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1. Introduction 

If the confrontation of economic theories with observable phenomena is the 
objective of empirical research, then hypothesis testing is the primary tool of 
analysis. To receive empirical verification, all theories must eventually be reduced 
to a testable hypothesis. In the past several decades, least squares based tests have 
functioned admirably for this purpose. More recently, the use of increasingly 
complex statistical models has led to heavy reliance on maximum likelihood 
methods for both estimation and testing. In such a setting only asymptotic 
properties can be expected for estimators or tests. Often there are asymptotically 
equivalent procedures which differ substantially in computational difficulty and 
finite sample performance. Econometricians have responded enthusiastically to 
this research challenge by devising a wide variety of tests for these complex 
models. 

Most of the tests used are based either on the Wald, Likelihood Ratio or 
Lagrange Multiplier principle. These three general principles have a certain 
symmetry which has revolutionized the teaching of hypothesis tests and the 
development of new procedures. Essentially, the Lagrange Multiplier approach 
starts at the null and asks whether movement toward the alternative would be an 
improvement, while the Wald approach starts at the alternative and considers 
movement toward the null. The Likelihood ratio method compares the two 
hypotheses directly on an equal basis. This chapter provides a unified develop- 
ment of the three principles beginning with the likelihood functions. The proper- 
ties of the tests and the relations between them are developed and their forms in a 
variety of common testing situations are explained. Because the Wald and 
Likelihood Ratio tests are relatively well known in econometrics, major emphasis 
will be put upon the cases where Lagrange Multiplier tests are particularly 
attractive. At the conclusion of the chapter, three other principles will be 
compared: Neyman’s (1959) C(a) test, Durbin’s (1970) test procedure, and 
Hausman’s (1978) specification test. 

2. Definitions and intuitions 

Hypothesis testing concerns the question of whether data appear to favor or 
disfavor a particular description of nature. Testing is inherently concerned with 
one particular hypothesis which will be called the null hypothesis. If the data fall 
into a particular region of the sample space called the critical region then the test 
is said to reject the null hypothesis, otherwise it accepts. As there are only two 
possible outcomes, an hypothesis testing problem is inherently much simpler than 
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an estimation problem where there are a continuum of possible outcomes. It is 
important to notice that both of these outcomes refer only to the null hypothesis 
-we either reject or accept it. To be even more careful in terminology, we either 
reject or fail to reject the null hypothesis. This makes it clear that the data may 
not contain evidence against the null simply because they contain very little 
information at all concerning the question being asked. 

As there are only two possible outcomes, there are only two ways to make 
incorrect inferences. Type Z errors are committed when the null hypothesis is 
falsely rejected, and Type ZZ errors occur when it is incorrectly accepted. For any 
test we call a the size of the test which is the probability of Type I errors and p is 
the probability of Type II errors. The power of a test is the probability of rejecting 
the null when it is false, which is therefore 1 - /3. 

In comparing tests, the standard notion of optimality is based upon the size 
and power. Within a class of tests, one is said to be best if it has the maximum 
power (minimum probability of Type II error) among all tests with size (probabil- 
ity of Type I error) less than or equal to some particular level. 

To make such conditions operational, it is necessary to specify how the data are 
generated when the null hypothesis is false. This is the alternative hypothesis and 
it is through careful choice of this alternative that tests take on the behavior 
desired by the investigator. By specifying an alternative, the critical region can be 
tailored to look for deviations from the null in the direction of the alternative. It 
should be emphasized here that rejection of the null does not require accepting 
the alternative. In particular, suppose some third hypothesis is the true one. It 
may be that the test would still have some power to reject the null even though it 
was not the optimal test against the hypothesis actually operating. Another case 
in point might be where the data would reject the null hypothesis as being 
implausible, but the alternative could be even more unlikely. 

As an example of the role of the alternative, consider the diagnostic problem 
which is discussed later in Section 7. The null hypothesis is that the model is 
correctly specified while the alternative is a particular type of problem such as 
serial correlation. In this case, rejection of the model does not mean that a serial 
correlation correction is the proper solution. There may be an omitted variable or 
incorrect functional form which is responsible for the rejection. Thus the serial 
correlation test has some power against omitted variables even though it is not the 
optimal test against that particular alternative. 

TO make these notions more precise and set the stage for large sample results, 
let y be a T X 1 random vector drawn from the joint density f(y, 6) where 8 is a 
k X 1 vector of unknown parameters and 8 E 0, the parameter space. Under the 
null B E 0, C 0 and under the alternative 8 E 0, E 0 with @,n@, = 9. Fre- 
quently 0, = 0 - @a. Then for a critical region C,, the size (or is given by: 

a,=Pr(yEC,IflEO,). (I) 
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The power of the test is: 

R. F. Engle 

n,(8)=Pr(yECrl@), foreE@i. (2) 

Notice that although the power will generally depend upon the unknown parame- 
ter 8, the size usually does not. In most problems where the null hypothesis is 
composite (includes more than one possible value of 8) the class of tests is 
restricted to those where the size does not depend upon the particular value of 
8 E S,,. Such tests are called similar tests. 

Frequently, there are no tests whose size is calculable exactly or whose size is 
independent of the point chosen within the null parameter space. In these cases, 
the investigator may resort to asymptotic criteria of optimality for tests. Such an 
approach may produce tests which have good finite sample properties and in fact, 
if there exist exact tests, the asymptotic approach will generally produce them. Let 
C, be a sequence of critical regions perhaps defined by a sequence of vectors of 
statistics sr( JJ) 2 cr, where cr is a sequence of constant vectors. Then the limiting 
size and power of the test are simply 

(Y = lim ar; 
T+CZ 

r(e)= lim +(e), foreGO,. 
T-LX 

(3) 

A test is called consistent if a(/?) = 1 for all 0 E 0,. That is, a consistent test will 
always reject the null when it is false; Type II errors are eliminated for large 
samples if a test is consistent. 

As most hypothesis tests are consistent, it remains important to choose among 
them. This is done by examining the rate at which the power function approaches 
its limiting value. The most common limiting argument is to consider the power 
of the test to distinguish alternatives which are very close to the null. As the 
sample grows, alternatives ever closer to the null can be detected by the test. The 
power against such local alternatives for tests of fixed asymptotic size provides the 
major criterion for the optimality of asymptotic tests. 

The vast majority of all testing problems in econometrics can be formulated in 
terms of a partition of the parameter space into two sub-vectors 8 = (e;, 0;)’ 
where the null hypothesis specifies values, $’ for 8,, but leaves 0, unconstrained. 
In a normal testing problem, 8, might be the mean and e, the variance, or in a 
regression context, 8, might be several of the parameters while 0, includes the rest, 
the variance and the serial correlation coefficient, if the model has been estimated 
by Cochrane-Orcutt. Thus 8i includes the parameters of interest in the test. 

In this context, the null hypothesis is simply: 

Ho: 8, = ep, d2 unrestricted. (4) 
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A sequence of local alternatives can be formulated as: 

179 

H,: e:= e,0 + 6/T”2, 6, unrestricted, (5) 

for some vector 6. Although this alternative is obviously rather peculiar, it serves 
to focus attention on the portion of the power curve which is most sensitive to the 
quality of the test. The choice of 6 determines in what direction the test will seek 
departures from the null hypothesis. Frequently, the investigator will chose a test 
which is equally good in all directions 6, called an invariant test. 

It is in this context that the optimality of the likelihood ratio test can be 
established as is done in Section 6. It is asymptotically locally most powerful 
among all invariant tests. Frequently in this chapter the term asymptotically 
optimal will be used to refer to this characterization. Any tests which have the 
property that asymptotically they always agree if the data are generated by the 
null or by a local alternative, will be termed asymptotically equivalent. Two tests 
Et and t2 with the same critical values will be asymptotically equivalent if 
plim 1 El - t2 1 = 0 for the null and local alternatives. 

Frequently in testing problems non-linear hypotheses such as g(8) = 0 are 
considered where g is a p X 1 vector of functions defined on 0. Letting the true 
value of 0 under the null be 8’, then g(e’) = 0. Assuming g has continuous first 
derivatives, expand this in a Taylor series: 

g(e)=g(e0)+G(8)(e-e”), 

where I? lies between 0 and 8’ and G( .) is the first derivative matrix of g. For the 
null and local alternatives, 8 approaches 8’ so G(8) + G(f3’) = G and the 
restriction is simply this linear hypothesis: 

Ge = GBO. 

For any linear hypothesis one can always reparameterize by a linear non-singular 
matrix A -‘8 = + such that this null is Ho: +I = &, C#I* unrestricted. To do this let 
A, have K - p columns in the orthogonal complement of G so that GA, = 0. The 
remaining p columns of A say A,, span the row space of G so that GA is 
non-singular. Then the null becomes: 

GeO = Ge = GA+ = GA,+, + GA,+, = GA,@,, 

or C#Q = $7 with I& = (GA,)-'Go'. 
Thus, for local alternatives there is no loss of generality in considering only 

linear hypotheses, and in particular, hypotheses which have preassigned values for 
a subset of the parameter vector. 
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3. A general formulation of Wald, Likelihood Ratio, and Lagrange 
Multiplier tests 

R. F. Engle 

In this section the basic forms of the three tests will be given and interpreted. 
Most of this material is familiar in the econometrics literature in Breusch and 
Pagan (1980) or Savin (1976) and Bemdt and Savin (1977). Some new results and 
intuitions will be offered. Throughout it will be assumed that the likelihood 
function satisfies standard regularity conditions which allow two term Taylor 
series expansions and the interchange of integral and derivative. In addition, it 
will be assumed that the information matrix is non-singular, so that the parame- 
ters are (locally) identified. 

The simplest testing problem assumes that the data y are generated by a joint 
density function f( y, 0’) under the null hypothesis and by f( y, 0) with 0 E Rk 
under the alternative. This is a test of a simple null against a composite 
alternative. The log-likelihood is defined as: 

(6) 
which is maximized at a value 8 satisfying: 

Defining s( ~9, v) = dL( 0, ~)/a0 as the score, the MLE sets the score to zero. The 
variance of 8 is easily calculated as the inverse of Fisher’s Information, or 

V( 4) = Y-1( t?)/T, 

f(e) = a-$$-(e)p. 

If 8 has a limiting normal distribution, and if Y(e) is consistently estimated by 
Y(8), then 

s,=~(B-eo)‘~(8)(8-8~) (8) 

will have a limiting X2 distribution with k degrees of freedom when the null 
hypothesis is true. This is the Wald test based upon Wald’s elegant (1943) analysis 
of the general asymptotic testing problem. It is the asymptotic approximation to 
the very familiar t and F tests in econometrics. 

The likelihood ratio test is based upon the difference between the maximum of 
the likelihood under the null and under the alternative hypotheses. Under general 
conditions, the statistic, 

(9) 
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can be shown to have a limiting X2 distribution under the null. Perhaps Wilks 
(1938) was the first to derive this general limiting distribution. 

The Lagrange Multiplier test is derived from a constrained maximization 
principle. Maximizing the log-likelihood subject to the constraint that 8 = 0’ 
yields a set of Lagrange Multipliers which measure the shadow price of the 
constraint. If the price is high, the constraint should be rejected as inconsistent 
with the data. Letting H be the Lagrangian: 

H=L(O,y)-A’(&fl’), 

the first-order conditions are: 

a= A. -= 

de 3 
8 = e”, 

so h = s(8’, y). Thus the test based upon the Lagrange Multipliers by Aitcheson 
and Silvey (1958) and Silvey (1959) is identical to that based upon the score as 
originally proposed by Rao (1948). In each case the distribution of the score is 
easily found under the null since it will have mean zero and variance 9(8’)T. 
Assuming a central limit theorem applies to the scores: 

tLM = d(eo, ~)‘.e(eo)~(eo, Y)/T, (10) 

will again have a limiting X2 distribution with k degrees of freedom under the 
null. 

The three principles are based on different statistics which measure the distance 
between Ho and HI. The Wald test is formulated in terms of 0’ - 8, the LR test in 
terms of L( O”)- L(d), and the LM test in terms of s( 0’). A geometric interpreta- 
tion of these differences is useful. 

With k = 1, Figure 3.1 plots the log-likelihood function against 8 for a particu- 
lar realization y. 

‘t 

Figure 3.1 
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The MLE under the alternative is 4 and the hypothesized value is 8’. The Wald 
test is based upon the horizontal difference between 8’ and 8, the LR test is based 
upon the vertical difference, and the LM test is based on the slope of the 
likelihood function at 8’. Each is a reasonable measure of the distance between 
HO and Hi and it is not surprising that when L is a smooth curve well 
approximated by a quadratic, they all give the same test. This is established in 
Lemma 1. 

Lemma I 

If L = b - l/2(8 - 8)3(~9 - 8) where A is a symmetric positive definite matrix 
which may depend upon the data and upon known parameters, b is a scalar and 8 
is a function of the data, then the W, LR and LM tests are identical. 

Proof 

ix/as=-(e-B)‘A=s(e), 

a2L/ae ae f = - A = - T9. 

Thus: 

r;,=(e”-e)‘A(60-B), 

tLM = @‘)‘A-‘~(8’) 

= (e” - @‘A(O’- 8). 

Finally, by direct substitution: 

c&,=(8’-@‘A(B’-8). Q.E.D. 

Whenever the true value of 8 is equal or close to do, then the likelihood 
function in the neighborhood of 8’ will be approximately quadratic for large 
samples, with A depending only on 8’. This is the source of the asymptotic 
equivalence of the tests for local alternatives and under the null which will be 
discussed in more detail in Section 6. 

In the more common case where the null hypothesis is composite so that only a 
subset of the parameters are fixed under the null, similar formulae for the test 
statistics are available. Let 8 = (e;, 0;)’ and 8 = (&‘, 8;)’ where 0, is a k, x 1 
vector of parameters specified under the null hypothesis to be 8:. The remaining 
parameters f3, are unrestricted under both the null and the alternative. The 
maximum likelihood estimate of 0, under the null is denoted 8, and 8 = (OF’, 6;)‘. 
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Denote by Sii the partitioned inverse of 9 so that: 

183 

9 11-* = ,a,, - Y12.&y21. 

Then the Wald test is simply: 

.$w = T( 8, - e$P-‘( 6, - ep>, w 

which has a limiting X2 distribution with k, degrees of freedom when HO is true. 
The LR statistic, 

&_a= -2(U&Y)-N4Y)), 02) 

has the same limiting distribution. The LM test is again derived from the 
Lagrangian: 

H=L(O,y)-x(6,-B;), 

which has first-order conditions: 

Thus: 

tLM = s(& yp-‘(iQ@, y)/T==s,(8, y)‘Ps,(8, y)/T, (13) 

is the LM statistic which will again have a limiting X2 distribution with k, degrees 
of freedom under the null. In Lemma 2 it is shown that again for the quadratic 
likelihood function, all three tests are identical. 

Lemma 2 

If the likelihood function is given as in Lemma 1 then the tests in (ll), (12), and 
(13) are identical. 

Proof 

5w=(eP-~1)‘~ii-1(e,0-81) 

= (ep - 8,)‘( A,, - A,,AglA,,)( e,0 - 8,). 
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For the other two tests, 8, must be estimated. This is done simply by setting 
Sz( 8, y) = 0: 

Sl 
i i 

d&A(&B)= 
[ 
A,,(4 - 4)+4,(& - 4) 

s2 A,,(8,-8,)+‘4,,(8,-8,) =O. 1 
So, S, = 0 implies: 

ez- 4, = - A&4&9i - 6,). 

The concentrated likelihood function becomes: 

L = b - $(e, - b,)‘( A,, - A,*A,?4,,)(e, - e,>, 
and hence 

Finally, the score is given by: 

s,(e)=A,,(eP_8,)+A,,(8,-8,) 

= (4, - 424XJel” - 4). 

so 

tLM = (0; - 8,)‘( A,, - A,,A,?4,,)( 0; - 8,). Q.E.D. 

Examination of the tests in (ll), (12), and (13) indicates that neither the test 
statistic nor its limiting distribution under the null depends upon the value of the 
nuisance parameters 0,. Thus the tests are (asymptotically) similar. It is apparent 
from the form of the tests as well as the proof of the lemma, that an alternative 
way to derive the tests is to first concentrate the likelihood function with respect 
to 6, and then apply the test for a simple null directly. This approach makes clear 
that by construction the tests will not depend upon the true value of the nuisance 
parameters. If the parameter vector has a joint normal limiting distribution, then 
the marginal distribution with respect to the parameters of interest will also be 
normal and the critical region will not depend upon the nuisance parameters 
either. Under general conditions therefore, the Wald, Likelihood Ratio and 
Lagrange Multiplier tests will be (asymptotically) similar. 

As was described above, each of the tests can be thought of as depending on a 
statistic which measures deviations between the null and alternative hypotheses, 
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and its distribution when the null is true. For example, the LM test is based upon 
the score whose limiting distribution is generally normal with variance (O’).T 

under the null. However, it is frequently easier to obtain the limiting distribution 
of the score in some other fashion and base the test on this. If a matrix V can be 
found so that: 

T-“2s( do, y) : N(0, V) 

under H,, then the test is simply: 

z& = s’V- ‘s/T. 

Under certain non-standard situations V may not equal 9 but in general it will. 
This is the approach taken by Engle (1982) which gives some test statistics very 
easily in complex problems. 

4. Two simple examples 

In these two examples, exact tests are available for comparison with the asymp- 
totic tests under consideration. 

Consider a set of T independent observations on a Bernoulli random variable 
which takes on the values: 

1, 
’ = 

with probability 8, 
0, with probability 1 - 0. (14) 

The investigator wishes to test 8 = 8’ against 8 # 0’ for 8 E (0,l). The mean 
j = cy,/T is a sufficient statistic for this problem and will figure prominently in 
the solution. 

The log-likelihood function is given by: 

with the maximum likelihood estimator, 8 = 7. The score is: 

0, Y) = e(llg) C(YtBe). t 
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Notice that y, - 8 is analogous to the “residual” of the fit. The information is: 

9(d) = E 
Te(1-8)+(1-2e)c(y,-e) T 

e*(i - e)’ 1 / 
1 

= e(i-e>. 

The Wald test is given by: 

tw = T( 80 - 7)*/j+ - Y). (16) 

The LM test is: 

E 
LM 

= Q,-00) *eO(i-e”) 

I 1 eo(i - eo) T ’ 

which is simply: 

cLM = T( e” - j)*p”(i - e”). (17) 

Both clearly have a limiting &i-square distribution with one degree of freedom. 
They differ in that the LM test uses an estimate of the variance under the null 
whereas the Wald uses an estimate under the alternative. When the null is true (or 
a local alternative) these will have the same probability limit and thus for large 
samples the tests will be equivalent. If the alternative is not close to the null, then 
presumably both tests would reject with very high probability for large samples; 
the asymptotic behavior of tests for non-local alternatives is usually not of 
particular interest. 

The likelihood ratio test statistic is given by: 

tLR = 2T{ ji0gjyeO + (I- p)iog(i - j)/(i - eo)}, 08) 

which has a less obvious limiting distribution and is slightly more awkward to 
calculate. A two-term Taylor series expansion of the statistic about jj = B” 
establishes that under the null the three will have the same distribution. 

In each case, the test statistic is based upon the sufficient statisticy. In fact, in 
each case the test is a monotonic function of jj and therefore, the limiting chi 
squared approximation is not necessary. For each test statistic, the exact critical 
values can be calculated. Consequently, when the sizes of the tests are equal their 
critical regions will be identical; they will each reject for large values of (J - do)*. 
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The notion of how large it should be will be determined from the exact Binomial 
tables. 

The second example is more useful to economists but has a similar result. In 
the classical linear regression problem, the test statistics are different, however, 
when corrected to have the same size they are identical for finite samples as well 
as asymptotically. 

Let y* and x* be T x 1 and T X k matrices satisfying: 

Y* Ix* - N( x*p, dz), 09) 

and consider testing the hypothesis that R/3 = r where R is a k, x k matrix of 
known constants and r is a k, X 1 vector of constants. If R has rank k,, then the 
parameters and the data can always be rearranged so that the test is of omitted 
variable form. That is, (19) can be reparameterized in the notation of (4) as: 

ylx - N(xB, a2z), (20) 

where the null hypothesis is 8, = 0 and y and x are linear combinations of y* and 
x*. In this particular problem it is just as easy to use (19) as (20); however, in 
others the latter form will be simpler. The intuitions are easier when the 
parameters of R and r do not appear explicitly in the test statistics. Furthermore, 
(20) is most often the way the test is calculated to take advantage of packaged 
computer programs since it involves running regressions with and without the 
variables xi. 

For the model in (20) the log-likelihood conditional on x is: 

(21) 

where k is a constant. If u2 were known, Lemmas 1 and 2 would guarantee that 
the W, LR, and LM tests would be identical. Hence, the important difference 
between the test statistics will be the estimate of u*. The score and information 
matrix corresponding to the parameters 8 are: 

#(e, y) = x~u/u*; 
,a,, = x’x/u=T, 

u= y-xc, 

(24 

and the information matrix is block diagonal between t? and u*. Notice that the 
score is proportional to the correlation coefficient between the residuals and the x 
variables. This is of course zero at 4 but not at the estimates under the null, 8. 
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The three test statistics therefore are: 
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&v=(eW,)‘( xix1 - x;xJ xix,) -‘x;x,)( ep - 8,)/b2, (23) 

tLM = ir’x,( &Xl - x;xz (x;x,) %;x,) ~ 1x$/62, (24) 

t& = Tlog( ii’fi/ii%), (25) 

whereic=y-xB,ii=y-~e,and8~=~‘a/T,~’=-‘^ u u/T, and x is conforma- 
bly partitioned as x = (xi, x2). From the linear algebra of projections, these can 
be rewritten as: 

& = T(i2’ii - ii’ic)/ir%, (26) 

ELM = T( ii’& - ii’ii)/iYii. (27) 

This implies that: 

~m=Tlodl+WT); CLM = <w/(1 + (w/T)> 

and that (T - K)[,/TK, will have an exact Fk,,T_k distribution under the null. 
As all the test statistics are monotonic functions of the F statistic, then exact tests 
for each would produce identical critical regions. If, however, the asymptotic 
distribution is used to determine the critical values, then the tests will differ for 
finite samples and there may be conflicts between their conclusions. Evans and 
Savin (1980) calculate the probabilities of such conflicts for the test in (23)-(25) 
as well as for those modified either by a degree of freedom correction or by an 
Edgeworth expansion correction. In the latter case, the sizes are nearly correct 
and the probability of conflict is nearly zero. It is not clear how these conclusions 
generalize to models for which there are no exact results but similar conclusions 
might be expected. See Rothenberg (1980) for some evidence for the equivalence 
of the tests for Edgeworth expansions to powers of l/T. 

5. The linear hypothesis in generalized least squares models 

5.1. The problem 

In the two preceding examples, there was no reason to appeal to asymptotic 
approximations for test statistics. However, if the assumptions are relaxed slightly, 
then the exact tests are no longer available. For example, if the variables were 
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simply assumed contemporaneously uncorrelated with the disturbances as in: 

Y,Ix, - IN( x,P, a2), (28) 

where IN means independent normal, then the likelihood would be identical but 
the test statistics would not be proportional to an F distributed random variable. 
Thus, inclusion of lagged dependent variables or other predetermined variables 
would bring asymptotic criteria to the forefront in choosing a test statistic and 
any of the three would be reasonable candidates as would the standard F 

approximations. Similarly, if the distribution of y is not known to be normal, a 
central limit theorem will be required to find the distribution of the test statistics 
and therefore only asymptotic tests will be available. 

The important case to be discussed in this section is testing a linear hypothesis 
when the model is a generalized least squares model with unknown parameters in 
the covariance matrix. Suppose: 

ylx - N(xfi,u2Q), ii?= G(w), (29) 

where w is a finite estimable parameter vector. The model has been formulated so 
that the hypothesis to be tested is Ha: fii = 0, where p = (pi, /3;)’ and x is 
conformally partitioned as x = (xi, x2). The collection of parameters is now 
e = (p;, p;, (72, w’)‘. 

A large number of econometric problems fit into this framework. In simple 
linear regression the standard heteroscedasticity and serial correlation covariance 
matrices have this form. More generally if ARMA processes are assumed for the 
disturbances or they are fit with spectral methods assuming only a general 
stationary structure as in Engle (1980), the same analysis will apply. From pooled 
time series of cross sections, variance component structures often arise which have 
this form. To an extent which is discussed below, instrumental variables estima- 
tion can be described in this framework. Letting X be the matrix of all 
instruments, X( X’X))‘X’ has no unknown parameters but acts like a singular 
covariance matrix. Because it is an idempotent matrix, its generalized inverse is 
just the matrix itself, and therefore many of the same results will apply. 

For systems of equations, a similar structure is often available. By stacking the 
dependent variables in a single dependent vector and conformably stacking the 
independent variables and the coefficient vectors, the covariance matrix of a 
seemingly unrelated regression problem (SUR) will have a form satisfied by (29). 
In terms of tensor products this covariance matrix is 52 = z@Z, where 2 is the 
contemporaneous covariance matrix. Of course more general structures are also 
appropriate. The three stage least squares estimator also is closely related to this 
analysis with a covariance matrix D = 2~3 X( X’X))‘X’. 
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52. The test statistics 

The likelihood function 

T 
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implied by (29) is given by: 

L(B,y)=k-~log~‘-jlog(S21-~(Y-xp)’S2-’(y-*B). (30) 

Under these assumptions it can be shown that the information matrix is block 
diagonal between the parameters /3 and (a*, 0). Therefore attention can be 
confined to the /3 components of the score and information. These are given by: 

S&(&Y) = x;fi-‘u/P*, u=y-xp, (31) 

_aba(fl) = xX-‘x/o*T. (32) 

Penoie the maximum likelihood estimates of the parameters under HI by 
13 = (/I, 8*, &) and let 52 = 52( &); denote the maximum likelihood estimates of the 
same parameters under the null as # = (p, G2, 0) and let A? = a( ij). Further, let 
2 = y - xfi and ii = y - x& be residuals under the alternative and the null. 

Then substituting into (ll), (12), and (13), the test statistics are simply: 

tw =&(x;S-lx, -x;b-~x,(x;B~x2)-1X;O-1X,)~~/~*, (33) 

&a= -2(L(& Y)-wt Y)), (34) 

#$rM = a%-‘xt(x$-lx, -x;ji-‘x2(x;h~‘x2)-1x;j2-~x,)-1x~~-~~/~*. 

(35) 

The Wald statistic can be recognized as simply the F or squared t statistic 
commonly computed by a GLS regression (except for finite sample degree of 
freedom corrections). This illustrates that for testing one parameter, the square 
root of these statistics with the appropriate sign would be the best statistic since it 
would allow one tailed tests if these are desired. 

It is well known that the Wald test statistic can be calculated by running two 
regressions just as in (26). Care must however be taken to use the same metric 
(estimate of a) for both the restricted and the unrestricted regressions. The 
residuals from the unrestricted regression using fi as the covariance matrix are the 
ic, however, the residuals from the restricted regression using b are not ir. Let 
them be denoted uol indicating the model under Ho with the covariance matrix 
under Hr. Thus, uol = y - x2/?f1 is calculated assuming b is a known matrix. The 
Wald statistic can equivalently be written as: 

<w = T(ua”ji-‘uo’ _ &‘fi-‘c)/f’jZ-‘fi. 
(36) 
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The LM statistic can also be written in several different forms some of which 
may be particularly convenient. Three different versions will be given below. 

Because f’&‘x, = 0 by the definition of fi, the LM statistic is more simply 
written as: 

This can be interpreted as T times the R2 of a regression where ii is the dependent 
variable, x is the set of independent variables and ~?5’ is the covariance matrix of 
the disturbances which is assumed known. From the formula it is clear that this 
should be the R* calculated as the explained sum of squares over the total sum of 
squares. This is in contrast to the more conventional measure where these sums of 
squares are about the means. Furthermore, it is clear that the data should first be 
transformed by a matrix P such that P'P = A?-', and then the auxiliary regression 
and R* calculated. As there may be ambiguities in the definition of R2 when 0 # Z 
and when there is no intercept in the regression, let Rg represent the figure 
implied by (37). Then: 

tLM=TR;. (38) 

In most cases and for most computer packages Ri will be the conventionally 
measured R*. In particular when Px includes an intercept under ZZ,, then Pic 
will have a zero mean so that the centered and uncentered sums of squares will be 
equal. Thus, if the software first transforms the data by P, the R* will be R& 

A second way to rewrite the LM statistic is available along the lines of (27). Let 
ul’ be the residuals from a regression of y on the unrestricted model using fi as 
the covariance matrix, so that alo = y - x/I lo Then the LM statistic is simply: . 

&,, = T( ii’&‘ii - ,lo~~-l,lo)/ii’ji-l~~ 
(39) 

A statistic which differs only slightly from the LM statistic comes naturally out 
of the auxiliary regression. The squared t or F statistics associated with the 
variables x1 in the auxillary regressions of ii on x using fi are of interest. Letting: 

A = x;D-lx, - x;o-1x2(x;~-1x2)-‘x;nl,,, 

then 

pl0 = (x’fi-lx)~‘x’ji-lfi, 

or the first elements /3 i” = A-‘~$~‘ti. The F statistic aside from degree of 



freedom corrections is given by: 

& = @‘Afi;O/a2(‘0) 

= n,b~‘x,A~‘x;~-‘~/a2(‘0), (40) 

where crzoo) is the residual variance from this estimation. From (35) it is clear that 
tLM = ctM if e2(lo) z fi2. The tests will differ when x1 explains some of 8, that is, 
when Ho is not true. Hence, under the null and local alternatives, these two 
variances will have the same probability limit and therefore the tests will have the 
same limiting distribution. Furthermore, adding a linear combination of regres- 
sors to both sides of a regression will not change the coefficients or the signifi- 
cance of other regressors. In particular adding x2& to both sides of the auxiliary 
regression converts the dependent variable to y and yet will not change [tM. 
Hence, the t or F tests obtained from regressing y on x1 and x2 using fi will be 
asymptotically equivalent to the LM test. 

5.3. The inequality 

The relationship between the Wald and LM tests in this context is now clearly 
visible in terms of the choice of 52 to use for the test. The Wald test uses b while 
the LM test uses fi and the Likelihood Ratio test uses both. As the properties of 
the tests differ only for finite samples, frequently computational considerations 
will determine which to use. The primary computational differences stem from the 
estimation of D which may require non-linear or other iterative procedures. It 
may further require some specification search over a class of possible disturbance 
specifications. The issue therefore hinges upon whether fi or fi is already 
available from previous calculations. If the null hypothesis has already been 
estimated and the investigator is trying to determine whether an additional 
variable belongs in the model in the spirit of diagnostic testing, then ji is already 
estimated and the LM test is easier. If on the other hand, the more general model 
has been estimated, and the test is for a simplification or a test of a theory which 
predicts the importance of some variable, then b is available and the Wald test is 
easier. In rare cases will the LR test be computationally easier. 

The three test statistics differ for finite samples but are asymptotically equiva- 
lent. When the critical regions are calculated from the limiting distributions, then 
there may be conflicts in inference between the tests. The surprising character of 
this conflict is pointed out by a numerical inequality among the test statistics. It 
was originally established by Savin (1976) and Berndt and Savin (1977) for 
special cases of (29) and then by Breusch (1979) in the general case of (29). For 
any data set y, x, the three test statistics will satisfy the following inequality: 

(41) 
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Therefore, whenever the LM test rejects, so will the others and whenever the W 
fails to reject, so do the others. The inequality, however, has nothing to say about 
the relative merits of the tests because it applies under the null as well. That is, if 
the Wald test has a size of 58, then the LR and LM test will have a size less than 
5%. Hence their apparently inferior power performance is simply a result of a 
more conservative size. When the sizes are corrected to be the same, there is no 
longer a simple inequality relationship on the powers. As mentioned earlier, both 
Rothenberg (1979) and Evans and Savin (1982) present results that when the sizes 
are approximately corrected, the powers are approximately the same. 

5.4. A numerical example 

As an example, consider an equation presented in Engle (1978) which explains 
employment in Boston’s textile industry as a function of the U.S. demand and 
prices, the stock of fixed factors in Boston and the Boston wage rate. The 
equation is a reduced form derived from a simple production model with capital 
as a fixed factor and a constant price elasticity of demand. The variables are 
specific combinations of logarithms of the original data. Denote the dependent 
variable by y, and the independent variables by x1, x2 and a constant. The 
hypothesis to be tested is whether a time trend should also be introduced to allow 
technical progress in the sector. There is substantial serial correlation in the 
disturbance and several methods of parameterizing it are given in the original 
paper; however, it will here be assumed to follow a first-order autoregressive 
process. There are 22 annual observations. 

The basic estimate of the relation is: 

jj = 4.4 + 0.165~~ + 0.669x, ; p = 0.901, R2 = 0.339. 
(0.92) (2.45) (3.11) 

The estimate is not particularly good but it has the right signs and significant 
t-statistics. Rho was estimated by searching over the unit interval and the estimate 
is maximum likelihood. 

The residuals from this estimate were then regressed upon the expanded set of 
regressors, to obtain: 

ii = 49.2 - 0.185~~ - 0.045~~ - 0.025 time; p = 0.901, R2 = 0.171. 
(1.90) (-1.61) ( - 0.22) (1.93) 

The same value of rho was imposed upon this estimate. The Lagrange Multiplier 
statistic is (22) (0.171) = 3.76 which is slightly below the 95% level for X:(3.84) 
but above the 90% level (2.71) so it rejects at 90% but not 95%. Notice that the 
f-statistic on time is not significant at 95% but is at the 90% level. 
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where B = (z’Gz)-‘z’Gy, ic = y - zb, 8* = ii’ii/T. This expression is identical to 
that in (36) except that the estimates of a* are different. In (36) G2 = ti’Jz-‘i2/T 
instead of ti’ii/T. Following the line of reasoning leading to (37) the numerator 
can be rewritten in terms of the residuals from a restricted regression using the 
same G matrix. Letting fi2 = (z;Gz,)-‘z;Gy and P = y - z2p2, the statistic can be 
expressed as: 

&, = T(ii'Gii - ii’Gir)/Ui. (44 

Because G is idempotent, the two sums of squares in the numerator can be 
calculated by regressing the corresponding residuals on X and looking at the 
explained sums of squares. Their difference is also available as the difference 
between the sums of squared residuals from the second stages of the relevant 
2SLS regressions. 

As long as the instrument list is unchanged from the null to the alternative 
hypothesis, there is no difficulty formulating this test. If the list does change then 
the Wald test appropriately uses the list under the alternative. One might suspect 
that a similar LM test would be available using the more limited set of instru- 
ments, however, this is not the case at least in this simple form. When the 
instruments are different, the LM test can be computed as given in Engle (1979a) 
but does not have the desired simple form. 

In the more general case where (42) represents a stacked set of simultaneous 
equations the covariance would in general be given by Z@Z, where 2 is the 
contemporaneous covariance matrix. The instruments in the stacked system can 
be formulated as I@ X and therefore letting 2 be the estimated covariance matrix 
under the alternative, the 3SLS estimator can be written letting G =2@ 
X( X’X))‘X’ as: 

jl= (z'Gz)-'t'Gy. 

Again, through the equivalence with FIML, the approximate Wald test is: 

[;, = &( z;Gz, - z;Gz, (z;Gz,) - lz;Gzl)&, 

which can be reformulated as: 

= T( C’Gii - 2Gii). 

Notice that 8* has disappeared from the test statistic as it is incorporated in G 
through 2. Again this difference is equal to the difference between the sums of 
squared residuals in the restricted and unrestricted third stage of 3SLS. 



196 R. F. Engle 

6. Asymptotic equivalence and optimal@ of the test statistics 

In this section the asymptotic equivalence, the limiting distributions and the 
asymptotic optimality of the three test statistic will be established under the 
conditions of Crowder (1976). These rather weak conditions allow some depen- 
dence of the observations and do not require that they be identically distributed. 
Most econometric problems will be encompassed under these assumptions. Al- 
though it is widely believed that these tests are optima1 in some sense, the 
discussion in this section is designed to establish their properties under a set of 
regularity conditions. 

The log likelihood function assumed by Crowder allows for general dependence 
of the random variables and for some types of stochastic or deterministic 
exogenous variables. Let Y,, Y,, . . . , Y, be p x 1 vectors of random variables 
which have known conditional probability density functions f,( YIq_ i; e), where 
8 E 0 an open subset of Rk and .F_t is the u field generated by Y,,..., Y-t, the 
“previous history”. The log-likelihood conditional on Ye is: 

T 

L,(y; e, = c l”gf,(y,I~-,&. (45) 
r=l 

In this expression, non-stochastic variables enter through the time subscript on f 
which allows each random vector to be distributed differently. Stochastic varia- 
bles which appear in conditioning sets can also be included within this framework 
if they satisfy the assumptions of weak exogeneity as defined by Engle, Hendry 
and Richard (1983). Let Y, = (y,, x,), where the parameters of the conditional 
distribution of y given x, g,( y,lx,, q_ t, 13) are of interest. Then expressing the 
density of x as h,(x,l$_ i, (p) for some parameters +, the log-likelihood function 
can be written as: 

If + is irrelevant to the analysis, then x, is weakly exogenous. The information 
matrix will clearly be block diagonal between 8 and + and the MLE of 0 will be 
obtained just by maximizing the first sum with respect to 8. Therefore, if the 
log-likelihood L, satisfies Crowder’s assumptions, then the conditional log-likeli- 
hood, 

L*,b, x, 0) = i hdw,, e-d), 
t=1 
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also will. Notice that this result requires only that x be weakly exogenous; it need 
not be strongly exogenous and can therefore depend upon past values of y. 

The GLS models of Section 5 can now also be written in this framework. 
Letting P’P = 52-l for any value of o, rewrite the model with y* = Py, x* = Px 
so that: 

y* 1x* - N( x*p, dz) 

The parameters of interest are now /?, a2 and w. If the x were fixed constants, 
then so will be the x*. If the x were stochastic strongly exogenous variables as 
implied by (29), then so will be x *. The density h(x, $) will become h*(x*, rp, o) 
but unless there is some strong a priori structure on h, w will not enter h*. If the 
covariance structure is due to serial correlation then rewriting the model condi- 
tional on the past will transform it directly into the Crowder framework regard- 
less of whether the model is already dynamic or not. 

Based on (45), the score, Hessian and information matrix are defined by: 

s,(yJ) = aL(ays.e) ) 

MY4 = g&(y,B), 

Notice that the information matrix depends upon the sample size because the y,“s 
are not identically distributed. 

The essential conditions assumed by Crowder are: 

(a) the true 8,8*, is an interior point of 0; 
(b) the Hessian matrix is a continuous function of B in a neighborhood 

0f e*; 
(c) qe*) is non-singular; 
(d) plim (Y;‘(e)H,( y, tY)/r) = I for 8 in a neighborhood of 8*; and 
(e) a condition such that no term in yt dominates the sum to T. 

Suppose the hypothesis to be tested is He: 8 = 8’ while the alternative is Hi: 
8 = OT where plim T1/*(OT- 0’) = 6 for some vector 6. 

Under these assumptions the maximum likelihood estimator of 8, fi exists and 
is consistent with a limiting normal density given by: 

T1/29+/2(e*)(d -e*) 3 ~(0, I) (47) 
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Mean Value Taylor series expansions can be written as: 
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L(B,y)=L(B,y)-~(B-B)/A,(B,B)(B-~), 
sr(e,y)=-TA,(e,8)(e-8), (48) 

where T[A,(8,8)],, = [ Hr(8)]i, and 8 E (0, e) possibly at different points for 
different (i, j). From (48) the Likelihood Ratio test is simply: 

tLR = T(~O - ~)‘~,(e”,d)(eo - $1, 

and the Wald test is: 

tw = z-(e” - SpT(J)(eo - 4). 

Thus, 

slim I tLR -15,1=p~m(T(B”-B)‘(~,(e0,8)-~~(8))(e0-~)~. 

The plim of the middle terms is zero for 8* = 8’ and for the sequence of local 
alternatives since again plim or= 8’. The terms T’/*(s - 0’) will converge in 
distribution under both Ho and HI and therefore the product converges in 
probability to zero under Ho and Ht. Thus &a and [w have the same limiting 
distributions. Similarly, from (48) and (10): 

tLM = n,(fc .4’ww1~T(~O~ V) 
= z-(eO - 8)‘A,(e0,B)~~(eo)-‘A,(eo,8)(e0 - 81, 

and by the same argument plim (cLR - cLM( = 0 for Ho and local alternatives. 
Thus we have the following theorem: 

Theorem I 

Under the assumptions in Crowder (1976), the Wald, Likelihood Ratio and 
Lagrange Multiplier test statistics have the same limiting distribution when the 
null hypothesis or local alternative are true. 

Another way to describe this result is to rewrite (48) as: 

(49) 
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where O,(l) refers to the remainder terms which vanish in probability for ZZ, and 
local alternatives. Thus, asymptotically the likelihood is exactly quadratic and 
Lemmas 1 and 2 establish that the tests are all the same. Furthermore, (49) 
establishes that 8 is asymptotically sufficient for 8. To see this more clearly, 
rewrite the joint density of y as: 

and notice that by the factorization theorem, 8 is sufficient for 8 as long as y does 
not enter the exponent which will be true asymptotically. 

Finally, because 8 has a limiting normal distribution, with a known covariance 
matrix Y(@)‘, all the testing results for hypotheses on the mean vector of a 
multivariate normal, now apply asymptotically by considering 4 as the data. 

To explore the nature of this optimality, suppose that the likelihood function in 
(49) is exact without the O,(l) term. Then several results are immediately 
apparent. If 8 is one dimensional, uniformly most powerful (UMP) tests will exist 
against one sided alternatives and UMP unbiased (UMPU) tests will exist against 
two sided alternatives. 

If 8 = (ei, 6,) where 8, is a scalar hypothesized to have value Z_$’ under Ho but 0, 
are unrestricted, then UMP similar or UMPU tests are available. 

When 8, is multivariate, an invariance criterion must be added. In testing the 
hypothesis p = 0 in the canonical model V - N( CL, Z), there is a natural invariance 
with respect to rotations of V. If v= DV, where D is an orthogonal matrix, then 
the testing problem is unchanged so that a test should be invariant to whether I/ 
or v are given. Essentially, this invariance says that the test should not depend on 
which order the V’s are in; it should be equally sensitive to deviations in all 
directions. The maximally invariant statistic in this problem is cK* which means 
that any test which is to be invariant can be based upon this statistic. Under the 
assumptions of the model, this will be distributed as Xi(A) with non-centrality 
parameter h = p’p. The Neyman-Pearson lemma therefore establishes that the 
uniformly most powerful invariant test would be based upon a critical region: 

c= (CLy>c}. 

To rewrite (49) in this form, let $r(i90))’ = P’P and V= P(8 - do). Then the 
maximal invariant is 

~(8 - e”pT(eo)@ - e”) 

which is distributed as Xi(A) where A = TS’YT(~‘)S where 6 = 8l- 8O. The 
non-centrality parameter depends upon the distance between the null and altema- 
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If the null hypothesis in the canonical model specifies merely H,: pt = 0, then 
an additional invariance argument is invoked, namely &’ = V, + K, where K is an 
arbitrary set of constants, and V’ = ( Vt’, V,‘). Then the maximal invariant is Vt’VI 
which in (49) becomes: 

The non-centrality parameter becomes: 

Thus, any test which is invariant can be based on this statistic and a uniformly 
most powerful invariant test would have a critical region of the form: 

c= {(a}. 

This argument applies directly to the Wald, Likelihood Ratio and LM tests. 
Asymptotically the remainder term in the likelihood function vanishes for the null 
hypothesis and for local alternatives. Hence, these tests can be characterized as 
asymptotically locally most powerful invariant tests. This is the general optimality 
property of such tests which often will be simply called asymptotic optimality. 
For further details on these arguments the reader is referred to Cox and Hinckley 
(1974, chs. 5, 9), Lehmann (1959, chs. 4, 6, 7), and Fergurson (1967, chs. 4, 5). 

In finite samples many tests derived from these principles will have stronger 
properties. For example, if a UMP test exists, a locally most powerful test will be 
it. Because of the invariance properties of the likelihood function it will automati- 
cally generate tests with most invariance properties and all tests will be functions 
of sufficient statistics. 

One further property of Lagrange Multiplier tests is useful as it gives a general 
optimality result for finite samples. For testing H,: 8 = B” against a local 
alternative H,: 19 = 8’ + 8 for 6 a vector of small numbers, the Neyman-Pearson 
lemma shows that the likelihood ratio is a sufficient statistic for the test. The 
likelihood ratio is: 

e$q@“,y)-L(eO+&Y) 

= s( 80, y)‘& 

for small 6. The best test for local alternatives is therefore based on a critical 
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c= {s’bc}. 

In this case 6 chooses a direction. However, if invariance is desired, then the test 
would be based upon the scores in all directions: 

c= (s(e”)‘~,‘(e”)s(80)>c}, 

as established above. If an exact value of c can be obtained, the Lagrange 
Multiplier test will be locally most powerful invariant for finite samples as well as 
asymptotically. This argument highlights the focus upon the neighborhood of the 
null hypothesis which is implicit in the LM procedure. Ring and Hillier (1980) 
have used this argument to establish this property in a particular case of interest 
where the exact critical value can be found. 

7. The Lagrange Multiplier test as a diagnostic 

The most familiar application of hypothesis testing is the comparison of a theory 
with the data. For some types of departure from the theory which might be of 
concern the theory may be rejected. The existence of an alternative theory is thus, 
very important. 

A second closely related application is in the comparison of a statistical model 
with the data. Rarely do we know a priori the exact variables, functional forms 
and distribution implicit in a particular theory. Thus, there is some requirement 
for a specification search. At any stage in this search it may be desirable to 
determine whether an adequate representation of the data has been achieved. 
Hypothesis testing is a natural way to formulate such a question where the null 
hypothesis is the statistical model being used and the alternative is a more general 
specificiation which is being contemplated. A test statistic for this problem is 
called a diagnostic as it checks whether the data are adequately represented by the 
model. The exact significance of such a test is difficult to ascertain when it is one 
of a sequence of tests, but it should still be a sufficient statistic for the required 
inference and conditional on this point in the search, the size is known. In special 
cases of nested sequential tests, exact asymptotic significance levels can be 
calculated because the tests are asymptotically independent. For example see 
Sargan (1980) and Anderson (1971). 

Frequently in applied research, the investigator will estimate several models but 
may not undertake comprehensive testing of the adequacy of his preferred model. 
Particular types of misspecification are consistently ignored. For example, the use 
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of static models for time series data with the familiar low Durbin-Watson was 
tolerated for many years although now most applied workers make serial correla- 
tion corrections. 

However, the next stage in generalization is to relax the “common factors” 
restriction implicit in serial correlation assumptions [see Hendry and Mizon 
(1980)] and estimate a dynamic model. Frequently, the economic implications will 
be very different. 

This discussion argues for the presentation of a variety of diagnostics from each 
regression. Overfitting the model in many different directions allows the investiga- 
tor to immediately assess the quality and stability of his specification. 

The Lagrange Multiplier test is ideal for many of these tests as it is based upon 
parameters fit under the null which are therefore already available. In particular, 
the LM test can usually be written in terms of the residuals from the estimate 
under the null. Thus, it provides a way of checking the residuals for non-random- 
ness. Each alternative considered indicates the particular type of non-randomness 
which might be expected. 

Look for a moment at the LM test for omitted variables described in (37). The 
test is based upon the R* of the regression of the residuals on the included and 
potentially excluded variables. Thus, the test is based upon the squared partial 
correlation coefficient between the residuals and the omitted variables. This is a 
very intuitive way to examine residuals for non-randomness. 

In the next sections, the LM test for a variety of types of n-&specification will 
be presented. In Section 8, tests for non-spherical disturbances will be discussed 
while Section 9 will examine tests for n-&specified mean functions including 
non-linearities, endogeneity, truncation and several other cases. 

8. Lagrange Multiplier tests for non-spherical disturbances 

A great deal of research has been directed at construction of LM tests for a 
variety of non-spherical disturbances. In most cases, the null hypothesis is that 
the disturbances are spherical; ‘however, tests have also been developed for one 
type of covariance matrix against a more complicated one. In this section we will 
first discuss tests against various forms of heteroscedasticity as in Breusch and 
Pagan (1980), Engle (1982) and Godfrey (1978). Then tests against serial correla- 
tion as given by Godfrey (1978b, 1979), Breusch (1979), and Breusch and Pagan 
(1980) are discussed. 
’ Test against other forms of non-spherical disturbances have also been discussed 

in the literature. For example, Breusch and Pagan (1980) develop a test against 
variance components structures and Breusch (1979) derives the tests for seemingly 
unrelated regression models. 
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8.1. Testing for heteroscedasticity 
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Following Breusch and Pagan (1980) let the model be specified as: 

y,lx,, 2, - fN(x,P, +,a)) (52) 

where zI is a 1 x ( p + 1) vector function of x, or other variables legitimately taken 
as given for this analysis. The function h is of known form with first and second 
derivatives and depends upon an unknown p + 1 X 1 vector of parameters (Y. The 
first element of z is constant with coefficient (Y,, so under Ha: (or = . . . = C-Q = 0, 
the model is the classical normal regression model. The variance model includes 
most types of heteroscedasticity as special cases. For example, when 

h(z,a) = erfa, 

multiplicative forms are implied, while 

h(z,a) = (z,c$ 

gives linear and quadratic cases for k = 1,2. Special case of this which might be of 
interest would be: 

h(v) = bo + v,P>‘, 
h(z,d = exda, + v,P), 

where the variance is related to the mean of yt. 
From applications of the formulae for the LM test given above, Breusch and 

Pagan derive the LM test. Letting 8, = (a,,...,cu,) and ah/6’0,I,,=, = KZ, where K 

is a scalar. the score is: 

S( do, y) = f 'ZK/d2, 

(53) 

where f, = tif/6: - 1, f and z are matrices with typical rows f, and z, and B and 
d2 are the residuals and variance estimates under the null. This expression is 
simply one-half the explained sum of squares of a regression of j on z. As pointed 
out by Engle (1978), plimf’f/T = 2 under the null and local alternatives, so an 
asymptotically equivalent test statistic is TR2 from this regression. As long as z 
has an intercept, adding 1 to both sides and multiplying by a constant k2 will not 
change the R2, thus, the statistic can be computed by regressing ii2 on z and 
calculating TR2 of this regression. Koenker (1981) shows that this form is more 
robust to departures from normality. 



The remarkable result of this test however is that K has vanished. The test will 
be the same regardless of the form of h. This happens because both the score and 
the information matrix include only the derivative of h under H, and thus the 
overall shape of h does not matter. As far as the LM test is concerned, the 
alternative is: 

h = Z,(YK, 

where K is a scalar which is obviously irrelevant. This illustrates quite clearly both 
the strength and the weakness of local tests. One test is optimal for all h much as 
in the UMP case, however it seems plausible that it suffers from a failure to use 
the functional form of h. 

Does this criticism of the LM test apply to the W and LR tests? In both cases, 
the parameters (Y must be estimated by a maximum likelihood procedure and thus 
the functional form of h will be important. However, the optimality of these tests 
is only claimed for local alternatives. For non-local alternatives the power 
function will generally go to one in any case and thus the shape of h is irrelevant 
from an asymptotic point of view. It remains possible that the finite sample 
non-local performance of the W and LR tests with the correct functional form for 
h could be superior to the LM. Against this must be set the possible computa- 
tional difficulties of W and LR tests which may face convergence problems for 
some points in the sample space. Some Monte Carlo evidence that the LM test 
performs well in this type of situation is contained in Godfrey (1981). 

Several special cases of this test procedure illustrate the power of the technique. 
Consider’ the model h = exp(cY, + (~ix,p), where Ha: (or = 0. The score as calcu- 
lated in (53) evaluates all parameters, including /?, under the null. Thus, x# = j,, 
the fitted values under the null. The heteroscedasticity test can be shown to have 
the same limiting distribution for x,/3 as for x$ and therefore it can easily be 
constructed as TR2 from S: on a constant and j,. If the model were h = exp( a0 + 

a,( x,P)~) then the regression would be on a constant and j12. Thus it is very easy 
to construct tests for a wide range of, possibly complex, alternatives. 

Another interesting example is provided by the Autoregressive Conditional 
Heteroscedasticity (ARCH) model of Engle (1982). In this case z, includes lagged 
squared residuals as well as perhaps other variables. The conditional variance is 
hypothesized to increase when the residuals increase. In the simplest case: 

h = a,, + a,C;_ 1 + . . . + api&, 

= z,a. 

This is really much like that discussed above as ii,_ 1 = y,_ 1 - x,_ ,p and both yr_ 1 

‘Adrian Pagan has suggested and used this model. 
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and x,-i are legitimately taken as given in the conditional distribution. The test 
naturally comes out to be a regression of ii: on i2:_ i,. . . , iifpp and an intercept 
with the statistic as TR’ of this regression. 

Once a heteroscedasticity correction has been made, it may be useful to test 
whether it has adequately fixed the problem. Godfrey (1979) postulates the 
model: 

where g(0) = 0. The null hypothesis is therefore Ha: y = 0. Under the null, 
estimates of & and ti = yt - x,p are obtained, 5, = h( z,&) and the derivative of h at 
each point z,& can be calculated as hi. Of course, if h is linear, this is just a 
constant. The test is simply again TR* of an auxiliary regression. In this case the 
regression is of: 

-2 -2 
Ut -at h/Z 

11 4t 

q On $2 and ,2’ 

and the statistic will have the degrees of freedom of the number of parameters in 

qt. 
White (1980a) proposes a test for very general forms of heteroscedasticity. His 

test includes all the alternatives for which the least squares standard errors are 
biased. The heteroscedastic model includes all the squares and crossproducts of 
the data. That is, if the original model were y = & + &xi + &x2 + E, the White 
test would consider xi, x2, x:,x; and xix2 as determinants of u2. The test is as 
usual formulated as TR2 of a regression of u2 on these variables plus an intercept. 
These are in fact just the regressors which would be used to test for random 
coefficients as in Breusch and Pagan (1979). 

8.2. Serial correlation 

There is now a vast literature on testing for and estimating models with serial 
correlation. Tests based on the LM principles are the most recent addition to the 
econometrician’s tool kit and as they are generally very simple, attention will be 
confined to them. 

Suppose: 

Y,lXt - ~(X#d)> 
a( L)u, = E, u, = Y, - X,P? a(L)=l-a,L-a2L2- ... -cx*LP, 

(55) 
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and E, is a white noise process. Then it may be of interest to test the hypothesis 
Ha: (Yt= a.. = CQ = 0. Under H,, ordinary least squares is maximum likelihood 
and thus the LM approach is attractive for its simplicity. An alternative formula- 
tion of (55) which shows how it fits into Crowder’s framework is: 

where #1_1 is the past information in both y and x. Thus, again under H, the 
regression simplifies to OLS but under the alternative, there are non-linear 
restrictions. The formulation (56) makes it clear that serial correlation can also be 
viewed as a restricted model relative to the general dynamic model without the 
non-linear restrictions. This is the common factor test which is discussed by 
Hendry and Mizon (1980) and Sargan (1980) and for which Engle (1979a) gives 
an LM test. 

The likelihood function is easily written in terms of (56) and the score is 
simply: 

where U has rows U, = (ii_ i, iir_ z, . . . , ii,_,). 
From the form of (57) it is clear that the LM test views C: as an omitted set of 

variables from the original regression. Thus, as established more rigorously by 
Godfrey (1978a) and Engle (1979a), the test can be computed by regressing ii, on 
x,, U, and testing TR2 as a x i. The argument is essentially that because the score 
has the form of (31), the test will look like (38). If x, includes no lagged 
dependent variables, then plim x'U/T = 0 and the auxiliary regression will be 
unaffected by leaving out the x’s, The test therefore is simply computed by 
regressing ii, on ii,_ i, . . . , ii,_p and checking TR*. For p = 1, this test is clearly 
asymptotically equivalent to the Durbin-Watson statistic. 

The observation that U'x will have expected value zero when x is an exogenous 
variable, suggests that in regression models with lagged dependent variables 
perhaps such products should be set to their expected value which is zero. If this 
is done systematically, the resulting test is Durbin’s (1970) h test, at least for the 
first order case. Thus the h test uses the a priori structure to set some of the terms 
of the LM test to zero. One might expect better finite sample performance from 
this, however, the few Monte Carlo experiments do not show such a difference. 
Instead, this test performs about equally well when it exists, however, for some 
points in the sample space, it gives imaginary values. These apparently convey no 
information about the validity of the null hypothesis and are a result of the 
approximation of a positive definite matrix by one which is not always so. 
Because of this fact and the difficulty of generalizing the Durbin test for higher 
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order serial correlation and higher order lags of dependent variables, the LM test 
is likely to be preferred at least for higher order problems. See Godfrey and 
Tremayne (1979) for further details. 

It would seem attractive to construct a test against moving average dis- 
turbances. Thus suppose the model has the form: 

Y,l-% - ~(x,P~e,2)~ 

Yt-xlP=%, 

u, = E, - OLi&,_i - . . ’ - ap&,_p, (58) 

where E is again a white noise process. Then E, = y, - x,/I - qsI_i - . . . - LY~E,_~ 
so the log-likelihood function is proportional to: 

L=- ; (Yr--%P-V_i- .** -‘XpE*_p)2/202. 
t=1 

The score evaluated under the null that q = . . . = (Ye = 0 is simply: 

S( y, 8) = ii’U/u2, 

which is identical to that in (57) for the AR(p) model. As the null hypothesis is 
the same, the two tests will be the same. Again, the LM tests for different 
alternatives turn out to be the same test. For local alternatives, the autoregressive 
and moving average errors look the same and therefore one test will do for both. 

When a serial correlation process has been fit for a particular model, it may still 
be of interest to test for higher order serial correlation. Godfrey (1978b) supposes 
that a ( p, q) residual model has been fit and that (p + r, q) is to be taken as the 
alternative not surprisingly, the test against ( p, q + r) is identical. Consider here 
the simplest case where q = 0. Then the residuals under the null can be written as: 

fi,=r*-x,P, 

E, = ii, - p,n,_, - . . . - $$_p. 

The test for (p + r,O) or (p, r) error process can be calculated as TR2 of the 
regression of Et on it, cr_i ,..., iit_p, E,_i ,..., ‘&-r, where .Zr = x, - yix,_i - . . . - 
$,x,_~. Just as in the heteroscedasticity case the regression is of transformed 
residuals on transformed data and the omitted variables. Here the new ingredient 
is the inclusion of ii,_,, . . . , ii_p in the regression to account for the optimization 
over y under the null. 

This approach applies directly to diagnostic tests for time series models. 
Godfrey (1979a), Poskitt and Tremayne (1980), Hosking (1980) and Newbold 
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(1980) have developed and analyzed tests for a wide range of alternatives. In each 
case the score depends simply on the residual autocorrelations, however the tests 
differ from the familiar Box-Pierce-Portmanteau test in the calculation of the 
critical region. Consequently, the LM tests will have superior properties at least 
asymptotically for a finite parameterization of the alternative. If the number of 
parameters under test becomes large with the sample size then the tests become 
asymptotically equivalent. However, one might suspect that the power properties 
of tests against low order alternatives might make them the most suitable general 
purpose diagnostic tools. 

When LM tests for serial correlation are derived in a simultaneous equation 
framework, the statistics are somewhat more complicated and in fact there are 
several incorrect tests in the literature. The difficulty arises over the differences in 
instrument lists under the null and alternative models. For a survey of this 
material plus presentation of several tests, see Breusch and Godfrey (1980). In the 
standard simultaneous equation model: 

Y,B+ X,r=u,, 

U, = RU,_, + E,, 
(59) 

where Y and U, are 1 X G, X, is 1 x K and R is a square G X G, matrix of 
autoregressive coefficients, they seek to test Ha: R = 0 both in the FIML and 
LIML context. They conclude that if G is the set of residuals estimated under the 
assumption of no serial correlation, then the LM test can be approximated by any 
standard significance test in the augmented model: 

Y,B+ X,T-Ri$_l=~,. (60) 

Thus comparing the likelihood achieved under (59) and (60) would provide an 
asymptotically equivalent test to the LM test. As usual, this is just one of many 
computational techniques. 

9. Testing the specification of the mean in several complex models 

A common application of LM tests is in econometric situations where the 
estimation requires iterative procedures to maximize the likelihood function. In 
this section a variety of situations will be discussed where possibly complex 
misspecifications of the mean function are tested. LM tests for non-linearities, for 
common factor dynamics, for weak and strong exogeneity and for omitted vari- 
ables in discrete choice and truncated dependent variable models are presented 
below. These illustrate the simplicity of LM tests in complex models and suggest 
countless other examples. 
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9.1. Testing for non-linearities 
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Frequently an empirical relationship derived from economic theory is highly 
non-linear. This is typically approximated by a linear regression without any test 
of the validity of the approximation. The LM test generally provides a simple test 
of such restrictions because it uses estimates only under the null hypothesis. While 
it is ideal for the case where the model is linear under the null and non-linear 
under the alternative, the procedures also greatly simplify the calculation when 
the null is non-linear. Three examples will be presented which show the usefulness 
of this set of procedures. 

If the model is written as: 

then the score under the null will have the form: 

Thus the derivative of the non-linear relationship evaluated with parameter 
estimated under the null, can be considered as an omitted variable. The test 
would be given by the formulations in Section 5. 

As an example, consider testing for a liquidity trap in the demand for money. 
Several studies have examined this hypothesis. Pifer (1969), White (1972) and 
Eisner (1971) test for a liquidity trap in logarithmic or Box-Cox functional forms 
while Konstas and Khouja (1969) (K-K) use a linear specification. Most studies 
find maximum likelihood estimates of the interest rate floor to be about 2% but 
they differ on whether this figure is significantly different from zero. Pifer says it is 
not significant, Eisner corrects his likelihood ratio test and says it is, White 
generalizes the form using a Box-Cox transformation and concludes that it is not 
different from zero. Recently Breusch and Pagan (1977a) have re-examined the 
Konstas and Khouja form and using a Lagrange Multiplier test, conclude that the 
liquidity trap is significant. 

Except for minor footnotes in some of the studies, there is no mention of the 
serial correlation which exists in the models. In re-estimating the Konstas-Khouja 
model, the Durbin-Watson statistic was found to be 0.3 which is evidence of a 
severe problem with the specification and that the distribution of all the test 
statistics may be highly misleading. 

The model estimated by K-K is: 

M=yY+p(r-a)-‘+c, (61) 
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where M is real money demand, Y is real GNP and r is the interest rate. Perhaps 
their best results are when Ml is used for M and the long-term government bond 
rate is used for r. The null hypothesis to be tested is cy = 0. The normal score is 
proportional to u’z where I, the omitted variable, is the derivative of the 
right-hand side with respect to (Y evaluated under the null: 

Therefore, the LM test is a test of whether l/r2 belongs in the regression along 
with Y and l/r. 

Breusch and Pagan obtain the statistic [rM = 11.47 and therefore reject 1y = 0. 
Including a constant term this becomes 5.92 which is still very significant in the 
X2 table. However, correcting for serial correlation in the model under the null 
changes the results dramatically. A second-order autoregressive model with 
parameters 1.5295 and -0.5597 was required to whiten the residuals. These 
parameters are used in an auxiliary regression of the transformed residual on the 
three transformed right-hand side variables and a constant, to obtain an R2 = 
0.01096. This is simply GLS where the covariance parameters are assumed 
known. Thus, the LM statistic is 5rM = 0.515 which is distributed as X: if the null 
is true. As can be seen it is very small suggesting that the liquidity trap is not 
significantly different from zero. 

As a second example, consider testing the hypothesis that the elasticity of 
substitution of a production function is equal to 1 against the alternative that is 
constant but not unity. If y is output and x1 and x2 are factors of production, the 
model under the alternative can be written as: 

(62) 

If p = 0, the elasticity of substitution is one and the model becomes: 

To test the hypothesis p = 0, it is sufficient to calculate ag/8pIps0 and test 
whether this variable belongs in the regression. In this case 

ag 
i 1 

2 

ap += 

+(1-s) log? 

which is simply the Kmenta (1967) approximation. Thus the Cobb-Douglas form 
can be estimated with appropriate heteroscedasticity or serial correlation and the 



Ch. 13: Wald, Likelihood Ratio, and Lagrange Multiplier Tests 811 

unit elasticity assumption tested with power equal to a likelihood ratio test 
without ever doing a non-linear regression. 

As a third example, Davidson, Hendry, Srba and Yeo (1978) estimate a 
consumption function for the United Kingdom which pays particular attention to 
the model dynamics. The equation finally chosen can be expressed as: 

&et = Pi&Y, + P,A,A,Y, + P,(c,-, - ~1-4) 

+PJ&+P&+PJlP,, (63) 

where c, Y and p are the logs of real consumption, real personal disposable income 
and the price level, and A, is the i th difference. In a subsequent paper Hendry and 
Von Ungem-Stemberg (1979) argue that the income series is mismeasured in 
periods of inflation. The income which accrues from the holdings of financial 
assets should be measured by the real rate of interest rather than the nominal as is 
now done. There is a capital loss of p times the asset which should be netted out 
of income. The appropriate log income measure is Y: = log( Y, - apL,_ 1) where L 
is liquid assets of the personal sector and (Y is a scale parameter to reflect the fact 
that L is not all financial assets. 

The previous model corresponds to (Y = 0 and the argument for the respecifica- 
tion of the model rests on the presumption that a # 0. The LM test can be easily 
calculated whereas the likelihood ratio and Wald tests require non-linear estima- 
tion if not respecification. The derivative of Y* with respect to (Y evaluated under 
the null is simply - pL,_,/Y,. Denote this by x,. The score is proportional to u’z, 
where z = &A,x, + &A,A,x, - &x,_~, and the betas are evaluated at their 
estimates under the null. This is now a one degree of freedom test and can be 
simply performed. The test is significant with a chi squared value of 5. As a one 
tailed test it is significant at the 2.5% level. 

9.2. Testing for common factor dynamics 

In a standard time series regression framework, there has been much attention 
given to the testing and estimation of serial correlation patterns in the dis- 
turbances. A typical model might have the form: 

YI = x,P + ?J 1’ PWU, = E,, E, - IN(0, a’), (64) 

where p(L) is an r th order lag polynomial and x, is a 1 x k row vector which for 
the moment is assumed to include no lagged exogenous or endogenous variables. 

Sargan (1964, 1980) and Hendry and Mizon (1978) have suggested that this is 
often a strong restriction on a general dynamic model. By multiplying through by 
p(L) the equation can equivalently be written as: 
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This model includes a set of non-linear parameter restrictions which essentially 
reduce the number of free parameters to k + r instead of the full (k + l)r which 
would be free if the restriction were not imposed. A convenient parameterization 
of the unrestricted alternative can be given in terms of another matrix of lag 
polynomials e(L) which is a 1 x k row vector each element of which is an rth 
order lag polynomial with zero order lag equal to zero. That is e(O) = 0. The 
unrestricted model is given by: 

PWY, = P(-Q,P + W)x;+ e,, (66) 

which simplifies to the serial correlation case if all elements of 8 are zero. Thus, 
the problem can be parameterized in terms of z = (x _ i, . . . , x_~) as a matrix of kr 
omitted variables in a model estimated with GLS. The results of Section 5 apply 
directly. The test is simply TR2 of E, on p(L)x,, zt and (a,_,,. . ., ii_,), or 
equivalently, on xt, z1 (y-i,. . . , y-,). 

Now if x includes lags, the test must be very slightly modified. The matrix z 
will, in this case, include variables which are already in the model and thus the 
auxiliary regression will see a data set with perfect multicollinearity. The solution 
is to eliminate the redundant elements of z as these are not testable in any case. 
The test statistic will have a correspondingly reduced number of degrees of 
freedom. 

A more complicated case occurs when it is desired to test that the correlation is 
of order r against the alternative that it is of order r - 1. Here the standard test 
procedure breaks down. See Engle (1979a) for a discussion and some suggestions. 

9.3. Testing for exogeneity 

Tests for exogeneity are a source of controversy partly because of the variety of 
definitions of exogeneity implicit in the formulation of the hypotheses. In this 
paper the notions of weak and strong exogeneity as formulated by Engle et al. 
(1983) will be used in the context of linear simultaneous equation systems. In this 
case weak exogeneity is essentially that the equations defining weakly exogenous 
variables can be ignored without a loss of information. In textbook cases weakly 
exogenous variables are predetermined. Strong exogeneity implies, in addition, 
that the variables in question cannot be forecast by past values of endogenous 
variables which is the definition implicit in Granger (1969) “non-causality”. 

Consider a complete simultaneous equation system with G equations and K 
predetermined variables so that Y, E, and V are T X G, X is T X K and the 
coefficient matrices are conformable. The structural and reduced forms are: 

YB=xT+&, Es;&, = s2, (67) 
y=xII+v, (68) 
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where E, are rows of E which are independent and the x are weakly exogenous. 
Partitioning this set of equations into the first and the remaining G - 1, the 
structure becomes: 

Y, - Y*P = XlY + El 3 (69) 

- y,(~’ + Y, B, = XJ, + Q, (70) 

where X, may be the same as X and 

The hypothesis that Y, is weakly exogenous to the first equation in this full 
information context is simply the condition for a recursive structure: 

Ho: a = 0, L’l2 = 0, (72) 

which is a restriction of 2G -2 parameters. 
Several variations on this basic test are implicit in the structure. If the 

coefficient matrix is known to be triangular, then (Y = 0 is part of the maintained 
hypothesis and the test becomes simply a test for 52,, = 0. This test is also 
constructed below; Holly (1979) generalized the result to let the entire B matrix 
be assumed upper triangular and obtains a test of the diagonality of Sz and Engle 
(1982a) has further generalized this to block recursive systems. If some of the 
elements of j3 are known to be zero, then the testing problem remains the same. 
In the special case where B, is upper triangular between the included and 
excluded variables of Y, and the disturbances are uncorrelated with those of y, 
and the included y2, then it is only necessary to test that the (Y’S and L?‘s of the 
included elements of y, are zero. In effect, the excluded y, now form a higher 
level block of a recursive system and the problem can be defined a priori to 
exclude them also from y,. Thus without loss of generality the test in (72) can be 
used when some components of /3 take unknown values. 

To test (72) with (67) maintained, first construct the normal log likelihood L, 
apart from some arbitrary constants: 

L = TloglBI - ;logls2I - $ i ~&-‘e;. 
1=1 

(73) 
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Partitioning this as in (71) using the identity Is21 = 1 fi2,, 1 ) f&, - 9,,St;2’ti2,, I gives: 

where the superscripts on D indicate the partitioned inverse. Differentiating with 
respect to (Y and setting parameters to their values under the null gives the score: 

az. -= 
aa o 

- TB,',& + cfi22t?212;y,,, 
I 

(75) 

where tildes represent estimates under the null and 4, is the row vector of 
residuals under the null. Recognizing that c,h22iJ2~~2,/T = I, this can be rewrit- 
ten as: 

where ji is the reduced form prediction of yi which is given in this case as 
x,7 + X,i;,B;‘/!!. Clearly, under the null hypothesis, the score will have expected 
value zero as it should. Using tensor notation this can be expressed as: 

s,= (Zs(y, + 8,))‘(ji;‘@Z)vec(02), (77) 

which is in the form of omitted variables from a stacked set of regressions with 
covariance matrix fi,‘@Z. This is a GLS problem which allows calculation of a 
test for a = 0 under the maintained hypothesis that s2,, = 0. Because of the 
simultaneity, the procedure in Engle (1982a) should be followed. 

The other part of the test in (72) is obtained by differentiating with respect to 
52,, and evaluating under the null. It is not hard to show that all terms in the 
derivative vanish except the last. Because &?12/&2,2 lo = - tifi’&’ the score can 
be written as: 

so,, = c ii,,D,‘D,‘u*;, (78) 
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which can be written in two equivalent forms: 
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Either would be appropriate for testing L?,, = 0 when a = 0 is part of the 
maintained hypothesis. In (79) the test would be performed in the first equation 
by considering U, as a set of G - 1 omitted variables. In (80) the test would be 
performed in the other equations by stacking them and then considering IS ui as 
the omitted set of variables. Clearly the former is easier in this case. 

To perform the joint test, the two scores must be jointly tested against zero. 
Here (77) and (80) can easily be combined as they have just the same form. The 
test becomes a test for two omitted variables, pi + fii and ii,, in each of the 
remaining G - 1 equations. Equivalently, Ji and ii, can be considered as omitted 
from these equations. 

Engle (1979) shows that this test can be computed as before. If the model is 
unidentified the test would have no power and if the model is very weakly 
identified, the test would be likely to have very low power. 

In the special case where G = 2, the test is especially easy to calculate because 
both equations can be estimated by least squares under the null. Therefore 
Section 5 can be applied directly. 

As an example, the Michigan model of the monetary sector was examined. The 
equations are reported in Gardner and Hymans (1978). In this model, as in most 
models of the money market it is assumed that a short term interest rate can be 
taken as weakly exogenous in an equation for a long-term rate. However, most 
portfolio theories would argue that all rates are set at the same time as economic 
agents shift from one asset to another to clear the market. 

In this example a test is constructed for the weak exogeneity of the prime rate, 
ZUAA, in the 35 year government bond rate equation, RG35. The model can be 
written as: 

RG35 = PARAAA + x,y + q, 

ARAAA = aRG35 + x2y + Ed, (81) 

where the estimates assume (Y = uiz = 0, and the x’s include a variety of presum- 
ably predetermined variables including lagged interest rates. Testing the hypothe- 
sis that (Y = 0 by considering RG35 as an omitted variable is not legitimate as it 
will be correlated with Ed. If one does the test anyway, a cl&squared value of 35 is 
obtained. 

The appropriate test of the weak exogeneity of RG35 is done by testing ui and 
RG35 - Bii, as omitted from the second equation where 1, = ARAAA - x2y2. 
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This test was calculated by regressing P, on x2, 8, and RG35 - pii,. The resulting 
TR* = 1.25 which is quite small, indicating that the data does not contain 
evidence against the hypothesis. Careful examination of x1 and x2 in this case 
shows that the identification of the model under the alternative is rather flimsy 
and therefore the test probably has very little power. 

A second class of weak exogeneity tests can be formulated using the same 
analysis. These might be called limited information tests because it is assumed 
that there are no overidentifying restrictions available from the second block of 
equations. In this case equation (70) can be replaced by: 

Y,=xn2+E2. (82) 

Now the definition of weak exogeneity is simply that Q2,, = 0 because (Y = 0 
imposes no restrictions on the model. This situation would be expected to occur 
when the second equation is only very roughly specified. 

A very similar situation occurs in the case where Y, is possibly measured with 
error. Suppose Y2* is the true unobserved value of Y, but one observes Y, = Y2* + n. 
If the equation defining Y;C is: 

Y;c = x*r* + &*, 

where the assumption that Y2* belongs in the first equation implies EE;Q = 0, the 
observable equations become: 

Y, = Y*P + XlY + El - VP, 

Y, = xzr* + &* + 7. (83) 

If there is no measurement error, then the covariance matrix of n will be zero, and 
&, = 0. This set up is now just the same as that used by Wu (1973) to test for 
weak exogeneity of Y, when it is known that (Y = 0. 

The procedure for this test has already been developed. The two forms of the 
score are given in (79) and (80) and these can be used to test for the presence of 
U, in the first equation. This test is Wu’s test and it is also the test derived by 
Hausman (1979) for this problem. By showing that these are Lagrange Multiplier 
tests, the asymptotic optimality of the procedures is established when the full set 
of x2 is used. Neither Hausman nor Wu could establish this property. 

Finally, tests for strong exogeneity can be performed. By definition, strong 
exogeneity requires weak exogeneity plus the non-predictability of Y, from past 
values of y,. Partitioning x2 in (70) into ( yp, xg) where yp is a matrix with all the 
relevant lags of y,, and similarly letting F, = (F20, F,,) the hypothesis of strong 
exogeneity is: 

H,: a=o, fir, = 0, r,, = 0. (84) 
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This can clearly be jointly tested by letting ur, pi and yf be the omitted variables 
from each of the equations. Clearly the weak exogeneity and the Granger 
non-causality are very separate parts of the hypothesis and can be tested 
separately. Most often however when Granger causality is being tested on its own, 
the appropriate model is (82) as overidentifying restrictions are rarely available. 

9.4. Discrete choice and truncated distributions 

In models with discrete or truncated dependent variables, non-linear maximum 
likelihood estimation procedures are generally employed to estimate the parame- 
ters. The estimation techniques are sufficiently complex that model diagnostics are 
rarely computed and often only a limited number of specifications are tried. This 
is therefore another case where the LM test is useful. Two examples will be 
presented: a binary choice model and a self-selectivity model. 

In the binary choice model, the outcome is measured by a dependent variable, 
y, which takes on the value 1 with probability p and 0 with probability 1 - p. For 
each observation these probabilities are different either because of the nature of 
the choice or of the chooser. Let pt = F(x#), where the function F maps the 
exogenous characteristics, x,, into the unit interval. A common source of such 
functions are cumulative distribution functions such as the normal or the logistic. 
The log-likelihood of this model is given by 

L=C(Y,logP,+(1-Y,)log(l-P,)), P, = F(Q). (85) 

Partitioning the parameter vector and x, vector conformably into /3 = (pi, &)‘, 
the hypothesis to be tested is H,,: & = 0. The model has already been estimated 
using only x2 as the exogenous variables and it is desired to test whether some 
other variables were omitted. These estimates under the null will be denoted & 
which implies a set of probabilities p,. The score and information matrix of this 
model are given by: 

(86) 

(87) 

where f is the derivative of F. Notice that the score is essentially a function of the 
“residuals” y, - p,. Evaluating these test statistics under the null, the LM test 
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statistic is given by: 

R. E Engle 

where 

(88) 

fi, = (Y, - P,,)/(P,(l- A))“‘? % = Gf(~,,MPAl- A,>)‘/‘, 

and 

ii= (i&..., P,)‘,i = (2; )..., i;)‘. 

Because plimir’ti/T =l, the statistic is asymptotically equivalent to TR; of the 
regression of ii on 2. In the special case of the logit where p, = l/(1 + ePXfa), 
f = j,(l - j,) and the expressions simplify so that xI is multiplied by ($,(l - p,))‘/’ 
rather than being divided by it. For the probit model where F is the cumulative 
normal, f = exp(x,,b,) as the factor of proportionality cancels. This test is 
therefore extremely easy to compute based on estimates of the model under the 
null. 

As a second example, take the self-selectivity model of Hausman and Wise 
(1977). The sample is truncated based upon the dependent variable. The data 
come from the negative income tax experiment and when the families reached a 
sufficiently high income level, they are dropped from the sample. Thus the model 
can be expressed as: 

Ylx- w%u2), 

but we only have data for y 5 c. Thus, the likelihood function is given as the 
probability density of y divided by the probability of observing this family. The 
log-likelihood can be expressed in terms of I+ and @ which are the Gaussian 
density and distribution functions respectively as: 

L=Clog~((y,-x,P)/a)-Clog~7(c-x,P)/a). (89) 
I , 

The score is: 

(90) 
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To estimate this model one sets the score to zero and solves for the parameters. 
Notice that this implies including another term in the regression which is the ratio 
of the normal density to its distribution. The inclusion of this ratio, called the 
Mills ratio, is a distinctive feature of much of the work of self-selectivity. The 
information matrix can be shown to be: 

where +, = $((c - x,/3)/0) and similarly for @,. 
To test the hypothesis He: pi = 0, denote again the estimates under the nulJ by 

fi,&&. Let t-F =l+(&/$~~)* +(&/a,)(~-x$/6) and define fir = (y, -x& + 
&&/djl)/r, and R, = x,r,. With ii and i being the corresponding vectors and 
matrices, the LM test statistic is: 

As before, plim ii’ti/T =1 so an asymptotically equivalent test statistic is TRE of 
the regression of f on 2. Once again, the test is simply performed by a linear 
regression on transformed data. All of the components of this transformation 
such as the Mills ratio, are readily available from the preceding estimation. Thus a 
variety of complicated model searches and diagnostic tests can easily be carried 
out even in this complex maximum likelihood framework. 

10. Alternative testing procedures 

In this section three alternative closely related testing procedures will be briefly 
explained and the relationship between these methods and ones discussed in this 
chapter will be highlighted. The three alternatives are Neyman’s (1959) C(a) test, 
Durbin’s (1970) general procedure, and Hausman’s (1978) specification test. 

Throughout this section the parameter vector will be partitioned as 8’ = (e;, 0;) 
and the null hypothesis will be H,: @i = 0:. Neyman’s test, as exposited by 
Breusch and Pagan (1980), is a direct generalization of the LM test which allows 
consistent byt inefficie=nt estimgtion of the parameters e2 under the null. Let this 
estimate be (3, and let B = (f7p, 0;)‘. Expanding the score evaluated at 8 around the 
ML estimate 6 gives: 

%(8)=( o wa4@9 + ) i 
a2L/aelae;(Q(i2 -13~) 
a*L/ae, ae;(Q(ii2 - 6,) ’ i 
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where ( 8L/ iM,)( 6) = 0. Solving for the desired score: 
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(93) 

The C(a) test is just the LM test using (93) for the score. This adjustment can be 
viewed as one step of a Newton-Raphson iteration to find an efficient estimate of 
8, based upon an initial consistent estimate. In some situations such as the one 
discussed in Breusch and Pagan, this results in a substantial simplification. 

The Durbin (1970) procedure is also based on different estimates of the 
parameters. He suggests calculating the maximum likelihood estimate of “r 
assuming @, = &, the ML estimate under the null. Letting this new estimate be B,, 
the test is=based upon the difference 8, - SF. Expanding the score with respect to 
8, +bout 8r holding 0, = & and recognizing that the first term is zero by definition 
of 0, the following relationship is found: 

J&(8) = - &(8)(8, - ep). 
1 ; 

(94) 

Because the Hessian is assumed to be non-singular, any test based upon 8, - 6’: 
will have the same critical region as one based upon the score; thus the two tests 
are equivalent. In implementation there are of course many asymptotically 
equivalent forms of the tests, and it is the choice of the asymptotic form of the 
test which gives rise to the differences between the LM test for serial correlation 
and Durbin’s h test. 

The third principle is Hausman’s (1978) specification test. The spirit of this test 
is somewhat different. The parameters of interest are not 8, but rather r3,. The 
objective is to restrict the parameter space by setting 8, to some preassigned 
values without destroying the consistency of the estimates of 0,. The test is based 
upon the difference between the efficient estimates under the null, &, and a 
consistent but possibly inefficient estimate und,er the alternative 8,. Hausman 
makes few assumptions about the properties of &; Hausman and Taylor (1980), 
however, modify the statement of the result somewhat to use the maximum 
likelihood estimate under the alternative e2. For the moment, this interpretation 
will be used here. Expanding the score around the maximum likelihood estimate 
and evaluating it at t? gives: 



Ch. 13: Wuld, Likelihood Rutio, and Lugrunge Multiplier Tests 821 

(95) 

It was shown above that asymPtotically optimal tests could be based upon either 
the score or the difference (0, - 0:). As these are related by a non-singular 
transformation which asymptotically is Ya”, critical regions based on either 
statistic will be the same. Hausman’s difference is based upon Xzl times the 
score asymptotically. If this matrix is non-singular, then the tests will all be 
asymptotically equivalent. The dimension of Y21 is q X p where p is the number 
of restrictions and q = k - p is the number of remaining parameters. Thus a 
necessary condition for this test to be asymptotically equivalent is that min( p, q) 

= p. A sufficient condition is that rank(.Y*‘) = p. The equivalence requires that 
there be at least as many parameters unrestricted as restricted. However, parame- 
ters which are asymptotically independent of the parameters under test will not 
count. For example, in a classical linear regression model, the variance and any 
serial correlation parameters will not count in the number of unrestricted parame- 
ters. The reason for the difficulty is that the test is formulated to ignore all 
information in $, - 0: even though it frequently would be available from the 
calculation of i?*. 

Hausman and Taylor (1980) in responding to essentially this criticism from 
Holly (1980) point out that in the case q < p, the specification test can be 
interpreted as an asymptotically optimal test of a different hypothesis. They 
propose the hypothesis H,*: 4;Y21(8, - d,“) = 0 or simply YZ,,(r3, - 0,“) = 0. If 
H,* is true, the bias in t$ from restricting 8, = 0: would asymptotically be zero. 
The hypothesis H,* is explicitly a consistency hypothesis. The Hausman test is 
one of many asymptotically equivalent ways to test this hypothesis. In fact, the 
same Wald, LR and LM tests are available as pointed out by Riess (1982). The 
investigator must however decide which hypothesis he wishes to test, Ho or H,*. 

In answering the question of which hypothesis is relevant, it is important to ask 
why the test is being undertaken in the first place. As the parameters of interest 
are e,, the main purpose of the test is to find a more parsimonious specification, 
and the advantage of a parsimonious specification is that more efficient estimates 
of the parameters of interest can be obtained. Thus if consistency were the only 
concern of the investigator, he would not bother to restrict the model at all. The 
objective is therefore to improve the efficiency of the estimation by testing and 
then imposing some restrictions. These restrictions ought, however, to be grounded 
in an economic hypothesis rather than purely data based as is likely to be the case 
for H,* which simply asserts that the true parameters lie in the column null space 
of Y2i. 
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Finally, if an inefficient estimator i! is used in the test, it is unlikely that the 
results will be as strong as described above. Except in special cases, one would 
expect the test based upon the MLE to be more powerful than that based upon an 
inefficient estimator. However, this is an easy problem to correct. Starting from 
the inefficient estimate, one step of a Newton-Raphson type algorithm will 
produce asymptotically efficient parameter estimates. 

11. Non-standard situations 

While many non-standard situations may arise in practice, two will be discussed 
here. The first considers the properties of the Wald, LM and LR tests when the 
likelihood function is misspecified. The second looks at the case where the 
information matrix is singular under the null. 

White (1982) and Domowitz and White (1982) have recently examined the 
problem of inference in maximum likelihood situations where the wrong likeli- 
hood has been maximized. These quasi-maximum likelihood estimates may well 
be consistent, however the standard errors derived from the information matrix 
are not correct. For example, the disturbances may be assumed to be normally 
distributed when in fact they are double exponentials. White has proposed 
generalizations of the Wald and LM test principles which do have the right size 
and which are asymptotically powerful when the density is correctly assumed. 
These are derived from the fact that the two expressions for the information 
matrix are no longer equivalent for QML estimates. The expectation of the outer 
product of the scores does not equal minus the expectation of the Hessian. 
Letting L, be the log-likelihood of the tth observation, White constructs the 
matrices: 

A= 1 d2L . 
T ae aef ’ 

and C = A-‘BA-‘. 

Then the “quasi-scores”, measured as the derivative of the possibly incorrect 
likelihood function evaluated under the null, will have a limiting distribution 
based upon these matrices when the null is true. Letting A” be the first block of 
the partitioned inverse of A, the limiting covariance of the quasi score is 
(A”C~‘A”)-’ so the quasi-LM test is simply: 

[rM = sY”C,‘A”s. 

Notice that if the distribution is correct, then A = - B so that C = A-’ and the 
whole term becomes simply A” as usual. Thus the use of the quasi-LM statistic 
corrects the size of the test when the distribution is false but gives the asymptoti- 
cally optimal test when it is true. Except for possible finite sample and computa- 
tional costs, it appears to be a sensible procedure. Exactly the same correction is 
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made to the Wald test to obtain a quasi Wald test. Because it is the divergence 
between A and B which creates the situation, White proposes an omnibus test for 
differences between A and B. 

In some situations, an alternative to this approach would be to test for 
normality directly as well as for other departures from the specification. Jarque 
and Bera (1980, 1982) propose such a test by taking the Pearson density as the 
alternative and simultaneously testing for serial correlation, functional form 
misspecification and heteroscedasticity. This joint test decomposes into indepen- 
dent LM tests because of the block diagonality of the information matrix for this 
problem. 

A second non-standard situation which occurs periodically in practice is when 
some of the parameters are estimable only when the null hypothesis is false. That 
is, the information matrix under the null is singular. Two simple examples with 
rather different conclusions are: 

ylx,; x2 -N(43x,+PX2dJ2), Ho: p =o, 

ylx- N(W,fJ2), H,:j3=0. 

In both cases, the likelihood function can be maximized under both the null and 
alternative, but the limiting distribution of the likelihood ratio statistic is not 
clear. Furthermore, conventional Wald and LM tests also have difficulties-the 
LM will have a parameter which is unidentified under the null which appears in 
the score, and the Wald will have an unknown limiting distribution. In the first 
example, it is easy to see that by reparameterizing the model, the null hypothesis 
becomes a two degree of freedom standard test. In the second example, however, 
there is no simple solution. Unless the parameter (Y is given a priori, the tests will 
have the above-mentioned problems. A solution proposed by Davies (1977) is to 
obtain the LM test statistic for each value of the unidentified parameter and then 
base the test on the maximum of these. Any one of these would be chi squared 
with one degree of freedom, however, the maximum of a set of dependent chi 
squares would not be chi squared in general. Davies finds a bound for the 
distribution which gives a test with size less than or equal to the nominal value. 

As an example of this, Watson (1982) considers the problem of testing whether 
a regression coefficient is constant or whether it follows a first order autoregres- 
sive process. The model can be expressed as: 



The null hypothesis is that at = 0; this however makes the parameter p unidenti- 
fiable. The test is constructed by first searching over the possible values of p to 
find the maximum LM test statistic, and then finding the limiting distribution of 
the test to determine the critical value. A Monte Carlo evaluation of the test 
showed it to work reasonably well except for values of p close to unity when the 
limiting distribution was well approximated only for quite large samples. 

Several other applications of this result occur in econometrics. In factor 
analytical models, the number of parameters varies with the number of factors so 
testing the number of factors may involve such a problem. Testing a series for 
white noise against an AR(l) plus noise again leads to this problem as the 
parameter in the autoregression is not identified under the null. A closely related 
problem occurred in testing for common factor dynamics as shown in Engle 
(1979a). Several others could be illustrated. 

12. Conclusion 

In a maximum likelihood framework, the Wald, Likelihood Ratio and Lagrange 
Multiplier tests are a natural trio. They all share the property of being asymptoti- 
cally locally most powerful invariant tests and in fact all are asymptotically 
equivalent. However, in practice there are substantial differences in the way the 
tests look at particular models. Frequently when one is very complex, another will 
be much simpler. Furthermore, this formulation guides the intuition as to what is 
testable and how best to formulate a model in order to test it. In terms of forming 
diagnostic tests, the LM test is frequently computationally convenient as many of 
the test statistics are already available from the estimation of the null. 

The application of these test principles and particularly the LM principle to a 
wide range of econometric problems is a natural development of the field and it is 
a development which is proceeding at a very rapid pace. Soon, most of the 
interesting cases will have been touched in theoretical papers, however, applied 
work is just beginning to incorporate these techniques and there is a rich future 
there. 
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1. Introduction 

The t and F tests are the most frequently used tests in econometrics. In regression 
analysis there are two different procedures which can be used to test the 
hypothesis that all the coefficients are zero. One procedure is to test each 
coefficient separately with a t test and the other is to test all coefficients jointly 
using an F test. The investigator usually performs both procedures when analyz- 
ing the sample data. The obvious questions are what is the relation between the 
two procedures and which procedure is better. Scheffe (1953) provided the key to 
the answers when he proved that the F test is equivalent to carrying out a set of 
simultaneous t tests. More than 25 years have passed since this result was 
published and yet the full implications have barely penetrated the econometric 
literature. Aside from a brief mention in Theil (1971) the Scheffe result has not 
been discussed in the econometric textbooks; the exceptions appear to be Seber 
(1977) and Dhrymes (1978). Hence, it is perhaps no surprise there are so few 
applications of multiple hypothesis testing procedures in empirical econometric 
research. 

This chapter presents a survey of multiple hypothesis testing procedures with 
an emphasis on those procedures which can be applied in the context of the 
classical linear regression model. Multiple hypothesis testing is the testing of two 
or more separate hypotheses simultaneously. For example, suppose we wish to 
test the hypothesis H: ,f3i = & = 0 where /?r and & are coefficients in a multiple 
regression. In situations in which we only wish to test whether H is true or not we 
can use the F test. It is more usual that when H is rejected we want to know 
whether ,Bi or & or both are nonzero. In this situation we have a multiple 
decision problem and the natural solution is to test the separate hypotheses H,: 
PI = 0 and H2: /?, = 0 with a t test. Since H is true if and only if the separate 
hypotheses H,: ,bl = 0 and HI: & = 0 are both true, this suggests accepting H if 
and only if we accept HI and Hz. Testing the two hypotheses HI and H2 when 
we are interested in whether & or & or both are different from zero induces a 
multiple decision problem in which the four possible decisions are: 

do: HI and H, are both true, 

do’. H is true H is false, . 1 9 2 

d”: HI is false, H2 is true, 

d” : HI and H2 are both false. 

Now suppose that a test of HI is defined by the acceptance region A, and the 
rejection region R,, and similarly for H2. These two separate tests induce a 
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decision procedure for the four decision problem, this induced procedure being 
defined by assigning the decision d@’ to the intersection of A, and A,, do’ to the 
intersection of A, and R, and so on. This induced procedure accepts H: 
fll = & = 0 if and only if HI and H2 are accepted. 

More generally suppose that the hypothesis H is true if and only if the separate 
hypotheses H,, Hz,. . . are true. The induced test accepts H if and only if all the 
separate hypotheses are accepted. An induced test is either finite or infinite 
depending on whether there are a finite or infinite number of separate hypotheses. 
In the case of finite induced tests the exact sampling distributions of the test 
statistics can be complicated, so that in practice the critical regions of the tests are 
based on probability inequalities. On the other hand, infinite induced tests are 
commonly constructed such that the correct critical value can be readily calcu- 
lated. 

Induced tests were developed by Roy (1953), Roy and Bose (1953), Scheffe 
(1953) and Tukey (1953). Roy referred to induced tests as union-intersection 
tests. Procedures for constructing simultaneous confidence intervals are closely 
associated with induced tests and such procedures are often called multiple 
comparison procedures. Induced tests and their properties are discussed in two 
papers by Lehmann (1957a, 1957b) and subsequently by Darroch and Silvey 
(1963) and Seber (1964). A lucid presentation of the union-intersection principle 
of test construction is given in Morrison (1976). I recommend Scheffe (1959) for a 
discussion of the contributions of Scheffe and Tukey. A good reference for finite 
induced tests is Krishnaiah (1979). Miller (1966, 1977) presents an excellent 
survey of induced tests and simultaneous confidence interval procedures. 

The induced tests I will discuss in detail are the Bonferroni test and the Scheffe 
test. These two induced tests employ the usual t statistics and can always be 
applied to the classical linear regression model. The Bonferroni test is a finite 
induced test where the critical value is computed using the well known Bonferroni 
inequality. While there are inequalities which give a slightly more accurate 
approximation, the Bonferroni inequality has the advantage that it is very simple 
to apply. In addition, the Bonferroni test behaves very similarly to finite induced 
tests based on more accurate approximations. I refer to the F test as the Scheffe 
test when the F test is used as an infinite induced test. Associated with the 
Bonferroni and Scheffe tests are the B and S simultaneous confidence intervals, 
respectively. The Bonferroni test and the B intervals are discussed in Miller (1966) 
and applications in econometrics are found in Jorgenson and Lau (1975) 
Christensen, Jorgenson and Lau (1975) and Sargan (1976). The Scheffe test and 
the S intervals are explained in Scheffe (1959) and the S method is reformulated 
as the S procedure in Scheffe (1977a). Applications of the Scheffe test and the s 
intervals in econometrics are given in Jorgenson (1971, 1974) and Jorgenson and 
Lau (1982). Both the Bonferroni and Scheffe tests are also discussed in Savin 
(1980). 
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The organization of the chapter is the following. The relationship between t and 
F tests is discussed in Section 2. In this section I present a detailed comparison of 
the acceptance regions of the Bonferroni test and the F test for a special situation. 
In Section 3 the notion of linear combinations of parameters of primary and 
secondary interest is introduced. The Bonferroni test is first developed for linear 
combinations of primary interest and then for linear combinations of secondary 
interest. The Scheffe test is discussed and the lengths of the B and S intervals are 
compared. The powers of the Bonferroni test and the Scheffe test are compared in 
Section 4. The effect of multicollinearity on the power of the tests is also 
examined. Large sample analogues of the Bonferroni and Scheffe tests can be 
developed for more complicated models. In Section 5 large sample analogues are 
derived for a nonlinear regression model. Section 6 presents two empirical 
applications of the Bonferroni and Scheffe tests. 

2. t and F tests 

2.1. The model 

Consider the regression model: 

y=xp+u, (2.1) 

where y is a T x 1 vector of observations on the dependent variable, X is a T x k 
nonstochastic matrix of rank k, p is an unknown k X 1 parameter vector and u is 
a T x 1 vector of random disturbances which is distributed as multivariate normal 
with mean vector zero and covariance matrix a21 where e2 > 0 is unknown. 

Suppose we wish to test the hypothesis: 

H: cpc=e=o, (2.2) 

where C is a known q X k matrix of rank q _< k and c is a known q x 1 vector. 
The minimum variance linear unbiased estimator of 8 is: 

z = Cb - c, (2.3) 

where b = (X’X)-‘X’y is the least squares estimator of /3. This estimator is 
distributed as multivariate normal with mean vector 0 and covariance matrix u2V, 
where V= C( X/X)-‘C’. An unbiased estimator of a2 is s2 where (T- k)s2 = (y 
- Xb)‘(y - Xb). 

I will compare the acceptance regions of two tests of H. One test is the F test 
and the other is a finite induced test based on t tests of the separate hypotheses. 
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When H is rejected we usually want to know which individual restrictions are 
responsible for rejection. Hence, I assume that the separate hypotheses are Hi: 

0, = 0, i = 1,. . . , q. It is well known that the F test and the separate t tests can 
produce conflicting inferences; for example, see Maddala (1977, pp. 122-124). 
The purpose of comparing the acceptance regions of the two testing procedures is 
to explain these conflicts. 

I first introduce the F test and the finite induced test. Next, I briefly review the 
distributions and probability inequalities involved in calculating the critical value 
and significance level of a finite induced test. Then the acceptance regions of the 
two tests are compared for the case of two restrictions; the exact and Bonferroni 
critical values are used to perform the finite induced test. Finally, I discuss the 
effect of a nonsingular linear transformation of the hypothesis H on the accep- 
tance regions of the F test and the finite induced test. 

2.2. Tests 

2.2.1. F test 

The familiar F statistic is 

zv lz 
FE_ 

qs2 . 

For an (Y level F test of H the acceptance region is: 

FsF,(q,T-k), 

(2.4) 

(2.5) 

where F,(q, T - k) is the upper (Y significance point of an F distribution with q 
and T - k degrees of freedom. The F test of H is equivalent to one derived from 
the confidence region: 

(z - e>‘v-l( z - e) 5 sv, (2.6) 

where S2 = qF,(q, T - k). The inequality determines an ellipsoid in the Oi,. . . , dq 
space with center at z. The probability that this random ellipsoid covers 8 is 
1 - (Y. The F test of H accepts H if and only if the ellipsoid covers the origin. 

The F test has power against alternatives in all directions. Accordingly, 1 
consider a finite induced test with the same property. It will become apparent the 
acceptance region of the finite induced test is not the same as the acceptance 
region of the F test. 
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2.2.2. Finite induced test 

Assume the finite induced test of H accepts H if and only if all the separate 
hypotheses H,, . . . , H4 are accepted. The t statistic for testing the separate hy- 
pothesis H,: &J, = 0 is: 

t[=&, i=l,..., q, (2.7) 

where y, is the i th diagonal element of V. The acceptance region of a 6 level 
equal-tailed test of H, against the two-sided alternative H,*: 8, Z 0 is: 

It,11 f,,,(T- k), i=l ,*.*, 4, (2.8) 

where t,,,(T - k) is the upper S/2 significance point of a t distribution with 
T - k degrees of freedom. 

When all the equal-tailed t tests have the same significance level the acceptance 
region for an (Y level finite induced test of H is: 

It,l I M, i=l,...,q, (2.9) 

where the critical value M is such that: 

P[max(/t,),...,It,l)(.MJH] =1-cw. (2.10) 

In words, this finite induced test rejects H if the largest squared t statistic is 
greater than the square of the critical value M. The significance level 6 of each 
equal-tailed t test is given by: 

t,,,(T- k) = M. (2.11) 

The acceptance region of the (Y level finite induced test is the intersection of the 
separate acceptance regions (2.9). For this reason Krishnaiah (1979) refers to the 
above test as the finite intersection test. The acceptance region of the finite 
induced test is a cube in the z r, . . . ,zq space with center at the origin and similarly 
in the t 1,...,f, space. 

The finite Induced test of H is equivalent to one based on a confidence region. 
The simultaneous confidence intervals associated with the finite induced test are 
given by: 

(2.12) 
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I call these intervals M intervals. The intersection of the M intervals is the finite 
induced confidence region. This region is a cube in the 8,, . . . , f3, space with center 
zt , . . . , zq. The probability that this random cube covers the true parameter point 8 
is 1 - a. The (Y level finite induced test accepts H if and only if all the M intervals 
cover zero, i.e. if and only if the finite induced confidence region covers the origin. 

2.3. Critical values -jinite induced test 

To perform an (Y level finite induced test we need to know the upper (Y percentage 
point of themax(It,I,..., 1 t, I) distribution. The multivariate t and F distributions 
are briefly reviewed since these distributions are used in the calculation of the 
exact percentage points. The exact percentage points are difficult to compute 
except in special cases. In practice inequalities are used to obtain a bound on the 
probability integral of max((r,l,. .., It,\), when t,,.. ., t, have a central multi- 
variate t distribution. Three such inequalities are discussed. 

2.3.1. Multivariate t and F distributions 

Let x = (x1 , . . . , xp)’ be distributed as a multivariate normal with mean vector p 
and covariance matrix ,I? = a2G where fi = (p,,) is the correlation matrix. Also, let 
s2/02 be distributed independently of x as &i-square with n degrees of freedom. 
In addition, let t, = x,fl, i = 1 , . . . ,p. Then the joint distribution of t,, . . . , t, is a 
central or noncentral multivariate t distribution with n degrees according as p = 0 
or CL # 0. The matrix s2 is referred to as the correlation matrix of the “accompany- 
ing” multivariate normal. In the central case, the above distribution was derived 
by Comish (1954) and by Dunnett and Sobel (1954) independently. Krishnaiah 
and Armitage (1965a, 1966) gave the percentage points of the central multivariate 
t distribution in the equicorrelated case p,, = p(i Z j). Tables of P[max(t,, t2) I a] 
were computed by Krishnaiah, Armitage and Breiter (1969a). The tables are used 
for a finite induced test against one-sided alternatives. Such a test is discussed in 
Section 3. 

Krishnaiah (1963, 1964, 1965) has investigated the multivariate F distribution. 
Let x, = (xlu,. . . ,x,,)‘, u = 1,. _. , m, be m independent random vectors which are 
distributed as multivariate normal with mean vector p and covariance matrix 
2 = (u,,). Also let: 

w,= E x2 
1”’ i=l ,...,p. 

Ii=1 

The joint distribution of w , , . . . , wp is a central or noncentral multivariate chi-square 
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distribution with m degrees of freedom and with 2 as the covariance matrix of the 
“accompanying” multivariate normal according as p = 0 or p Z 0. Let Fj = 
nwjuoo/mwoaii and let wO/uoo be distributed independently of (wi,. . ., wp) as 
&i-square with n degrees of freedom. Then the joint distribution of Fl, . . . , Fp is a 
multivariate F distribution with m and n degrees of freedom with 52 as the 
correlation matrix of the “accompanying” multivariate normal. When m = 1, the 
multivariate F distribution is equivalent to the multivariate t2 distribution. 
Krishna& (1964) gave an exact expression for the density of the central 
multivariate F distribution when _Z is nonsingular. Krishnaiah and Armitage 
(1965b, 1970) computed the percentage points of the central multivariate F 
distribution in the equicorrelated case when m = 1. Extensive tables of 
P[max(( tll, ( t21) _< c] have been prepared by Krishnaiah, Armitage and Breiter 
(1969b). Hahn and Hendrickson (1971) gave the square roots of the percentage 
points of the central multivariate F distribution with 1 and n degrees of freedom 
in the equicorrelated case. For further details on the multivariate t and F 
distributions see Johnson and Kotz (1972). 

2.3.2. Probability inequalities 

The well known Bonferroni inequality states that: 

W ,,...,A,) >l- i P(A;), 
i=l 

where A, is an event and AT its complement. Letting A, be the event 1 tij I t3,2( n), 
i=l , . . _ ,p, the Bonferroni inequality gives: 

P[max(lt,I,...,Ir,l)-<ts,,(n)] 21-6p, (2.13) 

i.e. the probability that the point (tl,. . . , t,,) falls in the cube is 2 1 - 6p. The 
probability is 2 1 - (Y when the significance level 6 is cx/p. Tables of the 
percentage points of the Bonferroni t statistic have been prepared by Dunn (1961) 
and are reproduced in Miller (1966). A more extensive set of tables has been 
calculated by Bailey (1977). 

Sidak (1967) has proved a general inequality which can be specialized to give a 
slight improvement over the Bonferroni inequality when both are applicable. The 
Sidak inequality gives: 

(2.14) 

In words, the probability that a multivariate t vector (tl,. . . , tp) with arbitrary 
correlations falls inside a p-dimensional cube centered at the origin is always at 
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least as large as the corresponding probability for the case where the correlations 
are zero, i.e. where xi,. . ., xp are independent. When the critical value c is t,,,(n) 
the Sidak inequality gives: 

P[max(lr,l,...,It,l)~t,,,(n)] 2 (I-6)‘. (2.15) 

The probability is 2 1 - a when the significance level 6 is 1 - (1 - (Y)‘/P. The 
Sidak inequality produces slightly sharper tests or intervals than the Bonferroni 
inequality because (1- 8)P 2 1 - 6~. Games (1977) has prepared tables of the 
percentage points of the Sidak t statistic. Charts by Moses (1976) may be used to 
find the appropriate t critical value with either the Bonferroni or Sid&k inequality. 

In the special case where the correlations are zero, i.e. s2 = I, max( ( t, ( , . . . , 1 tpl) 
has the studentized maximum modulus distribution with parameter p and n 
degrees of freedom. The upper (Y percentage point of this distribution is denoted 
m( p, n). Using a result by Sidak (1967), Hochberg (1974) has proved that: 

P[max(Ir,I,..., t,l)lm,(p,n)] 21-a, (2.16) 

where Q is an arbitrary correlation matrix, i.e. 52 # I. Stoline and Ury (1979) have 
shown that if 6 = 1 - (1 - LX) ‘lp, then ma(P, n) I t,,,( ) n with a strict inequality 
holding when n = 00. This inequality produces a slight improvement over the 
Sidak inequality. Hahn and Hendrickson (1971) gave tables of the upper per- 
centage points of the studentized maximum modulus distribution. More extensive 
tables have been prepared by Stoline and Ury (1979). 

A finite induced test with significance level exactly equal to (Y is called an exact 
finite induced test and the corresponding critical value is called the exact critical 
value. For a nominal (Y level test of p separate hypotheses the Bonferroni critical 
value is t,,,(T- k) with 6 = a/p, the Sidak critical value is t,,,(T- k) with 
6=1-(l-a)“P and the studentized maximum modulus critical value is m,( p, T 
- k). When the exact critical value is approximated by the Bonferroni critical 
value the finite induced test is called the Bonferroni test. The Sidak test and the 
studentized maximum modulus test are defined similarly. For the purpose of this 
paper we use the Bonferroni test since the Bonferroni inequality is familiar and 
simple to apply. However, the exposition would be essentially unchanged if the 
Sidak test or the studentized. maximum modulus test were used instead of the 
Bonferroni test. 

2.4. Acceptance regions 

2.4.1. Case of two restrictions 

The acceptance regions of the F test, the Bonferroni test and the exact finite 
induced test are now compared for the case of q = 2 restrictions. It is assumed 
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that a2 is known and that 

v=$-J _‘, -;], Irl<l. (2.17) 

Christensen (1973) compared the powers of the F test and the Bonferroni test for 
this case. I will discuss the power comparisons in Section 5. 

Since a* is assumed known the t statistics are distributed N(0, 1) under the null 
hypothesis and the F statistic is replaced by the X2 statistic. These changes do not 
change any important features of the tests, at least for the purpose of comparison. 

The covariance matrix a2V where V is given by (2.17) has a simple interpreta- 
tion. Consider a model with K = 3 regressors: 

Y=[eqlp+u, (2.18) 

where e is a T x 1 vector of ones, X, is T X 2 and P = (&, pi, p2)‘. Suppose the 
hypothesis is H: /3t = p2 = 0. If both of the columns of Xi have mean zero and 
length one, then a*V= u2( Xi’Xt))‘, where 

v-l= ‘, ; = x;x,, 
[ 1 (2.19) 

and where r is the correlation between the columns of Xi. In a model with K > 3 
regressors (including an intercept) the covariance matrix of the least squares 
estimates of the last two regression coefficients is given by u2V with V as in (2.17) 
provided that the last two regressors have mean zero, length one and are 
orthogonal to the remaining regressors. 

Consider the acceptance regions of the tests in the zi and z2 space. The 
acceptance region of an (Y level X2 test is the elliptical region: 

z2 +2rz z + z2 I S2u2, 1 12 2 (2.20) 

where S2 = X:(2) is the upper a! significant point of the X2 distribution with two 
degrees of freedom. The acceptance region of a nominal a level Bonferroni test is 
the square region: 

(2.21) 

where B = t,,,( T - k) with 6 = a/2. This region is a square with sides 

2Bu/49 and center at the origin. The length of the major axis of the 
elliptical region (2.20) and the length of the sides of the square become infinite as 
the absolute value of r tends to one. 
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It will prove to be more convenient to study the acceptance regions of the tests 
in the ti and t, space. The t statistic for testing the separate hypotheses H,: 8, = 0 
is: 

t =Z,Ji7 

I u ’ 
i=1,2, (2.22) 

where n/J3 is the standard deviation of zi and where t, and t, are N(O,l) 
variates since u2 is known. Dividing both sides of (2.20) by the standard deviation 
of z, the acceptance region of the x2 test becomes: 

tf + 2rt,t, + 1-j < S2(1 - r*), (2.23) 

which is an elliptical region in the t, and t, space. Rewriting the boundary of the 
elliptical region (2.23) as: 

(t, + rtJ2 = ( s2 - tf)(l - r2), (2.24) 

we see that the maximum absolute value of tl satisfying the equation of the ellipse 
is S. By symmetry the same is true for the maximum absolute value of t,. Hence 
the elliptical region (2.23) is bounded by a square region with sides 2S and center 
at the origin. I refer to this region as the x2 box. Dividing (2.21) by the standard 
deviation of z, the acceptance region of the Bonferroni test becomes: 

It,I 5 B, i=1,2, (2.25) 

which is a square region in the t, and t, space with sides 2B and center at the 
origin. I call this region the Bonferroni box. In this special case B < S so that the 
Bonferroni box is inside the x2 box. The acceptance region of the exact (Y level 
finite induced test is a square region which 1 refer to as the exact box. The exact 
box is inside the Bonferroni box. The dimensions of the ellipse and the exact box 
are conditional on r. Since the dimensions of the x2 box and the Bonferroni box 
are independent of r, the dimensions of the ellipse and the exact box remain 
bounded as the absolute value of r tends to one. 

Savin (1980) gives an example of a 0.05 level test of H when r = 0. The 
acceptance region of a 0.05 level x2 test of H is: 

t: + t; 5 s2 = 5.991. (2.26) 

This region is a circle with radius S = 2,448 and center at the origin. The 
acceptance region of a nominal 0.05 level Bonferroni test in the t, and t, space is 
a square with sides 2B = 4.482 since 6 = 0.05/2 gives B = 2.241. Both the circle 
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and the Bonferroni box are shown in Figure 2.1. When V= Z (and a2 is known) 
the t statistics are independent, so the probability that both t tests accept when H 
is true is (1- c?)~. If (1- S)2 = 0.95, then 6 = 0.0253. Hence, for an exact 0.05 
level finite induced test the critical value is M = 2.236 and the exact box has sides 
2M = 4.472. The difference between the sides of the Bonferroni and the exact box 
is 0.005. The true significance level of the Bonferroni box is 1 - (0.975)2 = 0.0494, 
which is quite close to 0.05. 

A comparison of the acceptance regions of the x2 test and the finite induced 
test shows that there are six possible situations: 

(1) x2 and both t tests reject. 
(2) x2 and one but not both t tests reject. 

A t 

k i- 

/ B 

2.236 / 
3 

Figure 2.1 The acceptance regions of the Bonferroni and x2 tests where the correlation 
r = 0 and the nominal size is a = 0.05. 
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(3) x2 test rejects but not the t tests. 
(4) Both t tests reject but not x2 test. 
(5) One, but not both t tests reject, nor x2 test. 
(6) Neither the t tests nor x2 test reject. 

839 

Cases 1 and 6 are cases of agreement while the remaining are cases of disagree- 
ment. The x2 test and the finite induced test can produce conflicting inferences 
since they use different acceptance regions. These six cases are discussed in the 
context of the F test and the finite induced test by Gear-y and Leser (1968) and 
Maddala (1977, pp. 122-124). 

From Figure 2.1 we see that H is accepted by the Bonferroni test and rejected 
by the x2 when A is the point (tl, t2) and vice versa when B is the point (tl, t2). 
Case 3 is illustrated by point A and Case 5 by point B. Maddala (1977) remarks 
that Case 3 occurs often in econometric applications while Case 4 is not 
commonly observed. Maddala refers to Case 3 as multicollinearity. Figure 2.1 
illustrates that Case 3 can occur when r = 0, i.e. when the regressors are 
orthogonal. 

Next consider the acceptance regions of the tests when r Z 0. The following 
discussion is based on the work of Evans and Savin (1980). When r is different 
from zero the acceptance region of the x2 test is an ellipse. The acceptance 
regions of a 0.05 level x2 test in the t, and t, space are shown in Figure 2.2 for 
r = 0.0 (0.2) 1.0. In Figure 2.2 the inner box is the nominal 0.05 level Bonferroni 
box and the outer box is the x2 box. The ellipse collapses to a line as r increases 
from zero to one. 

Observe that the case where both t tests reject and the x2 test accepts (Case 4) 
cannot be illustrated in Figure 2.1. From Figure 2.2 we see that Case 4 can be 
illustrated by point C. Clearly, r2 must be high for Case 4 to occur. Maddala 
notes that this case is not commonly observed in econometric work. 

The true level of significance of the Bonferroni box decreases as r increases in 
absolute value. The true significance level of a nominal (Y level Bonferroni box for 
selected values of (Y and r are given in Table 2.1. When (Y = 0.05 the true levels are 
roughly constant for r < 0.6. For r > 0.6, there is a noticeable decrease in the true 
level. This suggests that the nominal 0.5 level Bonferroni box is a satisfactory 
approximation to the exact box for r -e 0.6. The results are similar when the 
nominal sizes are (Y = 0.10 and (Y = 0.01. 

As noted earlier the x2 test and the Bonferroni test can produce conflicting 
inferences because the tests do not have the same acceptance regions. The 
probability of conflict is one minus the probability that the tests agree. When H is 
true the probability that the tests agree and that they conflict are given in Table 
2.1 for selected values of (Y and r. For the case where the nominal size is (Y = 0.05, 
although the probability of conflict increases as r increases (for r > 0), this 
probability remains quite small, i.e. less than the significance level. This result 
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Figure 2.2 The acceptance regions of the Bonferroni and x2 tests in the r-ratio space for 
various correlations r and nominal size a = 0.05. 

appears to be at variance with the widely held belief that conflict between the 
Bonferroni and F tests is a common occurrence. Of course, this belief may simply 
be due to a biased memory, i.e. agreement is easily forgotten, but conflict is 
remembered. On the other hand, the small probability of conflict may be a special 
feature of the two parameter case. 

Figure 2.2 shows a big decrease in the area of intersection of the two 
acceptance regions as r increases and hence gives a misleading impression that 
there is a big decrease in the probability that both tests accept as r increases. In 
fact, the probability that both tests accept is remarkably constant. The results are 
similar when the nominal sizes are (Y = 0.10 and cy = 0.01. As can be seen from 
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Table 2.1 The Probability of Conflict between the Chl Square 
and Finite Induced Tests and between 
the Chi Square and Bonferroni Tests. 

Nomlnal 
Size r 

Finite Induced Test Bonferroni Test 
Agree Conflict Agree Conflict True Size 

0.10 0.0 0.964 0.036 0.965 0.035 0.098 
0.1 0.964 0.036 0.965 0.035 0.097 
0.2 0.963 0.037 0.964 0.036 0.096 
0.3 0.961 0.039 0.962 0.038 0.095 
0.4 0.958 0.042 0.961 0.039 0.093 
0.5 0.954 0.046 0.958 0.042 0.091 

0.6 0.948 0.052 0.955 0.045 0.088 

0.7 0.941 0.059 0.951 0.049 0.083 

0.8 0.934 0.066 0.947 0.053 0.078 

0.9 0.926 0.074 0.942 0.058 0.070 

0.95 0.920 0.080 0.939 0.061 0.065 

0.99 0.913 0.087 0.936 0.064 0.057 

0.9999 0.909 0.091 0.934 0.066 0.051 

0.05 0.0 0.97% 0.022 0.978 0.022 0.049 
0.1 0.978 0.022 0.978 0.022 0.049 

0.2 0.977 0.023 0.978 0.022 0.049 

0.3 0.976 0.024 0.977 0.023 0.048 

0.4 0.975 0.025 0.976 0.024 0.048 

0.5 0.973 0.027 0.975 0.025 0.046 

0.6 0.971 0.029 0.974 0.026 0.045 

0.7 0.967 0.033 0.972 0.028 0.043 

0.8 0.963 0.037 0.970 0.030 0.040 

0.Y 0.959 0.041 0.968 0.032 0.036 

0.95 0.956 0.044 0.966 0.034 0.033 
0.99 0.952 0.048 0.965 0.035 0.029 

0.9999 0.950 0.050 0.964 0.036 0.025 

0.01 0.0 0.994 0.006 0.994 0.006 0.010 

0.1 0.994 0.006 0.994 0.006 0.010 

0.2 0.994 0.006 0.994 0.006 0.010 

0.3 0.994 0.006 0.994 0.006 0.010 

0.4 0.994 0.006 0.994 0.006 0.010 

0.5 0.993 0.007 0.994 0.006 0.010 

0.6 0.993 0.007 0.993 0.007 0.009 

0.7 0.992 0.008 0.993 0.007 0.009 
0.8 0.992 0.008 0.993 0.007 0.008 

0.9 O.YYi 0.009 0.992 0.008 0.008 

0.95 0.990 0.010 0.992 0.008 0.007 
0.99 0.989 0.011 0.992 0.008 0.006 

0.9999 0.989 0.011 0.992 0.008 0.005 

Table 2.1 the results are also similar when the Bonferroni box is replaced by the 
exact box. 

2.4.2. Equivalent hypotheses and invariance 

In this section I discuss the effect of a nonsingular linear transformation of the 
hypothesis H on the acceptance regions of the F test and the Bonferroni test. 
Consider the hypothesis: 

H*: C*p-c*=#*=(), (2.27) 
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where C* is a known q* x k matrix of rank q* _< k and c* is a known q* X k 
vector so that ST, @;, . . . ,/I$ are a set of q* linearly independent functions. The 
hypotheses H* and H are equivalent when H* is true if and only if H is true. 
Hence, H* and H are equivalent if the set of /3 for which 6 = 0 is the same as the 
set for which 8* = 0. 

We now show that H and H* are equivalent if and only if there exists a 
nonsingular q x q matrix A such that [ C*c*] = A[Cc] and hence q* = q. Our proof 
follows Scheffe (1959, pp. 31-321. Suppose first that a q X q nonsingular matrix A 
exists such that [C*c*] = A[Cc]. Then H* is true implies that 8* = C*/3 - c* = 
A(@ - c) = 0. Thus, C/3 - c = 8 = 0 which implies that H is true. Similarly if His 

true then H* is true. 
Suppose next that the equations C*/? = c* have the same solution space as the 

equations CD = c. Then the rows of [C*c*] span the same space as the rows of 
[Cc]. The q* rows of C* are linearly independent and so constitute a basis for this 
space. Similarly, the q rows of C constitute a basis for the same space. Hence 
q* = q and the q rows of C* must be linear combinations of the q rows of C. 
Therefore [C*c*] = A[Cc], where A is nonsingular since rank C* = Rank C = q. 

If the hypotheses H* and H are equivalent, the F statistic for testing H* is the 
same as the F statistic for testing H. Assume that H* and H are equivalent. The 
numerator of the F statistic for testing H* is 

[C*b-c*]‘[C*(XW)-1c*~]-1[C*6-c*] 

=[c~-~]‘A’(A’)-‘[c(x’x)-‘c’]-‘A-~A[c~-~] 

=[cb-c][c(x’x)-‘c’]-l[cb-c]. (2.28) 

This is the same as the numerator of the F statistic for testing H, the denominator 
of the two test statistics being qs2. Hence the F tests of H* and H employ the 
same acceptance region with the result that we accept H* if and only if we accept 
H. This can be summarized by saying that the F test has the property that it is 
invariant to a nonsingular transformation of the hypothesis. 

The finite induced test and hence the Bonferroni test does not possess this 
invariance property. As an example consider the case where q = 2 and a2V = I 
which is known. First suppose the hypothesis is H: 8, = 0, = 0. Then the accep- 

tance region of the nominal 0.05 level Bonferroni test of H is the intersection of 
the separate acceptance regions Jzl ) 5 2.24 and (z2J I 2.24. Now suppose the 
hypothesis H* is 8: = 8, + 8, = 0 and 8; = 8, - 0, = 0. The acceptance region of 
the nominal 0.05 level Bonferroni test of H* is the intersection of the separate 
regions ]zi + z2] I (2)‘122.24 and ]zl - z2) I (2)‘122.24. The hypotheses H* and 
H are equivalent, but the acceptance region for testing H* is not the same as the 
region for testing H. Therefore, if the same sample is used to test both hypotheses, 
H* may be accepted and H rejected and vice versa. 
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If all hypotheses equivalent to H are of equal interest we want to accept all 
these hypotheses if and only if we accept H. In this situation the F test is the 
natural test. However, hypotheses which are equivalent may not be of equal 
interest. When this is the case the F test may no longer be an intuitively appealing 
procedure. Testing linear combinations of the restrictions is discussed in detail in 
the next section. 

3. Induced tests and simultaneous confidence intervals 

3.1. Separate hypotheses 

An important step in the construction of an induced test is the choice of the 
separate hypotheses. So far, I have only considered separate hypotheses about 
individual restrictions. In general, the separate hypotheses can be about linear 
combinations of the restrictions as well as the individual restrictions. This means 
that there can be many induced tests of H, each test being conditional on a 
different set of separate hypotheses. The set of separate hypotheses chosen should 
include those hypotheses which are of economic interest. Economic theory may 
not be sufficient to determine a unique set of separate hypotheses and hence a 
unique induced test of H. 

Let L be the set of linear combinations J/ such that every $ in L is of the form 
J/ = a’8 where a is any known q X 1 non-null vector. In other words, L is the set of 
all linear combinations of 8 ,, . . . ,O, (excluding the case of a = 0). The set L is 
called a q-dimensional space of functions if the functions O,, . . . ,O, are linearly 
independent, i.e. if rank C = q where C is defined in (2.2). 

The investigator may not have an equal interest in all the J, in L. For example, 
in economic studies the individual regression coefficients are commonly of most 
interest. Let G be the set of \cI of primary interest and the complement of G 
relative to L, denoted by L - G, be the set of J, in L of secondary interest. It is 
assumed that this twofold partition is fine enough that all JI in G are of equal 
interest and similarly for all J, in L -G. Furthermore, it is assumed that G 
contains q linearly independent combinations JI. 

The set G is either a finite or an infinite set. If G is infinite, then G is either a 
proper subset of L or equal to L. In the latter case all the J, in L are of primary 
interest. All told there are three possible situations: (i) G finite, L - G infinite; (ii) 
G infinite, L - G infinite; (iii) G infinite, L - G finite. The induced test is referred 
to as a finite or infinite induced test accordingly as G is finite or infinite. 

Let G be a finite set and let Gi, i =l,..., m, be the linear combinations in G. 
The finite induced test of 

H(G): ,j,1 = . . * = I//,,, = 0 (3.1) 
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accepts H(G) if and only if all the separate hypotheses, 
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H,: 4, = 0, i=l,...,m, (3.2) 

are accepted and rejects H(G) otherwise. Since there are q linearly independent 
combinations Jli, i = 1,. . . , q, in G, the hypotheses H(G) and H: I3 = 0 are 
equivalent and H(G) is true if and only if H is true. Hence, we accept H if all the 
separate hypotheses H,, i = 1,. . . , m are accepted and reject H otherwise. This test 
procedure is also referred to as the finite induced test of H. Similar remarks apply 
when G is an infinite set. Since the induced test of H is conditional on the choice 
of G, it is important that G be selected before analyzing the data. 

The set G may be thought of as the set of eligible voters. A linear combination 
of primary interest votes for (against) H if the corresponding separate hypothesis 
H(a) is accepted (rejected). A unanimous decision is required for H to be 
accepted, i.e. all 4 in G must vote for H. Conversely, each 4 in G has the power to 
veto H. If all J/ in L are of equal interest, then all II/ in L are also in G so there is 
universal suffrage. On the other hand, the set of eligible voters may have as few as 
q members. The reason for restricting the right to vote is to prevent the veto 
power from being exercised by 1c, in which we have only a secondary interest. 

Instead of having only one class of eligible voters it may be more desirable to 
have several classes of eligible voters where the weight of each vote depends on 
the class of the voter. Then the hypothesis H is accepted or rejected depending on 
the size of the vote. However such voting schemes have not been developed in the 
statistical literature. In this paper I only discuss the simple voting scheme 
indicated above. 

It is worth remarking that when the number of 4 in G is greater than q the 
induced test produces decisions which at first sight may appear puzzling. As an 
example suppose q = 2 and that the J, in G are +I = ei, $+ = S,, and J/a = 8, + (3,. 
Testing the three separate hypotheses H,: 4; = 0, i = 1,2,3, induces a decision 
problem in which one of the eight possible decisions is: 

HI and H2 are both true, H3 is false. (3.3) 

Clearly, when HI and H2 are both known to be true, then H3 is necessarily true. 
On the other hand, when testing these three hypotheses it may be quite reasonable 
to accept that HI and H, are both true and that H3 is false. In other words, there 
is a difference between logical and statistical inference. 

3.2. Finite induced test - 4 of primary interest 

3.2. I. Exact test 

Suppose that a finite number m of $ in L are of primary interest. In this case G is 
a finite set. Let the Ic, in G be 4, = ai@, i = 1 , . . . ,m. The t statistic for testing the 
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separate hypothesis H( a,): #, = Q = 0 is: 
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^ 

r&J= /& =$ i=l,..., m, (3.4) 

where 4, = alz is the minimum variance unbiased estimator of #, and e$, = s2ujVu, 
is an unbiased estimator of its variance where z and V are defined in Section 2.1. 
For an equal-tailed 6 level test of H(ui) the acceptance region is: 

I&4l 5 b,,(T- k), i=l ,‘.., m. (3.5) 

The finite induced test of H accepts H if and only if all the separate hypotheses 
H(u,),. . . , H(u,) are accepted. When all the equal-tailed tests have the same 
significance level the acceptance region for an (Y level finite induced test of H is: 

I4h)l~ M9 i=l ,***, m, (3.6) 

where 

P[max(Ir,(q)l,..., Ir&,)l) I MJH] =l- (Y. (3.7) 

The significance level of the separate tests is 6, where t,,,(T - k) = M. The 
acceptance region of the finite induced test is the intersection of the separate 
acceptance regions (3.6). This region is a polyhedron in the zr, . . . , zq space and a 
cube in the r,,( a,), . . . , r,,( a,) space. 

Simultaneous confidence intervals can be constructed for all 1c/ in G. The finite 
induced procedure is based on the following result. The probability is 1 - (Y that 
simultaneously 

I call these intervals M intervals. The intersection of the M intervals is a 
polyhedron in the 6 space with center at z. The (Y level finite induced test accepts 
H if and only if all the M intervals (3.8) cover zero, i.e. if and only if the finite 
induced confidence region covers the origin. 

An estimate Ji of 4, is said to be significantly different from zero (s&z) 
according to the M criterion if the M interval does not cover I/J, = 0, i.e. if 
$;I 2 MC?,&. Hence, H is rejected if and only if the estimate of at least one 4, in G 
is sdfz according to the M criterion. 

The finite induced test can be tailored to provide high power against certain 
alternatives. This can be achieved by using r tests which have unequal tails and 
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different significance levels. For example, a finite induced test can be used to test 
against the alternative H **: 0 > 0. The acceptance region of a 6 level one-tailed t 
test against H,**: ei > 0 is: 

t, < ts(T- k), i=i ,..., 4. (3.9) 

When all the one-tailed t tests have the same significance level the acceptance 
region for an (Y level finite induced test of H is 

tixM, i=l ,..., 43 (3.10) 

where 

P[max(ti ,...,tq) I MIH] =l- (Y. (3.11) 

The simultaneous confidence intervals associated with the above test procedure 
are given by: 

P[z,-Mfi<8,; i=l,..., q] =1-a. (3.12) 

A finite induced test against the one-sided alternatives Hi* *: 8 -c 0, i = 1,. . . , q, 
can also be developed. In the remainder of this chapter I only consider two-sided 
alternatives. 

3.2.2. Bonferroni test 

The Bonferroni test is obtained from the exact test by replacing the exact critical 
value M by the critical value B given by the Bonferroni inequality. For a nominal 
(Y level Bonferroni induced test of H the acceptance region is: 

It,(u,)I< B, i=i ,..., m, (3.13) 

where 

B = ta,Zm(T- k). (3.14) 

The significance level of the separate tests is 6 = a/m and the significance level of 
the Bonferroni test is 5 a. The Bonferroni test consists of testing the separate 
hypotheses using the acceptance region (3.13) where the critical value B is given 
by (3.14). The acceptance region of the Bonferroni test in the zi,.. ., zq space is 
referred to as the Bonferroni polyhedron and in the t,(a,), . . . , t,,(a,) space as the 
Bonferroni box. The Bonferroni polyhedron contains the polyhedron of the exact 
finite induced test and similarly for the Bonferroni box, 
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The probability is r 1 - a that simultaneously 
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J/;-B&+ <+iIrC/i+B’G,, i=l ,..*, m, (3.15) 

where these intervals are called B intervals. The B procedure consists in using 
these B intervals. The Bonferroni test accepts H if and only if all the B intervals 
cover zero, i.e. if and only if the Bonferroni confidence region covers the origin. 
An estimate of si of #i is said to be so” according to the B criterion if the B 
interval does not cover zero, i.e. I$,1 2 B~,J,. 

The Bonferroni test can be used to illustrate a finite induced test when m > q, 

i.e. the number of separate hypotheses is greater than the number of linear 
restrictions specified by H. Consider the case where m = 3, q = 2, and a2Y = I 
which is known. Suppose that the three # in G are #r = I&, #z = 0,, and 
J/3 = 8, + 0, and that tests of the three separate hypotheses Hi: J/i = 0, i =1,2,3, 
are defined by the three separate acceptance regions: 

Izr ( I 2.39, lz21 I 2.39, 

)zl + zzl 5 (2)“22.39 = 3.380, (3.16) 

respectively, where 2.39 is the upper 0.05/2(3) = 0.00833 significance point of a 
N(0, 1) distribution. The probability is 2 0.95 that the Bonferroni test accepts H 
when H is true. 

The acceptance region of the Bonferroni test of H, which is the intersection of 
the three separate acceptance regions, is shown in Figure 3.1. When A is the point 
(zr, z2) the hypothesis H is rejected and the decision is that HI and H2 are both 
true and H3 is false. 

For comparison consider the case where m = q = 2. The tests of the two 
separate hypotheses #t = 8, = 0 and q2 = 0, = 0 are now defined by the two 
acceptance regions : 

Izr I d 2.24, lz21 I 2.24, (3.17) 

respectively, where 2.24 is the upper 0.05/2(2) = 0.0125 significance point of a 
N(O,l) distribution. The acceptance region of this Bonferroni test of H is the 
inner square region shown in Figure 3.1. With this region we accept H when A is 
the point (zt, z2). When B is the point (zt, z2) the hypothesis H is accepted if & 
is of primary interest and rejected if J/:, is of secondary interest. This comparison 
shows that the Bonferroni test can accept H for one set of J, of primary interest 
and reject H for another set. 
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Figure 3.1 Acceptance regions of the Bonferroni test for the cases M = 2 and M = 3 when 
q = 2 and (J’ V = I which is known. The nominal size is CI = 0.05. 

3.3. Injinite induced test - &he& test 

3.3.1. &he@ test 

The Scheffk test is an infinite induced test where all 1c/ in L are of primary interest. 
This induced test accepts H if and only if the separate hypothesis, 

H(a):~=a’8=0, (3.18) 
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is accepted for all non-null a. For a 6 level equal-tailed test of H(a) the 
acceptance region is: 

where 

(3.19) 

When all the equal-tailed tests have the same significance level the acceptance 
region for an (Y level infinite induced test of H is: 

I~&)l~ SY all non-null a, (3.21) 

where 

P maxIt,(a)l5SIH I =l-cy. 0 1 (3.22) 

What is surprising is that the critical value S is given by the relatively simple 
expression: 

s=JzGTT. (3.23) 

The significance level 6 of the separate tests is given by t,,,( T - k) = S. 
The acceptance region is the intersection of the separate acceptance regions 

(3.21) for all non-null a. A remarkable fact is that the acceptance region of an (Y 
level Scheffe test of H is the same as the acceptance region of an (Y level F test of 
H. As a consequence we start the Scheffe test with an F test of H. If the F test 
rejects H the next step is to find the separate hypotheses responsible for rejection. 
The test procedure consists of testing the separate hypotheses using the accep- 
tance region (3.21) where the critical value S is given by (3.23). 

The Scheffe test assumes that all 4 in L are of equal interest, i.e. every 4 in L 
has the power to veto H. When the Scheffe test is used in empirical econometrics 
we are implicitly assuming that all J/ in L are of equal economic interest. In 
practice, this assumption is seldom satisfied. As a consequence, if the Scheffe test 
rejects, the linear combinations which are responsible for rejection may have no 
economically meaningful interpretation. A solution to the interpretation problem 
is to use the appropriate finite induced test. 

Simultaneous confidence intervals can be constructed for all 4 in L. The 
probability is 1 - (Y that simultaneously for all # in L: 
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where S is given by (3.23). These intervals are called S intervals. In words, the 
probability is 1 - a! that simultaneously for all J, in L the S intervals cover J/. The 
intersection of the S intervals for all J/ in L is the confidence region (2.6). This is 
an ellipsoidal region in 8 space with center at z. 

An estimate 4 of 4 is said to be su” if the S interval does not cover $ = 0, i.e. if 
l$l> S$,. Hence, H is rejected if and only if the estimate of at least one \c, in L is 
sdfi according to the S criterion. 

The Scheffe test and the S intervals are based on the following result: 

1 =1-a, (3.25) 

where t2(a) is the squared t ratio: 

t2(a) = (4 - a2 = Mz - @I2 
3; s2u’Vu ’ (3.26) 

and where S is given by (3.23). The result is proved in Scheffe (1959, pp. 69-70). I 
will now give a simple proof. 

Observe that the result is proved by showing that the maximum squared z ratio 
is distributed as qF(q, T - k). There is no loss in generality in maximizing t2(u) 
subject to the normalization U’VU = 1 since t 2( a) is not affected by a change of 
scale of the elements of a. Form the Lagrangian: 

L(u,X)= [u’(z-e)/s]2-h(a’Va-1), (3.27) 

where h is the Lagrange multiplier. Setting the derivative of L(u, A) with respect 
to a equal to zero gives: 

[(z-@(Z-@)‘-Mv]u=o. (3.28) 

Premultiplying (3.28) by a’ and dividing by s2u’Vu shows that X = t2(u). Hence, 
the determinantal equation: 

[(sv-‘(z-8)(z-B)‘-hz] =o, (3.29) 

is solved for the greatest characteristic root A*. Since (3.29) has only one non-zero 
root-the matrix (z - 6)(z - 13)’ has rank one-the greatest root is: 

h* = trace(s2V)-l(z - S)(z - 8)‘= (z - S)‘(s’V))‘(z - e), (3.30) 



Ch. 14: Multiple Hypothesis Testing 851 

which is distributed as qF(q, T - k). The solutions to (3.28) i.e. the characteristic 
vectors corresponding to A*, are proportional to (s2L’-‘(z - e) and the char- 

acteristic vector satisfying the normalization a’Vu = 1 is a * = I/-‘(z - Q/\/sX*. 

The Scheffe induced test accepts H if and only if: 

maxti(u) I S2, 

where t:(a) is t2(u) with 8 = 0. It follows from (3.30) that: 

t(+z,*) = zys2vyz, 

(3.31) 

(3.32) 

where a,* is the vector which maximizes t:(u). Since this t ratio is distributed as 
qF( q, T - k) when H is true, the (Y level Scheffe test accepts H if and only if the (Y 
level F test accepts H. 

When the F test rejects H we want to find which \i, are s&z. Since a,* can be 
calculated from (3.30) we can always find at least one 4 which is sd’z, namely 
5, = a,*‘~. Unfortunately, computer programs for regression analysis calculate the 
F statistic, but do not calculate a$. 

When the hypothesis H is that all the slope coefficients are zero the components 
of the a,* vector have a simple statistical interpretation. Suppose that the first 
column of X is a column of ones and let D be the T x (k - 1) matrix of deviations 
of the regressors (excluding unity) from their means. Since z is simply the least 
squares estimator of the slope coefficients, z = (D’D)-‘D’y. Hence a,* = 
( D’D)z(s2qF)- l/2 = D’y(s2qF)-‘/2 so that the components of a,* are propor- 
tional to the sample covariances between the dependent variable and the regres- 
sors. If the columns of D are orthogonal, then the components of a,* are 
proportional to the least squares estimates of the slope coefficients, i.e. z. Thus, in 
the orthogonal case $,, is proportional to the sum of the squares of the estimates 
of the slope coefficients. 

For an example of the Scheffe test I again turn to the case where q = 2 and 
a2V = Z which is known. When (Y = 0.05 the test of the separate hypothesis H(u) 
is defined by the acceptance region: 

lt,,(u)l = lu’zl I 2.448, (3.33) 

where u’Vu = u’a = 1. Thus each separate hypothesis H(u) is tested at the 0.014 
level to achieve a 0.05 level separate induced test of H. Geometrically the 
acceptance region (3.33) is a strip in the zi and z2 space between two parallel lines 
orthogonal to the vector a, the origin being midway between the lines. The 
acceptance region or strip for testing the separate hypothesis H(u) is shown in 
Figure 3.2. The intersection of the separate acceptance regions or strips for all 
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Figure 3.2 Separate acceptance regions or confidence intervals when q = 2 and 02V = I 
which is known. The nominal size is (x = 0.05. 

non-null a is the circular region in Figure 3.2. Recall that this circular region is 
the acceptance region of a 0.05 level x2 test of H, i.e. the region shown in Figure 
2.1. The square region in Figure 3.2 is the acceptance region of a 0.05 level 
Bonferroni separate induced test of H when the only IJ in L of primary interest 
are #r = 8, and G2 = t9,. As noted earlier these two acceptance regions can 
produce conflicting inferences and hence the same is true for the Bonferroni and 
Scheffe separate induced tests of H. 

The S interval for J, = a’0 is defined by the confidence region: 

lu’(t9 - z)I I 2.448, (3.34) 

which says that the point 8 lies in a strip of t?r and t9, space between two parallel 
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lines orthogonal to the vector a, the point (zi, z2) being midway between the 
lines. The intersection of the S intervals for all 4 in L is the circular region in 
Figure 3.2 when it is centered at (zi, z2) in the 8, and 0, space. The S procedure 
accepts H if and only if all the S intervals cover zero, i.e. if and only if the circular 
region in Figure 3.2 (interpreted as a 95% confidence region) covers zero. 

3.3.2. An extension 

When the F test rejects, one or more t ratios for individual parameters may be 
large enough to explain this rejection. As an extension of this result we want to 
look at F statistics for subsets of the linear restrictions specified by H. If any of 
these are sufficiently large then we would have found subsets of the restrictions 
responsible for rejection. To carry out this extension of the S procedure we now 
present a result due to Gabriel (1964, 1969). 

Consider testing the hypothesis: 

H,:C,/3-c,=t’,=O, (3.35) 

where [C,c,] consists of any q* rows of [Cc] defined in (2.2). Let F, be the F 
statistic for testing H* and let &a*) be the squared t ratio for testing: 

H&z,): u;(C,p - c*) = a;@, = 0, (3.36) 

where c1* is q* x 1. With no loss of generality we may let [C*c,] consist of the 
last q* rows of [Cc]. From the development (3.23) to (3.26) we find that 

maxti(u,) = q*F, = Ta:t,2(a), 
(1, 

(3.37) 

where I is the set of all non-null a vectors such that the first q - q* elements are 
zero. Hence: 

q*F, 2 qF, (3.38) 

since the constrained maximum of t,‘(a) is less than or equal to the unconstrained 
maximum. This establishes that when H is true the probability is 1 - (Y tha! the 
inequality, 

qs+cF, I qF,(q, T- k) = S2, (3.39) 

is simultaneously satisfied for all hypotheses H, defined in (3.35) where F, is the 
F statistic for testing H,. 

The implication is that using acceptance region (3.39) we can test any number 
of multivariate hypotheses H, with the assurance that all will be simultaneously 
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accepted with probability 1 - (r when the hypothesis H is true. The hypotheses 
H, may be suggested by the data. When we begin the procedure with an (Y level F 
test of H, this is a special case of H, when q * = q. For further discussion see 
Scheffe (1977a). 

3.3.3. Conditional probability of coverage 

The S intervals are usually not calculated when the F test accepts H since none is 
considered interesting. In light of this practice Olshen (1973, 1977) has argued 
that we should consider the conditional probability that the S intervals cover the 
true values given rejection of H. Olshen (1973) has proved that: 

P[(b-P)‘X’X(b-P) <s2,s21b’X’X’bxs2,S2] <I---(y, (3.40) 

for all /I and a2 provided S2 P 3(7’-- k) and (T- k) > 2. This means that under 
certain mild conditions the conditional probability of coverage is always less than 
the unconditional probability. Monte Carlo studies show that the conditional 
probability can be substantially less than the unconditional probability. 

A simple example will serve to illustrate the difference between the conditional 
and unconditional probability of coverage. Let x be an observation from N(p, 1). 
The probability that the nominal 95% confidence interval for p covers p given 
rejection of the hypothesis p = 0 by a 0.05 level standard normal test is P( Ix - ~1 
~1.96~~x~~1.96).For~=lwehaveP(~x(~1.96)=0.1700andP(~x-~~~1.96, 
1x1 > 1.96) = 0.1435, so that the conditional probability of coverage is 
0.1435/0.1700 = 0.8441. For p = 4 the conditional probability is 0.95/0.9793 = 
0.9701. In this example the conditional probability is < 0.95 when p < 3.92 and 
> 0.95 when p> 3.92. 

In general the S procedure is not satisfactory if one wants to control the 
conditional probability of coverage since there is no guarantee that the condi- 
tional probability is greater than or equal to the unconditional probability, the 
latter being the only probability subject to control with the S procedure. Olshen’s 
theorem shows that the unconditional probability can be a very misleading guide 
to the conditional probability. The S intervals are often criticized for being too 
wide, but they are two narrow if we want to make the conditional probability at 
least as great as the unconditional. Thus, if like Olshen we are interested in 
controlling the conditional probability, then we would want to replace the S 
procedure with one which controls this probability; see Olshen (1973) for a 
discussion of some developments along these lines. 

Suppose we decide before analyzing the data that we have a multiple decision 
problem. Then the unconditional probability of coverage is of interest. In this 
situation the F test is simply the first step in the S procedure. If the F test accepts 
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H it is not customary to calculate the S intervals since it is known that they all 
cover zero and if the F test rejects we do not actually calculate all the S intervals 
since this is not feasible. On the other hand, suppose we do not decide before 
conducting the F test that we have a multiple decision problem, but decide after 
the F test rejects that we have such a problem. In this case the conditional 
probability of coverage is relevant. Of course, we may be interested in both the 
conditional and the unconditional probabilities. In this paper it has been assumed 
that we decided to treat the testing problem as a multiple decision problem prior 
to looking at the data, i.e. that the unconditional probabilities are the focus of 
attention. 

3.4. Finite induced test - J, of secondary interest 

Suppose after inspecting the data we wish to make inferences about linear 
combinations of secondary interest. I now discuss how the finite induced test can 
be generalized so that inferences can be made about all # in L. For this purpose I 
adopt the general approach of Scheffe (1959, pp. 81-83). Following Scheffe the 
discussion is in terms of simultaneous confidence intervals. 

Let G be a set of J, in L of primary interest and suppose we have a multiple 
comparison procedure which gives for each \c, in G an interval: 

Ij - h+s I 1c, I 4 + h,s, (3.41) 

where h, is a constant depending on the vector a but not the unknown 8. The 
inequality (3.41), which may be written 

(a’(0 - z)I I h,s, (3.42) 

can be interpreted geometrically to mean that the point 0 lies in a strip of the 
q-dimensional space between two parallel planes orthogonal to the vector a, the 
point z being midway between the planes. The intersection of these strips for all J, 
in G determines a certain convex set C and (3.41) holds for all J/ in G if and only 
if the point 8 lies in C. Thus, the problem of simultaneous confidence interval 
construction can be approached by starting with a convex set C instead of a set G 
of J, in L. For any convex set C we can derive simultaneous confidence intervals 
for the infinite set of all J, in L by starting with the relation that the point 8 lies in 
C if and only if it lies between every pair of parallel supporting planes of C. 
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Let L* be the set of Ic, in L for which a’Vu = 1 and G* be a set of m linear 
combinations II, in L* of primary interest. This normalization is convenient since 
the M intervals for all 4 in G* have length 2Ms and the S intervals for all 4 in L* 
have length 2Ss. We now define the confidence set C of the M procedure to be the 
intersection of the M intervals for all \cI in G* and the set C of the S procedure to 
be the intersection of the S intervals for all $ in L*. In the M procedure C is a 
polyhedron and in the S procedure C is the confidence ellipsoid defined by (2.6). 
When 4 = 2 the region C is a polygonal region in the B procedure and an 
elliptical region in the S procedure. In addition, if m = 2 and if a2V = 1, then C is 
a square region in the M and B procedures and a circular region in the S 
procedure, as depicted in Figure 2.1. 

Consider the case where the confidence region C is a square with sides 21% 
Starting with a square we can derive simultaneous confidence intervals for all J, in 
L*, not just for 8, and 0,. The square has four extreme points which are the four 
corner points. There are only two pairs of parallel lines of support where each 
supporting line contains two extreme points. These two pairs of lines define the M 
intervals for the Ic, of primary interest, i.e. 13, and 0,, respectively, and contain all 
the boundary points of the square. In addition to these two pairs of parallel lines 
of support, there are an infinite number of pairs of parallel lines of support where 
each line contains only one extreme point. One such pair is shown in Figure 3.2. 
This pair defines a simultaneous confidence interval for some 4 of secondary 
interest. We can derive a simultaneous confidence interval for every J, of 
secondary interest by taking into account pairs of supporting lines where each 
line contains only one extreme point. 

A general method for calculating simultaneous confidence intervals is given by 
Richmond (1982). This method can be used to calculate M intervals for linear 
combinations of secondary interest. I briefly review this method and present two 
examples for the case of B intervals. 

Let G be a set of a finite number m of linear combinations of primary interest 
and as before denote the linear combinations in G by 4, = a;0, i = 1,2,. . . ,m. Any 
linear combination in L can be written as J, = clJll + c2G2 + . . . + c,\cI,, where 
c = (cl,. . . , c,)‘, i.e. any 4 in L is a linear combination of the 4 in G. The method 
is based on the following result. The probability is 1 - (Y that simultaneously for 
all 4 in L: 

I also call these intervals M intervals. When c = (0,. . .,O, LO,. . . ,O)‘, the 1 occur- 
ring in the ith place, the M interval is for #,, a # of primary interest. 
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This result is a special case of Theorem 2 in Richmond (1982). The result (3.43) 
is proved by showing that (3.43) is true if and only if: 

I&, - #,I I M~s*a;va:, i=l ,.‘., m. (3.44) 

I will give a sketch of the proof. Suppose (3.44) holds. Multiply both sides of 
(3.44) by Ic,l and sum over i=l,..., m. Then: 

(3.45) 

which is equivalent to (3.43). Conversely, suppose (3.43) holds for all $ in L. Take 
c,=l and c,=O,j=l,..., m,j#i. Then 

I& - #,I 5 M/m, i=l,...,q, (3.46) 

which completes the proof. 
For both examples I assume that q = 2 and u 2 V = 1 which is known. In the first 

exampl: suppose the m = 2 linear combinations in G are J,i = 8, and q2 = 9,. 
Consider the B interval for 1c/ = \/1/2(#, + q2) = \/1/2( 8, + 0,). When 6 = 0.05/2 
the Bonferroni critical value is B = 2.24, so that the length of the B interval is 
2(c, + c,)B = 2(2)m(2.24) = 6.336. This is the case shown in Figure 3.2 when 
the square region is centered at (zi, z2) in the 8, and 0, space, i.e. when the square 
region is interpreted as a nominal 95% confidence region. In the second example 
suppose m = 3 and J/ is of primary interest. When 6 = 0.05/3 the Bonferroni 
critical value is B = 2.39 so that the length of the B interval for J/ is 2(2.39) = 4.78, 
which is considerably less than when JI is of secondary interest. This shows that 
the length of a B interval for a 4 in L can vary considerably depending on 
whether J/ is of primary or secondary interest. In particular, the length of a B 
interval for a 4 depends critically on the values of the c,‘s. 

3.5. Simultaneous confidence intervals 

In this section I compare the lengths of the finite induced intervals and the S 
intervals. The lengths are compared for the linear combinations of primary 
interest and secondary interest. In many cases the B intervals are shorter for the J/ 
of primary interest. On the other hand, the S intervals are always shorter for at 
least some 4 of secondary interest. 
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3.5.1. J, of primary interest 

Consider the set G of linear combinations of primary interest in the finite induced 
test. The ratio of the length of the M intervals to the length of the S intervals for 
Ic/ in G is simply the ratio of A4 to S. For fixed q the values M and S satisfy the 
relation: 

P yy Ito i MlH] = P[ max [to(a)1 i SIH], 
I 0 

(3.47) 

where Z is a set of m vectors. Since the restricted maximum is equal to or less than 
the unrestricted, it follows that A4 5 S. Hence, the M intervals are shorter than 
the S intervals for all q and m (m 2 q). 

The B intervals can be longer than the S intervals for all I+!J in G. Suppose G is 
fixed. Then S is fixed and from the Bonferroni inequality (2.13) we see that B 
increases without limit as m increases. Hence, for sufficiently large m the B 
intervals are longer than the S intervals for all 4 in G. On the other hand, 
numerical computations show that for sufficiently small m the B intervals are 
shorter than the S intervals for all I/ in G. The above also holds for intervals 
based on the Sidak or the studentized maximum modulus inequality. Games 
(1977) has calculated the maximum number of J, of primary interest (the number 
m) such that the intervals based on the Sidak inequality are shorter than the S 
intervals for all 1c, in G. 

The effect of varying m (the number of \c, of primary interest) is illustrated by 
the following examples. Suppose q = 2 and a2V=1 which is known. If G consists 
of m = 4 linear combinations and if nominally LY = 0.05, then applying the 
Bonferroni inequality gives B = 2.50. Since S = 2.448 the S intervals are shorter 
than the B intervals for all J, in G; the ratio of B to S is 1.02. The ratio of the 
length of the exact finite induced intervals to the S intervals when m = 2 and 
(Y = 0.05 is 0.913 since M = 2.236. If instead of calculating the exact 95% finite 
induced confidence region we use the Bonferroni inequality, then B = 2.241 which 
is also less than S. See Figures 4 and 5 in Miller (1966, pp. 15-16). 

In the case where m = q and (Y = 0.05 calculations by Christensen (1973) show 
that the B intervals are shorter than the S intervals regardless of the size of q. 
Similar results are reported by Morrison (1976, p. 136) for 95% Bonferroni and 
Roy-Bose simultaneous confidence intervals on means. The Roy-Bose simulta- 
neous confidence intervals are the same as S intervals in the case of the classical 
linear normal regression model. 

Investigators object to the length of the S intervals. When the Scheffe test 
rejects, the linear combinations responsible for rejection may be of no economic 
interest. This may account for the fact that the Scheffe test and the S intervals are 
not widely used. In theory the solution is to use a procedure where the set G is 
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suitably restricted. In practice it is difficult to construct such a procedure. One 
approach is to use a finite induced test. The drawback is that to be operational we 
have to apply approximations based on probability inequalities. As already noted, 
when m is large relative to q the B intervals are longer than the S intervals and 
similar results hold for intervals based on the Sidak or studentized maximum 
modulus inequality. Another approach is to construct an infinite induced test 
where G is a proper subset of L. No procedure analogous to the S procedure has 
been developed for this case. It seems that there is no very satisfactory alternative 
to the S intervals when m is sufficiently large. 

3.5.2. J/ of secondary interest 

When the B intervals are shorter for the J, of primary interest and the S intervals 
are shorter for some J/ of secondary interest there is a trade-off between the B 
procedure and the S procedure. It is instructive to compare the length of the 
simultaneous confidence intervals derived from the square region with sides 
2B = 4.482 with the intervals derived from the circular region with diameter 
2S = 4.895. The B procedure is the procedure which gives for each JI in L* an 
interval derived from the square region. The B intervals for 1c, in L* include the B 
intervals for 8, and r3,, which are the $ of primary interest. The length of the 
shortest B interval is equal to the length of the side of the square region and the 
length of the longest B interval is equal to the length of the diagonal which is 
6.336. Since the length of the S intervals for all \c, in L* is 4.895 the S intervals are 
shorter than the B intervals for some J, in L*; in particular, the S interval is 
shorter for J, = m( 13~ + t$), the B interval for this 4 being the one shown in 
Figure 3.2. 

When G is finite there are a few cases in the one-way lay-out of the analysis of 
variance where the exact significance level of the induced test of H can be easily 
calculated. In these cases it is also easy to calculate the probability that simulta- 
neously for all Ic/ in L the confidence intervals cover the true values. These cases 
include the generalized Tukey procedure [see Scheffe (1959, theorem 2, p. 74)] 
where the 1c, of primary interest are the pairwise comparisons (0, - e,), i, 
j=l ,.*., q, i # j, and the “extended Dunnett procedure” developed by Schaffer 
(1977) where the 4 of primary interest are the differences (8, - 6,). i = 2,. . . , q. 

Schaffer (1977) found that the Tukey intervals are shorter than the S intervals for 
the J/ of primary interest in the generalized Tukey procedure and likewise that the 
Dunnett intervals are shorter than the S intervals for the $ of primary interest in 
the extended Dunnett procedure. On the other hand, the S procedure generally 
gives shorter intervals for the J, of secondary interest. 

Richmond (1982) obtained similar results when extending the Schaffer study to 
include the case where the # of primary interest are taken to be the same as in the 
extended Dunnett procedure and the intervals are calculated by applying the 
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Sidak inequality. For further comparisons between Tukey and S intervals see 
Scheffe (1959, pp. 75-77) and Hochberg and Rodriquez (1977). 

4. The power of the Bonferroni and Scheffk tests 

4. I. Background 

Since the power of the Scheffe test is the same as the power of the F test, it is 
uniformly most powerful in certain situations. However, it is not uniformly more 
powerful than the Bonferroni test. An attractive feature of the Bonferroni test is 
that when it rejects, the linear combinations responsible for rejection are of 
economic interest. This feature has to be weighed against the power of the test, i.e. 
the probability that the test rejects H when H is false. 

Christensen (1973) and Evans and Savin (1980) have compared the power of 
the x2 Bonferroni tests for the case where q = 2, a2 is known and V is defined as 
in (2.17). The acceptance regions of both of these tests have been discussed in 
Section 2.4. In this Section I review the power of the F test and the results of the 
Christensen study. 

The power of the F test is a function of four parameters: the level of 
significance 1y, the numerator and denominator degrees of freedom q and T - k, 

and the noncentrality parameter h which is given by: 

h = e7-1e/02, (4.1) 

when 0 is the true parameter vector. The power of the F test depends on 0 and 
02V only through this single parameter. Therefore it has been feasible to table the 
power of the F test; for selected cases it can be found from the Pearson and 
Hartley (1972) charts or the Fox (1956) charts. In addition, the power can be 
calculated for cases of interest using the procedures due to Imhof (1961) and Tiku 
(1965). By contrast, little is known about the power of the Bonferroni test and it 
has proved impracticable to construct tables of the power of the test. 

Christensen studied the powers of the 0.05 level x2 test and the nominal 0.05 
level Bonferroni test along rays in the parameter space. Power calculations by 
Chrsitensen show that neither test is more powerful against all alternatives. For 
example, when r = 0 the Bonferroni test is more powerful against the alternative 
8, = 8, = 1.5850. This is not surprising since neither of the acceptance regions 
contain the other. Despite this, Christensen found that when the absolute value of 
r was small the power of the two tests was approximately the same regardless of 
the alternative. However, when the absolute value of r was high the Bonferroni 
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test had very little power against any alternatives considered by Christensen. If 
only 8t or @, is different from zero then the x2 test has good power regardless of 
the value of r. When both 6, and 0, are different from zero the power of the x2 
test is mixed. Against some alternatives the power is extremely good-increasing 
with the absolute value of r. On the other hand, the power against other 
alternatives decreases badly with increasing absolute value of r. One of the 
potential explanations for the power of the Bonferroni test is that the actual level 
of significance of the Bonferroni box decreases as the absolute value of r 

increases. As noted earlier, for r = 0 the actual level is 0.0494 and as the absolute 
value of r approaches one the actual level approaches 0.025. 

4.2. Power contours 

The behavior of the power function is described by its contours in the parameter 
space. A power contour is the set of all parameter points 8 at which the power is 
constant. The power contours of the F test can be obtained from the expression 
for the noncentrality parameter (4.1). This is because the power of the F test is the 
same at parameter points fl with a given value of the noncentrality parameter. The 
power of the F test is constant on the surfaces of ellipsoids in the 8 space, but 
the general properties of the power contours of the Bonferroni test are unknown. 

Evans and Savin calculate the power contours of the 0.05 level x2 test and 
nominal 0.05 level Bonferroni test in the (e,~~)/a and ( e2J1-r’)/a 
parameter space. The power contours for correlations r = 0.0, 0.9, 0.99 at power 
levels 0.90, 0.95, 0.99 are shown in Figure 4.l(a-c). When r = 0.0 [Figure 4.1(a)] 
the power contours of the x2 test are circles with center at the origin while the 
contours of the Bonferroni test are nearly circular. At a given power level the x2 
and the Bonferroni power contours are close together. Thus, both tests have 
similar powers which confirms the results of Christensen. We also see that the 
contours for a given power level cross so that neither test is uniformly more 
powerful. 

When the correlation is r = 0.90 [Figure 4.1(b)] the power contours of the 
Bonferroni test are not much changed whereas those of the x2 test have become 
narrow ellipses. Hence for a given power level the contours of the two tests are no 
longer close together. The x2 test is more powerful at parameter points in the 
upper right hand and lower left hand parts of the space and the Bonferroni test at 
points in the extreme upper left-hand and lower right-hand comers of the space. 
For r = 0.99 [Figure 4.1(c)] we see that the power contours of the Bonferroni test 
continue to remain much fatter than those of the x2 test even when the power is 
quite close to one. In short, when the correlation Y is different from zero the x2 
test has higher power than the Bonferroni test at most alternatives. 
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Figure 4.1 (a) The 90.95 and 99% power contours (in the transformed parameter space) of 

the Bonferroni and x2 tests for r = 0.0 and nominal size a = 0.05. 

4.3. Average powers 

When neither test is uniformly more powerful the performance of the tests can be 
compared on the basis of average power. Since V is a positive definite matrix 
there exists a nonsingular matrix P such that P’VP = I and @* = P-‘8. Then the 
noncentrality parameter can be written as: 

A = 8*‘8*/& (4.2) 

x2 Test 
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Figure 4.1 (b) The 90.95 and 99% power contours (in the transformed parameter space) of 
the Bonferroni and x2 tests for r = 0.90 and nominal size a = 0.05. 

Thus, the power of the F test is constant on the surface of spheres with center at 
the origin in the 8* space. In other words, in the transformed space the power of 
the F test is the same at all alternatives which are the same distance from the null 
hypothesis (the origin). The F test maximizes the average power on every sphere 
in the transformed space where the average power is defined with respect to a 
uniform measure over spheres in this space; see Scheffe (1959, pp. 47-49). Hence 
the F test is best when we have the same interest in all alternatives which are the 
same distance from the null in the transformed parameter space. 

It may be more natural to suppose that we have an equal interest in all 
alternatives which are equally distant from the null in the 8 parameter space. On 
this assumption the best test is the one which maximizes the average power on 
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Figure 4.1 (c) The 90,95 and 99% power contours (in the transformed parameter space) of 
the Bonferroni and x2 tests for r = 0.99 and nominal size LY = 0.05. 

every sphere in the 8 parameter space. Evans and Savin (1980) define the average 
power with respect to a uniform measure over the sphere in the 8 space. Using 
this definition Evans and Savin calculate the average power of an a level x2 test, a 
nominal (Y level Bonferroni test and an exact (Y level finite induced test. The 
results are reported in Table 4.1 for selected values of the radius R of the circle, 
the correlation r and significance levels LX. 

When r = 0 the average power of both tests is very similar. This is because both 
tests have very similar power contours in this case, namely circles for the x2 test 
and nearly circles for the Bonferroni test. On the other hand, when r is near one 
and the radius R of the circle is small the average power of the x2 test is markedly 
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Table 4.1 

Average Powers of the Bonferroni(B),Chi-Square(CS) 
and Exact Finite Induced(E) Tests. 

r A B CS 8 CS E B CS E 

0.0 c.0 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 

3.5 
4.0 
4.5 
5.0 

0.0975 
0.1249 
0.2088 
0.3468 
0.5203 
0.6944 

0.8347 
0.9252 
0.9721 

0.9915 
0.9979 

0.1000 0.1000 0.0494 0.0500 0.0500 0.0100 0.0100 0.0100 

0.1290 0.1278 0.0676 0.0693 0.0683 0.0158 0.0162 0.0158 

0.2177 0.2127 0.1271 0.1327 0.1283 0.0381 0.0404 0.0381 
0.3626 0.3516 0.2365 0.2495 0.2382 0.0897 0.0974 0.0898 
0.5423 0.5254 0.3933 0.4154 0.3954 0.1857 0.2039 0.1858 
0.7182 0.6989 0.5740 0.6028 0.5761 0.3306 0.3634 0.3308 
0.8545 0.8379 0.7419 0.7707 0.7437 0.5081 0.5533 0.5084 

0.93al 0.9270 0.8675 0.81199 0.8687 0.6845 0.7327 0.6847 

0.9786 0.9729 0.9432 0.9567 0.9439 0.8265 0.8666 0.8267 

0.9940 0.9918 0.9799 0.9862 0.9802 0.9194 0.9454 0.9195 
0.9987 0.9980 0.9942 0.9965 0.9943 0.9687 0.9819 0.9687 

0.5 0.0 0.0907 0.1000 0.1000 0.0465 0.0500 0.0500 0.0096 0.0100 0.0100 
0.5 0.1177 0.1388 0.12116 0.0642 0.0761 0.0686 0.0153 0.0186 0.0159 
1.0 0.2011 0.2566 0.2159 0.1225 0.1637 0.1293 0.0371 0.0551 0.0382 
1.5 0.3403 0.4377 0.3594 0.2310 0.3204 0.2412 0.0878 0.1447 0.0900 
2.0 0.5183 0.6324 0.5390 0.3890 0.5172 0.4019 0.1826 0.3004 0.1863 
2.5 0.6978 0.7890 0.7159 0.5737 0.6993 0.5870 0.3271 0.4939 0.3322 
3.0 0.8401 0.8903 0.8525 0.7458 0.8313 0.7567 0.5064 0.6732 0.5121 

3.5 0.9285 0.9474 0.9352 0.8722 0.9127 0.8792 0.6862 0.8062 0.6914 
4.0 0.9724 0.9769 0.9753 0.9455 0.9583 0.9490 0.8305 0.8929 0.8343 
4.5 0.9905 0.9909 0.9916 0.9797 0.9819 0.9812 0.9225 0.9453 0.9246 
5.0 0.9970 0.9968 0.9974 0.9931 0.9930 0.9937 0.9694 0.9746 0.9703 

0.9 0.0 
0.5 
1.0 

1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.0704 

0.0998 

0.1855 
0.3262 
0.5104 

0.7055 
0.8564 

0.9353 
0.9714 
0.9881 
0.9954 

0.1000 0.0995 0.0362 0.0500 0.0500 0.0076 0.0100 0.0100 
0.2538 0.1365 0.0547 0.1640 0.0733 0.0133 0.0575 0.0170 
0.5844 0.2393 0.1130 0.4869 0.1440 0.0344 0.3050 0.0425 

0.7777 0.3978 0.2204 0.7188 0.2673 0.0838 0.5949 0.0997 
0.8655 0.5915 0.3786 0.8250 0.4389 0.1768 0.7404 0.2031 
0.9169 0.7765 0.5698 0.8869 0.6346 0.3198 0.8209 0.3560 
0.9501 0.8962 0.7563 0.9281 0.8083 0.5002 0.8756 0.5417 
0.9716 0.9533 0.8860 0.9563 0.9128 0.6882 0.9158 0.7273 
0.9849 0.9798 0.9492 0.9751 0.9612 0.8429 0.9455 0.8687 
0.9926 0.9918 0.9778 0.9868 0.9834 0.9305 0.9668 0.9421 
0.9967 0.9970 0.9909 0.9936 0.9933 0.9693 0.9812 0.9745 

kO.10 o=O.Ol 

higher than the average power of the Bonferroni test. This is because over a circle 
of a given radius the average power of the x2 test increases as r increases and the 
average power of the Bonferroni test is virtually constant for all r. As the radius R 

of the circle increases the average power of the Bonferroni test approaches that of 
the x2 test. 

The average power of the exact finite induced test is similar to the average 
power of the Bonferroni test. For CI = 0.05 the maximum difference between the 
average power of the exact test and the Bonferroni test occurs at r = 0.90 for a 
circle of given radius. The average power of the exact test is about 0.065 (11.5%) 
higher than the average power of the Bonferroni test when the radius is R = .25 
and 0.027 (3%) high er when the radius is R = 3.5. The corresponding figures are 
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Figure 4.2 The power of the Bonferroni (broken lines) and the x2 (full lines) tests at radii 
R = 2(0.5)5 as a function of the direction in degrees. The correlation is r = 0.9 and the nominal sizes 

are a = 0.10, 0.05 and 0.01. 
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somewhat h&her if (Y = 0.10 and lower if (Y = 0.01. As a consequence, when the 
correlation r is near one the exact test is also a poor competitor of the X2 test over 
smaller radius circles. 

Evans and Savin have plotted the behavior of the power over the circle for an (Y 
level X2 test and a nominal a level Bonferroni test. The power over various circles 
is shown in Figure 4.2 for the case r = 0.90 and (Y = 0.10, 0.05 and 0.01. The X2 
test has excellent power at most points on each circle. The power dips sharply 
only in the neighborhood of 135 and 315 degrees. The Bonferroni test has better 
power than the X2 test only in the neighborhood of 135 and 315 degrees and even 
here the power of the Bonferroni test is only marginally better than that of the X2 
test. The Bonferroni test has more uniform, but substantially lower power over 
the smaller radius circles. For larger radius circles the power of the Bonferroni 
test is higher and hence compares more favorably to the X2 test. The picture for 
the exact finite induced test is similar with slightly higher power than the 
Bonferroni test at all points on the circle. 

When the finite induced intervals are shorter than the S intervals for the J/ of 
primary interest it is common practice to conclude that the finite induced 
procedure (test) is superior to the S procedure (Scheffe test), for example, see 
Stoline and Ury (1979). Of course, if the finite induced intervals are shorter for all 
J, in L, then the finite induced test is uniformly more powerful. However, the S 
intervals are generally shorter for some J/ of secondary interest. When the S 
intervals are shorter for some # of secondary interest the Scheffe test may have 
higher average power. This is clearly demonstrated by the comparison of the 
average powers of the X2 test and the Bonferroni test for the case of q = 2 
parameters. Hence, it is misleading to conclude that the finite induced test is 
superior because the finite induced intervals are shorter for the 4 of primary 
interest. To our knowledge there is no evidence that any of the well known 
competitors of the Scheffe test have higher average power. 

4.4. The problem of multicollinearity 

The problem of multicollinearity arises when the explanatory variables are 
correlated, i.e. the columns of the regressor matrix X are not orthogonal. In 
discussions of the collinearity problem the individual regression coefficients are 
taken to be the parameters of primary interest. This is a point of crucial 
importance. A full rank regressor matrix can always be transformed so as to 
eliminate multicollinearity, but the regression coefficients in the transformed 
problem may no longer be of primary interest. 

Learner (1979) provides an excellent discussion of the collinearity problem from 
a Bayesian point of view. He observes (pp. 71-72): 

. . . that there is a special problem caused by collinearity. This is the problem 
of interpreting multi-dimensional evidence. Briefly, collinear data provide 
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relatively good information about linear combinations of coefficients. The 
interpretation problem is the problem of deciding how to allocate that 
information to individual coefficients. This depends on prior information. A 
solution to the interpretation problem thus involves formalizing and utilizing 
effectively all prior information. The weak-evidence problem however 
remains, even when the interpretation problem is solved. The solution to the 
weak-evidence problem is more and better data. Within the confines of the 
given data set there is nothing that can be done about weak-evidence. 

The interpretation problem can be interpreted as a multiple decision problem 
where there are q separate hypotheses, each specifying that an individual regres- 
sion coefficient is equal to zero. In classical inference the finite and infinite 
induced tests are two approaches to solving the interpretation problem. The finite 
induced test provides a guaranteed solution to the interpretation problem whereas 
the infinite induced test has a probability of less than one of providing a solution. 
Multicollinearity plays an important role because of its effect on the power of the 
tests. Consider the Christensen two parameter case where the null hypothesis is 
H: & = /3z = 0. The correlation r = 0 if the relevant two regressors are orthogonal. 
The Bonferroni and Scheffe tests have similar average power for orthogonal or 
nearly orthogonal data. As the correlation r increases the average power of the 
Bonferroni test decreases compared with that of the Scheffe test. This means that 
for multicollinear data the Bonferroni test solves the interpretation problem at a 
cost; the cost is lower average power than for the Scheffe test. Hence there is a 
trade-off between the probability of solving the interpretation problem and the 
power of the test. The advantage of orthogonal data is that we can always decide 
which individual regression coefficients are responsible for rejection at a very 
small sacrifice of average power. 

What we want to know is the conditional probability that the Scheffe test solves 
the interpretation problem given that it has rejected the null hypothesis. The 
conditional probability that the Scheffe test rejects H,: /3t = 0 or HI: & = 0 or 
both given that it has rejected H is the probability that the point (t,, tz) is outside 
the x2 box divided by the probability that is outside the x2 ellipse. This 
conditional probability is calculated for significance levels (Y = 0.10,0.05,0.01, 
correlations r = 0.0,0.5,0.9 and radii R = 0.0 (0.5) 4.50. In the (&~~)/o and 

(&~D)/IJ parameter space a point can be described by the angle of a ray 
from the origin to the point and the distance of the point along this ray. Because 
of the symmetry of the problem the calculations were done for angles between 45 
and 135 degrees inclusive. Selected results are reported in Tables 4.2 and 4.3. 

The results in Table 4.2 show that on small radius circles the average condi- 
tional probability can decrease as the correlation r increases. For example, at 
(Y = 0.05 and R = 1.0 the average conditional probability is 0.637 when r = 0.0 and 
only 0.234 when r = 0.9, the decrease being 63%. The decrease is 58.1% when 
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Table 4.2 

Average Conditional Probabilities of rejecting B,=O ot- B,=O (OI. both) 

given that the Chi-Square Test rejects. 

kO.10 a:O.05 

r R 

0.0 0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 
3.5 
4.0 

4.5 

5.0 

ACP AP ACS 

0.6274 0.0627 0.1000 

0.6503 0.083') 0.1290 

0.6966 0.1517 0.2177 
0.7484 0.2715 0.3626 
0.8029 0.4354 0.5423 
0.8576 0.6159 0.7182 

0.9079 0.7756 0.8545 
0.94b3 0.8897 0.93bl 
0.9757 0.9548 0.9786 
0.9YO7 0.9848 0.9940 
O.YY71 0.9958 0.9987 

0.5 0.0 0.5881 

0.5 0.5767 
1.0 0.5905 

1:5 0.6373 

2.0 0.7085 

2.5 0.7954 
7.0 0.8810 

315 014442 

4.0 0.9790 

4.5 0.9934 

5.0 0.9980 

0.Y 0.0 0.4568 0.0457 0.1000 0.4240 0.0212 0.0500 0.3734 0.0037 0.0100 

0.5 0.3074 0.0676 0.2538 0.2581 0.0337 0.1640 0.1905 0.0069 0.0575 
1.0 0.2920 0.1346 0.5844 0.2341 0.0755 0.4869 0.1636 0.0198 0.3050 

1.5 0.3708 0.2533 0.7777 0.2675 0.1594 0.7188 0.1839 0.0528 0.5949 

2.0 0.5104 0.4214 0.8655 0.3985 0.2943 0.8250 0.2414 0.1217 0.7404 

2.5 0.6801 0.6162 O.Yl69 0.5528 0.4722 0.8869 0.3438 0.2389 0.8209 

3.0 0.8367 0.7943 0.1750 0.7231 0.6651 0.9281 0.4883 0.4016 0.8756 

3.5 0.9318 0.9059 0.9716 0.8670 0.8287 0.9563 0.6544 0.5879 0.9158 
4.0 0.9724 0.9580 O.vb4v 0.9464 0.9233 0.9751 0.8108 0.7638 0.9455 

4.5 0.9891 O.Yb19 O.,Y926 0.9787 0.9660 0.9860 0.9202 0.8898 0.9668 

5.0 0.9960 0.9927 0.9967 0.9918 0.9855 0.9936 0.9696 0.9517 0.9812 

0.0588 
0.0795 
0.1461 

0.2656 

0.4319 
0.6171 

0.7807 
0.8942 
0.9566 
0.9844 
0.9948 

ACP AP ACS 

0.5709 0.0285 0.0500 

ACP AP ACS 

0.5933 0.0411 
0.6769 0.0845 

0.6867 0.1713 
0.7415 0.3OMl 

0.7999 0.4822 
0.8583 0.6615 
0.9109 0.8106 
0.9519 0.9107 
0.97b4 0.9649 
O.YY2 1 0.9b86 

0.0693 
0.1327 
0.2495 
0.4154 
0.6028 

0.7707 
0.88519 
0.9567 
0.9862 
0.9965 

0.4806 0.0048 0.0100 

0.5005 0.0081 0.0162 

0.5364 0.0217 0.0404 

0.5778 0.0563 0.0974 
0.6259 0.1276 0.2039 
0.6811 0.2475 0.3634 

0.7427 0.4110 0.5533 
0.8080 0.5920 0.7327 
0.8711 0.7549 0.8666 

0.9248 0.8743 0.9454 

0.9630 0.9455 0.9819 

0.1000 0.5422 0.0271 0.0500 0.4672 0.0047 0.0100 

0.1390 0.5240 0.0393 0.0761 0.4386 0.0079 0.0186 

0.2569 0.5313 0.0817 0.1637 0.4380 0.0212 0.0551 

0.4379 0.5700 0.1672 0.3204 0.4640 0.0552 0.1447 

0.6326 0.6324 0.3036 0.5172 0.5081 0.1256 0.3004 

0.7891 0.7158 0.4798 0.6993 0.5713 0.2445 0.4939 
0.8906 0.8107 0.6632 0.8313 0.6559 0.4082 0.6732 

0.9476 0.8964 0.8150 0.9127 0.7567 0.5916 0.8062 

0.9771 0.9544 0.9143 0.9583 0.8553 0.7576 0.8929 

0.9911 0.9835 0.9658 0.9819 0.9298 0.8780 0.9453 

0.9968 0.9948 0.9879 0.9930 0.9722 0.9476 0.9746 

rt-0.01 

869 

ACP Average Conditional Probability of rejecting B1=O or B,=O (or both) 

given that the chi-square test reJects. 

AP Average Probability of rejecting B,=O or B,=O (or both). 

ACS Average probability that the Chi-Square test rejects. 

(Y = 0.10 and 69.4% when (Y = 0.01. On large radius circles the average conditional 
probability increases as r increases from r = 0, eventually decreasing. Holding the 
average power of the Scheffe test constant the average conditional probability 
decreases as the correlation r increases. For instance, when (Y = 0.05 and the 
average power is roughly 0.45 the average conditional probability falls from about 
0.75 to 0.24 as r moves from r = 0.0 to r = 0.9. For higher power this fall is less 
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Table 4.3 
Conditional Probability(CP) of reJecting B1=O or 
B,='i (or both). given that the Chi-Square(CS) 
Pest rejects. 

H=l.O a10.05 

r Angle CS CP 

0.0 45 0.1327 0.6150 
60 0.1327 0.6260 

75 0.1327 0.6479 

90 0.1327 0.6589 
105 0.1327 0.6479 
120 0.1327 0.6260 

135 0.1327 0.6150 

0.5 45 0.2255 0.3660 
60 0.2170 0.3852 

75 0.193Y 0.4401 

90 0.1629 0.5220 

105 0.1327 0.6132 
120 0.1112 0.6868 

135 0.1036 0.7153 

0.9 45 0.8154 0.1003 
60 0.7879 0.1048 

75 0.6957 0.1200 

90 0.5256 0.1544 

105 0.3114 0.2357 
120 0.1471 0.4269 

135 0.0917 0.6266 

dramatic and for sufficiently high power it can reverse. The more detailed results 
in Table 4.3 show that high power at a given alternative does not insure high 
conditional probability at that alternative. When the correlation is fixed at r = 0.9 
there is an inverse relation between the power and the conditional probability 
even on large radius circles, namely, the higher the power, the lower the condi- 
tional probability. 

The Bonferroni test solves the interpretation problem whatever the power of 
the test. But the test is unsatisfactory when the power is low since in this case the 
test is likely to be misleading. This suggests that we may want to trade off some 
probability of solving the interpretation problem for some extra power. When the 
average power of the Bonferroni test is high the average power of the Scheffe test 
will also be high. In this case the Scheffe test will have a high average conditional 
probability of solving the interpretation problem. When the Scheffe test has high 
power but the Bonferroni test has low power, then the sacrifice of power due to 
using Bonferroni test may be difficult to justify. Therefore the Scheffe test may be 
more attractive than the Bonferroni test in the presence of multicollinear data. 
When the average power of the Scheffe test is low then what is needed is more 
and better data. The weak evidence problem and the low power problem are two 
sides of the same coin. 
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5. Large sample induced tests 

871 

Large sample analogues of the finite induced tests and the Scheffe test can be 
constructed for a variety of models. These include single equation and multi- 
variate nonlinear models, linear and nonlinear simultaneous equations models, 
time series models, and qualitative response models. As an illustration I will 
briefly discuss large sample analogues of the tests in the context of the standard 
nonlinear regression model: 

where y, is a scalar endogenous variable, x, is a vector of exogenous variables, /?a 
is a k x 1 vector of unknown parameters and the U,‘S are unobservable scalar 
independently identically distributed random variables with mean zero and 
variance ~0’. 

The nonlinear least squares estimator, denoted by B, is defined as the value of j3 
that minimizes the sum of squared residuals: 

S,(P) = ,f b,-f(x*J912~ 64 

where the fl that appears in (5.2) is the argument of the function f(x,, .). In 
contrast, & is the true fixed value. The consistency and asymptotic normality of 
the nonlinear least squares estimator is rigorously proved in Jennrich (1969). 
Therefore, we have: 

where 

1 a*s, 
plim- - 

I I T apapf 8. 
=29 (5.4) 

is a k x k matrix and p* lies between ,!? and PO. For a discussion of the 
assumptions needed to prove (5.3), see Chapter 6 by Amemiya in this Handbook. 

Amemiya points out that in the process of proving (5.3) we have in effect 
shown that, asymptotically, 

j9 - p, = (G/G)-'G'u, (5.5) 
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where G = (af/@‘),, a T X k matrix. The practical consequence of the ap- 
proximation (5.5) is that all the results for the linear regression model are 
asymptotically valid for the nonlinear regression model if G is treated as regressor 
matrix. In particular, the usual f and F statistics can be used asymptotically. Note 
that (5.5) holds exactly in the linear case. 

As an example consider testing the linear hypothesis: 

H: Cj?-c=9=0, (54 

where C and c are defined as in (2.2). Let: 

Z=C&C (5.7) 

and 

P= C(GYy’Cf, (54 

where d = (af/@‘)b. Then we have asymptotically under the null hypothesis 

tl= & L - t(T- k) (5.9) 

and 

FE__ “‘-” F(q,T- k), 
P2 

(5.10) 

where s2 = S,(B)/(T - k) and qj is the ith diagonal element of I? 
Suppose that a finite number m of Ic/ in L are of primary interest. Let the J, in 

G be J/, = a;O, i = 1,. . . , m. The usual t statistic for testing the separate hypothe- 
sis H(a,): 4, = a;0 = 0 is: 

h)(a,)= /&, i=l,...,m. (5.11) 

The acceptance region of a 6 level equal-tailed test of H(a,) is approximately: 

Idu,)l %,,(T- k), i=l ,..-> m. (5.12) 

The finite induced test accepts H if and only if all the separate hypotheses 
H(u,), . . _, H(u,) are accepted. When all the equal-tailed t tests have the same 
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significance level the acceptance region for an (Y level Bonferroni test of H is 
approximately: 

Itb,)l IB, (5.13) 

where B = t a,Zm(T- k). The Sidak or studentized maximum modulus critical 
value can also be used in large samples. 

A large sample analogue of the Scheffe test can be developed by using the fact 
that the maximum of the squared t ratio: 

t2(a)= Mz-Q12 
s’a?a ’ 

(5.14) 

is asymptotically distributed as qF( q, T - k). The proof is essentially the same as 
the one presented in Section 3.3.1. 

Next, consider testing the nonlinear hypothesis: 

h(P) = 0, (5.15) 

where h(p) is a q X 1 vector valued nonlinear function such that q < k. If /3 are 
the parameters that characterize a concentrated likelihood function L(p), where 
L may or may not be derived from the normal distribution, then the hypothesis 
(5.15) can be tested using the Wald (W), likelihood ratio (LR), or Lagrange 
multipler (LM) test. For a discussion of these tests, see Chapter 13 by Engle in 
this Handbook. 

When the error vector u is assumed to be normal in the nonlinear regression 
model (5.1) the three test statistics can be written as 

(5.16) 

(5.17) 

(5.18) 

where b is the constrained maximum likelihood estimator obtained by maximiz- 
ing L(p) subject to (5.15), and (? = (af/@‘)~. When the hypothesis (5.15) is 
true all three statistics (5.16) (5.17) and (5.18) are asymptotically distributed as 
x2(q) if u is normal. In fact, it can be shown that these statistics are asymptoti- 
cally distributed as x2(q) even if u is not normal. Thus, these statistics can be 
used to test a nonlinear hypothesis when u is non-normal. 
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Recall that from any convex set we can derive simultaneous confidence 
intervals for all J/ in L. This convex set can be the acceptance region of the W, LR 
or LM tests in large samples. Starting with a finite set G of J, in L of primary 
interest the convex set can be defined as the intersection of large sample t 
intervals for all II/ in G. The t statistics can be based on either the W or the LM 
principle of test construction. A large sample analogue of the S intervals can be 
based on the W test of H. 

6. Empirical examples 

6.1. Textile example 

Our first empirical illustration is based on the textile example of Theil (1971, 
p. 103). This example considers an equation of the consumption of textiles in the 
Netherlands 1923-1939: 

(6.1) 

where y = logarithm of textile consumption per capita, x1 = logarithm of real per 
capita income and x2 = logarithm of the relative price of textile goods. The 
estimated equation is reported by Theil (p. 116) as: 

y = ;e:3; + 1.14x, - 0.83x,, (6.2) 
(0.16) (0.04) 

where the numbers in parentheses are standard errors. 
Theil tests the hypothesis that the income elasticity (fir) is unity, and that the 

price elasticity (&) is minus unity. This hypothesis is: 

(6.3) 

The 0.01 level F test rejects H since the value of the F ratio is 11.2 and the upper 
1% significance point of an F(2,14) distribution is 6.51. 

Consider the Bonferroni test of H where the linear combinations of primary 
interest are 13, and 13,. The t statistics for testing 8, and 8, are: 

-= I’=/& . !=$ = 0.89 
(6.4) 
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and 

12=-!L 

\I 

= +$ = 4.28, 
SV,, . 

(6.5) 

respectively. The nominal 0.01 level Bonferroni test rejects H since B = ts,f(14) 
= 3.33 when 6 = 0.01/2 = 0.005. Clearly, the separate hypothesis p2 = - 1 is 
responsible for the rejection of the Bonferroni test of H. The 0.01 level Scheffe 
test of H also rejects H since the 0.01 level F test rejects H. In this example the 
Bonferroni test has roughly the same power contour as the Scheffe test since the 
correlation between the income and price variables is low, namely about 0.22. 

The next step is to calculate simultaneous confidence intervals for 8, and 8,. 
The B interval for 8, is 0.1430 f 0.16(3.33) and for 8, is 0.1711+_ O.Oq3.33) so that 
the B intervals are -0.39 I 8, I 0.68 and 0.04 I 6, I 0.30, respectively. The S 
interval for 8, is 0.1430+0.16(3.61) and for 0, is 0.1771 ItO.O4(3.61) since S 

= )/w = 3.61. H ence the S intervals are -0.43 I e1 I 0.72 and 0.03 I 
0, I 0.32, respectively. Note that the S intervals are longer than the B intervals, 
but not much longer. Both intervals for 8, cover zero and both intervals for 6, 
cover only positive values. This suggests that the income elasticity & is unity and 
that the price elasticity & is greater than minus one. In this example the 
hypothesis p2 = - 1 is responsible for the rejection of the Scheffe as well as the 
Bonferroni test of H. This result also follows from the fact that the absolute value 
of the t statistic for t9, is larger than either B or S. i.e. 1 t,] > B and ) t,j > S. 

The final step is to calculate the normalized a, vector: 

a _ [c(x’x)-lc’]-l(cb-c) 
0- 

f&F ’ 
(6.6) 

where a~Vu, = 1. From Theil we have that: 

s2[c(x’x)-lc]-l= ;;.; 8;;-;], 
[ . 

so that: 

1 

a’ = ~(4.733) 43’2 41.6 8%][ -::::;!I = [,:::::I’ 

(6.7) 

(6.8) 

where s2 = 0.0001833. This confirms Theil’s conclusions (p. 145) that the specifi- 
cation p2 = - 1 for the price elasticity is responsible for the F test (Scheffe test) 
rejecting H, i.e. any linear combination with positive weights and a sufficiently 
large weight on 0, is responsible for rejection. 
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Suppose in the B procedure that J, = 8, - 0, is of secondary interest. The B 
interval for J, is 0.3141*0.20(3.33) or -0.35 I 4 I 0.98. The S interval for $ is 
0.3141 k 0.023(3.61) or 0.23 I J/ I 0.40 so that the S interval is shorter than the B 
interval. Also notice that J/ = zi - z2 is sdfz according to the S criterion, but not 
the B criterion. Hence the Scheffe induced test of H is rejected by the separate 
hypothesis that the income and price elasticities are the same except for sign: 
& = - &. Theil (p. 134) objects to the length of the S intervals for the J/ of 
primary interest. In fact in the textile example the S intervals give interesting 
results for both the JI of primary and secondary interest. 

6.2. Klein’s Model I example 

Our second example is based on the unrestricted reduced form equation for 
consumption expenditures from Klein’s Model I of the United States economy 
1921-1941: 

y = p, +&x1 + p*x* + &x3 +/-$x4 +&x5 + P6X6 +&x7 + u, (6.9) 

where y = consumption, xi = government wage bill, x2 = indirect taxes, xs = 
government expenditures, xq = time (measured as year-1931) x5 = profits lagged 
one year, xg = end of year capital stock lagged one year, and x, = private product 
lagged one year. For the purpose of this example all regressors are treated as 
nonstochastic. The data is taken from Theil (1971, p. 456). The estimated 
equation is: 

y = 58.3 + 0.193x, - 0.366 x2 + 0.205x, + 0.701x, 
(1.90) (0.079) (-0.871) (0.541) (0.930) 

+ 0.748~~ - 0.147 xg + 0.230x,, 
(1.49) (-1.27) (0.842) 

(6.10) 

where now the numbers in parentheses are t ratios. Our estimates of the /3’s agree 
with those reported in Goldberger (1964, p. 325). (Note that Goldberger uses 
xi - xs in place of xi so that his estimate of pi is 0.19327 - 0.20501= - 0.01174.) 

Consider testing the hypothesis that all the slope coefficients are zero: 

H: ,bi = 8, = 0, i=1,2 7. ,**., (6.11) 

The slope coefficients are multipliers so we are testing the hypothesis that all the 
multipliers in the reduced form equation for consumption are zero. The 0.05 level 
Scheffe test rejects H since the 0.05 level F test overwhelmingly rejects H. The F 
ratio is 28.2 which is much larger than 2.83, the upper 0.05 significance point of 
the F(7,13) distribution. Suppose that the linear combinations of primary interest 
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in the Bonferroni test are the slope coefficients: #i = 8,, i =1,2,...,7. Then the 
critical t value for a nominal 0.05 level Bonferroni separate induced test of H is 
B = ts,z(13) = 3.19, where 6 = 0.05/7 = 0.00714. The t ratio with the largest 
absolute value is the one for lagged profits (&). Since this is only 1.49 the 
Bonferroni test overwhelmingly accepts H. Thus in this example the Scheffe and 
Bonferroni tests of H produce conflicting inferences. 

We now apply the S procedure to find which linear combination of the 
multipliers led to rejection of the Scheffe test of H. In this example none of the 
individual multipliers are responsible for rejection since none of the t ratios have 
an absolute value greater than S. The largest t ratio is 1.49 and S = \/m 
= 4.45. To find linear combinations of the multipliers which are responsible for 
rejection I began by calculating the normalized vector a,. This vector has 
components: 

a, = 5 82; a2 = 4.81; a3 = 7.37; a4 = 19.44; 

a5 =12.13; a6 = 14.33; a, = 35.84, (6.12) 

where these are proportional to the sample covariances between the dependent 
variable and the regressors. The linear combination (6.12) gives some positive 
weight to all the multipliers and especially to the multiplier & for lagged private 
product. Since (6.12) does not seem to have an interesting economic interpreta- 
tion, I examined a number of other linear combinations. I could not find a linear 
combination responsible for rejection which was also of economic interest. 

In this example the explanatory variables are highly correlated. As a conse- 
quence the Bonferroni test can have low average power compared to the Scheffe 
test. Hence the Bonferroni test may be very misleading. The Scheffe test gives 
what appears to be a sensible result, but provides little help in deciding which 
multipliers are nonzero. What is needed is more and better data for a satisfactory 
solution to the interpretation problem. 
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1. Introduction 

Exact finite-sample probability distributions of estimators and test statistics are 
available in convenient form only for simple functions of the data and when the 
likelihood function is completely specified. Often in econometrics these conditions 
are not satisfied and inference is based on approximations to the sampling 
distributions. Typically “large sample” methods of approximation based on the 
central limit theorem are employed. For example, if 0, is an estimator of a 
parameter 8 based on a sample of size n, it is sometimes possible to find a 
function a(e) such that the distribution of the variable &(fiR - 0)/o(e) con- 
verges to a standard normal as n tends to infinity. In that case, it is common 
practice to approximate the distribution of 8 by a normal distribution with mean 
6 and variance a*(e)/n. Similar approximations are used for test statistics, 
although the limiting distribution is often &i-square rather than normal in this 
context. 

These large-sample or asymptotic approximations may be quite accurate even 
for very small samples. The arithmetic average of independent draws from a 
rectangular distribution has a bell-shaped distribution for n as low as three. 
However, it is also easy to construct examples where the asymptotic approxima- 
tion is poor even when the sample contains hundreds of observations. It is 
desirable, therefore, to know the conditions under which the asymptotic ap- 
proximations are reasonable and to have available alternative methods when the 
asymptotic approximations break down. In what follows we survey some of the 
basic methods that have been used to approximate distributions in econometrics 
and describe some typical applications of these methods. Particular emphasis will 
be placed on “second-order” approximation methods which can be used to 
compare alternative asymptotically indistinguishable inference procedures. 

The subject of our investigation has a long history. Techniques for approximat- 
ing probability distributions have been studied by mathematical statisticians since 
the nineteenth century. Indeed, many of the basic methods in current use were 
developed more than 75 years ago. The transfer of these ideas to econometrics, 
however, has been very slow; only in the past 15 years has there been substantial 
progress in improving the approximations used in empirical economics. The 
reasons for this lag are not hard to fathom. The original work concentrated on 
one-dimensional statistics based on sums of identically distributed independent 
random variables. The generalization to multidimensional cases with nonlinearity, 
dependency, and other complications turns out to involve quite difficult mathe- 
matics and nontrivial computation. The advent of more powerful mathematical 
tools and enormously reduced computation cost in recent years has produced a 
revolution in the field of statistical approximation. Not only have old methods 
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been applied to more complex problems, a new burst of interest in higher-order 
asymptotic theory has occurred among mathematical statisticians. With so much 
recent development both within and without econometrics, this survey must 
necessarily be incomplete and tentative. It represents a somewhat personal view 
of the current state of a rapidly changing area of research. 

Before turning to the various techniques and applications, it is perhaps useful 
to raise some general issues concerning the use of approximate distributions in 
econometrics. First of all, one must decide what one is trying to approximate. In 
many applications the parameter vector of interest has high dimension. Do we 
wish to approximate the joint probability distribution of the vector of estimates, 
or do we wish to approximate each marginal distribution? Is it the cumulative 
distribution function that needs to be approximated, or is it the density function? 
Some approaches which lead to good approximations of univariate densities are 
not convenient for obtaining good approximations of multivariate cumulative 
distribution functions. In practice the type of approximation method to be 
employed is strongly influenced by the type of function being approximated. The 
emphasis in the present survey will be on approximations to univariate distri- 
bution functions. It appears that most applications require knowledge of the 
probability that a scalar random variable lies in some interval. For example, the 
degree of concentration of an estimator and the power of a test can be measured 
by such probability statements. Although some discussion of density approxima- 
tions will be presented, we shall rarely depart from distributions on the real line. 

A second issue concerns the approximation of moments. If determining the full 
probability distribution of a statistic is hard perhaps one can get by with 
summary values. For many purposes, knowledge of the first few moments of an 
estimator or test statistic is sufficient. Thus, methods for approximating moments 
may be just as valuable as methods for approximating distributions. As we shall 
see, these methods are not unrelated: approximate moments play a key role in 
developing approximate distribution functions. Hence our survey will cover both 
topics. 

Finally, and perhaps most crucially, there is the issue: What use will be made 
of the approximation? Generally one can distinguish two distinct reasons for 
wanting to know the probability distribution of an estimator or test statistic. One 
reason is that it is needed to make some numerical calculation from the data. For 
example, one might use the probability distribution to form a confidence interval 
for a parameter estimate; or one might form a rejection region for a test statistic. 
An alternative reason for knowing the probability law is that it is needed to 
evaluate or compare statistical procedures. One might use an estimator’s proba- 
bility distribution to judge whether it was reasonably accurate; or one might use 
sampling distributions to decide which of two tests is most powerful. 

These two different uses of the probability distribution suggest different criteria 
for judging an approximation. For the former use, we need a computer algorithm 
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that will calculate, quickly and accurately, a number from the actual data. As long 
as the algorithm is easy to program and does not require too much data as input, 
it does not matter how complicated or uninterpretable it is. For the latter use, we 
need more than a number. The probability distribution for an estimator or test 
statistic generally depends on the unknown parameters and on the values of the 
exogenous variables. To evaluate statistical procedures we need to know how the 
key aspects of the distribution (center, dispersion, skewness, etc.) vary with 
the parameters and the exogenous data. An algorithm which computes the 
distribution function for any given parameter vector and data set may not be as 
useful as a simple formula that indicates how the shape of the distribution varies 
with the parameters. Interpretability, as well as accuracy, is important when 
comparison of probability distributions is involved. 

Since my own interests are concerned with comparing alternative procedures, 
the present survey emphasizes approximations that yield simple analytic for- 
mulae. After reviewing a number of different approaches to approximating 
distributions in Section 2, the remainder of the chapter concentrates on higher- 
order asymptotic theory based on the Edgeworth expansion. Although the 
asymptotic approach rarely leads to the most accurate numerical approximations, 
it does lead to a powerful theory of optimal estimates and tests. In this context, it 
is worth recalling the words used by Edgeworth (1917) when discussing the 
relative merits of alternative approaches to representing empirical data: “I leave it 
to the impartial statistician to strike the balance between these counterpoised 
considerations.. . . I submit, too, that the decision turns partly on the purpose to 
which representation of statistics is directed. But one of the most difficult 
questions connected with our investigation is: What is its use?” 

2. Alternative approximation methods 

2.1. Preliminaries 

If we are given the probability distribution of a vector of random variables, we 
can, in principle, find the distribution of any smooth function of these random 
variables by multivariate calculus. In fact, however, the mathematics is often too 
difficult and analytic results are unobtainable. Furthermore, we sometimes wish to 
learn about certain features of the distribution of a function without specifying 
completely the exact distribution of the underlying random variables. In this 
section we discuss a number of alternative methods that can be employed to 
obtain approximations to the probability distributions of econometric estimators 
and test statistics under various circumstances. 

Although there is a huge statistical literature on the theory and practice of 
approximating distributions, there are relatively few introductory presentations of 
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this material. The statistics textbook by Bickel and Doksum (1977) gives a very 
brief survey; the handbook of distributions by Johnson and Kotz (1970) has a 
more comprehensive discussion. Traditional large-sample theory is developed in 
Cramer (1946); a detailed treatment is given in Serfling (1980). The extension to 
asymptotic expansions is presented in Wallace’s (1958) excellent (but slightly 
dated) survey article; some recent developments are discussed in Bickel (1974). 
For a comprehensive treatment of the subject, however, a major incursion into the 
textbooks of advanced probability theory and numerical analysis is necessary. For 
those with the time and patience, chapters 15 and 16 of Feller (1971) and chapters 
1, 3, and 4 of Olver (1974) are well worth the effort. In what follows we refer 
mostly to recent developments in the econometric literature; the bibliographies in 
the above-mentioned works can give entree into the statistical literature. The 
recent survey paper by Phillips (1980) also gives many key references. 

The present discussion is intended to be introductory and relatively nontechni- 
cal. Unfortunately, given the nature of the subject, considerable notation and 
formulae are still required. A few notational conventions are described here. 
Distribution functions will typically be denoted by the capital letters F and G; the 
corresponding density functions are f and g. The standard univariate normal 
distribution function is represented by @ and its density by +. If a p-dimensional 
random vector X is normally distributed with mean vector 1-1 and covariance 
matrix .Z, we shall say that X is N,(I_L, 2); when p = 1, the subscript 
will be dropped. The probability of an event will be indicated by Pr[ -1. Thus, 
if X is N,(p, 2) and c is a p-dimensional column vector, Pr[c’X 5 x] = @a[(~ - 

c’p)/&Z], for all real x. 
If X is a scalar random variable with distribution function F, its characteristic 

function is defined as q(t) = Eexp{i tX }, where t is real, E represents expectation 
with respect to the distribution of X, and i = J--i-. The function K(t) = log G(t) 
is called the cumulant function. If X possesses moments up to order r, then 4(t) 
is differentiable up to order r; furthermore, the r th moment of X is given by the 
r th derivative of ii’$( t) evaluated at zero: 

E( X’) = i-‘+(‘)(O). 

The rth derivative of ii”K(t), evaluated at zero, is called the rth cumulant of X 
and is denoted by: 

k, = iirK( 

Since the derivatives of K(t) are related to the derivatives of J/(t), the cumulants 
are related to the moments. In fact, k, is the mean and k, is the variance. For a 
standardized random variable with zero mean and unit variance, k, is the third 
moment and k, is the fourth moment less three. For a normal random variable, 
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all cumulants of order greater than two are zero. Hence, these cumulants can be 
viewed as measures of departure from normality. For further details, one may 
consult Kendall and Stuart (1969, ch. 3). 

Our discussion will concentrate on approximating the cumulative distribution 
functions for continuous random variables. If the approximating distribution 
function is differentiable, there will generally be no problem in obtaining an 
approximate density function. Some approximation methods, however, apply 
most easily to the density function directly. In that case, numerical integration 
may be needed to obtain the distribution function if analytic integration is 
difficult. 

2.2. Curve-fitting 

The simplest way to approximate a distribution is to find a family of curves 
possessing the right shape and select that member which seems to fit best. If the 
low-order moments of the true distribution are known, they can be used in the 
fitting process. If not, Monte Carlo simulations or other information about 
the true distribution can be employed instead. 

Durbin and Watson (1971) describe a number of different approximations to 
the null distribution of their d statistic for testing serial correlation in regression 
disturbances. One of the most accurate is the beta approximation proposed by 
Henshaw (1966). Since d must he between zero and four and seems to have a 
unimodal density, it is not unreasonable to think that a linear transformed beta 
distribution might be a good approximation to the true distribution. Suppose X is 
a random variable having the beta distribution function: 

Pr[X~~]=lblB(~,g)tP-l(l-t) ‘-‘dt = G(x; p, q). 

Then, for constants a and b, the random variable a + bX has moments depending 
on p, q, a, and b. These moments are easy to express in analytic form. 
Furthermore, the moments of the Durbin-Watson statistic d are also simple 
functions of the matrix of regression variables. Equating the first four moments of 
d to the corresponding moments of a + bX, one obtains four equations in the four 
parameters. For any given matrix of observations on the regressors, these equa- 
tions give unique solutions, say p*, q*, a*, b*. Then Pr[d I x] can be approxi- 
mated by G[(x - u*)/b*; p*, q*]. This approximation appears to give third 
decimal accuracy for a wide range of cases. Theil and Nagar (1961) had earlier 
proposed a similar approximation, but used approximate rather than actual 
moments of d. Since these approximate moments do not vary with the matrix of 
regressors, the Theil-Nagar approximation is independent of the data and can be 
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tabulated once and for all. Unfortunately, the moment approximation is not 
always accurate and the resulting approximation to the probability distribution is 
less satisfactory than Henshaw’s. 

A more sophisticated version of the curve-fitting method is suggested by 
Phillips (1981). Suppose a statistic X is known to have a density function f(x) 
that behaves in the tails like the function s(x). For example, if X possess 
moments only up to order k and takes values everywhere on the real line, f(x) 
might behave in the tails like a Student density with k + 1 degrees of freedom. For 
some small integer r, one might approximate the density function f(x) by a 
rational function modification of s(x): 

44 
a() + a,x + . . . + a,x’ 

b, + b,x + - . . + b,,’ ’ (2.1) 

where the ui and bi are chosen to make the approximation as accurate as possible. 
Since the function (2.1) does not typically have simple moment formulae (or even 
possess finite moments), the method of moments is not a useful way to obtain 
values for the a, and 6,. But, Monte Carlo experimental data or local power series 
expansions of the density may be available to help select the parameters. Since 
(2.1) has 2r + 1 free parameters, it appears that, with a judicious choice for s, this 
functional form should provide a very accurate approximation to the density 
function of any econometric statistic. Furthermore, if s is replaced by its integral, 
a function of the same form as (2.1) could be used to approximate a distribution 
function. 

If considerable information about the true density is available, curve-fitting 
methods are likely to provide simple and very accurate approximations. Phillips 
(1981) produces some striking examples. Indeed it is unlikely that any other 
method will give better numerical results. However, curve-fitting methods are 
considerably less attractive when the purpose is not quantitative but qualitative. 
Comparisons of alternative procedures and sensitivity analysis are hindered by 
the fact that curve-fitting methods do not typically yield a common parametric 
family. If two statistics are both (approximately) normal, they can be compared 
by their means and variances. If one statistic is approximately beta and the other 
approximately normal, comparisons are difficult: the parameters that naturally 
describe one distribution are not very informative about the other. The very 
flexibility that makes curve-fitting so accurate also makes it unsuitable for 
comparisons. 

2.3. Transformations 

Suppose X is a random variable and h is a monotonically increasing function such 
that h(X) has a distribution function well approximated by G. Since Pr[ X I x] is 
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the same as Pr[ h( X) 5 h(x)], the distribution function for X should be well 
approximated by G[ h( x)]. For example, if X has a &i-square distribution with k 
degrees of freedom, fi - fi has approximately a N(0, 4) distribution when k is 
large. Hence, one might approximate Pr[ X I x] by (a[&& - &%I. A better 
approach, due to Wilson and Hilferty (1931), is to treat ( X/k)‘i3 as N(1,2/9k) 
and to approximate Pr[ X I x] by @[((x/k)‘/3 -1),/m]. 

Fisher’s z transformation is another well-known example of this technique. The 
sample correlation coefficient fi based on random sampling from a bivariate 
normal distribution is highly skewed if the population coefficient p is large in 
absolute value. However, z = h( fi) = log(1 - 8 j/(1 + fi) has rather little skewness 
and is well approximated by a normal random variable with mean log(l-p)/(l + p) 
and variance n- ‘. Thus, Pr[j 5 x] can be approximated by @[&h(x)-h/r(p)] 
for moderate sample size n. 

Using transformations to approximate distributions is an art. Sometimes, as in 
the correlation coefficient case, the geometry of the problem suggests the ap- 
propriate transformation h. Since fi can be interpreted as the cosine of the angle 
between two normal random vectors, an inverse trigonometric transformation is 
suggested. In other cases, arguments based on approximate moments are useful. 
Suppose h(X) can be expanded in a power series around the point p = E(X): 

h(X)=h(p)+h’(p)(X-p)+Qh”(p)(X-p)*+ -.., (2.4 

where X - p is in some sense small.’ Then we might act as though: 

E(h)-h(p)++h”(p)E(X-fi)*r 

Var(h)= [h’(p)]‘Var(X), 

E(h-E/z)‘= [h’(~)]3E(X-~)3+i[h~(~)]2h”(~)[E(X-(L)4-Var2(X)], 

and choose h so that these approximate moments match the moments of the 
approximating distribution. If the approximating distribution is chosen to be 
normal, we might require that Var(h) be a constant independent of p; or we 
might want the third moment to be zero. If the moments of X are (approximately) 
known and the above approximations used, either criterion gives rise to a 
differential equation in h(p). The cube-root transformation for the chi-square 
random variable can be motivated on the grounds it makes the approximate third 
moment of h equal to zero. The Fisher transformation for j5 stabilizes the 
approximate variance of h so that it is independent of p. 

‘For example, if X is a statistic from a sample of size n, its variance might be proportional to n-l. 
ECxpansions like (2.2) are discussed in detail in Section 3 below. 
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Transformations are discussed in detail by Johnson (1949) and illustrated by 
numerous examples in Johnson and Kotz (1970). Jenkins (1954) and Quenouille 
(1948) apply inverse trigonometric transformations to the case of time-series 
autocorrelation coefficients. The use of transformations in econometrics, however, 
seems minimal, probably because the method is well developed only for uni- 
variate distributions. Nevertheless, as an approach to approximating highly 
skewed distributions, transformations undoubtedly merit further study. 

2.4. Asymptotic expansions 

Often it is possible to embed the distribution problem at hand in a sequence of 
similar problems. If the sequence has a limit which is easy to solve, one might 
approximate the solution of the original problem by the solution of the limit 
problem. The sequence of problems is indexed by a parameter which, in many 
econometric applications, is the sample size n. Suppose, for example, one wishes 
to approximate the probability distribution of an estimator of a parameter 19 
based on a sample. We define an infinite sequence 6, of such estimators, one for 
each sample size n = 1,2,. . . , and consider the problem of deriving the distribu- 
tion of each 6,. Of course, we must also describe the joint probability distribution 
of the underlying data for each n. Given such a sequence of problems, the 
asymptotic approach involves three steps: (a) A simple monotonic transformation 
T, = h(d,; 8, n) is found so that the distribution of the transformed estimator T, is 
not very sensitive to the value n. Since most interesting estimators are centered at 
the true parameter and have dispersion declining at the rate n-‘12, the linear 
transformation T, = 6(& - 0) is often used. (b) An approximation G,(x) to the 
distribution function F,(x) = Pr[T, I x] is found so that, as n tends to infinity, 
the error ]G,(x)- F,(x)] goes to zero. (c) The distribution function for 6, is 
approximated using G,,; that is, Pr[8, I t] = Pr[T, I h( t; 8, n)] is approximated by 
G,]h(t; 0, n>l. 

For many econometric estimators fi( 6, - e) is asymptotically normal. Hence, 
using the linear transformation for h, one may choose a normal distribution 
function for G,,. However, it is possible to develop other approximations. Let 
G,,(x) be an approximation to the continuous distribution function F,(x). If, for 
all x, 

lim n’]&(x)-G,(x)] =O, 
n-m 

we write 

F,(x) =G,(x)+o(n-') 
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and say that G,, is a o(n-‘) approximation to F,. (A similar language can be 
developed for approximating density functions.) The asymptotic distribution is a 
o( no) approximation. 

The number r measures the speed at which the approximation error goes to 
zero as n approaches infinity. Of course, for given sample size n, the value of r 
does not tell us anything about the goodness of the approximation. If, however, 
we have chosen the transformation h cleverly so that F, and G, vary smoothly 
with n, the value of r might well be a useful indicator of the approximation error 
for moderate values of n. 

There are two well-known methods for obtaining higher-order approximate 
distribution functions based on Fourier inversion of the approximate characteris- 
tic function. Let Jl(t) = Eexp{itT,} be the characteristic function for T, and let 
K(t) = log JI( t) be its cumulant function. If JI is integrable, the density function f, 
for T, can be written as: 2 

(2.3) 

Often K(t) can be expanded in a series where the successive terms are increasing 
powers of n-l12. The integrand can then be approximated by keeping only the 
first few terms of the series expansion. Integrating term by term, one obtains a 
series approximation to f,; further integration yields a series approximation to the 
distribution function. The Edgeworth approximation (which is obtained by ex- 
panding K(t) around t = 0) is the simplest and most common method; it does not 
require complete knowledge of K(t) and can be calculated from the low-order 
cumulants of Tn. A detailed discussion of the Edgeworth approximation appears 
in Section 3. The saddlepoint approximation (which is obtained by expanding 
K(t) around the “saddlepoint” value t* that maximizes the integrand) is more 
complex and requires intimate knowledge of the cumulant function. When 
available, it typically gives more accurate approximations especially in the tails of 
the distribution. Daniels (1956) and Phillips (1978) have applied the method to 
some autocorrelation statistics in time series. Unfortunately, knowledge of the 
cumulant function is rare in econometric applications; the saddlepoint approxi- 
mation has therefore received little attention to date and will not be emphasized 
in the present survey. 

Wallace (1958) presents an excellent introduction to asymptotic approxima- 
tions based on expansions of the characteristic function. An exposition with 
emphasis on multivariate expansions is given by Bamdorff-Nielsen and Cox 
(1979); the comments on this paper by Durbin (1979) are particularly interesting 
and suggest new applications of the saddlepoint method. In econometrics, T. W. 

‘Cf. Feller (1981, p. 482) 
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Anderson, P. C. B. Phillips, and J. D. Sargan have been pioneers in applying 
asymptotic expansions. Some of their work on estimators and test statistics in 
simultaneous equations models is surveyed in Section 6 below. 

The above discussion of asymptotic expansions has focused on estimators, but 
there is no difficulty in applying the methods to any sample statistic whose 
cumulant function can be approximated by a power series in n-‘12. Furthermore, 
the parameter which indexes the sequence of problems need not be the sample 
size. In the context of the simultaneous equations model, Kadane (1971) sug- 
gested that it might be more natural to consider a sequence indexed by the error 
variance. In his “small u ” analysis, the reduced-form error-covariance matrix is 
written as a&I; in the sequence, the sample size and the matrix s2 are fixed, but u 
approaches zero. Edgeworth and saddlepoint expansions are available as long as 
one can expand the cumulant function in a power series where successive terms 
are increasing powers of u. Anderson (1977) explores this point of view in the 
context of single-equation estimation in structural models. 

2.5. Ad hoc methods 

Certain statistics permit approximations which take advantage of their special 
structure. Consider, for example, the ratio of two random variables, say T = 
X,/X,. If X, takes on only positive values, Pr[ T 5 x] = Pr[ Xi - xX, 2 01. If both 
X1 and X, are sums of independent random variables possessing finite variance, 
then the distribution of Xi - xX, might be approximated by a normal. Defining 
~,=EX,~~~U~,=E(X,-~~)(~-~,), we might approximate Pr[T I x] by: 

Even if X, is not always positive, as long as Pr[ X, I 0] is negligible, the above 
approximation might be reasonable. 

An important example of this situation occurs when X, and X, are quadratic 
forms in normal variables. Suppose X, = 2% and X, = z’Bz, where z is N,(O, 2). 
Then, by a rotation of the coordinate system, X = Xi - xX, can be written as: 

X=z’(A-xB)z= ; Ai& 
i=l 

where the Xi are the characteristic roots of Z( A - xB) and the y, are indepen- 
dent N(O,l) random variables. If p is moderately large (say, 20 or more) and the 
hi are not too dispersed, a central limit theorem might be invoked and the 
distribution of X approximated by a normal with mean tr Z(A - xB) and 
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variance 2 tr[Z( A - xB)]*. If necessary, Edgeworth or saddlepoint expansions (in 
powers of p- ‘I*) could be employed to obtain greater accuracy. 

In this quadratic case, approximations can be dispensed with entirely. The 
exact distribution of a weighted sum of independent chi-square random variables 
can be obtained by one-dimensional numerical integration using the algorithms of 
Imhof (1961) or Pan Jie-jian (1968). Koerts and Abrahamse (1969) and Phillips 
(1977a), among others, have used these methods to calculate exact distributions of 
some time-series statistics. For large p, numerical integration is unnecessary since 
the Edgeworth approximation to X is likely to be adequate. [Cf. Anderson and 
Sawa (1979).] 

The least-squares estimator of a single coefficient in a linear regression equation 
can always be written as a ratio. In particular, when one of the regressors is 
endogenous, its coefficient estimator is the ratio of two quadratic forms in the 
endogenous variables. Thus ratios occur often in econometrics and their simple 
structure can easily be exploited. The multivariate generalization XT ‘Xi, where X, 
is a random square matrix and Xi is a random vector, also has a simple structure, 
but approximation methods for this case seem not to have been explored. 

In practice, ad hoc techniques which take advantage of the special structure of 
the problem are invaluable for developing simple approximations. General meth- 
ods with universal validity have attractive theoretical features, but are not 
particularly accurate for any given problem. Approximating distributions is an art 
involving judgment and common sense, as well as technical skill. The methods 
discussed in this section are not distinct alternatives. Every approximation 
involves fitting a curve to a transformed statistic, dropping terms which are 
judged to be small. In the end, many approaches are merged in an attempt to find 
a reasonable solution to the problem at hand. 

3. Edgeworth approximations 

Perhaps the most important and commonly used method to obtain improved 
approximations to the distributions of estimators and test statistics in economet- 
rics is the Edgeworth expansion. There are a number of reasons for this promi- 
nence. First, the method is a natural extension of traditional large-sample 
techniques based on the central limit theorem. The usual asymptotic approxima- 
tion is just the leading term in the Edgeworth expansion. Second, since the 
expansion is based on the normal and &i-square distributions-which are 
familiar and well tabulated-it is easy to use. Finally, the method can be 
employed to approximate the distributions of most of the commonly used 
estimators and test statistics and is very convenient for comparing alternative 
statistical procedures. Indeed, it is the basis for a general theory of higher-order 
efficient estimators and tests. 
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Because of its prominence, the Edgeworth approximation will be described at 
some length in this section and in the examples which follow. However, it is worth 
noting at the outset that Edgeworth methods do not lead to particularly accurate 
approximations. To the contrary, in nearly every application, there exist alterna- 
tive curve-fitting techniques yielding more satisfactory numerical results. 
Edgeworth is important, not for its accuracy, but for its general availability and 
simplicity. Although rarely optimal, it is often quite adequate and leads to a 
useful, comprehensive approach to second-order comparisons of alternative pro- 
cedures. 

Our discussion of the Edgeworth expansion parallels the traditional approach 
to asymptotic distribution theory as presented in Theil (1971, ch. 8) or Bishop, 
Fienberg, and Holland (1975, ch. 14). We first consider the problem of approxi- 
mating sums of independent random variables. Then we show that the theory also 
applies to smooth functions of such sample sums. To avoid excessive length and 
heavy mathematics, our presentation will be quite informal; rigorous proofs and 
algebraic detail can be found in the literature cited. Although Edgeworth expan- 
sions to high order are often available, in practice one rarely goes beyond the first 
few terms. We shall develop the expansion only up to terms of order nP1 and 
refer to the result as the “second-order” or o(n- ‘) Edgeworth approximation. 
The extension to higher terms is in principle straightforward, but the algebra 
quickly becomes extremely tedious. 

3.1. Sums of independent random variables 

Suppose X,, X2,. . . form an infinite sequence of independent random variables 
with common density function f; each X, has mean zero, variance one, and 
possesses moments up to the fourth order. If J/ is the characteristic function 
associated with f, then the cumulant function log J/ possesses derivatives up to the 
fourth order and can be expanded in a neighborhood of the origin as a power 
series: 

log+(t) =+(it)2++k,(it)3+hk4(it)4+ ... , (3.1) 

where k, is the r th cumulant off. 
The standardized sum T, = xX,/'6 also has mean zero and variance one; let 

f, and J/, be its density and characteristic functions. Since 

hL(t) = n1wWW 

= *(it)‘+ --&k,(if)‘+ &k4(it)4+ . . . , 
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we observe that the r th cumulant of T, 
high-order cumulants are small when n 
expansion 1+ x + ix” + . . . , when x is 
series in n-l/*: 

T. J. Rothenherg 

is simply k,n ’ -‘12, for r > 2. Thus, the 
is large. Since the function ex has the 
small, q,(t) can be written as a power 

=e -l/26 1 + -$k,(it)‘-t 
3k,(it)4+ kt(it)6 

+.-. . (3.4 n 72n 1 
The O( n ‘) Edgeworth approximation to the density function for T, is obtained 
by applying the Fourier inversion formula (2.3) and dropping high-order terms. 
Using the fact that, if f has characteristic function J/(t), then the r th derivative 
f”’ has characteristic function (- it)‘J/( t), the inverse Fourier transform is seen 
to be: 

f(x) = cpw- $=$,d3’(x)+ &k4q+4)(x)+&k:cp’6’(x) 

1 + W,(x) + 3k4H&)+ k:H6tx) 
66 72n I 

9 (3.3) 

where q(” is the rth derivative of the normal density function ‘p and H, is the 
Hermite polynomial of degree r defined as: 

H,(x)=(-I)‘$$). 

(By simple calculation, H3(x) = x3 - 3x, H4(x) = x4 -6x* + 3, etc.) Integration 
of (3.3) gives an approximation for the distribution function: 

F,(x) = @(+cpw k3H2(x) + %H,(x)+k,2H,(x) 
(__ 72n l- (3.4 

This latter formula can be rewritten as: 

k3(x2 -1) 

66 

+ 3k4(3x - x3)+2kf(4x3 -7x) 

72n 1 7 (3.5) 
by use of Taylor series expansion and the definition of the Hermite polynomials. 
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Equations (3.4) and (3.5) are two variants of the o(n-‘) Edgeworth approxima- 
tion to the distribution function of T,; Phillips (1978) refers to them as the 
Edgeworth-A and Edgeworth-B approximations, respectively. The latter is closely 
related to the Cornish-Fisher (1937) normalizing expansion for a sample statistic. 
If (3.5) is written as: 

then, when n is large enough to ensure that the function in brackets is monotonic 
for the x values of interest, it can be rewritten as: 

Pr 

[ 

T + kh(T,) + &(TJ Ix  

n 

fi * 1 = @[xl. 

Thus, the function inside brackets in (3.5) can be viewed as a transformation h, 
making h (T,) approximately normal. 

The argument sketched above is, of course, purely formal. There is no guaran- 
tee that the remainder terms dropped in the manipulations are really small. 
However, with a little care, one can indeed prove that the Edgeworth approxima- 
tions are valid asymptotic expansions. Suppose the power series expansion of 4, 
is carried out to higher order and G,‘(x) is the analogous expression to (3.4) when 
terms up to order n -r’2 are kept. Then, if the Xi possess moments to order r + 2 
and (J, (t ) 1 is bounded away from one for large t: 

A proof can be found in Feller (1971, pp. 538-542). The assumption on the 
characteristic function rules out discrete random variables like the binomial. Since 
the distribution of a standardized sum of discrete random variables generally has 
jumps of height n- ‘I*, it is not surprising that it cannot be closely approximated 
by a continuous function like (3.4). Edgeworth-type approximations for discrete 
random variables are developed in Bhattacharya and Rao (1976), but will not be 
described further in the present survey. 

The theory for sums of independent, identically distributed random variables is 
easily generalized to the case of weighted sums. Furthermore, a certain degree of 
dependence among the summands can be allowed. Under the same type of 
regularity conditions needed to guarantee the validity of a central limit theorem, 
it is possible to show that the distribution functions for standardized sample 
moments of continuous random variables possess valid Edgeworth expansions as 
long as higher-order population moments exist. 
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3.2. A general expansion 
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Since few econometric estimators or test statistics are simple sums of random 
variables, these classical asymptotic expansions are not directly applicable. Never- 
theless, just as the delta method3 can be applied to obtain first-order asymptotic 
distributions for smooth functions of random variables satisfying a central limit 
theorem, a generalized delta method can be employed for higher-order expan- 
sions. With simple modifications, the classical formulae (3.3)-(3.5) are valid for 
most econometric statistics possessing limiting normal distributions. 

Nagar (1959) noted that k-class estimators in simultaneous equations models 
can be expanded in formal series where the successive terms are increasing powers 
of n-l/* The expansions are essentially multivariate versions of (2.2). The r th 
term takes the form C,K’/*, where C, is a polynomial in random variables with 
bounded moments. His approach is to keep the first few terms in the expansion 
and to calculate the moments of the truncated series. These moments can be 
interpreted as the moments of a statistic which serves to approximate the 
estimator. [In some circumstances, these moments can be interpreted as ap- 
proximations to the actual moments of the estimator; see, for example, Sargan 
(1974).] 

Nagar’s approach is quite generally available and can be used to develop 
higher-order Edgeworth approximations. Most econometric estimators and test 
statistics, after suitable standardization so that the center and dispersion of the 
distributions are stabilized, can be expanded in a power series in n-l/* with 
coefficients that are well behaved random variables. Suppose, for example, T, is a 
standardized statistic possessing the stochastic expansion: 

(3.6) 

where X,, A,,, and B, are sequences of random variables with limiting distribu- 
tions as n tends to infinity. If R, is stochastically bounded,4 the limiting 
distribution of T, is the same as the limiting distribution of X,,. It is natural to use 
the information in A, and B, to obtain a better approximation to the distribution 
of T,. Suppose the limiting distribution of X,, is N(0, 1). Let T’ = X, + A,n- ‘I2 + 
B,,n-’ be the first three terms of the stochastic expansion of T,. For a large class 
of cases, T’ has finite moments up to high order and its r th cumulant is of order 

3Suppose a standardized sample mean X,, = 6(X - n)/o is asymptotically N(O.1) and g is a 
differentiable function with derivative h = g’(p). The delta method exploits the fact that, when n is 
large, T, =&[g(X)- g(p)] behaves like hex,,; hence T, is asymptotically N(0, h*o*). Cf. Theil(l971, 
pp. 373-374). 

4A sequence of random variables Z, is stochastically bounded if, for every e > 0, there exists a 
constant c such that Pr[ ] Z,,] > c] < e, for sufficiently large n. That is, the distribution function does 
not drift oh to infinity. Cf. Feller (1971, p, 247). 
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n(2-r)/2 when r is greater than 2. Furthermore, its mean and variance can be 
written as: 

E(T’) = + + o(n-‘), 
n 

Var(T’) =l+ p + O(n-‘), 

where a and b depend on the moments of X,,, A,, and B,. The restandardized 
variable, 

has, to order n-‘, zero mean and unit variance. Its third and fourth moments are: 

E(T*)3 = + + o(n-‘), 
n 

E(T*)4 = 3+; + o(&), 

where c/h is the approximate third cumulant of T’ and d/n is the approximate 
fourth cumulant. Since the cumulants of T’ behave like the cumulants of a 
standardized sum of independent random variables, one is tempted to use the 
Edgeworth formulae to approximate its distribution. For example, one might 
approximate Pr[T* I x] by (3.5) with c replacing k, and d replacing k,. Dropping 
the remainder term and using the fact that 

T*<.r-e-g+o(n-‘) , 1 
we are led to the Edgeworth-B approximation: 

Yl + Y2X2 

6 

+ Y3X + Y4X3 

I 72n ’ 

where 

(3.7) 

yl=c-6a; y3 = 9d - 14c2 - 36b + 24ac, 

y2 = - c; y4 = 8c2 - 3d. 
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A similar calculation using (3.4) leads to an Edgeworth-A form of the approxima- 
tion. 

Of course, the above discussion in no way constitutes a proof that the 
approximation (3.7) has an error o( n-l). We have dropped the remainder term 
R,,/nh without justification; and we have used the Edgeworth formulae despite 
the fact that T’ is not the sum of n independent random variables. With some 
additional assumptions, however, such a proof can in fact be constructed. 

If 1 T, - T’I is stochastically of order o(n-‘), it is reasonable to suppose that 
the distribution functions for T, and T’ differ by that order. Actually, further 
assumptions on the tail behavior of R, are required. Using a simple geometric 
argument, Sargan and Mikhail(l971) show that, for all x and E, 

IPr(T,Ix)-Pr(T’Ix))IPr[IT,-T’I>e]+Pr[lT’-xl<e]. 

If T’ has a bounded density, the last term is of order E, as E approaches zero. To 
show that the difference between the two distribution functions is o(n-‘) we 
choose E to be of that order. Setting E = n -3/210gcn, we find that a sufficient 
condition for validly ignoring the remainder term is that there exists a positive 
constant c such that: 

Pr[ jR,I > log’n] = o(K’). (3.8) 

That is, the tail probability of R, must be well behaved as n approaches infinity. 
If R, is bounded by a polynomial in normal random variables, (3.8) is necessarily 
satisfied. 

To show that T’ can be approximated by the Edgeworth formulae, one must 
make strong assumptions about the sequences X,, A,, and B,. If A, and B,, are 
polynomials in variables which, along with X,,, possess valid Edgeworth expan- 
sions to order n- ‘, the results of Chibisov (1980) can be used to prove a validity 
theorem. The special case where (3.6) comes from the Taylor series expansion of a 
smooth function g(p), where p is a vector of sample moments, has been studied 
by Bhattacharya and Ghosh (1978), Phillips (1977b), and Sargan (1975b, 1976). 
These authors give formal proofs of the validity of the Edgeworth approximation 
under various assumptions on the function g and the distribution of p. Sargan 
(1976) gives explicit formulae for the y, of (3.7) in terms of the derivatives of the 
function g and the cumulants of p. 

It may be useful to illustrate the approach by a simple example. Suppose X and 
s2 are the sample mean and (bias adjusted) sample variance based on n indepen- 
dent draws from a N(p, a*) distribution. We shall find the Edgeworth approxima- 
tion to the distribution of the statistic: 

T = J;;G-l-4 
n s ’ 
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which, of course, is distributed exactly as Student’s t. With X, = 6(X - ~.>/a and 
Y,, =fi(s’ - u2)/u2, the statistic can be written as: 

XY 3XY2 R 
T,= /-& =xC*+*+*’ 

where the remainder term R, is stochastically bounded. The random variable X,, 
is N(0, 1); Y, is independent of X, with mean zero and variance 2n /( n - 1). It is 
easy to verify that T, satisfies the assumptions of Sargan (1976) and hence can be 
approximated by a valid Edgeworth expansion. Dropping the remainder term, we 
find that T’ has mean zero and variance 1+ 2n-’ + o(n-‘). Its third cumulant is 
exactly zero and its fourth cumulant is approximately 6n-‘. Thus, with a = c = 0, 
b = 2, and d = 6, (3.7) becomes: 

Pr[T,,Ix]=@ x- [ e], (3.9) 

which is a well-known approximation to the Student-t distribution function. 
There are available a number of alternative algorithms for calculating 

Edgeworth expansions. The use of (3.7) with Nagar-type approximate moments is 
often the simplest. Sometimes, however, the moment calculations are tedious and 
other methods are more convenient. If, for example, the exact characteristic 
function for T, is known, it can directly be expanded in a power series without the 
need to calculate moments. The Edgeworth approximation can be found by 
Fourier inversion of the first few terms of the series. Anderson and Sawa (1973) 
employ this method in their paper on the distribution of k-class estimators in 
simultaneous equations models, 

An alternative approach, used by Hodges and Lehmann (1967), Albers (1978), 
Anderson (1974), and Sargan and Mikhail (1971), exploits the properties of the 
normal distribution. Suppose the stochastic expansion (3.6) can be written as: 

T =x + A(X”, r,) + B(XfZ, K) + RI 
n n 

Jrr n n\/rT’ 

where R, satisfies (3.Q X, is exactly N(0, l), and the vector Y,, is independent of 
X, with bounded moments. The functions A and B are assumed to be smooth in 
both arguments with A’ denoting the derivative of A with respect to X,. Then, 
conditioning on Y, and supressing the subscripts, we write: 

Pr[T’_<x]=E,Pr X+ 
1 

A(X,Y) + B(X, Y) 

6 n 
rxlY 1 =E 

Y 
@ x_ A(x,Y) _ B(x~Y)-A(x,Y)A’(x,Y) 

6 n I. 
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The approximation comes from dropping terms of higher order when inverting 
the inequality. Taking expectation of the Taylor series expansion of a, we obtain 
the approximation: 

_E B(x, Y)- A(x, Y)A’(x, Y)+ixVar,A(x, Y) 
Y n 1 . (3.10) 

Of course, some delicate arguments are needed to show that the error of 
approximation is o( n ‘); some conditions on the functions A and B are clearly 
necessary. Typically, A and B are polynomials and the expectations involved in 
(3.10) are easy to evaluate. In our Student-t example, we find from elementary 
calculation E,(A)=O, Ey(B)=3x/4, E,(AA’)=x/2, and Vary(A)=x2/2; 
hence, we obtain the approximation (3.8) once again. 

3.3. Non-normal expansions 

Edgeworth approximations are not restricted to statistics possessing limiting 
normal distributions. In the case of multivariate test statistics, the limiting 
distribution is typically &i-square and asymptotic expansions are based on that 
distribution. The following general algorithm is developed by Cavanagh (1983). 
Suppose the sample statistic T, can be expanded as: 

where X, has, to order n -l, the distribution function F and density functionf; the 
random variables A, and B, are stochastically bounded with conditional mo- 
ments: 

a(x) = E( A,,IX, =x), 

b(x) = E( B,lX, = x), 

u(x) = Var( A,IX, = x), 

that are smooth functions of x. Define the derivative functions a’= da/dx, 
v’ = dv/dx and 

C(x) = dlogfb) 
dx ’ 
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Then, assuming R, is well behaved and can be ignored, the formal second-order 
Edgeworth approximation to the distribution of T is given by: 

Pr[T,Ix]=F x-- 
[ 

u(x) + 2a(x)a’(x)+c(x)u(x)+u’(x)-2b(x) 

6 2n I. 
(3.11) 

Again, many technical assumptions on the random variables X,,, A,, and B,, will 
be needed to prove the validity of the approximation. They seem to be satisfied, 
however, in actual applications. 

For example, suppose zn is distributed as N,(O, I) and y, is a vector, indepen- 
dent of z,, with zero mean and bounded higher moments. In many hypothesis 
testing problems the test statistics, under the null hypothesis, posess a stochastic 
expansion of the form: 

T =z,z+ A(zd) + Btzd) + R ~ - 
n 

where A is linear in y (for given z) and A(0, y) = 0. (Again, the subscript n is 
dropped to simplify the notation.) Since F in this case is the &i-square distribu- 
tion function with q degrees of freedom, c(x) = (q - 2- x)/2x. Typically, a(x) 
= E( Alz’z = x) = 0; b(x) and u(x) are usually homogeneous quadratic functions 
of x. Thus, using (3.11), we find an approximation of the form: 

PlX + &x2 n 1 , (3.12) 

where the pi are functions of the moments of (z, y). Sargan (1980) gives a detailed 
derivation for the case where the stochastic expansion arises from a Taylor 
expansion of a function of moments. Rothenberg (1977, 1981b) analyzes the 
noncentral case where the mean of z is nonzero and F is the noncentral cl-ii-square 
distribution. 

To summarize, many econometric estimators and test statistics possess, after 
suitable standardization, stochastic expansions of the form (3.6). It is usually easy 
to demonstrate that R, satisfies a regularity condition like (3.8) and the remainder 
term can be ignored. A formal second-order Edgeworth expansion for the 
truncated variable T’ can be obtained from its moments, using any of the 
algorithms discussed above. For most econometric applications, the limiting 
distributions are normal or &i-square and the correction terms A,, and B,, 

are polynomials in asymptotically normal random variables. Thus the formal 
Edgeworth approximation is relatively easy to calculate, as we shall demonstrate 
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in later sections. Proofs that the approximation error is indeed o(n-I) are much 
harder. The results of Sargan (1976, 1980) and Phillips (1977b) cover most of the 
cases met in practice. 

4. Second-order comparisons of estimators 

In any econometric inference problem, many different ways to estimate the 
unknown parameters are available. Since the exact sampling distributions are 
often unknown, choice among the alternative estimators has traditionally been 
based on asymptotic approximations. Typically, however, there are a number of 
estimators having the same limiting distributions. In those cases, second-order 
Edgeworth approximations can be used to distinguish among the asymptotically 
equivalent procedures. Indeed, a rich and powerful theory of second-order 
estimation efficiency has developed recently in the statistical literature. Although 
most of the results concern single-parameter estimation from simple random 
sampling, the extension of this theory to typical econometric problems is ap- 
parent. 

Second-order comparisons of estimators based on moments calculated from the 
first few terms of stochastic expansions have been employed extensively in 
econometrics after the pioneering work of Nagar (1959). Some recent examples 
are Amemiya (1980), Fuller (1977), and Taylor (1977). Since the estimators being 
examined often do not possess finite moments, the status of such comparisons has 
been questioned by Srinivasan (1970) and others. However, if the calculated 
expectations are interpreted as the moments of an approximating distribution, it 
does not seem unreasonable to use them for comparison purposes. In fact, 
Pfanzagl and Wefelmeyer (1978a) show that most of the general conclusions 
derivable from second-order moment calculations can be restated in terms of 
Edgeworth approximations to the quantiles of the probability distributions. 

A more serious objection to the econometric work using Nagar-type moment 
calculations is the lack of strong results. When the alternative estimators have 
different biases, mean-square-error comparisons typically are inconclusive. No 
estimator is uniformly best to second order. The comparisons, however, take on 
new meaning when interpreted in light of the general theory of second-order 
efficiency. This theory, although initiated over fifty years ago by R. A. Fisher 
(1925) and explored by C. R. Rao (1961,1963), has reached maturity only within 
the past decade. The summary presented here is based on Akahira and Takeuchi 

(1981), Efron (1975), Ghosh and Subramanyam (1974), and Pfanzagl and 
Wefelmeyer (1978a, 1979).5 

‘Many of these statisticians use the term “second-order” to describe expansions with error 
o(n _ I’*) and would refer to our o( n ‘) Mgeworth approximations as “third-order”. Hence, they 
speak of third-order efficiency. 
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4.1. General approach 

903 

For simplicity, we begin by considering the one-dimensional case under quadratic 
loss. An unknown parameter 8 is to be estimated from observations on a random 
vector y whose joint probability distribution is f( y, 0). Under exact sample theory 
we would evaluate an estimator 8 by its mean square error E( 4 - 0)2. When exact 
distributions are unavailable, we consider a sequence of estimation problems 
indexed by the sample size n and use limiting distributions as approximations. 
For most applications, the commonly proposed estimators converge in probability 
to the true parameter at rate n-‘12 and the standardized estimators are asymptoti- 
cally normal. These estimators can be evaluated using expectations calculated 
from the approximating normal distributions. We shall denote such expectations 
by the symbol Er. 

Suppose 6(@ - 0) converges to a iV[p(t9), a’(e)] distribution where p and a2 
are continuous functions of 8 in a neighborhood of the true parameter value. 
Then, first-order mean square error E,(e - 8)2 is given by [~2(0)+a2(8)]n-1. 
We define Yi to be the set of all such asymptotically normal estimators and 
consider the problem of finding the best estimator in Sp,. Under certain regularity 
conditions on the density f, the inverse information term can be shown to be a 
lower bound for the approximate mean square error. That is, for all fi in P’i: 

where 

I a%gf(Y, e) x(e) = -1im;E 
ae2 

is the limiting average information term for f. 
An estimator in YJ whose approximate mean square error attains the lower 

bound is called asymptotically efficient. Typically, the standardized maximum 
likelihood estimator fi( 8, - 8) converges to a N[O, h-‘(e)] distribution and 
hence 8, is asymptotically efficient. Of course, any other estimator which is 
asymptotically equivalent to 6, will share this property; for example, if fi( 8, - 
e) converges in probability to zero, then 6 and 6, will be approximated by the 
same normal distribution and have the same first-order properties. Under suitable 
smoothness conditions, minimum distance estimators, Bayes estimators from 
arbitrary smooth priors, and linearized maximum likelihood estimators are all 
asymptotically efficient. [See, for example, Rothenberg (1973).] It seems natural to 
compare these estimators using second-order asymptotic approximations. 
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Let 8 be an estimator which, after standardization, possesses an asymptotic 
expansion of the form: 

fi(s-s)=xn+$+++$ 
n 

(4.1) 

where X,,, A,, and B,, are random variables with bounded moments and limiting 
distributions as n tends to infinity. Suppose the limiting distribution of X,, is 
N[O,A-l(8)] and A,, B,,, and R, are well behaved so that 8 is asymptotically 
efficient and has a distribution which can be approximated by a valid o(n-‘) 
Edgeworth expansion. We shall denote by YZ the set of all such estimators. 
Expectations calculated from the second-order approximate distributions will be 
denoted by E,; thus, E,(B - 8)* is the mean square error when the actual 
distribution of 8 is replaced by the o(n-‘) Edgeworth approximation. These 
“second-order” moments are equivalent to those obtained by Nagar’s technique 
of term-by-term expectation of the stochastic expansion (4.1). 

4.2. Optimality criteria 

Since the maximum likelihood estimator has minimum (first-order) mean square 
error in the set Y1, it is natural to ask whether it has minimum second-order mean 
square error in Y;. The answer, however, is no. If 8 is an estimator in Y1 and 8, is 
some constant in the parameter space, then &l - n-l)+ e,K’ is also in Y; and 
has lower mean square error than 6 when r3 is close to 0,. Thus, there cannot be a 
uniformly best estimator in $ under the mean square error criterion. 

Following the traditional exact theory of optimal inference [for example, 
Lehmann (1959, ch. l)], two alternative approaches are available for studying 
estimators in Y;. We can give up on finding a “best” estimator and simply try to 
characterize a minimal set of estimators which dominate all others; or we can 
impose an unbiasedness restriction thus limiting the class of estimators to be 
considered. The two approaches lead to similar conclusions. 

When comparing two estimators in YZ, it seems reasonable to say that 8, is as 
good as f& if E2(& - S)* 5 E,(8, - 0)* for all 8. If the inequality is sometimes 
strict, we shall say that e2 is dominated by 6,. When searching for a good 
estimator, we might reasonably ignore all estimators which are dominated. 
Furthermore, nothing is lost by excluding estimators which have the same mean 
square error as ones we are keeping. Suppose .$ is a subset of Y1 such that, for 
every estimator excluded, there is an estimator included which is as good. Since, 
in terms of mean square error, one cannot lose by restricting the search to pZ, 
such a set is called essentially complete. The characterization of (small) essentially 
complete classes is, according to one school of thought, the main task of a theory 
of estimation. 
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Unfortunately, essentially complete classes are typically very large and include 
many unreasonable estimators. If one is willing to exclude from consideration all 
estimators which are biased, a great simplification occurs. Although all the 
estimators in $ are first-order unbiased, they generally are not second-order 
unbiased. Let 0, be an estimator in 97;. Its expectation can be written as: 

b (e) E&) = 8 + r n +o(n-2). 

Although b, will generally depend on the unknown parameter, it is possible to 
construct a second-order unbiased estimator by using the estimated bias function. 
Define 

e;=dr_ br(8r) 
n 

to be the bias-adjusted estimator based on 8,. If b,(8) possesses a continuous 
derivative, the bias-adjusted estimator has a stochastic expansion 

where b: is the derivative of b, and R* is a remainder term satisfying the regularity 
condition (3.8). Thus, &* is a second-order unbiased estimator in Y2. All estima- 
tors in Y2 with smooth bias functions can be adjusted in this way and hence we 
can construct the subset .Y2* of all second-order unbiased estimators. If unbiased- 
ness is a compelling property, the search for a good estimator could be restricted 
to .Y** . 

4.3. Second -order eficient estimators 

In the larger class 9’i of all (uniformly) asymptotically normal estimators, the 
maximum likelihood estimator 8, is first-order minimum variance unbiased; it 
also, by itself, constitutes an essentially complete class of first-order minimum 
mean square error estimators. The extension of this result to the set Y2 is the basis 
for the so-called “second-order efficiency” property of maximum likelihood 
estimators. Under certain regularity conditions (which take pages to state), it is 
possible to prove a theorem with the following conclusion: 

The bias-adjusted maximum likelihood estimator 

e,t;=S,_ ‘M(‘M) 
n (4.2) 
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has smallest second-order variance among the set Y;* of second-order unbiased 
estimators possessing o( n- ‘) Edgeworth expansions. Furthermore, the class yM 
of all estimators of the form: 

&L) e, + - 
n ’ (4.3) 

where c is any smooth function, is essentially second-order complete in Y;. 

For formal statements and proofs of such a theorem under i.i.d. sampling, the 
reader is directed to Ghosh, Sinha, and Wieand (1980) and Pfanzagl and 
Wefelmeyer (1978a). 

This basic result of second-order estimation theory does not say that the 
maximum likelihood estimator is optimal. Indeed, it does not say anything at all 
about 4, itself. If one insists on having an unbiased estimator, then the adjusted 
MLE 8; is best. Otherwise, the result implies that, in searching for an estimator 
with low mean square error (based on second-order approximations to sampling 
distributions), nothing is lost by restricting attention to certain functions of 8,. 
The choice of an estimator from the class PM depends on one’s trade-off between 
bias and variance; or, from a Bayesian point of view, on one’s prior. Although 
commonly referred to as a result on second-order eficiency, the theorem really 
says no more than that 6$, is second-order sufficient for the estimation problem at 
hand. 

Of course, the second-order optimality properties of the maximum likelihood 
estimator are shared by many other estimators. If, for c( .) ranging over the set of 
smooth functions, the class of estimators 6 + c(8)n-’ is essentially complete in 
Y’,, then fi is said to be second-order efficient. In addition to the MLE, any Bayes 
estimate calculated from a symmetric loss function and a smooth prior is 
second-order efficient. Any estimator possessing the same o(n-‘) Edgeworth 
expansion as an estimator in. pM is also second-order efficient. 

Although the set of second-order efficient estimators is large, it does not include 
all first-order efficient estimators. Linearized maximum likelihood and minimum 
distance estimators are generally dominated by functions of Bayes and ML 
estimators. Indeed, most common procedures used to avoid maximizing the 
likelihood function in nonlinear models turn out to be second-order inefficient. 
For example, as pointed out by Akahira and Takeucbi (1981), two-stage and 
three-stage least squares estimators in overidentified simultaneous equations 
models with normal errors are dominated by adjusted limited information and 
full information maximum likelihood estimators. 

A full characterization of the set of second-order efficient estimators is difficult. 
However, it is interesting to note that, although the single iteration method of 
scoring (linearized maximum likelihood) does not generally lead to second-order 
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efficient estimators, a two-iteration scoring procedure does. Since the line of 
reasoning is widely used in the literature, a sketch of the argument may be 
worthwhile. Suppose the logarithmic likelihood function L( 8) = logf(y, 8) pos- 
sesses well-behaved derivatives so that valid stochastic expansions can be devel- 
oped. In particular, for r =l, 2, and 3, define L, = d’L(B)/d0’; we assume L,/n 
converges to the constant A, as n approaches infinity and that the standardized 
derivatives &( L,/n - A,) have limiting normal distributions. Let Jo be some 
consistent estimator such that &(&, - 8,) has a limiting distribution. Consider 
the following iterative procedure for generating estimates starting from 8,: 

Ll@ ) ~,+,=~,-4 
L2(%) ’ 

s=o,1,2 ).... 

Assuming an interior maximum so that L,($,) = 0, we can expand by Taylor 
series around 13~ obtaining: 

t+l- M s M 

e =e _e _ L,(BM)(Bs_8M)+tL,(BM)(B,-8,)‘+ ..* 

L,(8,)+L,(B)(8,-8,)+ ... 

= L&t&t - ‘Ml* + . . . 

2L2(BM) 

d&s,e,)‘+ . . . . 

2 

If h,(B, - 8,) is of order Ki/‘, G(B, - 0,) is of order n-l/* and &(8,- 8,) 
is of order n- 3’2 Thus, the second iterate is second-order equivalent to 8, and . 
the first iterate is not. The first iterate is second-order efficient only if h, = 0 or if 
fiO is asymptotically efficient. 

4.4. Dejiciency 

Second-order inefficient estimators are not necessarily poor, since the efficiency 
loss may be quite small. It is therefore useful to get an idea of the magnitudes 
involved. Hodges and Lehmann (1970) propose an interesting measure of * 
second-order inefficiency. Let 8, and a2 be two asymptotically efficient estimators 
in YZ and consider their bias-adjusted variants 

e: = d1 bl(Bl) 
n 

and @=8,-!@d_ 
n 
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Suppose that f3: is second-order optimal and the two bias-adjusted estimators 
have second-order variances of the form: 

E,(W)*=& [1+ $q+o(n-2,. 

E2(@ - fl)’ = &j 
[1+ +]+*(,-2,, 

where the common asymptotic variance is the inverse information term X1 and 
* B2(0) 2 B,(O) for all 8. The deficiency of f3, is defined to be the additional 

observations A needed, when using 6, , * to obtain the same precision as when using 
f3:. That is, A is the solution of: 

Solving, we find: 

A = B2(e)- B,(e)+o(n+). (4.4) 

Thus, deficiency is approximately n times the proportional difference in second- 
order variance. 

Although deficiency is defined in terms of the bias-adjusted estimators, it can 
be calculated from the unadjusted estimators. If 8, is second-order efficient and 
n(6, - 8,) has a limiting distribution with variance V, the deficiency of 0; is I/X. 
The proof is based on the fact that n(e,* - f3:) must be asymptotically uncorre- 
lated with fi(r3: - 6’); otherwise, a linear combination of 8: and 8; would have 
smaller second-order variance than 0:. Hence using o(n- ‘) Edgeworth ap- 
proximations to compute moments: 

Var( e;) -Var( e:) = Var( e; - e:) 

=-$Var[n(B,-B,)+b,(B,)-h,(B,)] 

=~Var[~(82-Bl)]+~(n2). 

This result implies that, as far as deficiency is concerned, the key feature which 
distinguishes the estimators in Y2 is the n -‘I2 term in their stochastic expansions. 

4.5. Generalizations 

Since the results on second-order efficiency presented in this section have been 
expressed in terms of Edgeworth expansions, they do not apply to estimation 
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problems for discrete probability distributions. However, the theory can be 
generalized to include the discrete case. Furthermore, there is no need to restrict 
ourselves to one-parameter problems under quadratic loss. Pfanzagl and 
Wefelmeyer (1978a) develop a general theory of multiparameter second-order 
estimation efficiency for arbitrary symmetric loss functions. When loss is a 
smooth function of the estimation error, both continuous and discrete distribu- 
tions are covered. The conclusions are similar to the ones reported here: the set 
~7~ of maximum likelihood estimators adjusted as in (4.3) constitute an essen- 
tially complete class of estimators possessing stochastic expansions to order n-l. 
Bayes and other estimators having the same o(n-‘) stochastic expansions share 
this second-order efficiency property. Although general proofs are available only 
for the case of simple random sampling, it is clear that the results have much 
broader applicability. 

The fact that the second-order optimality properties of maximum likelihood 
and Bayes estimators hold for arbitrary symmetric loss functions is rather 
surprising. It suggests that there is no additional information in the third and 
fourth cumulants that is relevant for the second-order comparison of estimators. 
In fact, it has been shown by Akahira and Takeuchi (1981) that all well-behaved 
first-order efficient estimators necessarily have the same skewness and kurtosis to 
a second order of approximation. The o(n-‘) Edgeworth expansions for the 
estimators in Y; differ only by location and dispersion. Hence, for the purpose of 
comparing estimators on the basis of second-order approximations to their 
distributions, nothing is lost by concentrating on the first two moments. 

Since the second-order theory of estimation is based on asymptotic expansions, 
the results can be relied on only to the extent that such expansions give accurate 
approximations to the true distributions. Clearly, if the tail behavior of estimators 
is really important, then the second-order comparisons discussed here are unlikely 
to be useful: there is no reason to believe that Edgeworth-type approximations 
are very accurate outside the central ninty percent of the distribution. Further- 
more, in many cases where two asymptotically efficient estimators are compared, 
the bias difference is considerably larger than the difference in standard devia- 
tions. This suggests that correction for bias may be more important than 
second-order efficiency considerations when choosing among estimators. 

5. Second-order comparisons of tests 

5.1. General approach 

The theory of second-order efficient tests of hypotheses parallels the theory for 
point estimation. Again, Edgeworth approximations are used in place of the 
traditional (first-order) asymptotic approximations to the distributions of sample 
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statistics. We shall consider the case where the probability law for the observed 
data depends on 8, a q-dimensional vector of parameters which are to be tested, 
and on w, a p-dimensional vector of nuisance parameters. The null hypothesis 
0 = 0, is examined using some test statistic, T, where large values are taken as 
evidence against the hypothesis. The rejection region T > t is said to have size a if 

supPr[T> t] = a, 
w 

when 8 = do; the constant t is called the critical value for the test. The quality of 
such a test is measured by its power: the probability that T exceeds the critical 
value when the null hypothesis is false. 

Often the exact distribution of T is not known and the critical value is 
determined using the asymptotic distribution for large sample size n. Suppose, for 
example, that under the null hypothesis: 

Pr[TIx]=F(x)+o(n’), 

where the approximate distribution function F does not depend on the unknown 
parameters. In most applications F turns out to be the chi-square distribution 
with q degrees of freedom, or, when q = 1, simply the standard normal. The 
asymptotic critical value t, for a test of size a is the solution to the equation 
F( t,) = 1 - a. The test which rejects the null hypothesis when T > t, is asymptoti- 
cally similar of level a; that is, its type-1 error probability, to a first order of 
approximation, equals a for all values of the nuisance parameter w. 

To approximate the power function using asymptotic methods, some normali- 
zation is necessary. The test statistic T typically has a limiting distribution when 
the null hypothesis is true, but not when the null hypothesis is false. For most 
problems, the probability distribution for T has a center which moves off to 
infinity at the rate fill0 - &,ll and power approaches unity at an exponential rate 
as the sample size increases. Two alternative normalization schemes have been 
proposed in the statistical literature. One approach, developed by Bahadur (1960, 
1967) and applied by Geweke (1981a, 1981b) in econometric time-series analysis, 
employs large deviation theory and measures, in effect, the exponential rate at 
which power approaches unity. The other approach, due to Pitman and developed 
by Hodges and Lehmann (1956) and others, considers sequences where the true 
parameter 9 converges to 0, and hence examines only local or contiguous 
alternatives. We shall restrict our attention to this latter approach. 

The purpose of the analysis is to compare competing tests on the basis of their 
abilities to distinguish the hypothesized value 0, from alternative values. Of 
greatest interest are alternatives in the range where power is moderate, say 
between 0.2 and 0.9. Outside that region, the tests are so good or so poor that 
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comparisons are uninteresting. Therefore, to get good approximations in the 
central region of the power function, it seems reasonable to treat &(S - 0,) as a 
vector of moderate values when doing the asymptotics. The local approach to 
approximating power functions finds the limiting distribution of the test statistic 
T, allowing the true parameter value fl to vary with n so that 6(0 - O,,) is always 
equal to the constant vector 6. Under such a sequence of local alternatives, the 
rejection probability approaches a limit: 

lim Pr[T> t,] =+(a), 
“403 (54 

which is called the local power function. Actual power would be approximated by 
a,[&((3 - &,)I. The limit (5.1) depends, of course, on 19,,, w, and t, in addition to 
6; for notational simplicity, these arguments have been suppressed in writing the 
function 7rr. 

For many econometric inference problems, there are a number of alternative 
tests available, all having the same asymptotic properties. For example, as 
discussed by Engle in Chapter 13 of this Handbook, the Wald, Lagrange 
multiplier, and likelihood ratio statistics for testing multidimensional hypotheses 
in smooth parametric models are all asymptotically &i-square under the null 
hypothesis and have the same limiting noncentral &i-square distribution under 
sequences of local alternatives. That is, all three tests have the same asymptotic 
critical value t, and the same local power functions. Yet, as Bemdt and Savin 
(1977) and Evans and Savin (1982) point out, the small-sample behavior of the 
tests are sometimes quite different. It seems reasonable, therefore, to develop 
higher-order asymptotic expansions of the distributions and to use improved 
approximations when comparing tests. 

Suppose the probability distribution function for T can be approximated by an 
Edgeworth expansion so that, under the null hypothesis: 

(5.2) 

Since F is just the (first-order) limiting distribution, the approximation depends 
on the unknown parameters only through the functions P and Q. Using these 
functions and parameter estimates 8 and &, a modified critical value, 

can be calculated so that, when the null hypothesis is true: 

(5.3) 

Pr[T>t,*] =a+o(n-‘), 
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for all values of w. The critical region T > t, * is thus second-order similar of level 
(Y. Algorithms for determining the functions g and h from P and Q are given by 
Cavanagh (19833 and Pfanzagl and Wefelmeyer (1978b). The function g is simply 
minus P; the function h depends on the method employed for estimating the 
unknown parameters appearing in g. In the special (but common) case where P is 
zero, h is simply minus Q. 

If the distribution function for T possesses a second-order Edgeworth expan- 
sion under a sequence of local alternatives where fi( 13 - 13,) is fixed at the value 
C as n approaches infinity, the rejection probability can be written as: 

QT@) + b(S) Pr[T>t,*] =n,(6)+~;; -=7$(B), 
n (5.4) 

where the approximation error is o(n-‘). The function rr; is the second-order 
local power function for the size-adjusted test; again, for notational convenience, 
the dependency on f$, w, and t, is suppressed. By construction, r:(O) = (Y. 

Suppose S and T are two alternative asymptotically equivalent test statistics 
possessing Edgeworth expansions. Since the two tests based on the asymptotic 
critical value t, will not usually have the same size to order n-‘, it is not very 
interesting to compare their second-order power functions. It makes more sense 
to construct the size-adjusted critical values tiJ and t; and to compare tests with 
the correct size to order n-‘. If rn; 2 r; for all relevant values of 6 and w, then 
the size-adjusted test with rejection region T > t;F is at least as good as the test 
with rejection region S > tz. If the inequality is sometimes strict, then the test 
based on T dominates the test based on S. A second-order similar test of level Q: is 
said to be second-order efficient if it is not dominated by any other such test. 

5.2. Some results when q = 1 

When a single hypothesis is being tested, approximate power functions for the 
traditional test statistics can be written in terms of the cumulative normal 
distribution function. If, in addition, only one-sided alternatives are contem- 
plated, considerable simplification occurs and a comprehensive theory of second- 
order optimal tests is available. The pioneering work is by Chibisov (1974) and 
Pfanzagl (1973); the fundamental paper by Pfanzagl and Wefelmeyer (1978b) 
contains the main results. More elementary expositions can be found in the 
survey papers by Pfanzagl(l980) and Rothenberg (1982) and in the application to 
nonlinear regression by Cavanagh (1981). 

Suppose f3 is a scalar parameter and the null hypothesis 6’ = /3, is tested against 
the alternative t9 > 0,. As before, w is a vector of unknown nuisance parameters 
not involved in the null hypothesis. We consider test statistics whose distributions 
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are asymptotically normal and possess second-order Edgeworth approximations. 
We reject the null hypothesis for large values of the test statistic. 

The Wald, Lagrange multiplier, and likelihood ratio principles lead to asymp- 
totically normal test statistics when the distribution function for the data is well 
behaved. Let L(B, w) be the log-likelihood function and let L,(t9, w) be its 
derivative with respect to 8. Define (8, ~2) and (r3,,, ijo) to be the unrestricted and 
restricted maximum likelihood estimates, respectively. If &( 8 - 0) has a limiting 
N[O, a2(8, w)] distribution, then the Wald statistic for testing t9 = t3, is: 

w= GM-4) 
u&q . 

The Lagrange multiplier statistic is: 

the likelihood ratio statistic is: 

LR= ~~[L(B,;)-L(8,,t,)]“‘, 

where the sign is taken to be the sign of W. 
Under suitable smoothness assumptions, all three test statistics have limiting 

N( 6/u, 1) distributions under sequences of local alternatives where 0 = 0, + S/&z. 
Hence, if one rejects for values of the statistic greater than t,, the upper (Y 
significance point for a standard normal, all three tests have the local power 
function @[6/a - t,]. This function can be shown to be an upper bound for the 
asymptotic power of any level (Y test. Thus the three tests are asymptotically 
efficient. 

Using (5.3), any asymptotically efficient test of level cy can be adjusted so that it 
is second-order similar of level a. Let 7 be the set of all such size-adjusted tests. 
Any test in Y has a power function which can be expanded as in (5.4). Since all 
the tests in rare asymptotically efficient, the leading term in the power function 
expansion is given by @(6/a - t,). It can be shown that the next term +( S)/fi 
is also independent of the test statistic T. Power differences among the tests in 9 
are of order n- ‘. Furthermore, there is an upper bound on the term 6,(6)/n. For 
any asymptotically efficient size-adjusted test based on a statistic T, the local 
power function can be written as: 

7$(8) = 7r(S)+- 4s) + W) c(W~ - u2+ W) - - 
hi n n 

+ o(Ki), (5.5) 
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where c(S) and d&S) are non-negative. The 
determined by the likelihood function and the 
order, power depends on the test statistic T only 
function d,. 

functions rr, a, b, and c are 
significance level (Y. To second 
through the constant 6, and the 

The first three terms of (5.5) constitute the envelope power function: 

n*(s)=n@)+- - a@) + b(6) 
&i n’ 

which is an upper bound to the (approximate) power of any test in 7. A test 
based on T is second-order efficient if, and only if, dT(6) is identically zero. If 
c(6) is identically zero, all second-order efficient tests have the same power curve 
a*(6) to order n -l. If c(6) > 0, second-order efficient tests have crossing power 
curves, each tangent to n*(S) at some point 6,. 

In any given one-tailed, one-parameter testing problem, two key questions can 
be asked. (i) Is c( 6) identically zero so that all second-order efficient tests have the 
same power function? (ii) Is the test statistic T second-order efficient and, if so, 
for what value 6, is it tangent to the envelope power curve? The classification of 
problems and test statistics according to the answers to these questions is 
explored by Pfanzagl and Wefelmeyer (1978b). The value of c depends on the 
relationship between the first and second derivatives of the log-likelihood func- 
tion. Generally, tests of mean parameters in a normal linear model have c = 0; 
tests of mean parameters in non-normal and nonlinear models have c > 0. Often 
c( 6) can be interpreted as a measure of curvature or nonlinearity. Tests based on 
second-order inefficient estimators have positive d and are dominated. The 
Lagrange multiplier, likelihood ratio, and Wald tests (based on maximum likeli- 
hood estimators) are all second-order efficient. The tangency points for the three 
tests are 6,, = 0, 6,, = uta, and 6, = 2at,. Thus, the LM test dominates all 
others when power is approximately a; the Wald test dominates all others when 
power is approximately 1 - a; the LR test dominates at power approximately 
one-half. 

When the alternative hypothesis is 8 # 0, and 6 = h( 13 - f3,) can be negative as 
well as positive, the theory of optimal tests is more complicated. If the test 
statistic T is asymptotically distributed as N( 6/u, l), it is natural to reject when T 
assumes either large positive or large negative values. Using the Edgeworth 
approximation to the distribution of T, one can find critical values t, and t, 
[generally functions of the data as in (5.3)] such that the test which rejects when T 
lies outside the interval (- t,, t2) is second-order similar of level a; that is, when 
e = 8,: 

(54 
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for all w. Indeed, for any statistic T, there are infinitely many pairs (ti, tz) 
satisfying (5.6) each yielding a different power curve. If, for example, tz is 
considerably greater than t,, power will be high for negative 6 and low for 
positive 6. Unless some restrictions are placed on the choice of rejection region, 
no uniformly optimal test is possible. 

If the null distribution of T were symmetric about zero, the symmetric rejection 
region with t, = t, would be a natural choice. However, since the Edgeworth 
approximation to the distribution of T is generally skewed, the symmetric region 
is not particularly compelling. Sargan (1975b), in the context of constructing 
approximate confidence intervals for structural coefficients in the simultaneous 
equations model, suggested minimizing the expected length t, + t, of the accep- 
tance region. Unfortunately, since the t, depend on the unknown parameters, he 
concludes that this criterion is nonoperational and, in the end, recommends the 
symmetric region. 

An alternative approach is to impose the restriction of unbiasedness. This is the 
basis of much traditional nonasymptotic testing theory [see, for example, 
Lehmann (1959, ch. 4)] and is commonly employed in estimation theory. A test is 
said to be unbiased if the probability of rejecting when the null hypothesis is false 
is always at least as large as the probability of rejecting when the null hypothesis 
is true. That is, the power function takes its minimum value when 6 = 13,. In the 
case q = 1, the condition that the test be locally unbiased uniquely determines t, 
and t, to second order. Size-adjusted locally unbiased Wald, likelihood ratio, and 
Lagrange multiplier tests are easily constructed from the Edgeworth expansions. 
If the curvature measure c(6) is zero, the three tests have identical power 
functions to order n- ‘; if c(6) # 0, the power functions cross. Again, as in the 
one-tailed case, the Wald test dominates when power is high and the LR test 
dominates when power is near one-half. However, the LM test is no longer 
second-order efficient; when c(6) f 0, one can construct locally unbiased tests 
having uniformly higher power. Details are given in Cavanagh and Rothenberg 
(1983). 

5.3. Results for the multiparameter case 

There does not exist a comprehensive theory of second-order optimality of tests 
when q > 1. However, numerous results are available for special cases. Peers 
(1981) Hayakawa (1975), and others have analyzed multidimensional null hy- 
potheses for arbitrary smooth likelihood functions. These studies have con- 
centrated on power differences of order n -l/‘. Fujikoshi (1973), Ito (1956, 1960), 
and Rothenberg (1977, 1981b) have investigated the normal linear model using 
expansions to order n-l. In this latter case, after adjustment for size, tests based 
on the Wald, likelihood ratio, and Lagrange multiplier principles (using maximum 
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likelihood estimates) are all second-order efficient. However, their power surfaces 
generally cross and no one test is uniformly best. 

The major findings from these studies do not concern differences in power, but 
differences in size. When q is large, the adjusted critical values (5.3) based on the 
Edgeworth approximation often differ dramatically from the asymptotic values. 
The null distributions of typical test statistics for multidimensional hypotheses are 
not at all well approximated by a &i-square. This phenomenon has been noted by 
Evans and Savin (1982), Laitinen (1978) Meisner (1979) and others. 

Consider, for example, the multivariate regression model Y = XII + V, where Y 
is an n X q matrix of observations on q endogenous variables, X is an n X K 
matrix of observations on K exogenous variables, and II is a K x q matrix of 
regression coefficients. The n rows of V are i.i.d. vectors distributed as N,(O, tin). 
Suppose the null hypothesis is that II’u = 0, for some K-dimensional vector a. The 
Wald test statistic is: 

T = aTlIb-‘ih 
a/( X/X)_‘a ’ 

where fi=(X’X)-‘X’Y and i?=Y’[Z-X(X’X)-‘X’]Y/(n-K). Define m= 
n - K. Then it is known that, for m 2 q, T is a multiple of an F-statistic. In fact, 
T( m - q + l)/mq is distributed as F with q and m - q + 1 degrees of freedom. 
The usual asymptotic approximation to the distribution of T is a &i-square with 
q degrees of freedom. The mean of T is actually mq/(m - q - l), whereas the 
mean of the &i-square is q; even if m is five times q, the error is more than twenty 
percent. Clearly, very large samples will be needed before the asymptotic ap- 
proximation is reasonable when many restrictions are being tested. 

For ~most testing problems, the exact distributions and the errors in the 
asymptotic approximation are unknown. However, it is reasonable to assume that 
higher-order asymptotic expansions will lead to improved approximations. The 
second-order Edgeworth approximation typically takes the simple chi-square 
form (3.12). In multivariate normal linear models (with quite general covariance 
structures allowing for autocorrelation and heteroscedasticity), the size-adjusted 
critical values (5.3) for the Wald, Lagrange multiplier, and likelihood ratio tests 
on the regression coefficients can be written as: 

r;CII=t 1+ 
I 

Yl + Yol, 
a 

I 

&=ta 1+ y2ratai, 
I n 

‘h=t, 1+ 
[ 

Yl + Yz 
zn 1 3 
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where t, is the upper a quantile for a &i-square distribution with q degrees of 
freedom. The coefficients yc,, yl, and yz depend on the particular problem; some 
examples are given in Rothenberg (1977,198lb). For this normal regression case, 
the likelihood ratio has the simplest correction since, to second order, the test 
statistic is just a multiple of a &i-square. It also turns out to be (approximately) 
the arithmetic average of the other two statistics. These adjusted critical values 
appear to be reasonably accurate when q/n is small (say, less than 0.1). Even 
when q/n is larger, they seem to be an improvement on the asymptotic critical 
values obtained from the &i-square approximation. 

Although the second-order theory of hypothesis testing is not yet fully devel- 
oped, work completed so far suggests the following conclusions. For moderate 
sample sizes, the actual significance levels of commonly used tests often differ 
substantially from the nominal level based on first-order asymptotic approxima- 
tions. Modified critical regions, calculated from the first few terms of an 
Edgeworth series expansion of the distribution functions, are available and have 
significance levels much closer to the nominal level. Unmodified Wald, likelihood 
ratio, and Lagrange multiplier test statistics, although asymptotically equivalent, 
often assume very different numerical values. The modified (size-adjusted) tests 
are less likely to give conflicting results. The formulae for the modified critical 
regions are relatively simple (for likelihood-ratio tests it typically involves a 
constant degrees-of-freedom adjustment); their use should be encouraged, espe- 
cially when the number of restrictions being tested is large. 

Once the tests have been modified so that they have the same significance level 
(to a second order of approximation), it is possible to compare their (approxi- 
mate) power functions. Here the differences often seem to be small and may 
possibly be swamped by the approximation error. However, when substantial 
differences do appear, the second-order theory provides a basis for choice among 
alternative tests. For example, in nonlinear problems, it seems that the 
likelihood-ratio test has optimal power characteristics in the interesting central 
region of the power surface and may therefore be preferable to the Lagrange 
multiplier and Wald tests. 

5.4. Confidence intervals 

The critical region for a test can serve as the basis for a confidence region for the 
unknown parameters. Suppose T(&,) is a test statistic for the q-dimensional null 
hypothesis 8 = 0, against the alternative 8 Z &,. Let t* be a size-adjusted critical 
value such that, when the null hypothesis is true, 

Pr[T(B,)>t*] =a+o(n-‘), 
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for all values of the nuisance parameters. If T(8,) is defined for all 8, in the 
parameter space, we can form the set C = { 8’: T( 0’) < t* } of all hypothesized 
values that are not rejected by the family of tests based on T. By construction the 
random set C covers the true parameter with probability 1 - (Y + o(n-i) and 
hence is a valid confidence region at that level. 

A good confidence region covers incorrect parameter values with low proba- 
bility. Thus, good confidence regions are likely to result from powerful tests. If 
the test is locally unbiased; then so will be the confidence region: it covers the true 
B with higher probability than any false value nearby. 

When q = 1, the results described in Section 5.2 can be applied to construct 
locally unbiased confidence regions for a scalar parameter. For example, one 
might use the locally unbiased Lagrange multiplier or likelihood ratio critical 
region to define a confidence set. Unfortunately, the sets of fl,, values satisfying 

-t,ILM(B,)rt, or -t,ILR(B,)rt,, 

are sometimes difficult to determine and need not be intervals. The Wald test, 
however, always leads to confidence intervals of the form 

c,= 
( 

e:e-21a(e,*;)Ie~e+I,(e,;,) , 
6 hi 1 

where t, and t, are determined by the requirement that the test be locally 
unbiased and second-order similar of level (Y. These critical values take the form: 

t 
2 

=t_ P(d4 + 4kk4 

6 n ’ 

where t is the asymptotic critical value satisfying 1 - G(t) = cw/2 and the func- 
tions p and q depend on the Edgeworth expansion of the test statistic. Since C, is 
easy to construct, it would be the natural choice in practice. 

6. Some examples 

6.1. Simultaneous equations 

Consider the two-equation model: 

Y, = (r_Yz + u; y,=t+u, W) 
where ar is an unknown scalar parameter, y, and y2 are n-dimensional vectors of 
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observations on two endogenous variables, and u and u are n-dimensional vectors 
of unobserved errors. The vector z = Ey, is unknown, but is assumed to lie in the 
column space of the observed nonrandom n x K matrix Z having rank K. The n 
pairs (u;, vi) are independent draws from a bivariate normal distribution with 
zero means, variances u,’ and cr,‘, and correlation coefficient p. 

The first equation in (6.1) represents some structural relationship of interest; 
the second equation is part of the reduced form and, in the spirit of limited 
information analysis, is not further specified. Additional exogenous explanatory 
variables could be introduced in the structural equation without complicating the 
distribution theory; additional endogenous variables require more work. We shall 
discuss here only the simple case (6.1). Exact and approximate distribution theory 
for general simultaneous equations models is covered in detail by Phillips in 
Chapter 8 of Volume I of this Handbook.6 Our purpose is merely to illustrate 
some of the results given in Sections 3-5 above. 

The two-stage least squares (2SLS) estimator & is defined as: 

(y- JGNyl --(u+ . z’u + U’NU 

Y;NY, z‘z + 2z’u + V’NV ’ 

where N = Z(Z’Z))‘Z’ is the rank-K idempotent projection matrix for the 
column space of Z. It will simplify matters if h is expressed in terms of a few 
standardized random variables: 

v'Nu U'NU 
ST_’ 

a”% ’ 
S=_ 

u,’ . 

The pair (X, Y) is bivariate normal with zero means, unit variances, and correla- 
tion coefficient p. The random variable s has mean Kp and variance K(l + p’); S 
has mean K and variance 2 K. The standardized two-stage least squares estimator 
is: 

dEfi -e-= x+ (a-4 
1+W/d+(w2) (6.2) 

6To simplify the analysis, Phillips (and others) transform the coordinate system and study a 
canonical model where the reduced-form errors are independent. Since the original parameterization is 
retained here, our formulae must be transformed to agree with theirs. 
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where p2 = Z/Z/CT,’ is often called the “concentr.ation” parameter. When p is large, 
d behaves like the N(O,l) random variable X. Note that the sample size n affects 
the distribution of d only through the concentration parameter. For asymptotic 
analysis it will be convenient to index the sequence of problems by p rather than 
the traditional n112. Although large values of p would typically be due to a large 
sample size, other explanations are possible; e.g. a very small value for u,‘. Thus, 
large ~1 asymptotics can be interpreted as either large n or small CJ asymptotics. 

Since the two-stage least squares estimator in our model is an elementary 
function of normal random variables, exact analysis of its distribution is possible. 
An infinite series representation of its density function is available; see, for 
example, Sawa (1969). Simple approximations to the density and distribution 
functions are also easy to obtain. If p is large (and K is small), the denominator in 
the representation (6.2) should be close to one with high probability. This suggests 
developing the stochastic power-series expansion: 

dzx+s-2xy + 4XY2-XS-2Ys+R 

P CL2 
(6.3) 

P 
3’ 

and using the first three terms (denoted by d’) to form a second-order Edgeworth 
approximation. Since R satisfies the regularity condition (3.8), the algorithms 
given in Section 3 (with p replacing n’/‘) are available. To order o(pP2), the first 
two moments of d’ are: 

the third and fourth cumulants are approximately 

k =_6p. 
3 

k = 12(l-t5P2) 
P’ 4 P2 . 

Substitution into (3.7) yields the Edgeworth-B approximation: 

pr J&5. & 

] 
( - )- ] OL <x 

aI4 

_@ x+ dx2+l-K) + x(K-l)(l-p2)+x3(3p2-I) 

P 2P2 1. 
(6.4) 

This result was obtained by Sargan and Mikhail (1971) and by Anderson and 
Sawa (1973) using somewhat different methods. 
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Calculations by Anderson and Sawa (1979) indicate that the Edgeworth ap- 
proximation is excellent when p2 is greater than 50 and K is 3 or less.’ The 
approximation seems to be adequate for any p* greater than 10 as long as K/p is 
less than unity. When K exceeds p, however, the approximation often breaks 
down disastrously. Of course, it is not surprising that problems arise when K/p is 
large. The terms s/p and S/p* are taken to be small compared to X in the 
stochastic expansion (6.3). When K is the same order as p, this is untenable and 
an alternative treatment is required. 

The simplest approach is to take advantage of the ratio form of d. Equation 
(6.2) implies: 

s-2xY xs 
X+------- <X 

P P 
2- 

=Pr[W(x)lx]. 

Since N is idempotent with rank K, s and S behave like the sum of K independent 
random variables. When K is large, a central limit theorem can be invoked to 
justify treating them as approximately normal. Thus, for any value of x and ~1, W 
is the sum of normal and almost normal random variables. The mean m(x) and 
variance a*(x) of W can be calculated exactly. Treating W as normal yields the 
approximation: 

Pr[dIx]-@ 

A better approximation could be obtained by calculating the third and fourth 
cumulants of (W - m)/a and using the Edgeworth approximation to the distri- 
bution of W in place of the normal. Some trial calculations indicate that high 
accuracy is attained when K is 10 or more. Unlike the Edgeworth approximation 
(6.4) applied directly to d ‘, Edgeworth applied to W improves with increasing K. 

Many other methods for approximating the distribution of d are available. 
Holly and Phillips (1979) derive the saddle-point approximation and conclude 
that it performs better than (6.4), particularly when K is large. Phillips (1981) 
experiments with fitting rational functions of the form (2.1) and reports excellent 
results. In both cases, the density function is approximated analytically and 
numerical integration is required for the approximation of probabilities. The 
Edgeworth approximation (6.4) generalizes easily to the case where there are 
many endogenous explanatory variables; indeed, the present example is based on 

‘Anderson and Sawa actually evaluate the Edgeworth-A form of the approximation, but the general 
conclusions presumably carry over to (6.4). 
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the paper by Sargan and Mikhail (1971) which covers the general case. Altema- 
tive approximation methods, like the one exploiting the ratio form of d, do not 
generalize easily. Likewise, Edgeworth approximations can be developed for 
estimators which do not have simple representations, situations where most other 
approximating methods are not applicable. 

Numerous estimators for (Y have been proposed as alternatives to two-stage 
least squares. The second-order theory of estimation described in Section 4 can be 
employed to compare the competing procedures. Consider, for example, Theil’s 
k-class of estimators: 

where M = Z - N. The maximum likelihood estimator is a member of this class 
when k,, - 1 is given by A, the smallest root of the determinental equation: 

This root possesses a stochastic expansion of the form: 

h = u’( N - N,)u + Alp-l + A2/c2 + . . . 
u ‘Mu 

where N, = z( z’z)-‘z’ and the Ai are stochastically bounded as I_L tends to infinity. 
The standardized k-class estimator can be written as: 

dca 
Ttdk-)= 

x+ (Sk/P) 
k 

1+t2y/d+(sk/~2) ’ 

where 

sk=Sf(l-k)?, 
U” 

Sk =S+(l- k)=, 
0,’ 

If sk and Sk are (stochastically) small compared to CL, d, can be expanded in a 
power series analogous to (6.3) and its distribution approximated by a second- 
order Edgeworth expansion. Since U’MU and u’it4u have means and variances 
proportional to n - K, such expansions are reasonable only if (n - K )( k - 1) is 
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small. We shall examine the special class where 

923 

k=lfuh--&, (6.5) 

for constants a and b of moderate size (compared to p). When a = b = 0, the 
estimator is 2SLS; when a = 1 and b = 0, the estimator is LIML. Thus our subset 
of k-class estimators includes most of the interesting cases. 

The truncated power-series expansion of the standardized k-class estimator is 
given by: 

d;=X+ 
Sk -2XY 

+ 
4XY2 + xs, - 2Ys, 

I-1 P2 
, 

its first two moments, to order p-2, are: 

E(d,)=p(l-a)(K-l)+b-l 
k 

P 
3 

Vartd;j+ (K-4)(1+3p2)+4p2+2b(1+2p2)-2a(l+ap2)(K-1) 

CL2 
7 

as long as the sample size n is large compared to the number K.s To order 
o(~-~), the third and fourth cumulants of d; are the same as given above for 
2SLS. This implies that all k-class estimators of the form (6.5) have the same 
skewness and kurtosis to second order. The o(p-‘) Edgeworth approximations 
differ only with respect to location and dispersion, as implied by the general result 
stated in Section 4.5. 

The mean square error for the standardized estimator d; is the sum of the 
variance and the squared mean. The expression is rather messy but depends on a 
and b in a very systematic way. Indeed, we have the following striking result first 
noted by Fuller (1977): the family of k-class estimators with a = 1 and b 2 4 is 
essentially complete to second order. Any other k-class estimator is dominated by 
a member of that family. 

The k-class estimator is unbiased, to second order, if and only if b =l+ 

(a - l)( K - 1). In that case, the variance becomes: 

I+ K(1-p2)+2p2+2p2(K-l)(u-1)2 

P2 
9 (6.6) 

‘When K/n is not negligible, an additional term is needed in the variance formula; the relative 
merits of the maximum likelihood estimator are reduced. Cf. Anderson (1977) and Morimune (1981). 
Sargan (1975a) and Kunitomo (1982) have developed an asymptotic theory for “large models” where 
K tends to infinity along with the sample size n. 
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which clearly is minimized when a = 1. The estimator with a = b = 1 is therefore 
best unbiased; it is second-order equivalent to the bias-adjusted MLE. The 
estimator with a = 0, b = 2 - K is also approximately unbiased; it is second-order 
equivalent to the bias-adjusted 2SLS estimator. From (6.6) the deficiency of the 
bias-adjusted 2SLS estimator compared to the bias-adjusted MLE is: 

,_y-)P2 =2(K_l)p21-r2 
w= r2 ’ 

where r2 = z’z/(z’z + rrcr,“) is the population coefficient of determination for the 
reduced-form equation. The number of observations needed to compensate for 
using the second-order inefficient estimator is greatest when K is large and the 
reduced-form fit is poor; that is, when Z contains many irrelevant or collinear 
variables. 

These results on the relative merits of alternative k-class estimators generalize 
to the case where the structural equation contains many explanatory variables, 
both endogenous and exogenous. If y, is replaced by the matrix Y, and (Y is 
interpreted as a vector of unknown parameters, the k-class structural estimator is: 

ii,= [Y,‘(Z-kM)YJ’Y;(z-kM)y,. 

Let one vector estimator be judged better than another if the difference in their 
mean square error matrices is negative semidefinite. Then, with X interpreted as 
the root of the appropriate determinantal equation, the family of k-class estima- 
tors (6.5) with a = 1 and b 2 4 is again essentially complete to second order; any 
other k-class estimator is dominated. The estimator with a = b = 1 is again best 
second-order unbiased. These results can be established by the same methods 
employed above, with matrix power-series expansions replacing the scalar expan- 
sions. 

The second-order theory of hypothesis testing can be applied to the simulta- 
neous equations model. The calculation of size-adjusted critical regions and 
second-order power functions is lengthy and will not be given here. However, the 
following results can be stated. Tests based on 2SLS estimates are dominated by 
likelihood based tests as long as K > 1. The curvature measure c(S) defined in 
Section 5 is zero for the problem of testing (Y = (me in the model (6.1). Hence, 
Wald, LM, and LR tests, after size correction, are asymptotically equivalent. In 
more complex, full-information models the curvature measure is nonzero and the 
power functions for the three tests cross. Detailed results on second-order 
comparisons of tests in simultaneous equations models are not yet available in 
print. Some preliminary findings are reported in Cavanagh (1981) and Turkington 
(1977). Edgeworth approximations to the distribution functions of some test 
statistics under the null hypothesis are given in Sargan (1975b, 1980). 
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6.2. Autoregressive models 

925 

Suppose the n + 1 random variables uO, ui, . . . , u, are distributed normally with 
zero means and with second moments: 

E(u,u,) = u2p”-“, -l<p<l. 

The ui are thus n + 1 consecutive observations from a stationary first-order 
autoregressiveprocess.Ifu=(u,,...,u,)’andu_,=(u,,...,u,_,)’aredefinedas 
n-dimensional column vectors, the model can be written in regression form: 

u=pu_,+&, 

where E is N(0, u,*I), with uE2 = a2(1 - p*)_ The least squares regression coefficient 
u’u_ i/ UL iu- 1 is often used to estimate p. Approximations to its sampling 
distribution are developed by Phillips (1977a, 1978). We shall consider here the 
modified estimator: 

I 
U’U-1 

p= uIiu_i+(u,2-4)/2 
(6.7) 

which treats the end points symmetrically. It has the attractive property of always 
taking values in the interval (- l,l). Since fi( fi - p) has a limiting normal 
distribution with variance 1 - p2, it is natural to analyze the standardized statistic 
which can be written as: 

T= J&-h-4 _ _cwz 
JiqT -ix &+:i-‘2 

where a = p//m and 

U/,E x=_. Y= 
uLlu_,+(u,2-&)/2-nu* u* - u; 

uu,& ' &hi 

Z=L 
2u2 . 

Even though X and Y are not sums of independent random variables, they have 
limiting normal distributions and possess r th order cumulants of order nipr12 for 
r 2 2. It seems reasonable to expect that the distribution of T can be approxi- 
mated by a valid Edgeworth expansion using the techniques developed in Section 
3. The truncated power series expansion for T can be written as: 

T,=X_ XY+aZ + XY2+aYZ 

6 n 
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The cumulants of T’ are very complicated functions of p, but can be approxi- 
mated to o( n- ‘) as long as p is not too close to one. Very tedious calculation 
yields the approximate first four cumulants: 

E(T’) = -2a; 7ff2 -2 

J;; 
Var(T’) =l+ 7, 

-6c~ 
k,=-- 

k = 6(10a2 -1) 

G’ 
4 

n . 

From the general formula (3.7), the Edgeworth-B approximation to the distri- 
bution function is: 

a(t2+1) 

\/r; 

+ t(l+4a2)+t3(1+6a2) 
4n l- (6.8) 

The Edgeworth approximation is based on the idea that the high-order cumu- 
lants of the standardized statistic are small. When (Y = 1 (that is, p = 0.7), the third 
cumulant is approximately -6/v% and the fourth cumulant is approximately 
54/n. A high degree of accuracy cannot be expected for sample sizes less than, 
say, 50. Numerical calculations by Phillips (1977a) and Sheehan (1981) indicate 
that the Edgeworth approximation is not very satisfactory in small samples when 
p is greater than one half. 

The poor performance of the Edgeworth approximation when p is large stems 
from two sources. First, when autocorrelation is high the distribution of 6 is very 
skewed and does not look at all like a normal. Second, the approximations to the 
cumulants are not accurate when p is near one since they drop “end point” terms 
of the form p”. The former difficulty can be alleviated by considering normalizing 
transformations which reduce skewness. 

A transformation which performs this task and is interesting for its own sake 
is: 

n+l. 

T*= 
n P-P 

l/(1-P’)/(n-1) . 

The numerator is the difference between the bias adjusted estimator and the true 
parameter value; the denominator is the estimated standard error. The ratio can 
be interpreted as a modified Wald statistic under the null hypothesis. Since T * 

has the power series expansion 

T*IT+ a(l+T2) + (1+2a2)T+(1+3a2)T3 

J;; 2n 
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its distribution can be approximated by reverting the series and using (6.8). The 
Edgeworth-B approximation to the distribution function is given by: 

a(1+x2) _ (1-2(r*)X+(l-(r*)X3 

G 2n I 

which is the Edgeworth approximation to a Student-r distribution. When p is 
large, T* is not centered at zero and a more complicated bias adjustment is 
needed. Otherwise, treating T * as a Student-t random variable with n degrees of 
freedom seems to give a reasonable approximation for moderate sample sizes. 

Many other approaches are available for approximating the distributions of 
sample statistics from autoregressive models. Anderson (1971, ch. 6) surveys some 
of the statistical literature. Alternative inverse trigonometric transformations are 
considered by Jenkins (1954), Quenouille (1948), and Sheehan (1981). Saddle- 
point methods are employed by Daniels (1956), Durbin (1980), and Phillips 
(1978). Various curve fitting techniques are also possible. For small values of p, all 
the methods seem reasonably satisfactory. When p is large, the general purpose 
methods seem to break down; ad hoc approaches which take into account the 
special features of the problem then are necessary. 

A slightly more complicated situation occurs when the u, are unobserved 
regression errors. Consider the linear model y = Xfi + u, where the n-dimensional 
error vector is autocorrelated as before; the n X k matrix of regressors are 
assumed_ nonrandom. Let fi = (X/X)-‘X’y be the least squares estimator of /3 
and let fi be the maximum likelihood estimator.’ The two n-dimensional residual 
vectors are defined as: 

ii=y-Xb and ti=y-Xb; 

their lagged values are: 

fi_t= y-r- X_$ and ir_,=y_,- X-,/I?, 

where y _ 1 and X_ r are defined in the obvious way. We assume observations on 
the variables are available for period 0, but are not used in estimating & this 
makes the notation easier and will not affect the results. 

Two alternative estimators for p are suggested. The residuals ic could be used in 
place of u in (6.7); or the residuals ic could be used. For purposes of comparison, 

9Any estimator asymptotically equivalent to the MLE will have the same properties. For 
might be the generalized least squares estimator based on some consistent estimator for p. 

example, /? 
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the end-point modifications play no role so we shall consider the two estimators 

fj= ii%, ix_, 
G’,ii_, 

and $=-----. 
ic’,ir_, 

Both are asymptotically efficient, but fi dominates to second order since it is based 
on an efficient estimator of p. Sheehan (1981) calculates the deficiency of the 
bias-adjusted estimator based on the least-squares residuals. He shows that the 
deficiency is equal to the asymptotic variance of n( p - b) divided by the asymp- 
totic variance of fi(fi - p). 

The computation of these variances is lengthy, but the basic method can be 
briefly sketched. By definition, X’ii = 0 and ti = ic - X( b - B). Furthermore, the 
maximum likelihood normal equations imply that (X - pX_ i)‘( u - fiu_ i) = 0. 
After considerable manipulation of these equations, the standardized difference in 
estimators can be written, to a first order of approximation, as: 

n(r,+)=- ir’;ti_, [is_, - ii’ic_, +j+-i’,i-_, - iLliLl)] 

=--$(~-~)~(pxx~-x’x)(B-iB). 

Defining the K X K matrices: 

A= X’(X-pX_,), 

l’=E@-&(B-&‘=(XW)-tX’ZX(X’X)-*-(X’,PX)-i, 

where 2 = E(uu’), deficiency has the simple expression: 

d = trAVAV+trA’VAk’ 

p2(1- p2)c4 * 
(6.9) 

In the special case where @ is a scalar and the single regressor vector x is itself 
an autoregressive process with autocorrelation coefficient r, the deficiency for- 
mula simplifies to: 

which is bounded by 8p2/(1 - p2). For example, when both u and x have 
autocorrelation coefficients near 0.7, the use of least squares residuals in place of 
maximum likelihood residuals is equivalent to throwing away eight observations. 
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6.3. Generalized least squares 
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Consider the linear regression model: 

y=xp+u, (6.10) 

where X is an n x K matrix of nonrandom regressors and u is an n-dimensional 
vector of normal random errors with zero mean. The error covariance matrix is 
written as E( uu’) = 52-l, where the precision matrix Q depends on the vector w of 
p unknown parameters. For a given estimator Li, the estimated precision matrix is 
h = ti( cj). The generalized least squares (GLS) estimator based on the estimate ij 
is: 

#f3 = ( x’i2x)-1x’L?y. (6.11) 

Under suitable regularity conditions on X and 52, the standardized estima- 
tor fi(fl- p) is asymptotically normal and possesses a valid second-order 
Edgeworth expansion as long as fi(; - o) has a limiting distribution. Further- 
more, since the asymptotic distribution of &( B - /3) does not depend on which 
estimator D is used, all such GLS estimators are first-order efficient. It therefore 
follows from the general proposition of Akahira and Takeuchi that they all must 
have the same third and fourth cumulants up to o( n ‘). Since the estimator using 
the true w is exactly normal, we have the surprising result: to a second order of 
approximation, all GLS estimators based on well-behaved estimates of w are 
normally distributed. 

It is possible to develop o( nP2) expansions for generalized least squares 
estimators. Suppose G is an even function of the basic error vector u and has a 
probability distribution not depending on the parameter p. (The maximum 
likelihood estimator of w and all common estimators based on least squares 
residuals have these properties.) Let c be an arbitrary K-dimensional constant 
vector. Then, if c’s has variance u2: 

pr c’@-P) Ix 

1 [ 

=a x- 
X3-3X 
-a 

a 24n2 1 + o(np2), (6.12) 

where a/n2 is the fourth cumulant of c’(p -/3)/a. The assumption that b 
possesses finite moments is not necessary as long as fi has a stochastic expansion 
with a well-behaved remainder term; a2 and a then are the moments of the 
truncated expansion. The simplicity of the approximation (6.12) results from 
the following fact: If p is the GLS estimator using the true D and & satisfies the 
above-mentioned conditions, then a - fi is distributed independently of p, is 
symmetric around zero, and is of order n -l. Details and proofs are given in 
Rothenberg (1981a). 
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The variance a2 can be approximated to second order using Nagar’s technique. 
Taylor (1977) examines a special case of the GLS model where the errors are 
independent but heteroscedastic. Phillips (1977~) investigates the seemingly unre- 
lated regression model where s2 has a Kronecker product form. In this latter case, 
a very simple deficiency result can be stated. Suppose there are G regression 
equations of the form: 

_Y; = X,/3; + u,, i=l ,.*., G, 

where each regression has rn observations; y, and u, are thus m-dimensional 
vectors and Xi is an m X k, matrix of nonrandom regressors. For each observa- 
tion, the G errors are distributed as N,(O, 1); the m error vectors for the different 
observations are mutually independent. The G equations can be written as one 
giant system of the form (6.10) where n = Gm and K = Zk,. One might wish to 
compare the GLS estimator p (which could be used if 2 were known) with the 
GLS estimator j? based on some asymptotically efficient estimate 2. (A common 
choice for I.?;, would be ii;ic,/n where ii, is the residual vector from an OLS 
regression of v, on Xi.) Rothenberg (1981a) shows that the deficiency of c$ 
compared to c’@ is bounded by G + 1 and equals G - 1 in the special case where 
the X, are mutually orthogonal. Although the number of unknown nuisance 
parameters grows with the square of G, the deficiency grows only linearly. 

6.4. Departures from normality 

All of the above examples concern sampling from normal populations. Indeed, a 
search of the econometric literature reveals no application of higher-order 
asymptotic expansions that dispenses with the assumption of normal errors. This 
is rather odd, since the original intention of Edgeworth in developing his series 
was to be able to represent non-normal populations. 

In principle, there is no reason why second-order approximations need be 
confined to normal sampling schemes. Although discrete lattice distributions 
cause some difficulties, valid Edgeworth expansions can be developed for statistics 
from any continuous population distribution possessing sufficient moments. The 
basic Edgeworth-B approximation formula (3.7) does not assume normality of the 
original observations. The normality assumption enters only when the approxi- 
mate cumulants are computed using Nagar’s technique. 

In univariate problems, there seems to be no practical difficulty in dropping the 
normality assumption. The cumulants of the truncated statistic T’ will, of course, 
depend on the higher cumulants of the population error distribution, but the 
Edgeworth approximation should be computable. In fact, one could conduct 
interesting studies in robustness by seeing how the approximate distribution of an 
estimator varies as the error distribution departs from normality. 
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In multivariate problems, however, things become more complex. The cumu- 
lants of T’ will depend on all the third and fourth cross cumulants of the errors. 
Although the calculations can be made, the resulting approximation formula will 
be very difficult to interpret unless these cross cumulants depend in a simple way 
on a few parameters. The assumption that the errors are normal can be relaxed if 
a convenient multivariate distribution can be found to replace it. 

7. Conclusions 

Approximate distribution theory, like exact distribution theory, derives results 
from assumptions on the stochastic process generating the data. The quality of 
the approximation will not be better than the quality of the specifications on 
which it is based. The models used by econometricians are, at best, crude and 
rather arbitrary. One would surely not want to rely on a distribution theory unless 
the conclusions were fairly robust to small changes in the basic assumptions. 
Since most of the approximation methods discussed here employ information on 
the first four moments of the data whereas the usual asymptotic theory typically 
requires information only on the first two moments, some loss in robustness must 
be expected. However, if a rough idea about the degree of skewness and kurtosis 
is available, that information often can be exploited to obtain considerably 
improved approximations to sample statistics. 

Clearly, sophisticated approximation theory is most appropriate in situations 
where the econometrician is able to make correct and detailed assumptions about 
the process being studied. But the theory may still be quite useful in other 
contexts. In current practice, applied econometricians occasionally draw incorrect 
conclusions on the basis of alleged asymptotic properties of their procedures. 
Even if the specification of the model is incomplete, second-order theory can 
sometimes prevent such mistakes. For example, in the presence of correlation 
between regressors and errors in a linear model, the two-stage least squares 
estimator will be strongly biased if the number of instruments is large and the 
instruments explain little variation in the regressors. The bias formula derived in 
section 6.1 under the assumption of normality may be somewhat off if the errors 
are in fact non-normal. But the general conclusion based on the second-order 
theory is surely more useful than the assertion that the estimator is consistent and 
hence the observed estimate should be believed. 

In recent years there has developed among econometricians an extraordinary 
fondness for asymptotic theory. Considerable effort is devoted to showing that 
some new estimator or test is asymptotically normal and efficient. Of course, 
asymptotic theory is important in getting some idea of the sampling properties of 
a statistical procedure. Unfortunately, much bad statistical practice has resulted 
from confusing the words “asymptotic” and “approximate”. The assertion that a 
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standardized estimator is asymptotically normal is a purely mathematical proposi- 
tion about the limit of a sequence of probability measures under a set of specified 
assumptions. The assertion that a given estimator is approximately normal 
suggests that, for the particular problem at hand, the speaker believes that it 
would be sensible to treat the estimator as though it were really normal. 
Obviously, neither assertion implies the other. 

Accurate and convenient approximations for the distributions of econometric 
estimators and test statistics are of great value. Sometimes, under certain circum- 
stances, asymptotic arguments lead to good approximations. Often they do not. 
The same is true of second-order expansions based on Edgeworth or saddlepoint 
methods. A careful econometrician, armed with a little statistical theory, a modest 
computer, and a lot of common sense, can always find reasonable approximations 
for a given inference problem. This survey has touched on some of the statistical 
theory. The computer and the common sense must be sought elsewhere. 
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1. Monte Carlo experimentation 

1.1. Introduction 

At the outset, it is useful to distinguish Monte Carlo methods from distribution 
sampling even though their application in econometrics may seem rather similar. 
The former is a general approach whereby mathematical problems of an analyti- 
cal nature which prove technically intractable (or their solution involves prohibi- 
tively expensive labour costs) can be “solved” by substituting an equivalent 
stochastic problem and solving the latter. In contrast, distribution sampling is 
used to evaluate features of a statistical distribution by representing it numerically 
and drawing observations from that numerical distribution. This last has been 
used in statistics from an early date and important examples of its application are 
Student (1908), Yule (1926) and Orcutt and Cochrane (1949) inter alia. Thus, to 
investigate the distribution of the mean of random samples of T observations 
from a distribution which was uniform between zero and unity, one could simply 
draw a large number of samples of that size from (say) a set of one million evenly 
spaced numbers in the interval [O,l] and plot the resulting distribution. Such a 
procedure (that is, numerically representing a known distribution and sampling 
therefrom) is invariably part of a Monte Carlo experiment [the name deriving 
from Metropolis and Ulam (1949)] but often only a small part. To illustrate a 
Monte Carlo experiment, consider calculating: 

[‘f(X)dx = 1 (say), 
Jo 

(1) 

for a complicated function f(x) whose integral is unknown. Introduce a random 
variable Y E [a, b] with a known density p( 0) and define 17 = f(v)/p(v), then: 

(2) 

Thus, calculating E(q) will also provide Z and a “solution” is achieved by 
estimating E(q) [see Sobol’ (1974)], highlighting the switch from the initial 
deterministic problem (evaluate I) to the stochastic equivalent (evaluate the mean 
of a random variable). Quandt in Chapter 12 of this Handbook discusses the 
numerical evaluation of integrals in general. 

Rather clearly, distribution sampling is involved in (2), but the example also 
points up important aspects which will be present in later problems. Firstly, p( -) 
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As before, analytical calculation of E(k) is presumed intractable for the 
purposes of the illustration [but see, for example, Hurwicz (1950) Kendall (1954) 
White (1961), Shenton and Johnson (1965), Phillips (1977a) and Sawa (1978)] so 
that E(h) has to be estimated. Again, the choice of estimator of E(&) arises, with 
some potential distribution of outcomes (imprecision); only estimating E(&) at a 
few points in 0 x Fis referred to as a “pilot Monte Carlo Study” and can do 
little more than provide a set of numbers of unknown generality (specificity). 
Since E(&) depends on 8 and T, it must be re-estimated as 8 and T vary, but the 
dependence can be expressed in a conditional expectations formula: 

Et&I@, T) = G,(B,T), (7) 

and frequently, the aim of a Monte Carlo study is to evaluate G,(8, T) over 
0 x 7. However, since E(b) need not vary with all the elements of (B, T), it is 
important to note any invariance information; here, & is independent of us2 which, 
therefore, is fixed at unity without loss of generality. Also, asymptotic distribu- 
tional results can help in estimating E(&) and in checking the experiments 
conducted; conversely, estimation of E(h) checks the accuracy of the asymptotic 
results for T E 7. Thus, we note: 

(8) 

It is important to clarify what Monte Carlo can, and cannot, contribute 
towards evaluating G,(B, T) in (7). 

As perusal of recent finite sample distributional results will reveal (see, for 
example, Phillips, Chapter 8 in this Handbook, and Rothenberg, Chapter 15 in 
this Handbook), functions such as G,(B, T) tend to be extremely complicated 
series of sub-functions of 8, T [for the model (3)-(6), see, for example, the 
expansions in Shenton and Johnson (1965)]. There is a negligible probability of 
simulation results establishing approximations to G,(8, T) which are accurate in 
(say) a Taylor-series sense, such that if terms to O(T-“) are included, these 
approximate the corresponding terms of G,( .), with the remainder being small 
relative to retained terms [compare, for example, equations (68) and (69) below]: 
see White (1980a) for a general analysis of functional form mis-specification. 
Indeed, draconian simplifications and a large value of N may be necessary to 
establish results to even 0( T-l), noting that many asymptotic results are accurate 
to O(T-‘1’) anyway. Rather, the objective of establishing “analogues” of G,( .) 
[denoted by Hi(0, T)] is to obviate redoing a Monte Carlo for every new value of 
(0, T) E 0 X 7 (which is an expensive approach) by substituting the inexpensive 
computation of E(&]e, T) from HI(.). Consequently, one seeks functions H,( .) 
such that over 0 X 7, the inaccuracy of predictions of E( &) are of the same order 
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as errors arising from direct estimation of E(&) by distribution sampling for a 
prespecificd desired accuracy dependent on N (see, for example, Table 6.1 below). 
In practice, much of the inter-experiment variation observed in Monte Carlo can 
be accounted for by asymptotic theory [see, for example, Hendry (1973)], and as 
shown below, often ZZi( a) can be so formulated as to coincide with G,( .) for 
sufficiently large T. 

The approach herein seeks to ensure simulation findings which are at least as 
accurate as simply numerically evaluating the relevant asymptotic formulae. If the 
coefficients of (0, T) in G,( -) are denoted by B, then by construction, ZZi( .) 
depends on a (many + few) reparameterization y = h(p) defined by orthogonal- 
ising excluded effects with respect to included ones, yet ensuring coincidence of 
ZZi( *) and G,( *) for large enough T. For parsimonious specifications of y, 
simulation based ZZi( -) can provide simple yet acceptably accurate formulae for 
interpreting empirical econometric evidence. Similar considerations apply to other 
moments, or functions of moments, of econometric techniques. 

1.2. Simulation experiments 

While it is not a universally agreed terminology, it seems reasonable to describe 
Monte Carlo experiments as “simulation” since they will be conducted by 
simulating random processes using random numbers (with properties analogous to 
those of the random processes). Thus, for calculating I, one needs random 
numbers ui E [a, b] drawn from a distribution p( -) with ui = f( ui)/p( q). In the 
second example, random numbers e, - ZN(O,l) and y,, - ~V(0,(1- a*)-‘) are 
required (see Section 3.1 for a brief discussion of random number generators). 

The basic naive experiment (which will remain a major component of more 
“sophisticated” approaches) proceeds as follows. Consider a random sample 

(x 1 . . . x,,,) drawn from the relevant distribution d(-) where &xi) = p and 
E(x, - p)2 = a2; then: 

i=N-’ z xi hasE(X)=p and E(z-p)‘=a2/N. (9) 
i-l 

This well-known result is applied in many contexts in Monte Carlo, often for 
{ xi } which are very complicated functions of the original random variables. Also, 
for large N, X is approximately normally distributed around Z.L, and if 

6’=&i$t(~i-%)2, thenE(d2)=a2. 
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Consequently, unknown E(v) can be estimated using means of simple random 
samples, with an accuracy which is itself estimable (from N-b*) and which 
decreases (in terms of the standard error of 3, which has the same units as the 
{xi }) as fi increases, so that “reasonable” accuracy is easy to obtain, whereas 
high precision is hard to achieve. 

Returning to the two examples, the relevant estimators are: 

ii=+ ,f ui, withS(ii)=E(n)=z, 
r=l 

01) 

(12) 

where each d,. is based on an independent set of ( y,e, . . . er). Furthermore, letting 
E(&-E(t))* = V, then: 

jT= &j~l(6i-6)2 hasb(v)=Y (13) 

and 

&(E-E(h))* = V/N. (14 

Thus, the approximation Z ,5r,M(E(&), V/N) provides a basis for construct- 
ing confidence intervals and hypothesis tests about E(h). 

In what follows, an experiment usually denotes an exercise at one point in the 
space 8 x Y(generally replicated N times) with K experiments conducted in total. 
However, where the context is clear, “an experiment” may also denote the set of 
K sub-experiments investigating the properties of a single econometric method. 

1.3. Experimentation versus analysis 

The arguments in favour of using experimental simulations for studying econo- 
metric methods are simply that many problems are analytically intractable or 
analysis thereof is too expensive, and that the relative price of capital to labour 
has moved sharply and increasingly in favour of capital [see, for example, 
Summers (1965)]. Generally speaking, compared to a mathematical analysis of a 
complicated estimator or test procedure, results based on computer experiments 
are inexpensive and easy to produce. As a consequence, a large number of studies 
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There are several intermediate stages involved in achieving this objective. 
Firstly, as complete an analysis as feasible of the econometric model should be 
undertaken (see Section 2). Then, that model should be embedded in a Monte 
Carlo Model which exploits all the information available to the experimenter, and 
provides an appropriate design for the experiments to be undertaken (see Section 
3). Thirdly, simulation specific methods of intra-experiment control should be 
developed (see Section 4) and combined with covariance techniques for estimating 
response surfaces between experiments (Section 5). The simple autoregressive 
model in (3)-(6) is considered throughout as an illustration and in Section 6, 
results are presented relating to biases, standard errors and power functions of 
tests. Finally, in Section 7, various loose ends are briefly discussed including 
applications of simulation techniques to studying estimated econometric systems 
(see Fair, Chapter 33 in this Handbook) and to the evaluation of integrals [see 
Quandt, Chapter 12 in this Handbook and Kloek and Van Dijk (1978)]. Three 
useful background references on Monte Carlo are Goldfeld and Quandt (1972), 
Kleijnen (1974) and Naylor (1971). 

2. The econometric model 

2.1. The data generation process 

The class of processes chosen for investigation defines, and thereby automatically 
restricts, the realm of applicability of the results. Clearly, the class for which the 
analytical results are desired must be chosen for the simulation! For example, one 
type of data generation process (DGP) which is often used is the class of 
stationary, complete, linear, dynamic, simultaneous equations systems with (possi- 
bly) autocorrelated errors, or special cases thereof. It is obvious that neither 
experimentation nor analysis of such processes can produce results applicable to 
(say) non-stationary or non-linear situations, and if the latter is desired, the DGP 
must encompass this possibility. Moreover, either or both approaches may be 
further restricted in the number of equations or parameters or regions of the 
parameter space to which their results apply. 

Denote the parameters of the DGP by (0, T) (retaining a separate identity for 
T because of its fundamental role in finite sample distributions) with the 
parameter space 0 X 7. It is important to emphasize that by the nature of 
computer experimentation, the DGP is fully known to the experimenter and in 
particular the forms of the equations, the numerical values of their parameters 
and the actual values of the random numbers are all known. The use of such 
information in improving the efficiency of the experiments is discussed below, but 
its immediate use is that the correct likelihood function for the DGP parameters 
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where the Gi( 0) are the conditional expectations functions which have to be 
calculated (or the equivalent thereof for variances such as v, test powers, etc.). 
From the above discussion limiting functional forms for G,( .) and qz( e) (i.e. for 
large T) are given by /3r and T-l&!, respectively (and by T-‘V for V, etc.). 

Frequently, it will be feasible to establish that the +rl( 0) of relevance do not 
depend on certain parameters in 8, which may thereby be fixed without loss of 
generality but with a substantial saving in the cost of the experiments [see u,’ =l 
in the example (3)-(6)]. Such results can be established either by analysis [see, 
for example, Breusch (1979)] or by “pilot screening” as discussed below in 
Section 4 when an invariance is anticipated; in both cases, reduction to canonical 
form is important for clarifying the structure of the analysis [see, for example, 
Mariano (1982) and Hendry (1979)]. Conversely, it can occur that, unexpectedly, 
results are more general than claimed because of an invariance in an embedding 
model [e.g. see King (1980)]. As stressed earlier, other assumptions (such as zero 
intercepts) may be critical and care is required in establishing invariance, espe- 
cially in dynamic models. 

3. The Monte Carlo model 

3.1. Random numbers 

The data generation process of the Monte Carlo directly represents that desired 
for the econometric theory with two important differences. Firstly, the parameters 
(8, T) of the econometric DGP become design variables in the experiment and 
hence the numerical values chosen should be determined by considerations of 
simulation efficiency, an issue discussed in the following subsection. Secondly, as 
noted above, the random processes are simulated by random numbers intended to 
mimic the distributional properties of the former. This does not imply that the 
random numbers must be generated by an analogue of the random process 
[although physical devices have been used-see Tocher (1963)]. Rather, whatever 
method is adopted, the numbers so produced should yield a valid answer for the 
simulation (see the next subsection), the checking of which is one of the ad- 
vantages of Monte Carlo over pure distribution sampling. 

Generally, the basic random numbers in computer experiments have been 
uniformly distributed values in the unit interval (denoted ni - R(0, 1)) produced 
by numerical algorithms such as Multiplicative Congruential Generators (for a 
more extensive discussion of the numerical aspects of random number generation, 
see Quandt, Chapter 12 in this Handbook): 

Z r+l = bz; (mod r), i=O,1 m, ,-*-, 09) 



948 D. F. Hendry 

with n, = zr/r E [O,l]. The choices of b and r are important for avoiding 
autocorrelation, maintaining uniformity and producing the maximum feasible 
period m and if any study is likely to be dependent on the presence or absence of 
some feature in the ( ni }, it is clearly essential to test this on the numbers used in 
the experiment. The ( ni} from (19) are pseudo-random in that from knowing the 
algorithm and the “seed” z,,, they are exactly reproducible but should not be 
detectably non-random on a relevant series of tests. There is a very large literature 
on the topic of random number generation, which I will not even attempt to 
summarise, but useful discussions are provided by Hammersley and Handscomb 
(1964) Kleijnen (1974), Naylor (1971) and Tocher (1963) inter alia; also, the 
recent text by Kennedy and Gentle (1980) offers a clear and comprehensive 
coverage of this issue and Sowey (1972) presents a chronological and classified 
bibliography. 

Other distributions are obtainable from the uniform using the property that: 

Pr(niIk)=P(k)=kIl, (20) 

so that P(k) and k are interchangeable. 
To compute ei - q(e), if ‘k( *) is invertible then V’(ni) suffices since: 

Pr(e,<k)=Pr(*(e,)l*(k))=Pr(ni~*(k)) 

= P( *k(k)) = q(k) as required, if ni = P( e,). (21) 

For the exponential distribution, say 9( 0) = 1 - exp( - pcle), then &i = - z.-‘ln(l - 
ni) - ‘k( .). However, the Normal distribution does not have an analytical inverse 
and the two usual methods for generating ei - 1.X(0,1) are: 

(Ei2nj -6) = e, ( an a pp roximate central limit result), (22) 

or, for bivariate ZJV(O, I), the Box-Muller method: 

(ei,ei+i) = hi(cos2ani+,,sin2ani+,), (23) 

whereh,=(-21nni) . ‘I2 It is important to use a “good” generator (i.e. one which 
is well tested and empirically satisfactory) for input to (23), especially if (n ;, ni+ i) 
are successively generated by (19) [see, for example, Neave (1973) and Quandt, 
Chapter 12 in this Handbook]. Golder (1976) and King (1981) discuss some 
useful tests on the {n,}. Kennedy and Gentle (1980) consider the generation of 
variates from many useful statistical distributions. Finally, Sylwestrowicz (1981) 
discusses random number generation on parallel processing machines. 
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A reliable experiment is one in which any claimed results are accurately repro- 
ducible using a different set { ni} from the same (or an equivalent) generator; a 
valid experiment is one where the claimed results are correct for all points in the 
space 0 x T. An applicable experiment is one in which the assumed DGP is an 
adequate representation of that required in the equivalent analytical derivation. 
Reliability is the most easily checked and it is standard practice to quote 
estimated standard errors of simulation statistics such as 4, to indicate the 
degree of reliability being claimed for these. However, the final products of the 
type of Monte Carlo being discussed herein are estimates of the conditional 
expectations functions G,(a) as in (17) and (18) from Sri when the precise 
functional forms of the Gi( .) are unknown. Consequently, response surfaces must 
be postulated of the general form: 

lJTi=qerT)+vTi (i =1,2), 

where Hj( .) is an approximation* to G,( *) over 0 X 97 Thus, yri comprises two 
components: a “measurement error”, 

and variance, Vi(v,ri), estimable from the simulation; and an “approximation 
error”, 

v2Ti = (Gi(e, T)-Hi(@v T)), (26) 

of unknown (but potentially estimable) magnitude. It seems reasonable to assume 
that the components llTi and p2ri are independent, but yri need be neither 
homoscedastic, nor purely random. The coefficients of the &( *) have to be 
estimated and the net products of the simulation are numerical-analytical expres- 
sions of the form @(e, T) [see Section 6; Section 7 briefly considers estimation of 

W-N 
Obtaining &( 0) = Gi( 0) for all ((9, T) E 8 x .7would be an optimal outcome 

since such results would be both reliable and valid, but to even approximate its 
attainment requires fulfilling several intermediate steps: 

(a) Hi(*) must be a close approximation to Gi(-) over the relevant parameter 
space so that the error v2ri must be of small magnitude, purely random and have 

‘As discussed above, this is a shorthand for: H,( .) is the conjectured model of G,( .) and hence 
constitutes that reparameterization of the latter which minimizes prediction mean square error over 
the conducted experiments. Subject to known heteroscedasticity corrections, H,( .) usually will be a 
least-squares approximation to G,( .). 
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information comes from the econometric theory again and concerns invariance 
and (limiting) distributional results; the former reduce the dimensionality of the 
parameter space needing investigation without losing generality, and the latter 
provide a useful guide to the formulation of the &(O, T) by restricting these to 
coincide with the known form of the corresponding G,( .) for large T (see Section 

5). 
Consequently, careful- and thorough embedding of the econometric model in 

the Monte Carlo can yield improved efficiency [sometimes dramatically-see, for 
example, Hendry and Srba (1977)] and even closer interdependence will emerge in 
the following sections thereby providing ways of investigating validity as well as 
further improving reliability. 

4. Reducing imprecision: Variance reduction 

Variance reduction in the present context entails intro-experiment control. The 
most common techniques are: (a) reusing the known random numbers { n, } 
(which economises on their generation as well as reducing variability) either 
directly (4.1) or after transforming (4.2); and (b) developing control variates 
which ensure variance reductions in pre-specifiable situations [see (4.3)]. Such 
devices may be used in combination [see, for example, Mikhail (1972), Kleijnen 
(1974) and Hylleberg (1977)]. 

4.1. Common random numbers 

Using the same set { ni } in two situations generally reduces the variability of the 
difference between the estimates in the two situations (although not of the actual 
estimates). For example, different estimation methods are almost invariably 
applied to common data sets for comparisons. Less usual, but equally useful, the 
same { n, } also can be used at different points in 8 and/or T for a single 
estimator. Thus, “chopping-up” one long realization such as one set of T = 80, 
into two of T = 40 and four of T = 20 reduces variability between sample size 
comparisons. 

This type of device is generally invaluable in pre-experiment screening for 
potential invariances. Thus, in examples (3)-(6), estimating & with the same { ni } 
but two different u,’ values should yield identical results. Similarly, for fixed 
regressors, identical values of (B - 8) would occur with the same { ni } used at 
different /i, and so on. However, reusing ( nj } across experiments may create 
non-random pITi. 
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4.2. Antithetic random numbers 
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Consider two unbiased estimators, 4 and J/’ for an unknown parameter 4 such 
that the “pooled estimator” 4 = ~(I,!J + 4’) has b(q) = \c, and variance V(q) 
= f [ V( q) + V( $+) + 2 Cov( 4, $‘)I. In random replications, 6 and I/J’ are based on 
independent sets {n;} so that Cov( .) = 0, V(4) = V( $‘) and I’( 4) = f I’( 4). 
However, since the {n;} are known, it may be possible to select matching pairs 
which ofiet each other’s variability (i.e. are antithetic) and base 6, J/’ on these [see 
Hammersley and Handscomb (1964) and Kleijnen (1974)]. For example, {n,} 
and (1 - n, } are perfectly negatively correlated as are { e, } - ZJV”(O, u,‘) and 
{ - e, }. Basing 4 on one and J/’ on the other of an antithetic pair can induce a 
negative covariance in many cases (see, for example, Mikhail (1972, 1975) 
Hendry and Trivedi (1972) and Hylleberg (1977)]. In certain respects the effect is 
equivalent to stratified sampling: {n;} and { 1 - n, } corresponds to a partition of 
R(O,l) into R(0, f) and R(+,l), while ensuring sampling from each segment, and 
this idea generalizes to four-way partitions, etc. (with analogous results for 
normal variates). 

Again, antithetic variates can form the basis for invariance determination [see 
Kakwani (1967)] since if $ and JI’ are linear in {n, } and (1 - n, }, respectively, 
V( 4) = 0 independently of the number of paired replications. In dynamic models, 
it has proved difficult to locate antithetic transformations which generate negative 
covariances between estimators; in example (3)-(6), basing 4 and 4’ on (y,, {e,}) 
and (- y,, { - e,}) produces J, = 4’ and is, therefore, useless. Nevertheless, for 
stochastic simulation studies of (say) estimated macro-econometric models, care- 
fully chosen antithetic variates may be able to save a considerable expenditure of 
computer time [see Mariano and Brown (1983) and Calzolari (1979)]. 

Finally, little work has been done on creating functions of {n, } which improve 
the efficiency with which moments other than the first are estimated so the next 
technique seems more promising in econometrics (contrast the conclusions of 
Kleijnen (1974)). 

4.3. Control variates 

A control variate (CV) is any device designed to reduce intra-experiment varia- 
tion, by forming a more tractable function of the random numbers than the 
primary objective of the study. Thus, given $;, create from the same {n,} a #* 
where a( 1c/*) is known and J, and #* are positively correlated. Then: 

$=$-$*+&(JI*)hasE($)=J, (27) 
and 

V(q) =V($)+V(#*)-2Cov($,JI*)(V(\t), if Cov(.))fV($*). (28) 
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In much Monte Carlo work, CVs like $* are ad hoc; but it is a major function of 
the econometric model to supply estimators from which CVs can be constructed for 
the Monte Carlo study. The estimator generating equation ql(& I&‘) = 0 provides 
the required solution, since (among other attributes) it defines the class of 
estimators asymptotically equivalent to & (and hence highly correlated with it for 
large T). Within the relevant class, choose the most tractable member /3:, seeking 
a compromise between &’ behaving similarly to &, yet where E(B:) is compu- 
table whereas E(&) is not (compare the analogous problem in choosing Instru- 
mental Variables) [see Hendry and Srba (1977), and for the basis of a general 
approach based on Edgeworth approximations, see Sargan (1976) and Phillips 
(1977b)]. 

For the example in (3)-(6), the DGP of the econometric model is such that 
ql(a Iu,‘) = 0 is (asymptotically) equivalent to (cy,_ ie,) = 0 and an asymptoti- 
cally efficient estimator is given by choosing a* such & = a* + 0,(1/T). To this 
order: 

a*=a+(1- f?)Cy,_,&,/T, (29) 

with \/7;( a* - a) - .X(0,(1 - a2)) and plimfi(& - a*) = 0. Also: 

E( a*) = a and E( a* - a)’ = (1 - a2)/T, (30) 

so the first two moments are easily calculated. Clearly, a* requires knowledge of B 
and so is operational on/y in a Monte Carlo setting, but is no less useful for that. 
In effect, a benefit arises from using a* as an “intermediary” since: 

&=a*+(&-a*), (31) 

splitting the problem of estimating E(k) into a part which is known, [E(a*)], and 
only simulating the remainder, which is 0,(1/T), whereas & is O,(l/@). 

The mapping to the Monte Carlo model is obvious: 

and q=a+(J-$*), (32) 

so that: 

b($)=a+b($)-&‘($*)=b($)=E(&) (asrequired). (33) 

Since (4 - $*) is O,(l/Tfi) its behaviour is less dependent on the particular 
random numbers sampled, and 4 is increasingly efficient with increasing T, 
offsetting the rising costs of experimentation.3 

‘More accurately, (4 - $*) is O,,(l/@T(l- a’)): see equations (61) and (64) below. 
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Similar principles apply to estimating other moments, means of tests, etc. [see 
M&hail (1972,1975) and Hendry and Harrison (1974)]. 

Furthermore, the validity of the experiments now can be checked by testing that 
the estimated moments of JI* do not differ significantly from their known 
population values. Indeed, we have created a tight specification for determining 

any J/, as illustrated for E(&) in Table 4.1, where g denotes “equal in expecta- 

tion”, + means “helps determine”, and f implies both g and -+ [see Hendry 

and Srba (1977)J The only unknown is #, and all other features are checkable: 
equivalent results hold for second moments, means of estimated variances or 
tests, etc. 

On this basis, it seems possible to reliably and validly estimate I&-~(@) thus 
achieving objective (b) of Section 3.2. Moreover, V($) and k’(6) will be useful in 
Section 5 for checking the choice of I&( -). 

The final twist is to note that CVs provide asymptotic approximations to the 
econometric estimators and have as their finite sample moments, the asymptotic 
moments of the latter. Consequently CVs allow the analytical derivation of 
moments of estimators which differ by terms of 0,(1/T) from the econometric 
estimators under study and so, even without a simulation experiment, throw 
considerable light on the behaviour of the latter and the conditions under which 
asymptotic theory provides an adequate characterisation of finite sample be- 
haviour [see Hendry (1979) and for a correction to the formulae therein; see 
Maasoumi and Phillips (1982) and Hendry (1982)]. CVs also can be obtained 
from Nagar Expansions [see Nagar (1959), Hendry and Harrison (1974)], or 
Taylor Series Expansions [see O’Brien (1979)], and if their exact distributions 
were known, could help determine qr-( .) directly [see Sargan (1976)J. 

Moreover, interesting combinations using CV’s to accurately estimate moments 
for Edgeworth approximations are possible for determining significance criteria of 
tests in dynamic models [see Sargan (1978) and Tse (1979)J. 

Finally, in the statistics literature, variance reduction methods are often re- 
ferred to as “swindles” [see, for example, Gross (1973)]. Providing that the costs 
of the extra labour in deriving, programmin g, etc. any variance reduction tech- 

Table 4.1 

Simulation Exact Asymptotic 

Econometric estimator $& f #=ya) +- a 

7 II 

Control variate +* =& a = a 
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with the term Z/T also included as a potential regressor by analogy with results 
based on Nagar approximations [see Nagar (1959)] and because of its established 
empirical usefulness [see Hendry and Harrison (1974)]. Let +,,r (j = 1,. . ., k,) 
denote appropriate functions of the design variables in the set of experiments (e.g. 
8,9/T, 8’, T-‘, T-‘, etc. in this scalar case), chosen on the best available basis, 
then: 

For y. =1 (which should be tested), both H,( .) and G,( .) + j3 as T -+ co. When 
I = 0, the bias E(j3 - j3) is assumed to be at most O(T-‘) as in (say) Nagar 
approximations. Note that, independently of how closely they represent G,(a), 
response surfaces such as (34) (after transformation) also provide a useful 
summarisation of the experimental findings; but as discussed in Section 5.3 
below, their validity is open to investigation in any case. The “solutions” of 
estimated regressions like (34) (for yoI = 1) yield expressions of the form: 

as the numerical-analytical results approximating the finite sample outcome. 
As Nicholls et al. (1975) point out, however, direct estimation of the { y, 1 } in, 

for example, (34), will be inefficient and the estimated standard errors will be 
biased unless appropriate heteroscedasticity corrections (such as those discussed 
in Section 5.2) are used. 

Figure 5.1 
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5.1.2. Second moments 
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When analysing 1c/r2( .) (where a@,/ is referred to as the sampling standard 
deviation, SSD), the asymptotic variance D often is computable to restrict the 
limiting behaviour of H2( -). Moreover, a log,( = In) formulation ensures both 
positive predictions of $r2 as well as identical results from &,, and SSD. Thus, an 
“obvious” functional form is: 

lnH,(k T) = %,,lnQ + y12T-‘lnQ + Y~,~/T+ c Yj+2,2+,,2/T, (35) 
j=l 

where the cp,,* may reflect such aspects as degrees of freedom, or the effective 
sample size, etc. [see (68) below]. Again, for y0,2 = 1, H2( -) + G as T --j co. Similar 
considerations apply to u 2 (the equation-error variance in the econometric model) 
and ESE in correctly specified econometric models. In mis-specified econometric 
models, however, the role of D in (35) is played by V or plims2 = up’ (say), 
respectively (see Section 2.2 above). Variants of (35) have proved useful in a 
number of response surface studies [see, for example, Naylor (1971, ch. 7), 
Hendry and Srba (1977) and Hendry (1979)]. 

5. I. 3. Test rejection frequencies 

Consider a test Z of some hypothesis H,,: 8 = t3, such that on H,, Z ;; x2(1,0) 
where x2( I, ‘p) denotes a non-central chi-square with 1 degrees of freedom and 
non-centrality parameter cp. It is assumed that Z is consistent (will reject all fixed 
false hypotheses with unit probability as T + 00). The nominal and large sample 
significance level of the test is 6 = Pr(x2(I,0) 2 d,), where H, is true but is 
rejected if Z 2 d,. Local alternatives of the form: 4 

for fixed A, are considered, so that on HT, Z ;; x2(1, ‘p) where 9, is a scalar 
function of 8, 0, and A, independent of T. The large sample power of the test is: 

(37) 

4Note that H, varies with A and ti, as well as T, and the actual significance level may vary with 0 
and T. 
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The objective of the study is not just to estimate the test rejection frequency at 
a few points in 8 x Abut to determine the power’ functions: 

P=Pr(Zrd,)=G,(e,h,T,6). (38) 

The computation of an integral like P for a fixed value of (0, T, A, 6) is usually 
based on the random replications estimator p defined as C&/N, where 4 = 1 if 
and only if a reject outcome occurs (and is zero otherwise). Unfortunately, p is 
usually inaccurate for P unless N is large since; 

v(F) = P(l - P)/N. (39) 

To date, few variance reduction methods have proved useful for intra-experiment 
control [but see Sargan (1976, 1978)]. However, P*( ‘) is often obtainable both 
easily and cheaply and hence can be used as an inter-experiment control in a 
response surface based on (say): 

(A) = ( &)n3+‘“‘rexp( g( $)). 

As discussed in Mizon and Hendry (1980), (40) ensures P 
y,,=l,andalsoO~P~l. 

In the example, to test H,,: a = a0 when ]&] ( 1, let 

Z=T(ii-a,)2/(1-&2) --x2(l,cp), 

-+ P* as T-+ oo for 

w 

(41) 

where the asymptotic approximation of Var(&) by (1 - G2)/T is used for exposi- 
tory purposes [see Evans and Savin (1981)] and Q, = X2/(1- a’) with 6 = 
Pr(x2(l,0) 2 d,). Since P*(a, q,, T, 6) = Pr(x’(l,~~) 2 d,) when HT is true, P* 
could be computed directly from integrating the non-central x2. However [see 
Kendall and Stuart (1961, ch. 24) and Mizon and Hendry (1980)], it is often 
convenient to compute P*( 0) instead from a central x2 approximation with the 
same first two moments: 

f’*(o) =jlmdx2(m.0). 

where m = (1 + (~)~/(l+ 2~) and f = &J(l + cp). Using the formula in equation 

5Ektimation of test “power” requires prior calibration of d,(T, 8) to ensure finite sample sign& 
cance levels of 6, and most studies simply report rejection frequencies. For the importance of 
correcting significance levels see, for example, Evans and Savin (1982). 
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(42), P*( -) is inexpensive and easy to compute for a wide range of tests, by itself 
provides considerable insight into factors determining power, is a useful analytical 
approximation to P( *) for large T, and offers a convenient means of comparing 
alternative tests [see Hendry (1977) and Mizon and Hendry (1980); also, compare 
the notion of “approximate slope” comparisons of tests based on cp in Geweke, 
Chapter 19 in this Handbook]. More accurate approximations to P than P* 
could be obtained from Edgeworth expansions as, for example, in Davis (1971). 

5-2. Heteroscedasticity transformations 

In each of the above cases the conjectured response surface functional forms have 
to be both estimated and tested, and, interestingly, the heteroscedasticity transfor- 
mations necessary to efficiently achieve the former help provide tests of Hi(-) = 
Gi( -) over the sampled parameter space. 

Consider random sampling certain variates {xi } from a distribution with finite 
momentsgivenby~~=E(xlk)fork=1,...,6.Letm;=N-’C1V,,xk,then[see,for 
example, Kendall and Stuart (1958, ch. lo)]: 

E(m;)=& and Var(m;)=$(&-(Pi)*). (43) 

For moments about means, however, exact results are not easily established and 
instead we use the large sample result [see Cramer (1946, p. 365) and Kendall and 
Stuart (1958, ch. lo)]: 

where {} is denoted by wi below, pk = E(x -E(x))“ with no =l, and 
mk = [l/(N -l)]C(x, - T$)~. In particular: 

and 

withu;=p4- &. If the {xi} are normally distributed, then p3 = 0 and p4 = 3~;. 
Note that the {xi} could refer to estimated regression coefficients [in which case 
(43a) and (44a) relate to $n and #Tz] or to equation-error variances or estimated 
standard errors, t-statistics, etc. In most cases, however, wi can be estimated 
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directly from the Monte Carlo, and hence (44) can be implemented by replacing 
w: by i$. Examples are reported below in Section 6. 

Alternatively, even though the {xi } may be complicated functions of the basic 
random numbers {n,}, often their large-T distributions can be derived and are 
themselves normal. For example, (8) holds for the model in (3)-(6), and since 
$,, = NP’& using (8) and (43a) for pcLz = T-‘(l- (w2): 

m($,, - $,,)/dg - .&“(O,l) (for large Tand largeN).6 (45) 
u 

Similarly, for $,, using the asymptotic approximation that wz = 2~; yields from 
(44a): 

m(m2/p2 - 1) - JTO,l) 
0 

(Mb) 

Thus, noting that (&,,(+,, - 1) is O,( N-‘12), the further approximation that 
( J/r2 - J/r2)/J/r2 = ln(#r2/#r2) relates the functional form to (35). In fact, if 
xi - X(&, p2) then Var(ln m2) is independent of I_L~ [see Rao (1952, p. 214)], and 
from the limiting convergence of (xf - 1)/m to X(0,1) [see Johnson and Kotz 
(1970, ch. 17)], it can be established directly that (44b) holds for large T and large 
N [see Campos (1980)]. 

For equation-error variances, a, 2 the {xi } must be interpreted as { I$: } so that , 
(43a) applies. However, using the large-T approximation that E(&:) = 3~2 (exact 
when eI - X(0, a:)) then: 

m( $ - u,‘)/u,’ - &-(0,l). (46) 
a 

Thus, since 3: = N-‘C~=,$, and ln(G:/u,‘) = (62/u,” - 1): 

,/mln( $/a:) - X(0,1) (for large T and large N). 
0 (464 

If Var(fie2) is estimated from the Monte Carlo, then: 

(46b) 

Note that if a control variate is used in estimating fie2:;‘, then (46a) also must be 
corrected for the efficiency gain. 

6For [al near unity, the continuous normalization used by Evans and Savin (1981) may be 

preferable to dm, but in practice hardly altered the response surface estimates computed in 
Section 6 below. 
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Similar considerations apply for estimated 
their simulation standard errors (SSE) have 
(46b) are used below in the form: 

coefficient variances or ESE’s when 
been computed, and equations like 

(47) 

where w is l/n times the plim of the estimated standard error (/( 1 - a2 )/T 
in the illustration). 

Unfortunately, asymptotic approximations to the heteroscedasticity correction 
factors for ESE are highly model dependent. For example, in a simple regression 
model with a strongly exogenous, stationary regressor, following Goldberger 
(1964, ch. 3.8) it can be established that SSE is O(T-‘N-‘/2), whereas for ESE(&) 
from (3) (for sufficiently large T): 

SSE =d=/T312fi. (48) 

Then for (Y = 0, this is of 0(T-3/2N-1/2) but for (say) ((Y] = i and T large it is 
close to (2Tfi))‘. For small T, (48) itself is not a good approximation (although 
closer approximations can be derived from Nagar expansions). 

Overall, the asymptotic correction factors have the virtue of simplicity and in 
practice yield similar results to response surfaces based on 3,. However, they rely 
on a “double-asymptotic” requirement of large T and large N and require 
modification by efficiency gain factors for application to results based on control 
variate estimates. Moreover, as noted, no simple results hold for ESE’s and this 
might also affect other statistics in more complicated data generation processes, 
so there is a good case for using simulation-estimated wk. Nevertheless, as (44) 
also shows for k 2 3, high order moments are imprecisely estimated. Conse- 
quently, below we report various response surfaces based on both forms of 
correction and also certain descriptive regressions relating the relevant Gi, to their 
asymptotic counterparts [see equations (641, (66), (67) and (72)]. 

Finally, for power functions based on P, where (39) applies, and a response 
surface such as (40), after a log, transformation, is assumed, then [see Cox (1970, 
ch. 6)], noting that the Jacobian of the mapping from P to Z( P) = ln( P/(1 - P)) 

is l/P(l- P): 

J(qwqP)) - Jwm, 
(I (49) 

where J = (NP(l - P))‘12 (which is estimable from the simulation). Thus, as 
remarked at the start of this section, when the relevant Gi( .) is known, each 
response surface can be formulated to have an anticipated residual variance of 
unity. 
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5.3. Investigating validity 

In addition to the points noted above, each of the conjectured response surfaces 
entails also that yo, = 1 in order to reproduce Gi( a) in large samples and this is 
potentially testable from the regression estimates. Also, under the null that the 
error variance (u*) should be unity, the residual sum of squares will be distrib- 
uted as x*(r,O) for r degrees of freedom in the relevant regression, since for 
correct specifications, r&*/u * - x*(r,O). Confidence limits for a* for various r 
have been tabulated [see, for example, Croxton, Cowden and Klein (1968, table 
L)] but are easily calculated in any case. 

As with any regression analysis, the selected response surfaces can be tested by 
a variety of Lagrange Multiplier based diagnostics (see, for example, Engle, 
Chapter 13 in this Handbook) of which predictive tests are one of the more 
important. If K experiments are conducted and K, used for selecting and 
estimating the response surfaces, K - K, should be used to test the validity of the 
results to ensure that some credibility beyond mere description attaches to the 
finally chosen surrogates for G,( *) [see, for example, Chow (1960)]. 

Inappropriate choices of Z-Z,( *) could induce either or both of autocorrelation 
and heteroscedasticity in the residuals. These problems might be detectable 
directly. The former can be tested by, for example, the Durbin-Watson test when 
a suitable data ordering exists [as in Mizon and Hendry (1980) or Maasoumi and 
Phillips (1982)]. A valuable diagnostic for the latter is the general test for 
functional mis-specification in White (1980b) who also derives a robust estimator 
of the estimated-parameter variances to support valid, if non-optimal, inference 
despite heteroscedasticity; both of these statistics are reported below. Discrepan- 
cies between the conventional and “robust” coefficient variances are indicative of 
mis-specification and White (1980a) presents a test based on this notion. Further 
tests against specific alternatives can be derived following the procedures in Engle 
(1982). 

As noted above, the main advantages of estimated response surfaces over 
tabulation are their ability to summarize large and non-memorizable quantities of 
information in simple approximations which in practice do seem able to account 
for the bulk of inter-experiment variation in simulation outcomes (especially for 
inconsistent estimators) using formulae known to be correct for sufficiently large 
values of T. A corresponding disadvantage is that the dependence of the ap- 
proximation error on the invariants of the data generation process is unknown, 
but in a well defined parameter space should be estimable for the purposes of 
predicting outcomes at other points within the sampled set [i.e. for experiments 
which could have been undertaken, but were not, as in Hendry and Harrison 
(1974)]. Conversely, relative to analytical derivations, the advantages are the use 
of less restrictive data generating processes than existing techniques can study 
analytically as well as exploiting the falling relative price of capital to economise 
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on scarce labour resources; whereas the disadvantages are the inherent inexacti- 
tude of estimated response surfaces and the absence of a complete understanding 
of the limitations of the experimentally determined numerical results. As analyti- 
cal methods improve, the frontier at which simulation is substituted for analysis 
will move outwards, but is unlikely to obviate any need for efficient Monte Carlo. 
Equally, simulation based findings seems most helpful when they are tightly 
circumscribed by analytical results, a point illustrated by the experimental evi- 
dence reported in Section 6 [for further discussion, see Hendry (1982)]. 

6. An application to a simple model 

6. I. Formulation of the experiments 

To illustrate the application of the experimental approach, we consider the model 
in (3)-(6) as this highlights the principles involved and indicates what can and 
cannot be achieved by experimentation. The main objectives of the following 
experiments-considered as a substantive study-are to: 

(a) estimate and test response surfaces for qT1 = E(h), tiT2 = E(&-E(&))2, 
fi = E( p( L?)“~) ( = ESE), and P = Pr(Z 2 3.84) basing these on the ideas 
developed in Section 5; 

(b) investigate the efficiency gains from using the CVs o* for & and 
O*2 = T-t&; _ 

’ 
T-‘x2(T,0) for 6: [so that E(uz2) = u,’ and V(uz2) = 2uP/T]; 

(c) relate simulation estimates of wk to their asymptotic counterparts; and 
(d) evaluate the usefulness of asymptotic results as inter-experiment controls. 

To recapitulate, the main simulation estimators of the unknown #ri, etc. are 
given by: 

(I& are computed as for \t, but with a: replacing hi); 

$T2=(N-l)-1~(&i-$T1)2 and 

J/r2 = Jr2 - I//;~ + T-‘(l- a’), 

Ez= N-‘C ( P(iii)y2, 

Ce2 = N-‘~6cf and c2 = cYe2 - N-‘~IJ~~ + u,‘, t 

P= N-‘XI;;, 

(51) 
(52) 

(53) 

(54) 
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where 

if Z 2 3.84 (for testing H,: ff = 0), 

Direct estimation of the cumulative density function of &( !Pr(&)) was not an 
objective of this set of experiments, although it is obviously a legitimate objective 
in general [see, for example, Orcutt and Winokur (1969)J. 

The sampling variances of the various simulation estimators were also esti- 
mated by the following formulae: 

p( $rr) = N-l$rz and 

~(~,,)=N-~((N-l)-1~(~,-af-~r1+“)2), 

(55) 

from which the efficiency gain due to using (Y* is given by EG = v( 4,,)/ v( G,,). 
Next: 

q4,2> = N-l@, - $42). wherep,=(N-1)-1X(&-&r-,)4, (56) 

P(ESE)=N-~((N-~)-‘E(~~(&)“~-ESE)~), (57) 

(58) 

and 

with the efficiency gain from a,*’ being SEG = v( $)/v( 5:). Finally, v(j) 
follows from (39) but following Cox (1970, ch. 6) and Mizon and Hendry (1980) 
(49) is formulated as: 

when 

for [ = (2N))’ and_L( P) is similar but replaces the second term by ln( P/(1 - P)). 
Observations with P = 0 or 1 are automatically deleted from the regression. We 
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also deleted those for which (1 - P*) < lo- 5, for P* in (42) when using (40) to 
approximate the unknown L(P) in (60). 

The properties of the experimental design are important for achieving the 
objectives of the study, and “iterative” designs based on a pilot study followed by 
intensive searches in regions of 8 where the relevant Gj( .) are least “well-behaved” 
may be needed. For example, it is difficult to design a single experiment which is 
“good” for estimating (say) both #ri( *) and P( -). Here, to “cover” the parameter 
space, a full factorial design based on a = (0, f0.3, f0.6, kO.9) and T = 

{10,20,30,40} was selected, yielding 28 experiments in all with u: = 1 and 
N = 400 (so that P could be accurate to within 0.0025). It is important to note 
that the parameter space is now { 1 a 1 I 0.9, u,’ = l} and that as q, = 0, X in (36) is 
implicitly determined by \/Ta so that cp = Ta*/(l - a*). Six randomly chosen 
experiments from the 28 were used for predictive testing.7 

Finally, first order autoregressive processes have been the subject of extensive 
analysis and experimentation (see inter alia, Bartlett (1946), Hurwicz (1950) 
Kendall (1954), White (1961), Shenton and Johnson (1965), Copas (1966) Orcutt 
and Winokur (1969), Phillips (1977a) and Sawa (1978); also Kendall and Stuart 
(1966, ch. 48) provide a convenient summary of many of the relevant analytical 
results). Such known analytical results obviously “prejudice” the precise func- 
tions chosen to characterise the G;(e), and where this has been an important 
influence, it is noted below. 

6.2. Estimating I!$& 1 a, T) 

Firstly, the CV a* yielded an average efficiency gain over distribution sampling of 
6.4 for trivial extra computational cost. Also, for Ia I # 0, Ho: E( &) = a was 
rejected in every experiment using $ri but on occasion was not for I a I = 0.3 using 
Jr,. The theoretical and simulation moments of a* matched well, checking the 
validity of the random numbers used and correlation (&, a*) varied from 0.597 to 
0.978 as (a, T) went from (-0.9,10) to (0.0,40). Thus, by T = 40, the asymptotic 
theory worked fairly well for Ial I 0.6. 

Let T * = T(l - a*) denote the “effective sample size” [this concept is noted in 
Sims (1974) and is based on the asymptotic approximations in Hendry (1979)], 
then EG was described by: 

R*=0.93, S=0.21, ni(6)=1.6, n2=1.1, (61) 

71 am grateful to Jan Podivinsky and Frank Srba for assistance in conducting and analysing these 
experiments. 
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where 

(. )= conventional standard errors, 
[ -I= heteroscedasticity-consistent standard errors [see White (1980b)], 
S = residual standard error, 

q,(k)= heteroscedasticity/functional-form m&-specification test based on RE 
in the auxiliary regression with k quadratic variables using the form: 
Ri(T- k - 1)/((1- Ri).k) for I regressors in, for example, (61), ap- 
proximately distributed as F(k,. T - k - I) under the null [see White 

(198041, 
q2 =Chow (1960) test of parameter constancy, distributed as F(6,22- I) 

under the null. This is treated as a Lagrange Multiplier test, and so all 
regressions quoted are based on the 28 experiments. 

From (61), EG increases almost proportionately to T* (estimating separate 
coefficients for In T and hr(1 - a2) revealed these to be almost equal magnitude, 
same sign). Consequently, in experiments with small T*, CVs like a* may not 
yield useful efficiency gains, and conversely, large-T* is required for asymptotic 
theory to “work well”. 

Next, the response surface estimates obtained for $,, and q,r were similar so 
only the latter are reported. Using the simulation estimated standard errors from 
(55) (denoted by Sl) yielded for the simplest bias function: 

R2=0.97, S=1.67, ~~(1) =9.8, q2 =0.4. (62) 

While this accounts for 97% of the simulation variance in (& - cu)/Sl between 
experiments, nr(1) rejects homoscedasticity, and the value of S is significantly in 
excess of unity [27.S2 exceeds the 0.001 critical value of x2(27,0)]; this confirms 
that the diagnostic tests can detect mis-specification. Adding the term a/T2 
yields: 

(I& - a)/Sl = - 

R2=0.985, S=1.26, qr(3)=1.3, ~)~=0.8. (63) 

This is obviously a much better approximation (and is “close” to the theoretical 
result to 0(T-2) of -2a(l/T -2/T’)), although S remains significantly larger 
than unity at the 0.05 level. 
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Very similar results were obtained on replacing Sl by ci = (T*. N.EG)-‘/2 and 
this is unsurprising given that: 

lnSl=- 0.96 lnJNT_- 0.58 lnEG- 1.3 /T+ 1.0 

[::0o:i [k%{ [E1’ [%j 

a’/T*, 

R2 = 0.991, S = 0.048, n,(S) = 1.1, n2 = 1.5. (64) 

Thus, while additional’ finite sample effects can be established, most of the 
between-experiment variance in Sl is attributable to the asymptotic result [note 
the dependence of EG on the other variables in (64) from (61); also these 
equations together imply that SlapP O((NT*2)-'/2) as anticipated]. 

Noting that T-' -2Tp2 = (T+2)-', an attempt was made to establish the 
relevance of a3/T3 [based on Shenton and Johnson (1965)]: 

(~T1-a)/S1= - 1 .84 a/(T+2).Sl+ 43 a3/T3.S1, 

[::oo:j ‘$ 

R2=0.989, S=1.09, n1(2)=0.7, q2 =0.9. (65) 

Since the experimental design actually induced an extremely high correlation 
between successive odd powers of (Y, (65) seems a useful approximation to their 
series expansion: 

E( 6 - a) = - ;;;l;;2; + 12a3 
(T+5)13' 

+ 1@&+9;;5 

+ 24(T+12)(T+10)(u7 + . . . , 

(T+13)[51 

where T["] = T( T - 2). . . (T - 2n + 2). If a larger number of experiments had been 
conducted, general response surfaces such as (65) might have been estimable 
directly given (34). The results herein certainly suggest that it can be worthwhile 
incorporating terms smaller than just O(T-'). Finally, replacing Sl by t1 in (65) 
yielded S = 1.20 and ~~(2) = 1.3, so the fit was poorer but not significantly bad, 
and closely similar coefficient estimates resulted. 

Table 6.1 provides some illustrative comparisons of the various regression 
predictions of biases together with both analytical results and the direct and CI/ 
simulation estimates, including one set of values for which experiments were not 
conducted. Any of the results in (62)-(65) seems adequately accurate for practical 
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Table 6.1 

a T (62) (63 (65) (a)” (b) (4 &I ST, 
0.6, 10 -0.092 -0.079 -0.083 -0.10 - 0.091 - 0.086 - 0.092 - 0.087 

(0.013) (0.007) 
0.9. 10 -0.139 -0.118 -0.107 -0.15 -0.119 - - 0.102 -0.104 

(0.011) (0.008) 
0.6, 30 -0.031 - 0.034 ~ 0.034 - 0.038 ~ 0.037 - 0.036 - 0.038 - 0.040 

(0.008) (0.003) 
0.9, 30 -0.046 - 0.051 - 0.051 -0.056 - 0.053 - ~ 0.049 - 0.052 

(0.006) (0.004) 
0.8, 10 -0.123 -0.105 -0.101 -0.133 -0.112 -0.105 - 

“(a) -2a/( T + 2); (b) to 0( T- *) and (c) exact, both from Sawa (1978. Table la.). 

purposes, and the final numerical-analytical summary is given by 
E(&--a)= -1.&x/(T+2)+43a3/T3. 

6.3. Estimating qTz(&) 

Very similar estimates were produced by $,, and $rz, and since variances were 
estimated only for the former, results are quoted just for these. Firstly, for fi4, 
since SSD = & : 

lnfi4= 3.8 lnSSD+ 0.8 + 2.4 /T*, 

[:::j 
(0.2) (0.3) 
[0.2] [0.3] 

R2=0.98, S=O.18, 7)t(5)=1.1, n2=0.2. (66) 

Thus, the approximation that pL4 = 3 SSD4 has some support (note that In 3 = 
1.09). 

However, letting S2 = /m from (56): 

R2 = 0.80, S = 0.25, ~~(1) =l.O, Q = 0.8. 

Consequently, the asymptotic approximation that V($,,) = 2u:/N is not very 
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accurate, and this is reflected in the regressions based on (44b): 

t21n( +,,/a,Z) = - (h.i)[,/T+ (i.$t$‘/T* - $3)~2a2/Tz(1- a2), 

[0:3] [0:6] PI 
R’z0.94, Sc1.26, 91(6)=1.5, ~2~0.6, [2=&P?. 

(68) 

Although this regression accounts for much of the variance in $,, around u,’ (and 
almost all of the variance in GT2 itself), S is significantly in excess of unity. 
Replacing m by &S2 reduced the response surface error variance to unity, 
but induced so much collinearity between the transformed regressors that sensible 
individual coefficient estimates could not be obtained. In no case was the 
unrestricted coefficient of In u,’ significantly different from unity. 

By way of comparison, Kendall and Stuart (1966, ch. 48) quote an analytical 
result which suggests (to 0( T2)): 

ln($,,/u,2) - -2/T+8a2/T* -48a2/T*T*. (69) 

Thus, both (68) and (69) reveal that \c/r2 = u,’ only for large T *, and the former 
yields: 

6.4. Estimating VT ( S) 

The response surface based on (47) yielded: 

[sin 0.09 t,(lnu,)/T+ 

R2=0.64, S=1.86, n,(3) =7.9, ~*=1.2, (70) 

where 5s = u,/SSE. While this explained 99.996% of the variability in <,ln(ESE) 
and the unrestricted coefficient of In u, was 1.002(0.002), both S and nr( .) reject 
the null of correct functional form. Additional terms rectify this, but at the cost of 
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a cumbersome regression: 

R*=0.90, S=1.05, ~)t(13)=0.6, n2=1.6. (71) 

Variables in common with (68) have the same signs of coefficients and (when 
expressed in terms of estimated variances) similar magnitudes. 

The heteroscedasticity correction in (48) was reasonably accurate and re- 
gression yielded: 

lnSSE=- 1.4 lnT+ 0.39 ln(l+Ta’)- 3.16 , 

[::Ej fE{ f:::;j 

R2 = 0.987, S = 0.087, q,(5) =1.7, n2 = 0.9. (72) 

(In@ = 3.0), but no response surfaces for ESE were based on the approximation 
that fi . T- SSE = (T-l + (Y*)‘.~ as suggested by (72). 

6.5. Estimating wef la, T) 

All estimates based on $* had very small standard errors and were close to u,’ = 1. 
The average efficiency gain, SEC, was over 25 (i.e. equivalent to the accuracy of 
10,000 random replications) and was described by: 

lnm = 0.19 + 0.46 lnT, 
(0.10) (0.03) 
[0.09] [0.03] 

R*=0.89, S=O.O86, q1(2)=0.1, q2=0.4, 

so that SEG = T. 

(73) 

Moreover, using (58): 

ln{m= - 0.1 - 0.97 In{NT, 
(0.1) (0.03) 
[O.l] [0.03] 

R* = 0.977, S= ~~(2) 0.041, = 3.3, q2 = 0.5, (74) 

so that @‘(6*) = 2/NT and from (73), v(C:) = 2/NT*. 
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These results are again consistent with CV theory, although nt( -) may indicate 
an inappropriate functional form; note that a more stringent check of the 
simulation could have been conducted by testing the within-experiment distribu- 
tion of T-u:* against x*(T,O). 

6.6. Estimating P(Z(a, T,6) 

The experimental design was such that $’ = 1 occurred in 13 experiments out of 
the 28, but unlike the results in Mizon and Hendry (1980), there was no 
systematic tendency for B to underestimate P* when P* > Q (consistent with their 
conjecture that this was an artifact due to reusing the random numbers). A simple 
response surface based on (60) yielded: 

(L*(P)-L(P*))= $j#@T*, 

PI 
R* = 0.73, S =1.57, ~~(1) = 0.01, n2(4,10) = 0.5, 

(75) 

where 5 = [N&l - P)/(l - IV-‘)]‘/*. The terms T-’ and L( P*)/T were insig- 
nificant if added to (75), and the unrestricted coefficient of L(P*) was not 
significantly different from unity. When a = 0, the rejection frequencies were: 

T 10 20 30 40 mean, 
P 0.053 0.058 0.048 0.045 0.051, 

all of which are close to the nominal significance level of 6 = 0.05. Moreover, 
(1 + I#J) accounted for over 99.9% of the between-experiment variance in the mean 
of Z, consistent with E(x*(l, cp)) = 1 + +. Thus, although S in (75) is significantly 
in excess of unity, a reasonable summary power function is: 

Finally, the rejection frequency i), for the true value of (Y [i.e. (Ye = (Y in (41) so 
$I = 0] was investigated: 

Fo= 0.050 + 0.024 /T*, 
(0.003) (0.016) 
[0.003] [0.008] 

R*=0.08, S=O.Oll, &)=1.0, n2=0.8, (77) 
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so that (Y,, = (r is indeed rejected around 5% of the time at all values of 
a(\lP(l - P)/N = 0.011 when P = 0.05, N = 400). Overall, the results in (61)-(77) 
highlight what Monte Carlo can achieve (e.g. simple numerical-analytical for- 
mulae) and what it cannot (e.g. provide little insight into what happens as (Y + 1; 
compare Phillips (1977a)). It is not a complete substitute for analysis, but may be 
a helpful partner, and is often a cost-effective solution which need not entail high 
consumption costs if adequate summarization is provided. 

7. Some loose ends 

7.1. Non-existent moments 

There are many “respectable” estimators which have no finite moments in small 
samples (e.g. LIML and FIML) yet which have been investigated by Monte Carlo 
methods. Possible approaches to this “ tail area” problem are: 

(a) pre-define an “acceptable” region for B and discard outliers; 
(b) use non-parametric statistics [like medians, etc.; see Summers (1965)]; 
(c) investigate the existence of moments by varying N (and possibly 0); 
(d) report only #r(e); and 
(e) only derive the CV, and do not do the simulation. 

Sargan (1982) has investigated the outcome which is likely to occur if conven- 
tional simulation means are used to estimate non-existent moments (with and 
without CVs) and found that N could be chosen as a function of T such that the 
Monte Carlo provided reasonable estimates of the Nagar approximations to the 
moments (which in turn help in understanding the Edgeworth Approximation to 
the distribution function). Even so, some truncation bounds for deleting outliers 
seemed better than using none, supporting (a); no bounds could produce rather 
unreliable results, and non-parametric statistics (b) in effect operate by “dis- 
counting” discrepant results. The natural alternative is direct estimation of &.( 0). 

In low-dimensional problems, numerical tabulation of qr.( .) for very large N 
can be useful [see Orcutt and Winokur (1969)] but otherwise, the function has to 
be estimated. Sargan (1976) considers using CVs to improve the accuracy of 
estimating qr( .), but this requires that the exact distribution function of the CV 
is known, and Basmann et al. (1974) test various hypotheses about forms of qr( .) 
in specific models. Improved simulation methods in this area would be of great 
value, but at present it is rarely feasible to attempt estimation of distribution 
functions which depend on many parameters. 
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7.2, Evaluating integrals 

CYs for test powers would be a useful advance [closely related to estimating 
er( .)I. These can be derived in certain static models, but their use depends on 
knowing qr(fl:), not just its moments, and so test-power CVs are difficult to 
obtain in dynamic models. Experiments in which significance levels rather than 
local alternatives were changed also would be interesting and helpful in under- 
standing the behaviour of tests. 

Returning to the example in equations (l), (2) and (ll), some cross-fertilization 
of ideas may prove fruitful. Kloek and van Dijk (1978) discuss Monte Carlo 
integration for economic estimation, and demonstrate its feasibility using impor- 
tance functions. Also, Van Dijk and Kloek (1980) discuss the choice of impor- 
tance function and implement nine-dimensional integration. However, on the one 
hand, p(v) also might be of use in estimating integrals corresponding to test 
powers even though the density function is unknown (e.g. by generating 0’s 
which are exactly distributed as the importance function which in turn is chosen 
to be the asymptotic distribution of the test). On the other hand, naive estimators 
such as E in (11) surely could be improved upon by using some functions of the 
{v,} as a Ck’: e.g. calculating ii from u and f({ u;}) so as to correct for chance 
departures of ij from E(v) = /,hxp( x)d x which will in general be known (although 
this ad hoc suggestion may not guarantee efficiency gains). 

A further problem which is equivalent to computing an integral is estimating 
the mean stochastic simulation path of a non-linear econometric system. Here, 
antithetic variates switching {a,} - ZN( 0, Z ) to { - E, } and creating w, = KE, - 
ZN(0, 2) from 2 = KK' seem to be of use. The efficiency gains depend on the 
extent of the non-linearity and the relative “explanatory” power of the strongly 
exogenous variables compared to the endogenous dynamics, varying from infinite 
efficiency for linear, static systems to zero for closed, dynamic models with 
squared errors [see Fair, Chapter 33 in this Handbook, and Mariano and Brown 
(1983); and for an application, Calzolari (1979)]. 

Much work remains to be done on determining factors which influence such 
simulation efficiency (e.g. dependence of the data on such features as the sign 
and/or scale of the errors) and hence on deriving appropriate antithetic selec- 
tions. Recently, Calzolari and Sterbenz (1981) have derived control variates from 
local linearization of non-linear systems and find very large efficiency gains over 
straightforward random replications for the Klein-Goldberger model. 

Manifestly, other applications are legion since very many problems in econo- 
metrics are equivalent to computing integrals which in turn can be estimated by 
averages, and hence are susceptible to efficiency improvements. 

And notwithstanding all the above arguments, when only a couple of points in 
0 X Yare believed to be of empirical relevance, naive simulation “pilot” studies 
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remain an easy and inexpensive means of learning about finite sample properties 
in complicated models or methods. 
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1. Introduction 

A discrete time series is here defined as a vector x, of observations made at 
regularly spaced time points t = 1,2,. . . , n. These series arise in many fields, 
including oceanography, meterology, medicine, geophysics, as well as in econom- 
ics, finance and management. There have been many methods of analysis pro- 
posed for such data and the methods are usually applicable to series from any 
field. For many years economists and particularly econometricans behaved as 
though either they did not realize that much of their data was in the form of time 
series or they did not view this fact as being important. Thus, there existed two 
alternative strategies or approaches to the analysis of economic data (excluding 
cross-sectional data from this discussion), which can be called the time series and 
the classical econometric approaches. The time series approach was based on 
experience from many fields, but that of the econometrician was viewed as 
applicable only to economic data, which displayed a great deal of simultaneous or 
contemporaneous interrelationships. Some influences from the time series domain 
penetrated that of the classical econometrician, such as how to deal with trends 
and seasonal components, Durbin-Watson statistics and first-order serial correla- 
tion, but there was little influence in the other direction. In the last ten years, this 
state of affairs has changed dramatically, with time series ideas becoming more 
mainstream and the procedures developed by econometricians being considered 
more carefully by the time series analysts. The building of large-scale models, 
worries about efficient estimation, the growing popularity of rational expectations 
theory and the consequent interest in optimum forecasts and the discussion of 
causality testing have greatly helped in bringing the two approaches together, with 
obvious benefits to both sides. 

In Section 2 the methodology of time series is discussed and Section 3 focuses 
on the theory of forecasting. Section 4 emphasizes the links between the classical 
econometric and time series approaches while Section 5 briefly discusses the 
question of differencing of data, as an illustration of the alternative approaches 
taken in the past. Section 6 considers seasonal adjustment of data and Section 7 
discusses some applications of time series methods to economic data. 

2. Methodology of time series analysis 

A discrete time series consists of a sequence of observations x, taken at equi-spaced 
time intervals, examples being annual automobile production, monthly unemploy- 
ment, weekly readings on the prime interest rate and daily (closing) stock market 
prices. x, may be a vector. Underlying these observations will be a theoretical 
stochastic process X, which can, of course, be fully characterized by a (possibly 
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countable-infinitely dimensioned) distribution function. The initial and basic 
objective of time series analysis is to use the observed series x, to help characterize 
or describe the unobserved theoretical sequence of random variables X,. The 
similarity between this and the ideas of sample and population in classical 
statistics is obvious. However, the involvement of time in our sequences and the 
fact, or assumed fact, that time flows in a single direction does add a special 
structure to time-series data and it is imperative that this extra structure be fully 
utilized. When standing at time t, it is important to ask how will the next value of 
the series be generated. The general answer is to consider the conditional 
distribution of x 1+1 given x,_~, j 2 0, and then to say that x,+i will be drawn 
from this distribution. However, a rather different kind of generating function is 
usually envisaged in which the x<+r is given by: 

x,+~ = (function of Z()+ e,,,, (2.1) 

where 

i,=(x,,x,_I)...) 

and the parameters of the distribution of e,,, other than the mean, can depend 
on x[_~, j 2 0. It is usually overly ambitious to consider the whole distribution of 
e f+ 1 and, at most, the variance is considered unless e,,,, or a simple transforma- 
tion of it, is assumed to be normally distributed. An obviously important class of 
models occurs when the function in (2.1) is linear, so that: 

X r+1 
=f a, txt-j + e,+,. 

j=O ’ 
(2.2) 

For linear models, an appropriate set of characterizing statistics are the first and 
second moments of the process, that is the mean: 

the variance: 

and the covariances: 

Ewl -PAL - Pt-Jl = h,,> 

assuming that these quantities exist. 
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Given a finite amount of data and a single realization, which is the usual case in 
practice with economic data, it is fairly clear that one cannot estimate these 
quantities without imposing some further structure. A case which provides a good 
base situation is when the process is stationary. A process is said to be second-order 
stationary if the mean and variance, p and u2, do not vary with time and the 
covariances, h,, depend only on the time interval between X, and X,_, rather than 
on time itself. A general definition of stationarity has that any group of x’s, and 
the same group shifted by a finite time interval, have identical joint distributions. 
In terms of the generating function (2.1), x, will be stationary if the form and 
parameters of the function do not vary through time. For the linear form (2.2) a 
sufficient set of conditions are that the parameters of the distribution of E* are 
time invariant and the parameters Q are both time invariant and are such that 
the difference equation: 

m 

X f+l= C ajixr-j, 
J=o 

is stable. An assumption of stationarity is not made because it is believed to be 
realistic, but because a number of important results derive from the assumption 
and these results can then be studied as the stationarity assumption is relaxed in 
useful ways. 

If x, is a univariate, stochastic process, its linear properties can be studied from 
knowledge of its mean, which is henceforth assumed known and to be zero, 
variance a2 and the autocovariances A,, or equivalently the autocorrelations 
p, = A,/a2. Given a single realization x,, t = 1,. . . , n, consistent estimates of these 
quantities are easily found provided that the process is ergodic, which essentially 
means that as n increases the amount of useful information about the process 
continually increases. (An example of a non-ergodic process is X, = acos(bt) 
where a is a random variable with finite mean.) Although these quantities, 
particularly the autocorrelations, ‘do characterize the linear properties of the 
process, they are not always easy to interpret or to use, if, for example, one is 
interested in forecasting. For many purposes there is greater interest in the 
generating process, or at least approximations to it. Ideally, one should be able to 
look at the correlogram, which is the plot of p, against s, decide which is the 
appropriate model, estimate this model and then use it. To do this, one naturally 
first requires a list, or menu of possible and interesting models. There is actually 
no shortage of time series models, but in the stationary case just a few models are 
of particular importance. 

The most fundamental process, called white noise, consists of an uncorrelated 
sequence with zero mean, that is E, such that E[E~] = 0, var(eI) < cc and 
corr(e,, E,_,) = 0, all s # 0. The process can be called pure white noise if E, and 
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El-, are independent for s # 0. Clearly a pure white-noise process cannot be 
forecast from its own past, and a white noise cannot be forecast linearly, in each 
case the optimal forecast is the mean of the process. If one’s objective when 
performing an analysis is to find a univariate model that produces optimum linear 
forecasts, it is clear that this objective has been reached if a linear transformation 
of x, can be found that reduces the series to white noise, and this is why the white 
noise process is so basic. It can be shown that any univariate stationary process 
can, in theory at least, be reduced uniquely to some white-noise series by linear 
transformation. If non-linear or multivariate processes are considered there may 
not be a unique transformation. 

A class of generating processes, or models, that are currently very popular are 
the mixed autoregressive moving averages given by: 

P 4 

x,= C a,x,_j+ C $&t-j, b, =l, 
j=l j=O 

where E, is white noise. In terms of the extremely useful backward shift operator, 
B, where 

Bkx, = x,-k, 

these ARMA ( p, q) models can be expressed as: 

a(B)x, = b(B)&,, 

where 

a(B)=l- i ajBJ 
j=l 

and 

b(B) = 2 bjB’, b,=l. 
j = 0 

If q = 0, one has an autoregressive, AR(p), model and if p = 0 the model is a 
moving average, denoted MA(q). The q’s are, of course not directly observable, 
but a model is said to be invertible if the original E, can be reconstructed from 
the observed x,. Given a long enough series for x,, the models are invertible if the 
roots of the equation b(z) = 0 all lie outside the unit circle. 

Consider now the AR(l) model: 
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ttn 
x,= c cd, ~ t J’ 

j==O 

if the process started up at time t = - n. If E~ has zero mean and variance a*, then 
clearly the variance of x, is: 

var( xr) = 
i 

l_ a*[n+r+ll 

l-lx2 1 fJ2, 
and x, has mean zero. If now the starting up time is moved into the distant past, 
the variance of x, tends to l/(1 - a2) if 1~~1 -C 1, but increases exponentially and 
explodes if (a I> 1. A borderline case, known as a random walk when (x = 1, has 
var x, = (f + n + l)a*. It is clear that if I a ( 2 1, x, will have infinite variance. More 
generally, if all of the roots of a(z) = 0 lie outside the unit circle and the process 
started in the distant past, the series will be stationary, if any roots lie inside the 
unit circle the series will be explosive. If d roots lie on the unit circle and all 
others outside one has an integrated process. Suppose that x, is generated by 

(14+z(B)x,=b(B)e,, 

where a(B) is a polynomial of order p with all roots outside the unit circle and 
b(B) is a polynomial of order q, then x, is said to be an integrated autoregres- 
sive-moving average series, denoted x, - ARIMA( p, d, q) by Box and Jenkins 
(1976) who introduced and successfully marketed these models. It should be 
noted that the result of differencing x, d times is a series y, = (1 - B)d~,, which is 
ARMA( p, q) and stationary. Although, when d > 0 and x, is not stationary, then 
these models are only a rather simple subset of the class of all non-stationary 
series. There has been a rather unfortunate confusion in the literature recently 
about distinguishing between integrated and general non-stationary processes. 
These terms have, incorrectly, been used as synonyms. 

One reason for the popularity of the ARMA models derives from Weld’s 
theorem, which states that if x, is a stationary series it can be represented as the 
sum of two components, xtr and xzt, where xtt is deterministic (i.e. x1 t+k, k > 0, 
can be forecast without any error by a linear combination of x1 t_,, j ; 0) and x2t 
has an MA(q) representation where q may be infinite. As an’infinite series can 
frequently be well approximated by a rational function, the MA(co) process may 
be adequately approximated by an ARMA( p, q) process with finite p and q. The 
ARIMA( p, d, q) models give the analyst a class of linear time series processes 
that are general enough to provide a good approximation to the true model, but 
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are still sufficiently uncomplicated so that they can be analyzed. How this is done 
is discussed later in this section. 

Many other models have been considered. The most venerable considers a 
series as being the sum of a number of distinct components called trend, long 
waves, business cycles of various periods, seasonal and a comparatively unim- 
portant and undistinguished residual. Many economic series have a tendency to 
steadily grow, with only occasional lapses, and so may be considered to contain a 
trend in mean. Originally such trends were usually represented by some simple 
function of time, but currently it is more common to try to pick up these trends 
by using integrated models with non-zero means after differencing. Neither 
technique seems to be completely successful in fully describing real trends, and a 
“causal” procedure, which attempts to explain the trend by movements in some 
other series-such as population or price-may prove to be better. The position 
that economic data contains deterministic, strictly periodic cycles is not currently 
a popular one, with the exception of the seasonal which is discussed in Section 5. 
The ARIMA models can adequately represent the observed long swings or 
business cycles observed in real economics, although, naturally, these components 
can be better explained in a multivariate context. 

The decomposition of economic time series into unobserved components (e.g. 
permanent and transitory, or, “trend” and seasonal components) can be accom- 
plished by signal extraction methods. These methods are discussed in detail in 
Nerlove, Grether and Carvalho (1979). In Section 6 we show how the Kalman 
filter can be used for this purpose. 

A certain amount of consideration has been given to both non-stationary and 
non-linear models in recent years, but completely practical procedures are not 
usually available and the importance of such models has yet to be convincingly 
demonstrated in economics. The non-stationary models considered include the 
ARIMA models with time-varying parameters, the time variation being either 
deterministic, following a simple AR(l) process or being driven by some other 
observed series. Kalman filter techniques seem to be a natural approach with such 
models and a useful test for time-varying autoregressive parameters has been 
constructed by Watson and Engle (1980). 

Estimation and prediction in models with time varying autoregressive parame- 
ters generated by an independent autoregressive process is a straightforward 
application of the techniques discussed by Chow in Chapter 20 of this Handbook. 
Stochastically varying moving average coefficients are more difficult to handle. 
Any stochastic variation in the coefficients yields a model which is not invertible 
as it is impossible to completely unscramble the shocks to the coefficients from 
the disturbance. In the moving average model this introduces a non-linear 
relationship between the unobservables, the disturbances and the coefficients. The 
Kalman filter cannot be used directly. It is possible to linearize the model and use 
an extended Kalman filter as Chow does in Chapter 20 for the simultaneous 
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equation model. The properties of the coefficient estimates and forecasts derived 
from this method are not yet established. 

Useful classes of non-linear models are more difficult to construct, but a class 
with some potential is discussed in Granger and Andersen (1978). These are the 
bilinear models, an example being: 

x, = ax,_1 + px,_2e,_1+ E,. 

When ar = 0, this particular model has the interesting property that the autocorre- 
lations p, all vanish for s # 0, and so appears, in this sense, to be similar to white 
noise. Thus, in this case xI cannot be forecast linearly from its own past, but it 
can usually be very well forecast from its own past non-linearly. Conditions for 
stationarity and invertibility are known for some bilinear models, but it is not yet 
known if they can be used to model the types of non-linearity that can be 
expected to occur in real economic data. 

Priestly (1980) introduces a state-dependent model which in its general form 
encompasses the bilinear model and several other non-linear models. The restricted 
and conceivably p’iactical form of the model is a mix of the bilinear and 
stochastically time varying coefficient models. 

Engle (1982) has proposed a model which he calls autoregressive conditional 
heteroscedastic (ARCH) in which the disturbances, E,, have a variance which is 
unconditionally constant, but conditional on past data may change, so that: 

+:+I] = u2, 

but 

As will be shown in the next section, e,+i is just the one step ahead forecast error 
X r+l. The ARCH model postulates that x,+ I will sometimes be relatively easy to 
forecast from x,, i.e. h,,, < u2, while at other times it may be relatively difficult. 
This seems an attractive model for economic data. 

One of the basic tools of the time series analyst is the correlogram, which is the 
plot of the (estimated) autocorrelations p, against the lag s. In theory, the shape of 
this plot can help discriminate between competing linear models. It is usual 
practice in time series analysis to initially try to identify from summaries of the 
data one or just a few models that might have generated the data. This initial 
guess at model specification is now called the identification stage and decisions 
are usually made just from evidence from the data rather than from some 
preconceived ideas, or theories, about the form of the true underlying generating 
process. As an example, if a process is ARMA ( p, q) with p > 0, then p, = 13” for s 
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large, with lfll< 1, but if p = 0, p, = 0 for s 2 q + 1 so that the shape of the 
correlogram can, theoretically, help one decide if p > 0 and, if not, to choose the 
value of q. A second diagram, which is proposed by Box and Jenkins to help with 
identification is the partial correlogram, being the plot of us,s against s, where 
uk,k is the estimated coefficient of x,_~ when an kth order AR model is fitted. If 
q > 0, this diagram also declines as 8” for s large, but if q = 0, then usTs = 0 for 
s 2 p + 1. Thus, the pair of diagrams, the correlogram and the partial correlo- 
gram, can, hopefully, greatly help in deciding which models are appropriate. In 
this process, Box and Jenkins suggest that the number of parameters used, p + q, 

should be kept to a minimum-which they call the principal of parsimony-so 
that estimation properties remain satisfactory. The value of this suggestion has 
not been fully tested. 

The Box and Jenkins procedure for identifying the orders p and q of the 
ARMA( p, q) model is rather complicated and is not easily conducted, even by 
those experienced in the technique. This is particularly true for the mixed model, 
when neither p nor q vanishes. Even for the pure AR or MA models difficulties 
are often encountered and identification is expensive because it necessitates 
decision making by a specially trained statistician. A variety of other identifica- 
tion procedures have been suggested to overcome these difficulties. The best 
known of these is the Akaike information criteria (AIC) in which if, for example, 
an AR(k) model is considered using a data set of size N resulting in an estimated 
residual variance 6:, then one defines 

AIC( k) = log 6; + 2k/N. 

By choosing k so that this quantity is minimized, an order for the AR model is 
selected. Hannan and Quinn (1979) have shown that this criteria provides 
upward-biased estimates of the order of the model, and that minimization of the 
criterion: 

& = lo@,2 + N-‘2kcloglogN, c>l, 

provides better, and strongly consistent estimates of this order. 
Although c is arbitrary, a value c = 1 appears to work well according to 

evidence of a simulation. So for instance, if N = 100 an AR(4) model would be 
prefered to an AR(S) model if the increase in e2 is less than 2% using AIC and 
less than 3% using @. These procedures can be generalized to deal also with mixed 
ARMA( p, q) models. (A critical discussion on the use of information criteria in 
model selection can be found in Chapter 5 of the Handbook.) Another partly 
automated method has been proposed by Gray, Kelly and McIntire (1978) which 
is particularly useful with the mixed model. Although the method lacks intuitive 
appeal, examples of its use indicate that it has promise. As these, and other, 
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automated methods become generally available, the original Box-Jenkins proce- 
dures will probably be used only as secondary checks on models derived. There is 
also a possibility that these methods can be used in the multiple series case, but 
presently they are inclined to result in very non-parsimonious models. 

The identification stage of time series modeling is preceded by making an 
estimate of d, in the ARIMA( p, d, q) model. If d > 0, the correlogram declines 
very slowly-and theoretically not at all-so the original series is differenced 
sufficiently often so that such a very smooth correlogram does not occur. In 
practice, it is fairly rare for a value of d other than zero or one to be found with 
economic data. The importance and relevance of differencing will be discussed 
further in Section 5. Once these initial estimates of p, d and q have been obtained 
in the identification stage of analysis, the various parameters in the model are 
estimated and finally various diagnostic checks applied to the model to see if it 
adequately represents the data. 

Estimation is generally carried out using maximum likelihood or approximate 
maximum likelihood methods. If we assume the E’S are normally distributed with 
mean zero and variance (conditional on past data) u,‘, the likelihood function is 
proportional to: 

(uY’*fWexp[ - W& XTV-2u,Z]T 
where /I contains the parameters in a(B) and 6(B) and now X, = (x1, x2,. . . , xr)‘. 
Analytic expressions for f( p) and S( p, X,) can be found in Newbold (1974). 

One of three methods, all with the same asymptotic properties, is generally used 
to estimate the parameters. The first is the exact maximum likelihood method, 
and Ansley (1979) proposes a useful transformation of the data when this method 
is used. The second method, sometimes called exact least squares, neglects the 
term f(p), which does not depend on the data, and minimizes S(/?, X,). The 
method is called exact least squares since S(/3, X,) can be written as: 

1=--00 

where .$ = E[e,]Xr, /3]. Box and Jenkins (1976) suggest approximating this by 
“back-forecasting” (a finite number of) the pre-sample values of E. The third and 
simplest approach, called conditional least squares, is the same as exact least 
squares except pre-sample values of the disturbances are set equal to their 
unconditional expected values. 

Monte Carlo evidence [see Newbold and Ansley (1979)] suggests that the exact 
maximum likelihood method is generally superior to the least squares methods. 
Conditional least squares performs particularly poorly when the roots of the MA 
polynomial, b(z), are near the unit circle. 
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Once the model has been estimated diagnostic checks are carried out to test the 
adequacy of the model. Most of the procedures in one way or another test the 
residuals for lack of serial correlation. Since diagnostic tests are carried out after 
estimation Lagrange Multiplier tests are usually the simplest to carry out (see 
Chapter 12 of this Handbook). For the exact form of several of the tests used the 
reader is referred to Hosking (1980). Higher moments of the residuals should also 
be checked for lack of serial correlation as these tests may detect non-linearities 
or ARCH behavior. 

The use of ARIMA models and the three stages of analysis, identification, 
estimation and diagnostic testing are due to Box and Jenkins (1976), and these 
models have proved to be relatively very successful in forecasting compared to 
other univariate, linear, time-invariant models, and also often when compared to 
more general models. The models have been extended to allow for seasonal 
effects, which will be discussed in Section 6. 

A very different type of analysis is known as spectral analysis of time series. 
This is based on the pair of theorems [see, for instance, Anderson (1971, sections 
7.3 and 7.4)] that the autocorrelation sequence p, of a discrete-time stationary 
series, x, has a Fourier transformation representation: 

p, = 
/ 

-?reiwsdS(w), 
71 

where S(o) has the properties of a distribution function, and the spectral 
representation for x,: 

x, = 
J 

-Veirodz(w), 
71 

where 

E[dz(o)&(X)] = 0, W#X, 

= a2dS(o), o=h, 

where u2 = var(x,). When x, contains no purely cyclical components dS( w) can 
be replaced by s(w)do, where s(w) is known as the spectral function and is given 
by: 

s(w) = Y& C (psemiSW). 
all s 

The spectral representation for x, can be interpreted as saying that x, is the sum 
of an uncountably infinite number of random components, each associated with a 
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particular frequency, and with each pair of components being uncorrelated. The 
variance of the component with frequencies in the range (w, w + do) is u* s( o)dw 
and the sum (actually integral) of all these variances is a*, the variance of the 
original series. This property can obviously be used to measure the relative 
importance of the frequency components. Small, or low, frequencies correspond 
to long periods, as frequency = 257 (period)-‘, and thus to long swings or cycles 
in the economy if x, is a macro-variable. High frequencies, near 7~, correspond to 
short oscillations in the series. In one sense, spectral analysis or frequency-domain 
analysis gives no more information than the more conventional time-domain 
analysis described earlier, as there is a unique one-to-one relationship between the 
set of autocorrelations p,, s = 1,2,. . . , and the spectral function s(w). However, 
the two techniques do allow different types of interpretation to be achieved and 
for each there are situations where they are clearly superior. Thus, for example, if 
one is interested in detecting cycles or near cycles in one’s data, spectral analysis 
is obviously appropriate. 

If x, is a stationary series and a second series is formed from it by a linear 
transformation of the form: 

YI= 5 g/x*-,, 
J=o 

then their respective spectral representations are easily seen to be: 

y,=]” e”“g(o)dz(w), 
-77 

if 

/ 

77 

x, = ei“‘dz(w), 
-77 

where 

g(w) = 2 gjz'? z = e-i”. 

j=O 

By considering the autocovariance sequence of y, it follows immediately that the 
spectrum of yt is g( w)g( w)s,( w) where s,(w) is the spectrum of x, and g is the 
complex conjugate of g. y, is known as a (one-sided) filter of x, and the effect on a 
series of the application of a filter is easily determined in the frequency domain. 

A zero-mean, white-noise series E, with variance of u,’ has spectrum s,(w) = 
u,*/(2s), so that the spectrum of a white noise is flat, meaning that all frequency 
components are present and contribute equal proportions to the total variance. 
Considering a series x, generated by an ARMA( p, q) process as a filtered version 



Ch. 17: Time Series and Spectral Methods 

of E*, that is: 

a,(B)x, = 4@)% 

or 

it follows that the spectrum of x, is: 

991 

Some applications of spectral analysis in econometrics will be discussed in Section 
7. Potentially, the more important applications do not involve just single series, 
but occur when two or more series are being considered. A pair of series, x,, y,, 
that are individually stationary are (second-order) jointly stationary, if all cross 
correlations p:’ = corr(x,y,_,) are time invariant. In terms of their spectral 
representations, it is necessary that: 

E[dz,( o)dz,( X)] = 0, wf X, 

= cr( w)dw, w=h, 

where x, and yI have spectral representations: 

/ 

7l 

x, = ei“‘dz,( w) 
-7l 

and 

y~=l” e”“dz,(w). 
--n 

cr(w) is known as the cross spectrum and is, in general, a complex valued 
quantity. Interpretation is easier in terms of three derived functions, the phase 
(p(w), the coherence C(o), and the gain R,,(w) given by: 

+( ~4) = tan-’ 
[ 

imaginary part of cr( 0) 

real part of cr( w ) 1 ’ 
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When the two series are related in a simple fashion: 

x, = QY,-, + u,, 

where u, is a stationary series uncorrelated withy,_,, all s, the phase diagram takes 
the form: 

G(W) = kw. 

This is true whether k is an integer or not, so a plot of the estimate of Cp(w) 
against w will give an estimate of the lag k in this simple model. Models relating 
x, and y, involving more complicated structures do not lead to such easily 
interpreted phase diagrams, this being particularly true for two-way causal 
relationships. The coherence function measures the square of the correlation 
between corresponding frequency components of the two series and is always 
important. For instance, it might be found that two series are highly interrelated 
at low frequencies (“in the long rum”) but not at high frequencies (“in the short 
run”) and this could have interesting econometric implications. The gain can be 
interpreted as the regression coefficient of the o-frequency component of x on the 
corresponding component of y. 

The extension of spectral techniques to analyze more than two series is much 
less well developed, although partial cross spectra can be easily determined but 
have been little used. 

Spectral estimation has generated a considerable literature and only the rudi- 
ments will be discussed here. Since the spectral density function is given by: 

S(U)=& E p,e-jJw. 

/=-a: 

A natural estimator is its sample counterpart: 

S;(w) = -& ‘2’ li,e-ijw_ 
J=-T+l 

This estimator has the desirable property of being asymptotically unbiased but 
also has the undesirable properties of being inconsistent and producing a rather 
“choppy” graph when plotted against frequency even when s(o) is smooth. This 
last property follows from the fact that 3(w,) and $(wZ) will be asymptotically 
uncorrelated for w1 # 02. 

To alleviate these problems 3(w) is usually smoothed to produce an estimator 
jk (w) given by: 

3&~)=/~ k(X)+-A)dh. 
--B 

The weighting function k(A) is called the spectral window. It is symmetric about 
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o and most of its mass is concentrated around this frequency. Specific forms for 
spectral windows are given in the references below. 

Since 5,(o) is a weighted averaged of i(h) for X near w large changes in the 
spectrum near o cause a large bias in jk(o). These spillover effects are called 
leakage, and will be less of a problem the flatter the spectrum. To avoid leakage 
series are often “prewhitened” prior to spectral estimation and the spectrum is 
then “recolored”. A series is prewhitened by applying a filter to the series to 
produce another series which is more nearly white noise, i.e. has a flatter spectrum 
than the original series. So, for example, x, might be filtered to produce a new 
series y, as: 

The filter +(B) may be chosen from a low order autoregression or an ARMA 
model. Once the spectrum of y, has been estimated, the spectrum of x, can be 
recovered by recoloring, that is: 

The details of spectral estimation and the properties of the estimators can be 
found in the books by Anderson (1971), Fishman (1969), and Koopmans (1974). 
There are many computer packages for carrying out spectral and cross-spectral 
estimation. For the length of time series generally encountered in economics 
computation costs are trivial. 

If in the spectral representation, 

/ 

71 

x, = eir“dz(w), 
--?i 

the random amplitudes dz(w) are not orthogonal, so that 

E[dz(w)&(X)] =d*F(W,X), 

which is not necessarily zero when o # X, a very general class of non-stationary 
processes result, known as harmonizable processes. They have recently been 
discussed and applied to economic data by Joyeux (1979). 

3. Theory of forecasting’ 

In applied economics as well as many other sciences much of the work on time 
series analysis has been motivated by the desire to generate reliable forecasts of 
future events. Many theoretical models in economics now assume that agents in 

‘This section relies heavily on Granger and Newbold (1977). 
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the economy optimally or “rationally” forecast future events and take actions 
based on these forecasts. This section will be devoted to discussing certain aspects 
of forecasting methodology and forecast evaluation. 

Let X, be a discrete time stochastic process, and suppose that we are at time n 
(n = now) and seek a forecast of X,,+,, (h = hence). Anything that can be said 
about X,, + ,, at time n will obviously be based on some information set available at 
time n, which will be denoted by Z,. As an example, a univariate forecast might 
use the information set: 

where by “model” we mean the process generating the data. Any information set 
containing the past and present of the variable being forecast will be called a 
proper information set. 

Everything that can be inferred about X,,, given the information set Z, is 
contained in the conditional distribution of X,,+,, given Z,,. Typically it is too 
ambitious a task to completely characterize the entire distribution, and the 
forecaster must settle for a confidence band for X”+h, or a single value, called a 
point forecast. 

To derive an optimal point forecast a criterion is needed, and one can be 
introduced using the concept of a cost function. Agents engage in forecasting 
presumably because knowledge about the future aids them in deciding which 
actions to take today. An accurate forecast will lead to an appropriate action and 
an inaccurate forecast to an inappropriate action. An investor, for example, will 
forecast the future price of an asset to decide whether to purchase the asset today 
or to sell the asset “short”. An accurate forecast implies a profit for the investor 
and an inaccurate forecast implies a loss. A cost function measures the loss 
associated with a forecast error. If we define the forecast of X,,,, based on 
information set Z, as &( I,,), then the forecast error will be: 

e,“,,(ZJ = X,+, - j,X,,(ZJ. (3.1) 

The cost associated with this error can be denoted as c( ei, ,,( I,)). (For notational 
convenience we will often suppress the subscripts, superscripts, and information 
set when they are easily inferred from the context.) A natural criterion for judging 
a forecast is the expected cost of the forecast error. 

The most commonly used cost function is the quadratic: 

C(e) = ae’, 

where a is some positive constant. This cost function is certainly not appropriate 
in all situations-it is symmetric for example. However, it proves to be the most 
tractable since standard least squares results can be applied. Many results 
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obtained from the quadratic cost function carry over to other cost functions with 
only minor modification. For a discussion of more general cost functions the 
reader is referred to Granger (1969) and Granger and Newbold (1977). 

Standard theory shows that the forecast which minimizes the expected squared 
forecast error is: 

fn,,, = E(Xn+,/Zn). 

Calculating the expected value of the conditional distribution may be difficult or 
impossible in many cases, since as mentioned earlier the distribution may be 
unknown. Attention has therefore focused on forecasts which minimize the mean 
square forecast error and which are linear in the data contained in I,,. Except for 
a brief mention of non-linear forecasts at the end of this section, we will concern 
ourselves only with linear forecasts. 

We will first derive the optimal linear forecast of Xn+h for the quadratic cost 
function using the information set Zi introduced above. We will assume that X, is 
covariance stationary and strictly non-deterministic. The deterministic component 
of the series can, by definition, be forecast without error from Z, so there is no 
loss in generality in the last assumption. For integrated processes, X, is the 
appropriate differenced version of the original series. Since the infinite past of X, 
is never available the information set Z,’ is rather artificial. In many cases, 
however, the backward memory of the X, process [see Granger and Newbold 
(1977)] is such that the forecasts from Z,’ and 

I,“= ( x,, t = O,l,. . . ,n; model). 

differ little or not at all. 
The optimal forecast for the quadratic cost function is just the minimum mean 

square error forecast. The linear minimum mean square error forecasts from the 
information set Z,’ will be of the form: 

cc 

fn,h = C cix,-i = c( B)xnY 
i=o 

where c(B) minimizes: 

E[ (xnttl - WxJ2] 
From Wold’s theorem x, has a moving average representation: 

x, = b(B)&,, (3.2) 
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where E, is white noise. If we define: 

C. W. J. Granger and M. W. Watson 

w(B) = b(B)@), 

and we assume that b(B) is invertible, the problem reduces to finding w(B) which 
minimizes: 

E[ (xn+h - w(Bb,)*] - 
It is then straightforward to show [Granger and Newbold (1977, p. 121)] that the 
equations which characterize w(B) are: 

WI = bi+h 3 i=O,l )... . 

A compact way of writing this is: 

b(B) w(B)= - I 1 Bh +’ 

where “ + ” means ignore all negative powers of B. The linear mean square error 
forecast can then be written as: 

fn.h = y E,, 
[ 1 + 

or: 

fn.h = y +&y.. 1 I (3.3) 

Substituting (3.2) and (3.3) into (3.1) shows that the forecast error will be: 

h-l 

en.h = c b&h-r, 
i=o 

so that the h step forecast errors are generated by a moving average process of 
order h - 1. The one step ahead forecast error is just ~,+i which is white noise. 
Furthermore, x, + h can be decomposed as: 

X n+h = fn,h + en.hr 

where f,,h and e, h are uncorrelated. The variance of the forecast will therefore be 
bounded above by the variance of the series. 
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The formulae given above for the optimal univariate forecast may look rather 
imposing, but simple recursions can easily be derived. Note, for instance, that: 

so that forecasts of Xn+h can easily be updated as more data becomes available. A 
very simple method is also available for ARMA models. Suppose that x, is 
ARMA( p, q) so that: 

X n+h =alXn+h-l+ e-e +apX,+h_p+&,+h - blq,+h_, - . . . - bqq,+,,-q. 

f n,h can be formed by replacing the terms on the right-hand side of the equation 
by their known or optimal forecast values. The optimal forecast for E,,+~ is, of 
course, zero for k 2 0. 

While univariate forecasting methods have proved to be quite useful (and 
popular) the dynamic interaction of economic time series suggests that there may 
be substantial gains from using wider information sets. Consider the forecast of 
X n+h from the information set: 

I”‘= {(x,,y,‘),-oo<t~n;model}. n 

where y is a vector of other variables. If we assume that (X,, q’) is a covariance 
stationary process, then an extension of Wold’s theorem allows us to write: 

Xl 
z, = [I [ a*1@) a,*(B) 

Y, = a21w I 5 
a**(B) f’ 

where [ is vector of white noise with contemporaneous matrix 2, so that A(0) = I. 
The linear mean square error forecast will be of the form: 

where Q(B) minimizes: 

If the matrix polynomial, A(B) is invertible it can be shown that: 

Q(B) = [F] [A(B)] -l, + 
where a,(B) is the first row of A(B). 
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Once again, the forecast errors, e,* ,, (I,,“’ ) will follow a moving average process 
of order h - 1. Furthermore, it must be the case that: 

vark,,&)) 2 var(e,,AY I)? 

since adding more variables to the information set cannot increase the forecast 
error variance. 

These optimal forecasting results have been used to derive variance bounds 
implied by a certain class of rational expectations models. [The discussion below 
is based on Singleton (1981); see also Shiller (1981) and LeRoy and Porter 
(1981).] The models under consideration postulate a relationship of the form: 

P, = i ~;fnx.;(~~), 
r=O 

(3.4) 

where the forecasts are linear minimum mean square error. In some models P,, 
could represent a long-term interest rate and X,, a short-term rate, while in others 
P,, represents an asset price and X, is the value of services produced by the asset 
over the time interval. 

If we define 

and 

where fn&(IJ is the linear mean square error forecast, then: 

where 

9” = 5 Q,,,(Y) 
1=1 

and 

v, = t 6ie,.i(Z,‘). 
r=l 
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Since P,, and p” are linear combinations of optimal forecasts: 

999 

which implies: 

2 =u2+a2=&+a2 
UP' P R P Y . 

Furthermore, since Z,’ is a subset of Z/ : 

which leaves us with the inequality 

The variances a$ and up? are then the bounds for the variance of the observed 
series. If cri falls outside of these bounds the model (3.4) must be rejected. The 
first two variances can be calculated from the available data in a straightforward 
manner. Singleton proposes a method for estimating the last variance, derives the 
asymptotic distribution of these estimators and proposes a test based on this 
asymptotic distribution. 

The discussion thus far has dealt only with optimal forecasts. It is often the 
case that a researcher has at his disposal forecasts from disparate information 
sets, none of which may be optimal. These forecasts could be ranked according to 
mean square error and the best one chosen, but there may be gains from using a 
combination of the forecasts. This was first noted by Bates and Granger (1969) 
and independently by Nelson (1972) and has been applied in a number of 
research papers [see, for example, Theil and Feibig (1980)]. 

To fix notation, consider one step ahead forecasts of x~+~, denoted 

f1,f2,...,frn, with corresponding errors e’, e2,. . . , em. Since bias in a forecast is 
easily remedied we will assume that all of the forecasts are unbiased. An optimal 
linear combined forecast is: 

fC= f a,fi, 
r=l 

where the a,‘~ are chosen to minimize: 

Eb,+l - f?‘. 
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If the mean of X is not zero the resulting combined forecast will be unbiased 
only if: 

The papers by Bates and Granger and Nelson derive the weights subject to this 
constraints. This is just a constrained least squares problem. 

Granger and Ramanathan (1981) point out that the constraint will generally be 
binding and so a lower mean square root error combined forecast is available. As 
an example suppose that x, is generated by: 

x, = Y,-1 + z1-1+ 917 

where y,, z,, and nit are independent white noise. If Z,’ contains only past and 
present y and Z,’ contains only past and present z, the optimal forecasts are: 

f’=Y”-1’ 

f2=z,-1 
and 

f’=f’+ f2. 

The combined forecast has a mean square error equal to ai. Imposing the 
constraint yields: 

fc = alfi + a2f2, 

where 

and the mean square error of fc is: 

When the weights are unconstrained the combined forecast will generally be 
biased. This is easily remedied. One merely expands the list of available forecasts 
to include the mean of X. There is no need to impose the constraint as it will be 
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satisfied by the unconstrained least squares solution, for the same reson that if a 
constant is included in an OLS regression the residuals will sum to zero. 

Evaluation of forecast performance is by no means a clear-cut procedure. The 
discussion of optimal forecasts does however suggest some properties which are 
easily checked. The optimal linear forecast of X,,,, based on the information set 
Z, is the projection of X,,,, on the data Z,. This implies that the forecast error, 
e n ,,, is orthogonal to any linear combination of variables in the information set. 
Forecast errors can then be regressed on linear combinations of data in the 
information set and the estimated coefficients can be tested to see if they are 
significantly different from zero. Care must be taken in carrying out these tests. 
We showed earlier that the optimal h-step forecast errors from a proper informa- 
tion set followed a moving average process of order h - 1, and therefore even 
under the null the residuals in this regression will not be white noise for h larger 
than 1. One step ahead forecast errors from proper information sets should be 
white noise and this is an easy property to check. The variance bounds derived 
above also suggest a weak test. The variance of the forecast should be less than 
the variance of the series being forecast. 

When more than one forecast of the same quantity is available additional tests 
can be constructed. Forecasts can be ranked on a mean square error criterion and 
the best chosen. More demanding tests can also be constructed. If f is the optimal 
forecast from an information set Z,/, and g is a forecast from an additional 
information set I,“, which is a subset of Z,f, then the forecast error from f will be 
uncorrelated with g. A regression of the forecast error, e,, on g should yield a 
coefficient which is not significantly different from zero. Equivalently, if the 
optimal combined forecast using f and g is formed the weights on f and g 
should not be significantly different from one and zero, respectively. Tests similar 
to these have been constructed to evaluate the forecasting performance of macro 
models and are briefly discussed in Section 7. A thorough discussion of these tests 
and others is contained in Granger and Newbold (1977, ch. 8). 

We have largely been concerned in this section with linear forecasts; however, 
even for covariance stationary processes considerable gains can occur from 
considering nonlinear forecasts. Consider for example a special case of the 
bilinear model introduced in Section 2: 

x,=&1x,_2 + E,, 

where E, is white noise. The process will be covariance stationary if /3’u,’ < 1 
[Granger and Andersen (1978, p. 40)]. Since the lagged autocovariances are all 
zero, it follows that the optimal univariate linear one step ahead forecast of X,,,, 
is zero. The forecast mean square error is then: 
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The optimal non-linear one step ahead forecast is BE*_ 1x,-z which will have an 
expected mean square forecast error u,‘. 

Identification of complicated bilinear models is a difficult procedure, but the 
book by Granger and Andersen suggests methods which seem practical for simple 
models. Their procedure is to examine the autocorrelations of the squares of the 
residuals from linear time series models. Many nonlinear models have linear 
approximations with serially correlated squared residuals. If the squared residuals 
appear to be serially correlated it is not clear which non-linear models should be 
considered as alternatives. A further discussion of non-linear forecasting and 
forecasting non-linear transformations of the data can be found in Granger and 
Newbold (1976, 1977) and in Priestley (1980). 

4. Multiple time series and econometric models 

Econometric models (for time series data) and multiple time series models both 
attempt to describe or at least approximate the dynamic relationship between the 
variables under consideration. As mentioned in the first section the approaches 
taken in building these two types of models have historically been quite different. 
To facilitate the comparison of these approaches it is useful to introduce a variety 
of multiple time series representations. 

Let Z, be an N X 1 vector stationary time series. Then an extension of Weld’s 
theorem [Hannan (1970)] allows us to write: 

z, = c(B)s,, 

where c(B) is an N x N matrix of (possibly infinite degree) polynomials in the 
backward shift operator and e, is an N X 1 vector white noise, that is: 

s, = (ei,, e 21,...,Ej& 

with 

E[ e,] = 0 

and 

E[ e,e:] = &,z, 

where 6 is the Kronecker delta. 
As was the case with the univariate model, it may be true that c(B) can be 

represented, or at least well approximated, by the rational function: 

c@)=a-‘(B)b(B), (4.1) 
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where both a(B) and 6(B) are N X N matrices of finite order polynomials in B. 
We will assume that these matrices are of full rank, so that their inverses exist. 
When (4.1) is satisfied, 2, is said to follow a vector ARMA or VARMA process of 
order (P, Q). P and Q are now N X N matrices with pi, equal to the order of the 
polynomial alj( B) and q’, equal to the order of the polynomial blj( B). The 
generating process for 2, can then be written as: 

a(B)Z,=b(B)e,. (4.2) 

The AR side of (4.2) states that each component of Z, is at least partially 
explained by its own past and the present and past of the other components. The 
whole model then states that when the lag operator a(B) is applied to Z,, the 
resulting vector time series is such that its autocovariances and cross covariances 
can be represented by the multivariate moving average model b(B)&,. It should 
be noted that the variables which are observed are the components of Z, and that 
the disturbances, E,, are at best estimated from the model, provided that the 
moving average part is invertible. Invertibility is satisfied in the multivariate 
model if F’(B) exists. 

The representation (4.2) is by no means unique and normalizations must be 
imposed if the parameters are to be identified in the econometric sense. One 
source of under-identification comes from the contemporaneous relationship or 
causality of the data. The elements Z, will be contemporaneously related if any of 
the off-diagonal elements of a(O), 6(O), or ,Z are non-zero. Clearly, there will be no 
way to tell these apart given only data on Z. A common normalization sets 
u(O) = 6(O) = I and leaves 2 unrestricted. Others are, of course, possible. Sims 
(1980) for example uses the recursive form of the model for his vector autoregres- 
sions in which a(0) is lower triangular and 2 is diagonal. This is a useful form for 
forecasting and for the vector AR model implies that the parameters can be 
efficiently estimated by ordinary least squares. Sufficient conditions for parameter 
identification in VARMA models are given in Hannan (1969). 

As u(B) is assumed of full rank, (4.2) may also be written as: 

Z, = u-‘( B)b( B)E,. 

If a*(B) is the adjoint matrix associated with u(B) and lu( B)J is the determinant 
of this matrix. This results in the equivalent model: 

l@)lZ, = a*(B)b(B)q, 

and the j th equation of this system is: 

l@)lZ,, = ++t, j=l ,***, N, 
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where a,(B) is the jth row of a*(B)b(B). If no cancellation of factors of the 
form (1- /3B) from both sides of these equations occurs, it follows that all the 
single series ARMA (p, q) models for the components of Z, will have identical 
AR parts, and further that p and q will be very large if the number of 
components is large. As neither of these features is actually observed, this suggests 
that considerable cancellations do occur or that the present single series modeling 
techniques tend to choose models that are too simple. Zellner and Palm (1976) 
and Protheo and Wallis (1976) have suggested that the common AR property can 
be utilized to indicate relevant constraints on the form of the matrix a(B) in the 
full model (4.2), but the technique has been applied only to small systems so far. 
A possible limitation to this technique can be seen by noting that the Z/(‘s could 
all be univariate white noises, but still be related through a model of the form 
(4.2) although this model will be constrained so that la( B)l and the moving 
average process implied by a,(B)&, are equal for all j. Such constraints are not 
easily used in practice. 

Time series identification, that is the choice of p and q, for VARMA models is 
a difficult task and completely satisfactory methods are not yet available. Tiao et 
al. (1979) suggest a method similar to univariate methods of Box and Jenkins 
which is practical for AR or MA models. Mixed models are substantially more 
difficult. A procedure for bivariate models is proposed in Granger and Newbold 
(1977). A computer package, Tiao et al. (1979), is available for estimating small 
scale (up to five series) VARMA models. 

A model more familiar to traditional econometricians is achieved by using the 
partition: 

where the lag operators have not been shown for notational convenience. If it is 
now assumed that u2t = 0, 6,, = 0, and 6,, = 0, one obtains the two sets of 
equations: 

(4.4) 

If, furthermore, there are no contemporaneous correlations between the compo- 
nents of the white-noise vector en and the white noise vector Ebb, the Z, is 
decomposed into x, and yI, where the components of x, are called exogenous. 
The question of how exogeneity should be defined and tested is discussed in 
Chapter 18, on causality, in this Handbook. Alternative definitions of exogeneity 
can be found in Engle, Hendry, and Richard (1981). The correct division of 
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variables into these two classes is clearly important for forecasting, as well as 
other purposes. Equations (4.3) and (4.4) provide the link between times series 
and econometric models. Equation (4.3) can be viewed as the structural form of a 
dynamic simultaneous equation model, while (4.4) describes the evolution of the 
exogenous variables. Traditionally, the existence of the subsystem (4.4) is not 
considered, as the exogenous variables are said to be “generated outside of the 
system.” In the time series literature, systems such as (4.3) are now being called 
ARMAX systems, for autoregressive-moving average with exogenous variables. 

Although the structural form (4.3) is of fundamental importance, some other 
derived models are also of interest. Denote a,,,(B) = ai,( B)- a,,(O), then (4.3) 
may be written either as: 

which is known as the reduced form, or as: 

which has been called the final form, a multidimensional rational-distributed lag 
model, or of a unidirectional transfer-function form. In the reduced form, 
endogenous variables are explained by “predetermined variables”- that is, exog- 
enous and lagged endogenous variables-whereas in the final form y, appears to 
be explained by just the exogenous variables. If parameter values are known, or 
have been estimated, both the reduced form and the final form can be used to 
produce forecasts. The reduced form used the information set I,(‘): [xn_,, y,_,, 
j 2 01, plus forecasts of exogenous variables and the final form appears to use just 
I,“): [x,~,, j 2 01, plus exogenous variable forecasts. However, as is easily seen 
from (4.5) the use of Zj2) will generally produce forecasts with errors that are not 
white noise. These forecasts can then be improved by modeling the residuals, but 
to do this earlier values of the residuals are required and to know this earlier 
values of y, are needed, so that effectively one ends up using Z!“. As situations are 
rare in which past values of exogenous variables are available, but not the past 
values of endogenous variables, the proper information set Z,I” is the appropriate 
one in most cases. 

Traditionally, econometricians have viewed their task as specifying and estimat- 
ing the model (4.3) while ignoring (4.4). The time series analyst, on the other 
hand, would identify and estimate both (4.3) and (4.4). To the econometrician, the 
parameters of (4.3) were thought to be the most important as these presumably 
contained the sought after information about the working of the economy. These 
parameters could then be subjected to hypothesis tests, etc. Time series analysts, 
being primarily interested in forecasting and not economic theory, required both 
(4.3) and (4.4) for their purpose. Lucas (1976) showed that the parameters of (4.3) 
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were in general not the parameters of economic interest. He persuasively argued 
that the important economic parameters could not be deduced without knowledge 
of the process generating the exogenous variables. The main point of Lucas is that 
the parameters of (4.3) are not structural at all. They will in general be functions 
of underlying structural parameters and the parameters of (4.4). The Lucas 
critique has spawned a new class of econometric models in which the time series 
properties of the exogenous variables play a crucial role. Examples can be found 
in Wallis (1980) and Sargent (1981). 

Other clear differences between the time series and classical econometric 
approaches are the size of the information sets used and the intensity with which 
they are analyzed. Time series models often involve just a few series, but a wide 
variety of different lag structures are considered. Classically, econometric models 
involved very large numbers of series, a model of 400 equations now being 
classified as moderate in size, but are sparse in that most variables do not enter 
most equations. To the time series analyst’s eyes, econometric models involve 
remarkably few lags. It has been said that when a time series analyst is unhappy 
with his model, he adds further lagged terms, but an unhappy econometrician is 
inclined to add further equations. One reason why econometricians rely heavily 
on an economic theory is that they have so many variables, but usually with 
rather small amounts of data, so that it would be impossible to consider a wide 
enough variety of models to be able to get anywhere near the true model. The use 
of the theory severely limits the number of alternative model specifications that 
need to be considered. Thus, the theory effectively greatly expands the available 
data set, but the difficulty is that if an incorrect theory is imposed an incorrect 
model specification results. 

A further use of time series analysis in econometric model building is based on 
the precept that one man’s errors may be another man’s data. Thus, the residuals 
from an econometric model can be analyzed using time series methods to check 
for model mis-specification. Calling the procedure TSAR, for time series analysis 
of residuals, Ashley and Granger (1979) looked at the residuals from the St. Louis 
Federal Reserve Bank Model. Some of the individual residual series were found 
not to be white-noise and so could be forecast from their own past, and some 
residuals could be forecast from other residuals, suggesting missing variables, 
model mis-specification and inefficient estimation. The classification of some 
variables as exogenous was also found to be questionable. 

5. Differencing and integrated models 

An example of differences in attitudes between time series analysts and the 
classical econometricians concerns the question of whether the levels or changes 
of economic variables should be modeled. If one has a properly specified model in 
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levels, then there will correspond an equally properly specified model in changes. 
Forecasting from either will lead to identical results, for example, by noting that 
next level equals next change plus current level. However, if it is possible that the 
model is mis-specified, which is certainly a sensible viewpoint to take, there can 
be advantages in using differenced data rather than levels. The occurrence of 
spurious relationships between independent variables has been known for a long 
time and was documented again, using theory and simulation, by Granger and 
Newbold (1974). There it was shown, for example, that if x, and yt were each 
ARIMA (p, d, q), with d = 1, but independent, then regressions of the form: 

x, = a + Py,_c + E,, 

when estimated by ordinary least squares would frequently show apparently 
significant /3 and R* values. The problem can be seen by considering the null 
hypothesis, /3 = 0, which implies E, = x, - a. This shows that E, is serially corre- 
lated under the null so that standard t-tests based on ordinary least squares are 
not appropriate. Estimation methods which assume E, is AR(l) improve matters, 
but do not totally remove the problem, as spurious relationships can still occur. 
Clearly, if a sufficiently general model is allowed for the errors, the problem is less 
likely to occur, but if the dependent variable x, has infinite variance, as occurs 
when d = 1, but the model for E, only allows finite variance, then spurious 
relationships are often found. If all series involved are differenced, the residual 
need not be white noise, so that ordinary least squares is not efficient, but now at 
least the change series and the residual all have finite variance. Plosser and 
Schwert (1977, 1978) have shown that, in a sense, over-differencing is less 
dangerous than under-differencing and have provided illustrations using real data 
of spurious relationships and the effects of differencing. Using differenced data is 
not, of course, a general panacea and, as Plosser and Schwert state “the real issue 
is not differencing, but an appropriate appreciation of the role of the error term in 
regression”. As some econometricians were traditionally rather casual about the 
error specification, to the eyes of a time series analyst, until recently the 
possibility that apparently significant relationships were spurious or weaker than 
they appear remained. 

Despite these results, some econometricians have been reluctant to build 
models other than in levels or have rejected the idea of differencing all variables. 
Partly this is because they feel more comfortable in specifying models in levels 
from their understanding of economic theory and also because differencing may 
not always seem appropriate, particularly when non-linear terms are present or if 
a change in one variable is to be explained by the difference between the levels of 
two other variables. Another reason for this reluctance is that econometricians 
have become used to extremely high R2, or corrected R*, values when explaining 
levels, but R* often falls to modest, or even embarrassingly low values, when 
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changes in a variable are explained. Partly this is due to the removal of spurious 
relationships, but is largely due to the fact that a very smooth, high-momentum 
variable, such as many levels, are very well explained from past values of this 
variable, but this is no longer true with the highly variable change series. An 
extreme case is stock market prices, the levels following a random walk and the 
changes being white noise, or very nearly so. Econometricians have also been 
worried that differencing may greatly reduce or even largely remove the very 
important low-frequency component, corresponding to the long-swings and the 
business cycle. This can certainly occur if one over-differences, but should not be 
a problem if the correct amount of differencing occurs to reduce the series to an 
ARMA generated sequence. Differencing may also exacerbate errors in variables 
problems, but the presence of errors in variables can often be tested, and these 
tests can be carried out on the differences as well as the levels. There has also 
been some debate about the usefulness of differencing by time series analysts. It 
has been pointed out that if a series has a mean, then this mean cannot be 
reconstructed from the differenced series, but this would not be so if the 
difference operator (1 - B) is replaced by (1 - aB) with (Y near, but less than, one. 
The obvious response is that an ARIMA series need not possess a mean. 

A way of generalizing this discussion in a potentially useful fashion follows by 
noting that differencing a series d times means that the spectrum of the series is 
multiplied by: 

where 

If a series x, has a spectrum of the form: 

ll- zl -2df(4, 

where f(w) is the spectrum of a stationary ARMA series, it will be said to be 
integrated of order d, and denoted x, - I(d). Note that x, needs to be differenced 
d times to become stationary ARMA. As just defined, d need not be an integer 
and one can talk of fractional differencing a series if a filter of the form 
a(B) = (1 - B)d is applied to it. It has been shown that integrated series, with 
non-integer d, arise from the aggregation of dynamic microvariables and from 
large dynamic systems [see Granger (1980a)j. 

When d L f , x, will have infinite variance and if d < i, the series has finite 
variance. An integrated series with d 2 i will be inclined to be identified by 
standard Box-Jenkins techniques as requiring differencing. Note that if also 
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d ~1, the differencing will produce a series whose spectrum is zero at zero 
frequency. Thus, the time series analysts will, in a sense, be correct in requiring 
differencing to remove infinite variance, but the econometricians’ worries about 
losing their critical low-frequency components are well founded. The proper 
procedure is, of course, to fractionally difference, provided that the correct value 
of d is known. The best way to estimate d has yet to be determined, as has the 
importance and actual occurrence of integrated series with non-integer d. 

Possible use of fractional integrated models, if they occur in practice, is in 
long-run forecasting. It can easily be shown that if the MA( 00) model correspond- 
ing to x, - Z(d) is considered, then the coefficients 

bj - Ajd-l, 

whereas a stationary ARMA( p, q) model, with 
coefficients declining at least exponentially, i.e. 

b, - AfP, \e\ cl. 

will decline in the form: 

infinite p and q, will have 

This “long-memory” property can be utilized to improve long-run forecasts in a 
simple fashion, once d is known or has been reliably estimated. 

6. Seasonal adjustment 

Many important economic series show a consistent tendency to be relatively high 
in one part of the year and low in another part, examples being unemployment, 
retail sales, exports, and money supply. It is fairly uncontroversial to say that a 
series contains seasonal variation if its spectrum shows peaks, that is extra power, 
at the seasonal frequencies, which are: 

2+ j=l 6 ,..*, > 

for monthly series. For some series, the seasonal component is an important one, 
in that the seasonal frequencies contribute a major part of the total variance. For 
reasons that are not always clearly stated, many econometricians feel that if the 
seasonal component is reduced, or removed, analysis of the remaining compo- 
nents becomes easier. Presumably, the seasonal part is considered to be economi- 
cally unimportant or easily understood, but that leaving it in the series confuses 
the analysis of the more important low-frequency business cycle components. By 
“seasonal adjustment” is meant any procedure that is designed to remove, or 
reduce, the seasonal component. The problem of how best to design seasonal 
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adjustment procedures is a very old one and it has generated a considerable 
literature. Although much progress has been made the problem can hardly be 
classified as solved. Two excellent recent references are the extensive collection of 
papers and discussions edited by Zellner (1979) and the survey by Pierce (1980). 

Much of the discussion of seasonal adjustment begins with the additive 
decomposition of an observed series yI into two unobserved components: 

y,=n,+s I’ 

where s, is strongly seasonal-so that its spectrum is virtually nothing except 
peaks at the seasonal frequencies and rrt is non-seasonal, For this model, “sea- 
sonal adjustment” is any procedure which yields an estimate of the non-seasonal 
component. If this estimate is based on an information set which contains only 
the past, present, and possibly future values of y,, the method is called auto- 
adjustment. A procedure based on a wider information set, called causal adjust- 
ment, will be discussed at the end of this section. Most of the literature on 
seasonal adjustment concerns auto-adjustment procedures and these are by far 
the most widely used methods. Consequently, much of our discussion will be 
devoted to these methods. 

Early methods of seasonal adjustment relied on the additive decomposition 
above, and assumed that s, followed a periodic deterministic process, an example 
for monthly data being: 

12 

s,= C aiD,i, 
1=1 

where the Dri's are a set of monthly dummy variables or sine and cosine terms. 
The non-seasonal component was assumed to be composed of a “trend” and 
“irregular” component. These components were approximated by a polynomial in 
t and white noise. The seasonal component in this model can be estimated using 
standard regression techniques. Subtracting this estimate from the observed series 
yields an estimate of the non-seasonal component. This method and its statistical 
properties are discussed in Jorgenson (1964, 1967). 

The causes of seasonal fluctuations, e.g. weather, and the inspection of esti- 
mated spectra for economic time series suggest that the deterministic model for s, 
is a poor one. A popular approach is to assume that each component is stochastic 
and generated by an ARMA model. (The possible need to difference the series 
can be handled, but introduces further complications that will not be discussed 
here. More details can be found in the references given above.) Thus, we can 
write: 

and 
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where 17~ and E, are independent white noise: 

1011 

a,(B)=l-a;B-a;B*-,...,-a,““~P~, 

b,(B) =l- b;B- b;B*- ,..., - b;“B? 

and a,(B) and b,(B) are similarly defined. The polynomials are such that s, is 
strongly seasonal, so that 

s (w) = bJ4W 2 
s u,(z)a,(z) 2a’ 

z = e-im, 

has most of its power concentrated around the seasonal frequency and n, is 
non-seasonal. The implied model for y, is: 

a(B)y, = b(B)e,, 

where u(B) = u,(B)u,(B) if u,(B) and u,(B) have no common roots, and 
b( B)e, is a moving average having the same autocovariances as a,( B)b,( B)e, + 

u,(B)bAB)v,. 
Since only the sum of nr and s, is observed it is impossible to deduce the values 

of the components if both u,’ and ut are non-zero. We will denote the seasonal 
adjustment error at time t by: 

a, = n, - A, = 9, - s,, 

where S, and A, are the estimated values of the components. The linear estimate of 
n, which minimizes the mean square seasonal adjustment error is the projection of 
n, on the available data (conditional expected value if y, is normal). If an entire 
realization of y, is available the optimal linear estimate of the seasonally adjusted 
series is then: 

A, = P(n,lyk, -00 <k < 00) = V(B)y,, 

where P is the projection operator and [Weiner (1949), Whittle (1963) Grether 
and Nerlove (1970)]: 

v(z) = 
spectrum of n, 

spectrum of y, ’ 

where z = e-‘“. 
Several properties of the optimal linear estimate follow immediately. First, A, is 

obtained from a time invariant linear filter applied to y,, so that the coherence 
between A, and yr is one. Second, the filter is symmetric, u, = u_,, implying that 
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the phase between y, and it, 
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is zero. Finally, the spectrum of ?r, is 

so that 

SR(W) IS”(W). 

The spectrum of it, will be substantially less than the spectrum of n, over those 
frequencies where the spectrum of st is large relative to the spectrum of n,. Since 
this occurs at the seasonal frequencies the spectrum of the adjusted series will 
contain “dips” at these frequencies. Equivalently, the adjusted series will have 
negative autocorrelations at the seasonal lags. The “optimal” procedure will tend 
to “overadjust” for seasonality. 

This optimal filter cannot be used for obvious reasons. The parameters of the 
model and hence the elements of V(B) are rarely known, and a complete 
realization of y, is never available. Since the process is stationary y, = u_~ = 0 for 
large j implying that the last problem is most serious near the begmning and end 
of the sample. 

Pagan (1975) and Engle (1979) overcome this problem through the use of the 
Kalman filter and smoother. The Kalman filter produces linear minimum mean 
square error estimates of n, using observed data up through time t. The smoother 
optimally updates these estimates as data beyond time t becomes available. (The 
Kalman filter and smoother are discussed in detail in Chapter 20 of this 
Handbook.) To implement the filter the model is written in state space form. 
Although moving average terms can easily be handled [see Harvey and Phillips 
(1979)] it is notationally convenient to assume that b,(B) = b,(B) = 1. With this 
assumption the model can be written as: 
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where 1, is a k vector with one as its first element and all other elements zero: 

-I n, = n,,n,-, )...) 

[ 

nt-p,+l 2 1 

s;= [Sf,SI--l,..., %p,L 

and 

a$...a,“,_ 
.-------- 

I (Pr-1) 

I 

1 1 aPk 
-+--- 

I O 
10 ’ 

I : 
I . 

10 _ 

fork=nors. 

As Engle (1979) notes, this formulation has several advantages. Computa- 
tionally it is easier to implement than the Weiner filter, which requires a 
factorization of the spectral density of y [see Nerlove, Grether and Carvalho 
(1979)]. The model is also more general as a slight modification will allow weakly 
exogenous variables to appear as explanatory variables for n, and s,. Models with 
deterministic components can easily be handled. The filter also insures that the 
revisions made in n, at time t + k follow a (time varying) moving average process 
of order k - 1. This follows since the revision will be a (time varying) linear 
function of e,+l,er+2 ,..., et+k. 

The filter does require a value of the mean and variance of n, and sa to begin 
the recursions. In the case under consideration these components are covariance 
stationary and the correct starting values are just the unconditional means and 
variances. For non-stationary models the initial values can be estimated as 
nuisance parameters, as described in Rosenberg (1973) or Engle and Watson 
(1981b). 

Since the parameters of the model are rarely known, they will generally need to 
be estimated prior to the adjustment process. If E, and 9, are assumed to be 
normally distributed, the parameters can be estimated using the maximum 
likelihood methods discussed in Chapter 20 of this Handbook. The scoring 
algorithm presented in Engle and Watson (1981a) and the EM algorithm dis- 
cussed in Engle and Watson (1981b) have been successfully used in similar 
models. 

There are of course many ways to additively decompose y, into two uncorre- 
lated components. The parameters of the model will not in general be identified. 
Identification can sometimes be achieved by assuming specific forms for the 
processes as in Engle (1979), or by finding a representation which minimizes the 
variance of the seasonal component as in Pierce (1979). 
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Some of the other approaches to seasonal adjustment rely on models which 
have parameters varying in a seasonal manner, such as the cycle-stationary 
models investigated by Parzen and Pagan0 (1978), while others have the ampli- 
tude of the seasonal changing with the size of other components, such as the 
multiplicative and the harmonizable models. Havenner and Swamy (1981) pro- 
pose a model similar to the deterministic model discussed above, but they allow 
the regression coefficients to vary stochastically. When some of these models are 
employed the concept of seasonal adjustment can become rather confused. 

The most widely used program for seasonal adjustment is the Census Bureau’s 
X-11. The program consists primarily of a set of symmetric linear filters applied 
to the data, but also has features which correct for the number of trading days 
and “extreme” values. For recent data the symmetric filter is inappropriate and 
special “end weights” are used. Young (1968) presents a symmetric linear filter 
which approximates the filter used by X-11, and Cleveland and Tiao (1976) 
present models for which X-11 is approximately optimal. Details on the character- 
istics of X-11 can be found in Shiskin, Young, and Musgrave (1967) and Kupier 
(1979). A discussion of the models for X-11 is presented in the survey paper by 
Pierce. 

In practice, the use of seasonally adjusted data can lead to considerable 
modeling problems. Many techniques, including X-11, will usually insert “over- 
adjustment problems”, such as the above mentioned negative autocorrelations at 
seasonal frequencies and the relationships between pairs of series can be consider- 
ably disturbed, as various studies have indicated. Partly this is due to the use of 
robust techniques, which attempt to reduce the relevance of outliers. When actual 
outliers occur, these methods are valuable, but if over-used, as in X-11, the 
resulting non-linearities that are introduced can have serious consequences for 
modeling relationships, for parameter estimation, for causality testing and for 
forecasting. 

Godfrey and Karreman (1967) present evidence that the methods of adjustment 
often used in practice will have no unfortunate effects on low-frequency compo- 
nents (that is components with frequencies lower than the seasonal frequency), 
but that all other components are badly affected, even non-seasonal higher- 
frequency components. The original components with frequencies higher than the 
seasonal frequencies are partly replaced with variables uncorrelated with them, so 
that coherences between the original non-seasonal components and the corre- 
sponding components of the adjusted series are reduced. This suggests that 
modeling pairs of seasonally adjusted series can lead to difficulties, and Newbold 
(1981) presents convincing evidence that this does occur. Wallis (1974,1979) and 
Sims (1974) have discussed this problem in detail. Their conclusions suggest that 
in general it is preferable to use seasonally unadjusted data and explicitly model 
the seasonahty. 
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The question of how to evaluate a seasonal adjustment procedure is not an easy 
one, partly because the seasonal and non-seasonal components introduced above 
are not clearly distinguished. A white-noise series has a flat spectrum and, thus, 
has some power at seasonal frequencies. The seasonal component is thought of as 
giving extra power at seasonal frequencies, over and above that provided by the 
non-seasonal component. However, this statement does not provide enough 
information to ensure a unique decomposition of a given series into seasonal and 
non-seasonal components. A similar criterion applies to the simple criterion that a 
series, after adjustment, has no peaks remaining in its spectrum. A clearer 
criterion is to require that the variance of the seasonal component, or a suitable 
transformation of it, should be minimized. This criterion can be characterized in 
either time or frequency domains and in a sense removes no more than necessary 
to achieve no seasonality. When one knows the correct model, or a reasonable 
approximation to it, such a criterion can be used to provide a good seasonal 
adjustment procedure. However, if the assumed model does not approximate the 
true world, an inappropriate adjustment may occur. 

To evaluate an adjustment procedure, it has been suggested that spectral 
techniques are the most appropriate and that, (a) the adjusted series should have 
neither peaks nor dips (over adjustment) at seasonal frequencies, and (b) if the 
adjustment procedure is applied to a non-seasonal series, the cross spectrum 
between the original and the adjusted series should have a coherence near one and 
a phase near zero at all frequencies. Although these appear to be sensible criteria, 
as shown above the “optimal” adjustment method mentioned earlier will not obey 
them, producing dips in the spectrum at seasonal frequencies or, equivalently, 
negative autocorrelation at seasonal lags. This merely means that a pair of 
“sensible” criteria are inconsistent, but it does leave the choice of proper criteria 
for the selection and evaluation of techniques for further consideration. 

The methods discussed above have all been “auto-adjustment,” in that just the 
observed series X, has been utilized. As one must expect the seasonal components 
to be, at least partially, the results of various causal variables a sounder approach 
would be to seasonally adjust in a multivariate context. Thus, if the weather 
causes the seasonality in Chicago house construction, it should be natural for 
econometricians to model this relationship. The effects of a severe winter, for 
example, are then directly allowed for rather than being considered as some 
vague, unexplained outlier. Of course, it is by no means easy to correctly model 
the required relationships, particularly as the series involved will all be strongly 
seasonal and the use of causal adjustment procedures would be far too expensive 
for the government to use on all of the series that are said to need adjustment. 
Nevertheless, if an econometrician is anxious to produce a really sound model, it 
is advisable to use unadjusted, raw data and to build seasonal causal terms in the 
model. However, even then the data may still need application of a seasonal 
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adjustment procedure as some causes could be unobservable, but if one does it 
oneself at least the methods used is under one’s own control and need produce 
less unpleasant surprises than the use of an “off-the-shelf” technique. Further 
discussion of these points may be found in the papers by Granger and Engle in 
the volume edited by Zellner mentioned above. 

7. Applications 

In this section a few examples of the way in which time series techniques have 
been applied to economic data will be briefly discussed. It would be virtually 
impossible to survey all of the applications that exist. Two applications that will 
not be discussed, although they are currently very much in vogue, are testing for 
causality and the use of Kalman filter techniques for investigating time-varying 
parameter models, as these are described in Chapters 18 and 20 of this Handbook. 
Additional applications using frequency domain techniques can be found in 
Granger and Engle (1981). 

The most obvious, and oldest, application is to model a single series to provide 
what are termed “naive” forecasts against which the forecasts from a full-scale 
econometric model can be compared. Of course, the comparison is not strictly 
fair, as the econometric model uses a much larger information set, and also has 
the “advantage” of being based on an economic theory, but, nevertheless, 
econometricians have behaved as though they believe that such naive models are 
worthy forecasting opponents. In fact, the econometric models have found it 
difficult to beat the time-series forecasts, an example being Cooper (1972), who 
used only AR(4) models. More recently, the econometric models have performed 
relatively better, although a more stringent criterion suggested in Granger and 
Newbold (1977, ch. 8) involving the combination of forecasts, would still 
probably suggest that there is still room for considerable improvement by the 
econometric models. It will be interesting to continue to compare forecasts from 
the two types of model, as each is certainly improving through time. 

More natural comparisons are between econometric models and multivariate 
time series, although the best way to specify the latter is still uncertain. Some 
examples are the papers by Zellner and Palm (1974), Sargent (1981) and Taylor 
(1979). No complete comparison of relative forecasting abilities is available at this 
time. Multivariate time series techniques can also be used to measure the 
importance, in terms of improved forecasting ability, of adding further variables 
to the model. An obvious example is to ask how useful is anticipation data. The 
technique used is the same as that developed for causality testing, as discussed in 
Chapter 18 of this Handbook. The results are sometimes rather surprising, such as 
the weak relationships found between some financial series by Pierce (1977). 
Neftci (1979) investigated the usefulness of the NBER leading indicator for 
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forecasting the index of industrial production (IIP). He modeled III’ in terms of 
its own lags and the added various leading indicators to the model. Using 
post-sample forecasts, he found that the leading indicators did not improve 
forecasts for “normal” times, but did help during the recession year of 1974. The 
results thus agree with the NBER claims about the usefulness of this indicator 
series at turning points, but nothing more. Auerbach (1981) studied the usefulness 
of the leading indicator series in predicting changes in both IIP and the adult 
civilian unemployment rate. Based on both in-sample fit and forecasting perfor- 
mance he found the leading indicator series useful, but his in-sample results 
suggest that it may be possible to choose better (possibly time varying) weights 
for the components of the leading indicator series. 

The ARCH model introduced in Section 2 has been used in a number of 
applications. Engle (1980, 1982) has shown that there are significant ARCH 
effects in U.S. and U.K. inflation data, and Engle and Kraft (1981) derive 
conditional multiperiod forecast variances from an autoregressive model where 
the disturbance follows an ARCH process. Robbins (1981) estimates a model in 
which the conditional variance of excess returns for short rates affects the 
liquidity premium for long rates. Engle, Granger and Kraft (1981) use a multi- 
variate ARCH model to compute optimal time varying weights for forecasts of 
inflation from two competing models. 

The obvious applications of univariate spectral analysis are to investigate the 
presence or not of cycles in data. Thus, for example, Hatanaka and Howrey 
(1969) looked for evidence of long swings or long cycles in the economy, by 
asking if there were peaks in the spectrum corresponding to such cycles. The 
results were inconclusive, because very long series would be required to find 
significant peaks, particularly against the “ typical spectral shape” background, 
corresponding to the high power at low frequencies found with ARIMA (p, d, q) 
models, d > 0, which we often observed for the levels of economic macro 
variables. A related application is to compare the estimated spectral shape with 
that suggested by some theory. For example, the random-walk theory of stock 
market prices suggests that price changes should be white noise and thus have a 
flat spectrum. Granger and Morgenstem (1970) found evidence that was generally 
in favor of the hypothesis, although a very slight evidence for a seasonal in.price 
changes was occasionally observed. Estimated spectra of a wide range of eco- 
nomic series give no evidence of strict cycles except for the seasonal component. 
Howrey (1972) calculated the spectra of major variables implied by the Wharton 
model and compared them to the typical spectral shape, and generally found the 
econometric model did produce the correct spectral shape. 

The power spectrum is obviously useful in consideration of the seasonal, both 
to find out if a series contains a seasonal component, to measure its strength and 
also to investigate the effects of seasonal adjustment. One of the very first 
applications of frequency domains techniques to economic data was by Nerlove 
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(1964) investigating these aspects of seasonality. He also used the spectrum to 
define the seasonal component in a similar way to that used in Section 6. He gave 
clear indication that seasonal adjustment could disrupt the data in an unfortunate 
manner with the follow-up study by Godfrey and Karreman (1967) providing 
further illustrations of this problem. 

The first application of cross-spectral analysis in economics were by Nerlove 
(1964) on seasonals and by Hatanaka in Granger and Hatanaka (1964), who 
considered the leads and strength of the relationship between the NBER leading 
indicators and the level of the economy. Hatanaka found some coherence at low 
frequencies, but the leads observed in the phase diagram were less than found by 
the NBER using less sophisticated methods. A later investigation of leading 
indicators by Hymans (1973) also used spectral methods. The results threw some 
doubts on the usefulness of several of the components of the index of leading 
indicators and using the observed coherence values an alternative weighted index 
was proposed, which would seem to be superior to that now in use. Most 
subsequent applications of cross-spectral analysis try simply to measure the extent 
to which pairs of series are related and whether or not there is evidence for a 
simple lag. Examples may be found in Labys and Granger (1970). When there is a 
feedback relationship between the variables, the lag structure cannot be de- 
termined, and so difficulties in interpretation frequently occur. 

The Fourier transform of a stationary series allows one to look at the different 
frequency components of the series, at least to some extent. This idea was used in 
Granger and Hatanaka (1964) to test for stationarity by considering the possibil- 
ity of the amplitude of the frequency components varying through time. By 
isolating frequency components in a group of series, the possibility of the 
relationships between the series varying with frequency can be analyzed. Calling 
the technique band spectrum regression, Engle (1974) considered a simple time- 
domain regression, transformed it into the frequency domain and then used a test 
similar to the Chow test for structure stability, to see if relationships were 
frequency dependent. The method is an obvious generalization of the familiar 
decomposition into “permanent” and “ transitory” components and has similar 
interpretational advantages. In Engle (1978) the technique was applied to a 
variety of wage and price series and it was found, for example, that “ the effect on 
prices of a low-frequency change in wages is much greater than the effect of a 
high-frequency change”. 

Spectral techniques have also been used recently by Sargent and Sims (1977), 
Geweke (1975, 1977), and Singleton (1980) to search for unobserved variables or 
factors, in a group of series, such as a common “business cycle factor” in a group 
of macro variables or a “national factor” in a group of regional employment 
series. The model is a dynamic generalization of the factor analysis model 
typically applied to cross-section data and postulates that all of the dynamic 
interrelationships between the series can be accounted for by a small number of 
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common factors. In the exploratory version of the model, which is useful for 
determining the number of common factors, standard estimation techniques 
adapted for complex arithmetic can be applied. Rather than applying these 
techniques to a covariance matrix, as in the cross-section case, they are applied to 
the spectral density matrix, frequency by frequency. When there are constraints 
on the model, as in confirmatory factor analysis, estimation is more difficult as 
constraints must be imposed across frequency bands. Often these constraints are 
more easily imposed in the time domain, and Engle and Watson (1981b) discuss 
time domain estimation and hypothesis testing methods. 

8. Conclusion 

Because of the way econometrics has been developing in recent years, the 
distinction between time series methods and the rest of econometrics has become 
much less clear. It seems very likely that this will continue and the tendency is 
already being reflected in modern textbooks such as Maddala (1977). It is 
nevertheless true that many econometricians do not appreciate the theoretical 
results and techniques available in the time series field, and so a list of some of 
the textbooks in this field is provided. The first four books concentrate on the 
frequency domain, and the others are general in coverage or deal just with 
the time domain (in each group, the books are approximately in order of 
increasing mathematical sophistication): Granger and Hatanaka (1964), Bloom- 
field (1976), Koopmans (1974), Priestly (1981), Granger (198Oc), Nelson (1973) 
Box and Jenkins (1976), Granger and Newbold (1977), Fuller (1976), Anderson 
(1971) Brillinger (1975), and Hannan (1970). 
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1. Introduction 

Dynamic specification denotes the problem of appropriately matching the lag 
reactions of a postulated theoretical model to the autocorrelation structure of the 
associated observed time-series data. As such, the issue is inseparable from that of 
stochastic specification if the finally chosen model is to have a purely random 
error process as its basic “innovation”, and throughout this chapter, dynamic and 
stochastic specification will be treated together. In many empirical studies, most 
other econometric “difficulties” are present jointly with those of dynamic specifi- 
cation but to make progress they will be assumed absent for much of the 
discussion. 

A number of surveys of dynamic models and distributed lags already exist [see, 
inter alia, Griliches (1967) Wallis (1969), Nerlove (1972), Sims (1974), Maddala 
(1977) Thomas (1977) and Zellner (1979)], while Dhrymes (1971) treats the 
probability theory underlying many of the proposed estimators. Nevertheless, the 
subject-matter has advanced rapidly and offers an opportunity for critically 
examining the main themes and integrating previously disparate developments. 
However, we do not consider in detail: (a) Bayesian methods [see Dreze and 
Richard in Chapter 9 of this Handbook for background and Guthrie (1975) 
Mouchart and Orsi (1976) and Richard (1977) for recent studies]; (b) frequency 
domain approaches [see, in particular, Granger and Watson in Chapter 17 of this 
Handbook, Sims (1974), Espasa (1977) and Engle (1976)j; nor (c) theoretical work 
on adjustment costs as discussed, for example, by Nerlove (1972). Although 
theories of intertemporal optimising behaviour by economic agents are continuing 
to develop, this aspect of the specification problem is not stressed below since, 
following several of the earlier surveys, we consider that as yet economic theory 
provides relatively little prior information about lag structures. As a slight 
caricature, economic-theory bused models require strong ceteris paribus assump- 
tions (which need not be applicable to the relevant data generation process) and 
take the form of inclusion information such as y = f(z) where z is a vector on 
which y is claimed to depend. While knowledge that z may be relevant is 
obviously valuable, it is usually unclear whether z may in practice be treated as 
“exogenous” and whether other variables are irrelevant or are simply assumed 
constant for analytical convenience (yet these distinctions are important for 
empirical modelling). 

By way of contrast, statistical-theory based models begin by considering the joint 

density of the observables and seek to characterise the processes whereby the data 
were generated. Thus, the focus is on means of simplifying the analysis to allow 
valid inference from sub-models. Throughout the chapter we will maintain this 
distinction between the (unknown) Data Generation Process, and the econometric 
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model postulated to characterise it, viewing “modelling” as an attempt to match 
the two. Consequently, both aspects of economic and statistical theory require 
simultaneous development. All possible observables cannot be considered from 
the outset, so that economic theory restrictions on the analysis are essential; and 
while the data are the result of economic behaviour, the actual statistical proper- 
ties of the observables corresponding to y and z are also obviously relevant to 
correctly analysing their empirical relationship. In a nutshell, measurement without 
theory is as valueless as the converse is non-operational.’ Given the paucity of 
dynamic theory and the small sample sizes presently available for most time series 
of interest, as against the manifest complexity of the data processes, all sources of 
information have to be utilised. 

Any attempt to resolve the issue of dynamic specification first involves develop- 
ing the relevant concepts, models and methods, i.e. the deductive aspect of 
statistical analysis, prior to formulating inference techniques. In an effort to 
reduce confusion we have deliberately restricted the analysis to a particular class 
of stationary models, considered only likelihood based statistical methods and 
have developed a typology for interpreting and interrelating dynamic equations. 
Many of our assumptions undoubtedly could be greatly weakened without 
altering, for example, asymptotic distributions, but the resulting generality does 
not seem worth the cost in complexity for present purposes. In a number of cases, 
however, we comment parenthetically on the problems arising when a sub-set of 
parameters changes. Nevertheless, it is difficult to offer a framework which is at 
once simple, unambiguous, and encompasses a comprehensive range of phenom- 
ena yet allows “economic theory” to play a substantive role without begging 
questions as to the validity of that “theory”, the very testing of which may be a 
primary objective of the analysis. 

Prior to the formal analysis it seems useful to illustrate by means of a relatively 
simple example why dynamic specification raises such difficult practical problems. 
Consider a consumption-income (C-Y) relationship for quarterly data given by: 

A,lnC, = 6, + 6,A,ln yt” + &A,lnC,~, 

+ 6,ln(C/Y”),_,+ E,, (1) 

where Aqx, = (x, - x~_~), In is logarithm to the base e, E, is assumed to be white 
noise and ytn is “normal” income, such that: 

lnY,“=O.l i (4-i)lnY,_,. (2) 
r=O 

‘This is a very old point, but bears repetition: “all induction is blind, so long as the deduction of 
causal connections is left out of account; and all deduction is barren so long as it does not start from 
observation” [taken from J. N. Keynes (1890, p. 164)]. Also, it has long been seen as essential to treat 
economic theory as a “working ‘first approximation to reality’ in statistical investigations”, e.g. see 
Persons (1925). 
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The unrestricted distributed lag relationship between lnC, and ln Y has the form: 

lnC,=6,+ 5 (~,lnCt_l_1+/3,1nY~,)+e,. (3) 
i=l 

When 6’= (0,0.5,0.25, -0.2) (but this is unknown) (3) has coefficients: 

jo123 4 5 6 7 

lnC,_j - 1 0.25 0 0 0.80 -0.25 0 0 (4) 

lnq_j 0.2 0.15 0.10 0.05 -0.12 -0.09 -0.06 - 0.03 

Under appropriate conditions on K, estimation of the unknown value of 6 (or 
of a,,, a,& is straightforward, so this aspect will not be emphasised below. 
However, the formulation in (l)-(4) hides many difficulties experienced in prac- 
tice and the various sections of this chapter tackle these as follows. 

Firstly, (1) is a single relationship between two series (C,, Y,), and is, at best, 
only a part of the data generation process (denoted DGP). Furthermore, the 
validity of the representation depends on the properties of Y,. Thus, Section 2.1 
investigates conditional sub-models, their derivation from the DGP, the formula- 
tion of the DGP itself, and the resulting behaviour of {Ed} (whose properties 
cannot be arbitrarily chosen at convenience, since by construction, E, contains 
everything not otherwise explicitly in the equation). To establish notation and 
approach, estimation, inference and diagnostic testing are briefly discussed in 
Section 2.2, followed in Section 2.3 by a more detailed analysis of the interpreta- 
tion of equations like (1). However, dynamic models have many representations 
which are equivalent when no tight specification of the properties of { E, } is 
available (Section 2.4) and this compounds the difficulty of selecting equations 
from data when important features [such as m in (3), say] are not known a priori. 
Nevertheless, the class of models needing consideration sometimes can be de- 
limited on the basis of theoretical arguments and Section 2.5 discusses this aspect. 
For example, (1) describes a relatively simple situation in which agents make 
annual decisions, marginally adjusting expenditure as a short distributed lag of 
changes in “normal” income and a “disequilibrium” feedback to ensure a 
constant static equilibrium ratio of C to Y (or Y”). This model constrains the 
values in (3) to satisfy 1 -& = c@, (inter alia) although appropriate converse 
reformulations of (3) as in (1) are rarely provided by economic theory alone. 

Since (3) has a complicated pattern of lagged responses [with eleven non-zero 
coefficients in (4)] unrestricted estimation is inefficient and may yield very 
imprecise estimates of the underlying coefficients (especially if m is also estimated 
from the data). Consequently, the properties of restricted dynamic models repre- 
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senting economic data series are important in guiding parsimonious yet useful 
characterisations of the DGP and Section 2.6 offers a typology of many com- 
monly used choices. For example, (1) is an “error correction” model (see also 
Section 4.2) and, as shown in (4), negative effects of lagged Y on C may be 
correctly signed if interpreted as arising from “differences” in (1). Note, also, that 
long lags in (3) (e.g. m = 7) need not entail slow reactions in (1) [e.g. from (4) the 
median lag of Y’ on C, is one-quarter]. The typology attempts to bring coherence 
to a disparate and voluminous literature. 

This is also used as a framework for structuring the more detailed analyses of 
finite distributed lag models in Section 3 and other dynamic formulations in 
Section 4 (which include partial adjustment models, rational distributed lags and 
error correction mechanisms). Moreover, the typology encompasses an important 
class of error autocorrelation processes (due to common factors in the lag 
polynomials), clarifying the dynamic-stochastic link and leading naturally to an 
investigation of stochastic specification in Section 5. 

While the bulk of the chapter relates to one equation sub-models to clarify the 
issues involved, the results are viewed in the context of the general DGP and so 
form an integral component of system dynamic specification. However, multi- 
dimensionality also introduces new issues and these are considered in Section 6, 
together with the generalised concepts and models pertinent to systems or 
sub-models thereof. 

Since the chapter is already long, we do not focus explicitly on the role of 
expectations in determining dynamic reactions. Thus, on one interpretation, our 
analysis applies to derived equations which, if expectations are important, con- 
found the various sources of lags [see Sargent (1981)]. An alternative interpreta- 
tion is that by emphasising the econometric aspects of time-series modelling, the 
analysis applies howsoever the model is obtained and seeks to be relatively 
neutral as to the economic theory content [see, for example, Hendry and Richard 
(1982)]. 

2. Data generation processes 

2.1. Conditional models 

Let x, denote a vector of n observable random variables, X0 the matrix of initial 
conditions, where X,! = (x1,. . xt)’ and X, = (XgX:‘)‘. For a sample of size T, let 
O(X+]X,,, 0) be the joint data density function where 8 E 0 is an identifiable 
vector of unknown parameters in the interior of a finite dimensional parameter 
space 0. Throughout, the analysis is conducted conditionally on tI and X0, and 
the likelihood function is denoted by Z’(O; X;). The joint data density is 
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sequentially factorised into: 

1029 

It is assumed that the conditional density functions in (5) have the common 
functional form: 

X,IX,~i - Nc(,lQ>? with/+=E(x,]X,_,,B), (6) 

where n, - p, = u, is an “innovation”, and by construction: 

E( V,X:-j )=O, V,;21, sothatE(u,~i_~)=O, V,21. 

Implicitly, we are ignoring important issues of aggregation (over agents, space, 
time, goods, etc.) and marginalisation (with respect to all other variables than 
those in xl) by assuming that (5) is an adequate statistical representation for a 
DGP. Hopefully, this conflation of the concepts of DGP and Model, due to 
deliberate exclusion of other difficulties, will not prove confusing. Concerning the 
economic behaviour determining x,, we suppose economic agents to form contin- 
gent plans based on limited information [see Bentzel and Hansen (1955) and 
Richard (1980)]. Such plans define behauioural relationships which could corre- 
spond to optimising behaviour given expectations about likely future events, 
allow for adaptive responses and/or include mechanisms for correcting previous 
mistakes. To express these in terms of x, will require marginalising with respect to 
all unobservables. Thus, assuming linearity (after suitable data transformations) 
and a fixed finite lag length (m) yields the model: 

In (7) the value of m is usually unknown but in practice must be small relative to 
T. The corresponding “structural” representation is given by: 

Bx, + 5 c,x,-, = E,, (8) 
1=1 

with E, = Bv, and Bq + C, = 0, where B and {C, } are well defined functions of B 
and B is of rank n V’B E 0 [strictly, the model need not be complete, in that (6) 
need only comprise g I n equations to be well defined: see Richard (1979)]. 

From (5)-(g), E, - 1Jr/-(O,Z) where 2 = BPB’, but as will be seen below, this 
class of processes does not thereby exclude autocorrelated error representations. 
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Also, while not considered below, the model could be generalised to include, for 
example, Autoregressive-Conditional Heteroscedasticity [Engle (1982)]. 

Direct estimation of {vi} is generally infeasible [see, however, Section 6.3 and 
Sargent and Sims (1977)] and in any case still involves important assumptions 
concerning parameter constancy, the choices of n and m and the constituent 
components of x,. Generally, econometricians have been more interested in 
conditional sub-models suggested by economic theory and hence we partition x; 
into ( y$z:) and factorise the data densities D( x,]Xt_ i, 0) and likelihood function 
correspondingly as: 

N4X,-lJ) = 4( Y,lZr, X,-l~(Pl)~~(~,lX,-l~~,)~ 

where (et, +2) is an appropriate reparameterisation of 8, and: 

Certain parameters, denoted #, will be of interest in any given application either 
because of their “invariance” to particular interventions or their relevance to 
policy, or testing hypotheses suggested by the associated theory etc. If # is a 
function of +t alone, and +i and (p, are variation free, then z, is weakly 
exogenous for 4 and fully efficient inference is possible from the partial likelihood 
5?i(.) [see Koopmans (1950), Richard (1980), Florens and Mouchart (1980), 
Engle et al. (1983) and Geweke in Chapter 19 of this Handbook]. Thus, the model 
for z, does not have to be specified, making the analysis more robust, more 
comprehensible, and less costly, hence facilitating model selection when the precise 
specification of (8) is not given a priori. Indeed, the practice whereby 5?i( -) is 
specified in most econometric analyses generally involves many implicit weak 
exogeneity assertions and often proceeds by specifying the conditional model 
alone leaving 6p2( .) to be whatever is required to “complete” Z( .) in (9). That $ 
can be estimated efficiently from analysing only the conditional sub-model, does 
not entail that z, is predetermined in: 

41 Yt + g12z, + C ‘liXt-r = El1 (10) 

(using an obvious notation for the partition of B and {C, }), merely that the 
model for z, does not require joint estimation with (10). 

If in addition to being weakly exogenous for 4, the following holds for z,: 

4(w-,P#2) = 4(Z,lL~ Y,Av,) (t =l,...,T), (11) 

so that lagged y’s are uninformative about z, given Z,_l, and hence Y does not 
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Granger cause z [see Granger (1969), Sims (1977) and Geweke in Chapter 19 of 
this Handbook], then z, is said to be strongly exogenous for #. Note that the 
initial choice of x, in effect required an assertion of strong exogeneity of X, for 
the parameters of other potentially relevant (economic) variables. Also, as shown 
in subsection 2.6, paragraph (g), if (11) does not hold, so that y does Granger 
cause z, then care is required in analysing model formulations which have 
autocorrelated errors since z will also Granger cause such errors. 

The remainder of this chapter focusses on dynamic specification in models like 
(10) since these encompass many of the equation forms and systems (with a 
“linearity in variables” caveat) occurring in empirical research. For example, the 
system: 

m* r* 
B*X, + C Cj*X,_i = u,, where u, = c Rfu*_, + E,, @*) 

i=l i=l 

with m* + r* = m, can be re-expressed as (8) with non-linear relationships be- 
tween the parameters. However, unique factorisation of the {s} into 

(B:{C,*){R:]) q re uires further restrictions on { Rt } such as block diagonality 
and/or strong exogeneity information [see Sargan (1961) and Sections 5 and 6.11. 

2.2. Estimation, inference and diagnostic testing 

Since specific techniques of estimation, inference and diagnostic testing will not be 
emphasised below [for a discussion of many estimation methods, see Dhrymes 
(1971), Zellner (1979) and Hendry and Richard (1983)] a brief overview seems 
useful notwithstanding the general discussions provided in other chapters. At a 
slight risk of confusion with the lag operator notation introduced below, we 
denote log, of the relevant partial likelihood from (9) by: 2 

In (12), $J is considered as an argument of L( .), when z, is weakly exogenous and 
(8) is the data generation process. Let: 

(13) 

*Strictly, (12) relates to +1 but 4 is used for notational simplicity; L(-) can be considered a.s the 
reparameterised concentrated likelihood if desired. 
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The general high dimensionality of # forces summarisation in terms of maximum 
likelihood estimators (denoted MLEs), or appropriate approximations thereto, 
and under suitable regularity conditions [most of which are satisfied here granted 
(6)]-see, for example, Crowder (1976)-MLEs will be “well behaved”. In 
particular if the roots of 

I I I- &,g’=O (14) 
I=1 

(a polynomial in g of order no greater than nm) are all outside the unit circle, 
then when 4 is the MLE of $: 

JT(4 - 44 ; J-p, q), where I$= -plimT.Q($)-‘, 

and is positive definite. Note that 4 is given by q(4) = 0 [with Q(4) negative 
definite] and numerical techniques for computing 4 are discussed in Dent (1980) 
and in Quandt in Chapter 12 of this Handbook. Phillips (1980) reviews much of 
the literature on exact and approximate finite sample distributions of relevant 
estimators. If (8) is not the DGP, a more complicated expression for I$, is 
required although asymptotic normality still generally results [see, for example, 
Domowitz and White (1982)]. 

Note that q( 4) = 0 can be used as an estimator generating equation for most of 
the models in the class defined by (10) when not all elements of J, are of equal 
interest [see Hausman (1975) and Hendry (1976)]. 

To test hypotheses of the general form H,: F(q) = 0, where F( 0) has continu- 
ous first derivatives at IJJ and imposes r restrictions on + = (J/r. . . I/~)‘, three 
principles can be used [see Engle in Chapter 13 of this Handbook] namely: (a) a 
Wald-test, denoted W [see Wald (1943)]; (b) the Maximised Likelihood Ratio, LR 
[see, for example, Cox and Hinkley (1974, ch. 9)]; and (c) Lagrange Multiplier, 
LM [see Aitchison and Silvey (1960) Breusch and Pagan (1980) and Engle 
(1982)]. Since (a) and (c) are respectively computable under the maintained and 
null hypotheses alone, they are relatively more useful as their associated parame- 
ter sets are more easily estimated. Also, whereas (b) requires estimation of both 
restricted and unrestricted models, this is anyway often necessary given the 
outcome of either W or LM tests. Because of their relationship to the unrestricted 
and restricted versions of a model, W and LM tests frequently relate respectively 
to tests of specification and m&-specification [see Mizon (1977b)], that is, within 
and outside initial working hypotheses. Thus, [see Sargan (198Oc)] Wald forms 
apply to common factor tests, whereas LM forms are useful as diagnostic checks 
for residual autocorrelation. Nevertheless, both require specification of the 
“maintained” model. 
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Formally, when (8) is the DGP, Eq(#) = 0 and EQ($) = - I(#), with 
T- 1’2q(1cI) ;; J’XO, &N), w h ere J(e) = plim T-‘f( .) = V;‘. Then we have: 

(a) From (15), on ZZ,: F(q) = 0: 

where J= aF(.)/a+. Let .Z and & denote evaluation at 4, then on ZZ,: 

Furthermore if W, and W,, are two such Wald criteria based upon two sets of 
constraints such that those for W, are obtained by adding constraints to those 
characterising W,, then: 

0% -w/J ‘;; x&5 independently of W, ;; x f,. (18) 

Such an approach adapts well to commencing from a fairly unconstrained 
model and testing a sequence of nested restrictions of the form e( 4) = 0, 
i=1,2 ,..., where r, > r,_1 and rejecting q( .) entails rejecting F,( .), 1> j. This 
occurs, for example, in a “contracting search” (see Learner in Chapter 5 of this 
Handbook), and hence W is useful in testing dynamic specification [see Anderson 
(1971, p. 42) Sargan (198Oc), Mizon (1977a) and Section 51. 

(b) Let $J denote the MLE of 1c, subject to F(q) = 0, then: 

LR, = 2[L(\j/)- L(\t)] ;; xf, if H, is true. (19) 

(c) Since $ is obtained from the Lagrangian expression: 

L(+)+XF(J/), usingq(rC,)+Jh=O, (20) 

then, when H, is true: 

(21) 

and hence the test is also known as the “efficient score” test [see Rao (1965)]. 
Note that q(q) = 0, whereas F(G) = 0, the converses not holding. Also (17), (19) 
and (21) show the three tests to be asymptotically equivalent both under H, and 
under the sequence of local alternatives H,: F( +) = Tp ‘I28 (for constant 6). All 
three tests are non-central ~3 with non-centrality parameter S’V;-‘S and are, 
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therefore, consistent against any jixed alternative (i.e. TP l/*6 constant).3 As yet, 
little is known about their various finite sample properties [but see Berndt and 
Savin (1977), Mizon and Hendry (1980) and Evans and Savin (1982)]. 

It must be stressed that rejecting Ha by any of the tests provides evidence only 
against the validity of the restrictions and does not necessarily “support” the 
alternative against which the test might originally have been derived. Also, careful 
consideration of significance levels is required when sequences of tests are used. 
Finally, generalisations of some of the test forms are feasible to allow for (8) not 
being the DGP [see Domowitz and White (1982)]. 

2.3. Interpreting conditional models 

For simplicity of exposition and to highlight some well-known but important 
issues we consider a single equation variant of (10) with only one lag namely: 

(22) 

There are (at least) four distinct interpretations of (22) as follows [see for 
example, Richard (1980) and Wold (1959)]. 

(a) Equation (22) is a regression equation with parameters defined by: 

KY,l% xt-1) =&z, +&x,-1, (23) 

where e, = y, - E(y,( .) so that E(z,e,) = 0, and E(x,_le,) = 0. When (23) holds, 
/I = (&&) minimises the variance of e. 

Whether /3 is or is not of interest depends on its relationship to I/J and the 
properties of z, (e.g. B is clearly of interest if J/ is a function of /3 and z, is weakly 
exogenous for 8). 

(b) Equation (22) is a linear least-squares approximation to some dynamic 
relationship linking y and z, chosen on the criterion that e, is purely random and 
uncorrelated with (z,, x,-i). The usefulness of such approximations depends 
partly on the objectives of the study (e.g. short-term forecasting) and partly on 
the properties of the actual data generation process (e.g. the degree of non-linear- 
ity in y = f(z), and the extent of joint dependence of y, and zl): see White 
(1980). 

(c) Equation (22) is a structural relationship [see, for example, Marschak (1953)] 
in that /3 is a constant with respect to changes in the data process of z, (at least 
for the relevant sample period) and the equation is basic in the sense of Bentzel 
and Hansen (1955). Then (22) directly characterises how agents form plans in 

3For boundary points of 8, the situation is more complicated and seems to favour the use of the 
LM principle-see Engle in Chapter 13 of this Handbook. Godfrey and Wickens (1982) discuss 
locally equivalent models. 
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terms of observables and consequently /3 is of interest. In economics such 
equations would be conceived as deriving from autonomous behavioural relations 
with structurally-invariant parameters [see Frisch (1938), Haavelmo (194% 
Hurwicz (1962) and Sims (1977)]. The last interpretation is: 

(d) Equation (22) is derived from the behauiourul relationship: 

GY,lX,-1) = YI~WL)+7;+1* (24 

If 

E2f = z, - J%lXt-,)~ (25) 

then e, is the composite: e, = (&it - yieZr) so that E(e,e2,) # 0 in general and 
depends on yl. 

More generally, if E(z,JX,_,) is a non-constant function of Xt-i, j3 need not 
be structurally invariant, and if incorrect weak exogeneity assumptions are made 
about z,, then estimates of y need not be constant when the data process of z, 
alters. 

That the four “interpretations” are distinct is easily seen by considering a data 
density with a non-linear regression function [(a) # (b)] which does not coincide 
with a non-linear behavioural plan [(a) # (d),(b) # (d )] in which the presence of 
E( z,]Xt_t) inextricably combines +i and +2, thereby losing structurality for all 
changes in (p2 [i.e. (c) does not occur]. Nevertheless, in stationary linear models 
with normally distributed errors, the four cases “look alike”. 

Of course, structural invariance is only interesting in a non-constant world and 
entails that in practice, the four cases will behave differently if $2 changes. 
Moreover, even if there exists some structural relationship linking y and z, failing 
to specify the model thereof in such a way that its coefficients and & are variation 
free can induce a loss of structurality in the estimated equation to interventions 
affecting $B~. This point is important in dynamic specification as demonstrated in 
the following sub-section. 

2.4. The status of an equation 

Any given dynamic model can be written in a large number of equivalent forms 
when no tight specijkation is provided for the error term. The following example 
illustrates the issues involved: 

Suppose there existed a well-articulated, dynamic but non-stochastic economic 
theory (of a supply/demand form) embodied in the model: 

Q, = alQt-l+ a14 + ad’, + ul,, (26) 
f’, = qPrpl + @, + qjQ,-1 + u2t, (27) 

where QI, P,, I, and C, are quantity, price, income and cost, respectively, but the 
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properties of u,! are not easily prespecified given the lack of a method for relating 
decision time periods to observation intervals (see Bergstrom in Chapter 20 of this 
Handbook for a discussion of continuous time estimation and discrete approxi- 
mations). It is assumed below that (C,, Z,) is weakly, but not strongly, exogenous 
for {a, }, and that (26) and (27) do in fact correspond “reasonably” to basic 
structural behavioural relationships, in the sense just discussed. 

Firstly, consider (26); eliminating lagged Q’s yields an alternative dynamic 
relation linking Q to Z and P in a distributed lag: 

Q,= 2 (aziZ,-,+a3r~-;)+uUlr, 
r=O 

(28) 

where a,, = a;a, (j = 2,3). Alternatively, eliminating P, from (26) using (27) yields 
the reduced form: 

Q, = qQ,_, + 7~~1, + T& + Q-‘-1 + e,,, (29) 

which in turn has a distributed lag representation like (28), but including 

&Ii201 d an excluding P,. Further, (27) can be used to eliminate all values of 
P,_, from equations determining Q, to yield: 

(30) 

transformable to the distributed lag: 

(where the expressions for b,, as functions of ak are complicated), which is similar 
to (28) but with {C,_,} in place of {P,-,}. 

Manifestly, the error processes of the various transformations usually will have 
quite different autocorrelation properties and we have: 

%r = qq,-l + q,, 

e1, = qt + a3u2,, 

Wl! = Cl, -a4u1r-1r 

91, =&911-l + Pzllr-2 + Wlr. 

Almost all of these errors are likely to be autocorrelated, with correlograms that 
may not be easy to characterise simply and adequately, emphasising the link of 
dynamic to stochastic specification. 

In the illustration, all of the “distributed lag” representations are soloed 
versions of (26)+(27) and if estimated unrestrictedly (but after truncating the lag 
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length!) would produce very inefficient estimates (and hence inefficient forecasts 
etc.). Consequently, before estimating any postulated formulation, it seems im- 
portant to have some cogent justifications for it, albeit informal ones in the 
present state of the art: simply asserting a given equation and “treating symp- 
toms of residual autocorrelation” need not produce a useful model. 

Indeed, the situation in practice is far worse than that sketched above because 
of two additional factors: n-us-specification and approximation. By the former, is 
meant the possibility (certainty?) that important influences on yI have been 
excluded in defining the model and that such variables are not independent of the 
included variables. By the latter, is meant the converse of the analysis from 
(26)+(27) to (31) namely that theory postulates a general lag relationship between 
Q, and its determinants Z,, C, as in (31) (say) and to reduce the number of 
parameters in b,( and b4, various restrictions are imposed. Of course, a similar 
analysis applies to all forms derived from (27) with P, as the regressand. 
Moreover, “combinations” of any of the derived equations might be postulated 
by an investigator. For an early discussion, see Haavelmo (1944). 

For example, consider the case where C, is omitted from the analysis of 
(26)+(27) when a “good” time-series description of C, is given by: 

(32) 

where d,(L) are polynomials in the lag operator L, Lkx, = xl_ k, and 5; is “white 
noise”, independent of Q, P and I. Eliminating C, from the analysis now 
generates a different succession of lag relationships corresponding to (28)-(31). In 
turn, each of these can be “adequately” approximated by other lag models, 
especially if full allowance is made for residual autocorrelation. Nevertheless, 
should the stochastic properties of the data generation process of any “exogenous” 
variable change [such as C, in (32)], equations based on eliminating that variable 
will manifest a “structural change” even if the initial structural model (26)+(27) 
is unaltered. For this reason, the issue of the validity of alternative approxima- 
tions to lag forms assumes a central role in modelling dynamic processes. A 
variety of possible approximations are discussed in Section 3, and in an attempt 
to provide a framework, Section 2.6 outlines a typology of single equation 
dynamic models. First, we note a few quasi-theoretical interpretations for distrib- 
uted lag models. 

2.5. Quasi-theoretical bases for dynamic models 

Firstly, equations with lagged dependent variables arise naturally in situations 
where there are types of adjustment costs like transactions costs, search costs, 
optimisation costs, etc. and/or where agents react only slowly to changes in their 



1038 D. F. Hendry et 01. 

environment due to habit, inertia or lags in perceiving changes and SO on. Thus 
economic agents may attach monetary or utility costs to instantaneous alteration 
of instruments to fully achieve plans. Even when there are no adjustment costs, 
slow reactions are likely because of the uncertainty engendered by the future and 
the lack of perfect capital and futures markets. Although formal modelling of 
such costs is still badly developed-Nerlove (1972) and Sims (1974) provide 
references and discussion-it appears that what optimal rules there are prove to 
be extraordinarily complex and, given the fact that only aggregates are observed, 
such theory would seem to be only a weak source of prior information. In fact it 
is not impossible that distributed lags between aggregate variables reflect the 
distribution of agents through the population. For example, if agents react with 
fixed time delays but the distribution of the length of time delays across agents is 
geometric, the aggregate lag distribution observed would be of the Koyck form. In 
the same way that Houthakker (1956) derived an aggregate Cobb-Douglas 
production function from individual units with fixed capital/labour ratios, some 
insight might be obtained for the format of aggregate distributed lags from 
similar exercises [see, for example, Trivedi (1982)]. 

However, it seems likely that many agents use simple adaptive decision rules 
rather than optimal ones although, as Day (1967) and Ginsburgh and Waelbroeck 
(1977) have shown, these have the capability of solving quite complex optimiza- 
tion problems. A further example of the potential role of these adaptive “rules of 
thumb” arises from the monetarists’ contention that disequilibria in money 
balances provide signals to agents that their expenditure plans are out of 
equilibrium [e.g. Jonson (1977)] and that simple rules based on these signals may 
be adopted as the costs are low and information value high. Stock-flow links also 
tend to generate models with lagged dependent variables. 

In any case, state-variable feedback solutions of optimization problems often 
have alternative representations in terms of servo-mechanisms of a form familiar 
to control engineers, and it has been argued that simple control rules of the type 
discussed by Phillips (1954, 1957) may be more robust to mis-specification of the 
objective function and/or the underlying economic process [see Salmon and 
Young (1979) and Salmon (1979)]. For quadratic cost functions, linear decision 
rules result and can be expressed in terms of proportional, derivative and integral 
control mechanisms. This approach can be used for deriving dynamic economet- 
ric equations [see, for example, Hendry and Anderson (1977)], an issue discussed 
more extensively below. Since such adaptive rules seem likely solutions of many 
decision problems [see, for example, Marschak (1953)] lagged dependent variables 
will commonly occur in economic relationships. Thus, one should not automati- 
cally interpret (say) “rational lag” models such as (26) as approximations to 
“distributed lag” models like (28); often the latter will be the solved form, and it 
makes a great deal of difference to the structurality of the relationship and the 
properties of the error term whether an equation is a solved variant or a direct 
representation. 
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Next, finite distributed lags also arise naturally in some situations such as 
order-delivery relationships, or from aggregation over agents, etc. and often some 
knowledge is available about properties of the lag coefficients (such as their sum 
being unity or about the “smoothness” of the distribution graph). An important 
distinction in this context is between imposing restrictions on the model such that 
(say) only steady-state behaviour is constrained, and imposing restrictions on the 
data (i.e. constraints binding at all points in time). This issue is discussed at 
greater length in Davidson et al. (1978), and noted again in Section 2.6, paragraph 

(h). 
Thirdly, unobservable expectations about future outcomes are frequently mod- 

elled as depending on past information about variables included in the model, 
whose current values influence y,. Eliminating such expectations also generates 
more or less complicated distributed lags which can be approximated in various 
ways although as noted in Section 2.3, paragraph (d), changes in the processes 
generating the expectations can involve a loss of structurality [see, for example, 
Lucas (1976)]. Indeed, this problem occurs on omitting observables also, and 
although the conventional interpretation is that estimates suffer from “omitted 
variables bias” we prefer to consider omissions in terms of eliminating (the 
orthogonalised component of) the corresponding variable with associated trans- 
formations induced on the original parameters. If all the data processes are 
stationary, elimination would seem to be of little consequence other than necessi- 
tating a reinterpretation of coefficients, but this does not apply if the processes are 
subject to intervention. 

Finally, observed variables often are treated as being composed of “systematic” 
and “error” components in which case a lag polynomial of the form d(L) = 
Cy&d,L can be interpreted as a “filter” such that d(L)z, = z: represents a 
systematic component of z,, and z, - z: = W, is the error component. If y, 
responds to z: according to some theory, but the {d;} are unknown, then a finite 
distributed lag would be a natural formulation to estimate [see, for example, 
Godley and Nordhaus (1972) and Sargan (1980b) for an application to models of 
full-cost pricing]. Conversely, other models assert that _yt only responds to w, [see, 
for example, Barro (1978)] and hence restrict the coefficients of z, and z,? to be 
equal magnitude, opposite sign. 

As should be clear from the earlier discussion but merits emphasis, any 
decomposition of an observable into (say) “systematic” and “white noise” 
components depends on the choice of information set: white noise on one 
information set can be predictable using another. For example: 

(33) 

is white noise if each of the independent v,,_, is, but is predictable apart from 
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yovo, using linear combinations of lagged variables corresponding to the { v,,-, }. 
Thus, there is an inherent lack of uniqueness in using white noise residuals as a 
criterion for data coherency, although non-random residuals do indicate data 
“incoherency” [see Granger (1981) and Davidson and Hendry (1981) for a more 
extensive discussion]. In practice, it is possible to estimate all of the relationships 
derivable from the postulated data generation process and check for mutual 
consistency through r&-specification analyses of parameter values, residual auto- 
correlation, error variances and parameter constancy [see Davidson et al. (1978)]. 
This notion is similar in principle to that underlying “non-nested” tests [see 
Pesaran and Deaton (1978)] whereby a correct model should be capable of 
predicting the residual variance of an incorrect model and any failure to do so 
demonstrates that the first model is not the data generation process [see, for 
example, Bean (1981)]. Thus, ability to account for previous empirical jkdings is a 
more demanding criterion of model selection than simply having “data coherency”: 
that is, greater power is achieved by adopting a more general information set than 
simply lagged values of variables already in the equation [for a more extensive 
discussion, see Hendry and Richard (1982)]. 

Moreover, as has been well known for many years,4 testing for predictive 
failure when data correlations alter is a strong test of a model since in modern 
terminology (excluding chance offsetting biases) it indirectly but jointly tests 
structurality, weak exogeneity and appropriate marginalisation (which includes 
thereby both dynamic and stochastic aspects of specification). A well-tested 
model with white-noise residuals and constant parameters (over various sub-sam- 
ples), which encompasses previous empirical results and is consonant with a 
pre-specified economic theory seems to offer a useful approximation to the data 
generation process. 

2.6. A typology of single dynamic equations 

In single equation form, models like (22) from the class defined in (6) and (7) are 
called Autoregressive-Distributed lag equations and have the general expression: 

(34) 

where d,(L) is a polynomial in L of degree m,. Thus, (34) can be denoted 

4See, for example, Marget’s (1929) review of Morgenstem’s book on the methodology of economic 
forecasting. 
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AD(m,,m,,..., mk) although information on zero coefficients in the d,(L) is lost 
thereby. The class has {Q} white noise by definition so not all possible data 
processes can be described parsimoniously by a member of the AD( .) class; for 
example, moving-average errors (which lead to a “more general” class called 
ARMAX-see Section 4) are formally excluded but as discussed below, this 
raises no real issues of principle. In particular, AD(1, 1) is given by: 

which for present purposes is assumed to be a structural behavioural relationship 
wherein z, is weakly exogenous for the parameter of interest 8’ = (Pi&&), with 
the error en - LN(0, ail). Since all models have an error variance, (35) is referred 
to for convenience as a three-parameter model. Although it is a very restrictive 
equation, rather surprisingly AD(1,l) actually encompasses schematic representa- 
tives of nine distinct types of dynamic model as further special cases. This provides a 
convenient pedagogical framework for analysing the properties of most of the 
important dynamic equations used in empirical research, highlighting their re- 
spective strengths and weaknesses, thereby, we hope, bringing some coherence to 
a diverse and voluminous literature. 

Table 2.1 summarises the various kinds of model subsumed by AD(l,l). Each 
model is only briefly discussed; cases (a)-(d) are accorded more space in this 
subsection since Sections 3, 4 and 5, respectively, consider in greater detail case 
(e), cases (f), (h) and (i), and case (g). 

The nine models describe very different lag shapes and long-run responses of y 
to x, have different advantages and drawbacks as descriptions of economic time 
series, are differentially affected by various mis-specifications and prompt gener- 
alisations which induce different research avenues and strategies. Clearly (a)-(d) 
are one-parameter whereas (e)-(i) are two-parameter models and on the assump- 
tions stated above, all but (g) are estimable by ordinary least squares [whereas (g) 
involves iterative least squares]. Each case can be interpreted as a model “in its 
own right” or as derived from (or an approximation to) (35) and these approaches 
will be developed in the discussion. 

The generalisations of each “type” in terms of increased numbers of lags 
and/or distinct regressor variables naturally resemble each other more than do 
the special cases chosen to highlight their specific properties, although major 
differences from (34) persist in most cases. The exclusion restrictions necessary to 
obtain various specialisations from (34) [in particular, (36)-(40) and (44)] seem 
difficult to justify in general. Although there may sometimes exist relevant 
theoretical arguments supporting a specific form, it is almost always worth testing 
whatever model is selected against the general unrestricted equation to help gain 
protection from major mis-specifications. 
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(a) Static regression models of the general form: 

Y,= CPJzjt + et9 (45) 

rarely provide useful approximations to time-series data processes [but see 
Hansen (1982)]. This occurs both because of the “spurious regressions” problem 
induced by the observations being highly serially correlated [see Yule (1926) and 
Granger and Newbold (1974)] with associated problems of residual autocorre- 
lation and uninterpretable values of R*, and because the assertion that (45) is 
structural with z, weakly exogenous for /I has not proved viable in practice. While 
equilibrium economic theories correctly focus on interdependence and often 
entail equations such as y = f(z) where linearity seems reasonable, imposing (45) 
on data restricts short-run and long-run responses of y to z to be identical and 
instantaneous. It seems preferable simply to require that the dynamic model 
reproduces y = f(z) under equilibrium assumptions; this restricts the class of 
model but not the range of dynamic responses [see (h)]. Finally, for forecasting 
y,,, (45) requires a prior forecast of z,+, so lagged information is needed at some 
stage and seems an unwarranted exclusion from behavioural equations. 

(b) In contrast, uniuariute time-series models focus only on dynamics but often 
serve as useful data-descriptive tools especially if selected on the criterion of 
white-noise residuals [see Box and Jenkins (1970)]. A general stationary form is 
the autoregressive moving average (ARMA) process: 

(46) 

where y(L) and 6(L) are polynomials of order mO, m, (with no redundant 
factors), and (46) is denoted ARMA(m,, ml) with (37) being ARMA (l,O). 
Equations like (37) can be suggested by economic theory and, for example, 
efficient-market and rational expectations models often have & =l [see, for 
example, Hall (1978) and Frenkel (1981)], but for the most part ARMA models 
tend to be derived rather than autonomous. Indeed, every variable in (7) has an 
ARMA representation’ [see, for example, Zellner and Palm (1974) and Wallis 
(1977)] but such reformulations need not be structural and must have larger 
variances. Thus, econometric models which do not fit better than univariate 
time-series processes have at least mis-specified dynamics, and if they do not 
forecast “ better”6 must be highly suspect for policy analysis [see, inter alia, 
Prothero and Wallis (1976)]. 

51mplicitly, therefore, our formulation excludes deterministic factors, such as seasonal dummies, but 
could be generalised to incorporate these without undue difficulty. 

61t is difficult to define “better” here since sample data may yield a large variance for an effect 
which is believed important for policy, but produces inefficient forecasts. A minimal criterion is that 
the econometric model should not experience predictive failure when the ARhfA model does not, 



1044 D. F. Hendry et al. 

In principle, all members of our typology have generalisations with moving- 
average errors, which anyway are likely to arise in practice from marginalising 
with respect to autoregressive or Granger-causal variables, or from measurement 
errors, continuous time approximations etc. However, detailed consideration of 
the enormous literature on models with moving average errors is precluded by 
space limitations (see, Section 4.1 for relevant references). In many cases, MA 
errors can be quite well approximated by autoregressive processes [see, for 
example, Sims (1977, p. 194)] which are considered under (g) below, and it seems 
difficult to discriminate in practice between autoregressive and moving-average 
approximations to autocorrelated residuals [see, for example, Hendry and Trivedi 
(1972)]. 

(c) Di’renced data models resemble (a) but after transformation of the 
observationsy,, z, to (y, - y,_i) = Ay, and AZ,. The filter A = (1- L) is commonly 
applied on the grounds of “achieving stationarity”, to circumvent awkward 
inference problems in ARMA models [see Box and Jenkins (1970), Phillips 
(1977) Fuller (1976), Evans and Savin (1981) and Harvey (1981)] or to avoid 
“spurious regressions” criticisms. Although the equilibrium equation that y = &z 
implies A y = &A z, differencing fundamentally alters the properties of the error 
process. Thus, even if y is proportional to z in equilibrium, the solution of (38) is 
indeterminate and the estimated magnitude of & from (38) is restricted by the 
relative variances of Ay, to AZ,. A well-known example is the problem of 
reconciling a low marginal with a high and constant average propensity to 
consume [see Davidson et al. (1978) and compare Wall et al. (1975) and Pierce 
(1977)]. In any case, there are other means of inducing stationarity, such as using 
ratios, which may be more consonant with the economic formulation of the 
problem. 

(d) Leading indicator equations like (39) attempt to exploit directly differing 
latencies of response (usually relative to business cycles) wherein, for example, 
variables like employment in capital goods industries may “reliably lead” GNP. 
However, unless such equations have some “causal” or behavioural basis, & need 
not be constant and unreliable forecasts will result so econometric models which 
indirectly incorporate such effects have tended to supercede leading indicator 
modelling [see, inter alia, Koopmans (1947) and Kendall (1973)]. 

(e) AS discussed in Section 2.4, distributed lugs can arise either from 
structural/behavioural models or as implications of other dynamic relationships. 
Empirically, equations of the form: 

Y, = a(L)4 + e,, (47) 

where a(L) is a polynomial of order mi frequently manifest substantial residual 
autocorrelation [see, inter alia, many of the AD(0, m,,. . .,mk) equations in 
Hickman (1972) or, for example, new housing “starts-completions” relationships 
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in Waelbroeck (1976)]. Thus, whether or not z, is strongly exogenous becomes 
important for the detection and estimation of the residual autocorrelation. 
“Eliminating” autocorrelation by fitting autoregressive errors imposes “common 
factor restrictions” whose validity is often dubious and merits testing [see (g) and 
Section 51, and even after removing a first order autoregressive error, the equation 
may yet remain prey to the “spurious regressions” problem [see Granger and 
Newbold (1977)]. Moreover, collinearity between successive lagged z’s has gener- 
ated a large literature attempting to resolve the profligate parameterisations of 
unrestricted estimation (and the associated large standard errors) by subjecting 
the { CX, } to various “a priori constraints”. Since relatively short “distributed lags” 
also occur regularly in other AD( 0) models, and there have been important recent 
technical developments, the finite distributed lag literature is surveyed in Sec- 
tion 3. 

(f) Partial adjustment models are one of the most common empirical species 
and have their basis in optimization of quadratic cost functions where there are 
adjustment costs [see Eisner and Strotz (1963) and Holt et al. (1960)]. Znualid 
exclusion of z,_t can have important repercussions since the shape of the 
distributed lag relationship derived from (41) is highly skewed with a large mean 
lag when & is large even though that derived from (35) need not be for the same 
numerical value of /Is: this may be part of the explanation for apparent “slow 
speeds of adjustment” in estimated versions of (41) or generalisations thereof (see, 
especially, studies of aggregate consumers’ expenditure and the demand for 
money in the United Kingdom). Moreover, many derivations of “partial adjust- 
ment” equations like (41) entail that e, is autocorrelated [see, for example, 
Maddala (1977, ch. 9) Kennan (1979) and Muellbauer (1979)] so that OLS 
estimates are inconsistent for the fi, [see Malinvaud (1966)], have inconsistently 
estimated standard errors, and residual autocorrelation tests like the 
Durbin-Watson (DW) statistic are invalid [see Griliches (1961) and Durbin 
(1970)]. However, appropriate Lagrange multiplier tests can be constructed [see 
Godfrey (1978) and Breusch and Pagan (1980)]. Finally, generalised members of 
this class such as: 

(48) 

have unfortunate parameterisations since “levels” variables in economics tend to 
be highly intercorrelated. 

(g) Common factor representations correspond l-l to autoregressive error 
models and most clearly demonstrate the dynamic-stochastic specification link in 
terms of “equation dynamics” versus “error dynamics” [see Sargan (1964, 198Oc), 
Hendry and Mizon (1978) and Mizon and Hendry (198O)J To illustrate the 
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principles involved, reconsider (35) written in lag operator notation (with & # 0): 

(l_PsL)Y,=81(1+(a/P,)L)z,+e,, 

where both lag polynomials have been normalised. Under the condition: 

- P3 = &/PI or Ptt% + Pz = 0, 

the lag polynomials coincide and constitute a common factor of (1 
Dividing both sides of (35*) by (1 - &L) yields: 

Y, =& 
i 

1+ WLW 
i 

er 
l-&L z,+ 1_fi3L=P1z,+%~ 

where 

u,=&U,_t+e,. 

Consequently, the equations: 

Yt = Plzl+ u, ADtO, 0) f4 = &u,- 1 + e, [ 1 AJW) 
uniquely imply and are uniquely implied by: 

Y, = Ptz, + &~,-r - P&,-t + e, [AD(L1)1. 

Usually, I& 1 < 1 is required; note that (52) can also be written as: 

y,+ = P,$ + e,, 

- 

(35*1 

(49) 

P,L). 

(50) 

(51) 

(52) 

(53) 

(54) 

where z,+ = (z, - j&z,_ t) is a “quasi-difference” and the operator (1 - &L) 
“eliminates” the error autocorrelation. 

This example highlights two important features of the AD( -) class. Firstly, 
despite formulating the class as one with white-noise error, it does not exclude 
autoregressive error processes. Secondly, such errors produce a restricted case of 
the class and hence the assumption of an autoregressive error form is testable 
against a less restricted member of the AD( -) class. More general cases and the 
implementation of appropriate tests of common factor restrictions are discussed 
in Section 5. 

The equivalence of autoregressive errors and common factor dynamics has on 
occasion been misinterpreted to mean that autocorrelated residuals imply com- 
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mOn factor dynamics. There are many reasons for the existence of autocorrelated 
residuals including: omitted variables, incorrect choice of functional form, mea- 

surement errors in lagged variables, and moving-average error processes as well as 
autoregressive errors. Consequently, for example, a low value of a Durbin- 
Watson statistic does nor uniquely imply that the errors are a first-order autore- 
gression and automatically “eliminating” residual autocorrelation by assuming an 
AD(l) process for the error can yield very misleading results. 

Indeed, the order of testing is incorrect in any procedure which tests for 
autoregressive errors by assuming the existence of a common factor representation 
of the model: the validity of (49) should be tested before assuming (52) and 
attempting to test therein Hb: & = 0. In terms of commencing from (35), if and 
only if H,: & + /3J$ = 0 is true will the equation have a representation like (52) 
and so only if H, is not rejected can one proceed to test Hb: /3, = 0. If Hb is tested 
alone, conditional on the belief that (49) holds, then failure to reject & = 0 does 
not imply that yI = &z, + e, (a common mistake in applied work) nor does 
rejection of Hb imply that the equations in (52) are valid. It is sensible to test H, 
first since only if a common factor exists is it meaningful to test the hypothesis 
that its root is zero. While (52) is easily interpreted as an approximation to some 
more complicated model with the error autocorrelation simply acting as a “catch 
all” for omitted variables, unobservables, etc. a full behauioural interpretation is 
more difficult. Formally, on the one hand, E( y, 1 X, _ 1 ) = PI zl + &u, _ 1 and hence 
agents adjust to this shifting “optimum” with a purely random error. However, if 
the { ut} process is viewed as being autonomous then the first equation of (52) 
entails an immediate and complete adjustment of y to changes in z, but if agents 
are perturbed above (below) this “equilibrium” they will stay above (below) for 
some time and do not adjust to remove the discrepancy. Thus, (52) also char- 
acter&es a “good/bad fortune” model with persistence of the chanced-upon state 
in an equilibrium world. While these paradigms have some applications, they 
seem likely to be rarer than the present frequency of use of common factor 
models would suggest, supporting the need to test autoregressive error restrictions 
before imposition. The final interpretation of (53) noted in Section 5 serves to 
reinforce this statement. 

Despite these possible interpretations, unlessy does not Granger cause z, then z 
Granger causes u. If so, then regressing y, on z, when { uI} is autocorrelated will 
yield an inconsistent estimate of &, and the residual autocorrelation coefficient 
will be inconsistent for &. Any “two-step” estimator of (&, &) commencing 
from these initial values will be inconsistent, even though: (a) there are no explicit 
lagged variables in (52) and (b) fully iterated maximum likelihood estimators are 
consistent and fully efficient when z, is weakly exogenous for fi [see Hendry 
(1976) for a survey of estimators in common factor equations]. Finally, it is worth 
emphasising that under the additional constraint that p3 = 1, model (c) is a 
common factor formulation. 
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(h) Error correction models such as (43) are a natural reparameterisation of 
AD( .) equations when: 

(C/3,-1)=6=0. (55) 

If & # 1, the steady-state solution of (43) for AZ = g = Ay is: 

Y=(I-p,)g/(I-P,)+z=k(g)+z, (56) 

and hence y = z in static equilibrium, or Y = K( g)Z (more generally) when y and 
z are In Y and In Z, respectively [see Sargan (1964) and Hendry (1980)]. Thus, (55) 
implements long-ran proportionality or homogeneity and ensures that the dynamic 
equation reproduces in an equilibrium context the associated equilibrium theory. 
Moreover, Ha: 6 = 0 is easily tested, since (35) can be rewritten as: 

Ay,=P,Az,+(I-_P3)(z-y),-l+6z1-1+e,, (57) 

which anyway offers the convenient interpretation that agents marginally adjust y, 
from y, _ 1 in response to changes in z, (pi being the short-run effect), the previous 
disequilibrium (z - Y),_~ ((1 - &) being the “feedback” coefficient) and the 
previous level z,-~ (which is irrelevant under proportionality). Since many eco- 
nomic theories have proportional forms in static equilibrium, error correction 
models might be expected to occur frequently. Indeed, an important property of 
(43) is that when 6 = 0, (57) coincides with (43) and all of the other models in this 
typology become special cases of (43). Thus, given 6 = 0 a modelling exercise which 
commenced from (43) even when one of the other types represented the actual 
data generation process would involve no mis-specification and which other 
special case was correct would be readily detectable from the values of the 
parameters in (43) given in Table 2.2. The converse does not hold: fitting any of 
(a)-(g) when (h) is true but Table 2.2 restrictions are invalid, induces mis-specifi- 
cations, the precise form of which could be deduced by an investigator who used 
(h). Thus, when 6 = 0, error correction is essentially a necessary and sufficient 
model form and it is this property which explains the considerable practical 
success of error correction formulations in encompassing and reconciling diverse 
empirical estimates in many subject areas [see, inter alia, Henry et al. (1976), Bean 
(1977), Hendry and Anderson (1977), Davidson et al. (1978), Cuthbertson (1980), 

Table 2.2 
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Hendry (1980) and Davis (1982)]. In an interesting way, therefore, (43) nests 
“levels” and “differences” formulations and, for example, offers one account of 
why a small value of /?r in (c) is compatible with proportionality in the long run, 
illustrating the interpretation difficulties deriving from imposing “differencing 
filters”. 

(i) Equation (44) could constitute either the reduced form of (35) on eliminating 
z, [assuming its process to be AD(l,l) also, or a special case thereof] or a 
“deadstart” model in its own right. For example, if zI = Az,_r + ezt and (35) is the 
behavioural equation, (44) is also “valid” with parameters: 

but is no longer structural for changes in X, and A is required for estimating 8. 
Indeed if 6 = 0 in (55), (58) will not exhibit proportionality unless &(l - h) = 0. 
Also, & + &X < 0 does not excludey = z in equilibrium, although this interpreta- 
tion will only be noticed if (y,, z,) are jointly modelled. 

Conversely, if (44) is structural because of an inherent lag before z affects y, 
then it is a partial adjustment type of model, and other types have deadstart 
variants in this sense. 

The discussions in Sections 3, 4 and 5, respectively, concern the general forms 
of (e); (f), (h) and (i); and (g), plus certain models excluded above, with some 
overlap since distributed lags often have autocorrelated errors, and other dynamic 
models usually embody short distributed lags. Since generalisations can blur 
important distinctions, the preceding typology is offered as a clarifying frame- 
work. 

3. Finite distributed lags 

3.1. A statement of the problem 

A finite distributed-lag relationship has the form: 

Yr’ k W,(L)zit+ut7 

i=l 

where 

(59) 

HqL) = 3 WijLj, (60) 
j=mp 

and is a member of the AD(0, m 1,. . . , m,) class. For ease of exposition and 
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notation, attention is centered on a bivariate case, namely AD(0, m) denoted by: 

y, = 5 wjz,_j + u, = w( L)z, + u,, (61) 
j=m’ 

where { z, } is to be treated as “given” for estimating w = ( W,O, . . . , w,,,)‘, and ut is 
a “disturbance term”. It is assumed that sufficient conditions are placed upon 
{ ur} and {z,} so that OLS estimators of w are consistent and asymptotically 
normal [e.g. that (8) is the data generation process and is a stable dynamic system 
with w defined by E(y,lZ,_,o)]. 

Several important and interdependent difficulties hamper progress. Firstly, 
there is the issue of the status of (61), namely whether it is basic or derived and 
whether or not it is structural, behavioural, etc. or just an assumed approximation 
to some more complicated lag relationship between y and z (see Sections 2.3 and 
2.4). Unless explicitly stated otherwise, the following discussion assumes that (61) 
is structural, that u, - IN(0, u,‘) and that z, is weakly exogenous for W. These 
assumptions are only justifiable on a pedagogic basis and are unrealistic for many 
economics data series; however, most of the technical results discussed below 
would apply to short distributed lags in a more general dynamic equation. 
Secondly, W(L) is a polynomial of the same degree as the lag length and for 
highly intercorrelated { zI_,}, unrestricted estimates of w generally will not be 
well determined. Conversely, it might be anticipated that a lower order poly- 
nomial, of degree k < m say, over the same lag length might suffice, and hence 
one might seek to estimate the {“(J } subject to such restrictions. Section 3.2 
considers some possible sets of restnctions whereas Section 3.4 discusses methods 
for “weakening” lag weight restrictions (“variable lag weights” wherein the { 9 } 

are dependent on economic variables which change over time, are considered in 
Section 3.6). 

However, k, m” and m are usually unknown and have to be chosen jointly, and 
this issue is investigated in Section 3.3 together with an evaluation of some of the 
consequences of incorrect specifications. Further, given that formulations like (61) 
are the correct specification, many alternative estimators of the parameters have 
been proposed and the properties of certain of these are discussed in Section 3.5 
and related to Sections 3.2 and 3.4. 

Frequently, equations like (61) are observed to manifest serious residual 
autocorrelation and Section 3.6 briefly considers this issue as well as some 
alternative specifications which might facilitate model selection. 

3.2. Exact restrictions on lag weights 

If (61) is the correct specification and in its initial form W(1) = cw, = h (say) then 
working with { h-‘wi} produces a lag weight distribution which sums to unity. It 
is assumed below that such resealing has occurred so that W(1) = 1, although it is 
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not assumed that this is necessarily imposed as a restriction for purposes of 
estimation. It should be noted at the outset that all non-stochastic static equi- 
librium solutions of (61) take the simple form: y = hz and the importance of this 
is evaluated in (3.6). Moreover, provided all of the w, are non-negative, they are 
analogous to discrete probabilities and derived “moments” such as the mean 
and/or median lag (denoted p and 17, respectively), variance of the lag distribu- 
tion etc. are well defined [for example, see Griliches (1967) and Dhrymes (1971)]: 

m 

p = C iw, 

and 11 is an integer such that: 

(62) 

c W;<$l c w,. 
I=0 i=o 

Nevertheless, even assuming (61) is structural, economic theory is not usually 
specific about various important features of the W( .) polynomial, including its 
“shape” (i.e. multimodality, degree, etc.), starting point m”, and lag length m. For 
the present, we take m ’ = 0 and m to be known, and first consider the issue of the 
“shape” of W( .) as a function of k -c m. 

If little information exists on what might constitute likely decision rules, or if 
(say) the relationship is an order/delivery one, so that (61) is a reasonable 
specification but m is large, some restrictions may need to be placed on { wi} to 
obtain “plausible” estimates. However, as Sims (1974) and Schmidt and Waud 
(1973) argue, this should not be done without first estimating w unrestrictedly. 
From such results, putative restrictions can be tested. Unrestricted estimates can 
provide a surprising amount of information, notwithstanding prior beliefs that 
“collinearity” would preclude sensible results from such a profligate parameterisa- 
tion. Even so, some simplification is usually feasible and a wide range of possible 
forms of restrictions has been proposed including arithmetic, inverted “u”, 
geometric, Pascal, gamma, low order polynomial and rational [see, for example, 
the discussion in Maddala (1977)]. Of these, the two most popular are the low 
order polynomial distributed lag [denoted PDL; see Almon (1965)]: 

k 

w, = C v,j’, j=O m, ,*.-, 
r=O 

and the rational distributed lag [denoted RDL; see Jorgenson (1966)]: 

v’(L)=A(L)/B(L):A(L)= 5 u,L’,B(L)=l- i b,Lj. 
j=O j=l 

(63) 

(64) 
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These are denoted PDL(m, k) and RDL( p, q) respectively. If k = m then the 
{ w, } are unrestricted and { y, } is simply a one-one reparameterisation. Also, if 
A(L) and B(L) are defined to exclude redundant common factors, then RDLs 
cannot be finite’ but: 

(a) as shown in Pagan (1978), PDL restrictions can be implemented via an 
RDL model denoted the finite RDL, with B(L) = (1 - L)k+’ and p = k; and 

(b) RDLs can provide close approximations to PDLs as in: 

W(L) = (0.50+0.30L +o.15L2 +o.05L3) = gl-o.5L))’ 

= (0.50+0.25L +0.13L2 +0.06L3 +0.03L4...). (65) 

Indeed, early treatments of RDL and PDL methods regarded them as ways of 
approximating unknown functions to any desired degree of accuracy, but as Sims 
(1972) demonstrated, an approximation to a distribution which worked quite well 
in one sense could be terrible in other respects. Thus, solved values from 
A( L)/B( L) could be uniformly close to W(L) yet (say) the implied mean lag 
could be “infinitely” wrong. In (65), for example, the actual mean lag is 0.75 
while that of the illustrative approximating distribution is 1.0 (i.e. 33% larger). 
Ltitkepohl(l980) presents conditions which ensure accurate estimation of both p 
and the long-run response (also see Sections 4.3 and 5 below). 

Rather than follow the “approximations” idea, it seems more useful instead to 
focus attention on the nature of the constraints being imposed upon the lag 
coefficients by any parametric assumptions, especially since the consequences of 
invalid restrictions are well understood and are capable of analytical treatment. 
For the remainder of this section, only PDL(m, k) is considered, RDL models 
being the subject of Section 4. Schmidt and Mann (1977) proposed combining 
PDL and RDL in the LaGuerre distribution, but Burt (1980) argued that this just 
yields a particular RDL form. 

The restrictions in (63) can be written in matrix form as: 

w= Jy or (I- J(J’J)-‘J’)w=Rw=O, (66) 

where J is an (m+l)x(k+l) Vandermonde matrix and rank (R)=m-k. 
Perhaps the most useful parameterisation follows from Shiller’s (1973) observa- 
tion that the (k + 1)th differences of a kth order polynomial are zero and hence 
the linear restrictions in (66) for PDL(m, k) imply that: 

(l-L)k+ly=O, j=k+l,..., m. 

‘For example, (l&(hL)“‘+’ )/(l - XL) = c~&(XL) is finite since A(L) and B( I!.) have the factor 
(I- h L) in common (and have unidentifiable coefficients unless specified to have a common factor), 
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Thus, R is a differencing matrix such that RJ= 0. Expressing (61) in matrix form: 

y=Zw+u or y=(ZJ)y+u=Z*y+u, (67) 

shows that y can be estimated either directly or via the first expression in (67) 
subject to Rw = 0. 

Indeed, (63) can be reparameterised as desired by replacing j’ by any other 
polynomial q{(j) = c’,=,J/,,j’ and appropriate choices of q,(j) can facilitate the 
testing of various restrictions, selecting parsimonious models and/or computa- 
tional accuracy [see Robinson (1970) Pagan0 and Hartley (1981) Trivedi and 
Pagan (1979) and Sargan (1980b)l. In particular, orthogonal polynomials could be 
used if computational accuracy was likely to be a problem. 

A rather different reparameterisation is in terms of the moments of w [see 
Hatanaka and Wallace (1980), Burdick and Wallace (1976) and Silver and 
Wallace (1980) who argue that the precision of estimating lag moments from 
economic data falls as the order of the moments rises]. As shown by Yeo (1978), 
the converse of the Almon transformation is involved, since, when m = k: 

y=ZJ-‘Jw+u=(ZJ-‘)++u (68) 

yields + as the moments of w (assuming w, 2 0, V,). Moreover, from analytical 
expressions for Jp ‘, Yeo establishes that (ZJ-‘) involves linear combinations of 
powers of differences of zI’s (i.e. CA,d’z,) and that the parameters I/, of the 
equation: 

y,= 5 ~,AJz,+u, (69) 
j=O 

are the factorial moments (so that #a = &, and #i = cpi). 
When t is highly autoregressive, z, will not be highly correlated with &zI for 

j 2 1 so that q0 will often be well determined. Finally, (67)-(69) allow intermatch- 
ing of prior information about w and + or $. 

The formulation in (66), and the stochastic equivalent Rw = E - i.d.(O, u,‘Z), 
both correspond to “smoothness” restrictions on how rapidly the lag weights 
change. Sims (1974) doubted the appropriateness of such constraints in many 
models, although this is potentially testable. Since the case k = m is unrestricted 
in terms of pd’nomial restrictions (but, for example, imposes an exact polynomial 
response of yI to lagged z’s with a constant mean lag, etc.), the larger k the less 
can be the conflict with sample information-but the smaller the efficiency gain if 
k is chosen too large. Nevertheless, it must be stressed that in addition to all the 
other assumptions characterising (61), low order k in PDL(m, k) approximating 
large m entails strong smoothness restrictions. 
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3.3. Choosing lag length and lag shape 

Once m and k are specified, the PDL(m, k) model is easily estimated by 
unrestricted least squares; consequently, most research in this area has been 
devoted either to the determination of m and k or the analysis of the properties of 
the PDL estimator when any choice is incorrect. Such research implicitly accepts 
the proposition that there is a “ true” lag length and polynomial degree- to be 
denoted by (m*, k*)-and this stance is probably best thought of as one in 
which the “true” model, if known and subtracted from the data, would yield only 
a white noise error. 

In such an orientation it is not asserted that any model can fully capture 
reality, but only that what is left is not capable of being predicted in any 
systematic way, and this viewpoint (which is an important element in data 
analysis) is adopted below. For the remainder of this section, m” is taken to be 
known as zero; lack of this knowledge would further complicate both the analysis 
and any applications thereof. 

The various combinations of (m, k) and their relationships to (m*, k*) are 
summarized in Figure 3.1 using a six-fold partition of (m, k) space. Each element 
of the partition is examined separately in what follows, as the performance of the 
PDL estimator varies correspondingly. 

A(m=m*,k>k*) 
On this half line, m is fixed at m* and k varies above k*, which is to be 
determined. 

It is well-known [see Dhrymes (1971), Frost (1975) and Godfrey and Poskitt 
(1975)] that decreasing k results in an increasing number of linear restrictions 
upon the model and this is easily seen by noting that the number of differencing 
restrictions is (m - k), which increases as k decreases. Furthermore [since 
(l- L)k~j = (l- L)k-kl(l - L)kl~, = 0 if (1 - L)“lw, = 01, when the coefficients 
lie on a (k, - 1)th degree polynomial they also lie on a (k - 1)th order polynomial 
for k, 5 k. Hence, the sequence of hypotheses that the polynomial is of degree 

k 

A(m = m’, k 2 k’) 

C(m < m*, k 2 k”) F(m > m*, k > k”) 

__- 

1 
B(m > m’, k = k”) m 

(m’, k”) 

D(m < m’, k < k”) E(m 2 m*, k < k*) 

Figure 3.1 
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k-l,k-2,k-3 ,..., 1, is ordered and nested [see Mizon (1977b)] and Godfrey 
and Poskitt (1975) selected the optimal polynomial degree by applying Anderson’s 
method for determining the order of polynomial in polynomial regression [see 
Anderson (1971, p. 42)]. The main complication with this procedure is that the 
significance level changes at each step (for any given nominal level) and the 
formula for computing this is given in Mizon (1977b) [some observations on 
efficient ways of computing this test are available in Pagan0 and Hartley (1981) 
and Sargan (1980b)]. 

When rn = k, J is non-singular in (66) so either w or y can be estimated directly, 
with Wald tests used for the nested sequence; those based on y appear to have 
better numerical properties than those using w [see Trivedi and Pagan (1979)]. 

B(m>m*,k=k*) 
The next stage considers the converse of known k* and investigates the selection 
of m. From (66), it might seem that increasing m simply increases the number of 
restrictions but as noted in Thomas (1977) [by reference to an unpublished paper 
of Yeo (1976)] the sum of squared residuals may either increase or decrease in 
moving from PDL(m, k) to PDL(m + 1, k). This arises because diferent parame- 
ter vectors are involved while the same order of polynomial is being imposed. 

This situation (k* known, m* unknown) has been analysed informally by 
Schmidt and Waud (1973) and more formally by Terasvirta (1976), Frost (1975), 
Carter, Nagar and Kirkham (1975) and Trivedi and Pagan (1979). Terbvirta 
suggests that overstating m leads to biased estimates of the coefficients while 
Frost says (p. 68): “Overstating the length of the lag, given the correct degree of 
polynomial, causes a bias. This bias eventually disappears as k increases.” 
Support for these propositions seems to come from Cargill and Meyer’s (1974) 
Monte Carlo study, but they are only a statement of necessary conditions for the 
existence of a bias. As proved in Trivedi and Pagan (1979), the sufficient 
condition is that stated by Schmidt and Waud (1973); the su@cient condition for a 
bias in the PDL estimator is that the lag length be overstated by more than the 
degree of approximating polynomial. For example, if k = 1, and m is chosen as 
m* + 1, it is possible to give an interpretation to the resulting restriction, namely 
it is an endpoint restriction appropriate to a PDL( m*, 1) model. Although it has 
been appreciated since the work of Trivedi (1970a) that the imposition of 
endpoint restrictions should not be done lightly, there are no grounds for 
excluding them from any analysis a priori, and if valid, no bias need result from 
m*+k>m>m*. 

To reconcile this with Terasvirta’s theory it is clear from his equation (5) 
(p. 1318) that the bias is zero if I?#, = 0 and no reasons are given there for 
believing that this cannot be the case. Examples can be constructed in which 
biases will and will not be found and the former occurred in Cargill and Meyer’s 
work: these biases do not translate into a general principle, but reflect the design 
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of the experiments. As an aside, for fixed { zt} there is no need to resort to 
imprecise and specific direct simulation experiments to study mis-specifications in 
PDLs. This is an area where controlled experiments could yield accurate and 
fairly general answers from such techniques as control variables, antithetic 
variates and response surfaces (see Hendry in Chapter 16 of this Handbook). For 
example, using antithetic variates for U, yields exact simulation answers for 
biases. In general, if: 

y=G(Z)B+u and G( .) is any constant function of fixed Z, 

with u distributed symmetrically according to f(u), and: 

(70) 

(b-e)= (GG-‘GNU, (71) 

then f( u) = f( - u), whereas (6 - e) switches sign as u does. Consequently, if, for 
example, E(u) = 0 and (70) is correctly specified, simulation estimates of (71) 
always average to zero over (u, - u) proving unbiasedness in two replications [see 
Hendry and Trivedi (1972)]. 

Is it possible to design tests to select an optimal m if k* is known? Carter, 
Nagar and Kirkham (1975) propose a method of estimating the “bias” caused by 
overspecifying m and argue for a strategy of overspecifying m, computing the 
“bias” and reducing m if a large “bias” is obtained. This is an interesting 
suggestion but, as noted above, the bias may be zero even if m is incorrect. Sargan 
(1980b) points out that the models PDL(m + 1, k) and PDL(m, k) are non-nested 
and that two separate decisions need to be made, for which “t”-tests can be 
constructed: 

(i) Is there a longer lag, i.e. does w,,,+i = O? 
(ii) Does the coefficient wm+i he on the k th order polynomial? 

To test the first, form a regression with the PDL(m, k) variables and z,+i in the 
regression. The second can be constructed from the covariance matrix ci that is a 
by-product of the regression. If both (i) and (ii) are rejected, then a more general 
specification is required. 

A possible difficulty with this proposal is that for a valid test of wm+i = 0, the 
estimator under the alternative hypothesis must be unbiased, but a bias is certain 
if the lag length is overstated by more than the polynomial degree. Accordingly, 
to implement (i) and (ii) above, it is important to have good prior information on 
the true lag length, at least within k* periods. Thus, the first step of the analysis 
should be to select an optimal polynomial order for a sufficiently long lag length 
in which case (ii) is accepted and a test is required for the validity of an endpoint 
restriction8 if accepted, these two steps can be conducted sequentially till an 
appropriate termination criterion is satisfied. 

While this procedure at least yields an ordered sequence of hypotheses, its 
statistical properties remain to be investigated, and to be compared to alternative 

‘We owe this point to George Mailath. 
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approaches. There are some further comments that need to be made. Firstly, what 
happens if PDL(m, m - 1) is rejected at the first step? As this could be due either 
to the true lag being m and unrestricted or to the need for a shorter lag, the 
unrestricted estimates PDL(m, m) allow a test of this. Secondly, an ordered 
sequence (even when nested) merely yields control of Type I errors and says 
nothing about power (necessarily). Thus, gross overstatement of the lag length 
causing a large number of tests in the sequence almost certainly results in low 
power (e.g. for m* = 4, k* = 2 choosing m 2 8 initially could result in a lengthy 
test sequence). However, Bewley (1979b), in a comparison of various methods to 
select m and k, examined one approach similar to that described above, finding it 
to have good power. Notice that the unrestricted estimation of the distributed lag 
parameters is an important part of the strategy, because it is the comparison of a 
restricted with an unrestricted model that enables a check on the validity of the 
first set of restrictions imposed; once these are accepted it is possible to continue 
with the restricted model as the new alternative. 

C,D(m<m*,k$k* ) 
PartitioningZasZ=[Z,Z,]withZ,-TX(m+l)andZ,-Tx(m*-m),was 
(w{w;)’ and R as (R1R2) (the last two conformable with Z), the PDL estimator 
of wi -the underspecified lag distribution-is from (67): 

(72) 

where G$’ is the unrestricted OLS estimator of w, in the model y = Z,w, + u. From 
standard regression theory 6: is biased whenever Z[Z, f 0, or whenever the 
included and excluded regressors are correlated. The existence of this bias will 
induce a bias in the PDL estimator, so that a sufficient condition for the PDL 
estimator to be biased whenever the lag length is understated is that the regressors 
be correlated. However, it is not a necessary condition as 6: is biased whenever 
R,w, # 0 even if i;zl” is unbiased. For k < k*, Rw, never equals zero and under- 
statement of the polynomial order therefore results in a bias. Furthermore, the 
condition noted above in the analysis of the half-line B applies in reverse; 
understating the lag length by more than the degree of approximating polynomial 
leads to a bias. 

E(m 2 m*, k <k*) 
The restrictions are incorrect and the PDL estimator must be biased. 

F(m > m*, k > k*) 
In contrast to the cases above which have been extensively analysed in the 
literature, little attention has been paid to the quadrant F despite its potential 
relevance. With any PDL(m, k) combination there are (m - k) independent 
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homogeneous restrictions upon the (m + 1) w, coefficients, with m* + 1 of these 
coefficients, wO,. . . , wm8, lying upon a k * th order polynomial by assumption and 
being linked by m* - k* homogenous differencing restrictions. Because of this 
latter characteristic, w,, + t,. . . , wm* can be expressed as linear functions of 

w,,,..-,wk*, thereby reducing the number of coefficients involved in the (m - k) 
restrictions from (m + 1) to (m + l)-( m* - k*). Now two cases need to be 
distinguished, according to whether the assumed polynomial order is less than or 
equal to the true lag length, and the bias situation in each instance is recorded in 
the following two propositions: 

Proposition I 

When k -c m*, the PDL(m, k) estimator is certainly biased if m - m* > k*. 

Proposition 2 

When k 2 m*, the PDL(m, k) estimator is certainly biased if m - k > k*. 

Proofs of these and other propositions presented below are provided in Hendry 
and Pagan (1980). 

Propositions 1 and 2 indicate that the effects of an incorrect choice of 
polynomial and lag order are complex. Frost’s conjecture cited in the analysis of 
B is borne out, but there may not be a monotonic decline in bias; until k 2 m* 
the possibility of bias is independent of the assumed polynomial order. Certainly 
the analysis reveals that the choice of m and k cannot be done arbitrarily, and 
that indifference to the selection of these parameters is likely to produce biased 
estimators. Careful preliminary thought about the likely values of m* and k* is 
therefore of some importance to any investigation. 

To complete this sub-section, we briefly review other proposals for selecting m* 
and k*. Because PDL(m,, k,) and PDL(m,, k2) models are generally non-nested, 
many of the methods advocated for the selection of one model as best out of a 
range of models might be applied [these are surveyed in Amemiya (1980)]. The 
only evidence of the utility of such an approach is to be found in Frost (1975), 
where m and k are chosen in a simulation experiment by maximizing R2 [as 
recommended by Schmidt and Waud (1973)J. There it is found that a substantial 
upward bias in the lag length results, an outcome perhaps not unexpected given 
the well-known propensity of x2 to augment a regression model according to 
whether the t-statistic of the augmenting variable exceeds unity or not. Terbvirta 
(1980a), noting that the expected residual variance of a model is the sum of two 
terms-the true variance and a quadratic form involving the bias induced by an 
incorrect model-showed that the bias in Frost’s experiments was very small once 
a quadratic polynomial was selected, causing little difference between the ex- 
pected residual variances of different models. Consequently, the design of the 
experiments plays a large part in Frost’s conclusions. It may be that other criteria 
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which can be expressed in the form g(T) (1 - R2), where g( .) is a known function 
[examples being Akaike (1972), Mallows (1973), Deaton (1972a) and Amemiya 
(1980)] would be superior to R2 as a model selection device, and it would be of 
interest to compute their theoretical performance for Frost’s study. Nevertheless, 
both Sawa (1978) and Sawyer (1980) have produced analyses suggesting that none 
of these criteria is likely to be entirely satisfactory [see also Geweke and Meese 
(1981) for a related analysis]. 

Harper (1977) proposed to choose m and k using the various model mis-specifi- 
cation tests in Ramsey (1969). The rationale is that an incorrect specification 
could lead to a disturbance with a non-zero mean. This contention is correct 
whenever the lag length and polynomial degree is understated, but in other 
circumstances need not be valid. 

A final technique for selecting m and k has been provided by Terasvirta (1980a, 
1980b). This is based upon the risk of an estimator b of /I [where /3 would be w 
for a PDL( *) like (61)]: 

r(8,rB)=E(8-B)‘Q(B-8), (73) 

where Q is a positive definite matrix, frequently taken to be Q = Z or Q = Z ‘Z. 
From Judge and Bock (Chapter 10 in this Handbook, eq. (3.7)) a PDL(m, k) 
estimator of j3 exhibits lower risk than OLS when Q = Z if and only if: 

(744 

or when Q = Z’Z if and only if [eq. (3.8)]: 

oi2j3’R’( R(Z’Z)-‘R’)-1R#3 5 m - k. (74b) 

Replacing j3 and u,’ by their OLS estimators in (74), test statistics that the 
conditions are satisfied can be constructed using a non-central F distribution. A 
disadvantage of this rule is that it applies strictly to a comparison of any 
particular PDL(m, k) estimator and OLS, but does not provide a way of 
comparing different PDL estimators; ideally, a sequential approach analogous to 
Anderson’s discussed above is needed. Another problem arises when the lag 
length is overspecified. Terasvirta shows that the right-hand side of (74b) would 
then be m - k - p2, where p2 is the degree of overspecification of the lag length. 
As p2 is unknown, it is not entirely clear how to perform the test of even one 
(m, k) combination against OLS. Terbvirta (1980b), utilizing Almon’s original 
investment equation as a test example, discusses these difficulties, and more 
details can be found therein. 
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3.4. Weaker restrictions on lag weights 

The essence of PDL procedures is the imposition of linear deterministic con- 
straints upon the parameters and there have been a number of suggestions for 
widening the class or allowing some variation in the rigidity of the restrictions. 
Thus, Hamlen and Hamlen (1978) assume that w = Ay, where A is a matrix of 
cosine and sine terms, while a more general proposal was made by Corradi and 
Gambetta (1974), Poirier (1975) and Corradi (1977) to allow the lag distribution 
to be a spline function. Each of these methods is motivated by the “close 
approximation” idea but are capable of being translated into a set of linear 
restrictions upon w [see Poirier (1975) for an example from the spline lag]. The 
spline lag proposal comes close to the PDL one as the idea is to have piecewise 
polynomials and the restrictions are a combination of differencing ones and 
others representing join points (or knots). In both cases, however, users should 
present an F-statistic on the validity of the restrictions-arguments from numeri- 
cal analysis on the closeness of approximation of trigonometric functions and 
“natural cubic splines” are scarcely convincing, however suggestive they might be. 
Although the spline lag proposal does not yet seem to have had widespread 
application, attention might be paid to the use of a variety of differencing 
restrictions upon any one set of parameters. For example, if the location of the 
mode was important and it was believed that this lay between four and eight lags, 
low order differencing might be applied for lags up to four and after eight, and 
very high order differencing restrictions between four and eight. Thus, one could 
constrain the distribution in the regions where it matters least and to leave it 
relatively free where it is likely to be changing shape most rapidly. There is no 
compelling reason why an investigator must retain the same type of linear 
restrictions throughout the entire region of the lag distribution. 

Shiller (1973, 1980) has made two proposals that involve stochastic differencing 
restrictions-if one wishes to view his approach in a classical rather than 
Bayesian framework as was done by Taylor (1974)-and a good account of these 
has been given by Maddala (1977). The first of Shiller’s methods has (1 - L)k~ = 
E,, where E, - i.i.d.(O, u,‘). One might interpret this as implying that w, is random 
across the lag distribution, where the mean i%, lies on a k th order polynomial and 
the error w, - Ej is autocorrelated. Of course if one wanted to press this random 
coefficients interpretation it would make more sense to have w, = W, + E, as in 
Maddala’s “Bayesian Almon” estimator (p. 385). In keeping with the randomness 
idea it would be possible to allow the coefficients to be random across time as in 
Ullah and Raj (1979), even though this latter assumption does not “break’ 
collinearity in the same way as Shiller’s estimator does, and seems of dubious 
value unless one suspects some structural change. Shiller’s second suggestion is to 
use (1 - L)k log w, = e,. Mouchart and Orsi (1976) also discuss alternative 
parameterisations and associated prior distributions. 
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Shiller terms his estimators “smoothness priors” (SP) and a number of applica- 
tions of the first estimator have appeared, including Gersovitz and Mackinnon 
(1978) and Trivedi, Lee and Yeo (1979). Both of these exercises are related to 
Pesando’s (1972) idea that distributed lag coefficients may vary seasonally and SP 
estimators are suited to this context where there are a very large number of 
parameters to be estimated. For a detailed analysis, see Hylleberg (1981). 

It is perhaps of interest to analyse the SP estimator in the same way as the PDL 
estimator. Because of the differencing restrictions underlying the SP estimator, in 
what follows it is convenient to refer to a correct choice of k as one involving a 
“true” polynomial order. Furthermore, the assumption used previously of the 
existence of a “true” model holds again; this time there being an added 
dimension in the variance parameters .Z = diag{ a,* }. Under this set of conditions, 
the SP estimator of 8, &r is [Shiller (1973)]:9 

&r = (ZZ+ R’Z-‘R)-‘Z’y. (75) 

From (75), & is a biased estimator of /3 but, with the standard assumption 
lim ,,,T-‘Z’Z > 0, ,hsp is a consistent estimator of /3 provided boLs is. Accord- 
ingly, under-specification of the lag length will result in &. being inconsistent. 

To obtain some appreciation of the consequences of over-specification of the 
lag length or mis-specification of the polynomial order, it is necessary to set up a 
benchmark. Because fist, is biased, this can no longer be the true value 8, and for 
the purpose of enabling a direct comparison with the PDL estimator it is 
convenient to assess performance relative to the expected value of &, if R and 2 
were known. This is only one way of effecting a comparison-for example, the 
impact upon risk used by Trivedi and Lee (1979) in their discussion of the ridge 
estimator would be another-but the present approach enables a sharper contrast 
with the material in Section 3.3 above. 

So as to focus attention upon the parameters (m, k) only, 2 is taken to be 
known in the propositions below, and it is only R that is mis-specified at 2. Then: 

E(&r) = (Z’Z+ R/2-‘R)-‘E(Zj+ (764 

E(&) = (Z’Z-t R’r’R)-‘E(Z~), (76b) 
and E(&,)# E(&,) unless R’Z-‘R = RY’R. 

Propositions 3 and 4 then record the effects of particular incorrect choices of m 
and k: 

Proposition 3 

Overstatement of the lag length with a correct polynomial degree need not induce 
a difference in E(&) and E(&). 

‘Assuming that the covariance matrix of u in (67) is I. The more general assumption that it is u,‘I (to 
bc used in a moment) would require B to be defined as the variance ratios 0, %I,’ in (78). Note that we 
use B rather than w for results which are not specitic to PDLs, as with (75) for general R and X. 



1062 

Proposition 4 

D. F. Hendgj et al. 

Whenever the polynomial order is under or overstated with a correct lag length, 
E(&) is different from E(fisSP). 

These propositions reveal that the SP estimator provides an interesting contrast to 
the PDL estimator, being insensitive to over-specification of the lag length but not 
to an over-specified polynomial order. This last result is a surprising one, and its 
source seems to be that: 

and the autocorrelation induced by an over-specified polynomial is ignored in the 
construction of &,. 

As the analysis above demonstrates, the choice of 2 is an important one. 
Shiller’s original treatment was a Bayesian one and X represented the variance of 
a prior distribution. Because 2 depends upon the units of measurement of Z, his 
second specification involving the logs of /3, has greater appeal as better prior 
information is likely to be available concerning the percentage changes in p,. If a 
Bayesian treatment of this model is desired, the choice of prior is clearly critical, 
and the papers by Mouchart and Orsi (1976) and Trivedi and Lee (1981) contain 
extensive examinations of this issue. 

A more classically oriented approach derives from the special case when 
2 = $1. The SP estimator becomes: 

& = (Z’Z-t h-zrzq-‘Z’y, (77) 

where h = u-‘IJ,~, and the formal similarity of (77) to the ridge regression 
estimator hag prompted a number of authors-Hill and Johnson (1975). Maddala 
(1977) and Ullah and Raj (1979)-to utilize the principles from that literature to 
select h (also see Section 3.5). 

Finally, mention should be made of Terbvirta (1980a, 1980b) who proposed to 
select h and k by reference to .the risk for different combinations of these 
parameters in a similar fashion to the methodology described in Section 3.3). 
Fomby (1979) is another to select h according to the mean square error of 
estimators. 

3.5. Alternative estimators 

The treatment so far has effectively assumed that lack of bias was an appropriate 
way to classify different estimators and that the unrestricted estimates would be 
selected in preference to any restricted estimator if the restrictions were invalid. 
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Such a position is by no means universally accepted, and there have been 
advocates for imposing restrictions, even if invalid, if this reduces a specified loss 
function. For example, Amemiya and Morimune (1974) selected an optimal 
polynomial order by minimizing a particular loss function and Trivedi and Pagan 
(1979) used this loss function to compare various restricted estimators. Essentially 
the argument for such procedures is that of “good forecasting” but there is 
another tradition of biased estimation that aims at “breaking” the collinearity 
between the lagged values of z, that may be the cause of badly determined 
unrestricted estimates. As there have been a few applications of these ideas to the 
estimation of distributed lag models, we propose to make some comments upon 
the direction and utility of this research. 

We first focus on the question of whether restricted and other “improved” 
estimators (e.g. Stein-James), do in fact yield substantial reductions in a loss 
function relative to the unrestricted estimator (OLS). Yancey and Judge (1976, 
p. 286) have ably summed up the importance of this question: “. . . there has been 
no rush in econometrics to abandon maximum likelihood estimators.. . Possibly 
one reason for the reluctance to change estimators may be uncertainty relative to 
the magnitude of the risk gains from changing estimation rules.” 

Conventionally, the loss function has been taken as in (73) for an estimator B 
of j? and Q positive definite. There has, however, been little agreement over Q. 
Schmidt and Sickles (1976) set Q = Z ‘Z, while in Aigner and Judge (1977), Q = Z 
and Z’Z were selected. Strawderman (1978) notes that: “The former case seems 
appropriate when an error of any given magnitude is equally serious to all 
coordinates, while the latter case corresponds to the usually fully invariant 
situation” (p. 626) and shows that adaptive ridge estimators would be minimax if 
Q = (Z ‘Z )2. Probably Q = Z ‘Z is interesting if the goal is forecasting as Amemiya 
and Morimune (1974) stress the relationship of this loss function to the condi- 
tional mean square prediction error. The relative risks of different estimators 
when Q = Z or Z ‘Z feature inequalities involving the eigenvalues of 
(Z/Z)-‘R’[R(Z’Z)-‘R’]-‘R(Z’Z)-‘. It does not seem possible to say much 
about these inequalities without specifying R and /3. When R = I, Aigner and 
Judge have pointed out that it is the eigenvalues of (Z ‘Z ) which are required, and 
Trivedi (1978) exploited this result to show that the risk reductions obtained with 
the Stein-James estimator on the imposition of false restrictions decreased with 
the degree of autocorrelation of {z, }. The poor performance of the Stein-James 
estimator in the presence of collinear data has also been observed by Aigner and 
Judge (1977). 

Ridge regression has already been mentioned in the context of the “smoothness 
priors” estimator of Section 3.4 and at times has been put forth as a direct 
estimator of (61). As the literature on ridge techniques is vast, our comments 
pertain only to those features that have been of concern to investigators estimat- 
ing distributed lag models. 
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Foremost amongst these has been the determination of the parameter h = (f/u: 
in the estimator: 

iG= (Z’Z+ h.D)-‘Z’y, (78) 

where D = R'R in the case of “smoothness priors”. In practice, h has frequently 
been determined in an iterative way [see, for example, Maddala (1977) and 
Spencer (1976)], based on sample information. 

The question that arises with such data-based priors is whether there are 
implicit restrictions being placed upon the estimated coefficients. Some analysis of 
these schemes seems necessary as Spencer found that his iterated Shiller estimator 
converged to the Almon estimator, i.e. 6: = 0, and there have been other reports 
that ridge estimators have a tendency to produce rectangular distributions. For 
example, Maddala (1977) says: “... the Hoer1 and Kennard method and the 
Lindley-Smith method are not too promising for distributed lag estimation”. As 
shown in Hendry and Pagan (1980): the iterated Shiller estimator has a tendency to 
converge to the Almon estimator. Whether it will terminate at the Almon estimator 
or not depends upon the existence of a local minimum to the function of which 
the iterative rules are the derivatives [denoted by S( w, u,‘)] since S( .) has a global 
minimum at u,’ = 0. Although it is hard to decide on the likelihood of u,’ + 0 on 
theoretical grounds, nevertheless, one might conjecture that as the data become 
more collinear, the iterated Shiller estimator will converge to the Almon estima- 
tor. This occurs because, with collinear data, large variations in iu result in only 
small changes in the residual sum of squares and it is this term which must rise to 
offset the reduction in S( .) caused by falling u,‘. It would also seem that, as the 
lag length m increases, this tendency would be intensified. Some theoretical work 
on this question is available in Trivedi, Lee and Yeo (1979). 

A similar situation exists if the Lindley-Smith scheme which sets 13: = 
(m + l)-‘2( iG, - %)2 is adopted, as the analysis can be repeated to show that the 
global minimum occurs as 6: -+ 0, i.e. where Gj are equal y,. This indicates that 
iterating with this scheme tends to produce rectangular lag distributions regardless 
of the “true” lag distribution. Again, this is only a tendency, but it is disturbing 
that the possibility exists that a lag distribution can be obtained that simply 
reflects the way in which the “prior” was constructed and which may bear no 
resemblance to whatever prior knowledge does exist. Thus care is needed in the 
application of these estimators and more analytical work is necessary before they 
become widely used. 

The above prob!ems apply only to those estimators that choose u,’ in some 
data-based way and not when u,’ is selected on a priori grounds. Even then, one 
must have some misgivings about shrinkage estimators that are supposed to be 
“robust” and to produce “reasonable” answers in any situation, irrespective of 
the true model and however badly specified the approximation. This is a major 
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problem in distributed lags where m is unknown, as few diagnostic tests have yet 
been developed for the detection of specification errors for “shrinkage” estima- 
tors and, until tests are better developed, one must be sceptical of their general 
application. There appear to have been a large number of estimators proposed 
within the ridge class-see Vinod (1978)-but the amount of work done on their 
implications and range of applications seems quite small. The “classical” estima- 
tors discussed in preceding sections have been subject to intensive analysis and we 
would be loathe to discard them for fashionable estimators derivative from other 
fields. 

3.6. Reformulations to facilitate model selection 

The many difficulties noted above for choosing m* and k* even when it is known 
that m” = 0 and m* is finite are in practice exacerbated by the failure of { fi, } to 
be white noise and the dubiety of asserting that z, is strongly exogenous for w; 
yet the joint failure of these entails that Fi, will be inconsistent and that, for 
example, DW statistics have an incorrect significance level (although LM tests for 
residual autocorrelation remain valid). Moreover, as shown in Section 2.6, para- 
graph (g), “correcting” for residual autocorrelation by (say) Cochrane-Orcutt or 
other autoregressive processes involves untested common factor assumptions, the 
invalidity of which would throw into question the very assumption that m* is 
finite (see Section 2.4). 

When y and z are inherently positive, and the static equilibrium postulate is 
y = hz, then In y = In h +ln z is an admissible transform and suggests an error 
correction rather than a distributed lag approach since the latter is a “special 
case” of the former in a unit elasticity world [see Section 2.6, paragraph (h)]. 
Moreover, the error process need no longer be truncated to ensure y,, z, > 0 and 
even for h = 1, additive “modifiers” (i.e. additional variables) do not produce 
logical inconsistencies [which they would in (61) unless restricted to vanish in 
equilibrium]. Such considerations become increasingly important in formulations 
where the { w, } depend on economic variables [as in Tinsley (1967) and Trivedi 
(1970b)]: these models pose no insurmountable estimation problems, but raise 
awkward selection issues when so many features have to be jointly chosen from 
the data. 

Finally, as noted in Section 3.2 above, even within the PDL class reformu- 
lations of the polynomials can greatly economise on parameters; the suggestion in 
Sargan (1980b) of using ‘k,(j) = (m + 1 - j)’ so that: 
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can reduce the required number of { y,* } well below { y, } (or conversely) depend- 
ing on the lag shape. For example: 

wj = (1 -o.lj)*, j=o 9, ,..‘, (80) 

only involves one y* (i.e. y;) but three y ‘s. Short distributed lags in general 
dynamic equations often can be parameterised along these lines [see, for example, 
Hendry and Ungern-Stemberg (1981)]. 

4. Infinite distributed lags 

4.1. Rational distributed lags 

Almost all individual estimated equations in macro-econometric systems have 
been members of the general class of Autoregressive-Moving Average Models 
with “Explanatory” variables, denoted by ARMAX( e) and written as: 

J=l 
(81) 

where: 

and there are no polynomial factors common to all the ‘y/(L). Then (81) is said to 
be ARMAX (m,, m1 ,..., m,, m,,, ) [generalising the AD( .) notation with the last 
argument showing the order of the moving average error process]. The {z,,} in 
(81) are not restricted to be “exogenous” in the sense defined in Section 2, and 
could be endogenous, weakly or strongly exogenous or lagged values of variables 
endogenous elsewhere in the systems, and might be linear or nonlinear transfor- 
mations of the original (raw) data series. However, it is assumed that the 
parameters of (81) are identifiable and constant over any relevant time period. 

The formulation in (81) can be expressed equivalently as: 

(83) 

where all common factors have been cancelled in the ratios of polynomials. An 
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important special case of (83) is where $(L) = p(L) [i.e. (Y,,(L) = (Y,+ i( L) in (81) 
which we call the Rational Distributed Lag (RDL)]: 

yt= f: yAL) 
,=I 4(L) 

zi,+e,= t wi(L)zir+e,, 
1=1 

(84) 

and like the AD( .) class, RDL is deJned here to have white-noise disturbances 
relative to its information set. As discussed in Section 3 above, (84) generalises 
(59) to infinite lag responses. Thus, ARMAX( .) is RDL with ARMA( *) errors or 
AD(e) with MA( .) errors, and if any denominator polynomial is of non-zero 
order, some of the derived lag distributions are infinite. Relative to the class 
defined by (81) the parameter spaces of AD( .) and RDL( .) models constitute a 
set of measure zero in the general parameter space. In practical terms, however, 
all of the models in this chapter constitute more or less crude first approximations 
to complicated underlying economic processes, and for high order lag polynomi- 
als, provide rather similar data descriptions. Indeed, if all of the roots of the 
6,(L) (i=l,..., n), p(L) and e(L) polynomials in (83) lie outside the unit circle, 
by expanding the inverses of these polynomials as power series, a wide range of 
alternative approximations can be generated (extending the analysis in Section 2.3 
above). But selecting equations purely on the basis of “goodness of approxima- 
tion” is of little comfort if the resulting model does not correspond to either a 
behavioural or a structural relationship, and as stressed below derived parameters 
(such as mean lags, long-run outcomes, etc.) can differ greatly between “similar” 
approximations. 

Consequently, the choice of model class relevant to empirical research does not 
seem to us to be an issue of principle, but a matter of whether: (a) the 
formulation is coherent with available theory and/or prior information concern- 
ing structural/behavioural relationships; (b) the parameterisation is parsimonious 
with easily understood properties; and (c) the equation is easily manipulated, 
estimated (when its form is known) and selected (when the exact orders of all the 
lag polynomials, relevant regressors, etc. are not known a priori). These criteria 
may conflict since simple, easily estimated equations may not provide the most 
parsimonious representations or may be non-structural, etc. Moreover, if the 
unknown data generation process takes one form (e.g. an error correction 
AD(l, 1)) but an encompassing model is investigated (say, ARMAX(1, 1, 1)) then 
parsimony cannot be claimed even if a “minimal representation” of the dynamics 
is selected. For example, (43) becomes: 

y,= @1+O-P3-P1)L) er 
1-W zt+l_= 

(Ylo+YIAz + e1 
l- 6,,L ___ (85) ( l-&L 

which necessitates four rather than two parameters in the absence of knowledge 
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that a,, = p1 and yla + yll = 1 - 6,,, the imposition of which restrictions depends 
on the relevant behavioural theory. Conversely, an inadequate dynamic-stochas- 
tic representation entails inconsistency of parameter estimates and a loss of 
structural invariance, so both data coherency and theory validity are necessary, 
and such considerations must take precedence over arguments concerning ap- 
proximation accuracy, generality of class, etc. 

An important consequence for econometric analysis (as against data descrip- 
tion) is that closely similar dynamic model specifications can entail rather 
different behavioural implications. To isolate some of the differences, consider the 
three simplest cases of partial adjustment (PA), error correction (ECM) and RDL, 
with one strongly exogenous variable { zt}, each model defined to have white 
noise disturbances relative to its information set: 

Ax = Y(& - A-d+u, (PA), (86) 
Ay, = adz, + Y(Pz~_~ - _~,_l)+ u, @CM), (87) 

Y,=(~-(i-y)~)~*yp~,+e, (RDL). (88) 

The three models have the same non-stochastic, static equilibrium solution, 
namely: 

y=Pz=y (say), (89) 

and so could be interpreted as alternative implementations of a common theory. 
Expressed in ECM form, however, (86) and (88) are: 

where yI = y,* + e,. Thus, both (86) and (88) constrain the response to changes in 
y’ and to past disequilibria to be the same, a strong specification which may well 
be at variance with observed behaviour [compare the arguments for the “optimal 
partial adjustment” model in Friedman (1976)]. Also, the disequilibria in the 
PA/ECM models are measured differently from those of the RDL in that the 
latter are relative to yzl rather than y,_t. Accordingly, an RDL formulation is 
appropriate to behaviour wherein agents ignore the impact of past disturbances 
on the measured data, concentrating instead upon the “permanent” component 
y,T, so that disturbances in any period are not transmitted into future behaviour 
unlike in PA/ECM models. 

Which formulation of the impact on plans of past disturbances is most 
appropriate to any particular situation must be an empirical matter, although in 
general the truth probably lies at neither extreme since adjustments to pure 
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shocks are likely to differ from responses to past plans; and equation disturbances 
are anyway composites of measurement errors and all m&-specifications as well as 
shocks. Since the RDL form in (88) generalises easily to: 

y,=(l-(l-y)L)-‘(~Az,+~~z,~~)+e,, (92) 

which still has (89) as its static solution but corresponds to: 

Ay,* = (YAz, + y( pzI_r - y;*_,) (with cr unrestricted), (93) 

the real distinction between AD( .) and RDL lies in their respective stochastic 
specifications. Yet investigators alter error assumptions for convenience without 
always acknowledging the consequential changes entailed in behauioural assump- 
tions. 

With the conventional practice of “allowing for autocorrelated residuals”, 
distinctions between model types become hopelessly blurred since disturbances in 
ARMAX( .) models are transmitted k periods into the future if +( L)/p( L) is of 
degree k in L (and hence k is infinite if p(L) is not of degree zero). 

The literature on ARMAX models and all their special cases is vast and it is 
quite beyond the scope of this chapter to even reference the main relevant papers, 
let alone adequately survey the results [see, among many others, Anderson (1980) 
Aigner (1971) Nicholls et al. (1975), Harvey and Phillips (1977) Osborn (1976) 
Palm and Zellner (1980) Wallis (1977) Zellner (1979), Harvey (1981, Section 7.3) 
and Davidson (1981) and the references therein]. When all z,~ are strongly 
exogenous in (83) separate estimation of n( .)/a,( .) and $( .)/p( .) is possible [see 
Pesaran (1981) who also derives several LM-based residual diagnostic tests]. 
However, this last result is not valid if any of the z, are Granger caused by y in the 
model information set, nor will conventionally estimated standard errors provide 
a useful basis for model selection until the residuals are white noise. The general 
issue of stochastic specification is considered in Section 5 below. 

4.2. General error correction mechanisms 

There is a close relationship between error correction formulations and 
“servomechanism” control rules [see Phillips (1954, 1957)]. Hendry and Ungern- 
Sternberg (1981) interpret (Y and y in (87) as parameters of “derivative” and 
“proportional” feedback controls, introducing the additional interpretation of 
stock variables in flow equations as “integral controls”. Also, Nickel1 (1980) 
derives the ECM as the optimal decision rule for an infinite horizon quadratic 
optimization problem when the “exogenous” variables are neither static nor 
random walk processes and Salmon (1979) demonstrates that state-variable 
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feedback rules can be reparameterised in servomechanism (and hence, if ap- 
propriate, in ECM) form. Thus, the ECM specification is compatible with 
“forward looking” as well as “servomechanistic” behaviour, and since many 
static-equilibrium economic theories yield proportionality or homogeneity results 
(or are transformable thereto), this model form has a potentially large range of 
applications. 

Suppose a given static theory to entail (in logs) that: 

y = A, + hlZ, + (1- h,)z, + h*Z3, (94) 

and no theory-based dynamic speficiation is available. Then the following model 
at least ensures consistency with (94) in static equilibrium: 

r=O 1=0 i=O 

+ CP,,Ay,-,+Yl(~-zl),-k,+Y2(Z1-Z?)r-k,+Y?Z3,-k,+e,. 
r=l 

(95) 

Such a formulation has a number of useful features. Firstly, the proportionality 
restriction is easily tested by adding _Y_~~ as a separate regressor, and non-rejec- 
tion entails that (94) is the static solution of (95) for y1 # 0. Generally, low values 
of the m, suffice to make e, white noise and the resulting short distributed lags 
usually can be adequately represented by one or two Almon polynomial func- 
tions, so that the final parameterisation is relatively parsimonious [see, for 
example, Hendry (1980)]. Also, the ki are often unity (or four for quarterly-sea- 
sonally unadjusted-data); the parameterisation is frequently fairly orthogonal 
(certainly more so than the levels of variables); and despite the “common” lagged 
dependent variable coefficient [i.e. (1-t yl)] the formulation allows for very 
different lag distributions of y with respect to each z,. Moreover, using Ay, as the 
dependent variable helps circumvent the most basic “spurious” regressions prob- 
lem without losing long-run information from using differenced data only [com- 
pare, for example, Pierce (1977)]. Also, using AZ,,_, as regressors shows that 
“levels representations” (of y, on z,,_,) will have negative coefficients at some lag 
lengths but this does not preclude all the solved distributed lag weights from being 
positiue. Furthermore, if (95) is a good data description when (94) is a useful 
equilibrium assertion, then omitting the feedback variables (y - z~),-~, and 

(z1- Z*)r+ need not produce detectable residual autocorrelation, so that a 
model in differenced data alone might seem acceptable on a “white-noise residual” 
criterion although it violates homogeneity [see, for example, Davidson et al. 
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(1978) and as a possible example, Silver and Wallace (1980)]. Finally, in practice, 
ECMs have successfully reconciled disparate empirical evidence in many areas, as 
discussed in Section 2.6, paragraph (h). 

On a steady-state growth path, the solution of (95) entails that h,, in (94) 
depends on the growth rates of the zi, a feature which has been criticised by 
Currie (1981). This issue is closely related to the existence of short-run (apparent) 
trade-offs (since sequences of above or below average values of Ati’s will lower or 
raise the ratios of y to the zi’s in levels), and hence to the “Lucas critique” of 
(1976) concerning the non-invariance of certain econometric equations to changes 
in policy rules. Also, Salmon and Wallis (1982) discuss the need for the input 
variables over the estimation period to “stimulate” responses relevant to later 
behaviour if structurality is to be retained when policy alters the time profile of 
some z,,‘s as well as emphasising the need to correctly allocate dynamic responses 
to expectation formation and behavioural responses. On both issues, again see 
Haavelmo (1944). 

Constant-parameter linear models are only locally useful and adaptive processes 
in which the /3,; (say) depend on other functions (e.g. higher order differences) of 
the data merit consideration, so that “trade-offs” in effect disappear if they entail 
exploiting information which actually ceases to be neglected when it becomes 
relevant. Sometimes, such models can be reparameterised as linear in parameters 
with non-linear variables acting as modifiers when they are non-constant. Also, 
note that the restriction of ECMs to cases in which y has a unit elasticity response 
to one variable (or a combination of variables) is not essential since “logit” 
feedbacks with variable elasticities which eventually converge to unity are easily 
introduced [see, for example, Hendry and Richard (1983)]; other recent discus- 
sions are Salmon (1982), Kloek (1982) and Patterson and Ryding (1982). 

We have not discussed partial adjustment models extensively since there are 
already excellent textbook treatments, but it is interesting that ECM is equivalent 
to partial adjustment of (y - z) to AZ in (87) (not of y to z unless (Y = y/3). Thus, 
on the one hand, care is required in formulating to which variable the PA 
principle is applied, and on the other hand the equivalence reveals that the ECM 
in (87) is most heavily dampening of discrepancies from equilibrium due to 
once-for-all impulses in z, (so AZ, goes . . . ,O, 6, - 6,0,. . .), than of permanent 
changes in the level of z,, and least for changes in the growth rate of z1 (although 
integral corrections and higher order derivative responses help mitigate the last 
two). In the case /3 = 1, a Z y in (87) if the data generation process is ECM but 
this is approximated by a PA model, the impact effect of z on y is generally 
underestimated although the derived mean lag need not be overestimated since 
the coefficient of y,_i can be downward biased. Specifically, rewriting (87) (for 
/3 = 1) as: 

Y,=Y~,+(~-Y)Az,+(~-Y)Y,-,+u,, (96) 
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when z, is highly autoregressive, the impact effect will be estimated for PA at 
around y (rather than a) and the feedback coefficient at around (1 - y), whereas if 
A z, is sufficiently negatively correlated with y,_ 1, the mean lag will be underesti- 
mated. This issue conveniently leads to the general topic of derived statistics in 
AD( .) models. 

4.3. Derived statistics 

Given the general equation (81), there are many derived statistics of interest 
including long-run responses, roots of the lag polynomials, summary statistics for 
the solved lag distributions, etc. and approximate or asymptotic standard errors 
of these can be calculated in many cases (subject to various regularity conditions). 
The general problem is given 8 -p.N(8, V) for a sufficiently large sample size T, 

to computef(e);l;rN( f(0), Jz) where, to first order, Jz = JVJ’andJ= af(*)/ae’ 

[which, if necessary, can be computed numerically as in Sargan (198Oc)J. Of 
course, normality could be a poor approximation when f( 0) corresponds to (say), 
a latent root or the mean lag [see, for example, Griliches (1967) who discusses 
asymmetrical confidence intervals], but in the absence of better approximations it 
seems more useful to quote the relevant values of f(e) and a than provide no 
summaries at all. However, the mean lag can be a misleading statistic for lag 
distributions that are highly asymmetrical and is meaningless if the derived lag 
weights are not all of the same sign. For many distributions, it could be more 
useful to quote some of the fractiles rather than the first two moments (e.g. the 
median lag and the time taken for nine-tenths of the response to be completed): 
as an illustration, when p = 1 in (87), (Y = 0.5 and y = 0.05 yields a mean lag of 10 
periods yet has a median lag of one period and 70% of the adjustment has taken 
place by the mean lag (but 90% adjustment takes 31 periods!). Changing y to 0.1 
halves the mean lag but does not alter the median lag or the percentage response 
at the mean lag, while reducing the number of periods at which 90% response is 
reached to 15. For skew distributions there seems little substitute to presenting 
several fractiles (or some measure of the skewness). 

At first sight it may seem surprising that derived estimates of long-run 
responses might have large standard errors given that the typical spectral shape of 
economic variables has much of the power near the origin (i.e. in low frequency 
components)-see Granger (1966). There is no paradox here, however, since 
highly autoregressive series also have primarily low frequency components yet 
may provide little long-run information about relations between variables. Alter- 
natively expressed, the long-run of (81) for n = 1 is y = [a,(l)/a,(l)Jz = Hz, and 
if a,(L) has a root close to unity, estimates of H can fluctuate wildly for 
seemingly small changes in { &, }. Thus, valid theoretical information about H 
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can be of immense value in empirical analysis and, for example, if H = 1, 
switching from unrestricted estimation of (84) to (87) can substantially reduce 
parameter standard errors (and hence forecast error variances). Conversely, for 
highly autoregressive series much of the sample variability may be due to the 
dynamics and until this is partialled-out, a misleading picture of the economic 
inter-relationships may emerge (not just from “spurious” regressions, but also the 
converse of attenuating important dependencies). For econometric research, there 
seems little alternative to careful specification of the dynamics-and hence of the 
“error term” as discussed in Section 5. Note that reparameterisations of the 
original formulation (81) can allow direct estimation of the long-run response 
and/or mean lag, etc. as in Bewley (1979a). 

5. Stochastic specification 

If hazardous inference is to be avoided, it is crucial that the stochastic error 
generation processes are correctly specified. There is no a priori procedure 
guaranteeing this: the correct specification can only be decided ex post by using 
appropriate tests. As noted above, the simple rational lag model: 

Y, =P(L)-‘4Lh (97) 

where y, and z, are scalar endogenous/exogenous variables [as in Dhrymes, Klein 
and Steiglitz (1970) or Dhrymes (1971)] has the alternative AD(e) form: 

If it is assumed in either case that there is an additive white-noise error, then (98) 
can be estimated by OLS or using instrumental variables non-iteratively, whereas 
(97) requires a non-linear iterative procedure. If the DGP is (98) then the 
estimation of (97) will produce inconsistent estimates and/or standard errors and 
vice versa. 

When the z,, in (81) include both endogenous and exogenous variables, it is 
convenient to ignore the distinction between the two sets of variables and write x,~ 
for the i th variable, specifying the most general ARMA structure in the form of 
(83) as: 

i Y,(L) G(L) 
,=oF,oX”=p(L!e’. (99) 
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C&)Y,mNL) 
i 

x,t = ( I18j(L))G(L)et. 
i 

(100) 

There is considerable difficulty in testing for the maximal lags in the y,(L), 
6,(L), G(L) and p(L). The simplest possibility is to set all the lags at the largest 
feasible values, and then to use a sequence of Wald tests to consider whether the 
maximal lags can be reduced. Even so, the tests required are not simply nested 
and if maximum lags up to, say, four are specified, then eight parameters per 
variable are to be estimated which can only be done if the sample size is large. A 
particular problem with the formulation in (100) is that each xi! has applied to it a 
set of lag polynomial operators which give a large total lag, so effectively reducing 
the available sample size. On the other hand, if (99) is used, then the latent roots 
of the 6, (L) must be kept away from the unit circle since truncation of the power 
series corresponding to ( CSi ( L )) - ’ will give very poor approximations if a root is 
near the unit circle. This problem only arises in estimating some parameter sets so 
that (99) may give sensible results in some cases, but it suggests that simpler 
models with fewer adjustable parameters (and less likelihood of such difficulties) 
may be preferred. One possibility is to assume 8, (L) = 6( L)V,: 

CP(L)Y,UJX,, = WML)e,. 001) 

Note that the maximum lags on the x,, variables have been considerably 
reduced when written in this form, and if the same degree y,(L) is considered as 
before the number of parameters in the model has been roughly halved. Of 
course, it is not possible to identify the parameters 6(L) and $(L) separately, so 
a model of this form can be written: 

CY,v+,, = v,, tw 
ptL)v, = +*tL)e,, (103) 

with the gloss that (102) is a structural equation (which may have the advantages 
of simplifying the interpretation of the structural dynamics and easing the 
imposition of restrictions implied by price homogeneity of the economic variables, 
say, as well as any identifying restrictions) whereas (103) is the ARMA process 
generating the errors on the structural equation. 

Further alternative simplifications are: (a) p(L) = 1; or (b) +*(L) = 1; (a) has 
the advantage that the equation can be estimated by standard computer pro- 
grams. If the maximum feasible lag is introduced in the y,(L) and c$*( L), then 
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Wald tests can be used to decide whether these lags can be reduced. Two 
problems have been found to arise using this methodology. One is that if the 
degrees of all the y,(L), +*(L) are over-stated, then the equation is badly 
identified and iterative estimation procedures converge very slowly. Conversely, 
by setting the maximal lags too low there is the problem that there is a tendency 
for +*(L) to have latent roots biased toward the unit circle [and indeed a 
non-zero probability in finite samples that a latent root will be found on the unit 
circle see Kang (1973) and Sargan and Bhargava (1983)]. This may be avoided by 
sequentially testing (starting with the smallest expected values of the maximum 
lag) using Box-Pierce type portmanteau autocorrelation statistics or Lagrange 
Multiplier tests, but such a strategy involves re-estimation if lags are set initially 
at too low levels. 

Assumption (b), that G*(L) = 1, avoids some of these difficulties, since setting 
the degree of p(L) too large does not lead to lack of identification, and although 
it may lead to multicollinearity, the asymptotic t-ratios and asymptotic error 
variance matrices of the resulting estimators still give valid tests. A suggested 
technique (the COMFAC procedure) for setting provisional lags for the y,(L) is 
to write (b) as [see Sargan (198Oc)J: 

Then for this case or with the special form G*(L) = 1, the equation is estimated 
with no restrictions on Gi(L), the maximum lags being determined by using the 
usual t-ratio significance test, or are fixed by taking the maximum lags which are 
feasible. Different lags on different variables are allowed, based upon significance 
tests or upon a priori considerations. Then a set of Wald tests can be used to test 
whether the #,(L) satisfy equations of the form: 

VW) = P(L)Y;(L), i=O n. ,-.-, ow 
We also write #(L) = p(L)y(L), where without the suffixes 4(L) and y(L) 

denote vectors of lag polynomials (see Section 2.6, paragraph (g), for an exposi- 
tion). 

Equation (105) states that all the Jl;( L) contain a scalar factor polynomial p(L) 
of degree r, and a set of constraints on the coefficients qi, can be calculated which 
ensure that the common factor exists for each r. If the maximum lag on J/i(L) is 
f,, then the q,(L), i=O ,..., n, have n +c:,,f, unknown coefficients, assuming 
that one of the zero order coefficients is standardised as one, p(L) has r unknown 
coefficients, and the y,(L) have c:,,,(h - r)+ n unknown coefficients. It follows 
that there are implicitly nr constraints. For computing purposes, let m = n + 1 and 
take summations over i = 1 , . . . , m, renumbering {xi, } accordingly. 
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The procedure used to define the constraints is an algorithm, which is equiva- 
lent to the “single-division” algorithm used to compute the values of a set of 
related determinants. The criterion which is a necessary and sufficient condition 
(except in cases where pivots in the single division algorithm are zero, which occur 
with probability zero in matrices derived from sample estimates) is that a certain 
matrix has appropriate rank. The matrix is specified by first defining N = m(fr + 
l)-c,“,t&, where it is assumed that ft 2 fi 2,. . . , 2 f,. Then k is defined as the 
smallest integer satisfying (m - 1)k r fr + m - r - N. 

The simplest case [case 1 of Sargan (198Oc)] is when N-C fi + m - r, or k > 0. 
For a discussion of the case where k s 0, see Sargan (1980~). 

Wedefined,=f,-f,,i=l,..., m, and then the matrix ‘k, of N rows, using the 
notation I/J, to mean a row vector of the elements ( GIr,, #,t , . . , , G;,,), i = 1,. . . , m, is 
given by: 

(106) 

Here 0, is used to mean a row vector with s zeros. ‘k, can be divided vertically 
into sub-matrices; each sub-matrix has (d, + 1) rows, and each row of the ith 
sub-matrix contains a vector IJ, and d, zeros. The number of zeros on the left of 
the row increases in each successive row by one. q0 has fi + 1 columns. Define 
also: 

. . . . . . 

which has m rows and fi + 1 columns, and then: 

I 

. . . . . . . . . . . . . . 

\O ‘k, mk / 

where 0P4 is a zero matrix of order p x q. 
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The condition that is required is that !Pcikj should be of rank ft + k + 1 - r. In 
fact there are too many constraints here if we consider equating determinants of 
degree (f, + k + 2 - r) to zero, but it can be shown that it is sufficient to consider 
the matrix obtained from !Pckj by taking only its first (f, + k + m - r) rows, and 
we then obtain (m - l)r constraints by taking a suitable set of (m - l)r determi- 
nants which ensure that the reduced matrix is of rank ( fi + k + 1 - r). A suitable 
sub-routine (COMFAC) has been written to compute the required determinants 
given the vectors #,, i = 1,. . . , m. This can be attached to any single equation 
estimation computer program to give the appropriate test statistics [see Sargan 
(1980a) and Mizon and Hendry (1980)]. Let ? be the true value. If a value of r is 
specified which is less than i-, then theoretically the asymptotic distribution of the 
Wald test for the constraints for this value of r is no longer the usual x2 
distribution, and in practice it has been found that in finite samples the statistic 
takes much smaller values than would be expected if the regularity conditions 
which lead to the usual x2 approximation were satisfied. 

Note that for different values of r we have a set of nested constraints on the 
coefficients of the J/,(L). We need to choose the optimal r, and a sequence of 
Wald test criteria have the advantage that they can be computed from a single set 
of estimates of the unconstrained model. Following the pattern discussed towards 
the end of Section 2.2, Wald test criteria can be computed for a set of increasing 
values of r, and the corresponding differences w, - w(,_i) are used as a basis for 
the choice of the appropriate r. 

Alternatively, asymptotically equivalent tests can be made by using likelihood 
ratio tests, or tests of Durbin/Lagrange Multiplier type. Both methods have their 
difficulties. The likelihood ratio test is upset by the existence of multiple maxima 
of the likelihood function if r is specified to be lower than ? since then we can 
write: p(L) = pt( L)p,(L), where pi(L) is a polynomial of rank r, containing any 
r of the 7 roots of the polynomial p(L). Let: 

Y,(L) = P,WY(U 

then 

rcI(L) = P,(L)Y,(L). 

This gives a valid factorisation of #(L) into a scalar factor of degree r, and a 
set of function yi,( L) of degree f, + 7 - r. Note that there are as many ways of 
specifying y,(L) and p,(L) as the number of ways of splitting p(L) up into two 
real factors p,(L) and p,(L) of appropriate degrees. Thus if all these roots of 
p(L) are real there are f!/((7 - r)!r!) different ways of stating an equation with 
pt( L) and n(L) of the given form. From the discussion in Sargan (1975) it 
follows that a maximum likelihood estimator of yl(L), pi(L) will find local 
maxima corresponding to each of these alternative parameterisations with a high 
probability for large T. If the estimated model is taken which corresponds to the 
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global maximum, then minus the corresponding value of the log-likelihood 
function is asymptotically distributed as half the maximum of a set of related x2 
statistics. The differences of the log-likelihood functions which are used to 
discriminate between alternative values of r then do not have the usual asymptotic 
distributions. Although the directions of the biases can often be sorted out as in 
Sargan and Mehta (1983), the magnitude of the bias is not easy to establish, and 
this suggests that the Wald test is a better alternative. The use of the Durbin 
three-part-division test discussed in Sargan and Mehta is also somewhat arbitrary 
in the choice of the exact form of the test and as with the likelihood ratio test 
involves a sequence of non-linear computer optimisations to decide between all 
possible values of r. 

A similar type of test of the Lagrange multiplier form also can be used, but 
suffers from the same disadvantages as the three-part-division test. It may be, 
however, that there is an additional consideration when using the Wald test. If a 
value of r is specified which is less than the true 7, it has been found in practice 
that the Wald test for r against r = 0 will be biased downwards. Denote this 
criterion by w, and the corresponding criterion for 7 against r = 0 by w,. This 
latter criterion is asymptotically distributed as x2 of n? degrees of freedom. The 
difference (w, - w,) is not distributed asymptotically as a x2 of degrees of 
freedom n(F - r) (as would be expected if the conditions for the Wald criteria to 
have the usual x2 asymptotic distribution were satisfied). Thus the use of a 
sequence of Wald tests each obtained by taking differences of two successive 
Wald criteria for r against r - 1 will lead to difference test criteria which are 
biased. However, when the biases are allowed for, then if, for r < ? the Wald 
criteria are below what would be expected for an asymptotic x2 of nr degrees of 
freedom, and if for r = ? the Wald criterion is not significant considered as an 
asymptotic x2, and for r = F + 1 it is significantly larger than its asymptotic x2 
confidence limit, then this confirms F as the true value. 

The equation tested below was part of a three equation model for wage-price 
inflation in the United Kingdom reported in Sargan (1980a). All the variables are 
logarithms of the corresponding economic variables as follows: w, is the official 
weekly wage rates index, p, is the consumption price deflator for the official 
estimates of quarterly real consumption, a, is the corresponding official estimate 
of average weekly earnings, S, is the moving average of the working days lost 
through strikes in the three years up to and including the current quarter. The 
equation also included a constant term, three quarterly seasonal dummies, and a 
linear trend. The coefficients of these variables will not be reported in the 
following tables. The sample ran from 1953 Ql to 1973 Q4. The basic form of 
equation is illustrated by the OLS estimates: 

wt - WI-1 + Yl(W,-, - Pt-1)+Y*(a,-, - w,-l)+YJ,-* = vt* 007) 
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Money wage rates move in reaction to real wage rates, the ratio of earnings to 
wage rates, and a “pushfulness” variable obtained from a strike variable. 

The Wald criteria are obtained by taking this as y’( L)x, = TJ, and considering 
autoregressive equations of order up to r = 4. Thus, +‘( L)n, = E, was estimated by 
OLS including up to fourth order lags in all the variables of (107). The Wald 
criteria are of determinental type. 

In Table 5.1 the Wald criteria for r =1,2,3,4, are given in column 2 with the 
appropriate degrees of freedom in column 3. In column 4 the successive dif- 
ferences are given of the Wald criteria. Note that if it were not for the problems 
raised above it would be appropriate to assume that all of these are asymptoti- 
cally distributed as independent x2 of three degrees of freedom provided r 2 ?. 

The Wald criteria for r = 1, 2 and 3 are all biased downwards in the sense of 
being smaller than would be expected if distributed as x2 of degrees of freedom 3, 
6 and 9, respectively. On the other hand, the r = 4 Wald criterion is in line with 
the assumption that it is distributed as x2 of degrees of freedom of 12. The 
differences of the successive criteria given in column 4 of Table 5.1 have the 
consequent pattern of biases that those for r =1,2,3, are all biased downwards 
whereas that for r = 4 is above the 1% confidence limit for a x2 of 3 D.F. 
However the pattern of the biases is clear, and confirms that the true value of r is 
4. Some simulation evidence on the rejection frequencies of COMFAC tests in 
simple models is presented in Mizon and Hendry (1980) together with a further 
empirical application. 

Finally, while common factor models can closely approximate the fit of other 
dynamic processes, derived moments can be very inaccurate. In the AD(l, 1) case, 
for example, if the data generation process is as given in Section 2.6, paragraph 
(h), but the postulated model is as given in Section 2.6, paragraph (g), the 
common factor restriction is nearly satisfied if either pi = 1 or & is small 
[specifically, if &(l - pi) = 01. Nevertheless, the long-run response and mean lag 
in paragraph (g) are estimated as (&,O) rather than [l,(l - pi)/&], potentially 
distorting both the magnitude and the timing of the impact of z on y. This arises 
because paragraph (g) can be written in ECM form as: 

Ay,=P,Az,+(p,-I)(y,-,-plz,-,)+e,, (108) 

Table 5.1 
Wald criteria 

r Wald criteria D.F. Differences D.F 

1 0.00 3 0.00 3 
2 0.84 6 0.84 3 
3 2.14 9 1.30 3 
4 14.53 12 12.39 3 
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and hence the measure of disequilibrium is (y - /3i~)~_i rather than (y - z)~_~. 
Correspondingly, (108) enforces a static solution equal to the impact effect, hence 
the mean lag of zero. Since invalidly imposing common factor dynamics can 
produce misleading results, it cannot be justified as an automatic “solution” to 
residual autocorrelation even where the final residuals end up being “white 
noise”. 

It is clear that theories which legitimately restricted the data analysis to one 
model type would be of great value. Thus, even non-stochastic static equilibrium 
results can be useful if they constrain the model and are not simply imposed on 
the data. 

6. Dynamic specification in multi-equation models 

6.1. Identification with autoregressive errors 

The problems that arise in multi-equation models are very similar to those 
discussed in earlier sections: to introduce suitable lag structures which represent 
correctly our a priori economic intuitions about the behaviour of the variables in 
the long and the short period, but which are not limited by an over-simplistic 
specification of the lags in the system nor made over-complex by the confusion of 
the basic dynamics of the economy with the stochastic processes generating the 
errors in the system. 

Consider this latter problem first. Suppose that in lag operator notation we 
write the structural equations in the form: 

A(L)x,=B(L)y,+C(L)z,=u,, t =l,...,T, (10% 

where A(L) = (B(L), C(L)) is a matrix of polynomials in the lag operator L, 
with specified maximum lags on each variable, X, is a vector of observed variables, 
made up of n endogenous variables yI, and m strongly exogenous variables z,, and 
u, is the vector of errors on the structural equations, all in period t. B(L) is a 
square matrix such that B0 (the zero lag coefficient matrix) is non-singular. 
Suppose now that the u, are generated by an ARMA process of the form: 

where R(L) and S(L) are square matrix lag polynomials of degree r and s 
respectively, and R, = SO = Z,. Our general econometric methodology first re- 
quires us to discuss identification for such models. We can find sufficient 
conditions for identification by formulating the problem as follows. Eliminating 
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u, between equations (109) and (110) we obtain: 

1081 

R(L)A(L)x,=S(L)e,. (111) 

Writing this in the form: 

where 

consider conditions which ensure that the factorisation is unique, for a given 
‘k(L) with a given maximum lag on each variable. Clearly, if A(L) and R(L) 
satisfy (113) then HA(L) and HR( L)H-’ satisfy: 

H!P(L)= (HR(L)H_‘)(HA(L)), 

and if there are no prior restrictions on the covariance matrix of e,, then if we 
write A*(L) = IZA( L), R*(L) = HR( L)H-‘, S*(L) = HS( L)H- ‘, and e* = 
He,, then the model consisting of equations (109) and (110) with stars on the lag 
matrices is observationaly equivalent to (111). Conditions similar to those 
discussed by Hsiao in Chapter 4 of this Handbook are necessary for identifica- 
tion. Sufficient conditions for identification are: (a) that equation (112) is iden- 
tified when Pa is of the form !P,, = (I: *a*), and the only constraints specify the 
minimum lag on each variable. Sufficient conditions for this are those given by 
Hannan (1970) discussed by Kohn (1979) and Hsiao in Chapter 4 of this 
Handbook. (b) Conditions which ensure that there is a unique factorisation for 
(113) subject to the same maximal lag conditions, and B, = I. (c) Standard 
conditions for identification, which ensure that linear or non-linear constraints on 
the coefficients of A(L) are only satisfied if H = I, discussed by Hsiao. 

However, he does not deal with conditions of type (b), and these will be 
discussed briefly here. Necessary and sufficient conditions for identification are 
given in Sargan (1978a), when only the maximum lags on the variables are 
specified. The conditions depend on the presence or absence of latent roots of the 
A(L) polynomial. A(L) has a latent root h, if for some non-zero vector h: 

/&4(A)) = 0’. (114) 

A necessary condition for there to be more than one solution is that (114) is 
satisfied for some h and /I. (The article referred to above gives a slightly different 
formulation which makes it easier to discuss cases where A(z) has an infinite 
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latent root.) This condition is also sufficient, provided a factorisation condition is 
satisfied which can be taken to have a prior probability of unity. 

A necessary condition that the model is not locally identified is that A(t) and 
R(z) have a latent root h in common, in the sense that for some non-zero vector 
/I, (114) is satisfied, and for some non-zero vector k: 

R(h)k = 0. 

This is a sufficient condition that the Jacobian (first order derivative) conditions 
for identification are not satisfied. But even if the Jacobian is not full rank, it does 
not follow that the model is not locally identified. This is discussed in the above 
article. 

The estimation of the model has two stages. The first is to decide on the various 
lags on the different variables, and on the autoregressive and moving average 
processes. For this suitable test procedures are required and will be discussed in 
the next section. 

Given the specification of these maximum lags then parameter estimation can 
proceed using maximum likelihood procedures, or procedures asymptotically 
equivalent to these. For a complete model, if a numerical optimisation program 
which does not require analytic derivatives of the likelihood function is used to 
optimise the likelihood function, such as a conjugate gradient procedure or one 
using numerical differentiation, it is no more difficult to fit a model of the form 
(111) than a less restricted model of form (112), since all that is required as an 
addition to a program for producing maximum likelihood estimates of (112) is a 
sub-routine for computing the coefficients of S(L) as functions of the uncon- 
strained elements of A(L) and R(L). 

It can be argued that since, in using ARMA models for the generation of the 
errors in econometric models, we are merely making use of convenient approxi- 
mations, there might be considerable advantages (at least in the stage of making 
preliminary estimates of the model to provisionally settle its economic specifica- 
tion) in using a model with a fairly high order autoregressive specification and a 
zero order moving average specification. In practice the time to compute moving 
average specifications can be large when the latent roots of the moving average 
matrix polynomials tend to move towards the unit circle, and the convergence 
properties of autoregressive specifications may be much better. Hendry (1976) 
contains a discussion of estimators for S(L) = 0 which are asymptotically equiva- 
lent to maximum likelihood estimators for models of this type but which may be 
lower in computing requirements. 

For “incomplete” models it may be necessary to modify the model, before it is 
feasible to estimate it. The simplest way of defining the modified model is to 
retain both equations (109) and (llO), but now allow B(L) to be a rectangular 
matrix. Thus, it is assumed that the errors on the incomplete model are generated 
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by an ARMA model, which involves only the errors on the set of equations to be 
estimated. Note that starting from a complete set of equations whose errors are 
generated by an ARMA model, by eliminating the errors of the equations whose 
coefficients are not to be estimated, it is possible to obtain a higher order ARMA 
process generating the errors on the equations to be estimated. Thus the current 
formulation is of some generality. One method of estimating the incomplete 
system is to use a set of instrumental variables. These can be chosen rather 
arbitrarily initially, but as the specification is refined, a set can be chosen which is 
efficient if the model is linear in the variables. Generalising to the case where the 
A(L) coefficients depend in a general non-linear way on a set of p parameters 
forming a vector 8, the estimators can be regarded as minimising a criterion 
function of the form: 

det(&‘(EZ+)(Z+‘Z+)-‘(Z+‘E)), (115) 

where E is the matrix of white-noise errors or “innovations” in the ARMA 
process, and &? is some preliminary consistent estimate of the variance matrix of 
e,. Z+ is the matrix of instrumental variables, which may include lagged values of 
the predetermined variables. If the A(L) coefficients considered as functions of 8 
have continuous first order derivatives in some neighbourhood of the true value 
s, the instrumental variables estimates will be as efficient as the corresponding 
limited information maximum likelihood estimates if it is possible to express the 
expectations of ( cYA (L)/hW,) x,, conditional on all lagged values of y,, as linear 
functions of the z,: for all j, and for all i. This result follows from the discussion 
of Hausman (1973, and in the case of a purely autoregressive specification is 
most easily satisfied by using as instrumental variables the current values of z,, 
and the lagged values of X, up to and including the r th order lag. When the 
ARMA model contains a moving average process, it is difficult to produce 
estimates of the conditional expectations from an incomplete model, but if the 
latent roots of the moving average process are not too close to the unit circle there 
may be a comparatively small loss of efficiency in using x,_~ up to some 
maximum s*, which is such that the total number of instrumental variables is not 
more than a fixed proportion (say 40%) of the sample size. With such a set of 
instrumental variables an iterative minimisation of (115) is possible, by comput- 
ing U, = A (L)x,: 

e,=S(L)_‘R(L)u,, (116) 

recursively for given values of the parameters, starting from the values e, = e_ 1 = 
ep2 =e_,... =e_~,_,~ = 0. This procedure may not be optimal in a model with no 
exogenous variables, where end corrections corresponding to u, being a stationary 
time series might give better results, but in a model with an autoregressive side 
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there seems no simple alternative to the crude assumptions for e, listed above. The 
recursive generation of e,, t 2 1, uses the equation (116) in the form: 

e,= [I-s(L)]e,+R(L)u,, t=l T, ‘...> 

noting that Z - S(L) has a zero order coefficient matrix equal to zero. Recent 
discussions of estimators for models with vector moving average error processes 
include Osbom (1977), Anderson (1980), Reinsel (1979) and Palm and Zellner 
(1980). 

6.2. Reduced form, jinal form and dynamic multipliers 

From (109) it is of some interest to discuss the behaviour of y, in response to 
changes in the z,, particularly when some of the z, may be regarded as govern- 
ment controlled variables which can be changed independently so as to affect the 
level of the y, variables. The standard reduced form of the model can be written: 

y, = - B,-‘B*(L)Ly, - B,C( L)z, + l$+,, 

where 

B(L) = B0 + LB*(L), 

and B*(L) has a degree one less than that of B(L). This equation is useful for 
directly simulating the impact of a change in z,. Two types of dynamic multiplier 
can be distinguished, (i) the impact multiplier, (ii) the cumulative multiplier. The 
first considers the impact of a unit change in an element of z, in time period t on 
all subsequent values of y,, the second considers the change in y,, s 2 t, if an 
element of z, is changed by one unit for all r 2 t. Since the second multiplier is 
obtained from the impact multiplier by summation for all r I s, only the impact 
multiplier will be considered here. Suppose that we wish to consider the impact 
multipliers for some subset of elements of z,, which we form into a vector z:, and 
denote the corresponding rows of C(L) by C*(L). Then clearly if we denote the 
change in z: by Dz:, the corresponding endogenous-variable changes Dy,, r 2 t, 
will be obtained by solving the equation: 

B(L)Dy,= -C*(L)Dz,*, 7=t,t+l,..., 

where Dz: = 0, if r # t. If we write for the solution: 

Dy,=n(L)Dz:, 
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then the coefficients II, give the impact multipliers in period r = t + s, of the 
change in z: in period t. 

Formally, we may write: 

but a more practical computing procedure is to solve sequentially the equations: 

n(L) = -(B(L))-‘C*(L), 

B(L)II(L)=-C*(L), forIII,,s=O,l ,.... (117) 

In fact it is better to use the reduced form, and if we write: 

P,(L)=B,-‘B(L)= 2 P,,L’, 
i=O 

P,(L) = B$*(L) = ;j P,,L’, 
i=o 

then the equations (117) are equivalent to: 

i 4(,-J& = P2J 5 
j=O ,..., 00, 

r=l 
(118) 

where 

P,,=O, ifi>k, (j=l,2). 

These can be solved for II, sequentially noting that in the jth equation the matrix 
coefficient of II, is PI0 = Z. Asymptotic standard errors for the II; can be 
computed in the usual way, expressing them as functions of the B(L) and C(L), 
and using implicit differentiation to obtain the first derivatives from (117) [see, for 
example, Theil and Boot (1962), Goldberger et al. (1961), and Brissimis and Gill 
(1978)]. 

The final equations of Tinbergen [see Goldberger (1959)] are obtained by 
multiplying equation (109) by adj B(L) where this is the adjoint matrix of B(L) 
considered as a matrix polynomial. Since 

adjB( L).B( L) = detB( L)-I, 

we can then write: 

[detB(L)] J:= -adjB(L).C(L)z,+adjB(L)u,. (119) 
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A possible method of testing models which is particularly appropriate for 
comparison with ARIMA statistical time series models [used, for example, by 
Zellner and Pa!m (1974) and Wallis (1977)] is to estimate a model of the form 
(119) first neglecting the constraints that every endogenous variable has the same 
scalar lag polynomial on the left-hand side of (119). Thus, unconstrained ARMA 
explanations of each yit in terms of lagged z, are estimated by single equation 
ARMA maximum likelihood estimation. Then tests are made to check that the 
coefficients of the lag polynomials applied to the yjt, i = 1,. . . , n, are all the same. 
There are severe difficulties in doing this successfully. First, if there are more than 
two endogenous variables, and more than one lag on each endogenous variable in 
(109) then det(B( L)) and adj B( L).C( L) are both of at least the fifth degree in 
L, and in models which are at all realistically treated as complete econometric 
models the degree must be much larger than this. This of course requires a large 
sample before asymptotic theory can be a good approximation, since each 
equation to be estimated will contain a large number of variables of various lags. 
If the total number of lags on the variables in the final equation form (119) is 
determined by significance tests then there is an obvious probability that the 
subsequent tests will reject the constraints that all the yir are subject to the same 
lag operator. Indeed, there is no reason why the unconstrained estimates of the 
longer lagged coefficients should be significantly different from zero. The true 
values of these coefficients can be expected to be s~nall if the model is stable since 
the higher order coefficients contain the products of many latent roots all less 
than one in modulus. Thus, it would be better to allow the maximum lag to be 
determined by feasibility. Even then, the size of model may have to be small to 
estimate unconstrainedly the set of equations of the final form. Finally, there are 
many implicit restrictions on the coefficients of adj B( .) which it is difficult to put 
in explicit form. Since unless the right-hand-side polynomials satisfy these im- 
plicit constraints, the constraints that all the left-hand side polynomials are the 
same is of little interest, it appears that starting from the unconstrained final 
equation is not really an adequate way of testing the specification of realistic 
econometric models. Moreover, parameter constancy in derived equations like 
(119) relies on all the equations in (109) being structurally invariant. 

If the z, are regarded as generated by ARMA processes, so that: 

NL)z, = F(L)e,, (120) 

where e, is a white-noise series, then we can eliminate z, from (119) using (120) to 
give: 

B(L)&=-C(L)D(L)_‘F(L)e,+u, 

or 

(detD(L))B(L)y,=-C(L)(adjD(L))F(L)&,+(detD(L))u,. (121) 
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The error term on (121) contains a complicated moving average of the E,, and if 
u, itself is generated by a general ARMA stochastic model then the stochastic 
specification is even more complicated. Assuming for simplicity that u, = S( L)e,, 
where e, is white noise, there is a corresponding final form: 

(detD(L))(detB(L))y,= -(adjB(L))C(L)(adjD(L))F(L)e, 

+ (adj B( L))(det D( L))S( L)e,. (122) 

Equation (122) gives separate ARMA-type representation for each element of 
y,. Note that the autoregressive polynomial, (det D( L))(det B(L)), will generally 
be the same for each yir (the exception occurs if a recursive structure can be set up 
by paritioning y, into sub-sections). For a given y,,, the right-hand side of (122) 
also can be represented as a single moving average process, the maximum lag of 
which is the same as the maximum lag in the terms of the right-hand side of (122). 
Note, however, that this new representation neglects the detailed correlation 
structure of the different components of the right-hand side of (122) and so loses 
a great deal of information which is contained in the specification (122). Thus, 
using the individual ARMA equations to forecast y,, would give less accurate 
forecasts than using the detailed model (122), and the use of original model (109) 
to forecast should also give more accurate forecasts than (122). With a correctly 
specified system, this should be true for an estimated model. And in estimating 
the model it will be found that greater efficiency in the estimation of the 
coefficients of (122) is obtained by first estimating (109) and (120) taking account 
of any appropriate constraints and then substituting the resulting estimates of 
A(L), S(L), D(L) and F(L) into equation (122) to give ARMA equations for the 
individual y,,. For an example of some relevant applied work see Prothero and 
Wallis (1976), and for a different emphasis, Zellner (1979). Also, Trivedi (1975) 
compares ARMA with econometric models for inventories. 

The suggested alternative for testing the specification is that the original model 
or its reduced from is estimated using the maximal feasible lags. Then constraints 
reducing the order of the lags in each reduced form equation are tested using 
asymptotic t- or F-ratio tests (Wald test) or by using likelihood ratio tests [see 
Sargan (1978b), and for an example, Hendry and Anderson (1977)]. 

6.3. Unconstrained autoregressive modelling 

Alternatively, one may consider, following Sargent and Sims (1977), the possibil- 
ity of an autoregressive representation for the economy in which the distinction 
between endogenous and exogenous variables is ignored. In an effort to estimate 
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the dynamics of the system with no a priori constraints, the equations are written 
in the form: 

yr = MY,-, + 5, (123) 

where P(L) is an unconstrained matrix lag polynomial of maximum lag q and e, 
is a white-noise vector. This can be regarded as a linear approximation to an 
autoregressive representation of the stochastic model generating y, if the yr are 
stationary time series [see Hannan (1970)] with the e, being approximations to the 
innovations in they,. If they, are non-stationary but Ayt are stationary, then a set 
of equations of the form (123) may still be a good approximation but unit latent 
roots should occur in the latent roots equation for the system. However, there 
may be problems if we consider (123) as an approximation to an ARMA system 
of the form: 

S(L)-IB(L = e,, 

if S(L) has roots close to the unit circle. In particular, if the true system is of 
ARMA form in a set of endogenous variables y;“, and the equations are 
misspecified by taking a sub-set of variables y, which includes the first differences 
of the corresponding variables y:, then corresponding differences of white noise 
will occur in the errors of the ARMA model for the y,. Thus, over-differencing the 
variables will invalidate the Wold autoregressive representation and the corre- 
sponding finite autoregressive representation will not hold and Sims has tended to 
work with levels variables in consequence. With the length of sample available for 
estimating the equations by multiple regression, it is necessary to work with a 
relatively small model and to restrict q, rather drastically. Sargent and Sims 
(1977) also considered models which contain index variables, which in effect 
introduce non-linear restrictions in the coefficients P(L) by requiring each y,, to 
depend upon past values of k index variables k < n, where n is the number of 
variables y,. It is to be expected that when the number of regression equations is 
allowed to increase to be of the same order as T, the estimated coefficients 
become sensitive to changes in the variables. Sims interprets his results by 
considering the effect of an innovation in a particular variable on later values of 
the other variables, but the interpretation is complicated by the correlation 
between the contemporaneous innovations on the different variables [see, for 
example, Sims (1980)]. Additionally, marginalising with respect to other elements 
of y,* than those retained in y, will produce an ARMA form as in (124) unless 
none of the excluded variates Granger causes the yI, and as in all derived 
representations, strong assumptions are necessary to ensure parameter constancy. 
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6.4. Alternative forms of disequilibrium model 
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The simplest model of disequilibrium is that of Samuelson-Tobin in which the 
tendency of economic variables to their equilibrium values is modelled by 
introducing an equilibrium static equation for each endogenous variable: 

Y,* = Y,(d 

where this is a vector of n endogenous variables’ equilibrium values expressed 
as functions of a set of m exogenous variables. Writing A y, = y, - y,_, the 
Samuelson-Tobin model is [see, for example, Samuelson (1947)]: 

AY,==(Y:-Y,-l)+uv (125) 

where D is an arbitrary square matrix. The simplest special case is where D is a 
positive diagonal matrix, with every diagonal element satisfying: 

0 cd;, ~1. 

This type of model can be regarded as derived from an optimal control 
problem where the function whose expected value is to be minimised is: 

(126) 

As S + cc, the optimal control solution when E( y;*,,] Y,*) = y;” is: 

AY, =D( Y;” - Y,-t)> 

where if K = Z - D, then: 

K + K-l= 2Z+ WplM, 

or if we write: 

K* = W1/2KW-1/2 

K*+ K*-’ EZ 2Z+ ;-‘/2&fW-‘/2. 
Now if Wand M are both positive definite the matrix on the right-hand side is 

positive definite such that every latent root is real and greater than 2. K* can then 
clearly be chosen to be symmetric, so that every root is real, and if h, is a root of 
K* and X, a corresponding root of W- 1/2M W- ‘12, then: 
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We can pick K* such that A, satisfies: 
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0 <A, cl, 

provided M is non-singular, and K = W- ‘12K* W112, and has the same set of 
latent roots. 

This choice of K is appropriate, since unstable solutions cannot be optimal. 
Then for D = Z - K, we have that A, = 1 - A,, and so: 

O<h,<l. 027) 

Note that if W is a diagonal matrix then D is symmetric. Of course without 
prior knowledge of Wand M it is difficult to specify D, and even the constraints 
that D has real latent roots satisfying (127) are difficult to enforce. 

The generalisation of the model (125) to more complicated time lags is obvious, 
but perhaps rather arbitrary. Using the lag operator notation a general formula- 
tion would be: 

WJAY, = D(L)( YI* - Y,-I)+G (128) 

where C(L) and D(L) are matrix polynomials of any order. However, if y;” is 
being written as an arbitrary linear function of current and lagged values of a set 
of exogenous variables, then (128) may contain some redundancy and in any case 
a useful simplification may be obtained by considering either of the following 
special cases: 

or 

C(L)Ay,=D(y:-y,-l)+u,. 030) 

If no attempt is made to put constraints on the C(L) and D matrices in (130) a 
further transformation can be considered by using this form with the restriction 
that D is diagonal and C, [the zero order coefficient matrix in C(L)] has its 
diagonal elements equal to one or perhaps better that D = Z and C, is unre- 
stricted. In specifying y,* = y,(z,) when there are linear restrictions on these 
equilibrium functions each of which affects only one element of y,(z,), such forms 
(rather than the more usual assumption that C, = I) have the advantage that the 
corresponding restriction affects only one equation of (130). 

If there are restrictions on C(L) and D, then an equivalent model with an 
arbitrary lag on ( y,* - y,_i) may make a better formulation if the rather ad hoc 



Ch. IS: Dynamic Specification 1091 

economic considerations to be considered below are applied. It is less easy to 
formulate an optimal control approach which will give significant restrictions on 
C(L) and D. Thus, for example, if we write: 

j-5 = 

\ 
Yf 

\ YI - Y, 

Yf-1 
Yt+ = 

Y,-1- YE1 
. 9 

xl,, 
VI-f - YEf 

I 

then a loss function of the form 

S S 

C ( Y:'M+Y: )+ c (A#+‘+ (AR:) 
r=1 t=1 

leads to optimal control equations of the form (128) (with the property that if y, 
is held constant the adjustment equations are stable) but further restrictions, 
along the lines that the latent roots are all real, are not appropriate, since the 
results for the first order case are dependent on the special separability assump- 
tion for the loss function used in the first order case. [For a discussion of optimal 
control closed loop paths see Chow (1975).] 

A possibility of some importance, which prevents the normalisation D = I, is 
that D is in fact singular. This arises particularly where there are identities 
corresponding to exact equations satisfied by the whole set of endogenous 
variables, or where some variables react so quickly during the unit time period, 
that the general equation of type (130) becomes inappropriate. If the partial 
equilibrium for this variable is stable, and is attained within the unit time period, 
then a static equation, or a dynamic equation obtained by differencing the static 
equation, is introduced into the model. 

This possibility can be found in applied studies from various fields, for 
example, in models of wage-price inflation, as in Sargan (1980a) or Laidler and 
Cross (1976), models of entrepreneurial behaviour, as in Brechling (1973) or 
Nadiri and Rosen (1969) or models of consumer behaviour, as in Phlips (1978) or 
Deaton (1972b), or in models of portfolio choice, as in Tobin (1969). 

Somewhat similar specialisations in the form of the general adjustment equa- 
tions occur where there are buffer variables, such as cash in portfolio choice 
models, or inventories in some models of firm behaviour, or hours worked in 
models of labour demand. Buffer variables in the short period are regarded as 
absorbing the consequences of disequilibrium. Here if a sufficiently short time 
period is employed it may be appropriate to assume that the change in the buffer 
variable is determined by an appropriate overall identity. 
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If it is known how agents formulate E( y;,] yt*), and a loss function of the 
form (126) is appropriate, then a useful theory-based dynamic specification can 
be derived. For example, if y: is generated by: A y‘* = AA y,? 1 + V, then the 
solution linear decision rule is: 

AY,=D,AY:+D,(Y,*-Y,-I)+% (131) 

which is a system error correction form [see Section 2.6, Hendry and Anderson 
(1977) and Nickel1 (1980)]. In (131), D, and D2 depend on A, Wand M such that 
D, = 0 and D2 = D in (125) if A = 0, and an intercept in the y;” equation would 
produce an intercept in (131) (so that the decision rules would depend on the 
growth rate of y, * in a log-linear model). Similarly, a rational expectations 
assumption in models with strongly exogenous variables provides parameter 
restrictions [see Wallis (1980) noting that the vector of first derivatives of the 
likelihood function provides an estimator generating equation for the model class, 
in the sense of Section 2.2, suggesting fully efficient, computationally cheap 
estimators and highlighting the drawbacks of “fixed point” methods.] Neverthe- 
less, stringent diagnostic testing of models must remain an essential component of 
any empirical approach to dynamic specification [see Hendry (1974) and Sargan 
(1980a)l. 

Finally, where the economic model is set up in a form which makes it depend 
on a discrete decision period, and the unit time period is inappropriate, the use of 
continuous time period models, and the discrete time period approximations to 
them discussed by Bergstrom in Chapter 20 of this Handbook may considerably 
improve the dynamic specifications of the model whenever there are valid a priori 
restrictions on the continuous time model. 
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1. Introduction 

Many econometricians are apt to be uncomfortable when thinking about the 
concept “causality” (in part, because they usually do so under some duress). On 
the one hand, the concept is a primitive notion which is indispensable when 
thinking about economic phenomena, econometric models, and the relation 
between the two. On the other, the idea is notoriously difficult to formalize, as 
casual reading in the philosophy of science will attest. In this chapter we shall be 
concerned with a particular formalization that has proved useful in empirical 
work: hence the juxtaposition of “causality” and “inference”. It also bears close 
relation to notions of strictly exogenous and predetermined variables, which have 
considerable operational significance in statistical inference, and to the concepts 
of causal orderings and realizability which are important in model construction in 
econometrics and engineering, respectively. 

Our concept of causality was introduced to economists by C. W. J. Granger 
[Granger (1963, 1969)], who built on earlier work by Wiener (1956). We shall 
refer to the concept as Wiener-Granger causality. It applies to relations among 
time series. Let X = {x,, t real} and Y = { y,, t real} be two time series, and let 
X, and Y denote their entire histories up to and including time t: X, = {x,_,, s 2 
0}, Y, = { yrp,, s 2 O}. Let U, denote all information accumulated as of time t, 
and suppose that X, G U, if and only if s I t, and Y, 5 U, if and only if s I t. If 
we are better able to predict x, using U,_, than we are using U,_ 1 - Y,_ 1, then Y 
CUUS~S X. If we are better able to “predict” x, using U,_ 1 U y, than we are using 
U,_ 1, then Y causes X instantaneously.’ 

Since Wiener-Granger causality is defined in terms of predictability, it cannot 
be an acceptable definition of causation for most philosophers of science [Bunge 
(1959, ch. 12)]. We do not take up that argument in this chapter. Rather, we 
concentrate on the operational usefulness of the definition in the construction, 
estimation, and application of econometric models. In Section 2, for example, we 
consider the logical relationships among Wiener-Granger causality, Simon’s 
(1952) definition of causal ordering, the engineer’s criterion of realizability [e.g. 
Zemanian (1972)], and the concept of structure set forth by Hurwicz (1962). 

Although Wiener-Granger causality is an empirical rather than a logical or 
ontological concept, it must be made much more specific before propositions like 

‘Granger’s (1963, 1969) definitions assume that the time series are stationary, predictors are linear 
least-squares projections, and mean-square error is the criterion for comparison of forecasts. While 
these assumptions are convenient to make when conducting empirical tests of the proposition that 
causality of a certain type is absent, they are not SUI generis and therefore have not been imposed here. 



Ch. 19: Inference und Causali@ 1103 

“Y does not cause X” can be refuted, even in principle. One must always specify 
the set of “all information” assumed in the definition since Y may cause X for 
some sets but not others. One must also have a criterion for the comparison of 
predictors, and the validity of propositions like “Y does not cause X” can be 
assessed only for restricted classes of predictors and distribution functions. In 
Section 3 we take up the case, frequently assumed in application, in which 
U, = X, u q, predictors are linear, and the time series are jointly wide sense 
stationary, purely nondeterministic, and have autoregressive representations. 

In Sections 4 and 5 we move on to issues of statistical inference. In Section 4 it 
is shown that unidirectional causality from X to Y (i.e. Y does not cause X, and 
X may or may not cause Y) is logically equivalent to the existence of simulta- 
neous equation models with X exogenous. It is also shown that unidirectional 
causality from X to Y is not equivalent to the assertion that X is predetermined 
in a particular behavioral relationship whose parameters are to be estimated. In 
Section 5 we take up the narrower problem of testing the proposition that Y does 
not cause X under the assumptions made in Section 3. 

Section 6 is devoted to some of the problems which arise in testing the 
proposition of unidirectional causality using actual economic time series, due to 
the fact that these series need not satisfy the ideal assumptions made in Sections 3 
and 5. We concentrate on parameterization problems, processes which are nonau- 
toregressive or have deterministic components or are nonstationary, and inference 
about many variables. The reader who is only interested .in the mechanics of 
testing hypotheses about unidirectional causality can skip Sections 2 and 4, and 
read Sections 3, 5, and 6 in order. The material in Sections 2 and 4, however, is 
essential in the interpretation of the results of those tests. 

2. Causality 

Whether or not Wiener-Granger causality is consistent with formal definitions of 
causality offered by philosophers of science is an open question. In most defini- 
tions, “cause” is similar in meaning to “force” or “produce” [e.g. Blalock (1961, 
pp. 9-lo)], which are clearly not synonymous with “predict”. Perhaps the 
definition closest to Wiener-Granger causality is Feigl’s in which “causation is 
defined in terms of predictability according to a law” [Feigl (1953, p. 408)J. It has 
been argued [Zellner (19?9)] that statistical “laws” of the type embodied in 
Wiener-Granger causality are not admissible, as opposed to those of economic 
theory. Wiener-Granger causality is therefore “devoid of subject matter consider- 
ations, including subject matter theory, and thus is in conflict with others’ 
definitions, including Feigl’s, that do mention both predictability and laws” 
[Zellner (1979, p. 51)]. Bunge (1959, p. 30) on the other hand, argues forcefully 
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S = outcomes 

Figure 2.1 

against a distinction between statistical and other kinds of laws: “The claim that 
statistical laws, in contrast to other kinds of scientific law, are incomplete, hence 
provisional, is largely a matter of metascientific inertia. . . . In contemporary 
science and technology, and even in everyday life, we often ask questions that 
simply cannot be answered on any individual or dynaniical laws, questions 
requiring a statistical approach and analysis.” 

The usefulness of the concept of Wiener-Granger causality in the conceptual- 
ization, construction, estimation and manipulation of econometric models is 
independent of its consistency or inconsistency with formal definitions. To 
evaluate its usefulness, we review and formalize some operational concepts 
implicit in econometric modelling.* 

A definition of causal ordering in any econometric model (as opposed to the 
real world) was proposed by Simon (1952). Suppose S is a space of possible 
outcomes, and that the model imposes two sets of restrictions, A and B, on these 
outcomes. The entire model imposes the restriction n n B on S. Suppose that S 
is mapped into two spaces, X and Y, by Px and P,, respectively. Then the 
ordered pair of restrictions (A, B) implies a causal ordering from X to Y if A 
restricts X (if at all) but not Y, and B restricts Y (if at all) without further 
restricting X. Formally we have the following: 

Definition 

The ordered pair (A, B) of restrictions on S determines a causal ordering from X 
to Y if and only if Pr( A) = Y and Px( A f~ B) = Px( A). 

2Much (but not all) of what follows in this section may be found in Sims (1977a) 
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A geometric interpretation of this definition is provided in Figure 2.1. Some 
examples may also be helpful. Perhaps the simplest one which can be constructed 
is the following. Let S = {(x, y) E R2 }, and consider the restrictions: 

x=a “A ” 

y + bx = c “B ” 

on S. Let P, map S into the x coordinate and let P, map S into the y 
coordinate. Then (A, B) determines a causal ordering from X to Y because A 

determines x without affecting y, while B together with A determines y without 
further restricting x. The causal ordering is a property of the model, not a 
property of the restrictions on S to which the model happens to give rise: clearly, 
there are many pairs of restrictions (C, D) such that Px( C n D) = Px( A n B) = a 

and P,(C f~ D) = P,(A n B) = c - ba, and in fact one of these establishes a 
causal ordering from Y to X. 

As a second example, let S be the family of pairs of random variables (x, v) 
with bivariate normal distribution. Consider the restrictions: 

x=ui- N( pi, 0;) “A” 

y+bx=u,-N(~2,a,2) “B” 

on S, where ui and u2 are independent. Suppose Px and P, map S into the 
marginal distributions for x and y, respectively. Then (A, B) determines a causal 
ordering from the marginal for x to the marginal for y. The model consisting of 
A, B, and the stipulation that ui and u2 are independent is the simplest example 
of a recursive model [Strotz and Wold (1960)]. As Basmann (1965) has pointed 
out, any outcome in S can be described by such a model-again, the causal 
ordering is a property of the model, not of the outcome. 

Causal orderings, or recursive models, are intended to be more than just 
descriptive devices. Inherent in such models is the notion that if A is changed, the 
outcome will still be A n B, with B unchanged. Once the possibility of changing 
the first restriction in the ordered pair is granted, it makes a great deal of 
difference which causal ordering is inherent in the model: different models 
describe different sets of restrictions on S arising from manipulation of the first 
restriction. Hence attention is focused on B. We formalize the notion that B is 
unchanged when A is manipulated as follows. 

Definition 

The set B c S accepts X as input if for any A c S which constraints only X (i.e. 
P; ‘( Px( A)) = A), (A, B) determines a causal ordering from X to Y. 

In econometric modelling, the notion that B should accept X as input is so 
entrenched and natural that it is common to think of B as the model itself, with 
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little or no attention given to the set A which restricts the admissible inputs for 
the model, although these restrictions may be very important. Conventional 
manipulation of an econometric model for policy or predictive purposes assumes 
that the manipulated variables are accepted as input by the model. 

In many applications X and Y are time series, as they were in the notation of 
Section 1. Consider the simple case in which X and Y are univariate, normally 
distributed, jointly stationary time series, and S is the family of bivariate, 
normally distributed, jointly stationary time series. Suppose that the restriction A 
is: 

A(L)x, = u,, 

where A(L) is one-sided (i.e. involves only non-negative powers of the lag 
operator L) and has all roots outside the unit circle; and V= {u,, t real} is a 
serially uncorrelated, normally distributed, stationary time series. Let the restric- 
tion B be: 

where B(L) has no roots on the unit circle, both B(L) and C(L) may be 
two-sided (i.e. involve negative powers of the lag operator L) and W = { w,, t 
real} is a serially uncorrelated normally distributed, stationary time series inde- 
pendent of U. Since A implies x, = A(L)-‘u,, it establishes the first time series 
without restricting the second, while “B ” implies 

Y,=-B(L)~‘C(L)x,+B(L)~‘u,; (2.1) 

which establishes the second without changing the first. Hence, the model 
establishes a causal ordering from X to Y, and if for any normally distributed, 
jointly stationary X the outcome of the model satisfies (2.1), then B accepts X as 
input. Such a model might or might not be interesting for purposes of manipula- 
tion, however. In general, y, will be a function of past, current, and future X, 
which is undesirable if B is supposed to describe the relation between actual 
inputs and outputs; the restriction that B(L) and C(L) be one-sided and that 
B(L) have no roots inside the unit circle would obviate this difficulty. 

The notion that future inputs should not be involved in the determination of 
present outputs is known in the engineering literature as realizability [Zemanian 
(1972)], and we can formalize it in our notation as follows. 

Definition 

The set B G S is realizable with time series X as input if B accepts X as input, and 
Px (A,) = Px (A*) implies Pr( A, fl B) = Py,( A, n B) for all A, c S and A, c S 
wl&h constrain only X, and all t 2 r. 
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If B accepts X as input but is not realizable, then a specification of inputs up to 
time t will not restrict outputs, but once outputs up to time t are restricted by B, 
then further restrictions on inputs-those occurring after time t-are implied. 
This is clearly an undesirable characteristic of any model which purports to treat 
time in a realistic fashion. 

The concepts of causal ordering, inputs, and realizability pertain to models. 
One can establish whether models possess these properties without reference to 
the phenomena which the models are supposed to describe. Of course, our interest 
in these models stems from the possibility that they do indeed describe actual 
phenomena. Hurwicz (1962) attributes the characteristic structural to models 
which meet this criterion. 

Dejinition 

The set B c S is structural for inputs X if B accepts X as input, and when any 
set C G X is implemented, then Pv( Pi’(C)n B) is true. 

Notice that the use of the word “structural” here is not the same as its use in the 
parlance of simultaneous equation models. The sets of “structural”, “reduced 
form” and “final form” equations are either all structural or not structural in the 
sense of the foregoing definition, depending on whether or not the model depicts 
actual phenomena. 

This definition incorporates two terms which shall remain primitive: “imple- 
mented” and “true”. Whether or not Py( P;‘(C)fl B) is true for a given C is a 
question to which statistical inference can be addressed; at most, we can hope to 
attach a posterior probability to the truth of this statement. We can never know 
whether PY( Pi’(C)n B) is true for any C: one can never prove that a model is 
structural, although by implementing one or more sets C serious doubts could be 
cast on the assertion. Since the definition allows any set C G X to be imple- 
mented, those implementing inputs in real time are permitted to change their 
plans. It seems implausible that the current outputs of an actual system should 
depend on future inputs as yet undetermined. We formalize this idea as follows. 

Axiom of causality 

B c S is structural for inputs X only if B is realizable with X as input. 

The axiom of causality is a formalization of the idea that the future cannot 
cause the past, an idea which appears to be uniformly accepted in the philosophy 
of science despite differences about the relations between antecedence and 
causality. For example, Blalock (1964, p. 10) finds this condition indispensable: 



1108 J. Geweke 

“Since the forcing or producing idea is not contained in the notion of temporal 
sequences, as just noted, our conception of causality should not depend on 
temporal sequences, except for the impossibility of an effect preceding its cause.” 
Bunge argues that the condition is universally satisfied: 

Even relativity admits the reversal of time series of physically disconnected 
events but excludes the reversal of causal connections, that is, it denies that 
effects can arise before they have been produced.. .events whose order of 
succession is reversible cannot be causally connected with one another; at most 
they may have a common origin.. . To conclude, a condition for causality to 
hold is that C [the cause] be previous to or at most simultaneous with E [the 
event] (relative to a given reference system) [Bunge (1959, p. 67)]. 

It is important to note that the converse of the axiom of causality is the post 
hoc ergo propter hoc fallacy. The fallaciousness of the converse follows from the 
fact that there are many B, G S which are realizable with X as input, but for 
which P,(Pi’(C)n B,) # P,(&‘(C)n Bk) when j # k for some choices of C. 
For C which have actually been implemented, B, and B, may of course produce 
identical outputs in spite of their logical inconsistency: one cannot establish that a 
restriction is structural through statistical inference, even to a specified level of a 
posteriori probability.3 It may seem curious to provide the name “axiom of 
causality” to a statement which nowhere mentions the word “cause”. The name is 
chosen because of Sims’ (1972) result that (in our language, and with appropriate 
restrictions on classes of time series and predictors) B is realizable with X as 
input if and only if in B Wiener-Granger causality is unidirectional from X to Y. 
To develop this result we shall be quite specific about the structure of the time 
series X and Y. 

3. Causal orderings and their implications 

In any empirical application the concept of Wiener-Granger causality must be 
formulated more narrowly than it is in Granger’s definitions. The relevant 
universe of information must be specified, and the class of predictors to be 
considered must be limited. If formal, classical hypothesis testing is contemplated, 
then the question of whether or not Y is causing X must be made to depend on 
the values of parameters which are few in number relative to the number of 
observations at hand. The determination of the relevant universe of information 
rests primarily on a priori considerations from economic theory, in much the 

‘An extended discussion of specific pitfalls encountered in using a finding that a restriction B which 
is realizable with X as input is in agreement with the data, to buttress a claim that B is structural, is 
provided by Sims (1977). 



Ch. 19: Inference und Causahry 1109 

same way that the specification of which variables should enter a behavioral 
equation or system of equations does. Empirical studies which examine questions 
of Wiener-Granger causality differ greatly in the care with which the universe of 
information is chosen; in many instances, it is suggested by earlier work on 
substantively similar issues which did not address questions of causality. How- 
ever, virtually all of these studies consider only predictors which are linear either 
in levels or logarithms. This choice is due mainly to the analytical convenience of 
the linearity specification, as it is elsewhere in econometric theory. In the present 
case it is especially attractive because only linear predictors are necessarily time 
invariant when time series are assumed to be wide sense stationary, the least 
restrictive class of time series for which a rich and useful theory of prediction is 
available. In this section we will discuss the portions of this theory essential for 
developing the testable implications of Wiener-Granger causality. Considerations 
of testing and inference are left to Section 5. 

3.1. A canonical form for wide sense stationary multiple time series 

We focus our attention on a wide sense stationary, purely non-deterministic time 
series z,: m x 1. By wide sense stationary, it is meant that the mean of z, exists 
and does not depend on t, and for all t and s cov(z,, z(+,) exists and depends on 
s but not t. By purely non-deterministic, it is meant that the correlation of z,+~ 
and z, vanishes as p increases so that in the limit the best linear forecast of z(+~ 
conditional on {z(_,, s > 0} is the unconditional mean of z(+~, which for conveni- 
ence we take to be 0. It is presumed that the relevant universe of information at 
time t consists of Z, = {zt_$, s > 0). These assumptions restrict the universe of 
information which might be considered, but they are no more severe than those 
usually made in standard linear or simultaneous equation models for the purposes 
of developing an asymptotic theory of inference. 

We further suppose that there exists a moving average representation for z,: 

z,= f AE s t--s, E(q) = 0, var( E,) = Y. (3.1) 
s=o 

In the moving average representation, all roots of the generating function 
CT+ A,zS have modulus not less than unity, the coefficients satisfy the square 
summability condition C~zollA,J(2 < 00,~ and the vector E, is serially uncorrelated 
[Wold (1938)]. The existence of the moving average representation is important to 

4For any square complex matrix C, llC\l denotes the square root of the largest eigenvalue of C’C, 
and 1 Cl denotes the square root of the determinant of C’C. 
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us for two reasons. First, it is equivalent to the existence of the spectral density 
matrix S,(X) of z, at almost all frequencies h E [- n,m] [Doob (1953, pp. 
499-500)]. Second, it provides a lower bound on the mean square error of 
one-step ahead minimum mean square error linear forecasts, which is: 

]Z’]=exp &/I 
* 

ln]S,(h)ldh) >O. (3.2) 

The condition ]‘I’] > 0 is equivalent to our assumption that Z is strictly non- 
deterministic [Rozanov (1967, p. 72)]. 

Whether this lower bound can be realized depends on whether the relation in 
(3.1) can be inverted so that L, becomes a linear function of Z,_, and a,, 

z, = : Bsz,es + E,. (3.3) 
s=l 

A sufficient condition for invertibility is that there exist a constant c 2 1 such that 
for almost all h: 

(3.4) 

[Rozanov (1967, pp. 77-78)], which we henceforth assume.’ This assumption is 
nontrivial, because processes like z, = E, + E,_ 1 are excluded. The requirement 
(3.4) that the spectral density matrix be bounded uniformly away from zero 
almost everywhere in [ - r, a] is more restrictive than (3.2). On the other hand 
(3.4) is less restrictive than the assumption that Z is a moving average, autore- 
gressive process of finite order with invertible moving average and autoregressive 
parts, which is sometimes taken as the point of departure in the study of multiple 
time series. 

Suppose now that z, has been partitioned into k x 1 and 1 x 1 subvectors x, 
and y,, z; = (XI, y,‘), reflecting an interest in causal relationships between X and 
Y. Adopt a corresponding partition of S,(h): 

[ 

5(h) %,(V 
sz(x)= S,,(A) 

1 
S,(A) . 

From (3.4) X and Y each possess autoregressive representations, which we 
denote: 

M 
1, = C &xl-, + ult, var(u,,) = Z,, (3.5) 

s=l 

5A @I? indicates that B - A is positive semidetinite; A @B indicates that B - .4 is positive 
semidefinite and not null. 
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and 
cc 

y, = C Gls~t-s + q,, var(q,) = T,, (3.6) 
s=l 

respectively. The disturbance I+ is the one-step-ahead error when x, is forecast 
from its own past alone, and similarly for uir and yt. These disturbance vectors 
are each serially uncorrelated, but may be correlated with each other contempora- 
neously and at various leads and lags. Since ui, is uncorrelated with all Xt_i, 
(3.5) denotes the linear projection of x, on its own past, and likewise (3.6) denotes 
the linear projection of yt on past Y-i. 

The linear projection of x, on X,-i and Y-i, and of yI on X,_, and Y_, is 
given by (3.3) which we partition: 

x, = F E2,.qs + E F,,Y,-, + uZry var(u,,) = z2, (3.7) 
s=l s=l 

Y, = ? G,,Y,-, * + c &xtPs + u2,, var(u,,) = T,. (3.8) 
s=l x=1 

The disturbance vectors u2, and uzt are each serially uncorrelated, but since each 
is uncorrelated with X,_ 1 and Y,_i, they can be correlated with each other only 
contemporaneously. We shall find the partition: 

useful. 
If the system (3.7)-(3.8) is premultiplied by the matrix 

i 

I, - CT,-' 

-C’2, 1 I, ’ 

then in the first k equations of the new system x, is a linear function of Xt_i, Y, 
and a disturbance u2, - CT*- ‘u2,. Since the disturbance is uncorrelated with u,, it 
is uncorrelated with y, -as well as X,- 1 and Y,_ i. Hence, the linear projection of 
x, on X,_, and Y,, 

02 ‘x 

x, = c E3sxt-s + 1 &,Y~-~+u~~~ var(u3t)=~3, (3.9) 
s=l s=O 
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is provided by the first k equations of the new system. Similarly, the existence of 
the linear projection of y, on I’_ 1 and X,, 

Y, = E G,,Y,-, + E kx,-, + 4r9 var( u,, > = T3, (3.10) 
s=l s=o 

follows from the last I equations. 
We finally consider the linear projections of x, on X,_, and Y, and y, on Y,_t 

and X. Let b(h) = S,,,(X)$,(X)-‘, for all h E [ - T, r] for which the terms are 
defined and (3.4) is true. Because of (3.4), the inverse Fourier transform, 

of b(h) satisfies the condition ~~zoll D,ll’ < 00. From the spectral representation 
of 2 it is evident that w, = x, --cF= _ 3. D, yps is uncorrelated with all y,, and 
that 

x, = f D,Y,-,+w, (3.11) 
_T=pX 

therefore provides the linear projection of x, on Y. Since S,(h) = S,(X)- 
S,,.(h)$.(h))‘~,.,(X) consists of the first k rows and columns of S3(h))l, 
c-1Jk@&(h)@cz~ f or almost all A. Hence, w, possesses an autoregressive 
representation, which we write: 

w, = c By-, + U&. (3.12) 
s = 1 

Consequently, 

(3.13) 

where B. = - Zk. Grouping terms, (3.13) may be written: 

(3.14) 
s=l .r=--co 

where Eds = B, and Fbs = c~=“=,B,.D,_,. Since uql is a linear function of W,, it is 
uncorrelated with Y; and since X,_, is a linear function of Y and Wrpl, udr is 
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Table 3.1 

1113 

A canonical form for the wide sense stationary time series z; = (I;, Jj,‘). 

C.z 

xl= c &,xr-., + UI~ (3.5) Yr= 2 G,,Y,-, +“I, (3.6) 
., = I ., = 1 

x, = E Ez,x, .> ,,=, + c F,,JL, + “21 (3.7) J’,= E Gz,J:-,,+ f Hz,x,-,+v2, (3.8) 
., = I ., = I \ = I cc cc 

1, = c &,x,-i + c F,,Y,-, + ~3, (3.9) Ji= E G3,J:-, + 2 H~,x,-, + ~3, (3.10) 
\=I s=O 5=1 5 = 0 
a, m 

x, = c E~,x,-\ + c &JL, + “4, (3.14) Y!= ? G,,Y,-, + E H~,x,-, + 04, (3.15) 
3-l .,=-CC ., = I ,=-X 

var[ u,,] = 2, cov(u2,. uz,) = c Wv,,l= T, 

T= 

uncorrelated with X,_ r. Hence, (3.14) provides the linear projection of x, on X,_ 1 
and all Y, ~~=rII&,I1* < cc and CT= _,llF’,11* < cc. The same argument may be 
used to demonstrate that the linear projection of y, on Y,_, and X,, 

Y, = E G,,Y,-.s + f &xl-s +t?4,, var(u,,) = T4, (3.15) 
s=l S=-00 

exists and all coefficients are square summable. 

3.2. The implications of unidirectional causality6 

If the universe of information at time t is Z,, all predictors are linear, and the 
criterion for the comparison of forecasts is mean square error, then the 
Wiener-Granger definition of causality may be stated in terms of the parameters 
of the canonical form displayed in Table 3.1, whose existence was just demon- 
strated. For example, Y causes X if, and only if, F,, l 0; equivalent statements 
are Z, @z2 and lzl I> 12, I. Since Er @& in any case, Y does not cause X if 
and only if I Z1 I= ) 2’, I. Define the measure of linear feedback from Y to X: 

F Y-x- wJwl~*l). 

The statement “Y does not cause X” is equivalent to F, _ x = 0. Symmetrically, 
X does not cause Y if, and only if, the measure of linear feedback from X to Y, 

F x+-ln(I~l/lT,I)~ 
is zero. 

‘Most of the material in this subsection may be found in Geweke (1982a). 



1114 J. Geweke 

The existence of instantaneous causality between X and Y amounts to non-zero 
partial correlation between x, and y, conditional on X,_, U q-1, or equivalently 
a non-zero measure of instantaneous linear feedback: 

Fx+- ln(l&I/I&I). 

A concept closely related to the notion of linear feedback is that of linear 
dependence. From (3.11), X and Y are linearly independent if and only if D, = 0, 
which from (3.14) is equivalent to Fds = 0. Hence, X and Y are linearly indepen- 
dent if and only if IZ, I = lZ4 1, which suggests the measure of linear dependence: 

F x.y= WW/l&l).7 

Since instantaneous linear feedback and linear dependence are notions in which 
the roles of X and Y are symmetric (unlike linear feedback), F,. ,, and F,, y could 
have been expressed in terms of the T,‘s rather than the 7,‘s. The following result 
shows that the alternative definitions would be equivalent, and demonstrates 
some other relationships among the parameters of the canonical form in Table 
3.1. 

Theorem 

In the canonical form in Table 3.1, 
(i) F,, y =~~~l~~l/l~41~=~~~lT,I/IT,I~. 

(ii) F,_,= ~~~I~~l/l~zl>=~~~lT31/IT41~. 
(iii) F, _ ,, = ~~~l~~l/i~~l~=~~~lT,I/IT,I~. 
(iv) F,., =~~~l~21/l~31~=~~~lT,I/IT,l~=~~~lT,I~I~~I/l~l~. 

Proof 

(i) Since u4, is the disturbance in the autoregressive representation (3.12) of w,, 

lnlZ,l= $1: lnl&,,(~)ld~ 
71 

= $p (lnl&(h)l -lnIf$,(h)l)dX. 
n 

= WWlT,l). (3.16) 

‘In the case k = I = 1, our measure of linear dependence is the same as the meclsure of informarron 
per unit time contained in X about Y and vice versa, proposed by Gel’fand and Yaglom (1959). In the 
case I=l, Fx_v+Fx.v=-ln(l-R2*) and F,,,=-ln(l-R’.(k)), R2, and R,(k) being 
proposed by Pierce (1979). In the case in which there is no instantaneous causality, Granger (1963) 
proposed that 1 - 1 8,I / I&I be defined as the “strength of causality Y = X” and 1 - 1 T, I/ 1 T, 1 be 
defined as the “strength of causality X = Y.” 
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Hence. 

and by an argument symmetric in X and Y: 

(ii) By construction of (3.9) Z, = ,Z2 - CT*- ‘C’, so 1,X3 I . I T2 I = I Tl. Combining 
this result with )E41 . ( Tl I = [‘I’[ from (3.16), (ii) is obtained. 

(iii) Follows by symmetry with (ii). 
(iv) Follows from IZj I . I T, I = 12’1 and the symmetry of the right-hand side of 

that equation in X and Y. 

We have seen that the measures F,., and F,,, preserve the notions of 
symmetry inherent in the concepts of instantaneous causality and dependence, in 
the case where relations are constrained to be linear and the metric of comparison 
is mean square error. Since 

linear dependence can be decomposed additively into three kinds of linear 
feedback. Absence of a particular causal ordering is equivalent to one of these 
three types of feedback being zero. As we shall see in Section 5, the relations in 
this theorem provide a basis for tests of null hypotheses which assert the absence 
of one or more causal orderings. 

It is a short step from this theorem to Sims’ (1972) result that Y does not cause 
X if, and only if, in the linear projection of Y on future, current and past X 
coefficients on future X are zero. The statement “Y does not cause X” is 
equivalent to Zi = xc, and T3 = T4, which is in turn equivalent to H,, = &. From 
our derivation of (3.14) from (3.11), coefficients on X- X, in (3.15) are zero if 
and only if the coefficients on X - X, in the projection of yr on X are zero. This 
implication provides yet another basis for tests of the null hypothesis that Y does 
not cause X. 

3.3. Extensions 

The concept of Wiener-Granger causality has recently been discussed in contexts 
less restrictive than the one presented here. The assumption that the multiple time 
series of interest is stationary and purely non-deterministic can be relaxed, 
attention need not be confined to linear relations, and characterizations of 
bidirectional causality have been offered. We briefly review the most important 
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developments in each of these areas, providing citations but not proofs. 
The extension to the case in which 2 may be non-stationary and have 

deterministic components is relatively straightforward, so long as only linear 
relations are of interest. The definition of Wiener-Granger causality given in 
Section 1 remains pertinent with the understanding that only linear predictors are 
considered. If Z is non-stationary, then the linear predictors are in general not 
time invariant, as was the case in this section. Hosoya (1977) has shown that if Y 
does not cause X, then the difference between y, and its projection on X, is 
orthogonal to x,+~ ( p 2 1). The latter condition is the one offered by Sims (1972) 
under the assumptions of stationary and pure non-determinism, and is the natural 
analogue of the condition ln( ( T, I/ ( T4 () = 0. If Z contains deterministic compo- 
nents, then the condition that Y does not cause X implies that these components 
are linear functions of the deterministic part of X, plus a residual term which is 
uncorrelated with X at all leads and lags [Hosoya (1977)]. 

When we widen our attention to include possibly non-linear relations, more 
subtle issues arise. Consider again the condition that Y does not cause X. 
Corresponding natural extensions of the conditions we developed for the linear, 
stationary, purely non-deterministic case are: 

(1) X,+1 is independent of Y, conditional on X, for all t, for the restriction 
F,, = 0 in (3.7); 

(2) y, is independent of x,+ r, x,+~, . . . conditional on X, for all t, for the 
restriction that the linear projections of y, on X and on X, be identical; and 

(3) y, is independent of x,,,, x,+~ ,... conditional on X, and Y,_ , for all t, for 
the restriction Hss = Hds in (3.10) and (3.15). 

Chamberlain (1982) has shown that under a weak regularity condition (analo- 
gous to c~~“=ol14112 < cc introduced in Section 3.1) conditions (1) and (3) are 
equivalent, just as their analogues were in the linear case. However, (1) or (3) 
implies (2), but not conversely: the natural extension of Sims’ (1972) result is not 
true. Further discussion of these points is provided in Chamberlain’s paper and in 
the related work of Florens and Mouchart (1982). 

When causality is unidirectional it is natural to seek to quantify its importance 
and provide summary characteristics of the effect of the uncaused on the caused 
series. When causality is bidirectional - as is perhaps the rule - these goals become 
even more pressing. The measures of linear feedback provide one practical answer 
to this question, since they are easy to estimate. Two more elaborate suggestions 
have been made, both motivated by problems in the interpretation of macroeco- 
nomic aggregate time series. 

Sims (1980) renormalizes the moving average representation (3.1) in recursive 
form 

z, = : A*&* s 1--s’ (3.17) 
s=o 
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with AZ lower triangular and 2* = var($) diagonal. [The renormalization can be 
computed from (3.1) by exploiting the Choleski decomposition 2 = MM’, with M 
lower triangular. Denote L = diag(M). Then LM-‘z, = ~~~“=,LM-‘A,E,_,; 
LIT’A, = LM-’ is lower triangular with units on the main diagonal and 
var( LM-‘e,) = LL’.] If we let a12 = var(e;) and [A:],, = a:.,, it follows from the 
diagonality of Z* that the m-step-ahead forecast error for z,[ is a*(j, m) = 
C;=,U,%;:~U,:;. Th f t’ e unc ton ~,~C~~~,‘a,*,~/a*( j, m) provides a measure of 
the relative contribution of the disturbance corresponding to z, in (3.17) to the 
m-step-ahead forecast error in z,. This measure is somewhat similar to the 
measures of feedback discussed previously; when m = 1 and ,E is diagonal, there 
is a simple arithmetic relationship between them. An important advantage of this 
decomposition is that for large m it isolates relative contributions to movements 
in the variables which are, intuitively, “persistent”. An important disadvantage, 
however, is that the measures depend on the ordering of the variables through the 
renormalization of (3.1). 

Geweke (1982a) has shown that the measures of feedback F,, x and F,, ,, 
may be decomposed by frequency. Subject to some side conditions which as a 
practical matter are weak, there exist non-negative bonded functions f,,_ x(h) 
and f,,,(h) such that Fy_ x = (1/2r)/Tnfy+ x(h)dh and F,, ,, = 
(l/2a>~lr,fx+r(X)dX. The measures of feedback are thus decomposed into 
measures of feedback by frequency which correspond intuitively to the “long 
run” (low frequencies, small h) and “short run” (high frequencies, large A). In 
the case of low frequencies, this relationship has been formalized in terms of the 
implications of comparative statics models for time series [Geweke (1982b)]. 

4. Causality and exogeneity 

The condition that Y not cause X, in the sense defined in Section 1, is very closely 
related to the condition that X be strictly exogenous in a stochastic model. The 
two are so closely related that tests of the hypothesis that Y does not cause X are 
often termed “exogeneity tests” in the literature [Sims (1977), Geweke (1978)]. 
The strict exogeneity of X is in turn invoked in inference in a wide variety of 
situations, for example the use of instrumental variables in the presence of serially 
correlated disturbances. The advantage of the strict exogeneity assumption is that 
there is often no loss in limiting one’s attention to distributions conditional on 
strictly exogenous X, and this limitation usually results in considerable simplifica- 
tion of problems of statistical inference. As we shall soon see, however, the 
condition that Y not cause X is not equivalent to the strict exogeneity of X. All 
that can be said is that if X is strictly exogenous in the complete dynamic 
simultaneous equation model, then Y does not cause X, where Y is endogenous in 
that model. This means that tests for the absence of a Wiener-Granger causal 
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ordering can be used to refute the strict exogeneity specification in a certain class 
of stochastic models, but never to establish it. In addition, there are many 
circumstances in which nothing is lost by undertaking statistical inference condi- 
tional on a subset of variables which are not strictly exogenous- the best known 
being that in which there are predetermined variables in the complete dynamic 
simultaneous equation model. Unidirectional causality is therefore neither a 
necessary nor a sufficient condition for inference to proceed conditional on a 
subset of variables. 

To establish these ideas, specific terminology is required. We begin by adopting 
a definition due to Koopmans and Hood (1953, pp. 117-120), as set forth by 
Christ (1966, p. 156).8 

Dejinition 

A strictly exogenous variable in a stochastic model is a variable whose value in 
each period is statistically independent of the values of all the random dis- 
turbances in the model in all periods. 

Examples of strictly exogenous variables are provided in complete, dynamic 
simultaneous equation models in which all variables are normally distributed: 9 

B(L)y,+ryL)x,=u,: 

A(L)u,=e,: 

co+,, Y,-,> = 0, s > 0; 

COV(E,, x[_,) = 0. all s; (4.1) 

Roots of (B( L)( and (A( L)( have modulus greater than 1. 
This model is similar to Koopmans’ (1950) and those discussed in most 

econometrics texts, except that serially correlated disturbances and possibly 
infinite lag lengths are allowed. The equation A( L)-‘B( L)y, + A( L)-‘I?( L)x, = 
E, corresponds to (3.10) in the canonical form derived in Section 3, and since E, is 
uncorrelated with X, it corresponds to (3.15) as well. Hence, Fy+ X = 0: Y does 
not cause X. In view of our discussion in Section 2 and the fact that the complete 
dynamic simultaneous equation model is usually perceived as a structure which 
accepts X as input, this implication is not surprising. 

If Y does not cause X then there exists a complete dynamic simultaneous 
equation model with Y endogenous and X strictly exogenous, in the sense that 

‘We use the term “strictly exogenous” where Christ used “exogenous” in order to distinguish this 
concept from weak exogeneity, to be introduced shortly. 

‘The strong assumption of normality is made because of the strong condition of independence in 
our definition of strict exogeneity. As a practical matter, quasi-maximum likelihood methods are 
usually used, and the independence condition can then be modified to specify absence of correlation, 
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tions about serial correlation in the latter case should therefore be tested just as 
unidirectional causality should be tested when the weak exogeneity specification 
rests on strict exogeneity. In both cases, weak exogeneity will still rely on a priori 
assumptions; no set of econometric tests will substitute for careful formulation of 
the economic model. 

5. Inference” 

Since the appearance of Sims’ (1972) seminal paper, causal orderings among 
many economic time series have been investigated. The empirical literature has 
been surveyed by Pierce (1977) and Pierce and Haugh (1977). Virtually all 
empirical studies have been conducted under the assumptions introduced in 
Section 3: time series are wide sense stationary, purely non-deterministic with 
autoregressive representation, the relevant universe of information at t is Y and 
X,, predictors are linear, and the criterion for comparison of forecasts is mean 
square error. A wide array of tests has been used. In this section we will describe 
and compare those tests which conceivably allow inference in large samples-i.e. 
those for which the probability of Type I error can, under suitable conditions, be 
approximated arbitrarily well as sample size increases. The development of a 
theory of inference is complicated in a non-trivial way by the fact that expression 
of all possible relations between wide sense stationary time series requires an 
infinite number of parameters, as illustrated in the canonical form derived in 
Section 3. This problem is not insurmountable, but considerable progress on the 
“parameterization problem” is required before a rigorous and useful theory of 
inference for time series is available; as we proceed, we shall take note of the 
major lacunae. 

5.1. Alternative tests 

Suppose that Y and X are two vector time series which satisfy the assumptions of 
Section 3. We find it necessary to make the additional assumption that Y and X 
are linear processes [Hannan (1970, p. 209)], which is equivalent to the specifica- 
tion that the disturbances u,, and 17/t in Table 3.1 are serially independent, and 
not merely serially uncorrelated. Consider the problem of testing the null hy- 
pothesis that Y does not cause X. From the Theorem of Section 3, this may be 
done by testing (3.5) as a restriction on (3.7) or (3.10) as a restriction on (3.15). 
We shall refer to tests based on the first restriction as “Granger tests”, since the 
restriction emerges immediately from Granger’s (1969) definition, and to tests 

“Much, but not all, of the material in this section is drawn from Geweke, Meese and Dent (1983). 
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based on the second restriction as “Sims tests” since that restriction was first 
noted, in a slightly different form, by Sims (1972). Suppose it were known a priori 

that E,, = E,, =0 for s > p and F2, = 0 for s > q. One could then calculate 
ordinary least squares estimates El,, Ezs, and Fzs of the parameters of the 
equations: 

P 

x, = c 4s~s + ~lr’ 

P 4 

x, = c E2s-Gs + c F,,Y,-s + ~213 

(5.1) 

(5 -2) 
s=l s=l 

and form estimates 2, = C:=,ii,,ri;,/n, where b/I denotes the vector of ordinary 
least squares residuals corresponding to the disturbance vector u,! and n denotes 
sample size. From the usual central limit theorems for autoregressions [e.g. Theil 
(1970, pp. 411-413)] the asymptotic distribution of the test statistic: 

TGW=n(tr(&e;l)-k), n (5.3) 

under the null hypothesis is x*(k/q). The superscript “G” in (5.3) denotes the 
Granger test, while W refers to the fact that this is the Wald (1943) variant of that 
test. The Lagrange multiplier, 

T,C’L = n(k-tr(e&l)), 

and likelihood ratio, 

CGR = ~ln<l%l/l~,l>, 

(5.4) 

(5.5) 

variants of this test statistic will have the same asymptotic distribution under the 
null hypothesis. (See Chapter 13 of this Handbook.) 

There is in fact rarely any reason to suppose that lag lengths in autoregressions 
are finite, or more generally to suppose that any particular parameterization (e.g. 
the autoregressive-moving average) is completely adequate. Our problem cannot 
be cast into the assumptions of the classical theory of inference which assume that 
coefficients can be made to depend in a known way on a finite number of 
unknown parameters. It is more similar to the one encountered in non-parametric 
inference about spectra (Chapter 17 of this Handbook), which can be resolved by 
estimating more autocovariances or using narrower spectral windows as sample 
size increases. In this procedure the number of parameters implicitly estimated 
increases, but decreases relative to sample size, as sample size increases. A similar 
strategy may be used in estimating autoregressions like those in Table 3.1. For 
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example, p and q in (5.1) and (5.2) can be made functions of n such that 
p(n) + 00 and q(n) -+ 00 as n + co, but p(n)/n --, 0 and q(n)/n - 0. Since the 
coefficients in Table 3.1 are all square summable the equations there can all be 
approximated arbitrarily well in mean square by autoregressions of finite order. 
Therefore there exist rates of increase p(n) and q(n) such that consistent 
estimates of all coefficients in (3.5) and (3.7) can be obtained by estimating (5.1) 
and (5.2) by ordinary least squares. l1 Sufficient conditions on lag length for 
consistency have yet to be derived, however. A more pressing, unresolved problem 
is whether there exist rates of increase such that the limiting distributions of 
(5.3)-(5.5) under the null are x*(klq). In what follows, we shall assume that such 
rates of increase do exist, an assumption which is uncomfortable but which does 
not appear to be contradicted by sampling experiments which have been con- 
ducted. More bothersome is the practical problem of choosing the number of 
parameters to estimate in a given circumstance, to which we shall return in the 
next section. 

We may test (3.10) as a restriction on (3.15) by estimating the equations, 

SE1 s=O 

and 

S=l s = 

by ordinary least squares, 
suitable rates of increase: 

and 

(5.6) 

p, q, and r being allowed to increase with n. For 

(5 4 

(5.9) 

(5.10) 

are all distributed as x2(/&-) in large samples under the null hypothesis. In finite 
sample, there is no numerical relation between the Granger test conducted using 
(5.1) and (5.2) and the Sims test conducted using (5.6) and (5.7); the null may well 
be rejected using one test but not the other. 

Other tests about Wiener-Granger causal orderings, instantaneous causality, 
and combinations of the two may be undertaken in rather obvious fashion using 
the canonical form of Section 3 and truncating lag lengths. For example, a test of 

“For an elaboration, see Section 6.1 of this chapter. 
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the hypothesis of no instantaneous causality can be based on ordinary least 
squares residuals from (5.2) and those from: 

X, = i E3s~r-s + 5 %Y,-, + u3r. (5.11) 
s=l s=o 

If p = q the Wald, likelihood ratio and Lagrange multiplier test statistics will be 
identical to those which would have been obtained using the ordinary least 
squares residuals from: 

Y, = 5 G,Y,-s + : &XI-, + i)zf, (5.12) 
s=l s=l 

and those from (5.4). A test of the hypothesis that Y does not cause X and there is 
no instantaneous causality could be based on a comparison of (5.1) and (5.11) or 
(5.12) and (5.7). The measures of feedback F,, y, Fy_+ x, ,Fx.,,, and F,,, 

introduced in Section 3 can be estimated consistently using the 2, and T,. 
Most of the empirical studies reported in the literature do not use any of these 

tests. Instead, they follow Sims (1972) who based inference directly on the 
projection of yI on X,, 

y,= E &Gs+W IIT (5.13) 
s=o 

and yI on X, 

Y, = c Dzsxl-, + ~2,. (5.14) 

As we saw in Section 3, under the null hypothesis that Y does not cause X the 
two projections are the same. We also saw that the disturbance terms in (5.13) 
and (5.14) will be serially correlated. In particular, the disturbance term in (5.14) 
has autoregressive representation, 

CC 
~2, = c G4,9-.s + v4r5 

s =l 

and under the null hypothesis the disturbance in (5.13) will of course have the 
same autoregressive representation. These tests can cope with the infinite length 
of lag distributions in the way just described, replacing (5.13) and (5.14) with: 

yr = 2 D,s~r-s + Wlr (5.15) 
s=o 
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In general, corrections for serial correlation proceed as follows. Let it be 
assumed that 52: = var( wi) = $,(cr,) and 0, = var( w2) = ai( where w, = 
(w,\,..., w,‘,)‘. The functions a:( .) and Q:(q) are known, but a, and a1 are 
unknown si x 1 and s2 X 1 vectors, respectively. [There is no presumption that 
s2f, = Oi, 32:( .) = 52:( .), or al = a*.] Let (i>;, &;)‘denote the vector of maximum 
likelihood estimates of the kl(q + l)+ s1 unknown parameters in (5.15) and let 
(i>;, &;)’ denote the vector of maximum likelihood estimates of the kl( q + r + 1) 
+ s2 unknown parameters in (5.16). Let tii be the vector of residuals correspond- 
ing to i>,, and let $ be the vector of residuals corresponding to i>,. Define also 
the estimator b:, of the Dls, which is the maximum likelihood estimator of the 
D,, assuming a!, = fii(S,), and the estimator & of the D,,s, which is the 
maximum likelihood estimator of the D,, assuming J$ = a!,(&,). Let +; denote 
the vector of residuals corresponding to the b;“, and let C$ denote the vector of 
residuals corresponding to the b,*,. Then Wald and Lagrange multiplier test 
statistics are 

T’sw’ = n 
and 

7-‘s” = n 

respectively. 

iy(Lq(ii2))pJ~ - ti;(L?,2(h2))-1i& (5.17) 

;ll;(ag(&,))P’;Y,- ;u:‘(a;(C%i))P*&& (5.18) 

Under the null hypothesis, the limiting distribution of each of these 

(5.16) 
S=--T 

respectively, but they also have to deal with serial correlation in wir and w,,. In 
earlier studies [e.g. Sims (1972) Barth and Benet (1974)], this was often done by 
asserting a particular pattern of serial correlation in the disturbances, but in more 
recent work [e.g. Sims (1974), Neftci (1978)] a consistent estimate of the unknown 
pattern of serial correlation has been used in lieu of the actual pattern. 

statistics is XL(&). Since si and s2 are not known to be finite, their values must 
be increased as n increases as is the case with q and r. 

There are several methods for parameterizing the variance matrix Q,, 
of a wide sense stationary disturbance. The Hannan efficient method 
[Hannan (1963)] exploits the approximation Q,, A F,S,,F,’ due to Grenander 
and Szego (1954) where F, is the Fourier matrix with typical ((j, k)th) element 
exp(2rij(k - 1)/n)/& and S, is a diagonal matrix whose jth diagonal element 
is the spectral density of the disturbance evaluated at the frequency 27r( j - 1)/n. 
In practice, a consistent estimate of the spectral density is constructed in the 
conventional way from ordinary least squares residuals [those from (5.15) for the 
Lagrange multiplier variant and those from (5.16) for the Wald variant]. In 
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Amemiya’s procedure [Amemiya (1973)] the autoregressive representation of the 
disturbance is approximated by an autoregressive process of finite order, say 
H’ = C?:;/4,+s + E,, which is estimated from ordinary least square residuals. 
The equations (5.15) and (5.16) are then premultiplied by (1 -c?L,‘A;L’) before 
estimation by ordinary least squares. A conventional, Wald “F” Test statistic for 
the restriction (5.15) on (5.16) is then asymptotically equivalent to (5.17). Strictly 
speaking, Wald and Lagrange multiplier variants of neither procedure lead to 
(5.17) or (5.18), because maximum likelihood estimates of the 52: are not 
computed. However, the procedures amount to the first step of iterative maximum 
likelihood procedures along the lines suggested by Oberhoffer and Kmenta 
(1974), and asymptotically the first step is equivalent to the full, maximum 
likelihood procedure. 

Although tests based on (5.13) and (5.14) have been the most popular in the 
empirical literature, it is evident that they demand more computation than the 
other tests. Other methods, requiring even more computation, have been sug- 
gested and occasionally used. Pierce and I-Laugh (1977) propose that autoregres- 
sive moving average models for X and the ordinary least squares residuals of 
(5.15) be constructed, and the test of Haugh (1976) for their independence be 
applied. Under the null hypothesis X and the disturbances of (5.13) are indepen- 
dent, and Haugh’s test statistic has a limiting X2(/&) distribution. Pierce (1977) 
has proposed a method involving the construction of autoregressive moving 
average models for X and Y and a modification of Haugh’s statistic, but this 
method does not lead to test statistics whose asymptotic distribution under the 
null hypothesis is known [Sims (1977b)]. 

5.2. Comparison of tests 

All the test statistics just discussed have the same limiting distribution under the 
null hypothesis. The adequacy of the limiting distribution in finite samples need 
not be the same for all the statistics, however, and thus far nothing has been said 
about their relative power. Sampling experiments can be used to address the first 
question, but without some sort of paradigm these experiments cannot be used to 
investigate the question of relative power. A convenient paradigm is the criterion 
of approximate slope, introduced by Bahadur (1960) and discussed in its applica- 
tion to time series by Geweke (1981). 

Suppose that test i rejects the null in favor of the alternative in a sample of size 
n if the statistic T,i exceeds a critical value. Suppose further, as is the case here, 
that the limiting distribution of T,’ under the null is chi-square. The approximate 
slope of test i is then the almost sure limit of T,‘/n, which we shall denote T’(B). 
The set B consists of all unknown parameters of the population distribution, 
perhaps countably infinite in number, and the approximate slope in general 
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depends on the values of the elements of 8. For all 8 which satisfy the null 
hypothesis T’(e) = 0, and for most test statistics (all of ours), r’(0) > 0 for all 
other 8. The approximate slopes of different tests are related to their comparative 
behavior under the alternative in the following way [Geweke (1981)]. Let 
n’(t *, /3; e) denote the minimum number of observations required to insure that 
the probability that the test statistic T,’ exceeds a specified critical point t* is at 
least l- /3. Then lim,, _03 n’(t*, p; e)/n’(t*, p; 0) = T*(e)/T’(e): the ratio of 
the number of observations required to reject the alternative as t* is increased 
without bound (or equivalently, the asymptotic significance level of the test is 
reduced toward zero) is inversely proportional to the ratio of their approximate 
slopes. Similarly, if t’( n, /3; B) indicates the largest non-rejection region (equiva- 
lently, smallest significance level) possible in a sample of size n if power 1 - /3 is 
to be maintained against alternative 8, then lim, _ m t’( n, p; e)/t*( n, p; a) = 
T’(e)/T*(e). 

The criterion of approximate slope is a useful paradigm because it suggests that 
when the null is false and the number of observations is large, we might observe 
that tests with greater approximate slopes reject the null more often than tests 
with smaller approximate slopes, and those with the same approximate slopes 
reject the null with the same frequency. Differences in approximate slopes may be 
a factor in test choice if the number of observations required is not so large that 
the asymptotic significance levels involved are minute. Approximate slope is not a 
normative concept. For example. the statistic for the test with the larger ap- 
proximate slope might exhibit slower convergence to the limiting distribution 
under the null than the statistic for the test with the smaller approximate slope. 
Indeed, if exact distributions under the null became known, it might turn out that 
if the critical points for the two tests were modified appropriately then the test 
with larger approximate slope would require more observations to assure given 
power against a given alternative than would the test with smaller approximate 
slope. 

It is fairly straightforward to derive the approximate slopes of the alternative 
tests of the hypothesis that Y does not cause X. From (5.3)-(5.5) the approximate 
slopes of the tests based on the limiting distribution of TnGw, TnGL, and TnGR are: 

TGW= tr(Z,Z;‘)--k, TGL = k - tr( Z22;i) 

and TGR = ln(lZ,(/JZ,I), 

respectively. Likewise the approximate slopes of the Sims tests not involving serial 
correlation corrections are: 

Tsw = tr( T,Tdp’)- I, TsL = I- tr( T4Tq1) and TSR=ln(~T,~/~T,~). 
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Table 5.1” 
Design of a sampling experiment 

Model A: .p, =l.o+ 1.5_v,_* -0.5625.~_~ +0X5-~_, + 04r 

x, =1.0+0.8.x, , + u2, 
04, - NO, I); U2, - N(O,l) 

Model B: y, =1.0+0.258.~,_~ +0.172.~,_~ -0.086.x, 3 + W, 
w,=L5w,_, -0.5625~,_~ + c4, 
~,=l.O+O.Ex,_~+wp, 

L’4, - N(O, 1); U2, - N(O.1) 

Approximate slopes 
Model A Model B 

TGL = TsL 0.0985 0.0989 
TGR = TSR 0.1037 0.1041 
T”w = Tsw 0.1093 0.1098 
T’sw’ 0.1240 0.1125 
T’SL’ 0.1103 0.0954 
TcSL)(pretiltered) 0.0711 0.1016 

‘Source: Geweke, Meese and Dent (1983. table 4.1). 

but (5.7) and (5.16) are never exact. In all instances in which parameterizations 
are inexact, however, the contributions of the omitted variables to variance in the 
dependent variable is very small. 

The outcome of the sampling experiment is presented in Table 5.2, for tests 
that Y does not cause X, and in Table 5.3, for tests that X does not cause Y. The 
sampling distribution of the test statistics for Sims tests requiring a serial 
correlation correction is very unsatisfactory when the null is true. If no prefilter is 
applied, rejection frequencies range from 1.5 to 6.4 times their asymptotic values. 
When the prefilter (l -0.75L)’ is used, the sampling distribution of these test 
statistics is about as good as that of the others. In the present case this prefilter 
removes all serial correlation in the disturbances of the regression equation (5.13). 
With actual data one cannot be sure of doing this, and the sensitivity of these test 
results to prefiltering, combined with the greater computational burden which 
they impose, argues against their use. By contrast, the sampling distribution of the 
Granger and Sims test which use lagged dependent variables appears much closer 
to the limiting distribution. Overall, Wald variants reject somewhat too often and 
Lagrange variants somewhat too infrequently, but departures from limiting 
frequencies are not often significant (given that only 100 replications of data were 
generated). 

The rejection frequencies when the null is false, presented in Table 5.3, accord 
very well with what one would expect given the approximate slopes in Table 5.1 
and the rejection frequencies anticipated in the design of the experiment. Rejec- 
tion frequencies for TGW and Tsw are about the same; those for TGL and TsL 
are each lower but similar to each other. Rejection frequencies are greatest for the 
Sims tests requiring a serial correlation correction, but their distribution under the 
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Table 5.2” 
Outcome of sampling experiment 
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Number of rejectionsb in 100 replications when null is true 

Parameterization Model A Model B 

Test’ p q r 5% level 10% level 5% level 10% level 

pw 

T”L 

p’ 

TSL 

Ttsw'( F) 

T’sw’(U) 

TcsL’( F) 

TcsL’( L’) 

4 
8 

12 
12 

4 
8 

12 
12 
4 
4 
4 
4 
4 
4 
4 
4 

4 7 
4 5 
4 9 

12 8 
4 4 
4 3 
4 5 

12 0 
4 4 6 
8 4 7 

12 4 9 
12 12 6 
4 4 4 
8 4 3 

12 4 4 
12 12 0 
4 4 6 
8 4 7 

12 4 8 
12 12 9 

4 4 26 
8 4 24 

12 4 21 
12 12 26 

4 4 2 
8 4 5 

12 4 4 
12 12 2 
4 4 23 
8 4 20 

12 4 18 
12 12 9 

14 
19 
16 
11 
11 
11 
13 

2 
10 
13 
13 

8 
9 

11 
12 

6 
15 
12 
17 15 
15 26 
33 32 
32 32 
28 31 
31 30 

8 4 
I 3 
9 4 
4 2 

30 18 
26 9 
27 8 
17 8 

7 
11 
11 
22 

4 
5 
4 
1 
3 
4 
3 
3 
1 
1 
3 
1 

12 
12 

16 
19 
22 
36 

7 
10 

9 
2 
7 
6 
8 
5 
3 
4 
4 
3 

14 
21 
24 
35 
38 
41 
38 
34 

6 
9 

12 
5 

26 
21 
13 
15 

?Source: Geweke, Meese and Dent (1983, table 5.2). 
‘The appropriate F, rather than cm-square, distribution was used. 
‘For tests requiring correction for serial correlation, the Hannan efficient method of 

estimation was used. The spectral density of the disturbances was estimated using an 
inverted “V” spectral window with a base of 19 ordinates, applied to the 100 residual 
periodogram ordinates. For those tests with the suffix (F), data were initially prefiltered 
by (1-0.75i)*, which Raitens the spectral density of the disturbance We,. For those with 
(U), no prefilter was applied. 
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Table 5.3” 
Outcome of sampling experiment 

Number of rejections in 100 rephcationsb when null is false 

Parameterization 

Test’ p q r 

Model A 

5% level 10% level 

Model B 

5% level 10% level 

T”L 

TSW 

TSL 

Tcsw'( F) 

TtsL’( F) 

4 4 59 76 69 19 
8 4 63 71 64 13 

12 4 61 70 64 76 
12 12 36 50 39 59 
4 4 55 67 59 14 
8 4 54 68 58 70 

12 4 55 69 58 70 
12 12 15 24 8 24 
4 4 4 60 70 71 19 
4 8 4 64 16 73 71 

4 12 4 58 68 71 16 
4 12 12 41 56 49 61 
4 4 4 51 65 63 14 
4 8 4 49 64 65 75 
4 12 4 50 64 65 72 
4 12 12 32 37 25 44 

4 4 90 96 87 93 
8 4 88 94 87 91 

12 4 85 94 85 90 
12 12 81 86 62 79 
4 4 82 92 78 88 
8 4 78 89 78 89 

12 4 71 86 14 84 
12 12 32 52 17 33 

“Source: Geweke, Meese and Dent (1983, table 5.4). 
hThe appropriate F, rather than &-square, distribution was used. 
‘For tests requiring correction for serial correlation, the Hannan ei?icient method of 

estimation was used. The spectral density of the disturbances was estimated using an 
inverted “V” spectral window with a base of 19 ordinates, applied to the 100 residual 
periodogram ordinates. For those tests with the suffix (F), data were initially prefiltered 
by (I -O.l5L)“, which flattens the spectral density of the disturbance y,. 

null is less reliable; in view of the results in Table 5.2, rejection frequencies for 
those tests which use unfiltered data have not been presented in Table 5.3. 

These results are corroborated in the rest of the Geweke, Meese and Dent 
study, as well as in Guilkey and Salemi, and Nelson and Schwert. Guilkey and 
Salemi have, in addition, studied the case in which the chosen parameterization 
omits important contributions of the explanatory variables; as one would expect, 
this biases tests of the null toward rejection and diminishes power under the 
alternative. The consensus is that inference can be undertaken with greatest 
reliability and computational ease employing either (5.1) as a restriction on (5.2) 
or (5.15) as a restriction on (5.16) and using either the Lagrange or Wald variant 
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must exist an upper bound on the rate of expansion of p and q with n such that if 
p and q increase without limit as n grows but satisfy the upper bound constraint 
on rate, estimatesof v%(x,x,_i ,..., x,_p) and var(x,]x,_i ,..., x,_p; y,_i ,..., y,_,) 
will be strongly consistent for 2, and z2, respectively.14 The problem of prescrib- 
ing which values of p and q should be used in a particular situation is, of course, 
more difficult. 

In our discussion of test performance under the null, it was necessary to make 
the much stronger assumption that the dimension of the parameter space can be 
expanded with n in such a way that the distributions of the test statistics 
approach those which would obtain were the true parameterization finite and 
known. In the context of our example of the Wald variant of the Granger test of 
the hypothesis that Y does not cause X, this is equivalent to saying that p and q 
grow with n slowly enough that strongly consistent estimates of 2, and z2 are 
achieved, but rapidly enough that their squared bias becomes negligible relative to 
their variance. It is not intuitively clear that such rates of expansion must exist, 
and there has been little work on this problem. Sampling study results suggest 
that as a practical matter this problem need not be overwhelming; witness the 
behavior of the Granger tests and the Sims tests incorporating lagged dependent 
variables, under the null hypothesis. On the other hand, the poor performance of 
the Sims tests involving a correction for serial correlation, under the null 
hypothesis, may be due in large measure to this difficulty. 

A variety of operational solutions of the problem, “how to choose lag length”, 
has appeared in the literature. Most of these solutions [Akaike (1974) Amemiya 
(1980) Mallows (1973) Parzen (1977)] emerge from the objective of choosing lag 
length to minimize the mean square error of prediction. For example, Parzen 
suggests that in a multivariate autoregression for Z, that lag length which 
minimizes the values of 

trace (6.1) 

be chosen, where m is the number of variables in Z, p is lag length, and 
1, = c:=, .G,.$/(n - jm), where 2, is the vector of ordinary least squares residuals 
in the linear regression of z, on z,_ i, . . . , z,_,. Choice of p in the other solutions is 
based on the minimization of different functions, but the value of p chosen will 

t4Upper bounds of this type have been derived by Robinson (1978) for a problem which is formally 
similar, that of estimating the coefficients in the population linear projection of Y on X consistently 
by ordinary least squares. The bounds require that lag lengths be O(~I(“~~)/“). where v is a constant 
between 0 and - l/2 which depends on higher moments of A’. and that the rates of increase in the 
number of past and number of future X not be too disparate. 
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usually be the same [Geweke and Meese (1981)]. On the other hand, Schwarz 
(1978) has shown that for a wide variety of priors which place positive prior 
probability on all finite lag lengths (but none on infinite lag length), the posterior 
estimate of lag length in large samples will be that which minimizes the value of 

1n]3P] + m2pln(n)/n, (6.2) 

when Z is Gaussian. Lag lengths chosen using (6.2) will generally be shorter than 
those chosen using (6.1). These solutions to the problem of choosing lag length 
are in many respects convenient, but it must be emphasized that they were not 
designed as the first step in a regression strategy for estimating coefficients in an 
autoregression whose length may be infinite. Neither analytic work nor sampling 
studies have addressed the properties of inference conditional on lag length 
chosen by either method, although the first one has been used in empirical work 
[Hsiao (1979a, 1979b)]. 

6.2. Non - autoregressive processes 

A time series may be wide sense stationary and purely non-deterministic, and fail 
to have autoregressive representation because one or more of the roots of the 
Laurent expansion of its moving average representation lie on the unit circle. A 
non-autoregressive process does not possess an optimal linear, one step ahead 
predictor with coefficients which converge in mean square. The representations 
derived in Section 3 fail to exist for such a series, and if one attempts inference 
about Wiener-Granger causality using non-autoregressive processes, then mis- 
leading results are likely to emerge. A simple example provides some indication of 
what can go wrong. 

Consider first two time series with joint moving average representation 

x, = E, + PPi, Y, = E,-1 + 71,, (6.3) 

where (E,, 77,)’ is the bivariate innovation for the (x,, y,)’ process, Jp] < 1, 
E( et) = E( nr) = cov( E,, nl) = 0 and var( et) = var( n,) = 1. In 
var(x,lx,_, ,..., x,_k)=l+pp2-m;M;‘m,, where 

the population, 

mk = 
kxl 

P’ 
0 

. 3 

0 
Mk = 
kxh 

0, 

1+ p2 

P 

P 

1+p2 * -o- 
. . 

1+p2 * p 

-o- P 1 + p= 
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Using a result of Nerlove, Grether and Carvalho (1979, p. 419) for the exact 
inverse of a tridiagonal matrix, the entry in the first row and column of A4~t is 
(1 - IJ~~)/(~ - p2ck+‘)), from which 

var(X,Ix,P1,...,~,_k)=(1-p2(k+2) )/(l- p2(k+t)).15 

Suppose that k lagged values of y, are also used to predict x,. In the population, 

where 

-o- 

0 

P 

. -. 
. * 

-o- 

‘0 . 
P 

1 P_ 

The element in the first row and column of 

Mk B, -’ I 1 Bl 21, 

is the same as that in the first row and column of the inverse of:16 

Mk - OSB, B;. = 

1 + .5p2 asp -o- 
asp 0.5(1+p’) . 

-o- 0.5(1+ p2) 0.5p 

0.5p 0.5(1+ p’) 

15For an alternative derivation see Whittle (1983, p. 75) 
lhWe use the standard result [e.g. Theil (1971, pp. 17-19)] on the inverse of a partitioned matrix. 
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Partitioning out the first row and column of this matrix, the desired element is 
(l+OSp* -O.Sm;_,M;~,m,_,)-‘. Hence: 

var(x,Jx,_i ,..., x,_,+; ytpl,..., Y,Fk) 

=1+p2-~*(1+0.5p~-O.5m~_,~~~,m,_,)~’ 

=1+p*-(p~(1-p*~))/(l-0.5p2~-0.5p2(k+1)) 

= (1-0.5p2k -o.5p*(k+*))/(1 -o.5p*k -o.5p*‘k+“). (6.4) 

Clearly k must grow with n, or else the hypothesis that Y does not cause 
X-which is true-will be rejected in large samples. If k grows at a rate such that 
the asymptotic results of Wald (1943) on the distribution of test statistics under 
the alternative are valid, then in large samples the Wald variant of the Granger 
test will have a limiting non-central chi square distribution with non-centrality 
parameter: 

(I- p*(k+*) ) . (1 -o.5p*k -o.5p*‘k+“) 
(l- P2(k+l) ) (1-o.5p*k-0.5p*(k+*)) -l n 1 

o.5p*(k+‘)(1- p2)(1- p*+ 
= (I- P*‘k+1))(1_o.5p2k _o.5p*(k+*)) ’ 

So long as k/in(n) increases without bound, the non-centrality parameter will 
vanish asymptotically-a necessary and sufficient condition for the test statistic 
to have a valid asymptotic distribution under the null, given our assumptions. In 
particular, this will occur if k = [na], 0 < (Y < 0.5. 

Suppose now that p =l in (6.3): the process (x,, y,) is then stationary but has 
no autoregressive representation. Nerlove, Grether and Carvalho’s result does not 
apply when p = 1; let ck denote the element in the first row and column of ML ‘. 
Partitioning out the first row and column of Mk: 

Ck = (2-m;_,M,‘,m,_,)-1 = (2- ck-l)-1. 

By mathematical induction ck = k/( k + 1). Hence: 

var(x,lx,_i,..., x,_,)=2-m~M~‘m,=2-c~~,=(k+2)/(k+1). 

Substituting in (6.4): 

v?Lr(x,lx,_l ,..., x,-k, Y,-I,..., y,_k) = (2k +2)/(X + 1). 
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The non-centrality parameter of the limiting distribution of the Wald variant of 
the Granger test in this case is: 

[ 

(k+2) (2k+l) -1 n= kn ___. 
(k+l) 2@+1) 1 2(k t-1)“. 

The non-centrality parameter will increase without bound unless lim, j ~ (n /k ) 
= 0, a condition which cannot be met. 

It therefore appears plausible that when ]p] < 1, Granger tests may be asymp- 
totically unbiased if the number of parameters estimated increases suitably with 
sample size; in particular, k = n”, 0 < (Y -C 0.5 may be a suitable rule. It appears 
equally implausible that such rules are likely to exist when 1 p 1 = 1; in particular, 
Granger tests are likely to be biased against the null. This result is not peculiar to 
the Granger test: S,(m) = 0 causes equally troublesome problems in Sims tests of 
the hypothesis of absence of Wiener-Granger causality from Y to X. 

6.3. Deterministic processes 

From Weld’s decomposition theorem [Wold (1938)] we know that a stationary 
time series may contain deterministic components. Although the definition of 
Wiener-Granger causality can be extended to encompass processes which are not 
purely non-deterministic, inference about directions of causality for such series is 
apt to be treacherous unless the deterministic process is known up to a finite 
number of unknown parameters. The difficulty is that to the extent the two series 
in question are mutually influenced by the same deterministic components, the 
influence may be perceived as causal. A simple example will illustrate this point. 

Let x, = xl, + x2,, y, = _J+! + yzr, xrr = y,, = cos(mt/2), and suppose xzr and 
yz, are independent white noises with zero means and unit variances. The 
bivariate process (x,, v,)’ may be interpreted as quarterly white noise con- 
taminated by deterministic seasonal influence. Following Hosoya (1977) X does 
not cause Y and Y does not cause X because xl, = yrr is in the Hilbert space 
generated by either X,_, or U,_,. It is clear from the symmetry of the situation, 
however, that given only finite subsets of X,_, and Y-t, the subsets taken 
together will permit a better separation of the deterministic and non-deterministic 
components of the series than either alone, and hence a better prediction of x, 
and y,, For instance, the linear projection of x, on (x,-t,..., x,_~~) is ~.~=t(~~_~, 
- ~,+~-~,)/(2(k +I)), vWx,l.qI,..., x,_~) = (2k + 3)/(2k + 2). The lmear pro- 

jection of x, on 4k lagged values of x, and y, is C~=,(X,_~, + JJ_~, - x,+~_~, - 
j;+2-#J(k + 1) var(x,]&,, . . . > X,-z,k; y,-,, . . . , Y(-z$k) = (4k + W(4k + 2). 
Following the argument used in the example for non-autoregressive processes, if 
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the limiting distribution of the Wald variant of the Granger tests is (possibly 
non-central) chi square, the non-centrality parameter is 2kn/(2k + 2)(4k + 3). 
This parameter could vanish only if the number of parameters estimated in- 
creased faster than the number of observations, which is impossible. 

This result is consistent with the intuition that tests for the absence of 
Wiener-Granger causality are apt to be biased against the null when determinis- 
tic components are involved. It is equally clear from the example that if the 
determinism can be reduced to dependence on a few unknown parameters-here, 
the coefficients on perhaps four seasonal dummies-then the results of Sections 3 
and 5 apply to the processes conditional on deterministic influences. 

6.4. Non-stationary processes 

Although in principle non-stationarity can take on many forms, most non- 
stationarity which we suspect” in economic time series is of certain specific types. 
If the non-stationarity arises from deterministic influences on mean or variance 
and their functional forms are known, the methods of Section 5 can be modified 
directly to accommodate these influences. For example, trend terms may be 
incorporated in estimated equations to allow for conditional means which change 
with time, and means and variances which increase with time may in some cases 
be eliminated by the logarithmic transformation and incorporation of a linear 
trend. 

Non-stationarity need not be deterministic, and in fact many economic time 
series appear to be well described as processes with autoregressive representations 
which have Laurent expansions with one or more roots on the unit circle.lx The 
asymptotic distribution theory for the estimates of autoregressions of stationary 
series does not apply directly in such cases. For example, in the case of the 
first-order autoregression x, = px,_i + E,, ]p] 11, the least squares estimator of p 
has a limiting distribution that is non-normal if E, is non-normal [Rao (1961)] and 
a variance that is 0(1/n). If ]p] =l, the limiting distribution of the least squares 
estimator is not symmetric about p even when the distribution of E, is normal 
[Anderson (1959)] and the variance of the limiting distribution is again 0(1/n). 
The limiting distributions in these cases reflect the fact that information about the 

“One can never demonstrate non-stationarity with a finite sample: e.g. apparent trends can be 
ascribed to powerful, low frequency components in a purely non-deterministic, stationary series. As a 
practical matter, however, inference with only asymptotic justification is apt to be misleading in such 
cases. 

‘“Witness the popularity of the autoregressive integrated moving average models proposed by Box 
and Jenkins (1970) in which autoregressive representations often incorporate factors of the form 
(1 - L), or (1 - L’) when there are s observations per year, 



1140 J. Geweke 

unstable or explosive roots of these processes is accumulated at a more rapid rate 
than is information about the roots of stationary processes, since the variance of 
the regressors grows in the former case but remains constant in the latter. This 
intuition is reinforced by a useful result of Fuller (1976) who considers an 
autoregression of finite order, Y, = c,“=,c,Y1_, + E, with one root of csP_tc,L’ 
equal to unity and all others outside the unit circle. In the transformed equation 
YI = etY,-r +CP=*ei( YI+i_; - v,_~)+ E, the ordinary least squares estimates of 
0,). . . , $, have the same limiting distribution as they would if all roots of the 
expansion were outside the unit circle, and the ordinary least squares estimate of 
8, has the same limiting distribution as in the first order autoregressive equation 
with unit root. Hence, in the original equation inference about c2,. . . , cp (but not 
cr) may proceed in the usual way. 

Whether or not Fuller’s result can be extended to multiple roots and vector 
processes is an important problem for future research. If this extension is 
possible, then the methods of Section 5 involving the estimation of vector 
autoregressions can be applied directly to processes which are non-stationary 
because of roots on the unit circle in the expansions of their autoregressive 
representations. For example, if the process Z has autoregressive representation 
[(l- L)@Z,,,]A(L)z, = E, with all roots of IA(L)] outside the unit circle, tests of 
unidirectional causality between subsets of Z can proceed as in the stationary 
case. An attraction of this procedure is its conservatism: it allows non-stationar- 
ity, rather than requires it as is the case if one works with first differences. 

6.5. Multivariate methods 

While our discussion has been cast in terms of Wiener-Granger causal orderings 
between vector time series, in most empirical work causal relations between 
univariate time series are considered. In many instances relations between vector 
series would be more realistic and interesting than those between univariate series. 
The chief impediment to the study of such relations is undoubtedly the number of 
parameters required to describe them, which in the case of the vector autoregres- 
sive parameterization increases as the square of the number of series, whereas 
available degrees of freedom increases linearly. The orders of magnitude are 
similar for other parameterizations. Practical methods for the study of vector time 
series are only beginning to be developed, and the outstanding questions are 
numerous. All that will be done here is to mention those which seem most 
important for inference about causal orderings. 

The first question is whether or not inference about causal orderings is 
adversely affected by the size of the system, in the sense that for vector time series 
the power of tests is substantially less than for univariate series. Any answer to 
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this question is a generalization about relationships among observed economic 
time series; confidence intervals for measures of feedback constructed by Geweke 
(1982a) suggest that for samples consisting of 60-80 quarterly observations and 
lags of length six feedback must be roughly twice as great for a pair of bivariate 
series as for a pair of univariate series if unidirectional causality is to be rejected. 
The large number of parameters required for pairs of vector time series thus 
appears potentially important in the assessment of feedback and tests of unidirec- 
tional causal orderings. 

Two kinds of approaches to the large parameter problem are being taken. The 
first is to reduce the number of parameters, appealing to “principles of parsimony” 
and using exact restrictions. For example, the autoregressive representation may 
be parameterized as a mixed moving average autoregression of finite order, with 
the form of the moving average and autoregressive components specified by 
inspection of various diagnostic statistics [e.g. Wallis, (1978)]. This is the exten- 
sion to vector time series of the methods of Box and Jenkins (1970). There are two 
serious complications which emerge when going from univariate to multivariate 
series: estimation, in particular by exact maximum likelihood methods, is difficult 
[Osborn (1977)]; and the restrictions specified subjectively are quite large in 
number and not suggested in nearly so clear a fashion from the diagnostic 
statistics as in the univariate case. At least one alternative set of exact restrictions 
has been suggested for vector autoregressions: Sargent and Sims (1977) experi- 
ment with the restriction that in the finite order autoregressive model A( L)z, = E, 
the matrix A(L) be less than full rank. Computations are again burdensome. The 
forecasting accuracy of neither method has been assessed carefully. 

A second approach is to use prior information in a probabilistic way. This 
information might reflect economic theory, or might be based on purely statistical 
considerations. In the former case Bayes estimates of parameters and posterior 
odds ratios for the hypothesis of unidirectional causality will result, whereas in 
the latter case final estimates are more naturally interpreted as Stein estimates. In 
both cases, computation is simple if priors on parameters in a finite order 
autoregression are linear and one is content to use Theil-Goldberger mixed 
estimates. Litterman (1980) has constructed mixed estimates of a seven-variable 
autoregression, using six lags and 87 observations: 301 parameters are estimated, 
beginning with 609 degrees of freedom. The mean of the mixed prior is 1.0 for the 
seven coefficients on own lags and zero for all others, and variances decline as lag 
increases. His out-of-sample forecasts are better than those of the system esti- 
mated by classical methods and those issued by the proprietors of two large 
econometric models. This second approach is attractive relative to the first 
because of its computational simplicity, and because Bayesian or Stein estimators 
are methodologically better suited to the investigator’s predicament in the estima- 
tion of large vector autoregressions than are exact restrictions. 
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1. Introduction 

Since the publication of the influential articles of Haavelmo (1943) and Mann and 
Wald (1943) and the subsequent work of the Cowles Commission [see, especially, 
Koopmans (1950a)], most econometric models of complete economies have been 
formulated as systems of simultaneous stochastic difference equations and fitted 
to either quarterly or annual data. Models of this sort, which are discussed in 
Chapter 7 of this Handbook, can be written in either the structural form: 

k 

TY, + Box, + c KY,-, = u,, (1) 
r=l 

or the reduced form: 

y,=&x,+ i nry,-r+u,, (2) 
i-=1 

where yr is an n x 1 vector of observable random variables (endogenous variables), 
x, is an m x 1 vector of observable non-random variables (exogenous variables), U, 
is a vector of unobservable random variables (disturbances), r is an n X n matrix 
of parameters, B, is an n X m matrix of parameters, B,, . . . , B, are n X n matrices 
of parameters, II, = - T- ‘B,, r = 0,. . . , k, and u, = rP ‘u,. It is usually assumed 
that E(u,) = 0, E(u,u;) = 0, s # t, and E(uju;) = 2, implying that E(u,) = 0, 
E( u,u;) = 0, s f t, and I!(+$) = Sz = T-‘XT’- . 

The variables xi ,,..., x,,, y,, ,...,y”, will usually include aggregations over a 
quarter (or year) of flow variables such as output, consumption, exports, imports 
and investment as well as levels at the beginning or end of the quarter (or year) of 
stock variables representing inventories, fixed capital and financial assets. They 
will also include indices of prices, wages and interest rates. These may relate to 
particular points of time, as will usually be the case with an index of the yield on 
bonds, or to time intervals as will be the case with implicit price deflators of the 
components of the gross national product. 

Although the reduced form (2) is all that is required for the purpose of 
prediction under unchanged structure, the structural form (1) is the means 
through which a priori information derived from economic theory is incorporated 
in the model. This information is introduced by placing certain a priori restric- 
tions on the matrices B,,..., B, and r. The number of these restrictions is, 
normally, such as to imply severe restrictions on the matrices II,, . . . ,IIk of 
reduced form coefficients. Because of the smallness of the samples available to the 
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econometrician, these restrictions play a very important role in reducing the 
variances of the estimates of these coefficients and the resulting variances of the 
predictions obtained from the reduced form. The most common form of restric- 
tion on the matrices B,, . . . , B, and r is that certain elements of these matrices are 
zero, representing the assumption that each endogenous variable is directly 
dependent (in a causal sense) on only a few of the other variables in the model. 
But r is not assumed to be a diagonal matrix. 

The simultaneity in the unlagged endogenous variables implied by the fact that 
r is not a diagonal matrix is the distinguishing feature of this set of models as 
compared with models used in the natural sciences. It is necessary in order to 
avoid the unrealistic assumption that the minimum lag in any causal dependency 
is not less than the observation period. But there are obvious difficulties in 
interpreting the general simultaneous equations model as a system of unilateral 
causal relations in which each equation describes the response of one variable to 
the stimulus provided by other variables. For this reason Wold (1952,1954, 1956) 
advocated the use of recursive models, these being models in which r is a 
triangular matrix and Z is a diagonal matrix. 

One way of interpreting the more general simultaneous equations model, which 
is not recursive, is to assume that the economy moves in discrete jumps between 
successive positions of temporary equilibrium at intervals whose length coincides 
with the observation period. We might imagine, for example, that on the first day 
of each quarter the values of both the exogenous variables .and the disturbances 
affecting decisions relating to that quarter become known and that a new 
temporary equilibrium is established, instantaneously, for the duration of the 
quarter. But this is clearly a very unrealistic interpretation. For, if it were 
practicable to make accurate daily measurements of such variables as aggregate 
consumption, investment, exports, imports, inventories, the money supply and the 
implicit price deflators of the various components of the gross national product, 
these variables would undoubtedly be observed to change from day to day and be 
approximated more closely by a continuous function of time than by a quarterly 
step function. 

A more realistic interpretation of the general simultaneous equations model is 
that it is derived from an underlying continuous time model. This is a more basic 
system of structural equations in which each of the variables is a function of a 
continuous time parameter t. The variables in this model will, therefore, be 
J+(t),..., Y,(t),+(t),..., x,(t) where t assumes all real values. The relation be- 
tween each of these variables and the corresponding variable in the simultaneous 
equations model will depend on the type of variable. If the variable is a flow 
variable like consumption, in which case y,(t) is the instantaneous rate of 
consumption at time t, then the corresponding variable in the simultaneous 
equations model is the integral of y,(t) over an interval whose length equals the 
observation period, so that, if we identify the unit of time with the observation 
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period, we can write y,, = l,L,y,(r)dr. If y,(t) is a stock variable like the money 
supply then the corresponding variable in the simultaneous equations model will 
be the value of y,(t) at an integer value of t so that we have ylr = y,(t), 
t=1,2 T. ,..., 

It is intuitively obvious that, if the simultaneous equations system (1) is derived 
from an underlying continuous time model it will, generally, be no more than an 
approximation, even when the continuous time model holds exactly. One of the 
main considerations of this chapter will be the consequences, for estimation, of 
this sort of approximation and what is the best sort of approximation to use. This 
involves a precise specification of the continuous time model and a rigorous study 
of the properties of the discrete vector process generated by such a model. 

If the underlying continuous time model is a system of linear stochastic 
differential equations with constant coefficients, and the exogenous variables and 
disturbances satisfy certain conditions, then, as we shall see, the discrete observa- 
tions will satisfy, exactly, a system of stochastic difference equations in which 
each equation includes the lagged values of all variables in the system, and not 
just those which occur in the corresponding equation of the continuous time 
model. The disturbance vector in this exact discrete model is generated by a 
vector moving average process with coefficient matrices depending on the struct- 
ural parameters of the continuous time model. A system such as this will be 
satisfied by the discrete observations whether they are point observations, integral 
observations or a mixture of the two, as they will be if the continuous time model 
contains a mixture of stock and flow variables. If there are no exogenous 
variables, so that the continuous time model is a closed system of stochastic 
differential equations, then the exact discrete model can be written in the form 

yr = i F,WY,-r + 17r, 
r=l 

9r= i W)h.~ 
(3) 

r=O 

E(q) = 0, E( &) = K(e), E( E,E;) = 0, s z t, 

wheretheelementsofthematricesF,(8),...,F,(8),C,(B),...,C,(B)andK(B)are 
functions of a vector 8 of structural parameters of the continuous time model. 

It is a remarkable fact that the discrete observations satisfy the system (3) even 
though neither the integral /,\,y(r)dr nor the pair of point observationsy(t) and 
y(t - 1) conveys any information about the way in which y(t) varies over the 
interval (t - 1, t) and the pattern of variation of y(t) over a unit interval varies 
both as between different realizations (corresponding to different elementary 
events in the space on which the probability measure is defined), for a given 
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interval, and as between different intervals for a given realization. Moreover, the 
form of the system (3) does not depend on the observation period, but only 
on the form of the underlying continuous time model. That is to say the integers 
k and 1 do not depend on the observation period, and the matrices 

F,(e),...,F,(tQC,(Q,..., C,( r3) and K( 0) depend on the observation period only 
to the extent that they will involve a parameter 6 to represent this period, if it is 
not identified with the unit of time. The observation period is, therefore, of no 
importance except for the fact that the shorter the observation period the more 
observations there will be and the more efficient will be the estimates of the 
structural parameters. 

The exact discrete model (3) plays a central role in the statistical treatment of 
continuous time stochastic models, for two reasons. First, a comparison of the 
exact discrete model with the reduced form of an approximating simultaneous 
model provides the basis for the study of the sampling properties of parameter 
estimates obtained by using the latter model and may suggest more appropriate 
approximate models. Secondly, the exact discrete model provides the means of 
obtaining consistent and asymptotically efficient estimates of the parameters of 
the continuous time model. 

For the purpose of predicting future observations, when the structure of the 
continuous time model is unchanged, all that we require is the system (3). But, 
even for this purpose, the continuous time model plays a very important role. For 
it is the means through which we introduce the a priori restrictions derived from 
economic theory. Provided that the economy is adjusting continuously, there is no 
simple way of inferring the appropriate restrictions on (3) to represent even such 
a simple implication of our theory as the implication that certain variables have 
no direct causal influence on certain other variables. For, in spite of this causal 
independence, all of the elements in the matrices F,, . . . , Fk in the system (3) will 
generally be non-zero. In this respect forecasting based on a continuous time 
model derived from economic theory has an important advantage over the 
methods developed by Box and Jenkins (1970) while retaining the richer dynamic 
structure assumed by their methods as compared with that incorporated in most 
discrete time econometric models. 

For a fuller discussion of some of the methodological issues introduced above 
and an outline of the historical antecedents [among which we should mention 
Koopmans (1950b), Phillips (1959) and Durbin (1961)] and development of the 
theory of continuous time stochastic models in relation to econometrics, the 
reader is referred to Bergstrom (1976, ch. 1). Here we remark that the study of 
these models has close links with several other branches of econometrics and 
statistics. First, as we have indicated, it provides a new way of interpreting 
simultaneous equations models and suggests a more careful specification of such 
models. Secondly, it provides a further contribution to the theory of causal chain 
models as developed by Wold and others. Finally, as we shall see, it provides a 
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potentially important application of recent developments in the theory of vector 
time series models. To some extent these developments have been motivated by 
the needs of control engineering. But it seems likely that their most important 
application in econometrics will be to continuous time models. 

In the following section we shall deal fairly throughly with closed first order 
systems of linear stochastic differential or integral equations, proving a number of 
basic theorems and discussing various methods of estimation. We shall deal with 
methods of estimation based on both approximate and exact discrete models and 
their application to both stock and flow data. The results and methods discussed 
in this section will be extended to higher order systems in Section 3. In Section 4 
we shall discuss the treatment of exogenous variables and more general forms of 
continuous time stochastic models. 

2. Closed first-order systems of differential and integral equations 

2. I. Stochastic limit operations and stochastic d@erential equations 

Before getting involved with the problems associated with stochastic limit opera- 
tions, it will be useful to consider the non-stochastic differential equation: 

Dy(t)=ay(t)+b++(t), (4) 

where D is the ordinary differential operator d/dt, a and b are constants and G(t) 
is a continuous function of t (time). It is easy to see that the solution to (4) subject 
to the condition that y(O) is a given constant is: 

For, by differentiating (5) we obtain: 

(5) 

=ay(t)+b+$(t). 
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From (5) we obtain: 
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y(f)=[-le “‘“)~(~)dr+(~(0)+~)e”‘-~+~~le”‘“’~(r)d~ 

_ 0 

-e/ 
r-l 

0 

e”(r~l~r)~(r)dr+eu(~(0)+~)eu(f~l)-eu~ 

+(e’-1): $1’ e’(“)+(r)dr 
r-l 

=e”_y(t-I)+(&‘-I)$+/’ e”(‘P”$(r)dr. 
f-1 

We have shown, therefore, that the solution to the differential equation (4) 
satisfies the difference equation: 

where 

f = e”, g= (e”-l)b 
a 

and 

$,=I’ e”(r-r)$( r) dr. 
r-l 

In order to apply the above argument to an equation in which +(t) is replaced 
by a random disturbance function it is necessary to define stochastic differentia- 
tion and integration. We can do this by making use of the concept of convergence 
in mean square. The sequence [,,, n = 1,2,. . . , of random variables is said to 
converge in mean square to a random variable TJ if: 

lim E(&,-n)*=O. 
,1 4 (23 

In this case n is said to be the limit in mean square of 5, and we write: 

Suppose now that { t(t)} is a family of random variables, there being one member 
of the family for each value of t (time). We shall call {E(t)} a continuous time 
random process if t takes on all real values and a discrete time random process if t 
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takes on all integer values, the words “continuous time” or “discrete time” being 
omitted when it is clear from the context which case is being considered. A 
random process {t(t)} is said to be mean square continuous on an interval [c, d] 
if: 

E[t(+t(t - A)]* -+ 0 

uniformly in t, on [c, d], as h -+ 0. And it is said to be mean square differentiable if 
there is a random process {n(t)} such that: 

In the latter case we shall write: 

and call D = d/d t the mean square differential operator. 
In order to define integration we can follow a procedure similar to that used in 

defining the Lebesgue integral of a measurable function [see Kolmogorov and 
Fomin (1961, ch. 7)]. We start by considering a simple random process which can 
be integrated by summing over a sequence of measurable sets. The random 
process {E(t)} is said to be simple on an interval [c, d] if there is a finite or 
countable disjoint family of measurable sets A,, k = 1,2,. . . , whose union is the 
interval [c, d] and corresponding random variables .&, k = 1,2,. . . , such that: 

E(t)=&, tgA,, k=1,2,... . 

Let ]Ak ] be the Lebesgue measure of A,. Then the simple random process (t(t)} 
is said to be integrable in the wide sense on [c, d] if the series CT= itk ]A, ( 
converges in mean square. The integral of {t(t)} over [c, d] is then defined by: 

/‘[(t)dr= F &lAk(= 1.i.m. i EklAxl. 
c k=l n4m k=l 

We turn now to the integration of an arbitrary random process. We say that a 
random process { t(t)} . IS integrable in the wide sense on the interval [c, d] if there 
exists a sequence {5,(t)}, n = 1,2,. . . , of simple integrable processes which 
converges uniformly to {t(t)} on [c, d], i.e. 

E[5(t)-5,(t)12 -‘O, 
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as n -+ co, uniformly in t, on [c, d]. It can be shown [see Rozanov (1967, p. ll)] 
that, in this case, the sequence /,“tn (t ) d t, n = 1,2,. . . , of random variables has a 
limit in mean square which we call the integral of {t(t)} over [c, d]. We can then 
write: 

l’[(t)dt = l.i.m./‘&(t)dt. 
C C 

If the random process {E(t)} is mean square continuous over a finite interval 
[c, d], then it is integrable over that interval. For we can then define the simple 
random process {t,(t)} by dividing [c, d] into n equal subintervals A,i,. . .,A,,,,, 
letting [,i,. . . , [,,,, be the random variables defining t(t) at, say, the midpoints of 
A “i,. . . ,A,,, respectively, and putting: 

E,(t) = 5”k, tEA,,k, k =l,...,n. 

The simple random process {t,(t)} IS o vtously integrable, its integral being b 
Ci,,&,k]Ank]. Moreover, it follows directly from the definition of mean square 
continuity and the fact that the length of the intervals A,, tends to zero as t + 00 
that the sequence {t,,(t)}, n = 1,2,. . ., of simple random processes converges, 
uniformly on [c, d], to {t(t)}. We have shown, by this argument, that if a 
random process is mean square continuous, then it is integrable over an interval, 
not only in the wide sense defined above, but also in a stricter sense correspond- 
ing to the Riemann integral. A much weaker sufficient condition for a random 
process to be integrable in the wide sense is given by Rozanov (1967, theorem 
2.3). 

It is easy to show that the integral defined above has all the usual properties. In 
particular, if {[i(t)} and {t*(t)} are two integrable random processes and a, and 
a2 are constants, then: 

And if {t(t)} is mean square continuous in a neighbourhood of t, then: 

where d/dt is the mean square differential operator. 
In addition to the various limit operations defined above we shall use the 

assumption of stationarity. A random process { .$( t )} is said to be stationary in the 
wide sense if it has an expected value E[,$‘( t)] not depending on t and a correlation 



1154 

function B(t, s) defined by: 

B(t, s) = E[E(+%)] > 

depending only on the difference t - S, so that we can write: 

B(t,s)=y(t-s). 

A. R. Bergstrom 

A wide sense stationary process is said to be ergodic if the time average 
(l/T)ll[(t)dt converges in mean square to the expected value E[t(t)] as 
T + 00. A random process {t(t)} is said to be strictly stationary if, for any 
numbers t,, . . . , t,, the joint distribution of [(tr + r), . . . , <(tk + r) does not de- 
pend on r. 

A necessary and sufficient condition for a wide sense stationary process to be 
mean square continuous is that its correlation function is a continuous function of 
(t - s) at the origin (i.e. when t = s). For we have: 

Ek(+5(t - h)]‘= E[5(t)12+E[5(l - h)12--E[t(Mf - h)] 

= 2E[5(#-2E[5(@(~ - h)] 
=2[B(t,t)-B(t,t-h)] 

= 2[Y(O)-Y(h)]. 

We shall now consider the stochastic diferential equation: 

Du(t)=&)-b+W, (7) 

where D is the mean square differential operator and {t(t)} is a mean square 
continuous wide sense stationary process. Our ultimate aim is to consider the 
estimation of the parameters a and b from a sequence y(l), y(2),.. ., of observa- 
tions when E(t) is an unobservable disturbance. For this purpose it will be 
necessary to place further restrictions on {t(t)}. But we shall not concern 
ourselves with these at this stage. Our immediate aim is to find a solution to (7) 
and show that this solution satisfies a difference equation whose relation to (7) is 
similar to that of the non-stochastic difference equation (6) to the differential 
equation (4). 

Theorem I 

If {E(t)} is a mean square continuous wide sense stationary process, then, for any 
given y(O), (7) has a solution: 
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and this solution satisfies the stochastic difference equation: 

y(t)=fy(t-1)+g+q, 
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(9) 

where 

f =e”, g= (e”-l)! 
a 

and 

&,= f 
/ 

eU(‘-‘)[( r) dr. 
l-l 

Proof 

The random process {e?$‘(t)} is mean square continuous on any finite interval. 
For: 

E[e”‘[(t)-e o(‘Ph)<(t - A)]‘= E{e”‘[[(t)-t(t - h)] 

+e”‘(l-e-“h)~(t - h)}’ 

=e2”‘E[[(t)-[(t-h)]2+e2ut(l-e-““)2y(0) 

+2e2”(1-ePuh)[y(h)-y(O)]. 

And, since eZar . 1s bounded on any finite interval while E[[(t)-((t - h)12 -+ 0, 
uniformly in t, as h + 0, the right-hand side of the last equation converges to 
zero, uniformly in t, as h + 0. 

It follows that the integral /de-Or[(r)dr exists. Moreover: 

/ 0 

‘eH-r)[( r) dr = ealbpar[( r) dr 

and 

$[k-ur.$(r)dr] =e-O’<(t). 

All the operations that were performed in showing that (5) is a solution to (4) and 
that this solution satisfies (6) are valid in the mean square sense, therefore, when 
+(t) is replaced by E(t). It follows that (8) is a solution to (7) and that this 
solution satisfies (9). n 
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We turn now to a preliminary consideration of the problem of estimation. It 
would be very convenient if, in addition to being wide sense stationary and mean 
square continuous the random process {t(t)} had the property that its integrals 
over any pair of disjoint intervals were uncorrelated. For then the disturbances E[, 
t=l2 , ,..., in (9) would be uncorrelated and, provided that they satisfied certain 
additional conditions (e.g. that they are distributed independently and identically), 
the least squares estimatesf* and g* of the constants in this equation would be 
consistent. We could then obtain consistent estimates of a and b from 

a* = logf* and b* = a*g* 
f*-l. 

But it is easy to see that, if {t(t)} is mean square continuous, it cannot have the 
property that its integrals over any pair of disjoint intervals are uncorrelated. For 
the integrals /,t,[(r)dr and /,“h[(r)d r will obviously be correlated if h is 
sufficiently small. The position is worse than this, however. We shall now show 
that there is no wide sense stationary process (whether mean square continuous or 
otherwise) which is integrable in the wide sense and whose integrals over every 
pair of disjoint intervals are uncorrelated. 

Suppose that the wide sense stationary process {E(t)} is integrable in the wide 
sense and that its integrals over every pair of disjoint intervals are uncorrelated. 
We may assume, without loss of generality, that E[[( t)] = 0. Let E[ /,‘_ 1[( r) dr] * 
= c and let h = l/n, where n is an integer greater than 1. We shall consider the set 
of n integrals: 

By hypothesis these integrals are uncorrelated, and by the assumption of 
stationarity their variances are equal. It follows that: 

and hence: 

i.e. the variance of the mean value, over an interval, of a realization of t(t) tends 
to infinity as the length of the intervals tends to zero. But this is impossible since, 
for any random process which is integrable in the wide sense, the integrals must 



Ch. 20: Continuous Time Stochastrc Models 

satisfy [see Rozanov (1967, p. lo)] the inequality: 

And, if the process is stationary in the wide sense, the right-hand side of (10) 
equals y(0)h2. It follows that: 

This contradiction shows that the integrals over sufficiently small adjacent inter- 
vals must be correlated. 

Although it is not possible for the integrals over every pair of disjoint intervals, 
of a wide sense stationary process, to be uncorrelated, their correlations can, for 
intervals of given length, be arbitrarily close to zero. They will be approximately 
zero if, for example, the correlation function is given by: 

-y(t - 3) = ~2e-f?-sI, 

where a2 and p are positive numbers and p is large. A stationary process with this 
correlation function does (as we shall see) exist and, because the correlation 
function is continuous at the origin, it is mean square continuous and hence 
integrable over a finite interval. If /3 is sufficiently large the disturbances E,, 
t=l2 ? ,**., in (9) can, for all practical purposes, be treated as uncorrelated, and 
we may expect the least squares estimates f* and g* to be approximately 
consistent. 

Heuristically we may think of an improper random process {S(t)} called 
“white noise” which is obtained by letting /I -+ cc in a wide sense stationary 
process with the above correlation function. For practical purposes we may 
regard white noise as indistinguishable from a process in which p is finite but 
large. But this is not a very satisfactory basis for the rigorous development of the 
theory of estimation. For this purpose we shall need to define white noise more 
precisely. 

2.2. Random measures and systems with white noise disturbances 

A precise definition of white noise can be given by defining a random set function 
which has the properties that we should expect the integral of l(t) to have under 
our heuristic interpretation. That is to say we define a random set function l 
which associates with each semi-interval A = [s, t) (or A = (s, t]) on the real line a 
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random variable [(A) and has the properties: 

s-CA, U A,) = S(A,)+l(A,), 

A. R. Bergsrrom 

when A, and A, are disjoint, i.e. it is additive, 

E[{(A)12 = a2[t -.s], 

where n2 is a positive constant, 

E[S(A,)1(A,)] =O, 

when A, and A, are disjoint. 
A set function with these properties is a special case of a type of set function 

called a random measure. The concept of a random measure is of fundamental 
importance, not only in the treatment of white noise, but also (in the more general 
form) in the spectral representation of a stationary process, which will be used in 
Section 4. We shall now digress, briefly, to discuss the concept more generally and 
define integration with respect to a random measure and properties of the integral 
which we shall use in the sequel. 

Let R be some semiring of subsets of the real line (e.g. the left closed 
semi-intervals, or the Bore1 sets, or the sets with finite Lebesgue measure [see 
Kolmogorov and Fomin (1961, ch. 5)]. And let @ be a random set function which 
associates with any subset A E R a random variable @(A) (generally complex 
valued) and has the properties: 

@(A, U A,) = @(A,>+ @(A,>, 

if A, and A, are disjoint, i.e. it is additive: 

EI@(A)12 = F(A) <co, 

E[ @(A,)q(A,)] = 0, 

when A, and A, are disjoint. Then @ is said to be a random measure. If, in 
addition. 

@(A> = ~@(A,> 
k 

for every A E R which is the union of disjoint subsets A, and the series on the 
right-hand side converges in mean square, then the random measure @ is said to 
be o-additive. 
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It can be shown [Rozanov (1967, theorem 2.1)] that a u-additive random 
.measure defined on some semiring on the real line can be extended to the ring of 
all measurable sets in the u-ring generated by that semiring. This implies that if 
we give the random measure {, defined above, the additional property of 
a-additivity so that: 

S(A) = CS’@,), 

whenever the semi-interval A is the union of disjoint semi-intervals A, then it can 
be extended to the ring of all Bore1 sets on the real line with finite Lebesque 
measure. We shall define white noise by the random measure 5 extended in this 
way to the measurable sets on the real line representing the time domain. 

We turn now to the definition of the integral of a (non-random but, generally, 
complex valued) measurable function f(x) with respect to a random measure @ 
which is defined on the Bore1 sets of some interval [c, d] (where c and d may have 
the values - co and cc, respectively). We start by defining the integral of a simple 
function. The measurable function f(x) is said to be simple on the interval [c, d] 
if it assumes a finite or countable set of values!, on disjoint sets A, whose union 
is [c, d]. And a simple function is said to be integrable with respect to the random 
measure @ on the interval [c, d] if the series c,fk@( A,) converges in mean 
square. The integral of f(x) with respect @ over [c, d] is then defined as the limit 
in mean square to which this sum converges and we write: 

An arbitrary measurable function f(x) is said to be integrable with respect to Cp 
on the interval [c, d] if there is a sequence f,( x), n = 1,2,. . . , of simple integrable 
measurable functions which converges in mean square to f(x) on [c, d], i.e. 

as n + co, where the integral is defined in the Lebesgue-Stieltjes sense [see 
Cramer (1951, ch. 7)]. It can be shown [Rozanov (1967, p. 7)], that, in this case, 
the sequence /pr;(x)@(dx), n =1,2,..., has a limit in mean square which we call 
the integral of f(x) over [c, d]. We can then write: 
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If @(A) is undefined on [ - co, 001 we can define /Tmf(x)@(dx) by: 

Ia f(x)@(dx) = ;;.m.; /df(x)@(dx), 
-m -t C 

provided that the limit on the right-hand side of the equation exists. 
A necessary and sufficient condition for the existence of the integral 

/,df(x)@(dx), where f( ) x IS an arbitrary measurable function (and c and d may 
assume the values - co and 00, respectively), is: 

If this condition is satisfied, then [Rozanov (1967, p. 7)]: 

And, if the measurable functions!(x) and g(x) each satisfy condition (ll), then 
[Rozanov (1967, p. 7)]: 

When @ is the random measure, {, by which we have defined white noise, F(A) 
has the simple form a2]A (, where 

and ]A] is the Lebesgue measure of A. A necessary and sufficient condition for 
the existence of the integral /,df(r)l(dr), where f(r) is a measurable function 
(and c and d may assume the values - cc and co, respectively), is: 

(14) 

the integral in (14) being the ordinary Lebesgue integral [which will be equal to 
the Riemann integral if f(r) is a continuous function]. If this condition is 
satisfied, then [as a special case of (12)]: 
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And, if the measurable functions f(x) and g(x) each satisfy condition (14) then 
[as a special case of (13)]: 

06) 

We note incidentally that jif(r){(d ) r IS a random process whose increments are 
uncorrelated, i.e. a random process with orthogonal increments [see Doob (1953, 
ch. 9) for a full discussion of such processes]. 

Before applying the above results in the treatment of stochastic differential 
equations with white noise disturbances, we shall illustrate their application by 
proving the existence of a wide sense stationary process with the correlation 
function u2e-~11-Sl, as assumed in the heuristic introduction to the concept of 
white noise given at the end of the last subsection. The function f(r), defined by 

f(r) = a(2P)1’2e-B(‘-‘), 

is integrable, with respect to 5, over the interval [ - co, t], since 

/’ [fJw ‘/2e-fi(f-r) 2dr = a2 1 9 

-00 

i.e. condition (14) is satisfied. Using (15): 

E 
[J 

f 42P) 
-00 

1~2e-/+“S(dr)]2 = a2. 

And, if s < t: 

E 
[J 

s a(2P) 
-00 

1’2e~~(s~‘)j(dr)~,_a(2~)1’2e-~(f~’)~(dr)] 

= 2pu2E /’ 
[ -co 

e-P(“){(dr)J‘ e-B(‘P”){(dr) 1 
+2pu2E ’ 

[I 
e-~(--r~i(dr~~e-B(r-rijjdr)] 

= 2@2e-/3(‘-s)E -m[,;me-/3q~ 

= u2e-B(f-3) 

It follows that {t(t)}, where 

t(r) = /’ u(2P)“2eea(‘P’){(dr) 
-00 

is a wide sense stationary process with the correlation function u~~-~I’-~I. 
A stochastic differential equation with a white noise disturbance is sometimes 

written like (7) with Dv(t) (or dy(t)/dt) on the left-hand side and S(t) in place 
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of t(t) on the right-hand side. It is then understood that {(t) is defined only by 
the properties of its integral and that y(l) is not mean square differentiable. We 
shall not use that notation in this chapter since we wish to reserve the use of the 
operator D for random processes which are mean square differentiable, as is y(t) 
in (7). A first-order, linear stochastic differential equation with constant coeffi- 
cients and a white noise disturbance will be written: 

dy(t) = (&)+b)dt +S(dt), 07) 

which will be interpreted as meaning that the random process y(t) satisfies the 
stochastic integral equation: 

v(t)- y(O) =[[oy(r)+hl dr + [Wr). 

for all t. 

08) 

Equation (17) is a special case of the equation 

dy(t) = m(t, _v(t))dt + e(t, y(t))l(dl), (19) 

in which the functions m( t, y) and a( t, y) can be non-linear in t and y, and which 
is interpreted [see Doob (1953, ch. 6)J as meaning that r(t) satisfies the stochastic 
integral equation: 

for all t on some interval [0, T]. It has been shown [see Doob (1953, ch. 6), which 
modifies the work of Ito (1946) and (1950)] that, under certain conditions, there 
exists a random process y(l) satisfying (20), for all t on an interval [0, T], and 
that, for any given y(O), this solution is unique in the sense that, if j(t) is any 
other solution: 

P[y(t)-p(t)=01 =l, O<t<T. (21) 

The conditions, assumed in Doob (1953), are that the process { /,‘S(dr)} is 
Gaussian and that the functions m and u satisfy a Lipschitz condition and certain 
other conditions on [0, T]. A random process {t(t)) is said to be Gaussian if the 
random variables t(t) are normally distributed. The assumption that { /,,‘{(dr)} is 
Gaussian implies, therefore, that l(A,) and l(A,) are independent if A, and A, 
are disjoint and identically distributed if JA, ( = (A,(. 

In discussing the solution to (18) we shall not need to assume that { (,‘{(dd)} is 
Gaussian. We shall now show that this equation has a solution, which will be 
given explicitly, that this solution is unique, in the sense of (21), in the class of 
mean square continuous processes, and that it satisfies a difference equation with 
serially uncorrelated disturbances. 
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Theorem 2 

1163 

If { is a random measure, defined on all subsets of the line - co < t < 00 with 
finite Lebesgue measure, such that: 

E[C(dt)] = 0, E[{(dt)12 = a2dt, 

then 
(a) for any given y(O) (18) has a solution: 

(22) 

(b) the solution (22) is unique in the class of mean square continuous processes, 
i.e. if J(t) is any other mean square continuous process satisfying (18) and 
j,(O) = y(O), then (21) holds for any interval [0, T]; 

(c) the solution (22) satisfies the stochastic difference equation: 

At)=fy(t-I)+g+s,, (23) 

where 

f = e”, g = (e”-l)e 
a’ E(E~ = 0, 

E(ef)=<(e2a-l), Eb,) = 0, sf t. 

Proof 

(a) We first note that the integral /de ““-‘){(dr) exists, since condition (14) is 
satisfied. Now let v( t) be defined by (22) and let h be any positive number. Then 

y(t)- y( t - h) = jde”(“)[(dr)- jde”(‘PhM”b(dr) 

+[y(0)+~](e”‘-e”(f-h))+~~~u(~~“~”~(dr) 

= (I-e~““)y(t)+(l-e-““)$ +e-U’~‘h(eU(‘-r)-l)S(dr) 

+ (e-Oh - l)l;hS(dr)+jl;hUdr) 

=ahy(t)+bh+[Lhl(dr)+u(t,h), (24) 
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where 

a2h2 
u(t,h)= -2+ 

i 
q- . ..)[&)+.I 

+e~oh f 
/ 

(e”(‘-‘)-l)[(dr)+ 
a2h2 

t-h 

- ah + 2 - . . . 

But 

E (e0Ct-r) _l){(dr) (e”(‘-“)-l)*dr 

1 ( 2oh =-e 

2a 
-I)-i(eUh-l)+h 

=O(h3). 

Therefore 

Now let h = t/n, where n is a positive integer. Then 

At)-y(O)= [~(t)-y(t-h)l+[y(t-h)-y(t-2h)l+ ... 

+b(t-(n-l)h)-y(O)] 

Now it is clear from (24) that y(t) is mean square continuous, and hence: 

Moreover. since 

Since (25) holds for all positive integers n, it must hold when each term is 
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replaced by its limit in mean square as n + m, i.e. 

1165 

(b) Let P(t) be any other mean square continuous process satisfying (18), on 
[0, 7’1, and j(0) = y(O). Define: 

Then 

t-(t) = ajolE(W. OstsT (26) 

Since y(t) and j(t) are mean square continuous, t(t) is mean square continuous. 
Therefore E[[( t)12 is a continuous function of t, since 

IEk(t)l’-Ek(r - h)12(r E(k(t)12- [t(t - h)121 
= E[lt(t)+t(t- h)l I<(+@ - h)l] 

I {@i(t)+@ - h)12E[t(+t(t - h)]2}1’2 
--, 0, ash-+O. 

Let n be a positive integer such that r = T/n < l/u. Since E[[( t)]’ is continuous it 
has a maximum E[t(~r)]~ on the closed interval [0, r], and 0 $ rr 2 T I l/a. 
Therefore, using (10) and (26): 

but u2r2 < 1 Therefore: 1 . 

E[5h)12 =o- 
Therefore: 

P([(t) =o) =l, OItIr. 
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Since a similar relation holds for each of the n intervals, of length 7, whose union 
is [0, T] we have: 

P@(Z) = 0) =l, OstsT. 

(c) Let y( t) be the random process defined by (22). Then 

y(t) = ea/orele “(‘L’){(dr)+e”[ y(O)+ i]e”(‘-i) 

-ee” i$)+(eO-1)$+/l ea(‘-r){(dr) 
l-l 

=fY(t-l)+g+&,, 

where 

Et= ’ J ea(lpr)((dr). 
t-1 

(27) 

It is clear from the definition of the integral that: 

E( E,) = E lliea(‘-‘){(dr)] = 0. 
] 

And, using (15) and (16): 

=(T 
2 l 

/ 0 
eZo’dr = 2 (e2’ - l), 

E( E,E~) = E l: reO(‘-‘)[(dr)il ie”(‘-‘){(dr )] = 0, 
] 

sz t, 

where s and t are integers. n 

In order to prove, in the simplest form, certain results which will be used 
throughout this chapter, we have dealt very fully with a single stochastic differen- 
tial equation with a white noise disturbance. But, from the point of view of 
econometrics, our main interest is with systems of equations. These introduce new 
problems. For the coefficients of a system of stochastic differential equations, 
representing a system of causal adjustment relations, will be subject to certain 
a priori restrictions derived from economic theory, and these will imply certain 
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restrictions on the coefficients of the derived system of difference equations used 
for estimation purposes. Because of the complexity of the latter restrictions and 
the fact that they cannot be inferred directly from economic theory, the continu- 
ous time formulation of the model is important, even if our ultimate aim is only 
to predict the future discrete observations of the variables. 

We shall consider the system: 

dy(t) = [@)~(t)+b@>l dr +3(d+ (28) 

wherey(t)=[y,(t),..., y,(t)]’ is a vector whose elements are random processes, 
A( ~9) is an n x n matrix whose elements are functions of a vector 13 = [fl,, . . . , S,,] of 
structural parameters and b(8) is a vector whose elements are functions of 0. We 
assume that p -C n2, so that the matrix A is restricted. In the simplest case, where 
the only a priori restrictions are that certain variables have no direct causal 
influence on certain other variables, the only restrictions on A are that certain 
specified elements of this matrix are zero, and 8 is then the vector of unrestricted 
elements of A. With regard to the disturbance vector {(dt) we introduce the 
following assumption. 

Assumption I 

l= [L...,Ll 

is a vector of random measures defined on all subsets of the line - co < t < 00 
with finite Lebesgue measure, such that 

E[l(dt)] = 0, E[J.(dt)Y(dt)] = (dt)Z 

where 2 is a positive definite matrix. 

Equation (28) will be interpreted as meaning that the vector random process 
y(t) satisfies the system: 

.Y@>- ~(0) = jdM+(r)+b(8)1 dr + /,(Z(dr), (29) 

for all t. With respect to this system, we shall now prove a theorem which 
generalizes Theorem 2. 

Theorem 3 

If ,C satisfies Assumption 1, then: 
(a) for any given n X 1 vector y(O), the system (29) has a solution: 

r(t) =~(f-~)n(e)~(dr)+efA(B'[y(0)+A-l(e)b(e)] 

- A-l(e)b(e), (30) 
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where, for any matrix A, eA is defined by 

eA=Z+ c $A’; 
r=l . 

(b) the solution (30) is unique in the class of mean square continuous vector 
processes, i.e. if j(t) is any other vector of mean square continuous processes 
satisfying (29) and j(O) = y(O), then (21) holds on any interval [0, T]; 

(c) the solution (30) satisfies the system 

I+) = NG(t -l)+g@)+Er (31) 

of stochastic difference equations, where 

F=eA, g= (eA - Z)A-‘6, E( E,) = 0, 

E(E,E;)=Jole’A~e’A’dr=n, E(&)=O, sft. 

Proof 

(a) For the purpose of the proof we shall assume that A has distinct eigenval- 
ues, Ar,...,h,, although this is not essential for the validity of the theorem. We 
then have: 

A = H-‘AH, 

where 

and H is a matrix whose columns are eigenvectors of A. Now define: 

z(t) = Hy(t). 

Then, from (29): 

z(t)-z(O)=Jol[Az(r)+Hb]dr+JorH[(dr). (32) 
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Clearly, H{ is a vector of random measures, such that: 

E[ (H{(dt)( H[(dt))‘] = (dt)HZH’. 

Each equation in the system (32) satisfies the conditions of Theorem 2, therefore, 
and, by a direct application of that theorem to each equation in the system, we 
obtain the solution: 

z(t) =/‘e (‘-‘)*H{(dr)+e’*[z(~)+A-‘Hb]-K’Hb. 
0 

Then, premultiplying (33) by HP ‘, we obtain: 

y(t) = j,lH- ‘e(‘-‘)*H{(dr)+ Hp’e’*H[y(0)+ HplAp’Hb] 

But: 

- H-‘K’Hb. 

H-‘e”*H=HP’ I+fA+cA2+ . . . H 
[ 1 

=I+tHAH+;HplAHHplAH+ ... 

=IfrA+$P+ ... 

_ IA 

Equation (34) can, therefore, be written as (30). 
(b) It follows from Theorem (2) that (33) is a unique solution 

hence, (34) or (30) is a unique solution to (29) in the class of 
continuous vector processes. 

(c) Let z(t) be the vector random process defined by (33). Then 

z(t) = en/‘-l 
0 

e~‘~‘~‘~*H~(dr)+e”e~‘~‘~“[z(0)+A~’Hb] 

-e*A-‘Hb + (e* - I)A-‘Hb + /’ e(‘-‘)*H{(dr) 
f-l 

=e*z(t-l)+(e*- l)A-lb+/’ e(‘-‘)*H{(dr). 
t-1 

(34) 

(33) 

to (32) and, 
mean square 

(35) 
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Premultiplying (35) by H-‘, we obtain: 
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where 

Et= t 
/ 

e(t-')A{(dr). 
t-1 

(36) 

It is clear from the definition of the integral that: 

E(Et) = E e(rer)A{(dr)] = 0. 

And, using the generalizations of (15) and (16) for a vector random measure, we 
obtain: 

E( E,E;) = E 1: le(‘~‘)AS(dr)~~ ie’“‘“~(dr )] 
] 
t 

= 
/ [ 

e(t-‘)AZ’e(t-‘)Af]&. 

t-l 

/ 

1 
= erAZerA’dr = s2, 

0 

E( E,E:) = E [~te(“~“)A[(dr)~~ le”-r)A~(dr)] 
[ 

= 0, s#t. n 

We shall refer to the system (31) as the exact discrete model corresponding to 
the continuous time model (29). It should be emphasized that, unlike the 
continuous time model from which it is derived, the exact discrete model is not a 
system of structural relations. It cannot be interpreted as a system of causal 
relations in which each equation describes the direct response of one variable to 
the stimulus provided by other variables in the system. For each coefficient in the 
matrix F will reflect the interaction between all variables in the system during the 
observation period. Even if the only a priori restrictions on the matrix A are that 
certain elements of this matrix are zero, in which case B is a vector whose elements 
are the unrestricted elements of A, the elements of F will be complicated 
transcendental functions of the elements of B and will, generally, be all non-zero. 
And, even if 2 is a diagonal matrix, the elements of D will, generally, be all 
non-zero. 

The relation of the exact discrete model (31) to the continuous time model (29) 
is rather similar, therefore, to that of the reduced form of a simultaneous 
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equations model to the structural form of the model. And, as we shall see, the 
relation between the exact discrete model of a continuous time model and 
the reduced form of a simultaneous equations model, used to approximate the 
continuous time model, plays an important role in the analysis of the properties 
of various estimators. 

2.3. Estimation 

It is easy to see that a necessary and sufficient condition for the identifiability of 
the parameter vector B in the model (29) is that the correspondence between 8 and 
[F(B), g(B)] is one to one. But this condition is more restrictive than it might, at 
first sight, appear to be. It is more restrictive than the condition that the 
correspondence between 0 and [A(B), b(O)] is one to one. For the equation 

(37) 

will, generally, not have a unique solution unless A is restricted. This is because, 
if A is a matrix satisfying (37) and some of its eigenvalues are complex, then by 
adding to each pair of conjugate complex eigenvalues the imaginary numbers 
2in17 and - 2inII, respectively, where n is an integer, we obtain another matrix 
satisfying (37). For identifiability the restrictions on A must be sufficient to 
exclude any other matrix obtained in this way. 

The real problem here is that, unless our model incorporates sufficient a priori 
restrictions we cannot distinguish between structures generating oscillations whose 
frequencies differ by integer multiples of the observation period. This phenome- 
non is known as aliasing. The identification problem is more complicated for 
continuous time models, therefore, than it is for discrete time models. For a fuller 
discussion of the identification problem the reader is referred to Phillips (1973) 
who derives a rank condition for identifiability in the case in which each a priori 
restriction on A is a linear homogeneous relation between the elements of a row of 
A.’ We shall assume throughout the rest of this section that 0 is identifiable. 

In the discussion of estimation methods we shall assume, initially, that the 
sample is of the form y(l),. . . J(T) as it would be if all variables were stock 
variables or prices at points of time. The complications arising when some or all 
of the variables are observable only as integrals will be discussed later. 

The problem of estimating 8 is equivalent to the problem of estimating [F, g] 
subject to the restriction that this matrix can be written as [F(d), g( t?)] for some 
vector 8 in p-dimensional space (or the subset of this space to which B is required 
to belong). As we have seen this restriction is very complicated, even in the 

‘See also the recent contributions of Hansen and Sargent (1981, 1983). 



1172 A. R. Bergstrom 

simplest cases, and the computational problem of obtaining a consistent estimate 
of 6 in a large model is such that it is worth considering methods based on an 
approximate discrete model. Such methods are likely to be useful in any research 
programme, at least for the preliminary screening of hypotheses. 

An obvious approximation can be obtained from (29) by using f [ y( I)+ y( t - l)] 
as an approximation for /,L,y(r)d r. This gives the approximate simultaneous 
equations model: 

Y(t)-y(t-l)=rA(e)[y(t)+y(t-l)l+b(e)+u,, (38) 
E(u,)=O, E( a,~;) = 2, E( u,u;) = 0, s # t, s, t =1,2 )... . 

The model is approximate because, if U, is defined in such a way that (38) holds 
exactly, then the condition E( u,u,) = 0, s # t, will be only approximately satisfied. 

We can write the model (38) in the reduced form: 

r(t) = 4(a+ -1)+&W+% (39) 

where 

II,= [z-&4]-‘[z++A], 

II,= [I-&l-‘b, 

cl,= [r-&4-‘u,, 

so that 

E(q) = 0, E(u,u;)= [Z-+A]-‘z[Z-$A’]-‘, 

E( u,u;) = 0, sz t, s,t=1,2 ).... 

The use of the approximate simultaneous equations model (38) is particularly 
convenient when the elements of A(B) are linear functions of 0. For then we can 
estimate 6’ by applying a non-iterative procedure, such as two-stage least squares 
or three-stage least squares, to this model, as if it were the true model. But even 
the application of the full information quasi-maximum likelihood procedure to 
(38) is computationally simpler than the application of the same procedure to the 
exact discrete model (31). Estimates obtained by any of these methods will, of 
course, be asymptotically biased because of the error of specification in the model 
(38). It is important, therefore, that we should investigate the sampling properties 
of these estimators when the data have been generated by the continuous time 
model (29) or, equivalently, by the exact discrete model (31). 
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Such an investigation was undertaken by Bergstrom (1966). The central idea 
which was put forward in this article, and further discussed in Bergstrom (1967, 
ch. 9), is that the restrictions on the matrix [II,, II,] of reduced form coefficients 
of the approximate simultaneous equations model can be regarded as convenient 
approximations to the restrictions on the matrix [F, g] of coefficients of the exact 
discrete model. In particular, if the elements of [A, b] are linear functions of 0, 
then the elements of [II,, II,,] will be rational functions of 19 whereas the elements 
of [F, g] will be complicated transcendental functions of 8. Some idea of the 
goodness of the approximation can be obtained by comparing the power series 
expansions: 

II,= [z++A+$A2+$A3+ ._.][z+fA] 

=z+A+‘A2+1A3+ 2 4 . . . 

and 

F=Z+A+lA2+lA3+ 2 6 . . . . 

It should be noted, however, that whereas the power series expansion of F is 
convergent for any matrix A that of II, is convergent only if the eigenvalues of A 
lie within the unit circle [see Halmos (1958, ch. 4)]. 

We shall now introduce two more assumptions. 

Assumption 2 

The vector process /,$(dr) is Gaussian. 

Assumption 3 

The eigenvalues of A(e’) (where 8’ is the true parameter vector) have negative 
real parts. 

Assumption 2 is introduced in order to ensure that the disturbance vectors E[, 
t =1,2 ,..., in the system (31) are independently and identically distributed. The 
fact that it implies that they are normally distributed is incidental. Once we have 
assumed that the orthogonal increments (corresponding to a sequence of intervals 
of equal length) in the process &{(dr) are independently and identically distrib- 
uted we are committed to assuming that they are normal. This can be seen by 
dividing the interval [0, t] into n equal subintervals and applying the Lindberg-Levy 
central limit theorem [see Cramer (1951, p. 215)] to the sum C:=,/(:1/;,,,,{(dr), 
when n + cc. 

Assumption 3 implies that the eigenvalues of F(d’) lie within the unit circle. It 
follows, by applying the results of Mann and Wald (1943) to the system (31), that, 
under Assumptions 2 and 3, the sample mean vector (l/T)Cr=,y( t) and sample 



1174 A. R. Bergstrom 

moment matrices (l/T)C~=,y(t)y’(t) and <l/~>CT=,y(t>y’(t -1) converge in 
probability, as T-+ 00, to limits which do not depend on y(0) and that 

(I/fi)C;=i~(t)e: h as a limiting normal distribution. In establishing these results 
Mann and Wald assumed that E,, Q, . . . have finite fourth moments. Although 
Assumption 2 ensures that this condition is satisfied it is now known to be 
unnecessary [see Anderson (1959) and Hannan (1970, ch. 6)]. 

Since the probability limits of the sample moments of r(t) can be expressed as 
functions of F, g and Sz, and hence as functions of @ and 2, we can, in principle, 
find a formula for the asymptotic bias of any estimator of 8 which can be 
expressed as a vector of rational functions of the sample moments. This is the 
case with the estimator obtained by applying two-stage least squares or three-stage 
least squares to the approximate simultaneous equations model (38). The formula 
would express the asymptotic bias of such an estimator in terms of the parameters 
of the continuous time model, i.e. the elements of 0 and .X It would, of course, be 
very cumbersome if written out explicitly. But it is implicit in the calculations of 
Bergstrom (1966) who derives the asymptotic bias and approximate sampling 
variances of the estimates obtained by applying three-stage least squares to the 
approximate simultaneous equations model when the data are generated by a 
three equation continuous time model of the form (29). 

In this example it is assumed that b = 0,2 = I and that the only restrictions on 
A are that three of its elements are zero so that 8 is a vector of the unrestricted 
elements of A. The assumed matrix A and derived matrix F are: 

-1.0 

A= i 0.0 

0.8 0.0 

-0.5 0.2 1 , 
0.1 0.0 -0.2 

0.369 

F= [ 0.006 

0.382 0.046 

0.608 0.056 0.023 0.142 1 
. 

0.820 

The interpretation of A, assuming that the time unit is 3 months, is that y, is 
causally dependent on y,, y, on ys and ys on y, with mean time lags of 3 months, 6 
months and 15 months, respectively. The probability limits of the estimators a 
and fii obtained by applying three-stage least squares to the approximate 
simultaneous equations model of the form (38) are: 

plim a = [ 
- 0.922 0.710 0.000 

0.000 - 0.488 0.193 1 ) 
0.098 0.000 -0.199 

0.034 
0.609 0.141 1 . 
0.017 0.821 
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It is interesting to note that the estimated reduced form matrix h, provides a 
remarkably good estimator of the matrix F of coefficients in the exact discrete 
model, whereas a is a somewhat less satisfactory estimator of A. A heuristic 
explanation of this is that, even if there were no a priori restrictions on A, A^ 
would be an astymptotically biased estimator of this matrix whereas h, would, in 
this case, be identical with the least squares estimator F* and, therefore, a 
consistent estimator of F. [See Bergstrom (1966, 1967) for a further discussion of 
this point and a proposed two stage estimator of A based on fir.] 

Since it is the matrix F which is of interest for the purpose of predicting future 
discrete observations, it is important to consider the question of whether or not it 
would be better, for this purpose, to use the least squares estimator F* when A is 
restricted. Since F* is a consistent estimator of F while fir is not, it would always 
be better to use F* rather than fir if the sample size were sufficiently large. But 
with smaller samples the bias in any element of fir (as an estimator of the 
corresponding element of F) will be more than outweighed by its lower variance 
as compared with the variance of the corresponding element of F*. Calculations 
presented in Bergstrom (1966) show that for the above example with a sample of 
100 observations the reduction in the variance obtained by using II, rather than 
F* heavily outweighs the squared asymptotic bias in any element of fir. 

The results of the above study suggest that the simultaneous equations model 
(38) is likely to be a useful approximation for the purpose of estimating the 
parameters of the underlying continuous time model from quarterly observations, 
and that the predictions obtained from the reduced form of this model, when the 
structural parameters are estimated by three-stage least squares, are likely to be 
better than those obtained from the ordinary least squares estimates of the 
coefficient of the exact discrete model ignoring the a priori restrictions. But there 
is, clearly, a need for a more general study, comparing the sampling properties of 
various estimators, applied to various approximate discrete models. An important 
step in this direction was taken by Sargan (1974, 1976). He generalizes the model 
(29) by including exogenous variables and considers the asymptotic bias of 
estimators obtained by applying the methods of two-stage least squares, three-stage 
least squares and full information maximum likelihood to the approximate 
simultaneous equations model (38), extended to include exogenous variables. He 
shows, in particular, that the proportional asymptotic bias of all of these 
estimators is of the same order of smallness as the square of the observation 
period as this tends to zero. 

The econometrician cannot, of course, obtain observations of macroeconomic 
variables at arbitrary small intervals of time. He must, generally, do the best that 
he can with quarterly observations of such variables as the gross national product 
and its components. But the results of the study by Bergstrom (1966), which 
assumes a realistic pattern of time lags and quarterly observations, suggest that 
Sargan’s criterion may, nevertheless, be useful for the ranking of various estima- 
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tors and various approximate discrete models. Since Sargan uses only one 
approximate discrete model, and the asymptotic bias of each of the three 
estimators considered by him is of the same order of smallness, the significance of 
his results could, easily, be overlooked. Before proving his basic result, therefore, 
we shall apply his method to an even simpler approximate discrete model, which 
has been more widely used than (38). This is the model: 

~(t)-J+-l)=A(e)y(r-l)+b(e)+u,, (40) 

E(q)=09 E( u,u;) = 2, E( u,u;) = 0, s # 1, s, t =1,2 )... . 

We shall show that estimates obtained from the model (40) will be inferior to 
those obtained from (38) if the observation period is sufficiently short and the 
data are generated by (29). 

We assume, for this purpose, that b = 0 and that the only other a priori 
restrictions are that certain elements of A are zero so that 0 is the vector of 
unrestricted elements of A. The continuous time model (28) can then be written: 

dy,(t) = V’y”‘(t)dt +[,(dt), i=l ,.-., n, (41) 

where y,(t) is the ith element of y(t), 0 (‘) is the vector of unrestricted elements 
of the i th row of A and y(“( t) is a vector of the corresponding elements of y(t). 
The system (29) by which we give a precise interpretation of (28) can be written: 

X(+v,(O) =Jo(B”‘Y”‘(‘)d’+l,ti;(dr), i=l ,.-., n. (42) 

Following Sargan we shall keep the time unit constant and denote the observa- 
tion period by 6 so that we can consider the behaviour of our estimators as 6 -+ 0 
while keeping the elements of 8 constant. Then, defining y, = y(r6), the exact 
discrete model is: 

Y, = esAyr-, + q, 

E(eJ = 0, E( E&) = &‘erAZerA’dr, 

E( E,E;) = 0, s#t, s,t=1,2 ).... 

(43) 

The approximate discrete model (40) can be written: 

We can now show that the asymptotic bias of the estimator 8* obtained by 
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applying ordinary least squares to each equation of the system (44) is O(6) as 
6 -+ 0. 

Theorem 4 

If 8* is the estimator obtained from a sample yi, y,,. . . ,y, [i.e. y(6), 
y(26), . . . ,y( TS)] of vectors generated by (42) by applying ordinary least squares 
to each equation of (44), then, under Assumptions 1, 2 and 3: 

plim@*--6=0(a), as6-+0. 
T-00 

Proof 
From (43) we obtain: 

$(Y,-v,J= [ A+$4’+$13+ 

= Ay,_, + Hy,_, + f&t, 
where 

H= O(6). 

The system (45) can be written: 

Y,, - Yi,r-1 

6 
= Wy,?l + h;y,_ 1 + %, 

. . 

i=l,...,n, (46) 

where h; is the ith row of H and E,, is the ith element of E,. Then the estimator 
e*(I) obtained by applying ordinary least squares to the i th equation of (44) is: 

But, from the Mann and Wald results: 

T 

plim + C r/?ieit = 0 
T-00 f=l 
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and 

T 

plim f C y,_,y,‘_, exists. 
T+CC I=1 

Therefore: 

plim8*(“-8(‘)=O(h,)=0(6), asS-+O. n 
T-00 

We shall consider, next, estimates obtained by using the approximate simulta- 
neous equations model (38). When the continuous time model is (42), the system 
(38) can be written: 

Y,, - Y*,,-1 

8 
=e(‘)[f(y,“‘+ y/?,)]+ujt, i=l ,.-., n. (47) 

We shall prove a theorem which includes, as a special case, Sargan’s basic 
theorem (when there are no exogenous variables). 

Theorem 5 

Let 8”’ be the instrumental variables estimator, defined by: 

where yr,. . . ,yT [i.e. y( 6), . . . , y(T6)] are vectors generated by (42) and zj”, . . . ,z$’ 
are random row vectors such that: 

T 

plim f C ei,zji)= 0, 
T-00 r=1 

while 

T 

plim + C yt(‘)zl(‘) 
T 

and 
T+CC r=l 

plim f c y/?rz,“’ exist. 
T-a, t=1 

Then, under Assumptions 1, 2 and 3: 

plim8(‘)-6(‘)=0(62), asa+O. 
T-+W 
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Proof 

Using (43), we obtain: 

;(Y,-Y,)=[~+$4’+$4’+ . ..]Y._*+& 

where 

= +Ay,_, +.fAesAy,_l + Ly,_, + It 

L = O(62). 

Therefore 

Y,, - Y,,,-I = 
6 

$fW( y/l’+ y/L’,)+ /,!y,_, + fqc - gw,, 
where 1,’ is the ith row of L. And, hence: 

e(l)= f i +e(~)(~y)+ y,ol)+l;y,_,+ +,,-le(%, +) 
[ ( r=l 1 1 

x $ ; +(y,“‘+ yp,)zI(I) I I 
-1 

t=1 

= e(l)+ f i qy,_l+ & - ie(ibr zJi) I ( ) I[ +ili( 
1 

-1 
yp + y,(i),) zji) . 

r=1 

Therefore 

The two-stage least squares estimator is obtained as a special case of the 
estimator 8”) by putting: 

$) = +( YF(‘) + y/:)J’, 

where 
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It is fairly obvious that the above argument can be extended to show that the 
asymptotic bias of the three-stage least squares estimator of 0 is 0(S2). Sargan 
(1976) shows that the asymptotic bias of the full information maximum likelihood 
estimator [applied to (47)] is also O(S2) and that the difference between the limits 
in probability of the three-stage least squares and full information maximum 
likelihood estimators is 0( 8’). He also finds sufficient conditions for these results 
to hold when the model contains exogenous variables. These conditions will be 
given in Section 4. 

We turn now to the problem of finding consistent and asymptotically efficient 
estimators of fl from discrete data generated by (29). For this purpose the 
following additional assumptions are introduced. 

Assumption 4 

It is known that 8 belongs to a compact subset 0 of p-dimensional space. 

Assumption 5 

Let ‘P be the subset of n X (n + 1) matrices which can be written in the form 
[F(d), g(O)] for some B E 0, where 

zq e) = eA('), g(e) = [eA(e)-z]A-l(e)b(e). 

Then the mapping from 9 to 0 defined by the inverse of [F(O), g(O)] is one to 
one and continuous in a neighbourhood of the true parameter vector 8’; i.e. every 
sequenceP,n=1,2,..., ofvectorsinOsuchthat[F(8”),g(8”)]+[F(8°),g(Bo)] 
converges to 8’ as T -+ CO. 

Assumption 6 

The set 0 contains a neighbourhood of 8’ in which the derivatives up to the third 
order of the elements of [F(8), g(O)] are bounded. The vector 8’ is not a 
singularity point of [F(e), g(d)]; i.e. there is no set of numbers A,, . . . ,hp, not all 
zero, such that: 

k@k$ [fvO)9 deo)l = 0. 

We shall consider, first, the minimum distance estimator 8** which is defined 
as the vector 8 E 0 that minimises: 
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where 

M:,=+ i [y(t)-F*y(t-l)-g*][y(t)-F*y(t-1)-g*]’, 
t=1 

and F* and g* are the ordinary least squares estimators of F and g respectively. 
The properties of this estimator have been studied by Malinvaud (1970, ch. 9) 
when applied to the model: 

Yt=A(fl)x,+E,, (48) 

where A is a matrix of non-linear functions of the parameter vector and x,, 
t = 1,2,. . . , is a sequence of non-random vectors. Since the model (48) contains no 
lagged dependent variables we cannot rely on Malinvaud’s results for inferring 
the properties of the minimum distance estimator when applied to the model (31). 
But, by using the Mann and Wald results and modifying Malinvaud’s proofs, we 
can prove Theorems 6 and 7 which, together, correspond to theorem 5 of 
Malinvaud (1970, ch. 9). 

Theorem 6 

Under Assumptions 1-5: 

plim 13** = 8’ 
T-or, 

Theorem 7 

Under Assumptions 1-6, @( 6 ** - 6’) has a limiting normal distribution whose 
covariance matrix is the limit is probability, as T -+ CO, of the inverse of the 
matrix whose (kl)th element is: 

(49) 
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Since the logarithm of the likelihood function is: 

A. R. Bergstrom 

L(e,L?)=-~log2~-~log,L-~ 2 [r(t)-F(B)y(t-l)-g(B)]‘W 
r=l 

x LA+ W>.Y(t -wda 9 (50) 

it follows from (49) that the covariance matrix of the limiting distribution of 
JT(f3** - e”) is: 

- [E( T&J-‘. 
The estimator 8** is asymptotically efficient, therefore, in the sense defined by 
Cramer (1946, ch. 32). 

For the purpose of predicting the future discrete observations of y(t), we are 
interested in the estimator 

[P*, g++] = [ F( e**>, g(e**)] 

of the matrix of coefficients of the exact discrete model (31). By using (49) and the 
argument of Malinvaud (1970, p. 357) we can show that the concentration 
ellipsoid E** [in n(n +l) d’ imensional space] of the limiting distribution of 
[fi(F**- P),fi(g**- go)] is the set of n x (n + 1) matrices [F, g] that can be 
written in the form: 

IF.Pl=~~~e~~[~(eo),g(eo)l, 

for some vector [e,, . . . , d,] and satisfy the inequality 

(51) 

tr 

Since the concentration ellipsoid E* of the limiting distribution of ]fi( F* - 

F’),fl(g* - go)] is the set of all matrices [F, g] satisfying (52) we have: 

E** c E*. 

In geometrical terms, E** is the intersection of E* with the hyperplane 
matrices defined by (51) i.e. it is the intersection of E* with the hyperplane 

of 
of 
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matrices satisfying the restrictions implied by the continuous time model in the 
neighbourhood of [F”, go]= [F(@‘), g(e’)]. 

This result implies that the asymptotic standard error of any element of 
[F**, g**] (or any linear combination of such elements) is at least as small as the 
asymptotic standard error of the corresponding element of [F*, g*] (or linear 
combination of such elements). For it follows from the invariance property of the 
concentration ellipsoid under a linear transformation [see Malinvaud (1970, ch. 5, 
Lemma l)] that the asymptotic standard errors of identical linear combinations of 
elements of [F**, g**] and [El, g*] can be compared by comparing the images of 
E * * and E *, respectively, under a linear transformation which transforms n (n + 1) 
dimensional space into the appropriate one dimensional subspace. Provided, 
therefore, that the sample size is sufficiently large we can obtain better predictions 
of the future discrete observations by using the continuous time model than by 
using the unrestricted least squares estimates of the coefficients of the exact 
discrete model. 

Finally we shall consider, very briefly, the maximum likelihood estimator. This 
is obtained by maximising L( 8, a), as defined by (50), with respect to 13 and 52. 
We can do this in two stages. We first maximise L(8, s2) with respect to D to 
obtain b(e) and then substitute into L(8, s2) to obtain the concentrated likeli- 
hood function: 

L(e) = qe,si(e)) =c-iOgpf(e)l, 

where c is a constant, ]M] is the determinant of M and 

we)=+ i [Y(~)-F(e)Ytt-1)-gte)i[y(t)-Fte)Y(t-1)-g(e)i’. 
t=l 

Then the maximum likelihood estimator 6 is the 8 E 0 that maximises L(8). The 
estimation equations, obtained by equating to zero the partial derivatives of L( 0) 
with respect to 8,). . . , $, are: 

trM-1(e)$-h4(B) = 0, k =l,...,p. 
k 

The estimation equations for the minimum distance estimator 0** are: 

trM~-l$M(e) = 0, k =l,...,p. 
k 

(53) 

(54) 

The system (54) is easier to solve than (53) since the matrix M-‘(8) in (53) 
involves the unknown elements of 8, for which we are solving, whereas the matrix 
ME:,’ in (54) can be computed as an initial step without iteration. Under 
Assumptions 1-6 J?;(fi - 0’) has the same limiting distribution as fi(e** - 0’). 
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This follows from the results of Dunsmuir and Hannan (1976) who consider a 
very general model which includes the exact discrete model (31) as a special case. 
We shall consider their results in more detail at a later stage. 

It is of interest to compare the estimator 8** (or 4) obtained by using the exact 
discrete model with an estimator obtained by applying either the three-stage least 
squares or full information maximum likelihood method to an approximate 
simultaneous equations model. We know that if the sample size is sufficiently 
large the estimator obtained by using the exact discrete model will be better, since 
it is consistent, whereas the estimator obtained by using the approximate simulta- 
neous equations model has an asymptotic bias of the order 6*, as we have seen. 
But, as the study of Bergstrom (1966) showed, for samples of the size available in 
practice the squared asymptotic bias in an estimator obtained by using the 
approximate simultaneous equations model can be small compared with the 
sampling variance. 

A comparison of estimates obtained, from finite samples, by using the exact 
discrete model and an approximate simultaneous equations model was under- 
taken by Phillips (1972) who, for this purpose, wrote the first computer program 
for obtaining consistent and asymptotically efficient estimates of the parameters 
of a continuous time model, of the form (29), from discrete data. This program 
was for the computation of the minimum distance estimator 8**, using the exact 
discrete model. The first program for the computation of the more complicated 
maximum likelihood estimator 4, using the exact discrete model, was written by 
Wymer (1974) and applied to the model of Bergstrom and Wymer (1976) which 
will be discussed later. The main difficulty in computing either O** or f? as 
compared with estimators obtained from an approximate simultaneous equations 
model is that F(B) must be expressed as a series of matrices and summed to a 
sufficient number of terms to give the desired degree of accuracy. 

Phillips (1972) applied his program, in a Monte Carlo study, to a three 
equation trade cycle model based on the model of Phillips (1954) [see Bergstrom 
(1967, ch. 3)]. The model, in its deterministic form, is: 

DC(t)=a[(l-s)Y(t)+a-C(t)], (55) 
DY(t)=X[C(t)+DK(t)-Y(t)], (56) 
DK(t)=y[uY(t)-K(t)]. (57) 

where C = consumption, Y = income and K = capital. By adding white noise 
disturbances and substituting for DK from (57) into (56) the model can be 
written: 

dy(t) = A(Qo)dt + b(@)+l(dt), (58) 

where 
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A hundred synthetic samples each of 25 observations were generated by the 
exact discrete model derived from (58) and used in the estimation of 9, both by 
applying the minimum distance estimation procedure to the exact discrete model 
and applying three-stage least squares to an approximate simultaneous equations 
model. The results are shown in Table 2.1. As can be seen, the estimates obtained 
by using the exact discrete model are, generally, superior to those obtained by 
using the approximate simultaneous equations model. Moreover, considering the 
smallness of the sample, the number of times that the 5% confidence interval, 
computed from the estimated asymptotic standard errors, does not include the 
true value of the parameter is, for the estimates obtained by applying the 
minimum distance procedure to the exact discrete model, remarkably close to 5 
(i.e. 7 for the parameters (Y, y, h and S, and 9 for u). 

In the above example Phillips assumed the existence of point observations of all 
three variables. But the variables C(f) and Y(t) are flow variables and, in 
practice, could be observed only as the integrals /,‘,C( r)dr and /,I iY(r)dr, 
t=l2 ) )... . This does not, of course detract from the value of his study for the 
general purpose of comparing estimates derived from point observations using the 
exact discrete model and approximate simultaneous equations model. Moreover, 
at the time when the study was undertaken, the theoretical problems of obtaining 
consistent and asymptotically efficient estimates of the parameters of a continu- 
ous time stochastic model, of the form (29), from flow data had not been seriously 
studied. This is the problem to which we now turn. The essential difficulty is that, 
even when the continuous time model is a first-order system with white noise 
disturbances, the disturbances in the exact discrete model satisfied by the integral 
observations will be autocorrelated. The precise form of the autocorrelation is 
given in the following theorem. 

Table 2.1 

Parameter: 
True value: 

x 
OY6 0:4 4.0 055 l0 

Minimum distance 

Mean of the estimates 
Standard deviation of the 

estimates 
Root mean square error 
Number of wrong intervalsa 

Three-stuge least squares 

Mean of the estimates 
Standard deviation of the 

estimates 
Root mean square error 
Number of wrong interval? 

0.5734 

0.1410 
0.1435 
I 

0.6652 0.4182 2.7444 0.2161 1.995 

0.1800 0.0241 0.8015 0.0937 0.0311 
0.1914 0.0302 1.4896 0.0974 0.0311 

10 3 62 17 3 

0.4016 

0.0153 
0.0154 
I 

4.0709 0.2537 2.0021 

0.7077 0.0259 0.0149 
0.7112 0.0262 0.0150 
7 I 9 

‘Intervals not containing the true parameter value. 
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Theorem 8 
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If l(dt) satisfies Assumption 1, y(t) is the solution to (29) and yr is defined by: 

y, =[(lAr)dr, 

then y, satisfies the system: 

,Y, = wbL,+ SW+%, 

Jh) = 0, E( w;) = 41, E(w/L) = 4, 

E( WI;) = 0, IS-ti>l, s, t =1,2 )...) 

(59) 

where 

F=eA, g = (eA - I)K’b, 

JZ,=pyz- e’A)LY(Z-e’A’)A’-‘dr 

+~~-leA(Z_e(r-l)“)H(Z_e(~-l)~‘)eA~’-ldr, (60) 

(61) 

Proof 
From (29) we obtain: 

and hence: 

~lly(‘)dr=A-‘[y(t)-y(r-l)]-A-‘b-A-’JI1lS(dr). 

Then, substituting from (31) into (63) and using (36), we obtain: 

/ ~‘ly(r)dr=A-‘F[y(r-1)-y((-2)] 

e(‘-‘)“Z(dr)-l’-le”~l~r)A 
1-2 

(62) 

(63) 

-A-‘b-A-‘[Ij(dr), (64) 
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and then, from (62) and (64): 
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-A-lb-/.-’ f 
/ 

S(dr), 
f-l 

which, since 

A-‘FA=‘K1[z+A+~A2+ -]A=F 

and 

K’[F-Z]b=[F-Z]APb=g, 

reduces to (59) with qt defined by: 

71t= t / 
A-l(e(‘-r)A - Z){(dr) 

f-1 

+ 
/ 

ti_;lA-l(eA _e(r-l-r)A )S(W. (65) 

Finally, using the generalizations of (15) and (16) for a vector random measure we 
obtain: 

E(q,q:) =[~lA-l(e(t-‘)A - Z)z(e(r-r)A’- Z)A’-‘dr 

J 
r-1 

+ p(eA _e(t-l-‘)A 
)X(eA’- e 

(t-1-r)A’),yl&. 

t-2 

= olA~l(Z-e’A)Z’(Z-erA’)A”dr 
/ 

+ 1A-‘eA(Z-e”-‘)A)r(Z-e(‘-‘)A’)eA;4’~’dr 
/ 3 

0 

E( q,qIpl) = J,zlA-‘(eA -e(t-‘~‘)A)~(e(t~l~r)A’_ Z)A’-‘d,. 
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It is clear from these results that {n,} is a vector moving average process of the 
form: 

9, = E, + C&I-*, (66) 

where 

Et&,) = 0, E( EWE;) = K, E( es&;) = 0, s # t, s, t =1,2 )...) 

and C and K satisfy the equations: 

K+CKC’=il, (67) 

and 

CK=&. (68) 

Equations (67) and (68) imply that the elements of C and K are functions of the 
elements of L&, and 52, and, hence, of the elements of A and 2. The expressions 
(60) and (61) can be written as infinite series in ascending powers of A and A’ by 
expressing the matrix exponential functions, in the integrals, in series form and 
integrating, term by term, with respect to r. Evaluating the terms up to the first 
power of A in A’ we obtain: 

52,=)2++(A2+2~f)+ ..-, (69) 

L$=@++A~+@A’+ . . . . (70) 

Phillips (1978) shows that, if the observation period is 6, then: 

(71) 

(72) 

these equations being identical with (69) and (70) when 6 = 1. He also shows that: 

C=aZ+$(A-BA’X1)+0(62), (73) 

(74) 
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where (Y ( = 0.268) is a root of the equation: 

1189 

The first term on the right-hand side of (73) and (74) is easily obtained by 
substituting the first term on the right hand side of (69) and (70) into (67) and 
(68) respectively and solving for C and K. 

It is convenient, at this stage, to write Z as Z(p) where h is a vector of 
parameters. If, as we have assumed so far, 2 is unrestricted then p will have 
n( n + 1)/2 elements. But we could, for example, require 2 to be a diagonal 
matrix in which case p would have n elements. We can now obtain the exact 
discrete model corresponding to the continuous time model (29) for the case in 
which the observations are in integral form. Combining (59) and (66) we obtain: 

Y, - F@)Y,-, - g(B) = 8, + C(R f&-1, (75) 

E(e,)=O, E(e,e;)=K(Q), E(&)=O, s+t, s,t=1,2 . . . . 

An important point to notice is that, even though the covariance matrix 2 of the 
disturbance vector in the continuous time model does not depend on 8, the 
covariance matrix K of the random vector E, in the exact discrete model depends 
on 8 as well as p, as is clear from (67) and (68). 

If g is a zero vector (i.e. if b, in the continuous time model, is a zero vector), 
then (75) is a special case of the model: 

(76) 
/=I J=l 

E(q)=% E(d) = WQ-4, E(E,E;) =O, s z t, s, t =1,2,..., 

which was studied by Dunsmuir and Hannan (1976). They show, under certain 
assumptions, that the maximum likelihood estimator of 0, in the model (76) is 
strongly consistent (i.e. converges almost surely to 8). And, for the case in which 
the matrices F,, . . . , Fq, C,, . . . , C, do not depend on p and K does not depend on 8, 
so that these matrices can be written Fl( e), . . . , Fq( t?), C,(e), . . . , C,( 0) and K(p), 
they prove a central limit theorem. But, as we have shown, the matrices C and K 
in the model (75) depend on both 0 and p, The case in which the matrices 
F,, . . . ,F,, C,, . . ., C, and K, in the model (76), all depend on both 0 and p was 
further considered by Dunsmuir (1979). Here he proves a central limit theorem 
for an estimator obtained by maximising an approximate likelihood function 
expressed in terms of the discrete Fourier transform of the data. [This estimator 
was proved to be strongly consistent by Dunsmuir and Hannan (1976).] His 
results imply that when {E, } is Gaussian this estimator is asymptotically efficient 
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Since E!.(~J;) = 0, 1s - t 1 > 1, we obtain, from (SO): 

J=o 

1191 

+ ,co [zv)IJ+lww[ wq]f-S+J 

= v,,(k d, t 2s. (81) 

By using (60), (61) and the series expansion of F(B) = eACe), the matrix V,,(e, P) 
can be expressed as a power series in A(B) and-A’(e) with each term involving 
2( p-I>. Then the maximum likelihood estimator (8, p) is obtained by maximising: 

L(e.tL)=l0glV(e,II)I+[(Y1-m(e))‘,...,(y,-m(e))’][V(e,~)1-’ 

YlPe) 
x 

I I 
: ) 

1)T-h 

(84 

where V(0, cl) is the nT x nT matrix whose (st)th n x n block is V,,(r3, p). 
Because of the computational difficulty of maximising L(r9, p) it is useful to 

consider estimates based on approximate models, even if these are not consistent. 
A simple approximate model is obtained by replacing C by aZ, which is the limit, 
as 6 + 0, of the right-hand side of (73). In place of (75) we then have: 

y, - F(e)y,_, -g(e) = &, + azEt_l. (83) 

Then we can define the vectors y,“’ , . . . ,yp) by the transformation: 

Z 

- al 

T-1 

4 1 (- 

0 

Z 

Cl)‘- -2 
I 

and, assuming that e(0) = 0, we obtain: 

. . . 

. . . 

(84) 
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which can be treated like (31). A procedure which is approximately equivalent to 
this was used by Bergstrom and Wymer (1976) who applied the transformation: 

We could also use the transformation (84) or (86) and then the approximate 
simultaneous equations model (38) which would be even simpler. 

A method which can be expected to yield better estimates was studied by 
Phillips (1974b, 1978). His method is to obtain a preliminary estimate of A, 
ignoring the a priori restrictions on this matrix, from data transformed by (84) 
and then apply a second transformation: 

I 0 . . . 

-C I . . . 

(87) 

(-C)” (_C)‘_’ . . . 

where C is computed from the first two terms on the right-hand side of (73), using 
the preliminary estimates of A. He shows that the proportional asymptotic bias in 
the estimates obtained in this way tends to zero as the observation period tends to 
zero. 

Having dealt with the cases in which the data are all point observations or all 
integrals we can easily deal with the case in which the data are mixed, with some 
variables being observed at points of time and others as integrals. Suppose, for 
example, that the first m variables are stock variables and the remaining 
n - m variables are flow variables, so that the observations are: 

Yr(t), . ..,y,(t), /,l_rY,+,(r)dr,. ..,l,\,Y;(r)dr, t =l,.. .,T. Then we can 
solve the first m equations of the system (62) to express /,‘, y,(r)dr,. . . , 

j; r~,,(r) dr in terms of yl(t)- yl(t - 1). . . ,y,(t)- y,(t - l), 

r g,,,+l(r)dr,. . .j /,‘_,y,,(r) dr, /,‘,{,(dr),. . . ,/,‘,S;,(dr). Then substituting 
into (59) we obtain a system in which all variables are in the form in which they 
are observed and the disturbance vector is a vector moving average process whose 
autocorrelation properties can easily be obtained as in the proof of Theorem 8. 
The exact likelihood function can then be obtained in the same way as (82). 

The feasibility of the methods discussed in this section has been demonstrated 
by Bergstrom and Wymer (1976) who applied them in the construction of a 
continuous time model of the United Kingdom. This model is a closed first order 
system of 13 non-linear differential equations with 35 parameters including three 
trend parameters to represent technical progress, the growth of the labour supply 
and growth in the demand for exports. For the purpose of estimation the model 
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was represented by a system similar to (28) with the addition of trend terms, by 
taking a linear approximation about the sample means and adding white noise 
disturbances. The resulting matrix [ A( 19), b(O)] implies quite complicated non-lin- 
ear cross equation restrictions, derived from economic theory. The estimate of 8 
was obtained from quarterly data, for the years 1955-1966, by applying the 
method of full information maximum likelihood to a system similar to (85) 
(including derived trend terms) with the vector y/” defined by (86). 

An intensive mathematical study of the steady state and asymptotic stability 
properties of the original model (i.e. not the linear approximation used for 
estimation) shows that it generates plausible long-run behaviour for the estimated 
values of the parameters. Moreover, post sample predictions for the period 
1969-1970 are remarkably accurate in view of the fact that the model contains no 
exogenous variables and the predictions are for a period up to eight quarters 
ahead of the latest data used in making them. But it should be possible to 
improve on this predictive performance by using a second or higher order system 
of differential equations. Such a system could represent more accurately the 
dynamics of the partial adjustment relations and allow a more satisfactory 
treatment of expectations. 

3. Higher order systems* 

We shall consider the system: 

d[Dk-‘y(t)] = Ar(fl)Dk-‘y(t)+ ... + A,_,(B)Dy(t) 

+ A,(e)y(t)+bte)+S(dt), (88) 

where {y(t)} is a vector random process, A,(e), . . . ,Ak(fl) are n x n matrices 
whose elements are functions of the parameter vector 8, b(B) is an n x 1 vector 
whose elements are functions of 8 and [(dt) is a vector of white noise dis- 
turbances, i.e. a vector satisfying Assumption 1. The system (88) will be interpre- 
ted as meaning that r(t) satisfies: 

o~-l~(t)-D”-‘y(o)=~[~~(e)~~-l~(~)+ ... +A,_l(e)or(r) 

+ 4mw+w] dr + /dStdr), 

for all t. 

(89) 

‘For a more general and comprehensive treatment of higher order systems, see Bergstrom (1982) 
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The assumption that the disturbances are white noise is more easily justified in 
a higher order system than in a first order system. An econometric model 
comprising a system of stochastic differential equations is usually obtained by, 
heuristically, adding disturbance functions to a non-stochastic system of differen- 
tial equations which may be derived from certain optimisation assumptions and 
would hold exactly under certain ideal conditions. These conditions might in- 
clude, for example, the conditions that each agent’s objective function remains 
constant and contains no variables other than those in the model, that his 
assumptions about the random processes generating these variables are constant 
and that the physical constraints on his behaviour are constant. The disturbances 
are added to take account of the fact that none of these things is really constant. 
Although it is difficult to justify the assumption that they are white noise 
disturbances, it is not unrealistic to assume that they are random processes 
generated by an unknown system of stochastic differential equations with white 
noise disturbances. Indeed the physical processes generating many of the non- 
economic variables that affect economic behaviour will be approximately of this 
form. We can, in this case, transform our original model into a higher order 
system of stochastic differential equations with white noise disturbances. 

Suppose, for example, that the original model is a proper first order stochastic 
differential equation system: 

Dr(d = @b(t)+t(th (90) 

with a mean square continuous disturbance vector E(t) generated by this system: 

dt(t) = Qt(d+l(dt), (91) 

where Q is a n x n matrix of unknown constants and {(dt) satisfies Assumption 1. 
The system (91) can be interpreted as meaning that 

holds for all t. From (90) and (92) we obtain: 

DA+W(O)-QpA’)dr = A(~b(+W%@) 

(92) 
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and hence 

DY(~)-Dy(O) = [Q + Nd)lldDy(r)dr - PA@)J:y(r)dr 

+ ofW). / (93) 

The system (93) is of the same form as (89) with k = 2. It can be written as: 

d[Dy(t)l= iQ+@)l Dy(t)-QA(e)y(t)+S(dt), (94 

which is of the same form as (88) and is interpreted as meaning that (93) holds for 
all t. Obviously Q and A will not be identifiable if A is unrestricted since, in this 
case, interchanging Q and A will not affect (93) and (94). But, in practice, A will 
be severely restricted by the requirement that its elements be known functions 
0f e. 

Systems of stochastic differential equations of order k > 1 are discussed by 
Wymer (1972) who, following Sargan (1974, 1976) (the main results of which were 
available in a preliminary mimeographed paper in 1970), considers the properties 
of an approximate simultaneous equations model when the observation period 
tends to zero. Here, for simplicity, we shall start by considering the second order 
system, which is likely to be of considerable practical importance. We shall 
consider estimates based on both the exact discrete model and the approximate 
simultaneous equations model and then indicate, briefly, how the results can be 
extended to systems of order greater than two. 

The second-order system to be considered is: 

d[DAt)l = A,(e)Dy(l)+A,(e)y(t)+b(e)+S(dt), (95) 

which is interpreted as meaning that y(t) satisfies: 

DY(+D.Y(O) =Ju’[At(fl)Dy(r)+ A,(‘%+)+ b(e)] dr +&d+ 

(96) 

for all t. We know, from Theorem 3, that the first-order system (29) has a solution 
which is unique (with probability 1) in the class of mean square continuous vector 
processes. It is natural, therefore, to seek a solution to (96) which is unique in the 
class of vector processes whose first derivatives { Dy( t )} are mean square continu- 
ous. It is easy to see (from the definition of differentiation, integration and mean 
square continuity given in Section 2.1) that if { Dy( r)} is mean square continuous, 
then 

y(+y(O) =[DA’)dr. (97) 
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Combining (96) and (97) we have: 

(98) 

which is a first-order system of the form (29) in the 2n x 1 vector: 

DYW 

[ 1 YW . 
By Theorem 3 the system (98) has a solution which, for any given pair of n X 1 

vectors y(0) and Dy(O), is unique in the class of random processes {y(t)} such 
that { Dy( t)} is mean square continuous (since if the process { Dy( t)} exists the 
process {y(t)} is, obviously, mean square continuous). And this solution satisfies 
the stochastic difference equation system: 

where 

and 

(99) 

The exact discrete model (99) cannot be used as a basis for estimation since 
Dy(t) is not observable, even at discrete intervals. This is the reason why the 
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second order system (or any higher order system) cannot be treated as a trivial 
extension of the first order system as in the theory of ordinary linear differential 
equations. An exact discrete model which can be used for estimation purposes can 
be obtained by eliminating DY(t) from the system (99) to obtain a second order 
difference equation system in Y(t). The precise form and properties of this system 
are given in the following theorem. 

Theorem 9 

If {(dt) satisfies Assumption 1, then for any given pair of n x 1 vectors Y(0) and 
DY(0) the system (96) has a solution which is unique in the class of random 
vector processes { Y( t )} such that the process { Dy( t )} is mean square continuous, 
i.e. if j(t) is any other such solution then (21) holds for any interval [0, T]. This 
solution satisfies the stochastic difference equation: 

YW = &WY0 -I)+ W)r(t -2)+ sW+ V,? 

E(q,) = 0, E( v:) = a,, E( st~;L,> = Q2,, 

E( w:) = 0, Is- tl >l, s, t =1,2 )...) 

where 

& = [eA121[eAlll[eA1211+[eA122, 
F2 = ~~Al~l~~Al~~-~~A~~l~~A~~l~~A1211~~~l~~~ 

~=~~Al~~~~+{~-~~Al~~~~Al~~~~Al~‘}~~~ 

000) 

x~{~eAl~~~er~l~~-~eAl~~~eAl~~~eAl~’~e~Al~l}’dr 
+ [[er” 12J:[erA Ihdr, 

52, =/,‘{ bA12JerAl~~- ~~Al~l~~Al~l~~A1211~~‘A121} 

x ,Z[erA];, dr. 

Proof 

The system (99) can be written: 

ow 

(102) 
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From (103) we obtain: 
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Du(~-1>=[e”111D~(~-2)+[eAl12~(~-2)+gl 
+ / [ ‘-l e(‘-l-‘)A]ll{(dr), 

r-2 
(105) 

and from (104): 

W(t -1) = b%i’r(d- [eA1211k%_d~ -lb [e’%i’g2 

- ~e~l~1~~l~e~~~‘)A121~(d~), 

D~(~-2)=~eAl~1~(~-1)-~eAl~1~eA122~(~-2)-~eAl~1g2 
- [eAliil~~l[e (‘-l-‘)“J2J(dr). 

(106) 

007) 

Substituting from (106) and (107), for Dy(t - 1) and Dy(t - 2), respectively, into 
(105) and premultiplying by (eAIZ1, we obtain the system (100) with: 

v, =lL’{ [eA121[ecf-1-r)Alll -~eA121~eAlll~eAl~1~e(f~1~‘)A121}~(d~) 

+ t / [ e(‘-‘)A]21[(dr). (108) 
r-l 

Then, by using the generalizations of (15) and (16) for a vector random process, 
we obtain: 
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E( rl,G) = Is’{ b%[e (‘-l-r)A]ll - [eA]21[eA]ll[eA]~1[e(‘-1-r)A]21) 

X X[e (‘-l--rVdr 

=~1{~~~121[~rA111-~~Al~l~~Al~~~~A1211~~r~l~~} 

x Z[e’“]&dr, 

E( WI;) = 0, Is-11’1, s,t=1,2 ,.... n 

The expressions (101) and (102) can be written as infinite series by expressing 
the matrix exponential functions in the integrals in series form and integrating, 
with respect to r, term by term. Evaluating the terms not involving A, and A, we 
obtain: 

i&=+2+ ... , (109) 

9,=;z+ ... . (110) 

It is interesting to note that the first terms on the right-hand sides of (109) and 
(110) are identical with the first terms on the right hand sides of (69) and (70), 
respectively, which were obtained for the first order system with flow data. 

It is clear from Theorem 9 that, if 2 = Z(p), the exact discrete model 
corresponding to (96) is: 

yw- W)r(t -l)- W)r(t -2)-d@ = E, + wd+~-1~ (111) 

EC&,) = 0, E(e,E;)=K(Q), E&&:)=0, s#t, s,t=1,2 ,..., 

where C(0, ~1) and K(B, CL) satisfy (67) and (68) with s2,(8, cl) and 52,(8, EL) given 
by (101) and (102), respectively. The exact likelihood function can be obtained in 
the same way as it was for the model (75). And, in view of the results of 
Dunsmuir and Hannan (1976) and Dunsmuir (1979), we can expect the maximum 
likelihood estimates to be strongly consistent, asymptotically normal and asymp- 
totically efficient under fairly general assumptions. 

The model (111) can, of course, be used only if we have point observations. An 
exact discrete model satisfied by the integral observations y, = /,t,y(r)dr, t = 
12 9 v-.*9 can be obtained by combining the arguments used in the proofs of 
Theorems 8 and 9. Since the derivation is straight forward, but somewhat tedious, 
we shall not set it out in detail. The first step is to derive the system which is 
related to (98) in the same way as (59) is related to (29) with q, in (59) replaced by 
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the expression on the right hand side of (65). This system is: 
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x lcdr) dr 

[ 1 0 . 

The exact discrete model, satisfied by the observations, is then obtained from 
(112) in the same way as (100) was obtained from (99). 

Clearly, the disturbances in the exact discrete model, satisfied by the observa- 
tions, will involve integrals with respect to {(dr) over the intervals (t - 3, t - 2), 
(t - 2, t - 1) and (t - 1, t), so that, in place of (loo), we have: 

.Y, = W).YP, + W)Y,-* + gW+% 

E(v,) = 0, E( ~1.11;) = a,,, E( VPL) = 4, E( w-2) = 92, 013) 

E( WI;) = 0, IS - t1 > 2, s,t=1,2 ,...) 

where F,(8), F2(f3) and g(e) are defined in the same way as for (100) and s2,, 52, 
and 9, are derived, from the rather complicated expression which we obtain for 
q,, in the same way as Sz, and 52, were derived for (100). In place of (111) we have 
an exact discrete model of the form: 

Y, - ue)y,-, - F,(e)y,-, - 0) = 5 + c1(654EI-1 + C,044E,-Z5 

014) 

E(q)=O, E(qE;)=K(B,/& E(E,~E;)=~, s#t, s,t=1,2 . . . . 

Again the exact likelihood function can be derived in the same way as it was for 

(75). 
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An approximate discrete model can be obtained by first approximating the 
system (98) by the system: 

where 

AY([) = Y(l)- Y(l -l), My(t)=~[y(t)+y(t-l)l. 

This is of the same form as (38), but cannot be used as a basis for estimation since 
DY(t) is not observable. Eliminating DY(t) we obtain the approximate simulta- 
neous equations model: 

A2Y(t)=AIMAY(t)+A$f2Y(t)+b+~,. (116) 

Wymer (1972) shows that the disturbance vector u, is approximately a moving 
average process with coefficient matrix cwl where a is a root of z* - 42 + 1 = 0. We 
could, therefore, obtain a simultaneous equations model with an approximately 
serially uncorrelated disturbance by applying the transformation (84). 

All of the above results can be extended to systems of order greater than two. 
We start by considering the system: 

A, A, . . . A,_, A, 

. . . 0 0 = 

Dk-‘y(r) 

DkP2y(r) 

y(r) 

which is obtained from (89). From (117) we obtain, for point observations, the 
exact discrete model: 

y(t)-F,y(t -l)- *** -F,y(t-k)-g=E,+CIEIPr+ ... +C+tErPk+r, 

(118) 
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which is a generalization of (111) and, for integral observations, the exact discrete 
model: 

Yt-Fly,-,- . . . - Fkyt_k -g = E( + C1~,-1 + . . . + Ck~,-/,r (119) 

which is a generalization of (114). It is understood that the elements of the 
matrices F,, . . . , Fk in (118) and (119) are functions of the parameter vector 8 while 
the elements of C, ,..., C,_, in (118) and C,,. ..,C, in (119) are functions of the 
extended parameter vector (e, p). The corresponding matrices F;, i = l,..., k, 
in (118) and (119) are identical, whereas the corresponding matrices Ci, i = 1,. . . , k 
- 1, in (118) and (119) are different. 

We can also obtain the approximate simultaneous equations model: 

Aky(t)=A,MAk~‘y(t)+A,M2Ak-*y(t)+... +A,Mky(t)+b+u,, (120) 

in which U, is approximately a vector moving average process of order k - 1 [see 
Wymer (1972)], and a similar model for integral observations, with a disturbance 
vector which is approximately a vector moving average process of order k. 

4. The treatment of exogenous variables and more general models 

We shall now extend the model (28) by including a vector x( t) = [x1(t), . . .,x,,,(t)]’ 
of exogenous variables. The x,(t), i =l,...,m, can be either integrable non- 
random functions or integrable random processes satisfying the condition that 
E[x,(t){(dr)] = 0 for all real I and all intervals dr on the real line. In place of (28) 
we have: 

G(t) = bf('J)~(r)+ W%(r)] dt +I-@+ (121) 

which is interpreted as meaning that: 

holds for all t. The elements of the n x m matrix B(e) are functions of the basic 
parameter vector 8. There is no need to include a vector of constants since this 
can be allowed for by letting x,(t) = 1. 

We are interested in the problem of estimating t9 from a sample of discrete 
observations of the n + m variables yt(t), . . . ,y,(t), x,(t), . . . ,xm( t) when, in gen- 
eral, the observations of some of these variables are point observations while the 
remainder are integral observations. The simplest case, in principle, is where the 
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vector x(t) is itself generated by a stochastic differential equation system: 

1203 

dx(t)=Rx(t)dt+lX(dt), (123) 

where S;(dt) is a white noise disturbance vector. We can then treat the system: 

as a case of (29) by replacing 8 by an extended parameter vector comprising 8 and 
the m2 elements of R. The exact likelihood function for the parameters of this 
extended system can be obtained as in Section 2.3, the simplest case being where 
the observations of all the variables are point observations and the most com- 
plicated where the observations of some variables are point observations while the 
remainder are integral observations. The assumption that x(t) is generated by a 
system such as (123) will often be a good approximation even if x(t) is not, in 
fact, generated by such a system. An even better approximation might be 
obtained by assuming that x(t) is generated by a higher order system, which can 
then be combined with (121) and treated by the methods of Section 3. But, 
clearly, this would involve heavy computational costs. 

We turn now to less costly approximate methods. An obvious approximation is 
the simultaneous equations model: 

~(t)-~(t-l)=~A(e)[y(t)+y(t-l)]+~B(e)[x(t)+x(t-1)]+u,, 

(125) 

E(u,) = 0, E( u,u;) = 2, E( usu;) = 0, s#t, 

E( x,u;) = 0, s, t =1,2 )...) 

which is a natural extension of (38). This model is approximate in the sense that, 
if U, is defined in such a way that (125) holds exactly, then the conditions 
E(U&) = 0, s # t, E(x&) = 0, s, 2 = 1,2,. ..) will be only approximately satisfied. 
The use of the model (125) is particularly convenient when the only restrictions 
on A and B are that certain elements of these matrices are zero (or some other 
specified numbers) so that 8 is a vector of the unknown elements of A and B. For 
this case, Sargan (1976) has made a thorough study of the behaviour of the 
two-stage least squares, three-stage least squares and full information maximum 
likelihood estimators as the observation period 6 tends to zero [for which purpose 
the model can be reformulated like (47)]. He introduces three alternative assump- 
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tionS &out the exogenous variables. Assumption 7 is the simpler of his two 

alternative assumptions for the case of non-stochastic exogenous variables while 
Assumption 8 is his assumption for the case of stochastic exogenous variables. 

Assumption 7 

(i) d2x/dt2 exists and is bounded and continuous for all t, except a countable 
set of points S. There exists a time period p such that the number of points of S 
lying in the time interval (s, s + p) is less than or equal to d for any s. 

(ii) dx/dt exists and is bounded for all t except points of S. 
(iii) x(t) is bounded for all t. The size of the discontinuity of x(t) (which can 

occur only at points of S) is bounded for all points of S. 

Assumption 8 

(i) x(t) is generated by a strictly stationary ergodic process with E[x(t)x’(t + 
r)] = L?,(r), all t. 

(ii) Q,(r) has one-sided derivatives at the origin up to the fourth order, so that 
a one-sided Taylor series expansion of Q,(r) at the origin, up to the fourth power 
of r, exists. 

(iii) L?,,(r) = E[x(t)y(t + r)‘] has positive one-sided first and second deriva- 
tives at the origin, so that a one-sided Taylor series expansion of L?,,(r) at the 
origin, up to the second power of r, exists. 

Sargan’s results imply that, under Assumptions 1,2,3 and either 7 or 8, the 
asymptotic bias of the two-stage least squares, three-stage least squares and full 
information maximum likelihood estimates are O(S2) as 6 + 0. Moreover, under 
these assumptions, the difference between the limits in probability of the three- 
stage least squares and full information maximum likelihood estimates are 0( S5) 
as6-+0. 

Assumption 8 will be satisfied if x(t) is generated by the system (123). But it is 
easy to prove directly, by an extension of the argument used in the proof of 
Theorem 5, that, in this case, the asymptotic bias of the two-stage least squares 
estimator is 0(S2) as 6 -+ 0. We can show that if A and E,, as used in Theorem 5, 
are redefined for the extended model (124), then the elements of the first n rows of 
the matrix: 

are 0(S2) as 6 + 0, where x, = x( t6). It is obvious from this that Theorem 5 
holds for the n equations of the model (125) when zj’), i = 1,. . . , n, are the vectors 
of instruments that yield two-stage least squares estimates for these equations. 
Moreover it would not be difficult to extend this argument to three-stage least 
squares estimators. 
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The discussion of the closed model, in Section 2, suggests that we should next 
consider estimators based on the exact discrete model: 

~(4 = e A(e)y(t -l)+[_ie (‘-r)A(e)~(t - r)dr + /’ e(fpr)A(e){(dr), (126) 
f-l 

which can be obtained by a fairly obvious revision of Theorems 2 and 3 to include 
exogenous variables. Since we do not have a continuous record of x( t ), the model 
(126) cannot be used directly as a basis for estimation. But it was used by Phillips 
(1974a, 1976) in order to obtain a more complicated approximate discrete model 
than that studied by Sargan. This is obtained by replacing x(t - r) in the first 
integral on the right hand side of (126) by: 

n(r-r)=x(t)+i[3x(t)-4x(t-l)+x(t-2)] 

+;[x(,)-Zx(r-1)+x(r-2)], 

which is the quadratic function of r chosen so that a( t ) = x( t ), a( t - 1) = x( t - 1) 
and .?( t - 2) = x( t - 2). Evaluating the integral we obtain the approximate dis- 
crete model: 

y(t) = F(e)y(t -1)+G,(B)x(t)+G,(8)x(t -l)+G,(e)x(t -2)+ u,, 

(127) 

E(u,) = 0, E( u,u;) = s2, E( u,u;) = 0, s # t, 

E( x,u;) = 0, s,t=1,2 )...) 

where 

In the above derivation we have identified the time unit with the observation 
period as we would in practical applications. But, for the purpose of considering 
the behaviour of the estimators as the observation period tends to zero, Phillips 
follows Sargan’s procedure of introducing a parameter S to represent the observa- 
tion period. If 6 Z 1, we must replace A and B by 6A and 6B, respectively, in the 
expressions for F, G,, G, and G,. 
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Phillips considers, first, the estimator of 19 obtained by applying full informa- 
tion maximum likelihood to the model (127) as if this were the true model, i.e. the 
vector 0 that minimises: 

det f i {y(t)-F(@)y(t -l)-G,(B)x(t) 
f-l 

- G#)x(t -l)-G,(e)x(l-2)} 

{Y(t>-F(e)Y(t-l>-G,(e)x(t) 
1 

-G,(B)x(t-l)-G,(e)x(t-2))’ . 
J 

He shows, under certain assumptions, that this estimator has a limiting normal 
distribution as T + m and that the asymptotic bias is O(S2) as S + 0. But the 
assumptions made for this purpose are stronger than Assumptions 7 or 8 and 
require the exogenous variables to follow a smoother time path, whether random 
or non-random, than the latter assumptions. In particular, they rule out the case 
of exogenous variables generated by the first order stochastic differential equation 
system (123), with white noise disturbances. 

Phillips then considers the properties of an instrumental variables estimator in 
which the vector [y’(t - 2), x’(l), x’(t - 2), x’(t - 3)] is used as a vector of instru- 
ments. He shows that the asymptotic bias of this estimator is 0(S3) under much 
weaker assumptions which do not exclude exogenous variables generated by the 
system (123). This method can be expected to give better estimates, therefore, 
than the use of the approximate simultaneous equations model (125). 

We turn, finally, to a powerful method due to Robinson (1976a). This makes 
use of a discrete Fourier transformation of the data and is applicable to a very 
general model which includes, as special cases, systems of stochastic differential 
equations and mixed systems of stochastic differential and difference equations. 
Moreover, it does not assume that the disturbances are white noise. They are 
assumed to be strictly stationary ergodic processes with unknown correlation of 
functions. But the method is not applicable to a closed model. 

The model considered by Robinson can be written: 

y(t)= Blm r(r,e)x(t -r)dr+((t), 
-0Z 

(128) 

where y(t) is an n X 1 vector of endogenous variables, x(t) is an m X 1 vector of 
exogenous variables, 5(t) is a disturbance vector, B is an n x 1 matrix of 
parameters which are subject to specified linear restrictions (e.g. certain elements 
of B could be specified as zero), Qr, e) is an I X m matrix of generalized 
functions and 8 is a 1 X p vector of parameters. An even more general model in 
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which r is not required to belong to a finite dimensional space was considered by 
Sims (1971). (His investigation is confined to the single equation case, but the 
results could be extended to a system of equations.) In this case r is not 
identifiable from discrete data. Moreover, the results obtained by Sims show that 
it can be very misleading to approximate T(r, 6) by smoothing the lag distribu- 
tion in the equivalent discrete model. 

At this stage we shall give a few results, relating to the spectral representation 
of a stationary process, which are essential for an understanding of Robinson’s 
method. It should be remarked, however, that Robinson (1976) is concerned with 
the use of Fourier methods in the estimation of the parameters of a particular 
model formulated in the time domain and not with the more general spectral 
analysis of time series. The latter is discussed in Chapter 17 of this Handbook. 

A wide sense stationary random vector process {x(t)} has [Rozanov (1967, 
Theorem 4.21 the Cramer representation: 

029) 

where aX is a complex valued random measure of the general type discussed in 
Section 2.2 and integration with respect to a random measure is defined as in 
Section 2.2. The random measure QX is called the random spectral measure of the 
process {x(r)}, and if F,,(dh) is defined by: 

F,,@A) = E[ @x,(dh)@,*(dA)], 

where @,*(dX) denotes the complex conjugate of the transpose of eX(dh), we call 
F,,(dh) the spectral meuwre of (x(t)}. If F’,(dh) is a matrix of absolutely 
continuous set functions with the derivative matrix: 

f,,(h) = dpO $.A@~), 
then f,,(X) is called the spectral density of {x(t)}. The random spectral measure 
aX(dh) can be obtained from (x(t)} by [Rozanov (1967, p. 27)] the inverse 
Fourier transformation: 

which holds for any interval A = (Xi, h2) such that: 

@Jh,)=@$(X,)=O. 

(130) 
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Returning now to Robinson’s model, let F( A, 8) be defined by: 

p(h,8) =/_Le’“‘T(t,B)dt. 

Then it can be shown [Rozanov (1967, p. 38)] that the random spectral measure of 
/““,J(r, @)x(t - r)d r is F( - X, 8)QJdh). By replacing each of the terms in 
(128) by its Cramer representation and applying the inverse Fourier transforma- 
tion (130), we obtain, therefore: 

e-ihz’ _,-iA,r 

-it y(t) dt 

iXzf 

_ir 
-iA,r 

)x(t)dt+$(A). (131) 

The equation system (131) holds exactly. Moreover, if A,,. .., A, are disjoint 
intervals the disturbance terms $(A,), . . . , $(A,,) are uncorrelated, although 
they are not homoscedastic when the intervals A,, . . . , A,, are of equal length. But 
we cannot estimate (131) directly since we cannot observe the integrals. 

In order to derive an approximate model we first note that: 

e -iA -e -ih,f 

-it 
=e +hlf( A, - A,)+ o( A, - A,)*. (132) 

If we now divide the interval (- 7r, n) into N subintervals A,, . . . , A,, each of 
length 27r/N, and use (132), we obtain from (131) the approximate system: 

lim ‘lTe-ihr’y(t)dt=sr(-h,B)~ltmm~~_TTe-iA~’x(t)dt+~~(A~), 
T-CON -T 

A, = 2as/N, -+NCYI$N. (133) 

If we normalize (133) by dividing by (27r/N)‘12 we obtain a system with a 
disturbance vector ( N/2n)‘/2@E(A,) whose covariance matrix is approximately 
the spectral density of t(t) at the frequency h,. If we then conjugate and replace 
the integrals by discrete Fourier transforms of the observations we obtain: 

W,,(S) = sWw)w,y(s)+ wg(s), 
where 

w,(s) = (2aNP”2 

(134) 
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The model (134) is the approximation used by Robinson for estimation 
purposes. Estimation is carried out in two stages. We first minimise the sums of 
squares of the errors which are then used to compute estimates of the spectral 
density of [(t ) in the frequency bands corresponding to various values of s. These 
estimates are then used in the construction of a Hermitian form in the errors in 
(134) which is minimised with respect to B and 8, subject to the restrictions, in 
order to obtain estimates of the parameters. In another article Robinson (1976b) 
considers the application of this general method specifically to a system of 
stochastic differential equations. The differential equations model is also treated 
by an instrumental variables method in Robinson (1976~). These two articles 
contain interesting Monte Carlo studies of the results of the application of the 
two methods. 

Robinson (1976a) shows, under certain assumptions, that the estimation proce- 
dure described above, for the model (128) using the approximate discrete model 
(134), yields estimates which are strongly consistent, asymptotically normal and 
asymptotically efficient. The most restrictive of his assumptions is that the 
spectral density of x(t) is zero outside the frequency range (- P, r). This 
assumption is necessary when estimating the parameters of such a general model 
from equispaced discrete observations because of aliasing, to which we have 
already referred in Section 2.3. The assumption would not be satisfied if, for 
example, x(t) were generated by the stochastic differential equation system (123), 
with white noise disturbances. But in this case, we can always extend the system, 
as we have seen, so that it can be treated as a closed model. And, if necessary, we 
can transform the model into a higher order system so that the assumption that 
the disturbances are white noise is approximately satisfied. 

5. Conclusion 

In this chapter we have described statistical methods which are applicable to a 
class of continuous time stochastic models and discussed the theoretical founda- 
tions of these methods. An important feature of the class of models considered is 
that such models allow for the incorporation of a priori restrictions, such as those 
derived from economic theory, through the structural parameters of the continu- 
ous time system. They can be used, therefore, to represent a dynamic system of 
causal relations in which each variable is adjusting continuously in response to 
the stimulus provided by other variables and the adjustment relations involve the 
basic structural parameters in some optimization theory. These structural parame- 
ters can be estimated from a sample comprising a sequence of discrete observa- 
tions of the variables which will, generally, be a mixture of stock variables 
(observable at points of time) and flow variables (observable as integrals). In this 
way it is possible to take advantage of the a priori restrictions derived from 
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economic theory (which are very important in econometric work, because of the 
smallness of the samples) without making the unrealistic assumption that the 
economy moves in discrete jumps between successive positions of temporary 
equilibrium. 

The feasibility of constructing a continuous adjustment model of an economy, 
using the methods described in this chapter, was demonstrated by Bergstrom and 
Wymer (1976) to whose work we have referred in Section 2.3. The methods are 
now being widely used, and the Bergstrom-Wymer model has been used as a 
prototype for a larger econometric model of the United Kingdom [see Knight and 
Wymer (1978)] as well as for models of various other countries [see, for example, 
Jonson, Moses and Wymer (1977)]. There have also been some applications of the 
models, not only for forecasting, but also for the investigation of the effects of 
various types of policy feed-back [see, for example, Bergstrom (1978, 1984)]. And, 
in addition to these macroeconomic applications there have been applications to 
commodity and financial markets [see, for example, Richard (1978) and Wymer 
(1973)]. The results of these various studies, which are concerned with models 
formulated, mainly, as first order systems of stochastic differential equations, are 
very encouraging. They suggest that further empirical work with higher order 
systems of differential equations or more general continuous time models is a 
promising field of econometric research. 

On the theoretical side an important and relatively unexplored field of research 
is in the development of methods of estimation for systems of non-linear 
stochastic differential equations. So far these have been treated by replacing the 
original model by an approximate system of linear stochastic differential equa- 
tions, which is treated as if it were the true model for the purpose of deriving the 
“exact discrete model” or, alternatively, making a direct approximation to the 
non-linear system of differential equations with a non-linear simultaneous equa- 
tions model. In some cases it may be possible to derive the exact likelihood 
function in terms of the discrete observations generated by a system of non-linear 
stochastic differential equations. But, more generally, we shall have to rely on 
approximate methods, possibly involving the use of numerical solutions to the 
non-linear differential equations system. 
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1. Introduction 

The standard linear regression model has been a very attractive model to use in 
econometrics. If econometricians can uncover stable economic relations which 
satisfy at least approximately the assumptions of this model, they deserve the 
credit and the convenience of using it. Sometimes, however, econometricians are 
not lucky or ingenious enough to specify a stable regression relationship, and the 
relationship being studied is gradually changing. Under such circumstances, an 
option is to specify a linear regression model with stochastically evolving coeffi- 
cients. For the purpose of parameter estimation, this model takes into account the 
possibility that the coefficients may be time-dependent and provides estimates of 
these coefficients at different points of time. For the purpose of forecasting, this 
model may have an advantage over the standard regression model in utilizing the 
estimates of the most up-to-date coefficients. From the viewpoint of hypothesis 
testing, this model serves as a viable alternative to the standard regression model 
for the purpose of checking the constancy of the coefficients of the latter model. 

The basic linear regression model with a changing coefficient vector /3, is 
represented by: 

y,=X,&+Er (t=l,..., T) (1.1) 

and 

P, = Mp,-, + 91 (t =l,...,T), (1.2) 

where x, is a row vector of k fixed explanatory variables, E, is normally and 
independently distributed with mean 0 and variance s2, and q, is k-variate normal 
and independent with mean zero and covariance matrix s 'P = V. When V = 0 and 
M = I, this model is reduced to the standard normal regression model. We will be 
concerned with the estimation and statistical testing of p, (t = 1,. . . , T), s2, I/ and 
M using observations on (yr, x,). We are restricting our discussion to the case of 
fixed x,. If x, were to include lagged dependent variables, the log-likelihood 
function given at the beginning of Section 4 would no longer be valid since the 
individual terms would no longer be normal and serially uncorrelated. 

Assuming tentatively that s 2, Y and M are known, one may consider the 
problem of estimating ~3, using information Z, up to time s. Denote by E(/ItB,I Z,) = 
~3,,, the conditional expectation of /3, given Z,. The evaluation of /3,,, is known as 
filtering. The evaluation of &(s > t) is called smoothing, and the evaluation of 
&,,(s < t) is called prediction. In Section 2 we will derive the filtered and 
smoothed estimates of /3, recursively for t = 1,2,. . . , by the use of a regression of 
81V...7B~ on Y, , . . . ,y,. The basic results are due to Kalman (1960). Section 3 
contains an alternative derivation of the same results using the method of 
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Aitken’s generalized least squares applied to a regression of y,, . . . ,.Y, on x1,. . . ,x, 
with & as the regression coefficient. This exposition is due to Sant (1977). We will 
then study the problem of estimating s ‘, V and M by the method of maximum 
likelihood in Section 4. 

In Section 5 we consider a system of linear regressions with changing coeffi- 
cients. In Sections 6 and 7, respectively, we treat a system of linear and non-linear 
simultaneous stochastic equations with changing parameters. Finally, in Section 8, 
we modify (1.2) by introducing a mean vector p, thus replacing & and /3_ 1 in 
(1.2) by & - B and &_, - B respectively and assuming the characteristic roots of 
M to be smaller than one in absolute value. When M = 0, a random-coefficient 
regression model results. Section 9 states some conditions for the identification of 
the parameters. 

Besides estimation, an important problem is hypothesis testing especially using 
the null hypothesis V= 0. Testing this null hypothesis is equivalent to testing the 
stability of a set of regression coefficients through time, with the model (l.l)-(1.2) 
serving as the alternative hypothesis. This topic is treated in Section 10. Section 
11 concludes this survey by suggesting some problems for further research. 

2. Derivation of & by recursive regression of & on yl,. . . ,.Y, 

Consider the regression of & on y,, conditioned on y 1 ,... ,_Y-~. Denote (Y~,...,Y,) 
by q. The regression of interest is by definition: 

E(M,, Y-r) = E(B,I Y-r)+ K,[x -E(A Y-,)1. (2.1) 

This regression is linear because & and q are jointly normal as a consequence of 
the normality of E, and 7, in the model (l.l)-(1.2). Taking expectation of y, from 
(1.1) conditioned on Yt_i, we have ~+r = E(y,l Y,_,) = x&r. Equation (2.1) 
can be written as: 

P,,, =&r-t + KI[ YI - Xl&,,-11. (2.2) 

K, is a column vector or regression coefficients, originally derived by Kalman 
(1960). If this vector is known, we can use (2.2) to update our estimate &r to 

form P,,,. 
To derive K, we apply the well-known formula for a vector of regression 

coefficients: 

K, = [EM -Pz,r-1)(X - J+i)‘] [cc+,l r,-,>I -l. 

Denoting the covariance matrix cov(&l Y,_,) by Z,,,_t and using 

Yf-Ytlr-l=~,(~,-~rS,,,-l)+~,~ 

(2.3) 
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we can write (2.3) as: 
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Xl,,_1 can be computed recursively as follows. First, by evaluating the covari- 
ante matrix of each side of (1.2) conditioned on YtPl, we obtain: 

Z ,,,-I = Mz:,+_,M’+ v. 

Second, using (2.2) and (1.1) we write: 

(2.5) 

P,-P,,,=P,-P,,,~1-K,[x,(P,-Pr,t-1)+El]. (2.6) 

Taking the expectation of the product of (2.6) and its transpose and using (2.4) 
we obtain: 

z’,,, = x1,1- 1 - K,[x,B,,,-,x:+ 0’1 K, 

=x -2 /)I- 1 t,t- 1x: G,,- 14 + o* [ 1 -1 

G’,,,P 1. (2.7) 

Equations (2.5) and (2.7) can be used to compute ,Xr,, (t = 1,2,. . . ) successively 
given Z,,,,, without using the observations y, (t = 1,2,. . .). Having computed 
,Zt,r_lr we can use (2.4) to compute K, and (2.2) to compute fi,,, where, on account 
of (1.2): 

Thus, /?,,, can be computed from /3Pi,,_1 using (2.8) and (2.2). The estimates /I,,, 
so obtained are known as estimates by the Kalman filter. 

Although we have employed classical regression theory in deriving the Kalman 
filter, one should note that it can be derived by Bayesian methods. Given the 
prior density of p,-i to be normal with mean &i,,_ 1 and covariance matrix 
2 fellI-l> a prior density of & is found using (1.2), which has mean /3,,,_, = 
Mb,_ I,t_l and covariance matrix ZrlrPl = MZ,_i,,_iM’+ V. The posterior den- 
sity of /I, given yt is normal, with mean p,,, and covariance matrix Z,,, as given by 
the Kalman filter. See Ho and Lee (1964). 

In order to utilize future observations Y~+~, y,+z,. . . ,y,+, for the estimation of 
/3,, we first consider the regression of p, on _y,+ r, conditioned on Y. Analogous to 
(2.2) and (2.3) are: 

P IIt+ =Pt,t + Q,t+lh+1 - x+1,0 (2.9) 
and 

Q,t+i = [E(P,-B,,,)(vt+l-Y,+~,l)‘][cov(y,+,lY,)l-L. (2.10) 
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Using (1.1) and (1.2), we write: 

Y,+1- Y,+1j, = x,+lP,+l+E,+l- Xt+1P,+l,, 

=x ,+,wA + xt+PIt+1+5+1 -x,+&Q,,, 
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which, in conjunction with (2.10) implies: 

D t,t+1 =~f,,~~~;+l[~,+l~f+l,,X;+l + ~‘1 -l 

= ~,,,~‘zA,A+1 
(2.11) 

Equations (2.9) and (2.11) can be used to evaluate p,,,,,. With the aid of (2.11) 
and (2.2), (2.9) can be rewritten as: 

P r/l+l=Pr,,+~I,I~‘~;:l,l(Pr+l,,+l-~,+l,*). (2.12) 

The smoothing formula (2.12) will be generalized to 

P ,I,+,, =Pt,t+.-1+ KM+l,t+n -P,+l,r+“-l), (2.13) 

where H, = Z,,,M’X,pIl,,. We will prove (2.13) by induction. Equation (2.13) holds 
for n = 1. We now assume (2.13) to hold for n - 1, which implies: 

P,,t+n-1 =Pt,l+n-2 + f4(P,+l,t+n~l -Pr+l,r+n-2) 

=P,,r+n-2 + 4Hr+l(P,+,,t+n~l -Pr+*p-2) 

= P,,r+n-2 + f&H,+, ..-Hr+n~~(P,+n-l,r+n~l - Br+n-l,t+nd 

=Pt,t+n-z+fW,+l... Hl+n-dL~br+n-l- ~,+n~l,,+n-2). 

(2.14) 

Consider the regression of p, on y,, n _ 1, conditioned on Y,, “_ z. Analogous to 
(2.9) an (2.10) are: 

P,,t+,4 =&,r+“-* + Dt,t+,-lb&-, - Yt+“-l,,+nA (2.15) 

and 

D r,r+n-1 = E & -P,,r+n-2 [ ( NY,+npl - Yrcn-l,r+nJ] 

[covb,+n-11 L-d] -‘= WC+, .-.HI+n-zKr+npl, (2.16) 

where the last equality sign results from comparing (2.14) and (2.15). Equation 
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(2.16) implies: 
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E(P, -Pr,r+n-2 )(Yt+n-l - Yr+n-1,r+n-2)’ 

= E(P, -B,,,+,-&L-1 -Pr+n~1,r+n-2)‘~;+.-1 
= H,H,+, . ..~.+,-2~,+“-l(Xr+n-l~t+n-l,r+n-2X:+1 + 0’) 
= H,H,+, . ..H ,+n-2 ,+n--l,,+n-2X;+“-1’ 2 (2.17) 

where (2.4) has been used. 
To prove (2.13), we need to find the regression of & on Y,+,,, conditioned on 

yI+,-1: 

P ,,,+,I =P,,,+,-1 + D,,,+,(Y,+, - Y,+n,,+n-1). (2.18) 

To evaluate the vector of regression coefficients I+,+, we write, using (2.15): 

P, -P,,,+n-l =P, -P,,,+n-2 - q,+n-h+n-* - Y,+n-1,,+n-2) 

=a-Pr,,+n-2-DI,,+.-~[X,+n-ltPr+n-l-Pt+n-~,,+~-2~ 

+& 
I ,+n-I 3 (2.19) 

and using (2.2): 

Y ,+,I - Y,+nt,+n-l= x,+,$0+,-t -P,+,-I,,+n-l)+X,+n%+n +et+n 

=X ,+P[ l-t+,-, -B,+n-I,,+“-2 - &+,-I 

x (Y,+A - Y,+n--l,,+n--2)] + x,+nn,+n + e,+, 

=x ,+,?[(I- K+n-lX,+n-lWL-l -P,+n-1,,+n-2) 

- G--lE,+n--l] +X,+.%+. + E,+n- (2.20) 

Equations (2.19) and (2.20) imply: 

E(br -P,,t+n-1)(~r+n - ~r+n,t+n-I)' 

= E@r -Pr,r+n-2 >uL-1 -P,+n-l,,+n-2)‘(z- 4+n-1c+n-1)~% 
- D,,r+n-l[x r+n-l~,+n-l,r+n-2~z-~:+n-l~~+n-1)-~2~;+,-l]~’~;+l 

= H,H,+,... Hl+n-~~,+n-1,r+n-1M’x:+n 

= fWr+l... H,+,1K,+n(xr+n~r+,,,+n-1~:+n +o*)v (2.21) 
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where the second equality sign results from using (2.16) (2.17) and (2.7) and the 
third equality sign is due to (2.4). Hence, the regression coefficient is: 

D 1p+ll = E Pt-p,,,+.~d(y,+.- yf+n/,+n-~1)']~0~(~~+,l~+,,_,,l~' [ ( 

= HIK+~...fft+n-~Kt+n+ (2.22) 

Equation (2.22) generalizes the coefficient given by (2.16). Substituting (2.22) into 
(2.18) yields: 

P rl,+n =&A + H,H,+,...H,+,-,(P,+.,,+. -P,+n,,+n-I) 

= &,+,A + Ht(P,+r,,+n - &+I,,+~-I), (2.23) 

where the last step is due to the third equality sign of (2.14) with t replaced by 
t + 1. Equation (2.23) completes the proof. Equations (2.23) and (2.18) provide 
three alternative formulas to evaluate &,,+ ,,. 

To derive the covariance matrix Z,,,,,, we use (2.18) and (2.21): 

2 Ilr+n = wr - Lt,r+n>(a - pL,r+,I)’ 
= E[ P, - P,,t+n-I - D,,,+nb,+n - x+n,,+n-I)] 

x [8, -l-t,,+“-1 - qr+“h+” - Yr+n,r+n-l)]’ 
=2 rp+n-1 - Dr,r+.(~r+n~r+n,r+n-1~:+n + u2)Ur;r+n. (2.24) 

By (2.22), (2.4) and (2.7), the formula (2.24) can be written alternatively: 

2 11, +n =2 rlr+n-l - Hr...Hr+“~lKr+“(X,cn~r+n,r+~-l~~+” + 0’) 
x K,;,H,‘+,_,...H,’ 

=2 ,1,+n-1 - HI...H,+n-l~,+nl,+n-lx:+n(x,+n~,+~,,+~-lX:+n + o’)-’ 

Xx,+. ~,+n,,+n_1H,l+n-,...H,~ 

=.Z rp+n-1+ f4...f4+n-l(~,+“,,+n -4+n,,+n~1Pt;n-1 . ..H.‘. 

(2.25) 

Equations (2.24) and (2.25) provide the covariance matrix of the smoothed 
estimate /I,,,+, of /?, given the data up to t + n. The estimates fi,,, and AX,,, of this 
section require knowledge not only of the parameters u2, V and M, but also of the 
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where, by (2.5) and (2.7): 
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R,=MR,_,[I-x;_l(x,_*R,_In:,+l)-l~,_lR,_l]M’+P 

(t=k+2 )...) T), (4.4) 

and, by (2.8), (2.2) and (2.4): 

&,,-I = M[ L,P2 + R,-lx:-l(x,-lR,-lx:-1 +I)-‘(X-1 -x,-J,-,,,-,)] 

(t=k+2,...,T) (4.5) 

The initial conditions are: 

R k+l = o -2M2,,,M’+ P (4.6) 

and 

P k+llk = MPk,k 7 (4.7) 

with zklk and Pklk given by (3.3) and (3.4). One would have to rely on a numerical 
method to maximize (4.3) with respect to the unknown parameters in P and M, P 
being symmetric, positive semidefinite. Garbade (1977) gives an example. 

An alternative expression of the likelihood function can be obtained by using 
the normal regression model (3.1) for t = T, i.e. 

y=Z@+&-AT), 

where 

I7 Z= 

xT 

El 
E2 ‘> II E= . ) .vI= 

ET 

(4.8) 

772 

773 I:1 . 9 

VT 

p=PTandA=AT as defined by the last coefficient matrix of (3.1) for t = T. The 
log-likelihood function of this model is: 

logL=const-flogIe2zr1 -$loglQl--$(y-ZjS)‘Q-‘(y-Zfi)/a2, (4.9) 

where 

Q = I, + A(Z,_,BP)A’. (4.10) 
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Maximization of (4.9) with respect to a2 yields: 
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-2 
u =+(y-zp)‘pp’(y-zp). (4.11) 

Maximization of (4.9) with respect to p yields: 

B = ( z’Q~‘z)~lz’Q~‘y. (4.12) 

Differentiating (4.9) with respect to the unknown elements p,, = P,~ of P, one 

obtains 

AogL 

-( i 

1aQ 

JPl, - tr Q- dp,, 

To evaluate aQP ‘/LIP,,, we differentiate both sides of QQ- ’ : 
p,, to get: 

Using the definition (4.10) for Q, we have: 

aQ = A( Z,_,@E,,)A’, 
aP,J 

= I with respect to 

(4.13) 

(4.14) 

(4.15) 

where EIJ is an elementary k x k matrix with all zero elements except the i - j 
andj - i elements which equal unity. Substituting (4.11) (4.12) (4.14) and (4.15) 
into (4.13) gives: 

ai0gL 
-= -tr[QP1A(Z,_,8E,,)A’] 

aPIJ 

+ +y'N'e'); 
t 

-1 

y'N'P-'A( IT_l@E,JA’)Q-lNy, (4.16) 

where N denotes Z- Z(Z’QQIZ))‘Z’Q-‘. Equation (4.16) is useful for the 
maximization of (4.19) when a numerical method requiring analytical first deriva- 
tives is applied. Furthermore, in econometric applications A4 is frequently as- 
sumed to be an identity matrix and P to be diagonal. In this important special 
case, the only unknown parameters in (4.9) are p 11.. .pkk. One can start with zero 
as the initial value for eachp,, and increase its value if alogL/ap,; as evaluated by 
(4.16) is positive. 
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For the general case, numerical methods can be applied to maximize (4.9) after 
the elimination of u* and /3 by (4.11) and (4.12), i.e. - ~~o~~(_JJ’N’Q-‘y)Ql, with 
respect to the unknown parameters in P and M. For a discussion of conditions for 
the identifiability of these parameters and the asymptotic distribution of the 
maximum likelihood estimator, the reader is referred to Section 9 below. 

5. System of linear regressions with changing coefficients 

A generalization of the regression model (l.l)-(1.2) is a system of m linear 
regressions with changing coefficients: 

Yl, 

[I Y' ml 

Pl, [I P,, 

(5.1) 

I (t =l,...,T). (5.2) 

Here xj, is a row vector of k, explanatory variables. (pi,, . . . ,E,~) is m-variate 
normal and independent with mean zero and covariance matrix S = (a,,). njl is 
k,-variate normal and independent with mean 0 and covariance matrix 5 = a,,P,, 
being independent of nj, for i # j. If a,, were zero for i # j, the m regression 
models will be treated separately, each by the methods previously presented. 
When a,, # 0, efficiency may be gained in the estimation of /?,[ by combining the 
m regressions into a system. 

If we write (5.1)-(5.2) more compactly as: 

y.; = x,/l., + E.( (t =l,...,T), (5.3) 

P.t=MP.,_i+n., ,...J), (f’=l (5.4) 

the filtering and smoothing equations of Section 2 remain entirely valid for this 
model, with u, Vi,. .., V, and M treated as given. The derivations are the same as 
in Section 2, with the scalar y, replaced by the column vector y.‘(, the row vector x, 
by the m x (2,k,) matrix X,, and the variance u* by the covariance matrix 2 of 
the vector E,,. K, in (2.4) becomes a (Z;k,)X m matrix. 

For the estimation of Z, Vi,. . . , V, and M, we write the T observations on the 
jth regression model with coefficient j3,r = pj in the notation of (4.8) as: 

yj=Z,Pj+&,-A 17 
J I’ (5.5) 
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where the residual vector E, - A,q, has covariance matrix u,,Q,, with 

Q,=Z,+A,(Z,_,@P,)A;. (5.6) 

Combining the m regression models, we have: 

(5.7) 

where the residual vector has covariance matrix: 

(5.8) 

with u’J denoting the i - j element of E-‘. 
The log-likelihood function for the model (5.7) is: 

logL=const-ilogj@I-4 f (_y-Z,&)‘Q-‘(y,-Z,&)u” 
i=l 

- f (Vi - Z,P;)‘(v, - Z/b+‘. (5.9) 
r<j 

Observing that 

and 

=-2Tu,, (u,,=u,,,i#j), 

we differentiate (5.9) with respect to u” and uiJ to obtain: 

4, = +(Y, - Z,P,)'Q;'h - Z,P,) (5.10) 
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and 
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4, =~(Y,-z;8;)'(Y,-z,~j) (i+ _i) (5.11) 

Equation (5.10) is identical with (4.11) and shows that eii can be obtained from 
the residuals Y, - Z,& of the i th regression only, if the parameters P, and M, are 
known. Equation (5.11) shows that uij (i # j) is the sample covariance of the 
residuals in the ith and jth regressions and is independent of P, and P,. 

Differentiating (5.9) with respect to /3, gives: 

F = u"Z;Q,:'( y, - Z&)+ Z; 5 d’( y, - Zjpj) = 0. 
I j+i 

Combining the above equations for i = 1,. . . , m, we have: 

_ i 
Z; u”“Q,‘y,,, + c u”jy, 

jfm 

(5.12) 

Differentiating (5.9) with respect to the i - j element pk.,, of Pk yields: 

= - ukkukktr[ QklAk( I,_l@I?jj)A;] 

+(Yk - zkpk)‘QklAk(IT~l~E,,)A~Qkl(Yk - ‘kfik)- (5.13) 

The maximization of 1ogL with respect to Pk (k = 1,. . . ,m) can proceed 
iteratively as follows. First consider the important case with M,, . . . ,M, given. 
Starting with Pk = 0 for all k, which implies Qk = I,, solve (5.10)-(5.12) for 9, 
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The linear approximation of 9’il is: 

where the subscript zero indicates that the matrix 
S,c’ = 6,,,_,. To evaluate the matrix &r,t/a8:, we note: 

or, with y. k, f denoting the k th column of c: 
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(y,kJ in ith row); 

or, with j?.k,, denoting the k th column of B,: 

(6.7) 

&rJ,/&3; is evaluated at 

an’, 
-z.z 

wk, I 

- Z,yFJ. 

(6.8) 

(6.9) 

Hence, the matrix (an,,/%$‘), of (6.7) can be evaluated by (6.8) and (6.9) with 17, 
replaced by IX?: and r,-’ replaced by r;“-’ = r,;?,. Similarly, approximating 
--alJ-‘by alinear functionof E.[ and (yt,...ym,) about e.,=O and (yt,...y,,) 
= (ytrlr_t. ..y,,,,,,_l) yields - ~l,c;!r. Combining this result with (6.7) and denot- 
ing x, r~Jy by ~~7, we can write the linearized version of (the transpose of) (6.2) as: 
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or more compactly as: 
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(6.11) 

where thejth row of W,’ is, by (6.8) and (6.9): 

ar,* 
x., - =- 

i i 
K *o 

as; 
Yl, % Y,lr-l.*. *) I’ (Y,*p x,,)Y;L] 

=- 
[ 

*o lj *O mj 
3, Yrlt-l***ZmtYtlr-1 7 1 (6.12) 

with y,:” denoting a row vector composed of those elements of y.‘, = x ,IIp which 
correspond to y,,. 

The linearized model (6.11) will replace (5.1) or (5.3) for the purpose of 
deriving filtering equations. For the model (6.11)-(6.5), the derivations are exactly 
the same as in Section 5 or Section 2, with Z= EE.&~, V, = Ev,,$~ (i =l,...,m), 
and M, (i=l,..., m) treated as given. From the linear model (6.11) one finds the 
conditional expectation Y.‘,,,_~ to be y.:‘. Repeating the derivations from (2.2) to 
(2.8) one finds: 

a,,, = a,,,-1 + Kt[ Y.', - Y&] > (6.13) 

and, denoting E(6, - S,,,-,)(a, - a,,,-l)’ by I,,t-l, etc.: 

K, = ~,,,-l~o’[ w,02t,t_1~o’+ I-,;,;;-iSI’&] -l. (6.14) 

Corresponding to (2.5), (2.7) and (2.8) are, respectively, 

2 f,,-l= M&,,,-,M’+ v, (6.15) 

M being the coefficient matrix of (6.5) and V being the covariance matrix of its 
residual n; = (n;,. . . TJ;,): 

I,,, = zZ,,,-l - K,[ w,“+lW,o’+ r,;,-_‘lSr,,‘,] K: (6.16) 

and 

$-1 = M$-P (6.17) 
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An alternative way of estimating aTIT, given 2, y and M,, is to form a 
regression model analogous to (3.1) using (6.11) for y,‘, (t = 1,. . . , T) and denoting 
y.‘, - y.;’ + ~06r,,~ 1 by PC,: 

M-2 . . . 

FtYM-’ ..* 

0 . . . 

0 . . . 

. (6.18) 

The covariance matrix of the residual vector of (6.18) has an i - j block: 

T-l 

6 P-lsI]O- + lye 'I ’ 
c M~(~-'+~)vM'-(I~J+~)~O', (6.19) 

r=max(l,j) 

where IS,, is the Kronecker delta. Aitken’s generalized least squares can be applied 
to estimate 6, once the coefficients W,” and rp of the linearized model (6.11) are 
evaluated. One can choose an initial guess ST for a,,,, and the associated 
8: = M-‘Tp’%~ (t =l,.. ., T). These initial values permit the evaluation of y”, 
co, r.T = - x.~B~&~-’ and 6,,,_, = 6:. Equation (6.18) will be treated as a linear 
regression model to estimate a,,,. The resulting estimate will be used to form a 
new initial guess SF and the process continues iteratively. 

In order to estimate the unknown parameters in 2, V, (i = 1,. . . ,m) and M, 
(i=l,. ..,m), (6.18) can be used to form a likelihood function. However, unlike 
the situation with truly constant coefficients 4’ and r:, the evaluation of the 
likelihood function requires iterative solution of ST,, as described in the last 
paragraph. The computational problem involved in maximizing the likelihood 
function is hence more burdensome than in the case of a truly linear (in contrast 
with a linearized) model. This problem deserves further study. 
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7. System of non-linear simultaneous equations 
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Let the t th observation of a system of m non-linear simultaneous equations with 
time-varying parameters be written as: 

y.‘, = @(Y+ x.J$)+s.* (1 =l,...,T), (7.1) 

where @ is a vector function of m components and 

6, = M6,_ 1+ qr (2 =l,...,T), (7.2) 

which is identical with (6.5). Like the reduced-form (6.2) for a system of linear 
structural equations, (7.1) is a non-linear function of the parameter vector 8,. The 
approach to be adopted is similar to the one used in Section 6. It amounts to 
linearizing the non-linear observation equation (7.1) about some S,r’ and the 
associated y.: defined by: 

yp,l= @( yp,, x.,, 6:). 

Given S,O and x.,, y.: can be computed by the Gauss-Seidel method, for example. 
Linearizing @ in (7.1) about i3p and y.!,, we have: 

Y.‘, = r9'+ (yy., o (““) (y~*-Y:~)+(~)o(s,-sp)+E,, 

where, as in Section 6, the sub-script zero indicates that the matrix of partial 
derivatives of @ is evaluated at y.!, and 8:. Solving for y:,, we get: 

which replaces the linearized observation equation (6.11) of Section 6. The 
treatment of the model (7.1)-(7.2) is the same as in Section 6. The computational 
problem is only slightly more difficult because the linearization to achieve (7.3) 
requires the evaluation of the partial derivatives (a@/8y.,)o and (&D/&S,‘)o 
whereas the linearization to obtain (6.11) requires matrix inversion only. These 
partial derivatives can be evaluated numerically, and their evaluation is computa- 
tionally much simpler than the maximization of the likelihood function for the 
linearized model with respect to the parameters S, V, (i = 1,. . . , m) and M, 
(i = 1,. _ . , m) as discussed at the end of Section 6. 
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8. Model with stationary coefficients 
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An alternative specification to (1.1) and (1.2) is: 

(8.1) 

(8.4 

where all characteristic roots of M are assumed to be smaller than one in absolute 
value. In stochastic equilibrium p, will have mean fl and a covariance matrix r 
satisfying: 

where, as before, V is the covariance matrix of qr, In the special case with M = 0, 
the model (8.1)-(8.2) becomes a linear regression model with random coefficients. 

The model (8.1)-(8.2) differs from (l.l)-(1.2) mainly by the introduction of the 
parameter vector j?. However, it can be rewritten in the same form as (l.l)-(1.2), 
so that our results in Section 2 are applicable here as well. Defining p,* = p, - fi 
and B, = p for all t, we write (8.1)-(8.2) as: 

(8.3) 

which is a special case of (l.l)-(1.2). In most applications, not all components of 
/I, in (8.2) are random. If only a sub-vector fi, of p, consisting of k, elements, say, 
is random, (8.3) and (8.4) will become: 

(8.5) 

Since the model (8.5)-(8.6) is a special case of the model (l.l)-(1.2), all the 
filtering and smoothing equations of Section 2 and the log-likelihood functions 
(4.1) and (4.3) are applicable to this model. However, the estimation problem for 
this model deserves a special treatment. Because the roots of M are smaller than 
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one in absolute value and the process generating b,* is covariance-stationary, one 
may choose to estimate this model by assuming that the &* process starts in a 
stochastic equilibrium, rather than assuming a fixed, but unknown, initial value 
fi: in period one. The latter assumption was made in (3.1) where we used the 
relation: 

and treated fi: as fixed. In estimating the model (8.5)-(8.6) one may treat & as 
random, with mean zero and covariance matrix r, satisfying: 

r, = Mr,M’+ v. (8.7) 

The autocovariance matrix for the fit* process is: 

I” = E&$YX = MS& = PS (s 2 0; t 21). (8.8) 

If & is regarded as fixed, instead of (8.7) and (8.8), the covariance matrix of j$ 
and &YS is: 

E( & _ M’-‘&)( jj& - M’-“-‘&)’ 

=E(n,+Mn,-i+ ... + M’-2n2)( Tjr_s + M?j_$_* + . . . + M’-“-2712) 

t-s-2 

= c M”+‘vM” (srO;t21). (8.9) 
r=O 

The difference in the treatment of pi+ has implications for estimation. When p: 
is regarded as fixed, all inferences are conditional on this assumption. When & is 
regarded as a random drawing from a distribution with mean zero and covariance 
matrix r. as specified by (8.7), the inferences are no longer conditional. Further- 
more, to provide the initial estimates fiklk and Z,,, to start up Kalman filtering 
equations for the evaluation of the log-likelihood functions (4.1) and (4.3), the 
two assumptions lead to different procedures. In the case of fixed &, we regard 
(8.5) as a special case of (1.1). Therefore, the number of initial observations 
required to perform a generalized least squares regression equals the number of 
elements in pt and &*, or k + k,, say. (3.3) and (3.4) are applied to these k + k, 

observations, and the analysis proceeds as before. 
In the case of random &, (8.5) can be written as: 

y, = x$ + ( zt& + Et) = XJ + 24,. (8.10) 
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The term in parentheses or u, is treated as a serially correlated residual satisfying: 

Eu,u;_, = Z,r,Z;p, + Sr,t-su2, (8.11) 

where r, is defined by (8.8) and a,,,_, is the Kronecker delta. Therefore, given 
(8.11) only k initial observations are required to obtain a GLS estimate Bkklk of p 
and its covariance matrix. Writing the first k observations of (8.10) as: 

y=xp+u, (8.12) 

where X is assumed to be a non-singular k by k matrix and Em’ = W is given by 
(8.11), we have: 

s,,, = (xvlx)_'XT'y = x-ly, (8.13) 

cov(&k -8) = (x/w-lx)-‘= x-‘WX’_‘. (8.14) 

For & in equilibrium, we set its mean equal to zero and its covariance matrix to 
r,, i.e. 

P,;, = 0; cov(&~k*J=I& (8.15) 

The covariance of pkklk - p and @ - P,& is: 

Equations (8.13)-(8.16) provide the components of Pklk and ZkJk to be used for 
the evaluation of the log-likelihood functions (4.1) and (4.3). They are to be 
contrasted with (3.3) and (3.4) for fixed /3: which would require k + k, initial 
observations. 

Once the likelihood function (4.3) can be evaluated, a numerical method can be 
applied to maximize it with respect to the unknown parameters in V = a2P and 
M. The computations will be simplified when P and M are diagonal, being 
diag( pi} and diag{ m,}, respectively. Equations (8.7) and (8.8) would become: 

y,;,, = Ep;r2 = ?h- 
1-m: 

(i=l ,...,kJ, (8.17) 

Xl,, = EPZP~,-, = mfy,i,o (i=l ,...,kr), (8.18) 
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and E/3,:P;t,_, = 0 for i # j and for all s. Accordingly the matrix I” used in (8.11) 
is a diagonal matrix with elements given by (8.17) and (8.18). As an alternative to 
using the likelihood function (4.3), one can form a likelihood function using the 
regression model (8.12) for all T observations, as it was done by using the model 
(4.8) in Section 4. 

For further discussion of the stationary-coefficient regression model, the reader 
is referred to Rosenberg (1973), Cooley and Prescott (1976), Harvey and Phillips 
(1982) and Pagan (1980). The exposition of this section has drawn from Harvey 
and Phillips (1982). For a survey of the random-coefficient model, the reader is 
referred to Swamy (1971, 1974). Swamy and Tinsley (1980) generalize the model 
(8.1)-(8.2) by replacing p by Bz,, z, being a vector of fixed variables. Kelejian 
(1974) treats linear simultaneous-equation models with random parameters. 

9. Identifiability of parameters 

Recently, Pagan (1980) has studied identifiability conditions for the parameters of 
a regression model with stationary parameters. His model is: 

yt=X$+X,/3;*+E,=x,p+u,, (9.1) 
j3;“=/?,-j7=K1(L)e,, (9.2) 

where A(L) is a ratio of polynomials of orders p and q in the lag operator L and 
e, is normal, independent and identically distributed, so that &* follows an 
ARMA( p, q) process. Since an ARMA process can be written as a first-order AR 
process, as, for example 

can be written as 

or 

the model (9.1)-(9.2) is formally identical with our model (8.5)-(8.6), with 2, in 
(8.5) denoting (x, 0 0) in the above example. The parameters of (9.1)-(9.2) 
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consist of fi, u2 = var E,, and all the parameters in the ARMA( p, q) process for 
fl;“. By identification, Pagan means asymptotic local parametric identification, i.e. 
the non-singularity of lirn,, m T-‘I( fl’), where I is the information matrix, under 
certain regularity conditions. Pagan has provided two sets of sufficient conditions 
for the identifiability of p and of all parameters, respectively. 

First, under the assumptions (Al) the ARMA( p, q) process generating /3: = fi, 
-p is stationary and obeys the identification conditions set out in Hannan 
(1968); (A2) x, has an upper bound for all elements Vt, and (A3) lim,,,T-‘X’X 
is positive definite, p is identifiable. 

To state the second set of sufficient conditions, let r/ denote E/3:/3:, as in 
Section 8, and observe that if all 5 are known the parameters of the ARMA( p, q) 
process (9.2) can be determined by the Yule-Walker equations. Let a subset of all 
q. ( j E I/J) be sufficient to determine the parameters of (9.2) uniquely. Then, if 0 is 
not in the set 4, i.e. if r. is not required to determine the parameters of (9.2) a set 
of sufficient conditions for the identification of all parameters in (9.1)-(9.2) 
consists of (Al), (A2), (A3) and (A4): the non-singularity of 

R, = lim T-l~xj_k~,_~@~~~,, 
T-CC t 

for all k E #. 
To motivate the condition (A4), recall that 

Eu,u,_~ = x,F~x;_~ + a,,,_,~~ 

= (x,_k@x,)vec(rk)+6t,,_,a2. (9.3) 

Thus, vec(F,) is a vector of coefficients in the regression of u,u,_~ on x,_~@x,. 
TR, is the cross-product matrix of the explanatory variables in this regression. If 
it is non-singular, the elements of F, can be consistently estimated, but the 
knowledge of F, (k E $) is sufficient to identify the parameters of the model (9.2). 
In the case that (9.2) is a first-order autoregressive process @ = MP:_, + nt with 
diagonal M and V= Enr$, F, = (Y,~,~) is diagonal and 

EUtUt-k = CXjtXj,t-kY/I,k (k> 0). 

The assumption (A4) in this case states that the matrix with 

lim T-lC(X;rXjtXi,,-kXj,t-k) 
T-rW t 

as its i - j element be non-singular. If r. is in the set of r, required to determine 
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the parameters of (9.2), (A4) should be modified to include: 
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lim T-'cw,w,'> 0, where wI = [x,@x,,l]. 
T-+X I 

Pagan (1980) also shows that if (a) the model is locally asymptotically iden- 
tified; (b) (i) x, is uniformly bounded from above and non-stochastic; (ii) the 
model in state-space form is uniformly completely observable and uniformly 
completely controllable; (iii) the characteristic roots of M are smaller than one in 
absolute value, and (c) the true parameter vector 8’ is an interior point of the 
permissible parameter space which is a subset of R", then the maximum likelihood 
estimator of 8’ is consistent and has a limiting distribution which is normal with a 
covariance matrix equal to the inverse of the information matrix. If the transition 
matrix M is given, the conclusion holds for the maximum likelihood estimator of 
the remaining parameters, with assumption (b) (iii) deleted. 

For the case of regression with non-stationary coefficients, i.e. M having 
characteristic roots equal to unity, conditions for the identifiability of the parame- 
ters remain to be further investigated. Hatanaka and Tanaka (1980) have studied 
the identifiability conditions under the assumption that PO has a known normal 
prior distribution. 

10. Testing constancy of regression coefficients 

An important question in regression analysis is whether the coefficients for 
different observations are identical. A test frequently employed is to divide the 
observations into two groups and test the null hypothesis of the equality of the 
entire set or a subset of coefficients in the two regressions using an F statistic. A 
number of other tests have been suggested for the null hypothesis of constancy of 
regression coefficients, partly depending on the alternative hypotheses to be 
compared. A useful alternative hypothesis is that the vector & of k, regression 
coefficients of interest is generated by the process: 

(10.1) 

where nt is normally and independently distributed with mean zero and a 
diagonal covariance matrix V. The null hypothesis states that V= 0. Several tests 
of the null hypothesis have been suggested. 

First, by the asymptotic normality of the maximum likelihood estimator of the 
elements of V, one can use a quadratic form in these elements weighted by the 
inverse of their covariance matrix (obtained from the information matrix) and 
approximate its distribution by a x2 distribution, but this approximation is crude. 
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The above brief review of several tests of the constancy of regression coeffi- 
cients indicates that further research is required to obtain a uniformly most 
powerful test statistic which has a known distribution in small samples and is also 
computationally simple. 

11. Problems for research 

In concluding this survey of models with time-varying coefficients, I would like to 
list several problems for research. 

First, computational problems require further attention for several of the 
methods discussed in this paper: in the numerical maximization of the likelihood 
functions of the basic regression model in Section 4, of the model of system of 
linear regressions in Section 5, and of the models of linear and non-linear 
simultaneous equations in Sections 6 and 7. 

Second, the identification problem remains to be further investigated for both 
models with roots of unity in the transition matrix and models with stationary 
coefficients, but especially the former. It would be desirable to find some useful 
conditions for the identifiability of the parameters of the models of Sections 4, 5, 
6 and 7. 

Third, the finite-sample distributions of many of the statistics used in the 
regression model with changing coefficients can be further examined. If u2, V and 
M are known, the estimate of /3, is a GLS estimate and is normal, best linear 
unbiased. When maximum likelihood estimates of u2, V and possibly M are used, 
not only their own sampling distributions but the sampling distributions of the 
estimates of & based on them in finite samples are not sufficiently known. In 
particular, the estimates of the diagonal elements of V are subject to non-negativ- 
ity constraints and special attention needs to be given to their sampling distribu- 
tions. 

Fourth, the problem of estimating simultaneous-equation models with changing 
parameters deserves to be further studied. How good is the linearization approach 
suggested in Sections 6 and 7? What are the sampling distributions of the 
estimates obtained in finite samples? Other approaches than the linearization 
approach should be considered, including, for example, the use of second-order 
terms in the expansion of the model equations, the application of the method of 
instrumental variables, and the search for limited-information methods of estima- 
tion, as compared with the full-information method suggested. 

Fifth, as mentioned in Section 10, the problem of testing the constancy of 
regression coefficients with the time-varying coefficient model serving as the 
alternative is by no means completely resolved, although several useful solutions 
have been suggested. Surely, the problem of testing the constancy of parameters 
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in simultaneous-equation models, with the corresponding models with time-vary- 
ing parameters serving as alternatives, is open. 

Finally, the applications of the models discussed in this paper to economic 
problems will most likely continue. Applications to specific applied problems will 
generate problems of their own. A number of applications have appeared, several 
having been cited in LaMotte and McWhorter (1978, p. 816), for example. An 
illustration of an applied problem having its special features which deserve special 
treatment is the estimation of seasonal components in economic time-series, as 
discussed in Pagan (1973, Engle (1978), and Chow (1978). 
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1. Introduction and summary 

The chapter has four parts: the specification of linear models; the specification of 
nonlinear models; statistical inference; and empirical applications. The choice of 
topics is highly selective. We shall focus on a few problems and try to develop 
solutions in some detail. 

The discussion of linear models begins with the following specification: 

Y,, = Px,, + c, + u rf, (1.1) 

E(~;rIx,~r...,x,~,c;) = 0 (i=l ,..., N; t=l,..., T). 0.2) 

For example, in a panel of farms observed over several years, suppose that y,, is a 
measure of the output of the i th farm in the t th season, xir is a measured input 
that varies over time, ci is an unmeasured, fixed input reflecting soil quality and 
other characteristics of the farm’s location, and uir reflects unmeasured inputs that 
vary over time such as rainfall. 

Suppose that data is available on (x,i ,..., xir, yil ,..., yir) for each of a large 
number of units, but ci is not observed. A cross-section regression of yil on xii will 
give a biased estimate of p if c is correlated with x, as we would expect it to be in 
the production function example. Furthermore, with a single cross section, there 
may be no internal evidence of this bias. If T > 1, we can solve this problem given 
the assumption in (1.2). The change in y satisfies: 

and the least squares regression of yi2 - yi, on xi2 - xii provides a consistent 
estimator of p (as N + co) if the change in x has sufficient variation. A generaliza- 
tion of this estimator when T > 2 can be obtained from a least squares regression 
with individual specific intercepts, as in Mundlak (1961). 

The restriction in (1.2) is necessary for this result. For example, consider the 
following autoregressive specification: 

It is clear that a regression of y,, - y,,,_ 1 on ~,,~_i - yi,,_, will not provide a 
consistent estimator of /?, since uit - u,,,_i is correlated with y, ,_ 1 - y, t_2. 
Hence, it is not sufficient to assume that: 

E( Uirlx,,, e;) = 0. 

Much of our discussion will be directed at testing the stronger restriction in (1.2). 
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Consider the (minimum mean-square error) linear predictor of ci conditional on 
x;i,...,x,r: 

E*( c,lxil,. . ., x,~) = 11 + h,xi, + . . . + &+. (1.3) 

Given the assumptions that variances are finite and that the distribution of 

(x rl,. . . ,x,~, ci) does not depend upon i, there are no additional restrictions in 
(1.3); it is simply notation for the linear predictor. Now consider the linear 
predictor of y,, given x,i,. . . ,xjT: 

E*(y,,Ix;p..., Xi,) = 5, + 77*1x,1 + . . . + ?rgxg. 

Form the T x T matrix I7 with T,~ as the (t, s) element. Then the restriction in 
(1.2) implies that II has a distinctive structure: 

where I is the T X T identity matrix, 1 is a T X 1 vector of ones, and x’= 

(A i,. . . ,A,). A test for this structure could usefully accompany estimators of /3 
based on change regressions or on regressions with individual specific intercepts. 
Moreover, this formulation suggests an alternative estimator for /3, which is 
developed in the inference section. 

This test is an exogeneity test and it is useful to relate it to Granger (1969) and 
Sims (1972) causality. The novel feature is that we are testing for noncausality 
conditional on a latent variable. Suppose that t = 1 is the first period of the 
individual’s (economic) life. Within the linear predictor context, a Granger 
definition of “y does not cause x conditional on a latent variable c” is: 

E*(X;,r+1lX;l,...rxir, Y,, ,...,y,,,ci)=E*(x;,,+llx;l,...,x,,,~,) 

(t =1,2,...). 

A Sims definition is: 

E*(~i~lX~l,Xi~,...,Ci)=E*(~;rlXil,...,Xir,Ci) (t =1,2,...). 

In fact, these two definitions imply identical restrictions on the covariance matrix 

of (x,1,...,+, Y,l,..., yiT). The Sims form fits directly into the 27 matrix frame- 
work and implies the following restrictions: 

n = B + yX’, (I .4) 

where B is a lower triangular matrix and y is a T X 1 vector. We show how these 
nonlinear restrictions can be transformed into linear restrictions on a standard 
simultaneous equations model. 
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A II matrix in the form (1.4) occurs in the autoregressive model of Balestra and 
Nerlove (1966). The yh’ term is generated by the projection of the initial 
condition onto the x ‘s. We also consider autoregressive models in which a 
time-invariant omitted variable is correlated with the x ‘s. 

The methods we shall discuss rely on the measured xi, changing over time 
whereas the unmeasured c, is time invariant. It seems plausible to me that panel 
data should be useful in separating the effects of xi, and ci in this case. An 
important limitation, however, is that measured, time-invariant variables ( zi) can 
be absorbed into c,. Their effects are not identified without further restrictions 
that distinguish them from ci. Some solutions to this problem are discussed in 
Chamberlain (1978) and in Hausman and Taylor (1981). 

In Section 3 we use a multivariate probit model to illustrate the new issues that 
arise in models that are nonlinear in the variables. Consider the following 
specification: 

_?,:I = Px,, + c, + u 1,) 

Y,, =l, if ji, 2 0, 

= 0, otherwise (i=l ,..., N; t =l,..., T), 

where, conditional on xii,. . . ,xIT, c,, the distribution of ( uil,. . . , uiT) is multi- 
variate normal (N(O,X)) with mean 0 and covariance matrix B = (TV). We 
observe (xil,...,xiT, yil , . . . J,~) for a large number of individuals, but we do not 
observe c,. For example, in the reduced form of a labor force participation model, 
yir can indicate whether or not the ith individual worked during period t, xi1 can 
be a measure of the presence of young children, and ci can capture unmeasured 
characteristics of the individual that are stable at least over the sample period. In 
the certainty model of Heckman and MaCurdy (1980), ci is generated by the 
single life-time budget constraint. 

If we treat the c, as parameters to be estimated, then there is a severe incidental 
parameter problem. The consistency of the maximum likelihood estimator re- 
quires that T + co, but we want to do asymptotic inference with N --, cc for fixed 
T, which reflects the sample sizes in the panel data sets we are most interested in. 
So we consider a random effects estimator, which is based on the following 
specification for the distribution of c conditional on x: 

C,=l)+hlXil+ *-* +hTXiT+u,, (1.5) 

where the distribution of ui conditional on xii,. . . ,xiT is N(0, u,‘). This is similar to 
our specification in (1.3) for the linear model, but there is an important dif- 
ference; (1.3) was just notation for the linear predictor, whereas (1.5) embodies 
substantive restrictions. We are assuming that the regression function of c on the 
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x’s is linear and that the residual variation is homoskedastic and normal. Given 
these assumptions, our analysis runs parallel to the linear case. There is a matrix 
I7 of multivariate probit coefficients which has the following structure: 

where diag{ CY~, . . . , } a diagonal 

T. We can also test whether I7 in fact has this 
structure. 

A quite different treatment of the incidental parameter problem is possible with 
a logit functional form for P( y,, = ~Ix,~, c,). The sum c~=,y,, provides a sufficient 
statistic for ci. Hence we can use the distribution of y,,,. . .,y;, conditional on 

Xil,...,X,rY c,y,, to obtain a conditional likelihood function that does not depend 
upon ci. Maximizing it with respect to j3 provides an estimator that is consistent 
as N + cc for fixed T, and the other standard properties for maximum likelihood 
hold as well. The power of the procedure is that it places no restrictions on the 
conditional distribution of c given x. It is perhaps the closest analog to the change 
regression in the linear model. A shortcoming is that the residual covariance 
matrix is constrained to be equicorrelated. Just as in the probit model, a key 
assumption is: 

(1.6) 

and we discuss how it can be tested. 
It is natural to ask whether (1.6) is testable without imposing the various 

functional form restrictions that underlie our tests in the probit and logit cases. 
First, some definitions. Suppose that t = 1 is the initial period of the individual’s 
(economic) life; an extension of Sims’ condition for x to be strictly exogenous is 
that y, is independent of x,, i, x,, *, . conditional xi,. . An of 

condition “y not x” that is of 
y, on ,..., Unlike linear case, strict 

is than Noncausality that be 
dent x,+i, . . . conditional on xi,. . . ,x, and on y i,...,_y_i. If x is strictly 
exogenous and in addition y, is independent of xi,. . . ,x,_ 1 conditional on x,, then 
we shall say that the relationship of x toy is static. 

Then our question is whether it is restrictive to assert that there exists a latent 
variable c such that the relationship of x to y is static conditional on c. We know 
that this is restrictive in the linear predictor case, since the weaker condition that 
x be strictly exogenous conditional on c is restrictive. Unfortunately, there are no 
restrictions when we replace zero partial correlation by conditional independence. 
It follows that conditional strict exogeneity is restrictive only when combined with 
specific functional forms-a truly nonparametric test cannot exist. 
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Section 4 presents our framework for inference. Let += (1, xii,. . . , x,r, 

Y rl,. . . , Y,r) and assume that 5 is independent and identically distributed (i.i.d.) 
for i = 1,2,. . . . Let w, be the vector formed from the squares and cross-products 
of the elements in r,. Our framework is based on a simple observation: the matrix 
II of linear predictor coefficients is a function of E(wi); if c is i.i.d. then so is w,; 
hence our problem is to make inferences about a function of a population mean 
under random sampling. This is straightforward and provides an asymptotic 
distribution theory for least squares that does not require a linear regression 
function or homoskedasticity. 

Stack the columns of II’ into a vector 7~ and let B = h(p), where p = E( w;). 
Then the limiting distribution for least squares is normal with covariance matrix: 

We impose restrictions on II by using a minimum distance estimator. The 
restrictions can be expressed as p = g(8), where 8 is free to vary within some set 
‘I’. Given the sample mean W = C~,,w,/N, we choose fi to minimize the distance 
between H1 and g( t9), using the following distance function: 

where p( w;) is a consistent estimator of V( wi). This is a generalized least squares 
estimator for a multivariate regression model with nonlinear restrictions on the 
parameters; the only explanatory variable is a constant term. The limiting 
distribution of b is normal with covariance matrix: 

An asymptotic distribution theory is also available when we use some matrix 
other than ?‘-‘( w;) in the distance function. This theory shows that VP ‘( w;) is the 
optimal choice. However, by using suboptimal norms, we can place a number of 
commonly used estimators within this framework. 

The results on efficient estimation have some surprising consequences. The 
simplest example is a univariate linear predictor: E*(_Y,[x,~, x,~) = rrO + rrtxil + 

T2xi2. Consider imposing the restriction that r2 = 0; we do not want to maintain 
any other restrictions, such as linear regression, homoskedasticity, or normality. 
How shall we estimate a,? Let ii’ = (7i,, 7j2) be the estimator obtained from the 
least squares regression of Y on x1, x2. We want to find a vector of the form (8,O) 
as close as possib.le to (?il, 7j2), using V-‘(e) in the distance function. Since we 
are not using the conventional estimator of V( 7j), the answer to this minimization 



Ch. 22: Panel Data 1253 

problem is not, in general, to set 8 = by,,, the estimator obtained from the least 
squares regression of y on x1. We can do better by using b,.,, + r7j2; the 
asymptotic mean of 7j2 is zero if rr2 = 0, and if byx, and 7j2 are correlated, then we 
can choose r to reduce the asymptotic variance below that of b,,,. 

This point has a direct counterpart in the estimation of simultaneous equations. 
The restrictions on the reduced form can be imposed using a minimum distance 
estimator. This is more efficient than conventional estimators since it is using the 
optimal norm. In addition, there are generalizations of two- and three-stage least 
squares that achieve this efficiency gain at lower computational cost. 

A related application is to the estimation of restricted covariance matrices. 
Here the assumption to be relaxed is multivariate normality. We show that the 
conventional maximum likelihood estimator, which assumes normality, is asymp- 
totically equivalent to a minimum distance estimator. But that minimum distance 
estimator is not, in general, using the optimal norm. Hence, there is a feasible 
minimum distance estimator that is at least as good as the maximum likelihood 
estimator; it is strictly better in general for non-normal distributions. 

The minimum distance approach has an application to the multivariate probit 
model of Section 3. We begin by estimating T separate probit specifications in 
which all leads and lags of x are included in the specification for each y,,: 

P(y;,=~lx,l,...,x,,)=F(~~r,,+~~lx,+ ... +qTtTx;& 

where F is the standard normal distribution function. Each of the T probit 
specifications is estimated using a maximum likelihood program for univariate 
probit analysis. There is some sacrifice of efficiency here, but it may be out- 
weighed by the advantage of avoiding numerical integration. Given the estimator 
for II, we derive its asymptotic covariance matrix and then impose and test 
restrictions by using the minimum distance estimator. 

Section 5 presents two empirical applications, which implement the specifica- 
tions discussed in Sections 2 and 3 using the inference procedures from Section 4. 
The linear example is based on the panel of Young Men in the National 
Longitudinal Survey (Parnes); y, is the logarithm of the individual’s hourly wage 
and x, includes variables to indicate whether or not the individual’s wage is set by 
collective bargaining; whether or not he lives in an SMSA; and whether or not he 
lives in the South. We present unrestricted least squares regressions of y, on 
Xl,. . . ,XT, and we examine the form of the I7 matrix. There are significant leads 
and lags, but there is evidence in favor of a static relationship conditional on a 
latent variable; the leads and lags could be interpreted as just due to c, with 
E(~;lxr,...,+, c) = Px, + c. The estimates of p that control for c are smaller in 
absolute value than the cross-section estimates. The union coefficient declines by 
40%, with somewhat larger declines for the SMSA and region coefficients. 

The second application presents estimates of a model of labor force participa- 
tion. It is based on a sample of married women in the Michigan Panel Study of 
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Income Dynamics. We focus on the relationship between participation and the 
presence of young children. The unrestricted I7 matrix for the probit specification 
has significant leads and lags; but, unlike the wage example, there is evidence here 
that the leads and lags are not generated just by a latent variable. If we do impose 
this restriction, then the resulting estimator of /3 indicates that the cross-section 
estimates overstate the negative effect of young children on the woman’s par- 
ticipation probability. 

The estimates for the logit functional form present some interesting contrasts to 
the probit results. The cross-section estimates, as usual, are in close agreement 
with the probit estimates. But when we use the conditional maximum likelihood 
estimator to control for c, the effect of an additional young child on participation 
becomes substantially more negative than in the cross-section estimates; so the 
estimated sign of the bias is opposite to that of the probit results. Here the 
estimation method is having a first order effect on the results. There are a variety 
of possible explanations. It may be that the unrestricted distribution for c in the 
logit form is the key. Or, since there is evidence against the restriction that: 

perhaps we are finding that imposing this restriction simply leads to different 
biases in the probit and logit estimates. 

2. Specification and identification: Linear models 

2. I. A production function example 

We shall begin with a production function example, due to Mundlak (1961).’ 
Suppose that a farmer is producing a product with a Cobb-Douglas technology: 

Y,, = Px,, + c, + u ,, (O<p<l;i=l,..., N;t=l,..., T), 

wherey,, is the logarithm of output on the ith farm in season t, x,~ is the logarithm 
of a variable input (labor), ci represents an input that is fixed over time (soil 
quality), and u,, represents a stochastic input (rainfall), which is not under the 
farmer’s control. We shall assume that the farmer knows the product price (P) 
and the input price (W), which do not depend on his decisions, and that he 
knows ci. The factor input decision, however, is made before knowing u,,, and we 
shall assume that xi, is chosen to maximize expected profits. Then the factor 
demand equation is: 

x,= {ln/3+ln[E(eU~I~,)]+ln(J’,/~,)+c}/(I-P), (2.1) 

‘This example is also discussed in Mundlak (1963) and in Zellner, Kmenta, and D&e (1966) 
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where& is the information set available to the farmer when he chooses x,, and we 
have suppressed the i subscript. 

Assume first that U, is independent offt,, so that the farmer cannot do better 
than using the unconditional mean. In that case we have: 

So if c is observed, only one period of data is needed; the least squares regression 
of y, on xi, c provides a consistent estimator of B as N + cc. 

Now suppose that c is not observed by the econometrician, although it is 
known to the farmer. Consider the least squares regression of y, on xi, using just 
a single cross-section of the data. The population counterpart is: 

E*(y,lx,) = T, + rxl, 

where E* is the minimum mean-square error linear predictor (the wide-sense 
regression function): 

7r = COV(Y,> x,)/J+,), no = Eb,)- mE(x,). 

We see from (2.1) that c and xi are correlated; hence n z p and the least squares 
estimator of p does not converge to p as N -+ co. Furthermore, with a single cross 
section, there may be no internal evidence of this omitted-variable bias. 

Now the panel can help to solve this problem. Mundlak’s solution was to 
include farm specific indicator variables: a least squares regression of y,, on 
x,[,d;, (i=l,..., N; t =l,..., T), where d,, is an N X 1 vector of zeros except for 
a one in the i th position. So this solution treats the c, as a set of parameters to be 
estimated. It is a “fixed effects” solution, which we shall contrast with “random 
effects”. The distinction is that under a fixed effects approach, we condition on 
the c,, so that their distribution plays no role. A random effects approach invokes 
a distribution for c. In a Bayesian framework, /3 and the c, would be treated 
symmetrically, with a prior distribution for both. Since I am only going to use 
asymptotic results on inference, however, a “gentle” prior distribution for /3 will 
be dominated. That this need not be true for the c, is one of the interesting 
aspects of our problem. 

We shall do asymptotic inference as N tends to infinity for fixed T. Since the 
number of parameters (c;) is increasing with sample size, there is a potential 
“incidental parameters” problem in the fixed effects approach. This does not, 
however, pose a deep problem in our example. The least squares regression with 
the indicator variables is algebraically equivalent to the least squares regression of 
y,, - 7, on x,, - X, (i = 1,. . . ,N; t = 1,. . . , T), where J, = cT,,y,,/T, X, = 
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cr=,x,,/T. If T= 2, this reduces to a least squares regression of y,, - y,, on 
X 12 - x,,. Since 

Eb,, - ~;llX,2 - X,1) = B(X,, - XA 

the least squares regression will provide a consistent estimator of j3 if there is 
sufficient variation in x,~ - x,1.2 

2.2. Fixed effects and incidental parameters 

The incidental parameters can create real difficulties. Suppose that u,~ is indepen- 
dently and identically distributed (i.i.d.) across farms and periods with V( ~4,~) = u2. 
Then under a normality assumption, the maximum likelihood estimator of a2 
converges (almost surely) to a2( T -- 1)/T as N + cc with T fixed.3 The failure to 
correct for degrees of freedom leads to a serious inconsistency when T is small. 
For another example, consider the following autoregression: 

Y,, = BY,0 + c, + U,l) 

Y,, = BY,1 + c, + u,2. 

Assume that u,~ and ui2 are i.i.d. conditional on y;, and c,, and that they follow a 
normal distribution (N(0, a2)). Consider the likelihood function corresponding to 
the distribution of ( y,i, y,*) conditional on y,, and c,. The log-likelihood function 
is quadratic in j3, cl,. . . , cN (given u2), and the maximum likelihood estimator of fl 
is obtained from the least squares regression of y,, - y,, on y;, - y;, (i = 1,. . . , N). 
Since u,t is correlated withy,,, and 

Y,2 - Y,, =P(r,, - Y,o)+ ui2 - UZlJ 

it is clear that 

E(Y,, - Y,,~Y,, - Y,O) +P(Y,, - Y,,), 

and the maximum likelihood estimator of p is not consistent. If the distribution of 
y,O conditional on c, does not depend on /I or ci, then the likelihood function 
based on the distribution of (Y,~, yjl, yr2) conditional on c, gives the same 
inconsistent maximum likelihood estimator of j3. If the distribution of (Y,~, y,t, yr2) 

*We shall not discuss methods for eliminating omitted-variable bias when Y does not vary over time 
(x,, = Y, ). See Chamberlain (1978) and Hausman and Taylor (1981). 

‘This example is discussed in Neyman and Scott (1948). 
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is stationary, then the estimator obtained from the least squares regression of 

Y;, - Y,l O”Y,l - y,. converges, as N -+ co, to (/3 - 1)/2.4 

2.3. Random effects and specification analysis 

We have seen that the success of the fixed effects estimator in the production 
function example must be viewed with some caution. The incidental parameter 
problem will be even more serious when we consider nonlinear models. So we 
shall consider next a random effects treatment of the production function 
example; this will also provide a convenient framework for specification analysis.5 

Assume that there is some joint distribution for (xii, . . . , xlT, c,), which does not 
depend upon i, and consider the regression function that does not condition on c: 

E(Y,&~.., X;T> =Px,r +E(c,lx,w..,x;~>. 

The regression function for ci given X, = (x,~, . . . ,x,~) will generally be some 
nonlinear function. But we can specify a minimum mean-square error linear 
predictor:6 

E*(qIx;l,..., XJ = I) + A,x;, + . . . + hyx,‘. = I) + X’x I’ (2.2) 

where h = V-l(~,)cov(x,, c,). No restrictions are being imposed here-(2.2) is 
simply giving our notation for the linear predictor. 

Now we have: 

E*(~,,lx,) = $ + Px,, + X’x,. 

Combining these linear predictors for the T periods gives the following multi- 
variate linear predictor:’ 

E*( v,lx,) = q, + =;, 

17=cov(y,,x;)v-‘(x;)=/3z+rh’, 
(2.3) 

wherey;=(y;,,..., Y,~), Z is the T x T identity matrix, and 1 is a T X 1 vector of 
ones. 

4See Chamberlain (1980) and Nickel1 (1981). 
‘In our notation, Kiefer and Wolfowitz (1956) invoke a distribution for c to pass from the 

distribution of (_v, x) conditional on c to the marginal distribution of ( .Y. x). Note that they did not 
assume a parametric form for the distribution of c. 

‘Mundlak (1978) uses a similar specification, but with h, = = A,. The appropriateness of these 
equality constraints is discussed in Chamberlain (1980, 1982a). 

‘We shall not discuss the problems caused by attrition. See Griliches, Hall and Hausman (1978) and 
Hausman and Wise (1979). 
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The IT matrix is a useful tool for analyzing this model. Consider first the 
estimation of j3; if T = 2 we have: 

Hence, 

So given a consistent estimator for Kf, we can obtain a consistent estimator for /?. 
The estimation of II is almost a standard problem in multivariate regression; but, 
due to the nonlinearity in E(c,jx;), we are estimating only a wide-sense regression 
function, and some care is needed. It turns out that there is a way of looking at 
the problem which allows a straightforward treatment, under very weak assump- 
tions. We shall develop this in the section on inference. 

We see in (2.3) that there are restrictions on the II matrix. The off-diagonal 
elements within the same column of n are all equal. The T* elements of II are 
functions of the T + 1 parameters /3, A,, . . . , A,. This suggests an obvious specifica- 
tion test. Or, backing up a bit, we could begin with the specification that II = PI. 
Then passing to (2.3) would be a test for whether there is a time-invariant omitted 
variable that is correlated with the x’s The test of II= PI + IX’ against an 
unrestricted n would be an omnibus test of a variety of misspecifications, some of 
which will be considered next.* 

Suppose that there is serial correlation in U, with U, = PU,_~ + w,, where w, is 
independent of /, and we have suppressed the i subscripts. Now we have: 

E(eYA) = ep”f~lE(ew~). 

So the factor demand equation becomes: 

x,= {ln~+ln[E(e”~)]+ln(P,/W,)+pu,~,+c}/(1-P). 

Suppose that there is no variation in prices across the farms, so that the P,/W, 
term is captured in period specific intercepts, which we shall suppress. We can 
solve for u, in terms of x,,~ and c, and substitute this solution into the yI 
equation. Then we have: 

“This specification test was proposed in Chamberlain (1978a,1979). The restrictions are similar lo 
those in the MIMIC model of Jiireskog and Goldberger (1975); also see Goldberger (1974a), Griliches 
(1974). Jnreskog and %rbom (1977). Chamberlain (1977). and Jiireskog (1978). There are also 
connections with the work on sibling data, which is surveyed in Griliches (1979). 
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where cp = ~~'(1 - p). So the II matrix would indicate a distributed lead, even 
after controlling for c. If instead there is a first order moving average, U, = wr + 
pw,_ 1, then: 

E(eUflJT) = ePWl-IE(eWf), 

and a bit of algebra gives: 

E(~,lx,,...,x,) =X,-P l&x, + *. . + +T)+ ‘Pxt+1. 

Once again there is a distributed lead, but now /3 is not identified from the I7 
matrix. 

2.4. A consumer demand example 

2.4. I. Certainty 

We shall follow Ghez and Becker (1973, Heckman and MaCurdy (1980) 
MaCurdy (1981) in presenting a life-cycle model under certainty. Suppose 
the consumer is maximizing 

and 
that 

v= i p(‘-“U,(C,) 
t=1 

subject to 

i y-(‘-‘)P,C, I B, C, 2 0 (t=l ,...J), 
r=l 

where p-l - 1 is the rate of time preference, y - 1 is the (nominal) interest rate, C, 
is consumption in period t, P, is the price of the consumption good in period t, 
and B is the present value in the initial period of lifetime income. In this certainty 
model, the consumer faces a single lifetime budget constraint. 

If the optimal consumption is positive in every period, then 

v,‘W = (VP) +“(P,/P,)U,‘(c,). 

A convenient functional form is U,(C) = A,@/8 (A, > 0, 6 < 1); then we have: 

y,=fix,+cp(t-1)+c+u,, (2.4) 
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where y, = lnC,, x, = In P,, c = (6 - l))‘ln[U,l(C,)/P,], U, = (l- 6)-‘ln A,, /I = 
(6 -1)-l, and cp = (l- 6))‘ln(yp). Note that c is determined by the marginal 
utility of initial wealth: U,l(C,)/P, = aV,,aB. 

We shall assume that A, is not observed by the econometrician, and that it is 
independent of the P ‘s. Then the model is similar to the production function 
example if there is price variation across consumers as well as over time. There 
will generally be correlation between c and (xi,. . . , xT). As before we have the 
prediction that II = pZ + IA’, which is testable. A consistent estimator of p can be 
obtained with only two periods of data since 

We shall see next how these results are affected when we allow for some 
uncertainty. 

2.4.2. Uncertainty 

We shall present a highly simplified model in order to obtain some explicit results 
in the uncertainty case. The consumer is maximizing 

subject to 

P,C, + S, I B, 

PJ* + S, < YSr-1, c, 2 0, s,20 (t=1,..., 7). 

The only source of uncertainty is the future prices. The consumer is allowed to 
borrow against his future income, which has a present value of B in the initial 
period. The consumption plan must have C, a function only of information 
available at date t. 

It is convenient to set r = co and to assume that P,+ l/P, is i.i.d. (t = 1,2,. . .). If 
U,(C) = A,@/& then we have the following optimal plan: 9 

C,=d,B/P,,S,=(l-d,)B, 

c,=d,~S,-,/P,J,=(l-d,)yS,-, (t =2,3,...), 
(2.5) 

9We require pug < 1, where A, I Mg’ for some constant M. Phelps (1962) obtained explicit 
solutions for models of this type. The derivation of (2.5) can be obtained by following Levhari and 
Srinivasan (1969) or Dynkin and Yushkevich (1979, Ch. 6.9). 
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where 

d,= [l+h+l+tf,+lf,+d+ --I-‘, 
f, = (pKA,/A,_l)[lA1-s)l, K = ~~E[tp,-,,‘p,)~]. 

It follows that: 

where y, x, u are defined as in (2.4) and 5 = (1- 6))‘ln(~~)+lny. 
We see that, in this particular example, the appropriate interpretation of the 

change regression is very sensitive to the amount of information available to the 
consumer. In the uncertainty case, a regression of (lnC, - lnC,_,) on (In P, - 
In P,_ 1) does not provide a consistent estimator of (6 - 1))‘; in fact, the estima- 
tor converges to - 1, with the implied estimator of 6 converging to 0. 

2.4.3. Labor supply 

We shall consider a certainty model in which the consumer is maximizing 

V= i PC’-“U,(C,, L,) (2.6) 
r=1 

subject to 

;: y-“-“(P,C,+W,L,)IB+ ;: y-(‘-‘)W,~, 

t=1 1=1 

C,lO, OlL,lL (t=l ,...J), 

where L, is leisure, w is the wage rate, B is the present value in the initial period 
of nonlabor income, and z is the time endowment. We shall assume that the 
inequality constraints on L are not binding; the participation decision will be 
discussed in the section on nonlinear models. If U, is additively separable: 

and if fit< L) = A,L8//6, then we have: 

y,=px,+c&-1)+c+u,, (2.7) 

wherey, = In L,, x, = In W,, c = (6 - 1))‘ln[fir’(L,)/W,], U, = (l- 6))‘ln A,, p = 
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(6 - 1)-l, and ‘p = (1 - G))‘ln(yp). Once again c is determined by the marginal 
utility of initial wealth: &‘( L,)/ WI = &‘,,iYB. 

We shall assume that A, is not observed by the econometrician. There will 
generally be a correlation between c and (xi,...,xr), since L, depends upon 
wages in all periods. If A, is independent of the W’s, then we have the prediction 
that I7 = p1+ IA’. If, however, wages are partly determined by the quantity of 
previous work experience, then there will be lags and leads in addition to those 
generated by c, and I7 will not have this simple structure.‘0 

It would be useful at this point to extend the uncertainty model to incorporate 
uncertainty about future wages. Unfortunately, a comparably simple explicit 
solution is not available. But we may conjecture that the correct interpretation of 
a regression of (In L, - In L,_ 1) on (In y - In W,_ 1) is also sensitive to the amount 
of information available to the consumer. 

2.5. Strict exogeneity conditional on a latent variable 

We shall relate the specification analysis of II to the causality definitions of 
Granger (1969) and Sims (1972). Consider a sample in which t = 1 is the first 
period of the individual’s (economic) life. l1 A Sims definition of “x is strictly 
exogenous” is: 

E*(y,lx,,x,,...) =E*(Y,~x~,...,x~) (t =1,2,...). 

In this case II is lower triangular: the elements above the main diagonal are all 
zero. This fails to hold in the models we have been considering, due to the 
omitted variable c. But, in some cases, we do have the following property: 

E*(Y,Ix~,x~,...,c)=E*(Y~Ix~,...,x~,c) (t =1,2,...). (2.8) 

It was stressed by Granger (1969) that the assessment of noncausality depends 
crucially on what other variables are being conditioned on. The novel feature of 
(2.8) is that we are asking whether there exists some latent variable (c) such that x 
is strictly exogenous conditional on c. The question is not vacuous since c is 
restricted to be time invariant. 

loSee Blinder and Weiss (1976) and Heckman (1976) for life-cycle labor supply models with human 
capital accumulation. 

“We shall not discuss the problems that arise from truncating the lag distribution. See Griliches 
and Pakes (1980). 
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Let US examine what restrictions are implied by (2.8). Define the following 
linear predictors:” 

Y, =/-Lx, + . - . + &x, + Y,C + u, 9 

E*(u,Ixi ,..., xr,c) =0 (t =l,...,T). 

Then (2.8) is equivalent to & = 0 for s > t. If yi Z 0, we can choose a scale 
normalization for c such that yi = 1. Then we can rewrite the system with & = 0 
(S > t) as follows: 

Y, = &Xi + rB,,x, + . . . + &IX, + Y,Yl + fi,, 

s,, = P,, - Y,Pll, 4 = u, - Y,%> (2.9) 

E(x,f,)=O (s=l,..., T;t=2 ,..., T). 

Consider the “instrumental variable” orthogonality conditions implied by 
E(x,ti,) = 0. In the yr equation, we have T + 1 unknown coefficients: 

Pr1, P r2, . . . , &, yT, and T orthogonality conditions. So these coefficients are not 
identified. In the y,_, equation, however, we have just enough orthogonahty 
conditions; and in the Y,_~ equation (j I T - 2), we have i - 1 more than we 
need since there are T - j + 1 unknown coefficients: Br-j,l, PT-I,*,. . . , 
&_,, T_j, ~r_~, and T orthogonality conditions: E(x,&_~) = 0 (S = 1,. . . , T). It 
follows that, subject to a rank condition, we can identify &, y,, and & for 
2 I s I t I T - 1. In addition, the hypothesis in (2.8) implies that if T 2 4, there 
are (T - 3)( T - 2)/2 over identifying restrictions. 

Consider next a Granger definition of “y does not cause x conditional on c”: 

E*(x,+~lx~,...,x,,y~,...,y,,c)=E*(x,+~lx~,...,x,,c) (t =l,...,T-1). 

(2.10) 

Define the following linear predictors: 

X ,+1= #,1X1 + . . . +~,,X,+%lYl+ **- +%fY, +s,+s+ “,+17 

E*b,+ll~l,...,~,, Y, ,..., y,,c)=O (t=l,..., T-l). 

Then (2.10) is equivalent to ‘pt, = 0. We can rewrite the system, imposing q,, = 0, 
as follows: 

$,iXi + . . . + 4, ,-1X,-l + TX,+ fi,+1, 

5::L -G+l/s;N,:l sY 

- (L+l/Li 

5 = JI,, + G+A), 

4+1= u,+1 Et x,4+1) = E(Y$,+,) = 0 
(2.11) 

(~51-1; t=2,...,T-1). 

12We are suppressing the period specific intercepts. 
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In the equation for x,,~, there are t unknown parameters, $ti,. . . ,$,, I- 1, T,, and 
2( t - 1) orthogonality conditions. Hence, there are t - 2 restrictions (3 I t I T - 1). 

It follows that the Granger condition for “y does not cause x conditional on c” 
implies (T - 3)(T - 2)/2 restrictions, which is the same number of restrictions 
implied by the Sims condition. In fact, it is a consequence of Sims’ (1972) 
theorem, as extended by Hosoya (1977), that the two sets of restrictions are 
equivalent; this is not immediately obvious from a direct comparison of (2.9) and 
(2.11). 

In terms of the n matrix, conditional strict exogeneity implies that: 

n = B + yX’, 

p11 0 0.. 0 
P P22 0 . . . 0 

B= ” 

1 s;, PT2 ... P TT 

These nonlinear restrictions can be imposed and tested using the minimum 
distance estimator to be developed in the inference section. Alternatively, we can 
use the transformations in (2.9) or in (2.11). These transformations give us 
“simultaneous equations” systems with linear restrictions; (2.9) can be estimated 
using three-stage least squares. A generalization of three-stage least squares, 
which does not require homoskedasticity assumptions, is developed in the in- 
ference section. It is asymptotically equivalent to imposing the nonlinear restric- 
tions directly on J7, using the minimum distance estimator. 

2.6. Lugged dependent variables 

For a specific example, write the labor supply model in (2.7) as follows: 

Y, =61x, + 6,x,_, + Q-1 + UC, 

E*(v,(x,,...,x,)=O (t=l,...,T); 
(2.12) 

this reduces to (2.7) if 6, = - 6, and 6, = 1. If we assume that vt = w + e,, where w 
is uncorrelated with the x’s and e, is i.i.d. and uncorrelated with the x’s and w, 
then we have the autoregressive, variance-components model of Balestra and 
Nerlove (1966).13 In keeping with our general approach, we shall avoid placing 

“Estimation in variance-components models is discussed in Nerlove (1967,1971,1971a), Wallace 
and Hussain (1969). Amemiya (1971). Madalla (1971), Madalla and Mount (1973), Harville (1977), 
Mundlak (1978), Mazodier and Trognon (1978), Trognon (1978). Lee (1979). and Taylor (1980). 
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Recursive substitution gives: 
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Y, = &Xl + . * * + b,B,,x, + Ytlcl+ Yt2C2 + u, 3 

E*(u,Jx,,...,x,)=O (1 =l,...,T), 

where 

Cl =6,x, + 6,y, + &&,, cz = Yo, 

and there are nonlinear restrictions on the parameters. The I7 matrix has the 
following form: 

II= B + yth; + y2x2, (2.13) 

where B is lower triangular, y,! = ( ylj, . . . , yrj), and E*( cjlx) = X,x ( j = 1,2). 
This specification suggests a natural extension of the conditional strict exogene- 

ity idea, with the conditioning set indexed by the number of latent variables. We 
shall say that “x is strictly exogenous conditional on ct, c2” if: 

E*(y,l..., x,_~,x,,x,+~ ,... ~c~,c~)=E*(Y,Ix,,x,-~~...,c~‘c~). 

We can also introduce a Granger version of this condition and generalize the 
analysis in Section 2.5. 

Finally, consider an autoregressive model with a time-invariant omitted vari- 
able that is correlated with x: 

where E*(u,~x~,..., xr) = 0. Recursive substitution gives: 

Y, =&xl + . . . + &x, + Y,lcl+ Y,2C2 + u, 9 

E*(~,Ix~,...,xr) = 0 (t =l,...,T), 

where ct = yo, c2 = c, and there are nonlinear restrictions on the parameters. So y 
is strictly exogenous conditional on cr, c2, and setting E*( c/lx) = 4, + X,x (j = 1,2) 
gives a I7 matrix in the (2.13) form. 

We can impose the restrictions on I7 directly, using a minimum distance 
estimator. There is, however, a transformation of the model that allows a 
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computationally simpler instrumental variable estimator: 

y, - y,-,= qx, -XI-l)+ uL1- J&2)+ ur - “f-1, 

E*( u, - u,_Jx) = 0 (t=3,...,T); 

y2=(P21xi+ ..* +‘p2TxT+w27 

y1=‘p11x1+ **. +(P+++y, 

E*(w+)=O (j=1,2), 

where E*( $1~) = cpi’x is unrestricted since E*(c,lx) is unrestricted ( j = 1,2). Now 
we can apply the generalized three-stage least squares estimator. This is computa- 
tionally simple since the parameter restrictions are linear. The estimator is 
asymptotically equivalent to applying the minimum distance procedure directly to 
IT. Since the linear predictor equations for y, and y2 are unrestricted, the limiting 
distribution of 6, and 6, is not affected if we drop these equations when we form 
the generalized three-stage least squares estimator. (See the Appendix.) 

2.7. Serial correlation or partial adjustment? 

Griliches (1967) considered the problem of distinguishing between the following 
two models: a partial adjustment model,15 

Y, = Px, + v-1 + ur, (2.14) 

and a model with no structural lagged dependent variable but with a residual 
following a first-order Markov process: 

Y, = Px, + ZJ f, 

u, = PU~-~ + e,, e, i.i.d.; 

in both cases x is strictly exogenous: 

E*b,Ixp..., xr)=E*(~,lxi,...,xr)=O (t=l,...,z-). 

In the serial correlation case, we have: 

y, = Px, - PSX,- 1+ PYt- 1+ e,; 

(2.15) 

“See Nerlove (1972) for distributed lag models based on optimizing behavior in the presence of 
uncertainty and costs of adjustment. 
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as Griliches observed, the least squares regression will have a distinctive pattern 
-the coefficient on lagged x equals (as N + 00) minus the product of the 
coefficients on current x and lagged y. 

I want to point out that this prediction does not rest on the serial correlation 
structure of U. It is a direct implication of the assumption that u is uncorrelated 
with xi,...,xr: 

Here r++ur_i is simply notation for the linear predictor. In general U[ is not a 
first-order process (E*(u,lu,_,, u,_~) # E*(u,lu,_,)), but this does not affect our 
argument. 

Within the 17 matrix framework, the distinction between the two models is that 
(2.15) implies a diagonal I7 matrix, with no distributed lag, whereas the partial 
adjustment specification in (2.14) implies that I7 = B + yh’, with a distributed lag 
in the lower triangular B matrix and a rank one set of lags and leads in yh’. 

We can generalize the serial correlation model to allow for an individual 
specific effect that may be correlated with x: 

Y,=Pxl+c+Ur, E*(~,lxi ,..., xr) = 0. 

Now both the serial correlation and the partial adjustment models have a rank 
one set of lags and leads in II, but we can distinguish between them because only 
the partial adjustment model has a distributed lag in the B matrix. So the absence 
of structural lagged dependent variables is signalled by the following special case 
of conditional strict exogeneity: 

E*b,l~w.,+, c) = E*b+,, c). 

In this case the relationship of x toy is “static” conditional on c. We shall pursue 
this distinction in nonlinear models in Section 3.3. 

2.8. Residual covariances: Heteroskedasticity and serial correlation 

2.8.1. Heteroskedasticity 

If E(cjlxi) z E*(ci(xi), then there will be heteroskedasticity, since the residual will 
contain E(cilxj)-E*(c,lx,). Another source of heteroskedasticity is random 
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Y,t = blxit + ‘1 + ‘lfr 

I!+ = p + w, ) E( w;) = 0, 

Y,t = PXir + ci + ( W~Xir + uit)’ 

If w is independent of x, then II= /?I + IX’, and our previous discussion is 
relevant for the estimation of p. We shall handle the heteroskedasticity problem 
in the inference section by allowing E[( yi - 27x;)( y, - IIx,)‘].q] to be an arbi- 
trary function of xi.16 

2.8.2. Serial correlation 

It may be of interest to impose restrictions on the residual covariances, such as a 
variance-components structure together with an autoregressive-moving average 
scheme.17 Consider the homoskedastic case in which 

0 = E[( Y; - nx;)( s: - nx,)‘lx;] 

does not depend upon x,. Then the restrictions can be expressed as tijk = g,k(0), 
where the g’s are known functions and 8 is an unrestricted parameter vector. We 
shall discuss a minimum distance procedure for imposing such restrictions in 
Section 4. 

2.9. Measurement error 

Suppose that 

Y,,=Px:+u. I, 9 

xi, = x,; u,t )...) t =l,..., T), 

where x,‘; is not observed. We assume that the measurement error u,( satisfies 
E*( uj,]xi) = 0. If E*(u&,) = 0, then E*( y,]x,) = 17xI, with 

(2.16) 

“Anderson (1969,1970), Swamy (1970,1974), Hsiao (1973, and Mundlak (1978a) discuss estima- 
tors that incorporate the particular form of heteroskedasticity that is generated by random coefficients. 

“Such models for the covariance structure of earnings have been considered by Hause (1977,1980), 
Lillard and Willis (1978). Lillard and Weiss (1979), MaCurdy (1982), and others. 
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Since V( x,) and V( x,?) will generally not be diagonal matrices, (2.16) provides an 
alternative interpretation of lags and leads in the I7 matrix. The II matrix in 
(2.16) generally does not have the form rll+ r,lX’; nevertheless, it may be 
difficult to distinguish between measurement error and a time-invariant omitted 
variable if T is small. For example, if the covariance matrices of xi and x: have 
the form ‘pll + cp,ll’ (equicorrelated), then II has this form also and no distinction 
is possible. Although cov(+, xiS) generally declines as It -- ~1 increases, the 
equicorrelated approximation may be quite good for small T. 

It has been noted in other contexts that the bias from measurement error can 
be aggravated by analysis of covariance techniques.‘* Consider the following 
example with T = 2: 

Yi2~~rl~P~xi2~xil~+u~2~u~1~P~u~2~uil~~ 

so that E*( y,, - yillxi2 - xii) = &xi2 - xii) with 

p=p l- 
i 

V( u,2 - uil) 

i v(xr2 - xii) ’ 

If V(u,,) = V( u,~) and V(x,i) = V(xi2), then we can rewrite this as: 

#6=/s l- 

/ 

v(“il)(l- ‘:u2) 

i %,)(1- rig ’ 
where ruIu2 denotes the correlation between uil and IJ,~. If x,~ and xi2 are highly 
correlated but u,i and ui2 are not, then a modest bias from measurement error in a 
cross-section regression can become large when we relate the change in y to the 
change in x. On the other hand, if u,i = u12, then the change regression eliminates 
the bias from measurement error. Data from reinterview surveys should be useful 
in distinguishing between these two cases. 

3. Specification and identification: Nonlinear models 

3.1. A random efects probit model 

Our treatment of individual effects carries over with some important qualifica- 
tions to nonlinear models. We shall illustrate with a labor force participation 
example. If the upper bound on leisure is binding in (2.6) then 

p”-“~~~(~) > my-P’)Ij/, 

‘*See Griliches (1979) for example. 
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where m is the Lagrange multiplier corresponding to the lifetime budget con- 
straint (the marginal utility of initial wealth) and o,(L) = A, La//s. Let yjr = 1 if 
individual i works in period t, y,, = 0 otherwise. Let: 

In &:, = ~~~~~ + eli,, 

In A,, = (PZXi, + e2irj 

where xi, contains measured variables that predict wages and tastes for leisure. 
We shall simplify the notation by supposing that xir consists of a single variable. 
Then, y,, = 1 if: 

which we shall write as: 

~X;,+~(t-1)+ci+ui,20* (3.1) 

Now we need a distributional assumption for the u’s. We shall assume that 

(U r, . _ . , uT) is independent of c and the x’s, with a multivariate normal distribu- 
tion (N(O,Z)). So we have a probit model (suppressing the i subscripts and 
period-specific intercepts): 

where F( .) is the standard normal distribution function and a,, is the t th diagonal 
element of 2. 

Next we shall specify a distribution for c conditional on x = (xi,. . .,x,): 

c=l//+h,x1+ .-* +A,x,+u, 

where u is independent of the x’s and has a normal distribution (N(0, a,;)). There 
is a very important difference in this step compared with the linear case. In the 
linear case it was not restrictive to decompose c into its linear projection on x and 
an orthogonal residual. Now, however, we are assuming that the regression 
function E(cln) is actually linear, that u is independent of x, and that u has a 
normal distribution. These are restrictive assumptions and there may be a payoff 
to relaxing them. 

Given these assumptions, the distribution for y, conditional on xi,. . . ,xT but 
marginal on c also has a probit form: 

P(Y, =11x1,..., xr) = F [ a,( px, + X,x, + . . . + bXT)l~ 
at = ( Otr + fJy2. 
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Combining these T specifications gives the following matrix of coefficients:‘9 

II=diag{a,,...,ar}[/?lr+(h’]. (3.2) 

This differs from the linear case only in the diagonal matrix of normalization 
factors (r,. There are now nonlinear restrictions on 17, but the identification 
analysis is still straightforward. We have: 

lx,/3 = :‘7fll a, 
a1 

- flrl = T(‘lt - -n,,, 
a1 

5 = h, + flt1) 
a1 h + %) 

(t =2,...,T), 

if p + h, + X, # 0. Then, as in the linear case, we can solve for c~~fi and ar,h. Only 
ratios of coefficients are identified, and so we can use a scale normalization such 
as (Y~ =l. 

As for inference, a computationally simple approach is to estimate T cross-sec- 
tional probit specifications by maximum likelihood, where x1,. . . ,xT are included 
in each of the T specifications. This gives li, (t = 1,. . . , T) and we can use a Taylor 
expansion to derive the covariance matrix of the asymptotic normal distribution 
for (7jl,..., 7jT). Then restrictions can be imposed on II using a minimum distance 
estimator, just as in the linear case. 

We shall conclude our discussion of this model by considering the interpreta- 
tion of the coefficients. We began with the probit specification that 

P(y,=llx,,...,x,, c)=F[a,;“*(fix,+c)]. 

So one might argue that the correct measure of the effect of x, is based on a,; ‘/*/!I, 
whereas we have obtained (a,, + a, ) * -‘/*PI which is then an underestimate. But 
there is something curious about this argument, since the “omitted variable” u is 
independent of x1,. . . ,xT. Suppose that we decompose u, in (3.1) into Us, + u2, 
and that measurements on ulr become available. Then this argument implies that 
the correct measure of the effect of x, is based on [V(/(U~,)]-‘/~~. As the data 
collection becomes increasingly successful, there is less and less variance left in 
the residual uZtr and IV( u*,)] -I/* becomes arbitrarily large. 

The resolution of this puzzle is that the effect of x, depends upon the value of c, 
and the effect evaluated at the average value for c is not equal to the average of 
the effects, averaging over the distribution for c. Consider the effect on the 
probability that y, = 1 of increasing x, from x’ to x”; using the average value for c 

“This approach to analysis of covariance in probit models was proposed in Chamberlain (1980) 
For other applications of multivariate probit models to panel data, see Heckman (1978,1981). 
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gives : 

The problem with this measure is that it may be relevant for only a small fraction 
of the population. I think that a more appropriate measure is the mean effect for 
a randomly drawn individual: 

j[P(y,=llx,=x”, c)-P(~,=llx,=x’,+(dc), 

where p(dc) gives the population probability measure for c. 
We shall see how to recover this measure within our framework. Let z = 

h,x, + . . . + hrxT; let p(dz) and p(du) give the population probability measures 
for the independent random variables z and u. Then: 

~(Y,=lIxt.c)=~(Y,=llx,,...,x,,c) 

= p(.Y, =11x,, z, 4; 

jJ’(~,=llx,, z, +(dz)p(du) 

= jP(y, =11x,, z, +(dulx,, z)p(dz) 

= /P(Y~ =11x,, Mdz), 

where p(duIx,, z) is the conditional probability measure, which equals the uncon- 
ditional measure since u is independent of x, and z. [It is important to note that 
the last integral does not, in general, equal P(y, =11x,). For if x, and z are 
correlated, as they are in our case, then 

P(Y,=W,) = /P(Y, =11x,, ~h4W,) 

f jP(y, =11x,> z)ddz).l 

We have shown that: 

j-[P(y,=l(x,=x”,c)-P(y,=llx,=x’,c)]p(dc) 

= 
/[ ( P y,=lIxt=x”,z)-P(y,=llx,=x’,z)]p(dz). (3.3) 

The integration with respect to the marginal distribution for z can be done using 
the empirical distribution function, which gives the following consistent (as 
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N + co) estimator of (3.3): 

G. Chamberlain 

+ ; { F[a,(px”+ x1x,1 + . . . + XTXjT)] 
1=1 

- F[a,(j3x~+Xlx;l+ . . * +hTXiT)]}. (3.4) 

3.2. A fixed effects logit model: Conditional likelihood 

A weakness in the probit model was the specification of a distribution for c 
conditional on x. A convenient form was chosen, but it was only an approxima- 
tion, perhaps a poor one. We shall discuss a technique that does not require us to 
specify a particular distribution for c conditional on x; it will, however, have its 
own weaknesses. 

Consider the following specification: 

P(y,=IJx,,...,x,,c)=G(Bx,+c), G(z)=e2/(l+eZ), (3.5) 

where y,, . _. ,yr are independent conditional on xi,. . . ,xT, c. Suppose that T= 2 
and compute the probability that y, = 1 conditional on yi + y2 = 1: 

(3.6) 

which does not depend upon c. Given a random sample of individuals, the 
conditional log-likelihood function is: 

L= C {W~lnG[P(xi2-xi~)]+(1-~)lnG[-~(xi~-x,~)]}~ 
iEB 

where 

i 

1, if (yjl, yi2) = (O,l), 
w’= 09 if(.Yi~~~i2)=(1~0)~ 
B= {ilyil+yj2=1}. 

This conditional likelihood function does not depend upon the incidental 
parameters. It is in the form of a binary logit likelihood function in which the two 
outcomes are (0,l) and (1,0) with explanatory variables x2 -xi. This is the 
analog of differencing in the two period linear model. The conditional maximum 
likelihood (ML) estimate of /3 can be obtained simply from a ML binary logit 
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program. This conditional likelihood approach was used by Rasch (1960,196l) in 
his model for intelligence tests.20 

The conditional ML estimator of j3 is consistent provided that the conditional 
likelihood function satisfies regularity conditions, which impose mild restrictions 
on the ci. These restrictions, which are satisfied if the ci are a random sample from 
some distribution, are discussed in Andersen (1970). Furthermore, the inverse of 
the information matrix based on the conditional likelihood function provides a 
covariance matrix for the asymptotic (N + cc) normal distribution of the condi- 
tional ML estimator of 8. 

These results should be contrasted with the inconsistency of the standard fixed 
effects ML estimator, in which the likelihood function is based on the distribution 

ofy,,..., y, conditional on x1,. . . , xT, c. For example, suppose that T = 2, x,t = 0, 
xi2 =l (i=l,..., N). The following limits exist with probability one if the c, are a 
random sample from some distribution: 

Npm i ,fi E[ Yil(l- Yi2)lCiI = ~17 
l-1 

N@m $ i E[(l- Yir)Y,ZI’iI =‘?2, 
1-l 

where 

Andersen (1973, p. 66) shows that the ML estimator of j3 converges with 
probability one to 2/3 as N ---, cc. A simple extension of his argument shows that if 
G is replaced by any distribution function (G) corresponding to a symmetric, 
continuous, nonzero probability density, then the ML estimator of p converges 

“In Rasch’s model, the probability that person i gives a correct answer to item number t is 
exp(/3, + c,)/[l + exp(& + c,)]; this is a special case in which x,, is a set of dummy indicator variables. 
An algorithm for maximum likelihood estimation in this case is described in Andersen (1972). The use 
of conditional likelihood in incidental parameter problems is discussed in Andersen (1970,1973), 
Kalbfleisch and Sprott (1970), and Barndortf-Nielson (1978). The conditional likelihood approach in 
the logit case is closely related to Fisher’s (1935) exact test for independence in a 2X2 table. This 
exact significance test has been extended by Cox (1970) and others to the case of several contingency 
tables. Additional references are in Cox (1970) and Bishop et al. (1975). Chamberlain (1979) develops 
a conditional likelihcod estimator for a point process model based on duration data, and Griliches, 
Hall and Hausman (1981) apply conditional likelihood techniques to panel data on counts. 
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with probability one to: 
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2&l ‘p2 

i 1 ‘p1+(P2 . 

The logit case is special in that q2/(p1 = eB for any distribution for c. In general 
the limit depends on this distribution; but if all of the c, = 0, then once again we 
obtain convergence to 2p as N + co. 

For general T, conditioning on C,y,, (i = 1,. . . , N) gives the following condi- 
tional log-likelihood function: 

d,)ld,=O or 1 and ; d, = ; Y,, . 

t=1 t=1 I 

L is in the conditional logit form considered by McFadden (1974), with the 
alternative set (B,) varying across the observations. Hence, it can be maximized 
by standard programs. There are T + 1 distinct alternative sets corresponding to 
c, Y,~ = O,l, . _ . , T. Groups for which cry,, = 0 or T contribute zero to L, however, 
and so only T -1 alternative sets are relevant. The alternative set for the group 

with c,y,, = s has (3) 1 e ements, corresponding to the distinct sequences of T 
trials with s successes. For example, with T = 3 and s = 1 there are three 
alternatives with the following conditional probabilities: 

P 1,O,Ol~;~Cj,CY,t=~ =exP[b(X;l-Xij)]/D, 
( t 1 

P O~~~Ol~,~C,~CY,t=1 
( 

=exP[P(Xi2-Xlj)]/D, 
t 1 

o,o,l/x,,ci,~y;,=l =1/D, 

D=exp[P(x,lfx,g)l+exp[8(x,2-xjz)l+I. 

A weakness in this approach is that it relies on the assumption that they, are 
independent conditional on x, c, with an identical form for the conditional 
probability each period: P( yt = 1 lx, c) = G( px, + c). In the probit framework, 
these assumptions translate into X = a21, so that u + U, generates an equicorre- 
lated matrix: u,‘U’ + 02Z. We have seen that it is straightforward to allow X to be 
unrestricted in the probit framework; that is not true here. 
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An additional weakness is that we are limited in the sorts of probability 
statements that can be made. We obtain a clean estimate of the effect of x, on the 
log odds: 

ln P(y,=l(x,=x”,c) 

[ 

P(y,=Il x, = x’, c 
) 

P( y, =01x, = x/I, c) / P( y, = 0(x, = XI, c) 1 +(x”- x’); 

the special feature of the logistic functional form is that this function of the 
probabilities does not depend upon c; so the problem of integrating over the 
marginal distribution of c (instead of the conditional distribution of c given x) 
does not arise. But this is not the only function of the probabilities that one might 
want to know. In the probit section we considered 

P(y,=l(x,=x”, c)-P(y,=llx,=x’,c), 

which depends upon c for probit or logit, and we averaged over the marginal 
distribution for c: 

/[ ( P Y,=l(x,=x”,c)-P(y,=llx,=x’,c)]p(dc). (3.7) 

This requires us to specify a marginal distribution for c, which is what the 
conditioning argument trys to avoid. We cannot estimate (3.7) if all we have is the 
conditional ML estimate of p. 

Our specification in (3.5) asserts that y, is independent of x1,. . . , x, _ 1, x, + 1,. . . , xT 
conditional on x,, c. This can be relaxed somewhat, but the conditional likelihood 
argument certainly requires more than 

to see this, try to derive (3.6) with x2 = y,. We can, however, implement the 
following specification (with x’= (x,, . . . ,xT)): 

P(~~==Ilx,~)=G(p,o+PIlxl+ --. +P,tx,+c), (34 

where yr,. . .,y, are independent conditional on x, c. This corresponds to our 
specification of “x is strictly exogenous conditional on c” in Section 2.5, except 
that yt = 1 in the term y,c-it is not straightforward to allow a time-varying 
coefficient on c in the conditional likelihood approach. The extension of (3.6) is: 

P(Y, =lIx,c, Al+ Y, =I> = G(&, +&IX, +Pt+z + .. . +Ptrxt> 

(t=2,... J), (3.9) 
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where jj,, = p,, - plj (j = 0,l). So if x has sufficient variation, we can obtain 
consistent estimates of &, &, and /I,, (s = 2,. . . , t). Only these parameters are 
identified, since we can transform the model replacing c by E = pro + &lxl+ c 

without violating any restrictions. 
The restrictions in (3.5) or in (3.8) can be tested against the following alterna- 

tive: 

P(y,=l)x,c)=G(~~,+~,rx,+ ... +~xr+c). (3.10) 

We can identify only 7r,j - rtj and so we can normalize r,, = 0 (j = 0,. . . , T; 
t = 2,..., T). The maximized values of the conditional log-likelihoods can be used 
to form x2 statistics. 21 There are (T -2)(T - )/ 1 2 restrictions in passing from 
(3.10) to (3.8) and (3.5) imposes an additional (T - l)(T + 4)/2 - 1 restrictions. 

3.3. Serial correlation and lagged dependent variables 

Consider the following two models: 

1, ifyT=u,ZO, 

0, otherwise; u, = pu,_, + e,; 

otherwise; u, = PU,_~ + e,; 

(3.11b) 

(3Xb) 

in both cases e, is i.i.d. N(0,a2). Heckman (1978) observed that we can dis- 
tinguish between these two models.22 In the first model, 

~b,=llY,-,9YL2Y. ) = pb, =wL,) = eY-,/fJ), 

where F( .) is the standard normal distribution function. In the second model, 
however, P(y, =lly,_,, y,_, ,... ) depends upon the entire history of the process. 
If we observed u,_i, then previous outcomes would be irrelevant. In fact, we 
observe only whether u,_ r 2 0; hence conditioning in addition on whether u,_~ 2 0 
affects the distribution of u,_i and y,. So the lagged y implies a Markov chain 
whereas the Markov assumption for the probit residual does not imply a Markov 
chain for the binary sequence that it generates. 

2’Conditional likelihood ratio tests are discussed in Andersen (1971). 
“Also see Heckman (1981, 1981b). 
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There is an analogy with the following linear models: 
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Y, = YY,-1 + et, (3.12a) 

y, = u,, 2.4, = e, + pet-l, (3.12b) 

where e, is i.i.d. N(0, u*)_ We know that if U, = pul-i + e,, then no distinction 
would be possible, without introducing more structure, since both models imply a 
linear Markov process. With the moving average residual, however, the serial 
correlation model implies that the entire past history is relevant for predicting y. 
So the distinction between the two models rests on the order of the dependence 
on previous realizations of y,. 

We can still distinguish between the two models in (3.11) even when ( ul,. . . , ur> 
has a general multivariate normal distribution (N( IL, 2)). Given normalizations 
such as V(u,)=l (t =l,..., T), the serial correlation model has r( T + 1)/2 free 
parameters. Hence, if T 2 3, there are restrictions on the 2T - 1 parameters of the 
multinomial distribution for ( yi, . . . , yT). In particular, the most general multi- 
variate probit model cannot generate a Markov chain. So we can add a lagged 
dependent variable and identify y. 

This result relies heavily on the restrictive nature of the multivariate probit 
functional form. A more robust distinction between the two models is possible 
when there is variation over time in x,. We shall pursue this after first presenting 
a generalization of strict exogeneity and noncausality for nonlinear models. 

Let t = 1 be the first period of the individual’s (economic) life. An extension of 
Granger’s definition of “y does not cause x” is that x,+i is independent of 
y,, . . . ,y, conditional on xi,. . . , x,. An extension of Sims’ strict exogeneity condi- 
tion is that y, is independent of x,+ i, x,+*, . . . conditional on xi,. . . ,x,. In contrast 
to the linear predictor case, these two definitions are no longer equivalent.23 For 
consider the following counterexample: let yi, y, be independent Bernoulli ran- 
dom variables with P( y, = 1) = P( y, = - 1) = l/2 (t = 1,2). Let xj = y, y2. Then y, 
is independent of x3 and y, is independent of x3. Let all of the other random 
variables be degenerate (equal to zero, say). Then x is strictly exogenous but x3 is 
clearly not independent of yi, y2 conditional on xi, x2. The counterexample works 
for the following reason: if a random variable is uncorrelated with each of two 
other random variables, then it is uncorrelated with every linear combination of 
them; but if it is independent of each of the other random variables, it need not 
be independent of every function of them. 

Consider the following modification of Sims’ condition: y, is independent of 
X t+l*X,+*t-.- conditional on x1,. . . ,x,, y,, . . . ,y,_ 1 (t = 1,2,. . . ). Chamberlain 
(1982) shows that, subject to a regularity condition, this is equivalent to our 

23See Chamberlain (1982) and Florens and Mouchart (1982) 
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extended definition of Granger noncausality. The regularity condition is trivially 
satisfied whenever y, has a degenerate distribution prior to some point. SO it k 

satisfied in our case since y,, y _ 1, . . . have degenerate distributions. 
It is straightforward to introduce a time-invariant latent variable into these 

definitions. We shall say that “y does not cause x conditional on a latent variable c” 
if either: 

x,+i isindependentofy, ,..., y,conditionalonx, ,..., x,,c(t=1,2 ,... ), 

01 

y, is independent of x,+~,x,+~ ,... conditional on x1 ,..., x,, y1 ,..., Y,-~,c (t = 
1,2,...); 

they are equivalent. We shall say that “x is strictly exogenous conditional on a 
latent variable c” if: 

y, is independent of x,+l,x,+z ,... conditional on x1 ,..., x,,c (t =1,2 ,... ). 

Now let us return to the problem of distinguishing between serial correlation 
and structural lagged dependent variables. Assume throughout the discussion that 
x, and y, are not independent. We shall say that the relationship of x toy is static 
if: 

x is strictly exogenous and y, is independent of x,, . . . ,xt_ 1 conditional on x,. 

Then I propose the following distinctions: 

There is residual serial correlation if y, is not independent of y,, , , , ,y,- 1 conditional 
on x 1,...,xt, 

If the relationship of x to y is static, then there are no structural lagged dependent 
variables. 

Suppose that y, and x, are binary and consider the probability that y2 = 1 
conditional on (xi, x2) = (0,O) and conditional on (x,, x2) = (1,O). Since y, and x, 
are assumed to be dependent, the distribution of y, is generally different in the 
two cases. If y, has a structural effect on y,, then the conditional probability of 
y, = 1 should d ff i er in the two cases, so that y2 is not independent of x1 
conditional on x2. 

Note that this condition is one-sided: I am only offering a condition for there 
to be no structural effect of y,_, on y,. There can be distributed lag relationships 
in which we would not want to say that y,_, has a structural effect on yr. Consider 
the production function example with serial correlation in rainfall; assume for the 
moment that there is no variation in c. If the serial correlation in rainfall is not 
incorporated in the farmer’s information set, then our definitions assert that there 
is residual serial correlation but no structural lagged dependent variables, since 
the relationship of x toy is static. Now suppose that the farmer does use previous 
rainfall to predict future rainfall. Then the relationship of x toy is not static since 
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x is not strictly exogenous. But we may not want to say that the relationship 
between y,_ i and yt is structural, since the technology does not depend upon y,_ r. 

How are these distinctions affected by latent variables? It should be clear that a 
time-invariant latent variable can produce residual serial correlation. A major 
theme of the paper has been that such a latent variable can also produce a failure 
of strict exogeneity. So consider conditional versions of these properties: 

There is residual serial correlation conditional on a latent variable c if y, is not 
independent of y,, . _ _ , y, 1 conditional on x1,. . . ,x,, c; 

The relationship of x to y is static conditional on a latent variable c if x is strictly 
exogenous conditional on c and if y, is independent of x1,. . .,xI_ 1 conditional on 
xt, c; 

If the relationship of x toy is static conditional on a latent variable c, then there are 
no structural lagged dependent variables. 

A surprising feature of the linear predictor definition of strict exogeneity is that 
it is restrictive to assert that there exists some time-invariant latent variable c such 
that x is strictly exogenous conditional on c. This is no longer true when we use 
conditional independence to define strict exogeneity. For a counterexample, 
suppose that x, is a binary variable and consider the conditional strict exogeneity 
question: “Does there exist a time-invariant random variable c such that y, is 
independent of xi,. . . ,xT conditional on xi,. . . ,xt, c?” The answer is “yes” since 
we can order the 2T possible outcomes of the binary sequence (xi,. . . , xT) and set 
~=jifthejthoutcomeoccurs(j=1,...,2~).Nowy~isindependentofx,,...,x, 
conditional on c! 

For a nondegenerate counterexample, let y and x be binary random variables 
with: 

component. Hence y is in 
the interior of the convex hull of { e,, m = 1,. . . ,4}. Now consider the vector: 

r 6X 
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The components of ~(6, A) give the probabilities P(y = a,, x = ak) when y and 
x are independent with P(y = 1) = 6, P(x = 1) = h. Set e; = y(S,, X,,,) with 
0 < 15, < 1,O < A, < 1. Then y will be in the interior of the convex hull of { ez, 
m=l ,...,4} if we choose a,,,, X,,, so that ez is sufficiently close to e,. Hence: 

4 

Y= C %t*eZ, Y, ’ 0, i y,*=l. 
m=l m=l 

Let the components of ei be (7$, $, $, 22 7”‘). Let c be a random variable with 
P(c=m)=y,* (m=1,...,4), and set 

P(y=a,,x=akIc=m)=$. 

Now y is independent of x conditional on c, and the conditional distributions are 
nondegenerate. 

If (Xi,...&-, Yl,..., yr) has a general multinomial distribution, then a 
straightforward extension of this argument shows that there exists a random 
variable c such that ( y,, . . . ,yr) is independent of (xi,. . .,x,) conditional on c, 
and the conditional distributions are nondegenerate. 

A similar point applies to factor analysis. Consider a linear one-factor model. 
The specification is that there exists a latent variable c such that the partial 
correlations between y,, . . . , yT are zero given c. This is restrictive if T > 3. But we 
now know that it is not restrictive to assert that there exists a latent variable c 
such that y,, . _ . ,y, are independent conditional on c. 

It follows that we cannot test for conditional strict exogeneity without imposing 
functional form restrictions; nor can we test for a conditionally static relationship 
without restricting the functional forms. 

This point is intimately related to the fundamental difficulties created by 
incidental parameters in nonlinear models. The labor force participation example 
is assumed to be static conditional on c. We shall present some tests of this in 
Section 5, but we shall be jointly testing that proposition and the functional forms 
-a truly nonparametric test cannot exist. We stressed in the probit model that 
the specification for the distribution of c conditional on x is restrictive; we 
avoided such a restrictive specification in the logit model but only by imposing a 
restrictive functional form on the distribution of y conditional on x, c. 

3.4. Duration models 

In many problems the basic data is the amount of time spent in a state. For 
example, a complete description of an individual’s labor force participation 
history is the duration of the first spell of participation and the date it began, the 
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duration of the following spell of nonparticipation, and so on. This complete 
history will generate a binary sequence when it is cut up into fixed length periods, 
but these periods may have little to do with the underlying process.24 

In particular, the measurement of serial correlation depends upon the period of 
observation. As the period becomes shorter, the probability that a person who 
worked last period will work this period approaches one. So finding significant 
serial correlation may say very little about the underlying process. Or consider a 
spell that begins near the end of a period; then it is likely to overlap into the next 
period, so that previous employment raises the probability of current employ- 
ment. 

Consider the underlying process of time spent in one state followed by time 
spent in the other state. If the individual’s history does not help to predict his 
future given his current state, then this is a Markov process. Whereas serial 
independence in continuous time has the absurd implication that mean duration 
of a spell is zero, the Markov property does provide a fruitful starting point. It 
has two implications: the individual’s history prior to the current spell should not 
affect the distribution of the length of the current spell; and the amount of time 
spent in the current state should not affect the distribution of remaining time in 
that state. 

SC the first requirement of the Markov property is that durations of the spells 
be independent of each other. Assuming stationarity, this implies an alternating 
renewal process. The second requirement is that the distribution of duration be 
exponential, so that we have an alternating Poisson process. We shall refer to 
departures from this model as duration dependence. 

A test of this Markov property using binary sequences will depend upon what 
sampling scheme is being used. The simplest case is point sampling, where each 
period we determine the individual’s state at a particular point in time, such as 
July 1 of each year. Then if an individual is following an alternating Poisson 
process, her history prior to that point is irrelevant in predicting her state at the 
next interview. So the binary sequence generated by point sampling should be a 
Markov chain. 

It is possible to test this in a fixed effects model that allows each individual to 
have her own two exponential rate parameters ( cil, ci2) in the alternating Poisson 
process. The idea is related to the conditional likelihood approach in the fixed 
effects logit model. Let s,~~ be the number of times that individual i is observed 
making a transition from statej to state k (j, k = 1,2). Then the initial state and 
these four transition counts are sufficient statistics for the Markov chain. Se- 
quences with the same initial state and the same transition counts should be 
equally likely. This is the Markov form of de Finetti’s (1975) partial exchangeabil- 

24This point is discussed in Singer and Spileman (1974, 1976). 
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ity. 25 So we can test whether the Markov property holds conditional on Gil, c,~ by 
testing whether there is significant variation in the sample frequencies of se- 
quences with the same transition counts. 

This analysis is relevant if, for example, each year the survey question is: “Did 
you have a job on July 1. 7” In the Michigan Panel Study of Income Dynamics, 
however, the most commonly used question for generating participation se- 

’ . quences is. “Did your wife do any work for money last year?” This interval 
sampling leads to a more complex analysis, since even if the individual is 
following an alternating Poisson process, the binary sequence generated by this 
sampling scheme is not a Markov chain. Suppose that Y,_ 1 = 1, so that we know 
that the individual worked at some point during the previous period. What is 
relevant, however, is the individual’s state at the end of the period, and Y,_~ will 
affect the probability that the spell of work occurred early in period t - 1 instead 
of late in the period. 

Nevertheless, it is possible to test whether the underlying process is alternating 
Poisson. The reason is that if y,_, = 0, we know that the individual never worked 
during period t - 1, and so we know the state at the end of that period; hence 

.Y-2~Y,-3~... are irrelevant. So we have: 

where d is the number of consecutive preceding periods that the individual was in 
state 1. 

Let soi be the number of times in the sequence that 1 is preceded by 0; let soit 
be the number of times that 1 is preceded by 0,l; etc. Then sufficient statistics are 

~Ol,~Oll,-.., as well as the number of consecutive ones at the beginning (n,) and 
at the end (nr) of a sequence. 26 For an example with T = 5, let n, = 0, n5 = 0, 
s o1 = 1, soli = 1, solit = . ’ . = 0; then we have 

P(O,l,l,O,Ole) 

2SWe are using the fact that partial exchangeability is a necessary condition for the distribution to 
be a mixture of Markov chains. Diaconis and Freedman (1980) study the sufficiency of this condition. 
Heckman (1978) used exchangeability to test for serial independence in a fixed effects model. 

26This test was presented in Chamberlain (1978a, 1979). It has been applied to unemployment 
sequences by Corcoran and Hill (1980). For related tests and extensions, see Lee (1980). 
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where c = (ci, cl). Thus these two sequences are equally likely conditional on c, 
and letting p be the probability measure for c gives: 

P(o,l,LO,O) = jP(O,l,l,O,olc)p(dc) 

= P O,O,l,l,Olc)~(dc)= P(O,O,l,l,O). 
/( 

So the alternating Poisson process implies restrictions on the multinomial distri- 
bution for the binary sequence. 

These tests are indirect. The duration dependence question is clearly easier to 
answer using surveys that measure durations of spells. Such duration data raises a 
number of new econometric problems, but we shall not pursue them here.27 I 
would simply like to make one connection with the methods that we have been 
discussing. 

Let us simplify to a one state process; for example, Y,, can be the duration of 
the time interval between the starting date of the ith individual’s t th job and his 
(t + 1)th job. Suppose that we observe T > 1 jobs for each of the N individuals, a 
not innocuous assumption. Impose the restriction that Y,, > 0 by using the 
following specification: 

Ylt = exp@x,, + c, + u,,), 

E*(u,,lx,)=O (t=l,..., T), 

where xi = (xii,. . . ,x,~). Then: 

E*(ln Y,((x,) = /3xil + A’xi, 

and our Section 2 analysis applies. The strict exogeneity assumption has a 
surprising implication in this context. Suppose that xit is the individual’s age at 
the beginning of the tth job. Then x,~ 
exogenous.28 

- x;,~_~ = Y,,t_i-age is not strictly 

4. Inference 

Consider a sample r;‘=(xi, y:), i=l,..., N, where x(=(xil ,..., xiK), J+‘= 

(Y;,,... ,y,,,,). We shall assume that 5 is independent and identically distributed 
(i.i.d.) according to some multivariate distribution with finite fourth moments 

27See Tuma (1979, 1980), Lancaster (1979), Nickel1 (1979), Chamberlain (1979), Lancaster and 
Nickel1 (1980). Heckman and Bojas (1980), Kiefer and Neumann (1981). and Flinn and Heckman 
(1982, 1982a). 

2”This example is based on Chamberlain (1979). 
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and E( x,x;) nonsingular. Consider the minimum mean-square error linear predic- 
tors,29 

E*(Y&;) = G; (M =l,...,M), 

which we can write as: 

E*( Y~IXi)=nXI, I7= E( y,x,‘)[E(xix,)] -I. 

We want to estimate II subject to restrictions and to test those restrictions. For 
example, we may want to test whether a submatrix of II has the form /?I + IA’. 

We shall not assume that the regression function E( y;yilx;) is linear. For 
although E( y, Ix;, ci) may be linear (indeed, we hope that it is), there is generally 
no reason to insist that E(cilxj) is linear. So we shall present a theory of inference 
for linear predictors. Furthermore, even if the regression function is linear, there 
may be heteroskedasticity-due to random coefficients, for example. So we shall 
allow E[( y, - IIxi)( y, - IIxj)‘lxi] to be an arbitrary function of xi. 

4.1. The estimation of linear predictors 

Let w, be the vector formed from the distinct elements of riq’ that have nonzero 
variance.30 Since ‘I’ = (x;, y,‘) is i.i.d., it follows that wi is i.i.d. This simple 
observation is the key to our results. Since II is a function of E( w,), our problem 
is to make inferences about a function of a population mean, under random 
sampling. 

Let p = E( w;) and let n be the vector formed from the columns of II’ 
(n = vec(IT’)). Then rr is a function of cc: rr = /r(p). Let 5 = Cr=twi/N; then 
li = Ir( W) is the least squares estimator: 

By the strong law of large numbers, W converges almost surely to p” as N -+ co 
(-,“s,o), where p” is the true value of p. Let rr” = /r (PO). Since A(p) is con- 

tinuous at p = PO, we have 7i “2 R ‘. The central limit theorem implies that: 

29This agrees with the definition in Section 2 if x, includes a constant. 
‘“Sections 4.1-4.4 are taken from Chamberlain (1982a). 
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Since /t(c) is differentiable at p = PO, the d-method gives 

m(7i - Tr”) 2 N(O,52), 
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where 

We have derived the limiting distribution of the least squares estimator. This 
approach was used by Cramer (1946) to obtain limiting normal distributions for 
sample correlation and regression coefficients (p. 367); he presents an explicit 
formula for the variance of the limiting distribution of a sample correlation 
coefficient (p. 359). Kendall and Stuart (1961, p. 293) and Goldberger (1974) 
present the formula for the variance of the limiting distribution of a simple 
regression coefficient. 

Evaluating the partial derivatives in the formula for P is tedious. That calcula- 
tion can be simplified since li has a “ratio” form. In the case of simple regression 
with a zero intercept, we have n = E(y,x,)/E(x,!) and 

Since cc rxf/N a~s’ + E(xf), we obtain the same limiting distribution by working 

with 

I? [(r; - ~"+il/[~E(xf)l~ 
1=1 

The definition of rr” gives E[(y, - n”x,)xi] = 0, and so the central limit theorem 
implies that : 

This approach was used by White (1980) to obtain the limiting distribution for 
univariate regression coefficients. 32 In the Appendix (Proposition 6) we follow 

“See Billingsley (1979, example 29.1, p. 340) or Rao (1973, p. 388). 
3zAlso see White (1980a,b). 
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White’s approach to obtain: 

G. Chamberlain 

52= E[( y, -II’x,)( y, -~“~i)~~~~‘(x;~‘)~~l], (4.1) 

where @I = E(x,x;). A consistent estimator of 51 is readily available from the 
corresponding sample moments: 

(4.2) 

where S, = C;“=,x&/N. 
If E( y,Jx,) = IIxi, so that the regression function is linear, then: 

52 = E[ I’( y,lx,)@‘D;‘( x,x;)@,-‘]. 

If V( y,lx,) is uncorrelated with x,x;, then: 

ii?= E[ V( y,lx,)] s@;‘. 

If the conditional variance is homoskedastic, so that V( y,lx,) = Z does not 
depend on x,, then: 

4.2. Imposing restrictions: The minimum distance estimator 

Since I7 is a function of E( w,), restrictions on II imply restrictions on E( w,). Let 
the dimension of p = E( wj) be q. 33 We shall specify the restrictions by the 
condition that I( depends only on a p x 1 vector 8 of unknown parameters: 
f~ = g(O), where g is a known function and p I q. The domain of 0 is ‘Yf’, a subset 
of p-dimensional Euclidean space (RJ’) that contains the true value 0’. So the 
restrictions imply that p” = g( 0’) is confined to a certain subset of Rq. 

We can impose the restrictions by using a minimum distance estimator: choose 
e to 

“If there is one element in r,r,’ with zero variance, then q = [(K + M)( K + M + 1)/21-l. 
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where A, “2 e and q is positive definite. 34 This minimization problem is equiva- 

lent to the following one: choose 4 to 

The properties of 8 are developed, for example, in Malinvaud (1970, ch. 9). Since 
g does not depend on any exogenous variables, the derivation of these properties 
can be simplified considerably, as in Chiang (1956) and Ferguson (1958).35 

For completeness, we shall state a set of regularity conditions and the proper- 
ties that they imply: 

Assumption 1 

aNa2g(Bo); T i s a compact subset of RP that contains 8’; g is continuous on 2’, 

and g(0) = g(@‘) for 8 E ‘I’ implies that 8 = 0’; A, az ‘k, where !P is positive 

definite. 

Assumption 2 

fira, - g(d”)] 2 N(O, A); 2’ contains a neighborhood E. of 8’ in which g has 

continuous second partial derivatives; rank (G) = p, where G = ag(8’)/afl’. 

Choose 4 to 

Proposition 1 

If Assumption 1 is satisfied, then 8 “2 8’. 

Proposition 2 

If Assumptions 1 and 2 are satisfied, then m(8 - 0’) 2 N(O, A), where 

A = (G?PG)-‘G’qAqG(GYG)-‘. 

If A is positive definite, then A -(G’A-‘G)-’ is positive semi-definite; hence an 
optimal choice for 9 is A-‘. 

34This application of nonlinear generalized least squares was proposed in Chamberlain (1980a). 
“‘Some simple proofs are collected in Chamberlain (1982a). 
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Proposition 3 

If As;umptions 1 and 2 are satisfied, if A is a q X q positive-definite matrix, and if 

A, +A-', then: 

Now consider imposing additional restrictions, which are expressed by the 
condition that 8 = f(a), where a is s x l(s < p). The domain of a is Yi, a subset 
of RS that contains the true value u”. So 8’ = f(a”) is confined to a certain subset 
of RP. 

Assumption 2’ 

!I’, is a compact subset of R” that contains a’; f is a continuous mapping from 
?‘i into c f(a) = 8’ for a E 'T, implies a = a’; ‘Z’t contains a neighborhood of a0 
in which f has continuous second partial derivatives; rank (F) = s, where 
F= i?f(aO)/&x'. 

Let h(a)=g[f(a)]. Choose 8 to 

a% [UN -~(a)]‘-%&, - +d]. 
1 

Proposition 3’ 
as. 

If Assumptions 1, 2, and 2’ are satisfied, if A is positive definite, and if A, ---) A-‘, 

D 
then d, - d, --$ x2( p - s), where 

d,=N[+ -+q]‘A,[u,-+g], 

d,= N[u, -iz@$%[uN -d@l. 

Furthermore, d, - d, is independent of d, in their limiting joint distribution. 

Suppose that the restrictions involve only II. We specify the restrictions by the 
condition that 7r = f(6), where S is s x 1 and the domain of S is Z’,, a subset of R” 
that includes the true value 6’. Consider the following estimator of So: choose b to 

8f$g [li- f(s)]‘8-‘[li- f(S)], 
I 

where fi is given in (4.2), and we assume that Jz in (4.1) is positive definite. If Z’i 
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and f satisfy Assumptions 1 and 2, then b “2 So, 

1291 

and 

N[li- f(b)]W’[li- f(6)] ~xym-s), 

where F = ilf(i3°)/~&. 
We can also estimate So by applying the minimum distance procedure to W 

instead of to ii. Suppose that the components of IV; are arranged so that 
IV: = (IV;, $z ), where w,r contains the components of n, y;. Partition /J = E( VV;) 
conformably: c’= (&, &). Set 8’= (e;, 0;) = (S’, pi). Assume that V( w,) is 
positive definite. Now choose 8 to 

a.s. 
where A, -+ V-‘( rvi), 

and g,(r,p,) =p,. Then 8, gives an estimator of 6’; it has the same limiting 
distribution as the estimator 8 that we obtained by applying the minimum 
distance procedure to ii.36 

This framework leads to some surprising results on efficient estimation. For a 
simple example, we shall use a univariate linear predictor model, 

E*b+,l, x,2) = 7ro + 7rlX,l + 7r1x;*. 

Consider imposing the restriction rrZ = 0. Then the conventional estimator of rrt is 
$,<,, the slope coefficient in the least squares regression of y on x1. We shall show 
that this estimator is generally less efficient than the minimum distance estimator 
if the regression function is nonlinear or if there is heteroskedasticity. 

Let 7jl, ;rZ be the slope coefficients in the least squares multiple regression of y 
on x1, x2. The minimum distance estimator of rI under the restriction rrl = 0 can 
be obtained as 8 = +, + r$, where r is chosen to minimize the (estimated) 

‘%ee Chamberlain (1982a, proposition 9) 
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variance of the limiting distribution of 8; this gives: 

G. Chamberlain 

A 

$= a12 
7i1- ,7j2, 

*22 

where Lijk is the estimated covariance between fij and 7jk in their limiting 
distribution. Since 7i, = byx, - 7j2bxZx,, we have: 

If E(y,lx,i, xi2) is linear and if V(y,lx,i, xi2) = u2, then w12/w22 = 
-cov(xil, xi2)/V(xil) and 6 = byx,. But in general 8 # byx, and 8 is more efficient 
than $_. The source of the efficiency gain is that the limiting distribution of fi2 
has a zero mean (if 7r2 = 0), and so we can reduce variance without introducing 
any bias if 7;2 is correlated with b,_.,. Under the assumptions of linear regression 
and homoskedasticity, by_ and ti2 are uncorrelated; but this need not be true in 
the more general framework that we are using. 

4.3. Simultaneous equations: A generalization of three-stage least squares 

Given the discussion on imposing restrictions, it is not surprising that two-stage 
least squares is not, in general, an efficient procedure for combining instrumental 
variables. Also, three-stage least squares, viewed as a minimum distance estima- 
tor, is using the wrong norm in general. 

Consider the standard simultaneous equations model: 

y,=&,+u. I) E( I&) = 0, 

ry, + Bx, = 4, 

where IY7 + B = 0 and Tui = vi. We are continuing to assume that yi is M x 1, xi 
is K x 1, 5’ = (x;, y/) is i.i.d. according to a distribution with finite fourth 
moments (i = 1 , . . . ,N), and that E(x,x;) is nonsingular. There are restrictions on 
r and B: m(r, B) = 0, where m is a known function. Assume that the implied 
restrictions on I7 can be specified by the condition that n = vec(IT’) = f(S), 
where the domain of 6 is ??i, a subset of R” that includes the true value 
S”(s 5 MK). Assume that Yi and f satisfy assumptions 1 and 2; these properties 
could be derived from regularity conditions on m, as in Malinvaud (1970, 
proposition 2, p. 670). 

Choose 8 to 
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where fi is given in (4.2) and we assume that 52 in (4.1) is positive definite. Let 

F= df(~0)/&9’. Then we have fi(8 - So) 2 N(O,A), where A = (F’SZ-‘F)pl. 

This generalizes Malinvaud’s minimum distance estimator (p. 676); it reduces to 
his estimator if UPUP is uncorrelated with x,x,‘, so that 52 = E(u~u~‘)@[E(x,~;)]~’ 
(Up = y, - II%,). 

Now suppose that the only restrictions on r and B are that certain coefficients 
are zero, together with the normalization restrictions that the coefficient of y,, in 
the m th structural equation is one. Then we can give an explicit formula for A. 
Write the mth structural equation as: 

where the components of z,,,, are the variables in y, and x, that appear in the mth 
equation with unknown coefficients. Let there be M structural equations and 
assume that the true value To is nonsingular. Let S,, be the following block-diago- 
nal matrix: 

and s,,, = N-‘C~=iy,@x,. Let up’= (u~,...,u~~), where up, = y,, - Si’z;, and 8: 
is the true value; let az,, = E(X,) and GX = E( x,x;). Let 6’ = (a;, . _ . , aa). Then we 
have: 

= (@~X[E(~;~;‘@x,x;)] -1@;X)-1.37 (4.3) 

If UPUP’ is uncorrelated with xix;, then this reduces to: 

which is the conventional asymptotic covariance matrix for three-stage least 
squares [Zellner and Theil (1962)]. 

There is a generalization of three-stage least squares that has the same limit- 
ing distribution as the generalized minimum distance estimator. Let Y$ = 

NP’C~=i(C,C~~x,x~), where G, = py, + ix, and f”! r”, ^ “” B - B”. Define: 

“See Chamberlain (1982a). 
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The limiting distribution of this estimator is derived in the Appendix (Proposition 
6). We record it as: 

Proposition 4 

~(8G,-60)%(0,A,, h w ere A is given in (4.3). This generalized three-stage 

least squares estimator is asymptotically efficient within the class of minimum 
distance estimators. 

Our derivation of the limiting distribution of hGG3 relies on linearity. For a 
generalized nonlinear three-stage least squares estimator, see Hansen (1982).38 

4.4. Asymptotic efficiency: A comparison with the quasi-maximum 
likelihood estimator 

Assume that ‘; is i.i.d. (i=1,2 ,...) f rom a distribution with E(c) = 7, V(r;) = X, 
where X is a J x J positive-definite matrix; the fourth moments are finite. 
Suppose that we wish to estimate functions of Z subject to restrictions. Let 
u = vet(Z) and express the restrictions by the condition that u = g(e), where g is 
a function from ?’ into Rq with a domain T c RP that contains the true value 
0’( q = J2; p I J( J + 1)/2). Let 

s=+ f (q-r)();-i)‘, 
1=1 

and let s = vet(S). 
If the distribution of r, is multivariate normal, then the log-likelihood function 

is: 

If there are no restrictions on 7, then the maximum likelihood estimator of 8’ is a 
solution to the following problem: Choose 4 to solve: 

We shall derive the properties of this estimator when the distribution of ‘i is not 
necessarily normal; in that case we shall refer to the estimator as a quaa-maxi- 
mum likelihood estimator ( @QML).39 

3XThere are generalizations of two-stage least squares in Chamberlain (1982a) and White (1982a). 
“The quasi-maximum likelihood terminology was used by the Cowles Commission; see Malinvaud 

(1970, p. 678). 
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MaCurdy (1979) considered a version of this problem and showed that, under 
suitable regularity conditions, fi(t&,,, - do) has a limiting normal distribution; 
the covariance matrix, however, is not given by the standard information matrix 
formula. We would like to compare this distribution with the distribution of the 
minimum distance estimator. 

This comparison can be readily made by using theorem 1 in Ferguson (1958). 
In our notation, Ferguson considers the following problem: Choose 8 to solve 

W(SJ)[S-g(e)] =O. 

He derives the limiting distribution of @(6 - 0’) under regularity conditions on 
the functions W and g. These regularity conditions are particularly simple in our 
problem since W does not depend on S. We can state them as follows: 

Assumption 3 

So c RJ’ is an open set containing 8’; g is a continuous, one-to-one mapping of Z. 
into Rq with a continuous inverse; g has continuous second partial derivatives in 
Sob; rank [ dg(O)/H’] = p for B E 4; X(e) is nonsingular for 0 E Eo. 

In addition, we shall need Sa: g(8’) and the central limit theorem result that 

fi(s - g(e”)) 2 N(O,A), where A = V[(c - T’)@(c - TO)]. 

Then Ferguson’s theorem implies that the likelihood equations almost surely 
have a unique solution within Z. for sufficiently large N, and fi(&,_ - 

0’) 2 N(O, A), where 

n = (G’~G)-‘G’~A~G(G’~G)-‘, 

and G = 8g(8°)/Je’, !P= (X08X0)-‘. It will be convenient to rewrite this, 
imposing the symmetry restrictions on X. Let u* be the J( J + 1)/2 X 1 vector 
formed by stacking the columns of the lower triangle of X. We can define a 
J2~[J(J+1)/2]matrix Tsuchthata=Ta*. The elements in each row of T are 
all zero except for a single element which is one; T has full column rank. Let 
3 = Ti* g(e) = Tg*(e), G* = dg*(eo)/ae: (k* = Tfw; then JR[s* - 

‘D 
g*( e”)] -+ N(O, A*), where A* is the covariance matrix of the vector formed from 

the columns of the lower triangle of (I; - r’)(r;: - 7’)‘. Now we can set 

A = (G’*~*G*)-‘(G’*~*A#~*c*)(G’*~*G*)-~. 

Consider the following minimum distance estimator. Choose d,,, to 

BET 
min[s*-g*(e)]‘A,[3*-g*(e)], 
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where 2’ is a compact subset of Z0 that contains a neighborhood of 8’ and 
a.s. 

A N + q*. Then the following result is implied by Proposition 2. 

Proposition 5 

If Assumption 3 is satisfied, then fi(i&,,, - 
tion as &?(e,, - f3’). 

0’) has the same limiting distribu- 

a.s. 
If A* is nonsingular, an optimal minimum distance estimator has A, --, lA*-‘, 

where 5 is an arbitrary positive real number. If the distribution of r, is normal, 
then A*-’ = (l/2)**; but in general A*-’ is not proportional to \k*, since A* 
depends on fourth moments and ?* is a function of second moments. So in 
general Jo,, is less efficient than the optimal minimum distance estimator that 
uses 

(4.4) 

where SF is the vector formed from the lower triangle of (q - ?)(c - F)‘. 
More generally, we can consider the class of consistent estimators that are 

continuously differentiable functions of S * : 8 = &3*). Chiang (1956) shows that 
the minimum distance estimator based on A*+’ has the minimal asymptotic 
covariance matrix within this class. The minimum distance estimator based on AN 
in (4.4) attains this lower bound. 

4.5. Mukivariate probit models 

Suppose that 

Y I, = rm if 7rAx, + u,, 2 0, 

= 0, otherwise (i=l ,..., N; m =l,..., M), 

where the distribution of u: = (u,i,..., ujM) conditional on x, is multivariate 
normal, N(O, Z). There may be restrictions on rr’ = ( ai’, . . . ,!I&), but we want to 
allow X to be unrestricted, except for the scale normalization that the diagonal 
elements of Z are equal to one. In that case, the maximum likelihood estimator 
has the computational disadvantage of requiring numerical integration over M - 1 
dimensions. 

Our strategy is to avoid numerical integration. We estimate rr”, by maximizing 
the marginal likelihood function that is based on the distribution of y,,, condi- 
tional on x,: 
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where F is the standard normal distribution function. Then under standard 

a.s’ 
D 

assumptions we have ii, + n,,,, ’ the true value. If fi(li - r”) + N(0, jz), then we 

can impose the restriction that n = f(S) by choosing b to minimize 

[it - f(S)]W[li - f(6)]. 

We only need to derive a formula for A2.40 
Our estimator of rr is solving the following equation: 

where 

Q(n)= f { iit y;,Jn F( V&K,) + (1 - Y,,)ln[ 1 - F( TAX, 
i=l m=l 

Hence, the asymptotic distribution of li can be obtained from the theory of 
“M-estimators”. Huber (1967) provides general results, which do not impose 
differentiability restrictions on S(R). His results cover, for example, regression 
estimators based on minimizing the residual sum of absolute deviations. We shall 
not need this generality here and shall sketch the derivation for the simpler, 
differentiable case. This case has been considered by Hansen (1982), MaCurdy 
(1981a), and White (1982).41 

Let zj be i.i.d. according to a distribution with support Z c Rq. Let 8 be an 
open, convex subset of RP and let $(z, 0) be a function from Z X 8 into RP; its 
k th component is rl/k(z, 0). For each 8 E 8, + is a measurable function of z, and 
there is a 8’ E 8 with: 

For each z E Z, a/~ is a twice continuously differentiable function of 6. In addition: 

is nonsingular, and 

ad4w) I I ae, ae, r/l(z) (k,I,m=L...JJ) 

for 0 E 8, where Qh(z,)l< coo. 

@For an alternative approach to multivariate probit models, see Avery, Hansen and Hotz (1981). 
4’Also see Rao (1973, problem 9, p. 378). 
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Suppose that we have a (measurable) estimator 8, E 8 such that d,y 19’ and 

for sufficiently large N a.s. By Taylor’s theorem: 

& ,c ~k(Zi.eo)+[j~k+t(~N-eo)‘c&q~N-~o)] =o, 
l-1 

where 

1 N aGk(zi,eo) 
jNk = z .C ae 9 

cNk = ; ; a2+;f;ee:k) , 
I 

r=l 1=1 

and e;, is on the line segment joining 6, and 8’ (k = 1,. . . ,p). [The measurability 
of Q, follows from lemma 3 of Jennrich (1969).] By the strong law of large 
numbers, jik converges a.s. to the k th row of J, and 

(k,I,m=l ,. . .,p). Hence (4, - e’)‘c,vk + 0 as. and 

m(& -eO) = - DN~ & ,c q(z,,eo) 
I 1 1 

for N sufficiently large a.s. where D, “2 J. By the central limit theorem, 

Hence: 

fl(8, - 6’) 2 N(O, J-'A J'-l). 

Applying this result to our multivariate probit estimator gives: 
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where J=diag{ J1,..., JM} is a block-diagonal matrix with: 
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J,n=E[ {(F’)2/[F(l- F)l}&] 
(F and its derivative F’ are evaluated at rrt’xi); and 

A = E[ H@x,x;], 

where the m, n element of the A4 x M matrix His h,, = emen with 

e, = 
Ylm-F F, 

F(l- F) 
(m=l ,...,W 

(F and F’ are evaluated at r,“‘x,). We obtain a consistent estimator (d) of 
J- ‘A J- ’ by replacing expectations by sample means and using 8 in place of rr”. 
Then we can apply the minimum distance theory of Section 4.2 to impose 
restrictions on 1~. 

5. Empirical applications 

5.1. Linear models: Union wage effects 

We shall present an empirical example that illustrates some of the preceding 
results.42 The data come from the panel of Young Men in the National Longitu- 
dinal Survey (Pames). The sample consists of 1454 young men who were not 
enrolled in school in 1969, 1970, or 1971, and who had complete data on the 
variables listed in Table 5.1. Table 5.2(a) presents an unrestricted least squares 
regression of the logarithm of wage in 1969 on the union, SMSA, and region 
variables for all three years. The regression also includes a constant, schooling, 
experience, experience squared, and race. This regression is repeated using the 
1970 wage and the 1971 wage. 

In Section 2 we discussed the implications of a random intercept (c). If the 
leads and lags are due just to c, then the submatrices of II corresponding to the 
union, SMSA, or region coefficients should have the form PI + IA’. Consider, for 
example, the 3 x 3 submatrix of union coefficients- the off-diagonal elements in 
each column should be equal to each other. So we compare 0.048 to 0.046, 0.042 
to 0.041, and -0.009 to 0.010; not bad. 

“This application is taken from Chamberlain (1982a). 
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Table 5.1 
Characteristics of National Longitudinal Survey Young Men, 
not enrolled in school in 1969, 1970, 1971: Means and 
standard deviations, N = 1454. 

Variable Mean Standard deviation 

LWI 5.64 
LW2 5.74 
LW3 5.82 
Ul 0.336 
112 0.362 
113 0.364 
UI U? 0.270 
Ul u3 0.262 
U?U3 0.303 
Ul U? u3 0.243 
SMSAl 0.697 
SMSAZ 0.627 
SMSA3 0.622 
RNSI 0.409 
RNS? 0.404 
RNS3 0.410 
S 11.7 
EXP69 5.11 
FXP69* 39.8 
RACE 0.264 

0.423 
0.426 
0.437 

2.64 
3.71 

46.6 
- 

Notes: 
L WI, L W2, L W3 -logarithm of hourly earnings (in cents) on the 
current or last job in 1969,1970,1971; LIZ, LIZ, U3-I if wages on 
current or last job set by collective bargaining, 0 if not, in 1969, 
1970.1971; SMSAI, SMSAZ, SMSA3 -1 if respondent in SMSA, 
0 if not, in 1969, 1970, 1971; RNSI, RNSZ, RNS3-1 if respon- 
dent in South, 0 if not, in 1%9,1970,1971; S-years of schooling 
completed; EXP69-(age in 1969-S-6); RACE-1 if respon- 
dent black, 0 if not. 

In Table 5.2(b) we add a complete set of union interactions, so that, for the 
union variables at least, we have a general regression function. Now the submatrix 
of union coefficients is 3 x7. If it equals (/313, O)+ IA’, then in the first three 
columns, the off-diagonal elements within a column should be equal; in the last 
four columns, all elements within a column should be equal. 

I first imposed the restrictions on the SMSA and region coefficients, using the 
minimum distance estimator. D is estimated using the formula in (4.2), and 
A, = 6-l. The minimum distance statistic (Proposition 3) is 6.82, which is not a 
surprising value from a x2(10) distribution. If we impose the restrictions on the 
union coefficients as well, then the 21 coefficients in Table 5.2(b) are replaced by 
8: one j3 and seven h’s. This gives an increase in the minimum distance statistic 
(Proposition 3’) of 19.36-6.82 =12.54, which is not a surprising value from a 
x2(13) distribution. So there is no evidence here against the hypothesis that all the 
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union coverage in the wage change equations. The estimates (standard errors) are 
0.097 (0.019) and -0.119 (0.022). The standard error on the sum of the coeffi- 
cients is 0.024, so again there is no evidence against the simple model with 

lXY,lx,, x2, x3, c) =Bx, + c.43 

Table 5.3(a) exhibits the estimates that result from imposing the restrictions 
using the optimal minimum distance estimator.44 We also give the conventional 
generalized least squares estimates. They are minimum distance estimates in 
which the weighting matrix (AN) is the inverse of 

We give the conventional standard errors based on (F ‘& ‘F)- ’ and the standard 
errors calculated according to Proposition 2, which do not require an assumption 
of homoskedastic linear regression. These standard errors are larger than the 
conventional ones, by about 30%. The estimated gain in efficiency from using the 
appropriate metric is not very large; the standard errors calculated according to 
Proposition 2 are about 10% larger when we use conventional GLS instead of the 
optimum minimum distance estimator. 

Table 5.3(a) also presents the estimated h’s. Consider, for example, an individ- 
ual who was covered by collective bargaining in 1969. The linear predictor of c 
increases by 0.089 if he is also covered in 1970, and it increases by an additional 
0.036 if he is covered in all three years. The predicted c for someone who is 
always covered is higher by 0.102 than for someone who is never covered. 

Table 5.3(b) presents estimates under the constraint that A = 0. The increment 
in the distance statistic is 89.08 - 19.36 = 69.72, which is a surprisingly large value 
to come from a x2(13) distribution. If we constrain only the union h’s to be zero, 
then the increment is 57.06 - 19.36 = 37.7, which is surprisingly large coming 
from a x2(7) distribution. So there is strong evidence for heterogeneity bias. 

The union coefficient declines from 0.157 to 0.107 when we relax the A = 0 
restriction. The least squares estimates for the separate cross sections, with no 

43Using May-May CPS matches for 1977-1978, Mellow (1981) reports coefficients (standard 
errors) of 0.087 (0.018) and -0.069 (0.020) for entering and leaving union membership in a wage 
change regression. The sample consists of 6602 males employed as nonagricultural wage and salary 
workers in both years. He also reports results for 2177 males and females whose age was I 25. Here 
the coefficients on entering and leaving union membership are quite different: 0.198 (0.031) and 
- 0.035 (0.041); it would be useful to reconcile these numbers with our results for young men. Also see 
Stafford and Duncan (1980). 

“We did not find much evidence for nonstationarity in the slope coefficients. If we allow the union 
B to vary over the three years, we get 0.105,0.103,0.114. The distance statistic declines to 18.51, giving 
19.36 - 18.51= 0.85; this is not a surprising value from a x2(2) distribution. If we also free up /3 for 
SMSA and RN& then the decline in the distance statistic is 18.51- 13.44 = 5.07, which is not a 
surprising value from a x2(4) distribution. 
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Table 5.3 
Restricted estimates. 

(a) 

Coefficients (and standard errors) of: 

I/ SMSA RNS 

8: 0.107 0.056 - 0.082 

/%,s: 
(0.016) (0.020) (0.045) 
0.121 0.050 - 0.085 

(0.013) (0.017) (0.040) 
(0.018) (0.021) (0.052) 

1/l u2 u3 Ul u2 111 u3 c/IL/3 Ul u3 u3 

1: -0023 - 0.067 - 0.082 0.156 0.152 0.195 - 0.229 
(0.030) (0.040) (0.037) (0.057) (0.062) (0.059) (0.085) 

SMSAl SMSAZ SMSA3 RNSI RNS2 RNS3 

0.086 - 0.008 0.032 0.100 - 0.021 - 0.128 
(0.025) (0.046) (0.046) (0.072) (0.077) (0.068) 

x2(23) = 19.36 

(b) Restrict A = 0 

Coetbcients (and standard errors) of: 

U SMSA RNS 

/3: 0.157 0.120 -0.150 
(0.012) (0.013) (0.016) 

x2(36) = 89.08 

Notes: 

E*( Y 1x1 = rlx = rr,x, + ll*x*; x;= (Ul, u2. u3, UlU2, Ul u3, wlJ3. Ul UIU3, 

SMSAl, SMSA2, SMSA3, RNSl, RNSZ, RNS3); x; = (1, S, EXP69. ExP69’, 
RACE). IIt = (&fs, 0, &MsA13, /?RNS13)+ IA’; II, is unrestricted. The restrictions are 
expressed as ‘II = F6, where 8 is unrestricted. b and x are minimum distance estimates 
with Ai1 = 0 in (4.2); floLs and hors are minimum distance estimates with A,; ’ = fis 

in (5.1) (&,s is not shown in the table). The first standard error for &,, is the 
conventional one based on (F’& ‘F) ‘; the second standard error for &,, is based on 
(F’dd; ‘F)-‘F’fi; ‘832; ‘F(F’fi;‘F) ~’ (Proposition 2). The xz statistics are computed 
from N[ir - Fb]‘b’[ri - F&l (Proposition 3). 
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leads or lags, give union coefficients of 0.195, 0.189, and 0.191 in 1969, 1970, and 
1971.45 So the decline in the union coefficient, when we allow for heterogeneity 
bias, is 32% or 44% depending on which biased estimate (0.16 or 0.19) one uses. 
The SMSA and region coefficients also decline in absolute value. The least 
squares estimates for the separate cross sections give an average SMSA coefficient 
of 0.147 and an average region coefficient of - 0.131. So the decline in the SMSA 
coefficient is either 53% or 62% and the decline in absolute value of the region 
coefficient is either 45% or 37%. 

5.2. Nonlinear models: Labor force participation 

We shall illustrate some of the results in Section 3. The sample consists of 924 
married women in the Michigan Panel Study of Income Dynamics. The sample 
selection criteria and the means and standard deviations of the variables are in 
Table 5.4. Participation status is measured by the question: “Did do any 
work for money last year?’ We shall model participation in 1968,1970, 1972, and 
1974. 

In terms of the model described in Section 3.1, the wage predictors are 
schooling, experience, and experience squared, where experience is measured as 
age minus schooling minus six; the tastes for nonmarket time are predicted by 
these variables and by children. The specification for children is a conventional 
one that uses the number of children of age less than six (YK) and the total 
number of children in the family unit ( K).46 Variables that affect only the lifetime 
budget constraint in this certainty model are captured by c. In particular, 
nonlabor income and the husband’s wage are assumed to affect the wife’s 
participation only through the lifetime budget constraint. The individual effect (c) 
will also capture unobserved permanent components in wages or in tastes for 
nonmarket time. 

Table 5.5 presents maximum likelihood (ML) estimates of cross-section probit 
specifications for each of the four years. Table 5.6 presents unrestricted ML 
estimates for all lags and leads in YK and K. If the residuals (u,!) in the latent 

45U~ing the NLS Young Men in 1969 (N = 1362), Griliches (1976) reports a union membership 
coefficient of 0.203. Using the NLS Young Men in a pooled regression for 1966-1971 and 1973 
(N = 470). Brown (1980) reports a coefficient of 0.130 on a variable measuring the probability of 
union coverage. (The union coverage question was asked only in 1969, 1970, and 1971; so this variable 
is imputed for the other four years.) The coefficient declines to ,081 when individual intercepts are 
included in the regression. His regressions also include a large number of occupation and industry 
specific job characteristics. 

46Some of the work on participation and fertility is in Mincer (1963) Willis (1973). Gronau (1973, 
1976, 1977) Hall (1973). Ben-Porath (1973), Becker and Lewis (1973). Mincer and Polachek (1974). 
Heckman (1974, 1980), Heckman and Willis (1977), Cam and Dooley (1976), Schultz (1980). Hanoch 
(1980). and Rosenzweig and Wolpin (1980). 
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variable model (3.1) have constant variance, then al = . . . = a4 in (3.2), and the 
submatrices of II corresponding to YK and K should have the form PI + IA’. 
There may be some indication of this pattern in Table 5.6, but it is much weaker 
than in the wage regressions in Table 5.2. 

We allow for unequal variances and provide formal tests by using the minimum 
distance estimator developed in Section 4.5. In Table 5.7(a) we impose the 
restrictions that 

The minimum distance statistic is 53.8, which is a very surprising value coming 
from a x2(19) distribution. So the latent variable c does not appear to provide an 

Table 5.4 
Characteristics of Michigan Panel Study of Income 
Dynamics married women: Means and standard devia- 
tions, N = 924. 

Variable Mean 

LFPI 0.499 
LFP? 0.530 
LFP3 0.529 
LFP4 0.566 

YKI 0.969 
YK2 0.164 
YK3 0.551 
YK4 0.363 

Kl 2.38 
K2 2.30 
K3 2.11 
K4 1.84 

s 12.1 
EXP68 17.2 
EXP682 368. 

Standard deviation 

- 

1.200 
1.069 
0.895 
0.685 

1.69 
1.64 
1.61 
1.52 

2.1 
8.5 

301. 

Notes: 
LFPZ, , LFP4 -1 if answered “yes” to “Did 
work for money last year?“, 0 otherwise, referring to 1968, 
1970, 1972, 1974; YKI, , YK4 -number of children of 
age less than six in 1968, 1970, 1972, 1974; 
Kl, , K4 -number of children of age less than eighteen 
living in the family unit in 1968,1970,1972,1974; S-years 
of schooling completed; EXP6d-(age in 1968 - S - 6). 
The sample selection criteria required that the women be 
married to the same spouse from 1968 to 1976; not part of 
the low income subsample; between 20 and 50 years old in 
1968; white; out of school from 1968 to 1976; not disabled. 
We required complete data on the variables in the table, 
and that there be no inconsistency between reported eam- 
ings and the answer to the participation question. 
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Table 5.5 
ML probit cross-section estimates 

Dependent 
variable YKI YK? 

Coefficients (and standard errors) of: 

YK3 YK4 KI KZ K3 K4 

LFPI 

LFP2 

LFP3 

LFP4 

-0.246 - - 

(0.046) 
- -0.293 - 

(0.055) 
- - -0.342 - 

(0.067) 
- - - 0.366 

(0.081) 

-0.063 - - 
(0.031) 

- -0.075 - 
(0.031) 

- -0.077 - 
(0.032) 

- - - 0.069 
(0.034) 

Notes: 
Separate ML estimates each year. All specifications include (1, S,EXP68,EXP682). 

adequate interpretation of the unrestricted leads and lags. It may be that the 
distributed lag relationship between current participation and previous births is 
more general than the one implied by summing over the previous six years (YK) 
and over the previous eighteen years (K). It may be fruitful to explore this in 
more detail in future work. Perhaps strict exogeneity conditional on c will hold 
when we use a more general specification for lagged births. But we must keep in 
mind that this question is intrinsically tied to the functional form restrictions-we 
saw in Section 3.3 that there always exist specifications in which y, is independent 
of x 1, . . . , xT conditional on c. 

Table 5.6 
Unrestricted ML probit estimates. 

Dependent 
variable YKI YK2 

Coefficients (and standard errors) of: 

YK3 YK4 KI K2 K3 K4 

LFPl 

LFP2 

LFP3 

LFP4 

- 0.205 
(0.081) 

- 0.047 
(0.079) 

- 0.254 
(0.080) 

-0.195 
(0.079) 

-0.017 
(0.119) 

- 0.238 
(0.117) 
0.214 

(0.116) 
0.252 

(0.118) 

-0.160 
(0.141) 

- 0.047 
(0.140) 

-0.190 
(0.139) 

-0.211 
(0.139) 

0.420 
(0.144) 
0.093 

(0.142) 
-0.209 

(0.141) 
- 0.282 

(0.138) 

0.176 
(0.076) 
0.320 

(0.077) 
0.204 

(0.077) 
0.020 

(0.075) 

- 0.142 
(0.100) 

- 0.278 
(0.102) 

- 0.210 
(0.102) 
0.083 

(0.100) 

- 0.196 
(0.110) 

- 0.250 
(0.110) 

- 0.045 
(0.112) 

-0.181 
(0.110) 

0.063 
(0.090) 
0.177 

(0.090) 
0.030 

(0.090) 
0.058 

(0.090) 

Notes: 
Separate ML estimates each year. All specifications include (1, S, EXP68, EXP68*). 



Table 5.7 
Restricted estimates. 

(a) 

Ccdicienrs (and standard errors) of: 

YK K 
d PO.121 - 0.058 

10.046) 10.029) 

YKI YK? YK3 YK4 KI K? K3 K4 

a,X -0.042 0.038 - 0.050 0.087 0.194 -0118 0.146 0.090 
(0.041) (0.060) (0.070) (0.077) (0.056) (0.062) (0 073) (0.056) 

a 1.585 1 758 1.279 1.0 
(0.392) (0.375) (0.231) (-) 

x*(19) = 53.8 

(b) Restrict X = 0 

YK K 

%S 0.273 - 0.073 
(0.065) (0.023) 

4 4 4 84 
a 0.821 0 930 0.920 1.0 

(0.198) (0.205) (0.191) (- ) 

~‘(27) = 78.4 

(c)Restricta,=l(r=l.. _.4) 

Coefficients (and standard errorsl of: 

YK K 

B -0.193 - 0.070 
(0.043) (0.031) 

YKI YK? YK3 YK4 KI K? K.1 K4 

x - 0.077 0.082 - 0.098 0.102 0.203 -010x -0.157 0 072 
(0.062) (0.082) (0.102) (0.110) (0.063) (0.0X3) (0 09x1 (0.0X1) 

x’(22) = 61.6 

YKI 

(d) Restrict (I, = 1; 8, unrestricted (I = 1.. .4) 

Coefficients (and standard errors) of: 
YKZ YK3 YK4 KI K_’ K3 K4 

B - 0.107 - 0.216 -0.198 -0.277 -0.107 - 0.047 - 0.046 - 0.017 
(0.054) (0.059) (0.067) (0.086) (0.040) (0.035) (0.039) (0.043) 

YKI YKT YK3 YK4 KI K2 K3 K4 

)r -0.111 0.085 -0.102 0.126 0.213 -0.113 -0.155 0 052 
(0.063) (0.083) (0.102) (0.111) (0.064) (0.083) (0.099) (0 082) 

x2(16) = 52.7 

Noles: 
I7, = diag( al,. ,cQ}[/?,.~~~ + NY;,, /lK14 + NK]; I72 is unrestricted. In Table 5.7(d) 
/SYKf4 and BK14 are replaced by diagonal matrices with no restrictions on the 
diagonal elements. All restrictions are imposed by applying the minimum distance 
procedure to the unrestricted estimates of n, in Table 5.6. The asymptotic covariance 
matrix of h, is obtained as in Section 4.5. aq is normalized to equal one. 
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If we do impose the restrictions in Table 5.7(a), then there is strong evidence 
that h # 0. Constraining A = 0 in Table 5.7(b) gives an increase in the distance 
statistic of 78.4- 53.8 = 24.6, which is surprisingly large to come from a x2(8) 
distribution. 

In Table 5.7(c) we constrain all of the residual variances to be equal ( (Y[ = 1). 
An alternative interpretation of the time varying coefficients is provided in Table 
5.7(d), where p, and pK vary freely over time and (Y( = 1. In principle, we could 
also allow the (r, to vary freely, since they can be identified from changes over 
time in the coefficients of c. In fact that model gives very imprecise results and it 
is difficult to ensure numerical accuracy. 

We shall interpret the coefficients on YK and K by following the procedure in 
(3.4). Table 5.8 presents estimates of the expected change in the participation 
probability when we assign an additional young child to a randomly chosen 
family, so that YK and K increase by one. We compute this measure for the 
models in Tables 5.7(a), 5.7(c) and 5.7(d). The average change in the participation 
probability is -0.096. We can get an indication of omitted variable bias by 
comparing these estimates with the ones based on Table 5.7(b), where h is 
constrained to be zero. Now the average change in the participation probability is 
-0.122, so that the decline in absolute value when we control for c is 21%. An 
alternative comparison can be based on the cross-section estimates, with no leads 
or lags, in Table 5.5. Now the average change in the participation probability is 
- 0.144, giving an omitted variable bias of 33%. 

Next we shall consider estimates from the logit framework of Section 3.2. Table 
5.9 presents (standard) maximum likelihood estimates of cross-section logit 
specifications for each of the four years. We can use the cross-section probit 
results in Table 5.5 to construct estimates of the expected change in the log odds 
of participation when we add a young child to a randomly chosen family. Doing 
this in each of the four years gives - 0.502, - 0.598, - 0.683, and - 0.703. With 
the logit estimates, we simply add together the coefficients on YK and K in Table 
5.9; this gives - 0.507, - 0.612, - 0.691, and - 0.729. The average over the four 
years is -0.621 for probit and -0.635 for logit. So at this point there is little 
difference between the two functional forms. 

Now allow for the latent variable (c). Table 5.10 presents the conditional 
maximum likelihood estimates for the fixed effects logit model. The striking result 
here is that, unlike the probit case, allowing for c leads to an increase in the 
absolute value of the children coefficients. If we constrain /3rK and pK to be 
constant over time (Table 5.10(a)), the estimated change in the log odds of 
participation when we add an additional young child is - 0.909. If we allow pyK 
and & to vary freely over time (Table 5.10(b)), the average of the estimated 
changes is - 0.879. So the absolute value of the estimates increases by about 40% 
when we control for c using the logit framework. The estimation method is having 
a first order effect on the results. 
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Table 5.9 
ML logit cross-sectionestimates. 

Dependent 
Coefficients (and standard errors) of: 

variable YKI YK2 YK3 YK4 Kl K2 K3 K4 

LFPI -0.404 - -0.103 - - - 
(0.077) (0.051) 

LFP2 - -0.494 - -0.118 - - 
(0.095) (0.035) 

LFP3 -0.568 - -0.123 - 
(0.114) (0.051) 

LFP4 -0.617 - -0.112 
(0.138) (0.055) 

Notes: 
Separate ML estimates each year. All specifications include (1, S, EXP68, EXP682). 

We have seen that the restrictions on the probit I7 matrix, which underlie our 
estimate of /I, appear to be false. An analogous test in the logit framework is 
based on (3.10). We use conditional ML to estimate a model that includes 
YK;D,, K;D,(s=l,..., 4; t = 2,3,4), where D, is a dummy variable that is one in 
period I and zero otherwise. It is not restrictive TO exclude YK;D, and K; D,, 
since they can be absorbed in c. We include also D,, S-D,, EXP68.D,, and 
EXP68** D, (t = 2,3,4). Then comparing the maximized conditional likelihoods 

Table 5.10 
Conditional ML estimates of the fixed effects logit model. 

(a) 

Coefficients (and standard errors) of: 

YK K 

8 -0.573 - 0.336 
(0.115) (0.120) 

(b) 8, unrestricted (t = 1,. ,4) 

Coefficients (and standard errors) of: 

YKI YK2 YK3 YK4 KI K.? K3 K4 

fi -0.336 -0.679 -0.780 -0.967 -0.315 -0.178 -0.141 -0.120 
(0.144) (0.172) (0.205) (0.242) (0.135) (0.145) (0.155) (0.165) 

Notes: 
A conditional likelihood ratio test of & = . = & gives x2(6) = 8.7. The specifications in 
Tables IO(a) and 10(b) include dummy variables for 1970, 1972, 1974 (0,. I = 2,3,4) and 
the interactions S.O,, EXP&i.D,, EXP682.D, (t = 2,3,4). (Due to the presence of the 
fixed effect c,, it is not restrictive to exclude D,, S, EXP68, EXP682, S.D,, EXP68. D,, 
EXP682 D, .) 
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for this specification and the specification in Table 5.10(b) gives a conditional 
likelihood ratio statistic of 53.9, which is a very surprising value to come from a 
x2(16) distribution. So the restrictions underlying our logit estimates of j? also 
appear to be false. It may be that the false restrictions simply imply different 
biases in the probit and logit specifications. 

6. Conclusion 

Our discussion has focused on models that are static conditional on a latent 
variable. The panel aspect of the data has primarily been used to control for the 
latent variable. Much work needs to be done on models that incorporate uncer- 
tainty and interesting dynamics. Exploiting the martingale implications of time- 
additive utility seems fruitful here, as in Hall (1978) and Hansen and Singleton 
(1982). There is, however, a potentially important distinction between time 
averages and cross-section averages. A time average of forecast errors over T 
periods should converge to zero as T + co. But an average of forecast errors 
across N individuals surely need not converge to zero as N + cc ; there may be 
common components in those errors, due to economy-wide innovations. The same 
point applies when we consider covariances of forecast errors with variables that 
are in the agents’ information sets. If those conditioning variables are discrete, we 
can think of averaging over subsets of the forecast errors; as T -+ 00, these 
averages should converge to zero, but not necessarily as N -+ 00. 

As for controlling for latent variables, I think that future work will have to 
address the lack of identification that we have uncovered. It is not restrictive to 
assert that ( y,, . . . ,yT) and (xi,. . . , xT) are independent conditional on some 
latent variable c. 

Appendix 

Let+=(xj,y;),i=l,..., N,wherex:=(x;, ,..., XiK)andy,‘=(y,t ,..., YrM). Write 
the m th structural equation as: 

Yirn = ai7zim + ‘tm (m =l,...,M), 

where the components of zi, are the variables in y, and X, that appear in the m th 
equation with unknown coefficients. Let S,, be the following block-diagonal 
matrix: 



1312 

and 

G. Chamberlain 

Let @=(uz ,..., $,),whereu~,=y,, - a,$,,,, and 6: is the true value of 6,; let 

@:-, = E(S;,). Let S’= (&;,...,a;) be s xl and set 

Proposition 6 

Assume that (1) q is i.i.d. according to some distribution with finite fourth 

mtrflents; (2) E[x,(y,, - 6,fzl,)] = 0 (m=l,...,M); (3) rank (!Pz:,)=s; (4) 

D + q as N + cc, where 9 is a positive-definite matrix. Then a(8 - 

So) E N(O, A), where 

Proof 

a.s. 
By the strong law of large numbers, S,, -+ @::,; @zsxYI-l@~X is an s X s positive- 

definite matrix since rank = s. So we obtain distribution 
by considering 

Note that $8~; is i.i.d. with E(u~@x,) = 0, V(uy@x,) = E(u$~@‘x,x;). Then 

applying the central limit theorem gives fi(8 - So) 5 N(O, A). Q.E.D. 

This result includes as special cases a number of the commonly used estimators. 

If z,, =x, (m =l,..., M) and D = then is the least squares estimator and A 
reduces to the formula for P given in (4.1). If f = E(u@p)@ E(x,x;), then A is 
the asymptotic covariance matrix for the three-stage least squares estimator. If 
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q = E( u$$@x,x;), then A is the asymptotic covariance matrix for the gener- 
alized three-stage least squares estimator (4.3). 

Consider applying the generalized three-stage least squares estimator to the first 
J equations (J < M). If E(z,~x;) is nonsingular for j = J+ l,...,M, then this 
estimator for (a;, . . . ,a;) has the same asymptotic covariance matrix as the 
estimator obtained by applying the generalized three-stage least squares estimator 
to the full set of A4 equations. This follows from examining the partitioned inverse 
of (4.3). 
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1. Introduction 

1.1. Background 

Although it may be intuitively clear what a “latent variable” is, it is appropriate 
at the very outset of this discussion to make sure we all agree on a definition. 
Indeed, judging by a recent paper by a noted psychometrician [Bentler (1982)], 
the definition may not be so obvious. 

The essential characteristic of a latent variable, according to Bentler, is revealed 
by the fact that the system of linear structural equations in which it appears 
cannot be manipulated so as to express the variable as a function of measured 
variables only. This definition has no particular implication for the ultimate 
identifiability of the parameters of the structural model itself. However, it does 
imply that for a linear structural equation system to be called a “latent variable 
model” there must be at least one more independent variable than the number of 
measured variables. Usage of the term “independent” variable as contrasted with 
“exogenous” variable, the more common phrase in econometrics, includes mea- 
surement errors and the equation residuals themselves. Bentler’s more general 
definition covers the case where the covariance matrices of the independent and 
measured variables are singular. 

From this definition, while the residual in an otherwise classical single-equation 
linear regression model is not a measured variable it is also not a latent variable 
because it can be expressed (in the population) as a linear combination of 
measured variables. There are, therefore, three sorts of variables extant: mea- 
sured, unmeasured and latent. The distinction between an unmeasured variable 
and a latent one seems not to be very important except in the case of the so-called 
functional errors-in-variables model. For otherwise, in the structural model, the 
equation disturbance, observation errors, and truly exogenous but unmeasured 
variables share a similar interpretation and treatment in the identification and 
estimation of such models. In the functional model, the “true” values of exoge- 
nous variables are fixed variates and therefore are best thought of as nuisance 
parameters that may have to be estimated en route to getting consistent estimates 
of the primary structural parameters of interest. 

Since 1970 there has been a resurgence of interest in econometrics in the topic 
of errors-in-variables models or, as we shall hereinafter refer to them, models 
involving latent variables. That interest in such models had to be restimulated at 
all may seem surprising, since there can be no doubt that economic quantities 
frequently are measured with error and, moreover, that many applications depend 
on the use of observable proxies for otherwise unobservable conceptual variables. 
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Yet even a cursory reading of recent econometrics texts will show that the 
historical emphasis in our discipline is placed on models without measurement 
error in the variables and instead with stochastic “shocks” in the equations. TO 
the extent that the topic is treated, one normally will find a sentence alluding to 
the result that for a classical single-equation regression model, measurement error 
in the dependent variable, y, causes no particular problem because it can be 
subsumed within the equation’s disturbance term.’ And, when it comes to the 
matter of measurement errors in independent variables, the reader will usually be 
convinced of the futility of consistent parameter estimation in such instances 
unless repeated observations on y are available at each data point or strong a 
priori information can be employed. And the presentation usually ends just about 
there. We are left with the impression that the errors-in-variables “problem” is 
bad enough in the classical regression model; surely it must be worse in more 
complicated models. 

But in fact this is not the case. For example, in a simultaneous equations setting 
one may employ overidentifying restrictions that appear in the system in order to 
identify observation error variances and hence to obtain consistent parameter 
estimates. (Not always, to be sure, but at least sometimes.) This was recognized as 
long ago as 1947 in an unpublished paper by Anderson and Hurwicz, referenced 
(with an example) by Chemoff and Rubin (1953) in one of the early Cowles 
Commission volumes. Moreover, dynamics in an equation can also be helpful in 
parameter identification, ceteris paribus. Finally, restrictions on a model’s covari- 
ante structure, which are commonplace in sociometric and psychometric model- 
ling, may also serve to aid identification. [See, for example, Bentler and Weeks 
(1980).] These are the three main themes of research with which we will be 
concerned throughout this essay. After brief expositions in this Introduction, each 
topic is treated in depth in a subsequent section. 

1.2. Our single-equation heritage (Sections 2 and 3) 

There is no reason to spend time and space at this point recreating the discussion 
of econometrics texts on the subject of errors of measurement in the independent 
variables of an otherwise conventional single-equation regression model. But the 
setting does provide a useful jumping-off-place for much of what follows. 

Let each observation ( y,, xi) in a random sample be generated by the stochastic 
relationships: 

_Y, = Vi + u 1) 0.1) 
xi = E, + u, 3 0 4 
17,=cr+P&+q, i=l ,...n. 0.3) 

‘That is to say, the presence of measurement error iny does not alter the properties of least squares 
estimates of regression coefficients. But the variance of the measurement error remains hopelessly 
entangled with that of the disturbance term. 



Ch. 23: Latent Variable Models in Econometrics 1325 

Equation (1.3) is the heart of the model, and we shall assume E( VilEi) = (Y + &, 
so that I$&,) = 0 and E(&e,) = 0. Also, we denote I!($) = ueE. Equations (1.1) and 
(1.2) involve the measurement errors, and their properties are taken to be 
E(u,) = E(ui) = 0, E(u;) = a,,, E(u;) = a”” and E(u,ui) = 0. Furthermore, we will 
assume that the measurement errors are each uncorrelated with E, and with the 
latent variables vi and 5,. Inserting the expressions ti = xi - ui and T), = y, - ui 
into (1.3), we get: 

y,=a+px,+w;, 0.4) 

where w, = ei + ui - /3uj. Now since E(uilxi) # 0, we readily conclude that least 
squares methods will yield biased estimates of (Y and /3. 

By assuming all random variables are normally distributed we eliminate any 
concern over estimation of the 5;‘s as “nuisance” parameters. This is the so-called 
structural latent variables model, as contrasted to the functional model, wherein 
the &‘s are assumed to be fixed variates (Section 2). Even so, under the normality 
assumption no consistent estimators of the primary.parameters of interest exist. 
This can easily be seen by writing out the so-called “covariance” equations that 
relate consistently estimable variances and covariances of the observables ( y, and 
x,) to the underlying parameters of the model. Under the assumption of joint 
normality, these equations exhaust the available information and so provide 
necessary and sufficient conditions for identification. They are obtained by 
“covarying” (1.4) with y, and x,, respectively. Doing so, we obtain: 

U = 
yx PU,, - I%>,, (1.5) 

U xx = a[6 + UCL,. 

Obviously, there are but three equations (involving three consistently estimable 
quantities, uYY, a,, and a,,) and five parameters to be estimated. Even if we agree 
to give up any hope of disentangling the influences of .si and ui (by defining, say, 
u2 = a_ + a,,) and recognize that the equation uXX = uEE + uoC, will always be used 
to identify art alone, we are still left with two equations in three unknowns (p, u2, 

and Q). 
The initial theme in the literature develops from this point. One suggestion to 

achieve identification in (1.5) is to assume we know something about a,,, re&ue 
to u2 or uuu relative to uXX. Suppose this a priori information is in the form 
h = ~,,/a*. Then we have a,, = Au2 and 

(1.5a) 



1326 

From this it follows that p is a solution to: 

p2xu,, - P( huv, - e,J- y,,X = 0, 

and that 

D. J. Aigner et (11. 

(1.6) 

lJ2=u YY - Pa,, . (1.7) 

Clearly this is but one of several possible forms that the prior information may 
take. In Section 3.2 we discuss various alternatives. A Bayesian treatment suggests 
itself as well (Section 3.11). 

In the absence of such information, a very practical question arises. It is 
whether, in the context of a classical regression model where one of the indepen- 
dent variables is measured with error, that variable should be discarded or not, a 
case of choosing between two second-best states of the world, where inconsistent 
parameter estimates are forthcoming either from the errors-in-variables problem 
or through specification bias. As is well known, in the absence of an errors-of- 
observation problem in any of the independent variables, discarding one or more 
of them from the model may, in the face of severe multicollinearity, be an 
appropriate strategy under a mean-square-error (MSE) criterion. False restric- 
tions imposed cause bias but reduce the variances on estimated coefficients 
(Section 3.6). 

1.3. Multiple equations (Section 4) 

Suppose that instead of having the type of information described previously to 
help identify the parameters of the simple model given by (l.l)-(1.3), there exists 
a z,, observable, with the properties that zi is correlated with xi but uncorrelated 
with w,. This is tantamount to saying there exists another equation relating z, to 
x,, for example, 

x,=yz,+8i, (1.8) 

with E(z,&)= 0, E(6,)= 0 and E(62)= uss. Treating (1.4) and (1.8) as our 
structure (multinormality is again assumed) and forming the covariance equa- 
tions, we get, in addition to (1.5): 

apz = P&Z 9 

U x.x = YUZ, + *,,, (1.9) 

u ZX = Yo;z. 

It is apparent that the parameters of (1.8) are identified through the last two of 
these equations. If, as before, we treat a,, + uuU as a single parameter, u2, then 
(1.5) and the first equation of (1.9) will suffice to identify p, u*, uL,“, and act. 

This simple example serves to illustrate how additional equations containing 
the same latent variable may serve to achieve identification. This “multiple 
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equations” approach, explored by Zellner (1970) and Goldberger (1972b), spawned 
the revival of latent variable models in the seventies. 

1.4. Simultaneous equations (Section 5) 

From our consideration of (1.4) and (1.8) together, we saw how the existence of 
an instrumental variable (equation) for an independent variable subject to mea- 
surement error could resolve the identification problem posed. This is equivalent 
to suggesting that an overidentifying restriction exists somewhere in the system of 
equations from which (1.4) is extracted that can be utilized to provide an 
instrument for a variable like xi. But it is not the case that overidentifying 
restrictions can be traded-off against measurement error variances without qualifi- 
cation. Indeed, the locations of exogenous variables measured with error and 
overidentifying restrictions appearing elsewhere in the equation system are cru- 
cial. To elaborate, consider the following equation system, which is dealt with in 
detail in Section 5.2: 

I$+ P12Yz = Y1151 + Err 

P21YI + Y2 = Y2252 + Y23& + -52 9 
(1.10) 

where [, ( j = 1,2,3) denote the latent exogenous variables in the system. Were the 
latent exogenous variables regarded as obseruable, the first equation is-condi- 
tioned on this supposition-overidentified (one overidentifying restriction) while 
the second equation is conditionally just-identified. Therefore, at most one 
measurement error variance can be identified. 

Consider first the specifications x1 = [r + ut, x2 = t2, x3 = t3, and let ull denote 
the variance of ut. The corresponding system of covariance equations turns out to 
be: 

-[ 

Yll(%,x, - 4 Yll%x,x* Yll~x,x, 

( Y22%2x1 + Y23%3x, > ( Y2Pxx,x, + YdJx,x* > (Y*2%*x, + Y*3%x,x, ) 1 0 0 0 = I I &&& (1.11) 

0 0 0 

which, under the assumption of multinormality we have been using throughout 
the development, is sufficient to examine the state of identification of all parame- 
ters. In this instance, there are six equations available to determine the six 
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unknowns, &, &,, Yllt Y221 Y23, and qI. It is clear that equations @ and @ in 
(1.11) can be used to solve for /Ii2 and yli, leaving @ to solve for ull. The 
remaining three equations can be solved for p2i, y22, ~23, SO in this case all 
parameters are identified. Were the observation error instead to have been 
associated with t2, we would find a different conclusion. Under that specification, 
pi2 and yll are overdetermined, whereas there are only three covariance equations 
available to solve for fi2t, y22, ~23, and u22. Hence, these latter four parameters [all 
of them associated with the second equation in (MO)] are not identified. 

1.5. The power of a dynamic specification (Section 6) 

Up to this point in our introduction we have said nothing about the existence of 
dynamics in any of the equations or equation systems of interest. Indeed, the 
results presented and discussed so far apply only to models depicting contempora- 
neous behavior. 

When dynamics are introduced into either the dependent or the independent 
variables in a linear model with measurement error, the results are usually 
beneficial. To illustrate, we will once again revert to a single-equation setting, one 
that parallels the development of (1.4). In particular, suppose that the sample at 
hand is a set of time-series observations and that (1.4) is instead: 

7, = P-$-l + E,, 

Yt = q, + u t =l,...,T, (1.12) 
f, 

with all the appropriate previous assumptions imposed, except that now we will 
also use IpI<l, E(u,)=E(u,_,)=O, E(u:)=E(uf_,)=u,,, and E(u,u,_i)=O. 
Then, analogous to (1.5) we have: 

(1.13) 

where yV,JP1 is our notation for the covariance between y, and y,_, and we have 
equated the variances of y, and yr_r by assumption. It is apparent that this 
variance identity has eliminated one parameter from consideration (a,,,,), and we 
are now faced with a system of two equations in only three unknowns. Unfor- 
tunately, we are not helped further by an agreement to let the effects of the 
equation disturbance term (F~) and the measurement error in the dependent 
variable (u,) remain joined. 

Fortunately, however, there is some additional information that can be utilized 
to resolve things: it lies in the covariances between current y, and lags beyond 
one period (y,_, for s 2 2). These covariances are of the form: 

U,,J_, = flu,, p--s+15 s L 2, (1.14) 
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so that any one of them taken in conjunction with (1.13) will suffice to solve for p, 
u ee, and a,,,.’ 

I. 6. Prologue 

Our orientation in this Chapter is primarily theoretical, and while that will be 
satisfactory for many readers, it may detract others from the realization that 
structural modelling with latent variables is not only appropriate from a concep- 
tual viewpoint in many applications, it also provides a means to enhance marginal 
model specifications by taking advantage of information that otherwise might be 
misused or totally ignored. 

Due to space restrictions, we have not attempted to discuss even the most 
notable applications of latent variable modelling in econometrics. And indeed 
there have been several quite interesting empirical studies since the early 1970’s. 
In chronological order of appearance, some of these are: Griliches and Mason 
(1972) Aigner (1974a), Chamberlain and Griliches (1975, 1977) Griliches (1974, 
1977) Chamberlain (1977a, 1977b, 1978), Attfield (1977) Kadane et al. (1977) 
Robinson and Ferrara (1977) Avery (1979), and Singleton (1980). Numerous 
others in psychology and sociology are not referenced here. 

In the following discussion we have attempted to highlight interesting areas for 
further research as well as to pay homage to the historical origins of the important 
lines of thought that have gotten us this far. Unfortunately, at several points in 
the development we have had to cut short the discussion because of space 
constraints. In these instances the reader is given direction and references in order 
to facilitate his/her own completion of the topic at hand. In particular we 
abbreviate our discussions of parameter identification in deference to Hsiao’s 
chapter on that subject in Volume I of this Handbook. 

2. Contrasts and similarities between structural and functional models 

In this section we analyze the relation between functional and structural models 
and compare the identification and estimation properties of them. For expository 
reasons we do not aim at the greatest generality possible. The comparison takes 
place within the context of the multiple linear regression model. Generalizations 
are considered in later sections. 

‘The existence of a set of solvable covariance equations should not be surprising. For, combining 
(1.12) to get the reduced form expression, y, = a+ PJJ,-~ +(E, + u,)-bu,_,, which is in the form of 
an autoregressive/moving-average (ARMA) model. 
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2.1. ML estimation in structural and functional models 

Consider the following multiple linear regression model with errors in variables: 

y, = t:r8 + E; 3 (2.1) 

x; = E‘, + u; , i=l ,...,n, (2.2) 

where &, xi, u,, and /3 are k-vectors, and _y, and ei are scalars. The &‘s are 
unobservable variables; instead xi is observed. u, is unobservable and we assume 
u - N(0, Q) for all i. ei is assumed to follow a N(0, a*) distribution. u, and E, are 
mutually independent and independent of 6,. 

In the functional model the above statements represent all the assumptions one 
has to make, except for the possible specification of prior knowledge with respect 
to the parameters /3, a* and S?. The elements of I, are considered to be unknown 
constants. For expository simplicity we assume that D is non-singular. The 
likelihood of the observable random variables y, and x, is then: 

L,aexp{-t[tr(X-Z)O’(X-Z)‘+e-*(y-~/3)’(y-Z~)]}, (2.3) 

where X and Z are n x k-matrices with ith rows x,’ and t,‘, respectively, and 

Y=(Y,,Yz,...~ y,)‘. The unknown parameters in (2.3) are /3, a, a* and the 
elements of Z. Since the order of Z . IS n x k, the number of unknown parameters 
increases with the number of observations. The parameters /3, a*, and G are 
usually referred to as structural parameters, whereas the elements of Z are called 
incidental parameters [Neyman and Scott (1948)]. The occurrence of incidental 
parameters poses some nasty problems, as we shall soon see. 

In the structural model one has to make an explicit assumption about the 
distribution of the vector of latent variables, t,. A common assumption is that 5, 
is normally distributed: [, - N(0, K), say. Consequently x, - N(0, A), where 
A = K + f2. We assume K, hence A, to be positive definite. Under these assump- 
tions we can write down the simultaneous likelihood of the random variables in 
y,, 6, and x,. This appears as: 

L, a exp - ftr( y, X, 5)S-’ 

where S is the variance-covariance matrix: 

i 

Y, 
S-E x, 

ci 

/3'Kj3 + u 2 /3'K f3'K 

(Y,&t:)= K/3 A K 

Kb K K 

(2.4) 

(2.5) 
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In order to show the relationship between the functional and the structural 
models it is instructive to elaborate upon (2.4). It can be verified by direct 
multiplication that: 

a-2 0 _-2p 

s-l= 0 0-l -Q-l . 1 (2.6) - u-“/3 - Q-1 9-l + K-l + a-2/3j?’ 
Inserting this result in (2.4) we obtain: 

+trZK-‘Z’]}, (2.7) 

which is proportional to L,.L,, where L, has been defined by (2.3) and L, is 
proportional to exp{ - 4 tr ZK -lZ’}. Obviously, L, is the marginal likelihood of 
4;. Thus the simultaneous likelihood L, is the product of the likelihood of the 
functional model and the marginal likelihood of the latent variables. This implies 
that the likelihood of the functional model, L,, is the likelihood of y, and x, 
conditional upon the latent variables <,. 

In the structural model estimation takes place by integrating out the latent 
variables. That is, one maximizes the marginal likelihood of y, and xi. This 
marginal likelihood, L,, is: 

L,aexp -+tr(y,X)Z’-’ cl 
1 i 1) 

, 

C being the (k + 1) X (k + 1) variance-covariance matrix of y, and x,. 
Using the fact that: 

z-l= y-l 

( 

-y-la’ 

I 
-u-la A-l+paa’ ’ 

(2.8) 

(2.9) 

where a = A -‘K/l and y = a2 + a’&# (2.8) can be written as: 

L,aexp{-+[y-‘(y-Xa)‘(y-Xa)+trXA-’Xl}. (2.10) 

So, the likelihood of the observable variables in the functional model is a 
conditional likelihood-conditional upon the incidental parameters, whereas the 
likelihood in the structural model is the marginal likelihood obtained by integrat- 
ing out the incidental parameters. Indeed, Learner (1978b, p. 229) suggests that 
the functional and structural models be called the “conditional” and “marginal” 
models, respectively. Although our demonstration of this relationship between the 
likelihood functions pertains to the linear regression model with measurement 
errors, its validity is not restricted to that case, neither is it dependent on the 
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various normality assumptions made, since parameters (in this case the incidental 
parameters) can always be interpreted as random variables on which the model in 
which they appear has been conditioned. These conclusions remain essentially the 
same if we allow for the possibility that some variables are measured without 
error. If there are no measurement errors, the distinction between the functional 
and structural interpretations boils down to the familiar distinction between fixed 
regressors (“conditional upon X”) and stochastic regressors [cf. Sampson (1974)]. 

To compare the functional and structural models a bit further it is of interest to 
look at the properties of ML estimators for both models, but for reasons of space 
we will not do that here. Suffice it to say that the structural model is underiden- 
tified. A formal analysis follows in Sections 2.2 and 2.3. As for the functional 
model, Solari (1969) was the first author to point out that the complete log-likeli- 
hood has no proper maximum.3 She also showed that the stationary point 
obtained from the first order conditions corresponds to a saddle point of the 
likelihood surface. Consequently, the conditions of Wald’s (1949) consistency 
proof are not fulfilled. The solution to the first order conditions is known to 
produce inconsistent estimators and the fact that the ML method breaks down in 
this case has been ascribed to the presence of the incidental parameters [e.g. 
Malinvaud (1970, p. 387), Neyman and Scott (1948)]. In a sense that explanation 
is correct. For example, Cramer’s proof of the consistency of ML [Cramer (1946, 
pp. 500 ff.)] does not explicitly use the fact that the first order conditions actually 
generate a maximum of the likelihood function. He does assume, however, that 
the number of unknown parameters remains fixed as the number of observations 
increases. 

Maximization of the likelihood in the presence of incidental parameters is not 
always impossible. If certain identifying restrictions are available, ML estimators 
can be obtained, but the resulting estimators still need not be consistent, as will 
be discussed further in Section 3.4. ML is not the only estimation method that 
breaks down in the functional model. In the next subsection we shall see that 
without additional identifying restrictions there does not exist a consistent 
estimator of the parameters in the functional model. 

2.2. Identification 

Since ML in the structural model appears to be perfectly straightforward, at least 
under the assumption of normality, identification does not involve any new 
conceptual difficulties. As before, if the observable random variables follow a 

‘See also Sprent (1970) for some further comments on Solari. A result similar to Solari’s had been 
obtained 13 years before by Anderson and Rubin (1956), who showed that the likelihood function of a 
factor analysis model with fixed factors does not have a maximum. 
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multivariate normal distribution all information about the unknown parameters is 
contained in the first and second moments of this distribution. 

Although the assumption of normality of the latent variables may simplify the 
analysis of identification by focusing on the moment equations, it is at the same 
time a very unfortunate assumption. Under normality the first and second-order 
moments equations exhaust all sample information. Under different distributional 
assumptions one may hope to extract additional information from higher order 
sample moments. Indeed, for the simple regression model (k = 1, & a scalar) 
Reierstal(l950) has shown that under normality of the measurement error ui and 
the equation error Ed, normality of & is the only assumption under which /3 is not 
identified. Although this result is available in many textbooks [e.g. Malinvaud 
(1970), Madansky (1976), Schmidt (1976)], a generalization to the multiple linear 
regression model with errors in variables was given only recently by Kapteyn and 
Wansbeek (1983).4 They show that the parameter vector B in the structural model 
(2.1)-(2.2) is identified if and only if there exists no linear combination of the 
elements of 6, which is normally distributed. 

That non-identifiability of /3 implies the existence of a normally distributed 
linear combination of [, has been proven independently by Aufm Kampe (1979). 
He also considers different concepts of non-normality of 6,. Rao (1966, p. 256) 
has proven a theorem implying that an element of /3 is unidentified if the 
corresponding latent variable is normally distributed. This is obviously a speciali- 
zation of the proposition. Finally, Willassen (1979) proves that if the elements of 
<, are independently distributed, a necessary condition for /I to be identified is 
that none of them is normally distributed. This is a special case of the proposition 
as well. 

The proposition rests on the assumed normality of E; and u,. If si and u, follow 
a different distribution, a normally distributed <, need not spoil identifiability. 
For the simple regression model, Reierserl (1950) showed that if & is normally 
distributed, /I is still identified if neither the distribution of u, nor the distribution 
of &i is divisible by a normal distribution.5 Since non-normal errors play a modest 
role in practice we shall not devote space to the generalization of his result to the 
multiple regression errors-in-variables model. Unless otherwise stated, we assume 
normality of the errors throughout. 

Obviously, the proposition implies that if the latent variables follow a k-variate 
normal distribution, /? is not identified. Nevertheless, non-normality is rarely 
assumed in practice, although a few instances will be dealt with in Section 3. In 
quite a few cases normality will be an attractive assumption (if only for reasons of 

4Part of the result was stated by Wolfowitz (1952). 
51f three random variables, u, w, and z, have characteristic functions q,(t), v,,,(r), and r+(f) 

satisfying q,(f) = cp,(f).cp,(t), we say that the distribution of u is divisible by the distribution of w 
and divisible by the distribution of z. 
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tradition) and even if in certain instances normality is implausible, alternative 
assumptions may lead to mathematically intractable models. Certainly for appli- 
cations the argument for tractability is most persuasive. 

Due to a result obtained by Deistler and Seifert (1978), identifiability of a 
parameter in the structural model is equivalent to the existence of a consistent 
estimator of that parameter (see in particular their Remark 7, p. 978). In the 
functional model there is no such equivalence. It appears that the functional 
model is identified, but there do not exist consistent estimators of the parameters 
P2, e2, or 52. Let us first look at the identification result. 

According to results obtained by Rothenberg (1971) and Bowden (1973) a 
vector of parameters is identified if the information matrix is non-singular. So, in 
order to check identification we only have to compute the information matrix 
defined as: 

where log L, is given by: 

logL,=-;logO2- 

- fo-‘( y - 

(2.11) 

glog]O( - ftr( X- E)QP1( X- E) 

Z/3)1( y-~/3)-~nklog27r, (2.12) 

and B is the [k2 + (n + l)k + l]-vector of structural and incidental parameters 
given by B = (/3’, u2, v’, t’)‘, where’ cp = vet G, 6 = vet Z. After some manipula- 
tion we find that: 

0 
n 
-op4 

2 

0 0 ;(Poo-l) 0 

a-“(ps) 0 0 (52-l + K2&3’) @I, 

(2.13) 

In general the matrix 9 is positive definite and hence both the structural and the 
incidental parameters are identified. But this result does not help us obtain 
reasonable estimates of the parameters since no consistent estimators exist. 

To see why this is true we use a result obtained by Wald (1948). In terms of the 
functional model his result is that the likelihood (2.3) admits a consistent estimate 
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of a parameter of the model (i.e. a2 or an element of /3 or 52) if and only if the 
marginal likelihood of y, and xi admits a consistent estimate of this parameter for 
any arbitrary choice of the distribution of &. To make sure that /3 can be 
consistently estimated, we have therefore to make sure that it is identified under 
normality of the incidental parameters (if no linear combination of the latent 
variables were normally distributed it would be identified according to the 
proposition). The same idea is exploited by Nussbaum (1977) to prove that in the 
functional model without additional restrictions no consistent estimator of 
the parameters exists. 

This result is of obvious practical importance since it implies that, under the 
assumption of normally distributed u, and E;, investigation of (consistent) estima- 
bility of parameters can be restricted to the structural model with normally 
distributed incidental parameters. If u, and E, are assumed to be distributed other 
than normally, the proposition does not apply and investigation of the existence 
of consistent estimators has to be done on a case-by-case basis. 

Some authors [e.g. Malinvaud (1970, p. 401n)] have suggested that in the 
functional model the relevant definition of identifiability of a parameter should be 
that there exists a consistent estimator of the parameter. We shall follow that 
suggestion from now on, observing that in the structural model the definition is 
equivalent to the usual definition (as employed in Reierssl’s proof). This conven- 
tion permits us to say that, under normality of u, and E,, identification of /3 in the 
structural model with normally distributed latent variables is equivalent to 
identification of j3 in the functional model. 

The establishment of the identifiability of the parameters in the functional 
model via the rank of the information matrix is a bit lengthy, although we shall 
use the information matrix again below, in Section 2.3. The identifiability of 
parameters in the functional model can be seen more directly by taking expecta- 
tions in (2.2) and (2.1). & is identifiable via & = Ex, and /3 via Ey, = &/3, as long 
as the columns of Z are linearly independent. Furthermore, a2 and D are 
identified by a2 = E( y - [$I)‘( y - [$) and D = E(xi -- &)(x, - 6;)‘. Although 
these moment equations establish identifiability, it is clear that the estimators 
suggested by the moment equations will be inconsistent. (For example, $2 will 
always be estimated as a zero-matrix.) 

2.3. Eficiency 

The investigation of efficiency properties of estimators in the structural model 
does not pose new problems beyond the ones encountered in econometric models 
where all variables of interest are observable. In particular ML estimators are, 
under the usual regularity conditions, consistent and asymptotically efficient [see, 
for example, Schmidt (1976, pp. 255256)]. 
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With respect to the functional model, Wolfowitz (1954) appears to have shown 
that in general there exists no estimator of the structural parameters which is 
efficient for each possible distribution of the incidental parameters.6 Thus, no 
unbiased estimator will attain the Cramer-Rao lower bound and no consistent 
estimator will attain the lower bound asymptotically. Nevertheless, it may be 
worthwhile to compute the asymptotic Cramer-Rao lower bound and check if an 
estimator comes close to it, asymptotically. For model (2.1)-(2.2) we already 
know that the information matrix is given by (2.13). The Cramer-Rao lower 
bound is given by the inverse of this matrix. The problem with V’ as a lower 
bound to the asymptotic variance-covariance matrix of an estimator is that its 
dimension grows with the number of observations. To obtain an asymptotic lower 
bound for the variance-covariance matrix of the estimators of the structural 
parameters we invert P and only consider the part of qk- l pertaining to 
6 = (B, u 2, cp’)‘. This part is easily seen to be: 

R,= 

(a2+/3’f2j3)(Ez--1 0 0 

0 
2a4 

0 n . (2.14) 

0 0 

R, is a lower bound to the variance of any unbiased estimator of 6. A lower 
bound to the asymptotic variance of any consistent estimator of 6 is obtained as 
R=lim n _ mnRn. Since no consistent estimator of the structural parameters exists 
without further identifying restrictions, R has to be adjusted in any practical 
application depending on the precise specification of the identifying restrictions. 
See Section 3.4 for further details. 

2.4. The ultra-structural relations 

As an integration of the simple functional and structural relations, Dolby (1976b) 
proposes the following model: 

qj = a + /3tij + Eij, (2.15) 

Xlj = tij + a,,, i=l ,***, n; i=l ,***, r, (2.16) 

where iIij - N(0, 0), .si, - N(0, r), and tij - IV&, cp). Dolby derives the likelihood 

6The result quoted here is stated briefly in Wolfowitz (1954), but no conditions or proof are given. 
We are not aware of a subsequent publication containing a full proof. 
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equations for this model as well as the information matrix. Since the case r = 1 
yields a model which is closely related to the functional model, the analysis in the 
previous section would suggest that in this case the inverse of the information 
matrix does not yield a consistent estimate of the asymptotic variance-covariance 
matrix, even if sufficient identifying assumptions are made. This is also pointed 
out by Patefield (1978). 

3. Single-equation models 

For this section the basic model is given by (2.1) and (2.2), although the basic 
assumptions will vary over the course of the discussion. We first discuss the 
structural model with non-normally distributed latent variables when no extra- 
neous information is available. Next we consider an example of a non-normal 
model with extraneous information. Since normal structural models and func- 
tional models have the same identification properties they are treated in one 
section, assuming that sufficient identifying restrictions are available. A variety of 
other topics comprise the remaining sub-sections, including non-linear models, 
prediction and aggregation, repeated observations, and Bayesian methods. 

3.1. Non-normality and identification: An example 

Let us specialize (2.1) and (2.2) to the following simple case: 

Y;=Pt,+&i, (3.1) 

xi=5;+ui, i=l ,.-., n, (3.2) 

where y, , .f, , .si, xi, and vi are scalar random variables with zero means; also, u,, q, 
and & are mutually independent. Denote moments by subscripts, e.g. uXXXX = 
E(xP). Assuming that ti is not normally distributed, not all information about its 
distribution is contained in its second moment. Thus, we can employ higher order 
moments, if such moments exist. Suppose [, is symmetrically distributed around 
zero and that its second and fourth moments exist. Instead of three moment 
equations in four unknowns, we now have eight equations in five unknowns (i.e. 
four plus the kurtosis of &). Ignoring the overidentification, one possible solution 
for p can easily be shown to be: 

(3.3) 
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One observes that the closer the distribution of li comes to a normal distribution, 
the closer uXXxX - 3c& (the kurtosis of the distribution of xi) is to zero. In that 
case the variance of the estimator defined by (3.3) may become so large as to 
make it useless. 

As an illustration of the results obtained in Section 2.2, the example shows how 
identification is achieved by non-normality. Two comments can be made. First, as 
already observed in Section 2.2, underidentification comes from the fact that both 
5; and ui are normally distributed. The denominator in (3.3) does not vanish if & is 
normally distributed but ui is not. Secondly, let us extend the example by adding a 
latent variable 5; so that (3.1) becomes: 

(3.4) 

The measured value of ci is ti, generated by zi = {, + wj, where w, is normally 
distributed and independent of u,, E;, &, {,; {, is assumed to be normally distrib- 
uted, with mean zero, independent of <,, ui, si. Applying the proposition of 
Kapteyn and Wansbeek (1983) (cf. Section 2.2) we realize that there is a linear 
combination of Ei and Ii, namely Ti itself, which is normally distributed. Thus, 
overidentification due to the non-normal distribution of E, does not help in 
identifying y, as one can easily check by writing down the moment equations. 

3.2. Estimation in non-normal structural models 

If the identification condition quoted in Section 2.2 is satisfied, various estimation 
methods can be used. The most obvious method is maximum likelihood (ML). If 
one is willing to assume a certain parametric form for the distribution of the 
latent variables, ML is straightforward in principle, although perhaps complicated 
in practice. 

If one wants to avoid explicit assumptions about the distribution of the latent 
variables, the method of moments provides an obvious estimation method as has 
been illustrated above. In general the model will be overidentified so that the 
moment equations will yield different estimators depending on the choice of 
equations used to solve for the unknown parameters. In fact that number of 
equations may become infinite. One may therefore decide to incorporate only 
moments of lowest possible order and, if more than one possible estimator 
emerges as a solution of the moment equations, as in the example, to choose some 
kind of minimum variance combination of these estimators. It seems that both the 
derivation of such an estimator and the establishment of its properties can 
become quite complicated.’ 

‘Scott (1950) gives a consistent estimator of /II in (3.1) by using the third central moment of the 
distribution of 6,. Rather than seeking a minimum variance combination, Pal (1980) considers various 
moment-estimators and compares their asymptotic variances. 
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A distribution-free estimation principle related to the method of moments is 
the use of product cumulants, as suggested by Geary (1942, 1943). A good 
discussion of the method is given in Kendall and Stuart (1979, pp. 419-422). Just 
as the method of moments replaces population moments by sample moments, the 
method of product cumulants replaces population product cumulants by sample 
product cumulants. Also here there is no obvious solution for overidentification. 
For the case where one has to choose between two possible estimators, Madansky 
(1959) gives a minimum variance linear combination. A generalization to a 
minimum variance linear combination of more than two possible estimators 
appears to be feasible but presumably will be quite tedious. 

A third simple estimator with considerable intuitive appeal is the method of 
grouping due to Wald (1940); see, for example, Theil(l971) for a discussion. In a 
regression context, this is nothing more than an instrumental variables technique 
with classification dummy variables as instruments. 

The idea is to divide the observations into two groups, where the rule for 
allocating observations to the groups should be independent of E; and ui. For both 
groups, mean values of y, and xi are computed, say j$, Xi, j2, and X2. The 
parameter j3 in (3.1) is then estimated by: 

B ~ 72 - r1 
- - . 

x2 - Xl 
(3.5) 

One sees that as an additional condition, plim(Z, - Xi) should be non-zero for b 
to exist asymptotically. If this condition and the condition for the allocation rule 
is satisfied, B is a consistent estimator of p. Wald also gives confidence intervals. 
The restrictive aspect of the grouping method is the required independence of the 
allocation rule from the errors ei and ui.* If no such rule can be devised, grouping 
has no advantages over OLS. Pakes (1982) shows that under normality of the ti 
and a grouping rule based on the observed values of the xi, the grouping 
estimator has the same asymptotic bias as the OLS estimator. Indeed, as he points 
out, this should be expected since the asymptotic biases of the two estimators 
depend on unknown parameters. If the biases were different, this could be used to 
identify the unknown parameters. 

If the conditions for the use of the grouping estimator are satisfied, several 
variations are possible, like groups of unequal size and more than two groups. 
[See, for example, Bartlett (1949), Dorff and Gurland (1961a), Ware (1972) and 
Kendall and Stuart (1979, p. 424 ff.). Small sample properties are investigated by 
Dorff and Gurland (1961b).] 

‘These are sufficient conditions for consistency; Neyman and Scott (1951) give slightly weaker 
conditions that are necessary and sufficient. 
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The three estimators discussed so far can also be used in the functional model 
under a somewhat different interpretation. The assumptions on cumulants or 
moments are now not considered as pertaining to the distribution of 5, but as 
assumptions on the behavior of sequences of the fixed variables. An example of 
the application of the method of moments to a functional model can be found in 
Drion (1951). Richardson and Wu (1970) give the exact distribution of grouping 
estimators for the case that the groups contain an equal number of observations. 

In conclusion, we mention that Kiefer and Wolfowitz (1956) have suggested a 
maximum likelihood estimator for the non-normal structural model with one 
regressor. A somewhat related approach for the same model appears in Wolfowitz 
(1952). Until recently, it was not clear how these estimators could be computed, 
so they have not been used in practice. 9 Neyman (1951) provides a consistent 
estimator for the non-normal structural model with one regressor for which 
explicit formulas are given, but these are complicated and lack an obvious 
interpretation. 

It appears that there exist quite a few consistent estimation methods for 
non-normal structural models, that is, structural models satisfying the proposition 
of Section 2.2. Unfortunately, most of these methods lack practical value, whereas 
a practical method like the method of product cumulants turns out to have a very 
large estimator variance in cases where it has been applied [Madansky (1959)]. 
These observations suggest that non-normality is not such a blessing as it appears 
at first sight. To make progress in practical problems, the use of additional 
identifying information seems almost indispensable. 

3.3. A non-normal model with extraneous information 

Consider the following model: 

(3.6) 

where ei is normal i.i.d., with variance u,‘. 
The variable ti follows a binomial distribution; it is equal to unity with 

probability p and to zero with probability q, where p + q = 1. But & is unobserv- 
able. Instead, xi is observed. That is, xi = Ii + ui, where u, is either zero (xi 
measures & correctly) or minus one if & equals one, or one if & equals zero (xi 
measures ti incorrectly). There is, in other words, a certain probability of 
misclassification. Since the possible values of vi depend on &, the measurement 
error is correlated with the latent variable. T’he pattern of correlation can be 
conveniently depicted in a joint frequency table of ui and xi, as has been done by 
Aigner (1973). 

‘For a recent operationalization, see, for example, Heckman and Singer (1982). 
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To check identification we can again write down moments (around zero): 

(3.7) 

Since the moments of ei are all a function of u,‘, one can easily generate equations 
like (3.7) to identify the unknown parameters p, &, &, u,‘. The model is thus 
identified even without using the observed variable xi! The extraneous informa- 
tion used here is that we know the distribution function from which the latent 
variable has been drawn, although we do not known its unknown parameter p. 

The identification result remains true if we extend model (3.6) by adding 
observable exogenous variables to the right-hand side. Such a relation may for 
example occur in practice if y represents an individual’s wage income, Ei indicates 
whether or not he has a disease, which is not always correctly diagnosed, and the 
other explanatory variables are years of schooling, age, work experience, etc. In 
such an application we may even have more information available, like the share 
of the population suffering from the disease, which gives us the parameter p. This 
situation has been considered by Aigner (1973), who uses this knowledge to 
establish the size of the inconsistency of the OLS estimator (with xi instead of the 
unobservable 5;) and then to correct for the inconsistency to arrive at a consistent 
estimator of the parameters in the model. 

Mouchart (1977) has provided a Bayesian analysis for Aigner’s model. A fairly 
extensive discussion of errors of misclassification outside regression contexts has 
been given by Co&ran (1968). 

3.4. Identifying restrictions in normal structural and functional models 

Rewrite the model (2.1)-(2.2) in matrix form: 

y=q3+&, (3.8) 

x=z+v; (3.9) 

e= (El... E, )’ and V is the (n x k)-matrix with vi’ as its i th row. In this section we 
assume the rows of Z either to be fixed or normally distributed. To remedy the 
resulting underidentilication, m 2 k* identifying restrictions are supposed to be 
available: 

F(B, fJ*, s2) = 0, (3.10) 

F being an m-vector of functions. If appropriate, we take these functions to be 
continuously differentiable. 
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Under the structural interpretation with normally distributed 6,, estimation of 
the model can take place by means of maximum likelihood where the restrictions 
(3.10) are incorporated in the likelihood function (2.10). The estimator will 
asymptotically attain the Cramer-Rao bound. The inverse of the information 
matrix hence serves as a consistent estimator of the variance-covariance matrix of 
the estimator of /3, u2 and 0. Some special cases have been dealt with in the 
literature, like the simple regression model with errors-in-variables, where the 
variances of both the measurement error and the error in the equation are known 
[Birch (1964), Barnett (1967), Dolby (1976a)], or where one of the two variances is 
known [Birch (1964), Kendall and Stuart (1979, p. 405)J. 

Although the identifying restrictions (3.10) also make it possible to construct a 
consistent estimator of the parameters in the functional model, it is a little less 
obvious how to construct such an estimator. In Section 2.1 we saw that without 
identifying restrictions ML is not possible. In light of the findings of Section 2.2 
this is not surprising, because without identifying restrictions a consistent estima- 
tor does not exist. It is of interest to see if unboundedness of the likelihood 
function persists in the presence of identifying restrictions. 

Recall (2.12). In order to study the behavior of log L,, we first observe that a 
choice of Z such that (X - Z)‘( X - Z) and ( y - Zb)‘( y - E/3) are both zero is 
only possible if y and X in the sample satisfy y = Xp. This event has zero 
probability so we assume that either (X- E)‘( X- Z) or ( y - ZJ?)‘( y - Z/3) is 
non-zero. Next assume that F( /I, u 2, a) is such that u 2 --f 0 if and only if ( i2 1 + 0 
and both converge to zero at the same rate. Obviously, for positive finite values of 
u 2 and 1 L? 1, log L, is finite-valued. If u 2 or 1 f2 1 go to infinity, log L, approaches 
minus infinity. Finally, consider the case where both u2 and I521 go to zero. 
Without loss of generality we assume that Z is chosen such that X- Z is zero. 
The terms - (n/2)log u 2 and - (n/2)logI 52) go to infinity, but these terms are 
dominated by - $a-‘( y - Zfi)‘( y - Zj3), which goes to minus infinity. Thus, 
under the assumption with respect to F(/3; a*, fi), the log-likelihood is continuous 
and bounded from above, so that a proper maximum of the likelihood function 
exists. 

A well-known example is the case where u -2L? is known. While that case has 
received considerable attention in the literature, we have chosen to exclude a 
detailed treatment here because there seems to be little or no practical relevance 
to it. Some references are Moberg and Sundberg (1978), Copas (1972), Van Uven 
(193% Sprent (1966), Dolby (1972), Hoschel(1978), Casson (1974), Kapteyn and 
Wansbeek (1983), Robertson (1974), Schneeweiss (1976), Kapteyn and Wansbeek 
(1981) Fuller and Hidiroglou (1978), DeGracie and Fuller (1972), and Fuller 
(1980). 

No definitive analyses exist of overidentified functional models. A promising 
approach appears to be to compute the ML estimator as if the model were 
structural with normally distributed latent variables and to study its properties 
under functional assumptions. Kapteyn and Wansbeek (1981) show that the ML 
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estimator is asymptotically normally distributed with a variance-covariance ma- 
trix identical to the one obtained under structural assumptions. Also, the distri- 
butions of certain test statistics appear to be the same under functional and 
structural assumptions. They also show that a different estimator developed by 
Robinson (1977) has the same asymptotic distribution under functional and 
structural assumptions. 

Let us next consider the (asymptotic) efficiency of estimators in the functional 
model with identifying restrictions. It has been observed in Section 2.3 that no 
estimator will attain the Cramer-Rao lower bound, but still the lower bound can 
be used as a standard of comparison, As before, cp = vet 52 and 6 = (/3’, e2, q’)‘. 
Furthermore, define the matrix of partial derivatives: 

(3.11) 

where F has been defined in (3.10). Using the formula for the Cramer-Rao lower 
bound for a constrained estimator [Rothenberg (1973b, p. 21)] we obtain as an 
asymptotic lower bound for the variance of any estimator of 6: 

P = R - RF;( F,RF,‘)-lF,R, (3.12) 

where R = lim n _ mnR,, R, being given by (2.14). 
The estimators discussed so far have been described by the large sample 

properties of consistency, asymptotic efficiency and asymptotic distribution. For 
some simple cases there do exist exact finite sample results that are worth 
mentioning. 

One would suspect that the construction of exact distributions is simplest in the 
structural model since in that case the observable variables follow a multivariate 
normal distribution and the distributions of various statistics that are transforms 
of normal variates are known. This knowledge is used by Brown (1957) to derive 
simultaneous confidence intervals for the simple structural relation: 

Yi=Po+P15,+5? i=l ,-.-, n, (3.13) 

with 5, and q independently normally distributed variables, and where their 
variances are assumed to be known. The confidence intervals are based on a 
x2-distribution. For the same model with the ratio of the variances known, Creasy 
(1956) gives confidence intervals based on a t-distribution.” Furthermore, she 
shows that a confidence interval obtained in the structural model can be used as a 
conservative estimate of the corresponding confidence interval in the functional 

‘“See Schneeweiss (1982) for an improved proof, 
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model, in the sense that the confidence interval in the functional model will 
actually be smaller. 

The cases considered by Creasy and by Brown are rather special and simple. 
One would like to know, therefore, how good the asymptotic approximations in 
more general cases will be. Some optimism in this respect can be gleaned from 
results obtained by Richardson and Wu (1970), who present the exact distribution 
of the least squares estimator in model (3.13) under both functional and structural 
assumptions. It is found that the asymptotic approximations for the variance of 
the OLS estimator of & in the functional model are very good. No asymptotic 
approximation is needed for the structural case as the exact expression is already 
quite simple. In light of the results obtained in Section 2.1, this is what one would 
expect. 

3.5. Non-linear models 

The amount of work done on non-linear models comprising latent variables is 
modest, not surprising in view of the particular difficulties posed by these models 
[Griliches and Ringstad (1970)]. In line with the sparse literature on the subject 
we only pay attention to one-equation models: 

Y~=f(~lY8)+EiY i=l >**-, n, (3.14) 

xi = 6, + 0,) (3.15) 

where &, xi, u,, and /3 are k-vectors, y, and ei are scalars; u, - N(0, s2), with fi 
non-singular. There is statistical independence across observations. The function 
f is assumed to be twice continuously differentiable. Furthermore, Eu,E, = 0. 

Let us consider the functional model.” The likelihood of the observable 
random variables y, and xi is given by: 

L,ocexp( -+[tr(X-Z)Qn-‘(X-2)’ 

+u-‘(Y-F(Z,8))‘(Y-F(2,B))]}. (3.16) 

The n-vector I;( Z, @) has f( &, 8) as its i th element. As in Section 2.2 identifiabil- 
ity of the functional model can be checked by writing down the information 
matrix corresponding to this likelihood. Again, identifiability does not guarantee 
the existence of consistent estimators of /3, 52, and u*. No investigations have 
been carried out regarding conditions under which such consistent estimators 
exist. Dolby (1972) maximizes L, with respect to 3 and /3, assuming a* and 52 to 

I1 We are unaware of any studies that deal with a non-linear structural model. 
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be known. He does not prove consistency of the resulting estimator. He claims 
that the inverse of the information matrix is the asymptotic variance-covariance 
matrix of the maximum likelihood estimator. This claim is obviously incorrect, a 
conclusion which follows from the result by Wolfowitz (1954). Dolby and Lipton 
(1972) apply maximum likelihood to (3.14)-(3.15), without assuming a2 and D to 
be known. Instead, they assume replicated observations to be available. A similar 
analysis is carried out by Dolby and Freeman (1975) for the more general case 
that the errors in (3.14)-(3.15) may be correlated across different values of the 
index i. 

A troublesome aspect of the maximum likelihood approach in practice is that 
in general no closed form solutions for Z and /3 can be found so that one has to 
iterate over all k(n + 1) unknown parameters. For sample sizes large enough to 
admit conclusions on the basis of asymptotic results, that may be expected to be 
an impossible task. Also, Egerton and Laycock (1979) find that the method of 
scoring often does not yield the global maximum of the likelihood. 

If more specific knowledge is available about the shape of the function f, the 
numerical problems may simplify considerably. O’Neill, Sinclair and Smith (1969) 
describe an iterative method to fit a polynomial for which computation time 
increases only linearly with the number of observations. They also assume the 
variance-covariance matrix of the errors to be known. The results by O’Neill, 
Sinclair and Smith suggest that it may be a good strategy in practice to 
approximate f(&, 8) by a polynomial of required accuracy and then to apply 
their algorithm. Obviously a lot more work has to be done, particularly on the 
statistical properties of ML, before any definitive judgment can be made on the 
feasibility of estimating non-linear functional models. 

3.6. Should we include poor proxies? 

Rewrite (2.1) as: 

(3.17) 

with &i and fii being (k - 1)-vectors containing the first (k - 1) elements of & and 
/3; the scalars tik and fik are the k th elements of I, and /3. The vector &i is 
measured without error. For tik we have a proxy, xik, with observational error 
independent of & and ci. Suppose we are mainly interested in estimating &. 
Wickens (1972) and McCallum (1972) compare two possible estimation methods: 
OLS with cik in (3.17) replaced by xik, or OLS after omitting tik from (3.17). They 
show that if Eik correlates with tit the first method always gives an asymptotic bias 
which is smaller than that of the second method. If tik does not correlate with &i, 
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both estimation methods are, of course, unbiased. Thus one should always include 
a proxy, however poor it may be. 

No such clear-cut conclusion can be obtained if also one or more elements of 
&i are measured with error [Barnow (1976) and Garber and Klepper (1980)], or if 
the measurement error in Eik is allowed to correlate with &i [Frost (1979)]. 
Aigner (1974b) considers mean square error rather than asymptotic bias as a 
criterion to compare estimators in McCallum’s and Wickens’ model. He gives 
conditions under which the mean square error of OLS with omission is smaller 
than OLS with the proxy included. Giles (1980) turns the analyses of McCallum, 
Wickens and Aigner upside down by considering the question whether it is 
advisable to omit correctly measured variables if our interest is in the coefficient 
of the mismeasured variable. 

McCallum’s and Wickens’ result holds true for both the functional and 
structural model. Aigner’s conditions refer only to the structural model with 
normally distributed latent variables. It would be of interest to see how his 
conditions modify for a functional model. 

3.7. Prediction and aggregation 

It is a rather remarkable fact that in the structural model the inconsistent OLS 
estimator can be used to construct consistent predictors, as shown by Johnston 
(1972, pp. 290, 291). The easiest way to show this is by considering (2.10): y, and 
x, are simultaneously normally distributed with variance-covariance matrix ,Z as 
defined in (2.5). Using a well-known property of the normal distribution we 
obtain for the conditional distribution of y, given xi: 

fhlx,) = & exp( - iy-‘( y, - x@)‘), (3.18) 

with y and a defined with respect to (2.9). Therefore, E( y]X) = Xa. This implies 
that P, the OLS estimator of a is unbiased given X, and E( X& 1 X) = Xa = E( y 1 X). 
We can predict y unbiasedly (and consistently) by the usual OLS predictor, 
ignoring the measurement errors. As with the preceding omitted variable problem, 
we should realize that the conclusion only pertains to prediction bias, not to 
precision. 

The conclusion of unbiased prediction by OLS does not carry over to the 
functional model. There we have: 

f(Y,lxiY Sj> = ~exp(-jo-2(y,-E~~)2), (3.19) 
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so that I$ y]X, Z) = Zj?, which involves both the incidental parameters and the 
unidentified parameter vector 8. OLS predictions are biased in this case, cf. 
Hodges and Moore (1972). 

A somewhat different approach to prediction (and estimation) was taken by 
Aigner and Goldfeld (1974). They consider the case where exogenous variables in 
micro equations are measured with error but not so the corresponding aggregated 
quantities in macro equations. That situation may occur if the aggregated 
quantities have to satisfy certain exact accounting relationships which do not have 
to hold on the micro level. The authors find that under certain conditions the 
aggregate equations may yield consistent predictions whereas the micro equations 
do not. Similar results are obtained with respect to the estimation of parameters. 

In a sense this result can be said to be due to the identifying restrictions that 
are available on the macro level. The usual situation is rather the reverse, i.e. a 
model which is underidentified at the aggregate level may be overidentified if 
disaggregated data are available. An example is given by Hester (1976). 

Finally, an empirical case study of the effects of measurement error in the data 
on the quality of forecasts is given by Denton and Kuiper (1965). 

3.8. Bounds on parameters in underidentified models 

The maximum-likelihood equations that correspond to the full log-likelihood L, 
[recall (2.10)] are: 

&= (XlX)_‘Xly (3.20) 

y=n-l(y-X&)‘(y-X&), (3.21) 

a= n-‘X’X. (3.22) 

Without further restrictions we cannot say very much about the parameters of 
main interest, 8. An easy-to-accept restriction would be that the estimates of u* 
and the diagonal elements of K and s2 should be non-negative. If in addition we 
assume that D is diagonal we obtain the following results. 

Denote by w the k-vector of the’diagonal elements of D and by k the k-vector 
of diagonal elements of K; B is the k X k diagonal matrix with the elements of /I 
on its main diagonal. From (3.20)-(3.22) we derive as estimators for a*, w and k 
(given j3): 

cj = B-i,@ - B-l&, 

;k=diaga-ij, 
(3.23) 

(3.24) 

(3.25) 

where diag a is the k-vector of diagonal elements of a. 
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In order to actually compute these estimators we have to choose a value for 8. 
The restrictions D > 0, i( > 0, 62 > 0 imply that this value, b, has to satisfy: 

diag X’X 2 &-‘X’Xb - B-‘Xly 2 0, (3.26) 

y’y L B’X’Y. (3.27) 

Let us first look at the case where k = 1. Then (3.26) reads: 

X’X 2 X’X- X’y&’ 2 0. (3.28) 

So IpI 2 I(X’X)-‘Xlyl = I&( and B must have the same sign as &. Inequality 
(3.27) implies for this case lb\ I [( y’y)-‘X’y-‘. Thus, a consistent estimator for 
/? must have the same sign as the OLS estimator and its absolute value has to be 
between the OLS estimator and the reciprocal of the OLS regression coefficient of 
the regression of X on y. 

For k > 1, such simple characterizations are no longer possible, since they 
depend in particular on the structure of X’X and the signs of the elements of 8. 
The only result that seems to be known is that if one computes the k + 1 
regressions of each of the variables y,, xii, . . . , xik on the other k variables and all 
these regressions are in the same orthant, then fi has to lie in the convex hull of 
these regressions. [Frisch (1934), Koopmans (1937), Klepper and Learner (1984); 
see Patefield (1981) for an elegant proof using the Frobenius theorem]. Klepper 
and Learner (1984) show that if the k + 1 regressions are not all in the same 
orthant, if X is a k-vector not equal to (l/n)X’y or the zero vector, and if 
(X’X))’ has no zero elements, then the set (xj3lfi satisfying (3.26) and (3.27)) is 
the set of real numbers. Obviously, if one is willing to specify further prior 
knowledge, bounds can also be derived for k > 1. For example, Levi (1973,1977) 
considers the case where only one of the exogenous variables is measured with 
error and obtains bounds for the coefficient of the mismeasured variable. Differ- 
ent prior knowledge is considered by Klepper and Learner (1984). 

A related problem is whether the conventional t-statistics are biased towards 
zero. Cooper and Newhouse (1972) find that for k = 1 the t-statistic of the OLS 
regression coefficient is asymptotically biased toward zero. For k > 1 no direction 
of bias can be determined. 

Although inequalities (3.26) and (3.27) were derived from the maximum 
likelihood equations of the structural model, the same inequalities are derived in 
the functional model, because & is simply the OLS estimator and t the residual 
variance estimator resulting from OLS. In fact, Levi only considers the OLS 
estimator & and derives bounds for a consistent estimator by considering the 
inconsistency of the OLS estimator. 
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Notice that the bounds obtained are not confidence intervals but merely 
bounds on the numerical values of estimates. These bounds can be transformed 
into confidence intervals by taking into account the (asymptotic) distribution of 
the OLS estimator [cf. Rothenberg (1973a), Davies and Hutton (1975), Kapteyn 
and Wansbeek (1983)]. One can also use the asymptotic distribution of the OLS 
estimator and a prior guess of the order of magnitude of measurement error to 
derive the approximate bias of the OLS estimator and to judge whether it is 
sizable relative to its standard error. This gives an idea of the possible seriousness 
of the errors-in-variables bias. This procedure has been suggested by Blomqvist 
(1972) and Davies and Hutton (1975). 

3.9, Tests for measurement error 

Due to the under-identification of errors-in-variables models, testing for the 
presence of measurement error can only take place if additional information is 
available. Hitherto the literature has invariably assumed that this additional 
information comes in the form of instrumental variables. Furthermore, all tests 
proposed deal with the functional model; testing in a structural model (i.e. a 
structural multiple indicator model, cf. Section 4) would seem to be particularly 
simple since, for example, ML estimation generates obvious likelihood ratio tests. 

For the single-equation functional model, various tests have been proposed, by 
Liviatan (1961, 1963), Wu (1973), and Hausman (1978), all resting upon a 
comparison of the OLS estimator and the IV estimator. Under the null-hypothe- 
sis, H,, that none of the variables is measured with error, the OLS estimator is 
more efficient than the IV estimator, and both are unbiased and consistent. If H, 
is not true the IV estimator remains consistent whereas OLS becomes incon- 
sistent. Thus, functions of the difference between both estimators are obvious 
choices as test-statistics. 

To convey the basic idea, we sketch the development of Wu’s second test 
statistic for the model (3.8)-(3.9). The stochastic assumptions are the same as in 
Sections 2.1 and 3.4. Let there be available an (n x k)-matrix W of instrumental 
variables that do not correlate with E or V. In so far as certain columns of E are 
supposed to be measured without error, corresponding columns of E and W may 
be identical. 

A possible statistic to test the null-hypothesis that none of the columns of Z has 
been measured with error is: 

TE Q*/k 

e/(n -2k) ’ 
(3.29) 
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where 

Q*= (b-&V)‘[(W’X)-lW’W(X’W)-‘-(X’X)-l]~l(b-j$,), (3.30) 

b = (XT-‘x’y, (3.31) 

&, = (w~x)-‘w$, (3.32) 

Q=Q~-Q*, (3.33) 

and 

Q’=(y-Xb)‘(y-Xb). (3.34) 

Note that b is the OLS estimator of /3 and &v is the IV estimator of 8. 
Wu shows that Q* and Q are mutually independent X2 distributed random 

variables with degrees of freedom equal to k and n - 2k, respectively. Conse- 
quently, T follows a central F-distribution with k and n - 2k degrees of freedom. 
This knowledge can be used to test H,. 

Conceivably T is not the only possible statistic to test H,. Wu (1973) gives one 
other statistic based on the small sample distribution of b and Brv and two 
statistics based on asymptotic distributions. Two different statistics are proposed 
by Hausman (1978). 

3.10. Repeated observations 

Hitherto we have only discussed models with single indexed variables. As soon as 
one has more than one observation for each value of the latent variable the 
identification situation improves substantially. We shall illustrate this fact by a 
few examples. We do not pay attention to matters of efficiency of estimation, 
because estimation of these models is discussed extensively in the variance 
components literature. [See for example, Amemiya (1971).] Consider the following 
model: 

Y,j = ‘,jP + 51~ + & ‘J ’ 
i=l ,.**, n; j=l,...,m. (3.35) 

The variables z,, and & are for simplicity taken to be scalars; zi, is observable, & 
is not. A model like (3.35) may occur in panel studies, where n is the number of 
individuals in the panel and m is the number of periods in which observations on 
the individuals are obtained. Alternatively, the model may describe a controlled 
experiment in which the index i denotes a particular treatment with m observa- 
tions per treatment. 
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As to the information regarding t, we can distinguish among three different 
situations. The first situation is that where there are no observations on 5;. In a 
single-indexed model, that fact is fatal for the possibility of obtaining a consistent 
estimator for /? unless z,, and & are uncorrelated. In the double-indexed model, 
however, we can run the regression: 

(3.36) 

where the { ai} are binary indicators. The resulting estimate of fi is unbiased and 
consistent. Although it is not possible to estimate h, the estimates of (Y, are 
unbiased estimates of &h so that the treatment effects are identified. A classical 
example of this situation is the correction for management bias [Mundlak (1961)]: 
if (3.36) represents a production function and E, is the unobservable quality of 
management in the ith firm, omission of 5; would bias j3, whereas formulation 
(3.36) remedies the bias. 

A second situation which may occur is that for each latent variable there is one 
fallible measurement: x, = 5, + u,, i = 1,. . . , n. One measurement per .& allows for 
identification of all unknown parameters but does not affect the estimator of p, as 
can be seen readily by writing out the required covariance equations. 

The third situation we want to consider is where there are m measurements of 

5,: 

xlJ = t, + uiJ ? i=l ,..., n; j=l T-.-T m. (3.37) 

Now there is overidentification, and allowing for correlation between u,~ and ui,, 
I # j, does not alter that conclusion. Under the structural interpretation, ML is 
the obvious estimation method for this overidentified case. In fact, (3.35) and 
(3.37) provide an example of the multiple equation model discussed in the next 
section, where ML estimation will also be considered. 

ML estimation for the functional model with replicated observations has been 
considered by Villegas (1961), Barnett (1970), Dolby and Freeman (1975), and 
Cox (1976). Barnett restricts his attention to the case with only one independent 
variable. Cox analyzes the same model, but takes explicitly into account the 
required non-negativity of estimates of variances. Villegas finds that apart from a 
scalar factor the variance-covariance matrix of the errors is obtained as the usual 
analysis-of-variance estimator applied to the multivariate counterpart of (3.37). 
The structural parameters are next obtained from the usual functional ML 
equations with known error matrix. Healy (1980) considers ML estimation in a 
multivariate extension of Villegas’ model (actually a more general model of which 
the multivariate linear functional relationship is a special case). Dolby and 
Freeman (1975) generalize Villegas’ analysis by allowing the errors to be corre- 
lated across different values of i. They show that, given the appropriate estimator 
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for the variance-covariance matrix of the errors, the ML estimator of the 
structural parameters is identical to a generalized least squares estimator. Both 
Barnett (1970) and Dolby and Freeman (1975) derive the information matrix and 
use the elements of the partitioned inverse of the information matrix corre- 
sponding to the structural parameters as asymptotic approximations to the 
variance of the estimator. In light of the result obtained by Wolfowitz (1954) (cf. 
Section 2.3) these approximations would seem to underestimate the true asymp- 
totic variance of the estimator. Regarding Bamett’s paper, this is shown explicitly 
by Patefield (1977). 

Villegas (1964) provides confidence regions for parameters in the linear func- 
tional relation if there are replicated measurements for each variable. His analysis 
has been generalized to a model with r linear relations among p latent variables 
( p > r) by Basu (1969). For r > 2 the confidence regions are not exact. 

3. Il. Bayesian analysis 

As various latent variables models suffer from underidentification, and hence 
require additional prior information, a Bayesian analysis would seem to be 
particularly relevant to this type of model. Still, the volume of the Bayesian 
literature on latent variables models has remained modest hitherto. We mention 
Lindley and El-Sayyad (1968), Zellner (1971, ch. V), Florens, Mouchart and 
Richard (1974), Mouchart (1977), and Learner (1978b, ch. 7) as the main 
contributions in this area. As far as identification is concerned, a Bayesian 
approach is only one of many possible ways to employ extraneous information. 
The use of auxiliary relations (Section 4) provides an alternative way to tackle the 
same problem. The choice of any of these approaches to identification in practical 
situations will depend on the researcher’s preferences and the kind of extraneous 
information available. 

As noted by Zellner (1971, p. 145) and Florens et al. (1974) the distinction 
between functional and structural models becomes a little more subtle in a 
Bayesian context. To illustrate, reconsider model (2.1), (2.2). Under the functional 
interpretation, &, /3, u2, and D are constants. A Bayesian analysis requires prior 
densities for each of these parameters. The prior density for t, makes the model 
look like a structural relationship. Florens, Mouchart and Richard (1974, p. 429) 
suggest that the difference is mainly a matter of interpretation, i.e. one can 
interpret Z as random because it is subject to sampling fluctuations or because it 
is not perfectly known. In the structural model, in a Bayesian context one has to 
specify in addition a prior distribution for the parameters that governs the 
distribution of the incidental parameters. Of course, also in the functional model 
where one has specified a prior distribution for the incidental parameters, one 
may next specify a second stage prior for the parameters of the prior distribution 
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of the incidental parameters. The parameters of the second stage distributions are 
sometimes called hyperparameters. 

The Bayesian analysis of latent variables models has mainly been restricted to 
the simple linear regression model with errors-m-variables [i.e. (2.1) is simplified 

to Y, = Pa + PiEi + Ei, with &s,, Pi, 5, scalars], although Florens et al. (1974) make 
some remarks on possible generalizations of their analysis to the multiple regres- 
sion model with errors-in-variables. 

The extent to which Bayesian analysis remedies identification problems de- 
pends on the strength of the prior beliefs expressed in the prior densities. This is 
illustrated by Lindley and El-Sayyad’s analysis. In the simple linear regression 
model with errors in the variables they specify a normal prior distribution for the 
latent variables, i.e. the [, are i.i.d. normal with mean zero and variance 7, and 
next a general prior for the hyperparameter 7 and the structural parameters. 
Upon deriving the posterior distribution they find that some parts of it depend on 
the sample size n, whereas other parts do not. Specifically, the marginal posterior 
distribution of the structural parameters and the hyperparameter does not depend 
on n. Consequently, this distribution does not become more concentrated when n 
goes to infinity. 

This result is a direct consequence of the underidentification of the model. 
When repeating the analysis conditional on a given value of the ratio of the error 
variances with a diffuse prior for the variance of the measurement error, the 
posterior distribution of the structural parameters does depend on n and becomes 
more and more concentrated if n increases. The marginal posterior distribution of 
pi concentrates around the functional ML value. This is obviously due to the 
identification achieved by fixing the ratio of the error variances at a given value. 

The analyses by Zellner (1971, ch. V) and Florens et al. (1974) provide 
numerous variations and extensions of the results sketched above: if one imposes 
exact identifying restrictions on the parameters, the posterior densities become 
more and more concentrated around the true values of the parameters when the 
number of observations increases. If prior distributions are specified for an 
otherwise unidentified model, the posterior distributions will not degenerate for 
increasing n and the prior distributions exert a non-vanishing influence on the 
posterior distributions for any number of observations. 

4. Multiple equations 

To introduce the ideas to be developed in this section, let us momentarily return 
to the simple bivariate regression model (3.1)-(3.2) in vector notation: 

Y=IP+E, (4.1) 

X=(+U, (4.2) 
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with y, x, [, e and u being (n x 1)-vectors and p a scalar. As before, y and x are 
observable, and 6, E and u are not. For most of this section, we consider the 
structural model, i.e. [ is random. The elements of [, e, and u are assumed to be 
normally i.i.d. distributed with zero means and variances utc, u2 and a”,, respec- 
tively. 

As we have seen, there is no way of obtaining consistent estimators for this 
model without additional information. In this section it is assumed that the 
available additional information takes on either of two forms: 

z=<y+s, (4.3) 

with z an observable (n X 1) vector, y a scalar parameter, and 6 an (n X 1) vector 
of independent disturbances following an N(0, us8 I,,) distribution, independent of 
e, u and [; or: 

t=Wa+u, (4.4) 

with W an (n X m) matrix of observable variables, a an (m X 1) vector of 
coefficients, and u an (n X 1) vector of independent disturbances following an 
N(0, u,,ln) distribution, independent of e and u. Also, models will be considered 
that incorporate both types of additional equations at the same time. 

An interpretation of (4.3) is that z is an indicator of I; just like y and x,z is 
proportional to the unobservable <, apart from a random error term, and 
therefore contains information on & Relation (4.4) may be interpreted such that 
the variables in W are considered to be the cauSeS of 5, again apart from a 
random error term. In any case, the model is extended by the introduction of one 
or more equations, hence the description “multiple equations” for this type of 
approach to the measurement error problem. Note that no simultaneity is 
involved. 

Additional information in the form of an extra indicator being available for an 
unobservable variable is the most frequently considered cure for the crrors- 
in-variables identification problem, popularized in particular by the work of 
Goldberger (1971,1974) and Goldberger and Duncan (1973). It is in fact, nothing 
but the instrumental variables (IV) approach to the problem [Reiersol (1945)]. 
Section 4.1 deals with the IV method, whereas Section 4.2 discusses factor 
analysis in its relation to IV. Section 4.3 discusses models with additional causes, 
and models both with additional causes and indicators. 

4. I. Instrumental variables 

Due to the assumption of joint normality for e, u and & all sample information 
relating to the parameters in the model (4.1), (4.2) and (4.3) is contained in the six 
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covariance equations [(recall (1.5) and (1.9)]: 
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(4.5) 

This system of six equations in six unknowns can easily be solved to yield 
consistent estimators of uEE, p, y, u2, u,,,, and a,,. So, the introduction of the 
indicator variable (or instrumental variable) z renders the model identified. 

Since the number of equations in (4.5) is equal to the number of parameters, 
the moment estimators are in principle also the ML estimators. This statement is 
subject to a minor qualification when ML is applied and the restriction of 
non-negativity of the error variances is explicitly imposed. Learner (1978a) has 
shown that the ML estimator of p is the median of Syz/S,,, $,,,/S,,Y and &/& 
where S indicates the sample counterpart of u, if these three quantities have the 
same sign. 

In the multivariate errors-in-variables [cf. (3.8) (3.9)] model we need at least 
12 k indicator variables (or instrumental variables) in order to identify the 
parameter vector 8. The following relation is then assumed to hold: 

Z=Z’r’t A, (4.6) 

with Z the (n X 1) matrix of indicator variables, r an (I X k) matrix of coeffi- 
cients and A an (n x I) matrix of disturbances, each row of which is [-dimen- 
sional normally distributed, independent of E, I/ and Z, with zero expectation and 
variance-covariance matrix 0. No restrictions are imposed on 0. This means that 
the instrumental variables are allowed to show an arbitrary correlation pattern, 
correlate with E (and hence X), but are independent of the disturbance E - Vfi in 
the regression of y on X. Note that in particular this makes it possible to use the 
columns of s that are measured without error as instrumental variables. 

Let CC? be the (k x k) variance-covariance matrix of a row of V, and let 
K 3 I$-‘ZC. Then, in an obvious notation, the covariance equations (4.5) now 
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read: 
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a ~,,=e*+rS’KB, (4.7) 

2, = K/3, (4.8) 

Z, = TK/3, (4.9) 

t: ..=K+L’, (4.10) 

‘z zx = TK, (4.11) 

Zz, = I-K P + 0. (4.12) 

The identification of this system can be assessed somewhat heuristically as 
follows. Equations (4.7), (4.10) and (4.12) serve to identify the error variances u2, 
52 and 0 for given r, K and fl. Substitution of (4.11) into (4.9) yields: 

E?,, = &&% (4.13) 

which shows that 12 k is a necessary condition for the identification of /3. When 
I > k, /3 is generally overidentified. For the identification of the other parameters, 
K and r, only (4.8) and (4.11) remain; these contain in general insufficient 
information, whether k = I or I > k, so these parameters are not identified. This is 
basically due to the fact that r occurs only in conjunction with K. The only 
exception is when only one column of Z is unobservable. In that case r and K 
each contain k unknown elements that can be obtained from (4.8) and (4.11). 
More discussion of this point will be given in Section 4.2 below. 

In the case I > k, i.e. there are more instrumental variables than regressors in 
the original model, (4.13) does not produce an estimator for /I unambiguously. A 
way to reconcile the conflicting information in (4.13) is to reduce it to a system of 
k equations by premultiplication with some (k x /)-matrix, G say. A possible 
choice for G is: 

G = Z&S;;. (4.14) 

Replacing the Z’s by their sample counterparts, indicated by a corresponding S, 
the estimator for /3 then is: 

B = (s;&;s,) - ‘S~&S,, 

= (Xz(.z~z)-*z’x)-1x’z(z2)-1z~. (4.15) 

For I = k, this reduces to the well-known formula: 

/.!I = (zfx)-‘zly. (4.16) 
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Sargan (1958) has shown that the weighting matrix G is optimal in the sense that 
it has minimal asymptotic variance in the class of all linear combinations of 
estimators which can be derived from (4.13). [See also Malinvaud (1970, section 
20.5).] The asymptotic variance-covariance matrix of B is, both for 1= k and 
I> k: 

(4.17) 

When the researcher is in the happy situation that he has more instruments than 
error-ridden variables (i.e. I > k), he may also consider applying ML to the full 
model after imposing a sufficient number of identifying restrictions on (at least) I 
and K. The LISREL program (see Section 5.3) is well-suited for this purpose. 

The major problem involved with IV in the non-dynamic single equation 
context, however, is to find instrumental variables. Columns of X without 
measurement errors can be used as instruments, but it is often difficult to find 
variables that are correlated with a variable in X and are not already explanatory 
variables in the model under consideration. The method of grouping, discussed in 
Section 3.2, can be considered as a special case of IV, where the instrument 
consists of a vector of + l’s and - l’s, allocating observations to the two groups. 
The instrument should be uncorrelated with the measurement error in order to 
have a consistent estimator of the slope parameters. This is the case, for instance, 
when the size of the measurement error is bounded from above and the popula- 
tion consists of two subsets separated by an interval at least as great as twice this 
maximum. This situation is unlikely to occur in practice. 

4.2. Factor analysis 

Factor analysis (FA), a method for dealing with latent variables with a venerable 
history in psychometrics, is closely related to instrumental variables. In this 
section we will discuss some aspects of FA as far as it is relevant in the present 
context without the pretension of coming anywhere near a complete survey. For a 
more comprehensive coverage see, for example, Gorsuch (1974), Lawley and 
Maxwell (1971), Harman (1967) or Bentler and Weeks (1980); econometricians 
will find the book by Mulaik (1972) highly readable because of its notation. 

The connection between the FA and IV models is as follows. Let, in (3.19), the 
measurement error between the columns of Z be uncorrelated, i.e. the matrix fi 
of measurement error variances and covariances is diagonal, and let the coefficient 
matrix of Z, so far implicitly taken to be the unit matrix, be arbitrary. This means 
that (i) the correlation between different columns of X is attributable to X only, 
and not to the measurement error, and (ii) X is, no longer considered to be a 
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direct but erroneous measurement of S. Likewise, let the variance-covariance 
matrix 0 of the rows of A in (4.6) be diagonal also; so, the correlation between 
different columns of 2 is attributable to Z only, and not to the disturbances A. 

Under the new interpretation, the three equations (3.8), (3.9), (4.6) constituting 
the IV model have become formally isomorphous, and there is no reason for 
distinguishing between them anymore. We may thus dispense with (3.8) and (3.9) 
without loss of generality and take (4.6) as the FA model, under the following 
interpretation: Z is the (n x /)-matrix of indicator variables of the k latent 
variables (or common factors) grouped in Z oforder(nXk);Aisan(nXI)-matrix 
of disturbances (or unique factors.) The common factors account for the correla- 
tion between the indicators, and the unique factors take account of the remaining 
variance. r is again an (I x k)-matrix of regression coefficients, or factor loadings 
or factor pattern, in the FA patois. 

Although the formal analogy between the IV and FA models is apparent, there 
are interpretative differences between the two. In FA, the latent variables are fully 
conceptual variables and are not, as in the econometrics literature on measure- 
ment error, supposed to be observable in a direct (i.e. outside the model) albeit 
erroneous way; indeed, the number of factors need not be a given magnitude and 
becomes a parameter itself [e.g. Gorsuch (1974, ch. S)]. 

Given the stochastic assumptions, the covariance equation corresponding to 
(4.6) is: 

,Szz = I-KT’ + 0, (4.18) 

and the estimation problem is to derive estimators for K, r and 0 from the 
observed covariance matrix S,,. Without further information, the model is 
clearly underidentified since postmultiplication of r by any non-singular (k x k)- 
matrix T and replacing K by T-‘K(T’)-’ leads to the same value of 2:. There are 
several ways to cope with this indeterminacy, each of which identifies a main 
branch of factor analysis distinguished in the literature. [See, for example, Elffers 
et al. (1978).] 

An extreme case arises if k is taken equal to 1. Then I’ and K are of the same 
order as zzz. This obviates the error term A, so 0 is put equal to 0. Next, the 
indeterminacy may be solved by taking r to be the matrix of eigenvectors of 
2 zz, and K is the diagonal matrix containing the k eigenvalues of _Szz on its 
main diagonal. The matrix ZT is called the matrix of principal components of Z. 

[See, for example, Anderson (1958, ch. 12) and Kendall and Stuart (1979, ch. 43).] 
This relation between principal components and FA is a matter of mathematics 
only; conceptually, there is the essential difference that principal components is 
not based on a statistical model; it is a data reduction technique.12 

“Principa] components is sometimes used in econometrics when the number of observations is 
deficient and one wants to reduce the number of regressors. Kloek and Mennes (1960) and Amemiya 

(1966) explore this idea for simultaneous equations and propose using principal components of 
predetermined variables. 
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Apart from the principal components case, the number k of underlying factors 
is usually set at a (much) lower value than 1. There are two different approaches to 
the normalization problem. In confirmatory factor analysis, the researcher has a 
number of a priori restrictions on r, K or 0 at his disposal that derive from say, 
the interpretation of the factors [like the implicit unit coefficient restriction in 
equation (3.9) where the factors correspond to phenomena that are in principle 
observable] or an extension of the model whereby the latent variables are, in turn, 
regressed on other, observable variables (an example of which is to be discussed 
below). These restrictions may serve to remove all indeterminacy in the parame- 
ters. In exploratory factor analysis, however, the researcher is unsure about the 
meaning of the factors and would like to treat them in a symmetric way. The 
usual approach then is to choose T such that T-‘K(T’)- ’ is the unit matrix, i.e. 
the factors are uncorrelated. For f = I’T: 

‘zzz = IT’ + 0. (4.19) 

There is still some indeterminacy left, since the columns of r may be reweighted 
with any orthonormal matrix without affecting Z:,,. This freedom may be used to 
make i”W’f a diagonal matrix, which is convenient in the course of ML 
estimation of the parameters [Joreskog (1967)], or can be used at will to obtain 
some desired pattern in IY Such a reweighting is called a rotation by factor 
analysts, and a huge literature has evolved around the pros and cons of all 
possible types of rotations. Shapiro (1982) has investigated the identification of 
the exploratory FA model. He shows that it is identified (apart from the 
indeterminacies in r) if and only if (1- k)* 2 I + k. 

Again, it should be stressed that the above treatment of FA is meant only to 
show its relation to the measurement error problem and to show that “factor 
analysis is just a generalization of the classical errors-in-the-variables model” 
[Goldberger (1972a, p. 992)].. 

4.3. The MIMIC model and extensions 

In this section we will consider models where identifying information is of the 
form given in (4.4); the unobservable variable depends on other exogenous 
variables. 

Recall (4.1), (4.2) and (4.4). By eliminating I, we obtain the reduced form: 

(w)=wdw+\C/, (4.20) 

with 

+=(E+pfd,u+uj. (4.21) 
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(4.22) 

The reduced form coefficients are restricted in that there is a proportionality 
restriction on the regression coefficients whenever 1, the dimension of a, exceeds 
unity. For all 12 1, a and /3 are identified and hence also the parameters in Z,,. 
So, an additional relation which “explains” the latent variable renders the model 
identifiable. 

As a somewhat more general case, consider the case where an unspecified (r, 
say) number of indicators of the latent variable c is available, i.e. (4.1) and (4.2) 
are replaced by: 

Z=ty’+A, (4.23) 

with 2 and A being (n X r) matrices as in (4.6), and y is an (r X 1) vector of 
regression coefficients. As with FA, 0, the variance-covariance matrix of the 
rows of A, is assumed to be diagonal. 

This model [i.e. (4.4) and (4.23)] is known as the Multiple Indicator- 
Multiple Cause (MIMIC) model relating a single unobservable to a number of 
indicators and a number of exogenous variables, and was introduced in the 
econometrics literature by Goldberger (1972a). In reduced form, it reads: 

Z=Wuy’+A+uy’. (4.24) 

The model has two kinds of restrictions on its parameters. First, the coefficient 
matrix has rank unity, and the disturbances have a variance-covariance matrix: 

2 = 0 + uuuyy’, (4.25) 

which is the sum of a diagonal matrix and a matrix of unit rank. 
There is an indeterminacy in the coefficients a and y: the product cry’ remains 

the same when a is multiplied by an arbitrary constant and y is divided by the 
same constant. This indeterminacy can be removed, for example, by the normali- 
zation a,, =l. Joreskog and Goldberger (1975) discuss ML estimation of the 
MIMIC model, and Chen (1981) discusses iterative estimation via the EM 
algorithm. 

The MIMIC model comprises several models as special cases. When no “cause” 
relation is present, we have the one-factor FA model. If in (4.4) u = 0, i.e. the 
latent variable is an exact linear function of a set of explanatory variables, we are 
back to a model introduced by Zellner (1970). This model was inspired by the 
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we&known problem of dealing with permanent income as an explanatory vari- 
able. In this model, y denotes consumption, x observed income and < permanent 
income. By expressing permanent income as a function of “such variables as 
house value, educational attainment, age, etc.” [Zellner (1970, p. 442)], permanent 
income can be removed from the relation altogether; but simultaneous estimation 
of the complete reduced form of the model increases the precision of the 
estimates. 

Zellner’s paper also contains a discussion of limited-information estimation 
methods. Since full-information ML is now generally available (see Section 5.3), 
there seems to be little use left for limited-information methods and we will not 
attempt to present a summary of these methods. [See also Goldberger (1972b).] 

A restriction of the MIMIC model is the diagonality of 0, the variance-covari- 
ante matrix of the rows of A. This means that the indicators satisfy the factor 
analysis assumption that they are correlated only via the latent variable. This 
assumption may be unduly strong, and we may consider an unrestricted 0 as an 
alternative, as was the case in the original instrumental variables model. As is 
apparent from (4.25), this introduces an indeterminacy since: 

@ + %uYY’= @ + $rr'+ b”, - dur (4.26) 

for any scalar +. This indeterminacy may be solved by fixing uUU at some 
non-negative value, e.g. a,, = 0. This means that, in the case of 0 unrestricted, the 
model is operationally equivalent to a model without an error in the cause 
equation. 

The MIMIC model relates a single latent variable to a number of indicators 
and a number of causes. The extension to a more general multiple equations 
model is obvious. A very general formulation is the following one, proposed by 
Robinson (1974): 

Z=ZT’+W,B,+W,B,+A, (4.27) 

z= W,A, + W,A, + u, (4.28) 

with Z, Z and r defined as before; A and U are (n x 1) and (n x k) matrices of 
disturbances, each row of which is taken to be normally, independently distrib- 
uted with variance 0 and ‘k, respectively. No a priori restrictions are imposed on 
these matrices. W,, W, and W, are (n X m,), i = 0,1,2, matrices of observable 
exogenous variables, and A,, A,, B, and B, are conformable matrices of regres- 
sion coefficients. 

This model allows for structuring elaborate causal chains between variables. 
The indicators Z are determined not only by the latent variables 3 but also by a 
set of exogenous variables. The latent variables in turn are determined by a set of 
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exogenous variables, some of which (W,) may also occur in the indicator 
equation. Note that there is no simultaneity in the model: the causal chain is in 
one direction, the W’s determining Z directly and, after a detour, via z. For this 
model, Robinson (1974) discusses identification and presents a (limited informa- 
tion) estimation method. The problems involved are apparent from the reduced 
form of (4.27) and (4.28): 

Z=W,A,T’+W,(A,r’+B,)+W,B,+A+UT, (4.29) 

where each row has variance-covariance matrix 0 + rJ/r’. The model has, just 
like the MIMIC model, patterned coefficient matrices and a patterned 
variance-covariance matrix. Some of the coefficients are clearly underidentified. 
After imposing appropriate restrictions, overidentification may result. Instead of 
Robinson’s method, one might estimate the (appropriately restricted) model by 
FIML, using (for instance) the LISREL computer program (see Section 5.3). 

What should be clear from the development in this section (especially this 
subsection) is that an important convergence in methodology between psychomet- 
rics, sociometrics and econometrics has taken place over the last decade. The 
input into econometrics from the other two social sciences induced a breakthrough 
in the measurement error problem; in return, econometrics can contribute rigor in 
the fields of identification, estimation and hypothesis testing, areas where psycho- 
logical and sociological researchers tend to be somewhat more casual than 
econometricians. 

5. Simultaneous equations 

Stripped to its bare essentials, the linear simultaneous equations model with latent 
variables is the following. Let Z be an (n X L)-matrix of observations on an 
(L x l)-vector with n data points. Let Z be generated by an unobservable, “true” 
part Z of order (n X L) and an (n X L)-matrix U of measurement errors, each 
row of which is independently N(0, 52) distributed, with D an (L X L)-matrix: 

Z=Z-tU. 

The latent matrix Z is subject to R linear constraints, R I L: 

(5.1) 

Zr=o, (5.2) 

with r an (L X R)-matrix of coefficients which has to be estimated. (The zero 
restriction is for convenience only and can be relaxed at some notational cost.) 

When R = 1, (5.1) and (5.2) constitute the single-equation errors-in-variables 
model, where all variables are treated in a symmetric way. If some row of u 
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happens to be uncorrelated with the other rows of U, it may be interpreted as an 
error-in-equation, and the usual one-equation errors-in-variables model arises. 
For R > 1, (5.1) and (5.2) constitute a simultaneous errors-in-variables model. 

In the early days of econometrics, attention focused on the case where s2 is 
known (or known up to a scalar factor) and there are no restrictions on the 
coefficients apart from normalization. In Section 5.1 we will briefly dwell on this 
case, mainly because of its historical interest. Then, in Section 5.2, we will pick up 
the “mainstream” approach to dealing with simultaneity. Section 5.3 discusses the 
LISREL computer program, which is well-suited to estimate linear equations 
systems with latent variables. 

5.1. The case of s2 known 

When s2 is known, r can be estimated by maximizing the likelihood of U subject 
to Zr= 0. [See (5.1) and (5.2).] The main results are due to Tintner (1945), 
extending results for the case R = 1 due to Van Uven (1930), which became well 
known to econometricians mainly through the work of Koopmans (1937, ch. 5). 
Also for R = 1, Malinvaud (1970, section 10.5) derives the variance-covariance 
matrix of the asymptotic distribution of f. 

An important special case arises when only the first G columns of 2 are 
unobservable, the last K = L - G being observable. Konijn (1962) discusses 
identification and estimation of this model. 

Konijn’s work may be viewed as the culmination point of a research direction 
that at present is dormant. Since the early 195Os, the emphasis in econometrics 
has focused on identification based on a priori restrictions on r rather than on D 
being known, as the empirical value of the latter case seems to be limited. Still, it 
might be a fruitful research project to make the communalities and differences 
between the two approaches explicit, e.g. by translating restrictions on r into 
restrictions on 52. An attempt to use the errors-in-variables approach for the 
simultaneous equations model was made by Keller (1975), for instance, who 
demonstrates that several well-known limited information estimators correspond 
to the errors-in-variables estimator for particular choices of s2. 

5.2. Identification and estimation 

In the non-simultaneous multiple-equations model, identification is achieved by 
employing auxiliary relations linking the latent variables to observable variables. 
The outstanding feature of the simultaneous equations model containing latent 
variables is that identification may be achieved without such additional inforrna- 
tion, because sometimes overidentifying information already present in the model 
can be used to remedy the underidentifiability caused by measurement error. In 
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this section we will discuss some equivalent ways of assessing the identifiability of 
a simultaneous equations model containing latent variables. Complications arise 
when there are latent variables which enter into more than one equation or when 
the measurement error of latent variables in different equations is correlated. 
Then, identification cannot be settled on an equation-by-equation basis anymore 
and the structure of the total model has to be taken into consideration. 

When an exogenous variable is measured with error, its observed value is no 
longer independent of the equation’s disturbance and may be considered as an 
additional endogenous variable. Accordingly, we may expand the model by an 
additional relation. This approach is due to Chemoff and Rubin (1953) and is 
also used by Hausman (1977). As an example, consider the two-equation model of 
Section 1.4 (in vector notation): 

Yl + PI2 Y2 = Yllll + El, 

PZl Yl + Y2 = Y2262 + Y23h + e2 3 
(5.3) 

where y1 and y, are (n X 1)-vectors of observations on the endogenous variables, 
and <r, C2 and & are (n x 1)-vectors of observations on the exogenous variables; 
er and e2 are (n X 1)-vectors of disturbances, independent for different observa- 
tions, with zero expectations, variance alIZ,, and u22Znr respectively, and covari- 
ante ar2Z,. Let t1 be unobservable, and let n, be a proxy: 

x,=&+u,, (5.4) 

with the measurement error or assumed to be distributed N(0, u[,,,Z,), indepen- 
dent of et and e2. 

The translation of an unobservable into an additional endogenous variable can 
be made as follows. Let the elements of II, t2 and t3 be jointly normally 
distributed. Then the regression of [r on t2 and t3 can be written as: 

(5.5) 

with ur distributed as N(0, uUUZn), independent of E2, [s, er, e2 and ur. Substitu- 
tion of (5.5) into (5.4) and (5.4) into (5.3) yields the following three-equation 
system:13 

Y, + PI2 K - yllxl = e1 - yllt+ T 

P2r y1 + Y, = y2212 + y2& + e2 9 
x,=a2~,+a,E‘3+u~+u1. 

(5.6) 

“Not only is it possible to transform a model with errors in variables into one without mismeasured 
variables, one can also reformulate standard simultaneous equation models as functional models. For 
reasons of space we do not give the relationship between both models, but refer to Anderson (1976) 
instead. Among the results of exploring the link between functional and simultaneous models are 
asymptotic approximations to the distributions of various estimators. See Anderson (1976.1980) and 
Patefield (1976) for details. 
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This reformulation of the system may be used to assess the state of identification. 
Still, this is no standard problem, since the variance-covariance matrix of the 
disturbances (2, say) of the extended structural model (5.6) is restricted: 

i 

51 + Yll%~ 012 Yll%J 

z:= a21 022 0 . 

I 

(5.7) 

Yll% 0 0”” + U”, 

So, two elements of ,?? are restricted to be zero. Identification for this type of 
restricted model was studied by Wegge (1965) and Hausman and Taylor (1983), 
who present rank and order conditions for identification. Below, we will discuss 
identification of the simultaneous model with latent variables using a somewhat 
different approach. 

Two features of this extension of the model should be noted. First, in order for 
(5.5) to make sense, the unobservable should be correlated with at least one other 
exogenous variable, i.e. a2 or a[3 should be non-zero. Second, (5.5) fits in the 
Zellner-Goldberger approach of relating an unobservable to other, observable 
“causes”. In the simultaneous equations context, such an additional relation 
comes off quite naturally from the model. 

A direct approach to the assessment of the identification of the simultaneous 
equations model with latent variables is the establishment of a rank condition 
that generalizes the rank condition for the usual model without latent variables. 
Let the model be: 

YB’ = ZT’ + U, (5 -8) 

X=E+V, (5.9) 

with Y and X being (n X G) and (n X K) matrices of observations, Z the 
(n x K )-matrix of true values of X and I/ the (n X K )-matrix of measurement 
errors, B and r (G X G) and (G X K) coefficient matrices and U an (n X G) 
disturbance matrix; U and V are mutually independent and their rows are 
independently normally distributed with variance-covariance matrices 2 and 52, 
respectively. 

The covariance equations corresponding to (5.8) and (5.9) are, in obvious 
notation: 

&r= B-‘I’&&‘(B’)-‘+ B-'xZ(B')-l, (5.10) 

zux= B-'EZ,, (5.11) 

E xx=lzz++. (5.12) 
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(When we have a structural model, ZEZ denotes the variance-covariance matrix 
of a row of 5; when we have a functional model, it denotes lim(l/n)ZT.) 
Rewrite (5.11) using (5.12): 

zrx = B-‘r(&, - 52). (5.13) 

When B, r and 52 are known, (5.10) and (5.12) serve to identify 2 and ZEE; so 
a priori information from (5.13) and identification of the full model is equivalent 
to the identification of B, r and s2 (e.g. normalizations, exclusions, and symmetry 
restrictions on fin). 

A necessary and sufficient rank condition for identification can now be devel- 
oped as follows. Define a, = vec( B, r)‘, o = vet s2, and let a = (a;), w’)’ be the 
vector of all parameters. Then the a priori information can be written as: 

Ra=r, (5.14) 

with R being an (m x (G(G + K)+ K*))-matrix and r an (m X 1)-vector of known 
constants. Now, a is (locally) identifiable if and only if the Jacobian: 

J=d vet{ B-‘r(Zxx - 

Ra 
(5.15) 

has rank G* + GK + K*, i.e. J has full column rank [and if a is locally 
isolated-see, for example, Fisher (1966)]. It remains to evaluate J. Using 
standard matrix derivation methods, one readily obtains: 

J= - B-l@ (- .lfxv, &) - B-‘lX3ZK 

R 

This matrix has, of course, the same rank as: 

(5.16) 

(5.17) 

As an example, consider the simple model (5.3). The a priori restrictions are 

Pi1 = P22 = 1, Y12 = Y13 = Y21 = 0, and, when uncorrelated measurement error is 
assumed, 52 = 0 apart from Q,,. So, there are G(G + K)+ K* = 19 parameters on 
the one hand and GK + m = 6+2+ 3+ 8 = 19 restrictions on them. Denoting 
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non-zero elements by a “ + ” for the sake of transparency, then J is: 
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+ + + + + 
+ + + + + 
+ + + + + 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

+ 0 0 0 0 

0 0 0 + 0 

0 0 0 0 + 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

+ + + + + 

+ + + + + 
+ + + + + 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 + 0 0 0 

0 0 + 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

+ 0 0 0 0 0 0 0 0 

o+ooooooo 
oo+oooooo 

ooo+oo+oo 
oooo+oo+o 
ooooo+oo+ 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 (5.18) 
0 0 0 0 0 0 0 0 0 

o+ooooooo 
oo+oooooo 
ooo+ooooo 
oooo+oooo 
0 0 0 0 0 + 0 0 0 
oooooo+oo 
ooooooo+o 
oooooooo+ 

The rank of this matrix is easily assessed, as follows. The last 13 rows correspond 
to normalizations and exclusions (i.e. it shows the incidence of zero and non-zero 
elements in R); the columns in which non-zero elements occur are clearly linearly 
independent. So, the rank of J equals 13 plus the rank of the matrix that remains 
after deleting the rows and columns in which these non-zero elements occur: 

+ + 000 + 
+ + 000 0 
+ + 000 0 

(5.19) 
0 0 + + + 0 
0 0 + + + 0 
0 0 + + + 0 

This matrix generally has rank 6, so the rank of _? equals 19. The model is hence 
identified. 

Now suppose that [z instead of II is unobservable. In terms of the scheme, this 
means that, in the last column of (5.19), the “+” moves from the first to the fifth 
position, introducing a linear dependence between the last four columns. Under 
this new specification, the model is underidentified. 
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This example serves to illustrate a few points. First, the identifiability of the 
model does not only depend on the number of unobservable variables, but also on 
their location. A measurement error in the first equation does not impair 
identifiability, since this equation is overidentified when all exogenous variables 
are measured accurately. This overidentification allows for identification of the 
measurement error variance of ti. The second equation is just-identified and 
hence becomes underidentified when one of its exogenous variables cannot be 
observed. 

Second, each exogenous variable occurs in exactly one equation. This means 
that the last column in the reduced “incidence” matrix in (5.19) contains just a 
single non-zero element. In such a situation, identification can still be assessed 
equation by equation. The situation becomes more complicated when a particular 
unobservable occurs in more than one equation. Then the identifiability of the 
equations sharing that unobservable becomes intertwined. 

Third, the identifiability of the model depends basically on the pattern of zero 
and non-zero elements in J only. Further information as to their exact value is not 
needed. (It is assumed that Z,, and Z,, have full rank and that the a priori 
information is in the form of exclusions and normalizations.) Note that the 
pattern of correlations between the 5’s does matter; if say [t is uncorrelated with 
E2 and t3, (5.19) becomes: 

+ + 000 + 
+ 0 000 0 
+ 0 000 0 

0 0 + 0 0 0 
0 0 + + + 0 
0 0 -t + + 0 

(5.20) 

where the second and sixth columns are proportional. So, the rank of J is reduced 
by one. This problem has been noted already when discussing (5.5). 

On the basis of the Jacobian, rank and order conditions for identification, both 
necessary and sufficient, can be derived, and a number of these results have been 
reported in the literature. They pertain to identification of the complete system as 
well as to identification of a single equation. Contrary to the situation with 
simultaneous equations without measurement error, this distinction is not trivial: 
a certain latent variable may enter into more than one equation, thereby tying 
together the identification of these equations. This problem occurs even when 
each latent variable enters into a single equation only, as soon as the measure- 
ment errors have a non-zero correlation. 

In the first published paper on the problem, Hsiao (1976) presents a number of 
sufficient conditions for identification of a single equation of the model when the 
measurement errors are uncorrelated. For the correlated case, he derives on the 
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basis of the Jacobian, a necessary and sufficient rank condition for a single 
equation, plus a derived necessary order condition. Geraci (1976) uses the 
Jacobian to derive, for the uncorrelated measurement error case, an “assignment 
condition” for identification of the complete model. This is a necessary condition, 
which can be verified solely on the basis of knowledge about the location of the 
latent variables and the number of overidentifying restrictions on each equation 
in the case of no measurement error. These “conditional” overidentifying restric- 
tions can be used to identify variances of measurement error of exogenous 
variables in the equations where the restrictions apply. If it is possible to assign 
each error variance to a particular equation, the assignment condition is verified. 
In a recent paper, Geraci (1983) presents rank conditions for individual structural 
relations, both for a general model, where U and V may be correlated and ti is 
non-diagonal, and for the restricted model with s2 diagonal. 

Estimation of the simultaneous equations model with latent variables can be 
done by means of a program for the analysis of covariance structures, like 
LISREL (see Section 5.3). Under normality, LISREL delivers FIML estimates of 
the model parameters. (The newer versions of LISREL also have a least-squares 
option available.) 

With the development of LISREL, the scope for alternative estimation methods 
seems to be limited. There are a few papers that propose other estimators. Geraci 
(1977) proposes three estimators that are all asymptotically equivalent to FIML 
but are likely to be simpler to compute. These estimators are based on the GLS 
approach due to Browne (1974), which leads to a simpler optimization criterion.14 
Hsiao (1976) presents, for the case of uncorrelated measurement error, a FIML 
estimator based on a transformation of the model, and a single-equation estima- 
tor. 

5.3. The analysis of covariance structures 

The breakthrough of latent variable modelling which has taken place in econo- 
metrics over the last decade has been accompanied by the availability of succes- 
sive versions of the computer program LISREL. LISREL is particularly well-suited 
to deal with systems of linear structural multiple and simultaneous equations 
(“structural” in the sense of modelling the causal process, not as the opposite of 
functional!). This,section describes the model handled by LISREL and discusses 
the importance for latent variable modelling in econometrics. For a full account, 
see Joreskog and S&born (1977, 1981). LISREL (Linear Structural Relations-a 
registered trademark, but we will use the name to denote both the program and 
the model) is not the only program available, nor is it the most general linear 

14See Jiireskog and Goldberger (1972) for a clear exposition of GLS vis-&vis ML in the context of 
factor analysis. 
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model; yet its general availability and user-friendliness has made it perhaps the 
most important tool for handling latent variables at present. 

The idea behind LISREL and similar programs is to compare a sa.mple 
covariance matrix with the parametric structure imposed on it by the hypothe- 
sized model. Therefore, this type of analysis is frequently called the ‘analysis of 
covariance structures’ [e.g. Joreskog (1970); see Bentler (1983) for an excellent 
overview]. 

The general format of the model to be analyzed by LISREL is as follows, using 
the notation of the LISREL manual. Let 11 and E be (m X 1) and (n X 1) vectors 
of latent dependent and independent variables, respectively, satisfying a system of 
linear structural relations: 

Br)=G+S, (5.21) 

with B and r (m x m) and (m X n) coefficient matrices, B being non-singular, 
and l an (m x 1)-vector of disturbances. It is assumed that t, 6 and { have zero 
expectations, and that [ and { are uncorrelated. Instead of n and t, ( p X 1) and 
(q x 1)-vectors y and x are observed such that: 

Y=A_yrl+& (5.22) 

and 

x=n,t+s, (5.23) 

with A, and A, (p X m) and (q X n) coefficient matrices, and E and 6 ( p X 1) and 
(q x 1) vectors of measurement errors, uncorrelated with q, I, l and each other, 
but possibly correlated among themselves. The vectors y and x are measured as 
deviations from their means. 

Let @ and 9 be the covariance matrices of 6 and 3, respectively, and let 0, and 
0, be true variance-covariance matrices of E and 6, respectively. Then it follows 
from the above assumptions that the ( p + q)x( p + q) variance-covariance ma- 
trix 2 of ( y’, 1’)’ is: 

‘TX= 
A,.{ B-‘(P-W’+ ‘I’)( B’)-l}“;. + 0, 

A$T(B’)-‘A’, 
(5.24) 

The parameters occurring in ,Z (A),, A,, B, r, @, ‘k, O,, 0,) are estimated on the 
basis of the (( p + q)X( p + q))-matrix S of second sample moments of x and y. 
In order to render the model identified, restrictions on the parameters have to be 
imposed. LISREL can handle two kinds of restrictions: first, parameters may be 
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set equal to other parameters. Given these restrictions and the structure that 
(5.24) imposes on the data, LISREL computes estimates of the parameters. These 
estimates are the FIML estimates when (y’, x’) is normally distributed, i.e. the 
criterion: 

ln]z] + tr(SX’), (5.25) 

is minimized. (As mentioned above, newer versions have a least-squares option.) 
The identification of the parameters is checked numerically by LISREL. It 

evaluates the information matrix on the basis of the starting values for the 
parameters in the iterations; when it is not positive definite, this is an indication 
of underidentification. 

By imposing appropriate restrictions, the LISREL model reduces to any one of 
a number of well-known models. For instance, it is easy to see how (5.24) reduces 
to the FA model-one simply has to impose sufficient restrictions to retain only 
the part T@r’+ 9 in the NW-corner. From (5.21), the reduction to simultaneous 
equations is apparent. For a reduction to an econometric model, it is desirable to 
take x fixed, i.e. the analysis takes place conditional on X. This is imposed by 
specifying A, = I, 0, = 0, and @ = SdYdY, with S.Y.r the sample covariance matrix of 
x. Measurement error in x is introduced by relaxing 0, = 0. 

Some limitations apply to the use of LISREL. It is limited to linear structures 
and it assumes independence of observations, rendering it unfit for the analysis of 
dynamic models, except some simple ones [Joreskog (1978)]. The LISREL model 
is restricted in several ways and many extensions can be thought of; see, for 
example, Bentler and Weeks (1980) for a multi-level extension, Lee (1980) for a 
model with inequality constraints, and Muthtn (1979) for an extension to probit 
analysis. A minor caveat applies to the numerical assessment of the identifiability 
of a particular model; an unfortunate choice of starting values may accidentally 
reduce the rank of the information matrix, as computed on the basis of these 
values (nothing can beat analytic insight, but the easy use of LISREL does not 
stimulate this). When the program indicates underidentification, it may still be 
difficult to indicate the troubled. part of the model. Moreover, care must be taken 
in interpreting the goodness-of-fit of the model [Fornell (1983)]. Finally, the 
assumed multinormality may be troublesome, although the results by Kapteyn 
and Wansbeek (1981) suggest that the normality assumption regarding the latent 
variables can be replaced by functional assumptions without changing the 
asymptotic distribution of the estimators. 

The B. Hall MOMENTS program (1979) generalizes LISREL and is no doubt 
more easily understood by economists, though it requires a more detailed specifi- 
cation by the user. Several recent applications attest to its usefulness. 
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6. Dynamic models 

As discussed in previous sections, when variables are measured with error, an 
otherwise identified contemporaneous model may become unidentified in the 
sense that no consistent estimator of the parameter exists (see Section 2). But if a 
model contains a dynamic structure, whether in the form of a description of 
dynamic behavioral relations, or in the form of serially correlated exogenous 
variables, measurement error need not affect the identifiability of a model. 

In this section we shall briefly illustrate how different dynamic assumptions 
affect the identification and estimation of a model. 

We assume that all the variables are weakly stationary in the sense that the 
covariance sequence Ey,y,_, = a,,,,(’ - s) depends only upon i - s and not upon 
i.” Since most estimation methods use second order quantities, we shall consider 
the problem of identification in terms of the covariances only.16 We assume that 
the second-order moments of observables are estimable, thus, we shall assume 
that they are known precisely and ask what additional restrictions are required in 
order that the parameters of a model should be uniquely determined by these 
covariances. More detailed analysis of different dynamic models is contained in 
Engle (1974, 1980), Hannan (1963), Hsiao (1977,1979), Hsiao and Robinson 
(1978), Maravall (1979), Maravall and Aigner (1977), and Nicholls, Pagan and 
Terre11 (1975). 

6.1. Identification of single-equation models 

We first consider the problem of identification of a univariate process. We use a 
simple model to illustrate the effects of each one of the different dynamic 
assumptions, and then state the theorem for the general case. For details of the 
proof, see Maravall(1979) and Maravall and Aigner (1977). 

Consider the following dynamic model: 

15For a possible generalization of the results in this section to non-stationary cases, see, for example, 
Hannan (1971) and Maravall(l979). 

t6As discussed before, when variables are normally distributed all the information is contained in 
the first and second moments. When variables are not normally distributed, additional information 
may be contained in higher moments, which can be used to identify and estimate unknown 
parameters. 
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where ti and ei are independent, and the roots of 
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(6.2) 

are greater than one in absolute value and the two sets have no roots in 
common.17 The endogenous and exogenous variables, 4; and .$,, are assumed to be 
measured with error, according to (2.2) and 

_Y,=?i+ ui, (6.3) 

where U, is white noise with mean zero and constant variance a,,. 
For simplicity, we shall for the moment assume that q and 5, are white noise. 

Then: 

Y,+B,Y;-t+ .** + ~~Bpyi-p + YOXi + . . ’ + y4xj-4 = Wi, 

where 

W, = E, + U, + PlUi~l + ’ . ’ + pp”,-p + YOU, + . ’ ’ + YYU,~~ 

will have the property: 

uW,(0)=var(wi)=o,,+o,,(l+/3~+ **. +@;)+~7~~(yi+y:+ 

e,,(l) = cov(w,w;-1) = $,(P, +&P* + . . * + #q-&J 

+ U”“(Y,Y, + . . . + Yq-lYq), 

u~~(2) G cov( wiwi-*) = ‘UU( PI? + PI& + . ’ . + Pp-ZPp) 

+ U”U( YoY2 + . * * + Yq-*Yq)* 

uWR,(s) = cov( w,w,_,) = 0, for IsI> max( p, q) = 7. 

(6.4) 

(6.5) 

As this is the covariance function of a 7th order moving average process, all 
information about the unknown parameters is contained in the variance and first 

“For the generalization of results contained in this section to the non-stationary case, see Maravall 
(1979). 
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T autocovariances of WJ~. Thus, by (6.4) we know that the distribution of y is 
determined by the 0, 1,. . . , T + p, autocovariances of y and the O,l,. . . ,q, cross- 
covariances between y and x. 

From (6.1) we know that these cross- and autocovariances satisfy: 

yfx (0) + Yo I %x (0) - %I = 07 

u,,(l) +P,u,,@) + Yl[ %x(O) - %“I = 0, 

(6.6) 
uy,w+ *. . +Ppuy,k - P)+Y,bxx(o)-~““l = 0; 

(a,,(0)-a,,)+P10,,(-1)+ .*. + P)Jyy ( - P > + YoUxy (0) + Ylqry ( - 0 

+ *.* +Y,a,,t-4)=u,,9 

u,,(l)+P,[u,,(O)-o,,]+ .** +PpJ- P+~)+Y,u,,(~)+Y~u~~~(~) (6.7) 

+ *.. +y,o,,(-q+l)=O, 

~,,(r>+P,u&-1)+ .** +y,a,,(-q+7)=0; 

and 

where u,,(i) = a,,( - j) = 0 fori -C 0. 
The Jacobian of (6.6), (6.7), and (6.8) is of the form: 

4 
J= ‘Jz’ . ) 

i .i 
J; ‘:‘d 

(6.8) 

(6.9) 

where 5t, 5*, and J3 are the partial derivatives of (6.6) (6.7), and (6.8) with respect 
to p’s, y’s and uUO, uUU, 
just p. 

uEE and J1 and J2 have p + q i-4 columns while J3 has 
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’ Defininga(px(p+q+4))matrix(J,- T’)‘, it is easy to see that rank(J) = rank 

. It follows that the autoregressive parameters pi, &,..., /.I,, are identified. 

(For details of the identification conditions relying on the rank of a Jacobian 
matrix, see Chapter 4 in this Handbook by Hsiao.) 

The Jacobian ./i is of the form: 

0 0 % - O”,, 0 0 

ovx(0) ... 0 0 
J, = 

%x - ov,, 0 

o,,(q-1) “’ o,,(q-p) ‘.’ ox,,-a,.,. 

The Jacobian J2 is of the form: 

i o,,(-I) “. G-P) -J.,(O) -TLC-l) 
o,,(O)-05, “. orr(-p+1) 0 a\ I(O) 

Q,,(l) I,,-%” ‘.’ o,.I.(-p+2) 0 0 T,(O) 

J>= o,,(p-1) ‘.’ o,v(O)- %” 0 

-uo 0 0’ 
-y, 0 0 

: 

-v, 0 0 

(6.10) 

o,,(-q) 0 -1 -1 

01,(1-q) 0 -4 0 

5,(2-q) 0 -Pz 0 

ot,(P-q) 0 -sp 0 

I o,,(P+l) U,,(P) a,., (1) 0 0 o,,(P+l-q) o,,(p+2-q) 0 0 0 0 0 0 0 0 0 0 0 0 0 

(6.11) 

If p = 1 and q i 1 by elementary row and column operations we have rank 
(J) = q +4. The total number of parameters are q + 5, therefore the complete 
model is not identifiable. On the other hand, if q 2 2 or p 2 2 and q 2 1, rank 
(J) = p + q + 4. Model (6.1) is locally identified if and only if either (i) p 2 2 and 
q21 or(ii)p>l andql2. 

Generalizing this result to the model: 

9; + Pil;-1 + . . . + Ppv;-, 

(6.12) 

where xk, = &, + ski* and tki, uki, are mutually independent white noises, Mara- 
vall (1979), Maravall and Aigner (1977) obtain the following result: 

If the (K + 1) integers, p, q 1,. . . , qK, are arranged in increasing order (ties are 
immaterial), and qy denotes the one occupying thejth place in this new sequence, 
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(6.12) is locally identified if and only if qJ* 2 j, for j = 1,2,. . . , K + 1. 

When the shocks &i are serially correlated, the above results on identification 
will have to be modified. We first consider the case where E; is a s th order moving 
average process, ei = a, + 8iai_i + . . - + 6sai_s, where 0, # 0 and ai is white noise 
with mean zero and variance a,,. 

The j-lag autocovariances of ei will be equal to zero for j > s. In other words, 
the s + 1 unknown parameters 8,, . . . , 13,, and a,, only appear in the variance and 
first s-lag autocovariances of y. If other parameters of the model are identified, the 
autocovariance functions of y can be rewritten in terms of 8’s and a,, as in the 
case of standard s th order moving average process. Thus a unique solution for 
them exists [for details, see Maravall(1979)J. However, if the variance and first s 
autocovariance functions of y are used to identify this set of parameters, it means 
that we have (S + 1) less equations to identify other parameters.” Assuming ei to 
be a sth order moving average process (6.12) is locally identified if and only if 
q,*>=j+s,j=1,2 ,..., K+l. 

Alternatively, suppose we assume that the shocks, ei, follow a stationary rth 
order autoregressive process, E; = ~i~~_i + . * . + ~,Jz_~ + a;. As we can see from 
(6.1), under this assumption the autocovariance functions of y alone can no longer 
be used to identify p. However, /? can still be identified by the cross-covariance 
functions: 

(6.13) 

for j > max( p, q) [or see (6.11)]. We also note that for j > max( p, q)+ r, the 
autocovariance function of y is: 

where 

Once the /3’s are identified by (6.13), u,,(j) is identified also by (6.14). Therefore, 
the p’s are identifiable by (6.15); hence u,,,. Thus, contrary to the case of white 
noise shocks when a,, only appears in the O-lag autocovar-iance equations, now at, 
can be identified through the j-lag autocovariance equations of y when j > 
max(p, q). In a way, the autoregressive shocks help to identify a model by 
reducing the number of unknowns by one. Assuming ei to be a stationary r th 

‘*Note now that this parameter set no longer needs to include fleer, which can be identified from B’s 
and a,,. 
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order autoregressive process, model (6.12) is locally identified if and only if 
q,*>j-1, j=l,..., K+l. 

Combining these two results we have the general result with regard to autocor- 
related shocks. If the ri follow a stationary autoregressive moving average process 
of order r and S, E, = pi&;-i + *. * + prqr + a, + 61a,_l + . . . + 8sai_s, we have 
that model (6.12) is locally identified if and only if (a) when r > s, q,? 2 j - 1; (b) 
whenrIs,q,*>j+s-rforj=l,..., K+l. 

These results are based on the assumption that the exogenous variables are 
serially and mutually uncorrelated. If they are correlated, additional information 
will be available in the cross- and autocovariance functions of the y’s and x’s, 
and hence conditions for identification may be relaxed. 

The main reason that a dynamic structure helps in identifying a model is 
because of our strong assumption that measurement errors are uncorrelated. This 
assumption means that cross- and autocovariances of the observed variables equal 
the corresponding ones of the unobserved variables. When measurement errors 
are autocorrelated, the problem becomes very complicated. For some examples, 
see Maravall (1979) and Nowak (1977). 

6.2. IdentiJication of dynamic simultaneous equation models 

We have seen how a dynamic structure may affect the identification of a single 
equation model. The basic idea carries through to the dynamic simultaneous 
equation model. However, the problem is complicated by the interrelationships 
among variables, which means in general that stronger conditions are required 
than in the single equation model to ensure the proper rank of the Jacobian. We 
illustrate the problem by considering the following simple model: 

BOSi + B,r), - I+ rti = El P 
(6.16) 

where r) and < are (G x 1) and (K x 1) vectors of jointly dependent variables and 
exogenous variables, respectively; e is a (G x 1) vector of disturbance terms with 
covariance matrix 2:. We assume that B, is non-singular and that the roots of 
B, + B,L = 0 lie outside the unit circle. We again assume that the exogenous 
variables .$ are stationary and disturbance e is white noise. The 9 and [ are 
unobservable. They are related to observable y and n by: 

y,=qi+u. 1) with Eu,uf = A, Euie; = 0, (6.17) 

and (2.2). 
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Since the measurement errors are assumed to be serially uncorrelated, we know 
that C,,,,(r) and CXX(r) satisfy: 

C,,y(0) = EY;$= E(q + ui)(qi + q)‘= C,,(O)+& 

C,,(O)=Ex,xj=E(&+~,)(~~+e,)‘=C~~(0)+52; (6.18) 

and 

C,,(~)=Eyiy:_.=Er)i~i-.,=C,,(7), 
C,,(r) = Exixj_, = E&_, = CEI( r), for r # 0. 

Thus, the second-order moments satisfy: 

B,C,,(l)+B,(C,,(O)-n)+rc,,(l)=O, (6.19) 

B,C,,(O)+B,C,,(-l)+r(C,,(O)-S2)=0; (6.20) 

and 

B,C,,(T)+B,C,,(7-1)+TC~,,(7)=0, r=2,3 ,***, (6.21) 

B,C,,(7)+B,C,,(7-1)+rc~,(7)=0, 7=1,2 )... . (6.22) 

We stack (B,,, B,, r) into a (1 X (2G2 + GK))-vector A’ and assume that they 
satisfy R linear restrictions: 

@A=O, (6.23) 

where @ is an (R x (2G2 + GK))-matrix with known elements. Let x’ and w’ 
denote the (1 x n) and (1 X I) vectors consisting of unknown elements of A and 
s2. Letting (r’ = (A’, x’, w’), then a’ has to satisfy (6.19)-(6.23). Now we know that 
the 1 x(2G2 + GK + n + I) parameter vector a’ is locally identified if and only if 
the Jacobian 

@J . . . . . . . . . . . . . . . . . . 

wKJw4 
WC”,“(l) 
wJc”.m 

. . . . . . . . . . . . . . . . . . 
Z&qx( - 1) 
ZG @ qtr (0) 

. 0 : 0 . . . . . . . . . . . . . . , . 

WC&) :H:O 

Z@C,,(2) : 0 : 0 

Z,@C,,(3) I 0 ; 0 
. : 

;,ii..~~cOj_S2j.j.b.i '1 

k@CY,(l) : 0.0 . . : : 

(6.24) 
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has rank (2G2 + GK + n + [) around its true value, where H is a (G2 X n) matrix 
whose elements are either zero or elements of B,, and U is a (GK X 1) matrix 
whose elements are either zero or elements of r. 

Unfortunately, this condition is usually difficult to check in practice. If we 
know that the matrix 

(6.25) 

L 

has rank (G + K), the d independent columns of (B,, B,, r)’ will form a basis of 
the column kernel of the transposes of (6.21) and (6.22). Then by an argument 
similar to Fisher’s (1966) we can show that the usual order and rank conditions 
are necessary and sufficient to identify a’. However, because of the interrelation 
among G different variables, we need a stronger condition than the univariate 
case (Section 6.1) to ensure the rank of (6.25). Using the result of Hannan 
(1975,1976) we know that one such condition isi to assume that B, is non-singu- 
lar and that C,,(l) is non-singular, C,;(q) = 0 for some q 2 2. 

Under these assumptions, the matrix 

(6.26) 

has rank (G + K), where matrix (6.26) is a submatrix of (6.25). Therefore, we 
have a necessary and sufficient condition to locally identify the coefficients of 
(6.16) is that rank (M@‘) = G2, where M = (I,@&, Z,;@B,, Z,Sr). 

If instead of assuming E, to be serially uncorrelated, we assume that E, is 
stationary, then C,(r) for r ~1 no longer satisfies (6.19) and (6.21) and A is not 
identifiable. Now the parameter (A’, w’) is locally identified if and only if the rank 

“For other conditions, see Hsiao (1977). 
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Again, the rank of (6.27) is not easy to check. However, under certain 
conditions [Hsiao (1979)] the matrix 

(6.28) 

has rank (G + K), and hence the usual order and rank condition is necessary and 
sufficient to identify (6.16). 

4.3. Estimation of dynamic error-shock models 

Most literature on dynamic error-shock models deals with the identification 
problem only. Of course, if a model is identified, the unknown coefficients can be 
consistently estimated by solving the cross- and autocovariance equations. How- 
ever, such a method is not efficient. In fact, it appears that an efficient, yet 
computationally simple estimation principle for a general error-shock model 
remains to be worked out. We shall in this section sketch some approaches to 
obtaining efficient estimates as background information for the development of 
future numerical studies. 

We first consider the case where only dependent variables are observed with 
error (i.e. a,, = 0, and x = I). As shown in Section 6.2 a dynamic model (6.1) 
under certain assumptions can be rewritten as a dynamic model with a moving 
average disturbance term (ARMAX). Many people have suggested methods for 
estimating ARMAX models [e.g. see Box and Jenkins (1970) and Phillips (1966) 
for time domain approaches and Hannan and Nicholls (1972) for a frequency 
domain approach; also see Nicholls, Pagan and Terre11 (1975) for a survey]. 
However, such methods, although they remain consistent, are no longer efficient 
because they ignore the restrictions in the composite disturbance term. An 
efficient estimation method would have to take into account all prior restrictions. 
Unfortunately, the prior restrictions in this case are very complex and difficult to 
incorporate. 

We illustrate this point by considering a simple case of (6.1) where p = 1 and 
q = 0. Now we have: 

77, +Pllj-1 + Y5izEj, (6.29) 

Y, = 17, + u; (6.30) 

and 
x, =[. ,’ (6.31) 
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Rewriting (6.29) in terms of observables, we have: 

y; + fly,_i + yt, = Ej + U, + Bu,-i = wi* 
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(6.32) 

Assuming ei to be white noise, the composite disturbance term w, has variance and 
autocovariances: 

~,,(0)=u,,+(1+~2)u”UU’ 
%J) =Bu,,9 
u,,(j) = 0, forj 2 2. 

(6.33) 

Clearly, this has the property of a first order MA process. Establishing the 
equivalences: 

W;=qJ;+l)~;_1=Ei+U;+/3Ui-1, (6.34) 

we can solve for values of \cI, which are 

(6.35) 

where p = ~,,/a,,. We choose the root which is greater than unity as the solution. 
It is clear from this example that the restrictions are highly non-linear, and 

arise as the solution of the roots of a polynomial. It is not an easy matter to 
impose the requisite restrictions. Generally, it is impossible to derive an analytical 
solution for models with composite disturbance terms. Pagan (1973) has, there- 
fore, resorted to numerical alternatives in order to obtain efficient estimates.*’ 

Let a denote the m x 1 unknown parameters. To obtain an estimated a, Pagan 
(1973) adopts the Phillips/Box-Jenkins methodology by minimizing &# with 
respect to a with the aid of the Gauss-Newton algorithm, leading to the following 
iterative formula: 

(6.36) 

20Bar-ShaJom (1972) has suggested a computationally simpler iterative scheme which involves 
solving the likelihood function as a system of non-linear equations with the parameters and 
unobservables n. The system of non-linear equations is then separated into two interconnected linear 
problems, one for the 9, the other for the parameters. Besides the problem of the non-existence of the 
MLE in his approach, it is dubious that his method will have good convergence properties, although 
he did report so in his numerical examples. 
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where 3 denotes the disturbance vector (it,. . . ,&,). Thus, the problem is shifted 
to one of computing derivatives. 

Of course, to complete the algorithm we need to specify the process for 
determining $ given a. One possibility would be to solve for the roots of the 
covariance generating function. However, Pagan (1973) reports that this approach 
revealed computational difficulties if the order of the moving average process was 
high. Hence, Wilson’s (1969) method for factoring a covariance function into its 
moving average form was adopted. 

The global minimum solution of the Pagan’s (1973) method is asymptotically 
equivalent to that of the maximum likelihood method, and hence is consistent and 
asymptotically normally distributed. However, there is no guarantee that the 
convergent solution is a global minimum. Therefore it is advisable to start the 
iteration from a consistent estimate and perform a number of experiments with 
other starting values. 

When exogenous variables are also measured with error (i.e. x, = 5, + u, and 
ui # 0), Pagan’s (1973) method cannot be applied and neither can the iterative 
schemes suggested by Aoki and Yue (1970), Cox (1964), Levin (1964), Ljung 
(1977) etc. The main problem appears to be the correlation between the mea- 
sured exogenous variables and the composite disturbance terms. If there is prior 
knowledge that measurement errors appear only at some frequencies [e.g. higher 
frequencies, Engle and Foley (1975)], or in other words that only a portion of the 
spectrum satisfies the model, Engle (1974, 1980) and Hannan (1963) have 
suggested a band spectrum approach. We illustrate their approach by considering 
model (6.29). 

The spectrum approach to estimating a involves first transforming the model 
by the (n x n) unitary matrix A with thei, Ith element equal to: 

(6.37) 

where I= J-1. Ignoring the end-effects which are of order l/h, we can write 
the log-likelihood function of (6.29) as: 

L=-~10g2n-~Clogf,(t,)-tCf,(~j)-1~,(fj) 
J J 

+ C log(1 + /3e”‘l), (6.38) 

where f,( rj) denotes the spectral density of w at frequency tJ: 

Y(‘J> = 

(6.39) 
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and t denotes the complex conjugate of the transpose. Maximizing (6.38) with 
respect to unknowns we obtain the (full) spectrum estimates. 

If only a subset of the full spectrum, say S, is assumed to satisfy the model, we 
can maximize (6.38) with respect to this set of frequencies, which leads to the 
estimator: 

[ 1 B =_ ? 
i I fw(lj) 

-1 

t eSt/ 
,;sfw(r,)p’ fy(rJ)- 1+2pcos1,+p2 &Xc I) 

fx,(~,)e+*~ fx (t, > 

x C fw(t,)-’ 

i I 

Jv(‘j)- 
fw(‘j) ecu, 

1+2pcosr, + p2 ) 

jss 
fx,v(‘j) 1~ 

(6.40) 

where f,,(t,) denotes the cross-spectral density between y and x. Under the 
assumption of smoothness of the spectral density, it can be shown that the band 
spectrum estimate (6.40) is consistent if a consistent estimate of f, is available. 
One way to obtain a consistent estimate of f, is by substituting a consistent 
estimate of p into: 

(6.41) 

The band spectrum approach has the advantages that no explicit assumptions 
about the autocovariance structure of the measurement error are needed, and that 
it is somewhat easier computationally. However, the portion of the frequency 
band with a small signal-to-noise ratio may be rather large, and so if all these 
frequencies are omitted the resulting estimate may have a rather large variance. In 
particular, we have been assuming that the measurement error has a uniform 
spectrum (white noise) which may imply that there is no frequency for which the 
signal-to-noise ratio is really large. Also, there may be a problem in knowing S. A 
full spectrum method thus may be more desirable. Hannan (1963) has suggested 
such an approach for the case where no measurement error appears in y (i.e. 
y, = n; and ui = 0). His basic idea is to first estimate uuu by substituting consistent 
estimates of /3 and y into the spectrum and cross spectrum of &, f, and fVX to 
obtain an estimated spectrum of 5, then use an optimally weighting method to 
estimate /3 and y. A generalization of Hannan’s (1963) method to the case when 
both dependent and exogenous variables are observed with error in a single 
equation model seems highly desirable. 

On the other hand, a full spectrum method can be applied to a simultaneous 
equation model without much problem. If a simultaneous equation model is 
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identified, this is equivalent to the existence of a sufficient set of instruments. 
Hsiao and Robinson (1978) have made use of this idea to suggest a (full 
spectrum) instrumental variable method for estimating the unknown parameters. 
Their method may be summarized as follows. 

The Fourier transform of (6.16) is: 

B(fj)Y(‘j)+Tx(fj) = w(zj>, 

where 

(6.42) 

B( r,) = B, + Bler’l, 

Wi=e, + BoUi + BlUj_l+ TU,, 

w( f,) = & jJl wieTrji. 

Since it is known that under fairly general conditions: 

lim Ew( t,)x( r,)+ =j,,,X( t,) = IX?, 
n-03 

f, +o, (6.43) 

we may rewrite (6.42) as: 

where the coefficients of the gth equation are normalized to be unity. The 
transformed model (6.44) possesses (asymptotically) the classical property of 
orthogonality between the “exogenous variables” x( f,) and the “residual” ii)( t,). 

We now stack (6.44) as: 

y(t,) = Z(t,)L’a+ ti(t,), 

where 

(6.45) 

Z~(f,)=(-[(l,ei’~)ey’(t,)oZ~],-~’(fi)~Z~,~~(r,)f,(f,)-‘~rj, 

[ 

L, 0 0 
L= 0 L, 0 1 ) 

0 0 L3 

a’ = (/3’, y’, 0’). 
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The matrices L,, L,, and L, and vectors j?, y, and w, are obtained as follows. 
Suppose there are G, zero constraints on B = [B, - Z,, B,]. Then the uncon- 
strained parameters may be rewritten as j3 = L,vec( B), where L, is obtained 
from Z2cz by eliminating the rows corresponding to zero elements. Likewise, if 
there are G, zero constraints on r we write the unconstrained parameters as 
y = L,vec(T), where L, is obtained from Z,, by eliminating the rows corre- 
sponding to zero elements. Also, we write w = L,vec(G), where L, is the 
((K - F)X K 2)-matrix obtained from ZKz by eliminating rows corresponding to 
the off-diagonal elements and the F (0 I F I K) a priori zero diagonal elements 
of s2. 

An instrumental variable method for (6.45) will be possible after we find an 
appropriate instrument for r(f,), and a consistent estimate of f,,(t,) = 
lim n --t ,EiC( t,)_ti+( t,). A possible instrument for y( t,) would be A( t,)x( t,), where 
A(t,) = j&f,)f;(t,)-‘. A consistent estimate of f,+(r,) may be obtained from: 

(6.46) 

where &r,) is some consistent estimate of B(t,), which may be obtained by 
solving the covariance equations. 

We may now define our estimates as: 

h= (LDL’)_‘Ld, 

where 

D=fFJ+“(f,)z(i,), 
J 

(6.47) 

‘= f C Wt(t~)Y(t~), 

J 

I 
(l,eSf~)@A(tj)x(t,)@~~‘(tj) 

W’(r,)= [z,-~~x-‘(rj)]x(fJ)@j,-‘(rJ) . 

L(fj~x(f~)~p.L(~j) 
1 

If the spectrum is smooth, we can prove that (6.47) is consistent and asymptoti- 
cally normally distributed. To obtain an efficient estimate it may be desirable to 
iterate (6.47). If E is stationary then (6.47) is efficient in the sense that the limiting 
covariance matrix is the same as that of maximum likelihood estimates based on 
Gaussian %(t,) [Hsiao (1979)], and iteration produces no improvement in 
efficiency. If E is a finite-order autoregressive moving average process, (6.47) is still 
consistent but will not be fully efficient [e.g. see Espasa (1979) and Hannan and 
Nicholls (1972)], and then iteration is probably desirable. 
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As one can see from the above description, the computation of the estimates for 
the dynamic error-shock model seems a formidable task, particularly if there is 
iteration. Yet on many occasions we would like to estimate behavioural relation- 
ships that are dynamic in character. It does seem desirable to devise some simple, 
yet reasonably efficient computational algorithms. 
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1. The problem 

An 
example is potential bias in analysis of housing expenditure in a self-selected 
population of renters. 

2. Binomial response models 

2. I. Latent variable specification 

The starting point for econometric analysis of a continuous response variable y is 
often a linear regression model: 

Y, = XrP - Et, (2.1) 
where x is a vector of exogenous variables, E is an unobserved disturbance, and 
t=l , . . . , T indexes sample observations. The disturbances are usually assumed to 
have a convenient cumulative distribution function F(E~x) such as multi- 
variate normal. The model is then characterized by the conditional distribution 
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F(y - xplx), up to the unknown parameters /3 and parameters of the distribution 
F. In economic applications, xp may have a structure derived exactly or ap- 
proximately from theory. For example, competitive firms may have x/3 de- 
termined by Shephard’s identity from a profit function. 

The linear regression model is extended to binomial response by introducing an 
intermediate unobserved (latent) variable y* with: 

Y: = X,P - 

and an 

i 

0, ify:<O, 

1, ify: 2 0. (2.3) 

If I;(E(x) is the cumulative distribution function of the disturbances, then just as 
in the continuous case the model is characterized by the conditional distribution 
of Y given x: 

P,=P(z(y*)=l(x) 

=P(y*=xP-&20) 

= w+), 

(2.4) 

also termed the response probability. 

2.2. Functional forms 

The most common binomial models, which assume E independent of x, are logit 
with 

F(xP) =l/(l +eeXB), 

probit with 

(2.5) 

= (2.6) 
where @ is the standard cumulative normal, the linear probability model with 

F(xj3)=x/3 (O<xB<l), (2.7) 

and the log linear model with 

F( xa) = eXfl (x/ho). (2.8) 
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The last two models require restrictions on the domain of the latent variable 
which may be difficult to enforce in estimation or forecasting. 

The preceding models are derived from distribution functions with thin tails. 
Alternatives in which the response probabilities approach zero or one less rapidly 
can be constructed from the Student-t or Cauchy distributions; the latter yields 
the arctan mod& 

F(x/3) = f + $ tan-‘(#). (2.9) 

For a given latent variable model y* = x/3 + E, specification of the distribution 
function F for E may change substantially the model’s ability to fit data, 
particularly if restrictions are imposed on the domain of x/I.’ However respecifi- 
cation of the latent variable model can circumvent this problem. Suppose F(E) is 
any continuous cumulative distribution function, and $ A ln( F( j?x)/(l - 
F(px))) is a linear (in parameters B) global approximation on a compact set2 of 
/3x satisfying 0 < F( px) -C 1. Then to any desired level of accuracy, the response 
probability is logistic in the transformed latent variable model jj* = Zb + E: 

F(xj3) =l/(l+ePi8). 

Thus, the question of the appropriate F is recast as 
propriate specification of arithmetic transformations 2 
model.3 

2.3. Estimation 

(2.10) 

the question of the ap- 
of the data x in a logit 

Consider a sample ( y,, x,) with observations indexed t = 1,. . . , T, and a binomial 
model PI, = F(xJ3). Assume the sample is random4 with independent observa- 
tions. Then the log-likelihood normalized by sample size is: 

L = f i [ y,ln P,, + (l- y,)ln Pot], 
t=1 

(2.11) 

‘The logit and probit models however are rarely distinguishable empirically. 
*The existence of such an approximation is guaranteed by the Weierstrauss approximation theorem. 

A constructive approximation theorem with explicit error bounds is given in McFadden (1981). 
30bviously, the logit base cdf could be replaced by any other continuous invertible cdf G( e), with 

.$*G-‘(F(.x/~)). 
4Specifically, the probability of being sampled is assumed independent of response; stratification 

with respect to X, is permitted. 
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with PI, = F(x,p) and PO, = 1 - PI,. The gradient of this function is: 

L/3 = f i Wt(Y, - GP)L 
r=l 

with w, = F’(x,P)/P,,,P,,, and the hessian is: 

1399 

(2.12) 

(2.13) 

where 
T 

JT = f c w;P,,,PI,x,x; = - ELss 
r=l 

(2.14) 

is the information matrix, and 

u, = (F”W)+(p1, - P,,)(F’(x,p))2)/p~,Pl,. (2.15) 

Under mild regularity conditions, detailed in Section the maximum 
likelihood estimator fi of is consistent, and 4T (b - is asymptotically normal 
with mean zero and covariance matrix J- ’ = lim,, m J; ‘. Solution of the normal 
equation (2.12) usually requires an iterative procedure. Optimizers such as 
Newton-Raphson, quadratic hill-climbing, or BHHH’ work well if three cautions 
are observed: 

(1) Accurate numerical approximations for In F(x,& and ln(1 - F(x,p)) are 
needed in the tails of the distribution. 

(2) There is a small (and vanishing) probability, in models where the domain of 
F is unbounded, that the maximum likelihood estimator will fail to exist and 
response is perfectly correlated with the sign of an index xp. Adding a test for 
this condition during iteration permits detection of this case and estimation of the 
relative weights p. For sample sizes of a few hundred, this outcome is extremely 
improbable unless the analyst has entered misspecified x variables which depend 
on y. 

%ee Bemdt-Hausman-Hall-Hall(l974) and Goldfeld and Quandt (1972) for discussions of these 
algorithms. The largest component of computation cost in maximum likelihood estimation is usually 
evaluation of the response probabilities. Consequently, for maximum efficiency, the number of 
function evaluations and passes through the data should be minimized. This is usually achieved by 
using analytic derivatives calculated jointly with the likelihood for each observation. For initial search, 
it may be advantageous to calculate the hessian matrix required for the Newton-Raphson search 
direction rather than use the BHHH approximation. Methods such as Davidon-Fletcher-Powell 
which use numerical updates of the hessian matrix are not usually efficient for these problems. A 
careful interpolation along the direction of search (e.g. Davidon’s linear search method which uses 
cubic interpolation) usually speeds convergence. 
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(3) The log-likelihood L need not be concave in the general case, and there may 
be local maxima. However, the logit, probit, and linear probability models for 
binomial response have strictly concave log-likelihood functions, provided the 
explanatory variables are linearly independent. A check of the condition number 
of the information matrix Jr during iteration should detect linear dependencies. 

A family of consistent estimators of p can be derived by replacing wt in (2.12) 
with other weight functions, which may depend on x, and /3 but not the response 
y,; for example W, = F’(x#) corresponds to non-linear least squares. These 
alternatives are usually inferior to maximum likelihood estimators in both compu- 
tation and asymptotic statistical properties. 

2.4. Contingency table analysis 

In some economic applications, the number of configurations of explanatory 
variables is finite, and the data can be displayed in a contingency table with 
counts of responses in each cell. A variety of statistical methods are available for 
contingency table analysis; Goodman (1971) and Fienberg (1977) are general 
introductions. A common approach is to adopt a log-linear model of the joint 
distribution of (y, x) without imposing any structure of cause and response. The 
conditional probability of y given x will then have a logit form. 

Log-linear models of contingency tables can be estimated by simple analysis- 
of-variance, and are often the most convenient method of obtaining a logit 
response probability when the dimension of x is not too large. It is difficult within 
this framework to impose prior restrictions from economic theory on the form of 
the response probability, a feature that most econometricians would consider a 
disadvantage. 

2.5. Minimum chi-square method 

Suppose the configurations of x in a contingency table are indexed n = 1,. . . , N, 
and let m,, denote the count in the cell with y = i and configuration x,. The 
log-likelihood function (2.1) in this notation becomes: 

L= f f [m,,lnF(x,/3)+ m,,,ln(l- F(x,B))+lnCim.., ml,)], (2.16) 

n=l 

with m .R = men + m,,, C(m,r)=m!/r!(m-r)!,and T=Cf=‘=,m.,. Consistency 
of maximum likelihood estimates will follow whenever T + 00, provided a rank 
condition on the hessian is met. This can be accomplished by letting N -+ co, all 
m ,n -+ CO, or both, as long as N is at least the dimension of p. 
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This probability may in some cases have a parametric form commonly assumed 
for response models, and it may be tempting to give it a causal interpretation. 
However, a key property of a true causal response P, = F(xP) is invariance with 
respect to the marginal distribution p(x) of the explanatory variables. This 
invariance condition will be satisfied by (2.20) only if the parameterization of 
H( y, x) or Q( x Iy) is “saturated” in x.~ 

Discriminant models parameterize the conditional distributions Q( x Iy), and 
may be motivated by an assumption of causality from y (subpopulation) to x 
(attributes of subpopulation members). For example, y may index subpopulations 
of sterile and fecund insects; then Q(xly) characterizes the distribution of 
observable attributes of these subpopulations and P, in (2.20) gives the probabil- 
ity that an insect with attributes x belongs to population 1. The commonly used 
normal linear discriminant model assumes the Q(xly) are normal with means pLv 
and common covariance matrix s2. This requires the x variables to be continuous 
and range over the real line. The conditional probability of y given x, from (2.20), 
then has a logit form: 

P, =l/(l+e-a-“8), (2.21) 

with /? = 02-1(p1 -CL,,) and (Y= f(&,s2-‘~o - &S1pl)+ln(q,/q,). The parame- 
ters y,, and D can be estimated using sub-sample means and pooled sample 
covanance, fi, and &?. Alternatively, ordinary least squares applied to the “linear 
probability model”, 

y=a+xb+v, (2.22) 

yields an estimator b = Ab-‘(ji, - PO) = hb, where A = rorl/(l +(j& - &)’ 
tiP’(fil - PO)) and I-, is the proportion of sub-population i in the pooled sample. 
This relation between logit and linear model parameters under the normality 
assumptions of discriminant analysis was noted by Fisher (1939); other references 
are Ladd (1966), Anderson (1958) and Chung and Goldberger (1982). It should 
be emphasized that the relations (2.21) and (2.22) obtained from the discriminant 
model do not imply a causal response structure despite the familiarity of the 
forms. Also, if there is in truth a logistic causal response model, it will be 
coincidental if the distribution of x is the precise mixture of normals consistent 
with the normal conditional distributions Q(x Iy) assumed in discriminant analy- 
sis. Otherwise, use of the discriminant sample moments will not yield consistent 
estimates of the logit model parameters. There is some evidence, however, that the 

6A model is “saturated” in x if it has enough parameters to completely characterize the marginal 
distribution p(x) without prior restrictions on p(x). A full log-linear model for H(y, x) has this 
property. 
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is actually available in discrete quantities h,, and U(y* - h,) is the utility of h, 
when the ideal is y*. Define a, so that U(a, -h,)= U(a, -Xi_,) and A, = 
[a,, a,,,). Then the response probability: 

(3.3) 

gives the proportion of agents for which quantity X, is optimal. This model might 
be appropriate for describing the choice of number of children or frequency of 
shopping trips. 

(c) Multivariate binomial choice. Suppose a vector of h binomial choices y = 
(y’, . . .,y”) is observed, with yJ = 1 if yj* 2 0 and y’= 0 otherwise. There are 
m = 2h possible observable vectors. In the general terminology, A, is a Cartesian 
product of half-lines, with term j equal to (- cc,O) if y’ = 0, [0, + 001 otherwise, 
and cV = P(xp - E E Al.). If c:=, y,? is interpreted as an additively separable 
utility, with y,* the relative desirability of yj = 1 over y’ = 0, then Py gives the 
proportion of agents for which y is optimal. Dependence in the joint distribution 
F( E 1 x) generates dependence among the binomial choices. This model might be 
appropriate for describing holdings in a portfolio of household appliances, or for 
describing a sequence of binomial decisions over time such as participation in the 
labor force. 

These examples should make clear that there is a rich variety of qualitative 
response models, drawing upon alternative latent variable structures and gener- 
alized indicator functions, which can be tailored for appropriateness and conveni- 
ence in various applications. Multinomial, ordered, and multivariate responses 
can appear in any combination. In the third example above, multivariate bi- 
nomial responses are rewritten as a single multinomial response. Conversely, a 
multinomial response can always be represented as a sequence of binomial 
responses. When observations extend over time, the system can be enriched 
further by treating E as a stochastic process and permitting lagged responses 
(“state dependence”) among the explanatory variables. With these elaborations, 
the full panoply of econometric techniques for linear models and time series 
problems can be brought to bear on qualitative response data. This development 
of the latent variable formulation of qualitative response models is due to 
Goldberger (1971), Heckman (1976), Amemiya (1976), and Lee (1981). The last 
paper also generalizes these systems to combinations of discrete, continuous, 
censored, and truncated variables. The examples above have been phrased in 
terms of optimizing behavior by economic agents. We shall develop this connec- 
tion further to establish the link between stochastic factors surrounding agent 
decision-making and the structure of response probabilities. However, it should 
be noted that there are applications of qualitative response models where this 
framework is inappropriate, or where the analyst may not wish to impose it a 
priori. This will in general relax prior restrictions on the structure of x/3 or the 
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distribution F(EIX) in the latent variable model, but otherwise leave unchanged 
the latent variable system determining qualitative response. For example, the 
ordered response model (b) with the latent variable y* interpreted as suscepti- 
bility and the a, as thresholds for onset of a disease at varying degrees of severity 
is the Bradley-Terry model widely used in toxicology. Another example is the 
multivariate binomial model (c) applied to a sequence of outcomes of a collective 
bargaining process, with J$ interpreted as a measure of the relative strength of 
the opposing agents in period h. 

Returning to the problem of qualitative response generated by optimization on 
the part of economic agents, consider the multinomial choice example (a). For 
concreteness, suppose the agent is a profit-maximizing firm deciding what product 
markets to enter or where to locate plants. Given a qualitative alternative i, the 
firm faces a technology T’ describing its feasible production plans. Maximization 
of profit subject to T’ yields a restricted profit function II’. The technology will 
depend on attributes t of the firm; the restricted profit function will consequently 
depend on t and on characteristics w of the firm’s market environment, ni(t, w). 
The firm will choose the alternative i which maximizes II’(t, w). 

The form of the restricted profit function W will depend on prior assumptions 
on the technology and on the nature of the markets the firm faces. If, for example, 
the firm faces competitive markets and w is the vector of prices, then 17’ is a 
closed, convex, conical7 function of w; see McFadden (1978a). In non-competitive 
markets, w summarizes the information available to the firm on strategies of other 
agents, and the form of II’ is determined by a theory of non-competitive market 
behavior. 

In empirical application, (t, w) will contain both observed and unobserved 
components, and the unobserved components will have some distribution over the 
population of firms. Let z denote the observed components of (t, w), and Y the 
unobserved components, and let G(vlz) denote the distribution of the unobserved 
components, given z, in the population. Let p(z) be the expectation of IP(z, v) 
with respect to G( viz), or some other measure of location for the random 
function II’( z, e). Finally, let ~$3 be a linear-in-parameters global approximation 
to p(z), where x is a vector of arithmetic functions of z, and define E, = 
x,/3 - n’(z, v). Then E has a distribution F(E(x) induced by v, and y,* = xip - E, 
equals the maximum profit obtainable given discrete alternative i, written in the 
latent variable model notation. If all prices are observed and the function 
n’( t, w) is closed, convex, and conical in prices, then the expectation r(z) will 
have these properties. The approximation xi/3 to n must then approximate these 
properties, although it need not have them exactly unless the family of functions 
x(z) used in the approximation is selected to achieve this result. For example, a 

‘A function is conical if it is homogeneous of degree one; closed if the epigraph of the function is a 
closed set. 
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convex function n’ can be approximated globally by a nonnegative linear 
combination of convex functions, or alternatively by a polynomial which may fail 
to be convex over some range; see McFadden (1978a). If it is important to the 
analysis to impose on the response model all the prior restrictions implied by the 
theory, as would be the case, for example, if the objective of the study were to test 
these restrictions, then an approximation should be chosen which inherits the 
prior restrictions and which does not in itself restrict the ability of the model to fit 
the data. Given the approximation xip, note that as a consequence of the 
definition of Ed, the distribution F(E(x) will inherit some properties from the 
theory. For example, if 17’ and xi are conical in prices, then F(E(x) must have a 
scale which is conical in prices. 

The preceding paragraphs have described a path from the economic theory of 
behavior of a firm to properties of the latent variable model and associated 
response probability it generates. In applications it is often useful to reverse this 
path, writing down a convenient response probability model and then establishing 
that it meets sufficient conditions for derivation from the theory of the profit-max- 
imizing firm. For the competitive case, a quite general sufficient condition is that 
xip be closed, convex, and conical in prices and that E be linear in prices; see 
Duncan (1980a) and McFadden (1979a). 

Problems involving utility-maximizing consumers can be analyzed by methods 
paralleling the treatment of the firm, with 17’ replaced by the indirect utility 
function achieved for given i by optimizing in all remaining dimensions. However, 
this case is more complex since the expectation with respect to unobservables of 
the indirect utility function given i does not in general inherit all the properties of 
an indirect utility function. Consequently, known sufficient conditions for a 
specified response probability model to be derivable from a population of utility 
maximizers are quite restrictive, bearing a close relation to the sufficient condi- 
tions for individual preferences to aggregate to a social utility consistent with 
market demands; see MdFadden (1981). Whether there is a practical general 
characterization of the response probability models consistent with a population 
of utility maximizers, analogous to the integrability theory for individual demand 
functions, remains an open question. 

3.2. Statistical analysis 

Consider a general multinomial response model with m alternatives, indexed 
i=l ,.**, m, 

P, = jib, e, (3.4) 

generated by some latent variable model and generalized indicator function as in 
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(3.1) and (3.2). The x are observed explanatory variables, and 0 is a vector of 
parameters. Consider an independent random sample with observations (y,, x,) 
for t=l,..., T. As indicated for the binomial case, maximum likelihood estima- 
tion is the most generally applicable and usually the most satisfactory approach 
to estimation of 8. Let 

denote the log-likelihood of observation t, and 

(3.5) 

(34 

the sample log-likelihood normalized by sample size. The following regularity 
conditions will be shown to imply that the maximum likelihood estimator is 
consistent and asymptotically normal. 

(1) The domain of the explanatory variables is a measurable set X with a 
probability p(x). 

(2) The parameter space 0 is a subset of Rk, and the true parameter vector 8* is 
in the interior of 0. 

(3) The response model Pi = f’(x, 0) is measurable in x for each 0, and for x in 
a set X, with p( X,) = 1, f’(x, 0) is continuous in 0. 

(4) The model satisfies a global identification condition: given E > 0, there exists 
6 > 0 such that 10 - 8*12 E implies: 

+(e)=/dp(x) ~fi(x,e*)in[f;(x,e*)//‘(x,e)J 2s 
i=l 

(3.7) 

(5) For x E XI with p( XI) = 1, and some neighborhood 0, of 8*, the derivative 
i3f’(x, e)/&3 exists and is measurable in x. 

(6) For some neighborhood 0, of f3* and measurable functions a’(x), 
p’(x), y’(x), the following bounds hold: 

(i) ft(~, e) I d(x), 

(ii) IfYlnf’(x,e)/Jel I/?(X), 

(iii) Ialnf’(x,e)/ae - alnfi(x,e’)/aej I y;(x)le - et], 

(iv) /dp(x)cr’(x)~‘(x)* <co, 

(v) j-dp(xW(x)P’(x)v’(x) < 00, 

(vi) /dp(x)ai(x)j?(x)3 < 00. 
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(7) The information matrix J(e*), given by 
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is non-singular. 
The main results are given by the following theorems. 

Theorem 1 

If conditions (l)-(4) hold, and (?r is any sequence of measurable estimators which 
satisfy 

L&Q 2 sup&(e)-l/T (3.9) 

with probability one, then #r converges almost surely to 8*. 

Theorem 2 

If conditions (l)-(5) hold, then almost surely a unique maximum likelihood 
estimatcr 8, eventually exists and satisfies JL,(t!$)/XJ = 0 and 8, + 0*. 

Theorem 3 

If conditions (l)-(7) hold, then a(&- - 0*) converges in distribution to a 
normal random vector with mean zero and covariance matrix J(e*)-‘. 

The following paragraphs discuss the regularity conditions and theorems; proof 
outlines are deferred to the Appendix. Note first that the theorems assume the 
explanatory variables are independently identically distributed for each observa- 
tion. This is appropriate for sample survey data, but not necessarily for time-series 
data. Analogous theorems hold for the case of non-stochastic or jointly distrib- 
uted explanatory variables, but require stronger bounds and a more complicated 
definition of the information matrix. 

Conditions (l)-(3) are very mild and easily verified in most models. Note that 
the parameter space 0 is not required to be compact, nor is In f i( x, e) required to 
be bounded. Condition (4) is a substantive identification requirement which states 
that no parameter vector other than the true one can achieve as high a limiting 
value of the log-likelihood. Theorem 1 specializes a general consistency theorem 
of Huber (1965, theorem 1). It is possible to weaken conditions (l)-(4) further, 
with some loss of simplicity, and still utilize Huber’s argument. Note that 
Lr(t3) s 0 and, since y,, = 1 implies f’(x,, e*) > 0 almost surely, Lr(e*) > - 00 
almost surely. Hence, a sequence of estimators &- satisfying (3.9) almost surely 
exists. 
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Condition (5), requiring differentiability of Lr(@) in a neighborhood of 8*, will 
be satisfied by most models. With this condition, Theorem 2 implies that a unique 
maximum likelihood estimator almost surely eventually exists and satisfies the 
first-order condition for an interior maximum. This result does not imply that 
every solution of the first-order conditions is consistent. Note that any strongly 
consistent estimator of @* almost surely eventually stays in any specified compact 
neighborhood of 8*. 

Condition (6) imposes uniform (in 0) bounds on the response probabilities and 
their first derivatives in a neighborhood of O*. Condition (6) (iii) requires that 
aln f’(x, @)/ad be Lipschitzian in a neighborhood of 8*. 

Condition (4) combined with (5) and (6) implies J(O) is non-singular at some 
point in the intersection of each neighborhood of 8* and line segment extending 
from 8*. Hence, condition (7) excludes only pathological irregularities. 

Theorem 3 establishes asymptotic normality for maximum likelihood estimates 
of discrete response models under substantially weaker conditions than are 
usually imposed. In particular, no assumptions are made regarding second or 
third derivatives. Theorem 3 extends an asymptotic normality argument of Rao 
(1972, 5e2) for the case of a multinomial model without explanatory variables. 

To illustrate the use of these theorems, consider the multinomial logit model: 

p, = exle/ 2 ex,e, (3.10) 
j=l 

withx=(xi,...,x,)ER mk and 8 E Rk. This model is continuous in x and 8, and 
twice continuously differentiable in 0 for each x. Hence, conditions (l)-(3) and 
(5) are immediately satisfied. Since 

alnfi(x, e)/ae = X, - CxjfJ(x, e) = xi - x(e), 

Elx13 < 00 is sufficient for condition (6). The information matrix is: 

(3.11) 

(3.12) 

its non-singularity in (7) is equivalent to a linear independence condition on 
(x1 - x(e*), . . . ,x, - x(e*)). The function In f’(x, B) is strictly concave in 8 if 
condition (7) holds, implying that condition (4) is satisfied. Then Theorems l-3 
establish for this model that the maximum likelihood estimator 8, almost surely 
eventually exists and converges to 8*, and @(8, - e*) is asymptotically normal 
with covariance matrix J(P)‘. 

Since maximum likelihood estimators of qualitative response models fit within 
the general large sample theory for non-linear models, statistical inference is 
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completely conventional, and Wald, Lagrange multiplier, or likelihood ratio 
statistics can be used for large sample tests. It is also possible to define summary 
measures of goodness of fit which are related to the likelihood ratio. Let gf andf,’ 
be two sequences of response probabilities for the sample points t = 1,. . . , T, and 
define 

Z,(g,f)=+ i ggiln 
r=1 i=l i i 

5 
I 

(3.13) 

to be the “average information in g beyond that in f “. If g is the empirical 
distribution of the observed response and f is a parametric response model, then 
Z( g, f) is monotone in the likelihood function, and maximum likelihood estima- 
tion minimizes the average unexplained information. The better the model fits, 
the smaller I,( g, f ). Note that for two models fa and fi, the difference in average 
information I,( g, &)- I,( g, fi) is proportional to a likelihood ratio statistic. 
Goodness-of-fit measures related to (3.13) have been developed by Theil (1970); 
see also Judge et al. (1981). Related goodness of fit measures are discussed in 
Amemiya (1982). It is also possible to assess qualitative response models in terms 
of predictive accuracy; McFadden (1979b) defines prediction success tables and 
summary measures of predictive accuracy. 

3.3. Functional form 

The primary issues in choice of a functional form for a response probability 
model are computational practicality and flexibility in representing patterns of 
similarity across alternatives. Practical experience suggests that functional forms 
which allow similar patterns of inter-alternative substitution will give comparable 
fits to existing economic data sets. Of course, laboratory experimentation or more 
comprehensive economic observations may make it possible to differentiate the fit 
of function forms with respect to characteristics other than flexibility. 

Currently three major families of concrete functional forms for response 
probabilities have been developed in the literature. These are multinomial logit 
models, based on the work of Lute (1959), multinomial probit models, based on 
the work of Thurstone (1927), and elimination models, based on the work of 
Tversky (1972). Figure 3.1 outlines these families; the members are defined in the 
following sections. We argue in the following sections that the multinomial logit 
model scores well on simplicity and computation, but poorly on flexibility. The 
multinomial probit model is simple and flexible, but scores poorly on computa- 
tion. Variants of these models, the nested multinomial logit model and the 
factorial multinomial probit model, attempt to achieve both flexibility and 
computational practicality. 
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Probit Logit Elimination 

binomial probit binomial logit elimination-by-aspects(EBA) 

I I 
multinomial probit(MNP) multinomial logit(MNL) I 

I heirarchial 
elimination-by-aspects(HEBA) 

/’ 
/ 

generalized extreme value / 
/ / / / / 

H 

nested multinomial 
logit (NMNL) 

Figure 3.1. Functional forms for multinomial response probabilities. 

In considering probit, logit, and related models, it is useful to quantify the 
hypothesis of an optimizing economic agent in the following terms. Consider a 
choice set B= {l,..., m }. Alternative i has a column vector of observed attributes 
xi, and an associated utility yi* = (Y’x,, where (Y is a vector of taste weights. 
Assume a to have a parametric probability distribution with parameter vector 8, 
and let p = P(e) and s2 = Q(8) denote the mean and covariance matrix of (Y. Let 
xB = (xi, _ . _ ,x,,,) denote the array of observed attributes of the available altema- 
tives. Then the vector of utilities yg = ( y:, . . . , y;) has a multivariate probability 
distribution with mean P’xe and covariance matrix x$?x,. The response proba- 
bility f’( xB, 0) for alternative i then equals the probability of drawing a vector yi 
from this distribution such that y: 2 y,? forj E B. For calculation, it is convenient 
to note that yi_, = (y: - y:,. . . ,y,Yl - y:, JJ:+~ - y:,. . . ,y; - f) has a multi- 
variate distribution with mean B’x~_~ and covariance matrix xh_,r(2xBP,, where 
xB_,=(xl-x ,,..., x~~~--x,,x,+~-x ,,..., x,-x,), and that f’(zs,O) equals 
the non-positive orthant probability for this (m - 1)-dimensional distribution. 

The following sections review a series of concrete probabilistic choice models 
which can be derived from the structure above. 

3.4. The multinomial logit model 

The most widely used model of multinomial response is the multinomial logit 
(MNL) form: 

fyx,,e) = eQ/ C exje. 
jcB 

(3.14) 
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This model permits easy computation and interpretation, but has a restrictive 
pattern of inter-alternative substitutions. 

The MNL model can be derived from the latent variable model given in (3.1) 
and (3.2) by specifying the distribution of the disturbances et = (en,. . . , E,() to be 
independent identical type I extreme value: 

p+JX,) = e-e-‘l’. . . e-e-em’. (3.15) 

This result is demonstrated by a straightforward integration; see McFadden 
(1973) and Yellot (1977). Note that this case is a specialization of the model 
y; = (YX, in which only the coefficients (Y of alternative-specific dummy variables 
are stochastic. 

The disturbance E, in the latent variable model yielding the MNL form may 
have the conventional econometric interpretation of the impact of factors known 
to the decision-maker but not to the observer. However, it is also possible that a 
disturbance exists in the decision protocol of the economic agent, yielding 
stochastic choice behavior. These alternatives cannot ordinarily be distinguished 
unless the decision protocol is observable or individuals can be confronted 
experimentally with a variety of decisions. 

Interpreted as a stochastic choice model, the MNL form is used in psychomet- 
rics and is termed the Lute strict utility model. In this literature, uir = x,J3 is 
interpreted as a scale value associated with alternative i. References are Lute 
(1959, 1977) and Marschak (1960). 

The vector of explanatory variables xi, in the MNL model can be interpreted as 
attributes of alternative i. Note that components of xi, which do not vary with i 
cancel out of the MNL formula (3.13), and the corresponding component of the 
parameter vector 8 cannot be identified from observation on discrete response. 

Some components of x,~ may be alternative-specific, resulting from the interac- 
tion of a variable with a dummy variable for alternative i. This is meaningful if 
the alternatives are naturally indexed. For example, in a study of durable 
ownership the alternative of not holding the durable is naturally distinguished 
from all the alternatives where the durable is held. On the other hand, if there is 
no link between the true attributes of an alternative and its index i, as might be 
the case for the set of available dwellings in a study of housing purchase behavior, 
alternative dummies are meaningless. 

Attributes of the respondent may enter the MNL model in interaction with 
attributes of alternatives or with alternative specific dummies. For example, 
income may enter a MNL model of the housing purchase decision in interaction 
with a dwelling attribute such as price, or with a dummy variable for the 
non-ownership alternative. 

A case of the MNL model frequently encountered in sociometrics is that in 
which the variables in xi, are all interactions of respondent attributes and 
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alternative-specific dummies. Let z1 be a 1 x s vector of respondent attributes and 
a,,,, be a dummy variable which is one when i = m, zero otherwise. Define the 
1 X sM vector of interactions, 

x,t = (41zt Y.,~rM4 

and let 13’ = (I?’ i, . . . ,t$,) be a commensurate vector of parameters. Then 

fTxo e) = ex*,e + rl’:B+e”“Jl 
eZrel + . . . +eztena (3.16) 

An identifying normalization, say 8, = 0, is required. This model is analyzed 
further by Goodman (1972) and Nerlove and Press (1976). 

A convenient feature of the MNL model is that the hessian of the log-likeli- 
hood is everywhere negative definite (barring linear dependence of explanatory 
variables), so that any stationary value is a global maximum. 

3.5. Independence from irrelevant alternatives 

Suppose in the MNL model (3.13) that the vector xi, of explanatory variables 
associated with alternative i depends solely on the attributes of i, possibly 
interacted with attributes of the respondent. That is, x,~ does not depend on the 
attributes of alternatives other than i. Then the MNL model has the Indepen- 
dence from Irrelevant Alternatives (IIA) property, which states that the odds of i 
being chosen overj is independent of the availability or attributes of alternatives 
other than i and j. In symbols, this property can be written: 

,,ri(XA 
f,(x,,e) = (%I - x,x 

independent 
(l,...,M}: 

of xnlt for m # i, j. Equivalently, for iEA={l ,...,J} 5 c= 

(3.17) 

where 

f”(x ,,~...4,,,+ C fj(xl ,,..., xMt8e). 
JC‘A 
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An implication of the IIA property is that the cross-elasticity of the probability of 
response i with respect to a component of xjI is the same for all i with i # j. This 
property is theoretically implausible in many applications. Nevertheless, empirical 
experience is that the MNL model is relatively robust, as measured by goodness 
of fit or prediction accuracy, in many cases where the IIA property is theoretically 
implausible. 

When the IIA property is valid, it provides a powerful and useful restriction on 
model structure. One of its implications is that response probabilities for choice in 
restricted or expanded choice sets are obtained from the basic MNL form (3.14) 
simply by deleting or adding terms in the denominator. Thus, for example, one 
can use the model estimated on existing alternatives to forecast the probability of 
a new alternative so long as no parameters unique to the new alternative are 
added. 

One useful application of the IIA property is to data where preference rankings 
of alternatives are observed, or can be inferred from observed purchase order. If 
the probabilities for the most preferred alternatives in each choice set satisfy the 
IIA property, then they must be of the MNL form [see McFadden (1973)], and 
the probability of an observed ranking 1> 2 > . . . > m of the alternatives is the 
product of conditional probabilities of choice from successively restricted subsets: 

exlP ex2P 
p(1>2>... >m)zy.-. . . . . 

exm-lP 

C eXrB f eXdP 
ex”>-lB + e~,J a 

i=l i=2 

Thus, each selection of a next-ranked alternative from the subset of alternatives 
not previously ranked can be treated as an independent observation of choice 
from a MNL model. This formulation of ranking probabilities is due to Marschak 
(1960). An econometric application has been made by Beggs, Cardell and 
Hausman (1981); these authors use the method to estimate individual taste 
parameters and investigate the heterogeneity of these parameters across the 
population. 

The restrictive IIA feature of the MNL model is present only when the vector 
xi, for alternative i is independent of the attributes of alternatives other than i. 
When this restriction is dropped, the MNL form is sufficiently flexible to 
approximate any continuous positive response probability model on a compact 
set of the explanatory variables. Specifically, if f’( x,, 0) is continuous, then it can 
be approximated globally to any desired degree of accuracy by a MNL model of 
the form: 

(3.18) 
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where zit = z,,(x[) is an arithmetic function of the attributes of all available 
alternatives, not just the attributes of alternative i. This approximation has been 
termed the universal logit model. The result follows easily from a global ap- 
proximation of the vector of logs of choice probabilities by a multivariate 
Bernstein polynomial; details are given in McFadden (1981). 

The universal logit model can describe any pattern of cross-elasticities. Thus, it 
is not the MNL form per se, but rather the restriction of xir to depend only on 
attributes of i, which implies IIA restrictions. In practice, the global approxima- 
tions yielding the universal logit model may be computationally infeasible or 
inefficient. In addition, the approximation makes it difficult to impose or verify 
consistency with economic theory. The idea underlying the universal logit model 
does suggest some useful specification tests; see McFadden, Tye and Train (1976). 

3.6. Limiting the number of alternatives 

When the number of alternatives is large, response probability models may 
impose heavy burdens of data collection and computation. The special structure 
of the MNL model permits a reduction in problem scale by either aggregating 
alternatives or by analyzing a sample of the full alternative set. Consider first the 
aggregation of relatively homogeneous alternatives into a smaller number of 
primary types. 

Suppose elemental alternatives are doubly indexed ij, with i denoting primary 
type and j denoting alternatives within a type. Let Zt4, denote the number of 
alternatives which are of type i. Suppose choice among all alternatives is de- 
scribed by the MNL model. Then choice among primary types is described by 
MNL probabilities of the form: 

fG,,Q= 
exp( x$ + In M, + w,,) 

Cexp( xktf3 + In Mk + wkr) ’ 
(3.19) 

k 

where x,< is the mean within type i of the vectors xi,, of explanatory variables for 
the alternative ij, and w,, is a correction factor for heterogeneity within type i 
which satisfies: 

wi,=ln+, ,2 exp[(xij,-xi1)t9]. 
’ J=l 

(3.20) 

If the alternatives within a type are homogeneous, then w, = 0. 
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A useful approximation to We can be obtained if the deviations x,,~ - x,~ within 
type i can be treated as independent random drawings from a multivariate 
distribution which has a cumulant generating function 19;,(e). If the number of 
alternatives M, is large, then the law of large numbers implies that w, converges 
almost surely to w, = I#$( 0). For example, if xijt - xit is multivariate normal with 
covariance matrix O,,, then w, = W,,( 0) = e’Qi,0/2. 

A practical method for estimation is to either assume within-type homogeneity, 
or to use the normal approximation to w,, with Oi, either fitted from data or 
treated as parameters with some identifying restrictions over i and t. Then 8 can 
be estimated by maximum likelihood estimation of (3.19). The procedure can be 
iterated using intermediate estimates of 8 in the exact formula for w,. Data 
collection and processing can be reduced by sampling elemental alternatives to 
estimate w,. However, it is then necessary to adjust the asymptotic standard errors 
of coefficients to include the effect of sampling errors on the measurement of w,. 
Further discussion of aggregation of alternatives in a MNL model can be found 
in McFadden (1978b). 

A second method of reducing the scale of data collection and computation in 
the MNL model when it has the IIA property is to sample a sub-set of the full set 
of alternatives. The IIA property implies that the conditional probabilities of 
choosing from a restricted subset of the full choice set equal the choice probabili- 
ties when the choice set equals the restricted set. Then the MNL model can be 
estimated from data on alternatives sampled from the full choice set. In particu- 
lar, the MNL model can be estimated from data on binary conditional choices. 
Furthermore, subject to one weak restriction, biased sampling of alternatives can 
be compensated for within the MNL estimation. 

Let C = { 1,. . . ,M} denote the full choice set, and D z C a restricted subset. 
The protocol for sampling alternatives is defined by a probability rr( D 1 i,, x,) that 
D will be sampled, given observed explanatory variables x, and choice i,. For 
example, the sampling protocol of selecting the chosen alternative plus one 
non-chosen alternative drawn at random satisfies 

n(Dli,, x,) = l/W-l), ifD= {i,,j} sC,i,+j, 

0, otherwise. 
(3.21) 

Let D, denote the subset for case t. The weak regularity condition is: 

Positive conditioning property 

If an alternative i E D, were the observed choice, there would be a positive 
probability that the sampling protocol would select Dt; i.e. if j E D,, then 
n(E,Ij, X,) ’ 0. 
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If the positive conditioning property and a standard identification condition 
hold, then maximization of the modified MNL log-likelihood function: 

f iln 
exP[xi,e +lnr(D,Ii,, x,)] 

I=i ,~~exp[x,e+lnn(D,lj,x,)] 
f 

(3.22) 

yields consistent estimates of 8. This result is proved by showing that (3.22) 
converges in probability uniformly in 0 to an expression which has a unique 
maximum at the true parameter vector; details are given in McFadden (1978). 
When r is the same for all j E D,, the terms involving v cancel out of the above 
expression. This is termed the uniform conditioning property; the example (3.21) 
satisfies this property. 

Note that the modified MNL log-likelihood function (3.22) is simply the 
conditional log-likelihood of the i,, given the 0,. The inverse of the information 
matrix for this conditional likelihood is a consistent estimator of the covariance 
matrix of the estimated coefficients, as usual. 

3.7. Specification tests for the MNL model 

The MNL model in which the explanatory variables for alternative i are functions 
solely of the attributes of that alternative satisfies the restrictive IIA property. An 
implication of this property is that the model structure and parameters are 
unchanged when choice is analyzed conditional on a restricted subset of the full 
choice set. This is a special case of uniform conditioning from the section above 
on sampling alternatives. 

The IIA property can be used to form a specification test for the MNL model. 
Let C denote the full choice set, and D a proper subset of C. Let &. and V, 
denote parameter estimates obtained by maximum likelihood on the full choice 
set, and the associated estimate of the covariance matrix of the estimators. Let PO 
and V, be the corresponding expressions for maximum likelihood applied to the 
restricted choice set D. (If some components of the full parameter vector cannot 
be identified from choice within D, let &, PO, V,, and VD denote estimates 
corresponding to the identifiable sub-vector.) Under the null hypothesis that the 
IIA property holds, implying the MNL specification, PO - & is a consistent 
estimator of zero. Under alternative model specifications where IIA fails, PO - & 
will almost certainly not be a consistent estimator of zero. Under the null 
hypothesis, PO - & has an estimated covariance matrix VD - Vc. Hence, the 
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statistic 
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S=(P,-Pc)‘(Vo-V,)~‘(Po-PC) (3.23) 

is asymptotically chi-square with degrees of freedom equal to the rank of 
v, - v,. 

This test is analyzed further in Hausman and McFadden (1984). Note that this 
is an omnibus test which may fail because of misspecifications other than IIA. 
Empirical experience and limited numerical experiments suggest that the test is 
not very powerful unless deviations from MNL structure are substantial. 

3.8. Multinomial probit 

Consider the latent variable model for discrete response, r;” = x,0 + E, and y,, = 1 
ifuz, 2 J$ for n =l,..., M, from (3.1) and (3.2). If E, is assumed to be multivariate 
normal, the resulting discrete response model is termed the multinomial probit 
(MNP) model. The binary case has been used extensively in biometrics; see 
Finney (1971). The multivariate model has been investigated by Bock and Jones 
(1968), McFadden (1976), Hausman and Wise (1978), Daganzo (1980) Manski 
and Lerman (1981), and McFadden (1981). 

A form of the MNP model with a plausible economic interpretation is 
J$+ = x,(Y,, where (Ye is multivariate normal with mean p and covariance matrix 9, 
and represents taste weights which vary randomly in the population. Note that 
this form implies EE, = 0 and cov(e,) = x$x: in the latent variable model 
formulation. If x, includes alternative dummies, then the corresponding compo- 
nents of (Ye are additive random contributions to the latent values of the 
alternatives. Some normalizations are required in this model for identification. 

When correlation is permitted between alternatives, so COV(E,) is not diagonal, 
the MNP model does not have the IIA or related restrictive properties, and 
permits very general patterns of cross-elasticities. This is true in particular for the 
random taste weight version of the MNP model when there are random compo- 
nents of (Y, corresponding to attributes which vary across alternatives. 

Evaluation of MNP probabilities for M alternatives generally requires evalua- 
tion of (M - 1)-dimensional orthant probabilities. In the notation of subsection 
3.3, f’(x,; /3, s2) is the probability that the (M - l)-dimensional normal random 
vector J$_ 1 with mean j3xB_ 1 and covariance matrix xg_ rsZXh_ 1 is non-positive. 
For M d 3, the computation of these probabilities is comparable to that for the 
MNL model. However, for A4 2 5 and 52 unrestricted, numerical integration to 
obtain these orthant probabilities is usually too costly for practical application in 
iterative likelihood maximization for large data sets. An additional complication 
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is that the hessian of the MNP model is not known to be negative definite; hence 
a search may be required to avoid secondary maxima. 

For a multivariate normal vector ( y;, . . . , y;), one can calculate the mean and 
covariance matrix of (rl*, . . . , y; _ 2, max( J$ _ 1, _y; )); these moments involve only 
binary probits and can be computed rapidly. A quick, but crude, approximation 
to MNP probabilities can then be obtained by writing: 

f’(x,P,~)=P(y:>max(y,*,max(y,*,...)...)) (3.24) 

and approximating the maximum of two normal variates by a normal variate; see 
Clark (1961) and Daganzo (1980). This approximation is good for non-negatively 
correlated variates of comparable variance, but is poor for negative correlations 
or unequal variances. The method tends to overestimate small probabilities. For 
assessments of this method, see Horowitz, Sparmann and Daganzo (1981) and 
McFadden (1981). 

A potentially rapid method of fitting MNP probabilities is to draw realizations 
of (Y, repeatedly and use the latent variable model to calculate relative frequencies, 
starting from some approximation such as the Clark procedure. This requires a 
large number of simple computer tasks, and can be programmed quite efficiently 
on an array processor. However, it is difficult to compute small probabilities 
accurately by this method; see Lerman and Manski (1980). 

One way to reduce the complexity of the MNP calculation is to restrict the 
structure of the covariance matrix s2 by adopting a “factor-analytic” specification 
of the latent variable model y: = /?x; + E;. Take 

J 

E, =q, + c Y;,V,, (3.25) 
j=l 

with vi and v, independent normal variates with zero means and variances ui2 and 
1 respectively. The “factor loading” y,, is in the most general case a parametric 
function of the observed attributes of alternatives, and can be interpreted as the 
level in alternative i of an unobserved characteristic j. With this structure, the 
response probability can be written: 

Xfi@ 
i=2 

P(xl-xi)+ i (Ylj-Yij)vj+lll 

j=l 

ui 
dnr,dvr.. . dv,. 

1 
(3.26) 
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Numerical integration of this formula is easy for J I 1, but costly for J 2 3. Thus, 
this approach is generally practical only for one or two factor models. The 
independent MNP model (J = 0) has essentially the same restrictions on cross- 
alternative substitutions as the MNL model; there appears to be little reason to 
prefer one of these models over the other. However, the one and two factor 
models permit moderately rich patterns of cross-elasticities, and are attractive 
practical alternatives in cases where the MNL functional form is too restrictive. 

Computation is the primary impediment to widespread use of the MNP model, 
which otherwise has the elements of flexibility and ease of interpretation desirable 
in a general purpose qualitative response model. Implementation of a fast and 
accurate approximation to the MNP probabilities remains an important research 
problem. 

3.9. Elimination models 

An elimination model views choice as a process in which alternatives are screened 
from the choice set, using various criteria, until a single element remains. It can be 
defined by the probability of transition from a set of alternatives to any subset, 
Q( D 1 C). If each transition probability is stationary throughout the elimination 
process, then the choice probabilities satisfy the recursion formula: 

f’(c) = CQ(DIW(D), 
D 

(3.27) 

where f’( C) is the probability of choosing i from set C. 
Elimination models were introduced by Tversky (1972) as a generalization of 

the Lute model to allow dependence between alternatives. An adaptation of 
Tversky’s elimination by aspects (EBA) model suitable for econometric work 
takes transition probabilities to have a MNL form: 

Q(DlC) = exDbo/ c e+pA, 
AGC 
AZC 

where xD is a vector of attributes common to and unique to the set of alternatives 
in D. When xs is a null vector and by definition exsSB = 0 for sets B of more than 
one element, this model reduces to the MNL model. Otherwise, it does not have 
restrictive IIA-like properties. 

The elimination model is not known to have a latent variable characterization. 
However, it can be characterized as the result of maximization of random 
lexicographic preferences. The model defined by (3.27) and (3.28) has not been 
applied in economics. However, if the common unique attributes xD can be 
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defined in an application, this should be 
form. 

a straightforward and flexible functional 

One elimination model which can be expressed in latent variable form is the 
generalized extreme value (GEV) model introduced by McFadden (1978, 1981). 
Let H(w,,..., w,) be a non-negative, linear homogeneous function of non-nega- 
tive wr,..., w,,, which satisfies 

lim H(w,,...,w,)= +oe, (3.29) 
W, + m 

and has mixed partial derivatives of all orders, with non-positive even and 
non-negative odd mixed derivatives. Then, 

F(q,..., Ed) = exp{ - H(ePE1,...,e-‘m)} (3.30) 

is a multivariate extreme value cumulative distribution function. The latent 
variable modely; = xip + e, for i E B = {l,...,m} with (q,...,~,) distributed as 
(3.30) has response probabilities: 

f’(x,p) = alnH(e”lS,...,e”mS)/a(xjP). 

The GEV model reduces to the MNL model when 

(3.31) 

M 
Wwr,..., w,)= 

i i 

A 
c wJ/A , 1 (3.32) 

i=l 

with 0 < X I 1. An example of a more general GEV function is: 

where 0 < hoc, X, I 1 and a and b are non-negative functions such that each i is 

contained in a D and C with a(C), b( D, C) > 0. The response probability for 
(3.33) can be written: 

f’(x, 8) = c c Q<ilD, C)Q(DlC)Q(ClB), (3.34) 
CCB DGC 
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where i E D E C G B, 
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Q<ilD, C) = exP(xiP/X&c)/ c exP(x#/A&c)~ (3.35) 
j=D 

J(D, C) = In c exp(xjS/ADC&), (3.36) 
jED 

Q(DIC)=b(D,C)exp[J(D,C)h,c]/ c b(D’,C)exp[J(D’,C)A,,,], 
D’GC 

(3.37) 

I(C)=ln c b(D’,C)exp[J(D’,C)&], (3.38) 
D’cC 

Q(c) =a(C)exp[~(C)&]/ c ~(C’h&(C’)&~]. (3.39) 
C’GB 

This can be interpreted as an elimination model in which a(C) and b( D, C) 
determine the probability of various chains of sets of non-eliminated alternatives, 
and h,, and Xc measure the degree of independence of the &i within the set D 
obtained from C, and within the set C, respectively. The expressions in (3.36) and 
(3.38) are termed inclusive values of the associated sets of alternatives. 

When all the X’s are one, this model reduces to a simple MNL model. 
Alternatively, when hoc is near zero, the elimination model treats D essentially as 
if it contained a single alternative with a scale value equal to the maximum of the 
scale values of the elements in D. 

Inspection of the two elimination models described above suggests that they are 
comparable in terms of flexibility and complexity. Other things equal, the GEV 
model will tend to imply sharper discrimination among similar alternatives than 
the EBA model. Limited numerical experiments suggest that the two models will 
be difficult to distinguish empirically. 

3. IO. Hierarchical response models 

When asked to describe the decision process leading to qualitative choice, 
individuals often depict a hierarchical structure in which alternatives are grouped 
into clusters which are “similar”. The decision protocol is then to eliminate 
clusters, proceeding until a single alternative remains. An example of a decision 
tree is given in Figure 3.2. Alternatives u-e are in one primary cluster, f and g in 
a second, and u-c are in a secondary cluster. Either of the elimination models 
described in the preceding section can be specialized to describe hierarchical 
response by permitting transitions from a node only to one of the nodes 
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Figure 3.2. A hierarchical decision tree. 

immediately below it in the tree. Hierarchical decision models are discussed 
further in Tversky and Sattath (1979) and McFadden (1981). 

A hierarchical elimination model based on the generalized extreme value 
structure described earlier generalizes the MNL model to a nested multinomial 
logit (NMNL) structure. Each transition in the tree is described by a MNL model 
with one of the variables being an “inclusive value” which summarizes the 
attributes of alternatives below a node. An “independence” parameter at each 
node in the tree discounts the contribution to value of highly similar alternatives. 

We shall discuss the structure of the NMNL model using an example of 
consumer choice of housing. As illustrated in Figure 3.3, the decision can be 
described in hierarchical form: first whether to own or rent, second if renting 
whether to be the head of household or to sublet from someone else (non-head), 
and finally what dwelling unit to occupy within the chosen cluster. Let C = 
{I,..., 12) index the final alternatives, r = 0,l index the primary cluster for own 
and rent, and h = 0,l index the secondary clusters for head and non-head. Define 
A,, to be the set of final alternatives contained in the subcluster rh, and A, to be 
the set of subclusters contained in the cluster r. For example, A, contains the 
(trivial) subcluster h = 1; A, contains two subclusters h = 0 and h = 1; and 
A,, = {10,11,12}. 

The response probability for the NMNL model can be written as a product of 
transition probabilities. For i E A,, and h E A,: 

f’(d = Q(ilA,,)Q(A,,IA,)Q(A,). (3.40) 
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Figure 3.3. Housing choice. 

Each transition probability has a NMNL form: 

Q( ilA,,) = e’g”/ c ezla, 
.iEArh 

(3.41) 

QbLk%> =exPb’r,~ + J,,+,)/ c exP(w,,b + &J&.), 
CEA, 

Q(4) =exdw+VA/ i exd~,y+~,~,). 
s=o 

(3.42) 

(3.43) 

Here, xi = (z;, We,,, u,) is the vector of attributes associated with alternative i E A,, 
and h E A,, with wr,, and u, denoting components which are common within the 
clusters A,,, or A,, respectively; (cq p, y, K,, A,) = 6 are parameters; and Jr,, and I,, 
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are inclusive values satisfying: 

J,,, = In c erla, 
iGA,* 

1425 

(344) 

Z,= ln c exP(%$ + .Z&%,). 
hEA, 

(3.45) 

Note that Jlh and Z, are logs of the denominators in (3.41) and (3.42), respectively. 
For this example, note that Q(A,, IA,) = 1 and I, = w&3 + JO1~O1. 

Consider the function: 

H(eUl,... (3.46) 

with 

U, = Z,(YK,$i, + Wrhph, + Up, (3.47) 

for i E A,, and h E A,. This is a generating function for the response probabili- 
ties, satisfying An H/C%, = f’(x, e), and can be interpreted as a measure of social 
utility; see McFadden (1981). The parameters K,h and A, are measures of the 
“independence” of alternatives within subclusters and clusters respectively. 

If K,~ = A, = 1, then the NMNL model reduces to a simple MNL model. When 
0 < K,~, A, 11, the NMNL model is consistent with a latent variable model with 
generalized extreme value distributed disturbances: JJ: = ui + ei and 

F( q,. . . ,qZ) = exp[ - H(epEl,. . . ,epglz; @)I, (3.48) 

and is therefore consistent with an assumption of optimizing economic agents. It 
should be obvious that this structure generalizes to any number of alternatives 
and levels of clustering. 

To interpret the impact of the independence parameters K,~ and A, on cross- 
alternative substitutability, consider the cross-elasticity of the response probabil- 
ity for i E A,, and h E A, with respect to component k of the vector z, of 
attributes of altemativej E A,,,, and h’ E A,,: 

= (YkZjk{ a,, - Krrh’Ar’f’(x, e) 

+ Q&r -l)s,,,Q(jlA,h,)Q<A,,,IA,> 

+(Krh -l)s,,,s,,,Q(ilA,h)}. (3.49) 

For O<K ,,,, A, < 1, one obtains the plausible property that cross-elasticities are 
largest in magnitude for alternatives in the same r and h cluster, and smallest in 
magnitude when both r and h clusters differ. Note that values of K,,, or A, outside 
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the unit interval imply that one of the expected magnitude rankings is violated. 
Therefore, estimates of K,h or X, outside the unit interval may indicate a 
n&specified hierarchical structure, and the fitted cross-elasticity magnitude may 
identify a more appropriate structure. 

It is of interest to compare the complexity and flexibility of the NMNL model, 
say in the form (3.40) corresponding to Figure 3.3, to a MNP model with a 
factorial structure which has the same pattern of similarities. This is achieved in 
the MNP model by introducing one factor for each node in the decision tree 
between the stem and the final “ twigs”. Thus, the clustering in Figure 3.3 requires 
four factors-own, rent, rent/head, and rent/non-head. An MNP model with 
this structure can be specified with a number of parameters comparable to the 
NMNL model by making the factor loadings uniform within each cluster, or can 
be made more flexible by allowing intra-cluster heterogeneity in loadings. How- 
ever, as noted in the discussion of (3.26) computation of a four-factor model will 
be too costly in most applications. We conclude that the NMNL and factorial 
MNP are comparable in complexity, with some advantage to the latter in terms of 
flexibility and ease of interpretation. However, computational barriers currently 
limit use of the factorial MNP model to simple trees with one to three nodes. 

The NMNL model can be estimated by direct maximum likelihood methods. 
The likelihood is not concave in all parameters, and is highly non-linear in the 
inclusive value coefficients. A simpler procedure which is consistent, but often 
fairly inefficient, is to estimate the transition probabilities (3.31)-(3.33) sequen- 
tially, using the data on transitions implied by the observed choices and inclusive 
values calculated from preceding stages. Each stage involves a concave MNL 
maximum likelihood problem. Beyond the first stage, standard errors are affected 
by the use of estimated coefficients in the calculation of inclusive values. Amemiya 
(1978d) and McFadden (1981) provide formulae for correcting the standard 
errors. 

It is possible in principle to obtain asymptotically efficient estimates by 
carrying out one Newton-Raphson iteration on the full likelihood function, 
starting from the consistent sequential estimates. In practice, the strong non-lin- 
earity of the likelihood in the inclusive value coefficients and sensitivity of the 
estimates to model specification sometimes lead to full maximum likelihood 
estimates which are rather far from the initially consistent estimates, and to 
erratic results from the one-step procedure. Consequently, multiple iterations may 
be required to approximate the maximum of the full likelihood function. These 
problems seem to be particularly common when by other indications the decision 
tree is misspecified. 

Under the null hypothesis that the NMNL model is correctly specified, the 

sequential estimator 8, and full MLE 6, satisfy fi(& - 6’) 4 N(0, fi) and 

fi(e, - e) 5 N(0, s2), and asymptotic efficiency implies \/?;(8, - 6,) 4 
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N(0, fi - Q). Thus the statistic T(8, - &.)‘(a - S2)+ (6, - &), where (b - 42)’ is 
a generalized inverse of rank p, is asymptotically xi under the null. This statistic 
can then be used as an omnibus test of the NMNL specification. 

Since the NMNL model reduces to a MNL model when the inclusive value 
coefficients are one, it can provide a basis for a classical Lagrange multiplier test 
of the IIA property of the MNL model. Consider testing X = 1 in the model 
(3.30)-(3.33), with K =l as a maintained hypothesis. Suppose A, is the set of 
rental alternatives. Let u = (cyX, BX, y) and 19 = (a, A), and let 

L=+ i C y,,lnf’(x,,8) (3.50) 
t=l isC 

be the normalized log-likelihood function. The Lagrange multiplier statistic has 
the general form: 

LM= L;[ELAL;-(ELAL:)(ELaL;)-‘EL,L;]-’LA, (3.51) 

where the derivatives are evaluated at X = 1 at which the model reduces to a MNL 
model. For this problem, letting f,’ = f’(x,, 0): 

(3.52) 

LA=f i C (Yit-f,i)(zth-xi,a)* (3.53) 
t=l i=A, 

&=TEL,L;=+ f,‘(l,X-x,,o)‘-( c f,‘(l,h-~~,.,)~ , 
iSA, 1 

(3.54) 

v,, = TEL,L; = + c #(xi, - xc,)‘(xi, - xCr), (3.55) 
t=l iEC 

V,, = TEL&; = f i c f( Z,A - xiru)(xi, - xct), (3.56) 
(=I iEA, 

xCt = C friXir9 (3.57) 
iCC 

Z, = In C e”tl”. 
icA, 

(3.58) 
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Then the final form of the test statistic is: 
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i c (yi,-fti)(z,-xi,e) Z,T(Vhh-Yh~~;lVoh). 1 (3.59) 
r=1 iSA, 

Under the null hypothesis, this statistic is asymptotically chi-square with one 
degree of freedom. Further discussion of specification tests for the MNL model 
and examples are given in Hausman and McFadden (1984). 

3.11. An empirical example 

To illustrate application of the MNL and NMNL models, and associated tests, we 
apply the housing decision tree given in Figure 3.3 and the associated NMNL 
model in (3.40)-(3.43) to data on the housing status of single elderly men from 
the 1977 U.S. Annual Housing Survey for the Albany-Schenectady-Troy, N.Y. 
SMSA. These results were prepared by Axe1 Boersch-Supan, and are a simplified 
version of some models estimated by Boersch-Supan and Pitkin (1982); this 
reference contains a detailed description of variables and analysis of other 
socioeconomic groups. 

The sample contains 159 single elderly men, of whom 45.9% are owners, 30.2% 
are renter-heads, and 23.9% are renter non-heads. Selection of dwelling unit is not 
modeled, and units within a cluster are treated as homogeneous and sufficiently 
similar to be adequately characterized as a single typical unit. 

Two price variables are considered for each person in the sample, out-of-pocket 
costs (OPCOST) and expected net return on equity in owned units (RETURN). 
Out-of-pocket costs are the operating costs of the housing unit. For rental units, 
this is gross rent including utilities as reported in the survey. For owner-occupied 
units, OPCOST consists of mortgage and real-estate tax payments, utility costs, 
insurance payments, and maintenance. These direct costs are reduced by esti- 
mated savings on federal income taxes resulting from the deductability of 
mortgage interest and property taxes. Consequently OPCOST is influenced in a 
non-linear way by income. Costs in dwellings with more than one nuclear family 
unit are assumed to be apportioned according to the total number of adults, 
children counting as half an adult. 

The RETURN variable for owner-occupied dwellings is defined as expected 
appreciation less equity cost, and is taken to be a proportion of dwelling value 
determined by average annual appreciation in the area since 1970, equity as a 
fraction of value estimated from date of purchase, and a discount factor reflecting 
opportunity cost of equity. 
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The construction of OPCOST and RETURN for chosen alternatives is based 
on individual reported costs, while for non-chosen alternatives these variables are 
based on the average experience of recent movers. Consequently, the estimated 
models should be interpreted as “reduced form” state models which reflect the 
relationship between status and costs, taking into account the inertia and non- 
transferable discounts associated with tenure. These models may accurately 
forecast future status-cost patterns provided there is no structural change in 
turnover rates or tenure distributions. They should not be interpreted as transi- 
tion probabilities from one dwelling state to another-the latter probabilities are 
likely to be strongly state dependent and display less sensitivity to costs. 

In addition to OPCOST and RETURN, income enters as an explanatory 
variable in interaction with a dummy variable for owner (YO WN) and a dummy 
variable for non-head (YNH). Table 3.1 illustrates the structure of the explana- 
tory variables. 

First consider a MNL model fitted to these data. Table 3.2 gives the estimates, 
asymptotic standard errors and t-statistics, Table 3.4 gives elasticities for each 
response probability calculated at sample means (by alternative) of the explana- 
tory variables. This model excludes alternative-specific dummy variables. Conse- 
quently, the coefficients of the income variables reflect both a correlation of 
response with income, and unobserved features specific to the associated alterna- 
tive. The model suggests a strong positive association between ownership and 
return, and strong negative association between choice and out-of-pocket cost and 
between non-headship and income. The value of the log-likelihood at the maxi- 

Table 3.1 
Structure of the explanatory variables. 

Person Alternative= OPCOSTb RETURNC YO WNd YNHd CHOICE 

1 1 1.24 
1 2 1.13 
1 3 2.33 
2 1 5.48 
2 2 1.13 
2 3 0.93 

A;.e i 3.44 
2 0.97 
3 1.96 

2.79 6.1 0 
0 0 6.1 
0 0 0 

5.07 4.3 0 
0 0 4.3 
0 0 0 

4.41 6.4 0 0.46 
0 0 6.4 0.24 
0 0 0 0.30 

Wtemative 1 = own (73 cases); alternative 2 = rent/non-head (38 cases); alternative 3 = rent/head 
(48 cases). 

bin thousand 1977 dollars. 
‘In thousand 1977 dollars. 
din thousand 1977 dollars. 
%mple average by alternative. 
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Table 3.2 
Multinomial logit model of housing status 

Variable Parameter estimate Standard error t-Statistic 

OPCOST -4.544 1.011 - 4.50 
RETURN 2.506 0.141 3.35 
YO WN - 0.055 0.074 - 0.73 
YNH - 0.838 0.202 -4.16 

Auxiliary statistics 
Sample sire = 159 

Log-likelihood = - 15.91 
Estimation method: maximum likelihood, model (3.14). 

mum likelihood estimates is - 15.9, compared with a value of - 174.7 when all 
coefficients are zero. Using the criterion of maximum probability, the model 
predicts correctly 97.5% of the observed states. 

The MNL model specification can be tested using the procedure described in 
(3.28). Let S,,, and Shea,, denote the test statistics obtained by deleting owner 
and renter-head alternatives, respectively, and estimating the reduced MNL 
model. Under the null hypothesis that the MNL specification is correct, S,,, and 
S head are asymptotically cl-u-square with three degrees of freedom. For this 
sample, S,,, = 22.4 and S,, =1.7. Then the first statistic rejects the MNL 
specification at the 0.001 significance level, the second does not reject. We 
conclude, with a significance level at most 0.002, that the MNL specification 
should be rejected.’ 

‘The statistics &, and Shea,, are not independent. However, the inequalities max( P( S,,, > c). 
P(Shead’ c)) 5 P(m~(&wn~Shead)’ c)s p(so%rn’ c)+ P(Shead > c) can be used to bound the sig- 
nificance level and power curve of a criterion which rejects MNL if either of the statistics exceeds c. 
Alternatively, one can extend the analysis of Hausman and McFadden to establish an exact 
asymptotic joint test. Using the notation of subsection 3.7, let A and D be restricted subsets of the 
choice set C, PO and & the restricted and full maximum likelihood estimates of the parameters 
identifiable from D, and aA and ac the restricted and full estimates of the parameters identifiable 
from A. There may be overlap between /$ and ac. Let V. and Va denote the estimated covariance 
matrices of PO and a,,, respectively, and let I+,,, V,+ etc. denote submatrices of the estimated 
covariance matrix of the full maximum likelihood estimator. Define: 

T 

H=f c c (~,,--~~r)(t,,-zD,)‘~r, 
r=l reAnD 

where x and z are the variables corresponding to a and p; .xA and zo are the probability-weighted 
averages of these variables within A and D; and P,, is the estimated response probability from the full 
choice set. Then JT(( a ., - a,-)‘, ( BD - &)‘) is, under the null hypothesis, asymptotically normal with 
mean zero and covariance matrix: 

T 
VA - vc,, VAHVD - Vcg 
VD H’VA - vc,% V8 - vcsp 1 

Then a quadratic form in these expressions is asymptotically &i-square under the null with degrees of 
freedom equal to the rank of the matrix. 



Ch. 24: Quulitatioe Response Models 1431 

Table 3.3 
Nested multinomial logit model of housing status. 

Variable 

OPCOST 
RETURN 
YO WN 
YNH 
h 

Parameter estimate 

- 2.334 
0.922 
0.034 

- 0.438 
0.179 

Standard error t-Statistic 

0.622 - 3.15 
0.479 1.93 
0.064 0.53 
0.121 - 3.62 
0.109 1.64 

Auxiliary statistics: 
Sample size = 159 
Log-likelihood = - 10.79 

Estimation method: 
full maximum likelihood 
estimation, model (3.40) with lowest 
level of tree (unit choice) deleted 

The MNL specification can be tested against a NMNL decision tree using the 
Lagrange multiplier statistic given in (3.59). We have calculated this test for the 
tree in Figure 3.3, with the rental alternatives in a cluster, and obtain a value 
LM = 15.73. This statistic is asymptotically cm-square with one degree of freedom 
under the null, leading to a rejection of the MNL specification at the .OOl 
significance level. 

We next estimate a nested MNL model of the form (3.40) but continue the 
simplifying assumption that dwelling units within a cluster are homogeneous. 
Then there are three alternatives: own, rent/non-head, and rent/head, and one 
inclusive value coefficient X. Table 3.3 reports full maximum likelihood estimates 
of this model. Asymptotic standard errors and t-statistics are given. Table 3.4 
gives elasticities calculated at the sample mean using (3.49). The estimated 
inclusive value coefficient h =I 0.179 is significantly less than one: the statistic 
W = (1.0 - X)*/SE: = 56.77 is just the Wald statistic for the null hypothesis that 
the MNL model in Table 3.2 is correct, which is &i-square with one degree of 
freedom under the null. Hence, we again reject the MNL model at the 0.001 
significance level. It is also possible to use a likelihood ratio test for the 
hypothesis. In the example, the likelihood ratio test statistic is LR = 10.24, leading 
to rejection at the 0.005 but not the 0.001 level. We note that for this example the 
Lagrange multiplier (LM), likelihood ratio (LR), and Wald (W) statistics differ 
substantially in value, with LR -C LM -C W. This suggests that for the sample size 
in the example the accuracy of the first-order asymptotic approximation to the 
tails of the exact distributions of these statistics may be low. 

The impact of clustering of alternatives can be seen clearly by comparing 
elasticities between the MNL model and the NMNL model in Table 3.4. For 
example, the MNL model has equal elasticities of owner and renter-head response 
probabilities with respect to renter non-head OPCOST, as forced by the IIA 
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Table 3.4 
Elasticities in the MNL and NMNL models.” 

NML Model 

Alt.1 Ah.2 Ah.3 

MNML model 

Alt.1 Alt.2 Alt.3 

Variable 

Owner OPCOST 
Rental non-head 

OPCOST 
Rent head 

OPCOST 
RETURN 
INCOME 

Own 

- 8.44 
+ 1.06 

+ 2.67 

Rent 
non-head 

+ 7.19 
- 3.35 

+ 2.67 

Rent 
head 

+ 7.19 
+1.06 

- 6.06 

+ 5.97 - 5.08 - 5.08 
+ 1.10 - 3.92 + 1.45 

Own 

-4.33 
+0.54 

Rent 
non-head 

+ 3.69 
- 7.48 

Rent 
head 

+ 3.69 
+ 5.15 

+ 1.37 + 13.10 - 12.41 

+ 2.20 - 1.87 - 1.87 
+ 0.79 - 9.37 + 6.29 

“Elasticities are calculated at sample means of the explanatory variables; see formula 
(3.49). 

property, whereas in the NMNL model the first of these elasticities is substan- 
tially decreased and the second is substantially increased. 

A final comment on the NMNL model concerns the efficiency of sequential 
estimates and their suitability as starting values for iteration to full maximum 
likelihood. Sequential estimation of the NMNL model starts by fitting a MNL 
model to headship status among renters. Only OPCOST and YNH vary among 
renters, so that only the coefficients of these variables are identified. Next an 
inclusive value for renters is calculated. Finally, a MNL model is fitted to 
own-rent status, with RETURN, YOWN, and the calculated inclusive value as 
explanatory variables. The covariance matrix associated with sequential estimates 
is complicated by the use of calculated inclusive values; Amemiya (1978d) and 
McFadden (1981) give computational formulae. One Newton-Raphson iteration 
from the sequential estimates yields estimates which are asymptotically equivalent 
to full information maximum likelihood estimates.’ In general sequential estima- 
tion may be quite inefficient, resulting in one-step estimators which are far from 
the full maximum likelihood estimates. However, in this example, the sequential 
estimates are quite good, agreeing with the full information estimates to the third 
decimal place. The log-likelihood for the sequential estimates is - 10.7868, 
compared with - 10.7862 at the full maximum. 

The clustering of alternatives described by the preceding NMNL model could 
also be captured by a one-factor MNP model. With three alternatives, it is also 
feasible to estimate a MNP model with varying taste coefficients on all variables. 
We have not estimated these models. On the basis of previous studies [Hausman 

90ne must be careful to maintain consistent parameter definitions between the sequential procedure 
and the NMNL model likelihood specification; namely the parameter a from the first sequential step 
(3.41) is scaled to aKrhh, in the NMNL generating function (3.47). 
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and Wise (1978), Fischer-Nagin (1981)], we would expect the one-factor MNP 
model to give fits comparable to the NMNL model, and the MNP model with full 
taste variation to capture heterogeneities which the first two models miss. 

4. Further topics 

4. I. Extensions 

Econometric analysis of qualitative response has developed in a number of 
directions from the basic problem of multinomial choice. This section reviews 
briefly developments in the areas of dynamic models, systems involving both 
discrete and continuous variables, self-selection and sampling problems, and 
statistical methods to improve the robustness of estimators or asymptotic ap- 
proximations to finite-sample distributions. 

4.2. Dynamic models 

Many important economic applications of qualitative response models involve 
observations through time, often in a combined cross-section/time-series frame- 
work. The underlying latent variable model may then have a components of 
variance structure, with individual effects (population heterogeneity), autocorre- 
lation, and dependence on lagged values of latent or indicator variables (state 
dependence). This topic has been developed in great depth by Heckman (1974, 
1978b, 1981b, 1981~) Heckman and McCurdy (1982), Heckman and Willis 
(1975) Flinn and Heckman (1980), and Lee (1980b). 

Dynamic discrete response models are special cases of systems of non-linear 
simultaneous equations, and their econometric analysis can utilize the methods 
developed for such systems, including generalized method of moments estimators; 
see Hausman (1982) Hansen (1982), and Newey (1982). 

Most dynamic applications have used multivariate normal disturbances so that 
the latent variable model has a linear structure. This leads to MNP choice 
probabilities. As a consequence, computation limits problem size. Sometimes the 
dimension of the required integrals can be reduced by use of moments estimators 
[Hansen (1982) and Ruud (1982)]. Alternatively, one or two factor MNP models 
offer computational convenience when the implied covariance structure is ap- 
propriate. For example, consider the model: 

Y,*, = J&P + &,I - v, (4.1) 
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and Y,, =lify;>O,y,,,=-lotherwise,wheret=l,..., T, n=l,..., N; v,isan 
individual random effect which persists over time; and E,( are disturbances 
independent of each other and of v. If E,, and vn are normal, then the probability 
of a response sequence has the tractable form: 

P(yn,,...,ynr) = /_kafg( ;) *fJ@( ynf(xn;; + v, dv. 
Y 1 (4.2) 

It is also possible to develop tractable dynamic models starting with extreme- 
value disturbances. If (v,, e,i,. . . , E,,~) has the generalized extreme value distribu- 
tion 

F(v,,, e nl,...,E,T) (4.3) 

with 0 < X ~1, then the probability that y,, = 1 for all f in any subset A of 
(l,...,T} is: 

If A, is the set of times with y,, =l, and k(B) is the cardinality of a set B, then 

P(Y,l,...> Y"T) = c (-l)kO~A,“B. 
BGA; 

(4.5) 

For a more general discussion of models and functional forms for discrete 
dynamic models, see Heckman (1981b). 

4.3. Discrete-continuous systems 

In some applications, discrete response is one aspect of a larger system which also 
contains continuous variables. An example is a consumer decision on what model 
of automobile to purchase and how many kilometers to drive (VKT). It is 
important to account correctly for the joint determination of discrete and 
continuous choices in such problems. For example, regression of VKT on 
socioeconomic characteristics for owners of American cars is likely to be biased 
by self-selection into this sub-population. 
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A typical discrete-continuous model is generated by the latent variable model: 

Y:: = Xl,& - &it (i =1,2,3), (4.6) 

and generalized indicator function: 

Ylf = 
1, ifyc20, 

(4.7) 
0, otherwise, 

Y,, = Yl,Y2*, +o- Yl,)Yk (4.8) 

where (pi, e2, Ed) are multivariate normal with a mean zero and covariance 
matrix: 

[ 021 031 1 52 022 ‘32 013 ‘23 033 1 . 

This model is sometimes termed a switching regression with observed regime. 
Discrete-continuous models such as (4.6)-(4.7) can be estimated by maximum 

likelihood, or a computationally easier two-step procedure. The latter method first 
estimates the reduced form (marginal) equation for the discrete choice. Then the 
fitted probabilities are either used to construct instruments for the endogenous 
discrete choice variables in (4.8), or else used to augment (4.8) with a “hazard 
rate” whose coefficient absorbs the covariance of the disturbance and explanatory 
variables. Developments of these methods can be found in Quandt (1972), 
Heckman (1974), Amemiya (1974b), Lee (1980a), Maddala and Trost (1980), Hay 
(1979), Duncan (1980a), Dubin and McFadden (1980), and Poirier and Ruud 
(1980). A comprehensive treatment of models of this type can be found in Lee 
(1981). Empirical experience is that estimates obtained using augmentation by the 
hazard rate are quite sensitive to distributional assumptions; Lee (1981a) provides 
results on this question and develops a specification test for the usual normality 
assumption. 

If discrete-continuous response is the result of economic optimization, then 
cross-equation restrictions are implied between the discrete and continuous choice 
equations. These conditions may be imposed to increase the efficiency of estima- 
tion, or may be used to test the hypothesis of optimization. These conditions are 
developed for the firm by Duncan (1980a) and for the consumer by Dubin and 
McFadden (1980). 
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4.4. Self-selection and biased samples 

In the preceding section, we observed that joint discrete-continuous response 
could introduce bias in the continuous response equation due to self-selection into 
a target sub-population. This is one example of a general problem where ancillary 
responses lead to self-selection or biased sampling. 

In general, it is possible to represent self-selection phenomena in a joint latent 
variable model which also determines the primary response. Then models with a 
mathematical structure similar to the discrete-continuous response models can be 
used to correct self-selection biases [Heckman (1976b), Hausman and Wise 
(1977), Maddala (1977a), Lee (198Oa)l. 

Self-selection is a special case of biased or stratified sampling. In general, 
stratified sampling can be turned to the advantage of the econometrician by using 
estimators that correct bias and extract maximum information from samples 
[Manski and Lerman (1977), Manski and McFadden (1980), Cosslett (1980a), 
McFadden (1979c)]. To illustrate these approaches, consider the problem of 
analyzing multinomial response using self-selected or biased samples. Letf’( x, fi*) 
denote the true response probability and p(x) the density of the explanatory 
variables in the population of interest. Self-selection or stratification can be 
interpreted as identifying an “exposed” sub-population from which the observa- 
tions are drawn; let r(i, x) denote the conditional probability that an individual 
with characteristics (i, x) is selected into the exposed sub-population. For exam- 
ple, 7~ may be the probability that an individual agrees to be interviewed or is able 
to provide complete data on x, or the probability that the individual meets the 
screening procedures established by the sampling protocol (e.g. “terminate the 
interview on rental housing costs if respondent is an owner”). The selection 
probability may be known, particularly in the case of deliberately biased samples 
(e.g. housing surveys which over-sample rural households). Alternately, the selec- 
tion process may be modeled as a function of a vector of unknown parameters y*. 
An example of a latent variable model yielding this structure is the recursive 
system _yi* = x,p - ei and yi = 1 if yi* 2 y;‘, y, = 0, otherwise, for i = 1,. . . ,m; 
y,j+ = xyo +cy_“,,y,y, - e. and y. =l if yz 2 0 and y. = 0 otherwise; where x = 
(x i,...,&)r Y = (Yo , . . . ,Y,,,), and y, is an indicator for selection into the exposed 
sub-population. 

By Bayes’ law, the likelihood of an observation (i, x) in the exposed population 
is: 

h(i,x)=n(i,x,y*)f’(x,B*)P(x)/g(D*,Y*)7 (4.9) 

where 

q(p*,y*) = C C~(i,x,v*)f’(x,~*)P(X) (4.10) 
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is the fraction of the target population which is exposed. Note that when y* is 
unknown, it may be impossible to identify all components of (y*, p* ), or 
identification may be predicated on arbitrary restrictions on functional form. 
Then auxiliary information on the selection process (e.g. follow-up surveys of 
non-respondents, or comparison of the distributions of selected variables between 
the exposed population and censuses of the target population) is necessary to 
provide satisfactory identification. 

Stratified sampling often identifies several exposed sub-populations, and draws 
a sub-sample from each. The sub-populations need not be mutually exclusive; e.g. 
a survey of housing status may draw one stratum from lists of property-owners, a 
second stratum by drawing random addresses in specified census tracts. If the 
originating strata of observations are known, then the likelihood (4.9) specific to 
each stratum applies, with the stratum identifier s an additional argument of r 
and q. However, if the observations from different strata are pooled without 
identification, then (4.9) applies uniformly to all observations with v a mixture of 
the stratum-specific selection probabilities: if ps is the share of the sample drawn 
from stratum s, then except for an inessential constant: 

77(i, x) = Cr(i, x, s, y*)k/q,. (4.11) 

The likelihood (4.9) depends on the density of the explanatory variables p(x) 
which is generally unknown and of high dimensionality, making direct maximum 
likelihood estimation impractical. When the selection probability functions are 
known, one alternative is to form a likelihood function for the observations as if 
they were drawn from a random sample, and then weight the observations to 
obtain a consistent maximum “pseudo-likelihood” estimator. Specifically, if the 
selection probability a(i, x) is positive for all i, then, under standard regularity 
conditions, consistent estimates of j3 are obtained when observation (i, x) is 
assigned the log pseudo-likelihood (l/rr(i, x))lnf’(x, fi). This procedure can be 
applied stratum by stratum when there are multiple strata, provided the positivity 
of rr is met. However, in general it is more efficient to pool strata and use the 
pooled selection rate (4.11).” Pooling is possible if the exposure shares of qs are 
known or can be estimated from an auxiliary sample which grows in size at least 
as rapidly as the main sample. Further discussion of this method and derivation 
of the appropriate covariance matrices can be found in Manski and Lerman 
(1977) and Manski and McFadden (1981). 

“Additional weighting of observations with weights depending on x, but not on (i,s), will in 
general not affect consistency, and may be used to improve efficiency. With appropriate redefinition of 
a(i, x), it is also possible to reweight strata. 
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A second approach to estimation is to form the pooled sample conditional 
likelihood of response i and stratum s, given x, 

I(i,slx,8,Y)= m 

fl(x,rB)~(i,x,s,y)ll~/qs 

c /i(x,a)C~(i,x,t,Y)~~/q,’ 
j=l I 

(4.12) 

When the stratum s is not, identified or there is a single stratum, this reduces to 

With appropriate regularity conditions, plus the requirement that a(i, x, y) be 
positive for all i, maximum conditional likelihood estimates of (p, Y) are con- 
sistent. l1 Further discussion of this method and derivation of the appropriate 
covariance matrix is given in McFadden (1979) and Manski and McFadden 
(1981). 

When the response model has the multinomial logit functional form, condi- 
tional maximum likelihood has a simple structure. For 

fi(x, /3) = e”J/ fJ e@, 
j=l 

(4.14) 

(4.12) becomes: 

~(i,slx,P,y) = 
exp[XiS+ln(n(i,x,s,v)EL,/q,)l 

C eXP[xj8+ln(a(j,x,t,Y)lLl/qr)] 
(i,s)EA, 

(j.OEA 

(4.15) 

where A is the set of pairs (i, s) with s(i, x, s, y) > 0. When r(i, x, s, y)p,/q, is 
known or can be estimated consistently from auxiliary data, or In m( i, x, s, y) is 
linear in unknown parameters, then the response and selection effects combine in 
a single MNL form, permitting simple estimation of the identifiable parameters. 

“The exposure shares qS may be known, or estimated consistently from an auxiliary sample. 
Alternatively, they can be estimated jointly with (8, y). Identification in the absence of auxiliary 
information will usually depend on non-linearities of the functional form. 
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It is possible to obtain fully efficient variants of the conditional maximum 
likelihood method by incorporating side constraints (when qs is known) and 
auxiliary information (when sample data on qs is available); see Cosslett (1981a) 
and McFadden (1979). 

4.5. Statistical methods 

Econometric methods for qualitative response models have been characterized by 
heavy reliance on tractable but restrictive functional forms and error specifica- 
tions, and on first-order asymptotic approximations. There are four areas of 
statistical investigation which have begun to relax these limits: development of a 
variety of functional forms for specialized applications, creation of batteries of 
specification tests, development of robust methods and identification of classes of 
problems where they are useful, and development of higher-order asymptotic 
approximations and selected finite-sample validations. 

This chapter has surveyed the major lines of development of functional forms 
for general purpose multinomial response models. In a variety of applications 
with special structure such as longitudinal discrete response or serially ordered 
alternatives, it may be possible to develop specialized forms which are more 
appropriate. Consider, for example, the problem of modeling serially ordered 
data. One approach is to modify tractable multinomial response models to 
capture the pattern of dependence of errors expected for serial alternatives. This 
is the method adopted by Small (?982), who develops a generalized extreme value 
model with proximate dependence. A second approach is to generalize standard 
discrete densities to permit dependence of parameters on explanatory variables. 
For example, the Poisson density 

P,=e-“Ak/k! (k=O,...), (4.16) 

with A = eXfl, or the negative binomial density 

(4.17) 

with r > 0 and p = l/(1 + eeXfl), provide relatively flexible forms. A good example 
of this approach and analysis of the relationships between functional forms is 
Griliches, Hall and Hausman (1982). 

Specification tests for discrete response models have been developed primarily 
for multinomial response problems, using classical large-sample tests for nested 
hypotheses. Lagrange Multiplier and Wu-Hausman tests of the sort discussed in 
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this chapter for testing the MNL specification clearly have much wider applicabil- 
ity. An example is Lee’s (1981a) use of a Lagrange Multiplier test for a binomial 
probit model against the Pearson family. It is also possible to develop rather 
straightforward tests of non-nested models by applying Lagrange Multiplier tests 
to their probability mixtures. There has been relatively little development of 
non-parametric methods. McFadden (1973) and McFadden, Tye, and Train 
(1976) propose some tests based on standardized residuals; to date these have not 
proved useful. There is no finite sample theory, except for scattered Monte Carlo 
results, for specification tests. 

The primary objective of the search for robust estimators for discrete response 
models is to preserve consistency when the shape of the error distribution is 
m&specified. This is a different, and more difficult, problem than is encountered 
in most discussions of linear model robust procedures where consistency is readily 
attained and efficiency is the issue. Consequently, results are sparse. Manski 
(1975) and Cosslett (1980) have developed consistent procedures for binomial 
response models of the form PI = f'( xp), where f ’ is known only to be monotone 
(with standardized location and scale); more general techniques developed by 
Manski (1981) may make it possible to extend these results. 

To evaluate this approach, it is useful to consider the common sources of model 
misspecification: (1) incorrect assumptions on the error distribution, (2) reporting 
or coding errors in the discrete response, (3) omitted variables, and (4) measure- 
ment errors in explanatory variables. For concreteness, consider a simple bi- 
nomial probit model with a latent variable representation y* = x*p - v, v 
standard normal, y = 1 if y* 2 0 and y = 0 otherwise, so that in the absence of 
m&specification problems the response probability is PI = @(x*/3). Now suppose 
all the sources of misspecification are present: x* = (XT, x;) has x; omitted and 
x: measured with error, x1 =x: + ot. Then y* = x$r - (v - x2*& + 5) with 
response error 5. Suppose for analysis that (x:, xz, qt, v, 5) is multivariate normal 
with mean (pt, p2,0,0,0) and covariance matrix: ! 221 41 0 0 0 222 42 0 0 0 i-20 0 00a2 0 0 0 0 1 0 0 0. 0 I (4.18) 

Then observations conform to the conditional probability of y = 1, given x1: 

pl=@ xlsl+~+bl-Plh 
i x i 7 (4.19) 
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where 
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Estimating the probit model PI = @(x1&) without allowance for errors of mis- 
specification will lead to asymptotically biased estimates of relative coefficients in 
PI if x1 is measured with error (fir, # 0), or omitted variables are correlated with 
x1(,X&32 # 0) or make a non-zero contribution to the intercept (p2P2 # 0). These 
sources of error also change the scale A. Reporting and coding errors in the 
response (a2 # 0) affect the scale A, but do not affect the asymptotic bias of 
relative coefficients. Misspecification of the error distribution can always be 
reinterpreted, in light of the discussion in Section 2 on approximating response 
functions, as omission of the variables necessary to make the response a probit. 

Consider an estimator of the Cosslett or Manski type which effectively esti- 
mates a model Pr = F(x,&) with F a monotone function which is free to conform 
to the data. This approach can yield consistent estimates of relative coefficients in 
/I1 in the presence of response coding errors or an unknown error distribution, 
provided there are no omitted variables or measurement errors in x. However, the 
Cosslett-Manski procedures are ineffective against the last two error s0urces.r’ 
Furthermore, the non-linearity of (4.19) renders inoperative the instrumental 
variable methods which are effective for treatment of measurement error in linear 
models. How to handle measurement error in qualitative response models is an 
important unsolved problem. This topic is discussed further by Yatchew (1980). 

Most applications of qualitative response problems to date have used statistical 
procedures based on first-order asymptotic approximations. Scattered Monte 
Carlo studies and second-order asymptotic approximations suggest that in many 
qualitative response models with sample sizes of a few hundred or more, first-order 

‘*Ma&i and I have considered estimators obtained by maximizing a “pseudo-log-likelihood” in 
which observation (y,, x) makes the contribution: 

with a 2 0 and b > - 1. In the absence of measurement errors, this method yields consistent 
estimators. For positive a and b, this procedure bounds the influence of extreme observations, and 
should reduce the impact of coding errors in y. [Note that this class defines a family of M-estimators 
in the terminology of Huber (1965); the cases a = b = 0 and a = 0, b = 1 yield maximum likelihood 
and non-linear least squares estimates respectively.] We find, however, that this approach does not 
substantially reduce asymptotic bias due to coding errors. 
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approximations are moderately accurate. Nevertheless, it is often worthwhile to 
make second-order corrections for bias of estimators and the size of tests for 
samples in this range. As a rule of thumb, sample sizes which yield less than thirty 
responses per alternative produce estimators which cannot be analyzed reliably by 
asymptotic methods. These issues are discussed further in Domencich and 
McFadden (1975) Amemiya (1980, 1981), Cavanaugh (1982), Hausman and 
McFadden (1982), Rothenberg (1982), and Smith, Savin, and Robertson (1982). 

5. Conclusion 

This chapter has surveyed the current state of econometric models and methods 
for the analysis of qualitative dependent variables. Several features of this 
discussion merit restatement. First, the models of economic optimization which 
are presumed to govern conventional continuous decisions are equally ap- 
propriate for the analysis of discrete response. While the intensive marginal 
conditions associated with many continuous decisions are not applicable, the 
characterization of economic agents as optimizers implies conditions at 
the extensive margin and substantive restrictions on functional form. Unless the 
tenets of the behavioral theory are themselves under test, it is good econometric 
practice to impose these restrictions as maintained hypotheses in the construction 
of discrete response models. 

Second, as a formulation in terms of latent variable models makes clear, 
qualitative response models share many of the features of conventional economet- 
ric systems. Thus the problems and methods arising in the main stream of 
econometric analysis mostly transfer directly to discrete response. Divergences 
from the properties of the standard linear model arise from non-linearity rather 
than from discreteness of the dependent variable. Thus, most developments in the 
analysis of non-linear econometric systems apply to qualitative response models. 
In summary, methods for the analysis of qualitative dependent variables are part 
of the continuing development of econometric technique to match the real 
characteristics of economic behavior and data. 

Appendix: Proof outlines for Theorems l-3 

Theorem I 

This result specializes a general consistency theorem of Huber (1965, theorem 1) 
which states that any sequence of estimators which almost surely approaches the 
suprema of the likelihood functions as T + 00 must almost surely converge to the 
true parameter vector 8*. Assumptions (l)-(3) imply Huber’s conditions A-l and 
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A-2. The inequality -eel 1zlnz10 for O~z=f’(x,e)~l implies Huber’s 
A-3, and assumption (4) and this inequality imply Huber’s A-4 and A-5. It is 
possible to weaken assumptions (l)-(4) further and still utilize Huber’s argument; 
the formulation of Theorem 1 is chosen for simplicity and ease in verification. 

Theorem 2 

Note first that L,(8) I 0 and 

E&(0*) = jdp(x) 5 f’(x,8*)lnf’(x,8*) 2 -m/e 
i-l 

from the bound above on zln z for 0 I z 11. Hence, &-(0*) > - cc almost 
surely, and a sequence of estimators satisfying (3.9) exists almost surely. Let 0, be 
a compact subset of 0, [assumption (5)] which contains a neighborhood 0, of 0*, 
and let 8, be a maximand of Lr(0) on 0,. Choose 8, E O\O, such that 
L&.)+1/T> sup e,e,Lr(e). Define 8, = 8, if L,(t!&-) 2 L,(&), and &- = fir 
otherwise. Then I$ satisfies (3.9) and by Theorem 1 converges almost surely to 8*, 
and therefore almost surely eventually stays in 0,. Hence, almost surely eventu- 
ally 8, = 8, E O,r, implying Lr(8,) 2 L,(8) on an open neighborhood of Or, and 
therefore JL,( Br)/&l = 0. 

Theorem 3 

This result extends a theorem of Rao (1973, 5e2) which establishes for a 
multinomial distribution without explanatory variables that maximum likelihood 
estimates are asymptotically normal. Assumptions (6) and (7) correspond to 
assumptions made by Rao, with the addition of bounds which are integrable with 
respect to the distribution of the explanatory variables. This proof avoids the 
assumption of continuous second derivatives usually made in general theorems on 
asymptotic normality [cf. Rao (1973, 5f.2(iii)), Huber (1965, theorem 3 corollary)]. 

Let 0, be a neighborhood of 8* with compact closure_on which assumptions 
(5) and (6) hold. By Theorem 2, almost surely eventually 8, E 0, and 

o= ; gv,, &rf’(x 8 ) 

r=l i=l 

set’ T . 

Noting that 

(A-1) 

,glfYx,, 0) Jlnfi(x,,e) = 
ae -Oy (A4 
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one can rewrite (A.l) as 0 = A, + B, + C, - D, with: 

A,= i 2 (y,,-fi(x,,e*)) dlnf’y*)) 
r=l i=l 

B,= i E (y,,_f.(Xt,e*))[ alnf;;fJT) - alnri;;,,e*)], 
r=1 i=l 

c,= i 
i 

f (rl(xl,e*)-ri(x,,e,)) alnfi!$~s~J +qe*)(&-e*)), 
f=l i=l 

DT=7qe*)(8T-e*). (A-3) 

The steps in the proof are (1) show B,/\l?;(l + \/?; 18, - 8* I) + 0 in probability 
as T + co, (2) show C,/J7’(1+@ 18, - e*() + 0 in probability, (3) show 
J(B*)-‘(A, - DT)/fi + 0 in probability, and (4) show J(8*))‘A,/@ con- 
verges in distribution to a normal random vector with mean zero and covariance 
matrix J(fP-‘. With the result of Step 3, this proves Theorem 3. 

Step 1. We use a fundamental lemma of Huber (1965, lemma 3). Define 

~(y,x,e)=,~l(yi-/i(x,e*))aln~~~~e) + e - e*, 

h(e)=E+(y,x,e)=e-e* 

4Ydw= sup I~(Y,x,e’)-J/(Y,x,e)i. 
lo’- 81 s d 

Then assumption (6) (iii) implies: 

~(hx,e,dkd 1+ f Iv,--f’(x,e*))-y’(x) , 
i i=l i 

(A-4) 

(A-5) 

and hence using the bounds (6) (iv): 

Eu(y,x,8,d)jd 1 ( /dp(x)d(x)y’(x)) = A,d, 

Eu(y,x,e,d)*$d* 2J4,+m 5 E(yi-f’(x,e*))Zy’(x)* 
i i=l 

64.6) 

ldp(x)a’(x)+(x)* = A,d*. 
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These conditions imply Huber’s assumptions (N - 1) to (N - 3). Define: 
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5 (J,(Y,,x,,e)-rt(Y*,x,,e*)-x(e)) 
z,(e)= I=l 

fi(i+\/?;le - e*I) 

Ii1 ~l(y,,-f;(x,,e*))[ alnf.JfTe) - a1ncf2i>e*)]l 
= 

JT(i+dTle-e*l) 

Then Huber’s Lemma 3 states that: 

supz,(e) + 0 
@cl 

in probability as T -+ co. But 

(A.7) 

64.8) 

(A-9) 

and Step 1 is complete. 
Step 2. Since f i is differentiable on Or, the mean value theorem implies: 

(A.10) 

where 8, is some interior point on the line segment connecting 8* and 8,. 
Substituting this expression in C, yields C, = (Fr + Gr)( 6, - e*), with 

(A.ll) 

and 

G,=i f 
WP(x,J*) afi(x,,e*) _ Jlnji(x,,&) ajl(~,J,) 

r=l i=l ae aef ae I aef ’ 

(A.12) 
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Then F,/T 0 probability by the law of large numbers and 

IG,/TI 5 lb,- 8*) E jdp(+-+)/3i(n)[2ui(~)2] 
i=l 

in probability by Theorem 2. Since 

(A.14) 

with the second term in the product stochastically bounded, this establishes 
Step 2. 

Step 3. The first two steps establish that (AT - 0,)/\/7;(1+ fi 16, - 8* I) + 0 
in probability and hence J(P)‘(A, - Dr)/fi(l + \/?; 16 - 8* I) + 0 in proba- 
bility. Therefore given E > 0, there exists T, such that for T > T,, the inequality 

IJ(e*)-lAT/J?:-~(e,-e~)l<e(l+JT~~,-e*I) (A.15) 

holds with probability at least 1- ~/2. Chebyshev’s inequality applied to 
J(fI*)-‘A,/@ implies [using assumptions (7) and (6) (iv)] that for some large 
constant K: 

Ip(e*)-b&q < K (A.16) 

holds with probability at least 1 - c/2. Then (A.15) and (A.16) imply 

JT&-e*( < (K+&)/(l-&), (A.17) 

and hence 

JJ(e*)-‘A,/~-~(8,-e~)II @+1)&/(1-&E) (A.18) 

with probability at least 1 - E. Since E can be made small, this establishes Step 3. 
Step 4. The expression J(P)‘A,/@ has mean zero and covariance matrix 

J(P)‘, and satisfies the conditions of the Lindeberg-Levy central limit theo- 
rem. Therefore it converges in distribution to an asymptotically normal vector. 
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