary and sufficient conditions, 
as shown by Blackorby and Schworm (1988b), are stronger than those required for 
either type of aggregation taken separately. 

Finally, Gorman (1990) has more recently examined aggregation problems in 
which the aggregate inputs for the economy depend on the quantities of all inputs, 
perhaps because of externalities. These studies lead to structures that are quite simi- 
lar to the affine structures above and, interestingly, reminiscent of the rank conditions 
for Engel curves in Sections I11 and IV. 

VII. CONCLUDING REMARKS 

As Section 1.A summarizes the literature, our concluding remarks will be limited 
to two observations. First, when we began research on this survey, we expected the 
chapter to be about half theory and half econometrics; the reader has undoubtedly 
noted, however, that the theory of aggregation dominates. Thus, the main lesson we 
take from this endeavor is that, while the theory of aggregation is fairly well devel- 
oped, econometric application is in its infancy. The principal empirical literature- 
most notably Jorgenson, Lau, and Stoker (1980, 1981, 1982)-maintains exact ag- 
gregation conditions, generates results on demographics and demand, and studies 
various issues of welfare economics. Less well developed is the testing of restric- 
tions on preferences and on the distribution of incomes or preferences that are nec- 

*Also see Fisher (1965, 1968a, 1968b, 1%9, 1982, 1983) and Blackorby and Schworm (1984). 
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essary or sufficient for various types of aggregation consistency. The most promising 
avenues for research in this direction have been forged by Lewbel (1991), Hardle, 
Hildenbrand, and Jerison (1991), and Hausman, Newey, and Powell (1995). But it 
seems that the potential for testing aggregation conditions has barely been tapped. 

Second, just as the theory of aggregation has dominated this literature, it should 
be obvious to the reader that one person, Terence Gorman, has in turn dominated the 
search for theoretical results. His towering achievements in this area are testimony 
to his penetrating intellect. Moreover, while many of his papers are challenging read- 
ing, he has always kept his eye on the potential for empirical application. One would 
hope that applied econometricians would focus more on testing the aggregation the- 
ories promulgated primarily by Gorman. 

ACKNOWLEDGMENTS 

We are deeply indebted to Chuck Blackorby and Tony Shorrocks for their masterful 
editorial effort in making Terence Gorman’s works, many previously unpublished, 
available in Volume I of the Collected Works of W M .  Gorman; without this towering 
volume, including the illuminating editorial introductions to Gorman’s papers, our 
task would have been impossible. Nor would the chapter have been possible without 
the investment in human capital accruing to the long collaboration between Blacko- 
rby and Russell. We also thank Kusum Mundra for comments, and we are especially 
grateful to Chuck Blackorby and Bill Schworm for reading the manuscript and for 
many valuable suggestions. Needless to say, they are in no way responsible for any 
remaining errors. 

REFERENCES 

Aczel, J. and J. Dhombres (1989), Functional Equations in Several Variables with Applications 
to Mathematics, Znjormation Theory and to the Natural and Social Sciences, Cambridge 
University Press, Cambridge. 

Afriat, S. N. (1967), The Construction of a Utility Function From Expenditure Data, Znterna- 
tional Economic Review, 8,460-472. 

Afriat, S. N. (1972), Efficiency Estimation of Production Functions, International Economic 
Revieal. 13, 568-598. 

A iyagari, S. (1985), Observational Equivalence of the Overlapping Generations and Dis- 
counted Dynamic Programming Frameworks for One-Sector Growth, Journal of Eco- 
nomic Theory, 35,201-221. 

Antonelli, G. B. (1886), Sulla Teoria Matematica della Economiu Politica, Pisa: nella ti- 
pografia del Folchetto; English translation in Preferences, Utility, and Demand ( J .  S. 
Chipman, L. Hunvicz, M. K. Richter, and H. F. Sonnenschein, eds.), Harcourt Brace 
Jovanovich, New York, 1971). 



ANALYSIS OF DEMAND AND SUPPLY 229 

Appelbaum, E. (1982), The Estimation of the Degree of Oligopoly Power, Journal of Econo- 

Arrow, K. J. (1951), Social Choice and Zndividual Values, Wiley, New York. 
Banks, J., R. Blundell, and A. Lewbel(1993), Quadratic Engel Curves and Welfare Measure- 

Becker, G. S. (1962), Irrational Behavior and Economic Theory, Journal of Political Economy, 

Blackorby, C., R. Boyce, and R. R. Russell(1978), Estimation of Demand Systems Generated 
by the Gorman Polar Form: A Generalization of the S-Branch Utility Tree, Economet- 
rica, 46, 345-364. 

Blackorby, C., R. Davidson, and W. Schworm (1993), Economies with a Two-Sector Represen- 
* tation, Economic Theory, 3, 717-734. 
Blackorby, C., D. Primont, and R. R. Russell (1978), Duality, Separability, and Functional 

Structure: Theory and Economic Applications, North-Holland/American Elsevier, New 
York. 

Blackorby, C., D. Primont, and R. R. Russell (1997), Separability, in Handbook of Utility 
Theory (S. Barbara, P. J. Hammond, and C. Seidl, eds.), Kluwer, Boston. 

Blackorhy, C. and R. R. Russell (1993), Samuelson’s “Shibboleth” Revisited: Proportional 
Budgeting among Agents and Rank-Two Demand Systems, in Mathematical Modelling 
in, Economics (W. E. Diewert, K. Spremann, and F. Stehling, eds.), Springer-Verlag, 
Heidelberg, 3,546. 

Blackorby, C. and R. R. Russell (1997), Two-Stage Budgeting: An Extension of Gorman’s 
Theorem, Economic Theory, 9, 185-193. 

Blackorby, C. and W. Schworm (1982), Aggregate Investment and Consistent Intertemporal 
Technologies, Review of’Economic Studies, 49, 595-614. 

Blackorby, C. and W. Schworm (1984), The Structure of Economies with Aggregate Measures 
of Capital: A Complete Characterisation, Review of Economic Studies, 51,633-650. 

Blackorby, C. and W. Schworm (1988a), The Existence of Input and Output Aggregates in 
Aggregate Production Functions, Econometricn, S6,613-643. 

Blackorby, C. and W. Schworm (1988b), Consistent Commodity Aggregates in Market Demand 
Equations, in Measurement in Economics (W. Eichhorn, ed.), Physica-Verlag, Heidel- 
berg, 577-606. 

Blackorby, C. and W. Schworm (1993), The Implications of Additive Consumer Preferences 
in a Multi-Consumer Economy, Review ofEconomic Studies, 60,209-228. 

Blackorby, C. and A. F. Shorrocks (1995), Separability and Aggregation: Collected Works of 
K M. Gorman, Vol. I, Clarendon Press, Oxford. 

Blundell, R., P. Pashardes, and G. Weber (1993), What do We Learn About Consumer De- 
mand Patterns from Micro Data? American Economic Review, 83, 570-597. 

Borooah, V. K. and F. Van Der Ploeg (1986), Oligopoly Power in British Industry, Applied 
Economics, 18,583-598. 

Bronars, S.G. (1987), The Power of Nonparametric Tests of Preference Maximization, Econo- 
metrica, 55,693-698. 

Brown, M. and D. Heien (1972), The S-Branch Utility Tree: A Generalization of the Linear 
Expenditure System, Econometrica, 40, 737-747. 

Buse, A. (1992), Aggregation, Distribution and Dynamics in the Linear and Quadratic Expen- 
diture Systems, Review of Economics and Statistics, 74, 45-53. 

metrics, 19, 287-299. 

ment, Working Paper, Institute of Fiscal Studies, London. 

70, 1-13. 



230 RUSSELL ET AL. 

Chavas, J.-P. (1993), On Aggregation and Its Implications for Aggregate Behavior, Ricerche 
Economiche, 47,201-214. 

Chipman, J. (1974), Homothetic Preferences and Aggregation, Journal of Economic Theory, 
8,26-38. 

Christensen, L., D. C. Jorgenson, and L. J. Lau (1975), Transcendental Logarithmic Utility 
Functions, American Economic Review, 65,367-383. 

Constantinides, G. (1982), Intertemporal Asset Pricing with Heterogeneous Consumers and 
without Demand Aggregation, Journal of Business, 55,253-267. 

Deaton, A. (1986), Demand Analysis, in Handbook of Mathematical Economics, Vol. 3 (K. J. 
Arrow and M. D. Intriligator, eds.), North-Holland, Amsterdam, 1767-1839. 

Deaton, A. S. and J. Muellbauer (1980), An Almost Ideal Demand System, American Eco- 
nomic Review, 70,312-326. 

Debreu, G. (1954), Valuation Equilibrium and Pareto Optimum, in Proceedings ofthe National 
Academy of Sciences of the USA, 46,588-592. 

Debreu, G. (1959), Theory of Value, Wiley, New York. 
Debreu, G. (1974), Excess Demand Functions, Journal of Mathematical Economics, 1,15-21. 
Diewert, W. E. (1971), An Application of the Shephard Duality Theorem: A Generalized Leon- 

tief Production Function, Journal of Political Economy, 79,481407. 
Diewert, W. E. (1973), Afriat and Revealed Preference Theory, Review of Economic Studies, 

40,419-426. 
Diewert, W. E. (1974), Applications of Duality Theory, in Frontiers of Quantitative Economics, 

Vol. 2 (M. Intriligator and D. Kendrick, eds.), North-Holland, New York, 106-171. 
Diewert, W. E. and C. Parkan (1985), Tests for the Consistency of Consumer Data, Journal of 

Econometrics, 30, 127-147. 
Eichenbaum, M., L. Hansen, and K. Singleton (1988), A Time Series Analysis of Representa- 

tive Agent Models of Consumption and Leisure Choice Under Uncertainty, Quarterly 
Journal of Economics, 103,Sl-78. 

Eisenberg, B. (1961), Aggregation of Utility Functions, Management Science, 7,337-350. 
Fisher, F. (1965), Embodied Technical Change and the Existence of an  Aggregate Capital 

Stock, Review of Economic Studies, 32,263-288. 
Fisher, F. (1968a), Embodied Technology and the Existence of Labour and Output Aggregates, 

Review of Economic Studies, 35, 391-412. 
Fisher, F. (1968b), Embodied Technology and Aggregation of Fixed and Movable Capital 

Goods, Review of Economic Studies, 35, 41 7-428. 
Fisher, F. (1969), The Existence of Aggregate Production Functions, Econometrica, 37, 553- 

577. 
Fisher, F. (1982), Aggregate Production Functions Revisited: The Mobility of Capital and the 

Rigidity of Thought, Review ojEconomic Studies, 49,615-626. 
Fisher, F. (1983), On the Simultaneous Existence of Full and Partial Capital Aggregates, Re- 

view of Economic Studies, 50, 197-208. 
Fleissig, A. R., A. R. Hall, and J. J. Seater (1994), GARP, Separability, and the Representative 

Consumer, Working Paper, Department of Economics, North Carolina State University. 
Fortin, N. M. (1991), Fonctions de Production et Biais d'Agrkgation, Annales d'kconomie et 

de Statistigue, 20121, 41-68. 
Freixas, X. and A. Mas-Colell (1987), Engel Curves Leading to the Weak Axiom in the Ag- 

gregate, Econometrica, 55,5 15-53 1. 



ANALYSIS OF DEMAND AND SUPPLY 23 I 

Geary, R. C. (1950), A Note on “A Constant-Utility Index of the Cost of Living,” Review of 
Economic Studies, 1 8 , 6 5 6 6 .  

Gorman, W. M. (1953a), Community Preference Fields, Econometrica, 2 1, 63-80 (reprinted 
as Chapter 15 in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1953b), Klein Aggregates and Conventional Index Numbers, presented to the 
Innsbruck Meeting of the Econometric Society (published as  Chapter 16 in Blackorby 
and Shorrocks 1995). 

Gorman, W. M. (19S9), Separable Utility and Aggregation, Econometrica, 27, 469-481 (re- 
printed as Chapter 3 in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1%1), On a Class of Preference Fields, Metroeconomica, 13,53-56 (reprinted 
as Chapter 1 7  in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1965), Capital Aggregation in Vintage Model, presented to the First World 
Congress of the Econometric Society (published as Chapter 18 in Blackorby and Shor- 
rocks 1995). 

Gorman, W. M. (1967), Aggregates for Variable Goods, typescript, London School of Eco- 
nomics (published as Chapter 18 in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1968a), Measuring the Quantities of Fixed Factors, in Vulue, Capital, and 
Growth: Essuys in Honor of Sir John Hicks (J. N. Wolfe, ed.), Edinburgh University 
Press, Edinburgh, 141-172 (reprinted as Chapter 19 in Blackorby and Shorrocks 

Gorman, W. M. (1%8b), The Structure of Utility Functions, Review of Economic Studies 5, 

Gorman, W. M. (1976), Muellbauer’s Representative Agent, typescript (published as Chapter 

Go. . W. M. (1981), Some Engel Curves, in Essuys in the Theory and Measurement of Con- 
sumer Behaviou,. (A. S. Deaton, ed.), Cambridge University Press, Cambridge, 7-29 
(reprinted as  Chapter 20 in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1982a), Aggregation in the Short and Long Run, typescript, Oxford (published 
as Chapter 2 5  in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1982b), Long-Run Aggregates under Constant Returns, typescript, Oxford 
(published as Chapter 26 in Blackorby and Shorrocks 1995). 

Gorman, W. M. (1990), More Measures for Fixed Factors, in Measurement and Modeling in 
Economics (G. D. Myle?, ed.), North-Holland, Amsterdam (reprinted as Chapter 21 in 
I.lackorby and Shorrocks 1995). 

GourkIoux, C .  (1990), H6tkrog6n6itk 11. Etude des Biais de  Reprksentativitk, Annales d ’ t ~ o -  
nomie P ,  de Statistigue, 17, 18.5-204. 

Grandmont J. M. (1987), Distributions of Preferences and the Law of Demand, Econometricu, 

Grandmont, J. M. (1992), Transformations of the Commodity Space, Behavioral Heterogeneity, 

Green, H. A. J. (1964), Aggregation in Economic Analysis: An Introductory Survey, Princeton 

Hardle, W. and J. Hart (1992), A Bootstrap Test for Positive Definiteness of Income Effect 

Hardle, W., W. Hildenbrand, and M. Jerison (1991), Empirical Evidence on the Law of De- 

1995). 

369-390 (reprinted as Chapter 12 in Blackorby and Shorrocks 1995). 

in Blackorby and Shorrocks 1995). 

5‘,, 155-161. 

and the Aggregation Problem, Journal ‘$Economic Theory, 57, 1-35. 

IJniversity Press, Princeton. 

Matrices, Econometric Theory, 8,276-290. 

mand, Econometrica, 59, 152.5-1 549. 



232 RUSSELL ET AL. 

Hardle, W. and T. M. Stoker (1989), Investigating Smooth Multiple Regression by the Method 

Hausman, J. A., W. K. Newey, and J. L. Powell(1995), Nonlinear Errors in Variables Estima- 

Heineke, J. M. (1979), Exact Aggregation and Estimation, Economics Letters, 4, 157-162. 
Heineke, J. M. (1993), Exact Aggregation and Consumer Demand Systems, Richerche Eco- 

Heineke, J. M. and H. M. Shefrin (1982), The Finite Basis Property and Exact Aggregation, 

Heineke, J. M. and H. M. Shefrin (1986), On an  Implication of a Theorem Due to Gorman, 

Heineke, J. M. and H. M. Shefrin (1987), On Some Global Properties of Gorman Class Demand 

Heineke, J. M. and H. M. Shefrin (1988), Exact Aggregation and the Finite Basis Property, 

Heineke, J. M. and H. M. Shefrin (1990), Aggregation and Identification in Consumer Demand 

Hildenbrand, W. (1983), On the Law of Demand, Econometrica, 51,997-1019. 
Hildenbrand, W. (1989), Facts and Ideas in Microeconomic Theory, European Economic Re- 

view, 33,251-276. 
Hildenbrand, W. (1993), Market Demand: Theory and Empirical Evidence, Princeton Univer- 

sity Press, Princeton. 
Houthakker, H. S. (1950), Revealed Preference and the Utility Function, Economicu, 17,159- 

174. 
Houthhakker, H. S. (1963), Some Problems in the International Comparison of Consumption 

Patterns, in Les Besoins de Biens de Consommation (R. Mosse, ed.), Centre National de  
la Recherche Scientifique, Grenoble. 

Howe, H., R. A. Pollak, and T. J. Wales (1979), Theory and Time Series Estimation of the 
Quadratic Expenditure System, Econometrica, 47, 1231-1247. 

Huang, C. (1987), An Intertemporal General Equilibrium Asset Pricing Model: The Case of 
Diffusion Information, Econometrica, 55, 117-142. 

Jerison, M. (1984a), Aggregation and Pairwise Aggregation of Demand When the Distribution 
of Income Is Fixed, Journal of Economic Theory, 33, 1-31. 

Jerison, M. (1984b), Social Welfare and the Unrepresentative Representative Consumer, manu- 
script, SUNY Albany. 

Jorgenson, D. W. (1986), Econometric Methods for Modeling Producer Behavior, in Handbook 
oJ’Mathematica1 Economics, Vol. 3 (K. J. Arrow and M. D. Intriligator, eds.), North- 
Holland, Amsterdam, 184 1-191 5. 

Jorgenson, D. W., L. J. Lau, and T. M. Stoker (1980), Welfare Comparison under Exact Aggre- 
gation, American Economic Review, 70, 268-272, 

Jorgenson, D. W., L. J. Lau, and T. M. Stoker (1981), Aggregate Consumer Behavior and In- 
dividual Welfare, in Macroeconomic Analysis (D. Currie, R. Nobay, and D. Peel, eds.), 
Croom-Helm, London, 35-61. 

Jorgenson, D. W., L. J. Lau, and T. M. Stoker (1982), The Transcendental Logarithmic Model 
of Aggregate Consumer Behavior, in Advances in Econometrics, Vol. 1 (R .  Baseman and 
G. Rhodes, eds.), JAI Press, Greenwich, 97-238. 

of Average Derivatives, Journal ofthe American Statistical Association, 84,986-995. 

tion of Some Engel Curves, Journal of Econometrics, 65,205-233. 

nomiche, 47,215-232. 

Economics Letters, 9,  209-213. 

Economics Letters, 21, 321-323. 

Systems, Economics Letters, 25, 155-160. 

International Economic Review, 29, 525-538. 

Systems, Journal of Econometrics, 44, 377-390. 



ANALYSIS OF DEMAND AND SUPPLY 233 

Jorgenson, D. W. and D. T. Slesnick (1984), Aggregate Consumer Behaviour and the Measure- 
ment of Inequality, Review of Economic Studies, 51, 369-392. 

Kirman, A. (1992), Whom or What Does the Representative Individual Represent? Journal 
of Economic Perspectives, 6, 117-136. 

Kirman, A. and K. Koch (1986), Market Excess Demand Functions in Exchange Economies: 
Identical Preferences and Collinear Endowments, Review of Economic Studies, 53, 
457-463. 

Klein, L. (1946a), Macroeconomics and the Theory of Rational Behaviour, Econometrica, 14, 

Klein, L. R. (1946b), Remarks on the Theory of Aggregation, Econometrica, 14,303-312. 
Klein, L. R. and H. Rubin (1947-1948), A Constant Utility Index of the Cost of Living, Review 

of Economic Studies, 15,84-87. 
Koo, Y. C. (1963), An Empirical Test of Revealed Preference Theory, Econometrica, 31,646- 

664. 
Koopmans, T. C. (1957), Three Essays on the State of Economic Science, McGraw-Hill, New 

York. 
Kydland, F. E. and E. C. Prescott (1982), Time to Build and Aggregate Fluctuations, Econo- 

metrica, 50, 1345-1370. 
Lau, L. J .  (1977a), Existence Conditions for Aggregate Demand Functions: The Case of a 

Single Index, IMSSS Technical Report 248, Stanford University. 
Lau, L. J. (1977b), Existence Conditions for Aggregate Demand Functions: The Case of Mul- 

tiple Indexes, IMSSS Technical Report 249, Stanford University. 
Lau, L. J. (1982), A Note on the Fundamental Theorem of Exact Aggregation, Economics Let- 

ters, 9, 119-126. 
Lau, L. J. (1986), Functional Forms in Econometric Model Building, in Hundbook ofEcono- 

metrics, Vol. 111 (Z. Griliches and M. D. Intriligator, eds.), North-Holland, Amsterdam. 
Leontief, W. W. (1947a), Introduction to a Theory of the Internal Structure of Functional Re- 

lationships, Econometrica, 15, 361-373. 
Leontief, W. W. (1947b), A Note on the Interrelation of Subsets of Independent Variables 

of a Continuous function with Continuous First Derivatives, Bulletin ofthe American 
,‘Mathematical Society, 5 3 ,  343-350. 

Lewbel, A. (1987), Characterizing Some Gorman Engel Curves, Econometrica, 55, 1451- 
1459. 

Lewbel, A. (1989a), Nesting the AIDS and Translog Demand Systems, Internationul Economic 
Review, 30,349-356. 

Lewbel, A. (1989b), A Demand System Rank Theorem, Econometrica, 57, 701-705. 
Lewbel, A. (1990), Full Rank Demand Systems, International Economic Review, 31, 289- 

Lewbel, A. (1991), The Rank of Demand Systems: Theory and Nonparametric Estimation, 

Lewbel, A. (1994), An Examination of Werner Hildenbrand’s Market Demand, Journal of 

Manser, M. E. and R. J. McDonald (1988), An Analysis of Substitution Bias in Measuring 

Mantel, R. (1974), On the Characterization of Aggregate Excess Demand, Journal ofEconomic 

93-108. 

300. 

Econometrica, 59, 71 1-730. 

Economic Literature, 32, 1832-1841. 

Inflation, 1959-8.5, Econometricu, 56,909-930. 

Theory, 7, 348-353. 



234 RUSSELL ET AL. 

Mantel, R. (1979), Homothetic Preferences and Community Excess Demand Functions, Jour- 
nal of Economic Theory, 12, 197-201. 

Mas-Colell, A. and W. Neuefeind (1977), Some Generic Properties of Aggregate Excess De- 
mand and an Application, Econometric, 45, 591-599. 

May, K. (1946), The Aggregation Problem for a One-Industry Model, Econometrica, 14,285- 
298. 

Muellbauer, J. (1975), Aggregation, Income Distribution, and Consumer Demand, Review of 
Economic Studies, 62,269-283. 

Muellbauer, J. (1976), Community Preferences and the Representative Consumer, Economet- 
rica, 44,525-543. 

Nataf, A. (1948), Sur la Possibilitk de la Construction de  Certains Macromodeles, Economet- 
rica, 16,232-244. 

Nicol, C. J. (1994), Identifiability of Household Equivalence Scales through Exact Aggrega- 
tion: Some Empirical Results, Canadiun Journal of Economics, 27, 307-328. 

Pollak, R. A. and T. J. Wales (1978), Estimation of Complete Demand Systems from House- 
hold Budget Data: The Linear and Quadratic Expenditure Systems, American Economic 
Review, 68,348-359. 

Pollak, R. A. and T. J. Wales (1979), Welfare Comparisons and Equivalent Scales, American 
Economic Review, 69,2 16-22 1. 

Pollak, R. A. and T. J. Wales (1980), Comparison of the Quadratic Expenditure System and 
Translog Demand Systems with Alternative Specifications of Demographic Effects, 
Econometrica, 48, 595-612. 

Pu, S. (1946), A Note on Macroeconomics, Econometrica, 14,299-302. 
Russell, R. R. and M. 0. Tengesdal (1996), On the Power of Non-Parametric Tests of the 

Representative-Consumer Hypothesis, Discussion Paper, University of California, 
Riverside. 

Russell, T. (1983), On a Theorem of Gorman, Economics Letters, 11,233-224. 
Samuelson, P. A. (1938), A Note on the Pure Theory of Consumer’s Behavior, Economica, 5, 

Samuelson, P. A. (1946-47), Consumption Theory in Terms of Revealed Preference, Econom- 

Samuelson, P. A. (1956), Social Indifference Curves, Quarterly Journal of Economics, 70, 1- 

Scitovsky, T. (1942), A Reconsideration of the Theory of Tariffs, Review of Economic Studies, 

Shafer, W. and H. Sonnenschein (1982), Market Demand and Excess Demand Functions, in 
Handbook of Mathematical Economics (K. Arrow and M. D. Intrilligator, eds.), North- 
Holland, Amsterdam, 671-692. 

Shapiro, P. (1977), Aggregation and the Existence of a Social Utility Function, Journal of 
Economic Theory, 16,475-480. 

Shapiro, P. and S. Braithwait (1979), Empirical Tests for the Existence of Group Utility Func- 
tions, Review of Economic Studies, 46,653-665. 

Shephard, R. W. (1970), Theory ofCost and Production Functions, Princeton University Press, 
Prince ton. 

Solow, R. (1964), Capital, Labor, and Income in Manufacturing, in The Behavior of Income 
Shares, Studies in Income and Wealth, National Bureau of Economic Research 27, 
Princeton University Press, Princeton, 101-128. 

61-71. 

ica, 15,243-253. 

22. 

9,89-110. 



ANALYSIS OF DEMAND AND SUPPLY 235 

Sonnenschein, H. (1973), Do Walras' Identity and Continuity Characterize the Class of Com- 
munity Excess Demand Functions? Journal of Economic Theory, 6,345-354. 

Sonnenschein, H. (1974), Market Excess Demand Functions, Econometrica, 40, 549-563. 
Sono, M. (1%1), The Effect of Price Changes on the Demand and Supply of Separable Goods, 

Stoker, T. M. (1984), Completeness, Distribution Restrictions, and the Form of Aggregate 

Stoker, T. M. (1986a), The Distributional Welfare Effects of Rising Prices in the United States: 

Stoker, T. M. (1986b), Simple Tests of Distributional Effects on Macroeconomic Equations, 

Stoker, T. M. (1993), Empirical Approaches to the Problem of Aggregation over Individuals, 

Stone, R. (1954), Linear Expenditure Systems and Demand Analysis: An Application to the 

Theil, H. (1954), Linear Aggregation ofEconomic Relations, North-Holland, Amsterdam. 
Van Daal, J. and A. H. Q. M. Merkies (1984), Aggregation in Economic Research, D. Reidel, 

Van Daal, J. and A. H. Q. M. Merkies (1989), A Note on the Quadratic Expenditure Model, 

Varian, Hi. R. (1982), The Nonparametric Approach to Demand Analysis, Econometrica, 50, 

Varian, H. R. (1992), Microeconomic Analysis, W. W. Norton, New York. 
Vilks, A. (1988a), Approximate Aggregation of Excess Demand Functions, Journal of Eco- 

nomic Theory, 45,417-424. 
Vilks, A. (1988b), Consistent Aggregation of a General Equilibrium Model, in Measurement 

in Economics (Wolfgang Eichhorn, ed.), Physica-Verlag, Heidelberg, 691-703. 
White, H. (1980), Using Least Squares to Approximate Unknown Regression Functions, In- 

ternational Economic Review, 21, 149-170. 

International Economic Review, 2,239-27 1. 

Functions, Econometrica, 52,887-907. 

The 1970's Experience, American Economic Review, 76,335-349. 

Journal of Political Economy, 94,763-795. 

Journal of Economic Literature, 31, 1827-1874. 

Pattern of British Demand, The Economic Journal, 64,511-527. 

Dordrecht . 

Econometrica, 57, 1439-1443. 

945-973. 



This page intentionally left blank 



Spatial Dependence in Linear 
Regression Models with an 
Introduction to Spatial Econornetrics 

Luc Anselin 
West Virginia University, Morgantown, West Virginia 

Anil K. Bera 
University oflllinois, Charnpaign, lllinois 

1. INTRODUCTION 

Econometric theory and practice have been dominated by a focus on the time di- 
mension. In stark contrast to the voluminous literature on serial dependence over 
time (e.g. ,  the extensive review in King 1987), there is scant attention paid to its 
counterpart in cross-sectional data, spatial autocorrelation. For example, there is 
no reference to the concept nor to its relevance in estimation or specification test- 
ing in any of the commonly cited econometrics texts, such as Judge et al. (1982), 
Greene (1993), or Poirier (1995), or even in more advanced ones, such as Fomby 
et al. (1984), Amemiya (1985), Judge et al. (1995), and Davidson and MacKinnon 
(1993) (a rare exception is Johnston 1984). In contrast, spatial autocorrelation and 
spatial statistics in general are widely accepted as highly relevant in the analysis of 
cross-sectional data in the physical sciences, such as in statistical mechanics, ecol- 
ogy, forestry, geology, soil science, medical imaging, and epidemiology (for a recent 
review, see National Research Council 1991). 

In spite of this lack of recognition in “mainstream” econometrics, applied 
workers saw the need to explicitly deal with problems caused by spatial autocorrela- 
tion in cross-sectional data used in the implementation of regional and multiregional 
econonietric models. In the early 1970s, the Belgian economist Jean Paelinck coined 
the term “spatial econometrics” to designate a field of applied econometrics dealing 
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with estimation and specification problems that arose from this. In their classic book 
Spatial Econometrics, Paelinck and Klaassen (1979) outlined five characteristics of 
the field: (1) the role of spatial interdependence in spatial models; (2) the asymmetry 
in spatial relations; (3) the importance of explanatory factors located in other spaces; 
(4) differentiation between ex post and ex ante interaction; and (5) explicit model- 
ing of space (Paelinck and Klaassen 1979, pp. 5-1 1; see also Hordijk and Paelinck 
1976, Paelinck 1982). In Anselin (1988a, p. 7), spatial econometrics is defined more 
broadly as “the collection of techniques that deal with the peculiarities caused by 
space in the statistical analysis of regional science models.” The latter incorporate 
regions, location and spatial interaction explicitly and form the basis of most recent 
empirical work in urban and regional economics, real estate economics, transporta- 
tion economics, and economic geography. The emphasis on the model as the starting 
point differentiates spatial econometrics from the broader field of spatial statistics, 
although they share a common methodological framework. Much of the contributions 
to spatial econometrics have appeared in specialized journals in regional science 
and analytical geography, such as the Journal of Regional Science, Regional Science 
and Urban Economics, Papers in Regional Science, International Regional Science 
Review, Geographical Analysis, and Environment and Planning A. Early reviews of 
the relevant methodological issues are given in Hordijk (1974, 1979), Bartels and 
Hordijk (1977), Arora and Brown (1977), Paelinck and Klaassen (1979), Bartels and 
Ketellapper (1979), Cliff and Ord (1981), Blommestein (1983), and Anselin (1980, 
1988a, 1988b). More recent collections of papers dealing with spatial econometric 
issues are contained in Anselin (1992a), Anselin and Florax (1995a), and Anselin 
and Rey (1997). 

Recently, an attention to the spatial econometric perspective has started to ap- 
pear in mainstream empirical economics as well. This focus on spatial dependence 
has occurred in a range of fields in economics, not only in urban, real estate, and 
regional economics, where the importance of location and spatial interaction is fun- 
damental, but also in public economics, agricultural and environmental economics, 
and industrial organization. Recent examples of empirical studies in mainstream 
economics that explicitly incorporated spatial dependence are, among others, the 
analysis of U S .  state expenditure patterns in Case et al. (1993), an examination of 
recreation expenditures by municipalities in the Los Angeles region in Murdoch 
et al. (1993), pricing in agricultural markets in LeSage (1993), potential spillovers 
from public infrastructure investments in Holtz-Eakin (1994), the determination of 
agricultural land values in Benirschka and Binkley (1994), the choice of retail sales 
contracts by integrated oil companies in Pinkse and Slade (1995), strategic interac- 
tion among local governments in Brueckner (1996), and models of nations’ decisions 
to ratify environmental controls in Beron et al. (1996) and Murdoch et al. (1996). 
Substantively, this follows from a renewed focus on Marshallian externalities, spa- 
tial spillovers, copy-catting, and other forms of behavior where an economic actor 
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mimics or reacts to the actions of other actors, for example in the new economic 
geography of Krugman (1991), in theories of endogenous growth (Romer 1986), and 
in analyses of local political economy (Besley and Case 1995). Second, a number 
of important policy issues have received an explicit spatial dimension, such as the 
designation of target areas or enterprise zones in development economics and the 
identification of underserved mortgage markets in urban areas. A more practical 
reason is the increased availability of large socioeconomic data sets with detailed 
spatial information, such as county-level economic information in the REIS CD- 
ROM (Regional Economic Information System) of the U.S. Department of Commerce, 
and tract -level data on mortgage transactions collected under the Housing Mortgage 
Disclosure Act (HMDA) of 1975. 

From a methodological viewpoint, spatial dependence is not only important 
when it is part of the model, be it in a theoretical or policy framework, but it can 
also arise due to certain misspecifications. For instance, often the cross-sectional 
data used in model estimation and specification testing are imperfect, which may 
cause spatial dependence as a side effect. For example, census tracts are not housing 
markets and counties are not labor markets, but they are used as proxies to record 
transactions in these markets. Specifically, a mismatch between the spatial unit of 
observation and the spatial extent of the economic phenomena under consideration 
will result in spatial measurement errors and spatial autocorrelation between these 
errors in adjoining locations (Anselin 1988a). 

In this chapter, we review the methodological issues related to the explicit 
treatment of spatial dependence in linear regression models. Specifically, we focus 
on the specification of the structure of spatial dependence (or spatial autocorrela- 
tion), on the estimation of models with spatial dependence and on specification tests 
to detect spatial dependence in regression models. Our review is organized accord- 
ingly into three main sections. We have limited the review to cross-sectional settings 
for linear regression models and do not consider dependence in space-time nor mod- 
els for limited dependent variables. Whereas there is an established body of theory 
and methodology to deal with the standard regression case, this is not (yet) the case 
for techniques to analyze the other types of models. Both areas are currently the sub- 
ject of active ongoing research (see, e.g., some of the papers in Anselin and Florax 
1995a). Also, we have chosen to focus on a classical framework and do not consider 
Bayesian approaches to spatial econometrics (e.g., Hepple 1995a, 1995b, LeSage 
1997). 

In our review, we attempt to outline the extent to which general econometric 
principles can be applied to deal with spatial dependence. Spatial eeonometrics is 
often erroneously considered to consist of a straightforward extension of techniques 
to handle dependence in the time domain to two dimensions. In this chapter, we 
emphasize the limitations of such a perspective and stress the need to explicitly 
tackle the spatial aspects of model specification, estimation, and diagnostic testing. 
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I I .  THE PROBLEM OF SPATIAL AUTOCORRELATION 

We begin this review with a closer look at the concept of spatial dependence, or its 
weaker expression, spatial autocorrelation, and how it differs from the more familiar 
serial correlation in the time domain. While, in a strict sense, spatial autocorrela- 
tion and spatial dependence clearly are not synonymous, we will use the terms inter- 
changeably. In most applications, the weaker term autocorrelation (as a moment of 
the joint distribution) is used and only seldom has the focus been on the joint density 
as such (a recent exception is the semiparametric framework suggested in Brett and 
Pinkse 1997). 

In econometrics, an attention to serial correlation has been the domain of time- 
series analysis and the typical focus of interest in the specification and estimation 
of models for cross-sectional data is heteroskedasticity. Until recently, spatial auto- 
correlation was largely ignored in this context, or treated in the form of groupwise 
equicorrelation, e.g., as the result of certain survey designs (King and Evans 1986). 
In other disciplines, primarily in physical sciences, such as geology (Isaaks and 
Srivastava 1989, Cressie 1991) and ecology (Legendre 1993), but also in geogra- 
phy (Griffith 1987, Haining 1990) and in social network analysis in sociology and 
psychology (Dow et al. 1982, Doreian et al. 1984, Leenders 1995), the dependence 
across “space” (in its most general sense) has been much more central. For example, 
Tobler’s (1979) “first law of geography” states that “everything is related to every- 
thing else, but closer things more so,” suggesting spatial dependence to be the rule 
rather than exception. A large body of spatial statistical techniques has been devel- 
oped to deal with such dependencies (for a recent comprehensive review, see Cressie 
1993; other classic references are Cliff and Ord 1973,1981, Ripley 1981,1988, Up- 
ton and Fingleton 1985, 1989). Useful in this respect is Cressie’s (1993) taxonomy 
of spatial data strucures differentiating between point patterns, geostatistical data, 
and lattice data. In the physical sciences, the dominant underlying assumption tends 
to be that of a continuous spatial surface, necessitating the so-called geostatistical 
perspective rather than discrete observation points (or regions) in space, for which 
the so-called lattice perspective is relevant. The latter is more appropriate for eco- 
nomic data, since it is to some extent an extension of the ordering of observations on 
a one-dimensional time axis to an ordering in a two-dimensional space. It will be the 
almost exclusive focus of our review. 

The traditional emphasis in econometrics on heterogeneity in cross-sectional 
data is not necessarily misplaced, since the distinction between spatial heterogene- 
ity and spatial autocorrelation is not always obvious. More specifically, in a single 
cross section the two may be observationally equivalent. For example, when a spatial 
cluster of exceptionally large residuals is observed for a regression model, it cannot 
be ascertained without further structure whether this is an instance of heteroskedas- 
ticity (i.e., clustering of outliers) or spatial autocorrelation (a spatial stochastic pro- 
cess yielding clustered outliers). This problem is known in the literature as “true” 
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contagion versus “apparent” contagion and is a major methodological issue in fields 
such as epidemiology (see, e.g., Johnson and Kotz 1969, Chapter 9, for a formal dis- 
tinction between different forms of contagious distributions). The approach taken in 
spatial econometrics is to impose structure on the problem through the specifica- 
tion of a model, coupled with extensive specification testing for potential departures 
from the null model. This emphasis on the “model” distinguishes (albeit rather sub- 
tly) spatial econometrics from the broader field of spatial statistics (see also Anselin 
1988a, p. 10, for further discussion of the distinction between the two). In our re- 
view, we deal almost exclusively with spatial autocorrelation. Once this aspect of 
the model is specified, the heterogeneity may be added in a standard manner (see 
Anselin 1988a, Chap. 9, and Anselin 1990a). 

In this section, we first focus on a formal definition of spatial autocorrelation. 
This is followed by a consideration of how it may be operationalized in tests and 
econometric specifications by means of spatial weights and spatial lag operators. 
We close with a review of different ways in which spatial autocorrelation may be 
incorporated in the specification of econometric models in the form of spatial lag 
dependence, spatial error dependence, or higher-order spatial processes. 

A. Defining Spatial Autocorrelation 

Spatial autocorrelation can be loosely defined as the coincidence of value similarity 
with locational similarity. In other words, high or low values for a random variable 
tend to cluster in space (positive spatial autocorrelation), or locations tend to be sur- 
rounded by neighbors with very dissimilar values (negative spatial autocorrelation). 
Of the two types of spatial autocorrelation, positive autocorrelation is by far the more 
intuitive. Negative spatial autocorrelation implies a checkerboard pattern of values 
and does not always have a meaningful substantive interpretation (for a formal dis- 
cussion, see Whittle 1954). The existence of positive spatial autocorrelation implies 
that a sample contains less information than an uncorrelated counterpart. In order 
to properly carry out statistical inference, this loss of information must be explicitly 
acknowledged in estimation and diagnostics tests. This is the essence of the problem 
of spatial autocorrelation in applied econometrics. 

A crucial issue in the definition of spatial autocorrelation is the notion of “lo- 
cational similarity,” or the determination of those locations for which the values of 
the random variable are correlated. Such locations are referred to as “neighbors,” 
though strictly speaking this does not necessarily mean that they need to be collo- 
cated (for a more formal definition of neighbors in terms of the conditional density 
function, see Anselin 1988a, pp. 16-17; Cressie 1993, p. 414). 

More formally, the existence of spatial autocorrelation may be expressed by 
the following moment condition: 
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where yi and yj are observations on a random variable at locations i and j in space, 
and i, j can be points (e.g., locations of stores, metropolitan areas, measured as lati- 
tude and longitude) or area1 units (e.g., states, counties or census tracts). Of course, 
there is nothing spatial per se to the nonzero covariance in (1). It only becomes spatial 
when the pairs of i, j locations for which the correlation is nonzero have a meaningful 
interpretation in terms of spatial structure, spatial interaction or spatial arrangement 
of observations. 

For a set of N observations on cross-sectional data, it is impossible to es- 
timate the potentially N by N covariance terms or correlations directly from the 
data. This is a fundamental problem in dealing with spatial autocorrelation and ne- 
cessitates the imposition of structure. More specifically, in order for the problem 
to become tractable, it is necessary to impose sufficient constraints on the N by 
N spatial interaction (covariance) matrix such that a finite number of parameters 
characterizing the correlation can be efficiently estimated. Note how this contrasts 
with the situation where repeated observations are available, e.g., in panel data 
sets. In such instances, under the proper conditions, the elements of the covari- 
ance matrix may be estimated explicitly, in a vector autoregressive approach (for a 
review, see Liitkepohl 1991) or by means of so-called generalized estimating equa- 
tions (Liang and Zeger 1986, Zeger and Liang 1986, Zeger et al. 1988, Albert and 
McShane 1995). 

In contrast, when the N observations are considered as fixed effects in space, 
there is insufficient information in the data to estimate the N by N interactions. In- 
creasing the sample size does not help, since the number of interactions increases 
with N 2 ,  or, in other words, there is an incidental parameter problem. Alternatively, 
when the locations are conceptualized in a random-effects framework, sufficient con- 
straints must be imposed to preclude that the range of interaction implied by a par- 
ticular spatial stochastic process increases faster than the sample size as asymptotics 
are invoked to obtain the properties of estimators and test statistics. 

Two main approaches exist in the literature to impose constraints on the in- 
teraction. In geostatistics, all pairs of locations are sorted according to the distance 
that separates them, and the strength of covariance (correlation) between them is ex- 
pressed as a continuous function of this distance, in a so-called variogram or semi- 
variogram (Cressie 1993, Chap. 2). As pointed out, the geostatistical perspective is 
seldom taken in empirical economics, since i t  necessitates an underlying process 
that is continuous over space. In such an approach, observations (points) are consid- 
ered to form a sample from an underlying continuous spatial process, which is hard 
to maintain when the data consist of counties or census tracts. A possible excep- 
tion may be the study of real estate data, where the locations of transactions may be 
conceptualized as points and analyzed using a geostatistical framework, as in Dubin 
(1988, 1992). Such an approach is termed “direct representation” in the literature, 
since the elements of the covariance (or correlation) matrix are modeled directly as 
functions of distances. 
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Our main focus in this review will be on the second approach, the so-called 
lattice perspective. For each data point, a relevant “neighborhood set” must be de- 
fined, consisting of those other locations that (potentially) interact with it. For each 
observation i, this yields a spatial ordering of locations j E S; (where S; is the neigh- 
borhood set), which can then be exploited to specify a spatial stochastic process. The 
covariance structure between observations is thus not modeled directly, but follows 
from the particular form of the stochastic process. We return to this issue below. First, 
we review the operational specification of the neighborhood set for each observation 
by means of a so-called spatial weights matrix. 

B. Spatial Weights 

A spatial weights matrix is a N by N positive and symmetric matrix W which ex- 
presses for each observation (row) those locations (columns) that belong to its neigh- 
borhood set as nonzero elements. More formally, wlJ = 1 when i and j are neighbors, 
and wlJ = 0 otherwise. By convention, the diagonal elements of the weights matrix 
are set to zero. For ease of interpretation, the weights matrix is often standardized 
such that the elements of a row sum to one. The elements of a row-standardized 
weights matrix thus equal ws = w l J / c /  w,,. This ensures that all weights are be- 
tween 0 and 1 and facilitates the interpretation of operations with the weights matrix 
as an averaging of neighboring values (see Section 1I.C). It also ensures that the spa- 
tial parameters in many spatial stochastic processes are comparable between mod- 
els. This is not intuitively obvious, but relates to constraints imposed in a maximum 
likelihood estimation framework. For the latter to be valid, spatial autoregressive pa- 
rameters must be constrained to lie in the interval 1/mmln to l/mm,,, where mm,n and 
U,,, are respectively the smallest (on the real line) and largest eigenvalues of the ma- 
trix W (Anselin 1982). For a row-standardized weights matrix, the largest eigenvalue 
is always +1 (Ord 1975), which facilitates the interpretation of the autoregressive 
coefficient as a “correlation” (for an alternative view, see Kelejian and Robinson 
1995). A side effect of row standardization is that the resulting matrix is likely to 
become asymmetric (since E, w,, # Cl  w,,), even though the original matrix may 
have been symmetric. In the calculation of several estimators and test statistics, this 
complicates computational matters considerably. 

The specification of which elements are nonzero in the spatial weights matrix 
is a matter of considerable arbitrariness and a wide range of suggestions have been 
offered in the literature. The “traditional” approach relies on the geography or spa- 
tial arrangement of the observations, designating area1 units as “neighbors” when 
they have a border in common (first-order contiguity) or are within a given distance 
of each other; i.e., wlJ = 1 for d, 5 6, where d, is the distance between units i 
and j ,  and 6 is a distance cutoff value (distance-based contiguity). This geographic 
approach has been generalized to so-called Cliff-Ord weights that consist of a func- 
tion of the relative length of the common border, adjusted by the inverse distance 
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between two observations (Cliff and Ord 1973, 1981). Formally, Cliff-Ord weights 
may be expressed as: 

where bi; is the share of the common border between units i and j in the perimeter of i 
(and hence bi; does not necessarily equal bji), and a! and are parameters. More gen- 
erally, the weights may be specified to express any measure of “potential interaction” 
between units i and j (Anselin 1988a, Chap. 3). For example, this may be related 
directly to spatial interaction theory and the notion of potential, with wi, = l/d: or 
wij = e-pdi j ,  or more complex distance metrics may be implemented (Anselin 1980, 
Murdoch et al. 1993). Typically, the parameters of the distance function are set a 
priori (e.g., a = 2, to reflect a gravity function) and not estimated jointly with the 
other coefficients in the model. Clearly, when they are estimated jointly, the resulting 
specification will be highly nonlinear (Anselin 1980, Chap. 8, Ancot et al. 1986, 
Bolduc et al. 1989, 1992, 1995). 

Other specifications of spatial weights are possible as well. In sociometrics, 
the weights reflect whether or not two individuals belong to the same social network 
(Doreian 1980). In economic applications, the use of weights based on “economic” 
distance has been suggested, among others, in Case et al. (1993). Specifically, they 
suggest to use weights (before row standardization) of the form wij = l/lxi - xi), 
where xi and x; are observations on “meaningful” socioeconomic characteristics, 
such as per capita income or percentage of the population in a given racial or ethnic 
group. 

It is important to keep in mind that, irrespective of how the spatial weights 
are specified, the resulting spatial process must satisfy the necessary regularity con- 
ditions such that asymptotics may be invoked to obtain the properties of estimators 
and test statistics. For example, this requires constraints on the extent of the range of 
interaction and/or the degree of heterogeneity implied by the weights matrices (the 
so-called mixing conditions; Anselin 1988a, Chap. 5). Specifically, this means that 
weights must be nonnegative and remain finite, and that they correspond to a proper 
metric (Anselin 1980). Clearly, this may pose a problem with socioeconomic weights 
when xi = x; for some observation pairs, which may be the case for poorly chosen 
economic determinants (e.g., when two states have the same percentage in a given 
racial group). Similarly, when multiple observations belong to the same area1 unit 
(e.g., different banks located in the same county) the distance between them must 
be set to something other than zero (or l / d ~  + 00). Finally, in the standard estima- 
tion and testing approaches, the weights matrix is taken to be exogenous. Therefore, 
indicators for the socioeconomic weights should be chosen with great care to en- 
sure their exogeneity, unless their endogeneity is considered explicitly in the model 
specification. 
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Operationally, the derivation of spatial weights from the location and spatial 
arrangement of observations must be carried out by means of a geographic informa- 
tion system, since for all but the smallest data sets a visual inspection of a map is im- 
practical (for implementation details, see Anselin et al. 1993a, 1993b, Anselin 1995, 
Can 1996). A mechanical construction of spatial weights, particularly when based 
on a distance criterion, may easily result in observations to become “unconnected” 
or isolated islands. Consequently, the row in the weights matrix that corresponds to 
these observations will consist of zero values. While not inherently invalidating es- 
timation or testing procedures, the unconnected observations imply a loss of degrees 
of freedom, since, for all practical purposes, they are eliminated from consideration 
in any “spatial” model. This must be explicitly accounted for. 

C. Spatial Lag Operator 

In time-series analysis, values for “neighboring” observations can be easily ex- 
pressed by means of a backward- or forward-shift operator on the one-dimensional 
time axis, yielding lagged variables yt-k or yt+k, where k is the desired shift (or lag). 
By contrast, there is no equivalent and unambiguous spatial shift operator. Only on 
a regular grid structure is there a potential solution, although not as straightforward 
as in the time domain. Following the so-called rook criterion for contiguity, each grid 
cell or vertex on a regular lattice, ( i ,  j ) ,  has four neighbors: ( i+ 1, j )  (east), ( i  - 1, j )  
(west), (i, j + 1) (north), and ( i ,  j - 1) (south). Corresponding to this are four spa- 
tially shifted variables: yi+1,, , y ~ -  1,  j ,  y~,;+l, and yi,;- 1, each of which may require 
its own parameter in a spatial process model. However, the rook criterion is not the 
only way spatial neighbors may be defined on a regular lattice, nor does the number 
of neighbors necessarily equal 4. For example, following the queen criterion, each 
observation has eight neighbors, yielding eight spatially shifted variables; the four 
for the rook criterion, as well as y~-1,;+1, yi-l,;-l, yi+l,j+l and yi+l,;-i, again each 
possibly with its own parameter. This notion of a spatial shift operator on a regular 
lattice has received only limited attention in the literature, mostly with a theoretical 
focus and primarily in statistical mechanics, in so-called Ising models (for details, 
see Cressie 1993, pp. 425-426). 

On an irregular spatial structure, which characterizes most economic appli- 
cations, this formal notion of spatial shift is impractical, since the number of shifts 
would differ by observation, thereby making any statistical analysis extremely un- 
wieldy. Instead, the concept of a spatial lug operator is used, which consists of a 
weighted average of the values at neighboring locations. The weights are fixed and 
exogenous, similar to a distributed lag in time series. Formally, a spatial lag operator 
is obtained as the product of a spatial weights matrix W with the vector of observa- 
tions on a random variable y, or Wy. Each element of the resulting spatially lagged 
variable equals c/ wijyj, i.e., a weighted average of the y values in the neighbor set 
Si, since wij = 0 for j 4 Si. Row standardization of the spatial weights matrix en- 
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sures that a spatial lag operation yields a smoothing of the neighboring values, since 
the positive weights sum to one. 

Higher-order spatial lag operators are defined in a recursive manner, by ap- 
plying the spatial weights matrix to a lower-order lagged variable. For example, a 
second-order spatial lag is obtained as W ( W y ) ,  or W2y. However, in contrast to 
time series, where such an operation is unambiguous, higher-order spatial operators 
yield redundant and circular neighbor relations, which must be eliminated to ensure 
proper estimation and inference (Blommestein 1985, Blommestein and Koper 1992, 
Anselin and Smirnov 1996). 

In spatial econometrics, spatial autocorrelation is modeled by means of a func- 
tional relationship between a variable. y, or error term, E ,  and its associated spatial 
lag, respectively Wy for a spatially lagged dependent variable and WE for a spatially 
lagged error term. The resulting specifications are referred to as spatial lug and spa- 
tial error models, the general properties of which we consider next. 

D. Spatial Lag Dependence 

Spatial lag dependence in a regression model is similar to the inclusion of a serially 
autoregressive term for the dependent variable ( ~ ~ - 1 )  in a time-series context. In 
spatial econometrics, this is referred to as a mixed regressive, spatial autoregressive 
model (Anselin 1988a, p. 35). Formally, 

where y is a N by 1 vector of observations on the dependent variable, Wy is the 
corresponding spatially lagged dependent variable for weights matrix W ,  X is a N 
by K matrix of observations on the explanatory (exogenous) variables, E is a N by 
1 vector of error terms, p is the spatial autoregressive parameter, and B is a K by 
1 vector of regression coefficients. The presence of the spatial lag term Wy on the 
right side of (3) will induce a nonzero correlation with the error term, similar to the 
presence of an endogenous variable, but different from a serially lagged dependent 
variable in the time-series case. In the latter model, yt-l is uncorrelated with E ~ ,  in 
the absence of serial correlation in the errors. In contrast, (Wy); is always correlated 
with E L ,  irrespective of the correlation structure of the errors. Moreover, the spatial 
lag for a given observation i is not only correlated with the error term at i ,  but also with 
the error terms at all other locations. Therefore, unlike what holds in the time-series 
case, an ordinary least-squares estimator will not be consistent for this specification 
(Anselin 1988a, Chap. 6). This can be seen from a slight reformulation of the model: 

y = (I - p W ) - ' X p  + (I .- pW)- '& (4) 

The matrix inverse (I - pW)- '  is a full matrix, and not triangular as in the time- 
series case (where dependence is only one-directional), yielding an infinite series 
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that involves error terms at all locations, ( I + p W + p 2 W 2 + p 3 W w ” + -  . . )E.  It therefore 
readily follows that (Wy)i contains the element ~ i ,  as well as other ~ j ,  j # i. Thus, 

E[(Wy);E;] = E[{W(I - pW)-lE}iEi] # 0 

The spatial dynamics embedded in the structure of the spatial process model (3) 
determine the form of the covariance between the observations at different locations 
(i.e., the spatial autocorrelation). For the mixed regressive, spatial autoregressive 
model this can easily be seen to equal ( I  - pW)-’SZ(I - p W ’ ) - ’ ,  where SZ is the 
variance matrix for the error term E (note that for a row-standardized spatial weights 
matrix, W # W’). Without loss of generality, the latter can be assumed to be diagonal 
and homoskedastic, or, $2 = a21, and hence, Var[y] = a‘([ - p W ) - ’ ( I  - pW’)-’ 
The resulting variance matrix is full, implying that each location is correlated with 
every other location, but in a fashion that decays with the order of contiguity (the 
powers of W in the series expansion of (I - p W ) - ’ ) .  

The implication of this particular variance structure is that the simultaneity 
embedded in the Wy term must be explicitly accounted for, either in a maximum 
likelihood estimation framework, or by using a proper set of instrumental variables. 
We turn to this issue in Section 111. When a spatially lagged dependent variable 
is ignored in a model specification, but present in the underlying data generating 
process, the resulting specification error is of the omitted variable type. This implies 
that OLS estimates in the nonspatial model (i.e., the “standard” approach) will be 
biased and inconsistent. 

The interpretation of a significant spatial autoregressive coefficient p is not 
always straightforward. Two situations can be distinguished. In one, the significant 
spatial lag term indicates true contagion or substantive spatial dependence, i.e., it 
measures the extent of spatial spillovers, copy-catting or diffusion. This interpreta- 
tion is valid when the actors under consideration match the spatial unit of observation 
and the spillover is the result of a theoretical model. For example, this holds for the 
models of farmers’ innovation adoption in Case (1992), state expenditures and tax 
setting behavior in Case et al. (1993) and Besley and Case (1995), strategic inter- 
action among California cities in the choice of growth controls in Brueckner (1996), 
and in the median voter model for recreation expenditures of Murdoch et al. (1993). 
Alternatively, the spatial lag model may be used to deal with spatial autocorrelation 
that results from a mismatch between the spatial scale of the phenomenon under 
study and the spatial scale at which i t  is measured. Clearly, when data are based 
on administratively determined units such as census tracts or blocks, there is no 
good reason to expect economic behavior to conform to these units. For example, 
this interpretation is useful for the spatial autoregressive models of urban housing 
and mortgage markets in Can (1992), Can and Megbolugbe (1997), and Anselin and 
Can (1996). Since urban housing and mortgage markets operate at a different spatial 
scale than census tracts, positive spatial autocorrelation may be expected and will 
in fact result in the sample containing less information than a truly “independent” 
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sample of observations. The inclusion of a spatially lagged dependent variable in the 
model specification is a way to correct for this loss of information. In other words, 
it allows for the proper interpretation of the significance of the exogenous variables 
in the model (the X ) ,  after the spatial effects have been corrected for, or filtered out 
(see also Getis 1995 for a discussion of alternative approaches to spatial filtering). 
More formally, the spatial lag model may be reexpressed as 

( I  - p W ) y  = X p  + E (6) 

where (I - p W ) y  is a spatially filtered dependent variable, i.e., with the effect of 
spatial autocorrelation taken out. This is roughly similar to first differencing of the 
dependent variable in time series, except that a value of p = 1 is not in the allowable 
parameter space for (3) and thus p must be estimated explicitly (Section 111). 

E. Spatial Error Dependence 

A second way to incorporate spatial autocorrelation in a regression model is to spec- 
ify a spatial process for the disturbance terms. The resulting error covariance will be 
nonspherical, and thus OLS estimates, while still unbiased, will be inefficient. More 
efficient estimators are obtained by taking advantage of the particular structure of 
the error covariance implied by the spatial process. Different spatial processes lead 
to different error covariances, with varying implications about the range and extent 
of spatial interaction in the model. The most common specification is a spatial au- 
toregressive process in the error terms: 

y = x p + E  (7) 

i.e., a linear regression with error vector E ,  and 

where h is the spatial autoregressive coefficient for the error lag WE (to distinguish 
the notation from the spatial autoregressive coefficient p in a spatial lag model), 
and 6 is an uncorrelated and (without loss of generality) homoskedastic error term. 
Alternatively, this may be expressed as 

y = X/3 3- ( I  - hW)-'C$ (9) 

From this follows the error covariance as 

E[&&'] = a2(I - hW)- ' ( I  - hW')-' = a2[(I - hW)'(I  - hW)]-l (10) 

a structure identical to that for the dependent variable in the spatial lag model. 
Therefore, a spatial autoregressive error process leads to a nonzero error covari- 
ance between every pair of observations, but decreasing in magnitude with the or- 
der of contiguity. Moreover, the complex structure in the inverse matrices in (10) 
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yields nonconstant diagonal elements in the error covariance matrix, thus inducing 
heteroskedasticity in E ,  irrespective of the heteroskedasticity of (an illuminating 
numerical illustration of this feature is given in McMillen 1992). We have a much 
simpler situation for the case of autocorrelation in the time-series context where the 
model is written as ct = h t - l  + el .  Therefore, this is a special case of (8) with 

0 0 0 ~ ~ ~ 0 0  
w = w T = j o  1 0 0 ~ ~ * 0 0  1 0  I I I 0 01 

0 0 0  * *  1 0  

where each observation is connected to only its immediate past value. As we know, 
for this case, Var(&,) = a2/( 1 - h2) for all t .  That is, autocorrelation does not induce 
heteroskedasticity. In a time-series model, heteroskedasticity can come only through 
t l  given the above AR(1) model. 

A second complicating factor in specification testing is the great degree of 
similarity between a spatial lag and a spatial error model, as suggested by the error 
covariance structure. In fact, after premultiplying both sides of (9) by (I - hW) and 
moving the spatial lag term to the right side, a spatial Durbin model results (Anselin 
1980): 

y = hWy + xg - hwxg + I$ (1 1) 

This model has a spatial lag structure (but with the spatial autoregressive parameter 
h from (8)) with a well-behaved error term 6. However, the equivalence between (7)- 
(8) and (1 1) imposes a set of nonlinear common factor constraints on the coefficients. 
Indeed, for (11) to be a proper spatial error model, the coefficients of the lagged ex- 
ogenous variables WX must equal minus the product of the spatial autoregressive 
coefficient h and the coefficients of X ,  for a total of K constraints (for technical de- 
tails, see Anselin 1988a, pp. 226-229). 

Spatial error dependence may be interpreted as a nuisance (and the parameter 
h as a nuisance parameter) in the sense that it reflects spatial autocorrelation in 
measurement errors or in variables that are otherwise not crucial to the model (i.e., 
the “ignored” variables spillover across the spatial units of observation). It primarily 
causes a problem of inefficiency in the regression estimates, which may be remedied 
by increasing the sample size or by exploiting consistent estimates of the nuisance 
parameter. For example, this is the interpretation offered in the model of agricultural 
land values in Benirschka and Binkley (1994). 

The spatial autoregressive error model can also be expressed in terms of spa- 
tially filtered variables, but slightly different from (6). After moving the spatial lag 
variable in (11) to the left hand side, the following expression results: 

(I - hW)y  = (I - hW)XB + 6 (12) 
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This is a regression model with spatially filtered dependent and explanatory vari- 
ables and with an uncorrelated error term 6, similar to first differencing of both y 
and X in time-series models. As in the spatial lag model, h = 1 is outside the pa- 
rameter space and thus h must be estimated jointly with the other coefficients of the 
model (see Section 111). 

Several alternatives to the spatial autoregressive error process (8) have been 
suggested in the literature, though none of them have been implemented much in 
practice. A spatial moving average error process is specified as (Cliff and Ord 1981, 
Haining 1988, 1990): 

E = y W t + C  (13) 

where y is the spatial moving average coefficient and e is an uncorrelated error term. 
This process thus specifies the error term at each location to consist of a location- 
specific part, Ci (“innovation”), as well as a weighted average (smoothing) of the 
errors at neighboring locations, W t .  The resulting error covariance matrix is 

E[&&’] = 0 2 ( I  + ) /W)(I  + YW’) = o‘[I+ ) / ( W  + W’) + y2WW’]  (14) 

Note that in contrast to ( lO) ,  the structure in (14) does not yield a full covariance ma- 
trix. Nonzero covariances are only found for first-order ( W + W’) and second-order 
(WW’) neighbors, thus implying much less overall interaction than the autoregres- 
sive process. Again, unless all observations have the same number of neighbors and 
identical weights, the diagonal elements of (14) will not be constant, inducing het- 
eroskedasticity in &, irrespective of the nature of 6. 

A very similar structure to (13) is the spatial error components model of Kele- 
jian and Robinson (1993, 1995), in which the disturbance is a sum of two indepen- 
dent error terms, one associated with the “region” (a smoothing of neighboring errors) 
and one which is location-specific: 

& = W t i - @  (15) 

(16) 

with 6 and @ as independent error components. The resulting error covariance is 

E [ € € / ]  = a;r + a;WW’ 

where a$ and o2 are the variance components associated with respectively the 
location-specific and regional error parts. The spatial interaction implied by (16) 
is even more limited than for (14), pertaining only to the first- and second-order 
neighbors contained in the nonzero elements of WW’. Heteroskedasticity is implied 
unless all locations have the same number of neighbors and identical weights, a sit- 
uation excluded by the assumptions needed for the proper asymptotics in the model 
(Kelejian and Robinson 1993, p. 301). 

In sum, every type of spatially dependent error process induces heteroskedas- 
ticity as well as spatially autocorrelated errors, which will greatly complicate spec- 
ification testing in practice. Note that the “direct representation” approach based 

6 
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on geostatistical principles does not suffer from this problem. For example, in Du- 
bin (1988, 1992), the elements of the error covariance matrix are expressed di- 
rectly as functions of the distance dij between the corresponding observations, e.g., 
E [ E ; E ~ ]  = y ~ e ( - ~ i j / ~ ~ ) ,  with y1 and y2 as parameters. Since e-dii’Y2 = 1, irrespec- 
tive of the value of y2, the errors E will be homoskedastic unless explicitly modeled 
otherwise. 

F. Higher-Order Spatial Processes 

Several authors have suggested processes that combine spatial lag with spatial error 
dependence, though such specifications have seen only limited applications. The 
most general form is the spatial autoregressive, moving-average (SARMA) process 
outlined by Huang (1984). Formally, a SARMA(p, q)  process can be expressed as 

(17) Y = Pl WlY + p2w2y + * .  * + p p & y  + & 

for the spatial autoregressive part, and 

for the moving-average part, in the same notation as above. For greater generality, a 
regressive component X/3  can be added to (17) as well. The spatial autocorrelation 
pattern resulting from this general formulation is highly complex. Models that imple- 
ment aspects of this form are the second-order SAR specification in Brandsma and 
Ketellapper (1979a) and higher-order SAR models in Blommestein (1983, 1985). 

A slightly different specification combines a first-order spatial autoregressive 
lag with a first-order spatial autoregressive error (Anselin 1980, Chap. 6; Anselin 
1988a. pp. 60-65). It has been applied in a number of empirical studies, most no- 
tably in  the work of Case, such as the analysis of household demand (Case 1987, 
1991), of innovation diffusion (Case 1992), and local public finance (Case et al. 
1993, Besley and Case 1995). Formally, the model can be expressed as a combi- 
nation of (3) with (8), although care must be taken to differentiate the weights matrix 
used in the spatial lag process from that in the spatial error process: 

After some algebra, combining (20) and (19) yields the following reduced form: 

y = p w l y + ~ w 2 y - h p w 2 w l y + X / 3 - h w ~ X q + ~  (21) 

i.e., an extended form of the spatial Durbin specification but with an additional set of 
nonlinear constraints on the parameters. Note that when Wl and W2 do not overlap, for 
example when they pertain to different orders of contiguity, the product W2Wl = 0 
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and (21) reduces to a biparametric spatial lag formulation, albeit with additional 
constraints on the parameters. On the other hand, when Wl and W2 are the same, 
the parameters p and h are only identified when at least one exogenous variable is 
included in X (in addition to the constant term) and when the nonlinear constraints 
are enforced (Anselin 1980, p. 176). When Wl = W2 = W ,  the model becomes 

y = ( p  + h)Wy - hpW2y + xg - hwxg + 6 (22) 

Clearly, the coefficients of W y  and W2y alone do not allow for a separate identi- 
fication of p and A. Using the nonlinear constraints between the B and -hp (the 
coefficients of X and W X )  yields an estimate of h, but this will only be unique when 
the constraints are strictly enforced. Similarly, an estimate of h may result in two 
possible estimates for p (one using the coefficient of W y ,  the other of W 2 y )  unless 
the nonlinear constraints are strictly enforced. This considerably complicates esti- 
mation strategies for this model. In contrast, a SARMA(1, 1) model does not suffer 
from this problem. 

In empirical practice, an alternative perspective on the need for higher-order 
processes is to consider them to be a result of a poorly specified weights matrix rather 
than as a realistic data generating process. For example, if the weights matrix in a 
spatial lag model underbounds the true spatial interaction in the data, there will be 
remaining spatial error autocorrelation. This may lead one to implement a higher- 
order process, while for a properly specified weights matrix no such process is needed 
(see Florax and Rey 1995 for a discussion of the effects of misspecified weights). In 
practice, this will require a careful specification search for the proper form of the 
spatial dependence in the model, an issue to which we return in Section IV. First, we 
consider the estimation of regression models that incorporate spatial autocorrelation 
of a spatial lag or error form. 

111. ESTIMATING SPATIAL PROCESS MODELS 

Similar to when serial dependence is present in the time domain, classical sam- 
pling theory no longer holds for spatially autocorrelated data, and estimation and 
inference must rely on the asymptotic properties of stochastic processes. In essence, 
rather than considering N observations as independent pieces of information, they 
are conceptualized as a single realization of a process. In order to carry out mean- 
ingful inference on the parameters of such a process, constraints must be imposed 
on both heterogeneity and the range of interaction. While many properties of esti- 
mators for spatial process models may be based on the same principles as developed 
for dependent (and heterogeneous) processes in the time domain (e.g., the formal 
properties outlined in White 19%, 1994), there are some important differences as 
well. Before covering specific estimation procedures, we discuss these differences 
in some detail, focusing in particular on the notion of stationarity in space and the 
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distinction between simultaneous and conditional spatial processes. Next, we turn 
to a review of maximum likelihood and instrumental variables estimators for spatial 
regression models. We close with a brief discussion of operational implementation 
and software issues. 

A. Spatial Stochastic Processes 

As in the time domain, in order to carry out meaningful inference for a spatial pro- 
cess, some degree of equilibrium must be assumed in the sense that the stochastic 
generating mechanism is taken to work uniformly over space. In a strict sense, a 
notion of “spatial stationarity” accomplishes this objective since it imposes the con- 
dition that any joint distribution of the random variable under consideration over a 
subset of the locations depends only on the relative position of these observations in 
terms of their relative orientation (angle) and distance. Even stricter is a notion of 
isotropy, for which only distance matters and orientation is irrelevant. For practical 
purposes, the notions of stationarity and isotropy are too demanding and not veri- 
fiable. Hence, weaker conditions are typically imposed in the form of stationarity 
of the first (mean) and second moments (variance, covariance, or spatial autocor- 
relation). Even weaker requirements follow from the so-called intrinsic hypothesis 
in geostatistics, which requires only stationarity of the variance of the increments, 
leading to the notion of a variogram (for technical details, see Ripley 1988, pp. 6-7; 
Cressie 1993, pp. 52-68). 

For stationary processes in the time domain, the careful inspection of auto- 
covariance and autocorrelation functions is a powerful aid in the identification of 
the model, e.g., following the familiar Box-Jenkins approach (Box et al. 1994). One 
could transpose this notion to spatial processes and consider spatial autocorrela- 
tion functions indexed by order of contiguity as the basis for model identification. 
However, as Hooper and Hewings (1981) have shown, this is only appropriate for a 
very restrictive class of spatial processes on regular lattice structures. For applied 
work in empirical economics, such restrictions are impractical and the spatial de- 
pendence in the model must be specified explicitly by means of the spatial lag and 
spatial error structures reviewed in the previous section. Inference may be based 
on the asymptotic properties (central limit theorems and laws of large numbers) of 
so-called dependent and heterogeneous processes, as developed in White and Do- 
mowitz (1984) and White (1984, 1994). Central to these notions is the concept of 
mixing sequences, allowing for a trade-off between the range of dependence and the 
extent of heterogeneity (see Anselin 1988a, pp. 45-46 for an intuitive extension of 
this to spatial econometric models), While rigorous proofs of these properties have 
not been derived for the explicit spatial case, the notion of a spatial weights matrix 
based on a proper metric is general enough to meet the criteria imposed by mixing 
conditions. In a spatial econometric approach then, a spatial lag model is considered 
to be a special case of simultaneity or endogeneity with dependence, and a spatial 
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error model is a special case of a nonspherical error term, both of which can be 
tackled by means of generally established econometric theory, though not as direct 
extensions of the time-series analog. 

The emphasis on “simultaneity” in spatial econometrics differs somewhat from 
the approach taken in spatial statistics, where conditional models are often consid- 
ered to be more natural (Cressie 1993, p. 410). Again, the spatial case differs sub- 
stantially from the time-series one since in space a conditional and simultaneous 
approach are no longer equivalent (Brook 1964, Besag 1974, Cressie 1993, pp. 402- 
410). More specifically, in the time domain a Markov chain stochastic process can be 
expressed in terms of the joint density (ignoring a starting point to ease notation) as 

where z refers to the vector of observations for all time points, and Qt is a function 
that only contains the observation at t and at t - 1 (hence, a Markov chain). The 
conditional density for this process is 

illustrating the lack of memory of the process (i.e., the conditional density depends 
only on the first-order lag). Due to the one-directional nature of dependence in time, 
(23) and (24) are equivalent (Cressie 1993, p. 403). An extension of (23) to the spatial 
domain may be formulated as 

N 

Prob[t] = n Q;[z;, z;; j E S;] 
i= 1 

(25) 

where the z; only refer to those locations that are part of the neighborhood set S; of 
i. A conditional specification would be 

Prob[z;(z;, j # i] = Prob[zi(zj; j E S;]  (26) 

i.e., the conditional density of z; ,  given observations at all other locations only de- 
pends on those locations in the neighborhood set of i. The fundamental result in this 
respect goes back to Besag (1974), who showed that the conditional specification 
only yields a proper joint distribution when the so-called Hammersley-Clifford the- 
orem is satisfied, which imposes constraints on the type and range of dependencies 
in (26). Also, while a joint density specification always yields a proper conditional 
specification, in range of spatial interaction implied is not necessarily the same. 
For example, Cressie (1993, p. 409) illustrates how a first-order symmetric spatial 
autoregressive process corresponds with a conditional specification that includes 
third-order neighbors (Haining 1990, pp. 89-90). Consequently, it does make a dif- 
ference whether one approaches a spatially autocorrelated phenomenon by means of 
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(26) versus (25). This also has implications for the substantive interpretation of the 
model results, as illustrated for an analysis of retail pricing of gasoline in Haining 
(1984). 

In practice, it is often easier to estimate a conditional model, especially for 
nonnorrnal distributions (e.g., auto-Poisson, autologistic). Also, a conditional speci- 
fication is more appropriate when the focus is on spatial prediction or interpolation. 
For general estimation and inference, however, the constraints imposed on the type 
and range of spatial interaction in order for the conditional density to be proper 
are often highly impractical in empirical work. For example, an auto-Poisson model 
(conditional model for spatially autocorrelated counts) only allows negative autocor- 
relation and hence is inappropriate for any analysis of clustering in space. 

In the remainder, our focus will be exclusively on simultaneously specified 
models, which is a more natural approach from a spatial econometric perspective 
(Anselin 1988a, Cressie 1993, p. 410). 

B. Maximum Likelihood Estimation 

The first comprehensive treatment of maximum likelihood estimation of regression 
models that incorporate spatial autocorrelation in the form of a spatial lag or a spatial 
error term was given by Ord (1975). The point of departure is a joint normal density 
for the errors in the model, from which the likelihood function is derived. An impor- 
tant aspect of this likelihood function is the Jacobian of the transformation, which 
takes the form ( I  - p W (  and ( I  - hW( in respectively the spatial lag and spatial 
autoregressive error models, with p and h as the autoregressive coefficient and W as 
the spatial weights matrix. The need for this Jacobian can be seen from expression 
(4) for the spatial lag model and (12) for the spatial autoregressive error model (for a 
more extensive treatment, see Anselin 1988a, Chap. 6). In contrast to the time-series 
case, the spatial Jacobian is not the determinant of a triangular matrix, but of a full 
matrix. This would complicate computational matters considerably, were it not that 
Ord (1975) showed how it can be expressed in function of the eigenvalues w ;  of the 
spatial weights matrix as 

Using this simplification, under the normality assumption, the log-likelihood 
function for the spatial lag model (3) follows in a straightforward manner as 
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in the same notatiorl as used in Section 11. This expression clearly illustrates why, 
in contrast to the time-series case, ordinary least squares (i.e., the minimization of 
the last term in (28)) is not maximum likelihood, since it ignores the Jacobian term. 
From the usual first-order conditions, the ML estimates for p and 0’ in a spatial lag 
model are obtained as (for details, see Ord 1975, Anselin 1980, Chap. 4: Anselin 
1988a, Chap. 6): 

p M L  = ( x ’ X ) - l x ’ ( I  - p W ) y  (29) 

and 

Conditional upon p,  these estimates are simply OLS applied to the spatially filtered 
dependent variable and the explanatory variables in (6). Substitution of (29) and (30) 
in the log-likelihood function yields a concentrated log-likelihood as a nonlinear 
function of a single parameter p: 

where eo and eL are residuals in a regression of y on X and Wy on X ,  respectively (for 
technical details, see Anselin 1980, Chap. 4). A maximum likelihood estimate for p 
is obtained from a numerical optimization of the concentrated log-likelihood function 
(31). Based on the framework outlined in Heijmans and Magnus (1986a, 1986b), 
it can be shown that the resulting estimates have the usual asymptotic properties, 
including consistency, normality, and asymptotic efficiency. The asymptotic variance 
matrix follows as the inverse of the information matrix 

X’ w* xp 

0 2  

X ’ X  
0 2  

0 

- 

where WA = W(1 - pW)-’ to simplify notation. Note that while the covariance 
between p and the error variance is zero, as in the standard regression model, this 
is not the case for p and the error variance. This lack of block diagonality in the 
information matrix for the spatial lag model will lead to some interesting results on 
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the structure of specification tests, to which we turn in Section IV, It is yet another 
distinguishing characteristic between the spatial case and its analog in time series. 

Maximum likelihood estimation of the models with spatial error autocorrela- 
tion that were covered in Section 1I.E can be approached by considering them as 
special cases of general parametrized nonspherical error terms, for which E[&&’] = 
a252(8), with 8 as a vector of parameters. For example, from (32) for a spatial au- 
toregressive error term, it follows that 

R(A) = [(I - AW)’(I - AV)]-’ (33) 

As shown in Anselin (1980, Chap. 5) ,  maximum likelihood estimation of such spec- 
ifications can be carried out as an application of the general framework outlined in 
Magnus (1978). Most spatial processes satisfy the necessary regularity conditions, 
although this is not necessarily the case for direct representation models (Mardia 
and Marshal1 1984, Warnes and Ripley 1987, Mardia and Watkins 1989). Under the 
assumption of normality, the log-likelihood function takes on the usual form: 

for example, with 52 (A) as in (33). First-order conditions yield the familiar general- 
ized least-squares estimates for B, conditional upon A: 

p M L  = [ x’52 (A) - X I -  X’R (A) - l y (35) 

For a spatial autoregressive error process, 52(A)-’ = (I - AW)’(I - AW), so that 
for known A, the maximum likelihood estimates are equivalent to OLS applied to the 
spatially filtered variables in (12). Note that for other forms of error dependence, the 
GLS expression (35) will involve the inverse of an N by N error covariance matrix. 
For example, for the spatial moving average errors, as in (13), 52 (y ) - ’  = [I+ y ( W +  
W’) + y2WW’] - ’ ,  which does not yield a direct expression in terms of spatially 
transformed y and X. 

Obtaining a consistent estimate for A is not as straightforward as in the time- 
series case. As pointed out, OLS does not yield a consistent estimate in a spatial lag 
model. It therefore cannot be used to obtain an estimate for A from a regression of 
residuals e on We, as in the familiar Cochrane-Orcutt procedure for serially autore- 
gressive errors in the time domain. Instead, an explicit optimization of the likelihood 
function must be carried out. One approach is to use the iterative solution of the first- 
order conditions in Magnus (1978, p. 283): 
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where e = y - X/3 are GLS residuals. For a spatial autoregressive error process, 
X2-'/8h = -W - W' + AW'W. Solution of condition (36) can be obtained by 
numerical means. Alternatively, the GLS expression for t9 and similar solution of 
the first-order conditions for o2 can be substituted into the log-likelihood function 
to yield a concentrated log-likelihood as a nonlinear function of the autoregressive 
parameter h (for technical details, see Anselin 1980, Chap. 5): 

with u'u = yLy~ - ~ L X L [ X ~ ~ X L ] - ~  X i y [ , ,  and y~ and X L  as spatially filtered variables, 
respectively y - hWy and X - hWX. The Jacobian term follows from In 1 f'2 (A) 1 = 
2 In 11 - hW( and the Ord simplification in terms of eigenvalues of W .  

The asymptotic variance for the ML estimates conforms to the Magnus (1978) 
and Breusch (1980) general form and is block diagonal between the regression 
(b)  and error variance parameters o2 and 8. For example, for a spatial autoregres- 
sive error, the asymptotic variance for the regression coefficients is AsyVar[B] = 
a 2 [ X ; X ~ ] - ' .  The variance block for the error parameters is 

1 
where, for ease of notation, Wjj = W(I - hW)- ' .  Due to the block-diagonal form 
of the asymptotic variance matrix, knowledge of the precision of h does not affect 
the precision of the /3 estimates. Consequently, if the latter is the primary inter- 
est, the complex inverse and trace expressions in (38) need not be computed, as 
in Benirschka and Binkley (1994). A significance test for the spatial error parame- 
ter can be based on a likelihood ratio test, in a straightforward way (Anselin 1988a, 
Chap. 8). 

Higher-order spatial processes can be estimated using the same general prin- 
ciples, although the resulting log-likelihood function will be highly nonlinear and the 
use of a concentrated log-likelihood becomes less useful (Anselin 1980, Chap. 6). 

The fit of spatial process models estimated by means of maximum likelihood 
procedures should not be based on the traditional R 2 ,  which will be misleading in 
the presence of spatial autocorrelation. Instead, the fit of the model may be assessed 
by comparing the maximized log-likelihood or an adjusted form to take into account 
the number of parameters in the models, such as the familiar AIC (Anselin 198813). 

C. GMM/IV Estimation 

The view of a spatially lagged dependent variable Wy in the spatial lag model as a 
form of endogeneity or simultaneity suggests an instrumental variable (IV) approach 
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to estimation (Anselin l980,1988a, Chap. 7; 1990b). Since the main problem is the 
correlation between Wy and the error term in (3), the choice of proper instruments 
for Wy will yield consistent estimates. However, as usual, the efficiency of these 
estimates depends crucially on the choice of the instruments and may be poor in 
small samples. On the other hand, in contrast to the maximum likelihood approach 
just outlined, IV estimation does not require an assumption of normality. 

Using the standard econometric results (for a review, see Bowden and Turk- 
ington 1984), and with Q as a P by N matrix ( P  >_ K + 1) of instruments (including 
K “exogenous” variables from X ) ,  the IV or 2SLS estimate follows as 

with Z = [Wy XI, AsyVar(Blv) = a2[Z’Q(Q’Q)-] 0’21-’, and a2 = (y - ZBrv)’ 

Clearly, this approach can also be applied to models where other endogenous 
(y - ZBlV>/N. 

variables appear in addition to the spatially lagged dependent variable, as in a si- 
multaneous equation context, provided that the instrument set is augmented to deal 
with this additional endogeneity. It also forms the basis for a bootstrap approach to 
the estimation of spatial lag models (Anselin 1990b). Moreover, it is easily extended 
to deal with more complex error structures, e.g., reflecting forms of heteroskedastic- 
ity or spatial error dependence (Anselin 1988a, pp. 86-88). The formal properties of 
such an approach are derived in Kelejian and Robinson (1993) for a general methods 
of moments estimator (GMM) in the model y = p Wy + Xg + E with spatial error 
components, E = We + +. The GMM estimator takes the form 

BCMM = [z’Q(Q’hQ)-’ Q’Z]-’Z‘Q(Q’hQ)-’Q’y 

where A is a consistent estimate for the error covariance matrix. The asymptotic vari- 
ance for BGMM is [Z’Q(Q’hQ)-’Q’Z]-’. For the spatial error components model, 
Kelejian and Robinson (1993, pp. 302-304) suggest an estimate for h = @11 + 
$2 WW’, with $1 and $2 as the least-squares estimates in an auxilliary regression 
of the squared IV residuals (y - ZBrv) on a constant and the diagonal elements 
of WW‘. 

A particularly attractive application of GLS-IV estimation in spatial lag mod- 
els is a special case of the familiar White heteroskedasticity-consistent covariance 
estimator (White 1984, Bowden and Turkington 1984, p. 91). The estimator is as in 
(40), but Q’AQ is estimated by Q’QQ, where Q is a diagonal matrix of squared IV 
residuals, in the usual fashion. This provides a way to obtain consistent estimates 
for the spatial autoregressive parameter p in the presence of heteroskedasticity of 
unknown form, often a needed feature in applied empirical work. 

A crucial issue in instrumental variables estimation is the choice of the instru- 
ments. In spatial econometrics, several suggestions have been made to guide the se- 
lection of instruments for Wy (for a review, see Anselin 1988a, pp. 84-86; Land and 
Deane 1992). Recently, Kelejian and Robinson (1993 p. 302) formally demonstrated 
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the consistency of BGMM in the spatial lag model with instruments consisting of first- 
order and higher-order spatially lagged explanatory variables ( W X ,  W 2 X ,  etc.). 

An important feature of the instrumental variables approach is that estima- 
tion can easily be carried out by means of standard econometric software, provided 
that the spatial lags can be computed as the result of common matrix manipulations 
(Anselin and Hudak 1992). In contrast, the maximum likelihood approach requires 
specialized routines to implement the nonlinear optimization of the log-likelihood 
(or concentrated log-likelihood). We next turn to some operational issues related to 
this. 

D. Operational Implementation and Illustration 

To date, none of the widely available econometric software packages contain specific 
routines to implement maximum likelihood estimation of spatial process models or 
to carry out specification tests for spatial autocorrelation in regression models. This 
lack of attention to the analysis of the lattice data structures that are most relevant 
in empirical economics contrasts with a relatively large range of software for spatial 
data analysis in the physical sciences, geared to point patterns and geostatistical 
data. Examples of these are the GSLIB library (Deutsch and Journel 1992) and the 
recent S+Spatialstats add-on to the S-PLUS statistical software (MathSoft 1996). 
While the latter does include some analyses for lattice data, estimation is limited to 
maximum likelihood of spatial error models with autoregressive or moving-average 
structures. However, the spatial lag model is not covered and specification diagnos- 
tics are totally absent. 

The only self-contained software package specifically geared to spatial econo- 
metric analysis in SpaceStat (Anselin 1992b, 1995). It contains both maximum like- 
lihood and instrumental variables estimators for spatial lag and error models, as well 
as ways to estimate heteroskedastic specifications and a wide range of diagnostics 
for spatial effects. In addition, Spacestat also includes extensive features to carry out 
exploratory spatial data analysis as well as utilities to create and manipulate spatial 
weights matrices and interface with geographic information systems. 

There are two major practical issues that must be resolved to implement the 
estimation of spatial lag and spatial error models. The first is the need to construct 
spatially lagged variables from observations on the dependent variable or residual 
term. This is relevant for both instrumental variables (IV, 2SLS, GMM) as well as 
maximum likelihood estimation, In principle, the lag can be computed as a simple 
matrix multiplication of the spatial weights matrix W with the vector of observa- 
tions, say Wy. This is straightforward to implement in most econometric software 
packages that contain matrix algebra routines (specific examples for Gauss, Splus, 
Limdep, Rats and Shazam are given in Anselin and Hudak 1992, Table 2, p. 514). 
In practice, however, the size of the matrix that can be manipulated by economet- 
ric software is severely limited and insufficient for most empirical applications, un- 
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less sparse matrix routines can be exploited (avoiding the need to store a full N by 
N matrix). This is increasingly the case in state-of-the-art matrix algebra packages 
(e.g., Matlab, Gauss), but still fairly uncommon in application-oriented economet- 
ric software; hence, the computation of spatial lags will typically necessitate some 
programming effort on the part of the user (the construction of spatial lags based on 
sparse spatial weights formats in SpaceStat is discussed in Anselin 1995). Once the 
spatial lagged dependent variables are computed, IV estimation of the spatial lag 
model can be carried out with any standard econometric package. 
. The other major operational issue pertains only to maximum likelihood esti- 
mation. It is the need to manipulate large matrices of dimension equal to the number 
of observations in the asymptotic variance matrices (32) and (38) and in the Jaco- 
bian term (27) of the log-likelihoods (31) and (37). In contrast to the time-series case, 
the matrix W is not triangular and hence a host of computational simplifications are 
not applicable. The problem is most serious in the computation of the asymptotic 
variance matrix of the maximum likelihood estimates. The inverse matrices in both 
WA = W(1-  pW)- '  of (32) and WB = W(1-  hW)-' of (38) are full matrices which 
do not lend themselves to the application of sparse matrix algorithms. For low values 
of the autoregressive parameters, a power expansion of (I - pW)-' or (I - ATV)-' 
may be a reasonable approximation to the inverse, e.g., (I - p W ) - '  = Ck pkWk+ 
error, with k = 0, 1 ,  . . . , K ,  such that p K  < 6, where 6 is a sufficiently small value. 
However, this will involve some computing effort in the construction of the powers of 
the weights matrices and is increasingly burdensome for higher values of the autore- 
gressive parameter. In general, for all practical purposes, the size of the problem for 
which an asymptotic variance matrix can be computed is constrained by the largest 
matrix inverse that can be carried out with acceptable numerical precision in a given 
softwarehardware environment. In current desktop settings, this typically ranges 
from a few hlindred to a few thousand observations. While this makes it impossible 
to compute asymptotic t-tests for all the parameters in spatial models with very large 
numbers of observations, it does not preclude asymptotic inference. In fact, as we ar- 
gued in Section III.B, due to the block diagonality of the asymptotic variance matrix 
in the spatial error case, asymptotic t-statistics can be constructed for the estimated 
j? coefficients without knowledge of the precision of the autoregressive parameter h 
(see also Benirschka and Binkley 1994, Pace and Barry 1996). Inference on the au- 
toregressive parameter can be based on a likelihood ratio test (Anselin 1988a, Chap. 
6). A similar approach can be taken in the spatial lag model. However, in contrast 
to the error case, asymptotic t-tests can no longer be constructed for the estimated j? 
coefficients, since the asymptotic variance matrix (32) is not block diagonal. Instead, 
likelihood ratio tests must be considered explicitly for any subset of coefficients of 
interest (requiring a separate optimization for each specification; see Pace and Barry 
1997). 

With the primary objective of obtaining consistent estimates for the parameters 
in spatial regression models, a number of authors have suggested ways to manipu- 
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late popular statistical and econometric software packages in order to maximize the 
log-likelihoods (28) and (37). Examples of such efforts are routines for ML estima- 
tion of the spatial lag and spatial autoregressive error model in Systat, SAS, Gauss, 
Limdep, Shazam, Rats and S-PLUS (Bivand 1992, Griffith 1993, Anselin and Hu- 
dak 1992, Anselin et al. 1993b). The common theme among these approaches is to 
find a way to convert the log-likelihoods for the spatial models to a form amenable 
for use with standard nonlinear optimization routines. Such routines proceed incre- 
mentally, in the sense that the likelihood is built up from a sum of elements that 
correspond to individual observations. At first sight, the Jacobian term in the spatial 
models would preclude this. However, taking advantage of the Ord decomposition in 
terms of eigenvalues, pseudo-observations can be constructed for the elements of the 
Jacobian. Specifically, each term 1 - pwi is considered to correspond to a pseudo- 
variable o;, and is summed over all “observations.” For example, for the spatial lag 
model, the log-likelihood (ignoring constant terms) can be expressed as 

which fits the format expected by most nonlinear optimization routines. Examples 
of practical implementations are listed in Anselin and Hudak (1992, Table 10, p. 
533) and extensive source code for various econometric software packages is given 
in Anselin et al. (1993b). 

One problem with this approach is that the asymptotic variance matrices com- 
puted by the routines tend to be based on a numerical approximation and do not 
necessarily correspond to the analytical expressions in (32) and (38). This may lead 
to slight differences in inference depending on the software package that is used 
(Anselin and Hudak 1992, Table 10, p. 533). An alternative approach that does not 
require the computation of eigenvalues is based on sparse matrix algorithms to effi- 
ciently compute the determinant of the Jacobian at each iteration of the optimization 
routine. While this allows the estimation of models for very large data sets (tens of 
thousands of observations), for example, by using the specialized routines in the Mat- 
lab software, this does not solve the asymptotic variance matrix problem. Inference 
therefore must be based on likelihood ratio statistics (for details and implementation, 
see Pace and Barry 1996,1997). 

To illustrate the various spatial models and their estimation, the results for 
the parameters in a simple spatial model of crime estimated for 49 neighborhoods 
in Columbus, Ohio, are presented in Table 1 .  The model and results are based on 
Anselin (1988a, pp. 187-196) and have been used in a number of papers to bench- 
mark different estimators and specification tests (e.g., McMillen 1992, Getis 1995, 
Anselin et al. 1996, LeSage 1997). The data are also available for downloading via 
the internet from http://www.rri.wvu.edu/spacestat.htm. The estimates reported in 
Table 1 include OLS in the standard regression model, OLS (inconsistent), ML, IV, 
and heteroskedastic-robust IV for the spatial lag model, and ML for the spatial error 
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Table I Estimates in a Spatial Model of Crimea 

OLS Lag-OLS Lag-ML Lag-IV Lag-GIVE Err-ML 

Constant 

P 

Income 

Housing 
value 

h 

K2 
Log-li k 

68.629 
(4.73) 

- 1.597 
(0.334) 

(0.103) 
-0.274 

0.552 
- 187.38 

38.783 
(9.32) 
0.549 
(0.153) 

(0.358) 

(0.092) 

-0.886 

-0.264 

0.652 

45.079 
(7.18) 
0.43 1 

- 1 .032 
(0.305) 
-0.266 
(0.088) 

(0.118) 

- 182.39 

43.963 
(1 1.23) 
0.453 
(0.191) 
- 1.010 
(0.389) 
-0.266 
(0.092) 

0.620 

46.667 
(7.61) 
0.419 
0.139) 

(0.434) 

(0.173) 

-1.185 

-0.234 

0.633 

59.893 
(5.37) 

-0.941 
(0.331) 
-0.302 
(0.090) 
0.562 
(0.134) 

- 183.38 

aData are for 49 neighborhoods in Columhus, Ohio, 1980. Dependent variable is per capita resitien- 
tial burglaries and vehicle thefts. Income and housing values are in thousand dollars. A first-order 
contiguity spatial weights matrix was used to construct the spatial lags. 

model. The spatial lags for the exogenous variables ( W X )  were used as instruments 
in the IV estimation. In addition to the estimates and their standard errors, the fit of 
the different specifications estimated by ML is compared by means of the maximized 
log-likelihood. For OLS and the IV estimates, the R2 is listed. However, this should 
be interpreted with caution, since R2 is inappropriate as a measure of fit when spa- 
tial dependence is present. All estimates were obtained by means of the Spacestat 
software. 

A detailed interpretation of the results in Table 1 is beyond the scope of this 
chapter, but a few noteworthy features may be pointed out. The two spatial models 
provide a superior fit relative to OLS, strongly suggesting the presence of spatial de- 
pendence. Of the two, the spatial lag model fits better, indicating it is the preferred 
alternative. Given the lack of an underlying behavioral model (unless one is willing to 
make heroic assumptions to avoid the ecological fallacy problem), the results should 
be interpreted as providing consistent estimates for the coefficients of income and 
housing value after the spatial dependence in the crime variable is filtered out. The 
most affected coefficient (besides the constant term) pertains to the income variable, 
and is lowered by about a third while remaining highly significant. The estimates 
for the autoregressive coefficient vary substantially between the inconsistent and 
biased OLS and the consistent estimates, but the Lag-IV coefficient has a consider- 
ably higher standard error. In some instances, OLS can thus yield “better” estimates 
in an MSE sense relative to IV. Diagnostics in the Lag-ML model indicate strong re- 
maining presence of heteroskedasticity (the spatial Breusch-Pagan test from Anselin 
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1988a, p. 123, yields a highly significant value of 25.35, p < 0.00001). The robust 
Lag-GIVE estimates support the importance of this effect: the estimate for the au- 
toregressive parameter is quite close to the ML value while obtaining a significantly 
smaller standard error relative to both OLS and the nonrobust IV. Moreover, the es- 
timate for the Housing variable is no longer significant. This again illustrates the 
complex interaction between heterogeneity and spatial dependence. 

IV. TESTS FOR SPATIAL DEPENDENCE 

As it happened in the mainstream econometrics literature, the initial stages of de- 
velopment in spatial econometrics were characterized by an emphasis on estima- 
tion. As discussed in the last section, Cliff and Ord (1973) and others formulated 
the maximum likelihood approach which goes to back to work of Whittle (1954). In 
mainstream econometrics, the test for serial correlation developed by Durbin and 
Watson (1950, 1951) was the first explicit specification test for the regression model. 
It has gained widespread acceptance since its inception. However, routine testing 
for other specifications (such as homoskedasticity, normality, exogeneity, and func- 
tional form) did not take prominence until the early eighties. A major breakthrough 
was the rediscovery of the Rao (1947) score (RS) test (known as the Lagrange multi- 
plier test in econometrics). The RS test became very popular due to its computational 
ease compared to the other two asymptotically “equivalent” test procedures, namely 
the likelihood ratio (LR) and Wald (W) tests (see Godfrey 1988 and Bera and Ullah 
1991). 

In a similar fashion, the origins of specification testing in spatial econometrics 
can be traced back to Moran’s (1950a, 1950b) test for autocorrelation. This test laid 
in obscurity until i t  was revived by Cliff and Ord (1972). It received further impetus 
by Burridge (1980) as an RS test. However, the early spatial econometrics literature 
on testing was dominated by the Wald and LR tests (for example, see Brandsma and 
Ketellapper 1979a, 197933; Anselin 1980). Since the latter require the estimation of 
the alternative model by means of nonlinear optimization (as discussed in Section 
111), the advantages of basing a test on the least-squares regression of the null model, 
offered by the RS test, were quickly realized. During the last 15 years, a number of 
such tests were developed (see Anselin 1988a, 1988~). 

Although mainstream econometrics and spatial econometrics literature went 
through similar developments in terms of specification testing, the implementation 
of the tests in spatial models turns out to be quite different from the standard case. 
For example, most of the RS specification tests cannot be written in the familiar 
“NR2” form (where R2 is a coefficient of determination) nor they can be computed 
by running any artificial regression. In addition, the interaction between spatial lag 
dependence and spatial error dependence in terms of specification testing is stronger 
and more complex than its standard counterpart. There are, however, some common 
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threads. As in the standard case, most of the tests for dependence in the spatial 
model can be constructed based on the OLS residuals. In our discussion we will em- 
phasize the similarities and the differences between specification testing in spatial 
econometric models and the standard case. 

We start the remainder of the section with a discussion of Moran’s I statistic 
and stress its close connection to the familiar Durbin-Watson test. Moran’s I was 
not developed with any specific kind of dependence as the alternative hypothesis, 
although it has been found to have power against a wide range of forms of spatial 
dependence. We next consider a test developed in the same spirit by Kelejian and 
Robinson (1992). This is followed by a focus on tests for specific alternative hypoth- 
esis in the form of either spatial lag or spatial error dependence. Tests for these two 
kinds of autocorrelations are not independent even asymptotically, and their sepa- 
rate applications when other or both kinds of autocorrelations are present will lead 
to unreliable inference. Therefore, it is natural to discuss a test for joint lag and er- 
ror autocorrelations. However, the problem with such a test is that we cannot make 
any specific inference regarding the exact nature of dependence when the joint null 
hypothesis is rejected. One approach to deal with this problem is to test for spa- 
tial error autocorrelation after estimating a spatial lag model, and vice versa. This, 
however, requires ML estimation, and the simplicity of tests based on OLS residuals 
is lost. We therefore consider a recently developed set of diagnostics in which the 
OLS-based RS test for error (lag) dependence is adjusted to take into account the 
local presence of lag (error) dependence (Anselin et al. 1996). We then provide a 
brief review of the small-sample properties of the various tests. Finally, the section 
is closed into a discussion of implementation issues and our illustrative example of 
the spatial model of crime. 

A. Moran’s I Test 

Moran’s (1950a, 1950b) I test was originally developed as a two-dimensional analog 
of the test of significance of the serial correlation coefficient in univariate time series. 
Cliff and Ord (1972, 1973) formally presented Moran’s I statistics as 

where e = y - X g  is a vector of OLS residuals, 1 = ( X ’ X ) - ’ X ’ y ,  W is the spatial 
weights matrix, N is the number of observations, and So is a standardization factor 
equal to the sum of the spatial weights, xi xj w ~ .  For a row-standardized weights 
matrix W ,  So simplifies to N (since each row sum equals 1) and the statistic becomes 

e’ We I = - - -  
e’e (43) 

Moran did not derive the statistic from any basic principle; instead, it was suggested 
as a simple test for correlation between nearest neighbors which generalized one 
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of his earlier tests in Moran (1948). Consequently, the test could be given different 
interpretations. The first striking characteristic is the similarity between Moran’s I 
and the familiar Durbin-Watson (DW) statistic 

where 

e’ Ae 
e’e 

D W = -  

-1 
2 

-1 

0 
0 

0 
-1 
2 

0 
0 

0 
0 

-1  

0 
0 

0 
0 
0 

. . .  

. . .  

. . .  

. . .  . 

. . .  . 

. . .  -1 
0 . . .  

0 
0 
0 

2 

- 1  

(44) 

0 
0 
0 

-1 
1 

Therefore, both statistics equal the ratio of quadratic forms in OLS residuals and they 
differ only in the specification of the interconnectedness between the observations 
(neighboring locations). It is well known that the DW test is a uniformly most power- 
ful (UMP) test for one sided alternatives with error distribution E~ = hct-l + cl (see, 
e.g., King 1987). Similarly Moran’s I possesses some optimality properties. More 
precisely, Cliff and Ord (1972) established a link between the LR and I tests. If we 
take the alternative model as (8), i.e., 

& = h W & + t  

then the LR statistic for testing Ho: h = 0 against the alternative H,: h = hi, when 
E and o2 are known, is proportional to 

E‘ WE 
&’(I + ~ : G ) E  (45) 

where G is a function of W .  Therefore, I approaches the LR statistic as hl + 0, and 
it can be shown to be consistent for Ho: h = 0 against H,: h # 0. As we discuss 
later, Burridge (1980) also showed that I is equivalent to the RS test for h = 0 in (8) 
(or y = 0 in the spatial moving average process (13)) with an unscaled denominator. 
Since we know that the LR and RS tests are asymptotically equivalent under the 
null and local alternatives, Cliff and Ord’s result regarding asymptotic equivalence 
of I and LR becomes very apparent. King and Hillier (1985) derived the locally 
best invariant (LBI) test for the wider problem of testing Ho: h = 0 against Ha:  
h > 0 when the covariance matrix of the regression disturbance is of the known form 
02Q (A) (as in our (lo)), and showed the test to be identical to the one-sided version 
of the RS test. Combining this result with that of Burridge (1980), we can conclude 
that Moran’s I must be an LBI test, which was demonstrated by King (1981). 



SPATIAL DEPENDENCE IN LINEAR REGRESSION MODELS 267 

In practice the test is implemented on the basis of an asymptotically normal 
standardized z-value, obtained by subtracting the expected value and dividing by 
the standard deviation. One advantage of statistic like I is that under H0 : h = 0 
and normality of E ,  e’e is distributed as central x 2 .  Cliff and Ord (1972) exploited 
this to derive the first two moments as 

tr(MW) 
E ( I )  = ___ 

N - K  

and 

tr(MWMW’) + tr(MWl2 + {tr(MW)I2 
V ( 1 )  = - CE(1)l2 ( N  - K ) ( N  - K + 2) (47) 

where M = I - X ( X ’ X ) - ’ X ’ ,  and W is a row-standardized weights matrix. 
It is possible to develop a finite-sample-bound test for I following Durbin and 

Watson (1950,1951). However, for I ,  we need to make the bounds independent of not 
only X but also of the weight matrix W .  This poses some difficulties. Tiefelsdorf and 
Boots (1995), using the results of Imhof (1961) and Koerts and Abrahamse (1968), 
showed that exact critical values of I can be computed by numerical integration. 
They first expressed I in terms of the eigenvalues y~ , y2, . . . , Y N - K  of M W ,  other 
than the K zeros, and N - K independent N ( 0 ,  1) variables 6 1 , 6 2 ,  . . . , ~ N - K ;  more 
specifically, 

N - K  N - K  

I = Yid’ / 6’ 
i= 1 i= 1 

Then 

Note that x!-7K(~i - Z O ) S ~  is a weighted sum of ( N  
method simplifies the probability in (49) to 

where 
N - K  

(49) 

K )  x; variables. Imhof’s 
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The integral in (50) can be evaluated by numerical integration (for more on this, see 
Tiefelsdorf and Boots 1995). 

It is instructive to note that the computation of exact critical values of the DW 
statistic involves the same calculations as for Moran’s I except that the yi is the 
eigenvalues of MA, where A is the fixed matrix given by in (44). Even with the recent 
dramatic advances in computer technology, it will take some time for practitioners 
to use the above numerical integration technique to implement Moran’s I test. 

B. Kelejian-Robinson Test 

The test developed by Kelejian and Robinson (1992) is in the same spirit of Moran’s 
I in the sense that it is not based on an explicit specification of the generating process 
of the disturbance term. At the same time the test does not require the model to be 
linear or the disturbance term to be normally distributed. Although the test does not 
attempt to identify the cause of spatial dependence, Kelejian and Robinson (1992) 
made the following assumption about spatial autocorrelation: 

(51) COV(&i, & j )  = Olj = zija 

where Zij is 1 by q vector which can be constructed from the independent variables 
X ,  a is q by 1 vector of parameters, and i, j are contiguous in the sense that they are 
neighbors in a general spatial “ordering” of the observations. The null hypothesis of 
no spatial correlation can be tested by Ho : cy = 0 in (51). 

For a given sample of size N ,  let C denote hN by 1 vector 0ij7s which are not 
zero for i < j .  Therefore, a test for a! = 0 can be achieved by running a regression of 
C on the observation matrix Z which is of dimension hN by q consisting of Z;; values. 
Since we do not observe the elements of C, they are replaced by the cross product of 
OLS residuals, eiej. The resulting hN by 1 vector is denoted by e. The test is based 
on p = (Z’Z)-’Z’e and is given by 

p’z’zp 
K R = -  

0 4  

where 64 is a consistent estimator of 0’. For example, we can use [e’e/NI2 or (e - 
Z p ) ’ ( e  - ZP)/hN for G4. Under Ho : a = 0, K R  + x: (central chi-square 

with q degrees of freedom), where + denotes convergence in distribution. Putting 
p = (Z’Z)-*Z’e, K R  can be expressed as 

V 

V 

Pz ( Z  ’ Z )  - 1 Z’ e 
K R  = 

6 4  
(53) 

Since for the implementation of the test we need the distribution only under the null 
hypothesis, it is legitimate to replace 0‘ by a consistent estimate under a = 0. 
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P P 
Note.that under Ho, (?t/hN -+ 04, where + means convergence in probability. 
Therefore, an asymptotically equivalent form of the test is 

elz (Z’Z) - 2’ e 
e‘t (54) h N  * 

which has the familiar N R 2  form. Here R2 is the uncentered coefficient of determi- 
nation of c on 2 and h N  is the sample size of this regression. 

It is also not difficult to see an algebraic connection between K R  and Moran’s 
I .  From (43) 

1 2  = 

- - 

Using (53)’ 

( e ’ We ) 
(e’e)2 

N N  

we can write 

where p;, are the elements of Z(Z’Z)-’Z’. Given that t i ’s  contain terms like ekel, 

k < 1, it  appears that the I 2  and K R  statistics have similar algebraic structure. 

C. Tests for Spatial Error Autocorrelation 

In contrast to the earlier two tests, the alternative hypothesis is now stated explicitly 
through the data generating process of E as in (8), i.e., 

and we test h = 0. All three general principles of testing, namely LR, W, and RS 
can be applied. Out of the three, the RS test as described in Rao (1947) is the most 
convenient one to use since it requires estimation only under the null hypothesis. 
That is, the RS test can be based on the OLS estimation of the regression model (7). 
Silvey (1959) derived the RS test using the Lagrange multiplier(s) of a constrained 
optimization problem. 

Burridge (1980) used Silvey’s form to test h = 0, although the Rao’s score 
form, namely 

RS = d’ ( s ) z ( e ) - ’d ( s )  (57) 
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is more popular and much easier to use. In (57), d(8) = aL(8)/a8 is the score 
vector, Z(8) = -E[a2L(8)/a(8)a(8)’] is the information matrix, L(8) is the log- 
likelihood function, and 0 is the restricted (under the tested hypothesis) maximum 
likelihood estimator of the parameter vector 8. For the spatial error autocorrelation 
model 8 = (j?’, c?, A)’ and the log-likelihood function is given in (34). The test is 
essentially based on the score with respect to A, i.e., on 

We can immediately see the connection of this to Moran’s I statistic. After computing 
Z(8) under Ho, from (36), we have the test statistic 

where T = tr[(W’ + W ) W ] .  Therefore, the test requires only OLS estimates, and 

under Ho, RSA + xl. It is interesting to put W = W T  (Section 1I.E) and obtain 
T = N - 1 and RSA = ( N  - 1)x2 where x = c, e,e,-l/ c, ef-l in the time-series 
context. Burridge (1980) derived the RS test (59) using the estimates of the Lagrange 
multiplier following Silvey (1959). The Lagrangian function for this problem is 

V 

LR(e ,  p) = L ( e )  - ,LA (60) 

where p is the associated Lagrange multiplier. From the first-order conditions, we 
have 

PI 
ah 

i.e., 

and this results in the same statistic RSA.  
A striking feature of the RS test is its invariance to different alternatives (for 

details, see Bera and McKenzie 1986). The RS test uses the slope aL/a8 at 8 = 8, 
and there may be many likelihood functions (models) which have the same slope at 0. 
If we specify the alternative hypothesis as a spatial moving-average process (13) and 
test Ho : y = 0, we obtain the same Rao’s score statistic RSA. Therefore, RSA will 
be locally optimal for both autoregressive and moving-average alternatives. But this 
also means that when the null hypothesis is rejected, the test does not provide any 
guidance regarding the nature of the disturbance process, even when other aspects 

- 
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of the spatial model are resolved. This also raises the question whether RSA will 
be inferior to other asymptotically equivalent tests such as LR and W, with respect 
to power, since it does not use the precise information contained in the alternative 
hypothesis. In the context of the standard regression model, Monte Carlo results of 
Godfrey (1981) and Bera and McKenzie (1986) suggest that there is no setback in 
the performance of RS test compared to the LR test. In Section IV.G, we discuss the 
finite sample performance of RSA and other tests. 

Computationally, the W and LR tests are more demanding since they require 
ML estimation under the alternative, and the explicit forms of the tests are more 
complicated. For instance, let us consider the W test which can be computed using 
the ML estimate I by maximizing (34) with respect to /?, u2, and A. We can write the 
W statistic as (Anselin 1988a, p. 104) 

x2 
WSA = -c4 

Asy Var (x) 
where AsyVar (x) can be obtained from (38) as 

N 
tr( W j )  + tr( W i  WB) - 

For implementation we need to replace h by X in the above expression. In the stan- 
dard time-series regression case the results are much simpler. For example, AsyVar 
[d, A] is a diagonal matrix and AsyVar(k) is simply (1 - h 2 ) / ( N  - 1). Therefore 
the Wald test statistic can be simply written as 

(N  - 1)X2 
1 - x 2  

ws; = 

Note that under h = 0, the asymptotic variance ( 1  - h") / (N - 1) reduces to 1/(N - 
l), the expression for AsyVar(X) used in the time series case to test the significance 
of A. 

The LR statistic can be easily obtained using the concentrated log-likelihood 
function Lc in (37). We can write 

LRk = 2[& - Lc] (65) 

where the "hat" denotes that the quantities are evaluated at the unrestricted ML 
estimates 4,8*, and x. It is easy to see that LRA reduces to (Anselin 1988a, p. 104) 

The appearance of the last term in (66) differentiate the spatial dependence situation 
from the serial correlation case for time-series data. 
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Finally, for higher-order spatial processes, it is easy to generalize the RS statis- 
tic (59). For example, if we consider a qth-order spatial autoregressive model 

E = A1 W-lE + A, W2E + * * * + h,Wq& + 6 (67) 

and test Ho : A1 = A2 = - . . = A, = 0, the RS statistic will be given by 

[e’%e/6”I2 

Tl 
RSA ,...Aq = 

1= 1 

where Tl = tr[ Y’R+ Y2], I = 1 , 2 ,  . . . , q.  Under the null of no spatial dependence, 

RSA,...Aq ++ xi. Therefore, the test statistic for higher-order dependence is simply 
the sum of corresponding individual tests. The same test statistic will result when 
a moving average model as in (18) is taken as the alternative instead of (67). As 
expected, the Wald and LR tests in this context will be more complicated as they 
require ML estimation of A I ,  h2, . . . , A,. 

2) 

D. 

In this section, we consider tests on the null hypothesis Ho : p = 0 in (3) using the 
log-likelihood function (26). Once again the RS test is the easiest one to use, and 
Anselin (1988~)  derived it explicitly (his equation (32)). The score with respect to p 

Tests for Spatial Lag Dependence 

is 

E‘ w y  =7 
p=o ap 

The inverse of the information matrix is given in (30). The complicating feature of 
this matrix is that even under p = 0, it is not block diagonal; the (p ,  B )  term is 
equal to (X‘WX/3)/02, obtained by putting p = 0; i.e., WA = W .  This absence 
of block diagonality causes two problems. First, as we mentioned in Section 11, the 
presence of spatial dependence implies that a sample contains less information than 
an independent counterpart. This can now be easily demonstrated using (30). In the 
absence of dependence ( p  = 0 in (3)), the ML estimate of will have variance 
0 2 ( X ’ X ) - ‘  which is the inverse of the information. But when p # 0, to compute the 
variance of the ML estimate of B we need to add a positive-definite part to 0 2 ( X ’ X ) - ’  
due to absence of block diagonality. Second, to obtain the asymptotic variance of d,, 
even under p = 0 from (30), we cannot ignore one of the off-diagonal terms. This 
was not the case for dA in Section 1V.C. Asymptotic variance of dA was obtained 
just using the (2,Z) element of (36) (see (59)). For the spatial lag model, asymptotic 
variance of d, is obtained from the reciprocal of the (1,l) element of 
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Since under p = 0, WA = W and tr(W) = 0, the expression is Tl = [(WXP)'  
M ( W X P )  + Tu2]/u2, where T is given in (59). Therefore, the RS statistic is given 
by 

where in T', , /3, and u2 are replaced by B and (?', respectively. Under Ho : p = 0, 
RS,  + xf, the Wald and LR tests will require maximization of the log-likelihood 
function (26) or (29). Let 6 be the ML estimate of p. To get the asymptotic variance 
of 6, we need the (1, 1) element of (30). Since the Wald test requires estimation 
under the alternative hypothesis (i.e., p # O), the (1,3) element tr(WA)/a2 will also 
be nonzero and the resulting expression will more complicated than 7'1 given above 
(Anselin 1988a, p. 104). The LR statistic will have the same form as in (66) except 
for the last term: 

V 

If ML estimation is already performed, LR, is much easier to compute than its Wald 
counterpart. Under p = 0 both Wald and LR statistics will be asymptotically dis- 
tributed as x:. 

E. Testing in the Possible Presence of Both Spatial Error and 
Lag Autocorrelation 

The test described in the Sections 1V.C and 1V.D can be termed as one-directional 
tests in the sense that they are designed to test a single specification assuming cor- 
rect specification for the rest of the model. For example, we discussed RSA,  WSh,  
and LRA statistics for the null hypothesis Ho : h = 0 assuming that p = 0. Because 
of the nature of the information matrix, these tests will not be valid even asymptot- 
ically, when p # 0. For instance, we noted that under the null, Ho : h = 0 all 
the three statistics are asymptotically distributed as central x 2  with one degree of 
freedom. This result is valid only when p = 0. To evaluate the effects of nonzero p 
on RSA, WSA, and LRA, let us  write the model when both the spatial error and lag 
autocorrelation are present: 

where Wl and W2 are spatial weights matrices associated with the spatially lagged 
dependent variable and the spatial autoregressive disturbances, respectively. Recall 
from Section 1I.F that for model (73) to be identified, it is necessary that Wl # W2 or 
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that the matrix X contain at least one exogenous variable in addition to the constant 
term. An alternative specification of spatial moving-average error process for E as in 
(1317 

has no such problems and it also leads to identical results in terms of test statistics 
discussed here. Using the results of Davidson and MacKinnon (1987) and Saikko- 
nen (1989), we evaluate the impact of local presence of p on the asymptotic null 
distribution of RSA,  L R A ,  and WSA.  Let p = 6/a, 6 < 00, then it can be shown 
that under Ho : h = 0, all three tests asymptotically converge to a noncentral x:, 
with noncentrali ty parameter 

where Gj = tr[KK$ + y’K$], j = 1 , 2  (note that Tl2 = Tzl). Therefore, the tests will 
reject the null of error autocorrelation even when h = 0 due to the local presence 
of the lag dependence. In a similar way we can express the asymptotic distributions 
of RS,, LR,, and WS,. Under p = 0 and local presence of error dependence, say, 
h = t/a, t < 00. In this case the distributions remain x:, but with a noncentrality 
parameter 

where D = (Wl X P ) ’ M (  WI X P )  + TI 10’. Therefore, again we will have unwanted 
“power” due to the presence of local error dependence. In the noncentrality param- 
eters R ,  and RA, the crucial quantity is T 1 2 / n ,  which can be interpreted as the 
covariance between the scores dA and d,. Note that if Tl2 = 0, then both R, and 
RA vanish, and local presence of one kind of dependence cannot affect the test for 
the other one. The trace term Tl2 = tr[ W1 V2 + W,’W2], which will only be zero when 
the nonzero elements in each row/column of the weights matrices Wl and W2 do not 
overlap. In other words, this will be the case when the pattern of spatial dependence 
in the lag term and in the error term pertain to a completely different set of neighbors 
for each observation. However, in the typical case where Wl = W2 (or overlap to any 
extent) then the noncentrality parameter will not vanish. 

For valid statistical inference there is a need to take account of possible lag 
dependence while we test for error dependence, and vice versa. In Anselin (1988~) 
two different approaches are suggested. One is to test jointly for Ho : h = p = 0 in 
(73) using the RS principle so that the test can be implemented with OLS residuals 
(see Anselin 1 9 8 8 ~ ) .  The resulting joint test statistic is given by 

(77) 
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where E = (D/a2)T22 - ( T I ~ ) ~ .  Note that this joint test not only depends on dk 

and d, but also on their interaction factor with a coefficient 7’12. Expression (77) ap- 
pears to be somewhat complicated but can be computed quite easily using only OLS 
residuals. Also the expression simplifies greatly when the spatial weights matrices 
W1 and W2 are assumed to be the same which is the case in most applications. Under 
Wl = W2 = W ,  2‘1 1 = T21 = Tl2 = T = tr[ ( W’ + W )  W ] ,  and (77) reduces to 

Under Ho : h = p = 0, RSA, will converge to a central x2 with two degrees of 
freedom. Because of this two degrees of freedom, the statistic will result in loss of 
power compared to the proper one-directional test when only one of the two forms 
of misspecification is present. To see this consider the presence of only h = t/n, 
with p = 0. In this case the noncentrality parameter for both RSA and RSA, is 
the same t 2 N T .  Due to the higher degrees of freedom of the joint test RSA,, we 
can expect some loss of power (Dasgupta and Perlman 1974). Another problem 
with RSA, is that since i t  is an omnibus test, if the null hypothesis is rejected, 
it is not possible to infer whether the misspecification is due to lag or error depen- 
dence. 

A second approach is to carry out an RS test for one form of misspecification in 
a model where the other form is unconstrained. For example, this consists of testing 
the null hypothesis Ho : h = 0 in the presence of p, i.e., based on the residuals 
of a maximum likelihood estimation of the spatial lag model. The resulting statistic 
RSA,, is given as 

where the “hat” denotes quantities are evaluated at the maximum likelihood esti- 
mates of the parameters of the model Y = pWiy + Xg + 6 obtained by means 
of nonlinear optimization. In (79) T 2 1 ~  stands for tr[W2W1A-’ + W,’WlA-’], with 
A = I - PW]. Under Ho : h = 0, RSA,, will converge to a central x* with one 
degree of freedom. Similarly, an RS test can be developed for Ho : p = 0 in the 
presence of error dependence (Anselin et al. 1996). This test statistic can be writ- 
ten as 

where 2 is a vector of residuals in the ML estimation of the null model with spatial 
AR errors, y = X g  + (I - AWz)-’< with Q = (g’, A ,  a2)’, and B = I - xW2. The 
terms in the denominator of (80) are 
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- *  
and Var(8 is the estimated variance-covariance matrix for the parameter vector 8. 

It is also possible to obtain the W and LR statistics in the above three cases, 
though these will involve the estimation of a spatial model with two parameters, re- 
quiring considerably more complex nonlinear optimization. In contrast, RSLl, and 
RS,lk are theoretically valid statistics that have the potential to identify the possible 
source(s) of misspecification and can be derived from the results of the maximization 
of the log-likelihood functions (32) and (26). However, this is clearly more computa- 
tionally demanding than tests based on OLS residuals. We now turn to an approach 
that accomplishes carrying out the tests without maximum likelihood estimation of 
h and p. 

F. Robust Test in the Presence of Local Misspecification 

It is not possible to robustify tests in the presence of global misspecification (i.e., 
h and p taking values far away from zero). However, using the general approach 
of Bera and Yoon (1993), Anselin et al. (1996) suggested tests which are robust to 
local misspecifications, as defined in the previous subsection. The idea is to adjust 
the one-directional score tests RSA and RS,  by taking account of the noncentrality 
parameters R, and RA, given in (75) and (76), so that under the null the resulting 
test statistics have central x: distributions. 

The modified test for Ho : h = 0 in the local presence of p is given by 

When Wl = W2 = W ,  RS; becomes 

Comparing RS; in (81) and RSA in (59), it is clear that the adjusted test modifies 
RSA by correcting for the presence of p through 2, and 2'12, where the latter quantity 
represents the covariance between dA and d,. Under Ho: h = 0 (and p = 6 / a ) ,  
RS: converges to a central x: distribution; i.e., RS; has the same asymptotic distri- 
bution as RSA based on the correct specification. This therefore produces asymptoti- 
cally the correct size in the presence of local lag dependence. Also as noted for RS;, 
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we only need OLS estimation thus circumventing direct estimation of the nuisance 
parameter p. However, there is a price to be paid for robustification and simplicity 
in estimation. Consider the case when there is no lag dependence ( p  = 0), but only 
spatial error dependence through h = r / n .  Under this setup, the noncentrality 
parameters of RSA and RS; are respectively t2T22/N and r2(T22 - T,?p2D- ' ) /N .  
Since S ~ T ~ ~ C ? D - ' / N  2 0, the asymptotic power of RS;  will be less than that of 
RSA when there is no lag dependence. The above quantity can be regarded as a cost 
of robustification. Once again, note its dependence on TQ. It is also instructive to 
compare RS; with Anselin's RSkl, in (79). It is readly seen that RSkl, does not 
have the mean correction factor. RSkl,  uses the restricted ML estimator of p (under 
h = 0) for which J, = 0. We may view RSA,, as the spatial version of Durbin's h 
statistic, which can also be derived from the general RS principle. Unlike Durbin's 
h, however, RSAI, cannot be computed using the OLS residuals. 

In a similar way, the adjusted score test for Ho : p = 0, in the presence of local 
misspecification involving spatial-dependent error process can be expressed as 

Under Wl = W2 = W ,  the above expression simplifies to 

[ J ,  - J*]2 
RST, = 

3 - 2 6  - T (84) 

All our earlier discussion of RS; also applies to RS;. 
Finally, consider the relationship among the five statistics RSA,  RS,, RS;, 

RS;, and RSA, given in (59), (71), (82), (84), and (78) respectively. RSA, is not the 
sum of RSA and RS,; i.e., there is no additivity of the score tests along the lines 
discussed in Bera and Jarque (1982) and Bera and McKenzie (1987). From (77), it 
is clear that additivity follows only if T12 = 0 or T = 0 for the case of Wl = W2, 

i.e., when d k  and d, are asymptotically uncorrelated. In that case also RS; = RSA 
and RS; = RS,  (see (81), (59), (83), and (71)). Hence, for T = 0, the conventional 
one-directional tests RSA and RS, are asymptotically valid in the presence of local 
misspecification. However, as noted earlier T > 0 and Tl2 > 0 when W1 and W2 
have some overlap in the neighbor structure. Under these circumstances (which are 
the most common situation encountered in practice), the following very intriguing 
result is obtained: 

RSA, = RS; + RS,  = RSA + RSZ (85) 

i.e., the two-directional test for h and p can be decomposed into the sum of the ad- 
justed one-directional test of one type of alternative and the unadjusted form for the 
other. By construction, under h = p = 0, RS; and RS,  are asymptotically inde- 
pendently distributed, which cannot be said about RSA and RS,. By applying all the 
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unadjusted and adjusted tests and exploiting the result (85), it is possible to identify 
the exact nature of dependence in practice (Anselin et al. 1996). Finally, we should 
mention that because of the complexity of the Wald and LR tests, i t  is not possible 
to derive their adjusted versions that would be valid under local misspecification. 
Of course, it is not computationally prohibitive to obtain these tests after the joint 
estimation of both h and p. 

G. Small Sample Properties 

We have covered a number of procedures for testing spatial dependence. For ease of 
implementation, we have emphasized Rao’s score test which in many cases can be 
computed based on the OLS residuals. As we indicated, all these tests are of asymp- 
totic nature; i.e., their justification derives from the presence of very large samples. 
That is, however, not the case in most applications. The small sample performance 
of the above tests both in terms of size and power is of major concern to practitioners. 

There are only a few papers on the finite sample properties of tests on spatial 
dependence compared to the vast literature on those for testing for serial correlation 
for time-series data as summarized in King (1987). Bartels and Hordijk (1977) stud- 
ied the behavior of Moran’s I .  However, their focus was on the performance of dif- 
ferent residuals, and they found that OLS residuals give the best results. Brandsma 
and Ketellapper (1979b) included the LR test (LRh)  in their study, but it performed 
poorly compared to I .  Both these studies were quite limited in terms of a small num- 
ber of replications, few sample sizes, the use of only one type (irregular) weights 
matrix and the narrow range of alternative values for the autocorrelation coefficient. 
A first extensive set of Monte Carlo simulations was carried out by Anselin and Rey 
(1991), who compared Moran’s 1 to RSh and RS,  for different weights matrices and 
error distributions. In terms of size, the small sample distributions of the statistics 
corresponded close to their theoretical counterparts, except for the smallest size 
( N  = 25). In terms of power, Moran’s I had power against both kinds of depen- 
dence, spatial lag and error autocorrelations. RSA and RS,  had highest power for 
their respective designated alternatives. These tests were found to possess superior 
performance, but they fall short of providing a good strategy for identifying the exact 
nature of dependence. 

Anselin and Florax (1995b) provide the most comprehensive set of simulation 
results to date. They carried out experiments for both regular (rook and queen) and 
nonregular weight matrices, single- and multidirectional alternatives, and for differ- 
ent error distributions, and included all the tests discussed earlier except the Wald 
and LR tests. The results are too extensive to discuss in detail, and here we provide 
only a brief summary of the main findings. First, the earlier results of Anselin and 
Rey (1991) were confirmed on the power of I against any form of dependence and 
the optimality of the RS tests against the alternatives for which they were designed. 
Second, the specification of the spatial weights matrix impacted the performance of 
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all tests, with a higher power obtained in the rook case. Third, as in Anselin and 
Rey (1991), higher powers were achieved by lag tests relative to tests against error 
dependence. This is important, since the consequences of ignoring lag dependence 
are more serious. Fourth, the KR statistic did not perform well. For example, when 
the errors were generated as lognormal, it significantly over rejected the true null hy- 
pothesis in all configurations. There are two possible explanations. One is its higher 
degrees of freedom. Another is that its power depends on the degree of autocorre- 
lation in the explanatory variables which substitute for the weights matrix (compare 
(55) and (56)). It is interesting to note that White’s (1980) test for heteroskedasticity 
which is very similar to KR encounters problems of the same type. Fifth, the most 
striking result is that the adjusted tests RST and RSp* performed remarkably well. 
They had reasonable empirical sizes, remaining within the confidence interval in all 
cases. In terms of power they performed exactly the way they were supposed to. For 
instance, when the data were generated under p > 0, h = 0, although RS,  had the 
most power, the powers of RS; was very close to that of RS,. That is, the price paid 
for adjustments that were not needed turned out to be small. The real superiority of 
RS: was revealed when h > 0 and p = 0. It yielded low rejection frequencies even 
for h = 0.9. The correction for error dependence in RS; worked in the right direc- 
tion when no lagged dependence was present for all configurations. When p > 0, 
the power function of RS; was seen to be almost unaffected by the values of A, even 
for those far away from zero (global misspecification). For these alternatives RSA, 
also had good power, but could not point to the correct alternative when only one 
kind of dependence is present. RS; also performed well though not as spectacularly 
as RS;. The adjusted tests thus seem more appropriate to test for lag dependence 
in the presence of error correlation than for the reverse case. Again, this is impor- 
tant since ignoring lag dependence has more severe consequences. Based on these 
results Anselin and Florax (1995b) suggested a simple decision rule. When RS,  is 
more significant than R S k ,  and RS; is significant while RS; is not, a lag depen- 
dence is the likely alternative. In a similar way presence of error dependence can 
be identified through RST. Finally, the finite-sample performance of tests against 
higher-order dependence R S A , A ~  (see (68)) and the joint test RSA, were satisfactory, 
although these type of tests provide less insightful guidance for an effective specifi- 
cation search. For joint and higher-order alternatives, these tests are optimal, and in 
practice they should be used along with the unadjusted and adjusted one-directional 
tests. 

H. Operational Implementation and Illustration 

As is the case for the estimation of spatial regression models, specification tests for 
spatial dependence are notably absent from econometric software, with the exception 
of SpaceStat (Anselin 199213,1995). Moreover, as pointed out, these tests cannot be 
obtained in the usual N R 2  format, which lends itself to straightforward implemen- 
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tation by means of auxiliary or augmented regressions. The closest to this situation 
is the Kelejian-Robinson test (54), provided one has an easy way to select the pairs 
of neighboring data points from the data. Typically, specification tests for spatial de- 
pendence must be implemented explicitly either by writing special-purpose software 
or by taking advantage of macros in econometric and statistical software. As in max- 
imum likelihood estimation, the size of the weights matrix may be a constraint when 
the number of observations is large. This is particularly the case for Moran’s I ,  where 
several operations are involved in the computation of the expected value and vari- 
ance (46) and (47). Examples of the implementation of this test for small data sets in 
standard econometric software are given in Anselin and Hudak (1992) and Anselin 
et al. (1993b), for Shazam, Rats and Limdep, among others. 

Given their importance for applied work, we now briefly describe implemen- 
tation strategies for the RS tests for spatial error and spatial lag autocorrelation, RSA 
(59) and RS,  (71). First, note that the squared expression in the numerator equals 
N times a regression coefficient of an auxiliary regression of respectively We on e 
(in (59)) and W y  on e (in (71)). Once the lags are constructed, these coefficients can 
be obtained using standard software. The denominator in the expressions is slightly 
more complex. The trace elements T = tr(WW)+ tr(W’W) can easily be seen to 
equal, respectively, xi xj wij,wji and xi C, (W~, )~ .  When the spatial weights ma- 
trix consists of simple row-standardized contiguity weights, each element wii for a 
given i equals l/ki, where k;  is the number of neighbors for observation z. Hence, xi C , ( W ; ~ ) ~  = z i ( l / k ; ) ,  which can easily be computed. The other trace term 
is xi E, w;j.wji = C,(l/ki)[C, 8i,/k,], where 8;, is a binary variable indicating 
whether or not wi, # 0. This requires only slighly more work to compute, similar 
to the sorting needed to establish the neighbor pairs in the Kelejian-Robinson test. 
Most importantly, the trace operations can be carried out without having to store a 
full matrix in memory, taking advantage of the sparse nature of spatial weights (for 
technical details, see Anselin 1995). Of course, for symmetric weights, the two traces 
are equal. In practice, this may occur when all observations are considered to have 
an equal number of neighbors, as in Pace and Barry (1996). The other term in the 
denominator of (71) is the residual sum of squares in a regression with W X b  (i.e., the 
spatial lags for the predicted values from the OLS regression) on X ,  which can be 
obtained in a straightforward way. 

To illustrate the various specification tests, we list the results of Moran’s I ,  KR, 
and the RS and LR tests for the spatial model of crime in Table 2 (using a slightly dif- 
ferent notation, most of these results are reported in Table 2, p. 87 of Anselin et al. 
1996). All results are part of the standard Spacestat regression diagnostic output. 
They reflect a situation that is often encountered in practice: strong significance of 
Moran’s I and KR, as well as of both one-directional RS and LR tests. Clearly, spa- 
tial dependence is a problem, although without further investigation it is not obvious 
which form of spatial dependence is the proper alternative. Convincing evidence is 
provided by the robust tests RST and RSZ. While the former is not at all significant, 



SPATIAL DEPENDENCE IN LINEAR REGRESSION MODELS 28 I 

Table 2 Specification Tests against Spatial Dependencen 

Estimates Test (equation number) Value p-value 

OLS 
OLS 
OLS 
OLS 
OLS 
OLS 
OLS 
Lag-ML 
Lag-ML 
Err-ML 
Err-ML 

2.95 
11.55 
9.44 
5.72 
0.08 
9.36 
3.72 
9.97 
0.32 
7.99 
1.76 

0.003 
0.009 
0.009 
0.02 
0.78 
0.002 
0.05 
0.002 
0.57 
0.005 
0.18 

aSource: From Anselin (1988a, Chap. 12; 1992a, Chap. 26; 1995) and 
Anselin et al. (1996). 

the latter is significant at p slightly higher than 0.05. In other words, the impression 
of spatial error autocorrelation that may be given by an uncritical interpretation of 
Moran’s I is spurious, since no evidence of such autocorrelation remains after ro- 
bustifying for spatial lag dependence. Instead, a spatial lag model is the suggested 
alternative, consistent with the estimation results in Table 1.  

V. CONCLUSIONS 

In our review of methods to deal with spatial dependence in regression analysis, we 
have emphasized the distinguishing characteristics of spatial econometrics relative 
to time-series analysis. We highlighted the concept of spatial weights and the as- 
sociated spatial lag operator which allow for the formal specification of neighbors 
in space, a much more general concept than its counterpart in time. In the estima- 
tion of spatial regression models, the maximum likelihood approach was shown to 
be prevalent and requiring nonlinear optimization of the likelihood function. The 
simplifying results from serial correlation in time series do not hold and estimation 
necessitates the explicit manipulation of matrices of dimension equal to the number 
of observations. Diagnostics for spatial effects in regression models may be based on 
the powerful score principle, but they do not boil down to simple significance tests 
of the coefficients in an auxiliary regression, as they do for time series. 

The differences between the time domain and space are both puzzling and 
challenging, in terms of theory as well as from an applied perspective. They are the 
subject of active research efforts to develop diagnostics for multiple sources of mis- 
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specification, to discriminate between heterogeneity and spatial dependence, and 
to estimate models for complex forms of interaction in realistic data settings. Ex- 
tensions to the space-time domain and to models for limited dependent variables 
are particularly challenging. We hope that our review of the fundamental concepts 
and basic methods will stimulate others to both apply these techniques as well as to 
pursue solutions for the remaining research questions. 

ACKNOWLEDGMENTS 

We would like to thank Aman Ullah and an anonymous referee for helpful sugges- 
tions, and Robert Rozovsky for very able research assistance. We also would like 
to thank Naoko Miki for her help in preparing the manuscript. However, we retain 
the responsibility for any remaining errors. The first author acknowledges ongoing 
support for the development of spatial econometric methods by the US.  National Sci- 
ence Foundation, notably through grants SES 87-21875, SES 89-21385, and SBR 
94-10612 as well as grant SES 88-10917 to the National Center for Geographic In- 
formation and Analysis (NCGIA). The second author acknowledges financial support 
by the Bureau of Economic and Business Research of the University of Illinois. 

REFERENCES 

Albert, P. and L. M. McShane (1995), A Generalized Estimating Equations Approach for Spa- 
tially Correlated Binary Data: Applications to the Analysis of Neuroimaging Data, Bio- 
metrics, 51,627-638. 

Amemiya, T. (1985), Advanced Econometrics, Harvard University Press, Cambridge, MA. 
Ancot, J-P., J. Paelinck, and J. Prins (1986), Some New Estimators in Spatial Econometrics, 

Economics Letters, 21,245-249. 
Anselin, L. (1980), Estimation Methods for Spatial Autoregressive Structures, Regional Sci- 

ence Dissertation and Monograph Series 8, Cornell University, Ithaca, NY. 
Anselin, L. (1982), A Note on Small Sample Properties of Estimators in a First-Order Spatial 

Autoregressive Model, Environment and Planning A ,  14, 1023-1030. 
Anselin, L. (1988a), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht. 
Anselin, L. (1988b), Model Validation in Spatial Econometrics: A Review and Evaluation of 

Alternative Approaches, International Regional Science Review, 11, 279-316. 
Anselin, L. (1988c), Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial 

Heterogeneity, Geographical Analysis, 20, 1-17. 
Anselin, L. (1990a), Spatial Dependence and Spatial Structural Instability in Applied Re- 

gression Analysis, Journal of Regional Science, 30, 185-207. 
Anselin, L. (1990b), Some Robust Approaches to Testing and Estimation in Spatial Econo- 

metrics, Regional Science and Urban Economics, 20, 141-163. 
Anselin, L. (ed.) (1992a), Space and Applied Econometrics. Special Issue, Regional Science 

and Urban Economics, 22. 



SPATIAL DEPENDENCE IN LINEAR REGRESSION MODELS 283 

Anselin, L. (1992b), SpaceStat: A Programfor the Analysis of Spatial Data, National Center 
for Geographic Information and Analysis, University of California, Santa Barbara, CA. 

Anselin, L. (1995), SpaceStat Version 1.80 User’s Guide, Regional Research Institute, West 
Virginia University, Morgantown, WV. 

Anselin, L., A. K. Bera, R. Florax, and M. J .  Yoon (1996), Simple Diagnostic Tests for Spatial 
Dependence, Regional Science und Urban Economics, 26,77-104. 

Anselin, L. and A. Can (19%), Spatial Effects in Models of Mortgage Origination, Paper pre- 
sented at the Mid Year AREUEA Conference, Washington, DC, May 28-29. 

Anselin, L., R. Dodson, and S. Hudak (1993a), Linking GIS and Spatial Data Analysis in 
Practice, Geographical Systems, 1,3-23. 

Anselin, L., R. Dodson, and S. Hudak (1993b), Spatial Data Analysis and GZS: Interfacing 
G/S and Econometric Software, Technical Report 93-7, National Center for Geographic 
Information and Analysis, University of California, Santa Barbara. 

Anselin, L. and R. Florax (eds.) (199Sa), New Directions in Spcitial Econometrics, Springer- 
Verlag, Berlin. 

Anselin, L. and R. Florax (1995b), Small Sample Properties of Tests for Spatial Dependence 
in Regression Models: Some Further Results, in L. Anselin and R. Florax (eds.), New 
Directions in Spatial Econometrics, Springer-Verlag, Berlin, 21-74. 

Anselin, L. and S. Hudak (1992), Spatial Econometrics in Practice, a Review of Software 
Options, Regional Science and Urban Economics, 22,509-536. 

Anselin. L. and S. Rey (1991), Properties of Tests for Spatial Dependence in Linear Regression 
Models, Geogruphic Analysis, 23, 112-131. 

Anselin, L. and S. Rey (eds.) (1997), Spatial Econometrics. Special Issue, International Re- 
gional Science Review, 20. 

Anselin, L. and 0. Smirnov (1996), Efficient Algorithms for Constructing Proper Higher Order 
Spatial Lag Operators, Journal ofRegiona1 Science, 36, 67-89. 

Arora, S. and M. Brown (1977), Alternative Approaches to Spatial Autocorrelation: An Im- 
provement over Current Practice, Internationul Regional Science Review, 2,67-78. 

Bartels, C. P. A. and L. Hordijk (1977), On the Power of the Generalized Moran Contigu- 
ity Coefficient in Testing for Spatial Autocorrelation among Regression Disturbances, 
Regional Science and Urban Economics, 7,83-101. 

Bartels, C. and R.  Ketellapper (eds.) (1979), Exploratory and Explanatory Arialysis of Spatial 
Ilatn, Martinus Nijhoff, Boston. 

Benirschka, M. and J. K. Binkley (1994), Land Price Volatility in a Geographically Dispersed 
Market, American Journal of’Agriculturti1 Economics, 76, 185-195. 

Bera, A. K. and C. M. Jarque (1982), Model Specification Tests: A Simultaneous Approach, 
Journal of Econometrics, 20, 59-82. 

Bera, A. K. and C. R. McKenzie (1986), Alternative Forms and Properties of the Score Test, 
Journal ofApplied Statistics, 13, 13-25. 

Bera, A.  K. and C. R. McKenzie (1987), Additivity and Separability of the Lagrange Multiplier, 
Likelihood Ratio and Wald Tests, Joiimal of Quuntitntive Economics, 3, 53-63. 

Beron, K. J., J. C. Murdoch, and W. P. M. Vijverberg (1996), Why Cooperate? An Interdepen- 
dent Probit Model of Network Correlations, Working Paper, School of Social Sciences, 
University of Texas at Dallas, Richardson, TX. 

Bera, A. K. and A. Ullah (1991), Rao’s Score Test in Econometrics, Journal c$Quantitative 
Economics, 7, 189-220. 



284 ANSELIN AND 6ERA 

Bera, A. K. and M. J. Yoon (1993), Specification Testing with Misspecified Alternatives, Econo- 
metric Theory, 9,649-658.' 

Besag, J. (1974), Spatial Interaction and the Statistical Analysis of Lattice Systems, Journal 
of the Royal Statistical Society, B, 36, 192-225. 

Besley, T. and A. Case (1995), Incumbent Behavior: Vote-Seeking, Tax-Setting, and Yardstick 
Competition, American Economic Review, 8 5 , 2 5 4 5 .  

Bivand, R. (1992), Systat Compatible Software for Modeling Spatial Dependence among Ob- 
servations, Computers and Geosciences, 18,951-963. 

Blommestein, H. (1983), Specification and Estimation of Spatial Econometric Models: A Dis- 
cussion of Alternative Strategies for Spatial Economic Modelling, Regional Science and 
Urban Economics, 13,250-271. 

Blommestein, H. (1985), Elimination of Circular Routes in Spatial Dynamic Regression Equa- 
tions, Regional Science and Urban Economics, 15, 121-130. 

Blommestein, H. J. and N. A. Koper (1992), Recursive Algorithms for the Elimination of 
Redundant Paths in Spatial Lag Operators, Journal of Regional Science, 32,91-111. 

Bolduc, D., M. G. Dagenais, and M. J. Gaudry (1989), Spatially Autocorrelated Errors in 
Origin-Destination Models: A New Specification Applied to Urban Travel Demand in 
Winnipeg, Transportation Research, B 23,361-372. 

Bolduc, D., R. Laferrikre, and G. Santarossa (1992), Spatial Autoregressive Error Components 
in Travel Flow Models, Regional Science and Urban Economics, 22,371-385. 

Bolduc, D., R. Laferrihre, and G. Santarossa (1995), Spatial Autoregressive Error Components 
in Travel Flow Models, an Application to Aggregate Mode Choice, in L. Anselin and R. 
Florax (eds.), New Directions in Spatial Econometrics, Springer-Verlag, Berlin, 96-108. 

Bowden, R. J. and D. A. Turkington (1984), Instrumental Variables, Cambridge University 
Press, Cam bridge. 

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel(1994), Time Series Analysis, Forecasting and 
Control, 3rd ed., Prentice Hall, Englewod Cliffs, NJ. 

Brandsma, A. S. and R. H. Ketellapper (1979a), A Biparametric Approach to Spatial Auto- 
correlation, Environment and Planning A ,  11, 51-58. 

Brandsma, A. S. and R. H. Ketellapper (1979b). Further Evidence on Alternative Procedures 
for Testing of Spatial Autocorrelation among Regression Disturbances, in C. Bartels 
and R. Ketellapper (eds.), Exploratory and Explanatory Analysis in Spatial Data, Mar- 
tin Nijhoff, Boston, 11 1-136. 

Brett, C. and C. A. P. Pinkse (1997), Those Taxes Are All over the Map! A Test for Spatial Inde- 
pendence of Municipal Tax Rates in British Columbia, Znternational Regional Science 
Review, 20, 131-151. 

Breusch, T. (1980), useful Invariance Results for Generalized Regression Models, Journal of 
Econometrics, 13,327-340. 

Brook, D. (1964), On the Distinction between the Conditional Probability and Joint Probability 
Approaches in the Specification of Nearest Neighbor Systems, Biometrika, 51, 481- 
483. 

Brueckner, J. K. (19%), Testing for Strategic Interaction among Local Governments: The Case 
of Growth Controls, Discussion Paper, Department of Economics, University of Illinois, 
C hampaign. 

Burridge, P. (1980), On the Cliff-Ord Test for Spatial Autocorrelation, Journal of the Royal 
Statistical Society B,  42, 107-108. 



SPATIAL DEPENDENCE IN LINEAR REGRESSION MODELS 285 

Can, A. (1992), Specification and Estimation of Hedonic Housing Price Models, Regional 
Science and Urban Economics, 22, 453-474. 

Can, A. (19%), Weight Matrices and Spatial Autocorrelation Statistics Using a Topological 
Vector Data Model, Znternational Journul of Geographical Information Systems, 10, 

Can, A. and I. F. Megbolugbe (1997), Spatial Dependence and House Price Index Construc- 
tion, Journal of Real Estate Finance and Economics, 14,203-222. 

Case, A. (1987), On the Use of Spatial Autoregressive Models in Demand Analysis, Discus- 
sion Paper 135, Research Program in Development Studies, Woodrow Wilson School, 
Princeton University. 

1009- 10 1 7. 

Case, A. (1991), Spatial Patterns in Household Demand, Econometrica, 59,953-965. 
Case, A. (1992). Neighborhood Influence and Technological Change, Regional Science and 

llrban Economics, 22,491-508. 
Case, A. C., H. S. Rosen, and J. R. Hines (1993), Budget Spillovers and Fiscal Policy In- 

terdependence: Evidence from the States, Journal of Public Economics, 52, 285- 
307. 

Cliff, A. and J. K. Ord (1972), Testing for Spatial Autocorrelation among Regression Residu- 
a l ~ ,  Geographic Analysis, 4, 267-284. 

Cliff, A. and J. K. Ord (1973), Spatial Autocorrelation, Pion, London. 
Cliff, A. and J. K. Ord (1981), Spatial Processes: Models and Applications, Pion, London. 
Cressie, N. (1991), Geostatistical Analysis of Spatial Data, in National Research Council, 

Spatial Statistics and Digital Zmage Analysis, National Academy Press, Washington, 
DC, 87-108. 

Cressie, N (1993), Statistics for Spatial Data, Wiley, New York. 
Dasgupta, S. and M. D. Perlman (1974), Power of the Noncentral F-test: Effect of Additional 

Variate on Hotelling’s T2-test, Journal of the American Statistical Association, 69,174- 
180. 

Davidson, R. and J. G. MacKinnon (1987), Implicit Alternatives and Local Power of Test 
Statistics, Econometrica, 55, 1305-1329. 

Davidson, R. and J. G. MacKinnon (1993), Estimation and Inference in Econometrics, Oxford 
University Press, New York. 

Deutsch, C. V. and A. G. Journel (1992), GSLZB: Geostatisticul Software Library and User’s 
Guide, Oxford University Press, Oxford. 

Doreian, P. (1980), Linear Models with Spatially Distributed Data, Spatial Disturbances or 
Spatial Effects, Sociological Methods and Research, 9 ,2940 .  

Doreian, P., K. Teuter, and C-H. Wang (1984), Network Autocorrelation Models, Sociological 
Methods and Research, 13, 155-200. 

Dow, M. M., M. L. Burton, and D. R. White (1982), Network Autocorrelation: A Simulation 
Study of a Foundational Problem in Regression and Survey Study Research, Social 
Networks, 4, 169-200. 

Dubin, R. (1988), Estimation of Regression Coefficients in the Presence of Spatially Autocor- 
related Error Terms, Review of Economics and Statistics, 70,466-474. 

Dubin, R. (1992), Spatial Autocorrelation and Neighborhood Quality, Regional Science and 
Urban Economics, 22,433-452. 

Durbin, J. and G. S. Watson (1950), Testing for Serial Correlation in Least Squares Regression 
I, Biometrika, 37,409-428. 



286 ANSELIN AND BERA 

Durbin, J. and G. S. Watson (1951), Testing for Serial Correlation in Least Squares Regression 
11, Biometrika, 38, 159-179. 

Florax, R. and S. Rey (1995), The Impacts of Misspecified Spatial Interaction in Linear Re- 
gression Models, in L. Anselin and R. Florax (eds.), New Directions in Spatial Econo- 
metrics, Springer-Verlag, Berlin, 11 1-135. 

Fomby, T. B., R. C. Hill, and S. R. Johnson (1984), Advanced Econometric Methods, Springer- 
Verlag, New York. 

Getis, A. (1995), Spatial Filtering in a Regression Framework: Examples Using Data on Ur- 
ban Crime, Regional Inequality, and Government Expenditures, in L. Anselin and 
R. Florax (eds.), New Directions in Spatial Econometrics, Springer-Verlag, Berlin, 172- 
185. 

Godfrey, L. (1981), On the Invariance of the Lagrange Multiplier Test with Respect to Certain 
Changes in the Alternative Hypothesis, Econometrica, 49, 1443-1455. 

Godfrey, L. (1988), MisspeclJication Tests in Econometrics, Cambridge University Press, New 
York. 

Greene, W. H. (1993), Econometric Analysis, 2nd ed., Macmillan, New York. 
Griffith, D. A. (1987), Spatial Autocorrelation, A Primer, Association of American Geogra- 

phers, Washington, DC. 
Griffith, D. A. (1993), Spatial Regression Analysis on the PC: Spatial Statistics Using SAS, 

Association of American Geographers, Washington, DC. 
Haining, R. (1984), Testing a Spatial Interacting-Markets Hypothesis, The Review of Eco- 

nomics and Statistics, 66, 576-583. 
Haining, R. (1988), Estimating Spatial Means with an Application to Remotely Sensed Data, 

Communications in Statistics: Theory and Methods, 17, 573-597. 
Haining, R. (1990), Spatial Data Analysis in the Social and Environmental Sciences, Cam- 

bridge University Press, Cambridge. 
Heijmans, R. and J. Magnus (1986a), On the First-Order Efficiency and Asymptotic Normality 

of Maximum Likelihood Estimators Obtained from Dependent Observations, Statistica 
Neerlandica, 40, 169-188. 

Heijmans, R. and J. Magnus (1986b), Asymptotic Normality of Maximum Likelihood Estima- 
tors Obtained from Normally Distributed but Dependent Observations, Econometric 
Theory, 2,374-412. 

Hepple, L. W. (1995a), Bayesian Techniques in Spatial and Network Econometrics. 1: Model 
Comparison and Posterior Odds, Environment and Planning A,  27, 447-469. 

Hepple, L. W. (1995b), Bayesian Techniques in Spatial and Network Econometrics. 2: Com- 
putational Methods and Algorithms, Environment and Planning A ,  27,615-644. 

Holtz-Eakin, D. (1994), Public-Sector Capital and the Productivity Puzzle, Review of Eco- 
nomics and Statistics, 76, 12-21. 

Hooper, P. and G .  Hewings (1981), Some Properties of Space-Time Processes, Geographical 
Analysis, 13,203-223. 

Hordijk, L. (1974), Spatial Correlation in the Disturbances of a Linear Interregional Model, 
Regional and Urban Economics, 4, 117-140. 

Hordijk, L. (1979), Problems in Estimating Econometric Relations in Space, Papers, Regional 
Science Association, 42,99-11.5. 

Hordijk, L. and J. Paelinck (1976), Some Principles and Results in Spatial Econometrics, 
Recherches Economiques de Louvain, 42, 175-197. 



SPATIAL DEPENDENCE IN LINEAR REGRESSION MODELS 287 

Huang, J. S. (1984). The Autoregressive Moving Average Model for Spatial Analysis, Aus- 

Imhof, J. P. (1961), Computing the Distribution of Quadratic Forms in Normal Variables, 

Isaaks, E. H. and R.  M. Srivastava (1989), An Introduction to Applied Ceostatistics, Oxford 

Johnson, N. L., and S. Kotz (1%9), Distributions in Statistics: Discrete Distributions, Houghton 

Johnston, J. (1984), Econometric Models, McGraw-Hill, New York. 
Judge, G., R.  C. Hill, W. E. Griffiths, H. Lutkepohl, and T-C. Lee (1982), Introduction to the 

Theory and Practice of Econometrics, Wiley, New York. 
Judge, G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T.-C. Lee (1985), The Theory and 

Practice of Econometrics, 2nd ed., Wiley, New York. 
Kelejian, H. and D. Robinson (1992), Spatial Autocorrelation: A New Computationally Simple 

Test with an Application to Per Capita Country Police Expenditures, Regional Science 
and Urban Economics, 22,317-331. 

Kelejian, H. H. and D. P. Robinson (1993), A Suggested Method of Estimation for Spatial 
Interdependent Models with Autocorrelated Errors, and an  Application to a County 
Expenditure Model, Papers in Regional Science, 72,297-312. 

Kelejian, H. H. and D. P. Robinson (1995), Spatial Correlation: A Suggested Alternative to 
the Autoregressive Model, in L. Anselin and R. Florax (eds.), New Directions in Spatial 
Econometrics, Springer-Verlag, Berlin, 75-95. 

King, M. L. (1981), A Small Sample Property of the Cliff-Ord Test for Spatial Correlation, 
Journal of the Royal Statistical Society B ,  43,263-264. 

King, M. L. (1987), Testing for Autocorrelation in Linear Regression Models: A Survey, in 
M. L. King and D. E. A. Giles (eds.), Specijication Analysis in the Linear Model, Rout- 
ledge and Kegan Paul, London, 19-73. 

King, M. L. and M. A. Evans (1986), Testing for Block Effects in Regression Models Based 
on Survey Data, Journal ofthe American Statistical Association, 81,677-679. 

King, M. L. and G. H. Hillier (1985), Locally Best Invariant Tests of the Error Covariance 
Matrix of the Linear Regression Model, Journal ofthe Royal Statistical Society B ,  47, 

Koerts, J. and A. P. I. Abrahamse (1968), On the Power of the BLUS Procedure, Journal of 
the American Statistical Association, 63, 1227-1236. 

Krugman, P. (1991), Increasing Returns and Economic Geography, Journal ofPolitica1 Econ- 
omy, 99,483499. 

Land, K. and G. Deane (1992), On the Large-Sample Estimation of Regression Models with 
Spatial- or Network-Effects Terms: A Two Stage Least Squares Approach, in P. Marsden 
(ed.), Sociological Methodology, Jossey Bass, San Francisco, 221-248. 

Leenders, R. T. (1995), Structure and Injluence. Statistical Models for the Dynamics of Actor 
Attributes, Network Structure and Their Interdependence, Thesis Publishers, Amster- 
dam. 

Legendre, P. (1993), Spatial Autocorrelation: Trouble or New Paradigm, Ecology, 74, 1659- 
1673. 

LeSage, J .  P. (1993), Spatial Modeling of Agricultural Markets, American Journal of Agricul- 
tural Economics, 75, 1211-1216. 

tralian Journal of Statistics, 26, 169-178. 

Biometrika, 48,419-426. 

University Press, Oxford. 

Mifflin, Boston. 

98-102. 



288 ANSELIN AND BERA 

LeSage, J. P. (1997), Bayesian Estimation of Spatial Autoregressive Models, International 

Liang, K. Y. and S. L. Zeger (1986), Longitudinal Data Analysis Using Generalized Linear 

Liitkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin. 
Magnus, J. (1978), Maximum Likelihood Estimation of the GLS Model with Unknown Pa- 

rameters in the Disturbance Covariance Matrix, Journal of Econometrics, 7,281-312; 
Corrigenda, Journal of Econometrics, 10,261. 

Mardia, K. V. and R. J. Marshal1 (1984), Maximum Likelihood Estimation of Models for Resid- 
ual Covariance in Spatial Regression, Biometrika, 71, 135-146. 

Mardia, K. V, and A. J. Watkins (1989), On Multimodality of the Likelihood for the Spatial 
Linear Model, Biometrika, 76,289-295. 

MathSoft (1W6), S+Spatialstats User’s Manual, Version 1. U ,  MathSoft, Inc., Seattle. 
McMillen, D. P. (1992), Probit with Spatial Autocorrelation, Journal of Regional Science, 32 

Moran, P. A. P. (1948), The Interpretation of Statistical Maps, Biometrika, 35,255-260. 
Moran, P. A. P. (1950a), Notes on Continuous Stochastic Phenomena, Biometrika, 37, 17-23. 
Moran, P. A. P. (1950b), A Test for the Serial Independence of Residuals, Biometrika, 37, 

Murdoch, J. C., M. Rahmatian, and M. A. Thayer (1993), A Spatially Autoregressive Median 
Voter Model of Recreation Expenditures, Public Finance Quarterly, 21, 334-350. 

Murdoch, J. C., T. Sandler, and K. Sargent (1996), A Tale of Two Collectives: Sulfur versus 
Nitrogen Oxides Emission Reduction in Europe, Working Paper, Department of Eco- 
nomics, Iowa State University, Ames, IA. 

National Research Council (1991), Spatial Statistics and Digital Image Analysis, National 
Academy Press, Washington, DC. 

Ord, J. K. (1975), Estimation Methods for Models of Spatial Interaction, Journal of the Amer- 
ican Statistical Association, 70, 120-126. 

Pace, R. K. and R. Barry (1996), Sparse Spatial Autoregressions, Statistics and Probability 
Letters, 2158, 1-7. 

Pace, R. K. and R. Barry (1997), Quick Computation of Spatial Autoregressive Estimators, 
Geographical Analysis, 29 (forthcoming). 

Paelinck, J. (1982), Operational Spatial Analysis, Papers, Regional Science Association, 50, 

Paelinck, J. and L. Klaassen (1979), Spatial Econometrics, Saxon House, Farnborough. 
Pinkse, J. and M. E. Slade (1995), Contracting in Space, an Application of Spatial Statistics 

to Discrete-Choice Models, Working Paper, Department of Economics, University of 
British Columbia, Vancouver, BC. 

Poirier, D. J. (1995), Intermediate Statistics and Econometrics. A Comparative Approach, The 
MIT Press, Cambridge, MA. 

Rao, C. R. (1947), Large Sample Tests of Statistical Hypotheses Concerning Several Parame- 
ters with Applications to Problems of Estimation, Proceedings of the Cambridge Philo- 
sophical Society, 44, 50-57. 

Regional Science Review, 20, 113-129. 

Models, Biometrika, 73, 13-22. 

335-348. 

178- 18 1. 

1-7. 

Ripley, B. D. (1981), Spatial Statistics, Wiley, New York. 
Ripley, B. D. (1988), Statistical Znfirence for Spatial Processes, Cambridge University Press, 

Cambridge. 



SPATIAL DEPENDENCE IN LINEAR REGRESSION MODELS 289 

Romer, P. M. (1986), Increasing Returns and Long-Run Growth, Journal of Political Economy, 

Saikkonen, P. (1989), Asymptotic Relative Efficiency of the Classical Test Statistics Under 

Silvey, S. D. (1959), The Lagrange Multiplier Test, Annals ofMathematicaZ Statistics, 30,389- 

Tiefelsdorf, M. and B. Boots (1995), The Exact Distribution of Moran’s I ,  Environment and 

Tobler, W. (1979), Cellular Geography, in S. Gale and G. Olsson (eds.), Philosophy in Geog- 

Upton, G. J. and B. Fingleton (1985), Spatial Data Analysis by Example. Volume I :  Point 

Upton, G .  J. and B. Fingleton (1989), Spatial Data Analysis by Example. Volume 2: Categorical 

Warnes, J. J. and B. D. Ripley (1987), Problems with Likelihood Estimation of Covariance 

White, H. (1980), A Heteroskedastic-Consistent Covariance Matrix Estimator and a Direct 

White, €1. (1984), Asymptotic Theoryfor Econometricians, Academic Press, Orlando. 
White, H. (1994), Estimation, Inference and Specijcntion Analysis, Cambridge University 

White, €1. and I .  Domowitz (1984), Nonlinear Regression with Dependent Observations, Econo- 

Whittle, P. (1954), On Stationary Processes in the Plane, Biometrika, 41,434-449. 
Zeger, S. L. and K. Y. Liang (1986), Longitudinal Data Analysis for Discrete and Continuous 

Zeger, S. L., K. Y. Liang, and P. S. Albert (1988), Models for Longitudinal Data: A Generalized 

94,1002-1037. 

Misspecification, Journal of Econometrics, 42,351-369. 

407. 

Planning A,  27,985-999. 

raphy, Reidel, Dordrecht, 379-386. 

Pattern and Quantitative Data, Wiley, New York. 

and Directional Data, Wiley, New York. 

Functions of Spatial Gaussian Processes, Biometrika, 74,640-642. 

Test for Heteroskedasticity, Econometrica, 48,817-838. 

Press, Cambridge. 

metrica, 52, 143-161. 

Outcomes, Biometrics, 42, 121-130. 

Estimating Equations Approach, Biometrics, 44, 1049-1060. 



This page intentionally left blank 



Panel Data Methods 

Badi H. Baitagi 
Texas A&M University, College Station, Texas 

1. INTRODUCTION 

Panel data refers to data sets consisting of multiple observations on each sampling 
unit. This could be generated by pooling time-series observations across a variety 
of cross-sectional units including countries, states, regions, firms, or randomly sam- 
pled individuals or households. Two well-known examples in the United States are 
the Panel Study of Income Dynamics (PSID) and the National Longitudinal Survey 
(NLS). The PSID began in 1968 with 4802 families, including an oversampling of 
poor households. Annual interviews were conducted and socioeconomic character- 
istics of each of the families and of roughly 31000 individuals who have been in 
these or derivative families were recorded. The list of variables collected is over 
5000. The NLS followed five distinct segments of the labor force. The original sam- 
ples include 5020 older men, 5225 young men, 5083 mature women, 5159 young 
women, and 12686 youths. There was an oversampling of blacks, hispanics, poor 
whites, and military in the youths survey. The list of variables collected runs into 
the thousands. Panel data sets have also been constructed from the U.S. Current 
Population Survey (CPS), which is a monthly national household survey conducted 
by the Census Bureau. The CPS generates the unemployment rate and other la- 
bor force statistics. Compared with the NLS and PSID data sets, the CPS contains 
fewer variables, spans a shorter period, and does not follow movers. However, it 
covers a much larger sample and is representative of all demographic groups. Eu- 
ropean panel data sets include the German Social Economic Panel, the Swedish 
study of household market and nonmarket activities, and the Intomart Dutch panel 
of households. 

Some of the benefits and limitations of using panel data sets are listed in Hsiao 
(1986). Obvious benefits are a much larger data set with more variability and less 
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collinearity among the variables than is typical of cross-sectional or time-series data. 
With additional, more informative data, one can get more reliable estimates and test 
more sophisticated behavioral models with less restrictive assumptions. Another ad- 
vantage of panel data sets are their ability to control for individual heterogeneity. Not 
controlling for these unobserved individual specific effects leads to bias in the result- 
ing estimates. Panel data sets are also better able to identify and estimate effects that 
are simply not detectable in pure cross sections or pure time-series data. In particu- 
lar, panel data sets are better able to study complex issues of dynamic behavior. For 
example, with cross-sectional data set one can estimate the rate of unemployment 
at a particular point in time. Repeated cross sections can show how this proportion 
changes over time. Only panel data sets can estimate what proportion of those who 
are unemployed in one period remain unemployed in another period. 

Limitations of panel data sets include problems in the design, data collec- 
tion, and data management of panel surveys (Kasprzyk et al. 1989). These include 
the problems of coverage (incomplete account of the population of interest), nonre- 
sponse (due to lack of cooperation of the respondent or because of interviewer error), 
recall (respondent not remembering correctly), frequency of interviewing, interview 
spacing, reference period, the use of bounding to prevent the shifting of events from 
outside the recall period into the recall period and time in sample bias. Another lim- 
itation of panel data sets is the distortions due to measurement errors. Measurement 
errors may arise because of faulty response due to unclear questions, memory errors, 
deliberate distortion of responses (e.g., prestige bias), inappropriate informants, mis- 
recording of responses, and interviewer effects. Although these problems can occur 
in cross-sectional studies, they are aggravated in panel data studies. Duncan and Hill 
(1985) in a validation study of the PSID data set compare the records of a large firm 
with the response of its employees and find the ratio of measurement error variance 
to true variance to be of the order of 184% for average hourly earnings. These figures 
are for a one-year recall (i.e., 1983 for 1982) and are more than doubled with two 
years’ recall. Panel data sets may also exhibit bias due to sample selection problems. 
For the initial wave of the panel, respondents may refuse to participate or the inter 
viewer may not find anybody at home. This may cause some bias in the inference 
drawn from this sample. While this nonresponse can also occur in cross-sectional 
data sets, it is more serious with panels because subsequent waves of the panel are 
still subject to nonresponse. Respondents may die, or move, or find that the cost of 
responding is high. The rate of attrition differs across panels and usually increases 
from one wave to the next, but the rate of increase declines over time. Becketti et al. 
(1988) studied the representativeness of the PSID, 14 years after it started. They 
find that only 40% of those originally in the sample in 1968 remained in the sample 
in 1981. Typical panels involve annual data covering a short span of time for each 
individual. This means that asymptotic arguments rely crucially on the number of 
individuals in the panel tending to infinity. Increasing the time span of the panel 
is not without cost either. In fact, this increases the chances of attrition with every 
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new wave and increases the degree of computational difficulty in the estimation of 
qualitative limited dependent variable panel data models (Baltagi 1995b). 

II. THE ERROR COMPONENTS REGRESSION MODEL 

Although, random coefficient regressions can be used in the estimation and specifi- 
cation of panel data models (Swamy 1971, Hsiao 1986, Dielman 1989), most panel 
data applications have been limited to a simple regression with error components 
disturbances 

where i denotes individuals and t denotes time, Kit  is a vector of observations of k 
explanatory variables, B is a k-vector of unknown coefficients, F C L ;  is an unobserved 
individual specific effect, A, is an unobserved time specific effect and v ; ~  is a zero- 
mean random disturbance with variance of. The error components disturbances fol- 
low a two-way analysis of variance (ANOVA). If Fi and At denote fixed parameters 
to be estimated, this model is known as the fixed-effects (FE) model. The Xit’S are 
assumed independent of the Vit’S for all i and t .  Inference in this case is conditional 
on the particular N individuals and over specific time-periods observed. Estimation 
in this case amounts to including N - 1 individual dummies and T - 1 time dum- 
mies to estimate these time invariant and individual invariant effects. This leads to 
an enormous loss in degrees of freedom. In addition, this attenuates the problem of 
multicollinearity among the regressors. Furthermore, this may not be computation- 
ally feasible for large N and/or T .  In this case, one can eliminate the p i ’ s  and At’s 
and estimate B by running least squares of yit = yil - ri. - r.t + r., on the Zil’s simi- 
larly defined, where the dot indicates summation over that index and the bar denotes 
averaging. This transformation is known as the within transformation and the corre- 
sponding estimator of is called the within estimator or the FE estimator. Note that 
the FE estimator cannot estimate the effect of any time-invariant variable like sex, 
race, religion, or union participation. Nor can it estimate the effect of any individual 
invariant like price, interest rate, etc., that vary only with time. These variables are 
wiped out by the within transformation. 

If pi and A, are random variables with zero means and constant variances c r i  

and o:, this model is known as the random-effects model. The preceding moments 
are conditional on the xil’s. In addition, pi, hl,  and v ; ~  are assumed to be condition- 
ally independent. The random-effects (RE) model can be estimated by GLS which 
can be obtained using a least-squares regression of y: = yi, = 81yi, - 82y., + 837.. 
on K:, similarly defined, where 81,& and 8s are simple functions of the variance 
components a;, of ,  and 0: (Fuller and Battese 1974). The corresponding GLS es- 
timator of /3 is known as the RE estimator. Note that for this RE model one can 
estimate the effects of time-invariant and individual-invariant variables. The best 
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quadratic unbiased (BQU) estimators of the variance components are ANOVA type 
estimators based on the true disturbances and these are minimum variance unbi- 
ased (MVU) under normality of the disturbances. One can obtain feasible estimates 
of the variance components by replacing the true disturbances by OLS residuals 
(Wallace and Hussain 1969). Alternatively, one could substitute the fixed-effects 
residuals as proposed by Amemiya (1971). In fact, Amemiya (1971) shows that the 
Wallace and Hussain (1969) estimates of the variance components have a different 
asymptotic distribution from that knowing the true disturbances, while the Amemiya 
(1971) estimates of the variance components have the same asymptotic distribution 
as that knowing the true disturbances. Other estimators of the variance components 
were proposed by Swamy and Arora (1972) and Fuller and Battese (1974). Maximum 
likelihood estimation (MLE) under the normality of the disturbances is derived by 
Amemiya (1971). The first-order conditions are nonlinear, but can be solved using 
an iterative GLS scheme (Breusch 1987). Finally one can apply Rao’s (1972) min- 
imum norm quadratic unbiased estimation (MINQUE) methods. These methods are 
surveyed in Baltagi (1995b).Wallace and Hussain (1969) compare the RE and FE 
estimators of B in the case of nonstochastic (repetitive) %it’s and find that both are (i) 
asymptotically normal, (ii) consistent and unbiased, and that (iii) BKE has a smaller 
generalized variance (i.e., more efficient) in finite samples. In the case of nonstochas- 
tic (nonrepetitive) xit’s they find that both BKE and f i ~ 1 . :  are consistent, asymptotically 
unbiased and have equivalent asymptotic variance-covariance matrices, as both N 
and T + 00. Under the random effects model, GLS based on the true variance 
components is BLUE, and all the feasible GLS estimators considered are asymptot- 
ically efficient as N and T + 00. Maddala and Mount (1973) compared OLS, FE, 
RE, and MLE methods using Monte Carlo experiments. They found little to choose 
among the various feasible GLS estimators in small samples and argued in favor of 
methods that were easier to compute. MINQUE was dismissed as more difficult to 
compute, ancl tLle applied researcher given one shot at the data was warned to com- 
pute at least two methods of estimation. If these methods give different results, the 
authors diagnose misspecification. Taylor (1980) derived exact finite sample results 
for the one-way error component model ignoring the time effects. He found the fol- 
lowing important results. (1) Feasible GLS is more efficient that the FE estimator 
for all but the fewest degrees of freedom. (2) The variance of feasible GLS is never 
more than 17% above the Cramer-Rao lower bound. (3) More efficient estimators of 
the variance components do not necessarily yield more efficient feasible GLS esti- 
mators. These finite-sample results are confirmed by the Monte Carlo experiments 
carried out by Baltagi (1981a). 

One test for the usefulness of panel data models is their ability to predict. For 
the FE model, the best linear unbiased predictor (BLUP) was derived by Wansbeek 
and Kapteyn (1978) and Taub (1979). This derivation was generalized by Baltagi 
and Li (1992) to the RE model with serially correlated remainder disturbances. More 
recently, Baillie and Baltagi (1995) derived the asymptotic mean square prediction 
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error for the FE and RE predictors as well as two other misspecified predictors and 
compared their performance using Monte Carlo experiments. 

111. TEST OF HYPOTHESES 

Fixed versus random effects has generated a lively debate in the biometrics liter- 
ature. In econometrics, see Mundlak (1978). The random and fixed effects models 
yield different estimation results, especially if T is small and N is large. A speci- 
fication test based on the difference between these estimates is given by Hausman 
(1978). The null hypothesis is that the individual and time effects are not correlated 
with the xit’s. The basic idea behind this test is that the fixed effects estimator f i F E  is 
consistent whether the effects are or are not correlated with the xit’s. This is true be- 
cause the fixed effects transformation described by y~~ wipes out the pi and A, effects 
from the model. However, if the null hypothesis is true, the fixed effects estimator is 
not efficient under the RE specification, because it relies only on the within variation 
in the data. On the other hand, the RE estimator &E is efficient under the null hy- 
pothesis but is biased and inconsistent when the effects are correlated with the xLL’s. 
The difference between these estimators i j  = f i ~ ~  - BRE tend to zero in probability 
limits under the null hypothesis and is nonzero under the alternative. The variance of 
this difference is equal to the difference in variances, var(4) = var(&E)-var(fiRE), 
since cov(4, BKE) = 0 under the null hypothesis. Hausman’s test statistic is based 
upon m = ij’[var(Q)]-‘Q and is asymptotically distributed as x’ with k degrees of 
freedom under the null hypothesis.* The Hausman test can also be computed as a 
variable addition test by running y* on the regressor matrices X* and 8 testing that 
the coefficients of I are zero using the usual F-test. This test was generalized by 
Arellano (1993) to make it robust to heteroskedasticity and autocorrelation of arbi- 
trary forms. In fact, if either heteroskedasticity or serial correlation is present, the 
variances of the FE and RE estimators are not valid and the corresponding Haus- 
man test statistic is inappropriate. Ahn and Low (1996) show that the Hausman test 
statistic can be obtained as (NT)R’  from the regression of GLS residuals on R and 
X where the latter denotes the matrix of regressors averaged over time. Also, an al- 
ternative generalized method of moments (GMM) test is recommended for testing the 
joint null hypothesis of exogeneity of the regressors and the stability of regression 
parameters over time. If the regression parameters are nonstationary over time, then 
both BR~:  and BFE: are inconsistent even though the regressors may be exogenous. 
Ahn and Low perform Monte Carlo experiments which show that both the Haus- 

*For the one-way error components model with individual elfects only, Hausman and Taylor (1981) show 
that Hausman’s specification test can also he based on two other contrasts that yield numerically iden- 
tical results. Kang (1985) extends this analysis to the two-way error romponents model. 
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man and the alternative G M M  test have good power in detecting endogeneity of the 
regressors. However, the alternative GMM test dominates if the coefficients of the 
regressors are nonstationary. Li and Stengos (1992) propose a Hausman specifica- 
tion test based on fl-consistent semiparametric estimators. They apply it in the 
context of a dynamic panel data model of the form 

yit = 6yi,t-1 + g(xit) +  it, i = 1, . . . , N ;  t = 1, . . . , T (2) 

where the function g(.) is unknown, but satisfies certain moment and differentia- 
bility conditions. The x;, observations are IID with finite fourth moments and the 
disturbances uit are IID(0, a') under the null hypothesis. Under the alternative, the 
disturbances uit are IID in the i subscript but are serially correlated in the t sub- 
script. Li and Stengos base the Hausman test for &: E(u;,  lyi,,-l) = 0 on the differ- 
ence between two n -cons i s t en t  instrumental variables estimators for 6, under the 
null and the alternative respectively. 

For panels with large N and small T ,  testing for poolability of the data amounts 
to testing the stability of the cross-sectional regression across time. In practice, the 
Chow (1960) test for the equality of the regression coefficients is popular. This is 
proper only under the spherical disturbances assumption. It leads to improper infer- 
ence under the random-effects specification. In fact, Baltagi (1981a) shows that in 
this case the Chow test leads to rejection of the null too often when in fact it is true. 
However, if one accounts for the random-effects variance-covariance matrix, the F -  
test for the equality of slopes performs well in Monte Carlo experiments. Recently, 
Baltagi, Hidalgo, and Li (1996) derive a nonparametric test for poolability which is 
robust to functional form misspecification. In particular, they consider the following 
nonparametric panel data model: 

yit = &(%it) + e;t ( i  = 1, . . . , N ;  t = 1, . . . , T )  (3) 

where gt(.)  is an unspecified functional form that may vary over time, and xit is a 
k x 1 column vector of predetermined explanatory variables with ( p  2 1) variables 
being continuous and k - p (2 0). Poolability of the data over time is equivalent to 
testing that gt(x) = gs(x) almost everywhere for all t and s = 1 , 2 ,  . . . , T versus 
gt(x) # g,(x) for some t # s with probability greater than zero. The test statistic is 
shown to be consistent and asymptotically normal and is applied to a panel data set 
on earnings. 

In choosing between pooled homogeneous parameter estimators versus non- 
pooled heterogeneous parameter estimators, some mean-square error (MSE) criteria 
can be used as described in Wallace (1972) to capture the trade-off between bias and 
variance. Bias is introduced when the poolability restriction is not true. However, the 
variance is reduced by imposing the poolability restriction. Hence, the MSE crite- 
ria may choose the pooled estimator despite the fact that the poolability restriction 
is not true. Ziemer and Wetzstein (1983) suggest comparing pooled and nonpooled 
estimators according to their forecast risk performance. They show for a wilderness 
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recreation demand model that a Stein-rule estimator give better forecast risk per- 
formance than the pooled or individual cross-sectional estimates. More recently, the 
fundamental assumption underlying pooled homogeneous parameters models has 
been called into question. For example, Robertson and Symons (1992) warned about 
the bias from pooled estimators when the estimated model is dynamic and homoge- 
neous when in fact the true model is static and heterogeneous. Pesaran and Smith 
(1995) argued in favor of heterogeneous estimators rather than pooled estimators for 
panels with large N and T .  They showed that when the true model is dynamic and 
heterogeneous, the pooled estimators are inconsistent, whereas an average estimator 
of heterogeneous parameters can lead to consistent estimates as long as both N and 
T tend to infinity. Using a different approach, Maddala, Srivastava, and Li (1994) ar- 
gued that shrinkage estimators are superior to either heterogeneous or homogeneous 
parameter estimates especially for prediction purposes. In this case, one shrinks 
the individual heterogeneous estimates toward the pooled estimate using weights 
depending on their corresponding variance-covariance matrices. Baltagi and Griffin 
(1997) compare the short-run and long-run forecast performance of the pooled homo- 
geneous, individual heterogeneous, and shrinkage estimators for a dynamic demand 
for the gasoline across 18 OECD countries. Based on 1-, 5-, and 10-year forecasts, 
the results support the case for pooling. Alternative tests for structural change in 
panel data include Han and Park (1989), who used the cumulative sum and cusum 
of squares to test for structural change based on recursive residuals. They find no 
structural break over the period 1958-1976 in U.S. foreign trade of manufacturing 
goods. 

Testing for random individual effects is of utmost importance in panel data 
applications. Ignoring these effects lead to huge bias in estimation (Moulton 1986). 
A popular Lagrange multiplier (LM) test for the significance of the random effects 
H l ;  0: = 0 was derived by Breusch and Pagan (1980). This test statistic can be 
easily computed using least-squares residuals. This assumes that the alternative hy- 
pothesis is two-sided when we know that the variance components are nonnegative. 
A one-sided version of this test is given by Honda (1985). This is shown to be uni- 
formly most powerful and robust to nonnormality. However, Moulton and Randolph 
(1989) showed that the asymptotic N ( 0 ,  1) approximation for this one-sided LM 
statistic can be poor even in large samples. They suggest an alternative standard- 
ized Lagrange multiplier (SLM) test whose asymptotic critical values are generally 
closer to the exact critical values than those of the LM test. This SLM test statistic 
centers and scales the one-sided LM statistic so that its mean is zero and its variance 
IS one. 

For Hob; 0; = a: = 0, the two-sided LM test is given by Breusch and Pa- 
gan (1980) and is distributed as x; under the null. Honda (1985) does not derive a 
uniformly most powerful one-sided test for Hk,  but he suggests a “handy” one-sided 
test which is distributed as N ( 0 ,  1) under H i .  Later Honda (1991) derives the SLM 
version of this one-sided test. Baltagi, Chang, and Li (1992) derive a locally mean 
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most powerful (LMMP) one-sided test for Hk and its SLM version is given by Baltagi 
(1995b). Under H:, a; = cr: = 0, these standardized Lagrange multiplier statis- 
tics are asymptotically N(0, 1) and their asymptotic critical values should be closer 
to the exact critical values than those of the corresponding unstandardized tests. Al- 
ternatively, one can perform a likelihood ratio test or an ANOVA-type F-test. Both 
tests have the same asymptotic distribution as their LM counterparts. Moulton and 
Randolph (1989) find that although the F-test is not locally most powerful, its power 
function is close to the power function of the exact LM test and is therefore rec- 
ommended. A comparison of these various testing procedures using Monte Carlo ex- 
periments is given by Baltagi, Chang, and Li (1992). Recent developments include a 
generalization by Li and Stengos (1994) of the Breusch-Pagan test to the case where 
the remainder error is heteroskedastic of unknown form. Also, Baltagi and Chang 
(1996) propose a simple ANOVA F-statistic based on recursive residuals to test for 
random individual effects. 

For incomplete (or unbalanced) panels, the Breusch-Pagan test can be eas- 
ily extended; see Moulton and Randolph (1989) for the one-way error components 
model and Baltagi and Li (1990) for the two-way error components model. For non- 
linear models, Baltagi (1996) suggests a simple method for testing for zero random 
individual and time effects using a Gauss-Newton regression. In case the regression 
model is linear, this test amounts to a variable addition test, i.e., running the original 
regression with two additional regressors. The first is the average of the least-squares 
residuals over time, while the second is the average of the least-squares residuals 
over individuals. The test statistic becomes the F-statistic for the significance of the 
two additional regressors. 

Baltagi and Li (1995) derive three LM test statistics that jointly test for serial 
correlation and individual effects. The first LM statistic jointly tests for zero first- 
order serial correlation and random individual effects, the second LM statistic tests 
for zero first-order serial correlation assuming fixed individual effects, and the third 
LM statistic tests for zero first-order serial correlation assuming random individual 
effects. In all three cases, Baltagi and Li (1995) showed that the corresponding LM 
statistic is the same whether the alternative is AR(1) or MA(1). In addition, Baltagi 
and Li (1995) derive two simple tests for distinguishing between AR(1) and MA(1) 
remainder disturbances in error components regressions and perform Monte Carlo 
experiments to study the performance of these tests. For the fixed-effects model, 
Bhargava, Franzini, and Narendranathan (1 982) derived a modified Durbin-Watson 
test statistic based on FE residuals to test for first-order serial correlation and a test 
for random walk based on differenced OLS residuals. Chesher (1984) derived a score 
test for neglected heterogeneity, which is viewed as causing parameter variation. 
Also, Hamerle (1990) and Orme (1993) suggest a score test for neglected hetero- 
geneity for qualitative limited dependent-variable panel data models. 

Holtz-Eakin (1988) derives a simple test for the presence of individual ef- 
fects in dynamic (autoregressive) panel data models, while Holtz-Eakin, Newey, and 
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Rosen (1988) formulate a coherent set of procedures for estimating and testing VAR 
(vector autoregression) with panel data. Arellano and Bond (1991) consider tests 
for serial correlation and overidentification restrictions in a dynamic random-effects 
model, while Arellano (1990) considers testing covariance restrictions for error com- 
ponents or first-difference structures with white noise, MA, or AR schemes. 

Chamberlain (1982, 1984) finds that the fixed effects specification imposes 
testable restrictions on coefficients from regressions of all leads and lags of the de- 
pendent variable on all leads and lags of independent variables. These overidenti- 
fication restrictions are testable using minimum chi-squared statistics. Angrist and 
Newey (1991) show that, in the standard fixed effects model, this overidentifica- 
tion test statistic is simply the degrees of freedom times the R2 from a regression 
of within residuals on all leads and lags of the independent variables. They apply 
this test to models of the union-wage effect using five years of data from the National 
Longitudinal Survey of Youth and to a conventional human capital earnings function 
estimating the return to schooling. They do not reject a fixed effect specification in 
the union-wage example, but they do reject i t  in the return to schooling example. 

Testing for unit roots using panel data has been recently reconsidered by Quah 
(1994), Levin and Lin (1996), and Im, Pesaran, and Shin (1996). This has been ap- 
plied by MacDonald (1996) to real exchange rates for 17 OECD countries based 
on a wholesale price index, and 23 OECD countries based on a consumer price in- 
dex, all over the period 1973-1992. The null hypothesis that real exchange rates 
contain a unit root is rejected. Earlier applications include Bourmahdi and Thomas 
(1991). who apply a likelihood ratio unit root panel data test to assess efficiency of 
the French capital market. Using 140 French stock prices observed weekly from Jan- 
uary 1973 to February 1986 ( T  = 671) on the Paris Stock Exchange, Boumahdi and 
Thomas (1991) do not reject the null hypothesis of a unit root. Also, Breitung and 
Meyer (1994) apply panel data unit roots test to contract wages negotiated on firm 
and industry level in western Germany over the period 1972-1987. They find that 
both firm and industry wages possess a unit root in the autoregressive representation. 
However, there is weak evidence for a cointegration relationship. 

IV. GENERALIZATIONS OF THE ERROR 
COMPONENTS MODEL 

The error components disturbances are homoskedastic across individuals. This may 
be an unrealistic assumption and has been relaxed by Mazodier and Trognon (1978) 
and Baltagi and Griffin (1988). A more general heteroskedastic model is given by 
Randolph (1988) in the context of unbalanced panels. Also, Li and Stengos (1994) 
proposed estimating a one-way error component model with heteroskedasticity of 
unknown form using adaptive estimation techniques. 
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The error components regression model has been also generalized to allow 
for serial correlation in the remainder disturbances by Lillard and Willis (1978), 
Revankar (1979), MaCurdy (1982), Baltagi and Li (1991, 1995), and Galbraith and 
Zinde-Walsh (1995). Chamberlain (1982,1984) allows for arbitrary serial correlation 
and heteroskedastic patterns by viewing each time period as an equation and treating 
the panel as a multivariate setup. Also, Kiefer (1980), Schmidt (1983), Arellano 
(1987), and Chowdhury (1994) extend the fixed-effects model to cover cases with an 
arbitrary intertemporal covariance matrix. 

The normality assumption on the error components disturbances may be un- 
tenable. Horowitz and Markatou (1996) show how to carry out nonparametric estima- 
tion of the densities of the error components. Using data from the Current Population 
Survey, they estimate an earnings model and show that the probability that individ- 
uals with low earnings will become high earners in the future are much lower than 
that obtained under the assumption of normality. One drawback of this nonparamet- 
ric estimator is its slow convergence at a rate of l/(log N ) ,  where N is the number 
of individuals. Monte Carlo results suggest that this estimator should be used for N 
larger than 1000. 

Micro panel data on households, individuals, and firms are highly likely to 
exhibit measurement error; see Duncan and Hill (1985) who found serious measure- 
ment error in average hourly earnings in the Panel of Income Dynamics. Using panel 
data, Griliches and Hausman (1986) showed that one can identify and estimate a va- 
riety of errors in variables models without the use of external instruments. Griliches 
and Hausman suggest differencing the data j periods apart (yil - x,~-,), thus gener- 
ating “different-lengths” difference estimators. These transformations wipe out the 
individual effect, but they may aggravate the measurement error bias. One can cal- 
culate the bias of the different-lengths differenced estimators and use this infor- 
mation to obtain consistent estimators of the regression coefficients. Extensions of 
this model include Kao and Schnell(1987a, 1987b), Wansbeek and Koning (1989), 
Hsiao (1991), Wansbeek and Kapteyn (1992), and Biorn (1992). See also Baltagi and 
Pinnoi (1995) for an application to the productivity of the public capital stock. 

The error components model has been extended to the seemingly unrelated 
regressions case by Avery (1977), Baltagi (1980), Magnus (1982), Prucha (1984), 
and Kinal and Lahiri (1990). Some applications include Howrey and Varian (1984) 
on the estimation of a system of demand equations for electricity by time of day, and 
Sickles (1985) on the analysis of productivity growth in the U.S. airlines industry. 

For the simultaneous equation with error components. Baltagi (1981b) derives 
the error component two-stage (ECZSLS) and three-stage (EC3SLS) least-squares es- 
timators, while Prucha (1985) derives the full-information MLE under the normality 
assumption. These estimators are surveyed in Krishnakumar (1988). Monte Carlo 
experiments are given by Baltagi (1984) and Mhtyhs and Lovrics (1990). Recent ap- 
plications of EC2SLS and EC3SLS include (i) an econometric rational-expectations 
macroeconomic model for developing countries with capital controls (Haque, Lahiri, 

. 
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and Montiel 1993), and (ii) an econometric model measuring income and price elas- 
ticities of foreign trade for developing countries (Kinal and Lahiri 1993). 

Mundlak (1978) considered the case where the endogeneity is solely attributed 
to the individual effects. In this case, Mundlak showed that if these individual ef- 
fects are a linear function of the averages of all the explanatory variables across 
time, then the GLS estimator of this model coincides with the FE estimator. Mund- 
lak’s (1978) formulation assumes that all the explanatory variables are related to the 
individual effects. The random-effects model, on the other hand, assumes no corre- 
lation between the explanatory variables and the individual effects. Instead of this 
“all or nothing” correlation among the xit’s and the p i ’s ,  Hausman and Taylor (1981) 
consider a model where some of the explanatory variables are related to the p i ’ s .  In 
particular, they consider 

where the zi’s are cross-sectional time-invariant variables. Hausman and Taylor 
(1981), hereafter HT, split the matrices X and 2 into two sets of variables: X = 
[ X I ;  X2] and 2 = [Zl; 221, where XI is n x k l ,  X2 is n x k2,Zl  is n x gl, 2 2  is 
n x g2, and n = N T .  The terms X I  and 21 are assumed exogenous in that they 
are not correlated with pi and u i t ,  while X 2  and Z2 are endogenous because they 
are correlated with the pi’s but not the viL’s. The within transformation would sweep 
the p i ’ s  and remove the bias, but in the process it would also remove the Zi’s and 
hence the  within estimator will not give an estimate of the y’s. To get around that, 
Hausman and Taylor (1981) suggest an instrumental variable estimator that uses 
fl, f 2 ,  XI,  and 21 as instruments. Therefore, the matrix of regressors XI is used 
twice, once as averages and another time as deviations from averages. This is an 
advantage of panel data allowing instruments from within the model. The order con- 
dition for identification gives the result that the number of X I ’ S  (kl) must be at least 
as large as the number of Z2k (g2). With stronger exogeneity assumptions between 
X and the pi’s, Amemiya and MaCurdy (1986) and Breusch, Mizon, and Schmidt 
(1989) suggest more efficient instrumental variable (IV) estimators. Cornwell and 
Rupert (1988) apply these IV methods to a returns to schooling example based on a 
panel of 595 individuals drawn from the PSID over the period 1976-1982. Recently, 
Metcalf (1996) shows that for the Hausman-Taylor model given in (4), using less in- 
struments may lead to a more powerful Hausman specification test. Asymptotically, 
more instruments led to more efficient estimators. However, the asymptotic bias of 
the inefficient estimator will also be greater as the null hypothesis of no correlation 
is violated. The increase in bias more than offsets the increase in variance. Since the 
test statistic is linear in variance but quadratic in bias, its power will increase. 

Cornwell, Schmidt, and Wyhowski (1992) consider a simultaneous equation 
model with error components that distinguishes between two types of exogenous vari- 
ables, namely singly exogenous and doubly exogenous variables. A singly exogenous 
variable is correlated with the individual effects but not with the remainder noise, 
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while a doubly exogenous variable is uncorrelated with both the effects and the re- 
mainder disturbance term. For this encompassing model with two types of exogene- 
ity, Cornwell, Schmidt, and Wyhowski (1992) extend the three instrumental vari- 
able estimators considered above and give them a GMM interpretation. Wyhowski 
(1994) extend these results to the two-way error components model, while Revankar 
(1992) establishes conditions for exact equivalence of instrumental variables in a 
simultaneous-equation two-way error components model. 

V. DYNAMIC PANEL DATA MODELS 

The dynamic error components regression is characterized by the presence of a 
lagged dependent variable among the regressors, i.e., 

where 6 is a scalar, XI, is 1 x k ,  and /3 is k x 1.  This model has been extensively stud- 
ied by Anderson and Hsiao (1982) and Sevestre and Trognon (1985).* Since yi, is a 
function of pi, yi,,-l is also a function of pi. Therefore, %,,-I ,  a right-hand regres- 
sor in (5), is correlated with the error term. This renders the OLS estimator biased 
and inconsistent even if the vit’s are not serially correlated. For the FE estimator, 
the within transformation wipes out the p i ’ s ,  but yi9L-l will still be correlated with 
Pi, even if the vit’s are not serially correlated. In fact, the within estimator will be 
biased of U(l/T) and its consistency will depend upon T being large; see Nickel1 
(1981) and Kiviet (1995), who shows that the bias of the FE estimator in a dynamic 
panel data model has an O ( W ’  T3/’) approximation error. The same problem occurs 
with the random effects GLS estimator. In order to apply GLS, quasi-demeaning is 
performed, and yL:t-l will be correlated with U:,. An alternative transformation that 
wipes out the individual effects yet does not create the above problem is the first- 
difference (FD) transformation. In fact, Anderson and Hsiao (1982) suggested first- 
differencing the model to get rid of the p i ’ s  and then using Ayi,,-2 = ~ i , ~ - 2  - yi,,-3 

or simplyyi,,-z as an instrument for Ayi,,-I = yi,,-l -%,,-2. These instruments will 
not be correlated with Avi, = vi,, - V ~ , ~ - I ,  as long as the v;,’s themselves are not 
serially correlated. This IV estimation method leads to consistent, but not necessar- 
ily efficient, estimates of the parameters in the model because i t  does not make use 
of all the available moment conditions (Ahn and Schmidt 1995) and i t  does not take 
into account the differenced structure on the residual disturbances (AV;,). Arellano 

*In particular, the assumptions made on the initial values are of utmost importance (Anderson and Hsiao 
1982, Bhargava and Sargan 1983, Hsiao 1986). Hsiao (1986) summarizes the consistency properties of 
the MLE and GLS under a RE dynamic model depending on the initial values assumption and the way 
in which N and T tend to infinity. 
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(1989) finds that for simple dynamic error components models the estimator that uses 
differences rather than levels yi,t-2 for instruments has a singularity point 
and very large variances over a significant range of parameter values. In contrast, the 
estimator that uses instruments in levels, i.e., ~ i , ~ - 2 ,  has no singularities and much 
smaller variances and is therefore recommended. Additional instruments can be ob- 
tained in a dynamic panel data model if one utilizes the orthogonality conditions 
that exist between lagged values of yil and the disturbances vit (Holtz-Eakin 1988, 
Holtz-Eakin, Newey, and Rosen 1988, Arellano and Bond 1991). Based on these ad- 
ditional moments, Arellano and Bond (1991) suggest a GMM estimator and propose 
a Sargan-type test for overidentifying restrictions.* Arellano and Bover (1995) de- 
velop a unifying GMM framework for looking at efficient IV estimators for dynamic 
panel data models. They do that in the context of the Hausman and Taylor (1981) 
model given in (4). Ahn and Schmidt (1995) show that under the standard assump- 
tions used in a dynamic panel data model, there are additional moment conditions 
that are ignored by the IV estimators suggested by Arellano and Bond (1991). They 
show how these additional restrictions can be utilized in a GMM framework. Ahn 
and Schmidt (1995) also consider the dynamic version of the Hausman and Taylor 
(1981) model and show how one can make efficient use of exogenous variables as 
instruments. In particular, they show that the strong exogeneity assumption implies 
more orthogonality conditions which lie in the deviations from mean space. These 
are irrelevant in the static Hausman-Taylor model but are relevant for the dynamic 
version of that model. 

An alternative approach to estimating dynamic panel data models have been 
suggested by Keane and Runkle (1992). Drawing upon the forward filtering idea 
from the time-series literature, this method of estimation first transforms the model 
to eliminate the general and arbitrary serial correlation pattern in the data. By doing 
so, one can use the set of original predetermined instruments to obtain consistent 
parameter estimates of the model. First differencing is also used in dynamic panel 
data models to get rid of individual specific effect, and the resulting first-differenced 
errors are serially correlated of an MA(1) type with unit root if the original uil’s are 
classical errors. In this case, there will be gain in efficiency in performing the Keane 
and Runkle filtering procedure on the FD model. Underlying this estimation proce- 
dure are two important hypotheses that are testable. The first is H A ;  the set of instru- 
ments are strictly exogenous. In order to test H A ,  Keane and Runkle propose a test 
based on the difference between fixed-effects 2SLS (FE-2SLS) and first-difference 
2SLS (FD-2SLS). FE-2SLS is consistent only if H A  is true. In fact if the matrix of in- 
struments contains predetermined variables then FE-2SLS would not be consistent. 

*Bhargava (1991) gives sufficient conditions for the identification of static and dynamic panel data models 
with endogenous regressors. 
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In contrast, FD-2SLS is consistent whether H A  is true or not. If H A  is not rejected, 
one should check whether the individual effects are correlated with the set of instru- 
ments. In this case, the usual Hausman and Taylor (1981) test applies. However, if 
H A  is rejected, the instruments are predetermined and the Hausman-Taylor test is 
inappropriate. In this case, the test will be based upon the difference between FD- 
2SLS and 2SLS. Under the null, both estimators are consistent, but if the null is not 
true FD-2SLS remains consistent while 2SLS does not. These two tests are Hausman 
(1978)-type tests except that the variances are complicated because Keane and Run- 
kle do not use the efficient estimator under the null (Schmidt, Ahn, and Wyhowski 
1992). Keane and Runkle (1992) apply their testing and estimation procedures to a 
simple version of the rational expectations life-cycle consumption model. See also 
Baltagi and Griffin (1995) for another application to liquor demand. 

Alternative estimation methods of a static and dynamic panel data model with 
arbitrary error structure are considered by Chamberlain (1982, 1984). Chamberlain 
(1984) considered the panel data model as a multivariate regression of T equations 
subject to restrictions and derives an efficient minimum distance estimator that is 
robust to residual autocorrelation of arbitrary form. He also first-differenced these 
equations to get rid of the individual effects and derived an asymptotically equiv- 
alent estimator to his efficient minimum distance estimator based on 3SLS of the 
T - 2 differenced equations. Building on Chamberlain’s work, Arellano (1990) de- 
veloped minimum chi-square tests for various covariance restrictions. These tests are 
based on 3SLS residuals of the dynamic error component model and can be calcu- 
lated from a generalized linear regression involving the sample autocovariance and 
dummy variables. The asymptotic distribution of the unrestricted autocovariance 
estimates is derived without imposing the normality assumption. In particular, Arel- 
lano (1990) considered testing covariance restrictions for error components or first- 
difference structures with white noise, moving-average, or autoregressive schemes. 
If these covariance restrictions are true, 3SLS is inefficient and Arellano (1990) pro- 
posed a GLS estimator which achieves asymptotic efficiency in the sense that it has 
the same limiting distribution as the optimal minimum distance estimator. More re- 
cently, Li and Stengos (1996) derived a a -cons i s t en t  estimator for a semiparamet- 
ric dynamic panel data model, while Li and Stengos (1995) proposed a nonnested 
test for parametric versus semiparametric dynamic panel data models. 

VI. INCOMPLETE PANEL DATA MODELS 

Incomplete panels are more likely to be the norm in typical economic empirical 
settings. For example, if one is collecting data on a set of countries over time, a re- 
searcher may find some countries can be traced back longer than others. Similarly, 
in collecting data on firms over time, a researcher may find that some firms have 
dropped out of the market while new entrants emerged over the sample period ob- 
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served. For randomly missing observations, unbalanced panels have been dealt with 
in Fuller and Battese (1974), Baltagi (1985), Wansbeek and Kapteyn (1989), and 
Baltagi and Chang (1994).* For the unbalanced one-way error component model, 
GLS can still be performed as a least-squares regression. However, BQU estimators 
of the variance components are a function of the variance components themselves. 
Still, unbalanced ANOVA methods are available (Searle 1987). Baltagi and Chang 
(1994) performed extensive Monte Carlo experiments varying the degree of unbal- 
ancedness in the panel as well as the variance components. Some of the main results 
include the following: (i) As far as the estimation of regression coefficients are con- 
cerned, the simple ANOVA-type feasible GLS estimators compare well with the more 
complicated estimators such as MLE and MINQUE and are never more than 4% 
above the MSE of true GLS. (ii) For the estimation of the remainder variance compo- 
nent a:, these methods show little difference in relative MSE performance. However, 
for the individual specific variance component estimation, a:, the ANOVA-type es- 
timators perform poorly relative to MLE and MINQUE methods when the variance 
component a: is large and the pattern is severely unbalanced. (iii) Better estimates 
of the variance components, in the MSE sense, do not necessarily imply better es- 
timates of the regression coefficients. This echoes similar findings in the balanced 
panel data case. (iv) Extracting a balanced panel out of an unbalanced panel by ei- 
ther maximizing the number of households observed or the total number of observa- 
tions lead in both cases to an enormous loss in efficiency and is not recommended.? 
For an empirical application, see Mendelsohn et al. (1992), who use panel data on 
repeated single-family home sales in the harbor area surrounding New Bedford, Mas- 
sachusetts, over the period 1969 to 1988 to study the damage associated with prox- 
imity to a hazardous waste site. Mendelsohn et al. (1992) find a significant reduction 
in housing values, between $7000 and $10,000 (1989 dollars), as a result of these 
houses’ proximity to hazardous waste sites. The extension of the unbalanced error 
components model to the two-way model including time effects is more involved. 
Wansbeek and Kapteyn (1989) derive the FE, MLE, and a feasible GLS estimator 
based on quadratic unbiased estimators of the variance components and compare 
their performance using Monte Carlo experiments. 

*Other methods of dealing with missing data include (i) inputting the missing values and analyzing the 
filled-in data h y  complete panel data methods, and (ii) discarding the nonrespondents and weighting 
the respondents to compensate for the loss of cases; see Little (1988) and the section on nonresponse 
adjustments in Kasprzyk et al. (1989). 

t Chowdhury (1991) showed that for the fixed effects error cwnponent model, the within estimator based 
on the entire unbalanced panel is efficient relative to any within estimator based on a sub-balanced 
pattern. Also, Mgtyhs and Lovrirs (1991) performed some Monte Carlo experiments to compare the loss 
in efficiency of FE and GLS based on the entire incomplete panel data and complete subpanel. They 
find the loss in efficiency is negligible if N T  > 250, but serious for N T  < 150. 
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Rotating panels attempt to keep the same number of households in the survey 
by replacing the fraction of households that drop from the sample in each period by 
an equal number of freshly surveyed households. This is a necessity in surveys where 
a high rate of attrition is expected from one period to the next. For the estimation of 
general rotation schemes as well as maximum likelihood estimation under normality 
(Biorn 1981). Estimation of the consumer price index in the United States is based on 
a complex rotating panel survey, with 20% of the sample being replaced by rotation 
each year (Valliant 1991). With rotating panels, the fresh group of individuals that 
are added to the panel with each wave provide a means of testing for time-in-sample 
bias effects. This has been done for various labor force characteristics in the Current 
Population Survey. For example, several studies have found that the first rotation 
reported an unemployment rate 10% higher than that of the full sample (Bailar 1975). 
While the findings indicate a pervasive effect of rotation group bias in panel surveys, 
the survey conditions do not remain the same in practice, and hence it is hard to 
disentangle the effects of time-in-sample bias from other effects. 

For some countries, panel data may not exist. Instead the researcher may find 
annual household surveys based on a large random sample of the populations. Ex- 
amples of some of these cross-sectional consumer expenditure surveys include the 
British Family Expenditure Survey, which surveys about 7000 households annually. 
Examples of repeated surveys in the United States include the Current Population 
Survey and the National Crime Survey. For these repeated cross-sectional surveys, 
it may be impossible to track the same household over time as required in a genuine 
panel. Instead, Deaton (1985) suggests tracking cohorts and estimating economic 
relationships based on cohort means rather than individual observations. One co- 
hort could be the set of all males born between 1945 and 1950. This age cohort is 
well defined and can be easily identified from the data. Deaton (1985) argued that 
these pseudo panels do not suffer the attrition problem that plagues genuine panels, 
and may be available over longer time periods compared to genuine panels.* For 
this psuedo panel with T observations on C cohorts, the fixed effects estimator BFE, 
based on the within-"cohort" transformation, is a natural candidate for estimating 
B. However, Deaton (1985) argued that these sample-based averages of the cohort 
means can only estimate the unobserved population cohort means with measurement 
error. Therefore, one has to correct the within estimator for measurement error using 
estimates of the errors in measurement variance-covariance matrix obtained from the 
individual data. Details are given in Deaton (1985). There is an obvious trade-off in 
the construction of a pseudo panel. The larger the number of cohorts, the smaller is 

*Blundell and Meghir (1990) also argue that pseudo panels allow the estimation of life-cycle models 
which are free from aggregation bias. In addition, Moffitt (1993) explains that a lot of researchers in 
the United States prefer to use pseudo panels like thr Current Population Survey because it has larger 
more representative samples anti the questions asked are more consistently defined over time than the 
available U S .  panels. 
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the number of individuals per cohort. In this case, C is large and the pseudo panel is 
based on a large number of observations. However, the fact that the average cohort 
size n, = N / C  is not large implies that the sample cohort averages are not precise 
estimates of the population cohort means. In this case, we have a large number C of 
imprecise observations. In contrast, a pseudo panel constructed with a smaller num- 
ber of cohorts and therefore more individuals per cohort is trading a large pseudo 
panel with imprecise observations for a smaller pseudo panel with more precise ob- 
servations. Verbeek and Nijman (1992b) find that n, + 00 is a crucial condition for 
the consistency of the within estimator and that the bias of the within estimator may 
be substantial even for large n,. On the other hand, Deaton’s estimator is consistent 
for /3, for finite n,, when either C or T tend to infinity. 

Moffitt (1993) extends Deaton’s (1985) analysis to the estimation of dynamic 
models with repeated cross sections. Moffitt illustrates his estimation method for the 
linear fixed-effects life-cycle model of labor supply using repeated cross sections 
from the U.S. Current Population Survey. The sample included white males, ages 
20-59, drawn from 21 waves over the period 1968 to 1988. In order to keep the es- 
timation problem manageable, the data was randomly subsampled to include a total 
of 15,500 observations. Moffitt concludes that there is a considerable amount of par- 
simony achieved in the specification of age and cohort effects. Also, individual char- 
acteristics are considerably more important than either age, cohort, or year effects. 
Blundell, Meghir, and Neves (1993) use the annual U.K. Family Expenditure Sur- 
vey covering the period 1970-1984 to study the intertemporal labor supply and con- 
sumption of married women. The total number of households considered was 43,671. 
These were allocated to 10 different cohorts depending on the year of birth. The aver- 
age number of observations per cohort was 364. Their findings indicate reasonably 
sized intertemporal labor supply elasticities. Collado (1995) proposed a GMM es- 
timator corrected for measurement error to deal with a dynamic pseudopanel data 
model. This estimator is consistent as C tends to infinity for a fixed T and n,. 

VII. LIMITED DEPENDENT VARIABLES AND 
PANEL DATA 

In many economic studies, the dependent variable is discrete, indicating, for exam- 
ple, that a household purchased a car or that an individual is unemployed or that he 
or she joined the union. For example, let yil = 1 if the ith individual participates in 
the labor force at time t .  This occurs if y:, the difference between the ith individual’s 
offered wage and his unobserved reservation wage is positive. This can be described 
more formally as follows: 
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where 

That is, y; can be explained by a set of regressors xi, and error components distur- 
bances. In this case, 

The last equality holds as long as the density function describing the cumulative 
distribution function F is symmetric around zero. For panel data, the presence of in- 
dividual effects complicates matters significantly. For the one-way error component 
model with random individual effects E(ui,ui,) = 02, for any t ,  s = 1,2, . . . , T ,  
and the joint likelihood of (yil, . . . , y ~ , )  can no longer be written as the product of 
the marginal likelihoods of the yit’s. This complicates the derivation of maximum 
likelihood and will now involve bivariate numerical integration. On the other hand, 
if there are no random individual effects, the joint likelihood will be the product of 
the marginals and one can proceed as in the usual cross-sectional limited depen- 
dent variable case. For the fixed effects model, with limited dependent variable, the 
model is nonlinear and it is not possible to get rid of the p i ’ s  by taking differences 
or performing the FE transformation, as a result B and of cannot be estimated con- 
sistently for T fixed, since the inconsistency in the p i ’ s  is transmitted to /3 and 02, 
(Hsiao 1986). The usual solution around this incidental parameters ( p i ’ s )  problem 
is to find a minimal sufficient statistic for the p i ’ s  which does not depend on the B’s. 
Since the maximum likelihood estimates are in general functions of these minimum 
sufficient statistics, one can obtain the latter by differentiating the log-likelihood 
function with respect to pi. For the logit model, this yields the result that yit is 
a minimum sufficient statistic for pi. Chamberlain (1980) suggests maximizing the 
conditional likelihood function 

T 

rather than the unconditional likelihood function. For the fixed-effects logit model, 
this approach results in a computationally convenient estimator. However, the com- 
putations rise geometrically with T and are excessive for T > 10. 

In order to test for fixed individual effects, one can perform a Hausman-type 
test based on the difference between Chamberlain’s conditional maximum likelihood 
estimator and the usual logit maximum likelihood estimator, ignoring the individual 
effects. The latter estimator is consistent and efficient only under the null of no in- 
dividual effects and inconsistent under the alternative. Chamberlain’s estimator is 
consistent whether Ho is true or not, but i t  is inefficient under Ho because it may not 
use all the data. Both estimators can be easily obtained from the usual logit maxi- 
mum likelihood routines. The constant is dropped and estimates of the asymptotic 



PANEL DATA METHODS 309 

variances are used to form Hausman's x' statistic. This will be distributed as xi un- 
der Ho. For an application studying the linkage between unemployment and mental 
health problems in Sweden using the Swedish Level of Living Surveys (Bjorklund 
1985). 

In contrast to the fixed-effects logit model, the conditional likelihood approach 
does not yield computational simplifications for the fixed-effects probit model. In 
particular, the fixed effects cannot be swept away and maximizing the likelihood 
over all the parameters including the fixed effects will in general lead to inconsistent 
estimates for large N and fixed T.* Heckman (1981b) performed some limited Monte 
Carlo experiments on a probit model with a single regressor. For N = 100, T = 8, 
at = 1, and c r i  = 0.5, 1, and 3, Heckman computed the bias of the fixed-effects 
MLE of p using 25 replications. He found at most 10% bias for B = 1, which was 
always toward zero. 

Although the probit model does not lend itself to a fixed effects treatment, it has 
been common to use it for the random-effects specification. For the random-effects 
probit model, maximum likelihood estimation yields a consistent and efficient esti- 
mator of p. However, MLE is computationally more involved. Essentially, one has 
to compute the joint probabilities of a T variate normal distribution which involves 
T-dimensional integrals (Hsiao 1986). This gets to be infeasible if T is big. How- 
ever, by conditioning on the individual effects, this 7'-dimensional integral problem 
reduces to a single integral involving the product of a standard normal density and 
the difference of two normal cumulative density functions. This can be evaluated 
using the Gaussian quadrature procedure suggested by Butler and Moffitt (1982). 
This approach has the advantage of being computationally feasible even for fairly 
large T .  For an application, see Sickles and Taubman (1986), who estimate a two- 
equation structural model of the health and retirement decisions of the elderly using 
five biennial panels of males drawn from the Retirement History Survey. For a re- 
cent Monte Carlo study on the random-effects probit model, see Guilkey and Murphy 
(19933. Underlying the random-effects probit model is the equicorrelation assump- 
tion between successive disturbances belonging to the same individual. In a study 
of labor force participation of married women, Avery, Hansen, and Hotz (1983) re- 
ject the hypothesis of equicorrelation across the disturbances and suggest a method 
of moments estimator that allows for a general type of serial correlation among the 
disturbances. Chamberlain (1984) apples both a fixed effects logit estimator and a 
minimum-distance random-effects probit estimator to a study of the labor force par- 
ticipation of 924 married women drawn from the Panel Study of Income Dynamics. 
Lechner (1995) suggests several specification tests for the panel data probit model. 

*In ca4es where the conditional likelihood function is not feasible as in the fixed-effects probit case, 
Manski (1987) suggests a conditional version of his maximum score estimator which under fairly general 
conditions provides a strongly consistent estimator of' p. 
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These are generalized score and Wald tests employed to detect omitted variables, 
neglected dynamics, heteroskedasticity, nonnormality, and random-coefficient vari- 
ations. The performance of these tests in small samples is investigated using Monte 
Carlo experiments. Also, an empirical example on the probability of self-employment 
in West Germany is given which uses a random sample of 1926 working men selected 
from the German Socio-Economic Panel and observed over the period 1984-1989. 

Heckman and MaCurdy (1980) consider a fixed-effects tobit model to esti- 
mate a life-cycle model of female labor supply. They argue that the individual ef- 
fects have a specific meaning in a life-cycle model and therefore cannot be assumed 
independent of the xit’s. Hence, a fixed effects rather than a random-effects speci- 
fication is appropriate. For this fixed-effects tobit model, the model is given by (7), 
with uit - IIN(0, at) and 

yit = yz if y: > 0 
= 0 otherwise (9) 

where yit could be the expenditures on a car. This will be zero at time t, if the ith 
individual does not buy a car. In the latter case all we know is that yz 5 O.* As in 
the fixed-effects probit model, the pi’s cannot be swept away and as a result /3 and 
cr: cannot be estimated consistently for T fixed, since the inconsistency in the p i ’ s  

is transmitted to /I and 0:. Heckman and MaCurdy (1980) suggest estimating the 
log-likelihood using iterative methods. Recently, Honor6 (1992) suggested trimmed 
least absolute deviations and trimmed least-squares estimators for truncated and 
censored regression models with fixed effects. These are semiparametric estimators 
with no distributional assumptions necessary on the error term. The main assumption 
is that the remainder error vit is independent and identically distributed conditional 
on the xit’s and the p i ’s ,  for t = 1, . . . , T .  Honor6 (1992) exploits the symmetry in 
the distribution of the latent variables and finds that when the true values of the pa- 
rameters are known, trimming can transmit the same symmetry in distribution to the 
observed variables. This generates orthogonality conditions which must hold at the 
true value of the parameters. Therefore, the resulting GMM estimator is consistent 
provided the orthogonality conditions are satisfied at a unique point in the parameter 
space. Honor6 (1992) shows that these estimators are consistent and asymptotically 
normal. Monte Carlo results show that as long as N 2 200, the asymptotic distri- 
bution is a good approximation of the small-sample distribution. However, if N is 

*Researchers may also be interested in panel data economic relationships where the dependent variable 
is a count of some individual actions or events, such as the number of patents filed, the number of drugs 
introduced, or the number of jobs held. These models can he estimated by using Poisson panel data 
regressions (Hausman, Hall, and Griliches 1984). 
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small, the small-sample distribution of these estimators is skewed. Honor6 (1993) 
extends his analysis to the dynamic Tobit model with fixed effects; i.e., 

with yil = max(0, y;} for i = 1, . . . , N ,  t = 1, . . . , T .  The basic assumption is 
that vit is IID(0, of) for t = 1, . . . , T ,  conditional on yio, x i t ,  and pi. Honor6 (1993) 
shows how to trim the observations from a dynamic Tobit model so that the sym- 
metry conditions are preserved for the observed variables at the true values of the 
parameters. These symmetry restrictions are free of the individual effects and no 
assumption is needed on the distribu5on of the hi’s or their relationship with the 
explanatory variables. These restrictions generate orthogonality conditions which 
are satisfied at the true value of the parameters. The orthogonality conditions can 
be used in turn to construct method of moments estimators. Using Monte Carlo ex- 
periments, Honor6 (1993) shows that MLE for a dynamic Tobit fixed-effects model 
performs poorly, whereas the GMM estimator performs quite well, when S is the only 
parameter of interest. 

Recently, Keane (1994) derived a computationally practical simulation esti- 
mator for the panel data probit model. Simulation estimation methods replace in- 
tractable integrals by unbiased Monte Carlo probability simulators. This is ideal for 
limited dependent variable models where for a multinominal probit model, the choice 
probabilities involve multivariate integrals.* In fact, for cross-sectional data, McFad- 
den’s method of simulated moments (MSM) involves an M - 1 integration problem, 
where M is the number of possible choices facing the individual. For panel data, 
things get more complicated, because there are M choices facing any individual at 
each period. This means that there are M T  possible choice sequences facing each 
individual over the panel. Hence the MSM estimator becomes infeasible as T gets 
large. Keane (1994) sidesteps this problem of having to simulate M T  possible choice 
sequences by factorizing the method of simulated moments first-order conditions into 
transition probabilities. The latter are simulated using highly accurate importance 
sampling techniques. This method of simulating probabilities is referred to as the 
Geweke, Hajivassiliou, and Keane (GHK) simulator because it was independently 
developed by these authors. Keane (1994) performs Monte Carlo experiments and 
finds that even for large T and small simulation sizes, the bias in the MSM esti- 
mator is negligible. When maximum likelihood methods are feasible, Keane (1994) 
finds that the MSM estimator performs well relative to quadrature-based maximum 
likelihood methods even where the latter are based on a large number of quadrature 

*For good surveys of simulation methods, see Hajivassiliou and Ruud (1994) for limited dependent vari- 
able models and Gourieroux and Monfort (1993) with special reference to panel data. The methods 
surveyed include simulation of the likelihood, simulation of the moment functions, and simulation of the 
score. 
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points. When maximum likelihood methods are not feasible, the MSM estimator out- 
performs the simulated maximum likelihood estimator even when the highly accurate 
GHK probability simulator is used. Keane (1993) applies the MSM estimator to the 
same data set used by Keane, Moffitt, and Runkle (1988) to study the cyclical be- 
havior of real wages. He finds that the Keane, Moffitt, and Runkle conclusion of a 
weakly procyclical movement in the real wage appears to be robust to relaxation of 
the equicorrelation assumption. 

Heckman (1981a, 1981b, 1981c) emphasizes the importance of distinguish- 
ing between “true state dependence” and “spurious state dependence” in dynamic 
models of individual behavior. In the true case, once an individual experiences an 
event, his or her preferences change and he or she will behave differently in the fu- 
ture as compared with an identical individual that has not experienced this event 
in the past. In the spurious case, past experience has no effect on the probability of 
experiencing the event in the future. However, one cannot properly control for all 
the variables that distinguish one individual’s decision from another. In this case, 
past experience which is a good proxy for these omitted variables shows up as a sig- 
nificant determinant of the future probability of occurrence of this event. Testing for 
true versus spurious state dependence is therefore important in these studies, but it 
is complicated by the presence of the individual effects or heterogeneity. In fact, even 
if there is no state dependence, Pr[yi,/x;,, y;,,-e] # Pr[yit/xit] as long as there are 
random individual effects present in the model. If in addition to the absence of the 
state dependence there is also no heterogeneity, then Pr[yi,/xi,, y;,,-e] = Pr[yi,/xi,]. 
A test for this equality can be based on a test for y = 0 in the model 

wy i ,  = w i t  7 yit-11 = O : , B  + U i , t - I )  (11) 

by using standard maximum likelihood techniques. If y = 0 is not rejected, we 
ignore the heterogeneity issue and proceed as in conventional limited dependent 
variable models not worrying about the panel data nature of the data. However, re- 
jecting the null does not necessarily imply that there is heterogeneity since y can 
be different from zero due to serial correlation in the remainder error or due to state 
dependence. In order to test for time dependence one has to condition on the individ- 
ual effects, i.e., test Pr[Y,,/y;,,-e, x;, , p;]  = Pr[yi,/x;,, pi]. This can be implemented 
following the work of Lee (1987) and Maddala (1987). In fact, if y = 0 is rejected, 
Hsiao (1996) suggests testing for time dependence against heterogeneity. If hetero- 
geneity is rejected, the model is misspecified. If heterogeneity is not rejected then 
one estimates the model correcting for heterogeneity. See Heckman (1981~) for an 
application to married women’s employment decisions based on a three-year sample 
from the Panel Study of Income Dynamics. One of the main findings of this study is 
that neglecting heterogeneity in dynamic models overstate the effect of past experi- 
ence on labor market participation. 

In many surveys, nonrandomly missing data may occur due to a variety of 
self-selection rules. One such self-selection rule is the problem of nonresponse of 
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the economic agent. Nonresponse occurs, for example, when the individual refuses 
to participate in the survey or refuses to answer particular questions. This problem 
occurs in cross-sectional studies, but it gets aggravated in panel surveys. After all, 
panel surveys are repeated cross-sectional interviews. So, in addition to the above 
kinds of nonresponse, one may encounter individuals that refuse to participate in 
subsequent interviews or simply move or die. Individuals leaving the survey cause 
attrition in the panel. This distorts the random design of the survey and questions the 
representativeness of the observed sample in drawing inference about the popula- 
tion we are studying. Inference based on the balanced subpanel is inefficient even in 
randomly missing data since it is throwing away data. In nonrandomly missing data, 
this inference is misleading because i t  is no longer representative of the population. 
Verbeek and Nijman (1996) survey the reasons for nonresponse and distinguish be- 
tween “ignorable” and “nonignorable” selection rules. This is important because, if 
the selection rule is ignorable for the parameters of interest, one can use the standard 
panel data methods for consistent estimation. If the selection rule is nonignorable, 
then one has to take into account the mechanism that causes the missing observa- 
tions in order to obtain consistent estimates of the parameters of interest. 

We now consider a simple model of nonresponse in panel data. Following the 
work of Hausman and Wise (1979), Ridder (1990), and Verbeek and Nijman (1996), 
we assume that yit given by Eq. (1) is observed if a latent variable r: 2 0. This latent 
variable is given by 

where zit is a set of explanatory variables possibly including some of the xil’s. The 
one-way error components structure allows for heterogeneity in the selection pro- 
cess. The errors are assumed to be normally distributed ci - IIN(0,op) and qLt - 
IIN(0,o;) with the only nonzero covariances being COV(E;, pi) = op6 and cov 
(q i t ,  u ; ~ )  = oqV. In order to get a consistent estimator for #l, a generalization of Heck- 
man’s selectivity bias correction procedure from the cross-sectional to the panel data 
case can be employed. The conditional expectation of uit given selection now in- 
volves two terms. Therefore, instead of one selectivity bias correction term, there 
are now two terms corresponding to the covariances oWc and oqV. However, unlike 
the cross-sectional case, these correction terms cannot be computed from simple 
probit regressions and require numerical integration. Fortunately, this is only a one- 
dimensional integration problem because of the error component structure. Once the 
correction terms are estimated, they are included in the regression equation as in the 
cross-sectional case and OLS or GLS can be run on the resulting augmented model. 
For details, see Verbeek and Nijman (1996), who also warn about heteroskedasticity 
and serial correlation in the second step regression if the selection rule in nonignor- 
able. Verbeek and Nijman (1996) also discuss MLE for this random-effects probit 
model with selection bias. 
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Before one embarks on these complicated estimation procedures one should 
first test whether the selection rule is ignorable. Verbeek and Nijman (1992a) con- 
sider a Lagrange multiplier test for Ho; oVq = ape = 0. The null hypothesis is 
a sufficient condition for the selection rule to be ignorable for the random-effects 
model. Unfortunately, this also requires numerical integration over a maximum of 
two dimensions and is cumbersome to use in applied work. In addition, the LM test 
is highly dependent on the specification of the selectivity equation and the distribu- 
tional assumptions, Alternatively, Verbeek and Nijman (1992a) suggest some simple 
Hausman-type tests based on GLS and within estimators for the unbalanced panel 
and the balanced subpanel. All four estimators are consistent under the null hy- 
pothesis that the selection rule is ignorable and all four estimators are inconsistent 
under the alternative. In practice, Verbeek and Nijman (1992a) suggest including 
three simple variables in the regression to check for the presence of selection bias. 
These are (i) the number of waves the ith individual participates in the panel, (ii) a 
binary variable taking the value 1 if and only if the ith individual is observed over 
the entire sample, and (iii) a binary variable indicating whether the individual was 
present in the last period. Testing the significance of these variables is recommended 
as a check for selection bias. Intuitively, one is testing whether the pattern of miss- 
ing observations affects the underlying regression. Wooldridge (1995) derives some 
simple variable addition tests of selection bias as well as easy-to-apply estimation 
techniques that correct for selection bias in linear fixed-effects panel data models. 
The auxiliary regressors are either Tobit residuals or inverse Mill’s ratios, and the 
disturbances are allowed to be arbitrarily serially correlated and unconditionally 
heteroskedastic. 

There are many empirical applications illustrating the effects of attrition bias; 
see Hausman and Wise (1979) for a study of the Gary Income Maintenance exper- 
iment. For this experimental panel study of labor supply response, the treatment 
effect is an income guaranteehax rate combination. People who benefit from this 
experiment are more likely to remain in the sample. Therefore, the selection rule 
is nonignorable, and attrition can overestimate the treatment effect on labor sup- 
ply. For the Gary Income Maintenance Experiment, Hausman and Wise (1979) 
found little effect of attrition bias on the experimental labor supply response. 
Similar results were obtained by Robins and West (1986) for the Seattle and 
Denver Income Maintenance Experiments. For the latter sample, attrition was 
modest (11% for married men and 7% for married women and single heads dur- 
ing the period studied) and its effect was not serious enough to warrant extensive 
correction procedures. More recently, Keane, Moffitt, and Runkle (1988) studied 
the movement of real wages over the business cycle for a panel data drawn 
from the National Longitudinal Survey of Young Men (NLS) from 1966 to 1981. 
They showed that self-selection biased the behavior of real wage in a procyclical 
direction. 
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VIII. FURTHER READINGS 

Supplementary readings on panel data include Hsiao’s (1986) Econometric Society 
monograph, the standard reference on the subject, Maddala’s (1993) two volumes of 
some of the classic papers in the field, a special issue of Empirical Economics edited 
by Raj and Baltagi (1992), and a special issue of the Journal ofEconometrics edited 
by Baltagi (1995a). Two recent books on panel data are Baltagi (1995b) and MAtyAs 
and Sevestre (1996). 
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Econometric Analysis in 
Complex Surveys 

Aman Ullah and Robert V Breunig 
University of California at  Riverside, Riverside, California 

1. INTRODUCTION 

In the last five decades there has been a significant growth of research in econo- 
metric methods and their application in various areas of economics. Indeed, in the 
last two decades, the tremendous growth in econometrics has dichotomized the sub- 
ject into cross-sectional (micro) econometrics and time-series (macro) econometrics. 
Whereas the new cross-sectional methodology was partly due to the nature of the data 
and the empirical issues in microbased labor economics and industrial organiza- 
tion, the new time-series methodology was an outcome of the challenging empirical 
issues and data problems in macroeconomics and finance. Despite these develop- 
ments, econometric inference methods (especially in cross-sectional econometrics) 
have been confined to the assumptions that data is generated as a simple random 
sample with replacement or that it is coming from an infinite population (Johnston 
1991, Greene 1993). These assumptions are certainly not valid in the case of survey 
data used in development and labor economics. Surveys usually have a well-defined 
frame consisting of a finite population of individuals, households, or villages. Sample 
data for analysis is generated from this finite population using a sampling design dif- 
ferent from random sampling with replacement (RSWR). Sampling schemes such as 
systematic sampling, stratified random sampling, and cluster sampling may be used 
alone or in combination. These have been the subject of four decades of extensive 
work in statistics literature (Kish 1965, Cochran 1953, Sukhatme 1984, Levy and 
Lemeshow 1991, Thompson 1992). 

The history of survey sampling can be traced back to the early eighteenth cen- 
tury, and even earlier (see Hansen 1987 and Deaton 1994 for detailed references). 

3 25 
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Engel (1895) used a nonrepresentative sample of 200 Belgian households to estab- 
lish that the share of the budget allocated to food is higher for the poor. Kiaer (1897) 
(see Kiaer 1976 for translation) was perhaps first to collect a large-scale, represen- 
tative sample and discuss the principles, uses, and limitations of various sampling 
designs. His paper was influential in the International Statistical Institute’s 1903 
resolution supporting and promoting the use of the “representative method” of sam- 
pling. A turning point in the history of survey sampling came in the 1920s with the 
path-breaking work in statistical estimation theory and practice of R. A. Fisher at 
the Rothamsted experimental station (Fisher 1925). Fisher emphasized randomiza- 
tion, replication, and stratification in sampling design. His work led to the calcula- 
tion of statistical estimates and their precision by Yates and Zacapony (1935) and 
Cochran (1939). Indeed, Fisher’s work paved the way for Neyman’s (1934) classic 
paper, which, for the first time, gave a systematic discussion of inference from ran- 
dom samples drawn from a finite population, contained a comparison of purposive 
sampling and random sampling, introduced the concept of the confidence interval, 
established the asymptotic normality of the sample average, and provided the op- 
timal sample sizes within strata independently of Tschuprow’s (1923) work. Later 
Neyman (1938) developed the theory of what is known as “two-stage” sampling. In 
the United States, around this period, important research work on sampling design 
was done by the researchers at the Department of Agriculture and the statistical lab 
at Iowa State University, and at the U.S. Bureau of the Census regarding labor force 
surveys dealing with issues such as measuring employment and labor force partic- 
ipation. These latter surveys, using systematic sampling designs, were necessitated 
by the Great Depression; see Stephan (1948) for detailed references. Sampling with 
probability proportional to measures of size at the successive stages of sampling was 
introduced during the work on labor force studies. 

A parallel development on the application of survey sampling took place under 
the leadership of P. C. Mahalanobis at the Indian Statistical Institute in the 1930s 
and P. V. Sukhatme at the Indian Council of Agriculture Research. Mahalanobis 
introduced the concepts of developing sampling designs based on cost and variance 
estimates and on methods of evaluating survey errors. 

The work during the 1930s and the 1940s revolutionized the collection of 
household survey data after the war. Major developments include the first national 
sample survey data developed annually (1950-1970) and then every five years at 
the Indian Statistical Institute, the household survey data now collected in United 
States, United Kingdom, and Taiwan, the Living Standard Measurement Study 
(LSMS) survey of Peru and the Ivory Coast by the World Bank, and Malaysian fam- 
ily survey data by the Rand Corporation. These household data are now extensively 
used in development economics to study poverty, income distribution, and economic 
welfare. 

A common feature of the survey data described above is that the ultimate 
sample of households selected is rarely, if ever, based on RSWR. Yet, despite three 
decades worth of developments in statistical inference based on survey data, econo- 
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metric analysis is carried on under the false assumption of RSWR; although see the 
excellent works of Pudney (1989), Deaton (1994), and Howes and Lanjouw (1994) 
for notable exceptions. This is especially a matter of concern in development eco- 
nomics where measures of income inequality, poverty and elasticities are used in pol- 
icymaking by governments and international agencies. We think there are perhaps 
two reasons for this state of affairs. One is the statistical complexity of the various 
sampling designs for an average development economist; the second is a complete 
lack of exposure to the statistical literature on survey design in econometrics texts. 
Given this deficiency a systematic development of the parametric and nonparametric 
econometric inference (estimation and testing) of various econometric models, under 
various practical sampling designs, is urgently needed. This is an ambitious project 
and it is by no means attempted here. Instead, this chapter is a modest beginning in 
this direction. Some new results are also presented. Essentially, our objectives are 
as follows. The first is to provide a unified econometric framework of the five decades 
of diverse statistical literature on estimating the population mean. We refer to this 
as the mean model. The second is to explore the implications of results from the 
mean model for the linear regression model and the nonparemetric kernel density 
estimation. The third is to explore the implications of misspecifying the sampling 
design on the properties of econometric estimators. It is hoped that this chapter will 
contribute to further development of econometric inference results in other practical 
econometric models and for other parameters of interest. 

In Section I1 we present the estimation of the finite population mean, the den- 
sity, and linear regression coefficients under RSWR and random sampling without 
replacement (RSWOR). Section 111 deals with stratified sampling. Section IV con- 
siders cluster sampling, systematic sampling, and two-stage sampling. In Section V 
we give some limited simulation results. Finally, in the Appendix we provide some 
technical details of the results in Section 11. 

II. RANDOM SAMPLING 

A. Random Sampling without and with Replacement 
(RSWOR and RSWR) 

Let us consider a finite population of size N for an economic variable Y ,  and write 
the population mean model as 

where Y;  is the ith population observation, Ui is the ith error, and j3 and o2 are the 
population mean and variance, respectively, given by 

N 

S2 
N - 1  

N 
i= I 

N 
1= 1 
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where 
N 

N - 1  
i= 1 

The errors U ;  are nonsampling errors which sum to zero by the definition of B in 
(2). Therefore, U ;  and Y,  are nonstochastic variables. However, if we treat the finite 
population model (1) as generated from an infinite population or superpopulation 
model, then U ;  and Y,  are stochastic. This case is not considered here. 

A random sample without replacement of size n, often referred to in the liter- 
ature as a simple random sample (SRS), is taken from the above finite population of 
size N. We denote the sample observations as yi and write (1) for these observations 
as 

where U; is now the ith sampling error. 
Since the sampling is without replacement, 

is the probability that the rth population unit is selected in the ith draw and 

is the probability that the (T-,  s)th unit is selected in the (i, j) th draw where i, j = 
1 ,  . . . , n and r, s = 1 ,  . . . , N ( z  # j ,  r # s). These probabilities provide 

N 
n 
N 

ITr  = Cnr(i) = - 
i= 1 

the probability of selection of the rth population unit in the sample of size n, and 

i f j  . 

the probability of selection of the (r, s)th population unit in the sample. 
In view of (4) to (7), we get 

and, for i # j ,  

where p = -l /(N - 1) is the intraclass population correlation between y; and rj. 
Further, we can verify that 
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1 
Eu! = ( ~ 2  + 3)a4 = - E(Yi - /?)4 

N 
i= 1 

1 N N  

and for i # j # k # 1, 

2 y ]  (r3 

( N  - 1) ( N  - 2) 
____- 

0 1234 

2(Y2  + 3 )  - N 
04 

(N - 1)(N - 2) 
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where y1 and y 2  are Pearson's measures of skewness and excess kurtosis. For nor- 
mal distribution, y1 = y 2  = 0. The outcomes (8) to (11) indicate that RSWOR 
represents a set of n identically distributed but correlated random variables yi. 

In the case of RSWR the draws are independent, so 

because a12 = 01112 = 0123 = 01234 = 01123 = 0 and 01122 = 04. This also 
holds if we are sampling from an infinite population ( N  + OO), the case usually 
considered in econometrics. In what follows we analyze the effect of assuming RSWR 
when the true design is RSWOR. 

B. Estimation of Parameters 

Let us write the model (3) in a more compact form as 

where y is an n x 1 vector, 1 is an n x 1 vector of unit elements, 
(finite population mean), and U is an n x 1 error vector such that 

is a scalar parameter 

by using (8) and (9). 
The n x n matrix Z can be rewritten as 

P c = a2(1 - p )  I + __ [ 1 - p"'] 

and its well-known inverse, using ( I  + bb')-' = [ I  - bb' / ( l  + b; b)] ,  where b is an 
n x 1 vector, is 

The least-squares (LS) estimators of B in (13) is obtained by minimizing u'u 
with respect to /?. This gives 

i= 1 
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The estimator b is unbiased, Eb = /?, and its variance is 

where the last equality gives the familiar expression of the variance of the sample 
mean under RSWOR. The term 1 - n/N is known as the finite population correction 
(fpc). For n + N ,  V ( b )  + 0. 

The efficient generalized least-squares estimator of is 

s = (l’x-ll)-+’x-ly = ( L ’ q ’ l ’ y  = j i  (19) 

where the second equality follows by using (16). Thus, under (15) ,  the two estimators 
and their variances are the same. 

When the sampling is RSWR or the population is infinite, C = 0’1 because 
p = 0. In this case, Eb = B and 

o2 
V ( 6 )  = - 

n 

which also follows from the last equality of (18) where n/N + 0 as N + 00. From 
(18) and (20) 

The above results indicate that the LS estimator b is unbiased for both RSWOR 
and RSWR. However, if the sampling is actually without replacement, the variance 
formula in (20) is wrong and gives an overestimate of the correct variance (18). To 
obtain the correct variance one needs to deflate (20) by ( N  - n)/(  N - 1). For example 
if n = 20 and N = 40 the correct variance will be approximately 50% smaller than 
the wrong variance. The smallness of the variance of ~ R S V ( I O R  is due to the negative 
correlation p. 

In order to calculate the variance of b we look into an unbiased estimator of 
S2.  This is given by (using (13)) 

where M = I - u‘/n is an idempotent matrix. From the result ( 1  16) in the Appendix 
it is straightforward to show that s2 is an unbaised estimator, 
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because M L  = 0 and p = - ( N  - l ) - * .  For ratio estimators of S2 based on the 
auxiliary information, see Prasad and Singh (1992). 

Proposition I .  When the sampling is without replacement we get 

V(S2)  = 1 [ { y2 + 3 - n (")? J 0 4  N - 1  n (24) 

Proof. V ( s 2 )  = Es2 - S4 = ( n  - 1)-2E(u'Mu)2 - S4. Now using (8) to (11) 
and ( 1  18) in the Appendix we get (24). 

Corollary I .  When the sampling is with replacement we get 

n + l  N 
N - 1  

This follows by substituting 01122 = o4 and 01112 = 01123 = 01234 = 0 
in (24). When the population is large V ( s 2 )  = a4(y2/n  + 2/(n - 1 ) )  (Sukhatme 
1984), which reduces to the well known result V ( s 2 )  = 2a4/(n - 1 )  under normality 

From the above results it is clear that, as in the case of the LS estimator b, the 
estimator s2 is unbiased for both RSWOR and RSWR and the variance of s2 under 
RSWOR differs from that under. RSWR. But, unlike b, the variance of s2 is affected 
by nonnormality through y2. For example when the population is large the variance 
of s2, compared to the normal case, is larger for all nonnormal distributions with yz > 

(Y2 = 0). 

0. Also the effect of nonnormality does not disappear for large n since the ratio of the 
variance under nonnormality to the variance under normality is 1 + y2(n - l ) / n ,  
which converges to 1 + y2 as n * 00. 

Finally, we note that the estimator s2 is used to obtain an unbiased estimator 
of V ( b ) :  

N - n  
nN 

P(b) = ___ s .  

This, however, does not guarantee that a(b) will be an unbiased estimator of ,/m; 
see Ullah and Breunig (1996) for the magnitude of the bias. In the special case of - 
sampling from an infinite, normal population, an unbiased estimator of JP(b )  can 
be obtained as s*/n, where 



ECONOMETRIC ANALYSIS IN COMPLEX SURVEYS 333 

An application of knowing s2 and b is to obtain the estimator of the population 
coefficient of variation (cv) 

a 

c v =  B 
This is given by 

A S  
cv = - 

b 

C. The Bias and MSE of the Coefficient of Variation 

The sample c^v is extensively used in applied sciences for various purposes. In eco- 
nomics ĉ v has been widely considered to compare inequalities in income of different 
regions or groups of individuals or households (Kakwani 1980, Sen 1992). Beach et 
al. (1994) consider the conditional cv for analyzing third-order stochastic dominance 
when Lorenz curves cross. (We note that third-order stochastic dominance tests using 
standardized income on income distributions with different mans can lead to test re- 
sults which contradict the dominance ordering on the unstandardized distributions.) 
Despite widespread use of the &, not much is known about its finite sampling prop- 
erties under the nonnormal population; although see Bowman and Shenton (1981), 
who have considered mean and variance of ĉ v under the Weibull distribution, Neuts 
(1982), who has considered mixtures of distributions, and Singh (1993), who has an- 
alyzed the sampling properties of the inverse of &-squared. Sampling of & under 
normality has been well analyzed going back to McKay (1932). Warren (1982) con- 
siders McKay’s results and provides other references. More recently, Gupta and Ma 
(1996) analyze the & in k-normal populations. The results presented below could 
be extended to the case of more than one variable. 

Here we present the sampling properties of 8 = (c^v)2 of 0 = ( c v ) ~  instead 
of G. We analyze (&)2 because comparing 2 across regions/groups gives similar 
results to comparing 8, and the approximate sampling properties of & require ex- 
panding both s and l/b, whereas 8 require the expansion of l / b  only. 

In what follows, we present both small-a and Nagar-type large-n approxima- 
tions for the mean and mean-squared error (MSE) of 8. For details on small-a ap- 
proximation see Kadane (1971) and Srivastava et al. (1980), where they show a better 
performance of the small-a approximation under certain situations. 

When the sampling is without replacement the bias of 8, up to 
O(a4), and the MSE of 8 ,  up to O(a4>, respectively, are given by 

Proposition 2. 

2 3r2 3e2 
Bias(6) = -p8 - -0 ( 1  + 7(2 (29) n 
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and 

where 

and 0's are as given in (9) to ( 1  1).  
The proof of Proposition 2 is given in Appendix B. 

Corollary 2. 
and the MSE of 8,  up to O(04)), respectively, are given by 

When the sampling is with replacement the bias of 8, up to O(04) 

The proof of Corollary 2 follows by substituting 01122 = o4 and 0123 = 

From (32) we can also obtain the bias, up to O(n-'), as 
01112 = 01123 = 01234 = p = 0 in Proposition 2. 

1 
n 

Bias(@ = -[302 - 2B3//"yl) (34) 

This result compares with Breunig (1996), where the large-n expansion is used to 
obtain (34). Breunig (1996) also provides the MSE, up to O(n-2), as 

(35) y 2  + 48 - 4y18'/' + 2- 
n - 1  

n + 20+- n + l  +20-) 

n " 1  
n - 1  n - 1  

1 - 4e1l2 y 3  + 4 y l  ___ ) 4- 75@ - 10883/2y1 ( n - 1  
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From (34) we observe that the bias goes to zero as n + 00. Further, the asymp- 
totic MSE (AMSE) is 

Thus, for distributions with y2 > 0 (y2 < 0) the AMSE will be above (below) the 
AMSE under normality. Further, we note that the bias, up to 0(a3) and O(n-’), is 
positive for negatively skewed distributions, but the bias to O ( d )  is negative for pos- 
itively skewed distributions. However, to O(n- l ) ,  the bias is negative for positively 
skewed distributions provided 

2 
cv = 01’2 < ,)q (37) 

Generally, 8 will give an underestimate of the true 0 for positively skewed distribu- 
tions. Since income distributions are generally positively skewed, it is possible that, 
in the past, the use of 8 in measuring income inequality gave an underestimation 
of inequality. In view of this, Breunig (1996) hazuggested an estimator of 0 which 
adjusts the bias of 8. This is given as = 8 - Bias(8), where BTs(8) is the bias of 
8 in (34) with 8 replaced by 8 and y1 by p1 = C(Yi - T)’/ns^”. Although we do not 
attempt it here, it will be interesting to analyze these results for sampling without 
replacement. This could be done by using (29) and (30). Another possible extension 
involves the use of the geometric mean, useful when the data are expressed in ra- 
tio form. We could then formulate the sample cv as the ratio of the sample geometric 
mean to the sample standard deviation. The authors are unaware of any development 
of the finite-sample moments for such a statistic, even under random sampling with 
replacement. 

D. Sampling with Unequal Probabilities 

When sampling is with unequal probabilities, nr(i) in (4), n, in (6), and 7 1 , s  in (7) 
are not constants. In this case, we first transform (13) by 

and then obtain the LS estimator of /3 by minimizing the weighted squared error 
U‘WU = (y - @ ) ’ W ( y  - $I), where W = Diag(w1, . . . , w,) is an n x n stochas- 
tic diagonal weight matrix whose elements wi, known as the normalized expansion 
factors, satisfy l‘wl = wi = 1. This gives the weighted LS estimator of /3 as 
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The stochastic weights w; are chosen such that (using (4) and (6)) the sample is rep- 
resentative of population in the sense that the sample mean, on average, is identical 
to the population mean. That is, 

/ n  \ n N  

\i=1 / i=l  ;=1 

This gives 

1 
N n i  

w; = - (41) 

and b ,  = N-’  C;(yJni), where ni is the probability of selection of the ith popu- 
lation unit in the sample. When n; = n / N  we get b ,  = b as given in (17). 

An alternative way to obtain (41) is to write Eb, = E ( x ’ ;  wiy;) = E ( x F  
w;diY,) = Cr(wi.Ed;)U; = winiYi where di is a dummy random variable 
which is 1 when Y,  is in the sample, and 0 otherwise. Since the probability of selection 
of the ith population unit in the sample is n;, we can verify that 

cov(d,, d;) = n,; - n;n; 

where Xi; is defined in (7). Using (42), 

When ni = n / N  and ni; = n(n - l ) / N ( n  - 1) we get (18). We point out here 
again that both mean and variance of 6, contain U; since the error is coming from 
the sampling, not from the errors in the superpopulation. 

E. Estimation of Regression Model 

Let us consider the mean of the conditional population of Y given a vector of k vari- 
ables X I ,  . . . , Xk as 

Y = x * p  + U (44) 

where Y is an N x 1 vector and X *  is an N x k matrix. The model (44) is a conditional 
mean model if the conditional mean of the nonsampling errors, E ( U l X ) ,  is zero or 



ECONOMETRIC ANALYSIS IN COMPLEX SURVEYS 337 

/3 = (X *’ X*)-’X *’ Y is the finite population regression coefficient. As before, a 
random sample without replacement of size n is taken from the population of size N. 
The sample model is 

y = x p + u  (45) 

where y is an n x 1 vector and X is an n x k matrix. Under RSWOR, E(u(X)  = 0, 
and V ( u l x )  = E, where C is as given in (15). The LS and GLS estimators of /I and 
their variances, respectively, are 

b = (x’x)-’x’y, V ( b )  = (x’x) - ’x’Ex(X’x)- ’  (46) 

bcrs = (x’C-’x) - lx’C-’y ,  V(bc,r,s) = (x ’c - ’x ) - ’  
When sampling is with replacement, or as N + 00, p = 0 and we get b = bc1,s. 

It is easy to verify that 

V ( b )  = a2(1 - p)(x’x)-’  + a2p(X’X)-’X’11’X(X’X)-~ 

= a2(x’X)-’ + a2p(X’X)-1X’(ll’ - Z)X(X’X) 

(47) 

where 11’ - I is an indefinite matrix. Thus the sign of V ( b )  - a2(X’X)-’ is not 
determined. This implies that if the sampling is without replacement and we consider 
the variance of b as though we had RSWR then this variance will be an underestimate 
or overestimate of the variance depending upon the design matrix X. Another point 
is that .b(;ls is not identical to b numerically. These results are in contrast to the 
mean model (13) where k = 1 and X = 1 .  However, it follows from Zinde-Walsh 
and Ullah (1987) and Ghosh and Sinha (1980) have shown that the F-test for testing 
restrictions on /I using bcl-5, with C in (15), will be numerically the same as the F-test 
based on b. This result also holds for the likelihood ratio, Lagrange multiplier, and 
Wald tests. 

F. 

As in the earlier sections, let Y;,  i = 1 ,  . . . , N ,  be the population of Y with proba- 
bility density f, and yi = 1,  . . . , n be the sample drawn without replacement from 
f. Further, as in Section II.D, let d ; ,  i = 1 ,  . . . , N be the dummy random variables 
such that d; = 1 if yi is selected in the sample and di = 0 otherwise. Note that the 
di’s are not independent and Ed‘ = n/N and Edpd; = n(n - l)/N(N - 1) for any 

Nonparametric Estimation of Density and Regression Functions 

p > 0,q > 0. 
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where K ;  = h,'K((Y, - Y ) / ~ N ) .  Rosenblatt's (1956) kernel estimator, based on y;, 
is then 

1 "  l N  
k; = - c d ; K ;  (49) 

i= I 
N h  

where k; = h,'K((y; -y)/h,) and h = n / N .  Thus the finite population density esti- 
mation problem reduces to the problem of estimating the population mean discussed 
in (1) to (3). It therefore follows from the results in Section 1I.A that 

where S i  = ( N  - l)-' cy(K; - K)2.  However, if we treat the finite population Y, ,  
i = 1,  . . . , N ,  itself as an i.i.d. random observation from an infinite (super) popula- 
tion with density f *, then as (n ,  N )  + 00 such that h + c > 0, 

E f ( y )  = (Nh)-"(Ed,)  E-K ____ ( ;N ('lb')) 
+ f *  

(51) 

The details of (51) and (52) can be worked out by following Rosenblatt (1956) and 
Pagan and Ullah (1995). For the asymptotic theory in the parametric, finite popula- 
tion models, see Fuller (1984) and the references therein. 

In the regression context we can write the nonparametric versions of the finite 
population and sample models in (44) and (45), respectively as 

y; = rn (X; )  + ui (53) 

and 

where x, is a given point. More compactly, 

y = a x , ) & J  + U (55) 

where Z ( x , )  = [ l  (x - LX,)], 6 ( x , )  = [m(x , )  rn'(x,)]', and V ( u )  = C as given 
in (46). The local least-squares estimation of 6 ( x , )  can then be carried on by mini- 
mizing U'C-'/ 'KC-'/~U. The properties of $(,,) so obtained can be worked out by 
using the procedures developed in Ruppert and Wand (1994). 
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111. STRATIFIED SAMPLING 

A. Estimation of Mean Model 

A large number of surveys use stratified random sampling, which involves dividing 
the total population first into various strata (subpopulations), typically by geographi- 
cal regions, such as rurahrban or states, or by certain characteristics such as blue- 
collar and white-collar workers. Then RSWOR is used within each stratum. The 
sampling units are usually households or individuals. There are several advantages 
to this method as opposed to RSWOR or RSWR from the entire population. First, 
the stratification provides a more representative sample overall and so reduces the 
variance, especially when the variation within strata is small but the variation be- 
tween strata is large. Stratification allows for different types of sampling schemes in 
different strata, desirable perhaps because of cost considerations. For example, one 
can perform SRS in urban areas, where households are closely concentrated, and 
cluster sampling in rural areas, where households are widely dispersed (see Section 
IV). Finally, stratification helps to obtain enough sample observations from small 
subpopulations of special interest. 

The population mean model for stratified sampling can be written as 

X , = / ? ; + U , ,  i = l ,  . . . ,  M ,  j = 1 ,  . . . ,  Ni (56) 

where c, is the j th unit in the ith stratum, /?i is the mean of the ith stratum (subpop- 
u la tion), 

and U,,  is the error. The variance of the ith stratum is 

In a more compact form 

yi = pi + Ui (59) 
M where 

follow 

is an Ni x 1 vector of observations. The population size is N = E, Ni. 
The stratified sample observations, generated by RSWOR in each stratum, 

or, more compactly, 
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where i i  is ni x 1 vector of unit elements, yi is an ni x 1 vector of sample observations 
(yi;) in the ith stratum, and C; is C in (14) with n = n;. The total size of the sample 
is n = ni. The model (60) for the ith subpopulation (stratum) is the same as 
that of the population model in (13). Thus, the results for Section I1 go through for 
the estimation of the ith stratum parameters. For example, the LS estimator of Bi is 

and 

Here, Mi is the matrix M in (22) with L = i i .  The parameter of interest may, however, 
be the overall mean of the population. That is, 

M N, M 

where 8i = N ; / N  is the proportion of the total population in the ith stratum. An 
estimator of B is then 

which is unbiased. Further 

M M 

V(b,,) = C e : V ( b i )  = CO; 
i= 1 i= 1 

provided that the sample elements are chosen independently for each stratum. 
To see the LS and weighted LS solutions of /3 we rewrite (60) as 

yij = B + BT + uij (67) 

where #?: = #?i - /I, Eui, = 0, Euz. = o;, Eu;juitjt = pia: for i = i’, j # j ’ ,  and 0 
when i # i’. In the model (67), however, /3: and /3 are not identifiable. So we impose 
the restriction Cr(n;/n)&+ = 0. Using this we get the LS estimators of pi and B by 
minimizing 

LJ 

Cy(yi; - /3 - /3,*)’. This gives bi* and hence bi as in (62), and 
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But n;/N;, the probability of selection of the j th population element in the sam- 
ple of size ni in the ith stratum, may not be constant across strata. Therefore the 
weighted LS described in Section 1I.D will be more useful here. For this we mini- 
mize w;jp; = 0 and 

Cp;’ 
CYi wi,(y;j - j3 - s:)’ with the restriction that 

w;; = 1. This gives 

M n; 

and 

This inflation or expansion factor w;; is chosen such that Eb = #? and Eb; = pi. 
This gives 

If we substitute Tti; = n;/N;, we get bw = b,, and b;, = b;. 
We observe that the LS estimator b will become unbiased if strata are homoge- 

nous with regard to sampling fractions, ni/N; = n/N, in which case the combined 
sample is SRS (this is known as proportional stratified sampling, a special case of 
stratification in which the data will be self-weighting); or if @; = for all strata, in 
which case the population is homogeneous with respect to means. Alternatively, if 
we consider sT to be random with mean zero and constant variance, then (67) can 
be treated as a one-way error component model. In this case, the LS estimator b in 
(68) is unbiased as well as efficient since b is also the GLS estimator in (67). 

In contrast, if we assume #?i = #? and pool all the observations (ignoring strata 
and treating the data as a random sample of size n from a population of size N ) ,  then 
the variance of the pooled estimator b p  = b, known as the SRS estimator, is 

This is the same as V(b,,) or V ( b )  if n;/n = N ; / N  and #?; = 6. In this case the 
population is homogeneous and the combined sample is a simple random sample. 
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In general, V ( b s ~ s )  > V(bs t ) ,  especially if within-strata heterogeneity is low and 
between-strata heterogeneity is high. To see this, consider V ( b s L )  for case of propor- 
tional stratified sampling, where n; = nN;/N.  In this case 

where we use S2 21 N-' ( Y i j  - p)2 E 0;s; + @;(pi  - /3)2. Thus, 
if between-strata variation, V ( b ; ) ,  is zero, V ( b s ~ s )  = V(b,,). But if V ( b i )  is . nonzero, 
V(b,,) is smaller than V ( b s ~ s ) .  

In order to minimize the variance of the weighted estimator, bst,  one must 
choose n; such that V(b,,)  is a minimum subject to E, n; = n. The optimal n; 
will be n; = nNis;/ x k = l  nk. 

In practice, the unbiased estimator of V ( b s l )  can be calculated by substituting 
S: with s? in (66). Further, if /?; = p, the unbiased estimate of the variance of b s ~ s  
can be calculated as 

M 

M 

Alternatively, 

where s2 = ( n  - M ) - '  C r ( n ;  - 1)s; is the pooled estimator if S? = S2. If S; # S2 
but ni/n = N ; / N ,  one may consider 

However, if nil. # Ni/N and pi # p, then 

where q is an unbiased estimator of ( N  - l)-' Ni(pi - (Cochran 1953, 
p. 99). 
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From the above analysis it is clear that if the sample observations y;i are gen- 
erated by stratified random sampling then they should be reweighted to resemble 
the population by replicating (inflating) sampling units, using the inflation or ex- 
pansion factor, and treating the enlarged sample as if it were the population. The 
inflation factor, O i j ,  for each sampling unit j in the ith stratum is the reciprocal of 
its sampling probability; that is, Oi, = l/nij = N i / n ; .  If we multiply each sample 
observation by its inflation factor 8;;. we obtain an unbiased estimate of the popu- 
lation total. Alternatively if we multiply the sample observations by their weights 
wij = Oy/ Oi, = l/Nnij, the normalized inflation factor, we get an unbiased 
estimate of population mean, as shown in (72) and Section 11. Exactly the same pro- 
cedures can be used to obtain estimates of medians, variances, and other parameters. 
We will examine the weighting for regression parameters. 

B. Regression Model 

Suppose now that the parameters of interest are no longer population means, but the 
parameters of a linear regression model 

where pi is a k x 1 vector and i = 1, . . . , M strata. As in the mean model the 
parameters of interest are pi and p, where p is the overall parameter or the weighted 
average of pi: 

M 

i= 1 

By the analogy of the population mean case one may consider 0; = N i / N .  If the 
population is stratified on some economic grounds such as rural and urban, then the 
estimates of will be useful in their own right. However, if the population is divided 
into a large number of strata on administrative grounds, then studying /? will be more 
meaningful. The estimates of are 

bi = (xi'xL>-'xL!yi (80) 

with V ( b ; )  = a T ( X l ! X i ) - ' .  If we have RSWOR bi = ( X ~ C ~ ' X ; ) - ' X ( C ~ ' y i  with 
V ( b ; )  = ( X f C ; ' X i ) - ' ,  X i  is C with 1 replaced by 1;  and n by ni. 

To estimate /3 we write 

or, more compactly, for i = 1, . . . , M ,  
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where y is n x 1 ,  X is n x k, and X* is n x kM, n = 
(RSWR) estimator is 

n;. Then the pooled 

M - 1  M 

bp = bRsWR = ( x ' x ) - ' x ' y  = 

/ M  \-' M M 

provided 0: = 02, Q; = XL!X;/n;,  and w; = (CE, piQ;)-'p;Qi. For RSWOR, 
b, = bsRs = (X 'S t - 'X ) - 'X 'S t - ' y ,  where St = Diag((aTZ;)). It is easy to see that 
b i s  a biased estimator. This bias is 

However, if pi - p = 6; is random and independent of Xi then the bias is zero. 
Also, the bias vanishes if pi = p. When X is stochastic, we are concerned with the 
consistency of our estimator not its bias. We thus want to consider the probability 
limit as n; + 00. 

So far, the two situations under which the bias vanishes mimic the results from 
the mean model. Also, as before, the bias of pooled, or unweighted, estimator bp 
depends on the structure of the sample. This is so even when Q; = Q for all i. 
However, unlike in the mean model case, even if n;/n = N i / N  = 0; the bias still 
depends on the sample. When Q; = Q and n;/n = N i / N ,  the bias vanishes provided 
/3 is defined as in (79). 

Now consider the weighted estimator of /3 by minimizing u'WU, where W = 
( ( ~ i j ) ) ,  wij = l/(nij * N ) .  This gives 

6,  = ( X ' W X ) - ' X ' W y  (85) 

When k = 1 and X = 1,  we get the same result as in Section 11. Further, if ni; = 
n; = n; /N i ,  then 
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and 

so that the bias does not depend on the sample values; wi is the same as in (83) with 
pi replaced by 0i. Furthermore if Bi - p is random, Q; = Q or pi = p, then the bias 
vanishes. For Q; = Q the bias vanishes when wi = 8;. Note that for = /? both 
b, and b p  are unbiased but b p  will be more efficient by the Gauss Markov theorem 
(DuMouchel and Duncan 1983). Kish and Frankel (1974), however, argue in favor 
of b, and the parameter of interest 

M 

i= 1 

where wi is as in (86). When Q; = Q, wi = 0; and (88) reduces to (79). Note that b, 
is unbiased only if the parameter of interest is ,d in (88). If the parameter of interest 
is given by (79), b, will not be unbiased. 

In practice, one may be able to make a choice between bp and b, by comparing 
bp and b,  and performing a Hausman-type specification test. This amounts to doing 
an artificial regression of the type 

y = xp + m y  + U (89) 

and testing for y = 0 by the standard F-test. Alternatively, one can combine the two 
by using Stein-type shrinkage estimators as 

bs = (1 - +) bp + i b ,  

The properties of bs are not known, but they can be developed by following Judge 
and Bock (1978) or Vinod and Ullah (1981). 

Magee et al. (1996) suggest an alternative estimator to weighted least squares 
when the sampling probabilities are known but the form of the sample design is un- 
known. They propose a conditional maximum likelihood estimator, which, under cer- 
tain conditions, is superior (in the mean-squared error sense) to WLS or OLS. They 
treat the weights (sampling probabilities) as having been generated by a stochas- 
tic process and independently distributed throughout the population, an assumption 
which is violated under either stratification or clustered sampling. They suggest us- 
ing their ML estimator in any case, since information about the sample is usually 
unknown. Magee (1996) and Magee et al. (1996) suggest a way to improve weighted 
least-squares regression for survey data. Including weights often injects additional 
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heteroskedasticity into the model and the WLS estimator, though consistent, often 
has a high variance. Magee (1996) suggests creating new weights by multiplying the 
weights by a function parameterized so as to minimize variance. Again, indepen- 
dence across the sample is assumed, necessitating some adjusting of the procedure 
for use under stratification or clustered sampling. 

For further discussion of regression, including inference on finite population 
and superpopulation parameters, Kalton (1983) provides a clear and readable in- 
troduction, Pfefferman (1993) reviews some of the recent work on regression mod- 
els and weighting, Selden (1994) considers the case of weighted, generalized least 
squares in the mean model case, and Godambe (1995,1997) provides a more general 
model. 

The estimators b p ,  b,, and bs are all weighted averages of 6;. Another weighted 
average of bi follows by considering pi - /3 to be random with mean vector 0 and 
diagonal covariance matrix A,. Thus, heterogeneity across strata is due to variance 
only. In this case, X ; ( p ;  - p )  + ui has the variance a: + X;AX,/ and we can get the 
GLS estimator of j3 as 

M 

i= 1 

where wi = ( [CI(Ap + &)-']-'(As + i$)-'; & = 0f(XL!Xi)-'). This is the well- 
known Swamy (1971) estimator. The estimators b p  and 6, will both be inefficient 
under this scenario. Their standard errors need to be calculated by using a White 
(1980) kind of adjustment. 

The above procedures are useful when heterogeneity across strata is present. 
This is important when the number of strata are large. If the number of strata are 
small, one could do separate regressions, combine them by allowing stratum-specific 
intercepts, or use strata dummies with the same variables. 

Although we do not explore questions of prediction here, they will be important 
in choosing the parameters of interest. The census parameter, /? in (79) would be of 
interest when one would like to predict the change in the independent variable for a 
small change in the dependent variable for every member of society. If a particular 
policy would affect some strata differently than others, this might not be a parameter 
which aids in prediction. 

For the purpose of prediction, however, nonparametric analysis will be more 
useful since it directly estimates the regression function and thus avoids the prob- 
lem of defining the parameter of interest. This is not taken up here, but will be an 
interesting subject of a future study. 

Also not considered here are the usual diagnostic tests used in both parametric 
and nonparametric ecomometric analysis. Obviously, these too must be adapted to 
account for complex sampling procedures. 
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IV. CLUSTER AND SYSTEMATIC SAMPLING 

A, Cluster Sampling 

Let us consider Yij to be population observations of the ith group or cluster, i = 
1,  . . . , M and j = 1,  . . . , N; elements in the ith cluster. Cluster sampling or single- 
stage sampling involves drawing a sample of m clusters out of M and then sampling 
all N; ,  i = 1, . . . , m, elements in the sample. The sampling is done, therefore, only 
at the first stage. However, if we further take a random sample of n; elements out of 
Ni at the second stage, then the overall sampling is called subsampling or two-stage 
sampling. The first-stage units, clusters, could be villages or street blocks, and the 
second-stage units could be households. The primary advantage of cluster sampling 
is that i t  drastically reduces survey cost per second-stage unit. The disadvantage is 
that it usually leads to higher variance due to correlation among the elements within 
clusters. The standard assumption of uncorrelated observations in cross-sectional 
data is certainly not true for clustered samples. 

It is useful to begin by first considering the problem of estimating population 
means b and pi under single-stage (cluster) sampling. For this we consider the pop- 
ulation model as xj = /I + ,!If + U ,  and the sample model as 

y;j = j3 +j3: +U;,, i = 1 , .  . . , m, j = 1 , .  . . , Ni (92) 

where we assume RSWR such that 

(93) Euij = O ,  Eu:, = 02, Euijuijl = p~ 2 , j # j ' 

Eu..u.l ' I  = 0, i # if 51 1 J  

p > 0 is the intracluster correlation coefficient. Equation (93) implies that the ele- 
ments within clusters are correlated but are uncorrelated across clusters. Thus, 

Eu = 0 and Euu' = Diag(C1, . . . , E m )  = Q (94) 

where S2 is an n x n block diagonal matrix with C; = a2[(1 - p ) I  + piii:]. The LS 
estimators of /3; and /3, respectively, are 

If /3; = /3, the estimator 6 ,  is unbiased. Further, its variance is given by 

where n = Cr;ZNi, and E = n-'Cr;ZNn? is the weighted mean of cluster sizes. As 
shown in Section 11, the LS estimator b, is the same as the GLS estimator for the 
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structure of X i  in (94). An alternative expression of (96) can be written by following 
the results in Section 1I.A. This is V ( b c )  = o i / m  where 0; = C;"(bi - b,)2/M. 
For the equivalence of this expression with (96) see Kish (1965). 

If we ignore the clustering and consider RSWR of size n, then 

Thus, the usual formula of RSWR has to be inflated by d = 1 + ( E  - 1)p) to 
account for the intracluster correlation. For p 3 0, Eq. (97) may provide serious 
underestimation of the true variance in (96). 

It can be shown that 

is an unbiased estimator of a:, where iiij = yij 
i2'a/n, which is consistent. Further, for i = 1, . 

gives 

. b,. In practice, one could consider 
* 7 m, 

Deaton (1994) provides numerical examples of the effect of ignoring p in the calcu- 
lation of standard errors by 6,. He showed that for estimated food price elasticities 
in Pakistani villages, p is between .3 and .6, leading to underestimation of V ( b c )  by 
a factor greater than 2 when the mean cluster size is 12. Now we turn to the case of 
two-stage sampling where, within each selected cluster, we pick a sample of n; < Ni 
units. The probability of selection of every element in the chosen cluster is mni/MNi. 
It is easy to verify that the estimator of the mean /3 is 62s = E'; b;/m, where bi is 
C:i yi;/ni. For the variance of b2s, see Kish (1965). 

B. Systematic Sampling 

Systematic sampling is one of the most common techniques used in development eco- 
nomics. In systematic sampling, the sampling units are (usually) arranged in random 
order with respect to the variable of interest. Of the first K units, one is selected at 
random. Then every Kth unit is sampled in order. This sampling design is the easiest 
to implement because it involves drawing only one sample. Systematic sampling can 



ECONOMETRIC ANALYSIS IN COMPLEX SURVEYS 349 

be thought of as a kind of one-stage cluster sampling. The population is arranged into 
K clusters, each with n elements. One of these clusters is chosen and every eIement 
within that cluster is sampled. For simplicity, we assume that there are N elements 
in the population and that N / K  is an integer. (In other words, the N elements are 
exhaustively and uniquely assigned to the K clusters, each of which has the same 
number of elements n, an integer.) 

Consider the finite population model Y = B + U ,  where the data are ran- 
domly ordered. The population mean and variance are defined as in Section I. If the 
population is divided into K clusters, we can write the model as 

Our sample would consist of one randomly chosen cluster k, written as 

3 = /9 + u j ,  j = 1, . . . , n 

The LS estimator of the mean, when cluster k is chosen, is 

which will be unbiased when N / k  is an integer, Further, 

In general, we will not be able to estimate this variance. In the case where our data 
consists of one systematic sample, the population mean, p, is unknown as are the 
remaining K - 1 unsampled clusters. In some surveys, resampling is possible. In 
this case, information can be gathered about the within and across-cluster hetero- 
geneity and an approximation for V ( b s y s )  as a function of the intracluster correlation 
coefficient, p :  

In general, if the data is randomly arranged with respect to the variable of 
interest, systematic sampling should give broad coverage of the population, the esti- 
mate of the mean should be unbiased, and the approximation of V ( b s y s )  by assuming 
simple random sampling will not be too unreasonable. If the data is clustered and the 
clusters are ordered, then a systematic sample will perform better than either SRS or 
clustered sampling. This follows because the systematic sample, picking every kth 
elements, will cover most, if not all, clusters. This very broad coverage will give a 
precise estimate of the mean. 
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C. Regression Model 

In the regression model 

where X is n x k, n = C’; n;, the LS and GLS estimators of /? and their variances, 
respectively, are 

6, = b u  = (X’X)- ’X’y ,  V ( b ~ s )  = (X’X)- ’X’S tX(X’X)- ’  (106) 

and 

52 is as defined in Section 1II.B. Suppose X contains observations which vary only 
across clusters but are constant within clusters. Further assume that the cluster sizes 
are the same so that ii = n. Then it follows from Kloek (1981) that the LS estimator 
is numerically the same as the GLS estimator. Further, the true variance of b, is 

V(b,) = a 2 ( X ’ X ) - ’ d  (108) 

which reduces to the variance in the mean model where k = 1 and X = 1.  Moulton 
(1990) and Deaton (1994) provide examples of potential underestimation, using the 
usual variance o~(x’x)-’. 

The results for the case of observations in X changing with clusters or when 
n; # n is not well developed in the literature, although see Pfefferman and Smith 
(1985) who provide an upper bound of V(bc) .  Also, the efficiency of b ~ u  compared 
to b u  needs to be analyzed. 

An alternative to estimating St by first estimating p and cr2 is to consider $2 to 
be of unknown form and then estimate X’QX consistently by X ’ h X ,  as suggested 
by White (1980) and Arellano (1987). 

D. Unequal Probability of Selection 

Consider again the mean model 

yij = p + ST + uij (109) 

where cj?; = 0. Then the LS estimators b; and b of pi and j?, respectively, are 
as given in Section 1V.A. In practice, two-stage sampling is carried out by using 
the probability weight proportional to the size of the cluster. In this situation the 
estimator b will be biased. An unbiased weighted estimator is 
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where ni is the probability of selection of the ith cluster in the sample. For RSWR, 
7t i  = m/M. We note that wij = (Z'ij)-l, where Pi; is the probability of selecting 
yi; = probability of selecting the ith cluster x probability of selecting the j th unit 
of the population in the sample given the ith cluster is selected. This gives 

If the cluster is chosen with probability proportional to size of the cluster (i.e., 7ri = 
mNJN = mei, 

1 "  
b, = - bi 

m i= 1 

In practice 7ri is proportional to estimated size N;*. This gives 

where 87 = N r / N * ,  N* = 

can be written as 

N:. 
When we consider single-stage sampling or cluster sampling, the estimator bw 

For the RSWR xi = m/M.  
In the regression case 

yi = XiBi + ui 

bi = (XfXi)- 'Xfyi ,  and we can consider b,  = C y ( B i b i / n i )  as before (Konijn 
1962). For cluster sampling we can again consider 6,  = m-l E';" bi/ni .  

to be random so that yi = X i s ;  + 
= X;B + Xi& + U i ,  where 6; = B; - B. This will involve Swamy-type random 

We can also estimate j3 by considering 

coefficient estimation of B described in Section I11 (also see Porter 1973). 
Fuller (1975) estimates the one-way error component model 

yi = Xi/3 + eili + ui 

to capture the correlation across the elements of the ith cluster, where ei has mean 
zero and constant variance. 
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V. SIMULATION 

In this section, we present a summary of the results from a detailed simulation of the 
mean model under complex sampling. The two primary objectives of the simulation 
are (1) to illustrate the effect of ignoring sample design in data analysis, and (2) 
to ascertain the properties of our estimators under various sample designs where 
analytical results do not exist. 

The first step in our simulation was the creation of several finite 44populations.” 
The populations created ranged in size from 50 to 20,000, with means ranging from 
1 to 2000. They were drawn from an “infinite” population of randomly distributed, 
normal numbers. From these finite “populations” we then drew n observations, us- 
ing the sampling design in question. For the questions under consideration in this 
section, the shape of the distribution is irrelevant, so only normal random numbers 
were considered. For analyzing other variables, such as the distribution of V ( s 2 )  
considered in Section I, the shape of the distribution does matter, and conclusions 
based on simulations using only normally distributed populations should be made 
with caution. 

To demonstrate the first point, a sample of size n was drawn using the sample 
design of interest (stratified, clustered, etc.), then b and V ( b )  were estimated using 
the information on how the sample was drawn. Then taking this same sample and 
ignoring the sample design, we calculated ~ R S W R  and V(bRSWR)-i.e., treating the 
sample as if it were a random sample drawn with replacement. These values are aver- 
aged over 1000 repetitions. We then compare the average bias (b)  and bias ( ~ R S W K )  

and the ratio of the averages of the two variances, which can be interpreted as the de- 
gree of over- or underestimation arising from ignoring (or misspecifying) the sample 
design. 

The second type of simulation we have undertaken, to answer the second ques- 
tion raised above, involves drawing a separate sample for each sampling design of 
interest. From these distinct samples, we calculate b and V ( b )  for each of the sample 
designs. After r repetitions, we compute the average bias and the simulation variance 
of the estimator for each design. 

By way of example, let us consider a simulation of both kinds comparing sam- 
pling under finite population and infinite population from Section I. Recall that 

Following the first method, we take 1000 samples of size n from our population and 
calculate V(bs~s),  using the fact that the sample has been drawn without replace- 
ment from a finite population. Then we calculate V(~RSWR) and compare the ratio of 
the average of these two over the 1000 repetitions. 

The ratio should be the inverse of the finite population correction. Indeed 
this is confirmed in the results in Table 1. Results from the second type of simu- 
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Table I 
Replacement) 

Effect of Ignoring Sample Design (Sampling with 

Sample size 
Population 
size 5 10 20 50 100 

50 1.11 1.25 1.67 - - 
100 1 .OS 1.11 1.25 2.00 - 
500 1.01 1.02 1.04 1.11 1.25 
1000 1.00 1.01 1.02 1 .OS 1.11 

Table entries show the degree of overestimation of the variance of the sample 
mean: var(bRSIVR) 

V ~ I ( ~ S R S )  ’ 

lation are presented in Table 2. Here, two separate samples are drawn from the same 
population-one under SRS, the other under sampling with replacement. Results for 
10,000 repetitions are reported. As expected, the results closely approximate those 
in Table 1. One way to interpret these results is that for the same sample size, sam- 
pling without replacement is more precise than sampling with replacement. (Since 
the variance of the estimator b under SRS is, on average, smaller.) We can also think 
of the ratio as representing the “cost” of assuming that sampling is from an infinite 
population when in fact sampling is from a finite population. 

Tables 3 through 6 present comparisons between RSWR and stratified sam- 
pling without replacement, conducted under the first method described. In Table 3, 
we consider two strata, each with a population of 1000, where a sample of size rt; 
is drawn from each stratum. Since rtl # rt2 and both strata have a population of 
1000, the sampling probability is unequal. As we saw in Section 111, the unweighted 
estimator of /3 will be biased. As we can see from Table 3, the more unequal the 

Table 2 
Sampling with Replacement 

Efficiency Gains from Sampling without Replacement vs. 

Sample size 
Population 
size 5 10 20 50 100 

50 1.08 1.22 1.63 - - 
100 1.063 1.082 1.24 1.98 - 
500 .993 1.009 1.054 1.12 1.253 
1000 1 .OO 1 .oo 1.005 1 .OS5 1.108 

Entries in table are ” ~ $ ~ ~ )  averaged over 10,OOO repetitions of each design. 
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Table 3 Sampling with Unequal Probabilities 
~~~~~~ ~ 

Penalty of not considering sampling structure 

Sample size Bias Ratio of variances Ratio of MSEs 
(Stratum 1,2) Bias 6, ~ R S W R  var(6~s~~)/Vur(6,) MsE(b~sw~)/MsE(b,) 

(5310) 0.94 17.97 1.46 
(5920) -0.13 30.11 1.15 
(5950) 0.30 41.62 0.60 

(1095) 0.24 -16.62 1.23 
(2075) 1.16 -29.68 0.72 
(5095) -0.99 -41.37 0.27 

1.81 
2.99 
4.75 

1.37 
1.97 
3.07 

2 Strata: j31 = 200; a1 = 59; j32 = 300; 02 = 74.8; j3 = 250. 

sampling probabilities, the greater the bias in the unweighted estimator, ~ R S W R ,  and 
the greater the ratio of mean-squared errors. Most data in labor and development 
economics is stratified, and the most common case is unequal sampling probabil- 
ities, either by design or because of different rates of nonresponse across strata. 
Thus, as the simulation shows, a potentially serious bias problem exists even in cal- 
culating a simple mean. The general intuition behind these results extends to the 
regression case. 

In Tables 4 to 6,  we present results from the stratified case, but with equal 
probabilities of selection in both strata. In Table 4, we see that even though ~ R S W R  

Table 4 Sampling with Equal Probabilities 

Penalty of not considering sampling structure 

Population Ratio of variances Ratio of MSEs 
Sample sizes means Bias bRSWR Var ( b RS WR )/ M S E  ( 6 RS WR )/ 
(Stratum 1,2) (Stratum 1,2) = Bias 6, Var ( b w ) MSE(6w ) 
(5 ,  5 )  (ZOO, 300) 

(200, 400) 
(200,600) 
(200, 800) 

(100, 100) (ZOO, 300) 
(ZOO, 400) 
(ZOO, 600) 
(200, 800) 

0.33 
0.29 
0.12 
2.22 

-0.20 
0.15 
0.05 
0.26 

1.59 
2.29 
3.53 
5.46 

1.74 
2.37 
3.68 
5.97 

1.30 
1.64 
2.24 
3.19 

1.36 
1.67 
2.35 
3.32 



ECONOMETRIC ANALYSIS IN COMPLEX SURVEYS 355 

Table 5 Improved Efficiency: /31 # ,& 

Penalty of not considering sampling structure 
Population 

Sample sizes means Ratio of variances Ratio of MSEs 
(Stratum 1,2) (Stratum 1,2) V a r ( b ~ s w ~ ) / v a r ( b , )  M ~ E ( ~ R s ~ R ) / K ~ E ( ~ ~ )  

(57 5)  (200,300) 
(200,600) 
(200,1000) 

(20,20) (200, 300) 
(200,600) 
(200, 1000) 

(50,50) (200,300) 
(200, 600) 
(200,1000) 

(100,100) (200,300) 
(200,600) 
(200,1000) 

2.20 
20.22 
74.95 

2.16 
18.44 
68.06 

2.20 
18.97 
69.58 

2.32 
19.81 
72.75 

1.56 
10.44 
37.82 

1.54 
9.67 

34.86 

1.61 
9.76 

34.51 

1.66 
10.05 
35.55 

(unweighted) is unbiased under equal sampling probability, it is not efficient com- 
pared to 6,. In Tables 5 and 6, we consider across-strata heterogeneity in the mean 
and the element variances separately, since both affect the ratio between ~ R ~ W R  and 
bw.  In Table 5 we first consider the case where a: = of, but / 3 1  # /32. Table 6 
presents the case where (T: # U;, but = B 2 .  We note that the increase in pre- 
cision as measured by the ratio of variances is increasing as the distance between 
the two strata means, /31  and P 2 ,  increases. It is not uncommon in development eco- 

Table 6 Improved Efficiency: a: # a; 

Penalty of not considering sampling structure 

Ratio of variances Ratio of MSEs 
Sample sizes Population U* Bias bRSwR I / a r ( b ~ ~ w ~ ) /  M s E ( b ~ s p ~ ) /  
(Stratum 1,2) (Stratum 1,2) = Bias b ,  Var(b,) MSE(  b W )  

(57 5)  (2500,3520) - 12.3 1.01 
(2500,9650) 13.4 1.01 

1 .OO 
1 .OO 

(50, 50) (2500,3520) -5.5 1.05 1.03 
(2500,9650) -6.9 1 .OS 1.03 
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Table 7 One-Stage Clustered Sampling 
~ ~ ~~~~~~~~ 

# of Ratio of Expected 
clusters Total True variances kish design 
sampled sample size pop. Pop V a r ( b C L u ) /  effect 
(4 (n = c *  = m) mean p P v a r ( b R S W R )  (4 
5 

10 

25 

100 1000 
1000 
1000 
1000 
1000 

200 1000 
1000 
1000 
1000 
1000 

500 1000 
1000 
1000 
1000 
1000 

.12 .088 

.17 .13 

.26 2 0  

.44 .344 

.48 .38 

.12 . l l  

.17 .15 

.26 .24 

.44 .41 

.48 .45 

.12 .119 

.17 .169 

.26 .256 

.44 .439 

.48 .48 

3.13 
5.00 
6.48 
7.24 

10.02 

2.39 
3.89 
5.78 

10.36 
11.78 

3.69 
4.29 
5.42 
9.69 

10.09 

3.28 
4.23 
5.94 
9.36 

10.12 

3.28 
4.23 
5.94 
9.36 

10.12 

3.28 
4.23 
5.94 
9.36 

10.12 

nomics to encounter stratified samples where the urban mean income is three times 
that of rural mean income. In the case where = 200 and 82 = 600, we see that 
this can lead to an overestimate of the variance of the population mean by a factor of 
20. It increases for large sample sizes, because the finite population correction has a 
proportionally larger effect. From Table 6, we see that stratification does not improve 
efficiency when the strata have the same mean regardless of the difference in within- 
stratum variance. The small increases in efficiency that we see are the result of the 
increasing effect of the finite population correction as the sample size increases. In 
other simulations, not reported here, we show that assuming a stratified structure 
when the data does not have one leads to no gains in efficiency. This result follows 
intuitively from the results in Table 6. 

Table 7 presents the cost of ignoring the one-stage clustered sample design 
and assuming that the sample is actually a RSWR. Here we have drawn a clustered 
sample from one stratum with a population of 1000, which is divided into 50 clusters, 
each of size 10. We present the ratio of variances, V ( b c ) / V ( b ~ s w ~ ) ,  where we have 
calculated V ( b c )  using the estimated sample value of 8. We compare this to the 
expected Kish design effect 1 + (rn - 1)p given our knowledge of the true value of 
p: 8 gives a slight underestimation, which disappears as n + N .  
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Table 8 Comparisons of SRS, Clustered, and Systematic Sampling Designs 

Ratio of variances 
# of Total True 
clusters sample pop. Population SRSI SRS/ Clustered/ 
sampled size mean P clustered systematic systematic 

5 100 10oO 
1000 
1000 
1000 

10 200 1000 
loo0 
1000 
1000 

.12 

.26 

.48 

.64 

.12 

.26 

.48 

.64 

.28 

.15 

.09 

.06 

.24 

. l l  

.08 

.07 

1.31 
1.88 
2.30 
2.92 

1.09 
1.69 
6.24 
1.04 

4.60 
12.4 
25.74 
47.37 

4.52 
14.7 
81.15 
14.78 

Tables 8 and 9 present results comparing RSWOR (SRS), stratified sampling, 
cluster sampling, and systematic sampling. We use the second method described 
above for simulation. 

Table 8 presents results from 5000 replications comparing SRS, clustered, and 
systematic samples drawn from the same population. The last three columns com- 
pare the variances of the different estimators. Systematic sampling performs best 
in the simulation reported in Table 8. Since the data is ordered by cluster, the sys- 
tematic sample gives the broadest coverage of the population, taking at least one 
observation from each cluster. (See Section 1V.B) As expected, clustered sampling 
gives the highest variance for given sample size. Table 9 compares stratified and sys- 

Table 9 Systematic Sampling Compared with Stratified Systematic Sampling 

Ratio of 
Sample size variances Ratio of MSEs 
(for each Strata Strata Bias Bias Vur(bsyS)/ MsE(bRswR)/ 
stratum) means pop- bw bsys VWbfU) M S E  ( b  W )  

5 (2,900) 100 3.21 -0.09 1.06 1.03 
(1000, 1000) 500 0.09 -0.54 1.05 1.02 

25 (2,900) 100 4.11 -3.11 2.55 1.78 
(1000, 1000) 500 -0.17 -0.04 1.46 1.23 

50 (2,900) 100 1.89 0.30 1.89 1.44 
(1000, 1000) 500 -0.16 0.77 1.74 1.37 
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tematic sampling in a stratified population. Results are for 10,000 repetitions. The 
systematic sample does not perform as well as the stratified random sample since 
stratification will more evenly cover the population over repeated sampling. 

As the results of Sections I through IV demonstrate, problems of inference and 
estimation arise when data is gathered under a complex sampling design. The simu- 
lation helps to demonstrate that these are of more than trivial interest. Unequal sam- 
pling probabilities are the rule, not the exception, and treating such data as having 
been drawn under RSWR will lead to biased estimators. Even where the dispropor- 
tion is 2 to 1, this leads to large bias as shown in Table 3. 

As different strata will usually have different parameter means, ignoring strat- 
ification will lead to large overestimates of the true variance of our estimate of ,!?. A 
recent survey of income in Kenya showed that average rural income was one-third 
that of average urban income. Ignoring stratification when calculating a population 
mean in this case will lead to confidence intervals which are 20 times too wide. The 
exact opposite problem occurs in clustering. Intraclass correlation coefficients of .5 
are common in developing country studies. The simulation shows that ignoring the 
sample design leads to an underestimate of the variance by a factor of 10, more if 
the average cluster size is greater than 20. 

Bias problems and misestimates of standard errors are exacerbated in more 
complex sample designs which combine different aspects of stratification, cluster- 
ing, and systematic sampling. Clearly, the same problems will arise in the regression 
case. The simulation demonstrates that assuming away sample design effects as triv- 
ial is unjustified. Instead, more careful attention should be paid to using available 
methods of analysis and information on sampling to construct unbiased and more 
precise estimates. 

VI. APPENDIX 

A. Some Useful Expectations 

Suppose the elements of an n x 1 vector U satisfy (8) to (11). Let A and B be n x n 
symmetric matrices of known constants, b an n x 1 vector of known constants, 1 an 
n x 1 vector unit of elements, and A * B the Hadamard product of A and B. Then 
we can verify the following expectations: 

E(u’Au) = E x uiujaij = E u?aii + $ ~ i ~ j a i j ]  (116) [ :  ] [ :  
= a’tr A + pa’(1’ A1 - tr A )  

= a2(1 - p)tr A + p&’ At 
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r n  n n 1 

n 

E (  U’ Au) (u’Bu) 

When sampling is with replacement, 0 1 1 2 2  = o4 and p = 0 = 0112 = 
0 1 1 1 2  = 0 1 2 3  = 01123 = 01234. In this case (116) to (118) reduce to the standard 
results in the literature: 

E(u’Au) = o2 tr A (119) 

(120) 

(121) 

E(u’Au)(b’u) = YIO‘L’(Z * A ) b  

E(u’Au)(u’Bu) = y2a4 tr(A * B )  + a4(tr  A tr B + 2 tr A B )  

B. Proof of Proposition 2 

Let us use (2) and (17) in (28) and write the estimator 8 = (G)2  of 8 = (cv)’ as 
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where = I - M = u’/n. Further we write the model (13) as 

where U is the error vector where moments are determined by the moments of U in 
(8) to (11). Then y’My = a2v’Mu and y’My = nB2 + 0(2/3u’i) + 02u’Mv, and these 
give, up to 0(04), 

= a2a2 + 2 , s  + a4a4 

where 

3 - 
04a4 = -(u’Mu)(u‘Mu) 

n284 

Now, using (116) to (118) we can easily verify that 

1 
n 

a2Ea2 = - O ( l  - p)(n - 1) 
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1. INTRODUCTION 

For the last five decades a significant portion of econometric effort has been directed 
to 

1. 

2. 

Develop ways for analyzing multiple-equation statistical models that de- 
scribe a range of underlying economic data generation processes 
Develop a corresponding basis for estimation and inference to be used in 
data reduction and information recovery 

Despite the productive efforts of many, questions remain concerning the insecure 
assumptions underlying the sampling theory, likelihood, and asymptotic approaches 
and the usefulness of traditional multiple-equation estimation and inference proce- 
dures in helping us find order when using the partial-incomplete underlying eco- 
nomic data that is normally found in practice. Against this backdrop, we propose a 
new method of estimation in multiple-equation statistical models that is widely ap- 
plicable because it does not require the specification of a parametric family for the 
likelihood function. The estimation rule is robust with respect to likelihood, is flexi- 

3 65 
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ble with respect to the dynamic, stochastic, and feedback nature of economic data as 
well as to the introduction of prior information, and is computationally simple. Using 
linear and quadratic risk measures, we compare the finite-sample performance of this 
method to other widely used traditional estimation rules. 

The organization of the chapter is as follows: In Section I1 the simultaneous- 
equations statistical model is introduced, traditional estimation rules are identified, 
and corresponding asymptotic and finite-sample performances are noted. In Sec- 
tion 111 the maximum-entropy approach to recovering information in the case of 
inverse problems with noise is formulated and corresponding asymptotic sampling 
properties are developed. In Section IV sampling experiments are proposed as a 
basis for comparing finite-sample performance of the alternative estimation rules, 
and the resulting empirical sampling-risk results are evaluated. Section V contains 
summary comments and recommendations. 

II. THE SIMULTANEOUS-EQUATIONS STATISTICAL 
MODEL (SESM) AND TRADITIONAL ESTIMATORS 

To provide a format for analyzing the SESM that reflects an instantaneous feedback 
mechanism between some of the variables in the stochastic system of equations, 
consider a statistical model consistent with the data generation process for a system 
of G simultaneous equations: 

where Y is a T x G matrix of observations on G endogenous variables, X is a T x K 
matrix of observations on the K exogenous predetermined variables, I' and B are 
comformable matrices of unknown parameters, and E is a T x G matrix of unobserv- 
able equation errors. The rows of E are assumed to be independently distributed, 
with joint density function that has a zero mean vector and a G x G covariance ma- 
trix C. The reduced form counterpart of (1) is 

where n r  -B or 

D has a joint density function f ( [ O ] ,  52) and Y has some corresponding density func- 
tion f ( Y l n ,  52). 

For single-equation-analysis purposes, it is conventional to assume that r con- 
tains -1's on the diagonal and to rewrite the ith equation as 
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where yi and x represent the endogenous jointly determined variables in the ith 
equation and X ;  represents the exogenous predetermined variables in the ith equa- 
tion, XT represents the exogenous predetermined variables appearing in the system 
but not included in equation i, and X represents the K exogenous predetermined 
variables in the system of equations. Let 2; be a T x (G; + K ; )  matrix representing 
the G; endogenous Y; and K ;  exogenous predetermined X ;  variables that appear in 
the ith equation with nonzero coefficients. Further, 6; = (gl, bl)' is a (Gi + K i ) -  
dimensional vector of unknown and unobservable parameters corresponding to the 
endogenous and exogenous variables in the ith equation, and ei is a 3"-dimensional 
random vector for the ith equation that is traditionally assumed to have mean 0 and 
scale parameter oi;. The variables yi, Y; , Xi are observed, and 6; and e; are unob- 
served and unobservable. 

ten as 
Given the ith equation (4), the complete 

or compactly as 

y = Z b + e  

system of G equations may be writ- 

+ [:] 
eCI 

(5) 

where, in the context of the traditional SESM, y and e are GT-dimensional random 
vectors and 6 is an unknown and unobservable Ci(Gi + K;)-dimensional vector. 
Traditionally e is assumed to have mean 0 and cov(e) = C @I I T ,  where C is a 
G x G unknown covariance matrix. Given (5) and (6), the corresponding system of 
reduced form equations may be written as 

where n is a GK-dimensional vector of unknown parameters and the random vector 
d has mean vector 0 and cov(d) = !2 @I ZT. 

From a sampling-theory point of view, besides direct least squares (DLS), the 
following estimators for 6 that seek the consistency property are relevant: two-stage 
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least squares (2SLS), k-class (KC), limited-information maximum likelihood (LIML), 
three-stage least squares (3SLS), and full-information maximum likelihood (FIML). 
These estimators are widely reported and reviewed in econometrics books such as 
Judge et al. (1985) and Davidson and MacKinnon (1993). In terms of sampling prop- 
erties, FIML estimation of the SESM pro’duces consistent and asymptotically effi- 
cient structural parameter estimates given that the distribution function is correctly 
speczjed. A nice review of finite-sample results for sampling-theory SESM estima- 
tors is given by Zellner (1996), Tsurumi (1990), and Park (1982). These authors also 
review Bayesian approaches to the SESM and report conditional and unconditional 
performance results for the Bayesian estimators, and White (1994) develops prop- 
erties for the quasi-ML approach. The experimental design underlying the finite- 
sample results reported in these papers and the papers by Cragg (1966, 1967) form 
the basis for the maximum-entropy estimator sampling performance results given in 
Section IV. 

111. A MAXIMUM-ENTROPY FORMULATION 
AND ESTIMATOR 

As an alternative to traditional frequentist and Bayes estimators for the unknown 
structural parameters 6; and 6, we consider a variation of the generalized maximum 
entropy (GME) estimation rule, proposed by Golan, Judge, and Miller (1996). This 
estimation rule is based on the entropy measure of Shannon (l948), the maximum 
entropy (ME) formalism of Jaynes (1957a, 1957b, 1984), Levine (1980), Shore and 
Johnson (1980), Skilling (1989), and Csiszhr (1991), and the cross-entropy principle 
of Gokhale and Kullback (1978), Good (1963), and Kullback (1959). 

In formulating the GME estimator for the SESM, the possible outcomes for 
the unknown and unobservable parameters and equation errors are viewed proba- 
bilistically. To reflect this specification, the statistical model (7), involving a single 
equation from the system of reduced-form equations, is reparameterized as 

where Sq is a block-diagonal matrix reflecting transformation of the possible out- 
comes of each n i k  to the interval [0, 13 by defining a set of M 3 2 discrete support 
points s z  = [ s ; ~ ,  s z 2 ,  . . . , s Z M ] ’  and a vector of corresponding unknown weights 
(probabilities) pz = [ p Z l ,  p z 2 ,  . . . , pfkM]’, such that 

Similarly, V,  is a matrix that provides a transformation of the possible outcomes 
for d;,  to the interval [0, 11 by defining a set of J 2 2 discrete support points 
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vit = [ v ; , ~ ,  vit2, . . . , vitj]’, distributed ungormly and evenly around zero, and a vec- 
tor of corresponding unknown weights (probabilities) w;, = [will,  wit27 . . . , witj]’ 

such that 

i 

When prior information is available, consistent with the set of discrete points 
s$ in (9), this may be specified by corresponding prior probabilities q$ = 
[qikl, q&2, . . . , q;,,,]’. Also, consistent with the set of discrete points Vi l ,  we may 
specify corresponding prior probabilities uit = [u i t l ,  u i ~ ,  . . . , U ; ~ J ] ’ .  For the com- 
plete system of reduced-form equations, the statistical model (7) is reparameter- 
ized as 

T I T  

where ST and V are block-diagonal matrices with Sn and Vi as the blocks. 

we reparameterize B and r, or similarly 6, in the following way. Let 
Further, even though we do not make use of the structural equations directly, 

rn 

with rn = 1 , 2 , .  . . , M and 
To simplify notation, 

and 

M 2 2. 
we also use the definitions 

k = 1 , 2  , . . . ,  Gi,  i = 1 , 2  , . . . ,  G (13) 

which are the two subsets of 6;. 
Using these definitions and the corresponding reparameterizations, the gener- 

alized maximum-entropy estimation problem for estimating a system of G equations 
is formulated as 

Max H(p*, w, p’) = -pX’ In pX - w’ In w - ps’ In ps (15) 
pK , W , P J  

y = ( I G  @ x)sXpn + I/w 

subject to the GT reparameterized reduced-form equations 

(16) 

the structural equation to reduced-form restrictions (3),  reflecting (13) and (14), 

m n n r n  
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and the adding-up conditions 

(16'; (8 1L)p: = l i G ,  

( I K ;  (8 1 d ) p q  = l i K ,  

( IT  8 1;)Wi = 1 i T  

(18) 

(19) 

(20) 
where l i t  is an l x 1 vector of unit values. 

yields the solution 
Carrying through the first-order conditions and solving the resulting system 

where X[., i] is the ith column of X and Xi is a T x 1 vector of Lagrange multipliers 
for equation 2's constraints in (16): 

(23) 
exp (- xk @ik*nksynm) - - exp (- xk @ik*nkSynm) 

Q,Y, ( f i i )  
Pynm = cm exp (- xk @ik*nksrnm) - 

and 

where pi is the vector of Lagrange multipliers associated with (17) that refers to equa- 
tion i, and Q(.) and @(.) are the partition (normalization) functions for the proba- 
bilities. 

Finally, using (9), ( lO) ,  and (12) yields 

ei = S"pn 1 1  (25) 

ai = Vtwi (26) 

8; = s"p; (27) 
or Ti =- Sy'py and A = Si Bf  pi B . 

To obtain the GME solution it is sufficient to have two points in the support 
spaces that convert the elements from the real line into a [0, 13 space. The larger the 
number of support points, the more moments can be captured in the optimization- 
estimation process. 

If prior information exists concerning the structural or reduced-form parame- 
ters or the noise components, this information can be introduced through the prior 
probabilities q:, q:, and ui. This information can be used in the following general- 
ized cross-entropy (GCE) formulation: 
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subject to (16)-(20). Carrying through the first-order conditions and solving the re- 
sulting system yields the estimated probabilities 

and 

In a similar 
Finally, the 
(27). 

way, estimates are provided for the structural parameters pJ' and p B .  
point estimates 5, d, and 6 (or 'i/ and 8) are recovered as in (25)- 

A. 

As shown in Chapter 6 of Golan, Judge, and Miller (1996), for the traditional lin- 
ear statistical (regression) model, the Hessian matrix of the GCE problem is posi- 
tive definite for pi, wi >> 0, and thus satisfies the sufficient condition for a unique 
global minimum. When prior information does not exist, both q i k  and uit become 
uniform (e.g., q ikm = 1/M for all rn and k )  and the GCE solution is equivalent 
to the GME solution. Although the GME-GCE solutions do not have a closed 
form, the dual unconstrained formulation proposed by Miller (1994) and Golan, 
Judge, and Miller (1996) may be used to evaluate the sampling behavior of the 
solutions within the extremum of M-estimation framework (Huber, 1981). In gen- 
eral, the GME-GCE solutions may be viewed as discrete members of the ex- 
ponential family of probability distributions, and these functional forms may be 
used to relate the original parameter vector, pi, to the dual parameters, Ai 
and pi. The large-sample properties of the GME-GCE estimators are based on 
the asymptotic behavior of the dual parameters, and the relationship follows the 
corresponding results in the exponential family literature (Brown 1986, Johansen 
1979). 

Following Golan, Judge, and Miller (1996, Chap. 6), we develop the dual un- 
constrained GME-SESM. Given the Lagrangian for the optimization problem (15)- 
(20), we substitute the maximum-entropy posteriors probabilities (21)-(24) into the 
Lagrangian where, forsimplicity, we use pB and p)' instead of p'. Further, since these 

Discussion and Large Sample Properties 
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posteriors already satisfy the adding-up requirements, Eqs. (18)-(20) are omitted 
from the Lagrangian. Using some simple algebra, one gets the dual unconstrained 
problem. Specifically, 

L ( X ,  p) = -pn’ In pn - pDr In pD - p ~ ’  In p~ - wr In w 

i k m  

r 1 

i k  i t  

i k  i n  

Minimizing the dual unconstrained GME model with respect to X and p yields fi  
and p ,  which, in turn, yield fin, pJ’, p p ,  and *. Investigating the concentrated, or 
dual, objective function (31) reveals the following properties. First, letting G = 1, 
the system reduces to the simple (one equation) linear statistical model where the 
last two terms disappear and the summation and indices involving i are deleted from 
the first three, Thus, we have the GME estimator for the linear statistical model. 
Second, the first three terms correspond to the reduced-form system of equations 
and involve the data y’X and the sum of the partition functions for 7r and w, re- 
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spectively. This part can be viewed as an empirical likelihood function (Golan and 
Judge, 1996a) for the reduced-form equations. Third, the last two terms correspond 
to the definition (3) or its reparameterized form (17). There is no noise component 
involved in these two terms, so they are related to the classical (pure) maximum- 
entropy formulation. 

What remains is to show that (i) .it is a statistically consistent estimator of m, 
and (ii) i3/ and B are consistent internally estimates of y and 8. Part (i) is a trivial 
generalization of Golan, Judge, and Miller (1996, Proposition 6.3, p. 104). Part (ii) 
follows the principle of classical (pure) maximum entropy. That is, given the esti- 
mated 7r, which serves as the data for the (pure) ME problem, the entropies of y and 
j3 are maximized. This ensures estimates that can be realized in the greatest number 
of ways consistent with the data (Jaynes 1957a,b, Levine 1980, Golan, Judge, and 
Miller 1996, Chap. 3). Furthermore, for those equations that are exactly identified, 
the maximum-entropy approach yields the exact mathematical inversion. 

An alternative consistency motivation may be based on the following heuristic 
argument: Given the value of m, the problem (15)-(20) can be viewed as equivalent 
to maximizing (15) subject to 

y - ( lc  8 X ) m  = vw (32) 

7r = snpn (33) 

and (17)-(20). The solution is then one of choosing pT with maximum entropy -pn’ 
In pT to satisfy (32), with the remainder of the problem (w and p6) being separable 
from the choice of pn. Given the continuity of the constraint functions in the original 

problem, and since .ir __+ 7r, it  is reasonable to view the problem of deriving w and 
p b  through (32), (33), and (15)-(20) as leading to the informational consistency of 
the separable maximum-entropy problem relating to /? and y. 

P 

B. Remarks 

In applied work, many times emphasis is focused on one structural equation in the 
system of equations. For this situation it is traditional to use the 2SLS method of 
moments (Hansen 1982) or LIML estimators. Within a GME context several pos- 
sibilities exist, and a range of these is discussed in Chapter 12 of Golan, Judge, 
and Miller (1996). One straightforward GME possibility is just to make use of the 
information, yi, zi, in the structural equation of interest. Although this formulation 
ignores X:, the exogenous variables in the remainder of the system, the sampling 
results provided by Golan, Judge, and Miller (1996) suggest it performs well relative 
to traditional sampling-theory competitors. 

A GME single-equation formulation and estimation rule consistent with the 
objectives of LIML may be developed as a special case of the complete system of 
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equations formulation (1 5)-(27). In this single-structural-equation formulation, the 
objective function identifies the ith equation and it is maximized subject to (6), the 
zero-restriction condition for the zth equation (1 7), and appropriate adding-up con- 
ditions. Although this format is compatible with the LIML formulation, the distri- 
butional (and other) specification requirements and the solution basis differ signifi- 
cantly. 

Finally, we note the relationship between the general method of moments 
(GMM) estimator (Hansen 1982) and the GME estimation rule. To develop this rela- 
tionship, we consider a single overidentified structural equation and premultiply by 
the idempotent matrix X(X’X)-’X’, as proposed by Basmann (1957), to rewrite the 
statistical model as 

z,’x(x’X)-’x’yi = zL!x(x’x)-’ x’z;s;pi + z,’x(x’x)-’x’v,wi (34) 

Letting Qj = 0 for all j yields the pure moment condition 

zi x (X’X) - I  x’y; = zi x (X’X) - ’ X’ZlSiPi (35) 

which, with the addition of a reparameterization for 6i, is identical to the usual first- 
order conditions for the GMM estimator. If (35) replaces the relaxed moment condi- 
tion (34) as the consistency relation in the GME formulation, then traditional GMM 
estimates for Si result. If the relaxed moment relation (34) is used in the GME-GCE 
formulation, and the bounded parameter space S contains the true parameter vec- 
tor S;, then asymptotically the resulting estimates have, under standard regularity 
conditions, the same large-sample properties as the GMM estimators (Judge et a1 
1988, pp. 641-643). In finite samples, sampling results presented in Golan, Judge, 
and Miller (1996, Chap. 12) suggest that, under a squared error measure, GME is a 
superior performing estimator. 

IV. SAMPLING EXPERIMENTS 

Although analytic small-sample results are available in a few cases, much of the in- 
formation that we have about the finite-sample properties of simultaneous-equations 
estimation rules comes from sampling experiments conducted over a four-decade 
period. Despite the usefulness of these studies, many questions are unresolved. For 
example, when considered in a loss-risk context, the rankings of traditional estima- 
tion rules remain somewhat in doubt. To obtain some experience with the MaxEnt 
estimator specified in Section 111, and to gauge how they compare performance-wise 
with traditional sampling-theory rules, we conducted a limited range of sampling 
experiments. These experiments focused on some of the special characteristics of 
nonexperimental economic data such as small samples, collinear relations among 



INFORMATION RECOVERY IN STATISTICAL MODELS 375 

B =  

variables, and the lack of independence between some of the right-hand-side vari- 
ables and the equation errors. As a basis for judging estimator performance, we use 
the quadratic loss measures 118 - 811’ for some unknown 8. 

0 
.7 
0 

.96 
0 

A. Sampling Design 

In the sampling experiments, we work with a linear simultaneous-equations model 
involving three structural equations. The model follows Tsurumi (1990) and is a mod- 
ification of the model structure employed by Cragg (1967). In the context of (l), 

0 
.53 
. l l  
0 

.56 

r =  ( -1.0 
.222 

0 

.267 
-1.0 
.046 -1.0 - y 7 )  

4.4 
.74 
0 
0 

.13 
0 
0 

Using zero restrictions, all three equations are overidentified. 
The exogenous variables x,2, . . . , xt7 are drawn from a normal (0 , l )  distribu- 

tion. To reflect the structure of the correlation among the exogenous variables, we use 
the condition number K ( X ’ X ) ,  which is the ratio of the largest and smallest singular 
values of X with columns scaled to unit length. We use K ( X ’ X )  = 1 for orthonormal 
X’s and the condition number K ( X ’ X )  = 90 for moderately high collinearity. Each 
experiment to be reported involved 1000 samples of size T = 20. The errors for 
the structural equations were drawings from a multivariate normal distribution with 
mean zero and covariance C 8 IT with 

1 -1 -.125 
C = ( -1 4 .0625 

-.125 0.625 8 
(37) 

For comparison purposes, the results for an alternative covariance and drawings from 
a t ( 3 )  distribution are also reported. In addition to the zero and normalization restric- 
tions, the support spaces specified for the structural and reduced-form parameters 
and equation errors are s$ = s$ = [-5, -2.5,0, 2.5, 51’ fork = 2, 3, . . . , 7; s z  = 
s$ = [-20, - 1 O , O ,  10,201’ for k = 1; and srn = [-2, - 1 , O ,  1,2]’ for i, n = 
1,2 ,3 .  The errors’ support V is specified as v;, = [-3o,, 0, 3oM]’, where ofi is the 
empirical standard deviation of yi. For all experiments, the sampling performances 
(empirical risks) are reported for the whole system of structural equations and for a 
single parameter in (1). For comparison purposes, 3SLS results that use the COT- 
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rect covariance matrix (37) are reported. To provide results when the analysis focuses 
only on one equation, a GME formulation using only the information in (yi, 2;) is 
reported. 

B. Sampling Results 

The sampling results for a range of experiments are summarized in Table 1. The 
results for the base experiment ( T  = 20, K ( X ’ X )  = 1, and normal errors) are 
given in the first row of Table 1. Focusing on the MSE results for the reduced- 
form parameter vector T ,  the unrestricted LS empirical MSE is 125, and thus close 
to its theoretical value. In contrast, the GME estimator of T that takes account of 
zero restrictions in the system yields MSE(fi) = 4.11. This reduction in MSE 
relative to the traditional unrestricted T estimator is impressive. In terms of the 
structural parameters, note, relative to the 3SLS estimator with known error CO- 

variance, the superior empirical risk performance of the GME estimator. The em- 
pirical sampling variability of the GME estimator is given in parentheses for the 
structural parameters r and B.  These results reflect the relative stability of the 
GME estimator, even under conditions of nonnormal errors or a high condition num- 
ber. Intuitively speaking, significant improvement of the GME relative to the 3SLS 
is due to (i) shrinkage possibilities for both the signal and noise components, (ii) 
use of a dual loss function, and (iii) avoiding distributional assumptions (restric- 
tions). 

To reflect the sampling characteristics of the GME and 3SLS (with known CO- 

variance) estimators, we follow Tsurumi (1990) and focus on the y12 parameter in 
(1) and give in Figure 1 a frequency plot for the two estimators. Relative to the 
3SLS known error covariance estimator, the high concentration of y l2  and the re- 
stricted range variability of the GME estimates are nicely reflected in the empirical 
histogram. The empirical bias of the 3SLS (known covariance) estimator is slightly 
smaller than that of the GME estimator. 

In terms of results for (l), the GME results indicate the empirical-risk gain 
when information from the whole system is used (column 4) relative to using only 
information from (yi, Zi) in column 7. In contrast, note the empirical-risk superiority 
of the GME ( y ; ,  2;) estimation rule over the 3SLS (known covariance) estimation rule 
for (1). Also note the GME (yi, Zi) estimation rule remains stable and is concentrated 
near y12 as the condition number or error distribution changes. Finally, repeating 
the experiment involving T = 20 and K ( X ’ X )  = l ) ,  but using relaxed moment 
constraints 

t t k m  

yields estimates similar to those reported in the first row of Table 1. 
Although we have chosen as a basis of comparison the unattainable traditional 

3SLS estimator with known error covariance, the empirical-risk superiority under a 
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Table I Empirical-Risk Results from loo0 Experiments Using the SESM, GME, and 3SLs Estimators with MSE Performance Measures“ 
~ 

Results from an analysis of the complete system Using only y~ Y1, X1 
- - Experiment 

description MSE(*) MSE(@ MSE(P) MSE@ + f )  MSE& + p12 MSE@I +?1) P12 

GME, T = 20 
normal errors 
K ( X ’ X )  = 1 

3SIS (known Cov) 
normal errors 
K ( X ’ X )  = 1 

GME, T = 20 
1 8 )  errors 

GME, T = 20 
normal errors 
K ( X ’ X )  = 90 

GME, T = 206 
normal errors 
K ( X ’ X )  = 1 

K ( X ’ X )  = 1 

4.11 7.10 
(2.95) 

8.77 11.39 
(7.81) 

4.2 1 6.41 
(2.64) 

0.09 
(0.03) 

0.2 1 
(0.15) 

0.08 
(0.03) 

0.08 
(0.02) 

7.20 3.31 
(1.30) 

699.70 

11.59 4.74 
(3.09) 

6.97 3.02 
(1.19) 

6.50 2.50 
(1 23) 

0.39 
(0.01) 

0.16 

(0.13) 

0.36 
(0.05) 

0.38 
(0.01) 

0.33 
(0.01) 

24.17 0.31 
(0.06) 

24.60 0.31 
(0.11) 

23.88 0.31 
(0.05) 

24.05 0.31 
(0.07) 

“Numbers in parentheses are empirical variances. 

bCov= ( 4.1 y )  1.4 -2.3 0.9 
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I I I 1 
-2 0 2 4 

Gamma12 

Figure I Empirical histogram of the GME and 3SLS for Gamma 12. 

MSE measure of the GME estimation rule appears to hold over a range of conditions 
normally found in practice. 

V. CONCLUDING REMARKS 

We propose a new GME method for recovering the unknown parameters in a simul- 
taneous-equations statistical model that is (i) robust in respect to likelihood; (ii) flex- 
ible in respect to introducing sample and nonsample information; (iii) works well in 
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both ill-posed (e.g., collinear X’s) and well-posed problems and with small sam- 
ples of data; (iv) has the usual asymptotic sampling properties; (v) in finite samples, 
under a squared error loss measure and relative to traditional estimators, is a high- 
performing estimation rule; and (vi) is computationally simple. 

In contrast to traditional estimation for simultaneous-equations models, it per- 
mits the sample information to be introduced in either a data or moment form. It per- 
mits information recovery in case of nonlinear and/or nonstationary expectational 
models (Golan, Judge, and Karp 1996) and with discrete and/or limited endogenous 
regressors (Golan, Judge, and Perloff 1995, 1996). Using the normalized entropy 
concept provides a basis for selecting among alternative competing statistical mod- 
els (Golan and Judge 199613). By employing the entropy measure for each of the 
unknown endogenous and exogenous variables, when all the support spaces s are 
defined to be symmetric about zero, it is possible to identify the extraneous variables 
in each of the G equations. This problem will be further developed in future work. 

The finite-sample results reported suggest, relative to the 3SLS rule with known 
covariance, the superior performance of the GME rule under selected experimental 
designs. What is needed at this point is extensive sampling experiments that make 
a sharp comparison with traditional sampling theory and Bayes’ estimators for the 
SESM. 
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1. INTRODUCTION 

The consequences of model misspecification in regression analysis can be severe in 
terms of the adverse effects on the sampling properties of both estimators and tests. 
There are also commensurate implications for forecasts and for other inferences that 
may be drawn from the fitted model. Accordingly, the econometrics literature places 
a good deal of emphasis on procedures for interrogating the quality of a model’s 
specification. These procedures address the assumptions that may have been made 
about the distribution of the model’s error term, and they also focus on the structural 
specification of the model, in terms of its functional form, the choice of regressors, 
and possible measurement errors. 

Much has been written about “diagnostic tests” for model misspecification in 
econometrics in recent years. The last two decades, in particular, have seen a surge 
of interest in this topic which has, to a large degree, redressed what was previously 
an imbalance between the intellectual effort directed toward pure estimation issues 
and that directed toward testing issues of various sorts. There is no doubt that diag- 
nostic testing is now firmly established as a central topic in both econometric the- 
ory and practice, in sympathy with Hendry (1980, p. 403), urging that we should 
“test, test, and test.” Some useful general references in this field include Kramer 
and Sonnberger (1986), Godfrey (1988, 1996), and White (1994), among others. 

383 
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As discussed by Pagan (1984), the majority of the statistical procedures proposed 
for measuring the inadequacy of econometric models can be allocated into one of 
two categories-“variable-addition” methods and “variable-transformation” meth- 
ods. More than a decade later, it remains the case that the first of these categories still 
provides a useful basis for discussing and evaluating a wide range of the diagnos- 
tic tests that econometricians use. The equivalence between variable-addition tests 
and tests based on “Gauss-Newton regressions” is noted, for instance, by Davidson 
and MacKinnon (1993, p. 194) and essentially exploited by MacKinnon and Magee 
(1990). Indeed it is the case that many diagnostic tests can be viewed and categorized 
in more than one way. 

In this chapter we limit our attention to diagnostic tests in econometrics which 
can be classified as “variable-addition” tests. This will serve to focus the discussion 
in a manageable way. Pagan (1984) and Pagan and Hall (1983) provide an excellent 
discussion of this topic. Our purpose here is to summarize some of the salient fea- 
tures of that literature and then to use it as a vehicle for proposing a new variant of 
what is perhaps the best-known variable addition test-Ramsey’s (1969) “regression 
specification error (RESET) test.” 

The layout of the chapter is as follows. In the next section we discuss some 
general issues relating to the use of variable-addition tests for model misspecifica- 
tion. Section I11 discusses the formulation of the standard RESET test and the extent 
to which the distribution of its statistic can be evaluated analytically. In Section IV 
we introduce a modification of this test, which we call the FRESET test (as it is based 
on a Fourier approximation), and we consider some practical issues associated with 
its implementation. A comparative Monte Carlo experiment, designed to explore the 
power of the FRESET test under (otherwise) standard conditions, is described in Sec- 
tion V. Section VI summarizes the associated results. The last section contains some 
conclusions and recommendations which strongly favor the new FRESET test over 
existing alternatives; and we note some work in progress which extends the present 
study by considering the robustness of tests of this type to nonspherical errors in the 
data-generating process. 

II. VARIABLE-ADDITION TESTS IN ECONOMETRICS 

A. Preliminaries 

One important theme that underlies many specification tests in econometrics is the 
idea that if a model is correctly specified, then (typically) there are many weakly con- 
sistent estimators of the model’s parameters, and so the associated estimates should 
differ very little if the sample size is sufficiently large. A substantial divergence of 
these estimates may be taken as a signal of some sort of model misspecification (e.g., 
White 1994, Chap. 9). Depending on the estimates which are being compared, tests 
€or various types of model misspecification may be constructed. Indeed, this basic 
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idea underlies the well-known family of Hausman (1978) tests and the information 
matrix tests of White (1982,1987). This approach to specification testing is based on 
the stance that, in practice, there is generally little information about the precisefonn 
of any misspecification in the model. Accordingly, no specific alternative specifica- 
tion is postulated, and a pure significance test is used. This stands in contrast with 
testing procedures in which an explicit alternative hypothesis is stated, and used in 
the construction and implementation of the test (even though a rejection of the null 
hypothesis need not lead one to accept the stated alternative). In the latter case, we 
frequently “nest” the null within the alternative specification and then test whether 
the associated parametric restrictions are consistent with the evidence in the data. 
The use of likelihood ratio, Wald, and Lagrange multiplier tests, for example, in this 
situation are common and well understood. 

As noted, specification tests which do not involve the formulation of a specific 
alternative hypothesis are pure significance tests. They require the construction of a 
sample statistic whose null distribution is known, at least approximately or asymp- 
totically. This statistic is then used to test the consistency of the null with the sample 
evidence. In the following discussion we will encounter tests which involve a spe- 
cific alternative hypothesis, although the latter may involve the use of proxy variables 
to allow for uncertainties in the alternative specification. Our subsequent focus on 
the RESET test involves a procedure which really falls somewhere between these 
two categories, in that although a specific alternative hypothesis is formulated, it is 
largely a device to facilitate a test of a null specification. Accordingly, it should be 
kept in mind that the test is essentially a “destructive” one, rather than a “construc- 
tive” one, in the sense that a rejection of the null hypothesis (and hence of the model’s 
specification) generally will not suggest any specific way of reformulating the model 
in a satisfactory form. This is certainly a limitation on its usefulness, so it is all the 
more important that it should have good power properties. If the null specification 
is to be rejected, with minimal direction as to how the model should be respecified, 
then at least one would hope that we are rejecting for the right reason(s). Accord- 
ingly, in our reconsideration of the RESET test in Sections I11 and IV we emphasize 
power properties in a range of circumstances. 

Variable-addition tests are based on the idea that if the model specification 
is “complete,” then additions to the model should have an insignificant impact, in 
some sense. As noted by Pagan and Hall (1983) and Pagan (1984), there are many 
forms that such additions can take. For instance, consider a standard linear multiple 
regression model, with k fixed regressors and T observations: 

y = X B f u  (1) 

where it may be assumed that (y I X )  - N [ X / 3 ,  0‘1771. One could test this specifi- 
cation in terms of the adequacy of the assumed conditional mean of y, namely X/?; 
or one might test the adequacy of the assumed conditional covariance matrix, a21~. 
The assumed normality could be tested with reference to higher-order moments, as 
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in Jarque and Bera (1980). In most of these cases, tests can be constructed by fitting 
auxiliary regressions which include suitable augmentation terms, and then testing 
the significance of the latter. 

B. Variable Addition and the Conditional Mean 

For example, if it is suspected that the conditional mean of the model may be mis- 
specified, then one could fit an “augmented” model 

and test the hypothesis that y = 0. This assumes, of course, that W is known and 
observable. In the event that it is not, a matrix of corresponding proxy variables, W * ,  
may be substituted for W ,  and (2) may be written as 

and we could again test if y = 0. As Pagan (1984, p. 106) notes, the effect of this 
substitution will show up in terms of the power of the test that is being performed. 
An alternative way of viewing (2) (or (3) if the appropriate substitution of the proxy 
variables is made below) is by way of an auxiliary regression with residuals from (1) 
as the dependent variable: 

y - X b  = X ( B  - 6 )  + W y  + U (4) 

where b = (X’X)- ’X’y  is the least-squares estimator of B in (1). This last model is 
identical to (2), and the test of y = 0 will yield an identical answer in each case. 
However, (4) emphasises the role of diagnostic tests in terms of explaining residual 
values. 

The choice of W (or W * )  will be determined by the particular way in which the 
researcher suspects that the conditional mean of the basic model may be misspeci- 
fied. Obvious situations that will be of interest include a wrongly specified functional 
form for the model or terms that have been omitted wrongly from the set of explana- 
tory variables. There is, of course, a natural connection between these two types 
of model misspecification, as we discuss further. In addition, tests of serial indepen- 
dence of the errors, structural stability, exogeneity of the regressors, and those which 
discriminate between nonnested models, can all be expressed as variable-addition 
tests which focus on the conditional mean of the data-generating process. All of these 
situations are discussed in some detail by Pagan (1984). Accordingly, we will simply 
summarize some of the salient points here, and we will focus particularly on func- 
tional form and omitted effects, as these are associated most directly with the RESET 
test and hence with the primary focus of this chapter. 

The way in which tests for serial independence can be cast in terms of variable- 
addition tests is easily illustrated. Consider model (l), but take as the maintained 
hypothesis an AR(1) representation for the disturbances. That is, assume that ut  = 
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put-) + E ~ ,  where lpl < 1. We wish to test the hypothesis that p = 0. The mean 
of y in (1) is then conditional on the past history of y and X so it is conditional on 
previous values of the errors. Accordingly, the natural variable-addition test would 
involve setting W in (2) to be just the lagged value of U. Of course, the latter is unob- 
servable, so the proxy variable approach of (3) would be used in practice, with W* 
comprising just the lagged OLS residual series (U:,) from the basic specification, 
(1). Of course, in the case of a higher-order AR process, extra lags of U* would be 
used in the construction of W * ,  and we would again test if y = 0. It is important 
to note that the same form of variable-addition tests would be used if the alternative 
hypothesis is that the errors follow a moving-average process, and such tests are gen- 
erally powerful against both alternatives. The standard Durbin-Watson test can be 
linked to this approach to testing for model misspecification, and various other stan- 
dard tests for serial independence in the context of dynamic models, such as those 
of Godfrey (1978), Breusch (1978), and Durbin (1970), can all be derived in this 
general manner. Tests for structural stability which can be given a variable-addition 
interpretation include those of Salkever (1976), where the variables that are used to 
augment the basic model are suitably defined “zero-one” dummy variables. Further, 
the well-known tests for regressor exogeneity proposed by Durbin (1954), Wu (1973), 
and Hausman (1978) can also be reexpressed as variable-addition tests which use 
appropriate instrumental variables in the construction of the proxy matrix W *  (e.g., 
Pagan 1984, pp. 114-1 15). 

The problem of testing between (nonnested) models is one which has attracted 
considerable attention during the last 20 years (e.g., McAleer 1987,1995). Such tests 
frequently can be interpreted as variable-addition tests which focus on the specifica- 
tion of the conditional mean of the model. By way of illustration, recall that in model 
(1) the conditional mean of y (given X ,  and the past history of the regressors and of y) 
is X g .  Suppose that there is a competing model for explaining y, with a conditional 
mean of X+p, where X and X +  are nonnested, and p is a conformable vector of 
unknown parameters. To test one specification of the model against the other, there 
are various ways of applying the variable-addition principle. One obvious possibility 
(assuming an adequate number of degrees of freedom) would be to assign W* = X +  
in (3), and then apply a conventional F-test. This is the approach suggested by Pe- 
saran (1974) in one of the earlier contributions to this aspect of the econometrics 
literature. Another possibility, which is less demanding on degrees of freedom, is to 
set W* = X+(X+’X+)-’X+’y (that is, using the ordinary least-squares (OLS) es- 
timate of the conditional mean from the second model as the proxy variable), which 
gives us the J-test of Davidson and MacKinnon (1981). There have been numer- 
ous variants on the latter theme, as discussed by McAleer (1987), largely with the 
intention of improving the small-sample powers of the associated variable-addition 
tests. 

Our main concern is with variable-addition tests which address possible mis- 
specification of the functional form of the model or the omission of relevant explana- 
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tory effects. The treatment of the latter issue fits naturally into the framework of 
Eqs. (1)-(4). The key decision that has to be made in order to implement a variable- 
addition test in this case is the choice of W (or, more likely, W*).  If we have some 
idea what effects may have been omitted wrongly, then this determines the choice of 
the “additional” variables, and if we were to make a perfect choice then the usual 
F-test of y = 0 would be exact and uniformly most powerful (UMP). Of course, 
this really misses the entire point of our present discussion, which is based on the 
premise that we have specified the model to the best of our knowledge and ability, 
but are still concerned that there may be some further, unknown, omitted effects. In 
this case, some ingenuity may be required in the construction of W or W * ,  which 
is what makes the RESET test (and our modification of this procedure in this chap- 
ter) of particular interest. We leave a more detailed discussion of the RESET test to 
Section 111. 

In many cases, testing the basic model for a possible misspecification of its 
functional form can be considered in terms of testing for omitted effects in the con- 
ditional mean. This is trivially clear if, for example, the fitted model includes simply 
a regressor, xt, but the correct specification involves a polynomial in xt. Construct- 
ing W* with columns made up of powers of xt would provide an optimal test in this 
case. Similarly, if the fitted model included x, as a regressor, but the correct spec- 
ification involved some (observable) transformation of xt, such as log(x,), then (2) 
could be constructed so as to include both the regressor and its transformation, and 
the significance of the latter could be tested in the usual way. Again, of course, this 
would be feasible only if one had some prior information about the likely nature of the 
misspecification of the functional form. (See also, Godfrey, McAleer, and McKenzie 
1988). 

More generally, suppose that model (1) is being considered, but in fact the 
correct specification is 

y = f(X9 P l y  B 2 >  + U (5) 

where f is a nonlinear function which is continuously differentiable with respect to 
the parameter subvector, 82. If (1) is nested within (5) by setting 8 2  = /3;, then by 
taking a Taylor series expansion off about the (vector) point &, we can (after some 
rearrangement) represent (5) by a model which is of the form (3) and then proceed 
in the usual way to test (1) against (5) by testing if y = 0 via a RESET test. More 
specifically, this can be achieved, to a first-order approximation, by setting 

where bl is the least-squares estimator of the subvector obtained subject to the 
restriction that #?2 = @. As we will see again in Section 111, although the presence 
of 61 makes W* random, the usual F-test of y = 0 is still valid, as a consequence of 
the Milliken-Graybill (1970) theorem. 
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As we have seen, many tests of model misspecification can be formulated as 
variable-addition tests in which attention focuses on the conditional mean of the un- 
derlying data-generating process. This provides a very useful basis for assessing the 
sampling properties of such tests. Model (3) forms the basis of the particular speci- 
fication test (the RESET test) that we will be considering in detail later. Essentially, 
we will be concerned with obtaining a matrix of proxy variables, W * ,  that better rep- 
resents an arbitrary form of misspecification than do the usual choices of this matrix. 
In this manner, we hope to improve on the ability of such tests to reject models which 
are falsely specified in the form of Eq. (1). 

C. Variable-Addition and Higher Moments 

Although our primary interest is with variable-addition tests which focus on mis- 
specification relating to the conditional mean of the model, some brief comments 
are in order with respect to related tests which focus on the conditional variance 
and on higher-order moments. Of the latter, only the third and fourth moments have 
been considered traditionally in the context of variable-addition tests, as the basis of 
testing the assumption of normally distributed disturbances (e.g., Jarque and Bera 
1987). Tests which deal with the conditional variance of the underlying process have 
been considered in a variable-addition format by a number of authors. 

Essentially, the assumption that the variance, 02, of the error term in (1) is a 
constant is addressed by considering alternative formulations, such as 

of = o2 + ztb, (7) 

where zt is an observation on a vector of r known variables, and 4 is r x 1. We 
then test the hypothesis that 4 = 0. To make this test operational, (7) needs to be 
reformulated as a “regression relationship” with an observable “dependent variable” 
and a stochastic “error term.” The squared tth element of U in (1) gives us of, on 
average, so it is natural to use the corresponding squared OLS residuals on the left 
side of (7). Then 

= o2 + zt4 + ( U ; ) 2  - of = o2 + ztqb + vt (8) 

where vt = ( u : ) ~  - of. Equation (8) can be estimated by OLS to give estimates 
of o2 and 4 and to provide a natural test of 4 = 0. The (asymptotic) legitimacy of 
the usual t -test (or F-test) in this capacity is established, for example, by Amemiya 
(1977). 

So the approach in (8) is essentially analogous to the variable-addition ap- 
proach in the case of (2) for the conditional mean of the model. As was the situation 
there, in practice we might not be able to measure the zl vector, and a replacement 
proxy vector, z:, might be used instead. Then the counterpart to (3) would be 

= o2 + zt4 + (zt - z;)@ + U, = o2 + z;(b + U; (9) 
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where we again test if 4 = 0, and the choice of z; determines the particular form of 
heteroskedasticity against which we are testing. 

For example, if z* is an appropriately defined scalar dummy variable then we 
can test against a single break in the value of the error variance at a known point. 
This same idea also relates to the more general homoskedasticity tests of Harrison 
and McCabe (1979) and Breusch and Pagan (1979). Similarly, Garbade’s (1977) test 
for systematic structural change can be expressed as the above type of variable- 
addition test, with z; = txf; and Engle’s (1982) test against ARCH(1) errors amounts 
to a variable addition test with zr  = (u ,*- , )~.  Higher-order ARCH and GARCH 
processes* can be accommodated by including additional lags of ( u : ) ~  in the def- 
inition of z*. Pagan (1984, pp. 115-118) provides further details as well as other 
examples of specification tests which can be given a variable-addition interpretation 
with respect to the conditional variance of the errors. 

D. Multiple Testing 

Variable-addition tests have an important distributional characteristic which we have 
not yet discussed. To see this, first note that under the assumptions of model (l), the 
UMP test of y = 0 will be a standard F-test if X and W (or W * )  are both non- 
stochastic and of full column rank. In the event that either the original or “addi- 
tional” regressors are stochastic (and correlated with the errors), and/or the errors 
are nonnormal, the usual F-statistic for testing if y = 0 can be scaled to form a 
statistic which will be asymptotically chi-square. More specifically, if there are T 
observations and if rank(X) = Ic and rank(W) = p, then the usual F-statistic will 
be FP,”, under the null (where U = T - k - p). Then p F  will be asymptotically x: 
under the null.? Now, suppose that we test the model’s specification by means of a 
variable addition test based on (2) and denote the usual test statistic by F”. Then, 
suppose we consider a second test for misspecification by fitting the “augmented” 
model 

where rank(2) = q, say. In the latter case, denote the statistic for testing if 6 = 0 by 
F”. Asymptotically, pF”  is x:, and qF” is xi, under the respective null hypotheses. 

Now, from the usual properties of independent chi-square statistics, we know 
that if the above two tests are independent, then pF” + qF” is asymptotically x&, 
under the null that y = 6 = 0. As discussed by Bera and McKenzie (1987) and 
Eastwood and Godfrey (1992, p. 120), independence of the tests requires that plim 

*Lee (1991) shows the equivalence of ARCH(p) and GARCH(p, Q )  tests under the null, for a constant 

?Its distribution under the alternative is discussed in Section 111. 
q ,  where p is any natural number. 
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(Z’V/Z‘) = 0 and that either plim(Z’X/T) = 0 or plim(W’X/T) = 0. The advan- 
tages of this are the following. First, if these variable addition specification tests are 
applied in the context of (2) and (10) sequentially, then the overall significance level 
can be controlled. Specifically, if the (asymptotic) significance levels for these two 
tests are set at a, and a, respectively, then* the overall joint significance level will 
be 1 - (1 - a,) (1  - az). Second, the need to fit a “supermodel,” which includes all 
of the (distinct) columns of X, V‘, and Z as regressors, can be avoided. The extension 
of these ideas to testing subsets of the regressors is discussed in detail by Eastwood 
and Godfrey (1992, pp. 120-122). 

A somewhat related independence issue also arises in the context of certain 
variable-addition tests, especially when the two tests in question focus on the differ- 
ent moments of the underlying stochastic process. Consider, for example, tests of the 
type discussed in Section 1I.B. These deal with the first moment of the distribution 
and are simply tests of exact restrictions on a certain regression coefficient vector. 
Now, suppose that we also wanted to test for a shift in the variance of the error term in 
the model, perhaps at some known point(s) in the sample. It is well known? that many 
tests of the latter type (e.g., those of Goldfeld and Quandt 1965, Harrison and Mc- 
Cabe 1979, and Breusch and Pagan 1979) are independent (at least asymptotically 
in some cases) of the usual test for exact restrictions on the regression coefficients. 
Once again, this eases the task of controlling the overall significance level, if we 
are testing for two types of model misspecification concurrently but do not wish to 
construct “omnibus tests.” 

The discussion assumes, implicitly, that the two (or more) variable-addition 
tests in question are not only independent but that they are applied separately but 
“concurrently.” By the latter, we mean that each test is applied regardless of the 
outcome(s) of the other test(s). That is, we are abstracting from any “pretest testing” 
issues. Of course, in practice, this may be too strong an assumption. A particular 
variable-addition test (such as the RESET test) which relates to the specification of 
the conditional mean of the model might be applied only if the model “passes” an- 
other (separate and perhaps independent) test of the specification of the conditional 
variance of the model. If it fails the latter test, then a dzerent  variable addition test 
for the specification of the mean may be appropriate. That is, the choice of thefonn of 
one test may be contingent on the outcome of a prior test of a different feature of the 
model’s specification. Even if the first-stage and second-stage tests are independent, 
there remains a “pretesting problem” of substance.$ The true significance level of 

*Essentially, this follows from Basu’s (19%) independenre theorem. For example, see Anderson (1971, 
pp. 34-43, 116-134,270-276) and the asymptotic extensions discussed by Mizon (1977a, 1977b). 
For some general discussion of this point, see Phillips and McCabe (1983), Pagan and Hall (1983), and 
Pagan (1984, pp. 116-117,125-127). Phillips and McCabe (1989) also provide extensions to other tests 
where the statistics can be expressed as ratios of quadratic forms in a normal random vector. 

$For a more comprehensive discussion of this point, see Giles and Giles (1993, pp. 176-180). 
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the two-part test for the specification of the conditional mean of the model will differ 
from the sizes nominally assigned to either of its component parts, because of the 
randomization of the choice of second-stage test which results from the application 
of the first-stage test (for the specification of the conditional variance of the model). 

More generally, specification tests of the variable-addition type may not be in- 
dependent of each other. As noted by Pagan (1984, pp. 125-127), it is unusual for 
tests which focus on the same conditional moment to be mutually independent. One 
is more likely to encounter such independence between tests which relate to dzferent 
moments of the underlying process (as in the discussion above). In such cases there 
are essentially two options open. The first is to construct joint variable-addition tests 
of the various forms of misspecification that are of interest. This may be a somewhat 
daunting task, and although some progress along these lines has been made (e.g., 
Bera and Jarque 1982), there is still little allowance for this in the standard econo- 
metrics computer packages. The second option is to apply separate variable-addition 
tests for the individual types of model misspecification, and then adopt an “induced 
testing strategy” by rejecting the model if at least one of the individual test statistics 
is significant. Generally, in view of the associated nonindependence and the likely 
complexity of the joint distribution of the individual test statistics, the best that one 
can do is to compute bounds on the overall significance level for the “induced test.” 
The standard approach in this case would be to use Bonferroni inequalities (e.g., 
David 1981, Schwager 1984), though generally such bounds may be quite wide and, 
hence, relatively uninformative. A brief discussion of some related issues is given 
by Kramer and Sonnberger (1986, pp. 147-155), and Savin (1984) deals specifically 
with the relationship between multiple t-tests and the F-test. This, of course, is di- 
rectly relevant to the case of certain variable-addition tests for the specification of 
the model’s conditional mean. 

E. Other Distributional Issues 

There are several further distributional issues which are important in the context 
of variable-addition tests. In view of our subsequent emphasis on the RESET test 
in this chapter, it is convenient and appropriate to explore these issues briefly in 
the context of tests which focus on the conditional mean of the model. However, it 
should be recognized that the general points that are made in the rest of this section 
also apply to variable-addition tests relating to other moments of the data-generating 
process. Under our earlier assumptions, the basic form of the test in which we are 
now interested is an F-test of y = 0 in the context of model (2). In that model, if 
W is truly the precise representation of the omitted effects, then the F-test will be 
UMP. Working, instead, with the matrix of proxy variables W”, as in (3), does not 
affect the null distribution of the test statistic in general, but it does affect the power 
of the test, of course. Indeed, the reduction in power associated with the use of the 
proxy variables increases as the correlations between the columns of W and those 



DIAGNOSTIC TESTING IN ECONOMETRICS 393 

of W* decrease. Ohtani and Giles (1993) provide some exact results relating to this 
phenomenon under very general distributional assumptions, and find the reduction 
in power to be more pronounced as the error distribution departs from normality. 
They also show that, regardless of the degree of nonnormality, the test can be biased* 
as the hypothesis error grows, and they prove that the usual null distribution for the 
F-statistic for testing if y = 0 still holds even under these more general conditions. 

Of course, in practice, the whole point of the analysis is that the existence, 
form, and degree of model misspecification are unknown. Although the general form 
of W* will be chosen to reflect the type of misspecification against which one is 
testing, the extent to which W* is a “good” proxy for W (and hence for the omitted 
effect) will not be able to be determined exactly. This being the case, in general it is 
difficult to make specific statements about the power of such variabIe-addition tests. 
As long as W* is correlated with W (asymptotically), a variable-addition test based 
on model (3) will be consistent. That is, for a given degree of specification error, 
as the sample size grows the power of the test will approach unity. In view of the 
immediately preceding comments, the convergence path will depend on the forms of 
W and W * .  

The essential consistency of a basic variable-addition test of y = 0 in (2) 
is readily established. Following Eastwood and Godfrey (1992, pp. 123-125), and 
assuming that X ’ X ,  W’W,  and X’W are each O,(T), the consistency of a test based 
on F” (as defined in Section II.D, and assuming independent and homoskedastic 
disturbances) is ensured if plim(FW/T) # 0 under the alternative. Now, as is well 
known, we can write 

(RSS - USS)/p F” = 
USS/( T - k - p )  

where RSS denotes the sum of the squared residuals when (2) is estimated by OLS 
subject to the restriction that y = 0, and USS denotes the corresponding sum of 
squares when (2) is estimated by unrestricted OLS. Under quite weak conditions the 
denominator in (11) converges in probability to o2 (by Khintchine’s theorem). So, 
by Slutsky’s theorem, in order to show that the test is consistent, i t  is sufficient to 
establish that plim (RSS - USS)/T # 0 under the alternative.? Now, for our problem 
we can write 

* A  biased test is one whose power can fall helow its significance level in some region of the relevant 

?Clearly, this plim is zero if‘ the null is true, because then both RSSIT and USSIT are consistent estimators 
parameter space. 

of (T2. 
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where R = [Zk, O,], and X* = (X : W ) .  Given our assumption about the orders in 
probability of the data matrices, we can write plim(X*’X*/T) = Q*, say, where Q* 
is finite and nonsingular. Then it follows immediately from (12) that plim[(RSS - 
USS)/T] > 0, if y # 0, so the test is consistent. It is now clear why consistency is 
retained if W* is substituted for W ,  as long as these two matrices are asymptotically 
correlated. It is also clear that this result will still hold even if W is random or if 
W* is random (as in the case of a RESET test involving some function of the OLS 
prediction vector from (1) in the construction of W*).  

Godfrey (1988, pp. 102-106) discusses another important issue that arises in 
this context, and which is highly pertinent for our own analysis of the RESET test in 
this chapter. In general, if we test one of the specifications in (2)-(4) against model 
(l), by testing if y = 0, it is likely that in fact the true data-generating process differs 
from both the null and maintained hypotheses. That is, we will generally be testing 
against an incorrect alternative specification, In such cases, the determination of 
even the asymptotic power of the usual F-test (or its large-sample chi-square coun- 
terpart) is not straightforward, and is best approached by considering a sequence of 
local alternatives. Not surprisingly, it turns out that the asymptotic power of the test 
depends on the (unknown) extent to which the maintained model differs from the 
true data-generating process. 

Of course, in practice the errors in the model may be serially correlated and/or 
heteroskedastic, in which case variable-addition tests of this type generally will be 
inconsistent, and their power properties need to be considered afresh in either large 
or small samples. Early work by Thursby (1979, 1982) suggested that the RESET 
test might be robust to autocorrelated errors, but as noted by Pagan (1984, p. 127) 
and explored by Porter and Kashyap (1984), this is clearly not the case. We abstract 
from this situation in the development of a new version of the RESET test later in this 
chapter, but it is a topic that is being dealt with in some detail in our current research. 
Finally, we should keep in mind that a consistent test need not necessarily have high 
power in small samples, so this remains an issue of substance when considering 
specific variable-addition tests. 

Finally, it is worth commenting on the problem of discriminating between two 
or more variable-addition tests, each of which is consistent in the sense described 
above. If the significance level for the tests is fixed (as opposed to being allowed to 
decrease as the sample size increases), then there are at least two fairly standard 
ways of dealing with this issue. These involve bounding the powers of the tests away 
from unity as the sample size grows without limit. The first approach is to use the 
“approximate slope” analysis of Bahadur (1960,1967). This amounts to determining 
how the asymptotic significance level of the test must be reduced if the power of 
the test is to be held constant under some fixed alternative. The test statistics are 
O,(T), and they are compared against critical values which increase with T .  The 
approximate slope for a test statistic, S, which is asymptotically chi-square, is just 
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plim(S/T).* This is the same quantity that we considered in the determination of 
the consistency of such a test. A choice between two consistent tests which test the 
same null against the same alternative can be made by selecting so as to maximize 
the approximate slope. Of course, once again this does not guarantee good power 
properties in small samples. 

A second approach which may be used to discriminate between consistent 
tests is to consider a sequence of local alternatives. In this approach, the alternative 
hypothesis is adjusted so that it approaches the null hypothesis in a manner that 
ensures that the test statistics are Op(l) .  Then a fixed critical value can be used, 
and the asymptotic powers of the tests that can be compared as they will each be 
less than unity. In our discussion of the traditional RESET test in the next section 
and of a new variant of this test in Section IV, neither of these approaches to dis- 
criminating between consistent tests is particularly helpful. There, the tests that are 
being compared have the same algebraic construction, but they differ in terms of the 
number of columns in W* and the way in which these columns are constructed from 
the OLS prediction vector associated with the basic model. In general, the “approxi- 
mate slope” and “local alternatives” approaches do not provide tractable expressions 
upon which to base clear comparisons in this case. However, in practical terms our 
interest lies in the small-sample properties of the tests, and i t  is on this characteristic 
that we focus. 

111. T H E  RESET TEST 

Among the many “diagnostic tests” that econometricians routinely use, some variant 
or other of the RESET test is widely employed to test for a nonzero mean of the error 
term. That is, i t  tests implicitly whether a regression model is correctly specified in 
terms of the regressors that have been included. Among the reasons for the popularity 
of this test are that it is easily implemented and that it is an exact test whose statistic 
follows an F-distribution under the null. The construction of the test does, however, 
require a choice to be made over the nature of certain “augmenting regressors” that 
are employed to model the misspecification, as we saw in Section 1I.B. Depending on 
this choice, the RESET test statistic has a nonnull distribution which may be doubly 
noncentral F or totally nonstandard. Although this has no bearing on the size of the 
test, it has obvious implications for its power. 

The most common construction of the RESET test involves augmenting the 
regression of interest with powers of the prediction vector from a least-squares re- 
gression of the original specification and testing their joint significance. As a result 

*For example, see Geweke (1981), Magee (1987), and Eastwood and Godfrey (1992, p. 132). 
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of the Monte Carlo evidence provided by Ramsey and Gilbert (1972) and Thursby 
(1989), for example, it is common for the second, third, and fourth powers of the 
prediction vector to be used in this way.* Essentially, Ramsey’s original sugges- 
tion, following earlier work by Anscombe (1961), involves approximating the un- 
known nonzero mean of the errors, which reflects the extent of the model mis- 
specification, by some analytic function of the conditional mean of the model. The 
specific construction of the RESET test noted above then invokes a polynomial ap- 
proximation, with the least-squares estimator of the conditional mean replacing its 
true counterpart. 

Other possibilities include using powers and/or cross products of the individ- 
ual regressors, rather than powers of the prediction vector, to form the augmenting 
terms. Thursby and Schmidt (1977) provide simulation results which appear to fa- 
vor this approach. However, all of the variants of the RESET test that have been 
proposed to date appear to rely on the use of local approximations, essentially of a 
Taylor series type, of the conditional mean of the regression. Intuitively, there may be 
gains in terms of the test’s performance if a global approximation were used instead. 
This chapter pursues this intuition by suggesting the use of an (essentially unbiased) 
Fourier flexible approximation. This suggestion captures the spirit of the develop- 
ment of cost and production function modeling, and the associated transition from 
polynomial functions (e.g., Johnston 1960) to Translog functions (e.g., Christensen 
et al. 1971,1973) and then to Fourier functional forms (e.g., Gallant 1981, Mitchell 
and Onvural 1995,1996). 

Although Ramsey (1969) proposed a battery of specification tests for the lin- 
ear regression model, with the passage of time and the associated development of the 
testing literature, the RESET test is the one which has survived. Ramsey’s original 
discussion was based on the use of Theil’s (1965, 1968) “BLUS” residuals, but the 
analysis was subsequently recast in terms of the usual OLS residuals (e.g., Ramsey 
and Schmidt 1976, Ramsey 1983), and we will follow the latter convention in this 
chapter. As Godfrey (1988, p. 106) emphasizes, one of the principles which under- 
lies the RESET test is that the researcher has only the same amount of information 
available when testing the specification of a regression model as was available when 
the model was originally formulated and estimated. Accordingly direct tests against 
new theories, perhaps embodying additional variables, are ruled out. 

A convenient way of discussing and implementing the standard RESET test is 
as follows. Suppose that the regression model under consideration is (l),  which we 
reproduce here: 

y = x p + u  (13) 

*For instance, the SHAZAM (1993) package adopts this approach. Clearly, the first power cannot be used 
as an extra regressor in the “augmented” equation as the design matrix would then be perfectly collinear. 
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where X is T x k, of rank k, and nonstochastic; and it is assumed that U - “0, 021r]. 
Such a model would be “correctly specified.” Now, suppose we allow for the possi- 
bility that the model is misspecified through the omission of relevant regressors or 
the wrong choice of functional form. In this case, E[u I XI = e # 0. The basis of 
the RESET test is to approximate 6 by 28,  which corresponds to W * y  in (3), and fit 
an augmented model, 

y = xg+ ze f E (14) 

We then test if 6 = 0 by testing if 13 = 0, using the usual F-test for restrictions 
on a subset of the regression coefficients. Different choices of the T x p matrix Z 
lead to different variants of the RESET test. As noted, the most common choice is to 
construct 2 to have tth row vector 

2, = [ ( X b ) T ,  ( X b ) Q ,  . . . , ( X b ) f + ’ ]  

where often p = 3; b = ( X ’ X ) - ’ X ’ y  is the OLS estimator of #I from (1); and ( X b ) ,  
is therefore the tth element of the associated prediction vector, 

If 2 is chosen in this way (or if it  is nonrandom, or if it depends on y only 
through b), then, as a consequence of the Milliken-Graybill(l970) theorem, the RE- 
SET test statistic is F-distributed with p and T - k - p degrees of freedom under 
the null that 8 = 0,* provided that the disturbances are NID(0, a2). If 2 is non- 
stochastic (as would be the case if Thursby and Schmidt’s 1977 proposal of using 
powers of the regressors to augment the model were followed) then the test statistic’s 
nonnull distribution is doubly noncentral F with the same degrees of freedom? and 
with numerator and denominator noncentrality parameters: 

= X b .  

In this case, the power of the RESET test can be computed exactly for any given 
degree of misspecification, 6, by recognizing that 

*Note that 
?For example, see Ramsey (1969) and Thursby and Schmidt (1977). 

is being approximated by ZO. 
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where F denotes a doubly noncentral F-statistic, and x2 denotes a noncentral chi- 
square statistic, each with degrees of freedom and noncentrality parameters as shown. 
The algorithm of Davies (1980), which is conveniently coded in the SHAZAM (1993) 
package, provides an efficient and accurate means of computing such probabili- 
ties, although we are not aware of any studies which do this in the context of the 
RESET test. 

If, as is usual in practice, 2 is constructed from powers of X b  or is random 
for any other reason, then A1 and A2 will be random and the nonnull distribution 
of the RESET test statistic will no longer be doubly noncentral F .  The power char- 
acteristics associated with its nonstandard distribution will depend on the specific 
choice of 2 (and hence on the number of powers of X b  that may be used, if this 
choice is adopted), and are then best explored via Monte Carlo simulation. This is 
the approach that we adopt in this chapter. 

IV. FOURIER APPROXIMATIONS A N D  
T H E  FRESET TEST 

As noted, the essence of Ramsey’s RESET test is to approximate the unknown 6 
by some analytic function of X/3 (or, more precisely, of the observable = Xb).  A 
power series approximation is one obvious possibility, but there are other approxi- 
mations which may be more attractive. In particular, as Gallant (1981) has argued in 
a different context, one weakness of Taylor series approximations (which include the 
power series and Translog approximations, for example) is that they have only local 
validity. Taylor’s theorem is valid only in a neighborhood of some unspecified size 
containing a specific value of the argument of the function to be approximated. On 
the other hand, a Fourier approximation has global validity. Such approximations 
can take the form of a conventional sine/cosine expansion or the less conventional 
Jacobi, Laguerre, or Hermite expansions. We consider using a sine/cosine expansion 
of X b  to approximate (.* Although Gallant (1981) has suggested that the precision 
of a truncated Fourier series can generally be improved by adding a second-order 
Taylor series approximation (see also Mitchell and Onvural 1995), we do not pursue 
this refinement here. 

In order to obtain a Fourier representation of 2 8  in (14), and hence a Fourier 
approximation of the unknown t ,  by using X b ,  we need to first transform the elements 
of this vector to lie in an interval of length 2n ,  such as [-n, +XI. This is because 
a Fourier representation is defined only if the domain of the function is in an inter- 

*In view of the Monte Carlo evidence provided by Thurshy and Schmidt (1977), in principle it would also 
be interesting to consider multivariate Fourier expansions in terms of the original regressors. 
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val of length 2n. Mitchell and Onvural (1995, 1996) and other authors use a linear 
transformation.* In our case, this amounts to constructing 

where (Xb),;, and (Xb),,, are respectively the smallest and largest elements of the 
prediction vector. We also consider an alternative sinusoidal transformation, based 
on Box (1966): 

Then the 2 matrix for (2) is constructed to have tth row vector 

2, = [sin(w,), cos(wt), sin(2wt), cos(2wt), sin(3wt), 

cos(3wl), . . . , sin(p’w,), cos(p’w,)] 

for some arbitrary truncation level p’ .  This recognizes that the Fourier approxima- 
tion, g ( x ) ,  of a continuously differentiable function, f(x), is 

where? 

u g  = 

uj = 

Equation (22) gives an exact representation off (x) by g ( x ) ,  except near x = -n 
and x = +n. An approximation is obtained by truncating the range of summation 
in (22) to a finite number of terms, p’ ,  and this approximation will be globully valid. 
The failure of the representation at the exact endpoints of the [ -n, +n]  interval can 
generate an approximation error which is often referred to as “Gibbs’ phenomenon.” 
Accordingly, some authors modify transformations such as (19) or (20) to achieve a 
range which is just inside this interval. We have experimented with this refinement 
to the above transformations and have found that it makes negligible difference in 
the case considered. The results reported in Section VI do not incorporate this re- 
finement. 

*If the data have to be positive, as in the case of cost functions, then a positive interval such as [c, c + 2x1 
tThe range of summation in (22) is from j = 1 to j = 00; the ranges of integration in (23) are each from 

would be appropriate. 

--II to +R. 
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In our case, the u;’s and v;’s in (23) correspond to elements of 8 in(14), so they 
are estimated as part of the testing procedure.* Note that 2 is random here, but only 
through b. Our FRESET test involves constructing 2 in this way and then testing if 
8 = 0 in (14). Under this null, the FRESET test statistic is still central F with 2p’ 
and t - k - 2p‘ degrees of freedom. Its nonnull distribution will depend upon the 
form of the model misspecification, the nature of the regressors, and the choice of p’ .  
This distribution will differ from that of the RESET test statistic based on a (trun- 
cated) Taylor series of X b .  In the following discussion we use the titles FRESETL 
and FRESETS to refer to the FRESET tests based on the linear transformation (19) 
and the sinusoidal transformation (20) respectively. 

V. A MONTE CARLO EXPERIMENT 

We have undertaken a Monte Carlo experiment to compare the properties of the new 
FRESET tests with those of the conventional RESET test for some different types 
of model misspecification. Table 1 shows the different formulations of the tests that 
we have considered in all parts of the experiment. Effectively, we have considered 
choicest of p = 1 ,2 ,  or 3 and p’ = 2 or 3. In the case of the RESET test, the vari- 
ables whose significance is tested (i.e., the “extra” 2 variables which are added to 
the basic model) comprise powers of the prediction vector from the origind model 
under test, as in (15). For the FRESET test they comprise sines and cosines of mul- 
tiples of this vector, as in (21), once the linear transformation (19) or the sinusoidal 
transformation (20) has been used for the FRESETL and FRESETS variants respec- 
t i vel y. 

Three models form the basis of our experiment, and these are summarized in 
Table 2. In each case we show a particular data-generating process (DGP), or “true” 
model specification, together with the model that is actually fitted to the data. The 
latter “null” model is the one whose specificatiori is being tested. Our model 1 allows 
for misspecification through static variable omission, and corresponds to models 6-8 
(depending on the value of y )  of Thursby and Schmidt (1977, p. 638). Our model 2 
allows for a static misspecification of the functional form, and our model 3 involves 
the omission of a dynamic effect. In each case, xp, x3, and x4 are as in Ramsey and 

*The parameter uo gets “absorbed” into the coefficient of the intercept in the model (14). 
We found that setting p’ > 3 resulted in a singular matrix when constructing the FRESET tests. East- 
wood and Gallant (1991) suggest that setting the numher of parameters equal to the sample size raised 
to the two-thirds power will ensure consistency anti asymptotic normality when estimating a Fourier 
function. Setting p’ = 2 or p’ = 3 is broadly in keeping with this for our sample sizes. As Mitchell 
and Onvural(l996) note, increasing p’ will incwase the variance of test statistics. In the context of the 
FRESET test it seems wise to limit the value of p’ .  
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Table I Test Variables 

Test p Test variables 

RESET 

Pt 
FRESETL 2 1) sin(w,), cos(wt), sin(2wl), cos(2wt) 
(linear transformation) 3 2) sin(w,), cos(wI), sin(2wt), cos(2wL), 

FRESETS 
sin(3wl), cos(3w,) 

2 3 )  sin(w,), cos(w,), sin(2wl), cos(2wl) 
(sinusoidal transformation) 3 4) sin(w,), cos(w,), sin(2wl), cos(2wL), 

sin (3 wt ) , cos (3 wt ) 

Table 2 Models 
~~ 

Model Specification Problem 

1 

2 

3 

DGP: y, = 1.0 - 0 . 4 ~ 3 ,  + ~ 4 ,  + y ~ g l  + U (  

Null: y, = Bo + B P 3 l  + B 4 W  + U ,  

DGP: y, = 1.0 - 0.4~3,  + xal( 1 + yxzr )  + ut 
Null: yt = Bo + B3X.3, + 64x4, + U ,  

DGP: yt = 1.0 - 0.4~3,  + ~ 4 1  + ~ ~ l - 1  + U ,  

Null: YL = P O  + P 3 X 3 ,  + P@4, + U ,  

Omitted variable 
(omitted static effect) 
Incorrect functional fon.. 
(omitted multiplicative effect) 
Incorrect functional form 
(omitted dynamic effect) 

Gilbert (1972) and Thursby and Schmidt (1977),* and sample sizes of T = 20 and 
T = 50 have been considered. 

Various values of y were considered in the range [-8.0, +8.0] in models 1 
and 2, though in the latter the graphs and tables reported relate to a “narrower” 
range as the results “stabilize” quite quickly. Values of y in the (stationary) range 
[ -0.9, +0.9] were considered in model 3. If y = 0 the fitted (null) model is correctly 
specified. Other values of y generate varying degrees of model misspecification, and 
we are interested in the probability that each test rejects the null model (by rejecting 
the null hypothesis that 8 = 0 in (14)) when y # 0. For convenience, we will term 
these rejection rates “powers” in the ensuing discussion. However, care should be 

*Ramsey and Gilhert (1972, p. 185) provide data for two series, xi and xg, for a sample size of T = 10. 
(We follow them in “repeating” these values to generate regressors which are “fixed in repeated samples” 
when considering samples of size T = 20, SO.) As in Thurshy and Schmidt (1977), xg = xi + x 2 ;  and 
x4 = x;/10. 
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Figure 1 Model 1, p = 3, p' = 3, T = 20, 10% significance level. 
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Figure 2 Model 1, p = 3, p' = 3, T = 50, 10% significance level. 
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Figure 3 Model 2, p = 3 ,  p' = 3 ,  T = 20, 10% significance level. 
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Figure 4 Model 2, p = 3, p' = 3, T = SO, 10% significance level. 
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Figure 5 Model 3, p = 3, p' = 3, T = 20, 10% significance level. 
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Figure 6 Model 3, p = 3, p' = 3, T = 50, 10% significance level. 
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taken over their interpretation in the present context. Strictly, of course, the power 
of the RESET or FRESET test is the rejection probability when 0 # 0, As noted 
in Section 11, this power can be determined (in principle), as the test statistics are 
typically doubly noncentral F when 8 # 0. Only in the very special case where 28  
in (14) exactly coincides with the specification error, t ,  would “powers” of the sort 
that we are computing and reporting actually correspond to theformal powers of the 
tests. (In model 1, for example, this would require that the RESET test be applied by 
using just xp, fortuitously, as the only “augmenting” variable rather than augmenting 
the model with powers of the prediction vector.) Accordingly, it is not surprising that, 
in general, the shapes of the various graphs reported in the next section do not accord 
with that for the true power curve for an F-test. 

The error term, u, was generated to be standard normal, though of course the 
tests are scale invariant and so the results are invariant to the value of the true error 
variance. The tests were conducted at the 5% and 10% significance levels. As the 
RESET and FRESET test statistics are exactly F-distributed if y = 0, there is no 
“size distortion” if the appropriate F critical values are used-the nominal and true 
significance levels coincide. Precise critical values were generated using the Davies 
(1980) algorithm as coded in the DISTRIB command in the SHAZAM (1993) pack- 
age. Each component of the experiment is based on 5000 replications. Accordingly, 
from the properties of a binomial proportion, the standard error associated with a 
rejection probability, ~t ( in Tables 3 4 ,  takes the value [n( 1 - ~t)/5000]’/~, which 
takes its maximum value of 0.0071 when y = 0.5. The simulations were undertaken 
using SHAZAM code on both a PC and a DEC Alpha 3000/400. 

VI. MONTE CARLO RESULTS 

In this section, we present the results of Monte Carlo experiments designed to gather 
evidence on the power of the various RESET and the above FRESET tests in Table 1 
for each model in Table 2. The experimental results and the graphs of the rejection 
rates are given below. For convenience we will refer to the graphs below as “power” 
curves. As discussed, it is important to note that these are not conventional power 
curves. Only results for case 3 for the RESET and case 2 for the FRESET tests in 
Table 1 are presented in detail, for reasons which will become evident. The entries 
in Tables 3-5 are the proportions of rejections of the null hypothesis. Not surpris- 
ingly, for all models considered, the RESET, FRESETL, and FRESETS tests exhibit 
higher rejection rates at the 10% significance level than at the 5% level. However, 
the “pattern” of the power curves is insensitive to the choice of significance level, 
hence we will focus on the 10% significance level in the remainder of the discussion. 

Generally, the patterns of the power curves differ only marginally when the 
sample size is increased from 20 to 50. The results for a sample size of 50 display 
higher power than the comparable sample-size-20 results, reflecting the consistency 



Table 3 Model 1, p = 3, p’ = 3 

T = 20 T = 50 

5% 10% 5% 10% 

y RESET FRESETS FRESETL RESET FRESETS FRESETL RESET FRESETS FRESETL RESET FRESETS FRESETL 

-8.0 
-7.5 
-7.0 
-6.5 
-6.0 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 

0.188 
0.209 
0.233 
0.258 
0.284 
0.309 
0.33 1 
0.350 
0.366 
0.378 
0.384 
0.369 
0.337 
0.266 

0.893 
0.909 
0.913 
0.8 74 
0.868 
0.870 
0.879 
0.801 
0.8% 
0.872 
0.795 
0.767 
0.646 
0.414 

I .WO 
1 .ooo 
1.000 
1 .000 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .000 
1 .ooo 
0.997 
0.965 
0.850 
0.580 

0.710 
0.709 
0.708 
0.705 
0.700 
0.695 
0.687 
0.674 
0.658 
0.639 
0.609 
0.576 
0.516 
0.419 

1 .000 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 .000 
1 .ooo 
0.992 
0.930 
0.738 

0.942 
0.946 
0.944 
0.918 
0.915 
0.911 
0.925 
0.869 
0.937 
0.918 
0.870 
0.854 
0.766 
0.565 

1 .ooo 
1 .ooo 
1 .ooo 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .ooo 
0.999 
0.996 
0.975 
0.866 

0.998 
0.999 
0.999 
0.998 
0.996 
0.995 
0.998 
0.992 
0.998 
0.994 
0.998 
0.995 
0.991 
0.941 

1 .000 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .ooo 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1 .000 
0.997 

1 .Ooo 
1 .000 
1 .ooo 
1 .000 
1 .ooo 
1.000 
1 .000 
1.000 
1 .000 
1.000 
1.000 
0.999 
0.992 
0.941 

1.OOO 
1 .Ooo 
1.OOO 
1 .OOO 
1 .Ooo 
1.oOO 
1 .000 
1.Ooo 
1 .OOO 
1.000 
LOO0 
1.OOO 
1.000 
0.998 

0.998 
0.999 
1 .WO 
0.999 
0.999 
0.998 
0.999 
0.996 
0.998 
0.996 
0.998 
0.998 
0.995 
0.%5 



-1.0 
-0.5 

0.0 
0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7 .O 
7.5 
8.0 

0.137 
0.064 
0.046 
0.141 
0.117 
0.061 
0.037 
0.027 
0.02 1 
0.019 
0.017 
0.014 
0.01 1' 
0.009 
0.007 
0.005 
0.005 
0.003 
0.002 

0.216 
0.092 
0.050 
0.095 
0.204 
0.381 
0.617 
0.720 
0.778 
0.960 
0.829 
0.853 
0.857 
0.879 
0.915 
0.920 
0.846 
0.81 1 
0.913 

0.254 
0.091 
0.054 
0.096 
0.176 
0.267 
0.608 
0.679 
0.983 
0.992 
0.999 
1.000 
1 .000 
1.000 
1.000 
1.000 
1 .000 
1 .000 
1 .ooo 

0.235 
0.133 
0.101 
0.233 
0.206 
0.126 
0.091 
0.083 
0.085 
0.087 
0.089 
0.091 
0.093 
0.094 
0.095 
0.096 
0.097 
0.098 
0.096 

0.392 
0.168 
0.106 
0.173 
0.289 
0.413 
0.745 
0.771 
0.994 
0.999 
1 .ooo 
1 .ooo 
1 .000 
1 .000 
1 .ooo 
1 .ooo 
1 .000 
1 .ooo 
1 .ooo 

0.334 
0.161 
0.105 
0.173 
0.332 
0.528 
0.749 
0.807 
0.866 
0.979 
0.887 
0.910 
0.908 
0.929 
0.956 
0.949 
0.907 
0.903 
0.946 

0.479 
0.152 
0.052 
0.339 
0.409 
0.365 
0.406 
0.559 
0.727 
0.854 
0.935 
0.976 
0.993 
0.998 
0.999 
1 .000 
1 .ooo 
1 .ooo 
1 .000 

0.706 
0.207 
0.054 
0.237 
0.713 
0.916 
0.987 
0.980 
0.998 
1.000 
0.995 
0.998 
0.995 
0.996 
1.000 
0.999 
0.999 
0.994 
0.999 

0.791 
0.233 
0.053 
0.249 
0.643 
0.907 
0.9% 
0.997 
1 .000 
1 .000 
1.000 
1 .000 
1 .000 
1 . O N  
1 .000 
1 .000 
1 .000 
1 .000 
1 .000 

0.617 
0.247 
0.104 
0.471 
0.556 
0.524 
0.593 
0.748 
0.881 
0.956 
0.987 
0.998 
0.999 
1 .000 
1.000 
1 .000 
1 .000 
1 .000 
1.000 

0.882 
0.352 
0.102 
0.366 
0.766 
0.954 
0.999 
1.000 
1 .Ooo 
1.000 
1.000 
1.OOO 
1 .OOO 
1.OOO 
1.000 
1 .000 
LOO0 
1 .Ooo 
1.OOO 

0.806 
0.315 
0.101 
0.355 
0.817 
0.953 
0.992 
0.989 
0.999 
1.000 
0.997 
0.999 
0.996 
0.997 
1.000 
0.999 
1.000 
0.997 
0.999 
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of the tests. This is also in accord with the fact that the larger sample size yields 
“smoother” power curves in the FRESETL and FRESETS cases for models 1 and 2, 
as in Figs. 1 to 4. 

The probability of rejecting a true null hypothesis when specification error is 
present depends, in part, on the number of variables included in Z t .  In general, our 
results indicate, regardless of the type of misspecification, that the use of p = 3 in 
the construction of Z ,  as in (15) yields the most powerful RESET test. However, this 
does not always hold, such as in model 3 where the RESET test with only the term jf 
included in the auxiliary regression yields higher power for relatively large positive 
misspecification ( y  > 0.3) and large negative misspecification ( y  < -0.7). 

The FRESETL and FRESETS tests with p’ = 3 terms are generally the most 
powerful of these tests. The pattern of the power curves tends to fluctuate less and 
the results indicate higher rejection rates than in the comparable p’ = 2 case. This 
is not surprising, as we would expect a better degree of approximation to the omitted 
effect as more terms are included. However, the ability to increase the number of 
test variables included in the auxiliary regression is constrained by the degrees of 
freedom. We focus primarily on the RESET test with p = 3 and the FRESET tests 
with p f  = 3. 

In all cases, the FRESET tests perform equally as well as, and in many cases 
yield higher powers than, the comparable RESET tests. A comparison of the rejec- 
tion rates of the various tests for the three models considered indicates FRESETL is 
the most powerful test for models 1 and 2. The FRESETS test yields higher power 
for model 3 than the FRESETL and RESET tests, with the exception of high levels 
of misspecification, where FRESETL exhibits higher rejection rates. The FRESETS 
test yields higher rejection rates than the comparable RESET test for models 1 and 2, 
with two exceptions. First, model 1 in the presence of a high degree of misspecifica- 
tion; second, model 2 in the presence of positive levels of misspecification ( y  > 0). 
However, FRESETL yields higher rejection rates than the RESET test for the two 
exceptions. The FRESETL test dominates the RESET test for model 3,  as in Figs. 5 
and 6. 

The power of the RESET test is excellent for models 1 and 2, and p = 3, with 
sample size 50. Then for larger coefficients of the omitted variable, the proportion of 
rejections increases to 100%. For model 1, the use of the squares, cubes, and fourth 
powers of the predicted values as the test variables for the RESET test results in 
power which generally increases as the coefficient of the omitted variable becomes 
increasingly negative. In the presence of positive coefficients of the omitted vari- 
able, the rejection rate generally increases initially as the level of misspecification 
increases but decreases as the coefficient of the omitted variable continues to in- 
crease. However, power begins to marginally increase again at moderate levels of 
misspecification ( y  = 3) .  

Our results for model 2 indicate the power of the RESET test increases as the 
coefficient of the omitted variable increases for lower and higher levels of misspec- 



Table 4 Model 2, p = 3, p’ = 3 

T = 20 T = 50 

5% 10% 5% 10% 

y RESET FRESETS FRESETL RESET FRESETS FRESETL RESET FRESETS FRESETL RESET FRESETS FRESETL 

-1.0 
-0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

1.0oO 
1.Ooo 
1 .Ooo 
0.996 
0.883 
0.339 
0.013 
0.243 
0.880 
0.404 
0.046 
0.387 
0.014 
0.022 
0.015 
0.005 
0.001 
0.001 
0.Ooo 
0.001 
0.001 

0.891 
0.865 
0.924 
0.910 
0.938 
0.931 
0.926 
0.866 
0.735 
0.221 
0.050 
0.216 
0.647 
0.851 
0.892 
0.825 
0.912 
0.831 
0.840 
0.910 
0.936 

1 .Ooo 
1.Ooo 
0.994 
0.832 
0.843 
0.996 
1.o00 
0.999 
0.874 
0.23 1 
0.054 
0.290 
0.809 
0.980 
0.945 
0.940 
1 .Ooo 
1.Ooo 
1 .Ooo 
1.Ooo 
1.000 

1 .Ooo 
1.Ooo 
1.0oO 
1.Ooo 
0.980 
0.604 
0.037 
0.391 
0.945 
0.552 
0.101 
0.539 
0.032 
0.076 
0.090 
0.047 
0.021 
0.014 
0.020 
0.041 
0.099 

1 .Ooo 
1 .Ooo 
0.999 
0.954 
0.942 
0.999 
1 .Ooo 
1 .Ooo 
0.947 
0.363 
0.105 
0.428 
0.902 
0.995 
0.973 
0.969 
1 .000 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .000 

0.922 
0.902 
0.950 
0.937 
0.958 
0.953 
0.950 
0.909 
0.847 
0.340 
0.106 
0.339 
0.766 
0.899 
0.930 
0.873 
0.938 
0.873 
0.882 
0.939 
0.960 

1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.309 
0.870 
1 .Ooo 
0.899 
0.043 
0.898 
0.148 
0.729 
0.955 
0.984 
0.994 
0.999 
1 .000 
1 .Ooo 
1 .Ooo 

0.995 
0.989 
0.998 
0.994 
0.998 
0.996 
0.998 
0.989 
0.994 
0.697 
0.M9 
0.694 
0.975 
0.991 
0.993 
0.98 1 
0.993 
0.988 
0.991 
0.998 
0.997 

1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .m 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.776 
0.048 
0.847 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 

1 .Ooo 
1.Ooo 
1.Ooo 
1 .Ooo 
1.Ooo 
1 .Ooo 
0.481 
0.926 
1.Ooo 
0.952 
0.094 
0.947 
0.290 
0.888 
0.994 
0.998 
1.Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1.Ooo 

1 .Ooo 
1 .Ooo 
1 .Ooo 
LOO0 
1 .Ooo 
1 .Ooo 
1.Ooo 
1 .Ooo 
1 .Ooo 
0.862 
0.101 
0.917 
1.0oO 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
1.Ooo 
1 .Ooo 

0.998 
0.992 
0.999 
0.996 
0.998 
0.997 
0.999 
0.994 
0.997 
0.792 
0.105 
0.785 
0.985 
0.9% 
0.995 
0.988 
0.995 
0.992 
0.994 
0.999 
0.999 



Table 5 Model 3, p = 3, p’ = 3 

T = 20 T = 50 

5% lW0 5% 1WO 

y RESET FRESETS FRESETL RESET FRESETS FRESETL RESET FRESETS FRESETL RESET FRESETS FRESETL 

-0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

~ 

O.OO0 
0.001 
0.020 
0.055 
0.073 
0.068 
0.060 
0.052 
0.046 
0.045 
0.042 
0.031 
0.020 
0.014 
0.01 1 
0.01 1 
0.007 
0.003 
O.OO0 

0.858 
0.849 
0.851 
0.709 
0.573 
0.482 
0.337 
0.174 
0.077 
0.053 
0.074 
0.156 
0.255 
0.327 
0.360 
0.357 
0.285 
0.162 
0.037 

0.989 
0.987 
0.913 
0.672 
0.402 
0.252 
0.159 
0.094 
0.064 
0.052 
0.057 
0.085 
0.132 
0.181 
0.197 
0.172 
0.122 
0.076 
0.019 

0.Ooo 
0.009 
0.069 
0.147 
0.173 
0.160 
0.129 
0.104 
0.095 
0.096 
0.094 
0.069 
0.047 
0.037 
0.039 
0.037 
0.029 
0.013 
0.002 

0.995 
0.998 
0.970 
0.825 
0.572 
0.376 
0.254 
0.167 
0.120 
0.102 
0.110 
0.150 
0.21 1 
0.272 
0.287 
0.251 
0.184 
0.115 
0.037 

0.899 
0.891 
0.909 
0.819 
0.708 
0.609 
0.474 
0.286 
0.150 
0.101 
0.136 
0.249 
0.373 
0.462 
0.478 
0.469 
0.388 
0.242 
0.059 

0.Ooo 
0.065 
0.586 
0.816 
0.801 
0.674 
0.449 
0.222 
0.090 
0.059 
0.069 
0.099 
0.142 
0.233 
0.382 
0.524 
0.550 
0.371 
0.034 

0.997 
0.990 
0.995 
0.994 
0.986 
0.964 
0.896 
0.617 
0.200 
0.055 
0.179 
0.591 
0.840 
0.836 
0.839 
0.909 
0.883 
0.786 
0.277 

1 .Ooo 
1 .Ooo 
1 .Ooo 
1 .Ooo 
0.998 
0.934 
0.631 
0.293 
0.108 
0.051 
0.110 
0.329 
0.4% 
0.527 
0.518 
0.588 
0.722 
0.659 
0.157 

0.099 
0.278 
0.815 
0.924 
0.908 
0.805 
0.603 
0.338 
0.160 
0.101 
0.130 
0.172 
0.241 
0.372 
0.555 
0.695 
0.74 1 
0.593 
0.100 

1 .Ooo 
1 .Ooo 
1.0oO 
1 .Ooo 
1 .OO0 
0.967 
0.734 
0.410 
0.191 
0.103 
0.192 
0.427 
0.575 
0.m 
0.618 
0.700 
0.820 
0.78 1 
0.250 

0.998 
0.993 
0.998 
0.996 
0.993 
0.982 
0.936 
0.740 
0.309 
0.109 
0.285 
0.712 
0.900 
0.882 
0.883 
0.941 
0.928 
0.861 
0.38 1 
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Figure 7 Model 2, RESET test ( p  = l),  10% significance level. 
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ification. This result generally holds, but as can be seen by Figure 7, it is possible 
for power to decrease as the level of misspecification increases. The test yields low 
power at positive levels of misspecification for a sample size of 20 when there is an 
omitted multiplicative variable. For model 3 and both sample sizes, the rejection 
rate initially increases as the coefficient of the omitted variable increases and then 
falls as the degree of misspecification continues to increase. 

The powers of the FRESETL and FRESETS tests are excellent for models 1 
and 2, when p’ = 3. The proportion of rejections increases to 100% as the coeffi- 
cient of the omitted variable increases, with the exception of the FRESETS test* for 
model 1. The inclusion of three sine and three cosine terms of the predicted values 
as the test variables for the FRESETL and FRESETS tests results in power gener- 
ally increasing as the coefficient of the omitted variable increases for models 1 and 
2 with both sample sizes. However, as can be seen by Figure 8, it is possible for the 
rejection rate to decrease as the coefficient of the omitted variable increases in the 
p‘ = 2 case. For models 1 and 2 the “power” curve increases at a faster rate and is 
“smoother” for sample size 50. 

*For FRESETS, the number of rejections is greater than 90% for higher levels of misspecification. 
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Figure 8 Model 1, FRESETL test (p'  = Z) ,  10% significance level. 

For model 3, our results indicate that the rejection rate increases initially as 
the coefficient of the omitted variable increases and then decreases as the level of 
misspecification continues to increase for positive omitted coefficients of the lagged 
variable. However, the rejection rate increases as misspecification increases for neg- 
ative coefficients of the omitted lagged variable. 

Finally, we have also considered the inclusion of an irrelevant explanatory 
variable in order to examine the robustness of the RESET and FRESET tests to an 
overspecification of the model. We consider model 1 where the DGP now becomes 

yt = Bo + B3x3t + B4x4t + vt 
and the "null" becomes 

yt 1.0 - 0.4~3, + ~ 4 t  + yxzt + (25) 
In this case, the coefficient ( y )  of the redundant regressor is freely estimated and 
therefore we cannot consider a range of preassigned y values. Our results indicate 
that the power results differ negligibly from the true significance levels, as the re- 
jection rates fall within two maximum standard deviations of the size.* That is, the 
tests appear to be quite robust to a simple overspecification of the model. 

*As calculated by binomial proportions. 
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VII. CONCLUSIONS 

We have considered the problem of testing a regression relationship for possible 
misspecification in terms of its functional form and/or selection of regressors, in the 
spirit of the family of variable-addition tests. We have proposed a new variant of 
Ramsey’s (1969) RESET test, which uses a global (rather than local) approximation 
to the misspecified part of the conditional mean of the model. Rather than basing 
the variable-addition procedure on polynomial terms of a prediction vector from the 
basic model, we suggest the use of a Fourier series approximation. Two ways of trans- 
forming the predicted values are considered so that they lie in an admissible range 
for such an approximation-a linear transformation gives rise to what we have termed 
the FRESETL test, while a sinusoidal transformation results in what we have called 
the FRESETS test. 

These two new test statistics share the property of the usual RESET statistic of 
being exactly F-distributed under the null hypothesis of no conditional mean mis- 
specification, at least in the context of a model with nonstochastic regressors and 
spherical disturbances. We have undertaken a Monte Carlo experiment to determine 
the power properties of the two variants of the FRESET test, and to compare these 
with the power of the RESET test for different forms of model misspecification, and 
under varying choices of the number of “augmentation” terms in all cases. Our sim- 
ulation results suggest that using the global Fourier approximation may have advan- 
tages over using the more traditional (local) Taylor’s series approximation in terms 
of the tests’ abilities to detect misspecification of the model’s conditional mean. 

Our results also suggest that using a Fourier approximation with three sine and 
cosine terms results in a test which performs well in terms of “power.” The empirical 
rates of rejection for false model specifications exhibited by the FRESET tests are 
at least as great as (and generally greater than) those shown by the RESET test. The 
FRESETL test is generally the best overall when the misspecified model is static, 
while the FRESETS test is best overall when the model is misspecified through the 
omission of a dynamic effect. In practical terms, this favors a recommendation for 
using the latter variant of the test. 

Although the proposals and results in this chapter seem to offer some improve- 
ments on what is, arguably, the most commonly applied variable-addition test in em- 
pirical econometric analysis, there is still a good deal of research to be undertaken 
in order to explore the features of both the RESET and the FRESET tests in more 
general situations. Contrary to earlier apparent “evidence,” such as that of Thursby 
(1979, 1982), it is now well recognized (e.g., Pagan 1984, p. 127; Godfrey 1988, p. 
107; Porter and Kashyap 1984) that the RESET test is not robust to the presence of 
autocorrelation and/or heteroskedasticity in the model’s errors. The same is clearly 
true of the FRESET tests. Work in progress by the authors investigates the degree 
of size distortion of these tests and their ability to reject falsely specified models in 
these more general situations. As well as considering the same forms of the RESET 
and FRESET tests that are investigated here, we are also exploring the properties of 
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the corresponding tests when the robust error covariance matrix estimators of White 
(1980) and Newey and West (1987) are used in their construction. In these cases, 
as well as in the case of models in which the null specification is dynamic and/or 
nonlinear in the parameters, asymptotically valid (chi-square) counterparts to the 
RESET and FRESET tests are readily constructed, as in Section 1I.D. The finite- 
sample qualities of these variants of the tests are also under investigation by the 
authors. 
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Econometrics and Economic Statistics 
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1. INTRODUCTION 

Empirical economists and econometricians have long looked to simulation studies 
for guidance concerning the choice and performance of estimators whose theoret- 
ical justification is often only asymptotic. For example, in any econometrics class 
that describes a method based on an asymptotic distribution, an instructor will al- 
most always encounter the question, “How large a sample is large enough?” It is a 
good question, particularly when in most applications the character of the data (e.g., 
trending vs. nontrending) matters as much as the actual number of observations. 
Most instructors will give an answer based on simulation studies, but in an applica- 
tion there is often a considerable gap between cases that have been studied by Monte 
Carlo methods and the case at hand. The bootstrap method may be regarded as a sim- 
ulation study that is tailored to the actual data being studied, with the results used 
either to fill in statistical gaps that do not yield easily to analytic methods (such as 
providing standard errors or confidence intervals when they are otherwise unavail- 
able) or to adjust the original statistical estimates in an attempt to improve finite- 
sample accuracy. It is therefore not surprising that the bootstrap has proven useful 
to many empirical researchers in economics, especially as the approach replaces 
difficult or intractable theoretical calculations with computer calculations that are 
becoming cheaper and cheaper over time. While bootstrap-like notions had existed 
previously, even within econometrics, the seminal work for these developments is 
Efron (1979), the classic paper in statistics that named the bootstrap, developed it 
as a unified technique, and demonstrated how computer power could widen the scope 
of its implement at i on. 

419 
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We shall suggest that there are two principal stages in the development of the 
bootstrap. In the first stage, the bootstrap was used as a replacement for analytic 
methods of calculating standard errors, confidence intervals, etc. This makes obvi- 
ous sense when there are no available analytic methods (the “better than nothing” 
case). This first-stage bootstrap has also sometimes been used by researchers under 
the impression that its finite-sample properties would prove superior to the analytic 
alternatives. While this is sometimes true, there is little general theoretical support 
for this position. Section I1 focuses on this first stage of development. In Section 
111 a number of applications are described, emphasizing cases such as confidence 
intervals for forecasts and inference after specification search, where the bootstrap 
may be used because there is no good alternative. Section IV emphasizes the second 
stage of the bootstrap literature concerning cases where asymptotic, analytic tools 
are available but in which bootstrap refinements are used to improve finite-sample 
performance. These are most valuable when the original estimation is plagued by 
substantial bias. Section V considers more applications, sometimes comparing the 
results of different approaches. The cases of system estimation and nonlinearities are 
emphasized. Section VI summarizes briefly and concludes, A principal conclusion 
is that the bootstrap, while no panacea, may be an important step toward a style of 
econometric practice that routinely checks the applicability of inferential tools that 
are not exact in the statistical sense and hence depend on some form of potentially 
unreliable asymptotic approximation. This argument for simulation is in addition to 
that of McCloskey and Ziliak (1996), who suggest simulation as a tool for elucidating 
the economic meaning of econometric results. 

Finally a caveat: no paper could now cover all the published applications of 
the bootstrap in empirical economics, let alone the theoretical developments which 
may prove relevant to future practice. This chapter instead tries to describe the 
development of the bootstrap along the lines indicated, using the vocabulary most 
economists will know from their experience with regression methods, with emphasis 
on the standard techniques involving confidence intervals or hypothesis tests. The 
focus is on what an economic statistician or econometrician can reasonably expect 
from the bootstrap at its current stage of development. Hence, only a few areas of 
bootstrap application are considered, including inference problems when a system of 
equations has been estimated or when the estimate of interest is a nonlinear function 
of the parameter estimates. These are chosen to illustrate the strengths and weak- 
nesses of the bootstrap approach. There are a number of surveys that cover many 
applications, including Veal1 (1989), Jeong and Maddala (1993), Vinod (1993), and 
Li and Maddala (1996). The last survey is particularly recommended for researchers 
interested in bootstrapping in time-series contexts, with potential problems due to 
unit roots, lagged dependent variables, and serial correlation. There are also books 
that treat the statistical background of the bootstrap in more detail, with Efron’s early 
monograph (1982) still a useful reference. Efron and Tibshirani (1993) is probably 
the most straightforward reference for econometric practitioners, while some of the 
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discussion in Hall (1992) is at a more difficult theoretical level and includes more 
emphasis on the nature of bootstrap approximation. (LePage and Billard 1992 also 
include theoretical papers on the limits of the bootstrap: See, for example, Arcones 
and Gin6 1992, who prove that the bootstrap distribution of any M-estimator con- 
verges weakly to the true limiting distribution in probability. This provides the basis 
for a similar result in Hahn 1996 for generalized method of moments estimators.) 
It should be noted that the Hall and Efronmibshirani books represent different ap- 
proaches on a key aspect of bootstrap practice, as will be discussed further in Sec- 
tions IV, V, and VI. 

I I .  THE SIMPLE BOOTSTRAP 

A. The Basic Method 

Because it is so familiar to economists, we use the linear regression model as our 
example, and, where possible, we describe the bootstrap using the language of a 
Monte Carlo experiment. The linear regression model is 

= X ; S + e ; ,  i = l ,  . . . ,  n 

and the row k-vector X ;  are observations on the dependent and independent vari- 
ables respectively with the first element of Xi  a 1, ,6 and B are column vectors of 
parameters and their estimates respectively, U; are random errors which will be as- 
sumed to be independently and identically distributed (i. i. d) with mean zero and 
variance 02, and e; are regression residuals. The bootstrap estimate of the variance 
matrix in this case is calculated by the following simulation experiment. 

Step 1:  Create an artificial sample: 

(2) 

The elements er' are created by resampling from e;,  that is drawing from e; randomly 
but with replacement. (We have assumed there is an intercept so that the e;  have 
mean zero; otherwise we would have to work with deviations in e;  by subtracting off 
the mean.) The artificial sample can be thought of as the result of one trial of a Monte 
Carlo experiment where the independent variables are set as the actual values of X;, 
the parameters are set as the actual data estimates f i  and its disturbances are the 
draws from the empirical distribution function of the residuals e ; ,  that is the discrete 
probability distribution function that attaches probability l/n to each value e;. 

Step 2: 
Step 3: 
Step 4: 

Estimate B*' on artificial sample 1. 
Repeat steps 1 and 2 B times. 
The sampling distribution of the B*J - a over the B Monte Carlo 

bootstrap trials is an estimate of the sampling distribution of f i  - @. In particular, 
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the variance of B is estimated by fi*(B*J), the sample variance matrix of the B*J over 
the B bootstrap samples. 

An alternative, known as the parametric bootstrap, is identical to the above 
except the disturbances are drawn from a particular distribution with its parame- 
ters set as estimates from the residuals, most commonly a normal random number 
generator with mean zero and variance equal to the residual variance. It is also pos- 
sible to generate the disturbances as weighted averages of draws from the empirical 
distribution function of the residuals and the parametric distribution; this method 
may be called the smoothed bootstrap with the weights determining the degree of 
smoothing. Other techniques in Monte Carlo analysis, such as importance sampling 
and antithetic variates, can also be applied to the bootstrap. (See Efron and Tib- 
shirani 1993  for some discussion and references.) These alternatives have the same 
essential properties as the ordinary bootstrap, which will remain our focus as it is 
the method of resampling that has almost exclusively been employed in econometric 
applications. 

B. Why the Bootstrap Works 

To consider why this approach may work, consider the sampling distribution of a B * j ,  

where j denotes the j th bootstrap sample drawn from a population based on the real 
sample in the manner described in the previous section. Call v (B* j )  the variance ma- 
trix of ) * j  based on this distribution function. Just as in any simulation experiment, 
as B grows large a*@*’) approaches v(B*j) .  Note that B * j  = ( X T X ) - ’ X T Y * J  = 
B + ( X T X ) - ’ X T e * J ,  where X is the n x k matrix of the row vectors X i ,  and Y*J 
and e*i are the N-vectors corresponding to the jth artificial sample. Treating e*J as 
a random variable drawn from the empirical distribution function, it is straightfor- 
ward to show that, because the e;’s sum to zero and have equal probability weights 
l / n ,  E ( e * j )  = 0 and v(e*J) = ( e re /n )Zn ,  where e is the vector of ei’s and In is the 
n x n identity matrix. Therefore, E ( B * j )  = and v(B*J)  = v ( ( X T X ) - ’ X T e * j )  = 
( X T ~ ) - ’ X T v ( e ; j ) X ( X T X ) - ’  = ( e T e / n ) ( X T X ) - ’ .  But note this last expression is 
just the usual estimate of v(B)  as calculated by a regression package without boot- 
strapping, with the exception that the division is by n rather than n - k .  (This is 
sometimes corrected in practice by scaling the original residuals by ( n / ( n  - k))1’2.)  
We have therefore shown that we can compute the ordinary least-squares (OLS) esti- 
mate of the covariance matrix of the coefficients if we use as our population a proba- 
bility model based on the sample. As it is sometimes put for bootstrapping statistics 
more generally, as the sample is drawn from an underlying population, a resample 
from that sample can be thought of as being drawn from something similar to the 
underlying population. Hence we may infer the population variance of a statistic by 
observing its behavior in resampling. A similar approach can be used to calculate 
other statistics such as the limit points of confidence intervals. 
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Why have we bothered to show this simple result, particularly as it seems the 
bootstrap is redundant in this case, in that it is not essentially different from the 
analytic estimate? First, the fact that the bootstrap is so close to the right answer 
in a case where we know the right answer is reassuring given that the bootstrap is 
also proposed in other contexts in which analytic formulas are not known. Second, 
that the bootstrap estimate has divisor n when we know that the exact test requires 
(among other things) that the divisor be n - k emphasizes that the justification for 
the use of the simple bootstrap is typically only asymptotic, although in this case 
a simple rescaling eliminates the discrepancy. (We shall refer to this issue later.) 
Third, it shows that the bootstrap estimate of the variance, just like the standard an- 
alytic variance estimate, will only be “correct” for inference if the initial model is 
correctly specified. For example, the disturbances must be identically and indepen- 
dently distributed; hence practitioners should check these assumptions by suitable 
diagnostics before bootstrapping. Finally, the exercise emphasizes that the bootstrap 
does not create any additional information. It is simply a computational device to uti- 
lize information already in the original sample. 

The type of bootstrap just described in the regression context was called “resid- 
ual resampling” by Kiviet (1984), because it kept the fixed structure of the indepen- 
dent variables and only resampled on the residuals. Alternatively we could use what 
Kiviet called “complete resampling,” where resampling is from the row (k + 1)- 
vectors (x, X i )  and then the bootstrap algorithm proceeds as usual. As discussed 
in Jeong and Maddala (1993, pp. 577-578), this method should give a consistent 
estimate of the variance-covariance matrix of the estimated coefficients even in the 
presence of random X’s and/or heteroskedasticity. The discussion in Efron and Tib- 
shirani (1993, Chap. 9) goes in a different direction, pointing out that the bootstrap 
will yield an estimate of the sampling distribution of b provided only that the origi- 
nal observation vectors were chosen from the underlying (k + 1)-variate probability 
distribution. This does not even depend on the existence of a “true” linear model 
as in the first line of (1). Naturally, however, if there is no true model, interpretation 
will be difficult: we shall have an estimate of the sampling distribution of with- 
out knowing its relationship, if any, to the parameter being estimated, if any. Even 
granting knowledge of the true model, the assumption of random draws in the com- 
plete resample precludes most time-series estimation; it, however, may be a natural 
approach to use in cross-sectional estimation. 

C. An Example 

As an example consider the Theil(l971) textile data where Yt,  the log of Netherlands 
annual textile consumption for 1923-1939, is regressed on X,1,  the log of real income 
per capita, and X,2, the log of the relative price of textiles: 

Pt = /I0 + B l X t i  + / I Z X t 2  = 1.37 + 1.14Xll - .83X,;! (3) 



Table I Various Standard Error Estimates for the Theil Data 

Analytic n.a. 
Bootstrap (unscaled) 50 

100 
1000 

100 
1000 

Bootstrap (parametric) 50 
100 

1000 
Bootstrap (complete resampling) 50 

100 
1000 

Bootstrap (scaled) SO 

.3061 

.2893 

.2616 

.2824 

.3188 

.2883 

.3120 

.32 72 
3029 
.3003 
.2926 
.2617 
.2613 

~~ 

.lS60 

.1460 

.1352 

.1449 

.1609 

.1489 

.1608 

.1627 

.1526 

.1S31 

.1641 

.1476 

.1375 

-- ~ 

.036 1 

.0321 

.0310 

.0332 

.0353 

.0342 

.0362 

.0348 

.0366 

.0347 

.0379 

.0430 

.0391 

=s.e.  = standard error, and R = number of bootstraps. 

Residual bootstrapping is based on the assumption that the underlying disturbance 
terms are independently and identically distributed, so these assumptions should be 
checked (as has been done for this example extensively in the numerous exercises 
in the manual for the computer package SHAZAM 1993). Table 1 reports a variety 
of standard error estimates, where the bootstrap standard errors are calculated in the 
usual manner as the square root of the diagonal elements of the bootstrap estimate 
of the variance matrix. 

The first thing to notice from the table is that all the residual bootstrap meth- 
ods yield answers close to the analytic case; the complete resampling bootstrap re- 
sults are not as close, nor should they be, for as described above they are more like 
estimates of the heteroskedasticity-consistent standard errors rather than the ordi- 
nary standard errors. It is also clear that the number of bootstraps is not that impor- 
tant, although more seems to be better. Scaling the residuals (by (n / (n  - IL))'/~ = 
(17/14)li2 in this case) increases the bootstrap standard errors somewhat as would 
be expected, from being a bit smaller than their analytic counterparts to being a bit 
larger. The parametric bootstrap, which uses the normal distribution with mean zero 
and variance e T e / ( n  - k) instead of the empirical distribution function of the residu- 
als in order to generate the artificial samples, yields very similar answers to the other 
residual bootstrap techniques. 

D. Bootstrapping Confidence Intervals 

The main reason to calculate standard errors is for inference, by means of hypothesis 
tests or confidence regions. Hypothesis tests involving the coefficients are execut- 



APPLICATIONS OF THE BOOTSTRAP 425 

able by determining whether corresponding confidence regions cover the null hy- 
pothesis parameter values. Noting this equivalence, we shall concentrate our dis- 
cussion on bootstrapping confidence regions. Moreover for simplicity and because 
the theory is better developed in this area, we focus on confidence regions involv- 
ing one parameter, which of course correspond to t-statistics in a hypothesis-testing 
framework. 

One way to use the bootstrap in inference would be to use the bootstrap stan- 
dard errors instead of analytic standard errors in the basic confidence interval for- 
mula. We call these bootstrap standard error confidence intervals, and they are of the 
form si f t:2k -s.e.*(bi). As the bootstrapped standard errors were similar to the an- 
alytic standard errors in the linear regression context, therefore bootstrap confidence 
intervals of this form will not be much different from their analytic counterparts. An- 
other more popular bootstrap confidence interval has been the percentile method. 
In this, the artificial sample values of the statistic of interest, such as a regression 
coefficient, are sorted and the 1 - 2a confidence intervals are set as the a th  and 
(1 - a)th percentiles. While some find it intuitively more pleasing, in terms of re- 
gression coefficient estimates these intervals tend to be similar to analytic or boot- 
strap standard error confidence intervals, even when the disturbances are nonnormal 
(although the combination of severe nonnormality, few degrees of freedom, and very 
small a can lead to substantial differences). Regression estimates are weighted av- 
erages, and very commonly this ensures (by way of a central limit theorem), that 
the distribution function of 6" is approximately normal, as it is for 6. Hence for 
constructing confidence intervals of linear regression coefficients, there is relatively 
little to be gained by bootstrap methods. 

More generally, Hall (1992) demonstrates that in most cases (essentially for 
any root-n-consistent statistic that may be expanded in Edgeworth form), the end- 
points of the bootstrap percentile confidence intervals and of the bootstrap standard 
error confidence intervals are accurate only to 0 ( n - ' j 2 ) ,  which in general is the 
accuracy that any analytic asymptotic method can be expected to achieve. Similar 
results hold for the accuracy of the tail coverage-that is, the degree of approxima- 
tion of the area in each tail outside the confidence interval to its putative value of 
a. Given this, the best case for using these types of bootstrap methods is when there 
is really no alternative. We shall discuss two cases: (1) forecasting from the linear 
regression model and (2) inference after a specification search. 

111. APPLICATIONS OF FIRSTSTAGE BOOTSTRAPPING 
METHODS 

A. Confidence Intervals for Forecasts 

One context where the bootstrap may be very useful is in the confidence intervals for 
forecasts. If we stay with the linear regression context, the forecast is xn+l 8, where 
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xn+l is the row vector of observations on the k right-hand-side variables for period 
n + 1. The forecast error e,+l is f 

While the variance of this expression can be estimated analytically, note that in con- 
structing confidence intervals, a central limit theorem does not ensure normality: 
the second term of (4) may tend to the normal distribution as n grows large, but the 
first will only be normal if the disturbances themselves are normal. To deal with this 
nonnormality is difficult analytically but is straightforward using the bootstrap. Fol- 
lowing Freedman and Peters (1984a, 1984b), we bootstrap just as above only we 
focus on the forecast x,+lD*’ as the statistic of interest. We then calculate a “sim- 
ulated actual” by adding an additional single bootstrapped residual to the actual 
forecast %,+lb. The difference between the forecast and the simulated actual is the 
simulated forecast error; we obtain an estimate of the probability distribution of the 
forecast error by repeating the process B times. 

Moreover, unlike the standard OLS case, in bootstrap simulation it is easy to 
incorporate uncertainty in the x,+1 in the forecast confidence intervals, the impor- 
tance of which is stressed by Feldstein (1971). Early contributions to this approach 
are the stochastic simulation methods of, for example, Brown and Mariano (1984) 
and especially Fair (1979, 19801, who, independently of the bootstrap literature, 
proposed the same bootstrap method of evaluating forecast uncertainty. In addition, 
Fair proposes a modification to the basic bootstrap uncertainty measures to make 
allowance for specification error and applies the method to macroeconomic forecast- 
ing in the United States. Freedman and Peters (1984a) use the bootstrap technique 
to develop forecast standard errors in a generalized least-squares application in- 
volving United States electricity consumption by region. Veall (1987a) applies the 
method, with emphasis on the percentile method and the uncertainty in the inde- 
pendent variable forecasts, to forecasting the demand for electricity in Ontario in a 
time-series context; Veall (1987b) is a Monte Carlo study that confirms the reliability 
of the approach for this problem. Bernard and Veall (1987) extend the same exercise 
for Quebec emphasizing the dynamics still more. Prescott and Stengos (1987) use 
the same approach for studying the United States supply of pork. 

B. 

Much of the focus in econometric theory is on sampling error, yet, in practice, speci- 
fication error is the more vexing question in many econometric applications. We typ- 
ically cannot create more data by laboratory-type experiments, and it is relatively 
rare to have such a large data set that we can select the specification on a training 
set and then estimate on different data. Hence, specification search and estimation 
are typically on the same data. While the process of changing a specification in re- 

The Bootstrap and Specification Search 



APPLICATIONS OF THE BOOTSTRAP 427 

sponse to initial results may be an important part of empirical modeling, the result- 
ing “pretesting” may lead to the coefficients and standard errors estimated from the 
eventual model being seriously biased. 

There have been a few attempts to use simulation methods as a way of treat- 
ing the specification error problem. The work of Fair (1979, 1980), which began to 
deal with specification uncertainty, has already been cited in the prediction con- 
text. Efron and Gong (1983) attempted to grapple with the problem of specification 
search by studying the sampling distribution for estimates from an entire data-mining 
procedure by bootstrap simulation and provide an example relating to hepatitis di- 
agnosis. The entire decision tree of the investigator is laid out (e.g., step 1: esti- 
mate whole model; step 2: drop all variables whose coefficients have t-statistics less 
than 1, etc.) and then applied on the data. Then the same entire decision tree is 
applied to each of the bootstrap samples, generated either by the complete resam- 
pling method or the residual resampling method using either the first-stage or the 
final model. 

Brownstone (1990) and Veal1 (1992) apply this technique to econometric ex- 
amples, the former also estimating the standard errors of Stein-James shrinkage 
estimators in this context. (See Vinod and Raj 1988 for an application involving 
ridge regression.) Freedman, Navidi, and Peters (1988) and Dijkstra and Veldkamp 
(1988) study this kind of method for stylized data-mining procedures and, in general, 
find that the simulation method does not yield accurate standard errors for the data- 
mining estimator. The results of Freedman, Navidi, and Peters are particularly dis- 
couraging, although it should be noted that their example is based on an initial stage 
of estimating 75 coefficients from 100 observations. It must also be remembered that 
the method is only valid if the estimation procedure can be modeled as if it were a 
prespecified decision tree: if new hypotheses and approaches were entertained only 
after seeing the first set of results, then, strictly speaking, even bootstrapping the 
entire procedure as run does not solve the fundamental problem. Nonetheless this 
method does seem to be the only feasible possibility at this time for dealing with the 
pretest issue in any real estimation context. It does seem a minimal requirement for 
any estimated econometric model that if Monte Carlo samples are generated from it 
and the entire data-mining procedure is applied to those samples, the results over the 
Monte Carlo samples should be consistent in all important respects with the results 
from the original data. 

Finally, in a Bayesian context, Geweke (1986) proposes a useful method of im- 
plementing strong priors on coefficient signs in regression methods, essentially by 
bootstrapping an unrestricted regression model but basing all estimates on the arti- 
ficial samples for which the estimates meet the sign restrictions. Hence, if the only 
prior is that the income coefficient is positive, the estimate of the income coefficient 
will be the average of all the positive estimates over the bootstrap samples and the 
standard error will be the standard deviation of these estimates. Some researchers 
may wonder why they should ignore the negative estimates in this context, but this is 



the consequence of the prior they purport to hold. Chalfant, Gray, and White (1991) 
is an application of the same technique. 

IV. BOOTSTRAP REFINEMENTS 

A. Simple Bias Correction 

As we have discussed, application of bootstrap confidence intervals or test proce- 
dures based upon bootstrap standard errors or on the percentile method does not 
lead to a more accurate (Edgeworth) approximation than asymptotic methods, and 
we know of no other theoretical method of comparison. Hence there seems to be little 
justification for using the bootstrap when asymptotic methods are available. There 
is, however, an informal argument that if one can regard the bootstrap as a Monte 
Carlo experiment, the bootstrap distribution of an estimator should in some sense 
agree with the analytic distribution. If, for example, the analytic standard errors are 
smaller than the bootstrap standard errors, it suggests that there is a downward bias 
in the analytic standard errors, and hence perhaps the “true” standard errors are 
bigger than both the analytic and the bootstrap standard errors, with the bootstrap 
standard errors therefore a better choice as they are closer to the truth. Such a view 
seems to be behind the early bootstrap application of Korajczyk (1985), for exam- 
ple, who found for a system of econometric equations modeling the foreign exchange 
market, that bootstrap standard errors exceeded analytic standard errors and that 
switching to bootstrap standard errors meant that a null hypothesis associated with 
rational behavior could no longer be rejected. Given a common tendency for boot- 
strap standard errors to be larger than their analytic counterparts, we hope it will not 
become the practice to invoke the bootstrap approach only when the economist in 
one thinks that the null hypothesis should be protected. 

We should differentiate at least two possible bias problems that come up in 
standard regression modeling and its extensions. There can be a bias in coefficient 
estimation, perhaps best captured by the well-known bias toward zero of estimated 
serial correlation coefficients. There can also be bias in standard error estimation. 
Both of these can affect inference. 

A simple method of calculating bias for coefficient estimates (Efron, 1982, p. 
33) is to subtract the actual value from the average of the bootstrap values over the B 
bootstrap samples. Hence, if the actual data coefficient estimate is .5 and the average 
of the bootstrap values is .7, the bias estimate is .2 and one could even propose a bias- 
adjusted estimate of .5 - .2 = .3. The bias-adjusted result, which is very much like 
a jackknife estimate, may, however, be subject to very high sampling variability. 

Freedman and Peters (1984a, 198413) follow an instructive approach along 
these same lines for the standard error, which is to calculate for each coefficient 
a bias factor as the ratio of the bootstrap standard error to some average of the an- 
alytic standard errors as calculated on each of the bootstrap samples. This gives a 
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better idea of how the analytic standard errors are biased, and it therefore seems 
natural to come up with a “bias-adjusted” standard error by multiplying the original 
analytic standard error estimate by the bias factor. We note that, in the linear regres- 
sion context, if standard errors have been based on a variance estimate in which n 
rather than n - k has been used as the divisor, the Freedman and Peters approach 
will “automatically” adjust the standard error for degrees of freedom. Marais (1986) 
refines this approach and finds the method can be quite accurate in the context of 
estimating systems of regression equation. However, because the purpose of stan- 
dard errors is for inference, the Freedman and Peters approach has been eclipsed 
by approaches that directly adjust the potential bias in the test procedures or in the 
confidence intervals. 

B. The Bias-Corrected Percentile Method 

Efron (1987) proposes one attempt to solve the problem of finite-sample bias. As- 
sume we have a scalar /?, which is not necessarily a single-equation regression model 
coefficient and is more likely a coefficient from a system of equations or perhaps a 
nonlinear function of coefficients that can be estimated by linear methods. Consider 
the interval 

where B*(a) is the l o a t h  percentile of the B*’s over the B bootstrap runs. If we set 
a1 = a and a2 = 1 -a ,  we have the ordinary bootstrap percentile confidence inter- 
vals with intended coverage 1 - 2a but with no adjustment for bias. Efron proposes 
the BCa confidence intervals where instead we implement (5) with 

where 

and 

where <p is the standard normal cumulative distribution function, P* is the empirical 
cumulative distribution function of the b*’s, WO( 1 - a )  is defined analogously to 
wo(a), and B is called the acceleration constant and will be discussed. 

Consider first the case where a = 0, which yields what have been called 
the bias-corrected (BC) percentile confidence intervals. This method primarily deals 
with bias in the coefficient estimates. If there were no tendency toward bias in the 
coefficient estimate of the b, we should expect that in the empirical distribution 
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function of the B*'s, half should be above B and half below; i.e., that P*(B)  = .5 and 
hence that 20 = 0-'(.5) = 0. This in turn implies that a1 = a and a2 = 1 - a. 
Hence, with no coefficient bias, the BC percentile confidence intervals are just the 
ordinary bootstrap percentile confidence intervals. Now suppose P* (b)  exceeded .5, 
suggesting a negative bias in the coefficient estimates. Therefore 20 will be positive 
and a1 = a(2.20 + z(OL)) and a2 = 0(220 + z('-OL)) will exceed a and 1 - a re- 
spectively. Hence, the BC method adjusts to the downward bias in the coefficient 
estimate by shifting the entire confidence interval up. (One option to adjust the co- 
efficient estimate itself is to use a = .5 in the above formula.) 

The role of the acceleration constant 6 is less obvious, but it is partially related 
to bias in the estimation of the standard error. For example, if 20 = 0 and given that 
z(OL) is negative and z ~ - ~  is positive, it can be shown that changing 6 from zero to 
a small positive value will widen the BCa bootstrap percentile confidence intervals. 
More generally, we could argue that the usual normal approximation 

(where se(B) is the standard error of S) may be generalized to 

for some increasing transformation rn, where seo(rn(b>) denotes the standard error 
of m(B) when the true value B equals any conveniently chosen PO: recall the point 
of the exercise is that in finite samples, se(rn(6)) will depend on the value of /3 and 
the approximation in the denominator in (10) attempts to capture this. Efron (1987) 
or Efron and Tibshirani (1993, pp. 326-327) show that if we use the normalizing 
transform rn, calculate confidence intervals based on the normal distribution, and 
then transform back using r n - l ,  we obtain the BCa intervals except that a and t o  
need to be estimated. Note that rn does not need to be known. These papers also 
argue that in one-parameter families, a good approximation for d is one-sixth of the 
skewness coefficient of the score function of /3, evaluated at B; for multiparameter 
families, they offer a formula based on the infinitesimal jackknife. However, most 
econometricians will prefer, at least computationally, the simpler jackknife formula 
(Efron and Tibshirani, 1993, p. 186): 

where the summations run from 1 to n, B( i )  is B calculated on a sample with the ith 
observation deleted, and B j ,  the jackknife estimator of /3, is the average of the B(i ) .  
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C .  Percentile-t Methods 

An alternative refinement to BCa methods is the percentile-t bootstrap confidence 
intervals. Suppose after estimating and se(B) on the original sample, B* and se(fi*) 
are estimated on each bootstrap sample. (A key requirement for this method is that 
some form of standard error estimate is available for both the original and boot- 
strapped data.) If one thinks of the bootstrap process as a Monte Carlo experiment, 
it is natural to think of B* = B as the null hypothesis to be tested in each trial and 
hence natural to calculate the t-ratio t* = ( f i *  - B)/se(B*) on each trial. The boot- 
strap procedure therefore essentially generates a distribution for this t-ratio under a 
particular null hypothesis and the 1 - 2a percentile-t confidence intervals become 

where t*'Y is the ath percentile of the t*'s. Essentially this technique uses the boot- 
strap to create its own critical values instead of using those supplied by the usual 
t-distribution. 

D. Comparison of the BCa and Percentile-t Methods 

Both the BCa and the percentile-t corrections are a refinement of the standard asymp- 
totic confidence intervals. As discussed, if we consider either the endpoints them- 
selves or the tail-area coverage, analytic confidence intervals, bootstrap standard 
error confidence intervals and percentile confidence intervals are all only first-order 
accurate, meaning that the approximation error is a term of O(n-'/ ').  The BCa and 
percentile-t confidence intervals are both second-order accurate in that the approx- 
imation error is a term of O(n- ' ) ;  that is, the approximation error goes to zero sig- 
nificantly faster as n increases (Hall 1988, 1992; Efron and Tibshirani 1993). 

There has been considerable discussion of the relative merits of the BCa 
method versus the percentile-t method. Hall (1988, 1992), one of the leading pro- 
ponents of the percentile-t method, notes that it avoids the calculations discussed 
above. Although the jackknife method using (1 1) is not excessively difficult in many 
contexts, certainly the concept of the acceleration constant is not a comfortable or 
familiar one to many practitioners. There is indeed some reason to be uncomfortable. 
While possible, the generalization in BCa to the multivariate confidence regions case 
is somewhat difficult. Moreover, even in the single-coefficient case above, it can be 
seen that the bounds (5) based on (6)-(8) are not necessarily monotonic in a: i.e., it 
is possible, because of the jump discontinuity in (7) when the denominator is zero, 
for increases in a to widen rather than narrow the confidence bounds. The investiga- 
tor needs to be careful if a has sufficient magnitude for this to occur in the relevant 
range of a. 
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The percentile-t method is not without its flaws. It is not transformation invari- 
ant: we cannot obtain the confidence interval endpoints for h(8)  by simply plugging 
the endpoints of the 8 confidence intervals into the function h. This is a familiar prob- 
lem in statistics (described in an econometrics context by Gregory and Veal1 1985), 
but leaves open the possibility that different ways of specifying restrictions or pa- 
rameters can lead to markedly different substantive results. A solution proposed by 
Tibshirani (1988) is to implement the percentile-t method with a variance-stabilizing 
transform. 

While the BCa method is transformation invariant in the single-parameter 
case, it is not in the multiparameter case if the transformation h involves the pa- 
rameters: the confidence interval for 8182 - l is not the same as the confidence 
interval for 81 - 1/82. While this seems quite natural, if the idea is to perform a 
test for the null hypothesis that 81/32 - 1 = 0 (equivalent to seeing whether the 
confidence interval of 81/32 - 1 covers zero), it is disconcerting that it matters if we 
instead test the algebraically equivalent null hypothesis 81 - 1/82 = 0. 

E. The Barnard Method 

A final method we shall discuss was developed before the bootstrap but can be 
thought of as a type of percentile-t bootstrap. Barnard (1963) proposed simulat- 
ing the distribution of a test statistic under the null hypothesis. In the context of 
confidence intervals, this means that rather than calculating the actual confidence 
interval around the estimated parameter and determining whether it covers the pa- 
rameter value corresponding to the null hypothesis, we simulate the confidence in- 
terval under the null hypothesis and see whether it covers the estimated value. These 
confidence intervals will be 

where 80 is the value of under the null hypothesis and t** are the t-values gener- 
ated by a bootstrap simulation using the estimates that are generated with the null 
hypothesis. In the case, for example, when there are no other parameters to estimate, 
a confidence interval calculated in this manner (or the corresponding test) is exact in 
finite samples. This result extends if there are parameters to estimate even under the 
null hypothesis, provided those other parameters do not enter the null distribution 
of the parameter under test. (An example would be in the (static) linear regression 
case, where the null distribution of each coefficient does not depend on the other 
coefficients.) However, if this property does not hold, such as in many dynamic or 
nonlinear regression contexts, the property of exactness is lost due to the estimation 
of the other "nuisance" parameters: see Dufour (1995), who incidentally attributes 
the initial idea behind this procedure to Dwass (1957) rather than to Barnard. Theil 
and his associates provide examples of the Barnard method (Rosalsky, Finke, and 
Theill984, Theil, Shonkwiler, and Taylor 1985, Taylor, Shonkwiler, and Theil 1986, 
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Shonkwiler and Theil 1986, Theil and Shonkwiler 1986), some of which will be dis- 
cussed subsequently. Van Giersbergen and Kiviet (1 993) promote the approach in 
the context of a dynamic regression model. The method of “calibration” now com- 
monly used in macroeconomics, in which the distribution of statistics is generated 
under a null hypothesis imposed under an elaborate computer model called an “ar- 
tificial economy,” can be seen as an extension of this basic idea. See Gregory and 
Smith (1993) for a survey. 

V. APPLICATIONS O F  BOOTSTRAP REFINEMENTS 

A. Size Correction 

While it is sometimes called a bootstrap correction, what we have called here the 
Barnard approach can be used as a size correction for almost any test. Horowitz 
(19940, for example, uses this approach to correct the size of the information matrix 
test for heteroskedasticity, Fan and Li (1995) use i t  to correct the J-test for testing 
a nonnested hypothesis, Theil and Shonkwiler (1986) use it to study tests for se- 
rial correlation, and Davidson and MacKinnon (1996) use both the J-test and serial 
correlation test examples in a more general discussion of this type of bootstrap test- 
ing. Horowitz argues that 100 bootstraps are sufficient for many cases where a is 
not too small (so that t*.” would be the fifth smallest value of t* and t*.9s would be 
the 96th smallest, that is the fifth largest) (see also Marriot 1979, Hall 1986). While 
Horowitz’s results are supported by his Monte Carlo simulation results which check 
for empirical size, size is not the only criterion of interest, and it is possible that the 
use of such a small number of bootstraps may affect power. 

B. 

Various bootstrap methods have been applied to tests on systems of equations, in 
what is often called the SUR model. Laitinen (1978) illustrated that finite-sample 
inference for this model could be a problem in the context of an expenditure system 
for rn goods: 

Estimation of Systems of Equations 

where Wit is the expenditure share of good i at time t ,  x: is a row vector consisting of 
a 1 (corresponding to a constant), total expenditure, and all rn prices, and U;, repre- 
sents a disturbance term which has no correlation with any disturbance term at any 
other time but which may have a contemporaneous correlation across commodities. 
The homogeneity property from consumer theory suggests that the last rn + 1 ele- 
ments of each should sum to zero, implying that if all prices and total expenditure 
were changed in the same proportion there would be no change in expenditure shares 
and, hence, in physical quantities purchased. Because the right-hand-side variables 



434 VEALL 

are the same in each equation, if the disturbances are normally distributed, OLS is 
maximum likelihood. 

Laitinen noted that before his paper this kind of proposition was commonly 
tested with a Wald test based on the OLS estimates of each share equation and a 
cross-equation variance-covariance matrix estimated from the OLS residuals. The 
resulting test is asymptotically distributed as chi-square, with n - 1 degrees of free- 
dom. Checking the asymptotic distribution using a simulation experiment based on 
data from Theil (1975), when the number of commodities is 14, a true (by construc- 
tion) null hypothesis is rejected by the Wald test based on a nominal 5% level, 87 
times out of 100 rather than the expected 5. Laitinen argued that this is one reason 
there are typically so many rejections of homogeneity in actual applications. One 
intuition is that the variance-covariance matrix is badly misestimated by maximum 
likelihood methods because there is no adjustment for degrees of freedom lost due to 
parameter estimation, particularly as the number of estimated parameters increases 
directly with the number of equations. 

As it turns out, for the special case of the homogeneity test, Laitinen finds an 
exact test using the Hotelling T 2  distribution. But his exact solution does not apply 
in other contexts, for example the closely related problem of testing for the property 
of symmetry in demand systems. Meisner (1979) and Bera, Byron, and Jarque (1981) 
use simulation methods to examine the test for symmetry and find very inaccurate 
test sizes and poor power as well. 

Theil, Shonkwiler, and Taylor (1985) and Taylor, Shonkwiler, and Theil(l986) 
apply the Barnard method directly to the demand homogeneity and symmetry Wald 
tests; Shonkwiler and Theil (1986) use the same method to develop critical values 
for alternative, non-Wald tests that they show can have superior power. Raj and Tay- 
lor (1989) apply a Barnard-type bootstrap to testing within-equation restrictions in 
demand systems. 

Other researchers generate ordinary bootstrap standard errors and base tests 
on these. Korajczyk (1985) and Freedman and Peters (1984a, 198433) have been dis- 
cussed. Atkinson and Wilson (1992) have a different reading of Freedman and Peters 
than ours and believe Freedman and Peters are arguing for direct application of the 
bootstrap standard errors with no adjustment for bias. Given our discussion above 
that ordinary bootstrap quantities are not theoretically more accurate than their ana- 
lytic counterparts, it is not surprising that Atkinson and Wilson find in Monte Carlo 
analysis based on relatively small systems that SUR standard errors (calculated en- 
tirely using OLS residuals) may be no more accurate than ordinary bootstrap stan- 
dard errors. Rilstone and Veal1 (1996a), emphasizing that the purpose of estimat- 
ing the variance-covariance matrix and standard errors is for inference, find that 
percentile-t confidence intervals are considerably more accurate than those based 
on OLSISUR, although the BCa confidence intervals performance is only fair. Ril- 
stone (1993) has similar findings for percentile-t (see also Rayner 1991) and BCa 
intervals in a single-equation regression context with AR(1) errors. 
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C. Nonlinearities 

While discussing the lack of invariance of percentile-t methods, it was pointed out 
that sometimes test results and confidence intervals are sensitive to nonlinearities. 
In demand systems of the kind just described, for example, even if we ignore the 
SUR problem there are potential difficulties in inferences because the desired esti- 
mates of the price and income elasticities are nonlinear in the estimated parameters. 
Green, Rocke, and Hahn (1987) find that the bootstrap estimates of the standard er- 
rors of the estimated price elasticities are not much different from their asymptotic 
counterparts, but there are substantial differences for the income elasticity. Krinsky 
and Robb (1986, 1990, 1991) find no large differences between analytic and boot- 
strap alternatives for a different data set and a translog system of equations, nor do 
McManus and Rosalsky (1985) in a nonlinear earnings equation. George, Oksanen, 
and Veall (1995) find some differences in a context where desired stock is estimated 
as a nonlinear quantity, as do Veall and Zimmermann (1993) in another dynamic, 
nonlinear context where they also use simulation to estimate power. 

The point of these examples is that sometimes nonlinearities seem to matter 
and sometimes they do not. If we return to the simple example of Gregory and Veall 
(1985), it is easy to see what can cause the problem. If we compare the quantities 
8182 - 1 and 81 - 1/82, for example, it is immediately clear that the second is much 
more nonlinear as 82 approaches zero. Rilstone and Veall (199613) examine the use 
of percentile-t methods and BCa methods and find that neither works well at all in 
this simple nonlinear example. While it may be simply that any approximation will 
break down with enough nonlinearity (e.g., if small enough 82 above), nonetheless 
we must conclude that the bootstrap is not yet a complete answer to the problems 
associated with finite-sample inference involving nonlinear quantities. 

VI. SUMMARY AND CONCLUSIONS 

An important role of the bootstrap is to provide standard errors and other tools of 
inference when there are no other available methods. As  discussed, such methods 
are no more accurate, at least in a theoretical sense, than analytic methods based 
on asymptotic approximations, but in the typical case where the use of the bootstrap 
can be justified asymptotically, bootstrap standard errors cautiously used may be 
valuable as “better than nothing” when analytic alternatives are not available. (This 
is particularly true when the appropriateness of the bootstrap is itself checked by 
simulation as discussed in the final paragraph.) 

However, this survey has raised some questions with respect to whether boot- 
strap methods are necessarily more accurate than analytic, asymptotic methods. 
Only bootstrap refinements, such as the BCa method with its analytic bias correc- 
tion based on an estimated “acceleration” coefficient or the percentile-t method, are 
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more accurate in the Edgeworth sense. Yet even these have their flaws: it is possible 
for BCa (1 - 2a) confidence intervals to narrow as a increases; percentile-t confi- 
dence intervals are not transformation invariant. These flaws seem to be reflected in 
actual performance problems, for example the severe shortcomings of the bootstrap 
in the simple nonlinear case just discussed. Only some applications of the Barnard 
method, involving simulation under a null hypothesis which does not depend on nui- 
sance parameters, yield bootstrap-based tests which are exact in finite samples. 

Fortunately, while simulation reveals the problem it may also provide the an- 
swer. The first point to emphasize is that analytic, asymptotic methods often have 
bad finite-sample performance. However, the quality of finite-sample performance 
of such methods is usually based on speculation unless a simulation experiment is 
done. If a simulation is done which tends to verify the accuracy of asymptotic meth- 
ods, further simulations are not a priority. But based on current understanding of the 
bootstrap, if the bootstrap and analytic, asymptotic methods differ it may be that the 
bootstrap results are slightly to be preferred (especially refined bootstrap methods), 
but what really needs to be done is further simulation study of the bootstrap itself. 
(See Beran 1988, 1990 or Beran and Ducharme 1991 for approaches along these 
lines, in which, for example, the percentile-t bootstrap is performed using bootstrap 
standard errors.) While this “bootstrapping the bootstrap” approach seems compu- 
tationally tedious, computer time is the one thing that is getting cheaper and,. except 
in the very rare case of exact tests, we now see that many kinds of results cannot be 
relied upon in finite samples unless they can be confirmed in a simulation experi- 
ment. In some sense, our answer to the student’s question in the introduction as to 
how big a sample is big enough to use asymptotics reliably is, “It depends, but I can 
tell you a way that may help to find out for any given problem.” Hence, while adding 
layers of simulation to our standard econometric practice may seem difficult, it is 
comforting to know that there is at least one feasible method to check the asymptotic 
approximations that are so widespread in econometrics. 
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1. INTRODUCTION AND MOTIVATING EXAMPLES 

Regression and multivariate analysis techniques are commonly used to analyze data 
from many fields of study including economic and social sciences. These data often 
contain unusual observations. Unusual observations, usually referred to as outliers, 
are observations that do not conform to the pattern (model) suggested by the major- 
ity of the observations in a data set. If they exist in the data, outliers can distort the 
analysis of data,and the conclusions based on the analysis. For example, outliers can 
distort parameter estimation, invalidate test statistics, and lead to incorrect statisti- 
cal inference. We illustrate this point and the methods presented in this chapter by 
the following data set. 

Example I :  Financial Data. In this chapter we make a repeated use of the fol- 
lowing data set, which we refer to as the financial data. The data set was collected 
and thoroughly analyzed by Jeff M. Semanscin (a student in one of the authors’ ap- 
plied regression methods class) using Standard & Poor’s Compustat PC Plus. The 
purpose of using the data here is only to illustrate the methods presented in this 
chapter. There are several variables in the data set, but for illustrative purposes we 
consider only a subset consisting of the following three variables: 

44 I 
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X I  : Book value in dollars per share at the end of 1992 
X2: Net sales in millions of dollars in 1992 
X3: Sales-to-assets ratio in 1992 

This subset of the data is shown in Table 1. It consists of 26 observations (financial 
companies). 

Let us first think of this data set as a trivariate data. Figure 1 shows the trivari- 
ate scatter plot after it has been rotated to show the outliers in the data. The four 
outlying points marked on the graph are detected by the multivariate outliers detec- 
tion method presented here. The mean and covariance matrix of the data are 

(1) 

22.06 168.14 23.44 -1.51 
23.44 35.24 -0.62 ( ::if) and ( -1.51 -0.62 0.18 

respectively. When the outliers are deleted, mean and covariance matrix become 

(2) 1 21.65 125.24 32.59 -0.45 
32.59 18.47 -0.11 ( E) and ( -0.45 -0.11 0.00 

respectively. Note the dramatic effects of outliers on the estimated variances and co- 
variances. To illustrate how the confidence regions can change substantially because 
of outliers, let us examine the bivariate scatter plot of XI versus X2.  The scatter plot, 

Table I Financial Data for 29 Financial Companies 

Number X1 x 2  Xn Number X1 x 2  x 3  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

~~ 

14.58 
21.15 
19.26 
39.93 
6.12 

32.25 
32.43 
8.30 

16.68 
24.79 
19.26 
19.42 
27.02 

26.961 
4.816 
3.394 
5.455 
1.495 
9.112 

1 1.078 
0.806 
4.461 

14.559 
1.114 
4.190 
2.009 

0.17 
0.15 
0.08 
0.08 
1.52 
0.09 
0.08 
0.28 
0.08 
0.09 
1.82 
0.09 
0.08 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

2.46 
15.75 
25.19 
34.30 
39.26 
30.80 
13.51 
15.96 
6.75 

31.84 
1.52 

17.70 
57.44 

0.247 
2.213 
2.825 
7.281 
7.382 
9.228 
3.364 
3.840 
0.196 

15.372 
0.909 
5.099 
5.067 

0.26 
0.09 
0.09 
0.07 
0.10 
0.08 
0.14 
0.08 
0.16 
0.12 
0.17 
0.23 
0.10 
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Figure I 
by their numbers. 

Financial data: Trivariate Scatter plot of X I ,  Xz, and Xs with the outliers indicated 

together with two ellipses expected to contain 95% of the observations, are shown 
in Figure 2. The larger ellipse is based on the mean and covariance matrix of the 
full data (all 26 observations) and the smaller ellipse is based on the mean and CO- 

variance matrix of the data without the outliers (indicated by their numbers on the 
scatter plot). Observe the huge difference between the two ellipses in terms of their 

I 69 m73 

44 m98 

XI 20.23 

-4 m52 

-29 m27 

/)! . . . . .  

I I I I I 

-15.13 -4.61 5m92 16.44 26.96 

x 2  

Figure 2 Financial data: Bivariate scatter plot of XI versus X ,  with two ellipses (expected 
to contain 95% of the observations). The larger ellipse is based on the mean and covariance 
matrix of the full data (all 26 observations), and the smaller ellipse is based on the mean and 
covariance matrix of the data without the outliers (indicated by their numbers). 
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57.44- 26 0 
0 

0 
# 

0 
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# 
# 

0 
# 

I... 
1.524 % 

I I I f 
0.20 6.89 13.58 20.27 26.96 

*2 

Figure 3 Financial data: Scatter plot of X1 versus X2 with two superimposed regression lines. 
The solid line is the least-squares regression line obtained using the full data. The dotted line 
is obtained when the outliers (1 and 26) are deleted. 

sizes, orientations, and shapes. Note also how the larger ellipse is affected by the 
outliers. The larger ellipse detects only one observation as an outlier, whereas the 
smaller ellipse declares four observations as outliers. 

Let us now think of the data as regression data, where distinction between 
dependent and independent variables has to be made. Consider, for example, the 
simple regression of X I  on X 2 .  The scatter plot of X1 versus X z ,  with two super- 
imposed least-squares regression lines, is shown in Figure 3. The solid line is the 
least-squares regression line obtained using the full data. The dotted line is obtained 
when the two outlying observations 1 and 26 are deleted. Again, we obtain two sub- 
stantially different lines. 

The above example shows that outliers can lead to misleading or erroneous 
conclusions. It is therefore important for data analysts to first identify and examine 
outliers if they exist in the data, before making conclusions based on data. 

Before we proceed any further, we wish to make an important point. After read- 
ing the literature on outlier detection, some people are left with the incorrect impres- 
sion that once outliers are identified, they should be deleted from the data and the 
analysis continues. We do not advocate automatic deletion (or even automatic down- 
weighing) of outliers because outliers are not necessarily bad observations. On the 
contrary, if they are correct, they may be the most informative points in the data. For 
example, they may indicate that the data did not come from a normally distributed 
population, as commonly assumed by almost all multivariate analysis techniques; or 
they may indicate that the model is not linear. For this reason the outliers should be 



DETECTION OF UNUSUAL OBSERVATIONS 445 

2030 

1523 

y 1016 

5 09 

3 
0 7..5 15 22.5 30 

X 

Figure 4 A scatter plot of population size, Y ,  versus time, X.  The curve is obtained by fit- 
ting an exponential function to the full data. The straight line is the least-squares line when 
observations 22 and 23 are deleted. 

called the unusual or even the interesting observations. To emphasize that outliers 
can be the most informative points in the data, we use the exponential growth data 
described in the following example. 

Example 2: Exponential Growth Data. Figure 4 is the scatter plot of two vari- 
ables, the size of a certain population, Y ,  and time, X .  As can be seen from the 
scatter of points, the majority of the points resemble a linear relationship between 
population size and time as indicated by the straight line in Figure 4. According to 
this model, points 22 and 23 in the upper right corner are outliers. If these points, 
however, are correct, they are the only observations in the data set that indicate that 
the data follow a nonlinear (e.g., exponential) model, such as the one shown in the 
graph. Think of this as a population of bacteria which increases very slowly over a 
period of time, then once somebody sneezes the population size explodes. 

What do we do with outliers once they are identified? Because outliers can 
be the most informative observations in the data set, they should not be automati- 
cally discarded without justification. Instead, they should be examined to determine 
why they are outlying. Based on this examination, appropriate corrective actions can 
then be taken. These corrective actions include correction of errors in the data, dele- 
tion or downweighing outliers, transforming the data, considering a different model, 
redesigning the experiment or the sample survey, collecting more data, etc. 

Outliers in multivariate data are intrinsically more difficult to detect than out- 
liers in univariate and bivariate data. For example, in simple regression and in uni- 
variate, bivariate, and trivariate data, outliers can be detected easily by graphing the 
data. In higher than three dimensions and in the presence of multiple outliers, it is 
difficult to detect outliers because 
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Figure 5 A scatter plot of weight versus height with the box plots on the margin of each 
variable. The two bivariate outliers cannot be detected by examining only univariate graphs 
such as box plots. 

1. It is difficult to graph high-dimensional data. Furthermore, examining 
lower-dimensional plots of the data does not necessarily detect multivari- 
ate outliers. This point is illustrated using the following example. 

Example 3: The Weight-Height Data. The two bivariate outliers which appear 
in the scatter plot of weight versus height in Figure 5 cannot be detected by exam- 
ining only univariate graphs (e.g., box plots) of weight and height separately. Note, 
however, that methods that work for higher-dimensional data will continue to work 
for lower-dimensional data, but the converse is not generally true. 

2. If the data contain a single outlier, the problem of identifying the out- 
lier is simple, but if the data contain more than one outlier the problem 
of identifying them becomes difficult due to the masking and swamping 
problems. Masking occurs when a method fails to detect outlying observa- 
tions (false negative decisions). Swamping occurs when a method declares 
good points as outliers (false positive decisions). Masking and swamping 
are serious problems and are the cause of the failure of many outlier de- 
tection methods. Note that methods that work in the presence of multiple 
outliers will continue to work if the data contain a single outlier or no 
outliers at all, but the converse is not generally true. 

In this chapter we discuss some methods for the detection of outliers in re- 
gression and multivariate data. We concentrate our attention on methods that have 
been recently developed and that require reasonable computational effort. Rele- 
vant outlier detection methods are found, for example, in Rohlf (1975), Hawkins 
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(1980), Schwager and Margolin (1982), Beckman and Cook (1983), Barnett and 
Lewis (1984), Hampel et al. (1986), Bacon-Shone and Fung (1987), Rousseeuw and 
Leroy (1987), Fung (1988), Rasmussen (1 988), and Caroni and Prescott (1992). The 
rest of the chapter is organized as follows. Section I1 describes a unified framework 
for the detection of outliers in both multivariate and regression data. Sections I11 
and IV discuss the specifics of this unified framework for the detection of outliers in 
multivariate and regression data, respectively. Section V deals with the problem of 
outliers detection in very large data sets. 

II. A UNIFIED FRAMEWORK FOR OUTLIER DETECTION 

In regression analysis situations the data set contains a response variable y, con- 
sisting of n observations, and a matrix X, consisting of n rows (observations) and p 
columns (covariates). In multivariate analysis situations there is no y. The data set 
contains only X, but we think of X as a random sample generated from a multivari- 
ate elliptically symmetric distribution such as a multivariate normal or a multivariate 
t-distribution. Our objective is to identify outliers if they exist in the data set in each 
of these two situations. 

It has been long recognized that classical methods, such as least-squares resid- 
uals or Mahalanobis distances, are not effective in the detection of outliers because 
they are not robust; that is, they are affected by the outliers that they are supposed to 
detect. One way out of this problem is to replace classical methods by robust meth- 
ods, which produce estimates that are resistant to the presence of outliers and/or to 
violations of distributional assumptions. Indeed, several books have been devoted 
either entirely or in large part to robust methods and/or outlier detection techniques; 
see, for example, Barnett and Lewis (1984), Hawkins (1980), Huber (1981), Hampel 
et al. (1986), Rousseeuw and Leroy (1987), and Chatterjee and Hadi (1988). Other 
relevant articles include Maronna (1976), Campbell (1980), Rousseeuw and Yohai 
(1984), and Lopuha (1989). 

Robust methods have been suggested for many years now, but they have not 
yet been widely used in practice because they involve extensive computations. The 
most widely known of the robust methods are the least median of squares (for regres- 
sion data) and minimum-volume ellipsoids (for multivariate data) estimators. These 
methods are highly effective because they are not affected by outliers, but they are 
computationally prohibitive, like other robust estimation methods. 

Another way out of the problem has been recently developed by Hadi (1992a, 
1994) and Hadi and Simonoff (1993, 1994, 1997). The main idea of these methods 
is to first form a basic subset of about half of the data which is presumably free of 
outliers, then add observations that are consistent with the basic subset. If all the 
observations are added to the basic subset, the data set is declared to be free of out- 
liers; otherwise the observations that are not consistent with the basic subset are 
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declared to be outliers. To determine whether the observations are consistent with 
the basic subset, a suitable metric is chosen to measure the distance between each 
observation in the data and the center of the observations in the basic subset (multi- 
variate data) or the least-squares line based on the observations in the basic subset 
(regression data). Thus, the method is carried out in two stages; the first is to find the 
basic subset, and the second is to test for the outliers. To implement this method the 
following questions have to be addressed: 

1. 
2. 
3. 

How do we divide the data set into basic and nonbasic subsets? 
What distance measure should we use? 
How large must the distances be for the corresponding observations to be 
declared as outliers? 

The answers to these questions depend on whether we are dealing with multivariate 
or regression data. 

111. OUTLIERS IN MULTIVARIATE DATA 

In multivariate analysis situations the data matrix X is viewed as a sample from a 
multivariate elliptically symmetric distribution. Thus, an elliptically symmetric dis- 
tribution is assumed to be the underlying model. To detect the outliers in X we need 
to measure the distance between the ith observation x; and the fitted model. If a good 
distance measure is chosen, then observations with large values would indicate that 
they are outliers. Since the model is elliptically symmetric, an appropriate measure 
of distance would be the elliptical distance 

The elliptical distance d ( c ,  V) measures the distance between the ith observation, 
x;, and a location (center) estimator c, relative to a measure of dispersion, V. The 
classical choices of c and V are c = x (the sample mean) and V = S (the sample 
covariance matrix), respectively. This choice of c and V gives 

which is known as the Mahalanobis distance. If the data come from a p-variate nor- 
mal distribution, the dV(Z, S) follows approximately a X2-distribution with p de- 
grees of freedom. Thus, using an a-level of significance, values of di(%, S) larger 
than Jm are declared to be outliers. 

Unfortunately, d ; ( X ,  S) is affected by outliers. For example, some of the out- 
liers may still have small values of d; (%, S) (masking) and some of the observations 
which are not outliers may have large di(x, S) (swamping). This is illustrated by the 
following example. 
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Table 2 
Bivariate Data Sets Graphed in Figures 1 and 2 

Financial Data: The Mahalanobis Distances for the Trivariate and 

Data set Data set 

Number Trivariate Bivariate Number Trivariate Bivariate 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3.97 
0.33 
0.68 
1.47 
3.03 
0.85 
1.04 
1.24 
0.69 
1.49 
3.79 
0.57 
0.99 

3 .% 
0.18 
0.43 
1.47 
1.29 
0.85 
1.04 
1.20 
0.43 
1.49 
0.80 
0.31 
0.89 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1.67 
0.92 
0.78 
0.96 
1.34 
0.79 
0.85 
0.77 
1.49 
1.63 
1.77 
0.36 
2.92 

1.60 
0.69 
0.66 
0.95 
1.34 
0.77 
0.70 
0.51 
1.34 
1.63 
1.63 
0.34 
2.91 

Example 4: Mahalanobis Distance. Consider the financial data described in 
Example 1. The Mahalanobis distances for the trivariate and bivariate data sets 
graphed in Figures 1 and 2 are given in Table 2. The corresponding index plots 
are shown in Figure 6a and b, respectively. In both cases, the Mahalanobis distance 
declares only observation 1 as an outlier (the distances for observation 1 of 3.97 
and 3.96 are slightly larger than the cutoff point of 3.86). By comparison with the 

3.971. 
0 

e o  

e. ee 
eee eee 

e e  
0.334 

1 1 1 1 1 1 1 1 1 1 1  
1 5 9 13 17 21 25 

2.07 

1 5 9 13 17 21 25 
(a) Trivariate data (b) Bivariate data 

Figure 6 
{ X l ,  X2, Xs} and (b) the bivariate data {XI and Xz}. 

Financial data: Index plot of the Mahalanobis distance for (a) the trivariate data 
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trivariate and bivariate scatter plots in Figures 1 and 2, we see that the Mahalanobis 
distance failed to identify observations 5, 11, and 26 in the trivariate case and ob- 
servations 10,23 and 26 in the bivariate case. 

The Mahalanobis distance fails to detect the outliers because it depends on the 
sample mean and covariance matrix, which are known to be sensitive to the presence 
of outliers. One way to solve this problem is to replace the mean and the covariance 
matrix by more robust estimators of the location and scale. There are many robust 
estimators for multivariate data. One problem with robust methods, however, is that 
they are computationally extensive and at times practically infeasible. This may ex- 
plain why robust statistics have not been widely implemented in statistical packages, 
although they have appeared in the literature for so many years. Alternatively, using 
the mean and the covariance matrix of the basic subset, we obtain 

d;(xb, sb) = J(xi - X ~ ) T S ; ' ( X ~  - ~ b ) ,  i = 1, . . . , n (5) 

where X b  and S b  are the mean and the covariance matrix of the basic subset, respec- 
tively. Thus, the distance di(Xb, S b )  depends on the observations contained in the 
basic subset. If the data come from a p-variate normal distribution, then d?(xb, S b )  

follows approximately a X2-distribution with p degrees of freedom. If the basic sub- 
set is free from outliers, then %b and S b  will not be affected by the outliers and the 
d;(Xb, Sg) would be effective in the detection of the outliers. Thus, an important task 
remaining here is how to obtain a basic subset which is likely to be outlier-free. Let 
h be the integer part of (n  + p + 1)/2, m the vector containing the coordinatewise 
medians, and 

n 

i= 1 

The two stages of the method in the multivariate case are given in Algorithms 1 and 
2 (Hadi 1994). In these algorithms Xb and S b  are the mean and covariance matrix of 
the observations in the current basic subset xb. 

Algorithm I : Finding the Basic Subset 

Input: 

Output: 

An n x p matrix of multivariate data. 

A basic subset of size h observations that are likely to be free from outliers. 

Compute d;(m, A). Let X b  and s b  be the mean and the covariance 
matrix of the observations with the h smallest values of d;( i i i ,  A). 
Compute di (Xg , Sb). Rearrange the observations in ascending order 
according to di(Xb, S b ) .  Divide the observations into two initial sub- 
sets: a basic subset containing the first p + 1 observations and a non- 
basic subset containing the remaining n - p - 1 observations. 

Step 0: 
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Step 1: If the basic subset is of full column rank, compute di(%b, S b ) ,  where 
Xb and S b  are the mean and covariance matrix of the observations 
in the current basic subset. If the basic subset is not of full rank, 
increase the basic subsets by as many observations as needed for 
the basic subset to become full rank. If needed, the observations are 
added according to their ranked order. 
Rearrange the n observations in ascending order according to di (xg , 
S b ) .  Let s be the number of observations in the current basic subset. 
Divide the observations into two initial subsets: a basic subset con- 
taining the first s + 1 observations and a nonbusic subset containing 
the remaining n - s - 1 observations. 
Repeat Steps 1 and 2 until the basic subset contains h observations. 

- 

Step 2: 

Step 3: 

Algorithm 2: Testing for Outliers 

Input: 
vations obtained by Algorithm 1. 

An n x p matrix of multivariate data and a basic subset Xb of size h obser- 

Output: The set of observations identified as outliers. 

Step 0: 

Step 1: 

Step 2: Let 

Let s = h and %b and s b  be the mean and the covariance matrix of 
the observations in the current basic subset. 
Compute di(%b, S b ) .  Rearrange the observations in ascending order 
according to di (Xb , S b ) .  

2 
cff = ( 1 +  

n - 1 - 3 p  n - p  

be the Bonferroni-adjusted critical value based on a X2-distribution 
with p degrees of freedom multiplied by a correction factor. If min 
{di(%b, S b ) ;  i E nonbasicsubset} 2 c,, stop and declare all observa- 
tions with di(%b, S b )  to be outliers. Otherwise, go to Step 3. 
For a new basic subset by taking the first s + 1 observations ordered 
according to di(%b, S b ) .  If n = s + 1, then declare no outliers in the 
data set and stop; otherwise go to Step 1. 

Step 3: 

If desired, the final basic subset obtained in Algorithm 2 can be used to com- 
pute the final distance for each of the observations in the data set. The method pro- 
posed here is easy to compute. It is also effective in identifying the outliers when 
tried on real as well as simulated data. This method has been implemented in some 
commercially available statistical packages (e.g., Stata; see Gould and Hadi 1993). 

Example 5: financial Data. Consider again the financial data described in Ex- 
ample 1. The di(Z6, S b )  for the trivariate and bivariate data sets graphed in Figures 1 
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27.63 - 

20.83 - 

14.04- 

7.24- 

0.44- 

Table 3 
Sets Graphed in Figures 1 and 2 

Financial Data: The di(%b, S b )  for the Trivariate and Bivariate Data 

10.27 - 
7.74 - 
5.20- 

* *  
2.66 - 

e *  
0 ** 0 ** *.**.** ** 

*e 
0.12- .. .Oo ~ o ' o *  ~~**..*~e***** 

1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1  

Data set Data set 

Number Trivariate Bivariate Number Trivariate Bivariate 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

5.73 
0.44 
0.90 
1.75 

21.93 
0.77 
1.03 
2.04 
1.05 
2.10 

27.63 
0.69 
1.26 

10.27 
0.22 
0.23 
1.87 
1.02 
1.34 
2.05 
0.91 
0.54 
4.05 
1.19 
0.12 
1.60 

14 
1s 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1.73 
1.03 
0.92 
0.94 
1.53 
0.74 
0.59 
1.10 
1.10 
1.99 
1.46 
1.55 
3.86 

1.27 
0.51 
1.07 
1.01 
1.40 
1.43 
0.56 
0.41 
1.06 
3.83 
1.38 
0.68 
4.01 

and 2 are given Table 3. The corresponding index plots are shown in Figure 7a and 
b, respectively. In both cases, the Mahalanobis distance declares only observation 1 
as an outlier (the distances for observation 1 of 3.97 and 3.96 are slightly larger than 
the cutoff point of 3.86). By comparison with the trivariate and bivariate scatter plots 
in Figures 1 and 2, we see that di(Zb, St,) identifies all outliers in both data sets. 

(a) Trivariate data (b) Bivariate data 

Figure 7 
(b) the bivariate data ( X I ,  X z } .  

Financial data: Index plot of d ;  (Xb, S b )  for (a) the trivariate data {XI, X2, X3} and 
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IV. OUTLIERS IN REGRESSION DATA 

In regression analysis situations the data consist of an n-response vector y and an 
n x p covariate matrix X assumed to be of full-column rank. A model that relates 
y and X is usually assumed to be of a linear form, y = Xg + E ,  where /? is the 
vector of regression coefficients, E is a vector of random errors assumed to have a 
multivariate normal distribution with mean 0 and covariance matrix 021n, o2 is an 
unknown scalar, and I, is an identity matrix of order n. 

Unlike the case of multivariate analysis data, in which all unusual observa- 
tions are labeled as outliers, in the regression analysis case unusual observations 
are classified into three classes: outliers, high-leverage points, and inpuential obser- 
vations (see, e.g., Chatterjee and Hadi 1986). We deal with the detection of each of 
these types of observations separately. 

A. Detection of Outliers 

As we mentioned, outliers are observations that do not conform to the pattern (model) 
suggested by the majority of the observations in a data set. To detect the outliers in X 
we need to measure the distance between the ith observation xi and the fitted model. 
The classical choice of a distance here is the least-squares standardized residual 

D .  

where e; is the ith element of the residual vector e = (I, - P)y and pii is the ith 
diagonal element of the projection matrix 

P = x(xTx)-'xT 

Replacing o by 6 = d m ,  we obtain 

(9) 

i = 1, . . . ,  n (10) 

which is known as the internally Studentized residual. Replacing o or & ( i ) ,  we obtain 
the externally Studentized residual, 

where 6(i) is the estimate of o when the ith observation is deleted. For simplicity 
of notation, we write r; and r: instead of ri (6)  and r;(6( i l ) ,  respectively. Note that r; 
and r: are related by 

ri = r; 
n - p - r :  

hence ri and r; are equivalent. 
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Figure 8 Financial data: Scatter plot of X I  versus X3. The solid line is the regression line 
based on all 26 observations and the dotted line is obtained when the observations 5,11,  and 
26 are deleted. 

Outliers tend to have large absolute values of r; or r:, but unfortunately this 
is not always the case. Outliers can have small residuals (masking), and observa- 
tions which are not outliers can have large residuals (swamping). The reason for 
this, again, is that ri and r;* are affected by outliers. For example, the two points in 
the lower right corner of the scatter plot of XI versus X 3  in Figure 8 have very small 
residuals because they are close to the solid regression line, which is based on all 26 
observations, yet they are very far from the dotted regression line, which is obtained 
when the outliers 5, 1 1 ,  and 26 are deleted. Thus, using the ri or r:, observations 
5 and 11 will be masked. On the other hand, observation 14, which is close to the 
dotted regression line, is far from the solid regression line (swamping). 

To deal with masking and swamping problems, we replace r; and r;* by a more 
robust residual. One alternative is to use the least median of squares (LMS) residual. 
However, the LMS is computationally intensive. Another alternative is to define the 
residual with respect to the fitted model based only on a basic subset which is likely 
to be free from the outliers. Let yb and Xb be the observations in the basic subset. 
Let b b  and 6; be the least-squares estimate of /3 and 0’ based on the observations in 
the basic subset, respectively. A robust version of the residual (which can actually 
be thought of as the scaled prediction error) can be defined as 
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The two stages of the method in the regression case are given in Algorithms 3 
and 4 (Hadi and Simonoff 1993). In these algorithms B b  and 3; are the least-squares 
estimates of B and 0' based on the current basic subset yb and xb. 

Algorithm 3: finding the Bosic Subset 

Input: 

Output: 

An n-vector y and an n x p matrix X .  

A basic subset of size h observations that is likely to be free from outliers. 

Step 0: 

Step 1: 

Step 2: 

Step 3: 

Compute ri. Rearrange the observations in ascending order accord- 
ing to Iril. Divide the observations into two initial subsets: a basic 
subset containing the first p + 1 observations and a nonbasic subset 
containing the remaining n - p - 1 observations. 
If X b  is of full-column rank, compute di in (13). If Xb is not of full 
rank, increase the basic subsets by as many observations as needed 
for Xb to become full rank. If needed, the observations are added 
according to their ranked order. 
Rearrange the n observations in ascending order according to d;. Let 
s be the number of observations in the current basic subset. Divide 
the observations into two initial subsets: a basic subset containing 
the first s + 1 observations and a nonbasic subset containing the re- 
maining n - s - 1 observations. 
Repeat Steps 1 and 2 until the basic subset contains h observations. 

Algorithm 4: Testing for Outliers 

Input: 
observations obtained by Algorithm 3. 

Output: 

An n-vector y, an n x p matrix X, and a basic subset Y b  and x6 of size h 

The set of observations identified as outliers. 

Step 0: 

Step 1: 

Step 2: 

Step 3: 

Let s = h and let B b  and 8; be the least-squares estimates of B b  and 
0; based on the current basic subset yb and Xb. 
Compute di as in (13) but use the current yb and xb. Rearrange the 
observations in ascending order according to d;.  
Let 

be the Bonferroni-adjusted critical value based on a t-distribution 
with s - p degrees of freedom. If min{di; i E nonbasic subset} >_ 
c,, stop and declare all observations with d;  2 c, to be outliers. 
Otherwise, go to Step 3. 
Form a new basic subset by taking the first s+ 1 observations ordered 
according to di. if n = s + 1,  then declare no outliers in the data set 
and stop; otherwise go to Step 1. 
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Table 4 
and Bivariate Data Sets Graphed in Figures 1 and 2 

Financial Data: The di(Kb, s b )  for the Trivariate 

Number di Number di 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

-3.70 
0.07 
0.16 
2.24 

-1.06 
0.50 
0.09 

-0.64 
-0.40 
-1.84 

0.67 
0.00 
1.43 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

- 1.25 
-0.02 

1.01 
1.15 
1.75 
0.30 

-0.55 
-0.35 
-0.70 
- 1.09 
-1.51 
-0.41 

4.29 

If desired, the final basic subset obtained in Algorithm 4 can be used to com- 
pute the final residual for each of the observations in the data set. 

Notice the similarity between Algorithms 1 and 2 for the detection of outliers 
in multivariate data and Algorithms 3 and 4 for the detection of outliers in regression 
data. They are special cases of the unified framework discussed in Section 2. 

Example 6: financial Data. Consider again the financial data described in 
Example 1. The final di obtained by Algorithm 4 for the simple regression of X I  on 
X 2  is given in Table 4. The corresponding index plot is shown in Figure 9. Comparing 
these results with the scatter plot in Figure 3, we see that the method identified the 
two outliers marked on the graph. 

B. Detection of High-Leverage Points 

Observations in the X-space that exert undue leverage in determining the fitted line 
are called high-leverage points. This can be seen by writing the ith fitted value as 

where pi; is the ijth element of the matrix P in (9), and observing the pii is the 
weight or leverage attached to yi in determining the ith fitted values. Two important 
and interesting properties of pi; are 
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Figure 9 
regression of X1 on X p .  Two observations (1 and 26) are declared outliers. 

Financial data: Index plot of the final di obtained by Algorithm 4 for the simple 

0 F pii i 1 

and 

e2 pi; + 1 < 1 
eTe - 

For proofs of these and many other properties of the matrix P and its elements, see 
Chatterjee and Hadi (1988, Chapter 2). Consequently, the larger the p;; the higher 
the leverage of the yi in determining fi. For example, in the extreme case where 
pii = 1, we have y; = yi and ei = 0; that is yi completely determines fi. Thus, 
observations with large values of pi; are called high-leverage points and the pii’s are 
called leverage values. 

The presence of high-leverage points, individually or in groups, makes it very 
difficult to identify the outliers. Therefore, the X data should be examined for the 
presence of high-leverage points. High-leverage points tend to have large values of 
pii. Unfortunately, high-leverage points may not always have large leverage values 
because a group of points can collaborate together and collectively induce high lever- 
age, although their individual leverage values are not high. In other words, while all 
points with large leverage values are high-leverage points, some observations with 
small leverage values may be collectively a high-leverage group. Such a group of 
high-leverage points can be identified by exploiting the relationship between the 
concept of high-leverage and outliers in the multivariate X-space. One can think 
of high-leverage points simply as outliers in the X-space. Thus, to identify high- 
leverage points, one can think of X as multivariate data and apply Algorithms 1 and 
2 to identify the outliers in X (see also Rousseeuw and van Zomeren 1990,1991). In 
the context of regression, these outliers are called high-leverage points. 
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C. Detection of Influential Observations 

Observations, individually or collectively, that excessively influence the fitted re- 
gression equation as compared to the other observations are called influential obser- 
vations. A bewilderingly large number of statistical quantities have been proposed 
to study outliers and influential observations in regression analysis (C hatterjee and 
Hadi 1986). One of the commonly used measures of influence is known as Cook’s 
distance (Cook 1977), which is defined as 

where b(i) is the least-squares estimate of B when the ith observation is deleted. A 
comparison with (3) shows that Ci is the squared elliptical distance between B and 
b(i). Thus, a large value of Ci indicates that the ith observation is influential on B. 
After some algebraic manipulations, one can show that 

from which it follows that C; is a multiplicative function of the residual and leverage 
values. Although a large value of Ci indicates that the ith observation is influential 
on S, a small value of C; does not necessarily indicate that the ith observation is not 
influential. This can be seen from (1 7) because a high-leverage point tends to have a 
small residual, hence a small value of Ci. From (19) it can be seen that an observation 
will be influential on B if it is an outlier (large value of Iril), a high-leverage point 
(large value of pii), or both. Hadi (1992b) utilizes this idea and develops the additive 
influence measure 

where df = ef/eTe is the square of the ith normalized residual. The first term is a 
leverage term which measures outlyingness in the X-space. The function pii/( 1 -pii) 

is known as the potential function. The second term in Hi is a residual term which 
measures outlyingness of the observation in the y-direction. Since Hi is an additive 
function of the residual and potential functions, it will be large if the observation 
is an outlier in either the X-space, the y-space, or both. To determine which is the 
case, Hadi (1992b) suggests plotting the potential versus the residual function, that 
is, the scatter plot of 

This plot is referred to as the potential-residual (P-R) plot. In the P-R plot, high- 
leverage points are located in the upper area of the plot and observations with large 
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Table 5 
When XI is Regressed on X2 

Financial Data: Measures of Outlyingness, Leverage, and Influence Obtained 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

-2.89 
-0.02 
-0.09 

1.51 

0.65 
0.56 

-1.07 

-0.85 
-0.35 
-0.25 

0.03 
-0.12 

0.61 

0.54 3.80 
0.04 0.00 
0.05 0.00 
0.04 0.04 
0.06 0.04 
0.05 0.01 
0.07 0.01 
0.07 0.03 
0.04 0.00 
0.12 0.00 
0.06 0.00 
0.04 0.00 
0.06 0.01 

1.80 
0.04 
0.05 
0.24 
0.16 
0.09 
0.10 
0.13 
0.05 
0.15 
0.07 
0.04 
0.09 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

- 1.33 
-0.31 

0.41 
0.91 
1.33 
0.52 

-0.55 
-0.38 
-0.95 

0.29 
- 1.45 
-0.31 

3.53 

0.07 
0.05 
0.05 
0.04 
0.04 
0.05 
0.05 
0.04 
0.07 
0.14 
0.07 
0.04 
0.04 

~ 

0.07 
0.00 
0.00 
0.02 
0.04 
0.01 
0.01 
0.00 
0.04 
0.01 
0.07 
0.00 
0.17 

~ 

0.23 
0.07 
0.07 
0.11 
0.20 
0.08 
0.07 
0.06 
0.16 
0.17 
0.25 
0.05 
1.10 

prediction error are located in the area to the right. Both Hi and the P-R plot have 
been implemented in commercially available statistics packages such as Data Desk 
and Stata. 

Example 7: Financial Data. Consider again the financial data in Example 1. 
The r f ,  pii ,  Ci, and Hi obtained when Xi is regressed on X2 are given in Table 5. 
The corresponding index plots are shown in Figure 10. The P-R plot is given in 
Figure 11. Observation 26 has the largest value of r:, which is the only observation 
that exceeds the cutoff value of t ( n  - p ,  a!/2n) = 3.50. Observation 1 is the only 
high-leverage point in the data. Observation 1 is also identified by Ci as the only 
influential observation in the data. Two observations (1 and 26) are identified by H; 
as influential. These two observations are separated from the rest of other points in 
the P-R plot. Observation 26 is an outlier because it is located in the lower-right 
corner of the plot. Observation 1 is both an outlier and a leverage point. 

V. DEALING WITH VERY LARGE DATA SETS 

The methods presented in Sections 111 and IV have been shown to perform well in 
many real-life and simulated data. They produce results in a reasonable amount of 
time for small to medium data sets. But for large data sets, increasing the basic subset 
one observation at a time can be time consuming. Hadi and Velleman (1997) adapt 
these methods to large data sets as follows: 
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Figure I0  
regressed on X2. 

Financial data: Index plot of (a) r:, (b) p i ; ,  (c) Ci, and (d) Hi obtained when XI is 

1. In some applications the data analyst may have some reasons to believe 
that a certain subset of the data is free from outliers. In these applications, 
this subset can be used as the first basic subset instead of the one obtained 
in Step 0 of Algorithms 1 and 3.  Actually, this suggestion is applicable 
to data sets of all sizes, but the computational savings that result from 
eliminating Step 0 of Algorithms 1 and 3 increase as the size of the data 
set increases. Additional computational savings can also be achieved if 
the size of the chosen basic subset is larger than the initial size of p + 1. 
In Step 2 of Algorithms 1 and 3, the basic subset size is increased by 
one observation at a time. Computational savings can be realized here by 
adding to the basic subset all observations that are below a certain cutoff 
point. In this way the subset size grows more rapidly than in the original 
algorithms. 

2. 
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Figure I I Financial data: The Potential-Residual plot obtained when XI is regressed on Xz. 

3. In Algorithms 2 and 4, testing starts only after the size of the basic subset 
reaches h. Computational time can be saved by starting testing as soon as 
the basic subset stabilizes or includes a certain prespecified number of 
observations per parameter (e.g., six or more observations per parameter). 

Note that in Algorithms 1 4 ,  the nonbasic subset size can be at most n - h observa- 
tions. These observations, which constitute less than 50% of the data, are interpreted 
as outliers. The above modifications imply that the nonbasic subset can be as large 
as n - s, where s is the size of the initial basic subset chosen by the data analyst. In 
this case, the basic and nonbasic subsets are regarded as two distinct subgroups in 
the data set. Each of these subgroups can be further divided into two smaller subsets 
by applying the above modified algorithms as many times as desired. In this way, the 
modified algorithms can be thought of as methods for finding homogeneous groups, 
rather than finding outliers, in data sets. 
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1. INTRODUCTION 

Straightforward application of usual inference procedures (tests and confidence re- 
gions) in econometrics is often impossible. The problem usually comes from an in- 
sufficient specification of the probability distribution generating the data, as occurs 
for example when one makes assumptions only on the first few moments of an error 
distribution. However, the problem also arises in parametric models that specify the 
data generating process up to a finite vector of parameters. This is typically the case 
when the assumptions made on the distribution depart from those made in the stan- 
dard linear regression framework, such as the absence of serial independence and 
homos kedastici ty. 

This chapter treats in a unified way two apparently distinct categories of prob- 
lems where distributional results are difficult to establish. The first one consists of 
comparing and pooling information about parameter estimates from samples whose 
stochastic relationship is totally unspecified. In such cases, it is not possible to write 
a usable joint likelihood function and standard finite-sample or asymptotic meth- 
ods are not applicable. The second one consists of making inferences in models for 
which the distributions of standard test and confidence set procedures are difficult 
to establish, e.g., because of the presence of nuisance parameters, but for which rel- 
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evant test statistics based on appropriately selected subsamples are distributionally 
more tractable. 

To illustrate the problems we will study, consider the case where we have m 2 
1 regression equations of the form 

where pi is an unknown k; x 1 vector (ki  < Ni) ,  is a k;  x 1 vector of fixed (or 
strictly exogenous) regressors, and Q i  is an unknown positive-definite nonsingular 
Ni x Ni matrix, i E I = {1,2 ,  . . . , m}.  This setup describes situations frequently 
met in econometrics. Special cases of interest include the following. 

1. Models in which each equation expresses a similar relationship between 
analogous variables (i.e., the coefficients pi have the same economic in- 
terpretation), but each one corresponds to a different sample and the dif- 
ferent samples may be dependent in a way that is difficult to specify (e.g., 
this includes many panel data models). 
Models with structural change: this situation is a special case of the previ- 
ous one, where the different samples correspond to different subperiods. 
Stacked regressions where each equation represents a different economic 
relation, possibly with different numbers of regressors which have differ- 
ent economic interpretations. 
Time-series models where the dependence between the m equations in 
(1) is induced by serial dependence. 

2. 

3. 

4. 

For example, take m = 2. A model of type 1 could express the relation be- 
tween the log of the wage and a variable measuring the level of education for two 
individuals. The coefficient p is then interpreted as the return to education (Ashen- 
felter and Krueger 1992), and we may wish to test whether this return is the same for 
individuals 1 and 2. In models of type 2 we may wish to know whether the parameter 
linking variable y to variable x is the same over the whole period of observation. An 
example of a type 3 model could be two equations where ~ 1 , ~  and ~ 2 , ~  represent the 
consumption of two different goods and x 1 , I  and x2, are different vectors of explana- 
tory variables. Model 3 is composed of two distinct relationships, but for some reason 
we want to test the equality of the two coefficients. An important example of a type 
4 model is a linear regression model with errors that follow a moving-average (MA) 
process of order 1, where the first equation contains the odd-numbered observations 
and the second equation the even-numbered observations. 

The most common practice in such situations is to rely on asymptotic infer- 
ence procedures. The lack of reliability of such methods is well documented in the 
literature. This feature of asymptotic tests has been established by Park and Mitchell 
(1980), Miyazaki and Griffiths (1984), Nankervis and Savin (1987), and DeJong et al. 
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(1992) in the context of AR(1) models. Burnside and Eichenbaum (1994) provide ev- 
idence on the poor performance of GMM-based Wald test statistics. For more general 
theoretical results on the inaccuracy of asymptotic methods, the reader may consult 
Dufour (1997); see also Nelson, Startz, and Zivot (1996), Savin and Wiirtz (1996), 
and Wang and Zivot (1996). Furthermore, there are situations where usual asymp- 
totic procedures do not apply. For instance, consider a model for panel data with 
time-dependent errors: if no assumption is made on the dependence structure, it is 
not at all clear what should be done. 

The main characteristic of model (1) is that the vector of dependent variables 
y = (’yi, . . . ,y’,)’ is in some way divided into rn subsamples (different individu- 
als and/or different subperiods), whose relationship is unknown. Because the joint 
distribution of the vector of errors U = (U;, U;, . . . , u i ) ’  is not specified, usual 
inference methods based on the whole sample y are not applicable. This chapter 
develops inference procedures which are valid in such contexts. 

The general issues we consider can be described as follows. Given several 
data sets whose stochastic relationship is not specified (or difficult to model), but on 
which we can make inferences separately, we study the following problems: (I) how to 
combine separate tests for an hypothesis of interest bearing on the different data sets 
(more precisely, how to test the intersection of several related hypotheses pertaining 
to different data sets); for example, in model (l), we may wish to test whether the 
linear restrictions Cip; = yio, i = 1, 2, . . . , rn, holdjointly; (11) how to test cross- 
restrictions between the separated models (such as = pz = - . = Bm, when k; = 
k, i = 1 , 2 ,  . . . , m), which involves testing the union of a large (possibly infinite) 
numberof hypotheses of the preceding type (e.g., pi = PO, i = 1 , 2 ,  . . . , n, for some 
PO); (111) how to combine confidence sets (e.g., confidence intervals or confidence 
ellipsoids) for a common parameter of interest and based on different data sets in 
order to obtain more accurate confidence sets. All these problems require procedures 
for pooling information obtained from separate, possibly nonindependent, samples 
and for making comparisons between them. 

Besides being applicable to situations where the stochastic relationship be- 
tween the different samples is completely unknown, the methods proposed will also 
be useful for inference on various models in which the distribution of a standard 
statistic based on the complete sample is quite difficult to establish (e.g., because 
of nuisance parameters), while the distributional properties of test statistics can be 
considerably simplified by looking at properly chosen subsamples. This is the case, 
for example, in seemingly unrelated regressions (SURE) and linear regressions with 
MA errors. 

The methods proposed here rely on a systematic exploitation of Boole-Bonfer- 
roni inequalities (Alt 1982) which allow one to bound the probability of the union (or 
intersection) of a finite set of events from their marginal probabilities, without any 
knowledge of their dependence structure. Although such techniques have been used 
in the simultaneous inference literature to build simultaneous confidence intervals, 



468 DUFOUR AND TORR~S 

especially in standard linear regressions (Miller 1981, Savin 1984), it does not ap- 
pear they have been exploited for the class of problems studied here. In particular, 
for general problems of type I, we discuss the use of induced tests based on rejecting 
the null hypothesis when at least one of the several separate hypotheses is rejected 
by one of several separate tests, with the overall level of the procedure being con- 
trolled by Boole-Bonferroni inequalities. For problems of type 11, we propose using 
empty intersection tests which reject the null hypothesis when the intersection of a 
number of separate confidence sets (or intervals) is empty. In the case of confidence 
intervals, this leads to simple rules that reject the null hypothesis when the distance 
between two parameter estimates based on separate samples is greater than the sum 
of the corresponding critical points. We also discuss how one can perform empty in- 
tersection tests based on confidence ellipsoids and confidence boxes. For problems 
of type 111, we propose using the intersection of several separate confidence sets as 
a way of pooling the information in the different samples to gain efficiency. These 
common characteristics have led us to use the terminology union-intersection (UI) 
methods. 

The techniques discussed in this chapter for type I problems are akin to pro- 
cedures proposed for combining test statistics (Folks 1984) and for meta-analysis 
(Hedges and Olkin 1985). Meta-analysis tries to combine the evidence reported in 
different studies and articles on particular scientific questions; it has often been used 
to synthesize medical studies. However, these studies have concentrated on situa- 
tions where the separate samples can be treated as independent and do not deal 
with econometric problems. Conversely, these methods are practically ignored in 
the econometric literature. Note also that the techniques we propose for problems 
of types I1 and 111 can be viewed as extensions of the union-intersection method 
proposed by Roy (1953) (Arnold 1981, pp. 363-364) for testing linear hypotheses 
in multivariate linear regressions, in the sense that an infinity of relatively simple 
hypothesis tests are explicitly considered and combined. A central difference here 
comes from the fact that the “simple” null hypotheses we consider are themselves 
tested via induced tests (because we study quite distinct setups) and from the differ- 
ent nature of the models studied. 

As pointed out, our methods have the advantage of being versatile and straight- 
forward to implement, even when important pieces of information are missing. These 
also turn out to be easily applicable in various problems where the distributional 
properties of test statistics can be considerably simplified by looking at appropri- 
ately selected subsamples. We show in particular that this is the case for several 
inference problems in SURE models and linear regressions with MA errors. This 
provides original and rather striking examples of “sample-split techniques” for sim- 
plifying distributional properties. For other recent illustrations of this general idea, 
the reader may consult Angrist and Krueger (1994), Dufour and Jasiak (1995), and 
Staiger and Stock (1997). In the first reference, the authors propose a sample-split 
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technique to obtain IV estimators with improved properties, while the two other pa- 
pers suggest similar methods to obtain more reliable tests in structural models. 

The paper is organized as follows. Section I1 presents the general theory: in the 
context of a general statistical model, we derive procedures for testing null hypothe- 
ses of types I and 11. In Section 111, we consider the problem of pooling confidence 
sets obtained from different data sets (type I11 problems). In Section IV, we apply our 
results to test the equality of linear combinations of parameters of different equa- 
tions in a SURE model, an interesting setup where standard tests and confidence 
sets only have an asymptotic justification (for a review, see Srivastava and Giles 
1987). In particular, we impose no restrictions on the contemporaneous covariance 
matrix, allowing for different variances and instantaneous cross-correlation. In Sec- 
tion V, we study inference for linear regression models with MA(q) errors. We show 
that our inference technique is very well suited for testing hypotheses on regression 
coefficients in the presence of MA errors. We study in detail the case of an MA(1) 
process and consider the problem of testing an hypothesis about the mean. We com- 
pare our procedure with some alternative tests. It appears much easier to implement 
than other commonly used procedures, since it does not require estimation of MA 
parameters. We also study the performance of our method by simulation. The re- 
sults show that sample-split combined test procedures are reliable from the point of 
view of level control and enjoy surprisingly good power properties. We conclude in 
Section VI. 

II. HYPOTHESIS TESTING: GENERAL THEORY 

In this section, we consider a general statistical model characterized by a sample 
space y and a family L = {PO : 8 E 0 )  of probability distributions parameterized 
by 8, where 0 is the set of admissible values of 8. Let Lo be a subset of L and suppose 
we wish to test Ho : PO E LO against H1 : PO E L\&. If the model is identified, 
which will be assumed, this amounts to testing HO : 8 E 00 against H1 : 8 E 01,  

where8 E 00 + PO E ,Co. 
We consider here three classes of inference problems concerning 8. First, we 

study situations where 00 can be expressed as a finite intersection of subsets of 0; 
i.e., 00 = nyEr Goy, where r is an index set of the form I' = {1,2,  . . . , r }  and 
0 0 , ~  c 0, y E r. Second, we examine null hypotheses which restrict 8 to a subset 
00 of 0, where 00 can be written as 0 0  = UyEr 0 o ( y ) ,  0 0 ( y )  c 0, y E r. 
In this case, r is not constrained to be a finite set. Third, we consider situations 
where the information about 8 is available from different subsamples whose joint 
distribution is unknown. We then try to pool these pieces of information by combining 
inferences based on each subsample. 
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A. 

The test procedure in this section is based on the fact that although Ho may not be 
easily testable it can be expressed as the intersection of subhypotheses, HO, : 0 E 
Oo,, each one of which can be tested by usual procedures. The decision rule is built 
from the logical equivalence that Ho is wrong if and only if any of its components 
Ho, is wrong. 

Assume that we can test Ho, using a statistic T, such that, for any 0 E Go,, 
Pe(Cy E Y : T,@) 2 x}) is known, for all x E Iw, y E r = { 1 , 2 , .  . . , r } .  The 
relation between these statistics is unknown or difficult to establish [as it is the case 
in model (l)]. We wish to combine the information on the true probability distribution 
of the model, brought by each of the r statistics. Since Ho is true if and only if all 
the H0,’s are individually true, a natural way of testing Ho is to proceed as follows. 
Using the r statistics T,, we build r critical regions W,(a,) = T,-’([t,(a,), OO)), 

where t,(ay) is chosen so that PQ[W,(~,)] = a,  under Ho,. We reject the null 
hypothesis Ho when the vector of observations y lies in at least one of the W,(a,) 
regions, or equivalently if T,@) 2 t,(a,) for at least one y.  The rejection region 
corresponding to this decision rule is UYEr W , ( a ,) . Such a test is called an induced 
test of Ho (Savin 1984). Its size is impossible or difficult to determine since the joint 
distribution of the statistics T, is generally unknown or intractable. It is, however, 
possible to choose the individual levels a y  so that the induced test has level a E 
(0, l ) ,  for by subadditivity 

Ho as the Finite Intersection of Subhypotheses 

for any 0 E 0 0 ,  = 00. Therefore, if we want the induced test to have level 
a,  we only need to choose the ay’s so that they sum to a (or less). 

To our knowledge, there is no criterion for choosing the ay’s in an optimal 
manner. Without such a rule, in most of our applications we will give the null hy- 
potheses Ho, the same degree of protection against an erroneous rejection by taking 
a,  = a0 = a / r ,  V y  E r. However, there may exist situations where we wish to weigh 
the H0,’s in a different way. In particular, if for some reason we know that one of the 
decisions d,l (say, accepting or rejecting Ho,~) is less reliable than the other deci- 
sions, we are naturally led to give d,l less impact on the final decision concerning 
the acceptance or rejection of Ho. In other words, we will choose a,/ c a,, V y  # y’. 

In the case where we choose a,  = a0 = a / r ,  V y  E r, we reject Ho, at level 
a0 when y is in W,(ao). Assuming F,,e(x)  is continuous in x, this region of Y can 
be reexpressed as 
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for all 0 E 0 0 ,  where F,,Q(z) = Pe[T,-’((-oo, z ] ) ]  is the probability distribution 
function of T,(Y) .  Then an equivalent alternative rejection criterion is to reject Ho, 
when the p-value A,@) = 1 - F;,e[ty@)] is less than ayg. So according to this rule, 
a rejection of Ho occurs whenever at least one of the r p-values A, is not greater 
than a,, and the critical region of this test procedure is 

If we assume that the statistics T, are identically distributed under the null hypothe- 
sis, then F,,e = Fe, VO E 00 and t,(ayg) = t(ao), V y  E r, hence (with probability 
1) 

W ( a )  = Cy E Y : max T,@) 2 t(ao>} 

This criterion is derived heuristically from the logical equivalence that Ho is 
true if and only if all the Hyg,’s are true. It is similar to Tippett’s (1931) procedure 
for combining inferences obtained from independent studies: using the fact that the 
r p-values are i.i.d. U[O,J] under Ho, Tippett (1931) suggested the rule: 

reject HO at level a if min{A, : y E r} 5 1 - (1  - 

Such procedures were also proposed for meta-analysis (Hedges and Olkin 1985), 
but have seldom been used in econometrics. We show that an extension of Tippett’s 
procedure to the case where the p-values are not independent can be fruitfully ap- 
plied to several econometric problems. The analogy with meta-analysis comes from 
the fact that inference on the ith equation in (1) is made “independently” from in- 
ference on any other equation, although the test statistics may not be stochastically 
independent. Since dependence of the test statistics is a common situation in econo- 
metrics, we do not assume the independence of the p-values, which leads one to 
use a/r instead of 1 - (1 - When a is small, the difference between a/r 
and 1 - (1  - a)’’, is typically quite small. For some applications of this approach 
to independent test statistics, see Dufour (1990), McCabe (1988), and Phillips and 
McCabe (1988, 1989). 

It is possible to demonstrate optimality properties for induced tests. For ex- 
ample, consider a test procedure which combines r p-values A 1, A2, . . . , A, so 
that it rejects Hyg when S(A1, A2, . . . , A,) 5 s, where S is some function from 
R‘ into R and s is a critical value such that P[S(Al, A2, . . . , A,) 5 s] 5 a un- 
der Ho. Bimbaum (1954) showed that every monotone combined test procedure is 
admissible in the class of all combined test procedures.* A combined test proce- 
dure S is monotone if S is a nondecreasing function, i.e., if x’ 5 xi, i = 1,2, . . . , 

*On admissibility of decision rules, see Lehmann (1986, Section 1.8, p. 17). 
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r 3 S(xT, xa, . . . , x:) 5 S ( x l ,  x2, . . . , xr). In our case, S(A1, Az, . . . , Ar) = 
min(A1, Az, . . . , Ar}, is clearly nondecreasing. For further discussion of admissi- 
bility issues in such contexts, see Folks (1984). 

B. 
Let us consider a null hypothesis of the form Ho : 8 E 0 0 ,  where 00 = U y E r  0o (y ) .  
The solution to this testing problem is very similar to the one suggested above in the 
case of an intersection of subhypotheses. Once again it is based on the fact that Ho 
is wrong if and only if each of its components is wrong. If each hypothesis H o ( y )  : 
8 E 0 o ( y )  can be tested using the rejection region W y ( a y )  = T-’([t,(ay), m)), 
satisfying Pe[Wy(ay)] = a y ,  V8 E 0 0 ( y ) ,  it  would appear natural to consider the 
overall rejection region W(a,, y E r) = n,,, W y ( a y )  for a test of Ho. 

However, difficult problems arise when one wants to implement this procedure 
as described above. First, if r contains a finite number p of elements, we have 

Ho as the Union of Subhypotheses 

P 
Pe[W(ay, Y E r>12 1 - C[l- P ~ [ w ~ ( ~ ~ ) I I  

y= 1 

which provides a lower bound for the probability of making a type I error. Of course, 
this type of bound is of no use since we try to bound from above the probability of 
an erroneous rejection of Ho. Appropriate upper bounds for the probability of an 
intersection are difficult to obtain. Second, when r is infinite, it is impossible to 
build W y ( a y )  for every y E r. 

It is however interesting to note that some null hypotheses can be written as 
the union of several hypotheses (possibly an infinite number of such hypotheses). 
It is then natural to construct an overall rejection region which is equivalent to the 
infinite intersection nYEr Wy(ay) .  For example, consider the hypothesis Ho : 81 = 
82 = . . = 8,, where 8; is a q x 1 subvector of the initial parameter vector 8. We 

where 80 is the unknown true value of 8; under the null. Defining Oo(80) ( 8  E 0 : 
81 = 82 = . . . = 8, = O O } ,  we have 0 0  = U B O E R 4 0 ~ ( 8 0 ) .  HO can be expressed 
as an infinite union of subhypotheses Ho(80) : 8 E Oo(80). Therefore Ho is true if 
and only if anyone of the Ho(8o)’s is true. 

Obviously, it is impossible to test every Ho(80).  Instead, we propose the follow- 
ing procedure. For each i E { 1,2 ,  . . . , m } ,  we build a confidence region C; (yi, ai) 
for 8i with level 1 - ai using the sample yi ,  where the ayi’s are chosen so that 
ELl ai = a. This region satisfies 

note that HO is true if and only if 380 E RQ such that 81 = 8 2  = . . - = 8, = 80, 

Pe[A;(8;, ai)] 2 1 - ai, V8 E 0 

where Ai(8 i ,  ai) = Cy E y : C;(y;, ai) 3 8i} ,  i = 1,2,. . . , rn, and G 3 x means 
that the set “G contains x.” In particular, if 80 is the true value of 8;, we have 

Pe[A;(80, ai)] 2 1 - a; ,  V8 E 00 



UNION-INTERSECTION AND SAMPLE-SPLIT METHODS 473 

Proposition I .  A (conservative) a-level test of Ho : 01 = 0 2  = . - . = 0, is 
given by the rejection region 

where ai, i = 1,2, . . . , m satigy ai I a. 
Proof: We need to show that Po[W(a ,  m)] 5 a,  V0 E 0 0 ,  V a  E (0, 1). Note 

that V00 E Rq, 

Hence, using the Boole-Bonferroni inequality 

P e [ W a ,  4 1  I PO E Y : c i o i ,  ail 9 001 
i= 1 

rn m 

i=l i= 1 

We shall call a critical region of the form of W(a,  m) an empty intersection test. 
In our notation, W ( a ,  m )  does not depend directly upon a, but on how the a;’s are 
chosen to satisfy the constraint ELl a; 5 a. For this procedure to be applicable, 
we need to have confidence regions C i O i ,  a;) with levels 1 - ai. This is of course 
possible in model (1) as long as 52i = i E { 1,2 ,  . . . , m } .  We describe three 
interesting special cases for which the procedure takes a simple and appealing form. 

I .  Intersection of Confidence Intervals: The Sum of Critical Points Rule 

Consider a situation where q = 1. Typically, C; @;, a;) has the form 

where 6, is some estimator of 0;, ELl ai 5 a E (0, l), and C i L O i ,  ai) > 0, 
c;uCyi, ai) > 0 for all possible values ofy;. Furthermore, it is usually the case that 
c i ~ o i ,  a;)  = ciu@i, a;)  but we shall not need this restriction here. It is easy to see 
that the following lemma holds. 

Lemma I .  The intersection of afinite number m of intervals Ii = [Li , U i ]  c 
R, i = 1, 2,  . . . , m, with nonempty interiors is empty ifand only if 

min(U; : i = 1,2,  . . . , m} < max{li : i = 1 , 2 , .  . . , m}.  
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Proof: Define U M  = min{U; : i = 1 ,2 ,  . . . , m } ,  LM = max{L; : i = 
1 , 2 , .  . . , m},  and I = {x E R : LM 5 x 5 U M } .  Then 

f # 0 ~ 3 x s u c h t h a t L i  5x 5 U i f o r i =  1 , 2 ,  . . . ,  rn 

@ 3x such that LM 5 x 5 U M  

or equivalently, 

From Lemma 1 and Proposition 1, we reject Ho if and only if 

rninI8; + c i u b ; ,  ai) : i = 1 ,2 ,  . . . , m }  
n 

c max(8; - c ; ~ , ( y i ,  ai) : i = 1 , 2 ,  . . . , m} 

But this condition is equivalent to 

3j,  k E {1,2, . . . , m }  such that 8; -t c;u(yj,  aj) < 8 k  - ckL(yk, ak) 

or 

Finally, we reject Ho if and only if 

In the case where m = 2, with c;ucyi, a;) = c j ~ ( y ; ,  a,) = cjcyi, a;), j = 1 , 2 ,  this 
criterion takes the simple form: reject the null hypothesis when the distance between 
the two estimates is larger than the sum of the two corresponding “critical point. ” The 
rejection region is then 

W ( a ,  2) = cy E Y : 18, - 821 > c1 (yl 7 a1) + c202,  

For m > 2, we reject the null hypothesis when at least one of the distances l 8 k  - 8, I 
is larger than the sum cj (y; , a;) + C k  ( y k ,  ak). We will now extend this procedure to 
multidimensional parameters and consider confidence ellipsoids. 

2. 
Consider the null hypothesis HO : 81 = 82 ,  where 0i is a q x 1 vector. As before, HO 
can be restated as HO : 8 E (8 E 0 : 300 E Rq : 191 = 0 2  = 80). Suppose that for 
i = 1 , 2 ,  we have a confidence ellipsoid Ci(yi, a;)  for 8;, such that 

Intersection of Two Confidence Ellipsoids 

C;(y;, a;)  3 80 (8i - 0,)’A;(8i - 00) 5 c i (a i )  
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where A; is a q x q positive definite matrix whose elements depend on y ; ,  Si is an 
estimator of Oi, and c;(a;)  is a constant such that 

PO[@ E y : C;&, ai) 3 O } ]  >_ 1 - a ; ,  vo E 0 

the rejection criterion C10,1, a1) n C202, a2) = 0 of Proposition 1 is seen to be 
equivalent to El(a1)  n Ez(a2) = 0. 

To determine whether the intersection of the two ellipsoids is empty, i t  is suf- 
ficient to find the set E,*(a2) of solutions of the problem 

and check whether there is at least one element of E,*(a2) lying in El (al) ,  in which 
case the two confidence ellipsoids have a non empty intersection and Ho is accepted 
at level al + a2. This is justified by the following lemma. 

Lemma 2. Let E,* (az) c E2 (a2) be the set of the solutions of (2). Then 

Proof: (+) Let E l ( a l )  n E,*(a2) # 0. Since Ez(a2) C E ~ ( a 2 ) ,  it follows 
trivially that El (a l )  n E2(a2) # 0. 

(+) Let E1 (al)  n Ez(a2)  # 0. Then we can find p such that p E El ( a l )  and 
p E Ea(a2). In other words, p is an element of E2(az) that satisfies the condition 

- Pl/I2 5 cl(a1).  Now 
suppose El(a1) n E,*(az) = 0. This means that the following implication must 
hold: 

- P11I2 5 c ~ ( a ~ ) ,  which entails that minyEE2(cr2) 

Since E;(a2) is not empty, it follows that minyEE2(a2) )Iy - PI 11’ > c ~ ( a l ) ,  a con- 
tradiction. Thus we must have El (al)  n E,*(a2) # 0. 
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Although any numerical calculus computer package is able to solve (2), we 
propose a simple two-step procedure for deciding whether the intersection of two 
ellipsoids is empty. This method can prove useful for high-dimensional problems. 
The two steps are the following: 

1. Check whether 81 E Cz(y2, a2) or 8 2  E Cl(y1, a 1 ) .  If one of these events 
is realized, then Cl(y1 ,  a 1 ) n C2 @2, a2) is not empty, and Ho is accepted. 
Otherwise, go to the second stage of the procedure. 
Since 81 4‘ C2(yy2, a 2 ) ,  it follows (by convexity) that Eg(a2)  is a subset of 
the boundary aEz(a2)  and 

2. 

so that we can check whether E l ( a 1 )  n E2(a2) # 0 by checking if 
El  (al) n aEz(a2)  # 0. If the latter condition is satisfied, Ho is accepted; 
otherwise Ho is rejected. 

To be more specific, step 2 simply requires one to find the vector 9 which minimizes 
IIy - 91 subject to the restriction ( y  - p2)’D(y - p2) = c2(a2) ,  and then to 
reject Ho when 119 - 91 ( I 2  > c l ( a 1 ) .  

3. 

When the covariance matrices of the estimator 8, are unknown, one cannot typically 
build confidence ellipsoids. To illustrate such situations, consider the following ex- 
ample. Two published papers investigate econometric relationships of the form 

intersection of Two Confidence Boxes 

where ui - N ( 0 ,  aTIN,), and 
and 82. However, only the 

standard errors of the coefficients are known (or reported), not their covariance ma- 
trices. Then it is not possible to use the previous procedure. But it is possible to use 
simultaneous inference techniques and build simultaneous confidence boxes (hy- 
perrectangles). Various methods for building such confidence sets are described in 
Miller (1981) and Savin (1984). More precisely, let us build for each of the two re- 
gressions in (4) k simultaneous confidence intervals, denoted by C{(y i ,  a{) for the 
component /3i of /I;, j = 1 , 2 ,  . . . , k, i = 1 , 2 ,  such that 

is a k x 1 vector of unknown parameters. 
We wish to compare the two parameter vectors 
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Then choosing the a i ’ s  so that a1 + a2 = a, and applying the results of Proposition 
1, we reject Ho : = 8 2  at level a when the intersection of the two hyperrectangles 
is empty. 

Checking whether the intersection of the two boxes is empty is especially 
simple because one simply needs to see whether the confidence intervals for each 
component of @; have an empty intersection (as in Section II.B.l). Furthermore it 
is straightforward to extend this technique in order to compare more than two re- 
gressions. Similarly, although we proposed a test for the null hypothesis that all 
the parameter vectors /I; are equal (then imposing that in each equation has the 
same number of parameters), it is easy to extend this procedure in order to test the 
equality of linear transformations of Pi, i = 1,2, . . . , rn. Indeed, the method re- 
lies only on the ability to derive confidence regions for parameters which are re- 
stricted to be equal under the null. This is clearly possible whenever the param- 
eters of interest are of the form R;&. The procedure is actually applicable to any 
function h(0) of the parameter, provided we are able to build a confidence region 
for h(8).  

111. CONFIDENCE SET ESTIMATION 

In the previous section, we described a general method for testing hypotheses in 
several contexts. The main feature of the procedure is that a single final decision 
concerning a family of probability distributions is taken by combining several indi- 
vidual (partial) decisions on that family. 

In many situations, we may wish to go a step further. For instance, consider 
again model (1) and the null hypothesis Ho : B1 = p 2  = . = pn. The results 
of Section I1 show how to test such an hypothesis. Suppose Ho is taken for granted. 
It is then natural to ask what could be a valid confidence region for j3, the unknown 
common value of @;, i = 1 , 2 ,  . . . , rn. The main difficulty here comes from the fact 
that only the marginal distributions of the separate samples are specified, not their 
joint distribution. Suppose each of these marginal distributions can be used to build 
a confidence region for /3. The problem is then to find a way of pooling these pieces 
of information on the true value of B and derive a single confidence region which 
is based on the whole sample. This can be done as follows. Suppose each one of 
the separate observations vectorsyl ,y2, . . . , y n  has a distribution which depends 
on 0 E 0. Although the joint distribution of y = @’, ,yL, . . . ,yh)’ is unknown, 
we assume it is possible to build rn separate confidence regions Ci(cu;,y;) for 8 
such that 
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Then a natural way to exploit simultaneously these different pieces of information 
consists of taking the intersection npl C;(a;, y;) of the different confidence regions. 
It is easy to see that 

m 

i= 1 

Thus selecting a1, a2, , . . , am so that E:=, a; = a, we can get any desired con- 
fidence level. This procedure can be especially useful when one of the subsamples 
yields a particularly accurate confidence set for 8. 

In the next sections, we show how the procedures described in Sections I1 and 
I11 can be used to make inference in SURE and regressions with MA errors. 

IV. EXACT INFERENCE IN SURE MODELS 

A. The Model and the Procedures 

In this section we consider the SURE-type model: 

where Xi is a Ni x k; fixed matrix of rank k; < Ni, P; is a k; x 1 vector of unknown 
parameters, U; = (u i l ,  ui2, . . . , u;~;)’, and E(u;,uis) = 0, Vt  # s. Note we do 
not impose any restriction on the relationship between the rn equations, so that the 
above model is more general than the standard SURE model. The null hypotheses 
of interest are H;’) : A; = AO;, i = 1 , 2 , .  . . , m, and Hf’ : A1 = A2 = = Am, 
where A; = Rib;, Ri is a known qi x k; matrix with rank 4; 5 k;, i = 1 , 2 ,  . . . , m, 
and Ao; is a known qi x 1 vector, i = 1 , 2 ,  . . . , m.* An interesting special case of 
H i 1 )  is = 8 2  = . - - = Bm = P O ,  which is obtained by choosing k; = k, R; = 
Zk, Ao; = P O ,  a known FE x 1 vector, in the above setup. 

We will consider two versions of (5), depending on whether we make the as- 
sumption ( A l )  : U = ( u { , u $ ,  . . . ,U;)’ - N ( 0 , a 2 Z ~ ) ,  where N = EL1 N;.  
Under A l ,  there exists an optimal test of Hi1) given be the critical region associ- 

*For H f ’  we must have q = qi, Vi = 1,2, . . . , rn and y 5 min{k; : i = 1,2 ,  . . . , m}. 
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ated with the Fisher F-statistic, based on the stacked modely = Xg + U, where 
y = (Y’,,Y;, . . . ,yL)’, B = ( P i , .  . . P i ) ’ ,  X = diag(X;);=i,z ,..., 

(A - Ao>’[s2R(X’X)-’R’]-’(A - A*) 
Q 

and 

I t  

F =  

withA = (A’,, A;, . . . , A;)’, A = ( A l l  A,, . . . , & ) I l  A0 = (A;’, Ahz, . . . , &)I, 
A; = R;, pi,& = (XiXi)-‘Xiyi, i = 1 , 2 , .  . . , rn, R = diag(R;);,l,z ,..., m ,  s2 = 
[ [ ( I N  - X(X’X)-’X’)Y~~~/(N - K ) ,  Q = CL1 qi and K = 

When we introduce heteroskedasticity in the model by allowing the variances 
to differ across equations, our procedure is still valid, but the Fisher procedure is 
not. As an alternative, one would typically use an asymptotic method based on a 
generalized least-squares estimation and a critical region defined by a Wald, a La- 
grange multiplier or a likelihood ratio statistic. But, as we already mentioned in the 
introduction, it is well known that these approximations are not reliable. 

An induced test of HA’) consists in testing HhL1) : A; = Ao; at level a; using 
the critical region K(ai) = Cy E Y : F, == F(a ; ;  q; ,  N; - I c ; ) } ,  where 

A A  

k ; .  

(Ai - Xoi)’(seR;(x~!xi)-’R:)-’(Ai - AOi) 
F , =  

4; 

with Ai = Rib;, s’ = II(I,vi -X;(XiX;)-’Xi)~;11~/(N;-Ic;),and F(a ; ;  q;,  N i - k ; )  is 
the 1 - a; percentile of the Fisher distribution with (q ; ,  N; - k ; )  degrees of freedom. 
The ai’s can be chosen so that a; = a. Then the level a critical region for an 
induced test of H i ’ )  is U:, K (a;). 

If we wish to test H i 2 )  at level a, we simply have to build rn confidence regions 
at level 1 - a; for A; which are defined by 

C;(Y;, a;)  = {x E [Wq : (A; - x)’(s’R;(xlxi)-’R:)-l(A; - x) 

I qiF(ai; qi, Ni - k ; ) }  

in the A; space, and reject ai = a. 
Note that, under assumption ( A l ) ,  the induced procedure for a test of Hh’) can 

be improved by taking into account the independence of the regressions. In Section 
11, we showed that the rejection region associated with an induced test of HA’) is 
Ukl R(a;), where K(a;)  is the critical region for a test of /I; = /I0 at level ai. 
Under ( A l ) ,  we have 

whenever n:, Cibi ,  ai) = 0, with 

m 

Pe U KW = 1 - pe n y \ K ( a i )  = 1 - n P ~ [ Y \ R ( ~ ; > I  L1 I I i=l  

Under Hh’) we have Pe[J’\K((a;)] = 1 - a;, Thus by choosing the a;’s so that 
nk1(1 - a;)  = a, we get a test of HA’) which has level a. If a; = ao, i = 
1 , 2 , .  . . rn, we must have a0 = 1 - ( 1  - (a)’’m.  
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Unfortunately, the independence assumption (Al) is not helpful when we turn 
to the test of Hf). But the procedure of Section 1I.B remains valid. To see why it 
is difficult to exploit the independence of the regressions, consider the case where 
rn = 2 and k = 1. We can build two confidence intervals Ci(y; ,ao)  = [Bi - 
ci ( j i ,  ao), Bi + ci ( j i ,  ao)], with a0 = a/2. According to our rejection criterion (see 
Section II.B.l), we reject Hi2) at level a when 181 - 8 2 1  > cl 011, ao) + c z ( y 2 ,  ao). 
It is quite difficult to find the size of this critical region. 

Consider now model (5) where assumption ( A l )  is not imposed. This model has 
m(m + 1) /2  + ELl ki parameters and E:, Ni observations. In this case, no usual 
finite-sample or asymptotic test procedure appears to be available for comparing the 
coefficients of the different regressions. But the induced test method allows one to 
test HA’) and H f )  relatively easily. 

B. Some Examples 

We now present some illustrations of the procedure described in the previous sec- 
tions. 

I ,  

The first example we consider is taken from Berndt (1991, pp. 460462). We consider 
the problem of testing restrictions on the parameters of a generalized Leontieff cost 
function. We assume that the production technology has constant returns to scale 
and incorporates only two inputs, capital ( K )  and labor (L) ,  whose prices are PK and 
PL respectively. If we denote the output by Y and the total cost by C, the generalized 
Leontieff cost function is 

Testing Restrictions in a System of Demands for Inputs 

If the producer has a cost-minimizing strategy, it can be shown that the demands for 
factors K and L are given by 

A stochastic version of this model would consist in the two-equation SURE model 

1 1  1, = al + hip, -+- U t  
k k  kt = ak + bkPt  + U t  

where uk and U’ are two Gaussian random vectors with zero mean and covariance 
matrices O ~ Z N  and CJ:ZN,  respectively, and N = 25 is the sample size for each vari- 
able of the model. A restriction imposed by the theory is b k  = bl, which will be 
our null hypothesis. To test Ho, the procedure described in Section II.B.l is partic- 
ularly well suited since we have no a priori information on the relation between the 
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0.3992 

0.1659 

Figure I 97.5% confidence ellipsoids and intervals in the Berndt example. Confidence el- 
lipsoid for (ak,  b k ) ’ :  -; confidence ellipsoid for (all bl)’:  ---; confidence intervals for b k  and 
ul appear on the left and right vertical axes, respectively. 

random variables U: and U:. Using the data provided in Berndt (1991), which are 
described in Berndt and Wood (1975), we performed separate tests of the following 
null hypotheses: 

The results of the estimation are 

k, = 0.0490 + 0.00342 pf + iif 
( . 0001 25) ( .000084) 

I ,  = -0.OMM + 0.28295 p i  + Cf 
(.OO1621) (.OO2350) 

where the standard errors are given in parentheses. In Figure 1, we show the two 
97.5% level confidence ellipsoids required for testing H l .  It is straightforward to 
see that we can reject both null hypotheses at level 5% because none of the regions 
intersect. Similarly, the 97.5% level confidence intervals for b k  and bl are respec- 
tively (-0.01869,0.02539) and (0.1659,0.3992), and so do not intersect. 

Since no information on the joint distribution of U: and U: is available, usual 
GLS procedures cannot be applied in this context. However, suppose that we assume 
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that (U!, U;, . . . , uss, U:, U:, . . . , ui5)’ is a Gaussian random vector with variance 
matrix 

as is usually done in SURE models. Using standard GLS techniques, the estimate of 
(ak ,  b k ,  al,  bi)’ is (0.05100,0.00235,-0.04886,0.28804)’ and the F-statistics for 
testing Ho and H: are 27.61 and 938.37, respectively. Since the corresponding 5% 
asymptotic critical values are 4.05175 and 3.19958, the null hypotheses are both 
rejected. However, one may prefer the empty intersection test procedure, because 
it makes a weaker assumption on the error distribution. Moreover, GLS-based tests 
only have an asymptotic justification. 

2. 

This example is taken from Ashenfelter and Zimmerman (1993). The study considers 
the following SURE model: 

Testing Restrictions on Returns to  Schooling 

where K; and Xi; represent the log wage and the schooling of the ith brother in the j th 
family. These equations are the reduced form of a structural model which expresses 
the relationship between the wage and years of schooling: 

where F is a family specific component. We must have 0i = /?; + A;, i = 1 ,2 .  
The structural model has been estimated over a sample of 143 pairs of brothers. 

The estimates reported by Ashenfelter and Zimmerman (1993, Table 3) are given 
below, with standard errors in parentheses: 

41 = 0.052, Xi = 0.018, 8 2  = 0.068, X2 = 0.006 
(0.015) (0.020) (0.019) (0.015) 

A natural hypothesis to test here is Ho : (B1, h.1)’ = (82, h.2)’. This can eas- 
ily be tested from the estimated structural model, since Ho is equivalent to H; : 
(01, AI)’ = ( 0 2 ,  A2)’. Here, we will use the hyperrectangle technique, because 
Ashenfelter and Zimmerman (1993) do not provide the full estimated covariance 
matrix for each regression. We first find a confidence interval with level 1 - a /4  for 
each one of the mean parameters in the structural model, and check whether the 
two rectangles so obtained overlap, in which case we accept the null hypothesis. 
This is done for a = 5%. Each event [0.0140,0.0900] 3 81, [-0.0326,0.0686] 3 
AI, [0.0199,0.1161] 3 Q2,  [ -0.0320,0.0440] 3 h.2 occurs with probability 0.9875. 
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We accept the null hypothesis at level 5%, since the two boxes [0.0140,0.0900] x 
[ -0.0326,0.0686] and [0.0199,0.1161] x [ -0.0320,0.0440] have a nonempty in- 
tersection, which is [0.0199,0.0900] x [ -0.0320,0.0440]. 

V. EXACT INFERENCE IN LINEAR REGRESSION 
MODELS WITH MA(q) ERRORS 

In this section, we show that the procedures developed in Section I1 can be useful 
for inference in some dynamic models. 

A. A Test on the Mean of a General MA(q) Model 

In this section, we consider models of the form 

yl = ml + u t ,  ut = Q ( B ) E ~ ,  t E T = { 1 , 2 , .  . . , 7’) 
(6) 

E E Z 7 , .  . . , E o ,  E l , .  . . , ET)’  - N ( 0 ,  a2ZT+(J 

K where Q ( z )  = $0 + $12 + $2z2 + * . * + $ fqZq ,  $0 1, mt = x k = l  x l k b k  = xib, 
b = ( b l ,  b 2 ,  . . . , b K ) ’  is a vector of unknown coefficients, and x l  = (xll,  x12, . . . , 
xl~)’, t = 1 , 2 ,  . . . , T ,  are vectors of fixed (or stricly exogenous) variables. In model 
(6),y - N(m,  a), where m = ( E m i ,  Em2, . . . , EmT)’ and = ( W ~ , . J ~ , ~ = ~ , ~  ,..., T ,  
with 

(7) shows the key feature of model (6): observations distant by more than q periods 
from each other are mutually independent. Then, we are naturally led to consider 
model (6) for subsamples obtained as follows. Define subsets of T, J; = {i, i + ( q  + 
l) ,  i + 2(q + l ) ,  . . . , i + ni(q + l)}, where ni G I[(T - i ) / (q  + l ) ]  (I[.] denotes 
the integer part of x), i = 1 , 2 ,  . . . , q + 1, and consider the q + 1 equations 

Equation (8) belongs to the class of model (1). In each equation, the error term sat- 
isfies the assumptions of the linear regression model, so that it is possible to apply 
usual inference procedures to test restriction on b,  Ho : b E Cp. This null hypothesis 
can be seen as the intersection of q + 1 hypotheses H o , ~ ,  each of which restricts the 
mean of the ith subsample to be in @, i = 1 , 2 ,  . . . , q + 1. The methods presented 
in Sections I1 and I11 are perfectly suited to such situations. We build q + 1 critical 
regions with level a/(q + 1) to test each one of the hypotheses Ho,i, and reject the 
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null hypothesis at level a! if the vector of observations belongs to the union of these 
regions. Note we did not make any assumption on the roots of W ( t ) .  In particular, 
we did not restrict the MA process { * ( B ) E ~  : t E T} to be invertible. 

In the next subsection we apply the procedure to a MA(1) process with a con- 
stant and provide comparisons with some alternative procedures such as asymptotic 
tests and bounds tests. 

B. Exact Inference in the Context of a MA( I) Process 

I. An Induced Test on the Mean 

Consider the model described by (6), with q = 1, K = 1 and xt  = 1, Vt  E T: 

(9) 
ind 

yt = B + Et + @ & t - l ,  ~t - N ( 0 ,  a2), 

The vector of parameters is 8 = (B, @, a2)'. The null hypothesis we consider is Ho : 
8 E 00,Oo = (0 E 0 : B = 0). According to our procedure, assuming T is even, 
we form two subsamples of size T/2, ( y t ,  t E J i ) ,  where J 1  = { 1,3, 5, . . . , T - 1) 
and J2 = {2 ,4 ,6 ,  . . . , T ) .  For each subsample, we make inference on B from the 

t E T 

regression equation 

yt = B  + U t ,  t E J ; ,  U ;  = ( ~ t  : t E 1;)' N ( O ,  a t l ~ p ) ,  i = 1 , 2  
(10) 

A natural critical region with level a!/Z for testing B = 0 is then given by 

where bi is the OLS estimator of B and P@;) the usual unbiased estimator of the 
variance of /!Ii from regression (10) using sample (yt  : t E J i ) ;  t (T /2  - 1; 4 4 )  is the 
upper 1 - a/4 percentile of Student's t distribution with T/2 - 1 degrees of freedom. 
We reject Ho : B = 0 at level a! ify E Wl(a/2) U W2(a!/2). 

2. Alternative Procedures 

We compared this procedure with two alternatives. The first one consists in testing Ho 
using bounds proposed by Hillier and King (1987), Zinde-Walsh and Ullah (1987), 
Vinod (1976), and Kiviet (1980); see also Vinod and Ullah (1981, Chap. 4). The 
latter are based on standard least-squares-based tests statistics for testing /? = 0 
obtained from the complete sample, such as the t-statistic or its absolute value. Since 
the distributions of the latter depend on the unknown value of the moving average 
parameter @, one finds instead bounds &(a) and t " (a )  which do not depend on the 
parameter vector 8 and such that 
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for all 0 E 0 0 ,  a E (0, 1). Then the decision rule that consists in rejecting Ho 
when TCy) > t"(a) and accepting Ho when T O )  < &(a) has level a. An incon- 
venient feature of such procedures is that they may be unconclusive (when T O )  E 
[t'(a), t"(a)]). Obviously, to avoid losses of power, the bounds should be as tight as 
possible. 

In all the above references on bounds tests, the bounds are derived assuming 
that the MA parameter is known, so that they depend on it, even under the null 
hypothesis. Therefore we will denote by t i(a) and t i(a) the lower and upper bounds 
on te(a). But as @ is unknown, we have to find the supremum, t"(a), over the set 
{t i (a) : ,$(a) L t o ( @ ) ,  VO E Oo}, to make sure that the test based on the rejection 
region 

V ( a )  = cy E y : TCy) > t"(a)}  

satisfies the level constraint 

Since the moving-average parameter is not restricted by Ho, the set of admissible 
values for @ is R. The upper bound is then likely to be quite large. 

In the context of model (9), T O )  is typically the usual t-statistic, its square 
or its absolute value. Since under Ho, its distribution only depends on @ (and the 
sample size), we write te,  t ; ,  and tfL instead of t g ,  t i ,  and t i ,  respectively. 

Here, we only use the bounds of Zinde-Walsh and Ullah (1987) and Kiviet 
(1980), denoted by t;,$(a) and t i ,$(a), because they are respectively tighter than 
those of Hillier and King (1987) and Vinod (1976). The supremum t i (a )  of ti,+(a) 
for @ E R is difficult to establish, but Kiviet (1980, Table 6, p. 357), gives the values 
of the bounds for @ E {.Z, .3, .5, .9}, and it can be seen that ti,,9(a) 2 t i ,+(a),  for 
@ E { 2,  .3, .5, .9}. We note that these bounds increase with @, and we suspect that 
the supremum is arbitrarily large, possibly infinite when @ # 1. Nevertheless, we 
will use t i  9(a) as the relevant upper bound in our simulations. Zinde-Walsh and 
Ullah (1987) derived bounds on the Fisher statistic (or on the square of the t-statistic 
in our case). t ; , + ( ( ~ )  is proportional to the ratio )Lmax(@)/hmin(@) of the highest and 
lowers eigenvalues of the covariance matrix ofy: 

We need to make here a remark about the accuracy of Zinde-Walsh and Ullah's 
bound. Their test rejects Ho at level a when [TCy)I2 > s ~ p ~ ~ ~ t $ , ~ ( a )  t;(a). 
The critical value t i (a)  is not easy to determine analytically, so instead of finding 
the maximum of t i ,$(a) on R, we reckoned ti,$(0.05) for some values of @ in the 
interval [-1, 21. We found a maximum at @ = 1, and a minimum at @ = -1, for 
every sample size we considered. Although ti,,(0.05) 5 t;(0.05), we used this 
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Table I Zinde-Walsh and Ullah‘s Bounds 

Sample Size T 25 50 75 100 

t& (0.05) 1 164.1972 4 254.3396 9 291.4222 16 274.6855 

value as the upper bound. Doing so gives more power to the Zinde-Walsh-Ullah test 
than it really has, because it may reject Ho more often than it would do if we used 
t;(0.05). Despite this fact, t;, (0.05) is so large (see Table 1) that the power of the 
test is zero everywhere on the set of alternatives we considered, for any sample size 
and for any @ (see Section V.B.3). 

The second alternative consists of using asymptotic tests. In this category, we 
considered three commonly used test. The first category includes tests based on a 
GLS estimation of (9). In the first step, one finds a consistent estimator h of G! and 
P such that P’P = h-’ . In the second step, we multiply both sides of (9) by P and 
apply ordinary least squares (OLS) to that transformed model. In the last step, we 
test Ho using the standard F-test. We examine two estimation procedures that lead 
to a consistent estimator of /?, resulting in two test statistics. The first one is detailed 
in Fomby, Hill, and Johnson (1984, pp. 220-221). We denote it by GLS-MM because 
in the first step of GLS, we estimate the MA parameter @ by the method of moments. 
@ is estimated by minimizing the distance (in the sense of the Euclidean norm on 
R) between the sample and true first-order autocorrelations. The second estimation 
procedure uses exact maximum likelihood in the first step of GLS and will be denoted 

The third test we consider is motivated by a central limit theorem (Brockwell 
and Davis 1991, p. 219) which establishes the following property: if a process, with 
mean B, has an infinite-order MA representation with IID error terms and MA coef- 
ficients @ i ,  i = . . . , -2, - 1 , O ,  1,2, . . . , satisfying the conditions 

by GLS-ML.* 

00 00 

then the sample mean of the process is asymptotically normally distributed, with 
mean /3 and variance T - ’  y ( k ) ,  where y ( k )  is the autocovariance at lag k .  
Note that the last condition on the @i’s is not satisfied for the MA(1) process (9) with 
@ = -1, but as @ is unknown, we might not be aware of this fact or ignore it. Then a 

*For further discussion of ML estimation in this context, see Tunnicliffe Wilson (1989) and Laskar and 
King (1995). 
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Table 2 Size and Critical Values of 5% Level Asymptotic Tests 

T = 50 T = 25 

Sample size $* Size (%) ACV CCV $* Size (%) ACV CCV 

GLS-MM -0.5 19.22 4.25968 30.664 -0.5 18.59 4.0384 59.555 
GLS-ML -0.5 27.87 4.25968 37.979 -0.5 15.06 4.0384 14.615 
NW 1 15.03 3.840 8.459 1 10.25 3.840 5.789 

T = 75 T = 100 

Sample size +* Size (%) ACV CCV $* Size (%) ACV CCV 

GLS-MM -0.5 16.98 3.97024 64.502 -0.5 14.98 3.9371 38.789 
GLS-ML -0.5 10.13 3.97024 6.396 -0.5 7.84 3.9371 4.983 
NW 1 8.82 3.840 5.243 1 8.08 3.840 4.907 

natural way of testing Ho is to estimate B by the sample mean LT and the asymptotic 
variance by the consistent estimator proposed in Newey and West (1987): 

where r T ( k )  is the sample autocovariance at lag k .  Then, if Ho is true, the statistic 

has an asymptotic x' distribution with 1 degree of freedom. We will denote this 
procedure by NW.* 

Before presenting the results of our simulations, we wish to insist on a very 
important condition one has to impose when comparing the relative performance 
of two tests. In the Neyman-Person approach to the problem of testing a null hy- 
pothesis Ho against an alternative H I ,  it  is meaningless to say that a test A has a 
higher power than a test B,  if the  two tests do not have the same level. A test of 
Ho : 0 E 0 with critical region W has level a if supoEoo Po(W) 5 a, and it has size 

*Of course, the list of the methods considered in the present simulation is not exhaustive. For example, 
possible variants of the NW method include the covariance matrix estimators proposed by Wooldridge 
(1989). Bayesian methods (Kennedy and Simons 1991) and marginal likelihood methods (King 19%) 
could also be used in this context. But space and time limitations have precluded us from including all 
proposed methods in our simulations. 
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(a) T=25 
80 

beta 
(c) T=75 

beta 
(d) T=lOO 

beta 

Figure 2 Rejection frequencies of Ho : = 0 in model (4) with II/ = 1, T = 
25,50,  75, 100; induced test (-), tests based on subsamples (yc : t E Ji) and (yc : t E J2) 

( - .  . and - . -). 

a if supo,=-oo Po(W) = a; see Lehmann (1986, Section 3.1). When the probability of 
rejection Po(W) under the null hypothesis (6 E 0 0 )  is not constant, controlling the 
level of a test requires one to ensure that Pe(W) 5 a for all 6 E 0 0 ,  and controlling 
its size involves ensuring that the maximum (or supremum) of the rejection probabil- 
ities over 8 E 00 is equal to a. Of course, this may lead to a difficult search over 
the parameter space. When the distribution of a test statistic depends on a nuisance 
parameter (the unknown value of $r, in the present case), correcting the size of a test 
requires one to find a critical value such that the maximum probability of rejection 
under the null hypothesis (irrespective of $r) is equal to a. A way of doing this is to 
detect the value of $r, $* say, for which the discrepancy between the level and the 
size is maximum. For that value, we simulate S times the test statistic, Z'$* (y) .* We 
then take the observation of rank (95 x S)/100 + 1 of the statistic as our corrected 
5% level critical value: we reject Ho at level 5% when T+* (y) is larger than or equal 
to that value. Table 2 reports $*, the size (in %), the 5% asymptotic critical value 

*For all asymptotic test procedures, we set S = 10,000. 
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(a) T=25 
100 1 

beta 
(c) T=75 

beta 

0 1 
beta 

(d) T=lOO 

beta 

Figure 3 Rejection frequencies of Ho : = 0 in model (4) with II. = 0.5, T = 
25,50,  75, 100; induced test (-), tests based on subsamples (yt : t E J l )  and (yL : t E 52) 
(. . . and - . -). 

(ACV), and the 5% corrected critical value (CCV), for each sample size T ,  and each 
of the three asymptotic procedures. 

3. Simulations 

In our simulations, we proceeded as follows. For 1c/ E {-1,  -.5,0, .5. 1) and T E 
{25,50,75, loo}, we considered a grid of /? values around = 0. In each case, 
1000 independent samples (yt, t = 1 , 2 ,  . . . , 7‘) were generated and the follow- 
ing statistics were computed: (1) the t-statistic based on the whole sample; (2) the 
t-statistic based on the two subsamples (yt : t E J,) and (yL : t E J 2 )  containing 
the odd and even observations respectively; (3) the GLS-MM and GLS-ML based 
F-statistics; (4) the c,”” -statistic. Using these statistics, the following tests were 
implemented at level 5% and the corresponding rejection frequencies were com- 
puted: (a) Zinde-Walsh and Ullah’s bounds test; (b) Kiviet’s bounds test;* (c) GLS- 

*Because Kiviet (1980) does not provide the upper bound for T = 75 and T = 100, we did not investigate 
the behaviour of Kiviet’s test for these values of T. 
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(a) T=25 (b) T 4 0  

0 1 
beta 

(c) T=75 . .  

0 1 
beta 

0 1 
beta 

(d) T=lOO 

beta 

Figure 4 Rejection frequencies of Ho : B = 0 in model (4) with @ = 0, T = 
25,50,75, 100; induced test (-), tests based on subsamples (yl : t E A )  and (yl : t E J 2 )  

(. ’ .  and - . -). 

MM asymptotic test (corrected and uncorrected for size); (d) GLS-ML asymptotic test 
(corrected and uncorrected for size); (e) NW asymptotic test (corrected and uncor- 
rected for size); (f) the induced test which combines the standard t-tests based on 
the two subsamples (yt : t E ,II) and (yt : t E 1 2 ) ;  (g) the separate tests based on the 
subsamples (yt  : t E J 1 )  and (yt : t E 1 2 ) .  The results are presented in Figures 2 to 
6 and Tables 3 to 7 .  

As it became clear in the description of the induced test, when applying such 
a procedure to model (9), one is led to split the sample in two, and make two tests 
at level a/2. At first sight, the procedure displays features that may seem quite 
unattractive. First, it splits the available sample in two, and second it combines two 
tests whose levels are only a/2 (instead of a). From these two remarks, one may ex- 
pect the procedure to lack power. But we should keep in mind that, since the two 
“subtests” have level a/2, the resulting induced test has level certainly greater than 
a/2 (although not greater than a). Furthermore, this test actually uses the informa- 
tion contained in the whole sample. Then it becomes less clear whether the induced 
test procedure automatically leads to a loss of power relatively to other alternative 
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(a) T=25 

beta 
(c) T=75 . .  

beta 

(b) T 5 0  

beta 
(d) T=lOO 

0 
beta 

Figure 5 Rejection frequencies of Ho : B = 0 in model (4) with I) = - . 5 ,  T = 
25, 50, 75 ,  100; induced test (-), tests based on subsamples (yL : t E JI) and (yL : t E J.r) 
(. . . and - . -). 

tests. Two questions arises from these remarks: (1) Is combining preferable to not 
combining? i.e., should our decision at level a rely on an induced test procedure or 
on a test based on one of the subsample only? (2) How does the induced test compare 
with the procedures mentioned in Section V.B.2? 

Figures 2 to 6 answer the first question. They show that the power of the in- 
duced test (solid line) is generally higher than that of an a-level test based on one 
of the two subsamples (dashed lines). In other words, combining is preferable to not 
combining. When it is not the case (when the true value of the MA parameter is 
unity, @ = 1, see Figures 2a to Zd), the power loss from using the induced test is 
very small, so that one would usually prefer the sample-split procedure that uses all 
the observations. 

Tables 3 to 7 report the estimated probability of a rejection of Ho : B = 
0 for different sample sizes (7' E (25, SO, 75, 100)) and true values for p ( p  E 
{ - 1,  - .8, - .5, - .2,0, 2,  .5, .8, 1 }), for each one of the test procedures of Section 
V.B.2. If we first consider bounds tests, we note that the Kiviet test is dominated by 
the induced test, except for $ = .5 and $ = 1.  We already mentioned in Section 
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(a) T=25 

1 

beta 
(c) T=75 

0 1 
beta 

(b) T=50 

‘51 0 1 
beta 

(d) T=100 

beta 

Figure 6 Rejection frequencies of Ho : = 0 in model (4) with $ = -1, T = 
25, 50, 75 ,  100; induced test (-)? tests based on subsamples (y, : t E 11) and (yt : t E 1 2 )  

(. . . and - . -). 

V.B.2 that the bound which has been used here, namely ti,,(0.05), is not appropri- 
ate because we do not know whether this value satisfies the level constraint: 

In other words, a critical region based on Kiviet’s bounds has an unknown level. 
Moreover, what makes the induced test more attractive relatively to Kiviet’s test is 
that it avoids the calculation of a bound that changes with the sample size. Finally, 
because Zinde-Walsh and Ullah’s upper bounds are so large (see Table l), the power 
of their test is zero for all @. These are not reported in Tables 3-7. 

The most surprising result which emerges from our Monte Carlo study can 
be seen in Tables 3’4, and 5. Once the asymptotic critical values used for the GLS- 
MM and GLS-ML tests have been corrected so that the corresponding critical regions 
have the desired level, our procedure becomes more powerful than these alternatives 
for many plausible values of @. The difference between estimated power functions 
grows as @ increases, but diminishes when the sample size T gets larger. The GLS- 
MM method seems to be the worst of all the asymptotic procedures studied here, 
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Table 3 Rejection Frequencies of Ho : f i  = 0 in Model (9) with $r = 1 

Sample size T = 25 Sample size T = 75 

/? GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

0.80 
0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 
0.10 
0.30 

- 1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

3.40 
1.10 
0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.60 
1.80 
3.90 

56.00 
37.80 
17.00 
6.10 
4.50 
4.30 
5.20 
6.50 

18.10 
38.80 
55.00 

Sample size T = 

66.70 
46.60 
20.10 
6.20 
5.00 
4.30 
5.10 
7.60 

21.20 
46.40 
64.90 

50 

59.80 
40.00 
16.60 
5.20 
3.50 
3.50 
4.30 
5.30 

18.10 
40.50 
59.60 

97.70 
84.90 
40.00 
6.60 
2.20 
1.10 
2.10 
5.80 

38.60 
83.60 
%. 70 

0.70 99.10 
0.10 91.50 
0.00 52.00 
0.00 14.30 
0.00 7.00 
0.00 4.30 
0.00 6.50 
0.00 11.80 
0.00 55.20 
0.20 91.10 
0.80 98.90 

Sample size T = 100 

98.80 
89.70 
48.00 
9.90 
4.40 
2.70 
3.80 
9.80 

48.90 
89.40 
98.80 

46.00 
21.50 
3.50 
0.20 
0.00 
0.10 
0.10 
0.20 
3.70 

21.00 
45.10 

0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 
0.40 

92.40 
77.30 
40.10 
9.60 
4.90 
3.90 
4.30 
8.20 

34.90 
74.00 
89.70 

93.30 
78.30 
40.20 
10.00 
4.50 
3.90 
4.70 
9.20 

40.60 
78.60 
95.00 

90.70 
72.30 
32.90 
6.80 
3.50 
2.40 
3.50 
6.60 

33.70 
72.70 
90.30 

99.50 
97.00 
61.30 
11.90 
4.60 
3.40 
5.60 

11.60 
62.80 
96.50 
99.90 

25.60 
6.70 
0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.30 
4.60 

22.90 

99.80 
97.70 
69.10 
17.40 
7.90 
4.40 
7.40 

15.10 
67.00 
97.30 
99.90 

99.70 
%.90 
63.20 
12.20 
5.00 
2.80 
3.90 

10.30 
60.40 
96.60 
99.80 
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Table 4 Rejection Frequencies of Ho : = 0 in Model (9) with I) = .5 

Sample size T = 25 Sample size T = 75 

GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test 

- 1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1.0 

4.80 
2.50 
0.60 
0.00 
0.00 
0.00 
0.00 
0.10 
0.50 
1.60 
5.00 

10.70 
4.70 
1 .oo 
0.00 
0.00 
0.00 
0.00 
0.10 
0.60 
4.60 

12.10 

79.40 
61.20 
27.20 
6.70 
4.60 
4.30 
5.60 
7.80 

27.80 
60.50 
78.30 

Sample size T = 

85.30 
67.30 
30.30 
6.80 
3.90 
3.50 
4.70 
8.10 

30.90 
66.80 
84.80 

50 

83.90 
66.30 
29.00 

7.00 
4.60 
4.20 
4.70 
8.30 

30.20 
64.70 
82.80 

100.00 
98.80 
65.50 
11.30 
2.80 
0.80 
3.10 

10.40 
64.70 
97.80 

100.00 

8.50 100.00 
1 .oo 99.50 
0.10 77.50 
0.00 19.40 
0.00 8.40 
0.00 4.30 
0.00 7.80 
0.00 19.30 
0.10 77.70 
1.10 99.50 
7.20 100.00 

Sample size T = 100 

100.00 
99.40 
76.70 
18.10 
7.00 
2.90 
6.40 

17.10 
75.60 
99.40 

100.00 

83.00 
50.80 
10.80 
0.40 
0.10 
0.10 
0.20 
0.40 

10.40 
50.60 
82.10 

2.40 
0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.50 
3.50 

99.30 
93.80 
58.30 
12.70 
6.50 
3.30 
5.70 

13.00 
59.70 
94.80 
99.40 

99.80 
94.30 
59.20 
11.50 
4.10 
2.90 
4.30 

12.20 
59.30 
96.00 
99.70 

99.40 
94.00 
55.80 
11.90 
5.60 
3.60 
5.20 

11.90 
57.40 
94.70 
99.50 

100.00 
99.80 
86.80 
20.50 
6.00 
3.40 
7.40 

19.10 
88.10 

100.00 
100.00 

65.10 
26.80 

1.10 
0.00 
0.00 
0.00 
0.00 
0.00 
1 .oo 

25.20 
63.30 

100.00 
99.90 
90.90 
24.70 
10.90 
4.30 
8.70 

22.30 
89.70 

100.00 
100.00 

100.00 
99.90 
89.00 
22.50 

7.90 
3.50 
6.70 

20.70 
88.10 
99.90 

100.00 
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Table 5 Rejection Frequencies of Ho : ,8 = 0 in Model (9) with I) = 0 

Sample size T = 25 Sample size T = 75 

/9 GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1.0 

35.30 
19.30 
6.20 
2.50 
1.20 
1 .oo 
1.40 
1.90 
7.00 

20.80 
37.70 

45.80 
23.10 
5.10 
0.90 
0.30 
0.20 
0.60 
0.70 
5.40 

23.80 
45.30 

Sample 

97.80 
89.30 
48.40 
8.90 
3.30 
3.10 
5.10 
9.40 

48.30 
87.50 
98.00 

size T = 

96.20 
81.70 
31.70 
2.80 
0.90 
0.40 
0.80 
3 .OO 

31.80 
80.50 
97.20 

50 

97.00 
85.20 
45.30 
9.90 
6.60 
4.70 
7.00 

11 .oo 
45.70 
85.90 
97.00 

100.00 
100.00 
96.90 
25.80 
7.20 
1.40 
6.90 

23.40 
96.10 

100.00 
100.00 

70.30 
28.20 
0.80 
0.00 
0.00 
0.00 
0.00 
0.00 
0.80 

26.70 
70.70 

Sample size 

100.00 
100.00 
98.50 
33.70 
11.80 
2.70 

10.60 
32.10 
98.00 

100.00 
100.00 

T = 100 

100.00 
100.00 
94.30 
28.20 
10.40 
4.50 
9.50 

27.10 
94.30 

100.00 
100.00 

99.70 
95.00 
45.10 
2.70 
0.50 
0.30 
0.90 
2 -60 

43.80 
95.10 
99.60 

40.80 
13.20 
0.50 
0.00 
0.00 
0.00 
0.00 
0.00 
0.60 

13.30 
41.30 

100.00 
100.00 
88.60 
21.40 
7.50 
2.40 
6.90 

20.80 
89.00 
99.90 

100.00 

100.00 
99.90 
73.30 
6.90 
1.40 
0.10 
1.60 
7.10 

72.90 
99.70 

100.00 

100.00 
99.60 
80.20 
19.40 
6.50 
4.70 
8.00 

18.30 
80.20 
99.60 

100.00 

100.00 
100.00 
99.80 
42.50 
12.30 
3.90 

12.60 
43.50 

100.00 
100.00 
100.00 

99.80 
93.20 
20.80 
0.00 
0.00 
0.00 
0.00 
0.20 

17.40 
94.00 
99.90 

100.00 
100.00 
99.60 
47.50 
14.60 
3.30 

12.70 
43.60 
99.60 

100.00 
100.00 

100.00 
100.00 
98.30 
36.30 
12.50 
5.20 

11.50 
35.40 
98.60 

100.00 
100.00 
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Table 6 Rejection Frequencies of Ho : p = 0 in Model (9) with @ = -0.5 

Sample size T = 25 Sample size T = 75 

/!? GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

- 1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1.0 

93.50 
82.80 
49.80 
18.00 
8.00 
4.50 

10.60 
18.90 
50.00 
82.10 
93.10 

91.70 100.00 
76.30 99.80 
41.70 82.70 
18.20 6.30 
8.60 1.40 
4.30 0.10 
9.70 1.90 

19.50 8.70 
41.80 81.40 
76.00 99.80 
92.40 100.00 

Sample size T = 

97.50 
77.30 
10.10 
0.00 
0.00 
0.00 
0.00 
0.00 

10.50 
76.60 
97.90 

50 

97.20 
84.90 
40.30 
10.80 
6.40 
4.40 
6.20 

11.10 
42.80 
84.40 
97.90 

100.00 
100.00 
100.00 
82.90 
29.60 
3.60 

29.20 
81.50 

100.00 
100.00 
100.00 

100.00 100.00 
98.50 100.00 
56.70 100.00 
14.70 65.10 
9.30 10.80 
5.30 0.40 
9.60 12.20 

1.5.30 67.10 
58.00 100.00 
98.10 100.00 

100.00 100.00 

Sample size T = 100 

100.00 
100.00 
96.90 
24.60 
9.90 
4.00 
9.40 

23.80 
97.60 

100.00 
100.00 

100.00 
100.00 
98.60 
33.50 
10.30 
2.90 
9.50 

33.90 
99.00 

100.00 
100.00 

97.90 
86.90 
38.90 
16.80 
10.30 
5.00 
9.10 

15.80 
41.30 
87.70 
98.10 

100.00 
100.00 
100.00 
39.70 
4.60 
0.10 
5.60 

37.20 
99.90 

100.00 
100.00 

100.00 
100.00 
66.10 
0.10 
0.00 
0.00 
0 .oo 
0.00 

67.00 
99.90 

100.00 

100.00 
100.00 
81.80 
18.30 
7.00 
4.40 
7.10 

17.30 
80.20 
99.90 

100.00 

100.00 
100.00 
100.00 
94.90 
45.50 
5.00 

44.40 
95.30 

100.00 
100.00 
100.00 

~~ 

100.00 
100.00 
97.00 
20.60 
9.40 
4.40 
9.30 

19.70 
97.40 

100.00 
100.00 

~~ 

100.00 
100.00 
100.00 
84.60 
18.60 
0.40 

16.80 
82.70 

100.00 
100.00 
100.00 

100.00 
100.00 
99.90 
32.30 
11.00 
4.30 

10.10 
32.00 
99.80 

100.00 
100.00 
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Table 7 Rejection Frequencies of Ho : B = 0 in Model (9) with $r = -1 

Sample size T = 25 Sample size T = 75 
- 

j3 GLS-ML GLS-MM NW Kiv. Ind. test GLS-ML GLS-MM NW Ind. test 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

-1.0 
-0.8 
-0.5 
-0.2 
-0.1 

0.0 
0.1 
0.2 
0.5 
0.8 
1 .o 

99.50 
98.20 
89.80 
49.90 
2.20 
0.00 
2.30 

52.40 
90.70 
98.10 
99.60 

93.10 100.00 
80.10 100.00 
58.30 89.10 
40.80 0.10 
4.30 0.00 
0.00 0.00 
2.80 0.00 

41.40 0.40 
59.40 88.10 
8 1.30 100.00 
93.10 100.00 

Sample size T = 

79.90 
34.80 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.40 

34.30 
79.40 

50 

85.20 
64.00 
28.70 
9.00 
5.90 
4.80 
6.10 
9.30 

28.50 
64.70 
87.20 

100.00 
100.00 
100.00 
100.00 
98.80 
0.70 

99.10 
100.00 
100.00 
100.00 
100.00 

100.00 100.00 
99.20 100.00 
82.30 100.00 
5 1.60 84.60 
47.00 0.10 
0.00 0.00 

47.00 0.10 
51.40 87.90 
82.00 100.00 
99.30 100.00 

100.00 100.00 

Sample size T = 100 

100.00 
100.00 
83.60 
17.10 
8.10 
3.80 
8.10 

17.90 
85.50 

100.00 
100.00 

100.00 
100.00 
100.00 
96-60 
75.00 
0.00 

76.00 
%.40 

100.00 
100.00 
100.00 

98.30 
92.60 
69.30 
46.00 
42.10 
0.00 

4 1.90 
45.80 
69.30 
92.30 
98.30 

100.00 
100.00 
100.00 
29.10 
0.00 
0.00 
0.00 

28.20 
100.00 
100.00 
100.00 

100.00 
99.20 
13.10 
0.00 
0.00 
0.00 
0.00 
0.00 

12.10 
99.50 

100.00 

100.00 
99.00 
58.20 
12.10 
6.20 
3 .SO 
6.50 

10.80 
59.20 
98.70 

100.00 

100.00 
100.00 
100.00 
100.00 
100.00 

1.10 
100.00 
100.00 
100.00 
100.00 
100.00 

100.00 
100.00 
99.20 
6 1.20 
48.60 
0.00 

48.90 
61.90 
99.00 

100.00 
100.00 

100.00 
100.00 
100.00 
99.70 
0.50 
0.00 
0.40 

99.50 
100.00 
100.00 
100.00 

100.00 
100.00 
98.30 
21.70 
8.50 
3.80 
8.70 

20.70 
98.50 

100.00 
100.00 
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whereas GLS-ML appears to benefit from the asymptotic efficiency property of max- 
imum likelihood estimators. But for nonnegative values of @, the sample size has to 
be T = 100 for the GLS-ML test to have a probability of correctly rejecting the null 
as high as the induced test. The GLS-MM test is still dominated for some negative 
values of +(@ = -.5), irrespective of the sample size. Only when @ is close to -1 
does this procedure become admissible. 

While the two comm‘only used asymptotic inference procedures, GLS-MM and 
GLS-ML, cannot be recommended on the ground of our Monte Carlo study, the con- 
clusion is less negative for the NW method. Except for small sample sizes ( T  = 25) 
and large values of the MA parameter (@ = 1, .5), it does better than the induced 
test procedure. This result is somewhat unexpected because the Newey-West estima- 
tor of V ( ~ T )  does not take into account the autocovariance structure of the process. 
However, although the induced test is conservative, it is more powerful than NW test 
for alternatives close to the null hypothesis when @ is negative. Furthermore, it is 
important to remember that the NW test suffers from level distortions (see Table 2) 
that are not easy to correct in practice. 

4. An Example: An Induced Test on the Mean of the Canadian 
Per Capita GDP Series 

We now apply our procedure to test the nullity of the mean of a process that has a 
MA(1) representation. Our series is the first difference of the Canadian per capita 
GDP, denominated in real 1980 Purchasing Power Parity-adjusted US dollars, ob- 
served yearly from 1901 to 1987. It is taken from Bernard and Durlauf (1995). Fig- 
ure 7 plots the series. Using standard Box-Jenkins procedure (autocorrelation and 
partial autoconelation functions), we identified a MA( 1) process for the series (see 
Table 8). 

We then consider a model like (9). ML estimation of (9) gives B = 136.1810 
and IJ = 0.4211 with estimated variances 945.1919 and 0.0095, respectively. 
The estimated COV(B, 6) is 0.0834 and the sample variance of the residuals is 
401 17.5725. 

To implement an induced test for the nullity of the mean parameters, /3, at level 
5%, we split the sample in two parts, {yL : t E J i } ,  i = 1 , 2 ,  which contain respec- 
tively the odd and the even observations, and make two 2.5% tests of /3 = 0, using the 
statistics ti = &‘lY;(/si, where ri = x/ni ,  s? = (EjEJ,(% - ri)2)/(ni  - l ) ,  
and ni is the size of subsample i, i = 1, 2. We reject the null hypothesis when 
t l  > t(a/4, U I )  or t 2  > t(a/4, UZ),  where t(a/4, U) is the 1 - (a/4) percentile of 
Student’s t distribution with U degrees of freedom. We also perform both GLS-MM 
and GLS-ML asymptotic tests. Our results are reported in Table 9. is the two step 
estimator of B, $ the estimator of @ that has been obtained in the first step to esti- 
mate the error covariance matrix, and t the test statistic, whose distribution will be 
approximated by a student’s t-distribution with 86 degrees of freedom. Both subtests 
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Year 

Figure 7 
1994.) 

First differences of the Canadian per capita GDP. (From Bernard and Durlauf 

reject the null hypothesis at level 2.5%. Hence the induced test rejects the nullity 
of the mean at level 5%. The two asymptotic tests also reject the null hypothesis, if 
we admit that the asymptotic critical value is a good approximation when the sample 
size is 87. Our findings are consistent with the results of the Monte Carlo study of 
Section V.B.3. For similar sample sizes (T  = 75 or T = 100) we found that the 
GLS-MM test produces larger values of the test statistic than the GLS-ML test does. 
This is what we have here with T = 87. 

If we decide to include a linear trend in the mean of the MA(1) process, our 
induced test procedure still applies. The per capita GDP series now admits the rep- 
resentation 

able 8 Sample Autocorrelations of the Canadian Per Capita GDP Series 

aa 1 2  3 4 5 6 7 8 9 10 11 12 

utocorrelation .41 .19 .10 -.04 .OS .07 .12 .04 -.04 .09 .08 .20 
tandard error . l l  .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 
jung-box 15.4 18.8 19.8 19.9 20.2 20.6 22.1 22.3 22.5 23.3 24.0 28.3 

@statistic 
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Table 9 Induced and Asymptotic Tests. Model yt = + et + $ret-, 

i = l  i = 2  GLS-MM GLS-ML 

s 12 7.6836 125.4406 122.2522 123.6574 
t (v) 4.1892 (43) 3.5076 (42) 7.5112 (86) 6.9345 (86) 

$ - - 05298 
p-value 0.000 14 0.00109 0.00000 0.00000 

0422 1 

for t = 1,2 ,  . . . , T .  We consider the three hypotheses 

For each hypothesis, we perform the induced test as well as the asymptotic test. 
Results appear in Table 10. We note that only one of the subtests rejects the pres- 
ence of a linear trend. However, according to our decision rule, this is enough to 
reject HA’). Both GLS-MM and GLS-ML unambiguously reject this hypothesis. But 
we know from our simulations that the asymptotic tests tend to reject the null too 
often when it is true. For the parameters p;, j = 1,2,  we also report two confidence 
intervals and I;,  each with level 97.5%, based on the two subsamples (yt : t E J l )  

and (yt : t E J 2 ) .  The intersection Z{ n Zi gives the set of values y E R such that the 
hypothesis H;(y)  : /3; = y is not rejected at level 5% by the induced test. These 
intervals are 

Table I0 Induced and Asymptotic Tests. Model yt = PO + B1 t + E~ + $rct-, 

i = l  i = 2  GLS-MM GLS-ML 

-37.0695 
3.7444 

0.49823 
3.5058 (42) 
0.001 10 

17.2244 (2,42) 
0.00000 

-0.6832 (42) 

-6.298 1 
2.994 1 

0.92849 
2.1674 (41) 
0.03606 
9.0421 (2, 41) 
0.00056 

-0.0903 (41) 

~~~~-~ 

-22.5258 
3.3507 

0.50303 
5.0392 (85) 
0.00000 

37.9250 (2, 85) 
0.00000 
0.3536 

-0.6726 (85) 

~~~-~~~~ 

- 22.5578 
3.3554 

0.51251 
4.9319 (85) 
0.00000 

39.3875 (2,85) 
0.00000 
0.3253 

-0.6577 (85) 

t j ,  j = 1,2 ,  and F denote Student’s t -  and Fisher’s F-statistics used for testing H$), j = 1,2 ,  and Ho,  
respectively. 
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Table I I Induced and Asymptotic Tests. Model yl = fi  + E~ + + $ 2 ~ t - p  

i = l  i = 2  i = 3  GLS-MM GLS-ML 

B 122.4644 130.7687 126.4918 128.9405 129.7032 
t ( V )  2.6573 (28) 4.1328 (28) 2.9150 (28) 3.6828 (86) 3.2812 (86) 
p-value 0.01286 0.00029 0.00692 0.00040 0.00 149 

- - - 0.4096 0.3931 
- - - 0.2354 0.1037 

$1 

$2 

t denotes the statistic used for testing Ho : /3 = 0. 

Zp = [-163.2002,89.0612] 
I: = [1.2616, 6.22721, 

Zi = [-168.5787, 155.98251 
Zi = [-0.2201, 6.20831 

yielding the following 95% confidence intervals for PO and pi: 
/I0 E [-163.2002,89.0612], /I1 E [1.2616,6.2083] 

These entail that is not significantly different from 0, while B1 is. 
When we apply the induced test procedure, we implicitly assume that we have 

correctly identified a MA(1) process. An interesting issue is to look at what we get 
if, instead of the true MA(1) representation, we use a MA(2) model to build our test 
statistics. In this case, we split the sample in three parts, make three tests at level 
5/3%, and reject the null Ho : /I = 0 when our sample falls in one of the three critical 
regions. The results are in Table 11. We first note that as two of the subsample based 
tests reject HO at level 5/3%, we reject the null at level 5%. We also note that both 
asymptotic tests reject the null hypothesis. But we know that using 5% critical values 
obtained from asymptotic distributions leads to a probability of making a type I error 
larger than 5%. Therefore, although asymptotic tests and tests based on the sample 
split yield the same decision of rejecting Ho, we put more confidence in the sample 
split procedure. 

VI. CONCLUDING REMARKS 

In this chapter we proposed a set of inference methods for comparing and pooling 
information obtained from different data sets, which simply use separate tests (or 
confidence sets) based on the different data sets. The methods described are based 
on a systematic exploitation of Boole-Bonferroni inequalities and can yield exact 
tests and confidence sets without the need to specify at all the relationship between 
the data sets, even with small sample sizes. As a result, they are quite versatile and 
usually easy to implement. The general problems studied include (1) combining sep- 
arate tests based on different data sets for an hypothesis of interest (more precisely, 
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for the intersection of similar hypotheses), to obtain more powerful tests; (2) compar- 
ing parameters estimated from the different data sets (e.g., to test their equality); (3) 
combining confidence regions based on different samples to obtain a more accurate 
confidence set. For problem 1, we were led to consider Bonferroni-type induced tests; 
for problem 2, we proposed empty intersection tests; and for problem 3, we suggested 
taking the intersection of separate confidence sets with appropriate levels. 

We also showed that the methods proposed can be quite useful in various mod- 
els where usual inference procedures based on a complete sample involve difficult 
distributional problems (e.g., because of nuisance parameters), but for which distri- 
butional properties of test statistics computed on appropriately selected subsamples 
are simpler. This leads to an interesting form of sample-split (SS) method. One first 
splits the sample into several subsets of observations from which separate inferences 
(tests of confidence sets) are obtained. Then these results are recombined, using the 
general union-intersection (UI) methods already described, to obtain a single infer- 
ence which uses the full sample. The way the data is split depends on the model 
considered. In some situations the structure naturally suggests the division. This 
is for example true when the model contains several equations. In other cases, the 
division is based on more elaborate arguments, as in moving average models. 

The UI/SS methods proposed can be applied to a wide spectrum of econometric 
situations and models. We discussed and illustrated their applications in two cases 
where only asymptotic methods are typically available, namely inference in SURE 
models and linear regressions with MA errors. In the latter case, we also presented 
an extensive Monte Carlo study comparing the UI-SS method for testing an hypoth- 
esis about a mean with other available approaches. Two main conclusions emerged 
from these results: first, they provided further evidence on the size distortions asso- 
ciated with usual asymptotic procedures; second, they showed that UI-SS tests not 
only have the predicted levels, but enjoy good power properties. In view of the fact 
that these methods involve splitting the sample and lead to conservative procedures, 
hence leading one to expect a power loss, this is indeed quite remarkable. Our re- 
sults show that the Bonfen-oni-based recombination of the evidence obtained from 
the different subsamples apparently makes up for the loss. For another application 
of UI-SS approach to autoregressive and other types of dynamic models, the reader 
may consult Dufour and Torrks (1995). 

Before closing, it is worthwhile noting a few other points. First, the U1 (or UI- 
SS) procedures are often simpler to implement than usual asymptotic procedures. 
For SURE models and linear regressions with MA errors, they only require critical 
values from standard distributions. For MA models, they avoid the task of estimating 
MA coefficients. Second, they offer some extra robustness to model specification, as 
illustrated by SURE where no assumption on the relationship between the different 
equations is needed. Third, although we stressed here the derivation of finite sample 
methods, there is nothing that forbids the application of U1 (or UI-SS) methods to 
situations where only asymptotically justified tests or confidence sets are available 
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from the separate data sets. In such cases, the methods are applied in exactly the 
same way. This feature may be especially attractive for gaining robustness to model 
specification. We think all these properties make this UI-SS approach an attractive 
and potentially quite useful addition to the methods available to applied econome- 
tricians. 
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Modeling Economic Relationships 
with Smooth Transition Regressions 

Timo Terasvirta 
Stockholm School of Economics, Stockholm, Sweden 

1. INTRODUCTION 

The assumption of linearity has long dominated macroeconometric model building. 
If linear approximations to economic relationships had not been successful in empir- 
ical work they would no doubt have been abandoned long ago, but this has not been 
the case. On the contrary, very powerful concepts such as that of cointegrated vari- 
ables (Granger 1981) have been built upon the idea of linear relationships between 
variables. The statistical theory of linear models with cointegrated variables is well 
established and enables the analysis of linear systems of cointegrated variables; for 
recent overviews see Banerjee et al. (1993), Hatanaka (1996), and Johansen (1995). 
A coherent modeling strategy built upon the multivariate normal distribution, its 
conditional means, and the idea of moving from general to more specific models has 
been proposed and successfully put into practice in a number of applications. The 
idea has been to merge economic theory and statistical considerations in search of a 
congruent model. Hendry (1995) contains a detailed account of these principles. 

Nevertheless, there exist situations in which the underlying economic theory 
is strongly nonlinear, and the econometric methods have reflected that fact. Mod- 
eling economies with rationing constitutes an example. Maddala (1986) surveyed 
the resulting switching regression models that were disequilibrium models with the 
“minimum condition.” The class of switching regression models also includes mod- 
els that assume a finite number of linear regimes but without the minimum condition. 
Which regime generates the observations at any given point of time in these models 
depends instead on a so-called switching variable that can either be observable or 
unobservable. In the former case, the switchpoint itself is often assumed unknown; 
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see Goldfeld and Quandt (1972, Section 9.2). Piecewise regression models, see for 
example Ertel and Fowlkes (1976) and the references therein, belong to this cate- 
gory. The general idea forms a basis for testing parameter constancy against a struc- 
tural break at an unknown point as in Quandt (1960) and Andrews and Ploberger 
(1994). Goldfeld and Quandt (1973) first discussed the case in which the sequence 
of unobserved switching variables is an irreducible first-order Markov chain, and 
Lindgren (1978) derived the maximum likelihood estimators of parameters of such 
hidden Markov models. 

Switching regression models may be generalized in such a way that the tran- 
sition from one extreme regime to the other is not discrete but smooth. Such gen- 
eralizations are the topic of this chapter. Instead of a usually (small) finite number 
of regimes there exists in these generalizations a continuum of them. Bacon and 
Watts (1971) first suggested such a model and coined the term “smooth transition” 
to illustrate how a locally linear equation changes from the one extreme linear pa- 
rameterization to the other as a function of the continuous transition variable. In the 
econometrics literature, Goldfeld and Quandt (1972, pp. 263-264) presented a sim- 
ilar idea. Suppose one has the following switching regression model of two variables 
yt and xt: 

(1) 
yt = a111 - D ( z t ) )  + a 2 W t )  + 1B1 (1 - D(zt>) + 82D(Zt>)Xt 

+ 11 - D ( Z J U 1 ,  + D(Ztb2t 

where uit - nid(0, a:), i = 1 , 2 ,  are the error terms of the two regimes, zt is the 
transition variable, and D ( z t )  is the Heaviside function: 

Goldfeld and Quandt pointed out that the estimation of the parameters of (1) includ- 
ing c in (2) is complicated and that the problem can be simplified by using a feasible 
approximation of (2). Their suggestion was to define 

i.e., to assume that the transition function is the cumulative distribution function 
of the normal ( c ,  a2) variable and that ay = a; in (1). Replacing (2) by (3) in the 
switching regression (1) defines a smooth transition regression. In the time series 
literature, Chan and Tong (1986) made a similar suggestion in order to generalize a 
univariate switching autoregressive or “threshold autoregressive” model, albeit not 
for computational reasons. Tong (1990) contained a detailed account of threshold 
autoregressive models. Maddala (1977, p. 396) proposed that (3) be replaced by the 
logistic function 

~ ( z , )  = (1  + exp(S1 + ~ 2 2 , } ) - ’  (4) 
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which is one of the alternatives to be considered in this chapter; see also Granger 
and Terasvirta (1993) and Terasvirta (1994). 

A smooth transition between two extreme regimes may be an attractive param- 
eterization because the resulting smooth transition regression (STR) model is locally 
linear and thus often allows easy interpretation. Also from the point of view of the- 
ory, the assumption of a small number (usually two) of regimes may sometimes be 
too restrictive compared to the STR alternative. For instance, instead of assuming 
that an economy just has two discrete states, expansion and contraction, say, it may 
be more convenient and realistic to assume a continuum of states between the two 
extremes. Another argument is that economic agents may not all act promptly and 
uniformly at the same moment; their response to news requiring action may con- 
tain delays. Nevertheless, these two viewpoints are not competitors. As is already 
obvious from Goldfeld and Quandt (1972, pp. 263-264), the two-regime switching 
regression model is a special case of an STR model and can therefore be treated in 
that framework . 

Furthermore, an STR model may be used in the same way as the switching 
regression to serve as an alternative against which to test parameter constancy in 
a linear model. The alternative to parameter constancy in this framework is a con- 
tinuous change in parameters, which often is statistically a more convenient case to 
handle than just a single structural break. Lin and Terasvirta (1994) discussed this 
possibility which requires defining zt = t in (4) while the STR model has the form 

where xt is a vector of explanatory variables and and 0 are parameter vectors. If 
the null of parameter constancy, D ( t )  = 0 in (5), is rejected one can estimate the 
alternative including the parameters in D ( t )  and find out how the parameter vec- 
tor p + 0 D ( t )  is changing over time. For multivariate applications, see for exam- 
ple Albaek and Hansen (1995), Coutts, Mills and Roberts (1995), Heinesen (1996), 
Jansen and Terasvirta (1996), Liitkepohl, Terasvirta, and Wolters (1995) and Wolters, 
Terasvirta, and Liitkepohl(l997). 

Generally, the transition variable of an STR model is an observable economic 
variable in the tradition of Fair and Jaffee (1972) who applied a switching regression 
model to modeling the demand for and supply of housing. Models with an unob- 
served transition variable will not be discussed any further here. The application 
in Section V is also related to the housing market. Jansen and Terasvirta (1996) 
applied the general STR model in various ways as a vehicle for testing super exo- 
geneity; see, for example, Hendry (1995, Chap. 5) or Ericsson (1992) for definitions 
of this and other types of exogeneity. Other applications of the STR model to-date 
include Granger, Terasvirta, and Anderson (1993), Semmler and KoCkesen (199S), 
and Chiarella, Semmler, and KoCkesen (1996). 

The approach in this chapter is classical. However, Bacon and Watts (1971) 
used the Bayesian approach for estimating the parameters of their smooth transition 
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model. They first obtained the joint marginal posterior distribution for the parame- 
ters of the transition function; for example in (3) those are c and 1/02. Then they 
estimated the remaining parameters conditionally on the mean of this joint posterior 
distribution. Later, Tsurumi (1982) applied the same idea to his “gradual switching” 
simultaneous-equation model. More recent Bayesian treatments have been mainly 
concerned with switching regression or threshold autoregressive models. Pkguin- 
Feissolle (1994) who discussed the smooth transition autoregressive model consti- 
tutes an exception. Published work on threshold autoregressive models includes Pole 
and Smith (1985), Geweke and Terui (1993), Pfann, Schotman, and Tschernig (1996), 
and Cook and Broemeling (1996). 

This chapter is organized as follows. The STR model is defined and its prop- 
erties and potential in applications are discussed in Section 11. Section I11 considers 
statistical inference in STR models. This includes testing linearity which should 
precede any nonlinear modeling. The modeling cycle consisting of specification, es- 
timation, and evaluation of STR models is described in Section IV. Section V con- 
tains an application to a U.K.  house price equation considered in Hendry (1984), 
and Section VI concludes. 

I I .  S M O O T H  TRANSITION REGRESSION MODEL 

Consider the nonlinear regression model 

wherex, = (1, xll ,  . . . , xpt)‘ = (1, y,-1, . . . , y,-k; z l t ,  . . . , z,,)’ withp = k+m is 
the vector of explanatory variables, cp = (cpo, cpl , . . . , cpp)’  and 8 = (80,81, . . . ,8,)’ 
are parameter vectors, and {U, } is a sequence of independent, identically distributed 
errors. Some of the parameters qi and 8, may be zero a priori or the restriction cpi = 
-8; may hold for some i. In (6), G is a bounded continuous transition function; it is 
customary to bound G between zero and unity, and S, is the transition variable. It may 
be a single stochastic variable, for example, an element of xt, a linear combination 
of stochastic variables or a deterministic variable such as a linear time trend. By 
writing (6) as 

it is seen that the model is locally linear in x, and that the combined parameter vector 
q + 8 G  is a function of the transition variable sI. If G is bounded between 0 and 1, 
the combined parameters fluctuate between cp and cp + 8. In dynamic modeling, this 
property makes it possible, for example, to characterize an economy with dynamic 
properties in expansion being different from those in contraction. Terasvirta and 
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Anderson (1992) contained univariate examples of this kind. Model (6) is an example 
of the smooth transition regression (STR) model discussed in the Introduction. 

The practical applicability of (6) depends on how G is defined. A few defini- 
tions have been suggested in the literature; see, for example, Granger and Terasvirta 
(1993, Chap. 7). If G has the form 

G d y ;  c, S t )  = (1 + exp{-y(st - c)H-', y > 0 (8) 

then the STR model (6) is called the logistic STR of LSTRl model. The transition 
function (8) is a monotonically increasing function of st . The restriction y > 0 is an 
identifying restriction. The slope parameter y indicates how rapid the transition from 
zero to unity is as a function of st and the location parameter c determines where the 
transition occurs. If y + 00 in (8), (6) becomes a two-regime switching regression 
model with the switching variable s t .  In this special case, st  = c is the switchpoint 
between the regimes y, = xi(o + U, and yt = x ; ( q  + 19) + ut .  

Monotonic transition may not always be a satisfactory alternative in applica- 
tions. A simple nonmonotonic alternative is 

where the restrictions on y ,  c1, and c2 are identifying restrictions. This transition 
function is symmetric about (cl + c2)/2, and G(y, c; s t )  + 1 for st + f w .  The 
minimum value of G remains between 0 and 1/2, the upper limit holds for cl = c2. 
On the other hand, when y + 00, G ( y ,  c; s,) + 0 for cl 5 st 5 cg; for other values 
G ( y ,  c; s,) + 1. This is a special case of a three-regime switching regressions model 
in which the two outer regimes are equal. The STR model (6) with transition function 
(9) is called the LSTR2 model. 

Jansen and Terasvirta (1996) suggested (9) as a generalization of the expo- 
nential STR (ESTR) model discussed in the literature; see Granger and Terasvirta 
(1993, Chap. 7). The transition function of an ESTR model is defined as 

G(y, c; s t )  = 1 - exp{-y(s, - c ) ~ } ,  y > 0 (10) 
which is closely related to the case c1 = c2 in (9). The transition function is sym- 
metric about c and G(y, c; s,) + 1 for s, + f00. However, when y + 00, the 
transitiOn function G(y,  c; s t )  + 1 except that for S, = c the limit is 0. Thus for 
large values of y it  is difficult in practice to distinguish an ESTR model from a lin- 
ear model. By introducing another parameter as in (9) one obtains an STR model 
with more useful limiting properties as y + 00. An LSTR2 model with three ex- 
treme regimes and fairly sharp transitions between them achieved by (9) may in fact 
be quite an interesting alternative in practice; see for example the case discussed in 
Anderson (1997). In all theoretical derivations of the chapter, however, it is assumed 
that y is finite. 
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Defining st = t yields an important special case of the STR model. Then (7) 
becomes 

Model (1 1) can be interpreted as a linear model whose parameters change over time. 
It contains as a special case the presence of a single structural break which has 
been the most popular alternative to parameter constancy in econometric work. This 
special case is obtained by completing (6) by (8) with st = t and letting y -+ 00 in 
(8). Lin and Terasvirta (1994) defined another nonmonotonic transition function (see 
also Jansen and Terasvirta 1996) 

where y > 0, cl 5 c2 5 c3. In fact, Lin and Terasvirta (1994) defined the exponent 
of (12) directly as a third-order polynomial without requiring the roots to be real. As 
we shall see, this does not make any difference as far as testing parameter constancy 
is concerned. On the other hand, if an STR model with (12) is to be estimated, re- 
stricting the roots to be real alleviates the potential problem of very high correlation 
between the estimator of 0 on the one hand and that of y and possibly c l ,  c2, and c3 
on the other. At the same time one does not give up too much generality in the sense 
that (12) still allows quite a lot of flexibility in the transition function. 

Many parameter constancy tests explicitly or implicitly assume the alternative 
to parameter constancy to be a single structural break. If this null hypothesis is re- 
jected it is often not obvious what to do next. More information can be obtained by 
using recursive tests: see, for example, Hendry (1995, Chap. 16). An advantage of 
testing parameter constancy in the STR framework is that any rejection of the null 
hypothesis is a rejection against a parametric alternative. In case of a rejection the 
parameters of the alternative can be estimated, which helps obtain information about 
where and how parameter constancy breaks down if it does. This information in turn 
is helpful in deciding how the specification of the model should be improved in order 
to obtain a model with constant parameters. 

It is of course possible to define (12) also for other transition variables than 
st = t. However, macroeconomic time series are usually not overly long. When 
modeling with such series it may be advisable to restrict the order of the exponent 
of the transition function to two to avoid excessive difficulties in parameter estima- 
tion unless there is economic theory suggesting a higher order. This is done here 
excepting the case st = t. In that case the experience has shown that there are less 
problems: a heuristic explanation to that is that for st = t, superconsistency makes 
the estimation of the parameters in the exponent easier in small samples than if s t  is 
stationary. 
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111. INFERENCE IN SMOOTH TRANSITION 
REGRESSION MODELS 

A. Testing Linearity Against STR 

The first question an applied econometrician is facing in considering a nonlinear 
model is: is it worthwhile? If the economic relationship to be modeled can be ad- 
equately characterized by a linear model, then working with a nonlinear model is 
waste of time. Besides, as will be seen, fitting certain types of nonlinear models such 
as STR models to data is not a statistically feasible undertaking if the data-generating 
process is linear. Econometric modeling with STR models thus has to begin with test- 
ing linearity against STR. In order to discuss testing statistical hypotheses within 
the STR model, additional assumptions about (6) are necessary. The stochastic vari- 
ables among z l t ,  . . . , Z k t  are assumed stationary whereas the nonstochastic ones are 
dummy variables. Furthermore, st  is assumed to be a stationary variable (if it is not 
a time trend), and all cross-moments Ezitzjt,  Eziis!, Eyt-is:, and EyL-lZjt, k 5 3, 
are assumed to exist. Note, however, that some of the variables zjt may be stationary 
linear combinations of I( 1) variables. The parameters of such combinations may be 
treated as known because their least squares estimates are super consistent, and the 
inference to be discussed is still valid. Finally, the errors are assumed uncorrelated 
with xt and s t .  

A minor redefinition of the transition functions will allow convenient notation 
in this section. Let G* = G - 1/2 where G is any of the transition functions defined 
in the previous section. Rewrite (6) as 

(although q~ and 8 are changed the previous notation is retained). In order to de- 
rive the test statistic, assume that uc - nid(0, a'). The conditional log-likelihood 
function of the model is 

T 

1=1 

T T 1 
2 20' 
- logo' - - ZU; 

i=1 
(14) 

The null hypothesis of linearity in (13) is Ho: y = 0 against H I :  y > 0. It is assumed 
that the roots of the lag polynomial 1 - q, Lj are outside the unit circle when the 
null hypothesis holds. It is seen from (13) that the linearity hypothesis can equally 
well be expressed as Hoe: 8 = 0. This is an indication of an identification problem in 
(13): the model is identified under the alternative but not under the null hypothesis. 
This poses the following statistical problem. Suppose that the investigator wants to 
apply a likelihood ratio test to testing Ho. In order to do that (13) has to be estimated 
both under Ho and H I .  However, the parameters of (13) cannot be consistently es- 
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timated under Ho because 0 and c are then nuisance parameters whose values do 
not affect the value of the likelihood. For this reason, the likelihood ratio statistic 
does not have its standard asymptotic x’ distribution under the null hypothesis. The 
two other classical tests, the Lagrange multiplier and the Wald test share the same 
property. 

Davies (1977, 1987) first discussed solutions to this problem; for later con- 
tributions in the econometrics literature, see for example Shively (1988), King and 
Shively (1993), Lee, White, and Granger (1993), Andrews and Ploberger (1994), 
and Hansen (1996). It occurs in connection with many nonlinear models which nest 
a linear model such as the STR model, the switching regression model with an un- 
known switchpoint or the Hidden Markov model of Goldfeld and Quandt (1973) and 
Lindgren (1978). A common feature in much of the literature is that under the null 
hypothesis there is a single nuisance parameter in the model. When the STR model 
is concerned there are at least two such parameters, whichever way one formulates 
the null hypothesis. A way of solving the identification problem by circumventing 
it is discussed for example in Granger and Terasvirta (1993, Chap. 6) and is also 
considered here. It is based on the work of Saikkonen and Luukkonen (1988) and 
Luukkonen, Saikkonen, and Terasvirta (1988a). 

To discuss this idea, take the logistic transition function GT = G I  - 1/2 and 
its Taylor series approximation with the null hypothesis y = 0 as the expansion 
point. The latter can be written as 

Tl = 60 + 61% + M y ,  c ;  4 (1 5) 
where R I  is the remainder and 60 and 61 are constants. Substituting Tl for Gy in (13) 
yields 

yt = x:Bo + (xtd’B1 + U,* (16) 
where U: = ut + (xi0)Rl  ( y ,  c; s t )  and is a ( p +  1) x 1 parameter vector. The zero- 
and first-order terms emerging due to the substitution merge with the corresponding 
terms in (13) leading to (16). This approximation may be viewed either as an approx- 
imation to the STR model (the conditional mean of yc) or to the log-likelihood (14). 
Use of this Taylor expansion in (13) or (14) amounts to giving up information about 
the structure of the alternative in order to circumvent the identification problem and 
obtain a simple test of the null hypothesis. Parameter vector B1 has the property 
/31 = yB1; for details see Luukkonen, Saikkonen, and Terasvirta (1988a). Thus the 
null hypothesis Ho: y = 0 in (13) implies Hh: # 0 within (16). 
Since (16) is linear in parameters and U: = ut when HL holds, one can test this null 
hypothesis by a straightforward LM-type test. Under Ho, 

= 0 and H i :  
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where h ? ~  = Et=, T z c z i ,  fio1 = fiio = Et=, T ztwi,iiI1l = Et=, T W C W ~ , ~ ~  = 
( l /T )  cf, fi:, t i t is the residual estimated under the null hypothesis, zt = xt and 
wt = x t s t ,  has an asymptotic x 2  distribution with p + 1 degrees of freedom when 
the moments and cross-moments implied by (1 7) exist. For detailed derivations, see, 
for example Luukkonen, Saikkonen, and Terasvirta (1988a, 1988b) or Granger and 
Terasvirta (1993, Chap. 6). 

The above notation requires that st is not an element of xt. If it is then the 
auxiliary regression becomes 

where Zt  = ( x l t ,  . . . , xpt)’ and is a p x 1 vector. Furthermore, wt = Ztst  in 
(17) and the asymptotic null distribution of the test statistic thus has p degrees of 
freedom. This is probably the most common case in practice except when st = t ,  
and in the following the notation will conform to it,  

The LM-type statistic (17) seems to have good power already in small sam- 
ples (see for example Luukkonen, Saikkonen, and Terasvirta 1988a and Petruccelli 
1990), but in a special occasion it only has trivial power against H i .  This is the case 
when st is an element of xt and 8 = (8o ,O,  . . . , 0)’, 80 # 0. In other words, the 
only nonlinear element in (13) is the intercept. Then = 0 in (17) even under H;’ 
and the test thus has no power. To remedy this situation, Luukkonen, Saikkonen, and 
Terasvirta (1988a) suggested a third-order Taylor approximation to GT. This can be 
written as 

where RS is a remainder and a,, j = 0, 1 , 2 , 3 ,  are constants. When (19) is substi- 
tuted for GT in (13) one obtains 

yt = x:so  + ( a t d B 1  + (a ts ; ) ’Bz + (PtsQ)’B3 + U: (20) 

where U: = uc + (xiB)Rs(y,  c ;  s t )  and B j  = yb j ,  j = 1,2 ,3 .  The LM-type test 
of HA: pj = 0, j = 1, 2, 3, against H i :  “at least one Bj # 0” can be constructed 
as before. The test statistic is (17) with wt = (Pis,, ZLs?, Pis:)’ and the number of 
degrees of freedom in the asymptotic x2 distribution under HO is 3 p .  This result 
requires the existence of all the moments implied by wt and (17). 

When xt has a large number of elements, the auxiliary null hypothesis will 
sometimes be large compared to the sample size. In that case the asymptotic x2 
distribution is likely to be a poor approximation to the actual small sample dis- 
tribution. It has been found out (see Granger and Terasvirta 1993, Chap. 7) that 
an F-approximation to (17) works much better (the empirical size of the test re- 
mains close to the nominal size while power is good). The test can be carried out 
in stages: 
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1. 

2. 

3. Compute 

Re ress yt on xt and compute the residual sum of squares SSRo = (1/T) F 
Ct=16;. 
Regress fit  (or y t )  on x,, ztst, f , s : ,  and z ts ;  and compute the residual sum 
of squares S S R ~  = ( 1 / ~ )  6;. 

Under Hb: 81 = 82 = 83 = 0, F has approximately an F-distribution 
with 3 p  and T - 4p - 1 degrees of freedom. 

The above theory works when { s t }  is stationary. It continues to work when st = t .  In 
that case, t is not an element of xc. The auxiliary regression when testing parameter 
constancy of a linear model against STR with transition function (12) (first-order 
Taylor approximation), is 

(Lin and Terasvirta 1994). The F statistic corresponding to (21) thus has 3 ( p  + 1) 
and T - 4p - 4 degrees of freedom. 

The parameter constancy test can also be carried out for any subset of param- 
eters. In many modeling situations considering various subsets is advisable when 
one wants to obtain a clear idea of which parameters may actually be nonconstant if 
the model appears to have unstable parameters. This is done by assuming that the 
appropriate elements 8; = 0 in (13) in which case the corresponding elements of 
p;, j = 1 , 2 , 3 ,  also equal zero a priori and are not included in the null hypothe- 
sis. The empirical example in Section V will illustrate the possibilities of this ap- 
proach. The same also applies to testing linearity against STR. In some occasions, 
economic theory behind the model or statistical considerations may suggest such a 
priori parameter restrictions. A dummy variable with all values equal to zero except 
one constitutes an example of a variable whose coefficient must always be assumed 
constant. 

The above theory covers the LSTRl model, whereas testing linearity against 
the LSTR2 model has not been discussed separately. The first-order Taylor approx- 
imation of GZ at the expansion point y = 0 eventually leads to the auxiliary re- 
gression (20) with 8 3  = 0. Thus the null hypothesis y = 0 is transformed into Hh: 

= 82 = 0. This indicates that the LM-type test of Hh: 81 = 82 = 8 3  = 0 within 
(20) also has power against the LSTR2 model. If the alternative to the linear model is 
an ESTR model defined by (10) the auxiliary regression based on the first-order Tay- 
lor approximation to the transition function is identical to that of the LSTRZ model. 
A similar remark holds for (22). Note in particular, that (22) can also be regarded as 
a first-order Taylor approximation to (13) with (12). 

Sometimes it may not be clear from economic theory which variable should be 
taken to be the transition variable under the alternative. Suppose, however, that the 
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choice is between the elements of Z l .  Then one can define the linear combination 
a‘Zl where a = (0, . . . , 1 , 0 , 0 ,  . . . , 0)’ is a p x 1 vector with the only unit element 
corresponding to the true but unknown transition variable and substitute i t  for st in 
(8). Proceeding as in Luukkonen, Saikkonen, and Terasvirta (1988a) leads to the 
auxiliary regression 

P P  P P  

P P  

with the linearity hypothesis HA: Bli; = 0, i = 1 , 2 , .  . . , p ;  j = i, i + 1 ,  , . . , p ;  
B 2 i j  = p 3 ~ ;  = 0, i, j = 1, 2, . . . , p .  The LM-type test statistic is formed accordingly 
and the number of degrees of freedom in the asymptotic x 2  distribution under H(, 
is p ( p  + 1)/2 + 2 p 2 .  This quickly grows large with increasing p and the authors 
therefore suggested an “economy version” based on 

P P  P 

The number of degrees of freedom in the test based on (24) is p ( p  + 1)/2 + p ,  
the null hypothesis of linearity being HA: B l i j  = 0, i = 1 , 2 ,  . . . , j ;  j = i, i + 
1, .  . . , p ;  /33j = 0, j = 1 , 2 ,  . . . , p .  Of course, the choice of potential transition 
variables may be restricted to only a subset of variables in z l .  In that case, the null 
hypothesis must be modified accordingly and the relevant coefficients in (23) or (24) 
set equal to zero a priori. 

The above statistical theory has the advantage that the asymptotic null dis- 
tributions are standard and the tests can be carried out just by using ordinary least 
squares. Although they are designed against STR they are also sensitive to other 
types of nonlinearity. After rejecting linearity it may therefore not be clear what to 
do next. However, one may have decided to consider STR models if linearity is re- 
jected. In that case, tests based on the above auxiliary regression may be used only 
for testing linearity but also, in case of a rejection, for the specification of an STR 
model. This argument is elaborated in Section 1V.B. 

The LM-type test statistics continue to have reasonable power in small sam- 
ples when y + 00, at least when the alternative is an LSTRl model; see Luukkonen, 
Saikkonen, and Terasvirta (1988a) and Hansen (1996). But then, if the alternative is 
a switching regression model (it is assumed a priori that y is infinite) the above theory 
does not work. Hansen (1996) recently considered a general framework for hypoth- 
esis testing when the model is only identified under the alternative. His results have 
bearing for switching regression models as well. Let v E N be the vector of nuisance 
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parameters and S T ( U )  a test statistic which is a function of the nuisance parame- 
ters. Hansen showed how to obtain critical values for statistics such as supuEN S T ( V )  
(Davies 1977, 1987) or aveuENST(u) = S T ( U )  dW(u)  (Andrews and Ploberger 
1994) by simulation. Hansen’s technique is not restricted to the case where there 
only exists a single nuisance parameter, but the amount of computations required to 
perform any of the possible tests increases with the number of nuisance parameters. 
He applied the test to testing linearity against a two-regime threshold autoregres- 
sive model with an unknown transition variable (delay). In general, the supremum 
and average tests should be preferred to the LM-type tests discussed above if one 
is able to exclude smooth transition as an alternative to linearity in favor of a dis- 
crete switch. This is the case, for example, if one is investigating structural change 
and knows beforehand that the only alternative to constant parameters during the 
observation period must be a single structural break. 

B. 

In the previous section the focus was on testing linearity against STR. This section 
deals with the situation in which the parameters of the STR model have been es- 
timated and the validity of the assumptions of the model is checked in the light of 
the results. The misspecification tests to be discussed here are those Eitrheim and 
Terasvirta (1996) recently derived in a univariate setting. As the authors remarked, 
generalizing them to STR models is straightforward. An assumption one has to make 
is that the parameters of the STR model have been estimated consistently and that 
the estimates are asymptotically normal; see Wooldridge (1994) and Escribano and 
Mira (1995) for discussions of conditions for this. 

Estimation of an STR model is carried out, among other things, under the as- 
sumption of no error autocorrelation and that of parameter constancy. These two as- 
sumptions thus have to be tested, and procedures to that effect are discussed here. 
Furthermore, it is of interest to try and find out whether or not the estimated STR 
model captures all nonlinear features present in the data. Statistical inference for 
treating this problem is another topic of this section. To retain the same order of 
presentation as in Section 1II.A it is considered before tests of parameter stability. 

Misspecification Testing in STR Models 

I .  Test of No Error Autocorrelation 

Consider first the test of no error autocorrelation in the STR model (assume for sim- 
plicity that the transition variable s1 is an element of Z t ) .  More generally, 

yt = W x 1 ;  @) + ut 

u1 = a’vt + Et ( t  = 1, . . . , T )  (25) 
where M is at least twice continuously differentiable with respect to the parame- 
ters, a = ( a l ,  . . . , aq)’ is a parameter vector, vt = ( u l - l ,  , . . , ut-q)’, and cl - 
I N ( 0 , d ) .  
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The null hypothesis is Ho: a = 0, and H I :  a # 0. The conditional log- 
likelihood, given the fixed starting values yo, y-1, . . . , ~ - ~ + l  and xg, x-1, . . . , xPq+l,  

has the form 

L = c - - h a  
t = l  

2 202 

The information matrix related to (26) is block diagonal such that the element cor- 
responding to the second derivative of (26) with respect to o2 forms its own block. 
The variance a2 can thus be treated as a fixed constant in (26) when deriving the 
test statistic. The first partial derivatives of the log-likelihood with respect to a and 
II/ are 

Furthermore, in (28) 

and 

The exponential terms in (29) and (30) are bounded for y < 00. It follows that the 
existence of the necessary fourth moments is required for consistent estimation of 
parameters. 
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The test statistic is (17) with wt = at = (a t - l ,  . . . , fit-y)’ and tt = tt = 
8 M ( x t ;  $)/a+, and its asymptotic null distribution under the null hypothesis is x2 
with q degrees of freedom. The indicates consistent estimates under No. The 
approximate F-version of the test may be computed in three stages (Eitrheim and 
Terasvirta 1996): 

1. 

2. Regress f i t  on 
3. 

Estimate the LSTRl model by NLS under the assumption of uncorrelated 
errors and compute the residual sum of squares SSRo = CtE1 fi:. 

and tt and compute the residual sum of squares, SSRl . 
Compute the test statistic FI,M = { (SSRo - SSR1) /q} /{SSRI / (T  - n - 
q ) } ,  where n is the dimension of the gradient vector Z t .  

T 

In small samples, the F-statistic with q and T -n-q degrees of freedom is preferable 
to the asymptotic x 2  variant because its superior size properties. To carry out the 
corresponding test when G = G2 (LSTR2 model) requires an obvious modification 
of zt and the assumption of the existence of the appropriate sixth moments in (17). 

A computational detail is worth mentioning here. The auxiliary regression in 
Stage 2 contains q lags of f i t .  A standard way of proceeding in such a situation is to 
trim all the time series by omitting the first q observations in them. However, if this 
is done, EL,,, f i t &  # 0 so that the trimming affects the empirical size of the test. 
In small samples the effect may not be negligible. A better solution is not to shorten 
the series but rather replace the missing observations in the beginning of the series 
of lagged residuals by zeros. Also, if the STR model in question happens to be a very 
difficult one to estimate it may be that the NLS estimation algorithm is not able to do 
a perfect job; that is, E;‘=, f i t .& # 0. To remedy that, step 1 may be replaced by 

1’. Estimate the LSTRl model by NLS under the assumption of uncorrelated 
errors. Regress the residuals fit on 2, and compute the residual sum of 
squares SSRo = cl=, U, . T A*2 

T Step 1 guarantees CiEl ci,*tt = 0 and prevents size distortion of the test. This 
extension of step 1 can also be recommended for the other two tests discussed in this 
section. 

2. 

Since a purpose of the STR model is to give an adequate characterization to the 
nonlinear features in the data it is of particular interest to find out how successful the 
estimated model is in this respect. In order to test the adequacy of the STR model, 
one may extend the model in some suitable way. Eitrheim and Terasvirta (1996) 
suggested such an extension for STAR models. Following their approach, define the 
additive STR model as 

Test of N o  Remaining Nonlinearity 
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This STR model has two additive nonlinear components, and the transition func- 
tion H where rt is assumed an element of x L  may be defined analogously to (8) or 
(9). Since testing the presence of the additional component is discussed, assume 
H ( 0 ,  c z ,  r t )  = 0 for notational simplicity. When adequacy of the standard STR 
model is the issue it can be investigated by testing Ho: y2 = 0 in (31). Because 
of the parameterization, the additive STR model (31) is not identified under this null 
hypothesis. This problem may be solved (Eitrheim and Terasvirta 1996) in the same 
way as in Section 1II.A. This means that the transition function H is replaced by its 
third-order Taylor approximation 

T3(y2, c2; rt) = 60 + 61rt + 6 2 r ~ ~  + 63r: + R 3 ( Y 2 ,  c2; rt) 

in (31). Doing that and rearranging terms yields 

where /3j = ypp;,  j = 1,2 ,3 ,  and U ;  = ul + (x:$)Rs(y2, cp; r t ) .  The null hypoth- 
esis is H;): 81 = 8 2  = 8 3  = 0 and when i t  holds, U:  = ul .  Deriving the appropriate 
test statistic with the asymptotic x2 null distribution is straightforward. In practice, 
the test can be carried out in the three stages described above. In the present case, 
8, = (%irt ,  Zir:, 2;r-f)’ in stage 2, whereas & is the same as before. The degrees of 
freedom in the F-statistic are 3p and T - 4p - 1, respectively. If G zs 0 in (32), the 
test collapses into the linearity test discussed in Section II1.A. 

In the above it is assumed that all elements of $ in (30) are nonzero. This is 
not necessary, and the elements of pL included in the second nonlinear component 
may be selected freely. On the other hand, write z ip = x’llp~ + xk1p2 in (13) and 
consider the case in which the parameters have been estimated under the restriction 
p 2  = 0. Then (32) can be written as 

and the null hypothesis of no remaining nonlinearity HA: 802 = 0, 81 = B p  = 
8 3  = 0. One can also separately test II((: 802 = O in (33) assuming = 8 2  = 
8 3  = 0. This is simply an LM test of validity of the restrictions 9 2  = 0 in (13). 
Furthermore, one may not want to be specific about the transition variable in the 
second nonlinear component. In that case one can generalize the relevant linearity 
tests to this situation as discussed in the previous section. Such a generalization 
based on the Taylor expansion of the appropriately parameterized transition function 
is straightforward. 

Sometimes a model builder may not want to be specific about the parametric 
form of the remaining nonlinearity except that it is of additive type. In that case the 
maintained model can be written as 

yl = pfxl + w’xL)w, c ;  s l )  + ax,) + Ut (34) 
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If the STR does not adequately characterize the nonlinearity in the data then K ( x , )  
is a nonlinear function. To investigate that possibility assume that K ( x , )  is at least 
three times continuously differentiable with respect to x, and expand K ( x , )  into a 
Taylor series about the expansion point xt = xe. The third-order expansion has the 
form 

where R K ( ~ , )  is the remainder term. Approximating K ( x , )  in (34) by (35) yields 

P P  

where U; = ut + R K ( ~ , ) .  The null hypothesis of no remaining nonlinearity is HA: 

j ,  . . . , p .  The test can be carried out as before as an F-test if all the necessary mo- 
ments (sixth) for x, exist. Because the maintained model is very general, the null 
hypothesis is large. As a result, the test is likely not to have very good power in small 
samples if p is not small. Note that if p = 1, the test is equivalent to the corre- 
sponding test against STR based on the auxiliary regression (33) with r, = x l t  and 
8 3  = 0. 

. .  
K i j  = 0 , i  = 1 , . . . ,  p ;  J = 1 ,  . . . ,  P ; K i ; e  = 0 , i  = 1 , . . . ,  p ; J  = i, . . . ,  P ; l  = 

3. Parameter Constancy 

Parameter constancy is one of the key assumptions of an STR model. Testing it is 
therefore as important as it is in linear models. In this chapter the alternative to 
parameter constancy is a set of smoothly changing parameters. Following Eitrheim 
and Terasvirta (1996), the definition of parameter change is based on the idea of 
smooth transition, and the developments in this section are just a generalization of 
results in Lin and Terasvirta (1994). Consider the STR model 

where zf contains those po 5 p + 1 elements of xt whose coefficients are not as- 
sumed zero a priori, and the p1 x 1 vector x:, p1 5 p + 1, is defined in the same 
way for the nonlinear part of the model. G is defined by (8) or (9). Let qo(t) = qo + 
h l H ( t ;  y1, c1) where qo and hl are po x 1 vectors, andOO(t) = 0°+h2H(yl ,  cl;  s,) 
where Oo and A2 both are p l  x 1. As  in Section III.A, let H be either 
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1 
Hz(y1, cl;  S A  = (1 + exp{-yl(t - C l l ) ( t  - c12>1)-’ - i (38) 

1 
H3(y1, c l ;  S t )  = (1  + exp{-yl ( t  - cl l ) ( t  - c12)(t - c13)])-’ - i (39) 

where y1 > 0 and cll 5 c12 5 c13. These definitions accord with those in Jansen 
and Terasvirta (1996). Using them, the null hypothesis of parameter constancy in 
(36) is Ho: y1 = 0. Note that the parameters in the exponent of G in (36) are as- 
sumed constant a priori. The three transition functions H,,  j = 1,2 ,3 ,  allow a lot of 
flexibility in characterizing parameter instability. For instance, choosing H I  and al- 
lowing y1 + 00 yields a single structural break. Doing the same in H2 if c11 < c12 

yields two structural breaks: the second one restores the original parametrization. 
Transition function H3 is the most general one and allows nonsymmetric and non- 
monotonic parameter nonconstancy. 

To discuss testing parameter constancy against qo(t) and @ ( t )  in (36), let the 
transition function be H3.  The other two functions, H I  and H2, are special cases of H3 

and need not be discussed separately. The null hypothesis of parameter constancy is 
Ho: y1 = 0 which is tested against H I  : yl > 0. The parameterizations of qO(t) and 
O o ( t )  have the property that (39) is unidentified when y1 = 0. This by now familiar 
complication which precludes the use of standard tests is dealt with in the same way 
as before. In order to construct a viable test, approximate H3 by its first-order Taylor 
expansion about y1 = 0. This yields 

H3(yI,c1; t )  = 6 0  + 61(t - cl l ) ( t  - c12)(t - c13) + R3()/1,CI; t )  

= 6;; + s;t + 6;t’ + 6;s  + R3(y,, c1; t )  

= M y 1 7  c1; t )  + M y l ,  c1; t )  (40) 
Substituting 2‘3(y1,cl; t )  for (39) in (36) and rearranging terms leads to the 
approximation 

y, = ( X y p o  + (&’81 + (x l ) t2) /B2 + (xl)t3)‘B3 

+ {(&’BLt + (&’Bs + ( x f t 2 > ’ B 6  + (x, ‘ t3>’B7}G(v, c; s t>  + U: (41) 
wherep, = y l p j ,  j = 1 ,2 ,3 ,  5 ,6 ,  7,andu; = u l + { ( x ~ ) ’ q O + ( x f ) ’ O o G ( y l ,  c ;  s t ) }  
R ~ ( Y I C I ;  t ) .  The null hypothesis of parameter constancy thus becomes Hb: = 
82 = 8 3  = 0, ps = 86 = 8 7  = 0. Since aG/ay = g,(t) and aG/ac = g,(t) are 
bounded everywhere, the results in Lin and Terasvirta (1994) generalize to this sit- 
uation (Eitrheim and Terasvirta 1996). From this fact it follows that the test statistic 
(17) has an asymptotic x 2  distribution under HA; in this case 

2, = r c x y ,  (x$(P, 2; S,))’? g y w ,  gm) ’  
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and 

Again, an F-version of the test is preferred to the asymptotic theory. The degrees of 
freedom of the F-statistic are 3(po + p l )  and T - 4 ( p o  + p l ) ,  respectively. 

If the alternative to parameter constancy is characterized by H2 then 8 3  = 0 
and 87 = 0 in (41), and the null hypothesis is reduced accordingly. If only monotonic 
change is considered to be the alternative to stable parameters, then the transition 
function is the logistic function (37) and one has 8 2  = 8 3  = 0 and 86 = 8 7  = 0 in 
(41). Even this test may be restricted to cover only certain parameters of the model 
while the remaining ones are constant. This is done by rewriting (36) as 

in obvious notation. The maintained nonconstancy is restricted to the coefficients of 
xp2 and x:2. Carrying out tests corresponding to appropriate block divisions of xp 
and x: one can gain information about which parameters in (36) may be nonconstant 
if not all of them are. The empirical example in Section V illustrates the usefulness 
of testing the stability of subsets of parameters in STR models; see also, for example, 
Lutkepohl, Terasvirta, and Wolters (1995) and Wolters, Terasvirta, and Lutkepohl 
(1997). 

Finally, the LM test of no autoregressive conditional heteroskedasticity (Engle 
1982, McLeod and Li 1983) in the error process of an STR model can be carried out 
in the standard fashion exactly as in linear models. The same is true for the Lomnicki- 
Jarque-Bera test (Lomnicki 1961, Jarque and Bera 1980) of normality of the errors. 

4. Additional Remarks 

The tests discussed in this and the preceding subsection as well as the linearity tests 
of Section 1II.A have been designed against parametric alternatives. There exists a 
wide selection of other tests that are used in connection with nonlinear modeling and 
testing for structural change; see for instance Granger and Terasvirta (1993, Chap. 
6) for an account. Many of those tests do not have a specific alternative hypothesis 
although some of them, such as RESET (Ramsey 1969) may be interpreted as LM 
tests of linearity against a parametric nonlinear alternative. They have rather been 
intended as general tests of either linearity or parameter constancy in linear models. 
Nonparametric tests surveyed in Tjflstheim (1994) form a large subset of this class 
of tests. Because the focus in this chapter is on econometric modeling with STR 
models these other tests have not received the attention that they otherwise would 
deserve. 
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C. Testing the Granger Noncausality Hypothesis 

Testing the null hypothesis of Granger noncausality between economic variables is 
normally carried out in the linear framework; for the original causality definition, 
see Granger (1969), and for a survey of the literature see Geweke (1984). The STR 
model offers a possibility to do that in a parametric nonlinear framework. For a non- 
parametric test, see, for example, Bell, Kay, and Malley (1996). This is a potentially 
useful extension, because the functional form assumed for the test may affect the 
outcome as Hendry (1995, p. 176) argued. It is also a straightforward one because 
the bivariate test is just another variant of the test of no additive nonlinearity dis- 
cussed in Section III.B.2. Following Skalin and Terasvirta (1996), who considered 
this extension, modify (31) slightly such that 

where wt = (1, ~ ~ - 1 ,  . . . , yt-,,)’ and u1 = ( ~ ~ - 1 ,  . . . , x ~ - ~ ) ’  and 6 and 11/. being two 
q x 1 parameter vectors, q 2 1.  Testing the hypothesis that the stationary variable 
xt  does not cause the other stationary variable yl is equivalent to testing Ho: 6 = 0 
and y2 = 0 in (43). Note that here i t  cannot be assumed that the delay e in H is 
known. Luukkonen, Saikkonen, and Terasvirta (1988a) discussed this situation, and 
an LM-type test of the present null hypothesis may be obtained following their ideas; 
see Skalin and Terasvirta (1996) for details. The restriction that the contribution of 
lagged x to the predictability of y be of STR-type may seem a strong one for some. It 
is possible, however, to adopt a general functional form for x as in (34) and proceed 
from there. A drawback of that approach is that the dimension of the null hypoth- 
esis increases quickly with q .  If it is assumed a priori that y1 = y2 = 0 the test 
collapses into the customary linear bivariate single-equation test. The application in 
Skalin and Terasvirta (1996) shows that the results from the STR-based test and the 
bivariate linear test applied to the same data set may indeed be very different. 

IV. THE MODELING CYCLE 

A. Introduction 

When STR models form an alternative to linear models in econometric modeling 
there are several practical questions to be answered before one can fit any STR model 
to data and more to come after the estimation. First, as mentioned, one has to find 
out whether or not a linear model provides an adequate description of data. If it does, 
nonlinear models are not needed. Second, if  nonlinearity seems to be present in the 
data, economic theory may not be explicit about the parametric form of the STR 
model, and the dynamic structure of the model may not be completely specified a 
priori either. For instance, it may not be obvious which of the independent variables 
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should be the transition variable. Third, after estimating an STR model, the ade- 
quacy of the model has to be checked. In order to deal with these issues, Terasvirta 
(1994) proposed a modeling cycle for univariate STAR models consisting of specifi- 
cation, estimation, and evaluation stages. This was an application of ideas in Box and 
Jenkins (1970), who developed such an approach to constructing ARIMA models. 
Granger and Terasvirta (1993, Chap. 7) extended the STAR modeling cycle to STR 
models. This cycle is the topic of the present section. The misspecification tests of 
estimated STR models introduced in Eitrheim and Terasvirta (1996) and discussed 
in the previous section have not become available until recently and are thus new 
compared to previous presentations of the STAR or STR modeling cycle. The three 
main stages of the cycle will be considered separately. The use of the encompassing 
principle to compare an STR model with its rivals explaining the same phenomenon 
is another addition not discussed before. 

B. Specification of STR Models 

The specification of STR models consists of finding answers to the following ques- 
tion: (i) Is a linear model adequate? (ii) If it is not and STR models are considered as 
an alternative, which variable should be selected to be the transition variable? (iii) 
Should one choose an LSTR1, LSTRZ or possibly an ESTR model? To answer the 
first question, linearity is tested against STR assuming each of the potential transi- 
tion variables in turn to be the transition variable in the test. If linearity is rejected 
against an STR with the transition variable xjt, this alternative is tentatively ac- 
cepted. Otherwise linearity is accepted in which case no further nonlinear modeling 
is necessary. If linearity is rejected against STR for more than one transition vari- 
able, one selects the variable giving the strongest rejection (lowest p-value) to be 
the transition variable. Terasvirta (1  994) provided a heuristic justification for this 
decision rule. In STR modeling, the linearity testing thus has a dual purpose in the 
sense that if linearity is rejected the test results are also used for finding the right 
transition variable for the STR model. A false rejection of linearity is likely to be 
discovered at some later stage of the modeling cycle anyway. It may be pointed out 
that by performing several individual tests one is not in control of the overall sig- 
nificance level of the linearity test. This is not crucial if the main purpose of testing 
is to help model building. On the other hand, the control of the overall significance 
level is important if the main purpose is to test an economic theory. In that case one 
should use such a variant of the test that does not assume that the transition variable 
is known a priori. These have been discussed in Section 1II.A. 

After making a decision about the transition variable the next step is to choose 
the type of the model. The decision rule can be based on the auxiliary regression (20) 
with the appropriate transition variable as follows. Define the following sequence of 
null hypotheses within (20): 
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carry out the tests and apply the following decision rule. If the reject’ on of Ho3 S 

the strongest one, choose an LSTR2 model (or an ESTR) model, otherwise select an 
LSTRl model. The coefficient vectors pj, j = 1, 2 ,3 ,  are functions of the parameters 
of the original STR model and they depend on the type of the model. The selection 
rule is based on this fact; for details see Granger and Terasvirta (1993, Chap. 7) or 
Terasvirta (1994). 

There exists another, computationally slightly heavier but still very practica- 
ble strategy. Consider the original STR model (6). Giving fixed values to the parame- 
ters in the transition function makes (6) linear in parameters. These parameters can 
be estimated by OLS. Construct a two-dimensional (LSTRl) and three-dimensional 
(LSTRZ) grid of y and c and estimate the other parameters for these combinations 
of y and c .  In order to be able to choose a meaningful set of values of y ,  the expo- 
nent of the transition function should be standardized; see the discussion in the next 
subsection. A reasonable set of values of c may be selected between the observed 
minimum and maximum values of the transition variable. Estimate the models for 
both LSTRl and LSTR2 and select between these alternatives after comparing the 
fit of the best-fitting LSTRl and LSTRZ models. This procedure can also be used to 
obtain initial estimates for the NLS estimation and to reduce the size of the model 
by imposing exclusion restrictions. An illustration can be found in the empirical ex- 
ample of Section V. Finally, the choice between LSTR2 and ESTR can be made after 
estimating an LSTR2 model by testing c1 = c2 within that model. 

C. Estimation of STR Models 

Estimation of the STR model (6) with (7), (8), or (9) is carried out by NLS which 
is equivalent to the maximum likelihood estimation in the case of normal errors. 
Wooldridge (1994) and Escribano and Mira (1995) recently discussed conditions for 
obtaining consistent and asymptotically normal estimates. The grid estimation men- 
tioned above can be used to obtain sensible initial values. Hendry (1995, Appendix 
5.5) contains a useful updated overview of numerical optimization techniques for 
maximizing the likelihood; for other accounts see, for instance, Judge et al. (1985, 
Appendix B) and Quandt (1984). One should mention that there are sometimes nu- 
merical problems in the estimation of LSTRl models and that they are related to 
estimating the slope parameter y of the transition function. First, y is not a scale- 
free parameter as its value depends on the magnitude of the values of the transition 
variable s l .  In order to reduce this dependence it is advisable to standardize the 
exponent of the transition function by dividing it by the sample standard deviation 
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(LSTR1 model) or the sample variance (LSTR2 model) of s t .  This standardization 
may bring y close to the other parameters of the model in magnitude unless y is very 
large, which is numerically an advantage in the estimation. It also makes it easier to 
find sensible initial estimates for this parameter. 

Another problem is that if y is large the STR model is very close to a switching 
regression model. This makes the estimation of y difficult in small samples because 
accurate estimation requires a sufficient number of observations of the transition 
variable s t  in a small neighborhood of c (LSTRl model) or c1 and c2 (LSTR2 model). 
Because it is unlikely in small samples that there exists a large cluster of obser- 
vations of st sufficiently close to these parameters, estimating y with satisfactory 
precision is a problem; see, for example, Bates and Watts (1988, p. 87), Seber and 
Wild (1989, pp. 480-481) and Terasvirta (1994). This in turn may cause problems in 
carrying out the tests discussed in Section I1I.B. The partial derivatives (29) and(30) 
reflect this difficulty. If y and then most likely also the NLS estimate p are large 
and there exist no observations of st that are quite close but not extremely close to 
c, (29) will be practically zero for all t .  Thus the moment matrix of any of the test 
statistics in Section 1II.B will be near-singular. In (30), observations very close to c 

(LSTRl) will cause a blip in the series whose observations otherwise are practically 
zero. If none of the observations is sufficiently close to zero then the whole vector will 
be practically zero and the moment matrix of the test statistic again near-singular. 
Rescaling (29) and (30) does not help. A feasible solution is to omit these variables 
from 2t when carrying out the test so that the results are numerically stable. This 
hardly affects the results one would obtain if one had enough precision to compute 
them. When the omission is accompanied by stage 1’ in the testing sequence any 
potential size distortion (usually negligible) due to the omission is eliminated. 

The estimation of the STR models in the example of Section V is carried out 
by applying a variant with numerical derivatives of the Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) algorithm as implemented in the OPTMUM routine of GAUSS 3.1. 
While the exponent of the transition function is standardized as discussed above, it 
will be seen that the size of y does not cause any difficulties in that example. 

D. Evaluation of STR Models 

After estimating the parameters of an STR model it is necessary to test the basic as- 
sumptions underlying the estimation. Tests of no error autocorrelation, no remaining 
nonlinearity and parameter constancy have been considered in Section 1II.B. There 
are also other, informal ways of checking the adequacy of the model. For instance, 
inflated standard errors for the parameter estimates of cp; and 8; at certain lags are 
usually an indication of overspecification. As a remedy, one should try imposing one 
of the restrictions cp; = 0,8; = 0 and cpi = -8i. Which one to choose is most 
often an empirical matter and is best settled by imposing each restriction in turn, 
reestimating the model and comparing the results. An estimated E (LSTRl), or 21 or 
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22 (LSTR2), far outside the observed range of the transition variable is often a sign 
of convergence to an infeasible local minimum and thus an indication of an inade- 
quate model. In that case, however, the model usually also fails at least some of the 
misspecification tests discussed above. However, in the case of an LSTR2 model, if 
either i.1 or 22 lies far outside the observed range of the transition variable while p 
is not small, it may also indicate that an LSTRl model is a better choice than an 
LSTR2 one. 

If the model fails the test of no error autocorrelation, respecification seems the 
only feasible solution. This is probably the most common route to follow also when 
the model badly fails the tests of no additional nonlinearity. When the STR model 
does not have constant parameters, respecification is an obvious solution as well. 
But there exists at least one special case in which one might actually want to have 
another STR component to accommodate and parameterize such nonconstancy. This 
is when the model contains seasonal dummies and their coefficients seem to change 
over time. There may not be economic reasons for such a change but seasonality 
may change slowly anyway because of changing institutions. This is not an uncom- 
mon situation in macroeconometric models. It has not been frequently accounted for 
in practice, perhaps because the econometricians have generally seen a single struc- 
tural break as the most interesting alternative to parameter constancy. The paper by 
Farley, Hinich, and McGuire (1975) was an early exception to this rule. The STR 
framework offers a possibility of parameterizing such a continuous change; see the 
example of the next section. For other macroeconometric applications of this idea, 
see for example Jansen and Terasvirta (1996) and Lutkepohl, Terasvirta, and Wolters 
(1995). Gradual changes in institutions affecting other things than seasonality may 
also be modelled using the STR approach as in Heinesen (1996). 

E. Encompassing Other Models 

STR models may be constructed in areas where there already exist rival models esti- 
mated for the same time period and explaining the same economic phenomenon. In 
such a case, even when the estimated STR model passes the above misspecification 
tests it is useful to find out whether the model is an improvement over the previous 
quantitative explanations or not. This is the case if the STR model explains the re- 
sults obtained by the rival models while the converse is not true. The STR model is 
then said to encompass its competitors; see, for example, Hendry (1995, Chap. 14) 
for a formal definition and a thorough discussion of this concept. 

The encompassing property may be investigated by statistical tests. Assume 
for simplicity that there exists a single rival model to the STR one and that it is a 
linear single-equation model. Then it may be possible to construct a minimal nest- 
ing model (MNM) nesting the two competitors. This is done by extending the STR 
model by an additive linear component that contains those variables in the rival 
model that do not linearly enter the STR model. The M N M  is thus an STR model. If 
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the rival model is also an STR model then the M N M  may be an additive STR model. 
The M N M  trivially encompasses the two original models because they are nested 
in it; see Hendry (1995, p. 511). If an M N M  can be constructed, one can apply a 
simplification encompassing test (Mizon and Richard 1986) to see if the STR model 
parsimoniously encompasses the MNM. If the rival model is linear then the test con- 
sists of testing the null hypothesis that the corresponding linear component does not 
additively enter the nonlinear M N M  model. Such a test was discussed in Section 
III.B.2 when the idea was to test exclusion restrictions on coefficients of the linear 
component of an STR model. Accepting this hypothesis is equivalent to accepting 
that the STR model encompasses the MNM. Finding out if the linear model parsimo- 
niously encompasses the M N M  is tantamount to testing linearity within an M N M  of 
STR type. This test has to be carried out using the techniques discussed in Section 
1II.A because an STR type M N M  is not identified under the null hypothesis. Suppose 
that this is done and the null hypothesis rejected. Then the conclusion is that the lin- 
ear model does not encompass the MNM. If the STR model does, then the transitivity 
property of encompassing implies that the STR model encompasses its linear rival. 
The use of this testing procedure requires that both the STR equation and its single- 
equation rival are valid models in that they can be analyzed without knowledge of the 
rest of the system. An example of simplification encompassing tests can be found in 
Section V. 

V. APPLICATION 

A. Background 

This section contains an example of the modeling cycle consisting of specification, 
estimation and evaluation of STR models. It is based on the data set and results in 
Hendry (1984), who modeled house prices in the United Kingdom in 1960-1981 
using error-correction models. For another econometric analysis of this data set, see 
Richard and Zhang (1996). The purpose here is not to present a new model for UK 
house prices: in order to do that the first thing would be to extend the time series 
as close to the present time as possible. The main objective is instead to use the 
equation for house price expectations Hendry (1984) specified and estimated as a 
benchmark and see if the STR approach based on that equation and the same ob- 
servation period leads to any new insight or yields an improved specification. This 
provides an opportunity to show how the: STR modeling strategy works in practice. 

The period Hendry (1984) considered was eventful. The nominal house prices 
increased 12-fold and the real prices by over 50%. The nominal prices were also 
clearly more volatile than the ordinary retail price index. These and other features of 
the observed time series are discussed in Hendry (1984). The paper also contains a 
description of the way the housing market functioned in the United Kingdom during 
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the observation period. The theoretical model in the paper is based on the assumption 
that the housing stock H ,  evolves intertemporally according to 

where 6, is the depreciation rate and C, denotes net additions. At any time, C, is 
very small relative to H,-l so that H,-1 is taken to be the fixed supply of housing in 
the short run. As a result, the fluctuations in demand translate into fluctuations in 
the price of housing, Ph,. Thus (see Hendry 1984, pp. 224-225 for a more complete 
argument), the demand equation is the one determining the price of housing. Its 
general form is postulated as 

H D =  f ( P h / P ,  Y , p , R ,  R m , M , T , N , F )  
- + - -  - + Y + ? 

where P is the general price level, Y the real income, p the real rental rate, R the 
market interest rate, and Rrn is the mortgage rate of interest, which for institutional 
reasons may differ substantially from the market interest rate. Furthermore, M is the 
stock of mortgages, T the tax rate, N the size of the population, and F the average 
family size. Changes in the real price of housing, the real rental rate and the interest 
rates have a negative effect on demand. Changes in the real income, the stock of 
mortgage, and the size of the population have the opposite effect. The tax rate and the 
average family size also affect the demand for housing, but the sign is indeterminate. 

In the following the focus will be solely on modeling price expectations which 
Hendry (1984) discussed in detail. The expectations are assumed unbiased: 

where A is the difference operator, ph, the logarithmic nominal price of housing (low- 
ercase letters denote logarithms), ph; the corresponding expectation, and uL an inno- 
vation with respect to the information used in predicting Aph,: E u ,  = 0, var(u,) = 
o:, cov(u,, U,) = 0, .r # t .  Equation (1 1)  in Hendry (1984, p. 228) gives the expec- 
tations the following parametric form: 

2 

Aphr = CjAphL-1 - q ( R "  - A4p)L-I + cq.Am,-~ 
i= 1 

- ~ 5 ( p h  + h - p - y - C,L),--I + c6(m - ph - h - cb)i-l 

where RP is the after-tax interest rate, c,, and C b  are constants, and c , ,  i = 1 ,  . . . ,6,  
are unknown parameters. The expectation equation contains two error correction 
terms. The first one requires the nominal value of housing to stand in constant pro- 
portion to nominal income in the long run. The second error correction term implies 
a constant long-run ratio of mortgage (m)  to own equity (ph + h); H is the housing 
stock. 
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The estimated counterpart of (45) considered here is somewhat different from 
(45) itself. It is Eq. (18) in Hendry (1984, p. 237) and contains more short-run dy- 
namics than (45). The equation has been estimated for the period 1959(1)-1982(2) 
and has the following estimated form* 

Apht = 0.23 Apht-2 + 13.1 (Apht- , )3  + 0.51 A2(Ayt) 
(0.085) (4.3) (0.13) 

+ 0.17 ( m  -ph  - h)t-l + 0.43 (y -h)t-1 
(0.028) (0.072) 

4- 0.82 F13(p) + 0.53 F13(n - p )  - 0.21 Re-3 

(0.14) (0.13) (0.10) 

- 0.51 ARY-l - 0.53 - 0.0006 Qlt + 0.025 Q2t 

(0.20) , (0.12) (0.0057) (0.0049) 

+ 0.019 Q 3 t  - 3.7 D:L - 2.2 D;t +at (46) 
(0.0047) (1.5) (0.63) 

T = 94, AZC = -3.80, R2 = 0 .78 ,6  = 0.0143, b2/&; = 0.94, sk = 1.3, ek = 
4.8, LJB = 117(4 x 10-26) 

where the figures in parentheses below the coefficient estimates are estimated stan- 
dard deviations, 6’ = (2‘ - k ) - *  fif is the residual variance (k is the number 
of estimated regression coefficients), a;, is the residual variance of the correspond- 
ing linear model (Apht-l not cubed), sk is skewness and ek excess kurtosis of the 
residuals, T is the number of observations, R2 is the coefficient of determination, 
LJB is the Lomnicki-Jarque-Bera normality test and the value in parentheses is the 
p-value of the test statistic. The small p-value is due to a few large residuals. In 
(4% A d 4  = (1/3)(3% +2+1 +x,-zL Fl3(4 = A(%-1 + x t - d ,  h ( m  - p )  = 
A{(m - p)t-r + ( m  - p ) t - 3 ) ,  x : - 3  = (1/2)(R:-;3 + RI)-4), Q i t ,  i = 1 , 2 , 3 ,  are 
the three seasonal dummy variables, and DyI and D:t are two dummy variables dis- 
cussed in Hendry (1984, pp. 241-242). The errors of (46) are not autocorrelated, 
see Table 1. Tests of no autoregressive conditional heteroskedasticity (Engle 1982) 
in Table 1 do not indicate any problems either. 

Equation (46) is a result of a specification search. Ratio “real value of housing 
to income” in (45) has become “real income to stock of housing.” The lag structure 
has been simplified by omitting lags and imposing coefficient restrictions defined by 
A 2 ,  F13, and E .  An interesting feature is the cubic price difference (Apht-1)3  whose 

*The estimated equation is not exactly the same as Eq. (18) in Hendry (1984). The differences are due to 
the fact that the data set Hendry (19%) used was no longer available in its original form. The data set 
used in this chapter 15 as close to the original data a\ possible. 
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Table I 
and MA(q) Error Process and the LM Test of No Autoregressive Conditional 
Heteroskedasticity against ARCH(q) in model (46) 

p-Values of the LM Test of No Error Autocorrelation against an AR(q) 

Maximum lag q 

Test 1 2 3 4 6 
~~~~~~ 

No error autocorrelation 0.55 0.83 0.75 0.88 0.38 
No ARCH 0.99 0.99 1 .oo 1.00 0.99 

coefficient estimate is significant and which Hendry (1984, p. 228) describes as a 
local approximation to a more complicated lag structure. When it is introduced, a 
linear first-order lag Aph,-l is no longer needed in the equation. 

B. 

The presence of the cubic price lag in (46) may be interpreted as an indication of 
possible nonlinearity. It can be viewed as a first-order Taylor approximation to a 
certain ESTR equation with Aphl-l as a transition variable. Instead of directly es- 
timating such an equation a more general approach is adopted. First, one has to find 
out whether the expectations model is nonlinear, the alternative to linearity being the 
STR. If the null hypothesis of linearity is rejected, the next step is to build an ade- 
quate STR model to characterize the nonlinearity. When this is attempted, the linear 
parameter restrictions imposed in (46) are retained because the focus is on potential 
nonlinearity of the price expectations. Omitting the restrictions and starting with a 
richer parameterization than (46) has not been considered. 

To test linearity against STR, the cubic lag ( A p h , _ ~ ) ~  in (46) is replaced by 
Apht-l so that the basic model is linear not only in parameters but also in variables. 
This model forms the null hypothesis in testing linearity as discussed in Section 
1II.A. It is assumed that the dummy variables only enter the model linearly and do 
not thus under any circumstances appear in the nonlinear part of the model. For 
Dyl and D:t with very few nonzero values this is the only feasible assumption, but 
it also covers the seasonal dummies. All the nondeterministic variables are a pri- 
ori regarded as potential transition variables. Therefore, a separate test sequence is 
carried out, assuming each of them in turn being the transition variable under the 
alternative hypothesis. The results appear in Table 2. The null of linearity is strongly 
rejected when Aph,-l is the transition variable. This accords with the specification 
of (46), although the test sequence (Ho4 and H02 rejected more strongly than H03) 

suggests an LSTRl rather than an LSTR2 or an ESTR model. The other strong re- 
jection occurs when F13(rn - p )  involving changes in the real value of mortgage is 
assumed to be the transition variable. Since the first rejection is the strongest one 

Specification and Estimation of the STR Model 
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Table 2 
Assumed Known 

p-Values of Tests of Linearity of the Linear (Aph,-l not cubed) U.K. Housing Price Equation against STR, Transition Variable 

F 0.00014 0.057 0.22 0.47 0.41 0.82 0.00037 0.76 0.80 
F4 0.017 0.34 0.0036 
F3 0.066 0.74 0.069 
F2 0.0013 0.0025 0.037 

“The p-values for the whole sequence of tests are given only if the p-value of the general test ( F )  lies below 0.1. 
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Table 3 
(Apht-l not cubed) U.K. House Price Equation against 
STR-Type Nonconstancy 

p-Values of Parameter Constancy Tests of the Linear 

Null hypothesis 
Parameter 

constancy test (1) (2) (3) (4) 

0.090 0.026 0.85 0.42 
0.19 0.056 0.54 0.50 
0.37 0.24 0.78 0.53 

(1): Ho: “All parameters except the coefficients of 
(2): Ho: “Intercept and the coefficients of seasonal dummy variables are con- 

(3): Ho: “Coefficients of Aph,-l and Aph,-p are ronstant.” 
(4): Ho: “Coefficients of ‘exogenous’ variables are constant.” 
Notes: (1) The parameters not under test are assumed constant also under the 

alternative. (2) Test 4 is a test against an STR model with transition 
function H,, j = 1, 2,3;  see Section III.B.3 and definitions (23)-(25). 

and 11: are constant.” 

stant.” 

and as (46) may be interpreted as an approximation to an STR model with AphL-l 
as the transition variable it is tentatively assumed that the data have been generated 
by such an LSTRl model. Furthermore, the constancy of parameters in the linear 
equation was tested applying the tests discussed in Section 1II.A. The results can 
be found in Table 3. The overall test vaguely indicates that the equation may not 
have constant parameters. The main reason for this seems to be that seasonality has 
been changing over time. Nevertheless, the evidence against parameter constancy is 
clearly weaker than that against linearity, and the nonlinearity is therefore dealt with 
first. It can be mentioned that if the parameter constancy of (46) is investigated by 
the same tests (results not reported here), the rejection is stronger than in the case 
of the linear equation. 

After choosing an LSTRl model for Aph, one has to specify the parame- 
ter structure of the model. In order to do that one first assumes a fully parameter- 
ized model and estimates the parameters using ordinary least squares and the two- 
dimensional grid for y and c as proposed in Section 1V.B. The results appear in 
Table 4. As discussed, they can be used to specify the parameter structure of the 
STR model. Noting that the t-values are conditional on p and E ,  it is seen that only 
few coefficients in the nonlinear part of the equation may be nonzero. Somewhat ar- 
bitrarily first retaining those with It1 2 1.6 estimating the corresponding STR model 
and removing the redundant variables leads to the result that only the intercept and 
the error-correcting variable (rn - ph - have significant nonlinear coefficients 
(they had the highest t-ratios already in Table 4). One thus  obtains the following STR 
model: 
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Table 4 
Model for the U.K. Housing Prices, 1959(1)-1981(2) 

Grid Estimation of the Fully Parameterized LSTRl 

Linear Standard 
coefficient of Estimate deviation t-Value 

Intercept 
911 
Q2t 

Q3t 

-0.065 
0.2 1 
0.53 
0.13 
0.37 
0.82 
0.52 

-0.26 
-0.54 

0.38 
-0.,00098 

0.022 
0.014 

-2.16 
-3.78 

0.092 
0.073 
0.10 
0.023 
0.061 
0.13 
0.11 
0.082 
0.21 

0.092 
0.0045 
0.0037 
0.0036 
0.47 
1.08 

-0.71 
2.8 
5.1 
5.5 
6.1 
6.5 
4.9 

-3.2 
-2.6 

4.1 
-0.22 

5.8 
3.9 

-4.6 
-3.5 

Nonlinear 
coefficient of 

-0.17 
1.39 

-1.01 
0.37 

-2.18 
-2.95 
-0.87 

4.83 
- 7.95 

3.09 

0.43 
0.83 
2.18 
0.12 
1.42 
4.26 
1.81 
3.19 
3.87 

1.23 

-0.41 
1.7 

-0.46 
3.1 

-1.5 
-0.69 
-0.48 

1.5 
-2.1 

2.5 

P 
E 

9.5 
0.07 

0.87 

0.104 
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Table 5 
and MA(q) Error Process and the LM Test of No Autoregressive Conditional 
Heteroskedasticity against ARCH(q) in (47) 

p-Values of the LM Test of No Error Autocorrelation against an AR(y) 

Maximum lag y 

Test 1 2 3 4 6 

No error autocorrelation 0.34 0.30 0.38 0.51 0.48 
No ARCH 0.65 0.85 0.53 0.69 0.80 

APhc = 0.22 Apht-2 + 0.48 A2(Ayt) + 0.13 ( m  - ph - h)c-l 
(0.074) (0.11) (0.027) 

-I- 0.34 (y - h)t--l f 0.70 F13(p) f 0.43 F13(m - p )  
(0.060) (0.12) (0.10) 

(0.084) (0.21) (0.1 1) (0.0047) 
- 0.21 Ry-3 - 0.51 ARY-, - 0.38 - 0.0012 Qit 

+ 0.024 Q2t + 0.0174 Q3t - 3.6 Dyt - 2.2 D:t 
(0.0040) (0.0040) (0.24) (0.53) 

+ { 3.0 + 0.60 (n - ph - h)t-l}  
(1.2) (0.25) 

x [l  + exp{ -2.5 (Aph,-l - 0.088) /&(Apht- l ) } ] - ’  
(0.79) (0.0085) 

+ rzt (47) 

T = 94, AZC = -8.63, R2 = 0.85,& = 0.0123, a’/&: = 0.69, sk = 0.93, ek = 
4.0, LJB = 76(4 x lO-I7)  

where &(Aph,-l)  is the sample standard deviation of Aph,-l and 8; the residual 
variance of the corresponding linear model. The residual variance of (47) is only 
about 70% of that of the corresponding linear model. Results of the LM test of no error 
autocorrelation in Table 5 do not indicate autocorrelation, nor is there any evidence 
of ARCH. Large skewness and excess kurtosis estimates are mainly due to a large 
positive residual in 1964(1); see Figure 1. 

C. 

The residuals of (47) are graphed in Figure 1 together with the residuals of (46). The 
main difference in the fits of the two models is due to different characterizations of the 

Interpretation and Evaluation of the STR Model 
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1959(1) 1963( I )  1967( 1) 1971(1) 1975(1) 1979( I )  
4.. . * .  . . . . . . ' .  . * .  . . . . . . . . ' . . . ' - . . . . . . . - -0.04 

Quarter 

Figure I 
for the first differences of the logarithmic UK housing price index, 1959(1)-1982(2). 

Residuals from the linear model with a cubic lag (46) and from the STR model (47) 

price turbulence in 1973. The linear equation strengthened by the cubic lag does not 
explain the features of the housing price boom and its immediate aftermath as well as 
(47). Apart from that period both models have almost identical fits. It seems obvious 
that the nonlinear specification is mainly required to model the exceptional increase 
in house prices in 1973. This is also seen from Figure 2. It shows that the transition 
function obtains values close to zero most of the time. A comparison between (46) 
and the linear part of (47) indicates that they are quite similar. For those periods (46) 
and (47) thus may be expected to have rather similar residuals. 

1 .o 

0.8 

0.6 

0 . 4  

0.i  

Figure 2 Values of the transition function of the STR model (47), 1959(1)-1982(2). 
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Figure 3 Values of the error-correction term (48) in equation (47), 1959(1)-1982(2). 

It is instructive to find out how the nonlinear error correction (nec,) works in 
1973. From (47), 

nec, = 0.38 + 3.OGl(P, 2; Aphl-l) 

+ (0.13 + O.6OG1(P, 2; Aphl-l)}(rn - ph - 

where 

The graph of (48) over the observation period appears in Figure 3. When a large 
price shock arrives (Aph, obtains a large value) it causes a sharp increase in (48) 
one period later through the combined intercept 0.38 + 3.OG1. The error-correcting 
combination (rn - ph - h)  has negative values throughout so that an increase in 
the value of the transition function initially weakens the error correction. This initial 
effect is soon offset by a large change in (rn -ph  --h),-1 as the value of the mortgage 
stock does not follow the rapid increase in the value of the housing stock. Because 
of the large positive nonlinear coefficient (0.60) of (rn - ph - h)l-l in (48) the pull 
toward the equilibrium increases dramatically and eventually suppresses the price 
boom. 

The STR model (47) seems to explain the dynamics of the unusually large 
increase in housing prices but does it explain all nonlinearity in the data? Table 6 
contains the results of the tests of no additive nonlinearity against an additive STR 
model considered in Section III.B.2. Note that Aph,-l is included in the second 
nonlinear component although it only appears in the transition function of (47). When 
the test is carried out with Aph,-l as the transition variable, the p-value of the test 
equals 0.11. This indicates that the nonlinearity causing a very low p-value for the 
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Table 5 p-Values of Tests of No Additive N ~ n l i n e ~ r i t ~  in the LSTRl Model (47) for a Set of Transition Variables 

F 0.11 0.90 0.011 **a **a 0.65 0.17 0.72 0.89 

F3 0.056 
F2 0.57 0.43 0.79 

F4 0.011 

“Test not compu~ed due to near-singu~arity of the moment matrix. In that case, results of Fz (test against additive nonlinearity of LSTRl type) are shown. 
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Table 7 
against STR-Type Constancy 

p-Values of Parameter Constancy Tests of the LSTRl Model (47) 

Null hypothesis 
Parameter 
constancy test (1) (2) (3)  (4) (5) 

Fl 0.022 0.017 0.61 0.0078 0.71 
F2 0.19 0.15 0.84 0.038 0.87 
F3 0.30 0.19 0.96 0.12 0.71 

~ ~~~~~~ 

(1): Ho: “All parameters except the coefficients of DY and ,!I: are constant.” 
(2): Ho: “All parameters in the linear part of the model except the coefficients of DY 

(3): Ho: “All parameters in the nonlinear part of the model are constant.” 
(4): Ho: “Intercepts and coefficients of the seasonal dummy variables are constant.” 
(5): Ho: “All parameters in the linear part of the model except the dummy variables 

Notes: (1) The parameters not under test are assumed constant also under the al- 
ternative. (2) Test 4 is a test against an STR model with transition function 
H,, j = 1, 2,3; see Section III.B.3 and definitions (23)-(25). 

and D: are constant.” 

are constant.” 

corresponding linearity test (Table 3) has been dealt with in a satisfactory manner. 
Another result pointing at the same direction is that the test with F13(rn - p )  as the 
transition variable has p-value 0.17, whereas the corresponding linearity test had a 
low value. On the other hand, the test with A2(Ayt) as the transition variable now 
has a p-value close to 0.01, but this order of magnitude is considerably higher than 
that of the lowest p-values in the linearity tests. As at the same time all the other 
tests have p-values exceeding 0.1, this result does not cause too much concern. As a 
whole, it can be concluded that the STR model (47) explains most of the nonlinearity 
present in the data. 

Parameter constancy tests of the linear model indicated some nonconstancy 
although the result could also have been interpreted as an effect of neglected non- 
linearity on these tests. Table 7 contains results of the parameter constancy tests de- 
scribed in Section 1II.B. The results suggest that despite careful parametrization of 
nonlinearity the parameter nonconstancy is still a problem. It seems obvious that sea- 
sonality in U.K. house prices has been changing over time. Furthermore, the change 
seems to have been monotonic during the observation period because Fl is the test 
with the strongest rejection of the null hypothesis just as it was in the linear model. 

D. 

To capture this parameter change one can estimate the parametric alternative to pa- 
rameter constancy, which in this case means estimating an additive STR model. In 

Respecification and Reestimation of the Model 
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this model the second transition function has time as the transition variable. A spec- 
ification search indicated that the second and the third quarters have to be included 
in the additional nonlinear component of the model. The estimated equation has the 
form (note that the second transition variable t / T  is standardized between 0 and 1) 

Apht = 0.23 Apht-2 + 0.58 AZ(Ayt) + 0.12 (m  - ph - h)t-l 
(0.070) (0.11) (0.025) 

+ 0.33 (y - h)t-l + 0.55 F13(p) + 0.31 F i 3 ( m - p )  
(0.06 1) (0.12) (0.10) 

- 0.32 ZQ-, - 0.48 AR:-, + 0.38 - 0.0035 Qit  

(0.082) (0.19) (0.098) (0.0045) 

- 0.24 Q2t + 0.23 Qst - 3.9 DYt - 1.6 Dit 
(0.57) (0.54) (1.1) (0.48) 

+ { 2.9 + 0.59 ( m  - ph - h)t-i}  
(1.2) (0.24) 

x [l  + exp{- 2.8 (AphL-l - 0.088 )/i3(Aphl-1)}]-' 
(0.94) (0.0075) 

+ { 0.53 Q z ~  + 0.50 Qstj  

(1.1) (1.1) 

x [l  + exp{- 0.13 ( t / T  - 0.49 )/&(t/T)}]- '  
(0.28) (0.16) 

+ at (49) 

T = 94, AZC = -8.75, R2 = 0.88,6 = 0.0114,i32/&~ = 0.59, sk = 0.86, ek = 
3.4, LJB = 56 (7 x 10-13) 

where 3 ( t / T )  = {(l /T)  C y = l ( t / T  - 1/2)'}'/2. The residual variance of (49) is 
about 60% of that of the corresponding linear model. Testing the residuals against 
error autocorrelation and ARCH does not indicate any model misspecification (the 
test results are not shown). The fit of (49) is very similar to that of (47). AZC has 
decreased compared to (47). 

Figures 4 and 5 illustrate the effect of the second transition function. Figure 4 
shows that during the observation period, the estimated transition function is prac- 
tically a straight line. This explains the large standard deviations of the estimates 
of the coefficients of both the linear and the nonlinear seasonal dummy variables 
and the slope parameter of the transition function y. Information about where the 
logistic transition function is bending is necessary for accurate estimation of the pa- 
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Figure 4 Values of the transition function of seasonal dummy variables in the STR model 
(49), 1959(1)-1982(2). 

rameters involved in the characterization of seasonal effects. That this informa- 
tion is scarce in the sample is seen from Figure 4. A similar situation is described 
in Jansen and Terasvirta (1996). Figure 5 shows the values of the time-varying 
seasonals (-0.24 + 0.53H(P, E ;  L / T ) } Q ~ ~  and (-0.23 + O.SOS(P,  E ;  t / T ) } & .  
The figure shows that seasonality in the house prices increases from 1959(1) to 
1982(2) and that the effect can be ascribed to the second and the third quarters of 
the year. 

0'015 0 . 0 4 0  I 
0 035 

0 030 

0 0 2 5  

0 020 

0015 

0010 

0 005 

0 000 

Ouorter 

Y 

Figure 5 
ter = solid line, third quarter = dashed line) according to Eq. (49), 1959(1)-1982(2). 

Values of the second and third quarter time-varying seasonal effects (second quar- 
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In order to find out whether or not the large uncertainty in the estimates of sea- 
sonal parameters is mainly due to overparameterization the second logistic transition 
function in (49) is replaced by the linear approximation ( t / T )  and the parameters 
reestimated. This yields 

+ 0.33 (y - h)t-l + 0.55 F13(p) + 0.31 Fi3(m - p) 
(0.060) (0.12) (0.10) 

(0.080) (0.20) 
- 0.32 Re-3 - 0.48 ARY-, + 0.38 - 0.0035 Q l t  

. (0.096) (0.0045) 

1.6 D:t + 0.0067 Q2t + 0.0016 Q3L - 3.9 Dyt - 
(0.0063) (0.0060) (1.1) (0.51) 

+ { 3.0 + 0.59 ( m  - ph - h)L-l) 
(1.2) (0.24) 

x [ l  + exp{- 2.8 (Aph,_l - 0.088 )}]-I 

(0.93) (0.007 7) 

+ 0.035 ( t /T)Q2t  + 0.033 ( t / T ) Q 3 t  + f i t  (50) 
(0.0 10) (0.0094) 

T = 94, AZC = -8.79, R2 = 0.88,6 = 0.0113, 6’/&;, = 0.58, sk = 0.86, ek = 
3.4, IJB = 56(7 x l O - I 3 ) .  

The estimates of other parameters than the seasonal dummies remain practically 
unchanged. The seasonality seems indeed to be changing over time. The amount of 
uncertainty in the parameter estimates is considerably less than in (49) and AZC 
smaller. The seasonals in the linear part of (50) could even be removed altogether; 
that is, in the beginning of the period there has been little or no seasonality in house 
prices. For illustration, however, those variables have been retained in the model. 

The test results for models (49) and (50) are very close to each other. Those 
for (SO) are reported. Results of testing the hypothesis of no remaining nonlinear- 
ity against the same alternative as previously can be found in Table 8. They are 
rather similar to those for model (47). The only conspicuous difference is that the 
test against LSTR with (rn - ph - h)c-l as the transition variable now has a rel- 
atively small p-value. Because most of the other tests have clearly higher p-values 
(even the one with A2(yL) as the transition variable) the current specification is ten- 
tatively accepted. 

Results of the parameter constancy tests can be found in Table 9. The null 
of constancy is not rejected in any of the tests. The parameterization of changing 
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Table 8 p-Values of Tests of No Additive Nonlinearity in the LSTRl Model (SO) for a Set of Transition Variables 

F 0.27 0.91 0.031 **a **a 0.13 0.16 0.25 0.44 

F3 0.37 
F2 0.24 0.016 0.65 

F4 0.015 

‘Test not computed due to near-singularity of the moment matrix. In that case, result of F2 (tests against additive nonlinearity of LSTRl type) are shown. 
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Table 9 
against STR-Type Nonconstancy 

p-Values of Parameter Constancy Tests of the LSTRl Model (50) 

Null hypothesis 
Parameter 
constancy test (1) (2) (3) (4) (44 (5) 

0.70 0.61 0.58 **a 0.97 0.50 
0.81 0.60 **a 0.85 0.73 **a 

F3 **a 0.71 0.81 **a 0.96 0.32 

Fl 
F2 

(1): Ho: “All parameters except the coefficients of Dy and D; are constant.” 
(2): Ho: “All parameters in the linear part of the model except the coefficients of DY and 

Di are constant.” 
(3): Ho: “All parameters in the nonlinear part of model are constant.” 
(4): Ho: “Intercepts and coefficients of the seasonal dummy variables are constant.” 
(4a): Ho: “Linear intercept and coefficients of the seasonal dummy variables are constant.” 
(5): Ho: “All parameters in the linear part of the model except the coefficients of the dummy 

variables are constant .” 
“Test not computed due to near-singularity of the moment matrix. 
Notes: (1) The parameters not under test are assumed constant also under the alternative. 

(2) Test I$ is a test against an STR model with transition function H,, j = 1, 2 ,3;  see 
Section III.B.3 and definitions (23)-(25). 

seasonality has removed the variation in the coefficients of seasonal dummy vari- 
ables. According to (50), U.K. housing price changes now have a trending seasonal 
component. However, it is not very realistic to extend the conclusion far outside the 
sampling period. In fact, model (49) should be preferred to (50) as far as the in- 
terpretation of the “trend” is concerned. The change one observed just happens to 
lie within an interval for.which the logistic transition function is almost linear. Of 
course, even the interpretation that Eq. (49) offers may turn out to be incorrect in 
the light of any new data, but at any rate, the assumption of a long-run linear trend 
in seasonality is hardly a plausible one. 

E. Encompassing Tests 

An objective of this application is to find out if the specification of the price ex- 
pectations equation (46) can be improved by applying STR models. Equation (50) 
is an STR model, and the question is whether or not it can be viewed as an im- 
provement over (46). This can be investigated by encompassing tests as discussed 
in Section 1V.E. The task is to investigate whether the STR model (50) encompasses 
(46) or not and vice versa. To find out if (50) encompasses (46) the first step is to 
construct an MNM. This is done by augmenting (50) linearly by the cubic lag of 
the price change ( A & - I ) ~ .  The augmented model trivially encompasses (50) be- 
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cause the latter model is nested in it. In order to see whether (50) parsimoniously 
encompasses the M N M  one estimates the parameters of the M N M  and computes the 
likelihood ratio statistic 

where Lo is the likelihood of (50) and L1 that of the M N M .  Under Ho: “Coefficient of 
( A ~ h , - l ) ~  equals zero in the MNM,” (51) has an asymptotic x2(1) distribution. In 
this case one obtains LR = 0.0299 with p-value 0.86. The conclusion is that (50) 
parsimoniously encompasses the M N M .  

The following computational remark is in order. Equation (46) and the STR 
model (50) are competitors, of which the latter is nonlinear even in parameters. Non- 
linear least-squares estimation of the M N M  required to carry out the test of parsimo- 
nious encompassing may sometimes be difficult because the parameterization of the 
M N M  may turn out to be very rich. In the present case the convergence was achieved 
in the estimation when the initial estimates of the parameters of the M N M  (save the 
coefficient of ( A p h , - ~ ) ~ )  were the same as the final estimates in (50). If the initial 
estimates were chosen further away from those values, the N L S  algorithm (BFGS) 
either converged to a local minimum or did not converge at all. 

Testing the null hypothesis that (46) parsimoniously encompasses the M N M  
is not equally straightforward because the latter equation is nonlinear and is not 
identified if linearity in parameters (the null hypothesis) holds. This situation was 
discussed in Section 1V.E and it was pointed out the hypothesis can be tested by 
applying linearity tests described in Section 1II.A. The transition variable of the al- 
ternative needed in the test is Aph,- l .  The linearity test statistic is the usual one 
and the variables in the auxiliary regression based on the M N M  include the ordi- 
nary ones in (50) but also ( A p h , - ~ ) ‘ ? .  Note that in accordance with (46), Apht-l 
only appears as the transition variable and is not present in the null model. The 
F-approximation to the likelihood ratio test results in F(27, 52) = 2.42(0.0031), 
whereas Fz(9, 70) = 2.51(0.0051) (FL is a test against LSTR1). This implies a 
rejection of the null hypothesis, and the conclusion is that Eq. (46) does not par- 
simoniously encompass the M N M .  As (50) does, one has the result that (50) also 
encompasses (46) and thus contributes to the general understanding of the mecha- 
nism generating U.K. house price expectations during 1960-1981. 

VI. FINAL REMARKS 

In this chapter the emphasis is on showing how STR models can be applied to model- 
ing problems in time series econometrics. It is demonstrated how the actual modeling 
is carried out in a systematic fashion through a modeling cycle. This cycle can be 
repeated until an adequate model passing the available diagnostics is found. Alter- 
natively, the cycle may be terminated by concluding that the family of STR models is 
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not an appropriate one for empirical modeling of the economic relationship in ques- 
tion. The central role of hypothesis testing in STR modeling becomes clear from the 
text. First, it is important to single out the linear cases from nonlinear ones. But test- 
ing is also an essential part of model specification and evaluation. The validity of 
assumptions underlying the STR model are investigated by tests after estimating the 
parameters of the model as well as the question whether or not an estimated STR 
model is an improvement over previous models in the literature. 

The STR can be used, as in the example of Section V, for modeling economic 
relationships between variables. Another role of the STR model is that it constitutes 
a feasible alternative to important null hypotheses concerning linear models. The 
null hypothesis of parameter constancy is one: in that case the alternative to con- 
stant parameters are continuously changing parameters. As Section V shows, this 
is a useful alternative, for example, in testing the constancy of the pattern of sea- 
sonal fluctuations. Furthermore, although this possibility has not been discussed in 
this chapter in any detail, the STR model provides a convenient framework for joint 
testing of weak exogeneity and a restricted form of invariance, that is, for testing su- 
perexogeneity. Finally, the additive STR model may be used for testing for Granger 
causality in the presence of STAR-type nonlinearity. 

The STR model considered in this chapter is a single-equation model. In the- 
ory, the idea of smooth transition can be extended to systems of equations. This can 
be done in many ways of which the ones with practical significance still need to be 
sorted out. Anderson and Vahid (1995) recently searched for common nonlineari- 
ties between variables, using a vector STAR model. In general, however, there is as 
yet little empirical experience available of such systems and more is needed. In the 
meantime, additional applications of the single-equation STR model are also neces- 
sary to learn more about how the proposed modeling strategy works in practice and 
to find out ways of improving it and developing it further. 
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Modeling Seasonality in Economic 
Time Series 

Philip Hans Franses 
Erasmus University Rotterdam, Rotterdam, The Netherlands 

1. INTRODUCTION 

This chapter surveys issues concerning seasonality in economic time series. An elab- 
orate discussion on a formal definition of seasonality is given in, e.g., Hylleberg 
(1986, 1992). Here I loosely refer to seasonality as the variation in time-series data 
that displays a certain regularity corresponding with the measurement interval. For 
example, for quarterly data one may consider the annually recurring positive or neg- 
ative peaks in certain quarters as seasonal fluctuations. Furthermore, the observa- 
tion that stock returns on Mondays seem more volatile than those on other weekdays 
concerns seasonality too, that is, seasonality in variance. 

In many cases, seasonality in economic time series is due to weather or insti- 
tutional factors. An example of the latter is that school holidays are fixed by local 
governments, and hence one may expect tourism spending to be high in the cor- 
responding season. Another example is that the deadline for companies to publish 
their annual reports can be dictated by law. Right after that deadline, one may expect 
more volatility in stock markets in case the news differs from the expectations, and 
one may also observe changes in key macroeconomic figures such as consumer confi- 
dence indicators. Hence, part of the seasonal variation may be roughly constant over 
time, since for example it is unlikely that Christmas will move to other months, but 
another part of seasonality may change because of changes in institutional factors. 
Finally, seasonal patterns can also change because economic agents start to behave 
in a different way. In fact, if Mondays would always display high volatility, one would 
be able to make money through derivatives. Hence, because of the so-called week- 
end effect, one may expect a high volatility on Mondays, but this feature is unlikely 
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to be constant over time, see, e.g., Franses and Paap (1995). Another example is that 
seasonal labor supply may make the unemployment rate to display more seasonality 
in the expansion stage. 

In this chapter I will focus on statistical models that can describe and forecast 
economic time series with seasonal variation which changes over time. The running 
examples in this chapter to be used for illustration are taken from macroeconomics, 
tourism, marketing, and finance. A dominant approach in macroeconomics is to sea- 
sonally adjust the data prior to analysis; that is, one assumes that seasonality is not an 
interesting data feature and should be removed. In most fields of economics, however, 
seasonality is considered important since it can convey information on, for example, 
the behavior of economic agents (Ghysels 1994a). In this chapter I concur with this 
view and I will therefore not consider seasonal adjustment, and confine myself to 
models that explicitly incorporate descriptions of seasonality. I refer the reader in- 
terested in seasonal adjustment to the surveys in Hylleberg (1992), Bell and Hillmer 
(1984), and Maravall (1995) inter alia. 

The outline of this chapter is as follows. Section I1 gives some summary statis- 
tics for four sample series. These statistics mainly show that seasonality does not 
appear constant over time, and that any changes do not occur quickly. Hence, sea- 
sonality seems to change slowly over time. Section I11 reviews the two approaches 
which are nowadays commonly used in many applications, i.e., univariate and multi- 
variate models that incorporate seasonal unit roots and seasonal parameter variation. 
Due to space limitations, I only highlight some of the key features of these models 
and refer the interested reader to the surveys in Hylleberg (1994), Franses (1996a, 
b), and to the specific studies mentioned here. In Section IV, I discuss further topics 
of research. Section V concludes with some remarks. 

II. SOME EXAMPLE SERIES 

In this section I discuss some time series features of four sample series. The first time 
series is real consumption nondurables in the United Kingdom, which is observed 
quarterly for 1955.1-1988.4. The source of these data is described in Osborn (1990). 
The graph of this series is displayed in Figure 1. It is clear that the data display an 
upward-moving trend, which seems sometimes hampered by shocks, especially those 
around 1974 and 1979. Furthermore, seasonal variation seems a dominant source of 
variation. As is usual for economic time series, these data are transformed by taking 
natural logarithms. 

The second quarterly time series is depicted in Figure 2 and it concerns the 
unemployment rate in Federal Germany for 1962.1 to 1991.4. The source of these 
data is the OECD Main Economic Indicators. The graph in Figure 2 shows that un- 
employment seems to increase rapidly around the recession periods 1967,1974, and 
1980-1982. The decline in unemployment occurs more slowly, and hence this series 
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displays nonlinear features. Again, seasonal fluctuations seem important sources of 
variation. Since this unemployment series is a percentage, the log transformation is 
not applied. 

A sample series for the tourism sector is taken from Gonzalez and Moral (1995). 
It concerns the monthly real tourism and travel receipts for Spain (in billions pe- 
setas), for the sample 1979.01-1993.12. From Figure 3 one can observe that (as 
expected) seasonal variation is quite pronounced, where the peaks correspond with 
August and the dips with December, approximately. There is an upward trend until 
1989 and a slightly different trend after 1990. 

Finally, the fourth sample series concerns marketing data; i.e., these are ex- 
penditures on radio advertising in The Netherlands, measured four-weekly from 
1984.01 to 1994.13. The data source is the Bureau for Budget Control, Amsterdam. 
Its graph in Figure 4 shows that the second half of the sample displays strmg sea- 
sonal variation. 

For convenience, I denote all four time series as yL. The index t runs from 1 
to n. The four series are observed S times per year, where S equals 4 for consump- 
tion nondurables and unemployment, 12 for tourism in Spain, and 13 for the radio 
advertising data. The variables concern N years of data, where the index T is used 
to indicate years (with T = 1,2,  . . . , N ) .  Hence, n equals S N .  The seasonal index 
is denoted by s, with s = 1 , 2 ,  . . . , S. Finally, I denote the conventional seasonal 
dummy variables by Ds,L, which take a value 1 in season s for which t = S (  T - 1) + s 
for T = 1,2, . . . , N ,  and zero otherwise. 

A useful first step in analyzing the properties of seasonal time series is to 
calculate the autocorrelation function (ACF) of (transformations of) the data. These 
transformations concern the application of certain differencing filters to remove any 
nonstationary features. For example, when a time series has a stochastic trend, its 
ACF when estimated along standard lines cannot be interpreted since the variance 
of such a process depends on time. A stochastic trend can be removed by taking 
first differences A I ,  where A1 is defined by Akyl = (1 - Bk)yt  = yL - yl-k for 
k = 1,2,  . . .. An analogous version of A1 for seasonal time series is As = 1 - BS.  
In that case one says that yt has seasonal stochastic trends. When seasonality is 
approximately deterministic, one may consider the residuals from the regression of 
A,yl on S seasonal dummies, since in that regression one removes the seasonal con- 
stants from A 1 yL. Finally, it may be that seasonal and nonseasonal stochastic trends 
somehow interact, and hence that one considers the A1 As filter, as is advocated by 
Box and Jenkins (1970). Table 1 reports on the ACFs for the various transformed 
time series. To save space, only the autocorrelations at lags, 1, 2, S - 1 ,  S, S + 1, 
and 2s are given. 

The results in Table 1 can be said to be typical for economic time series with 
seasonality. For all four sample series, the ACF of yL dies out only very slowly. The 
ACFs of the A1 transformed data all show peaks at lags S and 2s. When the A ,  
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Table I Autocorrelations of Sample Seriesa 

Variable Lag 1 2 s-1 S s+1  25 

Consumption nondurables (n = 136, S = 4) 
0.928* 0.900* 0.876* 0.891* 0.823* Yt 

A I R  - Cs=I p,D,,t -0.074 -0.359* -0.034 0.554* 0.023 
-0.463* -0.014 -0.481*. 0.947* -0.438* 

s *  A1 yt 

ASYt 
AI ASYt 

0.779* 0.625* 0.449* 0.248* 0.238* 
-0.164 0.050 0.048 -0.444* 0.236* 

Unemployment rate (12 = 120, S = 4) 
0.969* 0.946* 0.934* 0.934* 0.891* Yt 

-0.195* -0.234* -0.224* 0.874* -0.254* A1 yt 

ASYt 
A 1 ASYt 

yt - c$, fl,Ds,t 0.220* 0.290* 0.078 0.457* -0.077 
0.919* 0.772* 0.593* 0.401* 0.250* 
0.422* 0.189* 0.072 -0.239* -0.239* 

Tourism and travel receipts (n = 180, S = 12) 
0.833* 0.590* 0.756* 0.860* 0.728* 
0.219* 0.091 0.330* 0.733* 0.276* 

Yt 

AlYL 

Asyt 
A1 Asyt 

Alyt - E,=] s ,iLsDs,, -0.433* -0.164* 0.169* 0.056 -0.134* 
0.304* 0.278* 0.234* -0.106 0.141 

-0.481* -0.051 0.307* -0.428* 0.135* 

Advertising expenditures, radio (n = 143, S = 13) 
0.876* 0.719* 0.662* 0.745* 0.649* Yt 
0.131 -0.332* 0.155 0.753* 0.187* 

Alyt - cL, 0.081 -0.216* 0.121 0.506* 0.226* 
A1 yt 

ASYt 
A1 ASYt 

0.631* 0.465* 0.093 -0.037 0.059 
-0.277* 0.026 0.180* -0.311* 0.262* 

0.788* 
0.910* 
0.491* 

0.023 
-0.014 

0.831* 
0.798* 
0.188* 

-0.002 
-0.089 

0.721* 
0.658* 

- 0.042* 
0.067 
0.002 

0.483* 
0.588* 
0.298* 

0.004 
-0.162 

*Significant at the 5% level. 
"All variables are in logs, except the unemployment rate. 

data are regressed on seasonal dummies (A1yl - 
S psDs,l), some of the large 

values at S and 2s reduce to small and insignificant values. This shows that one 
should always account for seasonal constants, since neglecting these may lead to 
spuriously large ACF values at seasonal lags. The ACFs of the AsyL series seem to 
die out reasonably quickly, and one may want to estimate low-order autoregressive 
(AR) models for these transformed series. In the last row of each panel, one can 
observe (and this is common to many economic series) that the ACF of A1 AsyL has 
significant values at lags 1, S - 1,  S, and S + 1. 
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The latter feature for the A1 As  transformed series is also recognized in Box 
and Jenkins (1970), who propose to analyze the so-called airline model 

AiAsyt = (1 - 81B)(1 - 8sBs)&l (1) 

where Et  is a standard white noise series. Clearly, the theoretical ACF of (1) corre- 
sponds with nonzero values for the ACF at lags 1, S - 1, S, and S + 1. In the case 
where 81 = 0s = 1, which amounts to overdifferencing since then (1 - B)(1 - B s )  
cancels from both sides of (l), the corresponding ACF values are -0.5,0.25, -0.5, 
and 0.25, respectively. Most textbooks in time series advocate the use of (1). Fur- 
thermore, for many different example series model (1) fits well. Its key advantage is 
that it only contains two moving-average (MA) parameters to be estimated. 

As  an example for the consumption nondurables data it appears that the follow- 
ing model passes the usual LM-type diagnostic checks for residual autocorrelation 
at lag 1 and at lags 1-to-S: 

AiA4yl = 0.0002 + E ,  - O.634Et-4 
(0.001 0) (0.069) 

where the parameters are estimated using Micro TSP routines, and where standard 
errors are reported in parentheses. Notice that (2) effectively contains only one pa- 
rameter, which (together with the double-differencing filter) appears sufficient to re- 
move the autocorrelation in yl. 

As another example, for the four-weekly advertising data, the following model 
is found to pass the diagnostic checks for residual autocorrelation: 

AlA13yt = 0.0012 + Et  - 0.3942,-1 - O.388it-2 
(0.027 7) (0.07 7) (0.072) 

(3) 
- O.4962,-13 - O.304Et-14 

(0.069) (0.076) 

Due to the disaggregation level of these data, one should expect the need for several 
parameters to whiten the errors. For the MA part of the model, the solutions to its 
characteristic polynomial are six pairs of complex roots with absolute values 0.981, 
0.963,0.943,0.930, 0.928, and 0.921, and two real roots 0.993 and 0.612. Hence, 
given that 13 of the 14 solutions are close to the unit circle, it may be that the A13 
filter on the left-hand side of (3) is redundant. Given the fact that MA parameters 
are typically estimated away from the unity boundary, one may now be tempted to 
conclude that the A I  filter for advertising should be sufficient. In fact, if so, with 
seasonality being approximately constant, Bell (1987) shows that the solutions to 
the MA polynomial for (1) approach the unit circle. 

It is worthwhile to note that the solutions to 1 - z s  = 0, or equivalently 
to exp(Si4) = 1 (where i2 = -1) are { 1, cos(27tkl.S) + i sin(27tklS)) for k = 
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1,2 ,  . . . , yielding S different solutions which all lie on the unit circle. In other words, 
the A1 As filter in (1) to (3) assumes S + 1 unit roots, i.e., S + 1 independent sources 
of stochastic and nonstationary variation. Even though the MA component in models 
as (1) seems to “repair” in some sense the possibly overestimated number of unit 
roots, one may question the notion that economic time series are governed by such 
a large number of trends. 

Consider for example the so-called seasonal random walk process Asyl = E~ 

and also consider the S time series Y s , ~ ,  which are the annually observed data on 
yt in season s = 1 , 2 ,  . . . , S .  Given the seasonal random walk process, it is clear 
that the individual Ys,r series are annually observed random walks which are in- 
dependent. The observations in the various seasons are not tied together somehow, 
and they wander through time without any restriction. Strictly speaking, this means 
that “summer” can become “winter.” Of course, the MA component in (1) will pre- 
vent such changes to occur rapidly, but in principle it is possible. Given the graphs 
in Figures 1 through 4, it seems that for economic data the seasons are somehow 

Table 2 Changing Seasonality 

Sample Lags Min 8, Max 8, SD 

Consumption nondurables (S = 4) 
1957.3-1 973 -4 2,4,5,8,9 -0.054 (81) 0.041 (82) 0.042 
1974.1-1988.4 2,4,5,8,9 -0.078 (81) 0.039 (84) 0.055 

Unemployment rate (S = 4) 
1963.3-1976.4 1,475 -0.679 (82) 0.590 (81) 0.548 
1977.1-1991.4 1,495 -0.451 (82) 0.288 (81) 0.322 

Tourism and travel receipts (S = 12) 
1979.07-1986.12 1,2,3,4,5 -0.459 (812) 0.569 (88)  0.375 
1987.01-1993.12 1,2,3,4,5 -0.438 (812) 0.434 (8,) 0.299 

Advertising expenditures, radio (S = 13) 
1980.02-1988.13 1,2, 3, 4, 5, 13 -0.114 (81) 0.086 (86 )  0.059 
1989.01-1994.13 1,2, 3, 4, 5, 13 -0.355 (8,) 0.297 (82) 0.179 

~ ~~~~ 

The auxiliary regression is 

where the number of lags is based on LM tests for residual autocorrelation at lags 1 and 1-to-S. 
SD is the standard deviation of the estimated 8,. Note that a formal test for the equality of the 
8, across the two subsamples is only valid when this regression model is valid. For example, 
unemployment may not be linear, and perhaps filters as As are needed instead of A I ,  see 
Sections I11 and IV. 
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tied together. In other words, although the seasonal fluctuations seem to change over 
time, they do so not that quickly. 

To obtain a tentative impression of how seasonality can change over time, I 
consider the estimates of 6,, s = 1,2,  . . . , S, from the auxiliary regression 

where the values of i are set such that there is no autocorrelation in E t .  In Table 2, 
I report minimum and maximum values of 8 ,  and the standard deviation of the S 8,  
parameters for two subsamples which are roughly similarly large. For consumption 
nondurables one can observe that the maximum value for 8, is obtained for the sec- 
ond quarter in the first sample, while it corresponds with the fourth quarter in the 
second sample. For unemployment, these extreme 8, values correspond to the same 
seasons, although the standard deviation decreases with about 60%. For the Span- 
ish tourism data, August loses its importance to July toward the end of the sample. 
For illustrative purposes, I depict the estimates for the twelve 6, parameters in the 
two subsamples in Figure 5. One can observe that tourism in Spain seems to shift 
slightly from the summer months more toward the winter months January to March, 
suggesting structural shifts in the behavior of tourists. 

Figure 5 
1987.01-1993.12 (Part 2). 

Estimates of monthly dummy parameters for 1979.01-1986.12 (Part 1) and for 
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Finally, for radio advertising expenditures in Table 2 it seems that indeed 
“winter” becomes “summer”; i.e., the dip in January moves to about July/August, 
while the peak changes from June/July to about February. Furthermore, as could 
be expected from Figure 4, the variance of seasonality increases from 0.06 to 
0.18, i.e., with 300%. 

Notwithstanding the results for the advertising series, it seems that the sea- 
sonal fluctuations in economic time series change over time only at a slow pace. 
This implies that the airline model in (1) may assume too many changes in season- 
ality since it assumes a large number of unit roots. In the next section I will discuss 
two important approaches that may overcome the conceptual problems with (l), and 
which can yield descriptions of economic data that allow for slowly changing sea- 
sonali ty. 

111. MODELING STRATEGIES 

Broadly speaking, there are two general strategies to model seasonal economic time 
series which display slowly changing seasonality. The first is to impose (depending 
on formal test results) one or a few seasonal unit roots on the AR part of a model, and 
the second is to allow the AR parameters to vary across the seasons. For brevity, I call 
the first approach “seasonality in dynamics,” and discuss this in Section 1II.A and 
call the second approach “seasonality in parameters” (Section 1II.B). Recent studies 
in Boswijk, Franses, and Haldrup (1997) and Ghysels, Hall, and Lee (1996) seem 
to suggest that combinations of the two approaches do not obtain much empirical 
support. This section only highlights the main issues, and for further more detailed 
overviews the reader is referred to, for example, Franses (1996a, b). 

A. Seasonality in Dynamics 

Consider the AR(p) model for a time series with seasonal frequency S: 

yt = 41yt-1 + 42Yt-2 + * * .  + 4pYt -p  + Et (5) 

where typically p exceeds S.  First, I focus on univariate yt processes, while the sec- 
ond part of this section allows yL to be an rn x 1 vector process. 

I .  Univariate Time Series 

When the AR polynomial in (5) denoted as @,(B)  can be decomposed as 

as in (l), the yt process is said to be both integrated (because of 1 - B)  and sea- 
sonally integrated (because of l - Bs). In this case, yt contains S + l unit roots. 
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The polynomial 1 - BS can be decomposed as (1 - B)(1 + B + + BS- ' ) ,  and 
yt is an 1(2) process since its AR model contains the component (1  - B)2 and it 
has S - 1 so-called seasonal unit roots. The latter unit roots correspond with the 
stochastic trends at the seasonal frequency, and hence can be relevant in case the 
seasonal pattern in yt changes over time. Notice that these changes are permanent. 
For example, consider the simple process 

yt = -yt-1 +EL t 7) 

which in case S = 4 is called a process with a seasonal unit root at the biannual 
frequency, see Hylleberg et al. (1990). Substituting lagged yt in (7) results in 

yt = Et  - Et-1 + E t - 2  - E t - 3  + * * (8) 
and hence the variance of yt at t equals to2, which is the same as that for a standard 
random walk. Shocks E~ in (7) cause permanent changes to the pattern of yt because 
their effect does not die out as seen from (8), and because of the seasonal unit root, 
the seasonal pattern in yt changes permanently. 

Given the conceptual impact of the assumption of seasonal unit roots, and 
given that unit roots lead to wider forecasting intervals and to more involved model- 
ing strategies for multivariate time series in the next step, it is important to test for 
the number of seasonal and nonseasonal unit roots in a univariate time series. The 
two commonly applied test procedures are proposed in Osborn et al. (1988) and in 
Hylleberg et al. (1990) [HEGY]. The OCSB method investigates whether the #,(I?) 
polynomial contains the components 1 - B,  1 - B", both, or none of these. The test 
regression is 

q(mA1 Asyt = Cct + Y1 Asyt-1 + Y2AlYt-s + Et (9) 

where q ( B )  is an AR polynomial, and 

s-1 s- 1 

Cct = a0 + asDs,t + Pot + PsDs,t t 
s= 1 s= I 

where t reflects a deterministic trend. OCSB consider the case with S = 4 and where 
PO to Ps-1 are set equal to zero. Critical values for other cases are given in Franses 
and Hobijn (1997). When y1 = y2 = 0, the A1 As  filter is appropriate, when y1 = 0 
and y2 is not, the A1 filter is needed, when y2 = 0 and y1 is not the As filter, and 
no filter is required when both y1 and y2 are unequal to zero. When the B's in (10) 
are not set equal to zero, and when these also appear useful in a model for A1 or 
A s  filtered yt, this yt series in fact shows increasing seasonal variation. Such models 
may be useful when one does not want to use the logarithmic data transformation 
(e.g., Bowerman, Koehler, and Pack 1990). 

As an example, an application of this OCSB method to the unemployment data, 
where S = 4, q(B)  contains one lag, and all P's in pt are set to zero, yields the t -  
values t ( P 1 )  = 0.006 [-2.111 and t ( P 2 )  = -4.384 [-3.751, where 5% critical 
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values are given in brackets. Other choices for pc do not change the conclusion that 
yt appears to contain the nonseasonal unit root 1 since P1 is insignificant and that 
unemployment does not need the double-differencing filter. 

An application to radio advertising expenditures, where now a trend is in- 
cluded in (9) and q ( B )  = 1, results in t ( P 1 )  = -4.913 [-2.781 and t (P2)  = 
-5.506 [-5.811. Hence, for this four-weekly series it is found that the As filter may 
be needed since t (P2)  does not appear significant. In sum, for both series the Alas  
filter assumes to many unit roots. It should be mentioned that the empirical work in 
Osborn (1990) convincingly shows that there are only very few quarterly time series 
for which the A1 A 4  filter is required to obtain stationarity. 

Since the As filter assumes S - 1 seasonal unit roots, it is now relevant to test 
how many of these roots are present for a certain time series yL. A commonly applied 
method for this purpose is (a variant of) the HEGY approach. For S = 4 this method 
concerns the auxiliary regression 

where M ( B )  = 1 + B + B2 + B3 and A(B)  = -(1 - B)(1 + B 2 ) .  HEGY give 
asymptotics and critical values for S = 4 and pc with Bs = O(s = 1 ,  . . . , S - l), 
Smith and Taylor (1995) allow for seasonally varying trends in case S = 4, and 
Franses and Hobijn (1997) consider additional cases. The key focus is on the n l  to 
n 4  parameters in (11) since nl = 0 implies 1 - B, n 2  = 0 implies 1 + B, and 
n 3  = n 4  = 0 implies 1 + B2,  where the latter two seasonal unit roots fz correspond 
with the annual frequency. Typically, one considers t-tests for n1 and n 2  and a joint 
F-test for n3 and n 4 .  One may also use the joint F-tests for nl to n 4  or n 2  to n 4 ,  

where the latter concerns all seasonal unit roots (Ghysels, Lee, and Noh 1994). 
An application of the HEGY method to the German unemployment data (where 

q(B)  in (11) includes two lags, and pc does not include any trends) results in t(fi.1) = 
1.292 [-2.831, t(f i2)  = -1.914 [-2.831, and F ( f i . 3 , 3 4 )  = 8.380 [6.62], where 
again 5% critical values are given in brackets. Hence, to remove the nonstationar- 
ities in this series, one needs the (1  - B)(  1 + B )  = 1 - B2 filter. In other words, 
one may describe the changing seasonal variation in unemployment using a seasonal 
unit root at the biannual frequency. 

For the Spanish tourism data, the application of an extension of the HEGY 
regression (ll), with Bo in (10) unequal to zero and q(B)  = 1, results in t ( f i 1 )  = 
-1.161 [-3.291, t(fi.2) = -4.799 [-2.761, and F ( f i 1 ,  ., iz l2)  = 18.835 [4.46]. 
Hence, for this monthly series only the A,  filter is required. This implies that the re- 
sults in Table 1 and Figure 5 can be interpreted safely since the auxiliary regression 
model cannot be rejected by the data. 

An application of the HEGY method to many quarterly U.K. time series (also 
including consumption nondurables) in Osborn (1990) yields that often only one or 
two seasonal unit roots are present. This finding, which appears typical across em- 



MODELING SEASONALllY IN TIME SERIES 565 

pirical applications of the HEGY method (see, for example, Hylleberg, Jgrgensen, 
and Sgrensen 1993, Ghysels, Lee, and Siklos 1993, and Lee and Siklos 1993), im- 
plies that the double-differencing filter A ]  As as assumed in (1) imposes too many 
unit roots on the AR polynomial in (5). However, as shown in Ghysels, Lee, and 
Noh (1994), in case (1) is the true data-generating process in simulation exercises, 
the empirical size of the HEGY test largely exceeds the nominal size, implying that 
one is inclined to find not enough unit roots. Furthermore, it can be shown that in- 
appropriate lag augmentation in regressions as (1 1)  can have a large impact on the 
empirical outcomes, Finally, if p in (5) is smaller than S, the HEGY and OCSB ap- 
proaches may be difficult to apply. Additional research is needed to fully under- 
stand the theoretical and empirical properties of both test methods. For example, 
Ghysels, Lee, and Siklos (1993) examine the effect of lag selection of HEGY test 
results. 

2. Multivariate Time Series 

In case the yl process in (5) is an rn x 1 vector time series, and hence when the 
41 to q5p are M x m. matrices, and the components, say, y ~ , ~  to ym,t contain one or 
more seasonal or nonseasonal unit roots, one may wish to decrease the number of 
parameters in a vector AR (VAR) by investigating common properties across time 
series. For example, if two quarterly series y1 , 1  and ~ 2 , ~  have a common seasonal unit 
root -1, i.e. when they both have a 1 + B component in their univariate AR mod- 
els, these two series are seasonally cointegrated at the biannual frequency if a linear 
combination Gl(B)yl, ,  - c ~ G z ( B ) y z , ~  (where the Gi(B)  do not contain 1 + B) does 
not have this seasonal unit root (Engle et al. 1993). When both variables require 
the A4 filter, the polynomials G1 ( B )  and Gz(B)  equal 1 - B + B2 - B 3 .  When for 
example ~ 1 , ~  only requires the 1 - B2 filter, G1 ( B )  equals 1 - B. Hence, the trans- 
formations G ; ( B )  (i = 1, 2) can differ across time series, and they usually depend 
on the HEGY test results for univariate series. 

In principle, the test method for seasonal cointegration in EGHL concerns 
regressions of G1 (B)yl, ,  on p l  and G ~ ( B ) ~ L , ~ ,  and an analysis of the seasonal and 
nonseasonal unit root properties of the estimated residuals. Lee (1992) extends the 
Johansen method to test for cointegration to the seasonal case (S = 4) by investi- 
gating the ranks of the rn x rn matrices 7rl to n4 in a VAR model similar to (11). 
An application to several data sets for various countries is given in Kunst (1993). 
In Franses and Kunst (1995) the impact of seasonal dummies on the properties of 
seasonally cointegrated variables is discussed. It can be shown that such seasonal 
dummies can imply the data to have seasonally varying trends. Since this feature 
may not be present in many log-transformed time series, Franses and Kunst (1995) 
propose to check the cointegration properties at each of the frequencies separately. 
Finally, a Granger representation theorem for seasonal cointegration is given in Jo- 
hanseri and Schaumburg (1996). 
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B. Seasonality in Parameters 

The second currently dominant approach in modeling and forecasting economic time 
series with seasonality concerns so-called periodic models. Since the studies in Os- 
born (1988) and Osborn and Smith (1989), these models have become increasingly 
popular in economics. This section surveys some key aspects of periodic models for 
univariate and multivariate time series. A full account of the literature and of recent 
developments in periodic models for nonstationary seasonal time series is given in 
Franses (1996b). For ease of notation, I confine most of the discussion to quarterly 
time series (S = 4). 

I ,  Univariate Time Series 

Consider the simple first-order AR model with seasonal varying parameters 

4 4 

s= 1 s= 1 

where ps are seasonal intercepts and the 4~7 denote AR parameters that are allowed 
to vary with the season. Model (12) represents a periodic AR process (PAR) of order 
1. This PAR(1) is the simplest case of the more general PAR(p) class of models, but 
for the present discussion expression (12) suffices to highlight some of the properties 
of periodic AR models. Franses (1996b) focuses at great length on more elaborate 
models. 

For the periodic process in (12) with 4.s # 4 for all s = 1, 2, 3 , 4 ,  it is clear 
that the observations in each of the four seasons are described by a different model. 
Denoting Ys,r as the observation on yc in quarters in year T ,  (12) implies that Y ~ , J -  = 
p4 -I- 44Y3,T + E ~ , T  and for example Y I , T  = pl + @ ~ Y ~ , J - - I  + E I , T .  These expres- 
sions show that the models for the annual time series Y s , ~  have constant parameters. 
In fact, model (12) can be written as 

1 0  0 -  

-42 1 0 
0 -43 1 [ 0 0 - 4 4  

where B Y ~ , J  = Y ~ , J - - I .  The model for the 4 x 1 vector process YJ- containing Y ~ , T  to 
Y ~ , T  is convenient to analyze the unit root properties of yl since (13) represents the 
same time-series data as (12) does. The characteristic equation of (13) is 

implying that yl can contain a single unit root when 6 1 4 2 4 3 4 4  = 1. Obviously, 
when all (6, = 1, which is the standard random walk case, yL has the unit root 1, and 
also the YT process has one unit root. When all @,7 = -1, yl has the seasonal unit 
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root -1, and the YT process again has one unit root. Hence, seasonal unit roots in 
yl correspond with regular unit roots in the YT process. Given this correspondence, 
it seems natural for a PAR process first to test whether @1@2@344 = 1 and next 
to test restrictions on the 4s parameters. Boswijk and Franses (1996) show that the 
first test follows a Dickey-Fuller distribution, and that the second step involves just 
x2 asymptotics. Franses and Paap (1996a) show through simulation and through 
forecasting empirical series that this two-step method yields useful results. Boswijk, 
Franses, and Haldrup (1997) extend this method to allow for more general structures 
involving 1(2) processes and more seasonal unit roots. Ghysels, Hall, and Lee (1996) 
focus on testing for restrictions as 4s = - 1 in (12 ) in one step. 

In case $1$2@344 = 1 in (12) and $.v # 1 or -1 for all s = 1,2,3,4, the yl pro- 
cess is said to be periodically integrated (Osborn 1988, Franses 199613). Otherwise 
formulated, yl requires a periodic differencing filter 1 - q5sB with $1&?@3$4 = 1 
to remove the stochastic trend. Notice that these q5s parameters have to be estimated 
from the data, and that some 4s values will exceed 1. Typical values for $s for quar- 
terly data are within the range of 0.8 and 1.2. For example, the estimation results 
for a PAR(1) with the restriction 41@2$344 = 1 for the U.K. consumption durables 
sample series are $ 1  = 1.003 (0.008), $2 = 0.932 (0.007), $3 = 1.030 (0.008), and 
$4 = 1.039 (0.008), with estimated standard errors in parentheses. Note that these 
standard errors underestimate the true standard errors since the 4s parameters are 
estimated superconsistently, see Boswijk and Franses (1996). An F-test for the re- 
striction 4s = 1 obtains the value of 31.61 7, and this is clearly significant at the 5% 
level. Hence, U.K. consumption nondurables appears to be a periodically integrated 
process; see also Osborn (1988) where i t  is shown that this finding is consistent with 
a modified economic theory and Franses (1996b) for some results on forecasting such 
senes. 

For many sample series considered in Franses (1996b) it is found that the pe- 
riodic differencing filter 1 - 4, B is appropriate to remove the unit root. This finding 
appears robust to data transformations and structural breaks. One of the main impli- 
cations of periodic integration is that seasonality changes, which can be illustrated 
by writing (12) without the p, as 

4 4 

s= 1 s= 1 

4 

+ 4s4s-14s-2Ds,lEl-3 
s= 1 

which after taking first differences and with @ ~ T  values close to unity can be approx- 
imated by 

4 

s= 1 
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When model (15) is estimated under the assumption that qs = q for all s, it is very 
similar to the airline model in (1). Hence, periodically integrated time series may 
seem adequately described by the airline model. Note that this does not hold the 
other way around. In fact, for the consumption series, such a model is estimated in 
(2). In general, it can be shown that neglecting periodic parameter variation increases 
the lag order (Osborn 1991, Tiao and Grupe 1980); i.e., there appears to be a trade- 
off between lags in nonperiodic models and the number of intrayear parameters in 
periodic time-series models. Furthermore, neglecting periodicity reduces the power 
of nonseasonal unit root tests (Franses 1996b), and it may lead to the finding of 
spurious seasonal unit roots (Boswijk and Franses 1996). 

The application of periodic integration is not necessarily restricted to periodic 
models as (12). In fact, Bollerslev and Ghysels (1996) introduce the stationary peri- 
odic GARCH model to describe seasonally observed financial time series. Franses 
and Paap (1995) extend this model to allow for persistence of volatility shocks in 
order to describe the stylized fact that for many daily financial time series the vari- 
ance appears to change slowly over time. Franses and Paap (1995) fit the following 
PAR(p)-PIGARCH(1, 1) model to daily returns on the Dow-Jones index (for about 
4000 daily observations): 

P 

i= 1 

Et cv “0, of) 

of = 0, + CKSEf-, + pot-, 2 ( s  = 1 , 2 , 3 , 4 , 5 )  

under the restriction that 
5 

n ( a ,  + j3) = 1 with C I , ~  # a (s = 1 , 2 , 3 , 4 , 5 )  (19) 
s= 1 

It is found that for example B1 + 6 = 1.008 and &2 + 6 = 0.956, reflecting the 
well-documented importance of Monday stock returns over Tuesday returns. 

A second important aspect of periodic integration is that the trend/cycle com- 
ponent and the seasonal component in an economic time series interact. This is ob- 
vious from the fact that the @ ~ $  parameters in the differencing filter 1 - 4sB differ 
across the seasons; see Franses (1996~) for more details. Hence, seasonal adjust- 
ment methods as Census X-11, which treat all seasons in an equal fashion, do not 
remove the intrinsic periodicity in a time series. As shown in Franses (1996b) it 
is possible to fit periodic models to seasonally adjusted data if the underlying time 
series shows dynamic periodicity. Strictly speaking, it does not make sense to sea- 
sonally adjust periodic time series since the key assumption for seasonal correction 
is that one can isolate the seasonal from the nonseasonal component. As a possi- 
ble consequence of this conceptual problem, there is evidence that the NBER peaks 
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and troughs display seasonality, even though these dates are set using seasonally ad- 
justed data (Ghysels 1994b). In fact, Franses (1996b) shows that seasonally adjusted 
periodically integrated time series can generate such features. Additional evidence 
for the apparent link between seasonal fluctuations and the trend/cycle is presented 
in Barsky and Miron (1989), Beaulieu, MacKie-Mason, and Miron (1992), Canova 
and Ghysels (1994), Franses (1995), and Miron (1996). 

Finally, a feature of periodic integration in connection with the intercept pa- 
rameters p, in (12) is that this allows a description of variables with increasing sea- 
sonal variation without taking logs. This may be useful for such data as the trade 
balance, and other economic data that may take negative values. A key drawback 
of periodic AR models, however, is that the number of parameters increases quite 
rapidly if S and p increase. For example, a PAR(2) model as (12) for monthly data 
involves the estimation of 24 parameters. Hence it may be useful to impose certain 
parameter restrictions (Anderson and Vecchia 1993). 

2. Multivariate Time Series 

Obviously, the number of parameters in multivariate periodic models increases quite 
rapidly, see Lutkepohl(l991) and Ula (1993) for periodic VARs for time series with- 
out unit roots. For example, when yt in (12) is rn x 1, and all parameters are allowed to 
vary with the season, this periodic VAR(1) contains 4rn2 parameters. An additional 
drawback of this representation is that i t  is quite complicated to investigate the unit 
root properties of the vector yL process since the expressions for the characteristic 
equations similar to (14) are not as simple. 

One possibility is to resort to an alternative representation of periodic VARs, 
as is done in Kleibergen and Franses (1995). This representation assumes that long- 
run cointegration relations across variables obey certain restrictions. If one wants 
to allow for more flexibility, one may consider the second possibility, which is to 
impose more structure on the dynamics and also to focus on only a single equation 
(Birchenhall et al. 1989, Boswijk and Franses 1995). A simple example of a resultant 
model for a bivariate time series is 

where the equilibrium and adjustment parameters are allowed to vary with the sea- 
son s = l ,  2, 3,  4. Boswijk and Franses (1995) propose an empirical strategy for 
this so-called periodic cointegration model. Franses (1996b) illustrates that models 
such as (20) can also generate time series for which the trend/cycle and the seasonal 
fluctuations are dependent. 

At present, the literature on multivariate periodic models is not extensive, and 
much more research is needed into the properties of such models and into the design 
of useful empirical methods for more general cases than (20). 



570 FRANSES 

IV. FURTHER RESEARCH TOPICS 

The issue of investigating seasonal variation in economic data has gained much in- 
terest in the last few years, and this has resulted in the two approaches discussed 
in the previous section. There are also several studies in which seasonality is in- 
corporated explicitly into economic theory, e.g., Osborn (1988), Hansen and Sargent 
(1993), Todd (1990), and Miron and Zeldes (1988). There are, however, many issues 
for current and future research, and in this section I will highlight only a few of these. 

A. Structural Breaks 

The time-series models in the previous section assume that seasonality changes be- 
cause of shocks; i.e., the changes are stochastic. It may, however, be that the changes 
are deterministic. Institutional changes may make economic agents to start behaving 
differently in certain seasons. For example, allowing country regions to fix their own 
school holiday periods may reduce variation in tourism spending. Another example 
is the introduction of a new TV and radio broadcasting channel that can change the 
structure of the market for advertising expenditures. Such a new radio channel was 
introduced in The Netherlands in 1989, around observation 154 in Figure 4. It is 
clear from this graph that seasonality in advertising expenditures changes dramati- 
cally. The source of this change appears to be a new pricing policy, which in turn is 
due to changing pricing policies for TV. This change is seasonality can be said to be 
deterministic. 

Following the arguments in Perron and Vogelsang (1992), i t  can be expected 
that neglecting changing parameters in deterministic seasonal dummies biases sea- 
sonal unit root tests toward nonrejection; see Franses and Vogelsang (1997) for formal 
results. Furthermore, such changes bias tests for periodicity toward the alternative; 
i.e., too much periodicity is found, as shown in Franses (1996b). As an example, for 
the advertising series, when the OCSB regression in (9) is enlarged with 13 seasonal 
dummies for the period from observation 154 onward, the t-tests obtain the values 
t ( P 1 )  = -2.497 [-2.861 and t ( P 2 )  = -1 1.358 [-7.501, where the 5% critical val- 
ues are from Franses and Hobijn (1997). Hence, the previous conclusion that radio 
advertising needs a A13 filter changes to the necessity of only the A1 filter. All 12  
seasonal unit roots disappear when one allows for deterministic shifts. 

For many economic time series the location of a break that affects tests for 
seasonal unit roots is unknown. If one suspects such breaks, one may then use the 
extreme values of the various t -  and F-tests to search for a break data. Asymptotic 
theory for this approach is presented in  Franses and Vogelsang (1997). If one does 
not like the idea of searching for possibly inconveniently located breaks, one may 
wish to use this method in order to investigate the robustness of the outcomes of 
seasonal unit root tests. In fact, Paap, Franses, and Hoek (1997) show through simu- 
lation experiments that making mistakes in either direction yields highly imprecise 
forecasts. 
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Further research is needed to investigate the robustness of empirical findings 
on periodicity and seasonal unit roots to structural shifts in seasonal means. Since 
Ghysels and Perron (1996) document that seasonal adjustment tends to obscure 
structural breaks, it may be that the approach in Franses and Vogelsang (1997) can 
also be usefully applied for unadjusted variables to test for nonseasonal unit roots 
in the presence of seasonal unit roots and mean shifts. Finally, in case determinis- 
tic seasonal mean shifts occur quite frequently, i t  seems relevant to investigate the 
robustness of the empirical regularities summarized in Miron (1996). 

B. Time-Varying Parameters 

Allowing for structural mean shifts can be helpful to detect exactly when seasonality 
changes, if it does. Seasonal unit root and periodic integration models may not be 
very helpful to decide in which part of the sample the seasonal variation changes. 
Hence. in order to be able to understand more clearly what economic behavior causes 
such changes, one may consider models that are in between models with seasonal 
unit roots and deterministic shifts. For example, it may be useful to consider 

4 

s= 1 

where uc is some ARMA process and 6,s,L are time-varying parameters for the sea- 
sonal dummies. The 6.s,l can be made functions of time, of lagged 6S,l or of economic 
variables. Consequently, one can extend the HEGY approach to allow for more flex- 
ible structures in the pul term in (10). 

Recent examples of flexible structures for seasonal variation are given in An- 
dersen and Bollerslev (1994), Harvey and Scott (1994), and Canova and Hansen 
(1995). Hylleberg and Pagan (1997) put forward the so-called evolving seasonals 
model that amounts to an intermediate case between the models in (4) and the sea- 
sonal unit root models. This model appears useful to explain the simulation results 
in Hylleberg (1995), where the HEGY test appears better in some cases and the 
Canova-Hansen test in others. The two null models in these tests are both spe- 
cial cases of the evolving seasonals model. Further research is needed to inves- 
tigate the practical usefulness of more flexible structures with respect to those in 
Section 111. 

C. Nonlinear Modeling 

It may be possible and important to introduce even more flexible structures by allow- 
ing yt to be described by nonlinear time-series models, while taking care of seasonal- 
ity. For example, Ghysels (199413) finds that regime shifts in the business cycle tend 
to occur more frequently in some seasons than in others. Additionally, Canova and 
Ghysels (1994) and Franses (199s) find that some macroeconomic variables show 
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Figure 6 Quarterly output of hidden layer units. 

different seasonality in expansions than in recessions, which in turn may depend on 
when the regime switches occur. In these studies the business cycle is defined by 
the NBER indicators, but one may want to estimate these dates where seasonality 
changes using the same data. Given the periodic structure of the business cycle, it 
is proposed in Ghysels (1993) to extend the Hamilton-type Markov switching model 
to allow for seasonality in the transition probabilities. 

Such nonlinear models may also be helpful to decide when seasonality is 
changing. For example, Franses and Draisma (1997) propagate the linear neural 
network model with q hidden layers as 

Yt = Pt + 41 yt-1 + * * * + 4pyt-p 

9 

j =  1 

where G is the logistic activation function; see Kuan and White (1994) for an overview 
of neural network models. Although the parameters in the nonlinear component can- 
not be interpreted, Franses and Draisma (1997) use the B;GG(.) components (for each 
of the seasons) to investigate the contribution of the hidden layer components. For 
example, consider again the unemployment data for Germany. When pt in (22) is 
as in (10) with 8 2  to 84 set to zero and p in (22) equals 4, the Schwarz criteria for 
q = 0, 1 , 2 , 3 ,  are -756.3, -790.8, -809.5, and -789.0, respectively. Hence the 
neural network model with q = 2 hidden layer units is selected, and German unem- 
ployment shows nonlinear features. 

In Figure 6, I depict the impact of the two hidden layer units (HI and H2) in 
each of the four quarters. The dotted line is the time series in each of the seasons 
( Y s , ~ ) ,  and the straight line is the contribution of the relevant hidden layer output to 
the final output yt. It is clear that H I  is active only in quarters 2 and 4 (Q2 and Q4), 
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where for 42 this activity ends around 1975 and for Q 4  it ends around 1985. Hidden 
layer 2 appears active only in quarters 1 and 4. These results show that the time 
series in quarter 3 seems linear and that changes in certain seasons occur around 
1975 and 1985. 

It is now interesting to see whether the nonlinear structures in these German 
unemployment data are robust to seasonal adjustment. For this purpose, I estimate 
the neural network model in (22) for the official adjusted data. For q = 0, 1,2,3,  I ob- 
tain Schwarz criteria values of -918.7, -892.1, -867.7, and -855.9, respectively. 
Hence, seasonal adjustment appears to affect the apparent nonlinear features of this 
time series, at least when represented by the highly parameterized neural network 
model in (22). See Granger and Terasvirta (1993) for more parsimonious nonlinear 
models. Ghysels, Granger, and Siklos (1996) document that Census X-1 1 seasonal 
adjustment appears to introduce nonlinear features in otherwise linear data. Finally, 
Franses and Paap (1996b) show that seasonal adjustment may leave nonlinearity in- 
tact but that it changes some key parameters. Obviously, it seems useful to study the 
properties of seasonal adjustment with respect to nonlinearity. Also, it  seems of great 
importance to consider models that explicitly describe nonlinearity and seasonality 
at the same time, possibly along the lines of Lewis and Ray (1996). 

D. Economics 

A fourth important topic for further research considers how one can design economic 
models that can describe the behavior of economic agents which cause macroeco- 
nomic aggregates to show slowly changing seasonality over time. As mentioned, sev- 
eral studies incorporate seasonality somehow, but to my knowledge there are no stud- 
ies that deal with the question of why seasonality changes; i.e., why do economic 
agents endogenously change their seasonal behavior? Furthermore, can (seasonal or 
periodic) unit root models generate time series that really mimic economic behavior? 

One possible route to follow may be to focus on consumer expectations. An em- 
pirical analysis of confidence indicators in Ghysels and Nerlove (1988) and Franses 
(1996b) shows that, even when agents are asked to remove seasonality by focusing on 
annual trends, the indicators display marked seasonality. In fact, for most countries 
one can nowadays obtain only seasonally adjusted consumer confidence indicators, 
which somehow may seem counterintuitive. 

Another research strategy, which may involve game-theoretic aspects, is to 
investigate if seasonality changes because economic agents mistake a set of large 
shocks as a precursor for “new” seasonality, and hence start to behave like that. 
Many important changes for, e.g., Germany, occurred in the fourth quarter (1966.4: 
economic crisis, 1973.4 and 1979.4 dramatic increase in oil prices and 1989.4: uni- 
fied Germany). Hence, theoretical models where the arrival rate of shocks can have 
an impact on economic behavior may be useful. 
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V. CONCLUDING REMARKS 

This chapter surveys recent and possible future research issues in modeling eco- 
nomic time series with seasonality. There is a growing interest in modeling season- 
ality and not in removing it through some seasonal adjustment methods. In areas as 
marketing and tourism, seasonality itself is the focus of investigation. In macroeco- 
nomics there is a tendency to apply Census X-11 type methods to remove seasonal- 
ity. However, recent empirical studies have shown the large number of drawbacks of 
seasonally adjusted data. Furthermore, other studies have shown that it is not that 
difficult to model seasonality explicitly. 

From a statistical point of view, there appears a consensus that not too many 
stochastic trends can be found in economic data. In other words, although seasonal 
variation changes over time, it changes quite slowly. The tools for analyzing seasonal 
time series can be refined in the direction of nonlinear models or alternative flexible 
structures. From an economic point of view, and especially in case of macroeco- 
nomics, there is a need to understand why such seasonal patterns change over time. 
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Nonparametric and Semiparametric 
Econometrics of Panel Data 
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1. INTRODUCTION 

Longitudinal or panel data refers to data where we have observations on the same 
cross section of individuals, households, industries, etc., over multiple periods of 
time. Often the panel data is short in the sense that the cross-sectional units are 
available for a period of 2 to 10 years. Some panel data sets are rotating panels where 
a proportion of cross-sectional units is kept for revisits, while the remaining is re- 
placed by new cross-sectional units. Among the most analyzed panel data are the 
Michigan Panel Study of Income Dynamics (PSID) and the National Longitudinal 
Surveys of Labor Market Experience (NLS) in the United States, the International 
Crops Research Institute for the Semi-Arid Tropics Village Level Studies (ICRISAT 
VLS) in Hyderabad, India, and the Living Standards Surveys (LSS) in C6te d’Ivoire. 
Recent years have witnessed a significant growth in the availability of the panel 
data (Borus 1982, Ashenfelter and Solon 1982, Deaton 1994). The drive behind this 
growth stems from the fact that the panel data helps to study dynamics of the indi- 
vidual cross-sectional units. It is useful for studying intertemporal and intergenera- 
tional behavior of the cross-sectional units. From the inference point of view panel 
data leads to efficiency gains in the econometric estimators. For details on advan- 
tages and problems with the panel data, see Hsiao (1985), Klevmarken (1989), and 
Deaton (1 994). 

An important difference between the panel data econometric models with ei- 
ther cross-sectional or time-series models is that it allows for the cross-sectional 
and/or time heterogeneity. Within this framework two types of model are mostly esti- 
mated, one is the fixed-effects model where one makes inferences conditional on the 
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cross-sectional units in the sample while the other is the random-effects model which 
is used if we want to make inferences about the population generating the cross- 
sectional units. Both the models control for heterogeneity. There is no agreement 
in the literature as to which one should be used in the applied work; see Maddala 
(1987) for a good set of arguments on the fixed- versus random-effects models. The 
econometrics of the fixed-effects model was initiated in the works of Mundlak (1961) 
and Hoch (1962), while the work on the random effects model was introduced by 
Balestra and Nerlove (1966) and developed further by Wallace and Hussain (1969), 
Maddala (1971), Nerlove (1971), and Fuller and Battese (1973). Since then a volumi- 
nous econometric literature has developed; for details see the excellent monographs 
by Heckman and Singer (1985), Hsiao (1986), Dielman (1989), and Baltagi (1995); 
surveys by Chamberlain (1984), Maddala (1987), and Baltagi (1996); a journal vol- 
ume by Raj and Baltagi (1992); a recent handbook of approximately 900 pages by 
MAtyAs and Sevestre (1996); and the recent work on dynamic panel data models by 
Pesaran and Smith (1995) and Harris and MBtyAs (1996). 

The motivation for this chapter is based on a simple observation that this volu- 
minous literature has been largely confined to the linear parametric models; although 
see MQtyiis and Sevestre (1996) and Baltagi (1996) for the references on some of the 
recent works on the nonlinear parametric regression and the latent variable models. 
It is, however, well known that the misspecified linear or nonlinear parametric mod- 
els may lead to inconsistent and inefficient estimates and suboptimal test statistics. 
With this in view, the modest aim of this chapter is to systematically develop the 
nonparametric estimation of both the fixed- and random-effects panel models which 
are robust to the misspecification in the functional forms. Some new estimators are 
proposed. Further, the estimation of semiparametric models are also considered. For 
the nonparametric regression analysis based on either cross-sectional or time-series 
data and the usefulness of their application, see Hardle (1990) and Pagan and U1- 
lah (1996). Muller (1988) has considered the nonparametric longitudinal models 
with fixed-design regressors and has discussed its applications to growth and other 
biomedical models. Generally the econometric regressors do not have fixed-design 
structure, and his work does not consider the random- and fixed-effects models. Only 
the static models are considered here, and it is hoped that in the future the results 
could be extended to various other nonparametric econometric models such as the 
dynamic models, limited dependent variable models, and duration models. 

Another objective of this chapter is to explore the application of the nonpara- 
metric panel models to study the calorie-income relationship based on the ICRISAT 
VLS panel data. The usefulness of this application stems from the issue of possi- 
ble nonlinearity in the calorie-income relation raised in Ravallion (1990). There has 
been an ongoing debate in the calorie-income literature in the context of develop- 
ing countries on the magnitude of the income elasticity of calorie intake; see Strauss 
and Thomas (1990), Bhargava (1991), Bouis and Haddad (1992), and Subramanian 
and Deaton (1996), among others. All these authors have considered the per capita 
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household level data on calorie intake. In an important contribution Behrman and 
Deolalikar (1990) considered the individual level panel data on calorie intake and 
estimated the income elasticity by the parametric fixed-effects method to control for 
the heterogeneity. We use the same individual level data as used by Behrman and De- 
olalikar (1990) and compare our nonparametric and parametric elasticity estimates 
with their parametric estimate. For this data set it has been found that the parametric 
and nonparametric elasticities are quite similar except that the nonparametric one 
gives us the added information at the various income levels. We note that Subrama- 
nian and Deaton also calculated the nonparametric estimate, but their analysis is 
based on a single cross section of households, and hence they could not control for 
the heterogeneity. 

The plan of this chapter is as follows. In Section I1 we first review the estima- 
tion of pooled nonparametric panel data model and then present our proposed non- 
parametric and semiparametric estimators for the fixed-effects and random-effects 
models. The proposed nonparametric estimators are then used to analyze the calorie- 
income relationship in Section 111. 

II. NONPARAMETRIC PANEL DATA MODELS 

A. Pooled Nadaraya-Watson Kernel Estimation 

Let us consider the nonparametric regression model as 

where xic is a vector of q regressors, rn(xiC) = E(yic I xic),  E(u;,  I xi t )  = 0, V(uic 1 
xic) = o2(x iC) ,  and (yic, xic)  are assumed to be i.i.d. We consider the usual panel data 
situation where n is large and T is small. The nonparametric estimate of rn(x) ,  the 
conditional mean at a point x, is the smoothed average of y values which correspond 
to the xic values in a small interval of x such that xic -x = O(h), where h is the width 
of the interval known as window width and i t  tends to zero as n + 00. In a least- 
squares sense, this amounts to fitting a constant to the data around x. More explicitly, 
we use Taylor expansion of m(xiC) around x as m(xi t )  = m(x)  + O(x; ,  - x), where 
O(xiC - x) represents the remainder term of order at most x;, - x or O(h). The term 
O(h) can be added with u ; ~  so that for large n it is still the case that the expectation 
of the combined error is zero. With this in mind, but not explicitly writing it, one can 
write (1) as 

or, more compactly, as 



582 ULLAH AND ROY 

and minimize Cn C T ( y i t  - m ( ~ ) ) ~ K ( ( x ; ,  - x ) /h )  = u'K(x)u with respect to m(x) ;  
l n ~  is an nT x 1 vector of unit elements and K ( x )  is the diagonal matrix with the 
diagonal elements K((x i ,  - x ) / h )  = K i t ,  which is the kernel or weight function 
taking low values for x;, far away from x but high values for xit close to x. The least- 
squares (LS) solution of m(x)  is 

fitx) = (r~TK(x>rnT)-lr~TK(x)y (3) 
which is the Nadaraya (1964) and Watson (1964) kernel regression estimator. This 
estimator provides local averaging or smoothing, and it is essentially a local constant 
least-squares estimator. 

The pointwise estimator of the partial derivative of m ( x ) ,  p ( x )  = am(x)/ax = 
[m(x + h/2) - m(x - h/2)]/h,  is then 

(4) 
f i ( x  + h/2) - &(x - h/2) a 

= - f i ( x )  
h ax B(.> = 

as given in Rilstone and Ullah (1989). Expression (4) is a numerical derivative. 
Vinod and Ullah (1988) have considered the analytical derivative of &(x) in (3), 
which is approximately identical to (4). 

The estimation of the average derivative, p = E p ( x ) ,  can be done by using 
Rilstone (1991) and Hardle and Stoker (1989). Following Rilstone (1991) a direct 
estimator for p is 

n T  
B(xit) BR=C):--- nT 

i=l t = l  
(5) 

where B(xil) is obtained from (4). For the Hardle and Stoker estimator we assume the 
density f ( x )  vanishes at the boundary of its support, and using integration by parts 
we write B = E B ( x )  = -E[y(  f ( ' ) (x) / ' (x))] ,  where f(')(x) is the first derivative 
of f ( x ) .  Then the estimator B is 

where 

is a kernel density estimator and f ( ' )  is its first derivative. 
The details on the asymptotic properties of the above estimators and the choice 

of kernel and h can be found in Hardle (1990) and Pagan and Ullah (1996). Specifi- 
cally we note that, under the smoothness conditions on the kernel K ,  Eluit12+S < 00 

for some S > 0, and assuming h + 0, nhq+2s + 00 and nhq+' + 0 as n + 00: 
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where s represents the sth derivative and o:(x) = V ( u  1 x); for s = 0, rit(')(x) = 
rit(x), and for s = 1,  rit(')(x) = B ( x ) .  In practice o:!,) can be replaced by its 
consistent estimator a:(.) = ( L ~ ~ K ( x ) ~ , T ) - ' L / , ~ K ( x ) Z ~ ,  where E is the vector of 
the squared nonparametric residuals iit = (yit - rit(~;,))~. We can then use (7) 
to calculate the confidence intervals. The conditions for the asymptotic normality 
of B R  and ,!IHs are very similar to the conditions of the asymptotic normality of the 
pointwise B(x) .  It follows from Rilstone (1991) and Hardle and Stoker (1989) that, 
as n + 00, 

In practice, for the confidence intervals and the hypothesis testing, an estimator of 
C can be obtained by replacing 0% (x), f ( ' ) ( x ) ,  and B ( x )  by their kernel estimators 
a;(%), f")(x), and B(x )  and then taking the sample averages. Then for q = 1,  

The second component of C is essentially the variance of the limiting distribution of 
the sample average E" E' B(x i ,> /nT ,  and it will be zero if the true m(x)  is linear 
in x. We also observe that the asymptotic variance does not depend on the window 
width h, kernel K ,  and number of regressors q .  This is quite different compared to 
the pointwise asymptotic variance result in (7). 

Now we turn to the small sample behavior of the bias and mean-square error 
(MSE) of the above estimators. First, considering &(x) and taking its expectation 
conditional on xit we get 

E ( f i ( x )  I Xl l )  = (c'K(x)L)-IL'K(x)m* (10) 

where 1 = I,,T and m* = [m(x l l ) ,  . . . , n ( x , ~ ) ] .  Further 

V ( f i ( x )  I x ; t )  = (1'K(x)1)-lc'~(x)1(c'~(x)1)-I (1 1) 

where !G? (x) = K ( x ) C I K ( x )  and C1 is a diagonal matrix with the diagonal elements 
a;(xi,) = E ( U ; ~  I xit). If 21 = a;Z, a(%) = o ? K 2 ( x ) .  In practice a:(x) can be 
consistently estimated by $E(.). If we expand m* by the Taylor series and consider 
n to be large then it can be shown that (Ruppert and Wand 1994, Pagan and Ullah 
1996), up to O(h2), 
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and, up to O( llnhq), 

where p2 = S q 2 K ( Q )  dQ < 00. We note that the expressions for the condi- 
tional bias and the conditional variance do not depend on xit .  Thus the unconditional 
bias, E ( f i ( x ) )  - m(x) ,  up to O(h2) and the unconditional variance, V(h(x)), up to 
O(l/nhq) also are the same as given in (12) and (13), respectively. Similarly, we can 
show that (Pagan and Ullah 1996) 

and 

Essentially, (14) is the derivative of (12) with respect to x. 

integrated MSE of f i ( x )  and B(x ) ,  respectively, are 
It follows from (12) and (13) that the optimal h values which minimize the 

(16) ho o< n-'/('7+4) and h l  o< n-l/(q+') 

For q = 1, hl a n-'/7. This optimal h is much bigger than the optimal h o< n-2/7 
for the average derivative estimator B H S ,  see Hardle and Stoker (1989), where they 
give approximate MSE of B H S .  

B. Pooled Local Linear Kernel Estimation 

An alternative to (2) is to fit a line locally-that is, to write (1) as a linear approxi- 
mation 

or 

where Z ( x )  is an nT  x (q  + 1) matrix with itth element [ l  xit - x] and G(x) = 
[m(x) B'(x)]' is a ( q  + 1) x 1 parameter vector. Again minimizing u'K(x)u we get 

8 (x) = (Z ' ( x )  K ( x ) Z  (x)) - ' Z ' ( x )  K (x) y (19) 



ECONOMETRICS OF PANEL DATA 585 

which amounts to doing LS of &yi, on & and K ( x i ,  - x) where K; ,  = 
K ( ( x ; ,  - x)/h). The local least-squares estimators of m(x)  and B ( x )  are then 

f i ( x )  = (1 0)6“(x) ,  $(x) = (0 L q ) 6 ” ( X )  (20) 

Note that Z ( x )  = L,T for the Nadaraya-Watson estimator, which amounts to doing 
LS of &yi, on &. 

Estimator f i ( x )  was introduced by Stone (1977) in the time-series context; also 
see Cleveland (1979). Stone (1980,1982) generalizes f i ( x )  and its derivatives for the 
higher-order polynomials and provides their optimal rates of convergence. Cleveland 
and Devlin (1988) discuss practical implementation of f i ( x ) .  Muller (1987) develops 
asymptotic properties of f i ( x )  when y = 1 and xit are nonstochastic and follow a 
“regular” grid design. Muller shows that at interior points &(x) is asymptotically 
equivalent to h ( x ) .  Fan (1992, 1993) studied the asymptotic bias and variance of 
iii(x) when q = 1 but xit are stochastic and demonstrated the superior behavior 
of f i ( x )  compared to the Nadaraya-Watson estimator r i t (x ) .  In particular, he shows 
that f i ( x )  has an important minimax property. Further, unlike the estimator rit(xj, 
the bias and variance of f i ( x )  near the boundary of the support of f ( x )  are of the 
same order of magnitude as in the interior; also see Fan and Gijbels (1992). This 
is an important property since many economic data may be thin in the tails. In an 
important work Ruppert and Wand (1994) extended Fan’s results for the q-regressors 
and local quadratic fits. For y = 1, they also analysed the bias and variance of B ( x ) ,  
and investigated general polynomial fits. We note here that $(x) may not be identical 
to 

This proposed estimator is analogous to Rilstone and Ullah B(x)  in (4). An alternative 
is to calculate analytical derivative of f i ( x )  in (20). The calculation of B ( x )  may be 
simpler as it turns out directly from the local least-squares regression (19). 

The asymptotic normality of 8 ( x )  = [ f i ( x )  ,&(*)I’ has been studied by Kneis- 
ner and Li (1996). Li, Lu, and Ullah (1996) have considered the estimator of average 
of a(%), 6 = E 6 ( x ) ,  as 

l n T  s = - C8(XiL) 
i = l  ,=1 

nT 

and established its asymptotic normality. This result also provides the asymptotic 
normality of the average derivative 

where B;(xit) = (0 i q ) 8 ( x i t )  
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To see the behavior of the above estimators more explicitly, we consider first 
the asymptotic results. From Kneisner and Li (1996), as n + 00, 

If xit contains p lag dependent variables then T is replaced by T - p in (23) and 
(24). The above results hold under some smoothness conditions on the kernel K ,  
i.i.d. assumption of {yit, % i t } ,  existence of fourth moments of xi, and U i t ,  and that 
h + 0, nhq+2 -+ 00 and nhqf4 + 0 as n + 00. Further, following Rilstone and 
Ullah (1989), 

In practice one can replace a',(x) and f (x) by their consistent estimators &:(x) and 

The above results indicate that while the asymptotic variances of f i ( x )  and 
P I ( % )  are the same as those of the Nadaraya-Watson estimators &(x) and the Ril- 
stone-Ullah estimator B(x ) ,  respectively, the asymptotic variance of estimator B ( x )  is 
different from (x) and B(x) .  For the standard normal kernel, however, the asymp- 
totic variance of P(x )  is the same as that of B1 (x) and B ( x ) .  This is because py2 
q 2 K 2 ( Q )  dQ = $(K"' (Q) )2  dQ = 1/4fi. 

(1996) that 

m. 

Regarding the average derivative in (22) we note from Li, Lu, and Ullah 

where X is as in (9). Thus, the local linear average derivative estimator has the same 
asymptotic variance as B R  and BHS (8). The Monte Carlo analysis in Li, Lu, and 
Ullah (1996), however, indicates that in small samples fi performs better than both 
BR and BHS in terms of the MSE. Further the MSE of B is minimum when h O( n-2/7. 

We now turn to the small-sample behavior of &(x) and B ( x )  compared to A(x) 
and f i (x ) .  Conditional on %it, 

E ( ~ ( x )  I X i t )  = ( z ' (x )K ( x ) z ( x ) >  z ' ( ~ ) K ( x ) ~ *  (27) 

v(J(x) 1 xi, = ( z ' ( ~ ) K  ( x > z  (x)) 
(28) 

~ ' ( x )  ~2 ( X ) Z  ( ~ ' ( x )  K ( X > Z ( ~ ) >  - 

where m* and Q ( x )  = K ( x ) X K ( x )  are as given in (10) and (11). In practice, C 
can be consistently estimated by using ir;(x) for a',(,), where ir;(x) can either be 
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obtained by the Nadaraya-Watson kernel estimator described above or by the local 
linear estimator (1 0) Z’(x)K(x)Z(x))-lZ’(x)K(x)G; is the vector of local linear 
squared residuals. 

If we consider the Taylor expansion of rn* and take n to be large, then it can 
be shown that (Ruppert and Wand 1994), up to O ( h 2 ) ,  

h2 
2 

E ( f i ( x )  I xJ - m ( x )  = - / 4 r n ( 2 ) ( x )  

and 

(29) 

where p 4  is the fourth moment of the kernel around zero. Using (29) it can also be 
verified that 

Again, these conditional bias results are the same as the unconditional results. Fur- 
ther, the variance of f i ( x ) ,  up to O(l/nhq), and variances of B ( x )  and Bl(x), up to 
O(l/nhq”), are the same as their asymptotic variances given above. It follows from 
these results that the optimal h’s which minimize the integrated MSE of %(x), B ( x ) ,  
and B1 (x) are the same as in (16) except for the proportionality constants. 

Comparing the bias of Nadaraya-Watson estimator h ( x )  with that of the local 
linear estimator f i ( x )  we note that while the bias of %(x) depends on the curvature 
behavior m(2) ,  the bias of h ( x )  depends on rn(2) as well as m ( ’ ) f ( ’ ) / f  due to the 
local constant fit. When (m(’) I is large or when f ( ’ ) / f  is large, especially in highly 
clustered data, the bias of h ( x )  is large. Even when the true regression is linear h 
is biased but f i  is unbiased. The asymptotic variances of h and f i  are the same. 
Thus, one might expect f i  to perform better than R. Fan (1992,1993) reports good 
finite-sample MSE performance of % compared to h. He shows that f i  is the best 
among all linear smoothers, including orthogonal series and splines. Further f i  has 
100% efficiency among all linear smoothers in a minimax sense and a high minimax 
efficiency among all possible estimators. Fan and Gijbels (1992) have reported better 
performance of f i ( x )  near the boundary of the support o f f ,  although see a word of 
caution by Ruppert and Wand (1994). 

The comparison of the bias of b ( x )  with the bias of B ( x )  is, however, not so 
clear. Both are seriously affected by m(’), rn(3 ) ,  f(’), and f .  In contrast, the bias of 
our proposed estimator Bl(x) is much simpler and smaller compared to B ( x )  and 
B ( x ) .  In fact, when the true rn is linear both b ( x )  and B ( x )  are biased but f i l ( x )  is 
unbiased. Though not studies here, it is conjectured that the MSE performance of 81 
will be much superior to both and B. 
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The estimator s"(x) in (19) can also be obtained by the local nonparametric 
estimation of the linear parametric model 

yit = a + X i L p  + UiL (32) 

in the sense of minimizing E" E' U ; ~ K ( ( ~ ; ,  - x ) / h )  with respect to a and /3. This 
gives the estimator of p, which will be the same as B(x ) ,  and &(x) will be &(x) + 
xB(x) .  The advantage of viewing the problem in this way is that one can extend it 
to the local estimation of the parameters of any nonlinear parametric model g(xi, p). 
This idea stems from the recent literature on the local maximum likelihood estima- 
tion of the parameters of a parametric density (Hjort and Glad 1995). The same idea 
is also used in Robinson (1989b), who considered the problem of estimating /? over 
time in the time series regression? = xc/3 + ut .  Robinson obtained the estima- 
tor B ( t * )  = (ET KL( t* )x ; ) - '  K t ( t * ) x t y t  by minimizing ET u;K,( t*) ,  where 
K , ( t * )  = K((Tt*  - t ) /Th )  for t* in [0, 11. An interpretation of (32) can be given 
by using the small-a expansion. For this consider the small o expansion of rn(xit) 
in (1) around p, instead of small h around x, as m(x;,)  = n ( p )  + (xit - p)p(p)  + 
O(xit - p)' where O(xic - p)' = O(o2) by writing xit = p + oeit. Thus, assuming 
o -+ 0, we get 

Yit = m ( p )  + b i t  - P)B(P)  + uic (33) 

which is (32); a = m ( p )  - pp(p). Thus while the local linear model (17) is based 
on the small h approximation of rn, the model (32) may be interpreted as the small 
cr amroximation of rn. 

I I  

We point out that when h = CO the local minimization of E" ET U ; ~ K ( ( ~ ; ~  - 
x)/h) = K ( 0 )  E" E' ufL becomes the global minimization of E" ET uft. This 
gives the usual parametric pooled LS estimators of a and p. 

The idea of local linear estimation of m(x) ,  the conditional mean, can be eas- 
ily extended to the local estimation of the higher central moments, p r  = E[(y; ,  - 
rn(xit))' I xit] = E ( U ; ~  1 xit). This will be the coefficient of a in the regression 
of &ii:L on & and &(xit - x), where ii;, is obtained from (17) or (32). It 
will be interesting to compare the properties of pr so obtained with those obtained 
by the Nadaraya-Watson-type local constant estimator f i r ,  which is obtained by re- 
gressing &&It on &, where &;, is the residual from (2). The comparison will 
especially be useful for r = 2, the conditional heteroskedasticity model often used 
in macroeconomics and finance. 

C. Nonparametric Fixed-Effects (FE) Model 

A nonparametric FE model can be written as 
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where ai is the individual specific fixed parameters, and uit is i.i.d. with mean zero 
and constant variance at. A more general specification of (34) is discussed in Section 
1I.D. When m(x;,) = xit/?, model (34) is the well-known linear parametric FE model 
studied in the literature very extensively. An important reason for the popularity of 
the linear parametric model is that there exists a class of transformations of (34) 
which eliminates ai so that /? can be estimated by either a simple LS or a generalized 
least-squares (GLS) estimator. It is not straightforward to get transformations which 
will remove ai from (34) when m(xit) is of unknown form. However, if we reformulate 
the problem of estimating rn and its derivative in terms of local linear estimation of 
(17), then it is possible to implement some of the existing transformations. These are 
proposed below. First, following (1 7), 

which gives 

The local FE estimator of B ( x )  can then be obtained by minimizing 

This gives, for q = 1, our proposed estimator as 

and for q 2 1, 

where X is an nT x q matrix, D = I n  @ L T  is an nT x n matrix, and Mu = I - DIY/T.  
The estimator B ~ , y ( x )  is essentially the LS of 6 ( y i t  - yi,) on &(xit - Xi,). If 
h = 00, then K ; ,  = K ( 0 )  and ,81..s(x) becomes the well-known parametric FE 
estimator  FE. The asymptotic properties of this can be worked out in the same way 
as that for B(x )  in (20). However, conditional on xi t ,  

E (  B F E  (x)) = (X’MDK (x) h ! D x ) - ’  X ’ M D K  (x) Mum* 

V ( B F & ) )  = 02, (X’M&x)MuX)-’ ( X’M,K’(x)MnX) 
(38) 

x (X’MDK(x)h!DX)- ’  

provided ~ : ~ ( x )  = of. For a feasible version of the variance of B F R ( X )  one needs 
to replace O: by sz = E” Cc iil*,2/nT, where is the residual from the regression 
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in (36). If of (x) # a: we need to modify (38) as in (1 1). Also, as in Sections 1I.A 
and II.B, expanding m” by Taylor series and taking n to be large we can obtain the 
asymptotic bias and variance of P F E ( X ) .  This, along with the asymptotic normality, 
will be the subject of a future study. 

The FE estimator (37) can also be interpreted as the local estimation of the 
parametric FE model y;, = a; + xi,#? + ui, after it has been transformed into yit - 
yi. = (xi, - Xi.)#? + uit - i i i . .  This will be analogous to the estimation procedure 
in Section 1I.B. One can also obtain a FE estimator of #? by using first-difference 
transformation yi, - y;,-1 = (xi, - x; , - l )#?  + uit - U;,-] and then minimizing 
E” ET(u;, - ~ i , - l ) ~ K ( ( x i ,  - x ) /h ) .  This gives 

- 

with 

for given xi,; A is the matrix which transforms y into the vector of yi, - y;,-l. It is 
not clear, unlike in the linear parametric regression, whether  FE is the same as BFE 
for T = 2 or 3. This seems true even if we had estimated #? by the weighted GLS 
procedure, which takes into account the moving-average nature of the error term. 

- 

An alternative way to estimate #?(x) is to write 

and do the LS of &Ay;, on &, a ( x ; ,  - x), and &(x;,-l - x - l ) ,  where 
K ; ,  is now K ( ( x ; ,  - - x ) / h ,  (xi,-] - ~ - 1 ) / h ) .  The relationship of the estimator so 
obtained with BFE and BFE remains unknown. Li and Stengos (1995) propose writing 
(40) as Ayit = m(x;,, x i t - ] )  + Au;, and then estimating rfz by the nonparametric 
kernel method. Roy (1996) has considered the estimation of (34) by the Newey-type 
series estimator. 

Following the results in Section 1I.B the average derivatives can be estimated 
after getting the pointwise derivatives from above. 

D. Nonparametric Random-Effects (RE) Model 

A general nonparametric RE model can be considered as 
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which can be written, after expanding rn around the mean values of xit = p and 
ai = 0, as 

where rn(p) - p@(p) = a, vi = a;p1 ( p ) ,  and @ and @1 are derivatives with respect 
to xit and ai respectively. The model (41) is the RE version of the local linear model 
in (33) based on small-a expansion. The RE version of the local linear model in (1 7) 
can also be written as (42) with p replaced by x: 

We consider uit to be i.i.d as in Section II.C, and assume vi also to be i.i.d with mean 
zero and variance of. 

The local nonparametric RE estimator of M and /3 in (43) can be obtained by 
minimizing 

where y* = Q-'/'y, Z * ( x )  = Q - ' / ' Z ( x ) ,  and a-'/' = Z,,T - (1 - h'/ ')DD'/T; D 
is as in (37). Z ( x )  and S ( x )  are as defined in (18), y: = yit - (1  - hl/*)yi , ,  = 
zit - (1 - h1/')2i., and h = oE/(a', + TO:). This amounts to doing the LS regression 
of a y ;  on &z: = &(x1", - x*)] which gives our proposed 
estimator as 

&E (x) = ( Z * ' ( x ) K ( x ) Z *  (x)) -' Z * ' ( x ) K  (x)y* (44) 

When h = 00, K ( x )  = K ( 0 )  and we get the well-known parametric RE estimator 
given in econometric texts (Baltagi 1995, Hsiao 1986). 

A feasible estimator of 8 ~ ~ ( x )  is obtained by replacing h with its estimator 
X = 3:/(3: + Tb:).  3; is obtained as 

i= l  t=1 

where p ~ ~ ( x )  is the nonparametric FE estimator given in (37). The estimator 3: is 
defined as 35 = 3: - 8 : / T ,  where 3: = E(?;, - f i(Xi.)) ' /n and &((xi.) = %(x) 
at x = is obtained by performing local least-squares estimation on the model 
pi. = m(x)  + ((xi. - x ) p ( x )  + Vi + El.. 
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As described in Section II.B, the estimators of a and /3 in (42) are also given 
by the estimator in (44). For given xi,, 

W R E  (x)> 

= 0; ( Z *  ’ (x) K (x) z * (x) ) - z* ’ (x) K 2  (x) z* (x) ( Z *  ’ (x) K (x) 2 * (x) ) - 

(46) 

The detailed study of the asymptotic and finite-sample properties of b(x)  and 
its comparison with the FE estimators will be the subject of future research. 

E. 

Here we first consider the model of the following type: 

Semiparametric FE and RE Models 

y;, = X i t p  + rn(z;,) + zli + U ; ,  (47) 

where t i t  is a vector of p regressors. For zli = 0, the model is considered by Li and 
Stengos (199S), who propose the &z consistent estimation of p by Robinson’s (1988) 
procedure. This is given by transforming (47) with vi = 0 as 

R r  = R::@ + (48) 

where RT,’ = yi, - E(yi, I zi,) and R;: = nil - E(xi ,  I z i t )  and then applying the LS 
method. This gives 

l n  T \ - l  n T 

/ i= l  , = I  

where S P  represents semiparametric pooled estimator. For a feasible version of this 
estimator, one needs to replace E(yi, I z;~) and E(%;,  I z i t )  by their respective non- 
parametric estimators. Li and Stengos propose the Nadaraya-Watson kernel estima- 
tor for this, but an alternative estimator can be obtained by using the local linear 
estimation in Section 1I.B. The estimators of m ( z )  and its derivative can then be ob- 
tained by performing local linear regression of yi, -?it on rn (z i l ) ,  where = xi tBsp.  
Kneisner and Li (1996) look into the estimation of @ (with U; = 0) when zit contains 
the lagged variables of yi,. They also propose the estimation of the rn(zi,) and its 
derivative by doing the local least squares procedure for yi, - ?it = rn(z;,)  + ui,. 

In the case when U; is nonzero but fixed, the Li and Stengos (1995) estimation of 
B is not affected. Once p is estimated the estimation of the derivative of m(z) ,  y(z),  
can be carried out by analyzing y: = y;, - Tit = rn(z;,) + a; + UiL with the meth- 
ods described in Section I1.C. From (37), our proposed semiparametric FE (SFE) 
estimator of the derivative of rn(zi,) for p = 1 can be written as 
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and for p >_ 1, 

P S F E ( 2 )  = ( Z ' M D K ( z ) M ~ Z ) - ' Z ' M ~ K ( z ) ~ ~ y *  

It is important to be able to estimate the derivative since that is the parameter of 
interest in most economic applications. 

When vi is random, the model becomes the semiparametric RE (SRE) model 
considered in Li and Ullah (1996), who propose a &-consistent GLS estimator of 
BY 

where R;i"* = RTlz - (1  - h112)R:z, R:;* = R:: - (1  - h ' 1 2 ) ~ : z ,  and h is as in 
Section I1.D. Using their estimator, one can develop the estimation of y: = m(t;,)  + 
v; + uit by procedures given in Section 1I.D; y: = yit - x i t f i ~ ~ ~ ;  = yiL - ?it. This 
gives the estimators of m(z)  and its derivative y ( z )  from 

as h ( z )  = (1 O ) ~ S R E ( Z )  and ~ . w ; ( z )  = (0 ~ ) ~ s R E ( z ) ,  where S ^ S R ~ ; ( Z )  is a vector 
of ~ ~ R E ( z )  and P S R E ( Z ) ,  rt7* = (1 z;*1* - t**), t:* = zit - ( 1  - h'/'))zi,, z** = 
h'I2z, y:* = yz - (1 - h1/2 )y i . ,  and Ki ,  = K ( ( z i ,  - z ) /h ) .  

To get the feasible estimators of f i . 5 ~ ~  and $ . ~ R E ( Z )  one needs to replace h with 
i and X respectively where i = 6:/(6: + T6:)  and X = i i E / ( i i E  + Tii?) .  Then 

where f i , ~ ~  is the FE estimator from the model RTtZ = R::P + U; + uit. The estimator 
6: is given by 6; - 6: /T ,  where 6; = C" (R!,' - #?eRi. ) / n  and f i ~  is the between 

estimator obtained by performing LS estimation on the model R:z = Ri. B + v; +U;,. 
We note that our proposed feasible estimator , 8 L y ~ ~  based on (52) is different from Li 
and Ullah (1996), where 6; is obtained by using the LS estimator of /? instead of FE 
estimator of /?. 

Similarly, X is obtained with 3: = E" C T j y ;  -7; - ~ L ~ ~ ~ ( z ) ( z i L  - ~ i . ) ) ~ / n T ,  
where ~ S F E ( Z )  is as in (50) with y: = yit - . x i t /3s~~;  and 5; = E(?; - G ~ ( z ) ) ~ / n ,  
where & ( z )  is obtained by doing local LS on the model yF = m(z)  + ( ~ i .  - z ) y ( z )  + 

In a special case of Li and Ullah, when t i t  = T;., the model becomes a semi- 
parametric extension of the Mundlak (1978) model where m(xi.) is linear in xi,. An- 
other semiparametric model one can consider is where m(z;,) is zero but V(ui,  \ 

A -xz 2 

-x z 

Ui + iii; 
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xi t )  = Li and Stengos (1994) suggest a two-step GLS estimator of p for such 
a model. One can also consider V(ai I xi.) = a2(x;,) and develop a two-step GLS 
estimator. The situation where both a2(xi.) and a2(x i t )  are present has not been con- 
sidered in the literature. In a recent paper Horowitz and Markatou (1996) consider 
the nonparametric kernel density estimation of at and a: and then propose the max- 
imum likelihood estimation of 6 in (47) with no m(t) .  The issues of unit roots and 
serial correlation in the errors remain the subjects of future research. 

One disadvantage of the semiparametric model in (47) with an unknown func- 
tion of regressors, or the purely nonparametric model in Section II.A, is the “curse 
of dimensionality.” This refers to the fact that the rate of convergence of the non- 
parametric estimator of m ( z )  decreases drastically with the increase in the number 
of regressors. One solution explored in the literature is to use the generalized ad- 
ditive models of Hastie and Tibshirani (1990) and Berhame and Tibshirani (1993), 
which estimate the p-dimensional m ( z )  at the convergence rate of one dimensional 
nonparametric estimator. Essentially the model (47) is written as (assuming 0 and 
U; = 0) yit = E;==, m ; ( ~ ; ; ~ )  + U i t ,  and m;(z;it) is estimated by a nonparametric 
method; see Linton and Neilson (1996) for the kernel method of estimation. 

There is an extensive semiparametric literature on the estimation of limited 
dependent variables models such as single-index models, censored models, and se- 
lection models (Melenberg and Soest 1993, Pagan and Ullah 1996). Essentially these 
semiparametric models can be considered as special cases of (47) with 2ii = 0 where, 
for example, in the single-index case x i tp  + m(zit) is a function of single index, say, 
t i ts ,  that is, m ( z i t S ) .  In the censored case m(zil) in (47) is m(zit6), which becomes 
the inverse Mill’s ratio under the assumption of the normality of u i t .  When u i t  is 
nonnormal, vi # 0 but is fixed, and m(z;,) = 0, the estimation of (47) by the least 
absolute deviation (LAD) method has been discussed in Honor6 (1992) and Keane 
(1993), among others. 

F. Specification Testing 

There is an extensive literature on various specification testing in the parametric FE 
and RE models (Hsiao 1986, Baltagi 1995, 1996, Greene 1993). Here we mainly 
look into the recent work in the context of nonparametric panel models. 

Considering the nonparametric pooled model in Section II.A, we note that the 
pointwise hypothesis testing for the linear restrictions on the derivatives can be done 
by using the asymptotic normality results for the local linear or Nadaraya-Watson 
given there (Ullah 1988, Robinson 1989a, Lewbell995, and Pagan and Ullah 1996 
give more details and references). In fact, the pointwise asymptotic test for various 
misspecifications in the local linear model yit = m ( x )  + (xit - x ) p ( x )  + U; ,  may 
follow from the corresponding tests in the linear parametric models. The global tests 
based on comparing the restricted residual sum of squares (RRSS) with the unre- 
stricted RRSS or based on the conditional moments are developed, among others, in 
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Fan and Li (1996), Li and Wang (1994), and Bierens (1990). Their results cover the 
tests for linearity, exclusion of regressors and semiparametric specification, and can 
be extended for yit = r n ( x i L )  + uit, where xit and uit are i.i.d. across i and t .  

Frees (1995) considered the problem of testing cross-sectional correlation in 
the parametric panel model and noted that the Breusch and Pagan (1980) measure 
does not possess desirable asymptotic properties for the practical situation where n 
is large but T is small. In fact, he showed that the asymptotic distribution depends 
on the parent population even under the hypothesis of no cross-sectional correlation. 
In view of this, he introduced a distribution-free statistic which does not have this 
problem. An extension of this to nonparametric and semiparametric models will be 
useful. Li and Hsiao (1996) have considered the semiparametric model (47) and 
developed a LM-type test for the null hypothesis that uit is white noise against the 
alternative that uit has the RE specification. 

An important question in the nonparametric panel data analysis is whether to 
pool the data. A conditional moment test for this problem, Ho : r n l ( x i 1 )  = mz(x;z)  
against H1 : ml(xi l )  # mn(x;z) assuming T = 2 here for simplicity, is proposed 
in Baltagi et al. (1995). If the Ho is accepted then one can pool the data and use the 
results of Section 1I.A. If Ho is rejected then the estimates for two different periods 
can be pooled to obtain a more precise estimate (Pinske and Robinson 1996). 

111. A N  APPLICATION 

Here we present an empirical example based on the methodology discussed and de- 
veloped in the previous sections. For a long time now there has been a debate in 
the nutrition-income literature in developing countries on the response of nutrition, 
more specifically calorie intake, resulting from a rise in income. Some of the recent 
articles that have engaged in this debate are by Behrman and Deolalikar (1990), 
Strauss and Thomas (1990), Bhargava (1991), Bouis and Haddad (1992), Subrama- 
nian and Deaton (1996), and Grimard (1995). For them estimating the income elas- 
ticity is important because i t  has serious policy implications on how best to reduce 
malnutrition. If the elasticity turns out to be close to zero, the implication is that 
improvement in the income of the poor will have little impact on the extent of mal- 
nutrition. Then the development policies aimed at improving nutrition will have to 
use policy instruments which attack malnutrition directly rather than relying solely 
on rising income. 

Behrman and Deolalikar (1990) used individual level ICRISAT VLS panel 
data for two years from three villages in south central India and estimated a linear 
parametric FE model. In this section we consider both the standard parametric panel 
models and the nonparametric panel models discussed in Section I1 to study the 
calorie-income relationship based on the data set used by Behrman and Deolalikar 
(1990). For details on ICRISAT VLS data, see Binswanger and Jodha (1978), Ryan 
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et al. (1984), and Walker and Ryan (1989). Our contribution to the existing literature 
on calorie-income relationship is that we are able to take into account both the func- 
tional form and the heterogeneity while modeling the calorie-income relationship, 
and this we are able to do using the results in Section 11. Note that previous works 
have considered one or the other (i.e., the heterogeneity or the functional form) but 
never both together. While we recognize the fact that there are other variables which 
influence individual calorie intake, we choose to use income as our only regressor 
since it is undoubtedly the most influential factor in individuals’ consumption de- 
cisions and some other authors in this literature have done the same. For example, 
Subramanian and Deaton (1996) studied the regression of calorie intake on expen- 
diture. A nonparametric regression analysis of calorie intake with other variables 
besides income included as regressors will be the subject of a future study. We think 
that in the multivariate case, the semiparametric method described in Section II.E, 
rather than a pure nonparametric analysis, may be a better way to study the calorie- 
income relationship. 

We consider three types of nonparametric models: constant intercept, fixed- 
effects, and random-effects models. These correspond to model (34) with a; equal to 
a constant, ai as an individual fixed effect, and a; as a random effect respectively. 
Similarly we consider the same three types of models with linear parametric speci- 
fication r n ( x i t )  = x ; , B .  The dependent variable, yit, in all the models represents the 
logarithm of individual calorie intake for the ith individual in the tth time period, the 
explanatory variable, xi t ,  represents the logarithm of per capita real income, and ai 
represents the combined effects of unobserved individual characteristics, household 
characteristics, etc., which can be considered to be fix<,.-! or random, as may be the 
case. 

The results are all based on a total number of observations of 730, that is, 365 
individuals each observed over two years. For the nonparametric regression analysis 
the kernel used is the normal kernel given as 

and h, the window width, is taken as ~sn- ’ ’~ ,  where c is a constant, s is the stan- 
dard deviation of the variable x, and n is the number of observations. For details on 
choosing window width and kernel, see Marron (1988), Hardle (1990), and Pagan 
and Ullah (1996). 

Our parametric estimates of the income elasticity of calorie intake from differ- 
ent versions of model (34) with rn(xit)  = xilB are presented in Table 1. They are all 
positive and significant. Our result is in contrast to Behrman and Deolalikar’s result 
that the elasticity estimates from the parametric FE model are zero and hence not sig- 
nificant. Perhaps one reason is that they had other regressors besides income in their 
model. Also, the sign of the current income elasticity of calorie intake was negative 
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Table I 

Model Beta coefficient t-Ratio 

Parametric Income Elasticity of Calorie Intake 

Constant intercept 
Fixed effect 
Random effect 

0.138 
0.108 
0.126 

7.104 
4.261 
6.673 

Table 2 Nonparametric Income Elasticity of Calorie Intake 

t-Ratio Beta at the mean Model 

Constant intercept 
Fixed effect 
Random effect 

0.136 
0.1 15 
0.117 

4.789 
4.931 
5.906 

Table 3 Nonparametric Income Elasticity of Calorie Intake 

Model Mean beta Minimum Maximum 

Constant intercept 0.132 0.008 0.187 
Fixed effect 0.121 0.062 0.134 
Random effect 0.107 0.018 0.164 

in their constant-intercept model, which may be due to the presence of collinearity 
since they had both the current and permanent income as regressors. We also calcu- 
lated the t-ratios by using the cluster-corrected standard errors (Deaton 1994), but 
still the estimates remained significant. 

Note that the magnitude of the estimated current income elasticity from the 
constant-intercept model is higher than that from the FE or the RE model. The re- 
sult from the F-test rejects homogeneity of the intercept, and hence the coefficient 
estimate of the constant intercept model which fails to take into account the het- 
erogeneity is biased. The magnitudes of elasticities from the FE and the RE model 
are quite similar. In fact, the Hausman specification test failed to reject the null hy- 
pothesis of no systematic difference in the two coefficients. Hence, it is up to the 
researcher to decide whether to use a FE model or a RE model, and this decision 
will depend on whether he or she wants to make inferences based on the sample 
or on the population (Hsiao 1986). However, in our case, the conclusion about the 
elasticity will not change much depending on whether one uses a FE or a RE model. 
From this parametric regression analysis, the overall picture is that rising income 
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4.1 

will affect calorie intake but only very slightly. What the parametric analysis does 
not tell us is whether the elasticity is significant at all levels of income, and if so what 
is its magnitude. Of course, one can do parametric regression analysis by percentile 
groups (for example, the elasticity for the bottom and the top deciles, say), but still 
one cannot get the elasticity at each income level. This question can be answered 
from the nonparametric regression analysis. 

Table 2 gives the nonparametric elasticity estimates at the mean value of the 
regressor to make it somewhat comparable with the parametric elasticity estimates 
from Table 1. The results from the nonparametric models are similar to our paramet- 
ric model results as can be seen from Table 2. 

Given that the nonparametric specification gives us elasticity estimates at dif- 
ferent income levels, we also report in Table 3 the mean, the minimum, and the max- 
imum values of the elasticity for the different models. The mean elasticities were 
calculated by using h = ~ s n - ~ / ~ ,  as indicated in Section 1I.A. Note, however, that 
h a n-2/7 is known to be optimal for the constant-intercept model only (Li and U1- 
lah 1996), but the optimal h values for the FE and the RE models are not yet known. 
It can be seen from the table that the elasticity can be quite different for different 
income levels, and looking at just the mean elasticity estimate can be misleading. 

We find for all three models (constant intercept, FE, and RE) and, on average, 
the elasticity is higher for poorer households compared to richer households (Fig- 
ures 1, 2, and 3). For our constant-intercept nonparametric model the elasticity is 

\ 
\ 
\ - -  \ 

\ 

'. '\ 

--.. ... -4.- 
---. --.. 

0.3 t 
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Figure I 
parametric model using local linear estimation method. 

Elasticity of calorie intake with respect to per capita real income from pooled non- 
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Figure 2 
metric FE model. 

Elasticity of calorie intake with respect to per capita real income from a nonpara- 
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Figure 3 
metric RE model. 

Elasticity of calorie intake with respect to per capita real income from a nonpara- 



600 ULLAH AND ROY 

significant everywhere except at the tails, but the tail behavior of nonparametric 
estimators is generally not very good. For FE and the RE models, the elasticities are 
significant everywhere except at the upper tail. 

Thus our results suggest that the income elasticity of calorie intake is signif- 
icant but is rather low. The small magnitude of elasticity, however, does not neces- 
sarily mean that income is an ineffective policy instrument to reduce undernutrition, 
as has been effectively demonstrated in Ravallion (1990). Both parametric and non- 
parametric regression analyses give us a similar result, except that the nonparamet- 
ric one gives us the added information that the elasticity gradually declines as one 
moves up the per capita income distribution. 
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1. INTRODUCTION 

Econometric methodologies generally develop spasmodically, frequently spurred on 
by advances in computing power, and it is generally the case that they are codified 
long after they have been in use for some time. For the past two decades macro- 
econometricians have tended to classify econometric methodologies as those associ- 
ated with three schools of thought: the “LSE approach,” VAR analysis, and Bayesian 
methods. Microeconometricians have tended to choose from a smaller set, and much 
of this research remains of the type that features quite complex statistical analysis 
laid over a thin veneer of economic theory. Perhaps the best examples of the latter 
are in a field such as labor econometrics, where one needs to be knowledgable about 
a myriad of estimators designed to handle the statistical issues that arise with such 
data. Regardless of the field, however, the passage of these decades has witnessed 
the growth of a different philosophy concerning the nature of modeling and how to 
go about it, an approach that its practitioners have increasingly given the rubric of 
“calibration.” This literature is now very diverse. To support that contention consider 
the following list of studies, each of which claims to be dealing with models that are 
“calibrated.” 

1. Macroeconomic Policy Models 
Bank of Canada (1994) model (Black et al. 1994) 
New Zealand Treasury (1994) model (Murphy 1995) 
MSG model (McKibbin and Sachs 1991) 
G3 model (McKibbin and Wilcoxen 1992) 

King, Plosser, and Rebelo (1988) (real business cycles models) 
2. Macroeconomic Analysis Models 

605 
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3. Term Structure Models and Asset Pricing Models 
Canova and Marrinan (1993) 
Boudoukh (1993) 
Fisher ( 1 994) 
Rudebusch (1995) 

Ingram and Whiteman (1994) (VAR model with RBC priors) 
4. Macroeconomic Forecasting Models 

5. Computable General Equilibrium Models 
6. Monetary Models 

Nason and Cogley (1994) 
Gilles et al. (1993) 

7. International Monetary Models 
Gruen and Gizycki (1993) 
Bansal et al. (1995) 

Rosen, Murphy, and Scheinkman (1994) 
Jovanovic and MacDonald (1994) 

8. Industry Models 

So it is clear that the practice of “calibration” is a very popular activity. It is 
therefore important that some investigation be made into the question of what it is 
and what difficulties one would face when attempting to use it when persuing an an- 
swer to a question that relies on quantitative measurement. In the following section 
we provide a definition and discuss what this definition means. This is followed by 
a more extensive treatment of some of the issues. Section IV notes that those who 
regard themselves as calibrators are fierce proponents of it, and this ferocity can 
sometimes border upon intolerance for other approaches. yet there are many unre- 
solved questions about whether calibration really is a satisfactory answer to the quest 
for quantitative information. We point out some of these and ask whether they have 
yet been satisfactorily answered within that literature. In some instances, where the 
answer is in the negative, the technology exists that should enable one to be able to 
go at least part of the way toward a resolution of these questions. 

II. A DEFINITION OF CALIBRATION 

One issue that rises is how all the authors listed above can regard themselves as in- 
volved in calibration-do they mean the same thing when describing what they do 
in this way? To get to the heart of this we really need some definition of the term. 
That is not easy to come by. Definitions, such as “. . . calibration . . . is not estima- 
tion” (Kydland and Prescott 1996, p. 74) are negative rather than positive, while 
alternative explanations, such as Kydland and Prescott (1991), tend to be rather too 
diffuse. Nevertheless, I would agree with the negative statement above, in the sense 
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that the primary focus of calibrators is not really estimation, even though they may 
perform estimation as part of their task. My definition is 

Calibration is the process whereby data is employed in order to measure speci- 
fied characteristics of a system. 

There are three key words or phrases in the definition-“process,” “data em- 
ployed,” and “measure specified characteristics,” and we need to dwell a little on 
the last two elements, concentrating upon how one would carry out the process dis- 
tinguished in the definition. The employment of data distinguished calibration from 
exercises with models in which unknown parameters are just replaced with some 
values in order that they might be simulated-what King (1996) refers to as quanti- 
tative theory. The characteristics that investigators wish to measure are multifold- 
examples drawn from the literature include 

0 The moments of variables 
0 

0 

The density of a variable 
Derivatives of one variable with respect to another 

In order to make these measurements it is necessary to describe the system 
which is being used. In turn this requires 

0 

0 

0 

A description of relations between variables 
An assignment of values to parameters in relations 
A point at which the measurement is made 

How to describe relations between variables invokes the question of the role 
of theory in econometric analysis. For this reason we defer discussion of it until later. 
This leaves the issues of how parameter values in a relation are to be assigned and 
what methods can be used for evaluating any model derivatives, etc., that pertain to a 
specific point. The last issue arises in many computable general equilibrium (CGE) 
models. Because the aim of experiments in such models is to perform the equivalent 
of comparative static analysis, it was important to have a data set that represented 
an equilibrium position from which the derivative could be computed. Construction 
of such a data set was termed “benchmarking,” and the process is generally part of 
the “calibration” strategy of CGE researchers. Again, this points to the elusiveness 
of the concept. In few of the other areas in which “calibration” is practiced would 
we find benchmarking to be an important part of the analysis. 

111. ASSIGNMENT OF PARAMETERS 

This leaves us with the topic of parameter assignment. There is no one way of doing 
estimation that is common to all who describe themselves as calibrators. Instead, 
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the whole gamut of estimation procedures is represented, ranging from the somewhat 
vague (and possibly inconsistent) prescriptions of Kydland and Prescott: 

Thus data are used to calibrate the model economy so that it mimics the world as 
closely as possible along a limited, but clearly specified, number of dimensions. 
(Kydland and Prescott 1996, p. 74) 

It is important to emphasize that the parameter values selected are not the ones 
that provide the best fit in some statistical sense. (Kydland and Prescott 1996, 
P- 74) 

to maximum likelihood (e.g., McGrattan 1994), GMM (e.g., Christian0 and Eichen- 
baum 1992, Fkve and Langot 1994), and indirect estimation (e.g., Smith 1993, Bansal 
et al. 1995). Indirect estimation is an interesting approach in that it brings together 
those who are primarily interested in fitting statistical models to data with those con- 
cerned with having a theoretical model as the way of organizing the facts. In indirect 
estimation, as set out in Gourieroux et al. (1993) and Gallant and Tauchen (1996), 
the parameters of the theoretical model are derived from the estimated parameters 
of the statistical model. The method works from the observation that, if the theoret- 
ical model is correct, then, from the principles of encompassing, one can predict 
what the parameters of the statistical model should be. Hence, if we reverse the nor- 
mal encompassing methodology, we can recover estimates of the parameters of the 
theoretical model from those of the statistical model. 

It is worth asking why one does this rather than fit the theoretical model di- 
rectly to the data, as would be the practice with those doing MLE, i.e., “direct” esti- 
mation. It turns out that there may be some gains to doing indirect rather than direct 
estimation. To see this we look at a small stochastic equilibrium model set out in In- 
gram (1995). In this model the system consists of equations describing the evolution 
of the log of the capital stock, k,, productivity, a,, and the real interest rate r,, of the 
form (Ingram 1995, p. 20) 

where A1 is a function of the discount factor /3 and the cost of adjustment coefficient 
6, and the equation describing the evolution of the capital stock comes from solving 
the Euler equations. 

Now let us  play some games in which we describe the results from being a cali- 
brator, who is either performing direct estimation or employing an indirect estimator 
as a way of measuring any unknown parameters. We will assume that the “theorist,” 
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who provides the model to be estimated, makes some errors, and we ask how robust 
the estimation methods are to these mistakes. The parameters to be estimated will be 
p1 ,6 ,  /3, and p r .  One can always get consistent estimators of pa and pr from the sec- 
ond and third equations of the system, allowing us  to concentrate on the estimation 
of the first equation as that relevant to producing estimates of 6 and B. The statistical 
model we choose for indirect estimation is 

Case I : Calibrationist Invalidly Assumes p I = pr 

Direct estimator ofp,, 6 ,  /3 
The direct estimator estimates k ,  = const + (AI + pa)k,-l - pahlkt-2 + error. 
There is clearly a specification error since r,- I has been invalidly excluded. Assum- 
ing that least squares is used on each of the first two equations pn will be consistently 
estimated, but the estimator of hl ,  and hence 6 and /3, will be inconsistent.* 

Indirect estimator 

The idea behind indirect estimation is to find what values of 6, /3 are implied by 
b l ,  b2, and b3. In the statistical model bl , b z ,  and b3 are all consistently estimated; 
i.e., hl + pa and - p n h l ,  are consistently estimated. Hence, the estimation of B 
and 6 will be consistent. Thus the use of the general statistical model as the way 
of inferring estimates of the parameters of the theoretical model has protected us  
against a misspecification that comes from making an incorrect assumption about 
the parameters of the latter. 

Case 2: Modeler Assumes po = 0 

Direct estimators 

The direct estimators of 6, ,t? are inconsistent as the equation estimated is 

and this still involves a specification error in that there are incorrect restrictions 
imposed between the coefficients of r , - l ,  k , - l ,  and kt -q .  

*Of course we cannot recover both B and 6 from a single parameter hi ,  hut the variance of the error term 
also contains B and 6 and it can be consistently estimated if A1 can be. 
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Indirect estimators 

The indirect estimator will also be inconsistent for the same reason as the direct es- 
timator, i.e., even though b l ,  bz,  and b3 are consistent, the theoretical model imposes 
an incorrect relation between them. 

Even though indirect estimation might be more robust than direct estimation, I 
do not feel that one should oversell this idea, and my presumption would be that there 
is likely to be little gain from doing indirect estimation, at least in regards to avoiding 
the consequences of specification error. It does seem though that, in many instances, 
indirect estimation may be an easier way to do estimation, in that information on 
good statistical models of data is plentiful, and it is frequently easy to simulate from 
theoretical models, which is the modus operandi of indirect estimation. An example 
would be models of exchange rates. These can become very complex when allowance 
is made for intervention points, etc., and direct estimation may be very difficult. 
There is an extensive literature on the type of GARCH models that fit such data, so 
it makes sense to use these models to estimate the parameters of some underlying 
theoretical model of exchange rates. One might even argue that it is a philosophy 
that is ideally suited to calibration endeavors in that it provides the rationale for 
a division of labor between those designing good statistical models to fit the data 
and those interested in generating economic models. It is likely to be rare that any 
individual has skills in both of these areas and the indirect estimation principle 
therefore provides a way to reap the benefits of specialization when estimating the 
parameters of economic models. 

IV. W H A T  IS THE DEBATE ABOUT? 

With so much agreement one might wonder what the argument is about? I think that 
there are three major areas in which calibrators have a distinctive stance and these 
revolve around 

0 Weak versus strong theory 
0 

0 Role of statistics 
Weak versus strong data consistency 

A. Preeminence of Theory 

The following quotations provide what might be regarded as the polar cases in atti- 
tudes toward theory. At one level is the “LSE approach” to econometrics. It is not the 
case that such a methodology eschews theory, but it sees theory as just one element 
in modelling, as witnessed by the following statements. 
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. . . there is nothing that endows an economic theory with veracity a priori, and so 
coherence of an econometric model with an economic theory is neither necessary 
not sufficient for it to be a good model. (Mizon 1995, pp. 115-116) 

I think it is important to emphasize that the issue is not theory versus “no 
theory,” even though many representatives of the calibrationist approach do seem 
to make such a stark contrast. Empirical work in most methodological traditions to- 
day is sensitive to the need for theory. Indeed, even in the “systems of equations” 
approach most despised by Kydland and Prescott (1991) there are few models nowa- 
days that do not have a strong theoretical core; see Hall (1995, pp. 980-983) for 
a brief review of this fact and Murphy (1988) and Powell and Murphy (1995) for a 
working model. The issue is more “how much theory” or “what type of theory” rather 
than “no theory.” 

In contrast to the position just advanced is a statement by Kydland and Prescott 
about the role of theory that seems to be shared, to different degrees, by most of those 
who see themselves as calibrators. It is my belief that it is this belief in thepreemi- 
nence of theory that distinguishes a calibrator from a noncalibrator. 

The degree of confidence in the answer depends on the confidence that is placed 
in the economic theory being used. (Kydland and Prescott 1991, p. 171) 

A belief in the preeminence of theory carries with it the stance that consistency 
with data is of secondary importance; i.e., “strong” data consistency is not necessary 
when working with models. One might ask if such a stance is reasonable. I think it 
is if all we are doing with the model is demonstrating thefeasibility of a particular 
outcome, i.e., we are doing quantitative theory. A good example of this would be 
the debate over the validity of uncovered interest parity as an essential element of 
many macroeconometric models. Defining the log of the spot exchange rate as S,,  its 
expected rate one period in the future as S;+], and the forward rate as F,, covered 
interest parity yields 

Invoking rational expectations so that SL+.l = SE+, + et+l, uncovered interest parity 
eventuates as 

A&+l = B ( K  - S, )  + e,+1 

where B = 1. Now regressions of AS,+] on the forward discount F, - S ,  frequently 
produce values of B < 0, seemingly repudiating uncovered interest parity. Hence, it 
is interesting to see if we can construct models that would produce 2 0. Gruen and 
Gizycki (1993) produce such a calibrated model. In this instance it does not seem 
relevant to ask whether the model produces other known characteristics of AS,, such 
as GARCH and leptokurtosis; the aim of the model is just to show that it is possible 
to replicate a striking feature of the data with a plausible set of assumptions in a 
theoretical model. 
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B. Consistency with Data 

Of course, this raises the issue of the credibility of a model when used for a range 
of issues rather than just the replication of a single fact. It is rare to see a calibrated 
model whose originator is not aiming to say something about the real world, from 
statements that business cycles are largely due to supply side shocks to the idea that 
cycles reduce welfare by very small amounts. I really find it impossible to believe 
that anyone can take such conclusions or prescriptions seriously if they derive from 
models whose credentials have not been established by measuring them against the 
data. It is therefore fascinating, and troubling, to look at the first of the two polar 
attitudes that I discern in the literature and which are reproduced below. 

If the theory is strong and the measurements good, we have confidence that the 
answer for the model economy will be essentially the same as for the actual 
economy. (Kydland and Prescott 1996, p. 83) 

The second position is certainly the opposite: 

If an econometric model is to be taken and used seriously then its credentials 
must be established. Two important ways to do this are to demonstrate that the 
model is coherent with the available relevant information, and that it is at least 
as good as alternative models of the same phenomenon. (Mizon 1995, p. 115) 

The statement by Kydland and Prescott comes very close to blaming the data if the 
calibrator’s model fails to fit. It is breathtaking because of our lack of strong theory. 
We have theory, but to think it is this “strong” is truly amazing. The idea that a model 
should be used just because the “theory is strong,” without a demonstration that it 
provides a fit to an actual economy, is mind-boggling. 

One might argue that few calibration exercises fail to include some evidence on 
their fit to data. There are however two defects currently in such presentations which 
hamper my acceptance of the proposition that the credibility of the maintained mod- 
els has been established. One of these is the selective nature of the facts upon which 
fit is to be judged. In some exercises this seems to come down to a single index, e.g., 
the correlation between hours and productivity. In others (e.g., Burnside et al. 1993), 
the attempts at model evaluation are far more respectable, in that quite a number of 
features are examined for their correspondence with the data. Nevertheless, it is the 
case that few of these attempts are holistic. What is to be regarded as holistic de- 
pends upon the nature of the problem, but when the models involve restrictions upon 
a VAR, as is typical of most RBC and monetary models, it seems appropriate to test 
aZZ the restrictions, and not just a subset of them.* King and Watson (1995) make 

*Anderson (1991) makes the same point in commenting on Kydland and Prescott’s (1991) paper. 
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this same point, although they prefer the comparison of impulse responses. As ex- 
plained in Pagan (1995) I do not think impulse response comparisons are as good 
a method of assessing fit as a VAR, albeit it may be that any discrepancy between 
model and data might be usefully expressed in terms of a discrepancy between the 
model and data based impulse responses. In Canova et al. (1994) this philosophy 
was put into action with respect to the model of Burnside et al. (1993). That model 
looks good when judged by a limited number of features, but very poor when it is 
forced to address all aspects of the VAR. 

Even if one abstracts from the proper way to evaluate a model, one is still 
left with the question of how we are to assess the magnitude of any inconsistency 
between data and model. Early on in calibration studies, “eyeball” tests seemed to 
predominate as measures of the size of the deviation between the model and real- 
ity. Consequently, the chosen metric was very fuzzy, leaving one to despair at any 
agreement being reached over whether a model is satisfactory. Just as beauty is in 
the eye of the beholder, some of the judgments rendered concerning fit seemed quite 
remarkable; e.g., a glance at the woeful (to me) match between model predictions 
and data in either Figure 5 of Hansen and Prescott (1993) or Figure 4 in Jovanovic 
and MacDonald (1994) leaves one with a sense of wonderment when reading that 
the authors described the graphical evidence as supportive of the model. Given the 
tendency for these same authors to pull out the measuring stick of predictive perfor- 
mance when judging other methodologies, e.g., “one reason for its demise was the 
spectacular predictive failure of the approach” (Kydland and Prescott (1991, p 166), 
a legitimate question would seem to be why such a benchmark should not be uni- 
versal rather than particular. Fortunately, some discipline has begun to emerge in 
this literature, mostly through variants of statistical hypothesis testing (e.g., Burn- 
side et al. 1993), and it is therefore time to turn to the question of the role of statistics 
within the calibration agenda. 

C. Role of Statistics 

In many papers written by calibrationists there is a clear hostility to the use of purely 
statistical models of data. This is most apparent in Kydland and Prescott’s (1991) 
paper where the statistical models are identified with the “systems of equation ap- 
proach.” In that paper, Frisch’s name is invoked as someone who heartily disap- 
proved of this type of work. Actually, a closer reading of the paper they cite does not 
support that interpretation. Frisch was certainly worried about how much informa- 
tion there was in time-series data, and he was very much in favor of investigators 
“going down coal mines” in order to collect and understand the workings of the in- 
stitutions they were studying, but the whole paper that is quoted so approvingly by 
Kydland and Prescott, is directed against the use of theoretical models that are not 
closely connected with modeling features seen in the real world-what he terms 
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“playometrics.”* His stance on this vividly reminds one of some parts of the calibra- 
tionist school of modelling as to be worth recording: 

In too many cases the procedure followed resembles too much the escapist pro- 
cedure of the man who was facing the problem of multiplying 13 by 27. He was 
not very good at multiplication but very proficient in the art of adding figures, 
so he thought he would try to add these figures. He did and got the answer 40, 
which mathematically speaking was the absolutely correct answer to the prob- 
lem as he had formulated it. But how well does the figure 40 tell us about the 
size of the figure 351? 

Nevertheless, despite a suspicion about statistical analysis, calibrators do increas- 
ingly use statistics, and, when they do, I do believe there are some attendant diffi- 
culties. These stem from the observations that 

All model economies are abstractions and are by definition false. (Kydland and 
Prescott 1991, p. 170) 

It is pointless to test all the strong restrictions implied by this simple model: it 
is known to be wrong in its details, and formal statistical rejections of the null 
would tell us no more than we already know. The more interesting question is, 
How wrong is it? (Rosen et al. 1994, p. 482) 

If one takes this proposition seriously then it calls into question our ability to easily 
decide whether a model fits the data based on some specified metric. In particular 
the type of analysis described below becomes problematic. 

. . . first a set of statistics that summarizes relevant aspects of the behaviour of 
the actual economy is selected. Then the computational experiment is used to 
generate many independent realizations of the equilibrium process for the model 
economy. In this way, the sampling distribution of this set of statistics can be 
determined to any degree of accuracy for the model economy and compared 
with values of the set of statistics for the actual economy. (Kydland and Prescott 
1996, p. 75) 

To see what the problem is assume that the model described by the calibrator 
has the form 

where z: are the “latent” (unobserved) variables of the theoretical model, et are 
shocks that drive the theoretical model, and 0 are the parameters of the model. The 
random variable whose realizations are the data will be z t ,  and it will be definitional 

*It is therefore rather ironic to read Kydland and Prescott’s (19%) comment that “here by theory we do 
not mean a set of assertions about the actual economy’’ (p. 72). 
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that z, = 2: + U,, where the properties of the “observation errors” U, are unknown. 
This is simply a formal description of a misspecified model. To complete the analysis 
we suppose that the calibrationist computes some quantity, g ( z , ,  8); e.g., this could 
be the sample variance of (say) output. Kydland and Prescott’s proposal is to treat 
g(zt ,  6 )  as fixed and to study the distribution of g(z: ,  6 ) ,  locating where g(z , ,  6) 
lies in this distribution. In order to find the distribution of g(zr, 6) one only needs to 
be able to simulate from the theoretical economy. Despite its seductive appeal, the 
procedure is an invalid one, unless it is assumed that ZI, = -zr, as only then is it 
true that 2, would remain constant as different realizations of z: are made. Otherwise, 
we need to make some assumptions about how U, varies with 2:. By far the simplest 
solution, used by most investigators, is to make zt = 2:. Then the quantity of interest 
will be taken to be a function of 8 alone and g ( z t ,  6) can be compared to the value 
predicted by the model. However, this presumes that the model is correctly specified 
and contradicts Kydland and Prescott’s fundamental premise about such models.* 

What does one do in the face of this problem? My answer, described in more 
detail in Pagan (1994, pp. 8-9; 1995, p. 51), would be to take the theory of misspec- 
ification of econometric models seriously when judging the significance of a value 
of g(z , ,  6). The theory for completing this task is now very well developed (e.g., see 
White 1994), as are the computational methods. Perhaps the major obstacle to im- 
plementing the theory is to arrive at a description of how the data is generated that is 
independent of the theoretical model. In some cases, such as the analysis of macro- 
economic data, a VAR would seem to be appropriate, but in other instance one may 
need to fit quite complex models, e.g., as in Bansal et al. (1995). This is how I see 
both statistical and theoretical models being used in a way that benefits from spe- 
cialization. Unlike indirect estimation, which assumes the validity of the theoretical 
model and then estimates its parameters from a statistical model after generating re- 
alizations from the theoretical one, the scheme above reverses the steps, simulating 
data from the statistical model to be used for studying estimators and statistics that 
are associated with the theoretical model. Diebold et al. (1995) apply such a scheme 
when evaluating the quality of the “cattle cycle” model in Rosen et al. (1994). 

ACKNOWLEDGMENTS 

This chapter was the basis of my comments made in the Calibration Symposium at 
the 7th World Congress of the Econometric Society in Tokyo, August 1995. Some of 
the ideas are drawn from Canova et al. (1994), Kim and Pagan (1995), Pagan (1994), 
and Pagan (1995). 

*This point is also relevant to those proposals for a Bayesian rather than classical assessment of the quality 
of the model e.g., De Jong et al. (1996). 



616 PAGAN 

REFERENCES 

Anderson, T. M. (1991), Comment of F. E. Kydland and E. C. Prescott, The Econometrics of 
the General Equilibrium Approach to Business Cycles, in S. Hylleberg and M. Paldam 
(eds.), New Approaches to Empirical Macroeconomics, Blackwell, Oxford, 51-56. 

Bansal, R. A., R. Gallant, R. Hussey, and G. Tauchen (1995), Nonparametric Estimation of 
Structural Models for High-Frequency Currency Market Data, Journal of Econometrics, 

Black, R., D. Laxton, D. Rose, and R. Tetlow (1994), The Bank of Canada’s New Quarterly 
Projection Models. Part 1. The Steady State Model: SSQRM, Technical Report No. 72, 
Bank of Canada. 

Boudoukh, J. (1993), An Equilibrium Model of Nominal Bond Prices with Inflation-Output 
Correlation and Stochastic Volatility, Journal of Money, Credit and Banking, 25,636- 
665. 

Burnside, C., M. Eichenbaum, and S. Rebelo (1993,  Labor Hoarding and the Business Cycle, 
Journal of Political Economy, 101,245-273. 

Canova, F., M. Finn, and A. R. Pagan (1994), Evaluating a Real Business Cycle Model, in 
C. P. Hargreaves (ed.), Nonstationary Time Series Analysis and Cointegration, Oxford 
University Press, Oxford. 

Canova, F. and J. Marrinan (1996), Reconciling the Term Structure of Interest Rates with 
the Consumption Based ICAP Model, Journal of Economic Dynamics and Control, 20, 

Christiano, L. and M. Eichenbaum (1992), Current Real Business Cycles Theories and Ag- 
gregate Labor Market Fluctuations, American Economic Review, 82,430-450. 

DeJong, D. N., B. F. Ingram, and C. H. Whiteman (1996), Beyond Calibration, Journal of 
Economic Dynamics and Control, 14, 1-9. 

Diebold, F. X.,  L. Ohanian, and J. Berkowitz (1995), Dynamic Equilibrium Economies: A 
Framework for Comparing Models and Data, NBER Technical Paper No. 174. 

Fitve, P. and F. Langot (1994), The RBC Model Through Statistical Inference: An Application 
with French Data, Journal of Applied Econometrics, 9 ,  Sll-S35. 

Fisher, S. J. (1994), Asset Trading, Transaction Costs and the Equity Premium, Journal of 
Applied Econometrics, 9, S71-S94. 

Frisch, R. (1970), Econometrics in the World Today, in W. A. Eltis, M. F. G. Scott, and J. N. 
Wolfe (eds.), Induction, Growth and Trade: Essays in Honour of Sir Roy Harrod, Claren- 
don Press, Oxford, 152-166. 

Gallant, A. R. and G. Tauchen (19%), Which Moments to Match?, Econometric Theory, 12, 
657-68 1. 

Gilles, C., J. Coleman and P. Labadie (1993), Identifying Monetary Policy with a Model of the 
Federal Reserve, Finance and Economics Discussion Paper Series, Board of Governors 
of the Federal Reserve System 93-24. 

Gourieroux, C., A. Monfort and E. Renault (1993), Indirect Inference, Journal of Applied 
Econometrics, 8, S854118. 

Gruen, D. W. R. and M. C. Gizycki (1993), Explaining Forward Discounting Bias: Is It An- 
choring?, Reserve Bank of Australia Research Discussion Paper, No. 9307. 

Hall, S. (1995), Macroeconomics and a Bit More Reality, Economic Journal, 105,974-988. 

66,251-287. 

709-750. 



ON CALIBRATION 6 I 7 

Hansen, G. D. and E. C. Prescott (1993), Did Technology Shocks Cause the 1990-1991 Re- 
cession, American Economic Review Papers and Proceedings, 83,280-286. 

Ingram, B. F. (1995), “Recent Advances in Solving and Estimating Dynamic Macroeconomic 
Models,” in K. D. Hoover (ed.). Macroeconometrics: Developments, Tensions and Pros- 
pects (Kluwer Academic Publishers. Boston) 1546. 

Ingram, B. F. and C. H. Whiteman (1994), Towards a New Minnesota Prior: Forecasting Macro- 
economic Series Using Real Business Cycle Model Priors, Journal of Monetary Eco- 
nomics, 47,497-510. 

Javanovic, B. and G. MacDonald (1994), The Life Cycle of a Competitive Industry, Journal of 
Political Economy, 102,322-347. 

Kim, K. and A. R. Pagan (1995), The Econometric Analysis of Calibrated Macroeconomic 
Models, in M. H. Pesaran and M. R. Wickens (eds.) Handbook ofApplied Econometrics, 
Blackwell, Oxford, 356-390. 

King, R. G. (1995), Quantitiative Theory and Econometrics, Federal Reserve Bunk of Rich- 
mond Economic Quarterly, 81/3,53-105. 

King, R. G., C. I. Plosser, and S. T. Rebelo (1988), Production, Growth and Business Cycles. 
I: The Basic Neoclassical Growth Model, Journal of Monetary Economics, 21, 195- 
232. 

King, R. G. and M. W. Watson (1995), On the Econometrics of Comparative Dynamics, mimeo, 
University of Virginia. 

Kydland, F. E. and E. C. Prescott (1991), The Econometrics of the General Equilibrium Ap- 
proach to Business Cycles, Scnndinavian Journal of Economics, 93, 161-178. 

Kydland, F. E. and E. C. Prescott (1996), The Computational Experiment: An Econometric 
Tool, Journal of Economic Perspectives, 10,6945. 

McCallum, B. T. (1994), A Reconsideration of the Uncovered Interest Parity Relationship, 
Journal of Monetary Economics, 33, 105-132. 

McGrattan, E. R. (1994), The Macroeconomic Effects of Distortionary Taxation, Journal of 
Monetary Economics, 33, 573-601. 

McKibbin, W. J. and J. D. Sachs (1991), Global Linkages, Brookings Institution, Washington, 
DC. 

McKibbin, W. J. and P. J. Wilcoxen (1993), G-Cubed: A Dynamic Multi-sector General Equi- 
librium Growth Model of the Global Economy, Brookings Discussion Puper in Znterna- 
tional Economics No. 98, Brookings Institution, Washington, DC. 

Mizon, G. M. (1995), Progressive Modelling of Macroeconomic Time Series: The LSE Method- 
ology, in K. D. Hoover (ed.), Macroeconometrics: Developments, Tensions and Prospects, 
Kluwer, Boston, 107-170. 

Murphy, C. W. (1988), An Overview of the Murphy Model, in M. Burns and C. W. Murphy 
(eds.), Macroeconomic Modelling in Australia (supplementary conference issue of AUS-  
tralian Economic Papers), 61-68. 

Murphy, C. W. (1995), A Model ofthe New Zealand Economy, New Zealand Treasury, Welling- 
ton. 

Nason, J. M. and T. Cogley (1994), Testing the Implications of Long-Run Neutrality for Mon- 
etary Business Cycle Models, Journal of Applied Econometrics, S37-S70. 

Pagan, A. R. (1994), Calibration and Economic Research: An Overview, Journal of Applied 
Econometrics, 9, S1-Sl0. 



618 PAGAN 

Pagan, A. R. (1995), Some Observations on the Solution, Estimation and Use of Modern 
Macroeconometric Models, in K. D. Hoover (ed.), Macroeconometrics: Developments, 
Tensions and Prospects, Kluwer, Boston, 47-55. 

Powell, A. A. and C. W. Murphy (1995), Inside a Modern Macroeconometric Model: A Guide 
to the Murphy Model, Springer-Verlag, Berlin and New York. 

Rosen, S., K. M. Murphy, and J. A. Scheinkman (1994), Cattle Cycles, Journal of Political 
Economy, 102,468-492. 

Rudebusch, G. D. (1995), Federal Reserve Interest Rate Targeting, Rational Expectations, 
and the Term Structure, Journal of Monetary Economics, 35,245-274. 

Smith, A. A. (1993), Estimating Non-linear Time-Series Models Using Simulated Vector Au- 
toregression, Journal of Applied Econometrics, 8,563-584. 

White, H. (1994), Estimation, Inference and Spec$cation Analysis, Cambridge University 
Press, Cambridge. 



Aggregation 
consistency, 125 
exact, 180,199-208 

condition, 201 
Gorman, 183-191 

additive aggregation, 184-185 
affine homotheticity, 197 
polar form (GPF), 179, 187 
quasi-homotheticity, 187 
Stone-Geary structure, 187-188 

for commodities and agents, 227 
Klein, 220-222 
Klein-Nataf structure, 182,220-222 
multiple fixed inputs, 225-226 
of fixed and variable inputs, 

vintage models, 225-226 
Muellbauer, 179, 191-196, 199 

joint, 219 

219-220,226-227 

Almost ideal demand system (AIDS), 179, 
196 

quadratic, 179 

303,305 
Analysis of variance (ANOVA), 293,298, 

Approximate slope analysis, 394 
Atkinson-Bourguigon condition, 131 
Atkinson’s index, 6 ,8 ,9 ,47,48,  140 
Autocorrelation (see also Serial 

correlation) 
function (ACF), 556 
of errors, 394,413,434, 528-529,559, 

spatial (see Spatial autocorrelation) 
561 

Autoregressive (AR) process, 299, 
386387,566 

periodic, 566 
spatial moving average (SARMA), 251 

Bayesian analysis, 368,379,427,605 
Best linear unbiased predictor (BLUP), 

BFGS algorithm, 528 
Binary response model, 75 
Boole-Bonferroni inequalities (see Union 

intersection) 
Bootstrap, 145, 164, 419, 436 

294 

for confidence intervals, 424,425 
percentile-t, 436 
refinements, 428,429-432 
simple, 421 
size correction, 433 

of Kiviet, 489-491 
of Zinde-Walsh and Ullah, 486,489, 

Bounds test 

492 

Calibration, 605 
definition, 606 
direct estimator, 609 
indirect estimator, 609 

Calorie-income relationship, 595 
Calorie intake, 595,596,598 
Cambridge controversy, 181 
Census X-11, 568,573,574 
Central limit theorem, 23,253 
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Cluster fixed effects (see Panel data, fixed 

Cluster sampling (see Sampling, cluster) 
Coefficient of variation, 7,9,  11, 124, 333, 

335 
Cointegration, 507 

seasonal, 565 
Collinearity, 374, 378,597 
Conditional heteroskedasticity (see 

Autoregressive conditional 
heteroskedasticity) 

Confidence set estimation (see Union 
intersection) 

Cook’s distance, 458 
Covariates, 29-32 
Cram&-Rao lower bound, 294 
Critical point, 474 
Cross-entropy principle, 368 

effects) 

Debreu-Sonnenschein-Mantel (DSM), 

Diagnostic testing, 239,383-414 
for GARCH effect, 390,610 
Hausman test, 384 
higher moments, 389 
information matrix test, 384-385 
J-test, 387,433 
multiple, 390 
of conditional mean, 386 
variable addition, 384 

Dimensionality, curse of, 594 
Disequilibrium model, 507 
Durbin’s h test, 277 
Durbin-Watson test, 265,267,387 

179,313 

Elasticity, 112-1 13, 301, 595-598, 

Empty intersection test (see also Union 
600 

intersection hypothesis testing), 
502 

principle, 608 
test, 54.6-547 

Encompassing 

Equilibrium model, 608 

Error component model, 293,299-302, 

Error correction model, 530431 ,539  
Estimator, direct, 609 

305 

Fixed difference two stage least squares 

Fixed effects model (see also Panel data), 
(FD-2SLS), 303,304 

293-295,298,299,301,303,305, 
306,308-310 

Fourier series, 398400 
Full information maximum likelihood 

(FIML) estimator (see Simul- 
taneous equations models) 

Galtonian model, 139 
Gastwirth bounds, 53, 55 
Gauss-Newton regression, 384 
Generalized additive models, 594 
Generalized entropy indices, 6 ,9 ,  10, 16, 

Generalized least squares (GLS), 259, 
124,125,127 

293-295,302,313,331,337,341, 
347,350,486,492,499 

Generalized method of moments (GMM), 
82,258-260,295,303,307,310, 
311,374,467 

Geographic effects, 74, 82 
Geographic model, 67 
Gibbs phenomenon, 399 
Gibrat’s law, 139 
Giffen paradox, 181 
Gini coefficient, 8, 10, 11, 17,45,46,49, 

53-56 

Hart’s mobility index, 139 
Hausman specification test, 296,345, 

384,597 
Hausman’s test, 295,308 
Head count ratio, 56 
Herfiridahl coefficient, 49, 124 
Hessian matrix, 371 
Heterogeneity, 312, 579, 596, 597 

and market demand, 213 
income, 214-219 
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[Heterogeneity] 

Heteroskedasticity, 82,260,295, 
preference, 214-2 19 

299-300,314,413,423 
autoregressive conditional (ARCH), 

390,524, 532,588 
generalized (GARCH), 390,610,611 

consistent covariance matrix, 414 
consistent standard errors, 82,424 

High-leverage points, 456-457 
detection of, 456 

Homogeneity, 124,597 

Income gap ratio, 56 
Inequality, 1 

between groups, 3, 14, SO 
income, 14,40,333,335 
relative, 3,5-7 
within group, 3, 14, SO 

Influential observations, 458-459 
detection of, 458 

Information theory, 124 
Instrumental variables, 82,258-264, 

Integration 
301-303,387 

by parts, 582 
numerical, 308,314 
periodic, 568469 ,571  

Inverse Mill's ratio, 314,594 

Jackknife, 430,431 
Jarque-Bera test, 532 

Kelejian-Robinson test, 268,280 
Kernel 

density estimator, 337, 582, 594 
normal, 586, 5% 

Khintchine's theorem, 393 
Kolmogorov-Smirnov tests, 141-142 
Kurtosis, 537,611 

Lagrange multiplier (LM) test, 270, 
297-298,314,514-515,518,524, 
533 

Latent variable model, 580 

Least absolute deviation method, 594 
Leverage values, 457 
Likelihood ratio (LR) test, 264,271,273, 

276,278,280,514 
LIMDEP package, 280 
Limited dependent variables, 282, 

Limited information maximum likelihood 
307-308,314 

(LIML) estimator (see 

Simultaneous equations models) 

207 

298 

Linear expenditure system (LES), 177, 

Locally mean most powerful test (LMMP), 

Locational simultaneity, 241 
Logistic transition, 514, 544 
Logit model, 308 

multinomial (see also Treatment choice 
models), 76,97, 104 

Longitudinal data, 579 
Lorenz curve, 2, 10, 12, 15, 18,26,27,29, 

40-44,55,57,120, 122,132,136 
dominance, 16,26,27,43,121 
generalized, 11, 12, 17, 18, 123, 141, 

143 
dominance testing, 26 
equivalence testing, 26,27 
nonparametric estimators, 25 
parametric method, 21,22,24,29 
semiparametric methods, 30 

nonparametric estimator of, 2.5,28,29 
order, 41,42,44 
parametric method 21,22,24,29 
semiparametric methods, 30 

Malnutrition, 595 
Markov transition process, 133-134 
Maximum entropy 

aggregators, 122 
estimation, 368-374 

Maximum equalization percentage, 46,47 
Maximum likelihood estimation (MLE), 

20,21,25,32,255-258,260-261, 
276,294,305-306,308,311-313, 
345,492,486,498-500 
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Mean squared error, 296,333-335,376 
Measurement of inequality axiomatic 

M-estimation, 371 
Meta-analysis, 468 
Method of simulated moments, 31 1 
Milliken-Graybill theorem, 388 
Minimal nesting, 529 
Minimum norm quadratic unbiased 

Minimum sufficient statistic, 308 
Minmax property, 585 
Missing data, 313 
Mobility, 67, 73, 83, 130 

and gender, 146 
and income level, 150 
by education, age and race, 155 
indices, 120, 121, 138 
matrices, 134 
welfare ranking of, 133 

Model, augmented, 390 
Monotonic transition, 51 1 
Monte Carlo experiment, 271,278,294, 

approach, 48 

estimation (MINQUE), 294,305 

296,309-311,374-378, 
400412,427,492 

Moran’s I test, 265,266,270,280 
Moving average (MA) process, 299,478, 

502,560 
of order 1,466,469 
of order q, 469,483 

MSZ indices, 121,122, 128-131,139, 
140 

Nadaraya-Watson kernel estimator, 
581-584 

asymptotic normality, 585 
average derivative, 585, 586 
bias, 583 
mean square error, 583 
optimal h, 584 
pointwise estimator, 582 
squared residuals, 583, 588 
variance, 584 

498 
Newey-West covariance estimator, 414, 

Noncausality (Granger), 525 
Nonlinear parametric model, 588 
Non-nested models, 387 
Non-normality, 332,335 
Nonparametric 

estimation, 25-26,28-30,346 
fixed effects model, 588-590,596 

average derivative, 590 
generalized least-squares estimator, 

589,590 
local estimator, 589,590,591 
optimal h, S98 

feasible estimator, 591 
local estimator, 591 
optimal h, 598 

random effects model, 590-592, 596 

Omitted variables, 400-401 
Ordinary least squares (OLS), 81,256, 

275,278,294,302,313,345,387, 
393,422,434,486 

Outlier detection, 441-461 
LMS (least median of squares), 454 
Mahalanobis distance, 447-450 
Studentized residual, 453 
tests, 455 

Panel data, 291,579 
dynamic model, 84,298,302-304 
fixed effects model (see also Fixed 

effects model), 80,81,291, 
300-301,579,581,595 

cluster, 98, 101, 104, 106 
incomplete, 304-307 
nonparametric, 588-590 
semiparametric, 592-594 

random effects model (see also Random 
effects model), 293,301,580-581 

nonparametric, 590-592 
semiparametric, 592-594 

rotating panels, 579 
unbalanced, 298 
VAR model, 299 

Pareto improvement, 4 
Pietra index, 47,49 
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Poolability restriction, 296 
Pooled nonparametric panel models, 

581-588 
asymptotic normality, 585 
average derivative, 585,586 
bias, 587 
local linear kernal estimator, 338, 

584-588 
mean square error, 587 
optimal h, 587 
squared residuals, 587 

Poor areas, 63-65 
Posterior probability, 371 
Poverty, 55,56,71,74,84 
Price-independent generalized linearity 

(PIGL), 179, 196,200,201,208, 
213 

logarithmic (PIGLOG). 179, 180, 
Price-independent generalized 

199-201,208,213 
Principle of transfers 15, 125 

Pigon-Ralton, 15,41, 136-139, 143 
Robin Hood, 41,46,48,50 

Probit model, 309, 313 
Proxy variables, 119,385,393 
Pseudopanel, 306 

Quadratic expenditure system (QES), 207, 
208 

Quadratic loss, 374 

Random effects model (see also Panel 
data), 293-295,301,302,309, 
313 

Random sampling (see Sampling, random) 
Rank of demand system, 181,208-213 

price-independent proportional 
budgeting (PIPB), 212-213 

proportional budgeting (PB), 212-2 13 
rank 2,194,199,208-213,217 
rank 3,196,208-209 
rank 4,209 
test, 208-210 
uniform curvature (UC), 21 1 

[Rank of demand system] 
weak axiom of revealed preference 

(WARP), 181 
RATS package, 280 
Reduced form model, 370 
Representative agent 

Afriat’s theorem, 198 
consumer, 178-179,189,194,196-199 
GARP test, 198 
Monte Carlo method, 197-198 
producer, 178, 189,219 
revealed preference method, 196-197 
Slutsky matrix, 196-197 
test, 180, 196-199 

RESET test, 384,395-398,401-414,524 
Fourier (FRESET), 384,398 
Fourier-linear (FRESETL), 400-414 
Fourier-sinusoidal (FRESETS), 

400-4 14 
Residual resampling, 423 
Returns to schooling, 482 

Sample split, 502 
Sampling 

cluster, 325,347,356,357 
random, 325,327-339 
simple random, 328,339,341 
stratified, 325,339,346,353,357 
systematic, 325426,339,351,353, 

357 
Scale measures, 5 

and inequality indices, 43,44,120, 132 
quantile based, 6 
standard deviation of income, 6 
variance of income, 6 

Score test (see Lagrange multiplier test) 
Seasonali ty, 553 

and dummy variables, 542,544,558, 

and structural breaks, 570 
HEGY test, 562-565 
in dynamics, 562 
in house prices, 544 
in parameter, 566 
OCSB, test 562-565 

565 
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Seemingly unrelated regression equations 
(SURE) model, 300,433,467, 
478483,502 

between estimator, 593 
feasible estimators, 593 
fixed effects estimator, 592 
generalized least squares estimator, 593 
pooled estimator, 592 

Serial correlation (see also 
Autocorrelation), 240, 300, 314 

Series estimator, 590 
SHAZAM package, 280,398,405,424 
Shrinkage estimator, 427 
Simple random sampling (see Sampling, 

Simultaneous equations models, 365 

Semiparametric panel models, 592-594 

simple random) 

DLS, 367 
FIML, 367 
GCE (generalized cross entropy), 

GME solutions, 370-374,376 
k-class, 367 

maximum-entropy estimator, 368 
sampling design, 375 
traditional estimators, 366 
2SLS, 260,367,373 
3SLS, 367,375,379 

Barnard method, 432-433 

3 70-3 79 

LIML, 367,373-374 

Simulation, 489 

Skewness, 537 
Small h approximation, 588 
Small-o expansion, 588 
Smooth transition regressions (STR), 507, 

51 1 
additive (STAR), 520,526,548 
application, 530 
estimation, 527 
evaluation, 528 
linearity test, 513 
LM-type test statistic, 515, 517 
minimum nesting models (MNM), 

misspecification testing, 518, 520, 522, 
529-530 

525 

[Smooth transition regressions (STR)] 
specification, 526 

Social welfare, 3 
convex, 44 
economic measures of, 3-5 
function, 14, 16,34, 119, 120, 124 
Schur concave, 123, 137 

Sociometrics, 244 
Spatial, 66 

autocorrelation, 237,239-252 
dependence, 237-281 
econometncs, 237-28 1 
effects, 68,69 
error dependence, 237-281 
lag operator, 245-246 
test, 239,264 
variation, 66,96 
weights, 243-245 

for linearity, 595 
global, 594 
search, 426-428 

Standard errors 
cluster-correlated, 597 
heteroskedasticity-consistent, 82,424 

Stochastic dominance, 1, 12,13, 15-18, 
121,135,141,142,333 

Stratified sampling (see Sampling, 
stratified) 

Structural break, 523, 570-571 
Super exogeneity, 509 
SURE model (see Seemingly unrelated 

regression equations model) 
Switching regression model, 508-509, 517 

Systematic sampling (see Sampling, 

System of demands, 480 

Specification testing, 594-595 

Markov, 572 

systematic) 

Taylor-series expansion, 398,413, 

Theil index, 49,51, 124, 126, 140 
3SLS (see Simultaneous equations models) 
Time-varying parameters model, 81, 

515-516,533,581,583,587 
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Tobit model, 314 
Transfer sensitivity 18, 50 
Transition matrix, 120, 132, 135-137, 

140,145 
Translog, 204,396 

function, 296-398 
system, 204-205 

Treatment choice models, 100 
multinominal logit, 96,97, 101, 104 

2SLS (see Simultaneous equations models) 

Unconditional likelihood function, 308 
Uniformly most powerful (UMP) test, 297, 

388,390,392 

Union intersection, 465 
Boole-Bonferron inequalities, 467,473, 

confidence set estimation, 4 7 7 4 7 8  
hypothesis testing (see also Empty 

variance stabilization, 432 

seasonal, 563-564,570,571 

50 1 

intersection test), 141 ,469476  

Unit root, 139,299, 303 

Wald test, 264,271,273,276,278,434, 
467,514 

Weekend effect, 553-554 
Window width, 581,596 




